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SUMMARY 

 

With the development of automation and high-quality manufacturing techniques, 

effective process monitoring schemes have become essential for enterprises to ensure 

product quality and reduce cost. However, when dealing with high-quality processes, 

the existing control charting schemes may face some difficulties. The Time-between-

events (TBE) chart is one of the approaches proposed to solve these problems. The 

purpose of this study was to overcome the disadvantages of Shewhart attributes chart 

as well as existing TBE charts, improve the performance of the control charts and thus 

make the monitoring of high-quality processes more effective and economical.  

 

In Chapter 1, some basic concepts of statistical process control and TBE chart are 

introduced, and the objective of the study is stated. Chapter 2 presents a literature 

review on the TBE control charts. Recent advancements in the area of TBE monitoring 

are also substantially reviewed. 

  

Chapter 3 discusses the comparative performance of exponential TBE charts, from 

which some insights of the comparative preference are found among all those TBE 

charts under different circumstances.  

 

In Chapters 4 and 5, the CUSUM and EWMA chart with transformed exponential data 

are proposed, in which the TBE data are transformed to approximately normal with 

double square-root transformation, and CUSUM (or EWMA) method is applied 
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subsequently. The proposed control charts provide alternatives for TBE monitoring 

with good performance and relatively simple design procedures.  

 

Chapter 6 applies the variable sampling interval scheme to the CCC chart. The results 

showed that with a proper set of design parameters, it can detect the shifts in a shorter 

period of time without increasing the average number of samples inspected. 

Subsequently, Chapter 7 develops the CCC chart with sampling plan based on random-

shift model, followed by a case study which stresses some implementation issues of 

CCC chart. Improvement strategies are proposed with consideration of customers’ 

requirements. 

 

In Chapter 8, a Weibull EWMA is proposed and its performance in terms of Average 

Run Length (ARL) as well as Average Time to Signal (ATS) is evaluated. Weibull 

TBE chart is a more general chart which considers the variable events occurrence rate 

and is very useful especially for reliability monitoring when aging factor exists. 

 

This study focused on not only theoretical analysis, but also practical applications. 

These control charting methods present some effective approaches to the quality 

control of high-quality processes for both on-line monitoring and off-line analysis. 

Economic considerations were also involved in the design process to minimize the cost 

without losing efficiency of the monitoring system. Moreover, the methods proposed 

can also be applied to other areas for monitoring process stability from the aspect of 

events occurrence rate.   
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Chapter 1 Introduction 

 

The rapid development of modern technology has brought lots of opportunities 

together with challenges for companies all over the world. Most of them devote a great 

deal of efforts to enhancing the quality of products, as well as the quality of service, in 

order to survive in the competitive market. Quality, thus, becomes one of the keys to 

success, and has attracted a lot of interest among researchers and engineers. 

 

The history of quality can be traced back to the beginning of the 20th century when 

Taylor introduced the ideas of scientific management to industry. Throughout the years 

of its development, many quality analysis and control tools have been developed, 

among which Statistical Process Control (SPC) is one of the most effective techniques 

that have been widely adopted in practice.   

 

In recent years, the rapid development of modern technology and the growing 

emphasis on customers’ satisfaction have promoted the quality of products to higher 

and higher levels. As a result, Zero-defects (ZD) or high-quality processes become 

more and more popular, and their Fraction of Nonconforming (FNC) can be very low 

up to parts per million (ppm) or even parts per billion (ppb) levels. Most of those 

processes are highly-automated, and a delay in detection of a process shift in a 

production line may result in many defective items produced, which in turn results in a 

big cost and loss of profit. Therefore, effective monitoring and control techniques 

become a great need. On the other hand, the low FNC also brings many practical 

challenges to the traditional control charts. As a result, a new type of control chart, 
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namely, time-between-events (TBE) chart, was proposed in order to solve the 

problems with traditional control charts.  

 

Time-between-events data are available in industries such as manufacturing, 

maintenance, and even in service. The TBE chart is an effective approach for process 

analysis, control, and improvement especially when the events occurrence rate is very 

low. This thesis discusses different statistical control techniques for modelling and 

monitoring TBE. The rest of this chapter will focus on the basic ideas and methods of 

SPC, the general methods and principles of SPC, the problems with current methods, 

and the motivation of this study. 

