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SUMMARY

SUMMARY

With the development of automation and high-quality manufacturing techniques,
effective process monitoring schemes have become essential for enterprises to ensure
product quality and reduce cost. However, when dealing with high-quality processes,
the existing control charting schemes may face some difficulties. The Time-between-
events (TBE) chart is one of the approaches proposed to solve these problems. The
purpose of this study was to overcome the disadvantages of Shewhart attributes chart
as well as existing TBE charts, improve the performance of the control charts and thus

make the monitoring of high-quality processes more effective and economical.

In Chapter 1, some basic concepts of statistical process control and TBE chart are
introduced, and the objective of the study is stated. Chapter 2 presents a literature
review on the TBE control charts. Recent advancements in the area of TBE monitoring

are also substantially reviewed.

Chapter 3 discusses the comparative performance of exponential TBE charts, from
which some insights of the comparative preference are found among all those TBE

charts under different circumstances.

In Chapters 4 and 5, the CUSUM and EWMA chart with transformed exponential data

are proposed, in which the TBE data are transformed to approximately normal with

double square-root transformation, and CUSUM (or EWMA) method is applied
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SUMMARY

subsequently. The proposed control charts provide alternatives for TBE monitoring

with good performance and relatively simple design procedures.

Chapter 6 applies the variable sampling interval scheme to the CCC chart. The results
showed that with a proper set of design parameters, it can detect the shifts in a shorter
period of time without increasing the average number of samples inspected.
Subsequently, Chapter 7 develops the CCC chart with sampling plan based on random-
shift model, followed by a case study which stresses some implementation issues of
CCC chart. Improvement strategies are proposed with consideration of customers’

requirements.

In Chapter 8, a Weibull EWMA is proposed and its performance in terms of Average
Run Length (ARL) as well as Average Time to Signal (ATS) is evaluated. Weibull
TBE chart is a more general chart which considers the variable events occurrence rate

and is very useful especially for reliability monitoring when aging factor exists.

This study focused on not only theoretical analysis, but also practical applications.
These control charting methods present some effective approaches to the quality
control of high-quality processes for both on-line monitoring and off-line analysis.
Economic considerations were also involved in the design process to minimize the cost
without losing efficiency of the monitoring system. Moreover, the methods proposed
can also be applied to other areas for monitoring process stability from the aspect of

events occurrence rate.

X
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Chapter 1 Introduction

Chapter 1 Introduction

The rapid development of modern technology has brought lots of opportunities
together with challenges for companies all over the world. Most of them devote a great
deal of efforts to enhancing the quality of products, as well as the quality of service, in
order to survive in the competitive market. Quality, thus, becomes one of the keys to

success, and has attracted a lot of interest among researchers and engineers.

The history of quality can be traced back to the beginning of the 20" century when
Taylor introduced the ideas of scientific management to industry. Throughout the years
of its development, many quality analysis and control tools have been developed,
among which Statistical Process Control (SPC) is one of the most effective techniques

that have been widely adopted in practice.

In recent years, the rapid development of modern technology and the growing
emphasis on customers’ satisfaction have promoted the quality of products to higher
and higher levels. As a result, Zero-defects (ZD) or high-quality processes become
more and more popular, and their Fraction of Nonconforming (FNC) can be very low
up to parts per million (ppm) or even parts per billion (ppb) levels. Most of those
processes are highly-automated, and a delay in detection of a process shift in a
production line may result in many defective items produced, which in turn results in a
big cost and loss of profit. Therefore, effective monitoring and control techniques
become a great need. On the other hand, the low FNC also brings many practical

challenges to the traditional control charts. As a result, a new type of control chart,



Chapter 1 Introduction

namely, time-between-events (TBE) chart, was proposed in order to solve the

problems with traditional control charts.

Time-between-events data are available in industries such as manufacturing,
maintenance, and even in service. The TBE chart is an effective approach for process
analysis, control, and improvement especially when the events occurrence rate is very
low. This thesis discusses different statistical control techniques for modelling and
monitoring TBE. The rest of this chapter will focus on the basic ideas and methods of
SPC, the general methods and principles of SPC, the problems with current methods,

and the motivation of this study.

1.1 Statistical Process Control (SPC)

Statistical Process Control (SPC) originated in the 1920’s when Dr. Shewhart
developed control charts as a statistical approach to the monitoring and control of
manufacturing process variation (Shewhart, 1926, 1931). SPC involves using statistical
techniques to monitor and control a process through the analysis of process variation.
It is an important branch of Statistical Quality Control (SQC), which also includes
other statistical techniques, e.g. Design of Experiment (DOE), acceptance sampling,
process capability analysis, and process improvement plans. Most often SPC is used
for manufacturing processes; however, nowadays it is also applied in other areas such
as health care (Tsacle and Aly, 1996; Benneyan et al., 2003; Guthrie et al., 2005;
Woodall, 2006), financial analysis (Schipper & Schmid, 2001; Wong et al. 2004), and

service management (Herbert ef al. 2003; Pettersson 2004).



Chapter 1 Introduction

Generally speaking, the purpose of implementing SPC is to monitor the process,
eliminate variances induced by assignable causes, and at the end improve the process
to its best target value. One of the primary tools to achieve these aims is the control
chart, which is a graphical representation of certain descriptive statistics for specific
quantitative measurements of the process. These descriptive statistics are displayed in
a run chart together with their in-control sampling distributions so as to isolate the
assignable causes of variation with the natural variability. Any statistics beyond the
natural variance levels could indicate an assignable cause with the process. The
assignable causes may be caused by defective raw materials, faulty setup, untrained
operators, and the cumulative effects of heat, vibration, shock, etc. Besides, control
charts can also be used with product information to analyze process capability and for

continuous process improvement efforts.

Shewhart control charts are the most basic control charts to fulfill those tasks.
Basically, two types of Shewhart control charts were developed to monitor the process
variation, i.e. control charts for variables (e.g. the X-bar R chart, X-bar S chart), and
control charts for attributes such as the p chart, np chart, ¢ chart and u chart. Control
charts for variables are used to monitor quality characteristics that are measured on a
numerical scale, while control charts for attributes are designed for those quality
characteristics that conform to specifications or do not conform to specifications. All
these control charts, namely Shewhart charts, are set up based on the 3-sigma limits
and normal approximation. General formulas for the Upper Control Limits (UCL),

Central Line (CL) and Lower Control Limits (LCL) of Shewhart control charts are:
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UCL=pu_ +ko,
CL=pu, (1.1)
LCL=pu, ko,

where uy and oy is the mean and variance of the sample statistic that is of concern. £ is
a constant that determines the distance of the UCL and LCL from the CL. By
convention k is set to be 3 because 3-sigma limits are a good balance point between

two types of errors:

« Type I errors occur when a point falls outside the control limits even though no
assignable cause is operating and process is in-control. The probability that
type 1 error occurs is referred to as False Alarm Rate (FAR, «) or producer’s
risk. A control chart with large FAR may lead to a high producer’s risk and

may even distort a stable process as well as waste time and energy.

« Type II errors occur when an assignable cause is missed out because the control
chart is not sensitive enough to detect it. A control chart with high probability
of type II error will not be able to detect the process shifts in a short time. The
probability of type II error () is sometimes called the consumer’s risk because
it represents the probability of operating a control chart without raising any out-
of-control signal while the process is actually in an unsatisfactory status due to

assignable causes.

All control charts are vulnerable to the risk of these two types of errors. Shewhart
control charts with 3-sigma control limits are set up based on independent and normal

assumption, i.e., the sample statistic X in formula (1.1) is assumed to be independent
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and normally distributed. Under these assumptions, data points will fall inside 3-sigma
limits 99.73% of the time when a process is in control. This makes the type I error
infrequent but still makes it likely that assignable causes of variation will be detected

within an acceptable time period.

The statistical performance of control charts is usually measured by Average Run
Length (ARL). ARL is defined as the average number of points that must be plotted

before a point indicated an out-of-control condition, and it can be calculated by

ARL = — (1.2)

S

where p is the probability that any point exceeds the control limits. Therefore, the in-

control ARL can be presented with

ARL, = 1 (1.3)
a
and the out-of-control ARL can be obtained by
1
ARL, = —— (1.4)
1-p

where « and f stand for the probability of type I error and type II error, respectively.
A good design scheme of control chart should have longer in-control ARL to restrict
the risk of type I error and shorter out-of-control ARL to detect the assignable causes

of the process quickly.
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Although Shewhart control charts are widely applied in practice due to the simplicity
for understanding and implementation, they are not very sensitive to detect small
process shifts because the decision made only depends on a single point. To enhance
the sensitivities of the Shewhart control charts, some researchers proposed adding run
rules to the control charts, such as Western Electric (1956), Nelson (1984,1985),
Champ (1992), Davis and Woodall (2002), and Zhang and Wu (2005). Modern
techniques, e.g. pattern recognition, neural network, artificial intelligence, and expert
system, can be used to help in this rule for on-line SPC monitoring (Zorriassatine and

Tannock, 1998; Guh, 2003; Pacella and Semeraro, 2005; Yang and Yang, 2005).

Besides, some advanced control charts were also proposed to enhance the sensitivity of
Shewhart control charts, such as the Exponentially Weighted Moving Average
(EWMA) chart, and the CUmulative SUM (CUSUM) chart. Instead of using only the
information in the last plotted point, EWMA and CUSUM incorporate information
from the entire sequence of points and thus are more effective in detecting small

process shifts.

The EWMA chart was introduced by Roberts (1959), and the general statistics of

EWMA is expressed by
z, = Ax, +(1_/1)Zi—1 (1.5)

where 0<A<1 is a constant that determines how older data points affect the moving
average compared to more recent ones, and it will reduce to Shewhart chart when A=1.
The starting value is usually set to be the target value of X;. The control limits for the

EWMA chart are
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Utl:;%+LaJ5%zb—ﬁ—ﬂYﬂ

L=y, (1.6)

LCL:;%—LUJE%Zb—Q—AYﬂ

where L is the factor that determines the width of the control limits. An optimal design
can be achieved by selecting the value of A and L properly (Crowder 1989; Lucas and
Saccucci, 1990). EWMA chart can be used to monitor not only process mean, but also
process variation (Crowder and Hamilton, 1992; MacGregor and Harris, 1993; Knoth,
2005), and it is not limited to normal variables. The main strengths of EWMA include
the robustness to non-normality, and the ability of forecasting the control statistics

value for the next time period.

The CUSUM chart, first proposed by Page (1954), plots the cumulative sums of the
deviations of the sample values from a target value. Upper and lower CUSUMs can be
used to accumulate deviations from the target value that are above and below target,
respectively. Let uy denote the process mean (target value). The tabular CUSUMs are

computed as,

C' = max{O,xi —(,uo +K)+ Citl}

1

C = maX{O,(ﬂo —K)—x,. + Cz:l}

1

(1.7)

where K is the reference value (or slack value, or allowance). The process is
considered to be out-of-control if either C;" or C; exceeds the decision interval H.
Similar to the EWMA chart, CUSUM can also be applied to monitor the process

variance_(Acosta-Mejia and Pignatiello, 2000), or data following other distributions
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(Lucas, 1985; Gan, 1994). Basically, both EWMA and CUSUM charts are more
effective alternatives to the Shewhart control charts when small shifts are of great
concern. Comparative studies show that the performances of EWMA and CUSUM are
similar, and they only have slight differences in detecting different shifts (Gan, 1998;

de Vargas et al. 2004).

All these SPC tools have been widely adopted in industries to help monitor, control,
and improve the process or product quality. However, the rapid developments of
technology and increasing effort on process improvement have led to so called high-
quality processes, where traditional control charts showed some practical problems.
Therefore, it is necessary to look for solutions and alternatives to overcome these

problems.

1.2 Control Charts for High-quality Processes

High-quality processes refer to those processes with very low FNC up to ppm or ppb
levels. In such situations, many Shewhart control charts would face practical
difficulties, and those difficulties are more serious with attribute control charts (Xie et
al., 2002). On the other hand, attribute control charts attract increasing interests from
engineers because they are much easier and cheaper to obtain attribute data quickly
from high-quality processes, and thus enable the process to be monitored continuously
at a lower cost. Therefore, the solution of the problems with attribute control charts

becomes a great concern.

The primary reason that induces these problems is the normal assumption. Shewhart

control charts are set up based on normal assumption, i.e., it assumes that the sample
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statistics can be approximately modeled by a normal distribution. Unfortunately, this
assumption is difficult to meet for high-quality process with very low nonconforming
rate and a large sample size is required. The deviation from the normal approximation

will lead to the following problems for attribute control charts in practice:

- High false alarm

When process FNC p is very small and the sample size n is not large enough, the
normal approximation will be invalid. As a result, the exact false alarm rate (FAR)
could be much higher than 0.0027, which corresponds to the 3-sigma limits under
normal assumption. For example, Table 1.1 shows the exact FAR for np-chart
with 3-sigma limits assuming that the number of nonconforming X in a sample

with size n follows binomial distribution with parameters n and p.

Table 1.1 Exact FAR for np-chart with 3-sigma limits

p n=>5 n=10 n=20 n=50 n=100 n=200
0.01 0.0490 0.0043 0.0169 0.0138 0.0184 0.0043
0.02 0.0038 0.0162 0.0071 0.0178 0.0041 0.0075
0.03 0.0085 0.0345 0.0210 0.0037 0.0032 0.0031
0.04 0.0148 0.0062 0.0074 0.0036 0.0068 0.0030
0.05 0.0226 0.0115 0.0159 0.0032 0.0043 0.0027
0.06 0.0319 0.0188 0.0056 0.0027 0.0026 0.0023
0.07 0.0031 0.0036 0.0107 0.0073 0.0041 0.0040
0.08 0.0045 0.0058 0.0038 0.0056 0.0024 0.0030
0.09 0.0063 0.0088 0.0068 0.0043 0.0035 0.0023
0.10 0.0086 0.0128 0.0024 0.0032 0.0023 0.0034

The control limits of np-chart are calculated by
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UCL =np + 31/np(1 - p)

CL=np (1.8)

LCL =np —3,/npil—p)

and the false alarm rate o is obtained by
a=1-P(LCL < X <UCL) (1.9)

It can be found from Table 1.1 that the exact FAR of the np-chart could be much
higher than 0.0027 with sample size n less than 50 if the process FNC p is within

the range of (0.01, 0.10).

« Meaningless control limits

If the FNC p is very low, the probability that at least one nonconforming item
could be found in a sample will be very small. As a result, the UCL can be smaller
than one so that even only one nonconforming item in a sample would raise an out-
of-control signal. Meanwhile, the LCL will usually be less than zero, and thus the
control chart will not be able to detect process improvement unless some run rules

are applied.

Sufficiently large sample size is needed to avoid the meaningless control limits.
For example, the sample size can be chosen so that the probability of one or more
nonconforming item in a sample is at least a certain level, say 0.95. Also, Duncan
(1986) suggested a criterion that the sample size should be large enough so that the
probability of detecting a specified process deterioration shift is approximately 0.5.

Based on his criterion, the sample size n should satisfy

10
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2

k

nz[ Jpo(l—po) (1.10)
P1— Py

where p is the specified out-of-control process FNC level, py is the in-control FNC

(p1>po), and k is the control limits factor which is usually set to be 3.

Besides, another criterion of choosing sample size # is to make the LCL positive.

To meet this criterion, the sample size # has to satisfy

1—

n>[i}c2 (1.11)
Po

A proper sample size n can be determined by considering all the above criteria as

well as the practical factors.

 Difficulty in forming rational subgroup

Most control charts rely on Rational Subgroups to estimate the short term variation
in the process. This short-term variation is then used to predict the longer-term
variation defined by the control limits. A Rational Subgroup is simply “a sample in
which all of the items are produced under conditions in which only random effects
are responsible for the observed variation” (Nelson, 1988). A general rule of
forming a rational subgroup is to maximize the variation among different subgroup
and meanwhile minimize the variation within a subgroup. Since the process FNC is
low, and sample size has to be very large, it may take a long time to form a rational
subgroup, which in turn leads to a long setting-up time of the control charts and a

delay in raising an out-of-control signal upon process shifts. Meanwhile, the

11
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process shift may have larger probability to occur within a subgroup instead of just

at the start of a new sample that is assumed by most of the models.

A possible method to solve these problems caused by deviation from independent
normal assumption is to use transformations. The performance of control charts can be
improved by transforming the data to normal, and then plotting the charts (Nelson,
1994; Sun and Zhang, 2000; Chen et al. 2005; Wang, 2005). Another effective

approach is to employ TBE charts which will be reviewed in the next section.

1.3 Time Between Events (TBE) Charts

Unlike traditional attribute control charts which monitor the number or the proportion
of events occurring in a certain sampling interval, time-between-events (TBE) charts,
from another angle, monitor the time between successive occurrences of events. The
word events may have different meanings under different circumstances. For example,
events usually refer to the occurrence of nonconforming items in manufacturing
process monitoring, failures in reliability analysis, accidents in a traffic system,
diseases in healthcare, etc. Besides, the word fime is used to represent not only time
but also other variable that measures the quantity observed between occurrences of the
events and it can be either discrete or continuous. TBE charts can overcome the
difficulties with traditional attributes control chart, and they are particularly suitable
when the events rarely occur and therefore it is quite difficult to form rational

subgroups as the traditional attributes control chart requires.

There are several kinds of TBE charts that can be used for monitoring processes with

low events occurrence rate. Some researchers suggested employing a control chart

12
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based on run length like the Cumulative Count of Conforming (CCC) chart
(Calvin,1983) and the Cumulative Quantity Control (CQC) chart (Chan et al. ,2000).
Others proposed applying the CUSUM and the EWMA charts for TBE data directly, as
shown by Gan (1998) and Lucas (1985). Moreover, Shewhart control charts can also
be used to monitor TBE data after a proper transformation (Radaelli, 1998; Jones &

Champ, 2002). A detailed discussion of these methods will be presented in Chapter 2.

1.4 Objective of the Study

The overall objective of this study was to solve the problems with Shewhart attributes
chart as well as existing TBE charts, and thus make the monitoring of high-quality
processes with low events occurrence rate more effective and efficient. Specifically
this thesis focuses on several topics regarding TBE charts in order to fulfill the

following targets.

* To compare the performance of different TBE charts and provide guidelines on the
choice of TBE chart in various situations.

Previous studies proposed several types of TBE chart and explored their performance

respectively. A comparative study was conducted among several commonly used TBE

charts in order to provide guidelines to the users on how to choose a most suitable TBE

chart under a specific circumstance.

* To develop advanced CUSUM/EWMA TBE charts with transformation.
Transformation is a useful approach to deal with the nonnormality. Most of the current
studies on the TBE chart focus on monitoring TBE data directly. Some researchers

also looked at transformed data and found that Shewhart control charts perform well

13
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with transformed data. In this study, the CUSUM and EWMA charts with transformed
data were considered, the ARL properties were investigated and comparisons with

other TBE charts were also conducted.

* To improve the cost effectiveness of the CCC chart.

Instead of using 100% inspection as usual, the variable sampling scheme was
employed when implementing the CCC chart. Samples are taken from the process, and
the sampling interval varies according to the status of the process. As a result, the CCC
chart will take a shorter time to detect the process shifts without increasing the average
number of items inspected. Some application issues of CCC chart were also discussed

through a case study.

* To explore TBE charts for Weibull-distributed TBE data.

The cases where the TBE data do not follow exponential distribution were also
investigated. The extended CQC and CQC-r charts for Weibull data were described,
and the EWMA and CUSUM methods were also applied to the Weibull distributed

TBE data in order to improve the sensitivity of the chart for small process shifts.

The TBE charting methods presented in this thesis can improve the effectiveness of
both on-line processes monitoring and off-line analysis of high-quality processes. The
variable sampling schemes can also enhance the economic performance of the CCC
chart with respect to cost. The CUSUM and EWMA charts with transformed data
provides effective alternatives for TBE monitoring, and make the traditional control
charts applicable to TBE data with only a simple transformation of the data, which is

very easy to implement based on the current system. Moreover, the underlying

14
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distribution of TBE data was extended to Weibull so that these TBE charts become
appropriate to other general situations, e.g. reliability processes where the failure rate

can be variable rather than constant.

This study focused on the control charting methods for TBE data, which can be
modeled as exponential or Weibull distribution. Although the study was motivated by
quality issues and focused on the control charting techniques with quality concern, the
proposed methods are applicable to various areas in practical applications for events-
driven processes. The events occurrence rate is not necessarily constant, and it can be
increasing, or decreasing as well. In practical applications, engineers may need to
perform goodness-of-fit tests for distributions before choosing a proper TBE chart for
process control and improvement. If the TBE data do not follow either of the
distributions assumed, the users may not be able to apply the control charting methods
proposed in this thesis directly. Additional data analysis and processing may be needed
to identify the reasons, and regroup the data so that they can follow the underlying
distributions. Other control charting methods can also be employed according to the

specific situations.

1.5 Organization of the Thesis

This thesis consists of nine chapters. The rest of the thesis will be organized as follows:

Chapter 2 presents a thorough literature review of the recent research on TBE charts.
The problems of existing methods will also be raised in order to specify the motivation
and the emphasis of this study. Chapter 3 compares the properties of several

exponential TBE charts and provides guidelines on the choice of different TBE charts

15
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under different situations. On-line monitoring methods with TBE charts are also

discussed.

In Chapter 4, a CUSUM scheme for transformed exponential TBE data is proposed,
different transformation methods are examined and the calculation of ARL with
Markov chain approach is presented. The performance of CUSUM chart with
transformed exponential data is compared with that of the X-MR (Moving Range)
chart, the CQC chart, and the exponential CUSUM chart. Chapter 5, with similar
motivation, presents a EWMA scheme with transformed exponential TBE data. The
properties of the proposed chart are investigated based on which the optimal design

methods are developed.

In Chapter 6, the CCC chart with variable sampling intervals is proposed, and its
performance is compared with the CCC chart with fixed sampling intervals. Chapter 7
discusses some implementation issues of the CCC chart based on a project with a
semiconductor manufacturing company. Chapter 8 extends the TBE charting methods
to Weibull-distributed data, which represents more general situations where events

occurrence rate can be increasing, decreasing or constant.

At the end, some conclusions, major contributions of the study, as well as suggestions

for future research are presented in Chapter 9.
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Chapter 2 Literature Review

It can be seen from Chapter 1 that high-quality processes become more and more
popular nowadays; hence the statistical control techniques for the monitoring of those
processes are in great need in order to keep the pace of the development. TBE charts
have attracted increasing interests recently, due to its ability of avoiding the problems
indicated in Section 1.2, and the effectiveness of monitoring high-quality processes.
The existing control charts for monitoring time between events can be categorized into
three types based on their methodology: TBE charts with probability limits; TBE
charts based on EWMA and CUSUM methods; and TBE chart based on Shewhart
charts. Under each category, there are several control charts applicable for various
time-between-events distributions. In this chapter, the most recent published research
and development will be reviewed to provide an initial mapping for the modeling and
monitoring of TBE with control charts. The weaknesses as well as strengths of existing

studies are also incorporated which stress the motivation of this study.

2.1 Control Charts for Monitoring Time between Events

2.1.1 TBE Charts with Probability Limits

Control chart with probability limits is usually employed when the control statistic
does not follow normal distribution and the traditional 3-sigma limits are not
appropriate. The probability limits can be achieved by fixing the probability of false
alarms (o) at a certain acceptable level. For example, it can be 0.0027 so as to be

consistent with 3-sigma limits. Let F(X) denote the cumulative distribution function

17
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(CDF) of the control statistic X, then the probability limits can be obtained by solving

the following equations,

FlucL)=1 —%; F(cL)= ;F(LCL):% 2.1)

1
2
The Cumulative Count of Conforming (CCC) chart, first proposed by Calvin (1983)
and further developed by Goh (1987) and Bourke (1991), monitors the cumulative
number of conforming items to obtain a nonconforming item with probability limits.
Let X denotes the cumulative counts of items inspected until a nonconforming item is
observed, and the fraction of nonconforming of the process is p. X can be modeled
using the geometric distribution with parameter p, and the mass probability function of

Xis:
P(X =x)=(1-p)" px =12, 2.2)

Fixing the false alarm probability a at an acceptable level, the probability limits UCL,
CL, and LCL of CCC charts can be derived from the CDF of geometric distribution as

follows:

In(@/2) ., _ 035 . _Inl-e/2) (2.3)

UCL = ,CL = 5
In(1- p) In(1- p) In(1- p)

Because the geometric distribution is discrete, the control limits can be rounded to
integers and the points that fall on the UCL or LCL are regarded as out-of-control

signals, i.e., P{X >UCL} = P{X < LCL} =«/2 . In this case, the UCL and LCL of

CCC chart can be calculated as follows:

18
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UCL = {M + 1}; LCL= {%} (2.4)

where [Y] stands for the largest integer not greater than Y.

Note that in order to get a meaningful LCL, p < a/2 should be satisfied. Since the

value of « is usually very small, then the value of p should be small too. It implies that

the CCC chart is particularly suitable for high-quality processes.

The continuous counterpart of the CCC chart is the Cumulative Quantity Control
(CQC) chart (Chan et al., 2000). It plots the quantity produced before observing one
event, which is not necessarily an integer. CQC can be employed for monitoring
continuous TBE data. Assuming that the event occurrence rate is constant and the
occurrence of events can be modeled by a homogeneous Poisson process. Therefore,
the cumulative quantity before observing one event follows exponential distribution.

The control limits of CQC chart can be calculated as:
1 1 1
UCL = —Iln(a /2), CL = I1n(2), LCL = —Iln(l ~a/2) (2.5)

where A4 is the events occurrence rate of the exponential distribution. When the actual
parameter is unknown, an estimation parameter should be used instead of the true
value. Some authors compared different estimators for the parameter 4 and discussed
their properties; see Bischak & Sliver (2001). The performance of CQC charts will no
doubt be affected by the accuracy of estimation. This will be discussed in the later part

of this chapter.
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Motivated by the idea of the CCC chart and the CQC chart, Chan et al. (2002)
proposed another type of chart, namely cumulative probability control (CPC) chart
based on geometric and exponential distributions. In a CPC chart, the cumulative
probability of the geometric or exponential random variable is plotted against the
sample number, and hence the actual cumulative probability is indicated on the chart.
The CPC chart has all the favorable features of CCC and CQC charts, and can resolve
the technical plotting inconvenience of CCC and CQC charts. Moreover, since its
vertical axis is standardized to be [0,1], this makes it possible to compare several
characteristics simultaneously by plotting their corresponding CPC-chart at the same

time.

2.1.2 TBE CUSUM Chart

Page (1954) first proposed the CUmulative SUM (CUSUM) control scheme based on
normal distribution, and was proved to be effective for detecting small shift of process.
The Exponential CUSUM was first studied by Vardeman & Ray (1985) and Lucas
(1985) based on the inter-arrival times for monitoring the Poisson rate. A simple
procedure for designing an optimal exponential CUSUM chart was given by Gan
(1994). An algorithm for computing the average run length (ARL) of an exponential

CUSUM chart can be found in Gan and Choi (1994).

Lucas (1985) described design and implementation procedures for both Poisson
CUSUM and exponential CUSUM, and for detecting either an increase or a decrease
in event occurrence rate. He suggested that an exponential CUSUM should be used if
it is convenient to update the CUSUM with each new event and it is possible to record

the time since the last event occurs.
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In the design of exponential CUSUM, the first step is to determine the reference value
k. The mean time between events is the reciprocal of the number of events per
sampling interval. The reference value k& for the exponential CUSUM depends on the
acceptable event occurrence rate (uo) (event occurrence rate is the number of events
occurring per sampling interval) and the event occurrence rate that is to be detected
quickly (u1). The reference value k for the exponential CUSUM chart can be achieved

by

p ()= In(ss,) 2.6)
Hy = Hy
Once the reference value & has been calculated, a suitable value of 4 can be found out
to give an acceptable in-control average run length. The average run length of the
CUSUM scheme can be approximately calculated by the Markov Chain approach, see
Brook and Evans (1972) and Lucas (1985). There’s also an accurate method of
evaluating ARL for exponential CUSUM charts by solving a set of differential
equations, see Vardeman and Ray (1985). The value of 4 should give an appropriately
large ARL when the event occurrence rate is at the acceptable level. It should also be
chosen to give an appropriately small ARL value when the process is running at the

event occurrence rate that should be detected quickly.

Then the exponential CUSUM can be implemented using the formulas

S’ =max{0,S;, +(X, —k)}

1 1

S” =min{0,S_, + (X, —k)}

1

2.7)
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The decision on the statistical control of the process is taken depending on whether S,

<-horS >h.

Borror et al. (2003) investigated the robustness of TBE CUSUM, which refers to the
sensitivity of the TBE CUSUM to make proper decisions regarding a shift in the mean
defect rate when the TBE is not exponentially distributed. They examined the Average
Run Length (ARL) properties under both Weibull and lognormal distributions, and the
results indicated that the TBE CUSUM is extremely robust for a wide variety of

parameter values for both Weibull and lognormal distributions.

The discrete counterpart of exponential CUSUM is the geometric CUSUM chart,
which monitors the cumulative count of conforming items until a nonconforming item
is found. Bourke (2001) studied the geometric CUSUM chart with both 100%
inspection and sampling inspection for monitoring discrete TBE data. In the study,
Bourke considered two cases where the shift occurs at a defective item or the shift
occurs at any item in the process. The zero-state and steady-state performance of the
geometric CUSUM were evaluated in terms of ARL, ANI (Average Number of items
Inspected), and ANDO (Average Number of Defectives Observed) by Markov chain
approach. The comparisons with the np chart showed that the geometric CUSUM is
efficient in detecting upward shifts in fraction of nonconforming with sampling
inspection. A more interesting finding is that the geometric CUSUM is better for
detecting both small and large shifts compared with p chart and np chart; besides, a
geometric CUSUM designed for detecting a specified shift can work quite well for a

moderate range of neighboring shift-sizes.
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2.1.3 TBE EWMA Chart

Gan (1998) introduced an exponential EWMA method based on the inter-arrival times
of events, which are independent and identically distributed exponential random
variables. A decrease in the mean of inter-arrival times indicates that more events
occur, and an increase in the mean indicates that fewer events occur on the average.
Gan discussed the design of one-sided and two-sided EWMA chart, and provided a
simple design procedure for determining the chart parameters of an optimal
exponential EWMA chart. With examples, he also compared the performance of

EWMA, CUSUM and Shewhart charts for monitoring the time-between-events (TBE).

Let X; X, ... be a sequence of TBE data with the exponential probability density

function

fx)=10"e ".if x20 2.9)

0, otherwise

The upper-sided EWMA chart is intended for detecting an increase in the exponential

mean 6 and is obtained by plotting

O, =max{4,(1-1,)Q, , + 4, X,} (2.9)

against ¢, for ¢t =1, 2, ..., where ZQ is a smoothing constant such that 0 < /1Q <l,A4disa
nonnegative boundary and Q, =u, 4 <u <h,. hq is the upper control limit, and an

out-of-control signal is issued at the first 7 for which Q, > &, .
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Similarly, the lower-sided EWMA chart is intended for detecting a decrease in the

mean and is obtained by plotting

g, =min{B,(1-4,)q, , +4,X,} (2.10)

against ¢, for =1, 2, ..., where /1q is a smoothing constant such that 0 < ﬂq <1,Bisa
positive boundary and g, =v,h, <v < B. hq is the lower control limit, and an out-of-

control signal is issued at the first ¢ for whichg, <4, .

Two-sided EWMA chart is obtained by plotting

Z, =(1-2,)Z,_ +1,X, 2.11)

against ¢, for ¢ =1, 2, ..., where 4, is a smoothing constant such that 0 < 4, <1, and
Z, =w,h, <w<h, are the lower and upper control limits, respectively. A signal is

issued at the first # for which Z, <h, or Z, 2 h,.

The exact method of computing ARL of exponential EWMA charts by solving a set of
differential equations is discussed in Gan (1998). Subsequently, Gan and Chang (2000)
provided a FORTRAN program for computing both the in-control and out-of-control

ARL.

The discrete TBE EWMA was described by Sun and Zhang (2000). They introduced
the method of using CUSUM and EWMA charts based on the number of consecutive
conforming items which can be modeled by geometric distribution. Tables and figures

were also provided to facilitate the choice of control parameters for the design of
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CUSUM and EWMA charts. Comparisons of the geometric CUSUM, the geometric
EWMA and the two-stage CCC chart (Chan et al. 1997) were conducted, and the
results show that CUSUM and EWMA charts are more efficient than the two-stage

CCC chart in terms of Average Number of Nonconforming (ANNC).

2.1.4 Shewhart Control Charts for TBE Monitoring

Standard Shewhart charts for attributes like the ¢, u, p and np charts that are generally
used for the monitoring of the number of defects/defectives in a sample can also be
used to monitor the TBE data. This can be accomplished by grouping the TBE data
into sub-intervals with a proper subgroup size and then plotting the defects/defectives
observed in that sub-interval. Radaelli(1998) presented a unified methodology for
planning one-sided and two-sided TBE Shewhart charts which can be applied to any
underlying distribution of the events. The methods of selecting control limits and

evaluating the sensitivity of the chart were also described.

However, as explained in Section 1.2, this approach requires a large number of
defects/defectives (events) per interval and it is not appropriate especially for
application in a high quality environment. When there are an excessive number of
events, the chart will signal an out-of-control situation. In such cases, the actual false
alarm probability will be much higher than the anticipated probability of 0.0027,
corresponding to the 36 limits, due to the poor approximation. Moreover, as pointed
out before, the lower control limit is usually set at zero, thus making the chart

unsuitable for identifying any improvement in the process.
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Another approach to use Shewhart control chart for TBE monitoring is to transform the
TBE data to Normal distribution first, and then use the traditional Shewhart chart for
monitoring the process. Nelson (1994) proposed a method by raising exponential data
to the 1/3.6 power so that the transformed data become approximately normal.
Subsequently, McCool and Joyner-Motley (1998) compared the Nelson’s
transformation and logarithmic transformation for setting up control charts with 3-
sigma control limits, probability control limits, and the EWMA chart. Their results
indicate that either power or log transformation can improve the control chart
performance effectively when an EWMA scheme is applied. Besides, the power
transformation is recommended over the log transformation for setting up an EWMA
chart. Kittlitz (1999) further demonstrated why the double square root (SQRT)
transformation is recommended for transforming exponentially-distributed data to
normal for SPC application like I chart, EWMA and CUSUM chart. Moreover, some
advanced techniques for Shewhart control chart can be applied, such as using synthetic
control chart which combines Shewhart with EWMA scheme. These will be presented

in the next section.

