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Summary

In this thesis we will look at recent developments in the theory of algebraic-

geometry codes such as the use of places of arbitrary degree, distinguished

divisors, and local expansions. This will lead us to a new construction which

will produce an asymptotic coding bound beating all previous efforts. We will

also show that the best currently known constructions of algebraic-geometry

codes, (t,m, s)-nets, and (t, s)-sequences all have analogous constructions

using differentials. Finally, we show that in the decade since the last con-

struction of (t, s)-sequences, new results in the theory of global function fields

with many rational places provide improved bounds on the asymptotic prop-

erties of (t, s)-sequences, and that this in turn produces a stronger asymptotic

bound for the star discrepancy.

iv



Chapter 1

Introduction

This thesis represents a contribution to the theory of global function fields

and their applications. Specifically, we will examine codes and low-discrepancy

sequences, two seemingly divergent areas of mathematics which have progres-

sively been seen to have closer links than one might initially imagine. We

begin by offering a brief outline of their history.

Coding theory was developed by Shannon [47] in 1948 as a means of

correcting errors in data transmission. From its beginnings as an area of

research solely of interest to discrete mathematicians, the theory branched

out in the early 1980s after Goppa wrote a seminal series of papers [11], [12],

[13] demonstrating that a new class of codes could be constructed using al-

gebraic curves over finite fields, or equivalently global function fields, where

the codes’ parameters could be bounded by using methods from algebraic-

geometry such as the Riemann-Roch theorem. We refer to such codes as

algebraic-geometry codes. The interest in these codes was magnified soon

after Goppa introduced them when Tsfasman, Vlăduţ, and Zink [52] demon-

1



CHAPTER 1. INTRODUCTION 2

strated that algebraic-geometry codes could be shown to produce sequences

of codes with the best known asymptotic properties. More recently, it has

been shown that there are various generalisations of Goppa’s original con-

struction which can be used to produce further asymptotic improvements.

The theory of low-discrepancy sequences has a long and storied history

which can be traced back to a celebrated paper of Weyl [56] from 1916.

These sequences were themselves of much interest to pure mathematicians

before they found practical uses in modern applications such as numerical

integration and optimisation. Background on the early developments of this

theory is available in the book of Kuipers and Niederreiter [20]. Our research

will concentrate on the classes of low-discrepancy point sets and sequences

known as (t,m, s)-nets and (t, s)-sequences that were defined by Niederreiter

[23]. Just as with coding theory, a significant breakthrough was made in

the theory of low-discrepancy sequences when new constructions using global

function fields were developed. Niederreiter and Xing collaborated on a series

of papers [32], [33], [59], [34] which used global function fields to produce low-

discrepancy sequences which were asymptotically optimal.

The fact that the best currently known asymptotic bounds for both codes

and low-discrepancy sequences are obtained by using global function fields

is not merely coincidence. Recently, Niederreiter and Pirsic [31] have shown

that (t,m, s)-nets can be constructed by introducing a minimum distance

function on the space Fms
q which can be seen as a generalisation of the clas-

sical Hamming weight from coding theory.

A further similarity between the two areas of research is that both Goppa’s

introduction of algebraic-geometry codes and Niederreiter and Xing’s intro-
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duction of low-discrepancy sequences using global function fields sparked

searches for global function fields with many places of low degree. This itself

is a rich and fascinating area of research which has intrigued a large number

of mathematicians from the humble author to the Fields Medal and Abel

Prize winning mathematician Jean-Pierre Serre [46]. Our exposure to this

research within the thesis will be somewhat limited, but it remains a vital

area from which we will draw many results.

The new results that will be presented in the thesis are the following.

After a chapter on the preliminaries needed for our work, we begin our orig-

inal research with a short chapter on the asymptotic properties of algebraic-

geometry codes using places of arbitrary degree, and show that for small q

we can gain global improvements on the Tsfasman-Vlăduţ-Zink bound. We

will also show that for any value of q we can find a small interval where

the Tsfasman-Vlăduţ-Zink bound can be improved upon. Unfortunately,

these improvements do not lead to improvements on the asymptotic Gilbert-

Varshamov bound. However, in the following chapter we construct a new

class of algebraic-geometry codes with the explicit intention of breaking the

mentioned bound. We do so by combining the ideas of distinguished divisors

and local expansions. In Chapter 5 we demonstrate that there is an equiv-

alent construction using differentials to the one in the previous chapter. In

Chapter 6 we will show that our new construction of codes can indeed be

used to beat all previously known asymptotic coding bounds. In Chapter

7 we turn to the topic of low-discrepancy point sets and introduce a new

construction of (t,m, s)-nets using differentials. In Chapter 8 we also use

differentials to introduce a new construction of (t, s)-sequences, which is the
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first in a decade. In Chapter 9 we look at new results that have occurred

in the theory of towers of global function fields and then use these to gain

improvements in the asymptotic theory of (t, s)-sequences. Finally, we show

that these new improvements also have implications for the star discrepancy

of low-discrepancy sequences and hence numerical integration.



Chapter 2

Preliminaries

In this chapter we recall some basic facts on global function fields, algebraic

coding theory, and low-discrepancy sequences.

2.1 Global Function Fields

We start with a brief recapitulation on the theory of global function fields.

The standard text on the subject is the excellent book of Stichtenoth [49].

Let Fq be the finite field of order q. An extension field F of Fq is called

a global function field over Fq if there exists an element x of F that

is transcendental over Fq and such that F is a finite extension of Fq(x).

Furthermore, Fq is called the full constant field of F if Fq is algebraically

closed in F . For brevity, we simply denote by F/Fq a global function field

F with full constant field Fq.

A place P of F is, by definition, the maximal ideal of some valuation

ring of F . We denote by OP the valuation ring corresponding to P and we

5



CHAPTER 2. PRELIMINARIES 6

denote by PF the set of places of F .

For a place P of F , we write νP for the normalised discrete valuation of F

corresponding to P , and any element t ∈ F with νP (t) = 1 is called a local

parameter at P .

The residue class field OP/P is denoted by F̃P and the degree of a place

P is defined as

deg(P ) = [F̃P : Fq].

A place of degree 1 is called a rational place.

For a place P of F and f ∈ F with νP (f) ≥ 0, the residue class f + P of

f in F̃P is denoted by f(P ).

A divisor D of a global function field F/Fq is a formal sum

D =
∑

P∈PF

mPP

with integer coefficients mP and mP 6= 0 for at most finitely many P ∈ PF .

We write νP (D) for the coefficient mP of P. The support of D is the set of

P for which νP (D) is nonzero and we denote it by supp(D). We denote by

Div(F ) the set of divisors of F/Fq.

The degree of a divisor D =
∑

P∈PF
νP (D)P is given by

deg(D) =
∑

P∈PF

νP (D) deg(P ).

For f ∈ F ∗ the principal divisor of f is given by

div(f) =
∑

P∈PF

νP (f)P.

Since deg(div(f)) = 0 for any f ∈ F ∗, we have

Princ(F ) := {div(f) : f ∈ F ∗} ⊆ Div0(F ) := {D ∈ Div(F ) : deg(D) = 0}.
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We let

Cl(F ) := Div0(F )/Princ(F ),

which is a finite abelian group and is called the group of divisor classes of

degree 0 of F . The cardinality of Cl(F ) is called the divisor class number

of F , denoted by h(F ).

For a global function field F/Fq we define its set of differentials as

ΩF = {x dz : x ∈ F, z is a separating element for F/Fq},

and for any differential ω ∈ ΩF and separating element z we can write ω =

x dz with a unique x ∈ F .

Let P be a rational place of F with a local parameter t. Since any

local parameter is a separating element (see [49, Proposition III.9.2]), for

a differential ω we can write ω = x dt and furthermore we have a unique

expansion of the form

x =
∞∑

n=r

ant
n,

where r ∈ Z and an ∈ Fq. The residue of ω at P with respect to t is simply

the coefficient a−1 in the above expansion. Furthermore, this is independent

of the choice of t and hence we refer to the residue of ω at P , which we

denote by resP (ω).

For a place P of F with a local parameter t and a nonzero differential

ω = x dt we set νP ((x dt)) := νP (x). Furthermore, this is independent of the

choice of t, hence νP ((ω)) is meaningful and defines a divisor (ω).

For any divisor D of F we define the following sets of functions and
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differentials

L(D) = {f ∈ F ∗ : div(f) ≥ −D} ∪ {0},

Ω(D) = {ω ∈ Ω\{0} : (ω) ≥ D} ∪ {0}.

We call L(D) the Riemann-Roch space of D. Both L(D) and Ω(D) can

be shown to be vector spaces over Fq.

We define the genus of F as the integer

g := max
D

(deg(D)− dimL(D) + 1),

where the maximum is extended over all divisors D of F .

A divisor W of the form (ω) for some nonzero differential ω is called

canonical and all such divisors satisfy deg(W ) = 2g − 2. Furthermore, all

canonical divisors of F/Fq are equivalent, i.e., for divisors D1, D2 of F we

have D1 = D2 + div(f) for some f ∈ F ∗ and in such a case we write

D1 ∼ D2.

We also have Ω(D) ' L(W −D) for any canonical divisor W of F .

Let g be the genus of F/Fq, then we know by the Riemann-Roch theorem

that for any divisor D we have

dimL(D)


= deg(D) + 1− g if deg(D) ≥ 2g − 1,

≥ deg(D) + 1− g if 0 ≤ deg(D) ≤ 2g − 2,

= 0 if deg(D) ≤ −1.

Since

dim Ω(D) = dimL(D)− deg(D) + g − 1,



CHAPTER 2. PRELIMINARIES 9

we also have

dim Ω(D)


= 0 if deg(D) ≥ 2g − 1,

≥ 0 if 0 ≤ deg(D) ≤ 2g − 2,

= g − 1− deg(D) if deg(D) ≤ −1.

For k ≥ 0 let Ak(F ) be the set of positive divisors of F of degree k and

let Ak(F ) = |Ak(F )|. Details for calculating Ak(F ) are given in [49, Section

V.1] and [39, Section 1.6]. For r ≥ 1 let Br(F ) be the number of places of

F of degree r. Finally, we let N(F ) := A1(F ) = B1(F ) be the number of

rational places of F .

Definition 2.1. For a given prime power q and an integer g ≥ 0, let Nq(g)

denote the maximum number of rational places that a global function field

F/Fq of genus g can have.

The Hasse-Weil bound implies that Nq(g) = O(g). More specifically,

Serre [44] proved that

Nq(g) ≤ q + 1 + gb2q1/2c,

and hence the following definition of Ihara [17] is meaningful.

Definition 2.2. For any prime power q define

A(q) = lim sup
g→∞

Nq(g)

g
.

The following bound due to Vlăduţ and Drinfeld [54] was found soon after

the introduction of the previous definition.
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Theorem 2.3 (Vlăduţ-Drinfeld Bound). For every prime power q we

have

A(q) ≤ q1/2 − 1.

This remains the best known bound and in fact it is best possible in

the case where q is a square, since it was shown by Ihara [17] that we have

A(q) ≥ q1/2 − 1 for square q. Garcia and Stichtenoth [9] later introduced

explicit towers of function fields obtaining this bound for all square q.

A more recent paper of Bezerra, Garcia, and Stichtenoth [1] showed that

A(q) ≥ 2(q2/3 − 1)

q1/3 + 2

when q is a cube.

2.2 Algebraic Coding Theory

A code C over Fq is a nonempty subset of Fn
q for some n ≥ 1. The number

n is the length of C. An element of C is called a codeword and K := |C|

is the number of codewords of C. The information rate R of the code is

defined to be

R =
logq K

n
.

If a code C ⊆ Fn
q is a nonzero Fq-linear subspace of Fn

q then it is called a

linear code over Fq and its dimension over Fq is called the dimension of

C which we denote by k.

For x ∈ Fn
q the (Hamming) weight w(x) is the number of nonzero

coordinates of x. For x,y ∈ Fn
q the (Hamming) distance d(x,y) is given
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by

d(x,y) = w(x− y).

For a code C with K ≥ 2, we define its minimum distance

d = min{d(x,y) : x,y ∈ C,x 6= y},

and its relative minimum distance

δ =
d

n
.

We refer to (n,K, d) codes and linear [n, k, d] codes.

For a given prime power q, let Uq be the set of points (δ, R) in the unit

square [0, 1]2 for which there exists a sequence of (ni, Ki, di) codes over Fq

with i ≥ 1 such that ni →∞ as i→∞ and

lim
i→∞

di

ni

= δ, lim
i→∞

logq Ki

ni

= R.

The following nonincreasing continuous function was introduced by Manin

[22] for linear [ni, ki, di] codes over Fq. He later refined the idea [55, Chapter

I] to include sequences of nonlinear codes in Uq, which is the definition we

have taken.

Definition 2.4. For a given prime power q, put

αq(δ) = sup{R ∈ [0, 1] : (δ, R) ∈ Uq} for 0 ≤ δ ≤ 1.

The classical lower bound on αq is the following theorem.

Theorem 2.5 (Asymptotic Gilbert-Varshamov Bound). For any prime

power q we have

αq(δ) ≥ RGV(q, δ) := 1− δ logq(q − 1) + δ logq δ + (1− δ) logq(1− δ)

for 0 < δ ≤ (q − 1)/q and αq(0) = RGV(q, 0) := 1.
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As we mentioned in the introduction, a major breakthrough was made

by Goppa when he introduced the following class of codes.

Let F/Fq be a global function field of genus g and with at least n ≥ 1

distinct rational places P1, . . . , Pn. Let G be a divisor of F with supp(G) ∩

{P1, . . . , Pn} = ∅. Then it is meaningful to define an Fq-linear map ψ :

L(G) → Fn
q by

ψ(f) = (f(P1), . . . , f(Pn)) for all f ∈ L(G).

The image of ψ is denoted by C(P1, . . . , Pn;G) and we call this class of codes

Goppa’s algebraic-geometry codes. These codes’ parameters can be

bounded by the following theorem (see, for example, [49, Corollary II.2.3]).

Theorem 2.6. Let F/Fq be a global function field of genus g and with at

least n ≥ g+1 distinct rational places P1, . . . , Pn. Let G be a divisor of F with

g ≤ deg(G) < n and supp(G) ∩ {P1, . . . , Pn} = ∅. Then C(P1, . . . , Pn;G) is

a linear [n, k, d] code over Fq with

k ≥ deg(G)− g + 1, d ≥ n− deg(G).

Goppa’s algebraic-geometry codes are not the only class of codes to make

use of algebraic geometry. For example, we have the following generalisation

due to Xing, Niederreiter, and Lam [61].

Let F/Fq be a global function field of genus g and with r distinct places

P1, . . . , Pr. Let G be a divisor of F with supp(G) ∩ {P1, . . . , Pr} = ∅. For

i = 1, . . . , r, let Ci be a linear [ni, ki ≥ deg(Pi), di] code over Fq and let φi

be a fixed Fq-linear monomorphism from the residue class field of Pi to the
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linear code Ci. Put

n =
r∑

i=1

ni.

Then it is meaningful to define an Fq-linear map β : L(G) → Fn
q by

β(f) = (φ1(f(P1)), . . . , φr(f(Pr))) for all f ∈ L(G).

The image of β is denoted by C(P1, . . . , Pr;G;C1, . . . , Cr) and we call this

class of codes XNL codes.

Theorem 2.7. Let F/Fq be a global function field of genus g and let P1, . . . , Pr

be distinct places of F . For i = 1, . . . , r, let Ci be a linear [ni, ki ≥ deg(Pi), di]

code over Fq. Let G be a divisor of F with supp(G) ∩ {P1, . . . , Pn} = ∅ and

g ≤ deg(G) <
r∑

i=1

deg(Pi).