 

1.1 Statistical Process Control (SPC) 

Statistical Process Control (SPC) originated in the 1920’s when Dr. Shewhart 

developed control charts as a statistical approach to the monitoring and control of 

manufacturing process variation (Shewhart, 1926, 1931). SPC involves using statistical 

techniques to monitor and control a process through the analysis of process variation. 

It is an important branch of Statistical Quality Control (SQC), which also includes 

other statistical techniques, e.g. Design of Experiment (DOE), acceptance sampling, 

process capability analysis, and process improvement plans. Most often SPC is used 

for manufacturing processes; however, nowadays it is also applied in other areas such 

as health care (Tsacle and Aly, 1996; Benneyan et al., 2003; Guthrie et al., 2005; 

Woodall, 2006), financial analysis (Schipper & Schmid, 2001; Wong et al. 2004), and 

service management (Herbert et al. 2003; Pettersson 2004).  
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Generally speaking, the purpose of implementing SPC is to monitor the process, 

eliminate variances induced by assignable causes, and at the end improve the process 

to its best target value.  One of the primary tools to achieve these aims is the control 

chart, which is a graphical representation of certain descriptive statistics for specific 

quantitative measurements of the process. These descriptive statistics are displayed in 

a run chart together with their in-control sampling distributions so as to isolate the 

assignable causes of variation with the natural variability. Any statistics beyond the 

natural variance levels could indicate an assignable cause with the process. The 

assignable causes may be caused by defective raw materials, faulty setup, untrained 

operators, and the cumulative effects of heat, vibration, shock, etc. Besides, control 

charts can also be used with product information to analyze process capability and for 

continuous process improvement efforts.  

 

Shewhart control charts are the most basic control charts to fulfill those tasks. 

Basically, two types of Shewhart control charts were developed to monitor the process 

variation, i.e. control charts for variables (e.g. the X-bar R chart, X-bar S chart), and 

control charts for attributes such as the p chart, np chart, c chart and u chart. Control 

charts for variables are used to monitor quality characteristics that are measured on a 

numerical scale, while control charts for attributes are designed for those quality 

characteristics that conform to specifications or do not conform to specifications. All 

these control charts, namely Shewhart charts, are set up based on the 3-sigma limits 

and normal approximation. General formulas for the Upper Control Limits (UCL), 

Central Line (CL) and Lower Control Limits (LCL) of Shewhart control charts are: 

 



                                                                                                      Chapter 1 Introduction  

4  

xx

x

xx

kLCL
CL

kUCL
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σμ

−=
=

+=

     (1.1) 

 
where μx and σx is the mean and variance of the sample statistic that is of concern. k is 

a constant that determines the distance of the UCL and LCL from the CL. By 

convention k is set to be 3 because 3-sigma limits are a good balance point between 

two types of errors:  

 

• Type I errors occur when a point falls outside the control limits even though no 

assignable cause is operating and process is in-control. The probability that 

type I error occurs is referred to as False Alarm Rate (FAR, α) or producer’s 

risk. A control chart with large FAR may lead to a high producer’s risk and 

may even distort a stable process as well as waste time and energy.  

 

• Type II errors occur when an assignable cause is missed out because the control 

chart is not sensitive enough to detect it. A control chart with high probability 

of type II error will not be able to detect the process shifts in a short time. The 

probability of type II error (β) is sometimes called the consumer’s risk because 

it represents the probability of operating a control chart without raising any out-

of-control signal while the process is actually in an unsatisfactory status due to 

assignable causes.    

 

All control charts are vulnerable to the risk of these two types of errors. Shewhart 

control charts with 3-sigma control limits are set up based on independent and normal 

assumption, i.e., the sample statistic X in formula (1.1) is assumed to be independent 
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and normally distributed.  Under these assumptions, data points will fall inside 3-sigma 

limits 99.73% of the time when a process is in control. This makes the type I error 

infrequent but still makes it likely that assignable causes of variation will be detected 

within an acceptable time period. 