2.2 Some Advanced Design Schemes for TBE Charts

2.2.1 Extensions of the CCC & CQC Chart

Studies found that the conventional CCC charting technique, in which a point is
plotted whenever a nonconforming item is observed, is not sensitive enough to detect
small changes in the process fraction non-conforming. Therefore, the idea of CCC
chart was extended to monitoring the cumulative count of conforming items until
obtaining a fixed number of non-conforming items. This extended chart is referred to

as a CCC-r chart, which is based on negative binomial distribution, where 7 is the
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number of non-conforming items observed before a point is plotted, see Xie et al

(1999) and Ohta et al. (2001).

For an acceptable probability of false alarm a, let p be the probability that an item is
nonconforming, the control limits of CCC-r chart can be obtained by solving the

following equations,

ver (-1 o
F(UCL,V,p):Z(Z jpr(l_p)tl :1_%

i=r 7"—1
cL (i1 . o1

FCLrp=2|  p0=p)" == (2.12)
LeL(i 1 o

F(LCL,r,p)=Z(r_pr(1—p) =%

Similar to the idea of CCC-r chart, CQC-r chart was proposed to monitor the time
between r defects/events based on Gamma distribution. This approach gives more
credibility to the decision regarding the statistical control of the process as the decision

is made on the basis of 7 points rather than a single point.

Given acceptable probability false alarm a, the control limits UCL,, CL;, LCL; of

CQC-r chart can be calculated using the following equations,

& e, (AUCL) @

FUCL ,r,2)=1- WY %
(UCL,,r,2) kZ:(;e T 5
r—1 . L k
F(CL,,r,2)=1-Y e*" “ i'f) =% (2.13)
k=0 .
FLCL. . 2)=1-3 e-hict (-LCL) _a
" P k! 2

where A and r are the parameters of Gamma distribution.
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A disadvantage of the CQC-r chart compared with the CQC chart is that the average
time taken to plot a point increases with . Another problem is that the Average Time
to Signal (ATS) increases as the process improves beyond a certain level. This

problem also exists for the CQC chart. However, it is more significant in the case of

CQC-r chart due to the effect of 7.

2.2.2 ARL-unbiased Design

An undesirable feature of the CCC chart is that the average time to give an alarm may
initially increase when the process deteriorates, i.e., the ARL achieves its maximum
value at process FNC level which is a bit lower than the in-control FNC. In order to
solve this problem, Xie et al. (2000) proposed a modified CCC chart with adjusted
control limits either to minimize the undesirable increasing ARL area or to maximize
the ARL at the desired process average. The new control limits can be derived by

multiplying the probability limits with a constant adjustment factor y,, where

e ) 19

With similar motivation, Zhang et al. (2004) proposed another improvement design of

CCC chart, which results in a nearly ARL-unbiased design. In their design, possible

design parameters (LCL, UCL) are first found so that the probability
P{X < LCL}+ PLX > UCL}=1-|(1- p)*" —(1- p)*"| (2.15)

is most nearly equal to a.
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Let (LCL, UCL) € C and set

1

o= I—KIfIiZCI,LJUCL_LCLH f (2.16)

where p is the ratio of out-of-control FNC and in-control FNC (p= p’/p). Then ARL (p)
attains the maximum value at p*. If a certain pair of control limits (LCL, UCL) €C,
and p* equals 1, then the pair of (LCL, UCL) is the ARL-unbiased design. This
method is much more tedious compared with the method proposed by Xie et al. (2000).
On the other hand, they proposed another optimal design method called two points
criterion (TPC) design in which the CCC chart can be designed to be optimal at certain
out-of-control levels. Let ARL (p; LCL, UCL) denotes the ARL of the CCC chart with

parameters p, LCL, and UCL. The optimal design is that minimizing
ARL(1- &,; LCL,UCL)+ ARL(1 + £,; LCL,UCL) (2.17)

among all possible pairs of (LCL, UCL) € C, where the parameters ¢; and ¢, are the

percentage decrease and increase, respectively, from the in-control FNC level p.

The ARL-unbiased design method proposed by Zhang ef al. (2004) is much more
complicated compared with the scheme discussed in Xie ef al. (2000). On the other
hand, it provides another design method for the CCC chart so that the optimal design
can be achieved according to the specified out-of-control FNC p level and this makes
the CCC chart more flexible and efficient especially when the out-of-control FNC can

be well estimated.
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2.2.3 Conditional Decision Procedures

For the CCC chart, since the decision is only based on a single point, it is relatively
insensitive to process shifts. In order to solve this problem, Kuralmani et al. (2002)
proposed a conditional decision procedure which adds some supplementary run rules
to the decision procedure. The conditional procedure is used when the process is
outside of the control limits whereas the supplementary run rules focus on the in-
control situation. Besides, optimal limits are defined so that the ARL becomes the
maximum when the process average is at the nominal level. The performance analysis
showed that the conditional procedure can improve the sensitivity of the CCC chart

without sacrificing its original in-control probability.

With the similar motivation, Chan et al. (1997) developed a two-stage decision
procedure based on the CCC chart. The idea of this two-stage CCC chart is analogous
to that of double sampling plan in acceptance sampling. The occurrence of a defective
within n; items inspected in the first stage indicates that the process is out-of-control. If
no defective occurs within n; items inspected, the occurrence of two defectives within
the next (n; - n;) items in the second stage also indicates that the process is out-of-
control. The probabilities of making a false alarm at the first and second stages are
equal to a; and ap, respectively. This procedure combines the advantages of the CCC
chart and the CCC-r chart, and also overcomes their weakness, i.e. it improves the
sensitivity of the control chart while keeping the Average Number of Items Inspected

(ANI) to obtain a signal short.

Lai et al. (2001) investigated the distributions of runs in a two-stage CCC chart. Chan

et al. (2003) continued studying on the two-stage CCC chart, namely CCC,+, chart,
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with the same decision rules. However, the FAR of a CCC+, chart is set to be (1-y)« at
the first stage and y« at the second stage. Let g=1- p. The analytic expression for the
ANI of the CCC,+, chart can be expressed by

ANI(p): (l_al)ﬂ11+_aa2ﬂ2 +as U, (218)
3

where a1, as, as, po, (1, and wy can be calculated by

n

a, =4,
a, =q" (1—c]”z_"‘_l)—pq'”_1 (n2 —n, —1); (2.19)
a,=a, —a,.

and
Lo =plg™ p(n2p+l)(n2 _n1)+q(n2p+2);
a;
=p l-¢ ](lnl +1_n1Q); (2.20)
_p
w=pq" p((”l +1)P+1)+Q((nl +1)P+2)_p—1qn271 p(”zp+1)(”z _”1)+Q(”2P+2)'

a, a,

Furthermore, an economic model was proposed to calculate the optimal values of
probabilities of false alarm set at the first and second stages of the two-stage CCC

chart so that an expected total cost can be minimized.

Another conditional decision procedure is the synthetic control chart proposed by
Scariano and Calzada (2003) for the monitoring of exponentially-distributed TBE. The
study was motivated by Wu and Spedding (2000)’s paper on a synthetic control chart

for detecting changes in the mean of a normally distributed process.
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Wu and Spedding’s synthetic chart integrates a Shewhart X chart with a conforming

run length chart (i.e. the CCC chart) in order to detect the shift in normal process mean.
The synthetic chart consists of an X /S sub-chart and a CRL/S (CRL: Conforming Run

Length) sub-chart. The sample mean X is plotted in the X /S sub-chart first, and the
chart continues until a point outside the UCL or LCL is found. The number of samples
until the last out-of-control point is taken as CRL, and is then plotted in the CRL/S
sub-chart with only LCL, and the process is still considered as in-control if the CRL is
above the LCL; otherwise, an out-of-control signal will arise. The performance tests
show that this synthetic chart is more effective in detecting shifts in the process mean

than the Shewhart X chart, and it is even better than Shewhart X chart with run rules,

the EWMA chart, and the synthetic EWMA- X chart especially when the shift is

between 0.5¢ and 1.56.

Following their procedures, Scariano and Calzada (2003) extended the synthetic chart
for exponentially-distributed TBE data. The synthetic chart consists of a lower-sided
Shewhart individual sub-chart and a CCC chart for tracking the number of samples
observed between nonconforming observations. Hence, this synthetic chart will be
useful when the increase of the events occurrence rate (i.e. the decrease of the
exponential mean) is the only concern. Comparisons of the ARL for the synthetic
control chart were conducted to that of the lower-sided Shewhart, lower-sided
exponential EWMA and CUSUM. Results indicate that the synthetic chart outperforms
the Shewhart chart for individuals, but the worst case exponential EWMA and
CUSUM (Gan, 1998) are still superior for detecting the decreases in the exponential

mean.
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The conditional decision procedures can improve the performance as well as cost
effectiveness of the charts at the expense of increasing the complexity of the
implementation. Therefore, they should be used if the efficiency gain overrides the

operational inconvenience caused by the conditional decision procedures.

2.2.4 Estimation Error, Inspection Error and Correlation

Woodall (1997) and Woodall & Montgomery (1999) pointed the research issue that
estimation error of distribution parameters, as well as the inspection error, would affect

the performance of control charts. Chen (1997) discussed the mean and standard

deviation of the run length distribution of X charts when control limits are estimated.
Later, Chen (1998) also studied the run length distribution of R, s, and s* control charts
when o is estimated. Besides, Braun (1999) investigated the effect of estimation error
on the run length distributions for attribute charts. Jones (2002) looked into the
estimation problem in EWMA chart and developed the design procedures for EWMA
control charts that do not require the assumption of known parameters to achieve a

specified ARL.

As for the TBE control chart, Yang ef al. (2002) investigated the performance of CCC
charts with estimated control limits. The error in estimated control limits is caused by
the estimation error of FNC p, which in turn is attributed to the limited sample size

used to estimate FNC p. The traditional estimator used is:

(2.21)

=

(=}

Il
S |
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where r is the number of nonconforming items and » is the total number of items
sampled. The effect of value of » was examined and results indicate that the true false
alarm rate can deviate significantly from its desired value when the above estimator is
used, especially when p is small and the sample size n is not large enough. In their
study, explicit equations for the false alarm probability and run length distribution
were derived with estimated limits. The alternative measures of run length that show

much faster detection of process deterioration are also introduced.

Another factor that may influence the performance of control chart is the inspection
error. Collins & Case (1978) studied the performance of p chart under inspection error,
and Suich (1988) investigated the case of ¢ chart with consideration of inspection error.
The similar studies also go for TBE charts. Ranjan et al. (2003) investigated the effect
of inspection errors for the CCC chart and discussed the method of setting optimal
control limits for CCC charts so as to maximize the average run length when the
process is at the normal level. Let p, denote the probability of non-conforming, and it

can be represented as

P =(py =) /(1-0~y) (2.22)

Where py is the estimated nonconforming fraction, 6 is the probability of classifying a
conforming item as non-conforming, and v is the probability of classifying a non-

conforming item as conforming. The adjusted UCL and LCL can be shown as

ver, - {h{a— 0.5ap, Jln[ln{(l—a p,/2p,)/(1- p, )}}}X

W )p, + (- p,)o n(@p,/2p,)
T (2.23)
o o ap,l«pyNL— Py
{m[l (1-y)p, -(1 Pr)‘g]ln{ (1-ap,/2p,) }}
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and

Ler, - {h{l - 0.5ap, J h{ln{(l—a p,12p,)/(1- po)}}}x

)b, +(1=p)0 inlep, /2p,)
o (2.24)
o T ap,l2pyNL— Py
{m[l (1-w)p, (1 Pr)e]ln{ (i-ap,/2p,) }}

The new control limits that take into account the presence of inspection errors is
actually the old control limits multiplied by an adjustment factor A, which can be

shown as

4 - {ln{ln{(l —ap,/2p,)/(1- p, )}}} , {m[ (@p, /2p, 1= py )}}_1 (2.25)

In(a p, /2p,) (I-ap,/2p,)

On the other hand, Tang and Cheong (2006) investigated the design of CCC chart
when the inspections are taken in groups and the output characteristic within a group is
correlated. The performance of the proposed scheme in terms of ARL and ATS is
derived with a Markov model, and the effects of correlation and sample size are also

discussed.

2.2.5 Monitoring TBE Data Following Weibull Distribution

Most of the studies on TBE monitoring, as discussed above, are based on the
assumption that the TBE data follow exponential distribution. However, this is not
always true. For example, in reliability monitoring, inter-failure time is usually
modeled by Weibull distribution. Actually, Weibull distribution is a more general case
compared with exponential distribution as it can take into consideration the increasing

or decreasing as well as constant events occurrence rate.
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Nelson (1979) designed a set of control charts for Weibull processes with standards
given. The median chart, range chart, location chart, and scale chart were used at the

same time to monitor Weibull processes. Bai & Choi (1995) described the design

method of X and R chart for skewed population like exponential or Weibull
distribution. Ramalhoto & Morais (1999) proposed the Shewhart control chart for
monitoring scale parameter of a Weibull control variable with fixed and variable

sampling intervals.

Xie et al. (2002b) developed a charting method, named #-chart, for monitoring Weibull
distributed time between failures based on probability limits. Let Xj, X5, ...denote a
sequence of time between events data, which are independent Weibull random

variables with probability density function:

X

n-1 (x)
f(x):%(%j e ["J ,x>0,0>0,06>0 (2.26)

where 6 and 7 are the scale parameter and shape parameter, respectively. The

cumulative density function is

F(x) =1- exp{— (%T ],x >0 (2.27)

Given acceptable probability of false alarm a, the probability control limits UCL, CL,

and LCL can be calculated as,

(24

n n
UCL = e[m(iﬂ ,CL =6[In(2)]"", LCL = 9[111(2 2 ﬂ (2.28)
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Furthermore, a new procedure based on the monitoring of time between r failures,
named ¢,-chart, was also proposed in order to improve the sensitivity to process shift.
Here the Erlang distribution was used to model the time until the occurrence of r
failures in a Poisson process. Note that Erlang distribution is a special case of the
Gamma distribution, and the probability control limits of #-chart is the same as that of
the CQC-r chart mentioned above. This new procedure has the advantage of being able
to detect process improvement as well as deterioration compared to traditional

Shewhart attribute charts.

Xie et al. (2002b) also investigated the ARL properties when only shape or scale
parameter changes, and both of them change at the same time. The results showed that
when shape parameter is not very small, the #-chart is able to detect the increase or
decrease of scale parameter. However, when the shape parameter shifts from the
original value, this chart can only detect the decrease of shape parameter, and the
increasing shift cannot be detected effectively. On the other hand, Kanji and Arif
(2001) proposed a control chart, referred to as Median rankit control chart, to monitor

Weibull data by using quantile approach.

The Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average
(EWMA) charts can also be applied for monitoring Weibull-distributed data. Johnson
(1966) developed a V-mask CUSUM method for controlling the scale change of a

Weibull distribution. Chang and Bai (2001) proposed a heuristic method of

constructing}, CUSUM, and EWMA charts for skewed populations with weighted

standard deviations obtained by decomposing the standard deviation into upper and
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lower deviations adjusted in accordance with the direction and degree of skewness.
This method can be used for TBE data that follow exponential, Weibull, or Gamma
distribution. Hawkins and Olwell (1998) provided the optimal design of CUSUM for
Weibull data with fixed shape parameter based on Wald’s sequential probability ratio
test (SPRT) theory. Borror ef al. (2003) investigated the robustness of TBE CUSUM
for Weibull-distributed and Lognormal-distributed TBE data. However, they use the
same design approach as well as ARL calculation method as shown in Lucas (1985).
Another limitation of their study is that they fixed the scale parameter and only let the
shape parameter changes when evaluating the ARL performances of TBE CUSUM for
Weibull distributed data. However, the scale parameter is more likely to change when
the process shifts from the target level. Few methods have been proposed using
EWMA chart. Zhang and Chen (2004) developed a lower-sided and upper-sided
EWMA chart for detecting mean changes of censored Weibull lifetimes with fixed

censoring rate and shape parameter.

Since the monitoring techniques based on exponential-distributed TBE data is
relatively well developed, another way to monitor Weibull distributed TBE data is to
transform Weibull to exponential and then do the monitoring and analysis. Xie et al.
(2000b) discussed the Weibull-to-exponential transformation when the mean time to
failure or reliability is to be estimated, and investigated the effect of mis-specification
of shape parameter. Transforming Weibull to normal is another possible approach to
the monitoring of Weibull-distributed TBE with the help of well-designed control

charts for normal.
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2.2.6 Artificial Neural Network-based Procedure

Recently, Artificial Neural Networks (ANN) techniques have been introduced to the
quality control area for the purpose of improving the efficiency and intelligence of
process control (Guh, 2003; Guh, 2005; Guh and Shiue, 2005). The advantages of
applying ANN to control charts analysis consist of the following: first, neural networks
have the ability to learn the relationships through the data themselves rather than
assuming probability distributions. Meanwhile, neural networks can handle multiple
related or non-related inputs and outputs simultaneously. Besides, the performance of
neural networks can be improved by performing incremental training, as more data

become available.

The application of ANN approach to the TBE chart was explored by Cheng & Cheng
(2001). They proposed a three-layer fully connected feed-forward network with a
back-propagation training rule which can be used in combination with exponential
CUSUM for the monitoring of exponential TBE mean. The performance of the neutral
network is evaluated on the basis of ARL, and the sensitivity analysis for neural
network was also performed for different in-control ARL values, and different
exponential events occurrence rate. The results obtained with simulated data suggest
that using exponential CUSUM chart and neural network together is feasible and

significantly more sensitive to process shifts than the exponential CUSUM chart.

2.2.7 Economic Design of TBE Charts

Economic design of control charts attracts great interests from researchers with the
growing concern on the production cost. Much research regarding the economic design

was initiated from the time-between-events point of view. A common assumption is
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that the sample average X-bar and the process in-control time follow normal and
exponential distributions, respectively (see, for example, Duncan, 1956). Recent
research on economic design of control charts extends the scope to adaptive control
charts (Stoumbos and Reynolds, 2005; Yu and Chen, 2005), control chart for
correlated or non-normal data (Chou et al., 2001; Chen, 2004), multivariate control
charts (Chen, 2006), control charts with multiple assignable causes or Weibull in-

control time (Yang and Rahim, 2005; Chen and Cheng , 2006), etc.

The economic design of geometric TBE chart as first studied by Xie et al. (1997), was
further developed by Tang et al. (2000), Xie et al.(2001). The economic design of
geometric TBE chart was based on the Lorenzen and Vance (1986) model which
involves cost considerations and can be applied to all control charts regardless of the
monitoring statistic. In their study, the selection of design parameters is investigated
from an economic point of view, and the sampling interval and the control limit for
CCC charts were studied. A simplified procedure is used to derive the optimum setting
of sampling and control parameters. Moreover, Tang et al. (2000) also proposed an
economic-statistical model for CCC chart. The idea of economic-statistical design is to
minimize the cost of control charts while keeping reasonable Type I and II error

probabilities (in-control ARL and out-of-control ARL).

Ohta et al. (2001) also discussed the economic design of CCC-r chart, and proposed a
simplified optimal method for the design of a CCC-r chart by applying Collani and
Drager’s economic design method for control charts that monitor discrete quality

characteristics.
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The economic design of exponential TBE charts was studied by Zhang et al. (2005).
The economic model was described and the performance of the chart was evaluated in
terms of ATS. An economic-statistical design approach was interpreted from a multi-
objective optimization viewpoint. The performance of exponential TBE chart based on
economic design was compared to those based on statistical design, and economic-
statistical design. Results show that the economic-statistical design of exponential
charts is virtually a multi-objective approach and has reasonably good statistical
performance especially when the cost of false alarm and assignable causes is difficult

to estimate.

2.3 Summary

In this chapter, the basic TBE charts and some advanced design schemes are
substantially reviewed. The initial study on the TBE monitoring started with the CCC
chart based on discrete TBE data, and then extended to the monitoring of continuous
TBE with CQC chart, CUSUM or EWMA chart. The advanced design schemes
considered the biased ARL problem, the estimation error, the inspection error, the
correlation within the sample, etc., and made the TBE chart more applicable and
efficient for practical situations. However, there are still some problems unsolved

which motivate the study involved in this dissertation.

As can be seen from the previous sections, each TBE chart has its advantages,
weaknesses and applicable conditions. Therefore, the choice and application of these
control charts need to be carefully examined according to the particular conditions of
the process where the control charts need to be applied. The first and most important

step is to test the distribution of the TBE chart. As indicated from the review, most of
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the TBE charts are set up based on either discrete TBE distributions like geometric or
negative binomial, or continuous TBE, e.g. exponential, Gamma, Weibull or
lognormal. Table 2.1 summarizes the possible charts that can be used for different TBE
distributions. On the other hand, if the TBE data do not follow any of the distributions
mentioned above, transformations can be employed to transform it to a proper

distribution and then apply the TBE charts.

Table 2.1 Summary of TBE charts

Data type  Distributions Probability limits CUSUM EWMA SI;;‘:E:H
cec Geometric
(Calvin,1983;Goh,198 Geometric EWMA
Geometric 7; Bourke,1991) CUSUM (Sun &
CPC (Bourke,2001) Zhang,2000)
Discrete (Chan et al.,2002) ’
Negative . CCCx )
binomial (Xie et al. ,1999; Ohta
etal. ,2001).
Exponential p, np, ¢ or
e CUSUM Exponential }1{ iiharﬁ-
Exponential (Chan et al.,2000) (Vardeman & EWMA ( 1219 ;g. i,
CPC Ray, 1985; (Gan,1998) 1998,
(Chan et al.,2002) Lucas, 1985; an, Kittlitz ,
Gan,1994) 1999;
Nelson,
1994,
Gamma CQC-r McCool &
(Xie et al.,2002b) Joyner-
Motley,
Continuous 1998)
TBE CUSUM
(Borror et al.
CQC 2003)
Weibull (Xie et al.,2002b) Weibull
CUSUM
(Hawkins &
Olwell, 1998)
cQcC TBE CUSUM
Lognormal w0 o/ al. 2002b) (Borror ef al.
2003)
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Another important consideration when choosing a suitable chart is the performance. It
is hard if not impossible to design a control chart so that it has the best performance for
all situations. The users may choose a TBE chart which performs best under the
condition which is most compatible to the practical situation. Chapter 3 is motivated
by this problem, and several most typical TBE charts are compared in order to provide
some insights and guidelines for the users on how to find out the most suitable TBE

charts for different situations.
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Chapter 3 A Comparative Study of Exponential Time

Between Events Charts

3.1 Introduction

As discussed in Chapter 1, control charts for attributes have been popularly adopted for
monitoring the fraction nonconforming (p-chart) or nonconformities (c-chart or u-chart)
in a process. However, they may face some practical problems when the process
fraction of nonconforming is very low, say, at ppm or even ppb levels. A good solution

to those problems is to employ TBE charts.

A common assumption for TBE charts is that the occurrence of events can be modeled
by a homogeneous Poisson process, and thus the time between two successive events
follows exponential distribution. Based on this assumption some TBE charts, referred
to as Conforming Run Length (CRL) charts, are designed for discrete TBE data based
on geometric or negative binomial distribution. Other TBE charts are designed for

monitoring continuous TBE data based on exponential distribution.

All these TBE charts show some advantages in one way or another. Some comparing
studies have been carried out for discrete TBE charts. Xie et al. (1998) did a
comparative study between the CCC and CUSUM charts. Borror et al. (1998)
compared the ARL of the Poisson EWMA with that of the Shewhart c-chart. Wu et al.
(2000) compared the design and performance of the mp chart, CRL-CUSUM and

SCRL (Sum of CRLs) chart for discrete TBE data. Sun & Zhang (2000) conducted a
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comparative study using discrete TBE data on the CUSUM, the EWMA chart, and the
two-stage CCC chart proposed in Chan et al. (1997). On the other hand, even though
the continuous TBE charts represent more general cases compared to the discrete TBE
charts, little literature is available on their relative performance. Gan (1998) compared
the ARL performance of exponential EWMA with that of the exponential CUSUM and
Shewhart charts. The results indicated that the Shewhart chart is highly insensitive
compared to the exponential EWMA or CUSUM chart. Ranjan et al. (2003) looked
into the CQC chart, CQC-r chart and exponential CUSUM chart and compared their

performance based on Average Time to Signal (ATS).

This chapter extends the comparisons to a wider range, and compares the performance
of continuous TBE charts among the CQC chart, CQC-r chart, exponential EWMA
and exponential CUSUM chart based on ATS performance. These TBE charts are
referred to as exponential TBE charts since all of them are set up based on exponential
distribution. The purpose of this study was to investigate the comparative performance
of different exponential TBE charts and provide some insights of their strengths as
well as shortcomings. The results will be useful for the quality engineers on the

implementation of TBE charts under different situations.

A uniform model of the exponential TBE charts involved in this study is that the
occurrence of events is modeled by a Poisson process, and the time between events X;
(== 1, 2,...) are independent and identically distributed exponential random variables

with probability density function:

fx)={0"e"if x>0 3.1)
0, otherwise

45



Chapter 3 A Comparative Study of Exponential Time Between Events Charts

where 6 is the reciprocal of the events occurrence rate, i.e. the mean of the time

between events data.

3.2 ATS Properties of TBE Charts

The ARL is one of the most frequently used criteria to measure the performance of
control charts. However, it is not a good measurement for TBE charts because the time
spent on plotting each point is different, and the ARL does not consider the time factor.
A better alternative is the ATS, which is defined as the expected value of total length

of time to observe an out-of-control point.

Let S be the total amount of time before an out-of-control signal occurs. Then it is

R
obvious that S = ZX . » where R is the number of points plotted on the chart until an

i=1
out-of-control signal occurs. Using Wald’s identity, the ATS of the CQC-r chart can be

calculated as:

ATS g, = E(S) = E(ZR: Xij = E(R)E(X)=ARL-Z = = (3.2)

i=1

where £ denotes the type II error of the CQC-r chart, 4 is the event occurrence rate of
the Poisson process, and 6 is the reciprocal of 4, i.e. the mean of time between events

data.

Since the time between » events follows Gamma distribution, the type II error £ can be

calculated as:
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& o ar) & Y (er,)
p=2e " g ;e 0" k!

(3.3)

Substituting the values of £ into equation (3.2), ATS of CQC-r chart is obtained as:

r-o

=1 _LCL, r—1  _UCL k
R ACARE S T
pars 0°k! pny 0" k!

ATS coc, =

(3.4)

Using similar deduction method, the expression of ATS for exponential EWMA and

exponential CUSUM can be derived as

R
1
ATSEWMA =E(S)= E(ZX,) =E(R)E(X)= ARLEWMA XI = ARLEWMA -0
- | (3.5)
ATS cysone = E(S) = E(ZXI) =E(R)E(X) = ARL 5, XE = ARL 5 - 0

i=1
Here in this study the exact methods of computing ARL are used following the
methods shown in Gan (1998) for exponential EWMA and Vardeman and Ray (1985)

for exponential CUSUM.

When detecting the process improvement or deterioration separately, the one-sided
CQC and CQC-r chart are used instead of two-sided charts. The control limits of the
lower-sided and the upper-sided CQC-r chart can be calculated by solving the

following equations:

-1 _LCL'
F(LCL,'.r,0)=1-Y e (LCkL ). ,
pay 0" k!
-1 _UCL'
(UCL Ne 9)=1 e (UC—L)—I—a, (3.6)
= 0" k!
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Accordingly, the ATS for lower-sided CQC-r chart can be expressed as:

.0
ATSE . = - = o
T AF(LCL,,r,0) l_ie“; (LCL,")* (3.7)
pard 0" k!

and the ATS for upper-sided CQC-r chart can be expressed as:

0
ATSY. . = A = !
T A-FUCL,",r,0)] Zl: - (UCL,")! (3.8)
o o WL )
—~ 0" k!

The control limits and the ATS formulae for CQC chart can be computed from (3.6),

(3.7) and (3.8) forr = 1.

3.3 Comparisons of Performance

A series of comparative study have been done on the performance of these continuous
exponential TBE charts, 1.e. CQC chart, CQC-r chart, exponential CUSUM chart and
exponential EWMA chart, with different design parameters combinations. Some
representative results from the study is shown in this section, which reveal some

insights of relative performance of these control charts.

3.3.1 Upper-sided TBE Charts

The upper-sided TBE chart is designed for monitoring process improvements. In order
to assess the relative performance of upper-sided CQC-r chart (r =1, 2, 3, and 4),
exponential EWMA and exponential CUSUM charts, the ATS performances of these
exponential TBE charts are compared. In this comparison the in-control ATS value

(ATS)y) is set to be the same (475,=500), and the out-of-control ATS (47S;) values for
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different shifts are then calculated. The in-control mean of TBE data is assumed to be
1 (6p=1.00), and the exponential EWMA chart and CUSUM chart are designed to be
optimal in detecting the out-of-control TBE mean 6, of 2.00 and 5.00, respectively.
The ATS values of the CQC-r chart, exponential EWMA and exponential CUSUM
charts are listed in Table 3.1. The ATS curves of the CQC, CQC-r (r =4), exponential

EWMA, and CUSUM charts are displayed in Figure 3.1.

It can be seen from Table 3.1 and Figure 3.1 that the exponential EWMA and
CUSUM charts outperform the CQC-r charts at all shifts levels listed in Table 3.1.
When detecting the shifts at designed optimal level, exponential EWMA and CUSUM
show similar performance. On the other hand, when the shift is relatively small and
moderate, the exponential EWMA chart shows better performance than the
exponential CUSUM chart; and when the shift is large (up to 5 times of the in-control
value and above), the exponential CUSUM chart is slightly better than the exponential

EWMA chart .

For the CQC-r charts, when the shift is small, the larger the value of r, the better the
performance of the chart is. When the shift becomes large, the CQC chart with a
smaller r value will be better than the CQC chart with a larger » value. It also shows
that when the mean of TBE 6 increases, the ATS of the CQC chart decreases faster
than that of the CQC-r charts, and thus make the CQC chart more sensitive to large

process improvement.

To investigate the effect of different in-control ATS levels, which also represent

different false alarm rate o, the above exponential TBE charts with in-control ATS of

49



Chapter 3 A Comparative Study of Exponential Time Between Events Charts

370.37 are compared again and the corresponding ATS values are listed in Table 3.2.

The in-control TBE mean is assumed to be 1 (6,=1.00), and the exponential EWMA

chart and CUSUM chart are designed to be optimal in detecting the out-of-control TBE

mean 6 of 3.00 and 4.00, respectively. Note that the exponential EWMA and CUSUM

charts are designed such that the ATS may not be exactly equal to, however the values

are very close to 370.37. The results are shown in Table 3.2 and Figure 3.2.

Table 3.1 ATS values of upper-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA
and exponential CUSUM charts (4TS, = 500)

EWMA1 CUSUM1 EWMA2 CUSUM2
cac cQc-2 cQc-3 cQc-4 =010  ks=1.39  2q=027  ks=2.01
0 0=0.002 a=0.004 a=0.006 a=0.008 ha=171  hs=T.42  hg=2.60  hs=4.86
UCL=6.21 UCL=7.68  UCL=9.05 UCL=10.35 Q,=1.00 So=1.00 Q=1.01  S,=0.25
6,=2.00  6,=2.00  6,=5.00  6:=5.00
1.00 500.00 500.00 500.00 500.00  500.00 500.00 500.00 500.00
1.02 45146  446.43 442 .45 439.08 411.16 419.93 433.09 440.13
1.04 40942 400.61 393.73 388.02 342.68 356.10 377.73 389.58
1.10 312.59 297.48 286.13 277.02 21296 228.80 260.59 278.41
1.20 21296 195.59 183.19 173.66 116.64 127.32 156.60 173.40
1.30 15490 138.72 127.64 119.43 7592 82.55 104.65 11791
1.50 94.49 82.16 74.29 68.81 43.80 4620 58.65 66.15
2.00 44.72 38.49 35.10 33.13 2420 24.20 28.00 30.20
5.00 17.33 18.33 20.60 23.69 16.00 15.50 15.00 15.00
10.00 18.62 24.39 32.04 40.87 19.00 19.00 18.00 18.00
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Figure 3.1 ATS curves for upper-sided CQC, CQC-4, exponential CUSUM and
EWMA charts (47S, = 500)
Comparing the results in Table 3.1 and Table 3.2, we notice that the superiority of
exponential EWMA and CUSUM charts in ATS will be less obvious when the in-
control ATS decreases from 500 to 370.37. Exponential EWMA and exponential
CUSUM charts outperform and CQC-r charts when the upper shifts are small, while
the superiority in ATS become less significant when the TBE mean increases up to 3
or 4 times of the in-control mean. Another interesting finding is that when the shift is
up to 3.50 and above, the CQC chart shows better ATS performance compared to the
CQC-r chart with » =2, 3, or 4. Therefore, the CQC chart is desirable when the shift is

relatively large, and CQC-r charts can be employed when the shift is small.
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Table 3.2 ATS values of upper-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA
and CUSUM charts (47Sy=370.37)

EWMA1  EWMA2 CUSUM1 CUSUM2
cQc cQc-2 cQc-3 CQC-4  120=0.167 1q=0.229 ks=1.648  ks=1.848
2] @=0.0027 @=0.0054 0=0.0081  0=0.0108  hg=2.00  hq=2.30  hs=5.473  hs=4.86
UCL=5.9145 UCL=7.3428 UCL=8.6718 UCL=9.94 Q=050 Q=0.50  S,=0.00  S,=0.00
91=300 91=400 91=300 91=400
1.00 370.37 370.37 370.37 370.37 370.22 370.22 37049 370.01
1.10 237.96 227.17 219.10 212.68 186.33 196.053 200.62 209.528
1.20 165.85 153.19 14420 13733 1124 120.732 123.79 132.924
1.30 122.97 110.99 102.83 96.82 77.194 83.135 84.539 92.131
1.40  95.69 85.00 78.00 73.01 58.142 62.188 62.454 68.446
1.60 64.49 56.35 51.36 48.04 39.504 41.264 40.352 44.032
1.80 48.12 41.89 38.33 36.15 31.014 31.626 30.276 32.598
2.00 38.49 33.66 31.10 29.71 26.42 26.4 24.88 264
2.50 26.63 23.95 22.96 22.82 21.15 20.45 18.875 19.425
3.00 21.54 20.12 20.08 20.78 19.05 18.12 16.59 16.77
3.50 18.97 18.41 19.11 20.50 18.095 17.08 15.575 15.54
4.00 17.55 17.69 19.01 21.03 17.68 10.28 15.12 15.00
400.00 ]
350.00 \ ------- cQc
300.00 - & —..—.CQC4
3 —a—EWMA1
250.00 4 |
i . CUSUM1
= 200.00 4 @
<
150.00 -
100.00
50.00 4 v,
= \Z;‘,'\— B R X T IN. e R
0.00 ‘ ‘ ‘ ‘ 7 N
1.00 1.50 2.00 2.50 3.00 3.50 4.00

Time between events mean

Figure 3.2 ATS curves for upper-sided CQC, CQC-4, exponential CUSUM and

EWMA charts (47Sy = 370.37)
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3.3.2 Lower-sided TBE Charts

Lower-sided TBE charts are employed to detect process deteriorations. Using the
similar analysis method as the above, the in-control ATS value is assumed to be 500,
and the out-of-control ATS values of the CQC-r chart (r =1, 2, 3, 4), exponential
EWMA and exponential CUSUM charts for different shifts are compared. Again, the
in-control mean of TBE data is assumed to be 1 (6p= 1.00), and the exponential
EWMA chart and exponential CUSUM chart are designed to detect the out-of-control
TBE mean of 0.50 and 0.20, respectively. Table 3.3 shows the ATS values of the

CQC-r, exponential EWMA and exponential CUSUM charts.