Then C(P1, . . . , Pn;G;C1, . . . , Cr) is a linear [n, k, d] code over Fq with

n =
r∑

i=1

ni, k ≥ deg(G)− g + 1, d ≥ d0,

where d0 is the minimum of
∑

i∈M ′ di taken over all subsets M of {1, . . . , r}

for which
∑

i∈M deg(Pi) ≤ deg(G), with M ′ denoting the complement of M

in {1, . . . , r}.

The question as to whether it was possible to construct sequences of codes

which beat the asymptotic Gilbert-Varshamov bound was an open problem

for many years, and some mathematicians believed it to be impossible. It

was thus a major result when Tsfasman, Vlăduţ, and Zink [52] demonstrated

that Goppa’s algebraic-geometry codes produced the bound

αq(δ) ≥ RTVZ(q, δ) := 1− 1

A(q)
− δ for 0 ≤ δ ≤ 1,
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which improves on the asymptotic Gilbert-Varshamov bound for some inter-

val for all square prime powers q ≥ 49.

The next improvements were made by Vlăduţ [53] and Xing [57] who in-

troduced the ideas of considering distinguished line bundles and distinguished

divisors, respectively. These improvements occur around the two intersection

points of the Gilbert-Varshamov and Tsfasman-Vlăduţ-Zink bounds and are

not global.

The development which led to global improvements on the Tsfasman-

Vlăduţ-Zink bound was the consideration of nonlinear algebraic-geometry

codes, which was instigated by Elkies [5]. This was later refined by Xing [58]

who introduced the idea of using local expansions to create nonlinear codes

which produced the bound

αq(δ) ≥ RX(q, δ) := 1− 1

A(q)
− δ +

∞∑
i=2

logq

(
1 +

q − 1

q2i

)
for 0 ≤ δ ≤ 1.

Niederreiter and Özbudak [29] then expanded on Xing’s idea by using more

terms in the local expansion to produce nonlinear codes with the bound

αq(δ) ≥ RNÖ(q, δ) := 1− 1

A(q)
− δ + logq

(
1 +

1

q3

)
for 0 ≤ δ ≤ 1.

This was also shown in the case where q is a square by Elkies [6], and

Stichtenoth and Xing [50] later gave a simpler proof of Niederreiter and

Özbudak’s bound.

More recently, Niederreiter and Özbudak [30] introduced a construction

which combines Xing’s idea of considering two terms of the local expansion

of functions in a Riemann-Roch space with the idea of using a distinguished

divisor. It can be shown that this improves on Xing’s construction using dis-

tinguished divisors. We note that Vlăduţ’s bound based on distinguished line
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bundles is in some instances better than Niederreiter and Özbudak’s bounds.

Thus, for any values of q and δ, the best known bound can be obtained by

considering the Gilbert-Varshamov, Vlăduţ [53], and Niederreiter-Özbudak

[29], [30] bounds.

2.3 Low-Discrepancy Sequences

The most powerful known methods for the construction of low-discrepancy

point sets and sequences are based on the theory of (t,m, s)-nets and (t, s)-

sequences, which are point sets, respectively sequences, satisfying strong uni-

formity properties in the half-open s-dimensional unit cube [0, 1)s. We note

that by a point set we mean a multiset, i.e., a set in which multiplicities of

elements are allowed and taken into account.

For a subinterval J of [0, 1)s and for a point set P consisting of N points

x1, . . . ,xN ∈ [0, 1)s we write A(J ;P ) for the number of integers n with

1 ≤ n ≤ N for which xn ∈ J . We then put

R(J ;P ) =
A(J ;P )

N
− Vol(J).

Definition 2.8. The star discrepancy D∗
N(P ) of the point set P is defined

by

D∗
N(P ) = sup

J
|R(J ;P )|,

where the supremum is extended over all subintervals J of [0, 1)s with one

vertex at the origin. For a sequence S of points in [0, 1)s, the star dis-

crepancy D∗
N(S) is meant to be the star discrepancy of the first N terms of

S.
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Definition 2.9. A sequence S of points in [0, 1)s is called a low-discrepancy

sequence if

D∗
N(S) = O(N−1(logN)s) for all N ≥ 2.

The desire to minimise the star discrepancy and produce low-discrepancy

sequences led to the introduction of (t,m, s)-nets and (t, s)-sequences. Sobol’

[48] first constructed (t, s)-sequences in base 2 and Faure [8] later considered

(0, s)-sequences in prime base b ≥ s. The following general definitions were

given by Niederreiter [23].

Definition 2.10. For integers b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m, a (t,m, s)-net

in base b is a point set P consisting of bm points in [0, 1)s such that every

subinterval of [0, 1)s of the form

s∏
i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s, and of volume bt−m

contains exactly bt points of P .

For a base b ≥ 2 we write Zb = {0, 1, . . . , b − 1} for the set of digits in

base b. Given a real number x ∈ [0, 1), let

x =
∞∑

j=1

yjb
−j with all yj ∈ Zb

be a b-adic expansion of x, where the case yj = b−1 for all but finitely many

j is allowed. For an integer m ≥ 1 we define the truncation

[x]b,m =
m∑

j=1

yjb
−j.
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If x = (x(1), . . . , x(s)) ∈ [0, 1)s and the x(i), 1 ≤ i ≤ s, are given by prescribed

b-adic expansions, then we define

[x]b,m =
(
[x(1)]b,m, . . . , [x

(s)]b,m

)
.

Definition 2.11. Let s ≥ 1, b ≥ 2, and t ≥ 0 be integers. A sequence

x0,x1, . . . of points in [0, 1)s is a (t, s)-sequence in base b if for all integers

k ≥ 0 and m > t the points [xn]b,m with kbm ≤ n < (k + 1)bm form a

(t,m, s)-net in base b.

The following theorem is due to Niederreiter [23].

Theorem 2.12. The star discrepancy D∗
N(S) of the first N terms of a (t, s)-

sequence S in base b satisfies

D∗
N(S) ≤ bt

s!
· b− 1

2bb/2c

(
bb/2c
log b

)s
(logN)s

N
+O

(
bt(logN)s−1

N

)
for all N ≥ 2.

Hence, it is clear that any (t, s)-sequence in base b is a low-discrepancy

sequence.

Low-discrepancy sequences were of interest from a purely academic point

of view. However, it was after Koksma [18] showed that there were important

applications to numerical analysis that interest really peaked. The following

important theorem was proved by Koksma [18] for s = 1 and by Hlawka [16]

for general s.

Theorem 2.13 (Koksma-Hlawka Inequality). If f has bounded variation

V (f) on [0, 1]s in the sense of Hardy and Krause, then, for any x1, . . . ,xN ∈

[0, 1)s, we have∣∣∣∣∣
∫

[0,1]s
f(u) du− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ V (f)D∗
N(P ),
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where D∗
N(P ) is the star discrepancy of the point set P formed by x1, . . . ,xN .

If V (f) is finite and we have a sequence S in [0, 1)s such that

lim
N→∞

D∗
N(S) = 0,

then we get a convergent numerical integration scheme, i.e.,

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1]s

f(u) du.

It is clear by Theorem 2.12 that (t, s)-sequences (and indeed all low-discrepancy

sequences) satisfy the condition limN→∞D∗
N(S) = 0.

For a (t, s)-sequence in base b, smaller values of t provide smaller upper

bounds on the star discrepancy. This leads us to the following definition first

given by Niederreiter [23].

Definition 2.14. For given integers b ≥ 2 and s ≥ 1, let tb(s) be the least

value of t for which there exists a (t, s)-sequence in base b.

In practical problems such as option pricing in mathematical finance, the

dimension of the integration domain may be large. Thus, we would like to be

able to bound tb(s) for arbitrarily large s. This was first done by Niederreiter

[24] who showed that we have

tb(s) = O(s log s).

This was later improved by Niederreiter and Xing [33], who used global

function fields to show that

tb(s) = O(s).
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In view of the fact that Niederreiter and Xing [34, Theorem 8] proved that

tb(s) ≥
s

b
− logb

(b− 1)s+ b+ 1

2
,

we see that tb(s) = O(s) is the best bound possible.

Most of the known constructions of (t,m, s)-nets and (t, s)-sequences are

based on the so-called digital method. We refer to (t,m, s)-nets and (t, s)-

sequences which are constructed via the digital method as digital (t,m, s)-

nets and digital (t, s)-sequences. The method was developed by Niederreiter

[23] and we do not replicate it here. Suitable expositions are available in the

books of Niederreiter [25, Chapter 4] and Niederreiter and Xing [39, Chapter

8]. For our new constructions in Chapters 7 and 8 we will, however, need

some results.

Niederreiter and Pirsic [31] showed that the problem of constructing a

digital (t,m, s)-net over Fq can be reduced to the problem of constructing

certain Fq-linear subspaces of Fms
q . For this purpose, Fms

q is endowed with a

weight function which then determines the quality parameter t of the digital

net.

First, we define a weight function v on Fm
q by putting v(a) = 0 if a =

0 ∈ Fm
q , and for a = (a1, . . . , am) ∈ Fm

q with a 6= 0 we set

v(a) = max{j : aj 6= 0}.

Then we extend this definition to Fms
q by writing a vector A ∈ Fms

q as the

concatenation of s vectors of length m, i.e.,

A = (a(1), . . . , a(s)) ∈ Fms
q with a(i) ∈ Fm

q for 1 ≤ i ≤ s,
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and putting

Vm(A) =
s∑

i=1

v(a(i)).

Definition 2.15. For any nonzero Fq-linear subspace N of Fms
q we define

the minimum distance

δm(N ) = min
A∈N\{0}

Vm(A).

Theorem 2.16. Let q be a prime power and let m ≥ 1 and s ≥ 2 be integers.

Then from any Fq-linear subspace N of Fms
q with dim(N ) ≥ ms−m we can

construct a digital (t,m, s)-net over Fq with t = m+ 1− δm(N ).

We can construct digital (t, s)-sequences over Fq using the following

method.

Let s ≥ 1 and choose elements c
(i)
r,j ∈ Fq for 1 ≤ i ≤ s, j ≥ 1, and r ≥ 0.

Let

c
(i)
j = (c

(i)
0,j, c

(i)
1,j, . . .) ∈ F∞

q for 1 ≤ i ≤ s and j ≥ 1,

which are collected in the two-parameter system

C(∞) = {c(i)
j ∈ F∞

q : 1 ≤ i ≤ s and j ≥ 1}.

For m ≥ 1 we define the projection

πm : (c0, c1, . . .) ∈ F∞
q 7→ (c0, . . . , cm−1) ∈ Fm

q ,

and we put

C(m) = {πm(c
(i)
j ) ∈ Fm

q : 1 ≤ i ≤ s, 1 ≤ j ≤ m}.

Then we have the following theorem.
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Theorem 2.17. The system C(∞) can be used to create a digital (t, s)-

sequence if, for any nonnegative integers d1, . . . , ds with
∑s

i=1 di = m − t,

the vectors πm(c
(i)
j ), 1 ≤ j ≤ di, 1 ≤ i ≤ s, are linearly independent for all

m > t.

Finally, we give the following definition which is analogous to Definition

2.14.

Definition 2.18. For a given prime power q and any integer s ≥ 1, let

dq(s) be the least value of t for which there exists a digital (t, s)-sequence

constructed over Fq.



Chapter 3

Asymptotic Bounds for XNL

Codes

The idea of using places of arbitrary degree to construct algebraic-geometry

codes is due to Niederreiter, Xing, and Lam [41] who introduced a class

of codes which we call NXL codes. This was followed by a paper of Xing,

Niederreiter, and Lam [61] which introduced the XNL codes detailed in Sec-

tion 2.2. It was later shown by Özbudak and Stichtenoth [42] that the NXL

codes can be viewed as a special case of the more general XNL code con-

struction. In fact, the XNL codes can be viewed as a special case of the class

of codes known as function-field codes, which were defined by Hachenberger,

Niederreiter, and Xing [14].

The main motivation for these codes is the fact that for small values of

q, global function fields F/Fq generally have few rational places relative to

the genus of F . Ding, Niederreiter, and Xing [3] carried out a search for

XNL codes which produced many good results. However, as yet there has

22
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been no examination of the asymptotic properties of these codes. In this

chapter we fill that void by demonstrating that, for small q, XNL codes do

indeed produce global improvements upon the Tsfasman-Vlăduţ-Zink bound.

Furthermore, we show that for any q there is a range where XNL codes beat

the Tsfasman-Vlăduţ-Zink bound.

3.1 The General Asymptotic Bound

Before gaining specific bounds on αq we must decide which places we wish

to use. For presentational purposes, we will use all places of degree l and m

for our definitions and theorem. However, analogous results obviously hold

if we choose only rational places, only places of degree 2, or places of degree

l, m, and n, etc.

We emphasise that throughout this section we fix positive integers l and

m. Now fix a prime power q. For a global function field F/Fq let us associate

all places of degree l with a fixed linear [nl, kl ≥ l, dl] code over Fq and all

places of degreem with a fixed linear [nm, km ≥ m, dm] code over Fq. Suppose

that we have γ := l/dl = m/dm, then we proceed as follows.

Definition 3.1. For the given prime power q and an integer g ≥ 1, let Mq(g)

denote the maximum value of

nlBl(F ) + nmBm(F )

g(F ) + (nl − γdl)Bl(F ) + (nm − γdm)Bm(F )

that a global function field F/Fq of genus g can have.

Definition 3.2. For the given prime power q define

B(q) = lim sup
g→∞

Mq(g).
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Then we have the following theorem.

Theorem 3.3. For the given prime power q we have

αq(δ) ≥ 1− 1

B(q)
− γδ for 0 ≤ δ ≤ 1.

Proof. Assume B(q) > 1 and 0 < γδ < 1−B(q)−1, for otherwise it is trivial.

Let F1, F2, ... be a sequence of global function fields over Fq satisfying

lim
i→∞

g(Fi) = ∞ and

lim
i→∞

nlBl(Fi) + nmBm(Fi)

g(Fi) + (nl − γdl)Bl(Fi) + (nm − γdm)Bm(Fi)
= B(q).

Note that

lim
i→∞

g(Fi)− γ(dlBl(Fi) + dmBm(Fi))

nlBl(Fi) + nmBm(Fi)
=

1

B(q)
− 1 < −γδ < 0

Therefore, for sufficiently large i, we may choose integers ri where g(Fi) <

ri < γ(dlBl(Fi) + dmBm(Fi)) and

lim
i→∞

ri − γ(dlBl(Fi) + dmBm(Fi))

nlBl(Fi) + nmBm(Fi)
= −γδ.

For sufficiently large i, we let Gi be a divisor of Fi with deg(Gi) = ri where

the support of Gi is disjoint from the places of degree l and m of Fi. Then,

for sufficiently large i, we can associate each global function field Fi with an

XNL code C(P1, ..., PBl(Fi)+Bm(Fi);Gi; [nl, kl, dl], ..., [nm, km, dm]). Thus, for

sufficiently large i, we obtain a sequence of linear [ni, ki, di] codes over Fq

with

ni = nlBl(Fi) + nmBm(Fi),

ki ≥ ri − g(Fi) + 1,

di ≥ dlBl(Fi) + dmBm(Fi)− ri/γ.
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By passing, if necessary, to a subsequence, we can assume that the limits

R := lim
i→∞

ki

ni

and δ′ := lim
i→∞

di

ni

exist. It follows that

R ≥ lim
i→∞

ri − g(Fi) + 1

nlBl(Fi) + nmBm(Fi)
= 1− 1

B(q)
− γδ and

δ′ ≥ lim
i→∞

dlBl(Fi) + dmBm(Fi)− ri/γ

nlBl(Fi) + nmBm(Fi)
= δ.

Therefore

αq(δ) ≥ αq(δ
′) ≥ R ≥ 1− 1

B(q)
− γδ

since αq is nonincreasing.

3.2 Explicit Asymptotic Bounds

We now provide some explicit bounds by specifically choosing places and

codes.