 

The statistical performance of control charts is usually measured by Average Run 

Length (ARL). ARL is defined as the average number of points that must be plotted 

before a point indicated an out-of-control condition, and it can be calculated by 

 

p
ARL 1

=       (1.2) 

  
where p is the probability that any point exceeds the control limits. Therefore, the in-

control ARL can be presented with 

 

α
1

0 =ARL      (1.3) 

and the out-of-control ARL can be obtained by 

 
 

β−
=

1
1

1ARL     (1.4) 

 
where α and β stand for the probability of type I error and type II error, respectively.  

A good design scheme of control chart should have longer in-control ARL to restrict 

the risk of type I error and shorter out-of-control ARL to detect the assignable causes 

of the process quickly.  
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Although Shewhart control charts are widely applied in practice due to the simplicity 

for understanding and implementation, they are not very sensitive to detect small 

process shifts because the decision made only depends on a single point. To enhance 

the sensitivities of the Shewhart control charts, some researchers proposed adding run 

rules to the control charts, such as Western Electric (1956), Nelson (1984,1985), 

Champ (1992), Davis and Woodall (2002), and Zhang and Wu (2005). Modern 

techniques, e.g. pattern recognition, neural network, artificial intelligence, and expert 

system, can be used to help in this rule for on-line SPC monitoring (Zorriassatine and 

Tannock, 1998; Guh, 2003; Pacella and Semeraro, 2005; Yang and Yang, 2005). 

 

Besides, some advanced control charts were also proposed to enhance the sensitivity of 

Shewhart control charts, such as the Exponentially Weighted Moving Average 

(EWMA) chart, and the CUmulative SUM (CUSUM) chart.  Instead of using only the 

information in the last plotted point, EWMA and CUSUM incorporate information 

from the entire sequence of points and thus are more effective in detecting small 

process shifts. 

 

The EWMA chart was introduced by Roberts (1959), and the general statistics of 

EWMA is expressed by 

 
( ) 11 −−+= iii zxz λλ      (1.5) 

 
where 0<λ≤1 is a constant that determines how older data points affect the moving 

average compared to more recent ones, and it will reduce to Shewhart chart when  λ=1. 

The starting value is usually set to be the target value of Xi.  The control limits for the 

EWMA chart are 
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where L is the factor that determines the width of the control limits. An optimal design 

can be achieved by selecting the value of λ and L properly (Crowder 1989; Lucas and 

Saccucci, 1990). EWMA chart can be used to monitor not only process mean, but also 

process variation (Crowder and Hamilton, 1992; MacGregor and Harris, 1993; Knoth, 

2005), and it is not limited to normal variables. The main strengths of EWMA include 

the robustness to non-normality, and the ability of forecasting the control statistics 

value for the next time period.  

 

The CUSUM chart, first proposed by Page (1954), plots the cumulative sums of the 

deviations of the sample values from a target value. Upper and lower CUSUMs can be 

used to accumulate deviations from the target value that are above and below target, 

respectively. Let  μ0 denote the process mean (target value). The tabular CUSUMs are 

computed as, 
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where K is the reference value (or slack value, or allowance). The process is 

considered to be out-of-control if either Ci
+ or Ci

- exceeds the decision interval H.  

Similar to the EWMA chart, CUSUM can also be applied to monitor the process 

variance (Acosta-Mejia and Pignatiello, 2000), or data following other distributions 
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(Lucas, 1985; Gan, 1994). Basically, both EWMA and CUSUM charts are more 

effective alternatives to the Shewhart control charts when small shifts are of great 

concern. Comparative studies show that the performances of EWMA and CUSUM are 

similar, and they only have slight differences in detecting different shifts (Gan, 1998; 

de Vargas et al. 2004). 

 

All these SPC tools have been widely adopted in industries to help monitor, control, 

and improve the process or product quality. However, the rapid developments of 

technology and increasing effort on process improvement have led to so called high-

quality processes, where traditional control charts showed some practical problems. 

Therefore, it is necessary to look for solutions and alternatives to overcome these 

problems. 