Table 3.3 shows that for the intended design shifts, the exponential CUSUM charts
outperform the exponential EWMA charts, and the exponential EWMA charts show
better ATS performance than the CQC-r charts. However, when the process shift is
relatively small, exponential EWMA charts show better performance than the
CUSUM charts, and CUSUM charts outperform the CQC-r charts (including the CQC
chart). When detecting large shifts, say, one tenth of the in-control mean, all these
exponential TBE charts have similar ATS performance except for the CQC chart. For
the CQC-r chart, the larger the value of 7, the better the performance of the chart is at
the expense of larger probability of false alarms. Therefore, we suggest using
exponential EWMA or exponential CUSUM chart when the shift is relatively small

and choosing CQC-r chart when the shift is large.
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Table 3.3 ATS values of lower-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA
and exponential CUSUM charts (4TS, = 500)

EWMA CUSUM EWMA CUSUM

CQC CQcC-2 CQC-3 CQC-4 2q=0.10 kr=0.69 Aq=0.33 kr=0.40

6 0=0.002 a=0.004 a=0.006 a=0.008 hq=0.55 hr=4.16 he=0.25 hr=1.24
LCL=0.002 LCL=0.092 LCL=0.361 LCL=0.771 G0=1.00 To=-0.78 §0=0.98 To=-0.14
6,=0.50 6,=0.50 6,=0.20 6,=0.20

1.00  500.00  500.00 500.00 500.00 500.00 500.00 500.00 500.00
095 45127  430.08 41298  399.28 297.73 320.72 358.53 379.62
090 405.04 36699 337.87 31555 181.26 204.84 25524 284.49
0.85 36131 31039 27351 246.54 113.22 13090 180.37 210.38
0.80 320.08 25994  218.83 190.23  72.80 84.08 126.64 153.28
0.70  245.10 176.04 134.47 108.47 3297 36.12 61.32 77.63
0.60 180.12  112.47 77.27 57.75 16.74 1698 29.16 36.84
0.50 125.12 66.42 40.66 28.19 9.30 8.80 13.75  16.45
0.20  20.08 5.09 2.22 1.49 1.70 1.48 1.36 1.22
0.10 5.05 0.85 0.43 0.42 0.72 0.62 0.49 0.42

A similar comparative study is also conducted with in-control ATS of 370.37. The in-
control TBE mean is assumed to be 1 (6p=1.00), and the exponential EWMA chart
and CUSUM chart are designed to detect the out-of-control TBE mean of 0.40 and

0.30, respectively. The results are shown in Table 3.4.

From the results in Table 3.3 and Table 3.4, similar conclusions can be drawn as in the
comparison of upper-sided TBE charts. The superiority of exponential EWMA and
CUSUM charts in ATS will be less significant when the in-control ATS decreases
from 500 to 370.37. For larger process shifts, CQC-4 chart shows similar performance
as the exponential CUSUM and EWMA charts. The performance of the CQC chart in
detecting process deterioration is worse than the rest. Therefore, exponential EWMA
or CUSUM should be used when the shift is small, and CQC-r charts can be

employed when the shift is large.
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Table 3.4 ATS values of lower-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA

and exponential CUSUM charts (4TS = 370.37)

EWMA  EWMA  CUSUM  CUSUM

cac cQc-2 cQc-3 CQC-4 220152  2,=0.228  k=0.611  kr=0.516

6  a=0.0027 =0.0054  0=0.0081 0=0.0108  h,=0.4662 h=0.3632  m=2.794  hr=1.909
LCL=0.0027 LCL=1077 LCL=0.4032 LCL=0.8424  o=2.00  ,=2.00 To=0 T5=0

6:=040  6,=0.30  6:;=040  6,=0.30

1.00 370.37 370.37 370.37 37037  370.73 370.17 370.65 370.56

0.95 33431 318.75 30641 296.61 24394 256.22 259.22  271.88

0.90 300.06 272.15 251.12 235.14 16235 177.39 179.75 197.24

0.85 267.67 230.33 203.69 18436 109.62 123.05 123.78 14148

0.80 237.13 193.04 163.33 14281 7529 85.69  84.85 100.40
0.70 181.60 130.97 100.90 82.20 37.68 4237  39.83 49.13
0.60 13346 83.88 58.39 4431 2047  21.77 19.18 23.45
0.50 9272 49.70 31.02 22.00 1191 11.71 9.73 11.19
040 59.38 26.35 14.67 9.85 7.20 6.54 5.21 5.47
030 33.44 11.79 5.88 3.87 4.34 3.68 2.85 2.74
0.20 14.90 3.92 1.83 1.32 1.72 1.96 1.47 1.32

3.3.3 Two-sided TBE Charts

Two-sided TBE charts are preferred when both process improvement and

deterioration are of interest or the direction of the shift cannot be predicted. To assess

the relative performance of the two-sided TBE charts, the ATS performance of the

CQC-r chart (r =1, 2, 3, 4), exponential EWMA and exponential CUSUM charts are

compared. The in-control ATS value is set to be 370.37, and the in-control TBE mean

is assumed to be 1 (6y = 1.00). The exponential CUSUM and EWMA charts are

designed to be optimal in detecting the out-of-control TBE mean 6, of 0.3 and 3.0,

respectively. Table 3.5 presents the ATS values of the two-sided TBE charts described

above.

55



Chapter 3 A Comparative Study of Exponential Time Between Events Charts

Table 3.5 ATS values of two-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA
and CUSUM charts (ATSy = 370.37)

CcQcC cQc2 CQcC3 CQcC4 Two-sided CUSUM Two-sided EWMA
4=0.0027 «=0.0054 ©=0.0081  ©:=0.0108 6,=0.3 6;=3.0 6,=0.2 6:=5.0 ff%zgg f,=961f32
UCL=6.608 UCL=8.125 UCL=9.534 UCL=10.875 K=0516 kr=1648 k=0402 kr=2.012 >3 1“0
LCL=0.001 LCL=0.075 LCL=0313 LCL=0.687  h=220m=6.5 h.=133 hr=5.366 "¢ ey

030 6676 2245 1017 6.04 10.46 11.33 1419 1572
0.50 185.15 97.29 58.21 39.29 13.79 19.56 14.99 14.89
0.60 264.80 16495 111.76 82.06 31.32 45.52 30.07 27.94
0.70 348.62 254.13 193.92 155.29 72.32 99.55 64.47 57.51
0.80 411.04 347.84 29898 262.51 160.26 197.33 14298 128.26
0.90 419.00 398.38 379.59 363.51 300.81 321.92 288.07 275.27
1.00 370.35 370.34 370.37 370.38 370.66 370.14 370.85 370.17
1.10 298.19 295.85 293.70 291.35 285.70 301.74 269.21 247.09
1.20 231.40 222.25 21439 207.31 185.21 211.74 162.46 135.40
1.50 114.38 100.96 91.58 84.63 65.24 80.70 50.60 36.98
1.80 68.70 58.78 52.66 48.59 37.28 44.60 26.75 19.04
2.00 5345 45.57 41.02 38.22 29.80 34.52 20.58 14.72
3.00 27.03 24.25 2340 23.53 6.29 6.53 4.06 2.83
450.00 -
400.00 e -.“ .- CQC
350.00 : /f — - —CQac4
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Figure 3.3 ATS curves for two-sided CQC, CQC-4, exponential CUSUM and

exponential EWMA charts
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Figure 3.3 displays the ATS curves for two-sided CQC, CQC-4, exponential CUSUM
and exponential EWMA charts. It is obvious from Table 3.5 and Figure 3.3 that in
general the exponential CUSUM and EWMA charts outperform the CQC-r charts. For
the CQC-r charts, the larger the value of r, the better the chart performs. Moreover,
when the process improves, the » value does not influence the ATS value a lot, while
when the process deteriorates, the CQC-r chart with larger value of » (r = 2, 3 or 4)
shows distinct superiority to the CQC chart, and the ATS performance of CQC-4 chart
is comparable to the corresponding exponential EWMA and exponential CUSUM
charts. Moreover, the CQC-4 chart overcomes the drawback of the CQC chart that the

ATS value increases when the process has a small lower-sided shift.

A practical disadvantage of two-sided exponential CUSUM and exponential EWMA
charts is that the design procedures are quite complicated. A two-sided EWMA chart
with one smoothing factor and different upper and lower limits /4 and /g can only be
designed to detect either an upper or lower shift quickly, while two charts with two
sets of design parameters have to be employed if the users intend to detect certain
upper and lower shifts quickly. For two-sided exponential CUSUM chart, two

individual charts have to be used to detect shifts in different directions.

3.4 Results & Discussions

The following conclusions can be drawn by summarizing the analysis results above:
1. Among the upper-sided exponential TBE charts, the difference in ATS values
is not very significant. When the process improvement is small, exponential
EWMA charts are slightly better than exponential CUSUM chart, and both of

them are better than the CQC and CQC-r charts. However, the CQC chart
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shows better performance than the CQC-r charts, and its ATS is similar to the
exponential EWMA and CUSUM charts when the shift becomes large.

. Among the lower-sided exponential TBE charts, the ATS performance of
exponential EWMA and CUSUM charts are much better than the CQC and the
CQC-r chart. The exponential EWMA is more sensitive to small deterioration,
while the exponential CUSUM is suitable for large deterioration. For the CQC-
r charts, the larger the value of r, the better the performance of the chart,
though at the expense of large false alarm probability.

. Among the two-sided exponential TBE charts, the exponential CUSUM and
exponential EWMA charts outperform the CQC-r charts. For CQC-r charts,
when the process improves, the parameter » does not influence the ATS
performance to a large extent, while when the process deteriorates, the CQC-r
chart with large value of 7 shows distinct superiority to the CQC chart.

The in-control ATS value, as a design parameter of the TBE charts, has certain
effect on the comparative performance of the charts. The superiority of
exponential EWMA and exponential CUSUM charts in ATS will be less
significant when the in-control ATS decreases, and thus making CQC and
CQC-r charts better choices because of their simple design procedures and less

requirement of process information.

Comparing the design procedures of CQC chart, CQC-r chart (Xie et al., 2002b),

exponential CUSUM chart (Gan,1994) and exponential EWMA chart (Gan, 1998),

CQC and CQC-r chart are much easier to design because the upper and lower control

limits can be easily calculated by formula (2.5) and (2.13) with predetermined False

Alarm Rate o and value of ». On the other hand, to achieve the optimal design of
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exponential CUSUM or exponential EWMA chart, the out-of-control level p; has to be
known or well-estimated. The optimal design parameters are determined by following
complicated design procedures with the formula and counterplots as shown in the
corresponding papers. If the out-of-control shift level varies along the time, the optimal
design parameters have to be adjusted also. The previous optimal design of exponential
CUSUM or EWMA chart could not achieve its best performance if the design

parameters are not adjusted in time.

Based on the analysis above, we recommend that if the purpose of employing a TBE
chart is to monitor process improvement or when the users do not really know whether
the process will improve or deteriorate, i.e. where it is difficult to predict the process
shift, the CQC or the CQC-r chart is a better choice as they are easy to design and
implement, and have relatively good ATS performance. On the other hand, if the focus
is only on process deterioration, and the out-of-control shift can be accurately
predicted according to past data or other information, the exponential CUSUM or
EWMA charts will be more efficient tools especially when the shift is small.
Alternatively, CQC-r charts can also be employed to detect relatively large

deterioration.

3.5 On-line Process Monitoring Based on TBE Charts

For high-quality processes, products are generally manufactured automatically in a
production line within a very short period. Thus early detection of change in the
process parameters has become even more critical. Early detection of any malfunctions
in a production line results in less defective items being produced and greater up time

of critical process equipment, which in turn equates to higher profitability. As a result,

59



Chapter 3 A Comparative Study of Exponential Time Between Events Charts

online process monitoring becomes a great need.

A typical on-line process monitoring system usually consists of several modules such
as data acquisition and processing, SPC monitoring, Expert System diagnosing, and
Engineering Process Control (EPC) adjustment. Firstly the data are collected from the
processes by using sensors or other tools; then the most important process variables are
prioritized in the initial implementation of SPC. This useful information is then sent
into the on-line SPC module, which employs suitable control charts to monitor the
process and provide useful information to diagnose the reasons of failures. For
continuous flow process, data correlation also needs to be considered when designing a
control chart. Some authors proposed using Artificial Neural Network (ANN)
techniques, for control chart pattern (CCP) recognition, and expert system for cause
diagnoses. The corrective actions are usually done by an EPC system which may make
necessary feedback adjustment according to the information provided by SPC and
failure diagnosis system. All those sub-systems in the process are important to fulfill
on-line process monitoring. However, this study focuses on the SPC section, which is

the most fundamental and effective part in the entire system.

From the analysis in the previous sections, it can be seen that the CQC and CQC-r
charts have some advantages compared to exponential CUSUM and EWMA charts
especially for on-line process monitoring. Firstly, they are more flexible and need less
information about the process. This feature is very beneficial for implementing on-line
process monitoring, because most of the time users are not sure about the out-of-
control process defect rate that would be interested to be detected quickly, or even the

direction of possible shifts.
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Secondly, the flexibility of CQC and CQC-r charts make the on-line process
monitoring system more stable without too many changes of the chart design
parameters due to the change of user’s requirements. Besides, the control limits and
other important parameters such as the ARL and ATS are much easier to compute
compared with exponential CUSUM and exponential EWMA. Therefore, the CQC

and CQC-r charts are strongly suggested to be used for on-line process monitoring.

Besides, the CQC and CQC-r charts are also more suitable for on-line monitoring
compared with Shewhart control charts. The CQC and CQC-r charts do not require a
sampling interval to form a rational subgroup, and can directly show the time-between-
event data along with time; therefore it allows continuous operation without stopping
unless something has happened. On the other hand, for constructing Shewhart control
charts, e.g. c-chart or u-chart, a rational subgroup is needed; thus the user has to wait
for a sampling interval to form a rational subgroup and then plot the data point on the

chart. This is not convenient for implementation in the sense of “on-line” monitoring.

The design parameter » of the CQC-r chart can be chosen based on the need and
understanding of the processes. The advantage of CQC-r is that the decision is made
on more than one data point and thus is more reliable than CQC chart. Meanwhile, the
CQC-r chart compensates the drawback of the CQC chart that the ATS value increases
when the process has a small lower-sided shift. However, the average time taken to
plot a point increases with » and the average time to alarm increases as the process
improves beyond a certain level. As shown in the above analysis results, the larger the

value of r, the better the performance of the chart even with same probability of false
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alarm.

Here a simple example is used to illustrate how the TBE charts work for on-line
process monitoring. Suppose during the manufacturing process, the time between
defects was recorded. Table 3.6 shows the time between two consecutive defects for
the last 20 defects. Figures 3.4 and 3.5 show the CQC and CQC-2 charts plotted with
the above data and the same false alarm probability of 0.0027. Figure 3.6 is the
corresponding exponential CUSUM chart with in-control ARL equal to 370. The in-
control time-between-events mean is estimated to be 10,000 minutes, and the shifted
mean is estimated to be 5,000 minutes. The design parameters of exponential CUSUM

chart are determined using the method provided by Gan (1994).

Table 3.6 Time between defects data

No. (mfi]?e ) (Hﬂiiés) No. TBD (minutes) (Hﬁiés)
1 6395.4 11 97.2

2 19390.8 25786.2 12 9384 9481.2
3 4948.6 13 10693.1

4 9093.8 14042.4 14 1961.7 12654.8
5 19991.2 15 288.1

6 5742.5 25733.7 16 3638.2 3926.3
7 8471.2 17 90.3

8 2797.6 11268.8 18 49.3 139.6

9 4551.6 19 8509.2

10 7081.4 11633 20 16110 24619.2

TBD: Time between two consecutive defects; TBD,: Time interval for detecting two defects
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Figure 3.6 An Exponential CUSUM chart
(In-control ARL=370. k=6931.47, h=38000, 8,=10,000, £,=5,000; FIR: Fast Initial
Response = //2)
It can be seen from Figures 3.4, 3.5 and 3.6 that the CQC-2 chart raised an alarm,
while CQC chart and exponential CUSUM chart failed to do so. However, the pattern
on both the CQC chart and exponential CUSUM chart revealed that there might be a
process shift. This may provide straightforward evidence that CQC-2 chart is more

sensitive to small changes compared with CQC chart, and may be even more sensitive

than exponential CUSUM under certain conditions.

Besides SPC techniques, the effectiveness of on-line process monitoring system is also
decided by many other factors such as the integration of EPC and SPC, the capacity of
the expert system and its decision logic. Some scholars (see Smith and Boning,1997)
have used artificial neural network (ANN) techniques for EPC compensation and
achieved good effects. ANN methods can also be used for control chart pattern
recognition. These methods can then be applied to check whether something really
went wrong when there is an out of control situation or when there is some form of

pattern present on the chart as in the case of the above example.
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3.6 Conclusions

Today’s industrial environment is data-rich and highly automated. Even a small delay
in detecting process variability may cause large number of “bad” units being produced
and thus reduce the efficiency and increase the cost of the product. Using TBE chart to
monitor processes is a good solution to solve this problem and realize on-line process

monitoring.

In this chapter the ATS performance of the CQC chart, CQC-r chart, exponential
EWMA and exponential CUSUM chart are compared. The method of on-line process
monitoring with TBE charts is described and an example is given to illustrate its
application in practice. The findings in this study suggest that employing time-
between-events charts, especially the CQC and CQC-r charts, is an effective way for

implementing on-line process monitoring system.
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Chapter 4 CUSUM Charts with Transformed Exponential

Data

4.1 Introduction

Comparative study in Chapter 3 have shown that the exponential CUSUM and
exponential EWMA charts are more sensitive to small shifts, while their design
procedures are quite complicated. The CQC and CQC-r charts, on the other hand, are

not so sensitive to small shifts, but are easy for design and implementation.

As reviewed in Chapter 2, an alternative to monitoring TBE is using of
transformations. Previous study proposed several transformations that can be used for
transforming exponentially distributed TBE data to normal and investigated their
performance for setting up control charts with 3-sigma control limits, probability
control limits, EWMA chart or CUSUM chart (Nelson, 1994; McCool and Joyner-
Motley, 1998; Kittlitz, 1999). Montgomery (2005) again emphasized the idea of
monitoring time between events data based on transformation method, and stated that
“in many cases, the CUSUM and EWMA control charts would be better alternatives

2

because these charts are more effective in detecting small shifts in mean.” However,
the former studies did not investigate the ARL properties and optimal design of the

CUSUM chart with transformed exponential data.

In this chapter, a new CUSUM chart is proposed to monitor a set of exponentially
distributed data after transformation. Different transformation methods such as

Nelson’s method, Double SQRT method, and log transformation are compared. The
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calculation of ARL using Markov chain approach is investigated and the design
procedures are developed. Comparative study on the ARL properties is also conducted
between the transformed CUSUM and other control charts, such as the X-MR(Moving
Average) chart, the CQC chart, and the exponential CUSUM chart. This study
provided a proof of Montgomery’s statement, and further proposed another alternative

for monitoring TBE data.

4.2 Some Transformation Methods

Consider a set of time between events data Xj, Xa,...,obtained from a process. Assume
that the time between events X; (i= 1, 2,...) can be modeled as independent and
identically distributed (iid) exponential random variables with probability density

function:

f(x)= 9_le_§,if x>0 (4.1)

0, otherwise

where 6 is the mean of exponential data. Many normalizing transformation methods
have been proposed by different authors (e.g. Box and Cox, 1964; Taneichi et al, 2002).
However, to keep the control chart easy for implementation, only some simple
transformations that can be applied to achieve approximate normal distributed data are

discussed as follows.

« Nelson’s transformation
Nelson (1994) suggested transforming the exponential random variable to a Weibull
random variable W(6°*"”’, 3.6) , which is an approximate normal distribution. The

transformation formula is

67



Chapter 4 CUSUM Charts with Transformed Exponential Data

/3.6 _ 02777

y=x X 4.2)

After this transformation, the user could construct a control chart on y, assuming that y

follows a normal distribution.

o The natural log transformation
The natural log transformation may turn the right-skewed data to approximately

symmetric or even normal. The formula for natural log transformation is

y=In(x),x >0 43)

« Double Square-root (SQRT) transformation
Kittlitz (1999) has also investigated transforming the exponential for control charting

purpose. He suggests using the transformation
y= x* x>0 (4.4)

Kittliz (1999) also explained that a log transformation will stabilize the variance of the
exponential distribution, but produces a rather negatively skewed distribution.

Independently, a similar method was proposed in Xie et al. (2000c).

To compare the performance of these transformation methods, 50,000 exponentially
distributed random numbers were generated with mean 6 equals to 1.0. The three
transformation methods described above were applied separately, and the normality
statistics skewness and kurtosis were calculated as shown in Table 4.1. As indicated

with * in Table 4.1, Nelson’s transformation is preferable in terms of skewness, while
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the double SQRT transformation is better in kurtosis. The natural log is not a suitable
choice since both of the two normality statistics are much worse than the other two
methods. On the other hand, the difference between the normality statistics of data
after the Nelson’s transformation and double SQRT transformation is indistinctive.
Since the double SQRT is much easier for implementation, it is chosen for setting up

the CUSUM chart with transformed exponential data chart.

Table 4.1 Comparison results of Nelson’s transformation, natural log transformation,
and double SQRT transformation

Nelson’s  Natural log Double SQRT

Skewness N
(=0 for normal distribution) 0.0111 -1.1235 -0.0763
Kurtosis 2.7133 5.3545 2.7413%

(=3 for normal distribution)

4.3 CUSUM Chart with Transformed Exponential Data

The idea of the proposed CUSUM chart is to use a simple transformation method to
convert the exponential data to approximate normal data, and then apply conventional
design methods of CUSUM chart for normal data to monitor the process. It can be set

up by following the steps below.

Step 1: Transform the exponential data to approximate normal, using double SQRT
transformation (Formula 4.4);

Step 2: Set up the tabular CUSUM designed for normal data, that is

C' =max{0,y, — (1, + K)+C;, }

7 - (4.5)
Ct = maX{Oa(/uo _K)_yt +Ct—1}
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where reference value K = ga = @ . 01s the size of the shift in standard deviation

units; uois the in-control mean of transformed data; y; is the out-of-control mean after
transformation that is specified to be detected quickly, and o is the variance of the

data after transformation;

Step 3: The process is considered to be out of control when either C;" or C; exceeds
the decision interval H. The method of determining the optimal value of H will be
introduced in section 4.5. The 1o and ¢ are estimated from the transformed exponential

data with

f=7=Y7.6= J(j(y,._ y)zj /(n—l) (4.6)

X follows an exponential distribution with mean of 6, which is also a Weibull variable
with parameters W(6,1). It has been proved (Kittlitz, 1999) that after the double SQRT
transformation Y=X"?° Y is also a Weibull variable with parameters W(6"** 4). The

mean and variance can be calculated as:

f=EY)=6"T(1+0.25)=0.90646"*
6 =D(Y) = 6°*\T(1+0.5)-T*(1+0.25) = 0.25436"*

(4.7)

Equation (4.7) can be used to estimate the mean and variance of the transformed data if

the in-control exponential mean is known or can be well estimated.
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4.4 Calculation of ARL with Markov Chain Approach

Hawkins (1992) studied the evaluation of ARL for CUSUM chart with an arbitrary
data distribution. Basically, the ARL of CUSUM chart with transformed exponential
data can be calculated using the Markov chain approach discussed by Brook and Evans
(1972). The properties of the continuous-state Markov chain were approximately

evaluated by discretizing the infinite-state transition probability matrix.

As shown in Figure 4.1, for either upper-sided or the lower-sided CUSUM chart with
transformed exponential data chart, the interval between the upper and lower control
limits (0,H) can be divided into m sub-intervals of width w (w=H/m). The control
statistics C; is said to be in transient state (j) at time (i) if jw<C; < (j+1)w for
j=0,1,...m-1. The midpoint of the subinterval corresponding to state(j), can be written
as m=(j+0.5)w, j=0,1,...m-1. The control statistics C; is in the absorbing state m if C;

falls beyond decision interval. i.e. Ci> H.

F 3 State w2
H
State #2-1
"
.
i+ 1w
——————— S:f;i:E_J'-_-_-_- w— Midpeint ma= (0. 5w
S
]
[ |
H
W |
State 0 |’ Sub-anterval
0 ' -

Figure 4.1 Subintervals division for CUSUM chart with transformed exponential data
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Let Pj represents the probability that the control statistics C; goes from state (i) to
state (j) in one step. To approximate the probability, it is assumed that the control

statistics Cij is equal to m; whenever it is in state (7).

For the upper-sided CUSUM chart with transformed exponential data, the elements of
the transition probability matrix of the Markov chain P = [ p;;] can be calculated with

the following formulas:

Pr{Yy —(y, + K) <—iw+0.5u},i =0,1,...,m—1,j =0

Pr{(j—iJw—05w<Y — (s + K) <(j=iw+0.5w},i =0L,..,m=1,j=12,..m~1

Dy =Pt —(uty + K) = H—(i+0.5)w},i =0L,...m—1; j =m (4.8)
0,i=m;j=01...m-1

Li=m;j=m

Based on the Markov chain theory, the expected first passage times from state (i) to the

absorbing state are

m—1
p =143 ppy,i =0l om—1 (4.9)

Jj=0

1 1s the ARL given that the process started in state (i). Let R be the matrix of transition
probabilities obtained by deleting the last row and column of P. The vector of ARLs u

can be calculated with
u=1-R)"1 (4.10)

where 1 is an mx1vector of 1s and I is a mxm identity matrix. The first element of the

vector u gives the average run length for the CUSUM chart starting from zero.
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With the similar method, the ARL of lower-sided CUSUM chart with transformed
exponential data, which is designed to detect the decrease of exponential mean 6, can
also be calculated with Markov chain approach. The elements of the transition

probability matrix of the Markov chain P=[p;;] can be calculated with formulas (4.11):

Pr{y —(y, —K)>iw—0.5u},i=0]1,...,m—1; j =0
Pr{i— j)w—0.5w<Y — (g, —K)<(i — j)w+0.5m,i=0]L,...,m—1,j=12,...m—1

p; =\Pr¥ — (1, —K)<(i+05w—H},i=0L...,m=L j=m (4.11)
0,i=nz j=0,l,...m~1
Li=mj=m

The ARL of two-sided transformed CUSUM can be calculated by

1 1 1
= +
ARL ~ ARL, ARL,

(4.12)

Since Y follows Weibull distribution with W(6"** 4), the pij can be calculated from the
cumulative density function of Y, and then ARL values can be found. This can be

easily done with computing software, e.g. Matlab.

4.5 Design of CUSUM Chart with Transformed Exponential

Data

Previous studies have investigated the optimal design for CUSUM with normal data,
exponential data, etc. see Hawkins and Olwell (1998). Basically, the reference value K
is chosen for optimal response to specified shift, and the decision interval H is set to

give an acceptable in-control ARL.
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Define H=ho and K=ko. For normal data, it has been proved that when £=0.5¢, it
comes very close to minimizing the ARL value for detecting a shift of size ¢ for fixed
in-control ARL value. However, it is difficult to interpret the size of the shift of
exponential mean in terms of 6. Therefore, an expression with exponential mean 6 is

needed for determining the value of k. The reference value K can be expressed as,

- EY,)-EY,
K = ‘M 2,uo ~ ‘ ( 1)2 ( 0)‘ :0_4532“910.25 _95).25‘
(4.13)
K 0'4532‘910,25 _ 95).25‘ ‘ 10.25 _ 95),25‘
k=—~ =1.7821———
c 0.25430, 0%
Let 8,=q6y. k can be expressed by
qo.zs 025 0.25‘
k=1.7821- 09025 — =1.7821-|¢"* -1 (4.14)

0

It indicates that k is determined by the ratio of out-of-control mean 6 to the in-control
mean 6). Meanwhile, it is worth noting that the in-control ARL of a CUSUM chart
with transformed exponential data is not influenced by the value of ). Therefore, the
design of the CUSUM chart with transformed exponential data is conducted based on

the parameters k and 4.

According to the Markov chain method in the previous section, the in-control ARL can
be calculated given k and 4, based on which the contour plot of in-control ARL can be
achieved. Figures 4.2, 4.3, 4.4, and 4.5 show the contour plots of in-control ARL from
100 to 2000, or 3000, with different range of 4 and & for two-sided CUSUM chart with
transformed exponential data. The design procedures of a CUSUM chart with

transformed exponential data is summarized in the following steps:
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Step 1: Choose the acceptable in-control ARL;

Step 2: Decide the out-of-control mean #; that is required to be detected quickly;

Step 3: Use formula (4.13) to determine the value of &£ to minimize the out-of-control

ARL value for detecting 6, the reference value K=ko;

Step 4: Find the value of 4 with in-control ARL and & value from Figures 4.2, 4.3, 4.4,

or 4.5. Calculate the decision interval H with H=ho.
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Figure 4.2 Values of 4 for two-sided CUSUM with transformed exponential data

(0.1< k<0.3)
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decision interval parmeter h
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Figure 4.5 Values of 4 for two-sided CUSUM chart with transformed exponential data
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Here is an example to illustrate the procedures described above. Suppose now a

CUSUM chart with transformed exponential data is required to quickly detect the out-

of-control exponential mean #,=0.25, in-control 6,=1.00, and in-control ARL =370

(FAR a=0.0027). The design procedures are shown as follows,

1. Substitute the values of ¢y and 0, to Formula (4.13), get £=0.52;
2. From Figure 4.4, find 4=4.6;
3. Set up the CUSUM chart with transformed exponential data based on the steps

explained in section 4.3.

To simplify the design procedures by avoiding checking Figures 4.2, 4.3, 4.4, and 4.5,

some recommended values of /4 are listed in Table 4.2, which will give relative good
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performance for commonly used control chart with in-control ARL approximately
from 300 to 500. This is a rough way to decide the decision interval H, and more

accurate / values can be found from the contour plots (Figure 4.2 ~ 4.5).

Table 4.2 Some recommended /4 values for the design of CUSUM chart with
transformed exponential data

k 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.85 0.85~1

h 11 9 6.5 5.5 4.5 3.8 3.2 2.8

4.6 Comparative Study

4.6.1 CUSUM Chart with Transformed Exponential Data vs. X-MR

Chart

To compare the performance of transformed CUSUM with that of the Shewhart chart
(X-MR chart), a simulation is conducted by transforming the exponential data to
normal using double SQRT transformation and then setting up the X-MR chart to
monitor the data. Let the in-control exponential mean 6y=1.0. When the actual
exponential mean varies from 0.1 to 5.0, the ARL values of the X-MR chart with

transformed data are calculated as shown in Table 4.3.

The corresponding transformed CUSUM is designed to have the same in-control ARL
with the transformed X-MR chart (131.41). Assume the predicted 6,=0.2. The
reference value parameter k can be calculated from formula (4.13) (k=0.59); and 4 is

approximated to 3.25 from Figure 4.4. After determining the design parameters, the
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out-of-control ARL values can be calculated using the Markov chain method, and the

results are shown in Table 4.3.

Table 4.3 ARL values of X-MR chart and CUSUM chart with transformed exponential

data
ARL ARL ARL
0 transformed | 61 transformed | 61 transformed
X-MR X-MR X-MR
CUSUM CUSUM CUSUM

0.1 27248 3.99 1.8 30.29 16.24 35 7.05 4.93
0.2 540.54 6.25 1.9 27.39 14.07 3.6 6.57 4.77
0.3 709.22 9.85 2 2357 12.41 37 642 4.63
0.4 675.68 16.18 2.1 20091 11.11 3.8 6.01 4.50
0.5 53191 27.27 22 18.84 10.07 39 574 4.37
0.6 389.11 45.50 23 1743 9.22 4 5.52 4.26
0.7 290.70 72.83 24 15.89 8.51 4.1 526 4.15
0.8 206.19 107.61 2.5 14.12 7.92 42  5.09 4.06
0.9 153.61 135.08 2.6 13.20 7.42 43 4091 3.97
1 13141 131.20 2.7 11.72 6.99 44 475 3.88
1.1 105.15 101.91 2.8 10.96 6.61 45 459 3.80
1.2 85.03 72.23 29 10.36 6.28 46 445 3.72
1.3 71.28 51.30 3 9.48 5.99 47 428 3.65
1.4 58.93 37.80 3.1 8385 5.73 48 4.17 3.58
1.5 50.56 29.05 32 821 5.50 49 399 3.52
1.6 40.60 23.21 3.3  7.90 5.29 5 3.92 3.46
1.7 3731 19.16 34 738 5.10

Figure 4.6 displays the ARL curves of both X-MR chart and transformed CUSUM

with double SQRT transformation. It can be seen from the results that when

exponential mean € increases from in-control level 6,=1.0, which indicates process

improvement, the CUSUM chart with transformed exponential data is more sensitive
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than the transformed X-MR chart especially for small shifts. On the other hand, it is
worth pointing out that the CUSUM chart with double SQRT transformation achieved
the maximum ARL value at the in-control level §,=1.0. However, the maximum ARL
value of transformed X-MR chart was achieved when exponential mean @ is about 0.3.
The trend of ARL curve for the transformed X-MR chart implies that when the
exponential mean drops from 1.0 to 0.3, the out-of-control ARL value will increase
greatly, from 131.41 to 709.22. As a result, it will take longer time to raise an out-of-
control signal even if the process has deteriorated a lot. Therefore, the CUSUM chart
with transformed exponential data is more effective in detecting process deteriorations

than the X-MR chart with double SQRT transformation.
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600 -| / \ transformed CUSUM
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]
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—
O T
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Figure 4.6 The ARL curves of X-MR chart and CUSUM chart with transformed
exponential data

4.6.2 CUSUM Chart with Transformed Exponential Data vs. CQC

Chart

In order to investigate the comparative performance of control charts with

transformation and without transformation, another comparison of ARL properties was
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conducted between CUSUM chart with transformed exponential data and CQC chart.
The in-control ARL were set to be 370.37 for both of them, which is corresponding to
the traditional three-sigma limits. Same as the former example, the transformed
CUSUM is designed to detect out-of-control exponential mean shift at #,= 0.2, and the
design parameters can be achieved by following the steps in section 5 (k=0.59, h=

4.093). The out-of-control ARL were calculated as shown in Table 4.4.