Example 3.4. Let us associate all the places of degree 2 with the [2, 2, 1]

code that exists for all q. Then γ = 2 and

Mq(g) = max
F

2B2(F )

g(F )
.

If we combine results on constant field extensions [49, Lemma V.1.9] with a

tower of function fields due to Garcia and Stichtenoth [9], it is clear that for

all prime powers q there exists a tower of function fields F = (F1, F2, ...) over

Fq satisfying

lim
i→∞

N(Fi) + 2B2(Fi)

g(Fi)
= q − 1.
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Therefore, in this case

B(q) ≥ q − 1− (q1/2 − 1) = q − q1/2,

and hence for all prime powers q we have

αq(δ) ≥ RXNL1(q, δ) := 1− 1

q − q1/2
− 2δ,

for 0 ≤ δ ≤ 1.

This bound is meaningful for all values of q except the binary case. Clearly

we have RXNL1(q, δ) > RTVZ(q, δ) for δ < q−1/2, so the Tsfasman-Vlăduţ-Zink

bound can always be improved upon for some interval.

Example 3.5. Let us associate all the places of degree 1 with the [1, 1, 1]

code that exists for all q and all the places of degree 2 with the [3, 2, 2] code

that exists for all q. Then γ = 1 and

Mq(g) = max
F

N(F ) + 3B2(F )

g(F ) +B2(F )
.

We know that for all prime powers q there exists a tower of function fields

F = (F1, F2, ...) over Fq satisfying

lim
i→∞

N(Fi) + 2B2(Fi)

g(Fi)
= q − 1.

Hence, for all prime powers q, there exists a tower of function fields F =

(F1, F2, ...) over Fq satisfying

lim
i→∞

N(Fi) + 3B2(Fi)

g(Fi) +B2(Fi)
= 1 + lim

i→∞

N(Fi) + 2B2(Fi)− g(Fi)

g(Fi) +B2(Fi)

= 1 + lim
i→∞

N(Fi)+2B2(Fi)
g(Fi)

− 1

1 + B2(Fi)
g(Fi)

≥ 1 +
q − 2

1 + q−1
2

=
3(q − 1)

q + 1
.
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Therefore, in this case

B(q) ≥ 3(q − 1)

q + 1
,

and hence for all prime powers q we have

αq(δ) ≥ RXNL2(q, δ) := 1− q + 1

3(q − 1)
− δ

for 0 ≤ δ ≤ 1.

This bound is meaningful for all values of q except the binary case. It

also offers a global improvement on the Tsfasman-Vlăduţ-Zink bound in the

cases q = 3, 4, 5, 7, 8, 9, and 11.



Chapter 4

A New Construction of

Algebraic-Geometry Codes

In this chapter we introduce a new construction of algebraic-geometry codes

by combining two ideas. Firstly, we use the idea of considering a distinguished

divisor, as in previous constructions due to Vlăduţ [53], Xing [57], and Nieder-

reiter and Özbudak [30]. Secondly, we consider local expansions of certain

functions, as in previous constructions due to Xing [58] and Niederreiter and

Özbudak [29], [30]. We note that a paper of Niederreiter and Özbudak [30]

uses both distinguished divisors and local expansions. However, it only uses

the first two terms in the expansion, whereas we will generalise the idea by

using arbitrarily many terms.

28
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4.1 Distinguished Divisors for Algebraic-

Geometry Codes

In this section we introduce the distinguished divisor we will need for our

new construction of algebraic-geometry codes. We begin by extending [30,

Proposition 2.1] with the following proposition, both of which can be viewed

as special cases of [28, Lemma 5.1]. We include the proof for completeness.

Proposition 4.1. Let F/Fq be a global function field of divisor class number

h and with at least n ≥ 1 distinct rational places P1, . . . , Pn. Let m ≥ 1 be

an integer and let x1, . . . , xm be positive real numbers. Let s ≤ (m + 1)n be

an integer. Let r be an integer with r ≥ s. Let U(n, s, x1, . . . , xm) be the set

of divisors of F defined by

U(n, s, x1, . . . , xm) =

{
n∑

i=1

liPi :
n∑

i=1

li = s, 0 ≤ li ≤ m+ 1,

|{i : li = 0}| ≤ 2bxmnc, |{i : li = 1}| ≤ 2bxm−1nc+ bxmnc,

. . . , |{i : li = m− 1}| ≤ 2bx1nc+ bx2nc+ · · ·+ bxmnc

}
.

Suppose that

|U(n, s, x1, . . . , xm)| · Ar−s(F ) < h.

Then there exists a divisor G of F such that deg(G) = r and L(G−U) = {0}

for all U ∈ U(n, s, x1, . . . , xm).

Proof. Let Q be a rational place of F . Let D be the set of degree zero divisors

given by

D = {U + A− rQ : U ∈ U(n, s, x1, . . . , xm), A ∈ Ar−s(F )}.
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Note that

|D| ≤ |U(n, s, x1, . . . , xm)| · Ar−s(F ) < h.

Therefore there exists a degree zero divisor D0 of F such that

D0 6∼ D for all D ∈ D.

Let G := D0 + rQ. We claim that

L(G− U) = {0}

for all U ∈ U(n, s, x1, . . . , xm). Suppose, on the contrary, that there exists

U ∈ U(n, s, x1, . . . , xm) and f ∈ L(G− U)\{0}. Then

E := div(f) +G− U

is a positive divisor of degree r − s. Thus, E ∈ Ar−s(F ) and

D0 + div(f) = U + E − rQ ∈ D,

which is a contradiction to the choice of D0.

Corollary 4.2. Let F/Fq be a global function field of divisor class number h

and with at least n ≥ 1 distinct rational places P1, . . . , Pn. Let m ≥ 1 be an

integer and let x1, . . . , xm be positive real numbers. Let s be an integer with

mn ≤ s ≤ (m+ 1)n

and r be an integer with r ≥ s. Let V(n, s, x1, . . . , xm) be the set of divisors

of F defined by

V(n, s, x1, . . . , xm) =

{
n∑

i=1

liPi :
n∑

i=1

li ≥ s, 0 ≤ li ≤ m+ 1,

|{i : li = 0}| ≤ 2bxmnc, |{i : li = 1}| ≤ 2bxm−1nc+ bxmnc,

. . . , |{i : li = m− 1}| ≤ 2bx1nc+ bx2nc+ · · ·+ bxmnc

}
.
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Suppose that

|U(n, s, x1, . . . , xm)| · Ar−s(F ) < h.

Then there exists a divisor G of F such that deg(G) = r, L(G − V ) = {0}

for all V ∈ V(n, s, x1, . . . , xm), and supp(G) ∩ {P1, . . . , Pn} = ∅.

Proof. Let G1 be a divisor of degree r obtained by Proposition 4.1. Suppose

that we have V =
∑n

i=1 liPi ∈ V(n, s, x1, . . . , xm) of degree s+ t. Then

|{i : li = m+ 1}| = s+ t−mn+m|{i : li = 0}|+ · · ·+ |{i : li = m− 1}|

≥ t.

Hence, for t places Pi with coefficient li = m+1, we can change the coefficient

to li = m and find a divisor U ∈ U(n, s, x1, . . . , xm) such that U ≤ V . Then

L(G1 − V ) ⊆ L(G1 − U) = {0} and therefore

L(G1 − V ) = {0} for all V ∈ V(n, s, x1, . . . , xm).

Using the weak approximation theorem [49, Theorem I.3.1], for 1 ≤ i ≤ n

we obtain fi ∈ F such that

νPj
(fi) =


0 if j 6= i,

1 if j = i.

Let f =
∏n

i=1 f
−νPi

(G1)

i ∈ F ∗ and

G = G1 + div(f).

As G ∼ G1, we get L(G−V ) = {0} for all V ∈ V(n, s, x1, . . . , xm). Moreover,

we have supp(G) ∩ {P1, . . . , Pn} = ∅.
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4.2 The Basic Construction of Algebraic-

Geometry Codes

We now give the new construction of nonlinear codes. Let n ≥ 1 and m ≥ 1

be integers. For a = (a
(1)
1 , . . . , a

(1)
m , . . . , a

(n)
1 , . . . , a

(n)
m ) ∈ Fmn

q , we define the

subsets Im(a), Im−1(a), . . . , I1(a) of {1, . . . , n} as

Im(a) = {i ∈ {1, . . . , n} : a(i)
m 6= 0},

Im−1(a) = {i ∈ {1, . . . , n} : a(i)
m = 0, a

(i)
m−1 6= 0},

...

I1(a) = {i ∈ {1, . . . , n} : a(i)
m = · · · = a

(i)
2 = 0, a

(i)
1 6= 0}.

For positive real numbers x1, . . . , xm with x1 + · · ·+ xm < 1, let

Mq,n(x1, . . . , xm) be the subset of Fmn
q defined as

Mq,n(x1, . . . , xm) = {a ∈ Fmn
q : |I1(a)| = bx1nc, . . . , |Im(a)| = bxmnc}.

Let F/Fq be a global function field of genus g and with at least n ≥ 1

distinct rational places P1, . . . , Pn. For i = 1, . . . , n, let ti be a local parameter

of F at Pi. Let G be a divisor of F of degree r ≥ mn + 2g − 1 with

supp(G) ∩ {P1, . . . , Pn} = ∅. Then for f ∈ L(G) and i = 1, . . . , n, we have

νPi
(f) ≥ 0 and hence the local expansion

f = f (0)(Pi) + f (1)(Pi)ti + · · · .

Let Φ be the linear map defined by

Φ : L(G) → Fmn
q

f 7→ (f (m−1)(P1), . . . , f
(0)(P1), . . . , f

(m−1)(Pn), . . . , f (0)(Pn)).
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Note that Ker Φ = L(G−m(P1 + · · ·+ Pn)) and

dim Ker Φ = r −mn+ 1− g.

Furthermore,

dimL(G) = r + 1− g

and hence Φ is surjective.

LetNL(P1, . . . , Pn;G;x1, . . . , xm) := Φ−1(Mq,n(x1, . . . , xm)) and note that

|NL(P1, . . . , Pn;G;x1, . . . , xm)| = qr+1−g−mn|Mq,n(x1, . . . , xm)|.

Finally, let φ be the map defined by

φ : NL(P1, . . . , Pn;G;x1, . . . , xm) → Fn
q

f 7→ (f (m)(P1), . . . , f
(m)(Pn)).

Theorem 4.3. Let F/Fq be a global function field of genus g, divisor class

number h, and with at least n ≥ 1 distinct rational places P1, . . . , Pn. Let

m ≥ 1 be an integer and let x1, . . . , xm be positive real numbers with

2
m∑

j=1

(j + 1)xj ≤ 1.

Let s be an integer with

mn ≤ s ≤ (m+ 1)n− 2
m∑

j=1

(j + 1)bxjnc

and r be an integer with r ≥ s. We assume further that

r ≥ mn+ 2g − 1

and

|U(n, s, x1, . . . , xm)| · Ar−s(F ) < h.
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Then there exists a divisor G of F with deg(G) = r and supp(G)∩ {P1, . . . ,

Pn} = ∅ such that

CL(P1, . . . , Pn;G;x1, . . . , xm) := φ(NL(P1, . . . , Pn;G;x1, . . . , xm))

is a q-ary (n,K, d) code with

K = qr+1−g−mn|Mq,n(x1, . . . , xm)|

and

d ≥ (m+ 1)n+ 1− s− 2
m∑

j=1

(j + 1)bxjnc.

Proof. We know by Corollary 4.2 that there exists a divisor G of F with

deg(G) = r and supp(G) ∩ {P1 . . . , Pn} = ∅ such that

L(G− V ) = {0} for all V ∈ V(n, s, x1, . . . , xm).

Let f1, f2 ∈ NL(P1, . . . , Pn;G;x1, . . . , xm) be two distinct functions. Since

supp(G) ∩ {P1 . . . , Pn} = ∅, we have νPi
(f1 − f2) ≥ 0 for 1 ≤ i ≤ n. Let

li(f1 − f2) = min(m+ 1, νPi
(f1 − f2)) for 1 ≤ i ≤ n. Let V = l1(f1 − f2)P1 +

· · ·+ ln(f1 − f2)Pn.
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Note that

|{i : li(f1 − f2) = 0}| = |{i : νPi
(f1 − f2) = 0}|

≤ |{i : νPi
(f1) = 0}|+ |{i : νPi

(f2) = 0}|

= 2bxmnc,

|{i : li(f1 − f2) = 1}| = |{i : νPi
(f1 − f2) = 1}|

≤ |{i : νPi
(f1) = 1}|+ |{i : νPi

(f2) = 1}|

+ |{i : νPi
(f1) = νPi

(f2) = 0}|

≤ 2bxm−1nc+ bxmnc,
...

|{i : li(f1 − f2) = m− 1}| = |{i : νPi
(f1 − f2) = m− 1}|

≤ |{i : νPi
(f1) = m− 1}|

+ |{i : νPi
(f2) = m− 1}|

+ |{i : νPi
(f1) = νPi

(f2) = m− 2}|

+ · · ·+ |{i : νPi
(f1) = νPi

(f2) = 0}|

≤ 2bx1nc+ bx2nc+ · · ·+ bxmnc.

Moreover, f1 − f2 ∈ L(G− V )\{0} and hence we obtain

l1(f1 − f2) + · · ·+ ln(f1 − f2) ≤ s− 1.

Therefore, we obtain the following bound on w(φ(f1− f2)). Note that in our

evaluation we will use a new calculation rather than the above individual
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results.

(m+ 1)n+ 1− s

≤
n∑

i=1

(m+ 1− li(f1 − f2))

= |{i : li(f1 − f2) = m}|+
n∑

i=1
li(f1−f2)≤m−1

(m+ 1− li(f1 − f2))

= |{i : li(f1 − f2) = m}|+
n∑

i=1
li(f1−f2)≤m−1

li(f1)=li(f2)

(m+ 1− li(f1 − f2))

+
n∑

i=1
li(f1−f2)≤m−1

li(f1) 6=li(f2)

(m+ 1− li(f1 − f2))

= |{i : li(f1 − f2) = m}|+
n∑

i=1
li(f1−f2)≤m−1

li(f1)=li(f2)

(m+ 1− li(f1 − f2))

+
n∑

i=1
li(f1)≤m−1

li(f2)≥li(f1)+1

(m+ 1− li(f1)) +
n∑

i=1
li(f2)≤m−1

li(f1)≥li(f2)+1

(m+ 1− li(f2)).

Note that

n∑
i=1

li(f1−f2)≤m−1
li(f1)=li(f2)

(m+ 1− li(f1 − f2)) ≤
n∑

i=1
li(f1)≤m−1
li(f1)=li(f2)

(m+ 1− li(f1)).
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Therefore

(m+ 1)n+ 1− s

≤ |{i : li(f1 − f2) = m}|+
n∑

i=1
li(f1)≤m−1
li(f1)=li(f2)

(m+ 1− li(f1))

+
n∑

i=1
li(f1)≤m−1

li(f2)≥li(f1)+1

(m+ 1− li(f1)) +
n∑

i=1
li(f2)≤m−1

li(f1)≥li(f2)+1

(m+ 1− li(f2))

≤ |{i : li(f1 − f2) = m}|

+
n∑

i=1
li(f1)≤m−1

(m+ 1− li(f1)) +
n∑

i=1
li(f2)≤m−1

(m+ 1− li(f2))

= |{i : li(f1 − f2) = m}|+ 4bx1nc+ · · ·+ 2(m+ 1)bxmnc

≤ w(φ(f1 − f2)) + 4bx1nc+ · · ·+ 2(m+ 1)bxmnc,

and hence

d ≥ (m+ 1)n+ 1− s− 2
m∑

j=1

(j + 1)bxjnc ≥ 1.

Therefore, φ is injective and

K = |NL(P1, . . . , Pn;G;x1, . . . , xm)| = qr+1−g−mn|Mq,n(x1, . . . , xm)|.