  

1.2 Control Charts for High-quality Processes 

High-quality processes refer to those processes with very low FNC up to ppm or ppb 

levels. In such situations, many Shewhart control charts would face practical 

difficulties, and those difficulties are more serious with attribute control charts (Xie et 

al., 2002). On the other hand, attribute control charts attract increasing interests from 

engineers because they are much easier and cheaper to obtain attribute data quickly 

from high-quality processes, and thus enable the process to be monitored continuously 

at a lower cost. Therefore, the solution of the problems with attribute control charts 

becomes a great concern. 

 

The primary reason that induces these problems is the normal assumption. Shewhart 

control charts are set up based on normal assumption, i.e., it assumes that the sample 
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statistics can be approximately modeled by a normal distribution. Unfortunately, this 

assumption is difficult to meet for high-quality process with very low nonconforming 

rate and a large sample size is required. The deviation from the normal approximation 

will lead to the following problems for attribute control charts in practice: 

 

• High false alarm 

When process FNC p is very small and the sample size n is not large enough, the 

normal approximation will be invalid. As a result, the exact false alarm rate (FAR) 

could be much higher than 0.0027, which corresponds to the 3-sigma limits under 

normal assumption.  For example, Table 1.1 shows the exact FAR for np-chart 

with 3-sigma limits assuming that the number of nonconforming X in a sample 

with size n follows binomial distribution with parameters n and p.  

 

Table 1.1 Exact FAR for np-chart with 3-sigma limits 

p n=5 n=10 n=20 n=50 n=100 n=200 

0.01 0.0490 0.0043 0.0169 0.0138 0.0184 0.0043 

0.02 0.0038 0.0162 0.0071 0.0178 0.0041 0.0075 

0.03 0.0085 0.0345 0.0210 0.0037 0.0032 0.0031 

0.04 0.0148 0.0062 0.0074 0.0036 0.0068 0.0030 

0.05 0.0226 0.0115 0.0159 0.0032 0.0043 0.0027 

0.06 0.0319 0.0188 0.0056 0.0027 0.0026 0.0023 

0.07 0.0031 0.0036 0.0107 0.0073 0.0041 0.0040 

0.08 0.0045 0.0058 0.0038 0.0056 0.0024 0.0030 

0.09 0.0063 0.0088 0.0068 0.0043 0.0035 0.0023 

0.10 0.0086 0.0128 0.0024 0.0032 0.0023 0.0034 

 

The control limits of np-chart are calculated by 
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and the false alarm rate α is obtained by 

 
( )UCLXLCLP <<−= 1α     (1.9) 

 
It can be found from Table 1.1 that the exact FAR of the np-chart could be much 

higher than 0.0027 with sample size n less than 50 if the process FNC p is within 

the range of (0.01, 0.10). 

 

• Meaningless control limits 

If the FNC p is very low, the probability that at least one nonconforming item 

could be found in a sample will be very small. As a result, the UCL can be smaller 

than one so that even only one nonconforming item in a sample would raise an out-

of-control signal. Meanwhile, the LCL will usually be less than zero, and thus the 

control chart will not be able to detect process improvement unless some run rules 

are applied.   

 

Sufficiently large sample size is needed to avoid the meaningless control limits.  

For example, the sample size can be chosen so that the probability of one or more 

nonconforming item in a sample is at least a certain level, say 0.95.  Also, Duncan 

(1986) suggested a criterion that the sample size should be large enough so that the 

probability of detecting a specified process deterioration shift is approximately 0.5. 

Based on his criterion, the sample size n should satisfy 
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where p1 is the specified out-of-control process FNC level, p0 is the in-control FNC 

(p1>p0), and k is the control limits factor which is usually set to be 3.   

 

Besides, another criterion of choosing sample size n is to make the LCL positive. 

To meet this criterion, the sample size n has to satisfy 
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A proper sample size n can be determined by considering all the above criteria as 

well as the practical factors. 