Table 4.4 ARL values of CQC chart and CUSUM chart with transformed exponential

data
ARL ARL ARL
01 transformed || 01 transformed | 01 transformed
CcQC CQC CQC
CUSUM CUSUM CUSUM
0.1 74.51 4.85 1.8 38.16 23.20 35 6.59 6.07

0.2 148.52 7.67 1.9 31.66 19.58 3.6 6.25 5.87
0.3 222.53 12.33 2 26.73 16.91 3.7 5095 5.68
0.4 296.53 21.39 2.1 2291 14.89 3.8 5.68 5.51
0.5 370.30 40.02 2.2 1991 13.31 39 543 5.35
0.6 441.33 76.52 23 1751 12.05 4 521 5.20
0.7 498.04 141.71 24 15.56 11.02 4.1 5.00 5.07
0.8 513.80 244.10 2.5 13.95 10.17 42 481 4.94
0.9 465.56 357.65 2.6 12.61 9.46 43 4.64 4.82

1 370.35 370.35 2.7 1149 8.86 44 448 4.71
1.1 271.08 262.67 2.8 10.54 8.34 4.5 434 4.61
1.2 192.83 160.54 29 9.72 7.88 4.6 4.20 4.51
1.3 138.10 100.02 3 9.0l 7.49 4.7 4.07 4.42
1.4 101.20 66.61 3.1 8.40 7.14 4.8 3.96 4.34
1.5 76.25 47.47 32 7.86 6.83 49 3.85 4.26
1.6 59.07 35.82 33 738 6.55 5 375 4.18
1.7 46.94 28.31 34 6.96 6.30

The ARL curves in Figure 4.7 indicate that CUSUM chart with transformed
exponential data can detect the process shifts faster than the CQC chart especially for

the smaller process improvements or deteriorations. Only when the process

improvements are very significant (6;=5), the CQC chart is slightly better than the
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CUSUM chart with transformed exponential data. In particular, when the in-control
exponential mean decreases slightly from in-control level, the out-of-control ARL of
transformed CUSUM will drop a lot, and thus the shift can be detected quickly.
However, the out-of-control ARL values of CQC chart will increase for small process
deterioration, and therefore they are not effective compared with the CUSUM chart
with transformed exponential data. This can be attributed to the skewness of
exponential distribution that makes the control limits not symmetrical without

transformation.
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Figure 4.7 The ARL curves of CQC and CUSUM charts with transformed exponential
data

4.6.3 CUSUM Chart with Transformed Exponential Data vs.

Exponential CUSUM Chart

The performance of CUSUM chart with transformed exponential data and exponential
CUSUM are also assessed. The upper-sided and lower-sided CUSUM are used

separately, and the ARL profiles of these charts for detecting some intended out-of-
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control means are compared. The statistics of upper-sided and lower-sided exponential

CUSUM are given by:

§7 =max{0.(x, —k)+ 57,

S, =min{0,(x, ~k)+ S, | (4.15)

An out-of-control signal occurs at the first i with S; <-4 or S >h.

Let the in-control exponential mean ) equals to 1.0. The upper-sided CUSUM charts
were designed for detecting out-of-control exponential mean of #,=2.0 and 5.0; and the
lower-sided CUSUM charts are designed for detecting 6 ;=0.5 and 0.2, respectively.
The procedures of parameter determination are the same, except that the ARL contour
plots for one-sided CUSUM chart with transformed exponential data obtained using
Markov chain approach are used instead of that for two-sided CUSUM charts. All the
CUSUM charts are designed with in-control ARL equal to or approximated to 500.
The design parameters and ARL values of exponential CUSUM are quoted from Gan

(1998). The results are shown in Table 4.5.

It can be seen from Table 4.5 that CUSUM charts with transformed exponential data
and exponential CUSUM charts have similar performance in terms of ARL, and both
of them can detect either upward or downward shifts in a shorter period. CUSUM chart
with transformed exponential data tends to be slightly better than exponential CUSUM
when the shift is large; while exponential CUSUM shows more superiority when the
shift is small. One possible reason for this may be the transformation deflates the

amount of mean shift in exponential mean, which in turn makes the CUSUM statistics
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not very sensitive to the transformed data compared with monitoring exponential data

directly.

Table 4.5 ARL values of exponential CUSUM and CUSUM charts with transformed
exponential data

Upper-sided CUSUM Lower-sided CUSUM
Exp Tran Exp Tran Exp Tran Exp Tran
k=139 k=034 k=2.01 k=0.88 k=0.69 k=028 k=040 k=0.59
h=7.42 h=5.804 h=4.86 h=2.426 h=4.16 h=6.859 h=1.24 h=3.877

e 61:2.0 91:2.0 6125.0 61:5.0 e 61:0.5 6120.5 6120.2 61:0.2

1.00  500.0 500.2 500.0 500.1 | 1.00 500.0 500.1 500.0 499.8
1.02  411.7 411.2 4315 4280 | 095 337.6 3544 3996 397.1
1.04 3424 3419 3746 3688 | 090 2276 249.6 316.1 307.6
.10 208.0 209.2 253.1 245.1 | 0.85 154.0 1754 2475 2403
1.20  106.1 109.6 1445 138.0 | 0.80 105.1 123.8 191.6 184.1
1.30 635 67.4 90.7 86.4 | 0.70  51.6 64.1 1109 100.3
1.50  30.8 34.8 44.1 424 | 0.60 283 36.4 61.4 573
2.00 121 15.2 15.1 151 | 0.50 17.6 23.0 32.9 26.5
5.00 3.1 4.8 3.0 3.0 0.20 7.4 8.3 6.1 4.3

10.00 1.9 3.1 1.8 2.0 0.10 6.2 59 4.2 4.0

* Exp stands for exponential CUSUM, and Tran stands for CUSUM chart with transformed exponential
data.

Here is an example of using CUSUM chart with transformed exponential data and
exponential CUSUM for detecting process shifts. The first 20 observations are
generated following exponential distribution with mean equals to 1.0 (6p=1.0), and the
next 10 points are generated using exponential mean 6 = 0.2. The lower-sided CUSUM

charts were employed to detect the deterioration of the process.
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Table 4.6 Data for the CUSUM chart with transformed exponential data and

exponential CUSUM

Transformed exponential

CUSUM CUSUM

(K=0.590 =0.126; (k=0.4; h=1.24)

H=3.8770 =0.829)
i Xi Y to-K-Y; Cr Xi-k Si
0 0 -0.78
1 27804 | 1.2913 -0.4148 | 0.0000 2.3804 0.0000
2 [2.1152 | 1.2060 -0.3294 | 0.0000 1.7152 0.0000
3 10.9873 | 0.9968 -0.1203 | 0.0000 0.5873 0.0000
4 10.5389 | 0.8568 0.0197 | 0.0197 0.1389 0.0000
5 11.2284 | 1.0528 -0.1762 | 0.0000 0.8284 0.0000
6 |0.2314 | 0.6935 0.1830 | 0.1830 | -0.1687 | -0.1687
7 | 1.2952 | 1.0668 -0.1903 | 0.0000 0.8952 0.0000
8 |0.7744 | 0.9381 -0.0615 | 0.0000 0.3744 0.0000
9 | 2.8236 | 1.2963 -0.4198 | 0.0000 2.4236 0.0000
10 | 0.0550 | 0.4843 0.3922 | 0.3922 | -0.3450| -0.3450
11]1.2780 | 1.0632 -0.1867 | 0.2055 0.8780 0.0000
12 | 1.0056 | 1.0014 -0.1249 | 0.0806 0.6056 0.0000
13]2.1290 | 1.2079 -0.3314 | 0.0000 1.7290 0.0000
141 0.3715 | 0.7807 0.0958 | 0.0958 | -0.0285 | -0.0285
15 10.5484 | 0.8606 0.0160 | 0.1118 0.1484 0.0000
16 | 1.5206 | 1.1105 -0.2339 | 0.0000 1.1206 0.0000
17 | 2.1879 | 1.2162 -0.3397 | 0.0000 1.7879 0.0000
18 | 0.2967 | 0.7380 0.1385 ] 0.1385 | -0.1033 | -0.1033
19 | 1.3015 | 1.0681 -0.1916 | 0.0000 0.9015 0.0000
20 | 1.5992 | 1.1245 -0.2480 | 0.0000 1.1992 0.0000
2102178 | 0.6832 0.1934 | 0.1934 | -0.1822 | -0.1822
22 10.0220 | 0.3853 0.4913 | 0.6846 | -0.3780| -0.5602
23 | 0.6398 | 0.8944 -0.0178 | 0.6668 0.2398 | -0.3204
24 1 0.0202 | 0.3770 0.4996 | 1.1664 | -0.3798 | -0.7002
251 0.3751 | 0.7826 0.0940 | 1.2603 | -0.0249 | -0.7251
26 | 0.2046 | 0.6725 0.2040 | 1.4643 | -0.1954 | -0.9206
27 1 0.4263 | 0.8080 0.0685 | 1.5328 0.0263 | -0.8943
28 | 0.0125 | 0.3344 0.5421 | 2.0750 | -0.3875 | -1.2818
29 | 0.0426 | 0.4542 0.4223 | 24973 | -0.3574 | -1.6392
30 | 0.0830 | 0.5367 0.3398 | 2.8370 | -0.3170 | -1.9562
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With the design parameters shown in Table 4.5, two CUSUM charts are set up
separately, and the calculation procedures are shown in Table 4.6. Figure 4.8 includes
both the CUSUM chart with transformed exponential data and exponential CUSUM
within one chart, from which we can see that the CUSUM chart with transformed
exponential data becomes out-of-control at the 24" point while the exponential
CUSUM chart raises the signal at the 28" point. Therefore, the CUSUM chart with
transformed exponential data is superior to the exponential CUSUM chart in this case.

This is consistent with the results in Table 4.5.

4.0000 -
transformed CUSUM
3.0000 -
2.0000 -

1.0000 -

exponential CUSUM

Figure 4.8 The CUSUM chart with transformed exponential data and exponential
CUSUM chart

4.7 Conclusions

This chapter discusses an alternative way of monitoring exponential distributed time
between events data by control chart. The exponential data can be transformed using
double SQRT transformation, and then monitored by the CUSUM chart designed for
normal data. The results indicate that the proposed CUSUM chart with transformed
exponential data is more effective than the X-MR, CQC chart, and is comparable with

exponential CUSUM in detecting either process improvement or deterioration. The
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proposed method is easy for implementation especially when a company already has a

system to monitor the normal mean with CUSUM charts.
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Chapter S EWMA Charts with Transformed

Exponential Data

5.1 Introduction

Similar to the idea of the previous chapter, using Exponentially Weighted Moving
Average (EWMA) chart after transformation is another possible alternative to monitor
the TBE data. The EWMA chart attracts great interests from engineers for its ability of
detecting small process shifts and predicting the process level at the next time period.
Refer to Chen & Guo (2001), Del Castillo & Rajagopal (2002), and Tseng & Hsu

(2005).

Another favorable property of the EWMA chart is its robustness to nonnormality,
which is beneficial for transformed scheme since the data after transformation will not
strictly follow normal distribution even if a proper transformation method is applied.
However, the previous studies did not investigate in detail on how to design the
EWMA chart with transformed exponential data, and how the transformed EWMA

performs compared to other control charts.

The purpose of this study is to investigate the performance of EWMA chart with
transformed exponential data and develop the design method for it. The ARL
properties are investigated and the design procedures are developed. Furthermore, the
performance of EWMA chart with transformed exponential data is compared to that of

the X-MR chart, CQC chart, and exponential EWMA, respectively. The robustness of
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the proposed EWMA chart to Weibull TBE data is then investigated, followed by an
illustrative example. This study provides an alternative for monitoring exponentially-

distributed TBE data.

5.2 The Transformed EWMA Chart

5.2.1 Setting-up Procedures

Assume that TBE data follow exponential distribution with probability density

function:

f(x)=10"e "if x20 5.1)

0, otherwise

where 6 is the mean of exponential time between events, which is also called Mean
Time to Failure (MTTF) in reliability analysis. Kittlitz (1999) showed that double
SQRT transformation produced similar properties as the power transformation
suggested by Nelson (1994) with the added benefit of ease of use. Hence it is decided
that the double SQRT transformation be used for this study. The main procedures of

setting up an EWMA chart with transformed exponential data are as follows:

Step 1: Transform the exponential data X; to approximate normal Y; using the double

SQRT transformation:
y — x0.25,x > O (52)
Step 2: Set up the two-sided EWMA chart with the recursion statistics:

z, =4y, +(1-2)z,, (5.3)
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where 0<A<I is the smoothing factor. The starting value is the target value u, i.e.

the mean of data after transformation.

Step 3: The center line and control limits can be calculated by

)[1—<1—z>2f]

UCLZILIO +LO'O\/(2L/1

L=y, (5.4)

LCL =y, —Lo-o\/ﬁ[l—(l—/l)z’]

where L is a design parameter, which will be discussed later.

Step 4: The process is considered to be out-of-control when z; exceeds either the UCL

or LCL. The uo and oy can be estimated from the transformed data with

fy=y=)y, and &0=J 1 [i(y,—ﬂ (5.5)

t=1 n-1 t=1

5.2.2 Calculation of Average Run Length (ARL)

There are mainly two approaches in the literature to the calculation of ARL for
EWMA charts. One is the exact method based on the solution of a set of differential
equations. Another is an approximate method using Markov chain method proposed by
Brook and Evans (1972), where the properties of the continuous-state Markov chain
can be approximately evaluated by discretizing the infinite-state transition probability
matrix. Former studies on EWMA charts for normal data (Lucas and Saccucci, 1990)

and Poisson data (Borror ef al. 1998) have shown that Markov chain approach can
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achieve an accurate approximation of ARL with enough number of states. Therefore,
the Markov chain approach is employed to calculate the ARL for the EWMA chart

with transformed exponential data.

Following the method in Lucas and Saccucci (1990), and Borror, Champ, and Rigdon
(1998), the ARL of EWMA chart with transformed exponential data can be calculated
with Markov chain approach. Consider a two-sided EWMA chart with transformed
exponential data with design parameters 4 and L. The interval between the lower
control limit and upper control limit (LCL, UCL) is divided into m subintervals of
width w. Since the control limits (LCL, UCL) will change with time ¢, and will be
approximately constant when ¢ is large, the asymptotic control limits are used to
calculate the ARL instead of the exact control limits. Let 4y and 4 be the asymptotic

control limits. Then

[ A | A
hy = uy + Lo, mo}h:ﬂo_[’o—o m (5.6)

Note that when calculating the in-control ARLs, the time ¢ is usually large, and
therefore this approximation of control limits will not influence the accuracy of the
results a lot. On the other hand, when the process is going out-of-control at the very
beginning before the real control limits reach the asymptotic value, the out-of-control
ARLs that are obtained by this approximation method may under-estimate the
performance of EWMA chart with transformed exponential data. This is especially the
case when / is very small, and the effect of starting value will last for a while before

the upper and lower control limits converge to the asymptotic values. The Markov
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chain approach with asymptotic control limits is not very accurate in that case and the

real out-of-control ARLs may be even shorter.

Using the asymptotic control limits, w can be expressed as:

w= = (5.7)

The EWMA control statistics z; is said to be in transient state (j) at time (¢) if ~i.tjw <z,
< hi+(G+1)w for j=0,1,...,m-1. The midpoint of subinterval corresponding to state ()

can be written as

m,=h, +(j+0.5)w,j=0,l,...m-1 (5.8)

J

The control statistics z; is regarded as in the absorbing state m if the point goes outside

the control limits, i.e. z=hy or z<hr.

Let p;; represents the transition probability that the control statistics z; goes from state
(7) to state (j) in one step. To approximate the probability, we assume that the control
statistics z; is equal to m; whenever it is in state (i). This approximation is accurate

enough when the number of states m is large. Then p;; is given by

Py —Pr{h + jw<z <h, +(j+1)w|zt_1:ml.}
Prh + jw< Ay, +(1=A)z,_ <hL+(j+l)w|Z,_1:ml.}
{h L+ jw— (1 A)m, <y <hL+(j+1)w—(1—/1)mi

t A
{z <h, orz, >hU|Zt1—m}
L <horiy, +(1-A)z,_, > U|zt1—m}

:{
{ _h (- l) }+P {y M},i:o,l,...m—l

A

},izO,l,...m—l;j:O,l,...m—l
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Py =0,/ =0,1,...m~1 (5.9)

Do =1

Based on the Markov chain theory, the expected first passage times from state (i) to the

absorbing state are

m—1

po =14 pou,i=01,...,m—1 (5.10)
j=0

1 1s the ARL given that the process started in state (7). Let R be the matrix of transition
probabilities obtained by deleting the last row and column of P. The vector of ARLs u

can be calculated with
u=I-R)"l (5.11)

where 1 is an mx1 vector of with all elements equal to 1, and 7 is an mxm identity
matrix. The elements in the vector x4 are the ARLs when the EWMA chart starts in
various states. The first element in the vector u gives the average run length for the
EWMA chart starting from zero, and the ARL given that zy=u, is just the middle entry,
that is the ((m+1)/2)th element in the vector u. In order to get a unique middle value, m

1s chosen to be an odd number.

Since X follows an exponential distribution with mean of 6, which is a special case of
Weibull distribution with scale # and shape 1.0, i.e. W(8,1), it is easy to prove that
after the double SQRT transformation, Y is also a Weibull variable which follows W(8

025 4) (Murthy et al. 2004). The mean and variance can be estimated with:
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f=EY)=6"T(1+0.25)=0.90646"%
(5.12)
6 =D(Y) =0°>\T(1+0.5)-T>(1+0.25) = 0.25439"*
Hence, the cumulative distribution function of Y can be expressed as
4
F<y>=1—exp{—( Hfzsj } (5.13)

Then the transition probability matrix can be computed and the ARLs can be easily

obtained with the help of computing software like Matlab.

In order to find a suitable value of m, the in-control ARL of the EWMA chart given L
and A (L=3 and 1=0.2) is calculated following the above method. The results show that
when m increases up to 301, the in-control ARL becomes stable. Therefore, the

interval (Ar,hy) is divided into m=301 subintervals for getting the ARLs with Markov

chain approach.

650 -
640
630 -
620
610 -
600 -
590 -
580 -
570

in-control ARL

0 200 400 600 800 1000 1200

Figure 5.1 The in-control ARLs of an EWMA chart with transformed exponential data
calculated with different m values (L=3 and 1=0.2)
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5.3 Design of EWMA Chart with Transformed Exponential Data

Most of the previous studies on the design of EWMA chart or CUSUM are based on
ARL consideration. That is, an acceptable in-control ARL is specified at the beginning
to determine the probability of false alarm, and the optimal design is to find out the
values of design parameters so as to provide the shortest ARL at certain specified out-

of-control level.

5.3.1 In-control ARL

The in-control ARL values with different design parameters A and L are calculated by
the Markov chain approach. Figures 5.2 and 5.3 provide the contour plots for some
commonly used in-control ARL levels. For other in-control ARL wvalues, the
relationship of 4 and L can be achieved by interpolation. Appendix I also provide some

in-control ARL values for different combinations of design parameters A and L.

It is worth noting that the in-control ARL of an EWMA chart with transformed
exponential data depends on the value of 1 and L, and it is independent of the
exponential mean 6. Therefore, Figures 5.2 and 5.3 can be used for any in-control

exponential mean 6 not only when 6y;=0,=1. The detailed proof is as follows:

Let C= LJ%,,UO =0.90646, = C,0,%,0, =0.25430,)* = C,0,” (based on

formula 5.12). Then the p;; (i =0, 1,...,m-1; 7 =0,1,...,m-1) can be expressed as
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o+ fw—(1- A, B, +HLi+1he — (1= e,
pi?-=Pr{ I AL ;i': i <y, < I (J )1; ( )mz}

F By (i +1w— (1—;&)»31] F(Ez£+jw—ﬂ(l—,}1)miJ

4
;g L+ Dw— (1= A Byt w— (1= A)m,
1- 1-exp| -
EKP[ 1 gluzs ] ] EXP{ [ /1_5,10:45 ] ]

4

00C+J 2(;:0 j - —ﬂ){,uo -Co, + (i+0.5)(2i10° ﬂ

=€xXp 1. 010.25

4
—0,C+(j +1)(2Cm“°j—(1 —ﬂ.){yo ~Co,+(i+ 0.5)(2(700 ﬂ

{
&
f

m m

4
025 C e 2CC-j—(l—/?,)[Cl—C2C+2CC2(Z+O'5)D

= €Xp 1 91 0.25

. . \
i c C,C+ 2CCZ(]+1)—(1—/1)[CI—CZC+2CC2(’+0'5)D
m m

(5.14)

—&Xp 1. 910.25

It can be seen from the formula (5.14) that when the process is in-control, i.e. 6y=6,,
the value of p;; only depends on the value of design parameters A and L and calculation
parameter m. Therefore, the in-control ARL value only depends on the value of 4 and L,
and is independent of the exponential mean 6. On the other hand, when the process
becomes out-of-control, the proportion of 6, to 6y will influence the out-of-control

ARL values.
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Figure 5.2 The in-control ARL contour plot of EWMA chart with transformed
exponential data (0<A<0.1)

3.5

3.2¢ I 1
3.1rF 800 T

- 500 00 800
jz 350 %o
o bgg
2.6F
2.5 *Q/QQ i
2.4+ 1
2.3+ 1
220 |
2.1+ 1

2 L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Smoothing factor A

Figure 5.3 The in-control ARL contour plot of EWMA chart with transformed
exponential data (0.1< 1< 1)
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5.3.2 Out-of-control ARL

The out-of-control ARL is influenced by the shift level (8,/6y) as well as the design
parameters 4 and L. The optimal design scheme should have the shortest out-of-control
ARL at certain shift level. The following Table 5.1 provides an illustration of this

decision criterion with a fixed in-control ARL equals to 500.

Table 5.1 The ARLs of some selective EWMA charts with transformed exponential
data (in-control ARL=500)

Shift L 2279 2.611 2799 2921 2953 2953 2938 2865 2.843

©@/0) 002 005 01 02 03 04 05 08 1
0.1 844 667 565 506 513 571 698 2284 88.84
0.2 1135 923 818 817 955 1240 1732 5931 177.18
0.3 1485 1248 1172 1338 1782 2529 3652 109.71 26552
0.4 1953 17.16 1738 2295 3336 4843 6854 17405 353.86
0.5 2639 2466 27.50 41.17 6161 8730 118.03 252.60 442.06
0.6 3760 3826 4742 7611 11092 149.01 19026 34528 52833
0.7 5890 66.82 89.90 14228 19335 242.06 29021 44808 603.08
0.8 10930 13685 184.80 26226 321.17 369.80 41393 540.18 639.74
0.9 26396 319.67 37661 43624 470.10 49449 51582 57045 604.59
1 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 499.95
12 12204 13701 160.76 19459 21672 231.59 24184 256.63 26627
1.5 4228 4065 4344 5158 5946 6649 7271 88.06 101.42
1.8 2625 2327 2273 2454 2711 2978 3241 4036 4865
2 2136 1839 17.30 1777 1905 2054 22.11 2733  33.29
25 1517 1254 1119 1061 1075 1112 1161 1372 1664
3 1217 987 857 778 761 765 780 878 1044
35 1038 833 7.3 630 603 594 595 643 747
4 919 732 620 539 508 493 488 510 581
5 767 606 508 433 400 381 371 371 409
10 496 388 321 266 238 221 210 197  2.02

It can be obviously seen in Table 5.1 that the EWMA charts with smaller 4 are more
sensitive to small shifts (6,/6, close to 1), while those with larger 4 are more effective

in detecting larger shifts. For small downward shifts (6,/6y<1), the EWMA charts with
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large A between 0.5 and 1.0 may have longer out-of-control ARLs than their in-control
ARLs. The reason behind this is that the data after double SQRT transformation is not
exactly symmetric and is slightly skewed to the right; meanwhile, as A approaches 1,
an EWMA will approximate to a Shewhart chart, which is sensitive to non-normality.
As indicated in bold and italic figures in Table 5.1, the optimal EWMA chart with
transformed exponential data for a certain shift level (6,/6y) should have shortest out-
of-control ARL among others. For example, when the proportion of 8; to 6 is equal to
0.5, the EWMA chart with 1=0.05 and L=2.611 is the optimal design with minimum
out-of-control ARL=24.66. Consequently, optimal design schemes of EWMA chart
with transformed exponential data can be found from the results in Table 5.1 when in-

control ARL equals to 500.

Similarly, to facilitate the optimal design schemes of EWMA chart with transformed
exponential data at other in-control ARL levels, the out-of-control ARL properties are
investigated following the same procedures. Some commonly used in-control ARL
levels are considered, i.c., in-control ARL=100, 300, 500, 800, 1000, and 2000. To
simplify the calculation for achieving these optimal schemes, only some selective 1
levels (0.02, 0.05, 0.08, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00) are
considered, and the L values are determined to achieve the specified in-control ARL
with the help of Figures 5.2 and 5.3. Then the optimal design schemes are found to
give the shortest out-of-control ARLs at certain shift levels (6,/6y). Table 5.2 lists the
optimal design parameters as well as the optimal out-of-control ARL values achieved

from the study.
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Table 5.2 Optimal schemes of EWMA chart with transformed exponential data

Shift In-control ARL
(61/6y) 100 300 500 800 1000 2000
0.2 A 0.20 0.20 0.20 0.10 0.10 0.10

L 2344 2752 2921 2963 3.037 3.256

ARLyin 5.57 7.28 8.17 8.86 9.18 10.21

0.5 A 0.05 0.05 0.05 0.05 0.05 0.05
L 1.880 2397 2611 2794 2877 3.118

ARLn, 1523 2148 2466 2774 29.27 3429

0.8 A 0.02 0.02 0.02 0.02 0.02 0.02
L 1469 2033 2279 2490 2.585 2.862

ARLyin 5059 87.08 1093 13345 14639 19443

1.2 A 0.05 0.02 0.02 0.02 0.02 0.02
L 1880 2.033 2279 2490 2.585 2.862

ARLyin 5244 9594 122.04 150.22 165.26 220.94

1.5 A 0.08 0.05 0.05 0.05 0.05 0.02
L 2065 2397 2611 2794 2877 2.862

ARLni, 2281 3450 40.65 46.89 50.09 59.63

1.8 A 0.20 0.10 0.10 0.08 0.08 0.05
L 2344 2608 2799 2915 2992 3.118

ARLn, 1392  19.72 2273 2553 2694 31.37

2 A 0.20 0.10 0.10 0.10 0.10 0.08
L 2344 2608 2799 2963 3.037 3.218

ARLyin 1092 1528 173 19.26 2023  23.34

3 A 0.50 0.40 0.30 0.30 0.30 0.20
L 2472 2808 2953 3.087 3.148 3.328

ARLyin 5.26 6.84 7.61 8.34 8.70 9.82

4 A 0.60 0.60 0.50 0.50 0.50 0.40
L 2476 2787 2938 3.055 3.108 3.303

ARL pin 3.58 4.45 4.88 5.28 5.48 6.12

5 A 0.70 0.70 0.50 0.60 0.60 0.60
L 2474 2769 2938 3.024 3.074 3.220

ARL s 2.82 3.38 3.71 3.91 4.04 4.44

The results in Table 5.2 indicate that the optimal 4 for a certain amount of shift (6,/6,)

decreases with the increase of in-control ARL level; however, it is rather stable for a
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certain range of in-control ARLs. For example, when 6, is half of 6, the optimal 4 is
always 0.05 for the in-control ARL from 100 to 2000. The stableness of 4 also justifies
that in the above study, the selective values instead of the continuous range of A can be
accurate enough for application. Meanwhile, since the optimal value of 4 is stable for a
range of in-control ARLSs, it is reasonable to choose a suitable A value using Table 5.2

even if the desired in-control ARL is not included.

It is also worth noting that the design schemes with very small 4 values less than 0.1
are optimal for small shifts of the process, and the corresponding ARL,,, values are
usually large. In that case, the inaccuracy of out-of-control ARL from the Markov
chain approach is not very serious and will not affect the parameters chosen of EWMA
chart with transformed exponential data. Moreover, the real out-of-control ARL is

even better than that achieved from the Markov chain approach.

5.3.3 Optimal Design Procedures

Based on the analysis above, the recommended design procedures of an optimal

EWMA chart with transformed exponential data are as follows:

Step 1: Specify the desired in-control ARL and the out-of-control shift (8,/6y) to be

detected quickly;

Step 2: Find the 4 value according to Table 5.2;

Step 3: Obtain the corresponding L value using Figures 5.2 or 5.3;
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Step 4: The entire ARL profile for the EWMA chart can be achieved using the Markov
chain approach. It can be used to evaluate the performance of the chart and

ensure that the chart provides sufficient protection against other shifts.

5.4 A Comparative Study on Chart Performance

5.4.1 EWMA chart with transformed exponential data vs. X-MR

chart

To compare the ARL property of EWMA chart with transformed exponential data and
X-MR chart, a simulation is conducted by transforming the exponential data to normal
using double SQRT transformation and then setting up the X-MR chart(with 3c
control limits) to monitor the data. On the other hand, two EWMA charts with
transformed exponential data are designed so that the in-control ARL is almost equal
to that of the X-MR chart. Two EWMA charts are designed to be optimal in detecting
shift (6,/6y) equals to 0.5 and 2.0, respectively. Table 5.3 presents the ARL profiles of
the charts, where (61/6y)op: stands for the out-of-control shift (6:/6y) level at which the

EWMA chart with transformed exponential data is optimal.

Figure 5.4 includes the ARL curves of X-MR chart and the EWMA charts with
transformed exponential data described above. It can be seen from Table 5.3 that both
EWMA charts achieve the maximum ARL value at the in-control level 6,/6,=1.0.
However, the maximum ARL value of transformed X-MR chart is achieved when the
shift (61/6y) is about 0.3. The trend of ARL curve for the transformed X-MR chart
implies that when the downward shift occurs up to 0.3 of the in-control exponential
mean, the out-of-control ARL value will increase greatly, from 131.41 to 709.22. As a

result, it will take longer time to raise an out-of-control signal even if the process has
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deteriorated a lot. Therefore, the X-MR chart is not effective in detecting process
deteriorations. The ARL curves show that the EWMA chart with transformed
exponential data is more sensitive in detecting process shifts than the X-MR chart for

process improvement as well as process deterioration.

Table 5.3 The ARLs of X-MR chart and EWMA charts with transformed exponential

data (TE EWMA)
Shift X-MR TEXE\X(I;/SIAl TE}LE\:%AZ Shift X-MR TE)LE:\:(I;/;AI TE}LE\:%AZ
(0,/6)) L=2.0151 L=2.4523 | (6,/6,) L=2.0151 1=2.4523

(91/90)0pt20.5 (Ql/eo)opt:2.0 (Ql/eo)optZO.S (Ql/eo)opt:2.0
0.1 272.48 5.10 3.97 1.4  58.928 32.31 35.27
0.2  540.54 6.92 5.98 1.5 50.556 25.71 27.09
0.3 709.22 9.14 8.90 1.6  40.601 21.38 21.73
04  675.68 12.19 13.51 1.7 37313 18.36 18.04
0.5 53191 16.70 21.12 1.8  30.294 16.14 15.40
0.6  389.11 24.06 33.89 1.9 2739 14.46 13.43
0.7 290.7 37.31 55.20 2 23.574 13.14 11.92
0.8  206.19 63.33 88.38 2.5 14.118 9.31 7.81
0.9 153.61 108.50 125.15 3 9.4796 7.46 6.00

1 131.41 131.42 131.42 3.5 7.0507 6.37 4.99

1.1 105.15 96.40 101.45 4 5.5154 5.65 4.34
1.2 85.034 62.43 69.57 4.5 4.5884 5.12 3.89
1.3 71.276 43.17 48.31 5 3.9153 4.73 3.56
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Figure 5.4 The ARL curves of the X-MR and EWMA charts with transformed
exponential data

5.4.2 EWMA chart with transformed exponential data vs. CQC chart

Another comparison of ARL properties is conducted between EWMA chart with
transformed exponential data and the CQC chart. Two EWMA charts with transformed
exponential data and the CQC chart are designed to achieve equal in-control ARL
(370.37). The EWMA charts with transformed exponential data are designed to be
optimal in detecting shift (61/6y) equal to 0.2 and 5.0, respectively. The control limits
of the CQC chart are UCL=6.6226 and LCL=0.0013. The out-of-control ARLs are

listed in Table 5.4.

The ARL curves in Figure 5.5 show that both of the EWMA charts can detect the
process shifts faster than the CQC chart whenever the process improves or deteriorates.
In particular, when the in-control exponential mean decreases slightly from in-control
level, the out-of-control ARL of the EWMA charts with small A will drop greatly, and

thus the shift can be detected quickly. However, the out-of-control ARLs of the CQC
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chart will increase for small process deterioration, and therefore it is not effective in
this case. This can be attributed to the skewness of exponential distribution that makes
the control limits not symmetrical without transformation. Note that when the
smoothing factor A is relatively large, EWMA chart with transformed exponential data
may also have longer out-of-control ARL for downward shifts, but this is not so
serious compared with the CQC chart. Furthermore, for EWMA chart with
transformed exponential data, large smoothing factor 4 will be employed only for

detecting large upward mean shift. Thus it will not affect the performance of the chart.