Chapter 5

Algebraic-Geometry Codes

Using Differentials

When Goppa introduced his construction of algebraic-geometry codes, he

did so using differentials. It later became convention to construct the dual

of Goppa’s codes by considering functions in a Riemann-Roch space, which

was the approach we used in Chapter 2. More recently, new constructions of

algebraic-geometry codes were introduced by Lam, Niederreiter, and Xing.

Namely, NXL codes [41] and XNL codes [61], the latter being a generali-

sation of the former. After these new codes were introduced in 1999, an

open question was whether there was an equivalent construction using dif-

ferentials. This was independently shown to be true by Heydtmann [15] and

Dorfer and Maharaj [4]. In this chapter we demonstrate that there is an

equivalent construction using differentials to our construction in Chapter 4,

which is of interest since it can be viewed as the most general currently known

construction of algebraic-geometry codes using rational places.

38
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5.1 Distinguished Divisors for Algebraic-

Geometry Codes Using Differentials

In Section 4.1 we produced a distinguished divisor for functions in a Riemann-

Roch space. We now prove the existence of a similar distinguished divisor

for differentials.

Proposition 5.1. Let F/Fq be a global function field of genus g, divisor

class number h, and with at least n ≥ 1 distinct rational places P1, . . . , Pn.

Let m ≥ 1 be an integer and let x1, . . . , xm be positive real numbers. Let

s ≤ (m+ 1)n be an integer. Let r be an integer with r ≤ n− s+ 2g− 2. Let

U(n, s, x1, . . . , xm) be the set of divisors of F defined by

U(n, s, x1, . . . , xm) =

{
n∑

i=1

liPi :
n∑

i=1

li = s, 0 ≤ li ≤ m+ 1,

|{i : li = 0}| ≤ 2bxmnc, |{i : li = 1}| ≤ 2bxm−1nc+ bxmnc,

. . . , |{i : li = m− 1}| ≤ 2bx1nc+ bx2nc+ · · ·+ bxmnc

}
.

Suppose that

|U(n, s, x1, . . . , xm)| · An−r−s+2g−2(F ) < h.

Then there exists a divisor G of F of degree r such that

Ω

(
G−

n∑
i=1

Pi + U

)
= {0}

for all U ∈ U(n, s, x1, . . . , xm).

Proof. Let Q be a rational place of F . Let D be the set of degree zero divisors

given by

D = {U+A−(n−r+2g−2)Q : U ∈ U(n, s, x1, . . . , xm), A ∈ An−r−s+2g−2(F )}.



CHAPTER 5. ALGEBRAIC-GEOMETRY CODES USING DIFFERENTIALS40

Note that

|D| ≤ |U(n, s, x1, . . . , xm)| · An−r−s+2g−2(F ) < h.

Therefore there exists a degree zero divisor D0 of F such that

D0 6∼ D for all D ∈ D.

Let ω1 be a nonzero differential of F and put

G := (ω1)−D0 +
n∑

i=1

Pi − (n− r + 2g − 2)Q.

We claim that

Ω

(
G−

n∑
i=1

Pi + U

)
= {0}

for all U ∈ U(n, s, x1, . . . , xm). Suppose, on the contrary, that there exists

U ∈ U(n, s, x1, . . . , xm) and ω2 such that

ω2 ∈ Ω

(
G−

n∑
i=1

Pi + U

)
\{0}.

Note that

Ω

(
G−

n∑
i=1

Pi + U

)
' L

(
(ω2)−G+

n∑
i=1

Pi − U

)
and hence there exists a nonzero f1 ∈ F such that

f1 ∈ L
(

(ω2)−G+
n∑

i=1

Pi − U

)
.

Then

E := div(f1) + (ω2)−G+
n∑

i=1

Pi − U

is a positive divisor of degree n − r − s + 2g − 2. Note that all canonical

divisors are equivalent. Therefore

(ω2) = (ω1) + div(f2)
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for some f2 ∈ F and so

D0 + div(f1f2) = U + E − (n− r + 2g − 2)Q ∈ D,

which is a contradiction to the choice of D0.

Corollary 5.2. Let F/Fq be a global function field of genus g, divisor class

number h, and with at least n ≥ 1 distinct rational places P1, . . . , Pn. Let

m ≥ 1 be an integer and let x1, . . . , xm be positive real numbers. Let s be an

integer with

mn ≤ s ≤ (m+ 1)n

and r be an integer with r ≤ n − s + 2g − 2. Let V(n, s, x1, . . . , xm) be the

set of divisors of F defined by

V(n, s, x1, . . . , xm) =

{
n∑

i=1

liPi :
n∑

i=1

li ≥ s, 0 ≤ li ≤ m+ 1,

|{i : li = 0}| ≤ 2bxmnc, |{i : li = 1}| ≤ 2bxm−1nc+ bxmnc,

. . . , |{i : li = m− 1}| ≤ 2bx1nc+ bx2nc+ · · ·+ bxmnc

}
.

Suppose that

|U(n, s, x1, . . . , xm)| · An−r−s+2g−2(F ) < h.

Then there exists a divisor G of F such that deg(G) = r, supp(G)∩{P1, . . . ,

Pn} = ∅, and

Ω

(
G−

n∑
i=1

Pi + V

)
= {0}

for all V ∈ V(n, s, x1, . . . , xm).
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Proof. Let G1 be a divisor of degree r obtained by Proposition 5.1. Suppose

that we have V ∈ V(n, s, x1, . . . , xm) of degree s+ t. Then

|{i : li = m+ 1}| = s+ t−mn+m|{i : li = 0}|+ · · ·+ |{i : li = m− 1}|

≥ t.

Hence, for t places Pi with coefficient li = m+1, we can change the coefficient

to li = m and find a divisor U ∈ U(n, s, x1, . . . , xm) such that U ≤ V . Then

Ω(G1 −
∑n

i=1 Pi + V ) ⊆ Ω(G1 −
∑n

i=1 Pi + U) = {0} and therefore

Ω

(
G1 −

n∑
i=1

Pi + V

)
= {0} for all V ∈ V(n, s, x1, . . . , xm).

Let ω be a nonzero differential of F , then

L
(

(ω)−G1 +
n∑

i=1

Pi − V

)
= {0}

for all V ∈ V(n, s, x1, . . . , xm). Using the weak approximation theorem [49,

Theorem I.3.1], for 1 ≤ i ≤ n we obtain fi ∈ F such that

νPj
(fi) =


0 if j 6= i,

1 if j = i.

Let f =
∏n

i=1 f
−νPi

(G1)

i ∈ F ∗ and

G = G1 + div(f).

As G ∼ G1, we have

L
(

(ω)−G+
n∑

i=1

Pi − V

)
= {0}

for all V ∈ V(n, s, x1, . . . , xm) and hence

Ω

(
G−

n∑
i=1

Pi + V

)
= {0}

for all V ∈ V(n, s, x1, . . . , xm). Moreover, we have supp(G)∩ {P1, . . . , Pn} =

∅.
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5.2 The Basic Construction of Algebraic-

Geometry Codes Using Differentials

For integers m,n ≥ 1 and a ∈ Fmn
q , let x1, . . . , xm, Im(a), Im−1(a), . . . , I1(a),

and Mq,n(x1, . . . , xm) be defined as in Section 4.2.

Let F/Fq be a global function field of genus g and with at least n distinct

rational places P1, . . . , Pn. For i = 1, . . . , n, let ti be a local parameter of F

at Pi. Let G be a divisor of F of degree r ≤ (1 −m)n − 1 with supp(G) ∩

{P1, . . . , Pn} = ∅. Then for ω ∈ Ω(G −
∑n

i=1 Pi) and i = 1, . . . , n, we have

νPi
((ω)) ≥ −1 and hence ω = xi dti where xi is given by the expansion

xi = resPi
(ω)t−1

i + resPi
(ωt−1

i ) + resPi
(ωt−2

i )ti + · · · .

Let Ψ : Ω(G−
∑n

i=1 Pi) → Fmn
q be the Fq-linear map given by

Ψ(ω) = (resP1(ωt
−(m−1)
1 ), . . . , resP1(ω), . . . , resPn(ωt−(m−1)

n ), . . . , resPn(ω)).

Note that Ker Ψ = Ω(G+ (m− 1)
∑n

i=1 Pi) and

dim Ker Ψ = (1−m)n− r + g − 1

since r ≤ (1−m)n− 1. Furthermore

dim Ω(G−
n∑

i=1

Pi) = n− r + g − 1

and hence Ψ is surjective.

LetNΩ(P1, . . . , Pn;G;x1, . . . , xm) := Ψ−1(Mq,n(x1, . . . , xm)) and note that

|NΩ(P1, . . . , Pn;G;x1, . . . , xm)| = q(1−m)n−r+g−1|Mq,n(x1, . . . , xm)|.
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Finally, let ψ be the map defined by

ψ : NΩ(P1, . . . , Pn;G;x1, . . . , xm) → Fn
q

ω 7→
(
resP1(ωt

−m
1 ), . . . , resPn(ωt−m

n )
)
.

Theorem 5.3. Let F/Fq be a global function field of genus g, divisor class

number h, and with at least n ≥ 1 distinct rational places P1, . . . , Pn. Let

m ≥ 1 be an integer and let x1, . . . , xm be positive real numbers with

2
m∑

j=1

(j + 1)xj ≤ 1.

Let s be an integer with

mn ≤ s ≤ (m+ 1)n− 2
m∑

j=1

(j + 1)bxjnc

and r be an integer with r ≤ n− s+ 2g − 2. We assume further that

r ≤ (1−m)n− 1

and

|U(n, s, x1, . . . , xm)| · An−r−s+2g−2(F ) < h.

Then there exists a divisor G of F with deg(G) = r and supp(G)∩ {P1, . . . ,

Pn} = ∅ such that

CΩ(P1, . . . , Pn;G;x1, . . . , xm) := ψ(NΩ(P1, . . . , Pn;G;x1, . . . , xm))

is a q-ary (n,K, d) code with

K = q(1−m)n−r+g−1|Mq,n(x1, . . . , xm)|

and

d ≥ (m+ 1)n+ 1− s− 2
m∑

j=1

(j + 1)bxjnc.
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Proof. We know by Corollary 5.2 that there exists a divisor G of F with

deg(G) = r and supp(G) ∩ {P1 . . . , Pn} = ∅ such that

Ω(G−
n∑

i=1

Pi + V ) = {0} for all V ∈ V(n, s, x1, . . . , xm).

Let ω1, ω2 ∈ NΩ(P1, . . . , Pn;G;x1, . . . , xm) be two distinct differentials. Since

supp(G) ∩ {P1 . . . , Pn} = ∅, we have νPi
((ω1 − ω2)) ≥ −1 for 1 ≤ i ≤ n. Let

li(ω1 − ω2) = min(m + 1, νPi
((ω1 − ω2)) + 1) for 1 ≤ i ≤ n. Let V =

l1(ω1 − ω2)P1 + · · ·+ ln(ω1 − ω2)Pn. Note that

|{i : li(ω1 − ω2) = 0}| = |{i : νPi
((ω1 − ω2)) = −1}|

≤ |{i : νPi
((ω1)) = −1}|

+ |{i : νPi
((ω2)) = −1}|

= 2bxmnc,

|{i : li(ω1 − ω2) = 1}| = |{i : νPi
((ω1 − ω2)) = 0}|

≤ |{i : νPi
((ω1)) = 0}|+ |{i : νPi

((ω2)) = 0}|

+ |{i : νPi
((ω1)) = νPi

((ω2)) = −1}|

≤ 2bxm−1nc+ bxmnc,
...

|{i : li(ω1 − ω2) = m− 1}| = |{i : νPi
((ω1 − ω2)) = m− 2}|

≤ |{i : νPi
((ω1)) = m− 2}|

+ |{i : νPi
((ω2)) = m− 2}|

+ |{i : νPi
((ω1)) = νPi

((ω2)) = m− 3}|

+ · · ·+ |{i : νPi
((ω1)) = νPi

((ω2)) = −1}|

≤ 2bx1nc+ bx2nc+ · · ·+ bxmnc.
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Moreover, ω1 − ω2 ∈ Ω(G−
∑n

i=1 Pi + V )\{0} and hence we obtain

l1(ω1 − ω2) + · · ·+ ln(ω1 − ω2) ≤ s− 1.

Therefore, we obtain the following bound on w(ψ(ω1 − ω2)). Note that in

our evaluation we will use a new calculation rather than the above individual

results.

(m+ 1)n+ 1− s

≤
n∑

i=1

(m+ 1− li(ω1 − ω2))

= |{i : li(ω1 − ω2) = m}|+
n∑

i=1
li(ω1−ω2)≤m−1

(m+ 1− li(ω1 − ω2))

= |{i : li(ω1 − ω2) = m}|+
n∑

i=1
li(ω1−ω2)≤m−1

li(ω1)=li(ω2)

(m+ 1− li(ω1 − ω2))

+
n∑

i=1
li(ω1−ω2)≤m−1

li(ω1) 6=li(ω2)

(m+ 1− li(ω1 − ω2))

= |{i : li(ω1 − ω2) = m}|+
n∑

i=1
li(ω1−ω2)≤m−1

li(ω1)=li(ω2)

(m+ 1− li(ω1 − ω2))

+
n∑

i=1
li(ω1)≤m−1

li(ω2)≥li(ω1)+1

(m+ 1− li(ω1)) +
n∑

i=1
li(ω2)≤m−1

li(ω1)≥li(ω2)+1

(m+ 1− li(ω2)).

Note that

n∑
i=1

li(ω1−ω2)≤m−1
li(ω1)=li(ω2)

(m+ 1− li(ω1 − ω2)) ≤
n∑

i=1
li(ω1)≤m−1
li(ω1)=li(ω2)

(m+ 1− li(ω1)).
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Therefore

(m+ 1)n+ 1− s

≤ |{i : li(ω1 − ω2) = m}|+
n∑

i=1
li(ω1)≤m−1
li(ω1)=li(ω2)

(m+ 1− li(ω1))

+
n∑

i=1
li(ω1)≤m−1

li(ω2)≥li(ω1)+1

(m+ 1− li(ω1)) +
n∑

i=1
li(ω2)≤m−1

li(ω1)≥li(ω2)+1

(m+ 1− li(ω2))

≤ |{i : li(ω1 − ω2) = m}|

+
n∑

i=1
li(ω1)≤m−1

(m+ 1− li(ω1)) +
n∑

i=1
li(ω2)≤m−1

(m+ 1− li(ω2))

= |{i : li(ω1 − ω2) = m}|+ 4bx1nc+ · · ·+ 2(m+ 1)bxmnc

≤ w(ψ(ω1 − ω2)) + 4bx1nc+ · · ·+ 2(m+ 1)bxmnc,

and hence

d ≥ (m+ 1)n+ 1− s− 2
m∑

j=1

(j + 1)bxjnc ≥ 1.

Therefore ψ is injective and

K = |NΩ(P1, . . . , Pn;G;x1, . . . , xm)| = q(1−m)n−r+g−1|Mq,n(x1, . . . , xm)|.



Chapter 6

An Improved Asymptotic

Bound for Codes

In Section 2.2 we mentioned that, aside from the asymptotic Gilbert-Varshamov

bound, the strongest currently known global bound for asymptotic codes is

αq(δ) ≥ RNÖ(q, δ) := 1− 1

A(q)
− δ + logq

(
1 +

1

q3

)
for 0 ≤ δ ≤ 1,

which was shown by Niederreiter and Özbudak [29]. Later, Niederreiter and

Özbudak [30] also demonstrated that this bound could be improved upon for

certain values of δ. For example, it was shown [30, Example 5.2] that for

q = 26 and

δ =
13763868443250238929521503984833381597731412559044

46065097831342932365531985486767649347321318605709

we get an improvement on RNÖ(q, δ) which is significant as it occurs in a

range where RNÖ(q, δ) > RGV(q, δ). Unfortunately, we note that it should

have been mentioned that Vlăduţ’s implicit bound is even better for these

values of q and δ.