 

• Difficulty in forming rational subgroup 

Most control charts rely on Rational Subgroups to estimate the short term variation 

in the process. This short-term variation is then used to predict the longer-term 

variation defined by the control limits. A Rational Subgroup is simply “a sample in 

which all of the items are produced under conditions in which only random effects 

are responsible for the observed variation” (Nelson, 1988). A general rule of 

forming a rational subgroup is to maximize the variation among different subgroup 

and meanwhile minimize the variation within a subgroup. Since the process FNC is 

low, and sample size has to be very large, it may take a long time to form a rational 

subgroup, which in turn leads to a long setting-up time of the control charts and a 

delay in raising an out-of-control signal upon process shifts. Meanwhile, the 
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process shift may have larger probability to occur within a subgroup instead of just 

at the start of a new sample that is assumed by most of the models.  

 

A possible method to solve these problems caused by deviation from independent 

normal assumption is to use transformations. The performance of control charts can be 

improved by transforming the data to normal, and then plotting the charts (Nelson, 

1994; Sun and Zhang, 2000; Chen et al. 2005; Wang, 2005). Another effective 

approach is to employ TBE charts which will be reviewed in the next section.  

 

1.3 Time Between Events (TBE) Charts 

Unlike traditional attribute control charts which monitor the number or the proportion 

of events occurring in a certain sampling interval, time-between-events (TBE) charts, 

from another angle, monitor the time between successive occurrences of events. The 

word events may have different meanings under different circumstances. For example, 

events usually refer to the occurrence of nonconforming items in manufacturing 

process monitoring, failures in reliability analysis, accidents in a traffic system, 

diseases in healthcare, etc. Besides, the word time is used to represent not only time 

but also other variable that measures the quantity observed between occurrences of the 

events and it can be either discrete or continuous. TBE charts can overcome the 

difficulties with traditional attributes control chart, and they are particularly suitable 

when the events rarely occur and therefore it is quite difficult to form rational 

subgroups as the traditional attributes control chart requires. 

 

There are several kinds of TBE charts that can be used for monitoring processes with 

low events occurrence rate. Some researchers suggested employing a control chart 
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based on run length like the Cumulative Count of Conforming (CCC) chart 

(Calvin,1983) and the Cumulative Quantity Control (CQC) chart (Chan et al. ,2000).  

Others proposed applying the CUSUM and the EWMA charts for TBE data directly, as 

shown by Gan (1998) and Lucas (1985). Moreover, Shewhart control charts can also 

be used to monitor TBE data after a proper transformation (Radaelli, 1998; Jones & 

Champ, 2002). A detailed discussion of these methods will be presented in Chapter 2. 

 

1.4 Objective of the Study 

The overall objective of this study was to solve the problems with Shewhart attributes 

chart as well as existing TBE charts, and thus make the monitoring of high-quality 

processes with low events occurrence rate more effective and efficient. Specifically 

this thesis focuses on several topics regarding TBE charts in order to fulfill the 

following targets. 

 

 To compare the performance of different TBE charts and provide guidelines on the 

choice of TBE chart in various situations. 

Previous studies proposed several types of TBE chart and explored their performance 

respectively. A comparative study was conducted among several commonly used TBE 

charts in order to provide guidelines to the users on how to choose a most suitable TBE 

chart under a specific circumstance. 

 

 To develop advanced CUSUM/EWMA TBE charts with transformation. 

Transformation is a useful approach to deal with the nonnormality. Most of the current 

studies on the TBE chart focus on monitoring TBE data directly. Some researchers 

also looked at transformed data and found that Shewhart control charts perform well 
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with transformed data. In this study, the CUSUM and EWMA charts with transformed 

data were considered, the ARL properties were investigated and comparisons with 

other TBE charts were also conducted.  

 

 To improve the cost effectiveness of the CCC chart. 

Instead of using 100% inspection as usual, the variable sampling scheme was 

employed when implementing the CCC chart. Samples are taken from the process, and 

the sampling interval varies according to the status of the process. As a result, the CCC 

chart will take a shorter time to detect the process shifts without increasing the average 

number of items inspected. Some application issues of CCC chart were also discussed 

through a case study. 

 

 To explore TBE charts for Weibull-distributed TBE data. 

The cases where the TBE data do not follow exponential distribution were also 

investigated. The extended CQC and CQC-r charts for Weibull data were described, 

and the EWMA and CUSUM methods were also applied to the Weibull distributed 

TBE data in order to improve the sensitivity of the chart for small process shifts. 