Table 5.4 The ARLs of CQC chart and EWMA charts with transformed exponential

data (TE EWMA)
Shift TExli\glz\zl)Al TE}Lli\(;\./;\/(l)AZ Shift TExli\gg\:[)Al TE}Lli\(;\./;\/(l)AZ
@0, €€ 1=28235  L=28193 | @0, R  L=28235 = L=2.8193
chart () 100)p =02 (O1/00)opi=5.0 ehaAt ) 100)p=02  (O1/00)opi=5.0
0.1 74.51 4.81 11.69 1.4 101.20 62.62 94.92
0.2 148.52 7.64 30.52 1.5 76.25 44.68 69.02
0.3 22253 12.22 59.16 1.6 59.07 33.86 52.01
0.4 296.53 20.34 98.73 1.7 46.94 26.89 40.50
0.5 370.30 35.30 150.41 1.8 38.16 22.15 32.45
0.6 44133 63.14 215.13 1.9  31.66 18.78 26.65
0.7 498.04 114.48 291.64 2 26.73 16.29 22.36
0.8 513.80 204.95 367.71 2.5 13.95 9.94 11.68
0.9 465.56 329.89 406.57 3 9.01 7.37 7.71
1 370.35 370.40 370.36 3.5 6.59 6.00 5.78
1.1 271.08 261.15 282.49 4 5.21 5.16 4.68
1.2 192.83 154.54 196.81 4.5 4.34 4.58 3.98
1.3  138.10 94.53 135.14 5 3.75 4.16 3.49
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Figure 5.5 The ARL curves of the CQC chart and EWMA charts with transformed
exponential data

5.4.3 EWMA chart with transformed exponential data vs. Exponential

EWMA

It is worth comparing the performance of EWMA chart with transformed exponential
data with the exponential EWMA (Gan, 1998), which has been shown to be effective
in monitoring the exponentially-distributed TBE data. Four pairs of two-sidled EWMA
charts are designed to achieve in-control ARL=500, while optimal in detecting
downward or upward shifts at different levels (6,/6, = 0.3, 0.5, 2.0, and 3.0
respectively). The out-of-control ARLs are calculated accordingly and the results are

shown in Table 5.5. The relative difference in Table 5.5 is calculated by

Relative difference= (ARLtg-ARLEgy,)/ARLEyp (5.15)
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Table 5.5 The ARLs of EWMA charts with transformed exponential data and

exponential EWMA chart

(Gl/Ho)optZOS

(01/00)01”:0.5

Shift g4 ]EXP 1 Relative | TE?2 ]_EXP 2 Relative
(01/60) 2=0.1 }i‘__% 139601 difference | 2=0.05 lih_—% 15%02 difference
L=2.799 . “ L=2.611 - "
hy=2.359 hy=1.801

0.2 8.18 8.11 0.01 9.23 9.80 -0.06
0.3 11.72 10.96 0.07 12.48 12.25 0.02
0.4 17.38 16.08 0.08 17.16 16.24 0.06
0.5 27.50 26.05 0.06 24.66 23.38 0.05
0.6 47.42 46.84 0.01 38.26 37.83 0.01
0.7 89.90 92.23 -0.03 66.82 71.12 -0.06
0.8 184.80 192.21 -0.04 | 136.85 156.80 -0.13
0.9 376.61 379.86 -0.01 | 319.67 365.51 -0.13

1 500.00 500.00 0.00 | 500.00 500.00 0.00

1.2 160.76 194.02 -0.17 | 137.01 140.19 -0.02
1.5 43.44 49.59 -0.12 40.65 36.87 0.10
1.8 22.73 22.85 -0.01 23.27 18.77 0.24

2 17.30 16.21 0.07 18.39 14.01 0.31

2.5 11.19 9.27 0.21 12.54 8.67 0.45

3 8.57 6.57 0.30 9.87 6.40 0.54

(91/00)0pt=2.0 (Ql/eo)opt:3.0
Exp 3 Exp 4
Shift gy 1=0.100 R 004 |

=2 799 h;=0.504 Relatlve L=2 053 h;=0.429 Relatlve

(61/6y) hy=1.806 difference hy=2.100 difference
0.2 8.18 9.73 -0.16 9.55 8.59 0.11
0.3 11.72 12.16 -0.04 17.82 11.10 0.61
0.4 17.38 16.09 0.08 33.36 15.37 1.17
0.5 27.50 23.11 0.19 61.61 23.33 1.64
0.6 47.42 37.25 027 | 110.92 39.67 1.80
0.7 89.90 69.62 0.29 | 193.35 76.12 1.54
0.8 184.80 152.45 0.21| 321.17 161.77 0.99
09 376.61 355.09 0.06 | 470.10 34591 0.36

1 500.00 500.00 0.00 | 500.00 500.00 0.00

1.2 160.76 143.23 0.12 | 216.72 181.59 0.19
1.5 43.44 37.37 0.16 59.46 45.20 0.32
1.8 22.73 18.95 0.20 27.11 21.40 0.27

2 17.30 14.13 0.22 19.05 15.45 0.23

2.5 11.19 8.73 0.28 10.75 9.11 0.18

3 8.57 6.44 0.33 7.61 6.57 0.16

* TE represents the EWMA chart with transformed data, Exp stands for exponential EWMA chart.
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Figure 5.6 presents the ARL curves for the four pairs of EWMA charts, from which we

can see the two charts have similar performance in terms of ARL. The EWMA charts

with transformed exponential data are slightly worse in detecting designed shifts, and

the relative difference is very small. Especially, when the chart is designed for

detecting process deterioration, i.e., the optimal shift (61/0)op is less than 1.0, the

EWMA charts with transformed exponential data have shorter out-of-control ARL for

small process shifts. Only when the chart is designed for detecting large process

improvement (e.g. (61/6o)op=3.0), the overall performance of exponential EWMA is

better than the EWMA chart with transformed exponential data.
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Figure 5.6 The ARL curves of EWMA charts with transformed exponential data and
exponential EWMA charts
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5.5 Robustness of EWMA Chart with Transformed Exponential

Data to Weibull Data

The above study is carried out based on the assumption that the TBE data can fit into
an exponential distribution with a constant event occurrence rate. However, this is not
always true in many cases, and Weibull distribution can be a better alternative to
model the time between events data when the event occurrence rate varies with time.
A former study (Borror ef al., 1999) on the EWMA chart for normal data proved that
the EWMA chart can be designed so that it is robust to the normality assumption.
Borror et al. (2003) investigated the robustness of the TBE CUSUM and demonstrated
that the TBE CUSUM is robust for a wide variety of parameter values for the Weibull
distribution. Since in this study the TBE data are transformed to close normal, we
suspect it may also have the robust property to other distributions besides exponential.

The following study is to test this supposition.

As Weibull distribution is a more widely used distribution to model the time between
events data, the robustness of the EWMA chart with transformed exponential data to
Weibull data is investigated in this study. The probability density function (pdf) of the

two-parameter Weibull distribution can be written as:

-1 (xY
f(x):%(%) e(gj x>0,0>0,6>0 (5.16)

where 6 is the scale parameter and 7 is the shape parameter. When 7 is equal to 1, the

Weibull distribution will reduce to the exponential distribution.
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Note that a Weibull distribution with scale parameter € and shape parameter 7, i.e. W(0,
n) is still a Weibull distribution W(6°, 4#) after the double SQRT transformation.
Therefore, the Markov chain approach for calculating ARL is still applicable while the

mean and variance can be estimated with

a=EY)= 90-25r(1 + ij
41
(5.17)
6 =+/DY) =0 \/F[HLJ—FZ(HLJ
2n 47
The cumulative distribution function changes to
y )"

It has been proved that the in-control ARL value of EWMA chart with transformed
exponential data depends on the design parameters A and L, and is independent of the
scale parameter 0 for exponentially-distributed TBE data. A study on the in-control
ARL of EWMA chart with transformed Weibull data shows that this conclusion is true
for Weibull TBE data as well. When keeping the shape parameter # as a constant, the
in-control ARL of EWMA chart with transformed Weibull data is also constant even if
the scale parameter 6 varies. However, different shape parameters # lead to different
in-control ARLs. Therefore, without loss of generality, we fix the scale parameter 6 to

1.0, and change the shape parameter # to investigate the in-control ARL properties.

Table 5.6 presents some in-control ARLs of eight selective EWMA charts with double
SQRT transformation while the actual TBE data follow Weibull distributions. The first

four charts are designed to obtain approximately the same in-control ARL of 500, and
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the last four charts with in-control ARL close to 370.4. It can be observed from Table

5.6 that the smaller the smoothing factor 4, the better the robustness of the EWMA

chart. Figure 5.7 presents the trend of in-control ARLs with different shape parameters

n (with data from the first four columns in Table 5.6). When the smoothing factor 4 is

equal to 0.05, the in-control ARL is very stable. In fact, when the shape parameter # is

larger than 0.5, the in-control ARL is always within 3% of 500 which is designed for

the exponential data.

The trend is the same for EWMA charts with transformed

Weibull data when in-control ARL equals to 370.4. According to the optimal design

schemes (Table 5.2), small smoothing factor 4 (=0.05) is also favorable since it is

optimal in detecting small process shifts.

Table 5.6 In-control ARLs of EWMA charts with transformed Weibull data

EWMA charts with transformed Weibull data

(01/600)op 0.2 0.5 2 5 0.2 0.5 2 5

A 020 005 010 050| 020 005 010  0.70

n L 2921 2611 2799 2938 | 2.824 2487 2.689 2819
0.2 14422 428.67 26178 6391 | 13030 35532 22948  46.43
0.5 40073 49922 476.13 21732 | 31693 371.82 361.47 138.01
0.8 51044 501.04 50330 523.14 | 377.51 370.76 37275 392.22
1 499.54 500.16 499.61 499.88 | 370.23 370.30 370.48 370.11
1.5 43549 49720 481.17 29653 | 333.04 369.46 361.09 189.33
2 389.93 494.61 46544 219.36 | 305.64 368.83 353.13 138.58
2.5 361.18 49257 453.86 185.97 | 287.75 368.35 347.20 118.29
3 342.12 49097 44526 168.06 | 275.59 367.96 342.75 107.71
3.5 328.75 489.69 43871 157.06 | 266.92 367.66 339.32 101.29
4 318.92 488.65 433.58 149.66 | 26047 367.41 336.63  97.00
45 31142 487.80 429.48 14435 | 25550 367.20 334.45 93.94
5 305.53 487.08 426.13 140.38 | 251.56 367.03 332.67 91.66

111



Chapter 5 EWMA Charts with Transformed Exponential Data

600

500

\ ~ 2=0.05
VT
~ \—Q
: ———— 2=0.10
400 \ -

: S
§ a0 111 \\ ~~~~~~~ 2=0.20
g I
8

/0
2004 !«
.

100 [/

Shape parameter g

Figure 5.7 In-control ARL curves of EWMA chart with transformed Weibull
distribution with different shape parameters 7
For the out-of-control situations, four EWMA charts (as indicated in bold) with good
robustness of in-control ARL are chosen from the Table 5.6. The TBE data following
Weibull distribution with some specified shape parameters #=0.5, 1.0, 2.0, 3.0, and 4.0
are investigated. The out-of-control ARLs are calculated in different mean shift levels.
For a certain shape parameter # value, mean shifts occur due to a change in scale

parameter 0. The out-of-control ARLSs are listed in Table 5.7.

The ARLs in the same row of Table 5.7 provide the out-of-control ARLs when the
Weibull distributions have same shape parameter 7 and different scale parameters so
that the shift in the mean (u1/uo= 01/6y) will be at the different levels. This is reasonable
since in practical applications the scale parameter is more likely to change due to
assignable causes, while the shape parameter is more related to the natural properties

of the system and is rather stable.
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Table 5.7 Out-of-control ARLs of EWMA charts with transformed Weibull data

shift in mean (61/6y)

EWMA n 0.5 10 15 20 25 30 35 40

0.5 7348 49922 9270 42.00 27.62 21.14 17.48 15.13
4=0.05 1 2466 500.16 40.65 1839 12.54 987 833 7.32
L=2.611 1048 49461 1694 850 6.09 493 425 3.79

6.72 49097 1056 5.61 412 340 295 2.64

2
((91/90)01“ =0.5 3
4 5.00 48865 770 424 318 261 230 214
5

0.5 132,52 476.13 93.32 4137 2625 19.56 15.86 13.53
4=0.10 1 2749 49961 4343 1730 11.19 857 7.12 6.20
L=2.799 2 9.47 46544 1603 731 510 408 350 3.11

(01/60)op =2 3 572 44526 931 467 338 277 243 223

4 415 43358 656 349 258 221 200 1.79
0.5 63.59 371.82 8127 3832 2560 19.75 1641 14.24

4=0.05 1 2277 37030 3696 17.19 11.83 935 791 6.96

L=2.487 2 9.89 368.83 1585 806 580 471 406 3.63
(01/60)op =0.5 3 639 36796 997 534 394 325 282 253
4 477 36741 731 406 3.04 250 223 210

0.5 104.86 361.47 81.00 37.42 2421 1823 14.88 12.75

4=0.10 1 2484 37048 3875 16.10 10.56 8.14 6.79 5.93

L=2.689 2 895 353.13 1492 695 488 392 336 3.00
(01/60)op =2 3 546 34275 8.81 448 325 268 236 2.17
4 398 33663 626 335 250 216 193 1.71

The data in Table 5.7 reveal that the EWMA chart is more sensitive for Weibull
distribution with shape parameter #>1 than for exponential distribution (y =1.0), for
both upward and downward shifts. The larger the shape parameter, the better the
performance of the EWMA chart. One possible reason for this property could be the
different shift levels are caused by the change of scale parameters. The increase of
scale parameter 6 while holding shape parameter # constant has the effect of stretching
out the pdf curve, which in turn leads to a shorter out-of-control ARL. However, the
performance of the EWMA chart is not good for transformed Weibull data with #<1.0,

and this maybe because the double SQRT transformation is not suitable in that case. It
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is worth noting that in order to transform Weibull distribution to approximate normal,
power transformation can still be applied; however instead of using the power of 0.25,

the following transformation can be employed.

U=(£) n (5.19)

In this case, the optimal design procedures will be similar to the described in Section
5.3, while optimal parameters may be somewhat different. Basically, small smoothing
factor 4 (=0.05, 0.10, or 0.20) is also suggested when the EWMA chart is designed to

detect small process shifts.

5.6 An Illustrative Example

A simulated example is shown below to demonstrate the use of EWMA chart with
transformed exponential data for detecting process shifts. The first 20 observations are
generated following exponential distribution with mean equals to 1.0, and the next 10
points are generated using exponential mean @ =0.2. The in-control ARL is set to be
500. The design parameters of the EWMA chart are determined following the
procedures discussed above (1=0.20, L=2.921), and the starting value Z, is the mean of
the first 20 observations. Figure 5.8 presents the EWMA charts with transformed

exponential data, which becomes out-of-control at the 24th point.
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Table 5.8 The data for the EWMA chart with transformed exponential data

Failure Time Transformed Tk
between EWMA UCL LCL
] data(Y;)
failures(X;) (Z)

0 1.0027
1 2.7804 1.2913 1.0604 1.1276 0.8778
2 2.1152 1.2060 1.0895 1.1627 0.8427
3 0.9873 0.9968 1.0710 1.1815 0.8238
4 0.5389 0.8568 1.0281 1.1926 0.8127
5 1.2284 1.0528 1.0331 1.1994 0.8060
6 0.2314 0.6935 0.9652 1.2036 0.8018
7 1.2952 1.0668 0.9855 1.2063 0.7991
8 0.7744 0.9381 0.9760 1.2080 0.7974
9 2.8236 1.2963 1.0401 1.2090 0.7964
10 0.0550 0.4843 0.9289 1.2097 0.7957
11 1.2780 1.0632 0.9558 1.2101 0.7953
12 1.0056 1.0014 0.9649 1.2104 0.7950
13 2.1290 1.2079 1.0135 1.2106 0.7948
14 0.3715 0.7807 0.9670 1.2107 0.7947
15 0.5484 0.8606 0.9457 1.2108 0.7946
16 1.5206 1.1105 0.9786 1.2108 0.7946
17 2.1879 1.2162 1.0261 1.2109 0.7945
18 0.2967 0.7380 0.9685 1.2109 0.7945
19 1.3015 1.0681 0.9884 1.2109 0.7945
20 1.5992 1.1245 1.0157 1.2109 0.7945
21 0.2178 0.6832 0.9492 1.2109 0.7945
22 0.0220 0.3853 0.8364 1.2109 0.7945
23 0.6398 0.8944 0.8480 1.2109 0.7945
24 0.0202 0.3770 0.7538 1.2109 0.7945
25 0.3751 0.7826 0.7595 1.2109 0.7945
26 0.2046 0.6725 0.7421 1.2109 0.7945
27 0.4263 0.8080 0.7553 1.2109 0.7945
28 0.0125 0.3344 0.6711 1.2109 0.7945
29 0.0426 0.4542 0.6277 1.2109 0.7945
30 0.0830 0.5367 0.6095 1.2109 0.7945
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Figure 5.8 The EWMA chart with transformed exponential data

5.7 Conclusions

This chapter discusses an alternative way of monitoring exponentially distributed TBE
data, which can help to monitor the processes with very low fraction nonconforming
levels. The exponential data can be transformed using double SQRT transformation
and then monitored by the EWMA chart. Comparisons showed that the proposed
EWMA chart with transformed exponential data is more effective than the X-MR and
CQC charts especially in detecting process deteriorations. It has similar ARL
performance to the exponential EWMA chart. Besides, the proposed EWMA chart
with small smoothing factor A4 (=0.05) is very robust to Weibull distribution for the in-
control ARL. It can be even more sensitive for Weibull data with shape parameter #>1

than it is for the exponential data.

The results also show that the performance of EWMA chart with transformed
exponential data is not very sensitive to the design parameters A and L, thus leading to

rather easy design procedures without too much rigorous parameter-chosen procedures
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as the exponential EWMA. This may encourage the engineers to use it more frequently

in practical applications, and in turn help to enhance process quality.
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Chapter 6 CCC Charts with Variable Sampling

Intervals

6.1 Introduction

As introduced in chapter 2, CCC chart monitors the cumulative number of conforming
items between two consecutive nonconforming items based on geometric distribution,
and it is particularly suitable for high-quality processes with very low FNC. A
summary of research and application of this useful technique can be found in Xie ef al.

(2002).

Bourke (1991) suggested using 100% inspection for generating the CCC chart.
However, when taking into consideration practical factors such as inspection time and
cost, this may lead to a relatively high inspection cost and thus limit the application of
the CCC chart. Because of the memoryless property of geometric distribution, one
possible approach to solve this problem is to use the CCC chart with Variable
Sampling Intervals (VSI). Instead of inspecting the items one by one, we take samples
from them. Note that we regard every individual item inspected as a sample (i.e., the
sample size is equal to one), and the sampling interval is the time between taking two

successive samples.

The motivation of employing variable sampling scheme is to reduce the inspection cost
while maintaining the detection speed of control charts for process changes. For a VSI

chart, the length of sampling interval varies with the process status. A shorter sampling
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interval is used if there is some indication that the process may have changed, and a
longer sampling interval is used if there is no such indication. This means that a
shorter sampling interval should be used next if the current value of the control statistic
is close to but not actually outside the control limits, and a longer sampling interval
should be used if the current value is close to the target. If the current value is actually
outside the control limits, then the chart signals in the same way as the standard Fixed
Sampling Interval (FSI) chart, in which the sampling interval length is fixed without

any change through the sampling process.

A significant amount of research has been carried out on VSI control charts to improve
their sensitivity of detecting process disturbances without increasing the rate of

inspected items and false alarm occurrences. Reynolds et al. (1988) investigated the

normally distributed processes monitored by the X chart using sample means. They

evaluated the Average Time to Signal (ATS) and the Average Number of Samples to

Signal (ANSS) properties for the FSI and VSI X charts, and showed that the VSI

chart is substantially more efficient.

Prabhu ef al. (1993) and Costa (1994) proposed Variable Sample Size (VSS) schemes

for X chart. They used a smaller sample size for the next sample when the current X
value is close to the center line, and a larger sample size otherwise. Subsequent studies,

see Prabhu ef al. (1994) and Costa (1997), considered both the VSI and VSS schemes.
Carot et al. (2002) further combined the double sampling method with the VSI X

chart. Lin & Chou (2005) studied the design of VSS and VSI X charts under non-

normality based on Burr distribution. Besides, Lee & Bai (2000) further extended the

idea and developed two VSI schemes in X control charts with run rules. Bai & Lee
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(2002) then proposed the VSI X control charts with an improved switching rule and
proved that the proposed charts can reduce the average number of switches between

short and long sampling intervals with comparable ATS.

Moreover, the variable sampling methods can also be used to improve the efficiency of
control charts for attributes, see Epprecht & Costa (2001), and Vaughan (1993).
Recently, Epprecht et al. (2003) developed a general model for adaptive ¢, np, u and p
control charts in which one, two or three design parameters, i.e., sample size, sampling
interval and control limit width, switch between two values. They also provided
general guidance on choosing effective design schemes. Wu & Luo (2004)
investigated the optimal design of the VSI, VSS and VSIVSS np charts, and found that
the adaptive np charts do improve effectiveness significantly, especially for detecting

small or moderate process shifts.

Saccucci et al. (1992) extended the VSI method to EWMA chart, and Reynolds &
Arnold (2001) investigated the EWMA charts with both VSI and VSS schemes. The
VSS CUSUM chart was studied by Annadi et al. (1995), and the VSSVSI CUSUM
chart was developed by Arnold & Reynolds (2001). Subsequently, Villalobos et al.
(2005) studied the FSI and VSI multivariate SPC charts for on line SMD (surface

mounted devices) monitoring.

On the other hand, studies on economic design of control charts also revealed that VSI
control charts show better performance than FSI charts with respect to cost. Bai & Lee
(1998) constructed a cost model which involves the cost of false alarms, the cost of

detecting and eliminating an assignable cause, and the cost of sampling and testing, etc.
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It is proved that with proper design parameters, the VSI X chart provides lower
expected cost per unit time compared with the corresponding FSI X chart.

Furthermore, Chen (2004) extended this study to the VSI X chart with non-normal

data.

In this study the variable sampling scheme was extended to the CCC chart. Note that
individual observations are used when implementing the CCC chart; therefore only the
CCC chart with variable sampling intervals, namely, CCCys; chart, will be discussed.
The description and properties of the CCCyg; chart are discussed, followed by
comparisons of performance between the CCCyg; and the CCCpgg; chart. Finally, the
design procedures and decision rules of the CCCysg; chart are described together with

an example.

6.2 Description of the CCCyg Chart

Notations:

Po the in-control process nonconforming rate.

p the out-of-control process nonconforming rate.

o the acceptable probability of false alarm.

o the true probability of false alarm.

X the cumulative count of items inspected after the (i-1)th nonconforming item

until the ith nonconforming item is observed (including the last nonconforming
item).

n the number of different interval lengths of the CCCys; chart.

d j=1,2,..., n. sampling interval lengths of the CCCyg; chart, , i.e., the time

between two items inspected consecutively (d,<d,.;<...<d,<d;).
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IL;

ARL
ATSv
ATSr
ATSV’

ATSy’

4

4

the sampling interval length of the CCCgg; chart.
the interval limits in the CCCys; chart which divide the region between UCL
and LCL into n sub-regions /;, I, ..., I, (IL,.; < IL,> < ...< IL,<IL)).

the number of points in the CCC chart until an alarm arises.
. . . R
the total number of items inspected before a signal occurs, S = Zi: (X

the sampling interval length which is used to get Xi.

the average run length.

the in-control average time to signal of the CCCysg; chart.

the in-control average time to signal of the CCCpgg; chart.

the out-of-control average time to signal of the CCCysg; chart.

the out-of-control average time to signal of the CCCpg; chart.

. ATS,
improvement factor, defined as / = .
ATS .

the probability that point X; falls in region /; when the process nonconforming
rate is pg, i.e. ¢, =P{X; €l [ p=p,},j=12,---,mi=12,.R
the probability that point X; falls in region /; when the process nonconforming

rate shifted to p’,i.e., q'j =P{X,el,|p=p'>py},j=12,-,mi=12,.R.

Let X denote the cumulative counts of items inspected until a nonconforming item is

observed. X can be modeled using the geometric distribution with parameter py, and

the mass probability function of X is:

P{X=x}=(1-p,)" " py» x=1,2,- (6.1)

Since the geometric distribution is highly skewed, instead of using the traditional ko as

control limits, probability control limits are used, see Xie & Goh (1997). On the other
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hand, because the geometric distribution is discrete, the control limits are rounded to
integers and the points that fall on the UCL and LCL are regarded as out-of-control

signals, i.e., P{X >2UCL} = P{X < LCL} =« /2. The UCL and LCL of the CCC chart

can be calculated as follows:

In(%) In(1 - %)
CL=|—2 41|, LCL=|— 2 (6.2)
In(1-p,) In(1-p,)

where [Y] stands for the largest integer not greater than Y.

Note that because the control limits are rounded to integers, the true false alarm rate o’

may not be exactly equal to the given value of a. Rather, it can be expressed as

a'=(1-p)"F 41— (1 po)t* (6.3)

However, since CCC charts are used in high-quality environment where py is very
small, o’ should be very close to a, and the difference between a and o’ can be

neglected.

Generally speaking, the VSI schemes are used for the CCC chart in order to detect the
increase of nonconforming rate quickly. The CCCyg; chart refers to CCC chart
designed based on variable sampling intervals, that is, the sampling interval varies with
the accumulative count of conforming items. The sampling interval length L; used for
inspection between the (i-1)th nonconforming item and the ith nonconforming item

depends on the value of X, | .
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When implementing the CCCysg; chart, a finite number of sampling interval lengths d;,
ds, ..., dy (d,<d,.;<...<d,<d;) are used. These sampling interval lengths should be
chosen under practical considerations of manufacturing processes. For example, the
minimum sampling interval length could not be less than the time lag between two
continuous items. In that case, we use 100% inspection. The maximum sampling
interval length can be chosen according to the maximum amount of time that is

allowed for the process to run without inspection.

On the other hand, interval limits IL;, IL,,..., IL,; (IL,.; < IL,> < ...< IL, < IL;) are
added in the CCCyg chart, and thus divide the region between UCL and LCL into n
sub-regions 1;, I, ..., I,, corresponding to the n different sampling interval lengths. It

follows that

d,X,_ el =(L,UCL)

L = dy, Xy €ly =Ly, 1L ] (6.4)

1

d,X,_ el =(LCLIL ]

n> i

The IL,, ILy,..., IL,.; can be calculated by the following formulas

i a
1n(5+q1)
IL, =| ——|,
In(1-p,)
[ a
ln(g"'% +q,)
L, =—
’ In(1- p,) (6.5)
(04
In(—+q,+q,++q,,)
ILn—l = 2
In(1-p,)
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For example, when n =3, three different sampling interval lengths are employed. To
implement the CCCys; scheme, control limits /L; and /L, are added between UCL and
LCL, and the region (LCL, UCL) is thus divided into three sub-regions as shown in

Figure 6.1.

uCL

I
““““““““ N‘/)\““‘II‘“‘ ILs
N e
\ 4

T Y L

Count of conforming units

Is

LCL

v

Defect sequence

Figure 6.1 The CCCys; chart with three sampling interval lengths

When X, € 1, , the process is running very well, and its quality even has a large

possibility to have improved. In this case, a longer sampling interval length d; (d;>d) is

used in the following inspection of items in order to reduce cost. When X, € /,, the

nonconforming rate of the process most probably remains unchanged, so the equal
sampling interval length d, as the corresponding CCCyggs; chart (d>=d) is chosen.
When X, € I, the process nonconforming rate may have increased, and the next point
Xi+; has a large probability to fall below LCL, which means the process will be out of
control. Then a relatively shorter sampling interval length ds (d3<d) is employed in
order to judge whether the next point will fall below LCL in a shorter period and

therefore reduce the amount of time the out-of-control condition remains undetected.
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Note that a larger sampling interval is used when the nonconforming rate decreases to
a certain level and a smaller sampling interval is employed when it increases; therefore
this CCCyg; chart scheme is only suitable for monitoring the increase of
nonconforming rate. In practice, we suggest using the shortest interval length as the
initial sampling interval length in order to protect against problems that may occur

during start-up.

6.3 Properties of the CCCyg Chart

The Average Run Length (ARL), i.e., the average number of points that must be
plotted before a point indicates an out-of-control condition, is a useful performance
measure of control charts. However, because the sampling intervals of a VSI chart are
not constant, it is necessary to record both the time and the number of samples
inspected until a signal occurs. Average Time to Signal (ATS) and Average Number of
Items inspected (ANI) are two parameters to evaluate those properties. ATS is defined
as the average length of time it takes the chart to produce a signal. When the process is
in control, larger ATS may reduce the false alarm rate; whereas when process is out of
control, smaller ATS may help detect the increase of nonconforming rate p more
quickly. ANI is defined as the expected value of the number of items inspected until a

nonconforming signal occurs.

For common control charts, such as Shewhart, CUSUM and EWMA charts applied to
the statistics X-bar, R, S, np, p, c, u, etc., the ATS is the average length of time the
chart takes to produce a signal only under the condition that the state of the process

does not change between two samples. When the process shifts from the in-control to
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the out-of-control state between two samples, the average time from the moment of the
shift to the moment the chart signals can be obtained by subtracting from the ATS the
amount of time between the last sample before the shift and the moment of shift.
However, due to the memoryless property of the geometric distribution, ATS of the
CCC chart is a good approximation to the average time from the moment of the shift to

the moment of the signal when p’ is small.

As defined before, R is the number of points in the CCC chart until an alarm arises, i.e.,
the accumulative count of nonconforming items until an alarm arises. The expected
value of R is the average number of points in the chart before an alarm arises including
the point that gives the alarm, i.e., the ARL for the CCC chart. Using Wald’s identity,

the ANI for both the CCCrg; and the CCCyygy chart can be calculated as:

ANI = E(S) = E(i X,)=E(R)E(X,) = ARL (6.6)
p

i=1
The ARL for the CCC chart can be expressed as

1

= 6.7
1 _ (1 _ p)LCL + (1 _ p)UCL—l ( )
Therefore, 4TSy can be calculated using following equation
ATSFzANde:ARLxd (6.8)
p

On the other hand, for the CCCysg chart, the total time used before an alarm arises can

be calculated as T = zl: X,L,, and the ATSy can be expressed as
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ATS, = E(i X,L.)=E(R)E(XL) (6.9)
i=1

If the process is in-control, it satisfies

q; q;

P(L,=d;)=P{X, el | X, e(LCLUCL)}= = ,i=23,--R.
' l-a ¢, +q,++q,
(6.10)
Then the ATS, can be calculated as
ATSV :ARL'{E(XiLi |Li :dl)P(Li :d1)+E(XiLi |Li :dZ)P(Li :d2)+"'+
ARL d\q, +d,q, +---+d,q, (6.11)

+E(XiLi |Li :dn)P(Li :dn)}:
p q, tq, +-+¢q,

Note that equation (6.11) is derived under the assumption that P(L, =d ;) =g, / (l-a),

i.e., the sampling interval length used before observing the first nonconforming item is
chosen at random with these probabilities. As mentioned before, it is recommended to
use the shortest sampling interval during process start-up in practice. In such a case,
equation (6.11) is not exactly accurate; however, it is a good approximation to the
ATSy because the effect of the initial sampling interval length can be neglected

provided that nonconforming rate py is very small and the ARL is large.

6.4 Performance Comparisons between the CCCyg and the

CCCFSI Chart

To evaluate the efficiency of the CCCyg chart, we compared its performance with that
of the CCCpg; chart. Note that with same nonconforming rate py and acceptable false

alarm rate o, both the CCCgs; and the CCCyg chart have the same AN/ function. In
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order to compare their ATS property under a constant standard, proper design
parameters of the CCCys; and the CCCpg; chart are chosen so that the equation A7SF=
ATSy is satisfied. Therefore the CCCyg; chart will be matched to the corresponding
CCCipgj chart in the sense that when p=py both of them have the same in-control A7S.
On the other hand, when the process nonconforming rate shifts to p’ (>py), we compare
the value of ATSr’ and ATS)’. The control chart with smaller out-of-control ATS’ is

considered to be able to detect the increase of nonconforming rate more quickly.

Let ATSr = ATSy, the following equation should be satisfied according to equations

(6.8) and (6.11).

dq, +d,q,+-+d,q, _ dq, +d,q,+--+d,q,

d = (6.12)

g9 +tq, ++q, 4
Without loss of generality, the sampling interval length of the CCCpg; chart is set to 1,

1.e. d=1. By choosing suitable values of (d,,d,,---,d,) and (q,,q,,-,q,) that satisfy

equation (6.12), the matched CCCys; and CCCpg; charts that have same in-control ATS
can be obtained. Then, when the process nonconforming rate shifts to p’, the
performance of the CCCysg; chart can be evaluated by calculating the value of 7, which

1s the ratio of out-of-control ATS of the CCCys; and the CCCrg; chart.

[ _ATS,) _dgi+dyg;++dg, (6.13)
ATS,' g +qy+-+q,

When [ is less than 1.00, the ATS)’ is less than ATSr’, which means that the CCCyg;
chart outperforms the CCCpg; chart. Here we name / as improvement factor. The

smaller the improvement factor, the better the performance of the CCCysg; chart.
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The values of g;” can be calculated using the following equations,

g, =(1-p)" -(1-p) "
g, =(1-p)" -(1-pH"

g, =1=-p)" ' —(1-pH™?
q, =(1=p) " —@1-pH™

(6.14)

6.4.1 Improvement Factors for Different Numbers of Sampling

Intervals

Following the above calculation method, we now investigate the behavior of CCCys;

chart for different numbers of sampling interval lengths n. Here the equal probability

intervals are used, i.e.

Using equation (6.12) and d =1, the following equation can be obtained,

l-—a=dq +dyq, +--d,q, ZI_—a(dl +dy+-etd,)
n

which is equal to the following equation,

di+d,+---+d,=n

(6.15)

(6.16)

Given a and p,, for example, o =0.0027 and p;=0.0005, some representative values

of nonconforming rate p’ are chosen for this analysis. The sampling interval lengths

(d;, d;,...,d,) can be chosen as follows: Fixed d=1; n=2, d;=1.9,d,=0.1; n=3, d;=1.9,

dgzl, d3:0.1; l’l:5, d1:1.9, a’g=1.5, djzl, d4:0.5, d5:0.1; l’l:7, d1:1.9, d2:1.7, d3:1.5,
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d/~1, ds=0.5, de=0.3, d=0.1. Using formulas (6.5), (6.13) and (6.14), the values of
corresponding improvement factors / are calculated, and the results are shown in Table

6.1.

Table 6.1 Improvement factors / for representative number of intervals

’ Improvement Factor /
P'po

n=2 n=3 n=5 n=7

1 1.000 1.000 1.000 1.000
1.1 0.940 0.945 0.949 0.948
1.2 0.884 0.895 0.902 0.901
1.3 0.832 0.848 0.859 0.857
1.4 0.783 0.804 0.819 0.816
1.5 0.738 0.764 0.782 0.778
1.6 0.695 0.726 0.747 0.743
1.7 0.655 0.692 0.716 0.710
1.8 0.618 0.659 0.686 0.680
1.9 0.584 0.629 0.658 0.652
2 0.551 0.601 0.633 0.625

11 1

14
5 0.9 +
% —_— = N=2
po 3
— — — n:
G 0.8+
£ n=5
g
) - = = =n=7
g 07 +

06 +

0.5 ‘ ‘ ‘ ‘ ‘ ‘ |

0.8 1 1.2 1.4 1.6 1.8 2 2.2

shift (p'/po)

Figure 6.2 Improvement factors with different number of sampling intervals
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Figure 6.2 shows how improvement factor / changes with different process shifts using
different numbers of sampling intervals, from which it can be seen that the greater the
increase in the nonconforming rate(p’/py), the smaller the improvement factor /, and

the greater improvement in the CCCysg; chart compared with the matched CCCpg; chart.

As shown in Table 6.1, when the nonconforming rate p becomes twice as much as the
original level, / =0.55106 provided that »=2. That means the average time for the
CCClys; chart to detect the process shift is about half of that of the CCCpg; chart.
Meanwhile, the results also reveal that among the four different numbers of sampling
intervals n=2, 3, 5, and 7, the CCCysg; chart gets the best performance when n=2. This
is also convenient for practical applications since there are only two different sampling
interval lengths, and consequently it may be easier to control the inspection sampling

rate without frequent changes.