48
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A limitation of Vlăduţ’s bound is that it is only valid in the case where q

is a square. Hence, another example presented by Niederreiter and Özbudak

[30, Example 5.4] where q = 221 and

δ =
1034323484865452473463726110309814032498446010098

99621193732964014413326435515634059733734238550355

provides the best known bound.

In this chapter we show that the new construction of algebraic-geometry

codes introduced in Chapter 4 can improve upon the results of Niederreiter

and Özbudak and hence produce the best known bounds for αq(δ) for certain

values of q and δ.

6.1 Some Limit Computations

Let U(n, s, x1, . . . , xm) be defined as in Proposition 4.1 and recall that a

global function field F/Fq has divisor class number h(F ) and Ak(F ) positive

divisors of degree k. It is clear that the major challenge in providing an

asymptotic bound for our new class of codes lies in bounding the terms of

the fundamental equation

|U(n, s, x1, . . . , xm)| · Ar−s(F ) < h(F ),

as the genus of the underlying global function field tends to infinity. In this

section we will recall results on Ar−s(F ) and h(F ), but we begin with a new

bound for |U(n, s, x1, . . . , xm)|.

Proposition 6.1. Let x1, . . . , xm be positive real numbers and let y be a real
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number such that

0 ≤ y < 1− 1

2

m∑
j=1

(j2 + 5j + 2)xj

and(
1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

)l+1

≥
(
xl +

m∑
k=l

xk

)(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)l

for 1 ≤ l ≤ m. Then we have

lim
n→∞

logq |U(n, s = mn+ bync, x1, . . . , xm)|
n

=

− 2xm logq(2xm)− (2xm−1 + xm) logq(2xm−1 + xm)

− · · · − (2x1 + x2 + · · ·+ xm) logq(2x1 + x2 + · · ·+ xm)

−
(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)
logq

(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)

−
(

1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

)
logq

(
1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

)
.

Proof. Note that for a divisor
∑n

i=1 liPi ∈ U(n, s, x1, . . . , xm) we have

|{i : li = m}| = (m+ 1)n− s− 2|{i : li = m− 1}| − · · · − (m+ 1)|{i : li = 0}|

≥ (m+ 1)n− s− 1

2

m∑
j=1

(j2 + 5j + 2)bxjnc.

A consequence of the inequality

y < 1− 1

2

m∑
j=1

(j2 + 5j + 2)xj

is that for s = mn+ bync we have

s ≤ (m+ 1)n− 1

2

m∑
j=1

(j2 + 5j + 2)bxjnc.
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This shows that all values of k1, . . . , km in the following summation are valid.

|U(n, s = mn+ bync, x1, . . . , xm)|

=

2bxmnc∑
km=0

2bxm−1nc+bxmnc∑
km−1=0

· · ·
2bx1nc+bx2nc+···+bxmnc∑

k1=0(
n

km

)(
n− km

km−1

)
· · ·
(
n− km − · · · − k2

k1

)
(

n− km − · · · − k1

n− 2k1 − · · · − (m+ 1)km − bync

)
.

Note that for any term in the above summation once we have chosen k1 +

· · ·+ km places with coefficients li = 0, . . . ,m− 1, we have

n− k1 − · · · − km ≥ n−
m∑

j=1

(j + 1)bxjnc > 0

places left to choose from. We need to choose

|{i : li = m}| = (m+ 1)n− s− 2|{i : li = m− 1}| − · · · − (m+ 1)|{i : li = 0}|

= n− bync − 2k1 − · · · − (m+ 1)km

≥ n− bync − 1

2

m∑
j=1

(j2 + 5j + 2)bxjnc

≥ 0

places with coefficient li = m, which provides the final binomial coefficient.
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Now note that

max
0≤km≤2bxmnc

...
0≤k1≤2bx1nc+bx2nc+···+bxmnc

(
n

km

)
· · ·
(

n− km − · · · − k1

n− 2k1 − · · · − (m+ 1)km − bync

)

≤ |U(n, s = mn+ bync, x1, . . . , xm)|

≤ (2bxmnc+ 1) · · · (2bx1nc+ bx2nc+ · · ·+ bxmnc+ 1)

max
0≤km≤2bxmnc

...
0≤k1≤2bx1nc+bx2nc+···+bxmnc

(
n

km

)
· · ·
(

n− km − · · · − k1

n− 2k1 − · · · − (m+ 1)km − bync

)
.

Since

lim
n→∞

logq((2bxmnc+ 1) · · · (2bx1nc+ bx2nc+ · · ·+ bxmnc+ 1))

n
= 0,

we obtain that

lim
n→∞

logq |U(n, s = mn+ bync, x1, . . . , xm)|
n

= lim
n→∞

max
0≤km≤2bxmnc

...
0≤k1≤2bx1nc+bx2nc+···+bxmnc

logq

{(
n

km

)
· · ·
(

n−km−···−k1

n−2k1−···−(m+1)km−bync

)}
n

.

Let 0 < t1 ≤ 2x1 + x2 + · · · + xm, . . . , 0 < tm ≤ 2xm be real numbers. We

note that the ranges of bt1nc, . . . , btmnc include all the values for k1, . . . , km

in the above equation.
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Note that Stirling’s formula can be used to show that

logq

(
n

btmnc

)
n

= −tm logq(tm)− (1− tm) logq(1− tm) +O

(
log n

n

)
,

logq

(
n−btmnc
btm−1nc

)
n

= (1− tm) logq(1− tm)− tm−1 logq(tm−1)

− (1− tm − tm−1) logq(1− tm − tm−1) +O

(
log n

n

)
,

...

logq

(
n−btmnc−···−bt2nc

bt1nc

)
n

= (1− tm − · · · − t2) logq(1− tm − · · · − t2)− t1 logq(t1)

− (1− tm − · · · − t1) logq(1− tm − · · · − t1) +O

(
log n

n

)
,

logq

(
n−btmnc−···−bt1nc

n−bync−2bt1nc−···−(m+1)btmnc

)
n

= (1− tm − · · · − t1) logq(1− tm − · · · − t1)

− (y + t1 + · · ·+mtm) logq(y + t1 + · · ·+mtm)

− (1− y − 2t1 − · · · − (m+ 1)tm) logq(1− y − 2t1 − · · · − (m+ 1)tm)

+O

(
log n

n

)
.
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Therefore

logq

((
n

btmnc

)(
n−btmnc
btm−1nc

)
· · ·
(

n−btmnc−···−bt2nc
bt1nc

)(
n−btmnc−···−bt1nc

n−2bt1nc−···−(m+1)btmnc−bync

))
n

= −tm logq(tm)− · · · − t1 logq(t1)

− (y + t1 + · · ·+mtm) logq(y + t1 + · · ·+mtm)

− (1− y − 2t1 − · · · − (m+ 1)tm) logq(1− y − 2t1 − · · · − (m+ 1)tm)

+O

(
log n

n

)
.

Let by(t1, . . . , tm) be the function defined as

by(t1, . . . , tm)

= −tm logq(tm)− · · · − t1 logq(t1)

− (y + t1 + · · ·+mtm) logq(y + t1 + · · ·+mtm)

− (1− y − 2t1 − · · · − (m+ 1)tm) logq(1− y − 2t1 − · · · − (m+ 1)tm).

Note that for 1 ≤ l ≤ m we have

∂by(t1, . . . , tm)

∂tl
= − logq(tl)− l logq(y + t1 + · · ·+mtm)

+ (l + 1) logq(1− y − 2t1 − · · · − (m+ 1)tm)

= logq

(1− y − 2t1 − · · · − (m+ 1)tm)l+1

tl(y + t1 + · · ·+mtm)l
.

Note that, for l = 1, . . . ,m, we have

∂by(t1, . . . , tm)

∂tl
≥ 0

for 0 < tm ≤ 2xm, ..., 0 < t1 ≤ 2x1 + x2 + · · ·+ xm.
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Therefore we have

lim
n→∞

logq |U(n, s = mn+ bync, x1, . . . , xm)|
n

= lim
n→∞

max
0≤km≤2bxmnc

...
0≤k1≤2bx1nc+bx2nc+···+bxmnc

logq

((
n

km

)
· · ·
(

n−km−···−k1

n−2k1−···−(m+1)km−bync

))
n

= lim
n→∞

max
0≤btmnc≤2bxmnc

...
0≤bt1nc≤2bx1nc+bx2nc+···+bxmnc

logq

((
n

btmnc

)
· · ·
(

n−btmnc−···−bt1nc
n−2bt1nc−···−(m+1)btmnc−bync

))
n

= lim
n→∞

max
0<tm≤2xm

...
0<t1≤2x1+x2+···+xm

logq

((
n

btmnc

)
· · ·
(

n−btmnc−···−bt1nc
n−2bt1nc−···−(m+1)btmnc−bync

))
n

= lim
n→∞

max
0<tm≤2xm

...
0<t1≤2x1+x2+···+xm

by(t1, . . . , tm) +O

(
log n

n

)

= lim
n→∞

by(2x1 + x2 + · · ·xm, . . . , 2xm) +O

(
log n

n

)
= by(2x1 + x2 + · · ·xm, . . . , 2xm)

= −2xm logq(2xm)− (2xm−1 + xm) logq(2xm−1 + xm)

− · · · − (2x1 + x2 + · · ·+ xm) logq(2x1 + x2 + · · ·+ xm)

−
(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)
logq

(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)

−
(

1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

)
logq

(
1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

)
.

The following bound was proved for 0 < σ < 2/(q1/2 + 1) by Xing [57,

Proposition 3.4] and extended by Niederreiter and Özbudak [30, Proposition
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4.5].

Proposition 6.2. Let {Fi/Fq}∞i=1 be a sequence of global function fields with

genus g(Fi) →∞ as i→∞. Then

lim sup
i→∞

logq Abσg(Fi)c(Fi)

g(Fi)
≤ I(σ) :=



σ

2
+ logq 4− σ logq σ

− (2− σ) logq(2− σ) if 0 < σ ≤ 2

q1/2 + 1
,

σ − 1 + 2 logq(q
1/2 + 1) if

2

q1/2 + 1
≤ σ < 3− 2 logq(q

1/2 + 1).

Note that I(σ) is a strictly increasing function mapping the interval (0, 3−

2 logq(q
1/2 + 1) onto the interval (0, 2).

Finally, to bound the divisor class number relative to the genus, we have

the following proposition due to Vlăduţ [53] (see also [51, Proposition 2.3.26]).

Proposition 6.3. Let {Fi/Fq}∞i=1 be a sequence of global function fields with

genus g(Fi) →∞ as i→∞ and

lim
i→∞

N(Fi)

g(Fi)
= A > 0.

Then

lim inf
i→∞

logq h(Fi)

g(Fi)
≥ 1 + A · logq

(
q

q − 1

)
.

6.2 The Improved Asymptotic Bound

In this section we combine the asymptotic bounds on |U(ni, si, x1, . . . , xm)|,

Ari−si
(Fi), and h(Fi) to obtain a new asymptotic coding bound.
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Let x1, . . . , xm be positive real numbers and let y be a real number such

that

0 ≤ y < 1− 1

2

m∑
j=1

(j2 + 5j + 2)xj

and(
1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

)l+1

≥
(
xl +

m∑
k=l

xk

)(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)l

for 1 ≤ l ≤ m. Let G(x1, . . . , xm, y) be the function defined as

G(x1, . . . , xm, y)

= 1 + A(q) logq

q

q − 1

+ A(q)

(
2xm logq(2xm) + (2xm−1 + xm) logq(2xm−1 + xm)

+ · · ·+ (2x1 + x2 + · · ·+ xm) logq(2x1 + x2 + · · ·+ xm)

+

(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)
logq

(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)

+

(
1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

)
logq

(
1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

))

and let Ψ(x1, . . . , xm, y) be the function defined as

Ψ(x1, . . . , xm, y) =

 I−1(G(x1, . . . , xm, y)) if 0 < G(x1, . . . , xm, y) < 2,

0 otherwise.

Theorem 6.4. Let {F/Fq}∞i=1 be a sequence of global function fields with

gi →∞ as i→∞ and

lim
i→∞

Ni

gi

= A(q) > 0,

where Ni and gi denote the number of rational places and the genus of Fi,
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respectively. Then for positive real numbers x1, . . . , xm, δ with

1

2

m∑
j=1

(j2 + j − 2)xj < δ ≤ 1− 2

A(q)
− 2

m∑
j=1

(j + 1)xj,

and(
δ− 1

2

m∑
j=1

(j2 + j− 2)xj

)l+1

≥
(
xl +

m∑
k=l

xk

)(
1 +

1

2

m∑
j=1

(j2− j− 4)xj − δ
)l

for 1 ≤ l ≤ m, we have

αq(δ) ≥ Rx1,...,xm(q, δ) := 1− 1

A(q)
− δ

−
m∑

j=1

xj logq xj −
(

1−
m∑

j=1

xj

)
logq

(
1−

m∑
j=1

xj

)

+

( m∑
j=1

xj

)
logq(q − 1)−

m∑
j=1

(j + 3)xj

+
1

A(q)
Ψ

(
x1, . . . , xm, 1− 2

m∑
j=1

(j + 1)xj − δ

)
.

Proof. Let y := 1−2
∑m

j=1(j+1)xj−δ. We can assume σ := Ψ(x1, . . . , xm, y)

> 0 as the result is already known otherwise [29]. Note that

y >
2− σ

A(q)
.

Let ε > 0 be a sufficiently small real number such that ε < σ and

y >
2− (σ − ε)

A(q)

hold.

For i ≥ 1, let ni = Ni, si = mni + bynic and ri = si + b(σ − ε)gic. Then
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we have

lim
i→∞

logq |U(ni, si, x1, . . . , xm)|
gi

= A(q)

(
− 2xm logq(2xm)− (2xm−1 + xm) logq(2xm−1 + xm)

− · · · − (2x1 + x2 + · · ·+ xm) logq(2x1 + x2 + · · ·+ xm)

−
(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)
logq

(
y +

1

2

m∑
j=1

(j2 + 3j)xj

)

−
(

1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

)
logq

(
1− y − 1

2

m∑
j=1

(j2 + 5j + 2)xj

))
.

= 1 + A(q) logq

q

q − 1
−G(x1, . . . , xm, y).

Therefore

lim sup
i→∞

logq

(
|U(ni, si, x1, . . . , xm)| · Ari−si

(Fi)
)

gi

≤ lim sup
i→∞

logq |U(ni, si, x1, . . . , xm)|
gi

+ lim sup
i→∞

logq Ari−si
(Fi)

gi

≤ lim sup
i→∞

logq |U(ni, si, x1, . . . , xm)|
gi

+ I(σ − ε)

= 1 + A(q) logq

q

q − 1
−G(x1, . . . , xm, y) + I(σ − ε)

< 1 + A(q) logq

q

q − 1

≤ lim inf
i→∞

logq h(Fi)

gi

,

where we have applied Proposition 6.3 in the final inequality. Therefore, for

sufficiently large i, we have

|U(ni, si, x1, . . . , xm)| · Ari−si
(Fi) < h(Fi).

Note that

lim
i→∞

ri + 1− 2gi

ni

= m+ y − 2− (σ − ε)

A(q)
> m
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and so, for sufficiently large i, we have

ri + 1− 2gi > mni.

Note that, as was mentioned in [29, Lemma 4.2], we have

lim
n→∞

logq |Mq,n(x1, . . . , xm)|
n

= −
m∑

j=1

xj logq xj −
(

1−
m∑

j=1

xj

)
logq

(
1−

m∑
j=1

xj

)

+

( m∑
j=1

xj

)
logq(q − 1) +

m∑
j=2

(j − 1)xj.

We now apply Theorem 4.3. By passing, if necessary, to a subsequence this

yields a sequence {Ci}∞i=i0≥1 of q-ary (ni, Ki, di) codes satisfying

lim
i→∞

logq Ki

ni

≥ y +
σ − ε− 1

A(q)

−
m∑

j=1

xj logq xj −
(

1−
m∑

j=1

xj

)
logq

(
1−

m∑
j=1

xj

)

+

( m∑
j=1

xj

)
logq(q − 1) +

m∑
j=2

(j − 1)xj

= 1 +
σ − ε− 1

A(q)
− δ − 2

m∑
j=1

(j + 1)xj

−
m∑

j=1

xj logq xj −
(

1−
m∑

j=1

xj

)
logq

(
1−

m∑
j=1

xj

)

+

( m∑
j=1

xj

)
logq(q − 1) +

m∑
j=2

(j − 1)xj

and

lim
i→∞

di

ni

≥ 1− y − 2
m∑

j=1

(j + 1)xj = δ.

Letting ε tend to 0, we obtain the desired result.
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6.3 Explicit Asymptotic Bounds

In this section we compare our bound with various others for some values of

q and δ analysed by Niederreiter and Özbudak [30]. We note that in the case

m = 1, the bound Rx1(q, δ) corresponds to their construction.

Our first example will demonstrate that increasing the value of m pro-

duces stronger bounds. The second example will show that our new code

construction can indeed be used to produce the strongest currently known

asymptotic coding bound for certain values of q and δ.

Let RV(q, δ) be the bound obtained by Vlăduţ [53] using distinguished

line bundles and RXing(q, δ) be the bound obtained by Xing [57] using dis-

tinguished divisors.

Example 6.5. Let q = 26 and

δ =
13763868443250238929521503984833381597731412559044

46065097831342932365531985486767649347321318605709

= 0.29879169026501515839 . . . .

We note that with x1 = 10−13, Rx1(q, δ) has been analysed by Niederreiter

and Özbudak [30, Example 5.2]. For these values of q and δ, the crucial

inequalities are

RV(q, δ) > Rx1(q, δ) > RXing(q, δ) > RNÖ(q, δ) > RGV(q, δ).
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More specifically, we have

RV(q, δ)−Rx1(q, δ) ≥ 2.4136 · 10−7,

Rx1(q, δ)−RXing(q, δ) ≥ 7.3387 · 10−15,

RXing(q, δ)−RNÖ(q, δ) ≥ 1.6317 · 10−6,

RNÖ(q, δ)−RX(q, δ) ≥ 1.4111 · 10−8,

RX(q, δ)−RTVZ(q, δ) ≥ 9.0312 · 10−7,

RTVZ(q, δ)−RGV(q, δ) ≥ 2.6462 · 10−3.

We begin our analysis by noting that for m = 1 there are better choices

of x1 than Niederreiter and Özbudak’s choice of x1 = 10−13. For example,

with x1 = 7.9957147039 · 10−14 we obtain

Rx1(q, δ)−RXing(q, δ) ≥ 7.55856972571591107037 · 10−15

and furthermore

Rx1(q, δ)−RXing(q, δ) ≤ 7.55856972571591107038 · 10−15

for all x1.

We now show that if we increase m, we gain improvements. With

x1 = 7.995714703941994553656973167 · 10−14,

x2 = 1.329920858581190730011 · 10−27

we obtain

Rx1,x2(q, δ)−RXing(q, δ) ≥ 7.55856972571603679148789800726869240

284332089 · 10−15
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and therefore

Rx1,x2(q, δ)−Rx1(q, δ) ≥ 1.2572 · 10−28.

for all x1. Furthermore

Rx1,x2(q, δ)−RXing(q, δ) ≤ 7.55856972571603679148789800726869240

284332090 · 10−15

for all x1 and x2. With

x1 = 7.995714703941994550636124043092191470796649418 · 10−14,

x2 = 1.329920858581190729623007049896058553827 · 10−27,

x3 = 9.91712573491320911997279876 · 10−52

we obtain

Rx1,x2,x3(q, δ)−RXing(q, δ) ≥ 7.75585697257160367914878980072686924

03476522521372777458540297087276489

33738325264175327945 · 10−15

and therefore

Rx1,x2,x3(q, δ)−Rx1,x2(q, δ) ≥ 6.3320 · 10−52

for all x1 and x2. Furthermore

Rx1,x2,x3(q, δ)−RXing(q, δ) ≤ 7.55856972571603679148789800726869240

34765225213727774585402970872764893

3738325264175327946 · 10−15
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for all x1, x2, and x3. With

x1 = 7.995714703941994550636124043092191470796649418 · 10−14,

x2 = 1.329920858581190729623007049896058553827 · 10−27,

x3 = 9.91712573491320911997279876 · 10−52,

x4 = 3.41883 · 10−94

we obtain

Rx1,x2,x3,x4(q, δ)−RXing(q, δ) ≥ 7.55856972571603679148789800726869240

34765225213727774585402970872764893

3738325267407239318 · 10−15

and therefore

Rx1,x2,x3,x4(δ)−Rx1,x2,x3(δ) ≥ 3.2319 · 10−95

for all x1, x2, and x3.

In summary, we have shown that for m = 2, 3, and 4 we can gain consec-

utive improvements on Niederreiter and Özbudak’s construction for m = 1.

Example 6.6. Let q = 221 and

δ =
1034323484865452473463726110309814032498446010098

99621193732964014413326435515634059733734238550355

= 0.01038256465424386359 . . . .

Recalling the result of Bezerra, Garcia, and Stichtenoth [1] that was men-

tioned in Section 2.1, we see that

A(221) ≥ 16383

65
.
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Since we do not know the exact value of A(221), we cannot calculate the

exact value of, for example, RTVZ(q, δ). We fix this problem by replacing

RTVZ(q, δ) with the bound

R′
TVZ(q, δ) := 1− 65

16383
− δ for 0 ≤ δ ≤ 1.

Similarly we replace A(221) with 16383
65

in the other bounds involving A(q)

and in these cases we again replace R with R′.

We note that with x1 = 10−60, R′
x1

(q, δ) has been analysed by Niederreiter

and Özbudak [30, Example 5.4]. Since Vlăduţ’s bound is only valid in the

case where q is a square, we see that, for these values of q and δ, the crucial

inequalities are

R′
x1

(q, δ) > R′
Xing(q, δ) > R′

NÖ
(q, δ) > RGV(q, δ).

More specifically, we have

R′
x1

(q, δ)−R′
Xing(q, δ) ≥ 2.1335 · 10−61,

R′
Xing(q, δ)−R′

NÖ
(q, δ) ≥ 1.2865 · 10−18,

R′
NÖ

(q, δ)−R′
X(q, δ) ≥ 3.5516 · 10−27,

R′
X(q, δ)−R′

TVZ(q, δ) ≥ 7.4484 · 10−21,

R′
TVZ(q, δ)−RGV(q, δ) ≥ 3.2418 · 10−8.

We begin our analysis by noting that for m = 1 there are better choices

of x1 than Niederreiter and Özbudak’s choice of x1 = 10−60. For example,

with

x1 = 4.159479366046034067199662818967840675643 · 10−57
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we obtain

R′
x1

(q, δ)−R′
Xing(q, δ) ≥ 9.50862747209722768825003564532388122

62849072683172191089107651303529265

0919079801 · 10−59

and furthermore

R′
x1

(q, δ)−R′
Xing(q, δ) ≤ 9.50862747209722768825003564532388122

62849072683172191089107651303529265

0919079802 · 10−59

for all x1.

Now let m = 2. With

x1 = 4.1594793660460340671996628189678406756432 · 10−57,

x2 = 2.3336 · 10−128

we obtain

R′
x1,x2

(q, δ)−R′
Xing(q, δ) ≥ 9.50862747209722768825003564532388122

62849072683172191089107651303529265

6253716970 · 10−59

and therefore

R′
x1,x2

(q, δ)−R′
x1

(q, δ) ≥ 5.3346 · 10−130.

for all x1.

In summary, we have shown that for m = 2 we gain an improvement

on Niederreiter and Özbudak’s construction for m = 1. This is significant
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as Niederreiter and Özbudak’s bound is the best in the literature for these

values of q and δ. Hence, we have shown that our new construction can

produce best known asymptotic coding bounds.



Chapter 7

A New Construction of

(t,m,s)-Nets

When Niederreiter and Xing introduced the idea of using global function

fields to produce low-discrepancy point sets and sequences, digital (t,m, s)-

nets were obtained by simply considering digital (t, s − 1)-sequences. An

interesting development was the introduction by Niederreiter and Pirsic [31]

of the concept of duality theory, which endows the vector space Fms
q with a

weight function which is a generalisation of the classical Hamming weight,

in order to produce digital (t,m, s)-nets.

The switch to a more coding-theoretic viewpoint allows us to import

an important idea from the theory of algebraic-geometry codes. Goppa’s

algebraic-geometry codes are dependent upon a divisor G of particular degree

whose support is disjoint from a set P1, . . . , Pn of rational places. It is a fact

that some such divisors will produce codes with better parameters than other

divisors of the same degree. It was shown independently by Vlăduţ [53] (see

68
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also [51]) and then Xing [57] that this fact could be utilised to produce

improvements on the asymptotic bounds of linear codes.

The introduction of a more direct way to produce digital (t,m, s)-nets us-

ing global function fields means that we can transfer the distinguished divisor

method from coding theory to the low-discrepancy sequences setting. This

was first demonstrated by Niederreiter and Xing [40] and reproduced in [60].

A more generalised version using arbitrary places was given by Niederreiter

and Özbudak [28], and this produces the best known (t,m, s)-nets.

For our construction we will restrict ourselves to using rational places,

but we will use differentials.

7.1 Distinguished Divisors for (t,m, s)-Nets

Using Differentials

We begin by introducing the distinguished divisor that we will need. The

following proposition is simply a slight modification of Proposition 5.1.

Proposition 7.1. Let F/Fq be a global function field of genus g, divisor

class number h, and with at least s ≥ 2 distinct rational places P1, . . . , Ps.

Let m ≥ 1 and 0 ≤ l ≤ min{ms,ms−m+ g − 1} be integers. Let U(s, l,m)

be the set of divisors of F defined by

U(s, l,m) =

{
s∑

i=1

wiPi :
s∑

i=1

wi = l, 0 ≤ wi ≤ m

}
.

Suppose that

|U(s, l,m)| · Ams−m+g−1−l(F ) < h.
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Then there exists a divisor G of F such that deg(G) = m + s −ms + g − 1

and

Ω

(
G−

s∑
i=1

Pi + U

)
= {0}

for all U ∈ U(s, l,m).

Proof. Let Q be a rational place of F . Let D be the set of degree zero divisors

given by

D = {U + A− (ms−m+ g − 1)Q : U ∈ U(s, l,m), A ∈ Ams−m+g−1−l(F )}.

Note that

|D| ≤ |U(s, l,m)| · Ams−m+g−1−l(F ) < h.

Therefore there exists a degree zero divisor D0 of F such that

D0 6∼ D for all D ∈ D.

Let ω1 be a nonzero differential of F and put

G := (ω1)−D0 +
s∑

i=1

Pi − (ms−m+ g − 1)Q.

We claim that

Ω

(
G−

s∑
i=1

Pi + U

)
= {0}

for all U ∈ U(s, l,m). Suppose, on the contrary, that there exists U ∈

U(s, l,m) and ω2 such that

ω2 ∈ Ω

(
G−

s∑
i=1

Pi + U

)
\{0}.

Note that

Ω

(
G−

s∑
i=1

Pi + U

)
' L

(
(ω2)−G+

s∑
i=1

Pi − U

)
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and hence there exists a nonzero f1 ∈ F such that

f1 ∈ L
(

(ω2)−G+
s∑

i=1

Pi − U

)
.

Then

E := div(f1) + (ω2)−G+
s∑

i=1

Pi − U

is a positive divisor of degree ms −m + g − 1 − l. Note that all canonical

divisors are equivalent. Therefore

(ω2) = (ω1) + div(f2)

for some f2 ∈ F and so

D0 + div(f1f2) = U + E − (ms−m+ g − 1)Q ∈ D

which is a contradiction to the choice of D0.

7.2 The Basic Construction of (t,m, s)-Nets

Using Differentials

We now define our construction of (t,m, s)-nets. Let F/Fq be a global func-

tion field. For a given dimension s ≥ 2, we assume that N(F ) ≥ s and let

P1, . . . , Ps be distinct rational places of F . For i = 1, . . . , s, let ti ∈ F be a

local parameter at Pi. Now choose an arbitrary divisor G of F and put

ni = νPi
(G) for 1 ≤ i ≤ s.

For 1 ≤ i ≤ s and ω ∈ Ω(G−
∑s

i=1 Pi) note that νPi
((ω)) ≥ ni−1. Therefore

for m ≥ 1 we can let ω = xi dti, where

xi = resPi
(ωt−ni

i )tni−1
i + . . .+ resPi

(ωt
−(ni+m−1)
i )tni+m−2

i + . . .
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and resPi
(ωt−ni

i ), resPi
(ωt

−(ni+1)
i ), . . . are uniquely determined constants in

Fq. Finally, we define

c(i)
ω = (resPi

(ωt
−(ni+m−1)
i ), . . . , resPi

(ωt−ni
i )) for 1 ≤ i ≤ s,

Cω = (c(1)
ω , . . . , c(s)

ω ) ∈ Fms
q ,

and let Cm
Ω (P1, . . . , Ps;G) be the image of the following Fq-linear map:

φ : Ω

(
G−

s∑
i=1

Pi

)
→ Fms

q

ω 7→ Cω.

The minimum distance of Cm
Ω (P1, . . . , Ps;G) is provided by the following

theorem.

Theorem 7.2. Let F/Fq be a global function field of genus g, divisor class

number h, and with at least s ≥ 2 distinct rational places P1, . . . , Ps. Let

m ≥ 1 and 0 ≤ l ≤ min{ms,ms −m + g − 1} be integers. Suppose further

that

|U(s, l,m)| · Ams−m+g−1−l(F ) < h.

Then there exists a divisor G of F with deg(G) = m + s−ms + g − 1 such

that Cm
Ω (P1, . . . , Ps;G) is an Fq-linear subspace of Fms

q with

dim(Cm
Ω (P1, . . . , Ps;G)) ≥ ms−m

and

δm(Cm
Ω (P1, . . . , Ps;G)) ≥ ms− l + 1.

Proof. Let G be a divisor of the form given in Proposition 7.1. Let ω ∈

Ω(G−
∑s

i=1 Pi) be a nonzero differential and put

wi(ω) = min(m, νPi
((ω))− ni + 1) for 1 ≤ i ≤ s.
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Then, using the notation from Section 2.3, we have

v(c(i)
ω ) = m− wi(ω) for 1 ≤ i ≤ s.

Therefore

Vm(Cω) =
s∑

i=1

v(c(i)
ω ) = ms−

s∑
i=1

wi(ω).

For i = 1, . . . , s, we have νPi
((ω)) ≥ ni − 1 + wi(ω), and so

ω ∈ Ω

(
G−

s∑
i=1

Pi +
s∑

i=1

wi(ω)Pi

)
.

Since ω 6= 0, it follows that we must have

s∑
i=1

wi(ω) ≤ l − 1,

hence

Vm(Cω) ≥ ms− l + 1 ≥ 1.

This shows that the Fq-linear map φ : Ω(G −
∑s

i=1 Pi) 7→ Cω is injective.