6.4.2 Improvement Factors for Different Sampling Interval Lengths

Based on the analysis above, we fix the number of sampling intervals n=2 here, and
change the length of sampling intervals to investigate how the performance of CCCyg;
charts vary. Four different sets of (d;, d») are used and their corresponding
improvement factors / are calculated. Other parameters remain unchanged as in the last
example. The results are shown in Table 6.2. The summarized results indicating the

trends of improvement factors are also shown in Figure 6.3.

It can be seen from Figure 6.3 that when the shift of nonconforming rate from original

level (p’/po) becomes larger, improvement factor / decreases and the performance of
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CCCysgj charts becomes better compared with the matched CCCrg; charts. Moreover, it
also shows that the larger the difference of interval lengths (d; - d>), the smaller the

improvement factor / , and the better the performance of CCCysg; charts.

Table 6.2 Improvement factors / with different sampling interval lengths

FSI VSI

p/p 1.7,
"4y ason ¢

(1.5,0.5) (1.2,0.8)

0.3)
1 1 1.000 1.000 1.000 1.000
1.1 1 0.940 0.954 0.967 0.987
1.2 1 0.884 0910 0.936 0.974
1.3 1 0.832 0.869 0.907 0.963
1.4 1 0.783 0.831 0.880 0.952
1.5 1 0.738 0.796 0.854 0.942
1.6 1 0.695 0.763 0.831 0.932
1.7 1 0.655 0.732 0.808 0.923
1.8 1 0.618 0.703 0.788 0915
1.9 1 0.584 0.676 0.769 0.907
2 1 0.551 0.651 0.751 0.900
11 ¢
1L
509 — = (1901)
ELT —0 = (1.7,0.3)
E os | ——t—(1.5,0.5)
§ — = (1.2,0.8)
06 |-
05
0.8 1 1.2 1.4 1.6 1.8 2 2.2

Shift(p'/po)

Figure 6.3 Improvement factors with different sampling interval lengths
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6.4.3 Improvement Factors for Different Probability Allocations

The above analysis on the number of sampling intervals and the length of sampling
interval is based on the equal probability allocation, i.e., the region between UCL and
LCL is divided into # parts so that the points have equal probability of falling into the
n regions (q;=q>=...= ). The results indicate that when the number of sampling
intervals n=2, a larger difference between d; and d>, i.e. (d; - d2), may produce better

performance for the CCCysg; chart.

In order to investigate the performance of CCCys; charts when the equation
q1=q2=...= q, 1s not satisfied, we fix n=2 and d,= 1.9, and only change the value of ¢;.
The corresponding value of p; and d, can be achieved using equation (6.12), and the
corresponding improvement factors / are then calculated. The results are shown in

Table 6.3 as follows.

Note that

_l-a-dyq
q9>

d, 0 (6.17)

So for fixed d,, ¢g; should satisfy the inequality g, < (1—«)/d,. Table 6.3 and Figure

6.4 indicate that when (g,-q) decreases, the improvement factor / also decreases, and
the performance of CCCyg; charts becomes better. So it is reasonable to use equal

probabilities ¢g;=¢>=...= g, when designing a CCCys; chart.
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Table 6.3 Improvement factors / with different probability allocation

0.49865,
(qrq2) (010,08973) (0207973)  (030.6973) (04,05973) (408 5
(d,d>) (19.08997)  (1.907742)  (1.9.0.6128) (1.9.0.3973) (1.9,0.1)
1 1.000 1.000 1.000 1.000 1.000
1.1 0.980 0.967 0.957 0.948 0.940
1.2 0.964 0.939 0918 0.900 0.884
1.3 0.951 0914 0.884 0.856 0.832
1.4 0.940 0.894 0.853 0.816 0.783
PPy 1.5 0.932 0.876 0.826 0.780 0.738
1.6 0.925 0.861 0.802 0.747 0.695
1.7 0.920 0.848 0.781 0.716 0.655
1.8 0916 0.837 0.762 0.688 0.618
1.9 0913 0.828 0.745 0.663 0.584
2 0.910 0.820 0.730 0.640 0.551
1.1000 -
1.0000 - - - =01
= 09000 q1=0.2
8 —_— —=1=03
S 08000 -
g — = q1=04
E 0.7000 — = 1=q2=0.49865
0.6000
0.5000 ‘ ‘ : ‘ ‘

0.9

1.1 1.3

shift(p'/po)

Figure 6.4 Improvement factors with different probability allocation
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6.5 Design of a CCCyyg; Chart

Based on the above analysis results, the design procedures of a CCCyg; chart are

suggested to be the following:

Step 1: Determine the control limits for fixed false alarm rate a

The control limits UCL and LCL of a CCCys; chart can be calculated using equation

In(1 - a/2)

(6.2). In order to get a meaningful LCL ( LCL =
In(1- p)

} >1), the inequality

p<a/2 should be satisfied, i.e. & >2p. Notice that the CCC chart is particularly suitable
for high-quality processes, which have very low nonconforming rate p, so this is not a
serious problem. Here it is assumed that the nonconforming rate p is known, or it can

be estimated from historical data.

Step 2: Choose the number of sampling intervals n=2.

Step 3: Use equal probability allocation g, =g, :I_Ta, so the interval limit

isIL, = &
In(l-p,)

Step 4: Calculate the sampling interval lengths (d;, d;)

Givenn=2 andq, = ¢, = I—Ta’ from equation (6.12) we may get d, +d, =2.
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It can be seen from Table 6.2 and Figure 6.3 that larger difference of interval lengths
(d; - d») may produce better performance for CCCyg charts. However, the difference
of interval lengths (d; - d>) cannot be too large. Suppose that the matched CCCpg takes
one sample for every m items, when using n=2 and equal probability allocation ¢;=¢>,
d> must not be less than 1/m, and d; should not be larger than (2- 1/m). In the case
when d,=1/m and d;= (2-1/m), we take every item as a sample if the process becomes
worse. Table 6.4 shows the recommended values of d; and d, for CCCysg charts with
respect to the sampling frequency of the matched CCCgg; chart. With increasing m, (d;
- d,) also increases. Hence, the efficiency of the matched CCCys; chart becomes more
significant. However, since the CCC chart is particularly suitable for high-quality
processes with very low nonconforming rate p, m cannot be too large. Meanwhile,
when determining the value of m, as well as d;, other factors, e.g. the maximum
amount of time that is allowed for the process to run without sampling, should be taken

into consideration.

Table 6.4 Sampling Interval Lengths (d;, d>) for the CCCyg; Charts with Different
Matched Sampling Interval Lengths m for the CCCggs; Charts

m 1 2 3 4 5 6 7 8 9 10
d 1 15 167 175 1.8 1.83 1.86 1.88 1.89 1.90
d 1 05 033 025 02 0.17 0.14 0.13 0.11 0.10

Step 5: Evaluate the efficiency of CCCysg; charts
All the design parameters of the CCCyg; chart can be determined following the four

steps mentioned above. Given the shifted nonconforming rate p’, the probability (g;’,

q>’) that a point falls into each region can be calculated using equation (6.14), and
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then the improvement factor / can be calculated using equation (6.13), which can be

used to evaluate the efficiency of the CCCysg; chart.

Note that because the geometric distribution is discrete, the equation ¢;=¢,=...= g,
may not be rigorously satisfied. However, given that py is very small, the formulas

above are accurate enough for a good design.

6.5.1 Charting Procedures of a CCCyg; Chart

After determining all the design parameters following the five steps mentioned above,
the CCCysp chart 1s ready for process monitoring. Figure 6.5 presents the charting and
decision making procedures for the CCCys; chart. To protect against problems that
may arise when the process starts up, the initial sampling interval length is set to be the
shortest interval d,. The charting procedure is same as for the traditional CCC chart
except that the sampling interval length varies with the position of preceding point
plotted. Therefore, the users have to determine the sampling interval length for plotting

X;, according to the region in which X;; has fallen in.

6.5.2 An Example

To illustrate the design method of a CCCyg; chart, an example with simulated data is
discussed in this section. Table 6.5 shows a set of randomly generated data that follow

the geometric distribution with nonconforming rate p,=0.0005.

Let false alarm rate 0=0.0027. Using formula (6.2), we get UCL= 13212, LCL=2. Let

q:/= q2= (1-a)/2 = 0.49865, we obtain the interval limit IL,= 1385 using equation (6.5).
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Given that the sampling frequency for the CCCrg; chart is one sample every five items,

we set d,=0.2, and the corresponding d;=1.8. The CCCysg; chart is shown in Figure 6.6.

Determine Design
Parameters for CCCvsi Chart

v

Calculate the control limits
UCL, IL1,IL2,...IL n-1, LCL

I«

v

Set initial sampling interval
length=dn

Wait a time dj and inspect
an item; Q=Q+1

v

Is the item
conforming?

Set sampling
interval= dj
A

Yes Take Corrective

Action

(i, Q) falls in
region /;? i =i+ 1, Plot (i, Q)

A
:

Q>UCL or
Q<LCL?

Has p
changed?

Stop the process
and look for
assignable causes

Figure 6.5 Charting procedures and decision rules for the CCCysg; chart.

Table 6.6 shows the improvement factors / when different amount of shifts in the
nonconforming rate p’ occurs. The results shows that when p’ increases to 0.001, the

ATS of the CCCyg; chart is only 60.09% of that of the matched CCCpsg; chart.
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Table 6.5 A set of data from geometric distribution with nonconforming rate

IL1

Pp0=0.0005
TR T
1 102 11 970 21 5696 31 8361 41 353
2 2928 12 466 22 2082 32 583 42 7858
3 998 13 162 23 413 33 1618 43 767
4 1442 14 606 24 9235 34 141 44 1937
5 230 15 3470 25 3947 35 1526 45 368
6 543 16 1803 26 3190 36 1741 46 1374
7 1568 17 133 27 3230 37 333 47 686
8 7977 18 173 28 1008 38 1287 48 1692
9 393 19 1781 29 2601 39 3191 49 2376
10 1620 20 224 30 3229 40 794 50 3324
CCCvsi Chart
100000 +
10000 +— — T T T T T T /\_‘\ ________
- / “\//\V’\/v\/\v /\V,\/ﬁvA\/Avav/ ,
— — ucL

Count of Cumulative Conforming ltem

100 -

10 +

— - -LCL

20 30

Defect Sequence

Figure 6.6 An example of the CCCys; chart
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Table 6.6 Improvement factors I with different p’ values

p' 0.0005 0.00055 0.0006 0.00065 0.0007 0.00075
1 1 0.9469 0.8972 0.8507 0.8073  0.7667
p' 0.00075 0.0008 0.00085 0.0009 0.00095 0.001

I 0.7667 0.7288  0.6935 0.6605 0.6297 0.6009

6.6 Conclusions

From the analysis above, it can be seen that compared with the CCCpg; chart, the
CCCysg chart can detect increase in the nonconforming rate more quickly, and thus
reduce the average count of nonconforming items of the process. The greater the
increase in the nonconforming rate, the greater the improvement in the CCCysg; chart
performance relative to the performance of the matched CCCpg; chart with equal in-
control ATS. On the other hand, when the amount of nonconforming rate shift p’
remains constant, the efficiency of CCCysg; charts can be enhanced by increasing the
difference of interval lengths (d; - d2). When designing a CCCysg; chart, the number of
sampling intervals n is suggested to be two, and the discrete uniform probability

distribution ¢;=¢,=...= ¢, 1s recommended to be used.

Since in practical applications, people are more concerned about the process
deterioration rather than improvement, this CCCyg; chart is designed to detect the
increase of process nonconforming rate. In the case that process improvement is the
major concern, the design method of a CCCysg; chart is similar to the scheme presented
above, except that a shorter sampling interval should be chosen when the
nonconforming rate decreases and a longer sampling interval is to be used when it

Increases.
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Chapter 7 Sampling CCC Chart with Random Shift

Model and Implementation Issues

7.1 Introduction

CCC chart is originally designed under full inspection plan in order to detect the
process shifts as fast as possible (Bourke,1991). It is convenient for implementation
when the inspection is done by machines and the inspection results can be
automatically saved in computers or database. However, even in highly-automated
manufacturing industry, manual inspections are still in use for some processes due to
the limitation of technology or facility. In this case, sampling methods can help to
minimize the inspector’s work as well as inspection cost. Therefore, it is necessary to
investigate the design and performance of CCC chart with sampling inspection so as to

provide some guidance for engineers when the full inspection cannot be applied.

The adaptive sampling plan, i.e., the CCC chart with variable sampling intervals, has
been studied in Chapter 6. In this chapter, sampling CCC chart with random-shift
model will be discussed. The commonly used method for evaluating the performance
of a TBE control chart has implicitly assumed that the process shift occurs exactly
when the events happen, say, a nonconforming item was found. This is called the
“fixed-shift” model in Wu & Spedding (1999). However, in practical situations, the
process shift may occur anytime during the process, not only when an event happens,
and this phenomenon can be modeled with a more realistic model, namely, the

“random-shifted” model (see Wu & Spedding, 1999).
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The rest of this chapter is organized as follows. Section 7.2 discusses the minimum
sample size required for the estimation of fraction nonconforming p. The calculation
method of Average Number of items Inspected (ANI) with sampling plan based on
random-shift model is presented in Section 7.3, together with the selection of sampling
frequency based on the specified Average Time to Signal (ATS) value. In Section 7.4 a
case study on the implementation of CCC chart is presented, some practical issues are
discussed and a prototype experiment was carried out to verify the effectiveness of
proposed methods in practical applications. The case study was done with a
semiconductor manufacturing company in Singapore to improve the effectiveness of

CCC chart for the monitoring of automatic testing process.

7.2 Estimation of Fraction of Nonconforming (FNC)

Assume that the inspection of each item can be modeled as a sequence of Bernoulli

trials, and thus the number of nonconforming items x in each sample (sample size=n)
follows binomial distribution with probability mass function:
n RS n—x

S(x)=P{X =x}= X Py (1= py) (7.1)

Here the value of fraction of nonconforming p, is usually estimated from observed

process data. A traditional approach is to simply divide the total number of

nonconforming items by the total number of items inspected i.e.

k k
Po=2.1/D.m, (7.2)
1 i=1

i=
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where £ is the total number of samples taken, #; is the sample size of the iy sample, and

ri is the number of nonconforming items in the ith sample.

However, this formula may become meaningless when the number of nonconforming
items in samples is always zero. This may frequently occur when the fraction
nonconforming py is very low at ppm or even ppb levels and the sample size is not

large enough.

A possible alternative is to estimate the fraction nonconforming based on binomial
distribution. Assume that a sample of size n was taken and » nonconforming items
were found. If additional sampling with same sample size is taken, the process would
produce no more than » nonconforming items with 50% chance; and more than r
nonconforming items with 50% probability as well. The reason why the probability 0.5
is chosen is that n could be a good estimation of minimum sample size required in the
sense that it creates at least 50% opportunity for observing » nonconforming items in

the additional sample rather than less than » or even zero nonconforming items..

Based on this assumption, the estimation of py can be achieved by solving the

following equation:

" (n ; .
( .jpol(l_po)nl =0.5 (7.3)
i=0 \ !

The relationship between sample size, and the probability that zero-defect may be

found within a sample can be derived from formula (7.1), i.e.
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In(0.5)

) 74

n
uﬂ®=[épﬁﬂ—pw”=ﬂ—pw“jn=
Figure 7.1 provides a curve of the minimum sample size that is required to get zero-
defect and non-zero-defects in a sample with same probability (=0.5). Some detailed
values of sample size n can be found in Table 7.1, where Categories A, B, C, and D
were grouped according to four ranges of the process fraction nonconforming average

normally used in practice.

90000 -
80000 -
70000 -
60000 -
50000 -
40000 -
30000 - |B

20000 - C D

sample size n

10000 -

O T T T T ! T 1
0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

fraction of nonconforming p

Figure 7.1 Sample size n with different fraction nonconforming levels py

Table 7.1 Some sample size n values with different fraction nonconforming levels py

Category A Category D
Category B (20-100ppm) Category C (100-1000ppm)
(<20ppm) (>1000ppm)
p(ppm) 20 40 60 100 200 500 1000 1200
n 34657.01 1732833 11552.11 6931.13 3465.39 1385.95 692.80 577.28
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Based on the analysis above, the following procedures are suggested for setting up a

CCC chart:

Step 1: Estimate the process fraction nonconforming according to historical data or

experience;

Step 2: Find a proper sample size n that is corresponding to the estimated py, based on

values suggested in Figure 7.1 or Table 7.1;

Step 3: Do the sampling inspection, and get the number of nonconforming items r

within the sample;

Step 4: Determine the estimation of process fraction nonconforming py using formula

(7.3)

Step 5: Set up the CCC chart using the estimated value pg. The control limits can be
calculated by formula (2.3). If they are not integer values, the UCL can be rounded
down and LCL rounded up to an integer as shown in formula (2.4). An out-of-control

signal will be raised when CCC is above UCL or below LCL.

7.3 Sampling CCC with Random-shift Model

ARL is the most frequently used criterion to measure the performance of a control
chart. However, since the number of items inspected to plot every point is different for
CCC chart, ANI, which is defined as the expected value of the number of items
inspected until an out-of-control signal occurs, would be a better measurement to

evaluate the performance of a CCC chart. An effective CCC chart should have a large
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in-control ANI value to keep the false alarm rate to an acceptable level, and a small
out-of-control ANI so that shifts in process fraction nonconforming can be detected in

a short time.

The ANI of a CCC chart based on fixed-shift model may be calculated with equation

(7.5) and the in-control ARL and out-of-control ARL’ can be expressed as formula

(7.6).
& ARL X
ANI , =E(S)= E(Z XZ.J =E(R)E(X,)= — (7.5)
i=1
ARL, =
fix a ’ (76)
, 1 1
ARL'y, = 2 1+ gU% — gttt
where g =1- p.

It is worth noting that formulas (7.5) and (7.6) are derived based on the fixed-shift
model assumption, i.e., that the fraction nonconforming shifts immediately after a
nonconforming item and will not occur in the middle of a run length while conforming
items are accumulated. That is to say the shift will directly cause a nonconforming
immediately without any delay of the cumulative effect. From a practical point of view,
especially when py is very small and the CCC is always large, this assumption will be
too restrictive and cannot represent the real process accurately. Wu & Spedding (1999)
discussed this issue and derived a set of accurate formulas for the random-shift model

of CCC chart with full (100%) inspection, where a shift may occur at any time
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between two nonconforming units. The random-shift model ANI can be calculated

with formulas (7.7) and (7.8).

ANI,, = E{iﬁ ANI (i—Gﬂ (7.7)
" qlp "

G=Gl+G2+G3

LCL-1
_rcr- q q
Gl = Q(l q )+(q(I)JCL+l _qéCL)X 0 0
90
LcL UCL-LCL+1
q(()/CLH(C]J 1_(Qj (7.8)
qo 99

o)

G2 =

UCL+1

For the random-shift model with 100% inspection, the shift may occur at a
nonconforming item with probability pg, and occur at a conforming item with
probability go=1-po, where a cross-over CCC including two geometric random
variables with fraction of nonconforming py and p;, respectively, will be observed.
Correspondingly, the observed CCC data before and after a shift can be either of the
following two cases:(i) A series of conforming counts produced by a process with
fraction of nonconforming p=p,, followed by a series of conforming counts from a
process with p=p;; (ii) A series of conforming counts produced by a process with
fraction of nonconforming p=p,, followed immediately by a cross-over count of

conforming, and then a series of conforming counts from a process with p=p,. For easy
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referring, the CCC data generated in case (1) is named as CCC-single, and for case(ii),

namely CCC-crossover.

In most sampling plans, the inspection process may have periods of inspection of n
contiguous items, alternating with periods of non-inspection, with an overall sampling
fraction at certain stable level, say f. f indicates the percentage of number of items
sampled within the total number of items produced throughout the process. Under
sampling inspection, there will be four situations for generating CCC data. Table 7.2
lists the types of CCC data and the probability of each situation corresponding to the

four situations.

Table 7.2 Four situations for generating CCC data under sampling plans

Shift occur at a Shift occur at a
nonconforming item  conforming item

The shift item is CCC-single CCC-crossover
sampled S py f-(1-p,)

The shift item is CCC-crossover CCC-crossover

not sampled (1=1)p, (1-7)-(-p,)

As can be seen from Table 7.2, under sampling plans, since the shift of p may occur
during the non-inspection period, the probability of CCC-crossover will increase
compared with that of the 100% inspection (1-pg). Therefore, formulas (7.7) and (7.8)

have to be modified when calculating the ANI with sampling plans.

The ANI with 100% inspection can be expressed as:
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ANI = p-ANI ;, +(1- p)- ANI (7.9)

Therefore, the ANI,,, which stands for the ANI based on random-shift model can be

derived from equations (7.7) and (7.9):
1|1 p
ANI,,, =—| —+ANI ;| ¢——-G (7.10)
q

Based on the probability provided in Table 7.2, the overall ANI under sampling plan

can be calculated with:

Gpll - fp 1-jp
ANIsampling:.fpoAN[ﬁx +(1_ﬁO)AN[ran :{I_M ANIﬁx + 0 (711)
q pq
The ATS can then be estimated with
ANI ANI
ATS =——, [ = (7.12)
m-f ATS -m

where m is the average number of items produced per day. A proper sampling fraction

fcan be chosen based on the required ANI and ATS values according to formula (7.12).

In order to provide a more straightforward understanding on how the factors influence
ANI property, the ANI for fixed-shift model and random-shift model with sampling
plans are calculated with some representative process fraction nonconforming levels
and sampling frequency (Table 7.3). Figure 7.2 provides ANI curves of CCC chart
with full inspection and 50% inspection, respectively. The in-control fraction

nonconforming py=0.0002 (200ppm), and the out-of-control p varies from 0.0001 to
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0.05. The ANI achieved the maximum value when the process was in-control and

dropped sharply when p increased or decreased from p.

Table 7.3 The ANI values with some representative parameters (with a=0.0027)

Po f pi ANIﬁx ANIsampIing
0.1 0.0001 267725 258409

0.0004 1041918 1041604

0.001 167084 167802

0.002 41875 42313

0.5 0.0001 267725 258409

0.0004 1041918 1041604

0.0002 0.001 167084 167802
0.002 41875 42313

1 0.0001 267725 258410

0.0004 1041918 1041605

0.001 167084 167802

0.002 41875 42313

0.1 0.00025 107335 103588

0.001 499796 499446

0.0025 80100 80365

0.005 20050 20221

0.5 0.00025 107335 103589

0.001 499796 499446

0.0005 0.0025 80100 80365
0.005 20050 20221

1 0.00025 107335 103590

0.001 499796 499446

0.0025 80100 80365

0.005 20050 20221

0.1  0.0005 53649 51777

0.002 249774 249599

0.005 40000 40133

0.01 10000 10086

0.5 0.0005 53649 51777

0.001 0.002 249774 249599
0.005 40000 40133

0.01 10000 10086

1 0.0005 53649 51778

0.002 249774 249600

0.005 40000 40133

0.01 10000 10086
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1.E+07 ANI

1.E+06

—e— ANI sampling
1.E+05 - ---m--- ANl full

1.E+04 -

1.E+03 -

1.E+02 -

1.E+01 -

1.E+00 : ‘ ‘ ‘ : Y
0 0.01 0.02 0.03 0.04 0.05 0.06

Figure 7.2 The ANI curves with full and sampling inspection

From Table 7.3 and Figure 7.2, it can be found that the sampling frequency f has slight
influence on the ANI value. This can be attributed to the memoryless property of
geometric distribution and the very small value of p, which reduce the effect of / on
ANImpling Value as can be seen from formula (7.11). However, it is worth noting that
although the sampling frequency f does not influence the average number of items
inspected (ANI) until a signal arises much, when the production frequency is stable,
smaller sampling fraction f will lead to a longer data collection time, which may in turn
increase the ATS of the CCC chart. Therefore, it may also cause a delay of signaling a

shift if the sampling frequency is very low.

It can also be observed from Table 7.3 that the use of random-shift model does affect
the ANI value compared with the fixed-shift model. The reason for this could also be
due to the low fraction nonconforming level, which leads to a long run length between
two successive nonconforming items, and a larger possibility of process shifts in

between.
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7.4 Implementation of the CCC Chart: A Case Study

A case study was done by looking at the Automatic Test Equipment (ATE) process,
where the Cumulative Count of Conforming (CCC) chart is used with visual inspection
data. The operation procedures and data collection process were reviewed. Some
implementation problems were analyzed and possible improvements methods were
proposed. A prototype experiment was done on one ATE handler (SUM31/NPTO03) for
three consecutive weeks, and results show that the proposed inspection scheme can

improve the effectiveness of the CCC chart currently in use.

7.4.1 Review of the processes

The ATE is employed for the initial class test. Two types of test are conducted in this
step: electronic test and mechanical test. The electronic test is to test the performance
of the chips, and the mechanical test is to check whether there is any reject (e.g.
bending, chipping, appearance, etc.) caused during the process of moving due to the
handler setting. Before doing the electronic test, the chips are moved by a handler from
outside to the test equipment. After testing, there will be a mechanical test by visual
inspection to check whether the chips have any problem caused by the handler. Figure

7.3 shows the detailed testing procedures.
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Figure 7.3 Flowchart for the testing procedures

As for the mechanical testing, the visual inspection is done 100% or by sampling,
depending on the product. For those types of products with high requirement on
quality, full inspection (100%) will be done. For the sampling process, the visual
inspection is done for every new lot or when the operator shifts. The current sample
size is 2 trays with 24 chips. It is worth noting that before the new lot is tested; a trial
model instead of the real products will be put in the machine and run, to make sure the

setting of the handler is fine. If everything is fine, the real products will be put into the
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machines and run. If any rejection occurs, the machine will be re-set by the

technicians. The sampling procedures are shown in Figure 7.4.

1.New lot comes or
shift occurs

'

2.Check/change the
machine setting

'

3.Pre-production run
with a model

All products pass the
electronic and
mechanical tests

10. Any defects?

4.Any defects?

T

9.Take a sample of 2
trays (24 chips) and do
visual inspection 5.Start run/test the
4 real products

7. Record the

8. Keep running until 6.Take a sample of 2 results in the

» the stack of trays are full |« trays (24 chips) and computers for

or out from the ATE do visual inspection generating the
CCC chart

Figure 7.4 Flowchart for sampling procedures

The CCC chart is used to monitor the number of conforming chips between successive
nonconforming chips, which in turn indicates the setting of the handler. The CCC chart
is supposed to detect any setting problem of the handler within a short period of time
to avoid more nonconforming from arising. There are around 50 ATE machines, and a

separate CCC chart for each individual machine/handler.

155



Chapter 7 Sampling CCC chart with Random Shift Model and Implementation Issues

The control limits (UCL and LCL) of the CCC chart are calculated based on the

estimated process fraction of nonconforming (FNC) p according to the formula

(r+0.7)
n

EstPbar.(ppm) = -1,000,000 (7.13)

where n is the sample size, and 7 is the number of nonconforming in the sample

(Calvin,1983).
The control limits of CCC chart are calculated by the formulas
_ a\_ _[(a
CL=0.7n;LCL = [EJH;UCL =-n h{?j (7.14)

where 7 =1/p is the expected average number of units that have to be inspected

before finding a nonconforming unit, and o is the false alarm rate. When the actual
CCC from sampling data goes beyond the UCL, the p will be estimated again with the

recent data, and the UCL and LCL will be updated to a new value.

7.4.2 Existing problems of implementation

Some problems are observed from current implementation of CCC chart for the ATE

Processces:

o The cumulative count of conforming may keep on hitting the UCL of CCC chart,

and the control limits were revised again and again, without an end;

. No nonconforming was found throughout the whole process for quite a long time;
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« Should the user combine all data from different ATE machines, or use individual

CCC chart for each machine?

« Different handlers may have different nonconforming rate p. How to balance the

ppm level among all handlers?

7.4.3 Cause-and-effect analysis

A cause-and-effect analysis is conducted to isolate the potential causes that affect the

effectiveness of CCC chart. Figure 7.5 is the cause-and-effect (fishbone) diagram.

Machinelhandler‘ ‘Sampling scheme‘ ‘Chart design

. L e Estimation of p
Utilization Sampling fraction

Sample size N False alarm rate

shift frequency Sampling interval \,____control limits calculation

Operator shift Effectiveness of
CCC chart for

Different machine Data input Take conforming ATS processes
formi
Different operator error as "°"°°<<°"“'"9
Different kind of defects « /4 Inspection error

Different lot Take nonconforming
as conforming

Data grouping‘ ‘ Operator

Figure 7.5 The cause-and-effect diagram for the effectiveness of CCC chart

From the cause-and-effect diagram, some influence factors and possible improvements

can be found as elaborated in the following. The bold and italic characters indicate the

factors shown in the cause-and-effect diagram.
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7.4.3.1 Chart design
The estimation of p is made based on historical data; it is important to collect more
data under the same or at least similar conditions, e.g. the type of machine, kind of

chips, etc.

The acceptable false alarm a is chosen so that it will not cause too many false alarms
(if it is too large); while the CCC chart can maintain its sensitivity on small process
shifts (detect the p-bar change in a short period of time). Usually, 0.0027 is used to
keep consistent to traditional Shewhart charts, or a little larger value can be chosen to
be strict with the monitoring since the process quality is quite high, and any delay on

signal of undesired shift may lead to great cost.

Control limits can be calculated with formulas (2.3) or (2.4) for a more accurate result.

7.4.3.2 Sampling scheme

Study shows that sampling fraction has slight effect on the Average Number of Items
Inspected (ANI) until a signal occurs for a certain shift. However, when the production
rate is rather constant/stable, it will take a longer time to detect the shift if sampling
fraction is small. Therefore, we encourage enlarging the sampling fraction to a certain

acceptable level while taking into consideration of the inspection cost, manpower, etc.

Sample size may influence the accuracy of the estimation of p for initial set-up of the

CCC chart. Also larger sample size is preferred to a smaller one.
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Sampling interval can be adjusted based on the status of the process. A general
guideline is to have a larger sampling interval when the process is running well, and

take a smaller sampling interval when any indication of process deterioration appears.

7.4.3.3 Operator

Operator plays a very important role in the implementation of any control chart. For
CCC chart, two possible kinds of inspection error may occur: to take a nonconforming
one as conforming, or take a conforming one as nonconforming. Data input error may
also happen occasionally or even purposely. Training may be helpful to reduce such
kind of error by operators. On the other hand, if the error can be well-estimated with
certain probability, the design of control chart may also be changed by a certain

adjustment factor to compensate the error following the method reviewed in Chapter 2.

7.4.3.4 Data grouping

If the purpose of employing a CCC chart for the ATE handler is to detect any problem
caused by the handler, then a separate CCC chart would be recommended as it may
focus on detecting the system variation of certain handler instead of all handlers at the
same time, with one single control chart. Therefore, data from different ATE

machines are suggested to be separated.

Data from the same ATE handler with different lots, operator, and type of defects can

be put together if these factors will not cause big variance on the level of p.
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7.4.3.5 Machine/handler

Machine utilization need to be balanced and optimized to reduce the variation of the

process caused by different lots, operator, and type of defects, etc. Also, the less

frequent shift of product or the operator, the more stable the process will be.

From the investigation of the process, we also notice that one important factor that

leads to the poor effectiveness of the CCC chart is the data collection. In many cases,

the data of the CCC chart is not fully captured. Some improvement ways are suggested

as follows:

During the inspection, no matter full inspection or sampling inspection, all the
nonconforming data need to be recorded. This can be done by design of certain

paper-based forms if it cannot be implemented with computer at this stage.

For the sampling process, if a pre-production model is used to check the setting
of the handler, the sampling inspection can be done some time later after the
real product starts running, instead of taking samples just after the trial. The
time interval that the operator has to wait to take the first sample can be

decided based on past data and experience.

Not every nonconforming/rejects from visual inspection means the process is
out-of-control and the machine setting has to be adjusted. Too many adjustment
of machine setting may cause more problems. Control chart is a way to help

engineers to check whether and when the machines really need adjustment.
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7.4.4 Prototype experiment

A prototype experiment was done on the handler SUM31/NPTO03 for three consecutive
weeks in November 2005 following the improvement suggestions. The cumulative
number of conforming items were recorded when the next non-conforming item was
found or the machine restarts due to undock or device failure. The sampling fraction is

2 out of 5 trays, i.e. 40%. The raw data from production engineers are shown in Table

7.4.

From Table 7.4, the total number of rejections is 6, and total number of sampling items
is 6756 (total number of insertions x sampling fraction). The process FNC level can be

estimated using formula (7.13)

EstPbar.(ppm) = x10° =992 ppm

(r+0.7) 11,000,000 = 6+0.7
n 6756

Therefore, the control limits can be calculated by formula (2.3). Figure 7.6 presents the
CCC chart with data listed in Table 7.4. In the CCC chart, the dotted lines represent the
UCL and LCL calculated based on 3-sigma control limits (false alarm =0.0027), the
dashed lines show the UCL and LCL with 2-sigma limits (false alarm =0.0455) , and
the solid lines denote the 1 sigma limits with false alarm ¢=0.3173. From the CCC
chart, it can be seen that no out-of-control signal appears during this period, and the
process is stable. On the other hand, following the old data collection methods, none
rejects can be shown in the CCC chart and the cumulative number of conforming items
keeps on increasing, which may give a wrong indication that the process is improving

all the way.
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Table 7.4 The raw data from handler SUM31/NPT03

No . No ?f No (,)f M Remark Badge no/Shift
insertions rejects
1 0 0 Start 311829/E
2 3509 0 Undock; failed device 324819/B
3 3048 0 Undock; failed device 324713/A
4 3747 0 Undock; failed device 324713/A
5 1406 1 Bent lead due to device drop  427884/C
6 1143 2 Bent lead 427884/C
7 223 3 Bent lead due to input gantry 427884/C
8 54 0 Undock 427884/C
9 3516 0 Undock 427884/C
10 243 0 Undock 323956/C
10000 -
----------------------------------- 3 sigma UCL
2 sigma UCL
1 sigma UCL
1000 -
CL
1sigma LCL
100
2 sigma LCL
10 |
P e lediietiolilietieliliefieliietietiolietietiolielietiotiulietielilietielilielietilialietie 3sigma LCL
0 1 2 3 4 5 6 7 8 9 10

Figure 7.6 The CCC chart for handler SUM31/NPT03
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7.5 Conclusions

In this chapter, the CCC chart with sampling plan based on random-shift model is
discussed. The results indicate that the sampling frequency f does not influence ANI
much, especially when the process FNC is low. However, smaller sampling fractions f
will increase the ATS of the CCC chart, and thus may cause a delay in signaling a shift

if the sampling frequency is very low.

The case study on the implementation of CCC chart does reveal some problems which
may not be serious issues from the research point of view, but does affect the
effectiveness of the TBE chart for practical applications. On the other hand, it also
revealed that the TBE chart can be very useful for the monitoring of high-quality
processes, and the CQC and CCC charts attract engineers’ interests because of their

simplicity for application.
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Chapter 8 EWMA Chart for Weibull-distributed

Time Between Events

8.1 Introduction

It has been pointed out in Chapter 2 that most of the current studies on TBE charts are
based on the assumption that the occurrence of events can be modeled by a
homogeneous Poisson process, and thus the time between two successive events
follows exponential distribution. However, the assumption is true only when the events
occurrence rate is constant, and thus may limit the application scope of TBE charts. A
possible extension is to use Weibull distribution to simulate various TBE situations
(including exponential) with non-constant events occurrence rate by varying its scale
and shape parameters. This is especially useful in reliability monitoring, where events

occurrence rate is rarely constant due to the aging property.

A detailed literature survey on the monitoring of Weibull-distributed TBE data can be
found in Section 2.2.5. Earlier studies focus on Shewhart control charts (e.g. Nelson,
1979; Ramalhoto and Morais, 1999), and then control charts based on probability,
namely, t-chart was proposed by Xie et al.(2002b). The performance of t-chart shows
that when the shape parameter shifts from the original value, the chart can only detect
the decrease of shape parameter, and the increasing shift cannot be detected effectively.
The optimal design of CUSUM for Weibull data is limited to fixed shape parameter
and can only detect the shifts in scale parameter (Hawkins and Olwell, 1998). However,

there are few studies on EWMA for Weibull TBE data, especially on the method of
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detecting shifts in shape parameter. Zhang and Chen (2004) developed lower-sided and
upper-sided EWMA charts for detecting mean changes of censored Weibull lifetimes

with fixed censoring rate and shape parameter.

In this study the EWMA for complete Weibull data with known parameters is
investigated. A summary of parameter estimation methods for Weibull distribution

can be found in Murthy et al (2004).

8.2 The Weibull EWMA Chart

Let Xj, X5, ...denote a sequence of time between events data, which are independent

Weibull random variables with probability density function:

n-1 (xY
f(x)z%(%) e (HJ ,x>0,0>0,7>0 (8.1)

where 6 is the scale parameter and # is the shape parameter. The mean and variance

can be expressed as:

yz@-l“(HlJ, o’ :GZ{F(HEJ—FZ[HLH (8.2)
n n n

Define
Y=X" (8.3)

Then Y is also Weibull-distributed with scale parameter 8" and shape parameter 1 as an
exponential variable. Therefore, if the shape parameter 5 can be assumed to be a

constant, the monitoring of Weibull random variable can be easily done by
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transforming to exponential first using formula (8.3), and then following the design
method of exponential EWMA proposed in Gan (1998) or the method proposed in
Chapter 5. Otherwise, if the shape parameter # may also vary during the process, a

Weibull EWMA is needed to monitor the changes.

The statistic for two-sided Weibull EWMA is
Z,=ix,+0-1)z,, (8.4)

where /1 is the smoothing constant that satisfies 0 <4 <1. Usually the starting value is

set to be the process target, i.e. the mean of Weibull data,
Zy = H (8.5)

With this definition, it can be obtained that

EZ)= . Var(z,) =0, = [1-(1-2)"] (3.6)

(2-2)

Therefore, the UCL, CL and LCL for two-sided Weibull EWMA can be calculated by

UCL = u, + Ly, [Var(Z,)

CL = p, (8.7)
LCL =, — L, \Var(Z,

where the Ly and Ly are the design parameters which influence the width of the control
limits, and by convention, they are set to be equal, i.e. Ly = Lp. An out-of-control
signal will arise when X exceeds either UCL or LCL. Since the time between events is

always positive, the LCL will be set to be zero if the calculated LCL is less than zero.
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For large values of ¢, the variance of Z; will be approximately constant, and the upper

and lower asymptotic control limits /4y and 4 are given by

A
hy = py + Lyog | ——
(8.8)
h, =p,—L,o,

An out-of-control signal will arise when Z;< Ay or Z; > hy.

On the other hand, if the direction of the shift can be well predicted, the upper-sided or
lower-sided Weibull EWMA chart is recommended for use to detect an increase or
decrease in mean, respectively. The successive values of one-sided Weibull EWMA

can be described by

7V =max{4,(1-2,)Z", + 1, X, |

8.9
7 =min{B,(1-,)Z", + 2, X, ] (8.9)

against ¢ (¢ =1,2,3...), where Ay and Ay are smoothing constants such that 0<Ay<I,
0<Ar<1. Reflecting boundaries 4 and B are included to prevent the EWMA statistics
from drifting to one side indefinitely. The starting values are Zo" and Z," that satisfy

A< 7Y <hy and hi < Z," <B.

8.3 Calculation of ARL and ATS

The ARL properties of an EWMA scheme can be approximated using Markov Chain
approach similar to that described by Brook and Evans (1972). The continuous state
Markov chain is evaluated by discretizing the infinite-state transition probability

matrix.
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8.3.1 Two-sided Weibull EWMA

Consider a two-sided Weibull EWMA chart with design parameters 4, Ay and Ay, and
the interval between the lower and upper control limits (4r, Ay) is divided into m

subintervals of width w. w can be expressed as:
w=—"- (8.10)

The EWMA control statistics Z; is said to be in transient state (j) at time (7) if
hi Hw<Z< h +(j+1)w for j=0,1,...,m-1. The midpoint of the subinterval corresponding

to state (j) can be written as

m.=h, +(j+0.5)w,j=0,1,..m-1 (8.11)

J

The control statistics Z; is regarded as in the absorbing state m if the point goes outside

the control limits, i.e. Z;> hy or Z;<hy.

Let p;; represents the transition probability that the control statistics Z; goes from state
(i) to state (j) in one step. To approximate the probability, it is assumed that the
control statistics Z; is equal to m; whenever it is in state (7). This approximation is

accurate enough when the number of states m is large. Then p;; is given by

pU:P{hL +jws<Z, <h +(j+1Z, —m,}
= Pih, + jw< X, +(1=2)Z,, <h, +(j+)WZ,_, = m,}
=P{hL tpw (A Bt (e (1= A)m, },i=O,1,...m—1;j=0,1,...,m—1

A A
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{Z <horZ,>hy|Z, ., =m}
= { L <h|Z =m PRAX, (=22, > hy|Z,, = m,
= { )’" }+P{XZ>M}J=O,I,..M—I
=0,j=0,1 1
Bm =5 (8.12)
Pom =1

Based on the Markov chain theory, the expected first passage times from state (i) to the

absorbing state are
m-1
@, =1+ p,p,,i=01,...,m-1 (8.13)
J=0

@i is the ARL given that the process started in state (7). Let O be the matrix of
transition probabilities obtained by deleting the last row and column of P. The vector

of ARLs ¢ can be calculated with
=(I-0)"1 (8.14)

where 1 1s an mx1 vector of 1s and I is a mxm identity matrix. The elements in the
vector ¢ are the ARLs when the EWMA chart starts in various states. The first element
in the vector ¢ gives the average run length for the Weibull EWMA chart starting from
zero. Let the kth element be the ARL that the EWMA chart starts from k%, it can be

achieved by
k = {ZO—_hL} (8.15)
w

where [C] stands for the largest integer not greater than C.
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The ATS, defined as the expected value of total length of time to observe an out-of-
control point, can be calculated with Wald’s identity. Let S be the total amount of time

before an out-of-control signal occurs. It satisfies
S=> X, (8.16)

where R is the number of points plotted on the chart until an out-of-control signal

occurs. Then the ATS of Weibull EWMA can be obtained as

R

ATS = E(S) = E(ZXJ = E(R)E(X)=ARL- j3- F(l + 1] (8.17)
n

i=1

8.3.2 One-sided Weibull EWMA

The calculation method of ARL for one-sided Weibull EWMA chart is similar except

that the in-control interval and transition probability matrix will be somewhat different.

For upper-sided Weibull EWMA chart, the interval (4, hy) is divided into m

subintervals and the width wy can be expressed as:

m (8.18)

The EWMA control statistics Z" is said to be in transient state (7) at time (¢) if A+Hjwy
<ZV< A+(j+1)wy for j=0, 1,...,m-1. The midpoint of the subinterval corresponding to

state (j) can be written as

m = A+(j+05w,,j=0,,...m—1 (8.19)

J
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The control statistics ZtU is regarded as in the absorbing state m if ZtUz hy.

Let pU,-j represents the transition probability that the control statistics Z" goes from

state (7) to state (j) in one step. The pU,-j can be derived as

pY = Pla<ZY < d+wyzY, =miU}=P{}LUXt +(1=4,)27, < A+w |27, =m§f}

4 U
A+w, (12, )m] },iz(),l,,..m—l;jzo

=P X, <
{ ﬂ“U

Pz, = {A+]WUSZU<A+(]+1)WUZH—m }

= { A+ jwy <A X, +(1=2,)Z, < A+ (j+Dwy |27, =m!

_ {A+JWU U)mlU SXI<A+(J+1)WU ( ) ’U},i:O,l,,,,,m—l;j=1,...,m—1
Ay

plm {ZU mIU}:P{/IUXt—i_(l_/q’ )ZtUl - mlU}

_(1_ U
=P{Xt2h" (1 /IU)’"I' },izo,l,...m—l
Ay

U'=0,j=0,1,...m—1
P / (8.20)

For lower-sided Weibull EWMA chart, the interval (A4, B) is divided into m

subintervals with width wy.

(8.21)

Similarly, the Weibull EWMA control statistics Z" is said to be in transient state (j) at
time (7) if B—(j+1)wL <Z!'<B-jw, for j=0,1,...,m-1. The midpoint of the

subinterval corresponding to state (j) can be written as

m! =B—(j+0.5)w,,j=0]l...m-1 (8.22)
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The control statistics Z" is regarded as in the absorbing state m if Z" < .

The elements pL,-j of transition probability matrix of Markov chain can be derived as

pL =P{B—WL <z! <8z}, =mf}=P{/1LXt +(1-4,)zt, > B-w,|Zt, =mf}
L

=P Xt>B_WL_(1_’1L)’"f i=0L.m-1;=0

/lL
p;=P{B—(j+1)wL<ZfsB—ij L_=m.L}
=P{B—(j+1)wL<,1LX,+(1—,1L) <B-jw,|Z :mf}

. L . L

:P{B_(/+1)WL_(1_’1L)mf <X[£B_]WL_( A, }izO,l,...,m—l;j:1,...,m—1

A A

ZtL—l :miL}:P{ﬂ“LXt +(1_/1L)ZzL—1 <h, ZtL—l :mzL}

L
:p{){ < hy _(I_AL)mi },i =0,1,.m-1

(8.23)

The ARL vector can then be calculated with formulae (8.13) and (8.14) after achieving

the transition probability matrix. The ATS can also be obtained by formula (8.17).

8.4 Design of Two-sided Weibull EWMA

Based on the calculation methods described above, the in-control ARL can be achieved
with known chart parameters 4, Ly, and L;, and Weibull distribution parameters 6, and
n. Compared to the design of exponential EWMA chart, Weibull EWMA is more
complicated since the in-control ARL not only varies with chart parameters A, Ly, and

Ly, but is also affected by the Weibull distribution parameters.

172



Chapter 8 Control Charts for Weibull-distributed TBE

As known from previous research on EWMA chart, the optimal design scheme would
have the particular combination of design parameters 4, Ly, and Ly so that the chart
will achieve the desired in-control ARL and have the shortest out-of-control ARL at
the specified shift level. The smoothing factor 4 is determined to be optimal at certain
out-of-control shift level and the control limits parameters Ly and L are selected to

achieve the specified in-control ARL.

Note that given the design parameters of Weibull EWMA, the in-control ARL is
affected only by the shape parameter #, and the scale parameter has no influence. This
can be proved using the calculation method shown in Section 8.3. Assuming control
chart design parameters A, Ly, and L; are fixed, and the in-control ARLs of Weibull
EWMA with various Weibull distributions are can be calculated. Therefore, to achieve
a certain in-control ARL, the chart design parameters A, Ly, and L; are determined by

the shape parameter #.

To make the design procedures simpler, the smoothing factor /4 is suggested to be 0.05,
0.10 or 0.20. This is reasonable as from former study on EWMA chart for normal data
(Lucas and Saccucci, 1990), EWMA for exponential (Gan, 1998), EWMA for Poisson
(Borror et al. 1998), Weibull EWMA for censored data (Zhang and Chen, 2004), or the
EWMA chart proposed in Chapter 5 of this thesis, there is a common result that values
of smoothing factor A in the interval [0.05, 0.25] works well in practice for small to

median shifts, and a smaller value of A is preferred to detect smaller shifts.

Therefore, for each value of smoothing factor 4 (0.05, 0.10 and 0.20), the in-control

ARLs are calculated given different combinations of control limits parameter L (Set
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Ly=L1=L) and shape parameter #. The detailed ARL values are listed in Appendix II.
Based on the results, the in-control ARL contour plots are drawn to facilitate the
design procedures (Figures 8.1, 8.2, 8.3, 8.4, 8.5, and 8.6). From the in-control ARL
study (Appendix II), it can be found that when shape parameter # is greater than 2, the
in-control ARL is very stable with only slight changes; in this case, the value of

control limits parameter L can be chosen according to the L value when #=2.

Hence, the design procedures of Weibull EWMA chart can be described as follows:

Step 1: Specify the desired in-control ARL, and estimate the out-of-control mean shift

(u1/u0) to be detected quickly;

Step 2: Choose a 4 value from 0.05, 0.10, or 0.20 according to the out-of-control mean

shift (11/uo). A smaller value of 4 is suggested for smaller process shifts;

Step 3: Obtain the corresponding L value according to the value of shape parameter 7

and the in-control ARL (using Figure 8.1~8.6);

Step 4: The entire ARL profile for the Weibull EWMA chart can be achieved using the
Markov chain approach described in Section 8.3. This can be used to evaluate the
performance of the chart and ensure that the chart provides sufficient protection

against other shifts.
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Figure 8.1 The in-control ARL contour plot of Weibull EWMA chart (4=0.05, shape
parameter 0.2< < 1. Ly=L;=L)
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Figure 8.2 The in-control ARL contour plot of Weibull EWMA chart (41=0.05, shape
parameter 1< #<2. Ly=L;=L)
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Figure 8.3 The in-control ARL contour plot of Weibull EWMA chart (1=0.1, shape
parameter 0.2<y< 1. Ly=L1=L)
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Figure 8.4 The in-control ARL contour plot of Weibull EWMA chart (4=0.1, shape
parameter 1< #<2. Ly=L;=L)
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Figure 8.5 The in-control ARL contour plot of Weibull EWMA chart (1=0.2, shape
parameter 0.2<y< 1. Ly=L1=L)
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Figure 8.6 The in-control ARL contour plot of Weibull EWMA chart (1=0.2, shape
parameter 1< #<2. Ly=L;=L)
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A major difficulty in the design of the Weibull EWMA chart is that Weibull
distribution contains two parameters and a shift in any of them may cause an out-of-
control signal. Former studies on Weibull CUSUM and Weibull EWMA with censored
data are all based on the assumption that the shape parameter is fixed at certain level. It
is somewhat reasonable since the scale parameter is usually related to operating
condition and is likely to change because of assignable causes. However, sometimes
the shape parameter may also change due to assignable causes. Since the fixed shape
parameter Weibull variable can be easily transformed to an exponential variable using
formula (8.3), the existing exponential EWMA and exponential CUSUM can be

applied.

On the other hand, if only the shape parameter varies, most probably, the shape
parameter tends to increase along with time. This could be attributed to the nature
aging property from a practical point of view. In reliability engineering studies, most
time between failure data will have three main phases: the infant mortality phase, when
the sample is newly introduced and has a high failure rate; the constant failure rate
phase, when the product is stable and with low failures; followed by the wear-out
phase, when the failure rate is significantly increased. This kind of time between
events data can be modeled with a combined or extended Weibull distribution referred
to as bathtub shaped failure rate (BFR) distribution. During this process, the shape
parameter of the Weibull distributions is increasing from less than 1, equal to 1, to
finally greater than 1. According to the bathtub curve, the shape parameter of Weibull

TBE data is more likely to increase with time.
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As can be deduced from the formula (8.2), when the scale parameter is fixed, the shift

in mean (u1/uo) is determined by

g = (8.24)

As shown in Figure 8.7 and Table 8.1, a study on the relationship between shift in
mean and shift in shape parameter shows that when the shape parameter first increases
from a very small in-control value, say, 0.2 or 0.5, the mean of the Weibull variable
will decrease fast at the beginning. However, it tends to be stable when the out-of-
control shape parameter reaches 1.0 or 1.5. That is to say, when the out-of-control
shape parameter is greater than 1.0 or 1.5, the shift in shape parameter will have little
influence on the shift in mean, and therefore, the Weibull EWMA which monitors the
mean shift may not be able to detect the shift at that time. On the other hand, it can
detect the increase in shape parameter when it varies within the range (0, 2) in a short
time since the shift in mean is significant. However, when both shape and scale
parameter varies at the same time, the trend in mean may have various situations, and

it has to be studied case by case.
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Figure 8.7 The trend of mean shift when the shape parameter # varies

Table 8.1 The mean shift («1/uo) values when the shape parameter # varies

(70=0.2) (70=0.5) (70=0.8) (no=1)
ni M/ o ni M1/ to ni M1/ to ni M1/ to
0.2 1.0000 0.5 1.0000 0.8 1.0000 1 1.0000
0.3 0.0772 0.6 0.7523 0.9 0.9287 1.1 0.9649
0.4 0.0277 0.7 0.6329 1 0.8826 1.2 0.9407
0.5 0.0167 0.8 0.5665 1.1 0.8516 1.3 0.9236
0.6 0.0125 09 0.5261 1.2 0.8302 1.4 09114
0.7 0.0105 1 0.5000 1.3 0.8152 1.5 0.9027
0.8 0.0094 1.1 0.4825 1.4 0.8044 1.6 0.8966
0.9 0.0088 1.2 04703 1.5 0.7968 1.7 0.8922
1 0.0083 1.3 0.4618 1.6 0.7913 1.8 0.8893
1.1 0.0080 1.4 0.4557 1.7 0.7875 1.9 0.8874
1.2 0.0078 1.5 04514 1.8 0.7849 2 0.8862
1.3 0.0077 1.6 0.4483 1.9 0.7832 2.1 0.8857
1.4 0.0076 1.7 0.4461 2 0.7822 2.2 0.8856
1.5 0.0075 1.8 0.4446 2.1 0.7817 2.3 0.8859
1.6 0.0075 1.9 0.4437 2.2 0.7817 2.4 0.8865
1.7 0.0074 2 04431 2.3 0.7819 2.5 0.8873
1.8 0.0074 2.1 0.4428 2.4 0.7824 2.6 0.8882
1.9 0.0074 2.2 04428 2.5 0.7831 2.7 0.8893
2 0.0074 2.3 0.4430 2.6 0.7839 2.8 0.8905
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8.5 An Illustrative Example

Here is an illustrative example of the Weibull EWMA chart. Table 8.2 shows a set of
time between failures data for monitoring the reliability of a process. The first 20
observations are simulated following Weibull distribution with shape parameter =2
and scale parameter =10 hours. The next 20 observations were generated following
Weibull distribution with #=2 and 6=5 hours. A two-sided Weibull EWMA chart is
designed so that the in-control ARL=370 (A=0.10, Ly=L;=2.70). Figure 8.8 shows the
Weibull EWMA chart for the data in Table 8.2. An out-of-control alarm is raised from
the 33rd point, which indicates that the mean time to failure may have decreased.
Therefore, engineers need to check the process and try to find out the reasons for it so

as to further improve the reliability of the process.

Table 8.2 Time between failures (TBF) data for Weibull EWMA chart

Failure = TBF Failure @ TBF

No. (hours) EWMA UCL LCL No.  (hours) EWMA UCL LCL
8.37 6.31 6.85 5.33 21 1.13 6.69 7.82 4.35
3.25 6.01 7.11 5.06 22 6.05 6.63 7.82 4.35
4.43 5.85 7.28 4.89 23 3.53 6.32 7.82 4.35
6.62 5.93 7.40 4.77 24 4.25 6.11 7.83 4.35
4.48 5.78 749 4.68 25 1.70 5.67 7.83 4.35
6.44 5.85 7.56 4.61 26 2.61 5.36 7.83 4.35
10.36 6.30 7.62 4.55 27 4.43 5.27 7.83 4.34
11.13 6.78 7.66 4.51 28 5.99 5.34 7.83 4.34
10.37 7.14 7.69 4.48 29 2.22 5.03 7.83 4.34
7.92 7.22 7.72 4.45 30 3.50 4.88 7.83 4.34
5.65 7.06 7.74 4.43 31 3.48 4.74 7.83 4.34
10.83 7.44 7.76  4.41 32 2.41 4.50 7.83 4.34
4.20 7.11 7.77 4.40 33 1.43 4.20 7.83 4.34
7.52 7.16 7.78 4.39 34 2.75 4.05 7.83 4.34
9.97 7.44 7.79 4.38 35 4.59 4.11 7.83 4.34
5.94 7.29 7.80 4.37 36 4.75 4.17 7.83 4.34
7.77 7.34 7.81 4.37 37 1.29 3.88 7.83 4.34
9.00 7.50 7.81 4.36 38 1.47 3.64 7.83 4.34
6.04 7.36 7.81 4.36 39 4.72 3.75 7.83 4.34
6.90 7.31 7.82 435 40 1.68 3.54 7.83 4.34

v~ S~y l e e ~SIN-I- IS I- NV R SR VS S
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Figure 8.8 The two-sided EWMA chart for monitoring Weibull distributed time
between failures

Table 8.3 lists some ARL and ATS values for the Weibull EWMA chart in the

illustrative example (41=0.10, Ly=L;=2.70). The shape parameter is fixed at 2.0, and

scale parameter varies from 2 to 10. The in-control scale =10 hours, and in-control

ARL=370. Fig. 8.9 presents the ARL curve for the Weibull EWMA chart, from which

we can see that the Weibull EWMA chart is very sensitive to the scale parameter shifts.

The ATS value implies that the average time to an out-of-control alarm will be around

46 hours for detecting the scale parameter’s change from 10 hours to 5 hours.

Table 8.3 Some ARL and ATS values for the Weibull EWMA chart

Scale 0 2 5 6 8 8.5 9 10
ARL 534 1038 15.16 6494 120.67 249.19 370.84
ATS 947 4599 80.63 460.40 908.99 1987.51 3286.48
Scale 6 11 12 13 14 15 18 20
ARL 89.19 35.14 19.89 1355 10.24 5.98 4.74

ATS 869.48 373.76 229.12 168.14 136.14 95.40 84.07
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Figure 8.9 The ARL curve of the Weibull EWMA chart

8.6 Conclusions

In this chapter, an EWMA scheme for the monitoring of Weibull-distributed TBE data
is proposed, the calculation of ARL and ATS is discussed and the design procedures of
the chart are investigated. Weibull EWMA chart can be very effective for TBE

monitoring when the events occurrence rate is not constant.
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Chapter 9 Conclusions and Future Research

This study was motivated by the problems and deficiencies that existing control charts
encountered when monitoring high-quality processes. The aim of the study is to
explore the causes and effects of those problems and develop new control schemes that
make the monitoring of high-quality processes more efficient and economical. With a
focus on modeling and monitoring of time between events, this study investigated
some issues of existing control charting methods, and developed several new schemes
that enhanced the performance of existing methods. The results and methodologies
proposed in this study can be applied to not only manufacturing processes, but also
other areas such as reliability monitoring, maintenance or service industries. Served as
the end of the thesis, this chapter summarizes major contributions and significances of

this study; besides, some recommendations for future research are also presented.

9.1 Major Contributions

This study has investigated several topics on modeling and monitoring of TBE data.

There are especially six major contributions.

Firstly, a comparative study of some existing TBE charts was conducted, and the
performance of CQC chart, CQC-r chart, exponential EWMA and exponential
CUSUM charts were compared based on Average Time to Signal (ATS). These control
charts, although have been proposed by different researchers and shown to be effective

under their particular situations, may make the users more confused when several
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approaches are available. Using an unsuitable TBE chart may lead to lower efficiency
if not useless. The results of the comparative study in Chapter 3 provide useful
guidelines of how to choose an appropriate TBE chart in different situations. Based on
the comparison results, the method of on-line process monitoring with TBE charts has
been described and an example was given to illustrate its application in practice. The
findings in this study suggest that employing time-between-events charts, especially
the CQC and CQC-r charts, is an effective way for implementing on-line process

monitoring system.

Secondly, a new CUSUM chart with transformed exponential data is proposed.
CUSUM chart has been known to be very effective in detecting small and persistent
shifts because of its inherent ability of accumulating deviations for successive
observations. Using transformations before setting up control charts is not a new idea,
and it is strongly suggested by many researchers because of its ease of use property
and applicability to a wide range of data which are unnecessarily normally-distributed
as most of the control charts require. On the other hand, an undesirable feature of
control charts with transformed data is that points plotted on the chart may lose their
original meaning thus leading to difficulties for interpreting the results. However,
transformation will not induce such problems for the proposed CUSUM chart because
the CUSUM statistic is a recursive function and does not have as apparent meaning as
Shewhart control charts do. Results in Chapter 4 have shown that CUSUM charts with
transformed exponential data are effective in detecting shifts in mean of TBE. The
design and performance of CUSUM chart with transformed exponential data were
investigated. Different transformation methods such as Nelson’s method, Double

SQRT transformation, and log transformation were examined in order to find the most
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appropriate transformation method. The calculation method of ARL was derived and
the performance of the CUSUM chart was assessed. A comparative study on the
performance between the CUSUM chart with transformed exponential data and the X-
MR chart, the CQC chart and the exponential CUSUM chart was conducted,
respectively. Furthermore, the optimal design procedures of CUSUM chart with
transformed exponential data were proposed. This study provides another possible
alternative for monitoring TBE data with easy design procedures and relatively good

performance.

Thirdl, with similar motivation of CUSUM chart with transformed exponential data, a
new EWMA chart was proposed to monitor exponentially-distributed TBE data with
the help of transformation. Previous studies have shown that EWMA charts have
similar efficiency in detecting process shifts as CUSUM charts do. Moreover,
additional advantages of EWMA charts include the ability of predicting the process
level at the next time period, and the robustness to nonnormality. In Chapter 5, a new
EWMA scheme was proposed in which the TBE data are transformed to approximate
normal using the double square root (SQRT) transformation before applying EWMA
method. The ARL properties of EWMA chart with transformed exponential data were
investigated, based on which the control chart optimal design procedures were
developed. Subsequently, the performance of the EWMA chart with transformed
exponential data was compared to that of the X-MR chart, the CQC chart and the
exponential EWMA chart respectively. Moreover, the robustness of proposed EWMA
chart to Weibull-distributed TBE data was examined, followed by an example to

illustrate the design and application procedures. Results of this study show that the
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EWMA chart with transformed exponential data performs well in monitoring

exponentially-distributed TBE data.

Fourthly, a variable sampling interval CCC chart was proposed. The CCC chart was
shown to be useful for process monitoring in automated and discrete manufacturing.
Current design of CCC chart is based on fixed sampling interval scheme which
prevents the application of CCC chart to those processes where fixed sampling plan is
not convenient if not impossible. Moreover, fixed sampling schemes may lead to
longer detection time of assignable causes, more inspection effort or higher inspection
cost, which in turn lose interests from customers. In this study, the CCC chart with
variable sampling intervals was investigated. The ATS was calculated, and the
efficiency of variable sampling interval CCC chart was compared with that of fixed
sampling interval CCC chart. Based on the results from the comparative study, the
design procedures of variable sampling interval CCC chart were developed. It has been
proved in this study that the use of variable sampling interval scheme can further
enhance the cost effectiveness of CCC chart implementation from a practical point of

view.

Fifthly, the sampling CCC chart with random-shift model was studied which considers
a more realistic case where the shift may occur any time during the process. Previous
study on CCC chart relies on an implicit assumption that the process shifts occur just at
the moment when events happen, e.g. a nonconforming item was found. However, in
reality, the process shifts always randomly arise at any time between successive events,
rather than only happen together with an event in the meanwhile. In chapter 7,

sampling CCC chart with random-shift model was studied. The minimum sample size
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required for estimation of fraction nonconforming was derived; performance of
sampling CCC chart was evaluated; and the methods of selecting appropriate sampling
frequency were also presented. A case study was done in a semiconductor
manufacturing company in order to verify the proposed methods and to further
improve this research with consideration of practical implementation issues. Although
the research in this chapter looked at monitoring fraction of nonconforming in
manufacturing processes, the methods can be applied to monitoring events occurrence

rate for other processes as well.

Last but not the least, the TBE charts were extended to Weibull-distributed TBE data,
and thus can serve for more general situations where events occurrence rate varies
along with time. Existing TBE charts for exponentially-distributed data assume that
events occurrence rate is constant throughout the whole ‘life’ of monitoring. This is
only true when the process is stable with constant events occurrences rate, or lifetime
is relatively short and variability in events occurrence rate can be ignored. Actually,
processes with variable events occurrence rate are not rare in practice, and the
monitoring of those processes is of great interest for both researchers and users. The
Weibull distribution is recommended to model the time-between-events because of its
versatility in modelling a variety of events occurrence behaviors. In this study, a
Weibull EWMA chart was proposed to monitor TBE with increasing, decreasing, or
constant events occurrence rate. The performance of Weibull EWMA chart is
evaluated in terms of ARL and ATS, based on which the design procedures are
recommended. At the end, a simulated example is given to illustrate the design and

implementation of the chart.
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In this study, although motivated by some modelling and monitoring problems from
high-quality manufacturing processes, the results can also be used in more broad areas
such as service processes, traffic systems or even management processes to improve
their performance as long as it could fit in the model proposed. For example, the study
of time between customers arrival may help the hospital to optimize the service system
and shorten the waiting time. The time-between-events monitoring may also help to
detect some changes in a chemical reaction process. As the fourth coordinate other
than the traditional three-dimensional space, time becomes a very important measure
for many kinds of processes, and the time-between-events monitoring can be helpful in
the monitoring and control of those kinds of processes and helps to detect the process

shifts as fast as possible.

These control charting methods can be applied to most of the TBE data the users may
have from the practical processes. This study is conducted based on the exponential
and Weibull distributions. The real data may not be able to fit those distributions quite
well. In that case the performance of the control chartings schemes may not be so good
as the designed scheme with the assumed mathematical model. The robustness study in
chapter 5 proved that the EWMA chart with transformed TBE data still shows good

ability to monitor the process if the distribution of data is not quite far from the model.

Another limitation found during the process of case studies is that this study focused
on the design of control charts and starts from the stage where the data have been
collected already, and ends with the in-time alarms for any process shifts or changes.
In some cases, the real data may need to be processed before employing the control

charting procedures as proposed in the thesis to filter out the noise or useless
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information. Also, since the high-quality processes are often highly automated, after
the signal is found from the control charts, timely failure diagnosis and feedback
adjustment are also important to improve the overall performance of the monitoring

and control system.

9.2 Future Research

Although this thesis attempts to provide more comprehensive, efficient and effective
control charting methods for modeling and monitoring TBE data, there are still some

aspects that were not addressed yet, and deserve further explorations.

Firstly, it is interesting to investigate how the control charts perform when the data
actually departs from the original assumed distribution. The influence factors may
include the estimation error of process parameters, inspection error, etc. The proposed
control charts may need some modification or adjustment to compensate for the
deviations. On the other hand, the users may also consider using transformation

methods to help fit the data to a certain model developed.

Secondly, the performances of proposed control chart schemes in this study are
evaluated using the Average Run Length or Average Time to Signal. Further study on
confidence interval of the ARL and ATS values could be carried out by deriving run

length distribution of the control charts or running Monte Carlo simulation.

Thirdly, since the delay of feedback to the process may also lead to a big loss, timely
diagnosis and feedback adjustment are also quite important for the overall performance

of the system. Some studies have devoted to these issues with the help of Artificial
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Intelligence, Artificial Neural Network, Expert System techniques etc., and have
shown good effect to solve these problems. How to connect and integrate the control
charts monitoring system with the failure diagnosis and feedback adjustment is a

useful topic and deserves attention.