Thus,

dim(Cm
Ω (P1, . . . , Ps;G)) = dim Ω(G−

s∑
i=1

Pi)

= dimL(G−
s∑

i=1

Pi)− deg(G−
s∑

i=1

Pi) + g − 1

≥ s− deg(G) + g − 1 = ms−m

and also

δm(Cm
Ω (P1, . . . , Ps;G)) ≥ ms− l + 1.
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Corollary 7.3. Let F/Fq be a global function field of genus g, divisor class

number h, and with at least s ≥ 2 distinct rational places P1, . . . , Ps. Let

m ≥ 1 and 0 ≤ l ≤ min{ms,ms −m + g − 1} be integers. Suppose further

that

|U(s, l,m)| · Ams−m+g−1−l(F ) < h.

Then there exists a digital (m−ms+ l,m, s)-net over Fq.

Proof. This follows by Theorem 2.16.

Example 7.4. Let F be the Hermitian function field [49, Example VI.3.6]

over F25. Then g(F ) = 10, h(F ) = 620, A1(F ) = N(F ) = 126, A2(F ) = 8001,

A3(F ) = 347376, and A4(F ) = 11859876. Let s = 126.

Suppose l = ms −m + g − 1 = 125m + 9 where m ≥ 9. Note that the

condition

|U(126, 125m+ 9,m)| =
(

116 +m

125

)
< 620

is satisfied for 9 ≤ m ≤ 19 and so there exist digital (9,m, 126)-nets over

F25 for these values of m. Furthermore, a comparison with the information

available at [43] shows that for m = 18 and 19 these digital nets have quality

parameter t matching the best known value.

Suppose l = ms −m + g − 2 = 125m + 8 where m ≥ 8. Note that the

condition

|U(126, 125m+ 8,m)| · 126 =

(
117 +m

125

)
· 126 < 620

is satisfied for 8 ≤ m ≤ 16 and so there exist digital (8,m, 126)-nets over

F25 for these values of m. Furthermore, a comparison with the information
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available at [43] shows that for m = 16 this digital net has quality parameter

t matching the best known value.

Suppose l = ms −m + g − 3 = 125m + 7 where m ≥ 7. Note that the

condition

|U(126, 125m+ 7,m)| · 8001 =

(
118 +m

125

)
· 8001 < 620

is satisfied for 7 ≤ m ≤ 14 and so there exist digital (7,m, 126)-nets over

F25 for these values of m. Furthermore, a comparison with the information

available at [43] shows that for m = 14 this digital net has quality parameter

t matching the best known value.

Suppose l = ms −m + g − 4 = 125m + 6 where m ≥ 6. Note that the

condition

|U(126, 125m+ 6,m)| · 347376 =

(
119 +m

125

)
· 347376 < 620

is satisfied for 6 ≤ m ≤ 12 and so there exist digital (6,m, 126)-nets over

F25 for these values of m. Furthermore, a comparison with the information

available at [43] shows that for m = 12 this digital net has quality parameter

t matching the best known value.

Suppose l = ms −m + g − 5 = 125m + 5 where m ≥ 5. Note that the

condition

|U(126, 125m+ 5,m)| · 11859876 =

(
120 +m

125

)
· 11859876 < 620

is satisfied for 5 ≤ m ≤ 10 and so there exist digital (5,m, 126)-nets over

F25 for these values of m. Furthermore, a comparison with the information

available at [43] shows that for m = 10 this digital net has quality parameter

t matching the best known value.



Chapter 8

A New Construction of

(t,s)-Sequences

In this chapter we introduce the first new construction of (t, s)-sequences

using global function fields since the fourth and final construction of Nieder-

reiter and Xing [34] in 1996. Our construction is the first to make use of

differentials, and it is based on the construction of Xing and Niederreiter

[59] which provides the best known parameters and also the most general

construction, since it uses places of arbitrary degree.

8.1 The Basic Construction of (t,s)-

Sequences Using Differentials

Let F/Fq be a global function field of genus g and with at least one rational

place P∞, let D be a divisor of F with deg(D) = −2 and P∞ 6∈ supp(D),

let P1, . . . , Ps be distinct places of F with Pi 6= P∞ for 1 ≤ i ≤ s, and put

76
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ei = deg(Pi) for 1 ≤ i ≤ s.

Note that we have dim Ω(D) = g+1, dim Ω(D+P∞) = g, and dim Ω(D+

(2g + 1)P∞) = 0, hence there exist integers 0 = n0 < n1 < · · · < ng ≤ 2g

such that

dim Ω(D + nuP∞) = dim Ω(D + (nu + 1)P∞) + 1 for 0 ≤ u ≤ g.

Now we choose

wu ∈ Ω(D + nuP∞)\Ω(D + (nu + 1)P∞) for 0 ≤ u ≤ g.

It is easily seen that {w0, w1, . . . , wg} is a basis of Ω(D). For i = 1, . . . , s,

consider the chain

Ω(D) ⊂ Ω(D − Pi) ⊂ Ω(D − 2Pi) ⊂ . . .

of vector spaces over Fq. By starting from the basis {w0, w1, . . . , wg} of Ω(D)

and successively adding basis vectors at each step of the chain, we obtain for

each n ≥ 1 a basis

{w0, w1, . . . , wg, ω
(i)
1 , ω

(i)
2 , . . . , ω(i)

nei
}

of Ω(D − nPi). Now let z be a local parameter at P∞. For r = 0, 1, . . . we

put

zr =


zrdz if r 6∈ {n0, n1, . . . , ng},

wu if r = nu for some u ∈ {0, 1, . . . , g}.

Note that νP∞((zr)) = r for all r ≥ 0. For 1 ≤ i ≤ s and j ≥ 1 we have

ω
(i)
j ∈ Ω(D − kPi) for some k ≥ 1 and also P∞ 6∈ supp(D − kPi), hence

νP∞((ω
(i)
j )) ≥ 0. Thus, we have expansions at P∞ of the form

ω
(i)
j =

∞∑
r=0

a
(i)
r,jzr for 1 ≤ i ≤ s and j ≥ 1,
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where all coefficients a
(i)
r,j ∈ Fq. For 1 ≤ i ≤ s and j ≥ 1 we define the

sequence of elements c
(i)
r,j ∈ Fq, r = 0, 1, . . ., by considering the sequence of

elements a
(i)
r,j, r = 0, 1, . . ., and then deleting the terms with r = nu for some

u ∈ {0, 1, . . . , g}. Finally, we set up the system

C(∞) = {c(i)
j = (c

(i)
0,j, c

(i)
1,j, . . .) ∈ F∞

q : 1 ≤ i ≤ s and j ≥ 1}.

We write SΩ(P∞, P1, . . . , Ps;D) for a sequence obtained from this system by

the digital method.

Theorem 8.1. Let F/Fq be a global function field of genus g and with at

least one rational place P∞, let D be a divisor of F with deg(D) = −2 and

P∞ 6∈ supp(D), and let P1, . . . , Ps be distinct places of F with Pi 6= P∞ for

1 ≤ i ≤ s. Then SΩ(P∞, P1, . . . , Ps;D) is a digital (t, s)-sequence constructed

over Fq with

t = g +
s∑

i=1

(ei − 1),

where ei = deg(Pi) for 1 ≤ i ≤ s.

Proof. By Theorem 2.17, it suffices to show that for any m > t and any

nonnegative integers d1, . . . , ds with
∑s

i=1 di = m− t, the vectors

πm(c
(i)
j ) = (c

(i)
0,j, . . . , c

(i)
m−1,j) ∈ Fm

q for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

are linearly independent over Fq. Fix a set of integers m, d1, . . . , ds satisfying

the above conditions. Let H be the set of i with 1 ≤ i ≤ s for which di ≥ 1,

and suppose that we have

∑
i∈H

di∑
j=1

b
(i)
j πm(c

(i)
j ) = 0 ∈ Fm

q
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for some b
(i)
j ∈ Fq. With R = {n0, n1, . . . , ng} this means that

∑
i∈H

di∑
j=1

b
(i)
j a

(i)
r,j = 0

for the first m nonnegative integers r that are not in R. Now consider the

differential ω of F given by

ω =
∑
i∈H

di∑
j=1

b
(i)
j

(
ω

(i)
j −

g∑
u=0

a
(i)
nu,jwu

)
=

∞∑
r=0
r 6∈R

(∑
i∈H

di∑
j=1

b
(i)
j a

(i)
r,j

)
zr.

Since ng ≤ 2g and g ≤ m − 1 we have νP∞((ω)) ≥ m + g + 1, and together

with the choice of the ω
(i)
j this shows that

ω ∈ Ω

(
D −

s∑
i=1

(⌊
di − 1

ei

⌋
+ 1

)
Pi + (m+ g + 1)P∞

)
.

Note that

deg

(
D −

s∑
i=1

(⌊
di − 1

ei

⌋
+ 1

)
Pi + (m+ g + 1)P∞

)
= −2−

s∑
i=1

(⌊
di − 1

ei

⌋
+ 1

)
ei + (m+ g + 1)

≥ m− t−
s∑

i=1

di + 2g − 1

= 2g − 1.

Therefore ω = 0, and we have∑
i∈H

di∑
j=1

b
(i)
j ω

(i)
j =: w ∈ Ω(D).

Fix an h ∈ H. We claim that b
(h)
j = 0 for 1 ≤ j ≤ dh. Suppose, on the

contrary, that some b
(h)
j 6= 0, then by the choice of the ω

(h)
j we have

dh∑
j=1

b
(h)
j ω

(h)
j ∈ Ω(D − kPh)\Ω(D) for some k ≥ 1,
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and so

νPh

(( dh∑
j=1

b
(h)
j ω

(h)
j

))
≤ νPh

(D)− 1.

However, we also know that

νPh

(( dh∑
j=1

b
(h)
j ω

(h)
j

))
= νPh

((
w −

∑
i∈H\{h}

di∑
j=1

b
(i)
j ω

(i)
j

))
≥ νPh

(D),

a contradiction. Thus, for any i ∈ H, b
(i)
j = 0 for 1 ≤ j ≤ di.

Note that the only different condition in our construction to that of Xing

and Niederreiter is that we use a divisor D with deg(D) = −2, whereas

they use a divisor D′ with deg(D′) = 2g. Such divisors can always be found

and hence any global function field F/Fq with places P∞, P1, . . . , Ps can

be used to construct two different digital (t, s)-sequences over Fq, where

t = g +
∑s

i=1(deg(Pi)− 1).

A project of cataloging upper bounds on dq(s) for q = 2, 3, 5 and 1 ≤ s ≤

50 was begun by Niederreiter and Xing [34, Table 4], [36, Table 2], [38, Table

3], [37, Table 5], and has been continued by Niederreiter [26, Table 1], [27,

Table 1]. We now provide an example which demonstrates that it is possible

to use nonrational places to gain improved bounds on dq(s).

Example 8.2. Let F/F5 be the global function field given in [35, Example

4], i.e., F = F5(x, y1, y2) with

y2
1 = x(x2 − 2), y5

2 − y2 =
x4 − 1

y1 − 1
,

g(F/F5) = 11 andN(F/F5) = 32. Consider the place in F5(x) corresponding

to x2 + 2x − 2, this splits completely in the extension K/F5(x) where K =

F5(x, y1), and one of the places in K lying above x2 +2x−2 splits completely
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in F/K. Therefore F contains at least 5 places of degree 2. Combining this

with Theorem 8.1 (or [59, Theorem 2]) we obtain

d5(32) ≤ 12,

which is an improvement on the current bound d5(32) ≤ 13 given in [27,

Table 1].



Chapter 9

Improved Bounds for

(t,s)-Sequences

In this chapter, for certain values of b, we will improve the upper bound on

the quantity

lim sup
s→∞

tb(s)

s

whose existence is implied by the previously mentioned result tb(s) = O(s).

We begin by recalling the definition of the quantity Xq(s) that was intro-

duced in [39, Section 8.4].

For a global function field F/Fq with N(F ) ≥ 1, exclude one rational

place of F and list all other places according to nondecreasing degrees. If

P1, . . . , Ps are the first s places in the list, then put

δs(F ) =
s∑

i=1

(deg(Pi)− 1).

Now define

Xq(s) = min
F

(g(F ) + δs(F )),

82
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where the minimum is extended over all global function fields F/Fq with

N(F ) ≥ 1. We know by Theorem 8.1 (and also by [59, Theorem 2]) that we

have

dq(s) ≤ Xq(s) for all s ≥ 1.

The above result is based on the strongest known construction of (t, s)-

sequences. Hence, we can bound dq(s) by finding towers of function fields

with many places of small degree. Niederreiter and Xing [33], [59] made use

of the tower of global function fields due to Garcia and Stichtenoth [9] which

was the first explicit tower of function fields that was asymptotically good,

i.e., it is a tower F = (F1, F2, . . .) of function fields over Fq satisfying the

condition

lim
i→∞

N(Fi)

g(Fi)
> 0.

In the decade since the last construction of (t, s)-sequences in [34], Gar-

cia, Stichtenoth, and Thomas [10], Li, Maharaj, and Stichtenoth [21], and

Bezerra, Garcia, and Stichtenoth [1] have all constructed new towers which

are asymptotically good. In addition, Elkies et al. [7] have proved the exis-

tence of curves of every genus with many rational points. In the next four

sections we will utilise these new results to produce improvements in the

asymptotic theory of (t, s)-sequences. In Section 9.5 we investigate what

these new results imply for the star discrepancy of sequences.
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9.1 A Theorem of Garcia, Stichtenoth, and

Thomas

We start with the following theorem of Garcia, Stichtenoth, and Thomas [10,

Theorem 2.1], which makes use of tame towers of function fields.

Theorem 9.1. Let F = (F1, F2, F3, ...) be a tower of function fields over Fq

satisfying the following conditions:

(i) All extensions Fn+1/Fn are tame.

(ii) The set R = {P ∈ PF1 : P is ramified in Fn/F1 for some n ≥ 2} is

finite.

(iii) The set T = {P ∈ PF1 : deg(P ) = 1 and P splits completely in all

extensions Fn/F1} is nonempty.

Then F is asymptotically good, and one has the estimate

lim
n→∞

N(Fn)

g(Fn)
≥ 2t

2g(F1)− 2 + r
=: λ(F)

where t := |T | and r :=
∑

P∈R deg(P ).

For our purposes, we need to know the bounds for the number of rational

places and the genus at each individual n. So we note that in the proof of

the above theorem it is shown that

2g(Fn) ≤ [Fn : F1](2g(F1)− 2 + r) + 2

and

N(Fn) ≥ t · [Fn : F1].
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We now introduce two propositions which make use of Theorem 9.1.

Firstly, we use the rational places of one of Garcia, Stichtenoth, and Thomas’s

towers of function fields over Fq to bound dq(s).

Proposition 9.2. Let F = (F1, F2, F3, ...) be a tower of function fields over

Fq satisfying the conditions of Theorem 9.1. Assume further that F1 is the

rational function field and [Fn+1 : Fn] = m ≥ 2 for all n ≥ 1. Then we have

dq(s) ≤
m

λ(F)
s+ 1.

for all s ≥ 1.

Proof. First let 1 ≤ s ≤ q. Then

N(F1/Fq) = q + 1 ≥ s+ 1

and hence

dq(s) ≤ g(F1) = 0.

Now let s ≥ q + 1. Note that this implies s ≥ t and therefore

t ·mn−2 ≤ s ≤ t ·mn−1 − 1

for some integer n ≥ 2. We know that

N(Fn/Fq) ≥ t ·mn−1

and

g(Fn/Fq) ≤
mn−1(r − 2) + 2

2
.

Therefore

dq(s) ≤ g(Fn/Fq) ≤
mn−1(r − 2) + 2

2
≤ m(r − 2)

2t
s+ 1 =

m

λ(F)
s+ 1.
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In the second proposition of this section we use the rational places of

Garcia, Stichtenoth, and Thomas’s towers of function fields over Fq2 to bound

dq(s).

Proposition 9.3. Let E = (E1, E2, ...) be a tower of function fields over

Fq such that by setting Fn := En · Fq2 we obtain a tower of function fields

F = (F1, F2, ...) over Fq2 satisfying the conditions of Theorem 9.1. Assume

further that E1 is the rational function field, [Fn+1 : Fn] = m ≥ 2 for all

n ≥ 1, and N(En/Fq) ≥ 1 for all n ≥ 1. Then if t ·m is even we have

dq(s) ≤
(

2m

λ(F)
+ 1

)
s+ 1− 2m

λ(F)

and if t ·m is odd we have

dq(s) ≤
(

2m

λ(F)
+ 1

)
s+ 1− m

λ(F)

for all s ≥ 1.

Proof. First let 1 ≤ s ≤ q. Then

N(E1/Fq) = q + 1 ≥ s+ 1

and hence

dq(s) ≤ g(E1/Fq) = 0.

Next let q + 1 ≤ s ≤ 1
2
(q2 + q). Then using all the rational places of E1/Fq

and s− q places of degree 2 we obtain

dq(s) ≤ s− q ≤
(

2m

λ(F)
+ 1

)
s+ 1− 2m

λ(F)
.

Finally, let s ≥ 1
2
(q2 + q) + 1. If t ·m is even we have

t ·mn−2 + 2

2
≤ s ≤ t ·mn−1 + 2

2
− 1
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for some integer n ≥ 2, and if t ·m is odd we have

t ·mn−2 + 1

2
≤ s ≤ t ·mn−1 + 1

2
− 1

for some integer n ≥ 2.

Results on constant field extensions [49, Lemma V.1.9] tell us that

g(En/Fq) = g(Fn/Fq2) ≤ mn−1(r − 2) + 2

2

and

N(En/Fq) + 2B2(En/Fq) = N(Fn/Fq2) ≥ t ·mn−1.

Clearly if t ·m is even we have

N(En/Fq) +B2(En/Fq) ≥
t ·mn−1 + 2

2

and if t ·m is odd we have

N(En/Fq) +B2(En/Fq) ≥
t ·mn−1 + 1

2
.

Therefore when t ·m is even we have

dq(s) ≤ g(En/Fq) + s ≤ mn−1(r − 2) + 2

2
+ s

≤ m(s− 1)(r − 2)

t
+ 1 + s

=

(
2m

λ(F)
+ 1

)
s+ 1− 2m

λ(F)

and when t ·m is odd we have

dq(s) ≤ g(En/Fq) + s ≤ mn−1(r − 2) + 2

2
+ s

≤ (2s− 1)m(r − 2)

2t
+ 1 + s

=

(
2m

λ(F)
+ 1

)
s+ 1− m

λ(F)
.
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9.2 Li, Maharaj, and Stichtenoth’s Towers of

Function Fields

The paper of Garcia, Stichtenoth, and Thomas [10] was followed by a paper

of Li, Maharaj, and Stichtenoth [21] which made a systematic attempt to

find optimal towers of function fields. The optimal towers that were found

in [21] can be summarised as follows.

q recursive polynomial λ(F)

4 x2
nx

3
n+1 + (x3

n + x2
n + xn)x2

n+1 + (xn + 1)xn+1 + x3
n + xn = 0 1

9 2xnx
2
n+1 + (x2

n + xn + 1)xn+1 + x2
n + xn + 2 = 0 2

25 (4xn + 1)x2
n+1 + (x2

n + xn + 2)xn+1 + xn + 3 = 0 4

49 (x2
n + 6)x2

n+1 + xnxn+1 + x2
n + 4 = 0 6

Example 9.4. Applying Proposition 9.2 to the above towers, we obtain

d4(s) ≤ 3s+ 1,

d9(s) ≤ s+ 1,

d25(s) ≤
s

2
+ 1,

d49(s) ≤
s

3
+ 1.

For q = 9, 25, and 49, these bounds represent improvements on the

previous known theory, which was a result due to Xing and Niederreiter [59].

Namely, for any prime p and integer e ≥ 1 we have

dp2e(s) ≤ p

pe − 1
s,
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whereas we have

dp2e(s) ≤ 2

pe − 1
s+ 1

for p2e = 9, 25, and 49. We note that as the bounds for these values of q

are based on optimal towers of function fields whose polynomial is quadratic,

they are the best bounds obtainable by Proposition 9.2.

Remark 9.5. It is possible to obtain the new bound d9(s) ≤ s + 1 using a

different tower of function fields over F9 [10, Example 2.4].

Example 9.6. Let us consider Li, Maharaj, and Stichtenoth’s tower of func-

tion fields F = {F9(x1 . . . , xn) : n ≥ 1} over F9, but with F9 replaced by

F3, i.e., consider E = {F3(x1 . . . , xn) : n ≥ 1}. Li, Maharaj, and Stichtenoth

show that for n ≥ 2 the place representing x4
1 + x2

1 + x1 + 1 is totally ram-

ified in the extension F3(x1 . . . , xn)/F3(x1). Therefore, F3 is the full con-

stant field of F3(x1 . . . , xn) for all n ≥ 1. Note that for n ≥ 1 the rational

place of F3(x1, . . . , xn+1) representing the zero of xn+1 + 2 lies over the ra-

tional place of F3(x1, . . . , xn) representing the zero of xn + 2, and therefore

N(F3(x1, . . . , xn)/F3) ≥ 1 for all n ≥ 1. Then, considering the constant field

extension F3(x1, . . . , xn)/F3 ·F9 = F9(x1, . . . , xn)/F9, we see that we can use

Proposition 9.3 to obtain the bound

d3(s) ≤ 3s− 1.

For q = 5 and 7, Li, Maharaj, and Stichtenoth do not determine whether

Fq is the full constant field of Fq(x1 . . . , xn) for all n ≥ 1. Instead they show

that Fq2 is the full constant field of Fq2(x1 . . . , xn) by providing a place of

Fq2(x1) which is totally ramified in Fq2(x1 . . . , xn) for all n ≥ 1. Note that
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we could obtain a strong bound on d5(s) if F5 is the full constant field of

F5(x1 . . . , xn), since the rational place of F5(x1, . . . , xn+1) representing the

zero of xn+1 +2 lies over the rational place of F5(x1, . . . , xn) representing the

zero of xn + 2 for all n ≥ 1.

It would be nice if we could determine the full constant field of the above

tower, but it is not overly important since we can gain bounds on tq(s), as

opposed to dq(s), by using the following technique.

Example 9.7. We note a result of Niederreiter and Xing [33, Proposition 4]

which states that for all integers b ≥ 2, h ≥ 1, and s ≥ 1 we have

tb(s) ≤ htbh(s) + (h− 1)s.

Hence, we know that

t5(s) ≤ 2t25(s) + s ≤ 2d25(s) + s ≤ 2s+ 2

and

t7(s) ≤ 2t49(s) + s ≤ 2d49(s) + s ≤ 5

3
s+ 2.

For q = 3, 5, and 7, these bounds represent asymptotic improvements on

the previous known theory. For q = 3 and 7, this was a result due to Xing

and Niederreiter [59]. Namely, for any prime power q and integer s ≥ 1 we

have

dq(s) ≤
3q − 1

q − 1
(s− 1)− (2q + 4)(s− 1)1/2

(q2 − 1)1/2
+ 2.

In particular,

d3(s) ≤ 4s− 5

21/2
(s− 1)1/2 − 2 for all s ≥ 1,

d7(s) ≤
10

3
s− 33/2

2
(s− 1)1/2 − 4

3
for all s ≥ 1.
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For q = 5, the previous best bound was obtained by Niederreiter and Xing

[39, Remark 8.4.5] who used the rational places of a Hilbert class field tower

to obtain the bound

d5(s) ≤
11

4
s+ 1 for all s ≥ 1.

9.3 Curves of Every Genus with Many

Rational Places Due to Elkies et al.

In all previous attempts to use global function fields to bound dq(s), the

method has involved using towers of function fields. However, it is apparent

that if we can find global function fields of every genus with many rational

places, then we can also gain bounds on dq(s). When Niederreiter and Xing

obtained their last construction of (t, s)-sequences, this was a barren area of

research. Serre [45] had previously posed the question as to whether

lim inf
g→∞

Nq(g)

g
> 0,

but it was only recently that Elkies et al. [7] showed that the above inequality

holds for every prime power q. Furthermore, in the case where q is a square,

strong explicit bounds [7, Theorem 1.2 and Corollary 6.2] were obtained

which we now reproduce.
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Theorem 9.8. We have

lim inf
g→∞

Nq(g)

g
≥



q1/2 − 1

2 + logq 2
if q is an even square,

q1/2 − 1

2 + logq 4
if q is an odd square,

2(q1/2 − 1)

2 + (q1/2 + 1) · logq 2
if q is an odd square.

Whilst this theorem does not provide bounds on dq(s) for individual s, it

does provide strong bounds on the asymptotic properties of dq(s). Namely,

we have the following corollary.

Corollary 9.9. We have

lim sup
s→∞

dq(s)

s
≤



2 + logq 2

q1/2 − 1
if q is an even square,

2 + logq 4

q1/2 − 1
if q is an odd square,

2 + (q1/2 + 1) · logq 2

2(q1/2 − 1)
if q is an odd square.

Proof. Let q + 1 ≤ s1 < s2 < · · · be a sequence of integers such that

lim
i→∞

dq(si)

si

= lim sup
s→∞

dq(s)

s
.

For any i ≥ 1, let gi be the least nonnegative integer such that Nq(gi) ≤ si

and Nq(gi + 1) ≥ si + 1. Then dq(si) ≤ gi + 1, and so

dq(si)

si

≤ gi + 1

Nq(gi)
.

Since gi →∞ as i→∞, we obtain the desired result by letting i→∞.

We know by the previously mentioned result of Xing and Niederreiter

that if we have q = p2e where p is a prime and e ≥ 1 is an integer then

dq(s) ≤
p

q1/2 − 1
s for all s ≥ 1.
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Hence, we gain no improvement for even values of q. However, for odd values

of q we have

lim sup
s→∞

dq(s)

s
≤

2 + (q1/2 + 1) · logq 2

2(q1/2 − 1)
.

In particular,

lim sup
s→∞

d9(s)

s
≤ 1

2
+ log9 2 = 0.8154 . . . ,

lim sup
s→∞

d25(s)

s
≤ 1

4
+

3

4
log25 2 = 0.4115 . . . ,

lim sup
s→∞

d49(s)

s
≤ 1

6
+

2

3
log49 2 = 0.2854 . . . .

These bounds offer asymptotic improvements on the new results presented

in Section 9.2.

We again note the result of Niederreiter and Xing which states that for

all integers b ≥ 2, h ≥ 1, and s ≥ 1 we have

tb(s) ≤ htbh(s) + (h− 1)s.

Hence, we also gain the bounds

lim sup
s→∞

t3(s)

s
≤ 2(1 + log9 2) = 2.6309 . . . ,

lim sup
s→∞

t5(s)

s
≤ 3

2
(1 + log25 2) = 1.8230 . . . ,

lim sup
s→∞

t7(s)

s
≤ 4

3
(1 + log49 2) = 1.5708 . . . .

These bounds again offer asymptotic improvements on the new results pre-

sented in Section 9.2.
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9.4 Bezerra, Garcia, and Stichtenoth’s

Towers of Function Fields

Recently, Bezerra, Garcia, and Stichtenoth [1] have constructed an explicit

tower of function fields F = (F1, F2, . . .) over Fq3 such that

lim
i→∞

N(Fi)

g(Fi)
≥ 2(q2 − 1)

q + 2
.

More specifically, we have

g(Fn) ≤ (q + 2)qn

2(q − 1)

and

N(Fn) ≥ (q + 1)qn.

This provides the following proposition.

Proposition 9.10. For any prime power q we have

dq3(s) ≤ q(q + 2)

2(q2 − 1)
s

for all s ≥ 1.

Proof. First let 1 ≤ s ≤ q3. Then

N(Fq3(x)/Fq3) = q3 + 1

and hence

dq3(s) ≤ g(Fq3(x)/Fq3) = 0.

Now let s ≥ q3 + 1 and let F = (F1, F2, F3, ...) be Bezerra, Garcia, and

Stichtenoth’s tower of function fields over Fq3 . We have

(q + 1)qn−1 ≤ s ≤ (q + 1)qn − 1
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for some integer n ≥ 1. We know that

g(Fn/Fq3) ≤ q + 2

2(q − 1)
qn

and

N(Fn/Fq3) ≥ (q + 1)qn.

Therefore

dq3(s) ≤ g(Fn/Fq3) ≤ q + 2

2(q − 1)
qn ≤ q(q + 2)

2(q2 − 1)
s.

Example 9.11. Proposition 9.10 provides the bounds

d8(s) ≤
4

3
s

and

d27(s) ≤
15

16
s.

It was shown by Niederreiter and Xing [37, Theorem 7] that by using the

rational places of a Hilbert class field tower, it is possible to obtain the bound

d27(s) ≤
12

5
s+ 1 for all s ≥ 1.

Our new bound for d27(s) is clearly much stronger.

There is a well-known website of Brouwer [2] which lists the best possible

linear [n, k, d] codes for various values of q. Recently, a new website has

been launched by Schürer and Schmid [43] with the similar aim of cataloging

(t,m, s)-nets and (t, s)-sequences. The values of q for which the website is

valid are 2, 3, 4, 5, 7, 8, 9, 16, 25, 27, and 32.
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We note that in Sections 9.2-9.4 we have introduced improved bounds on

tq(s) for all the odd prime powers mentioned above. Namely, q = 3, 5, 7,

9, 25, and 27. Furthermore, we improved the bound for q = 8. The known

bounds for q = 2, 4, and 16 seem strong, whilst the known bound for q = 32

is weak due to the lack of knowledge about towers of function fields over Fq

in the case where q is quintic.

9.5 Implications for Star Discrepancy

As we mentioned in Section 2.3, Niederreiter [23] showed that for any (t, s)-

sequence S in base b we have

D∗
N(S) ≤ Cb(s, t)N

−1(logN)s +O(btN−1(logN)s−1) for all N ≥ 2,

where

Cb(s, t) =
bt

s!
· b− 1

2bb/2c

(
bb/2c
log b

)s

.

We know that since tb(s) = O(s), Cb(s, tb(s)) tends to 0 as s → ∞ for all

integers b ≥ 2. In this section we examine which values of b provide the

fastest convergence rates. It is easily seen that

lim sup
s→∞

logCb(s, tb(s)) + s(log s− 1)

s
= log

(
bb/2c
log b

)
+ log b · lim sup

s→∞

tb(s)

s
.

Thus, it is clear that finding the value of b which provides the strongest

bound on the star discrepancy for high dimensions is equivalent to bounding

the following function.

Definition 9.12. For a given integer b ≥ 2 we define

C(b) = log

(
bb/2c
log b

)
+ log b · lim sup

s→∞

tb(s)

s
.
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Example 9.13. There is currently no research on the quantity C(b) available

in the literature. However, using previously known bounds on tb(s), the best

bound we can obtain for C(b) is in the case b = 16, where we have

lim sup
s→∞

t16(s)

s
≤ 2

3

and hence

C(16) ≤ 11

3
log 2− log log 2 = 2.9080 . . . .

The new bound for t9(s) from Section 9.3 gives us

C(9) ≤ log 12− log log 3 = 2.3908. . . .

Therefore, for large s, the case b = 9 provides the best currently known

bound for the star discrepancy of a (t, s)-sequence.

Remark 9.14. Note that the weaker bound for d9(s) presented in Section

9.2 would also have produced a stronger bound than for b = 16.

Remark 9.15. Recently, the function Cb(s, t) that was provided by Nieder-

reiter [23] has been improved upon by Kritzer [19], who replaced Cb(s, t) with

a function Fb(s, t) which provides a stronger bound. However, this does not

affect the asymptotic analysis in this section, as it is easily seen that

lim sup
s→∞

logCb(s, tb(s)) + s log s

s
= lim sup

s→∞

logFb(s, tb(s)) + s log s

s
.
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