Finally, the TBE charts can be extended to multivariate variables, since in reality there
are always several events happening at the same time during the process, and the
events occurrence rate may be different or may also be correlated among all the events.
Therefore, a multivariate TBE chart can be used to analyze several TBE variables at
the same time, identify the relationships of different TBE variables, and thus control

the multivariable processes more effectively.
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Appendix I: In-control ARLs of EWMA Chart with Transformed

Exponential Data

Table A.1 the in-control ARLs of EWMA chart with transformed exponential data

(0< 4<0.07)

A
L 0.01 0.02 0.03 0.04 0.05 0.06 0.07
2 526.02 280.61 196.51 153.60 127.43 109.73 96.94
2.05 581.33 310.38 217.50 170.11 141.21 121.66 107.53
2.1 643.13 343.69  241.03 188.64 156.68 135.08 119.46
2.15 712.31 381.05 267.45 209.47 174.10 150.19 132.90
2.2 789.93 423.05 297.19 232095 193.75 167.26 148.11
2.25 877.19 47034  330.73 25946 21597 186.58 165.33
2.3 975.51 523.73 368.65 28947 241.16  208.50 184.89
2.35 1086.53 584.14 411.62 323.52 269.76 233.42 207.16
24 1212.17 652.63 460.41 362.24  302.33 261.84  232.57
245 1354.68 730.48 51596  406.38 339.51 29431 261.65
2.5 1516.70 819.17 579.34  456.81 382.04 331.50 294.98
2.55 1701.31 920.43 651.84 51458 430.82 37420 333.31
2.6 1912.16 1036.34 734.95 580.90 486.90  423.37 377.48
2.65 2153.54 1169.33 830.47 657.24  551.53  480.10 428.52
2.7  2430.52 1322.27  940.51 745.33 626.21 545.74  487.64
2.75 2749.12 1498.58 1067.60 847.21 712.72 621.87  556.30
2.8 3116.46 1702.34 1214.73 965.35 813.18 710.39  636.24
2.85 3541.02 1938.40 1385.50 1102.69 930.13 813.60 729.56
2.9 4032.89 2212.54 1584.19 1262.75 1066.63 934.23 838.78
2.95 4604.15 2531.70 181595 1449.75 1226.36 1075.59  966.96
3 5269.20 2904.19 2086.96 1668.80 1413.75 1241.68 1117.76
3.05 6045.35 3340.00 2404.66 1926.04 1634.16 1437.33 1295.66
3.1 6953.38 3851.17 2778.04 2228.89 1894.08 1668.40 1506.08
3.15 8018.30 445224 321798 2586.36 2201.39 1942.03 1755.64
32 9270.32  5160.78 3737.66 3009.41 2565.67 226692 2052.39
325 1074593 5998.11 4353.09 3511.33 2998.64 2653.69 2406.22
3.3 12489.36 6990.15 5083.79 4108.39 3514.57 3115.34 2829.24
335 1455434 816843 5953.56 482046 413098 3667.84 3336.35
34 17006.22 957146 6991.53 567190 4869.40 4330.85 394590
345 1992473 11246.35 8233.42 6692.65 5756.30 5128.60 4680.59
3.5 23407.33 13250.83 9723.10 7919.57 6824.36 6091.04 5568.52
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Table A.2 the in-control ARLs of EWMA chart with transformed exponential data

(0.07< 1< 0.30)

A
L 0.08 0.09 0.10 0.15 0.20 0.25 0.30
2 87.23 79.62 73.47 54.67 45.04 39.18 35.26
2.05 96.82 88.41 81.62 60.88 50.27 43.83 39.53
2.1 107.62 98.32 90.82 67.91 56.20 49.12 44 .41
2.15 119.80 109.52 101.22 75.90 62.97 55.18 50.01
2.2 133.59 122.20 113.01 84.98 70.71 62.12 56.45
2.25 149.23 136.59 126.40 95.35 79.56 70.10 63.88
2.3 167.01 152.97 141.66 107.21 89.74 79.30 72.49
2.35 187.27 171.66 159.08 120.81 101.45 89.94 82.47
24 21041 193.02 179.01 136.44 114.98 102.27 94.10
2.45 23691 217.51 201.89 154.47 130.65 116.62 107.67
2.5 267.34 245.66 228.21 175.31 148.84 133.35 123.58
2.55 302.35 278.09 258.56 199.46 170.02 152.93 142.27
2.6 342.76 315.55 293.66 227.53 194.75 175.89 164.30
2.65 389.49 358.93 33436 260.24  223.73 202.92 190.36
2.7 443.70 409.30 381.66  298.47 257.75 234.83 221.28
2.75 506.73 46794  436.79 343.27 297.84  272.62 258.10
2.8 580.20 536.38 501.21 395.92 345.21 317.51 302.07
2.85 666.09 616.48 576.70  457.97  401.35 371.02 354.78
2.9 766.74 710.47 665.39 531.30 468.08 43499  418.19
2.95 885.00 821.06 769.87 618.23 547.65 511.72 49471
3 1024.34 951.52 893.30 721.55 642.82 604.08 587.41
3.05 1188.95 1105.86 1039.49 844.73 757.00 715.60 700.11
3.1 1383.93 1288.92 1213.14 992.02 894.42 850.73 837.63
3.15 1615.51 1506.65 141997 1168.66 1060.35 1015.03 1006.06
3.2 1891.30 1766.33 1667.00 1381.11 1261.32 121549 1213.13
3.25 2220.63 2076.90 1962.88 1637.41 1505.55 1460.92 1468.70
33 2614.98 244934 2318.24 1947.54 1803.29 1762.48 1785.34
3.35 3088.48 2897.25 2746.27 232395 2167.48 213437 2179.22
34 3658.57 343739 3263.27 278220 2614.43 2594.64 2671.17
345 4346.86  4090.60 3889.50 3341.80 3164.80 3166.42 3288.13
3.5 5180.13 4882.75 4650.22 4027.28 3844.81 3879.40 4065.09
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Table A.3 the in-control ARLs of EWMA chart with transformed exponential data

(0.30< 1< 0.65)
A

L 0.35 0.40 0.45 0.50 0.55 0.60 0.65
2 32.46 30.38 28.78 27.53 26.54 25.75 25.11
2.05 36.47 34.21 32.48 31.14 30.09 29.25 28.57
2.1 41.07 38.62 36.76 35.33 34.21 33.33 32.63
2.15 46.37 43.72 41.72 40.20 39.02 38.11 37.39
2.2 52.49 49.62 47.49 45.88 44.66 43.73 43.01
2.25 59.57 56.48 54.21 52.53 51.28 50.35 49.66
2.3 67.80 64.48 62.08 60.35 59.10 58.20 57.57
2.35 77.39 73.84 71.33 69.57 68.35 67.54 67.03
2.4 88.60 84.82 82.22 80.48 79.36 78.70 78.37
2.45 101.74 97.75 95.11 93.45 92.50 92.08 92.05
2.5 117.20 113.04 110.42 108.92 108.26 108.22 108.63
2.55 135.46 131.17 128.66 127.45 127.24 127.76 128.83
2.6 157.08 152.76 150.49 149.75 150.20 151.55 153.58
2.65 182.78 178.54 176.70 176.69 178.10 180.65 184.05
2.7 213.44  209.47  208.32 209.37 212.18 216.42 221.79
2.75 250.14 246.70 246.61 249.19 253.99 260.64 268.80
2.8 29424  291.69 293.18 297.96 305.55 315.60 327.74
2.85 347.40 346.29 350.06 357.94 369.47 384.30 402.08
29  411.75 412.80 419.84  432.08 449.11 470.67 496.46
2.95 489.92 494.16 505.83 524.18 548.90 579.91 617.07
3 585.27 594.11 612.29 639.16 674.63 718.93 772.27
3.05 702.01 717.43 744.72 783.46 833.96 896.97 973.38
3.1 845.53 870.25 910.25 965.52 1037.05 1126.50 1235.87
3.15 1022.68 106047 1118.18 1196.50 1297.51 1424.38 1581.00
3.2 124226 1298.34 1380.70 1491.18 1633.62 1813.63 2038.22
3.25 1515.60 1597.20 1713.86 1869.31 2070.16 2325.88  2648.57
3.3 1857.31 197447 213894 235740 2640.85 3004.86 3469.64
335 2286.39 2453.08 2684.27 2991.28 3391.94 3911.45 4582.83
3.4 2827.60 3063.30 3387.79 3819.62 4387.29 5131.00 6103.81
345 3513.38 384530 4300.58 4909.02 5715.63 6783.94 8197.99
3.5 4386.42 4852.71 5491.89 6351.14 7501.06 9041.31 11103.14
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Table A.4 the in-control ARLs of EWMA chart with transformed exponential data

(0.65< < 1)

A
L 0.70 0.75 0.80 0.85 0.90 0.95 1.00
2 24.59 24.18 23.86 23.62 23.46 23.35 23.32
2.05 28.03 27.61 27.28 27.03 26.85 26.75 26.71
2.1 32.07 31.64 31.30 31.05 30.87 30.77 30.73
2.15 36.83 36.39 36.06 35.82 35.64 35.54 35.50
2.2 42.46 42.04 41.73 41.50 41.34 41.25 41.21
2.25 49.15 48.78 48.50 48.31 48.18 48.11 48.07
2.3 57.14 56.84 56.65 56.52 56.44 56.39 56.37
2.35 66.72 66.56 66.49 66.47 66.47 66.47 66.46
24 78.27 78.32 78.45 78.59 78.72 78.80 78.82
245 92.28 92.65 93.07 93.48 93.81 94.01 94.07
2.5 109.34 110.20 111.08 111.88 112.50 112.90 113.02
2.55 130.25 131.83 133.40 134.79 135.87 136.55 136.77
2.6 156.03 158.68 161.25 163.53 165.31 166.44 166.81
2.65 188.01 192.21 196.29 199.91 202.75 204.55 205.15
2.7 227.92 234.39 240.72 246.36 250.81 253.65 254.61
2.75 278.06 287.86 297.51 306.20 313.13 317.59 319.11
2.8 341.49 356.16 370.76 384.09 394.84 401.82 404.22
2.85 422.29 444.07 466.08 486.50 503.20 514.17 517.98
2.9 525.97 558.18 591.29 622.59 648.64 666.00 672.08
2.95 659.98 707.52 757.34 805.45 846.32 873.98 883.77
3 834.54 904.65 979.68 1053.88 1118.42 1162.90 1178.81
3.05 1063.68 1167.12 1280.28 1395.11 1497.63 1569.84 1595.98
3.1 1366.85 1519.61 1690.54 1868.70  2032.35 2150.44  2193.77
3.15 1771.21 1997.10 2255.57 2532.24 2793.96 2987.83 3060.06
32 231491 2649.38 3040.28 3469.26 3886.57 4203.98 4324.12
3.25 3051.86 3547.68 4138.24  4799.99 5458.72 5971.42 6168.35
33 4058.77 4794.29 5683.97 6695.15 7714.90 8519.20 8831.09
3.35 5445.31 6536.37 7869.97 9392.68 10923.66 12124.10 12588.47
34  7369.00 8985.71 10969.58 13216.99 15421.32 17087.49 17715.84
3.45 10056.81 12446.63 1536693 18601.10 21619.74 23734.07 24481.10
3.5 13836.62 17354.80 2159547 26115.45 30040.19 32504.01 33277.92
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Appendix II: In-control ARLs of Two-sided Weibull EWMA Chart

Table A.5 The in-control ARLs of Weibull EWMA chart (1=0.10, shape parameter

Shape parameter 7

L 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
1.5 352.31 19124 13120  102.67 86.88 77.26 68.27 58.41
1.6 37723 20556  141.61 111.03 94.47 84.27 77.50 69.69
1.7 402.60  220.28 15233  120.04  102.33 91.76 85.13 79.42
1.8 428.67  235.51 163.50  129.36  110.96 99.96 93.06 88.58
1.9 45530  251.22 17519 13939 11991 108.50  101.56 97.26

2 48240  267.45 18738 149.70 12943  117.87 11091 106.54
2.1 510.18  284.04  200.05 160.62 13954  127.71 120.75  116.77
22 538.43 301.26 21328  172.10 150.26 13824  131.38  127.67
23 567.34  319.02  227.03 184.16 161.64 149.51 14286  139.77
24 596.73  337.15 24127 196.80 173.70 161.58  155.24  152.77
2.5 626.69 35591  256.15 210.08 186.46 17447 168.63  166.91
2.6 65731 37523  271.58 22399 19993  188.23  183.08 182.30
2.7 688.42 39494 28740 23835 21424 20293 198.64  199.04
2.8 720.10  415.26  304.00  253.57 22935  218.61 21541  217.28
2.9 752.41  436.04  321.18  269.51 24531 23532 23346  237.10

3 785.24 45736  338.78 28596  262.13 25286  252.88  258.66
3.1 818.63  479.41  357.19 30337 279.64 271.80 273.78  281.71
32 852.65 501.83 376.05 321.48 29834  292.01 29592  307.13
33 887.19 52498 39570  340.22  318.03  313.50 320.05 334.74
34 92231 54852  415.84 360.01 338.52 336.05 34596 364.69
3.5 95799  572.62 436.83  380.39 360.30 36032 373.45  396.81
3.6 99426  597.45 45830  401.86 38298 38578  403.28  432.05
3.7 1031.13 62270  480.46 42397  407.07 413.12 43530  470.25
3.8 1068.55  648.52  503.47 447.23  432.11  442.11 469.27  511.25
39 1106.54  675.07  527.03  471.17 458.66  472.55 506.03  556.06
4.0 1145.10  702.06  551.49  496.29  486.26  505.11 545.03  604.19
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Table A.6 The in-control ARLs of Weibull EWMA chart (1=0.10, shape parameter

Shape parameter 7

L 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
1.5 50.69 4526 41.43 38.64 36.52 34.90 33.66 32.67
1.6 61.78 5546  50.78 47.33 44.79 42.75 41.16 39.91
1.7 7298 6696  61.79 57.75 54.63 52.25 50.32 48.76
1.8 83.99 7874  73.84 69.82 66.32 63.53 61.34 59.51
1.9 94.03 90.68  86.79 82.92 79.64 76.80 74.36 72.40

2 104.19 102.15  99.68 97.14 94.34 91.76 89.58 87.54
2.1 11472 113.68 11291 111.63 110.07 108.43 106.67 105.17
2.2 126.11 12595 126.36 126.65 126.74 126.30 125.79 124.95
23 138.75 139.22  140.70 142.56 144.18 145.62 146.48 147.20
24 152.55 15395 156.46 159.64 163.08 166.28 169.19 171.58
2.5 167.60 170.17 173.97 178.56 183.71 188.93 194.00 198.64
2.6 184.20 188.13 193.41 199.80  206.78 21420  221.58  228.88
27 20242 208.06 21520 @ 223.65 232.85 242.65  252.83 262.97
2.8 22243 23030 239.57 25047 26247  275.18  288.48  302.03
29 24440 25434 266.74  280.75 296.10  312.40 32949  347.14

3 268.50 281.46 29724  315.01 33440  355.11 376.87  399.60
3.1 29499 311.52 33140 353.70  378.07 40422  431.89  460.80
32 323.63 34484 369.65 39727 42790  460.80  495.73 532.43
33 35551 381.77 41248  447.02  484.69 52599 56990  616.46
34 39047 42226 459.95 502.53 54990  601.13 656.37 715.15
3.5 42881 467.66 513.69 56598  624.10  688.09  757.19 831.20
36 47040 517.98 57391 637.85 709.43 788.50 874.66  967.88
3.7 51646 573.74 640.88 718.72 807.14  904.78 1012.42 1129.43
3.8 56691 635.05 716.53 811.00  918.51 1039.66 1173.10 1319.93
39 621.74 703.51 801.33 915.64 1046.89 119535 1361.79 1545.99
4.0 68226 77935 895.82 1033.72 1194.15 1376.71 1583.35 1813.44
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Table A.7 The in-control ARLs of Weibull EWMA chart (1=0.10, shape parameter

Shape parameter %

L 1.0 1.2 1.4 1.6 1.8 2.0 2.2 24
1.5 31.88 29.86 28.81 28.21 27.84 27.61 27.46 27.36
1.6 38.92 36.37 35.05 34.28 33.81 33.51 33.32 33.19
1.7 47.53 44.36 42.70 41.74 41.15 40.76 40.51 40.34
1.8 58.01 54.18 52.13 50.95 50.21 49.72 49.40 49.18
1.9 70.71 66.25 63.82 62.39 61.47 60.88 60.47 60.20

2 85.87 81.05 78.32 76.65 75.58 74.86 74.37 74.04
2.1 103.61 99.13 96.33 94.52 93.33 92.52 91.96 91.56
2.2 124.23 121.01 118.63 116.96 115.79 114.96 114.36 113.93
23 147.42 147.19 146.17 145.16 144.32 143.65 143.13 142.73
24 173.63 178.38 180.12 180.63 180.69 180.55 180.34 180.11
2.5 202.85 214.96 221.62 225.23 227.17 228.24 228.79 229.03
2.6 235.67 257.89 272.22 281.13 286.70 290.15 292.28 293.55
2.7 272.98 307.99 333.61 351.22 362.98 370.84 375.98 379.29
2.8 315.65 366.70 408.05 438.78 460.88 476.32 486.95 494.06
2.9 365.08 435.97 498.19 548.33 586.49 614.65 634.79 648.77

3 422.90 518.06 607.87 685.21 747.98 796.51 832.70 858.70
3.1 490.69 616.28 741.74 856.88 955.71 1036.24 1098.83 1145.34
32 570.65 734.62 906.18 1072.64  1223.79 1353.10 1458.09 1539.08
3.3 665.13 877.94 1109.49 134520 1570.51 1773.24 1945.22 2083.00
34 777.04  1052.41 1362.23  1691.34  2021.03 2332.09 2608.20 2838.51
3.5 909.81 1265.68 1678.32  2133.19  2609.01 3078.73 3514.64 3893.51
3.6 1067.67 1527.27  2075.76  2700.68  3380.17 4080.32 4759.21 5374.58
3.7 1255774  1849.06  2577.74  3433.68  4397.64 5431.06 6476.21 7464.48
3.8 1479.82  2246.06 321446 438549  5747.61 7262.47 8857.49  10430.00
39 174795 2737.19 402539  5627.89 754891 9759.39 1217729  14660.44
4.0 206836 3346.28 5062.01  7257.72  9966.71  13184.53  16832.93  20730.72
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Table A.8 The in-control ARLs of Weibull EWMA chart (1=0.10, shape parameter

Shape parameter 7

L 2.6 2.8 3.0 32 34 3.6 3.8 4.0
1.5 27.29 27.25 27.22 27.21 27.21 27.22 27.23 27.24
1.6 33.10 33.04 33.01 32.99 32.98 32.99 33.00 33.01
1.7 40.23 40.15 40.10 40.08 40.07 40.07 40.07 40.09
1.8 49.03 48.94 48.87 48.84 48.82 48.81 48.82 48.83
1.9 60.01 59.88 59.80 59.75 59.72 59.70 59.70 59.71

2 73.80 73.64 73.53 73.45 73.41 73.38 73.38 73.38
2.1 91.27 91.07 90.93 90.83 90.77 90.73 90.70 90.69
2.2 113.61 11337 113.20 113.07 112.98 112.91 112.86 112.83
23 14241 142.16 14196  141.80 141.67 141.56 141.47 141.40
24 17989  179.67 17947 179.28  179.11 178.94 178.78 178.64
2.5 229.09 229.02 22887  228.68  228.45 228.19 227.93 227.66
2.6 29425 29455 29459 29444  294.15 293.77 293.33 292.84
2.7 38131 38242 38289 38290 38257 382.01 381.28 380.43
2.8 498.63 501.36 50274  503.15 502.84 502.02 500.82 499.35
2.9 658.08 663.89 667.10 668.37 668.21 667.01 665.05 662.54

3 876.55 888.08 894.77 897.80  898.09 896.37 893.16 888.90
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Table A.9 The in-control ARLs of Weibull EWMA chart (1=0.05, shape parameter

Shape parameter 7

L 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
1.5 51891  296.96  210.50 167.99  142.01 111.01 92.87 79.54
1.6 55690  320.12  228.02 183.05 15824 136.22 113.02 96.69
1.7 595.52 34450  246.93 19936 17434  156.28  133.78  118.97
1.8 63533  369.77 26645 21620 18995 173.94 15727 14193
1.9 676.15  396.01 286.99 234.68 206.72 19139 180.05 165.17

2 717.96 42323  308.98  253.78  225.07 20994  200.36  189.53
2.1 760.78  451.44  331.68 274.10 24456  229.60 221.27  215.57
22 804.49  480.65 35550 295.67 266.14 25046  243.58  240.25
23 849.33  510.85 38049 31857 288.62 273779 26795 266.40
24 895.07  541.69  406.63 34335 31272  298.66 294.19  294.82
2.5 94192 57392  434.05 369.07 338.53 32572 323.50 326.53
2.6 989.71  607.18  462.33  395.80 366.17 355.04 35521 361.07
2.7 1038.57  641.47  492.19 42459 39573  386.77 389.81  399.75
2.8 1088.40  676.48  523.60 455.01 427.33  421.10 427.46  442.43
29 1139.24  712.87 55636  487.14 460.46  458.20 469.16  489.54

3 1191.16  750.02  589.96  521.03 49649 49829 51479  541.52
3.1 1244.05  788.56  625.51  556.79 53494  540.79  564.69  598.58
32 129798 82790  662.50 59399 57592  587.50 61830  662.72
33 135295 868.63  700.40 633.64 619.57 637.88 677.90  733.78
34 1408.93  910.20 74035 67540 66545 692.17 74298  812.46
3.5 146595 953.15  781.28  718.83 71492  749.88  814.03  898.43
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Table A.10 The in-control ARLs of Weibull EWMA chart (1=0.05, shape parameter

Shape parameter #

L 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
1.5 71.02 66.08 62.05 59.35 57.27 55.62 54.42 53.38
1.6 87.76 80.48 75.94 72.36 69.73 67.77 66.16 64.95
1.7 106.45 98.47 92.54 88.14 85.01 82.46 80.57 79.00
1.8 128.02 119.72 112.15 107.51 103.33 100.53 98.06 96.22
1.9 154.25 143.32 136.53 130.03 126.03 122.12 119.58 117.20

2 180.75 170.58 163.62 157.57 152.39 148.84 145.32 143.03
2.1 207.82 201.74 193.83 189.20 183.71 180.11 177.05 173.98
2.2 236.27 233.35 228.72 224.26 221.12 216.87 214.47 212.03
23 266.94 266.49 266.53 263.67 262.64 260.88 258.37 257.19
24 298.93 302.35 306.30 308.61 309.22 310.78 310.56 310.29
2.5 333.31 341.58 349.53 357.30 362.06 366.98 371.27 373.22
2.6 371.21 384.48 397.16 410.41 422.13 431.02 440.10 447.61
2.7 414.27 432.09 450.75 469.86 488.53 504.63 519.18 533.08
2.8 461.77 485.42 511.14 537.26 563.54 588.76 610.90 632.23
2.9 515.00 545.93 579.69 614.41 649.57 684.58 717.92 748.44

3 574.95 613.97 657.31 703.06 749.21 795.74 842.06 885.55
3.1 642.00 691.80 746.88 805.26 865.11 926.03 987.56  1047.93
32 717.47 779.89 849.45 923.27 1000.73 1079.56 1159.80  1240.39
33 802.34 879.62 967.21 1060.69 1159.27 1260.73 1364.80  1470.63
34 896.10 994.27 1102.66 1220.37 1345.69 1476.25 161035  1747.85
3.5 1002.81 1123.76 1258.38 1406.17 1564.82 1731.81 1904.46  2083.47
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Table A.11 The in-control ARLs of Weibull EWMA chart (1=0.05, shape parameter

Shape parameter #

L 1 1.1 12 1.3 1.4 1.5
1.5 52.61 51.39 50.53 49.90 49.43 49.08
1.6 63.91 62.40 61.34 60.56 59.99 59.54
1.7 77.75 75.86 74.53 73.57 72.85 72.30
1.8 94.70 92.40 90.74 89.53 88.63 87.94
1.9 115.41 11259  110.63 109.21 108.11 107.25

2 140.78 137.66 13529  133.53 13224 13125
2.1 17200 16831 16572 163.87 16234  161.16
22 20952 20619  203.66 20154  199.97  198.76
23 25546 25282 25040 24872 24729  246.06
24 31057 30933 30859  307.67 30671  306.07
2,5 37552 37852 38042 38112 381.90  382.02
2.6 452,67 46258 46843 47329 47639  478.78
2.7 54468 56298 57695  587.86 59570  602.17
2.8 65207  683.68 71035  730.11 74675  759.21
29 77805 82946 87257  907.54  936.66  960.09

392730 100519 1070.92  1128.77  1176.11 121727
31 110552 121624 131473  1403.07 147921  1545.58
32 131950 147201 161543 174505 186336  1966.56
33 1576.81 178431  1986.06  2173.76  2349.46  2508.48
34 1887.98  2168.03 244551  2713.60  2967.96  3207.76
35 226672 264159  3019.16 339536 3759.32  4111.20
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Table A.12 The in-control ARLs of Weibull EWMA chart (1=0.05, shape parameter

Shape parameter %

L 1.6 1.7 1.8 1.9 2
1.5 48.80 48.59 48.42 48.28 48.17
1.6 59.20 58.92 58.71 58.53 58.39
1.7 71.87 71.52 71.25 71.03 70.86
1.8 87.41 86.98 86.64 86.37 86.15
1.9 10659 10607 10565 10531 105.04

2 13044 12980 12930  128.88 12855
2.1 16025  159.51 158.91 15843  158.03
22 19772 19692 19627  195.71 195.27
23 24515 24433 24368 24314  242.67
24 30532 30477 30427  303.84  303.48
2.5 38218 38219 38215 38210  381.99
2.6 48056  481.83  482.86 48356  484.15
27 60682 61075  613.62 61605  617.86
28 769.69 77774 78449 78975  794.16
29 97952 99531 100831  1019.02  1027.76

3 1250.66  1279.46 130290  1322.87  1339.28
3.1 160245  1650.84 169243  1727.18  1757.02
32 2059.11  2138.57 220836  2268.17  2319.43
33 265240 278127 289430  2994.65  3081.06
34 342696 362926  3810.54  3973.08  4117.47
3.5 444238 475187  5038.50  5297.67  5532.90
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Table A.13 The in-control ARLs of Weibull EWMA chart (1=0.20, shape parameter

0.20< #< 0.55. Ly=L,=L)

Shape parameter 7

L 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
1.5 244.69  127.76 85.24 65.20 54.10 47.38 42.96 39.95
1.6 261.26  136.73 91.49 70.16 58.44 51.26 46.62 43.52
1.7 278.11  146.01 98.04 75.35 62.95 55.48 50.64 47.43
1.8 29534 15551  104.73 80.84 67.69 59.86 54.82 51.53
1.9 31282 16523  111.67 86.47 72.75 64.50 59.40 56.06
2.0 330.64 17526  118.89 92.39 78.02 69.53 64.19 60.80
2.1 34875  185.57  126.27 98.56 83.56 74.76 69.30 65.91
2.2 367.17  196.07 133.97 104.99 89.37 80.29 74.73 71.40
23 38597  206.87 14194 111.69 95.47 86.13 80.55 77.30
24 405.02 217.89 150.13 118.58 101.85 92.32 86.74 83.63
2.5 42438 22924 15855 12581 108.56 98.87 93.33 90.41
2.6 444.11  240.80 16731 13333 11550 105.78  100.34 97.70
2.7 464.10 25271 176.26  141.08 122.87 11297 107.78 105.51
2.8 484.40 264.81 18555 149.22 130.58  120.65 115.72 113.87
2.9 505.01  277.19 195.05 157.66 13855 12873  124.15 122.82
3.0 52597  289.88 20491 16633 14697 137.16 13297 132.28
3.1 54721 30280 21499 17540 15574 146.14 142.46 142.51
32 568.76  316.00 22543 184.72 164.83  155.60  152.52 153.48
33 590.62 32955 236.09 19442 17441 16543  163.07 165.20
34 612.79 34331 247.04 20442 18431 17588 174.36 177.58
35 63527 35735 25833 21486 19474 186.86  186.33 190.94
3.6 658.07 371.68 269.89 22556 20550 19828  198.88 205.07
3.7 681.20 386.32  281.76  236.62 216.81 21035 212.29 220.28
3.8 704.62  401.22  294.01 248.14 22849 22293 22634 236.49
3.9 72835 41640 306.51 25996  240.74  236.13  241.33 253.64
4.0 75239 43188 31933  272.16 25339  250.07 257.04 272.08
4.1 776.75  447.65 33248 28486 266.54  264.57  273.77 291.56
4.2 801.42  463.79 346.05 297.87 280.28 279.88  291.29 312.46
43 826.40  480.15 359.86  311.29 29449 29579  309.80 334.56
4.4 851.69  496.81 374.01 32523 309.25 312.56 329.43 358.07
4.5 877.30  513.77  388.50  339.50 324.69 329.98  350.02 383.23
4.6 903.23  531.03 403.40 35421 340.60 34820 371.86 409.82
4.7 929.47  548.60 41859 369.43  357.11 36737 394.73 438.23
4.8 956.01  566.47 434.13  385.04 37433 387.28 418.83 468.26
4.9 982.87 58471 450.04 401.12 392.08 408.07 444.36 500.28
50 1010.05 60320 46631 417.67 41049 42988 471.07 534.13
5.1 1037.54 62199 483.04 43471 429.67 45256  499.18 570.06
52 106535 641.10 500.05 45233 44943 47622  528.89 608.33
53 109347  660.53  517.44 47036 46990 50090  559.99 648.75
54 112190 680.27 53521 48890 491.08 526.78 592.67 691.59
55 1150.66  700.33 55338 50796 513.12 553.62  627.15 737.17
56 117973 720.72 57193  527.55 53581 58159 663.22 785.26
57 1209.11 74142 59092 547778 559.28 610.85  701.10 836.19
58 123882 762.50 61027 568.46  583.55 641.21 74098 890.11
59 126884 783.86 630.03 589.71 608.64 672.81 782.71 947.34

6 1299.18 805.54 650.19 611.52 634.65 705.71 826.48 1007.70
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Table A.14 The in-control ARLs of Weibull EWMA chart (1=0.20, shape parameter

Shape parameter 7

L 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
1.5 37.67 34.88 31.70 28.88 26.64 24.83 23.43 22.32
1.6 41.38 39.58 37.35 34.80 32.47 30.48 28.81 27.45
1.7 45.21 43.66 42.28 40.56 38.62 36.73 35.02 33.53
1.8 49.28 47.83 46.79 45.84 44.64 43.23 41.77 40.36
1.9 53.81 52.31 51.44 50.88 50.36 49.66 48.76 47.74
2.0 58.61 57.32 56.51 56.15 56.06 55.99 55.79 55.39
2.1 63.80 62.64 62.09 61.90 62.09 62.49 62.92 63.25
2.2 69.41 68.45 68.13 68.26 68.75 69.52 70.46 71.43
23 75.48 74.78 74.76 75.24 76.13 77.32 78.74 80.30
24 82.18 81.66 82.03 82.94 84.27 86.02 88.00 90.19
2.5 89.29 89.16 90.00 91.45 93.37 95.77 98.42 101.33
2.6 96.83 97.33 98.75 100.85 103.48 106.74 110.17 113.97
2.7 105.12 106.22 108.33 111.23 114.75 118.96 123.40 128.32
2.8 114.06 115.89 118.85 122.71 127.28 132.46 138.36 144.63
2.9 123.72 126.42 130.38 135.38 141.25 147.84 155.28 163.08
3.0 134.15 137.85 142.86 149.40 156.80 165.09 174.41 184.25
3.1 145.39 150.14 156.72 164.70 174.12 184.47 196.07 208.40
32 157.37 163.68 171.91 181.82 193.23 206.25 220.37 235.97
33 170.42 178.38 188.55 200.73 214.75 230.72 248.16 267.46
34 184.48 194.35 206.62 221.64 238.74 258.01 279.67 303.21
35 199.48 211.54 226.61 244.56 265.48 288.96 315.41 344.40
3.6 215.79 230.37 248.51 270.09 295.10 323.78 355.75 391.56
3.7 233.34 250.65 272.31 298.32 328.37 362.73 401.83 445.60
3.8 252.06 272.83 298.58 329.32 365.46 406.85 454.18 507.30
3.9 272.36 296.91 327.33 363.79 406.63 456.51 513.44 578.39
4.0 294.01 322.85 358.61 401.68 452.81 512.22 581.10 659.73
4.1 317.45 351.16 393.05 443.77 504.09 575.24 657.82 753.47
4.2 342.46 381.67 430.55 490.26 561.56 646.00 745.41 861.21
43 369.47 414.92 471.78 541.41 625.67 726.03 845.12 984.81
4.4 398.31 450.76 516.68 598.14 696.97 816.23 958.40 1127.33
4.5 429.44 489.76 565.99 660.57 776.77 917.64  1087.73 1291.08
4.6 462.65 531.80 619.69 729.76 865.57 1032.26  1234.81 1479.97
4.7 498.44 577.48 678.60 805.92 964.88 1161.24  1402.74 1697.27
4.8 536.62 626.74 742.76 890.24 107544 130696  1593.88 1948.03
4.9 577.54 680.02 813.07 983.07 1198.78  1471.01 1812.12 2236.82
5.0 621.55 737.85 889.65  1085.52  1336.64 1656.05 2060.71 2570.22
5.1 668.48 800.15 973.47  1198.82  1490.14  1865.02  2344.57 2954.54
52 718.91 867.69  1064.77 132356 1661.61 210042  2668.09 3398.40
53 772.68 940.45 116441 1461.40 185255  2366.23  3037.22 3910.46
5.4 830.19  1019.03  1273.37  1613.14  2065.73  2665.71  3458.76 4502.07
55 891.86  1104.08 139197 1780.46  2303.13  3003.79  3939.52 5185.05
5.6 957.62  1195.67 152131  1965.13  2567.79  3384.77  4488.57 5974.12
57 1027.88  1294.49  1662.55 2168.41  2863.06 3814.44 5114.95 6886.28
5.8 1103.13 140130 1816.24  2392.65 3191.85 4299.31  5830.01 7940.20
59 118328 151626  1983.70  2639.39  3558.23  4845.77  6646.67 9158.94

6 1268.86  1640.19  2166.35  2911.15 3966.71  5461.98  7578.70  10567.75
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Table A.15 The in-control ARLs of Weibull EWMA chart (1=0.20, shape parameter
1.0< n< 1.5. LU:LL:L)

Shape parameter 7

L 1.0 1.1 1.2 1.3 1.4 1.5
2.0 54.85 53.54 52.22 51.05 50.06 49.22
2.1 63.39 63.20 62.65 61.95 61.23 60.57
2.2 72.33 73.64 74.33 74.57 74.52 74.33
2.3 81.92 84.91 87.26 88.96 90.10 90.85
2.4 92.51 97.24 10158 10524  108.16 11045
25 10444 111.02 11759  123.67  129.01  133.55
26 11803 12671 13578 14471  153.11  160.70
2.7 13355 14478 15676 169.05  181.16  192.69
28 15131  165.69 18121 19751 21415  230.64
29 17166  189.98 20991  231.16 25336  276.06
3.0 195.00 21823 24372 271.19 30037  330.89
3.1 22186  251.16  283.65  319.05  357.13  397.63
32 25277 289.61 33092 37644 42599  479.42
33 288.09 33453  387.01 44546  509.85  580.16
34 32911 38722  453.66 52867 61232  704.79
35 37643  449.01  533.03 62923  737.90  859.54
3.6  431.08 52128 62770  751.05 89223  1052.36
3.7 49398 60659  741.02  898.95  1082.42  1293.39
3.8  567.06  707.05 87639 1078.94 1317.46  1595.65
39  651.68  825.17 1039.15 129837  1608.66  1975.91
40 74947 96497 123472 1566.83 197045  2455.73

224



Appendix

Table A.16 The in-control ARLs of Weibull EWMA chart (1=0.20, shape parameter
1.6<79<2.0. Ly=L1=L)

Shape parameter 7

L 1.6 1.7 1.8 1.9 2.0
2.0 48.54 47.97 47.49 47.10 46.77
2.1 59.98 59.45 59.00 58.61 58.27
2.2 74.07 73.78 73.49 73.21 72.94
2.3 91.30 91.56 91.69 91.72 91.70
24 11218 11349 11447 11518 115.71
25 13730 14037 14285  144.83 146.40
26 16738  173.16  178.07  182.19 185.61
2.7 20337  213.05  221.65  229.16 235.65
2.8 24658  261.62 27552  288.15 299.44
2.9 29875 32094 34223 362.25 380.77
3.0 36223  393.85 42516  455.58 484.62
3.1 440.15  484.11  528.86  573.63 617.65
32 53646  596.66 65937  723.75 788.80
33 65630  738.03  824.85 91597  1010.28
34 80624  916.74 1036.09 1163.76  1298.74
3.5 99471 114391 130747 148534  1676.93
3.6 123261 143418  1658.19  1905.44  2176.20
3.7 153406 1806.75 2113.85 2457.55  2839.65
3.8 1917.45 2287.04 2708.84 3187.36  3726.87
3.9  2406.84 2908.76  3489.46 415724  4920.57
40 3033.77 371682 451836 545291  6535.99
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