 

The TBE charting methods presented in this thesis can improve the effectiveness of 

both on-line processes monitoring and off-line analysis of high-quality processes. The 

variable sampling schemes can also enhance the economic performance of the CCC 

chart with respect to cost. The CUSUM and EWMA charts with transformed data 

provides effective alternatives for TBE monitoring, and make the traditional control 

charts applicable to TBE data with only a simple transformation of the data, which is 

very easy to implement based on the current system. Moreover, the underlying 
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distribution of TBE data was extended to Weibull so that these TBE charts become 

appropriate to other general situations, e.g. reliability processes where the failure rate 

can be variable rather than constant.  

 

This study focused on the control charting methods for TBE data, which can be 

modeled as exponential or Weibull distribution. Although the study was motivated by 

quality issues and focused on the control charting techniques with quality concern, the 

proposed methods are applicable to various areas in practical applications for events-

driven processes. The events occurrence rate is not necessarily constant, and it can be 

increasing, or decreasing as well. In practical applications, engineers may need to 

perform goodness-of-fit tests for distributions before choosing a proper TBE chart for 

process control and improvement. If the TBE data do not follow either of the 

distributions assumed, the users may not be able to apply the control charting methods 

proposed in this thesis directly. Additional data analysis and processing may be needed 

to identify the reasons, and regroup the data so that they can follow the underlying 

distributions. Other control charting methods can also be employed according to the 

specific situations.  

 

1.5 Organization of the Thesis 

This thesis consists of nine chapters. The rest of the thesis will be organized as follows:  

 

Chapter 2 presents a thorough literature review of the recent research on TBE charts. 

The problems of existing methods will also be raised in order to specify the motivation 

and the emphasis of this study. Chapter 3 compares the properties of several 

exponential TBE charts and provides guidelines on the choice of different TBE charts 
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under different situations. On-line monitoring methods with TBE charts are also 

discussed.  

 

In Chapter 4, a CUSUM scheme for transformed exponential TBE data is proposed, 

different transformation methods are examined and the calculation of ARL with 

Markov chain approach is presented. The performance of CUSUM chart with 

transformed exponential data is compared with that of the X-MR (Moving Range) 

chart, the CQC chart, and the exponential CUSUM chart. Chapter 5, with similar 

motivation, presents a EWMA scheme with transformed exponential TBE data. The 

properties of the proposed chart are investigated based on which the optimal design 

methods are developed.  

 

In Chapter 6, the CCC chart with variable sampling intervals is proposed, and its 

performance is compared with the CCC chart with fixed sampling intervals. Chapter 7 

discusses some implementation issues of the CCC chart based on a project with a 

semiconductor manufacturing company. Chapter 8 extends the TBE charting methods 

to Weibull-distributed data, which represents more general situations where events 

occurrence rate can be increasing, decreasing or constant.  

 

At the end, some conclusions, major contributions of the study, as well as suggestions 

for future research are presented in Chapter 9.  
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Chapter 2 Literature Review 

 

It can be seen from Chapter 1 that high-quality processes become more and more 

popular nowadays; hence the statistical control techniques for the monitoring of those 

processes are in great need in order to keep the pace of the development. TBE charts 

have attracted increasing interests recently, due to its ability of avoiding the problems 

indicated in Section 1.2, and the effectiveness of monitoring high-quality processes. 

The existing control charts for monitoring time between events can be categorized into 

three types based on their methodology: TBE charts with probability limits; TBE 

charts based on EWMA and CUSUM methods; and TBE chart based on Shewhart 

charts. Under each category, there are several control charts applicable for various 

time-between-events distributions. In this chapter, the most recent published research 

and development will be reviewed to provide an initial mapping for the modeling and 

monitoring of TBE with control charts. The weaknesses as well as strengths of existing 

studies are also incorporated which stress the motivation of this study. 

 

2.1 Control Charts for Monitoring Time between Events 

2.1.1 TBE Charts with Probability Limits  

Control chart with probability limits is usually employed when the control statistic 

does not follow normal distribution and the traditional 3-sigma limits are not 

appropriate. The probability limits can be achieved by fixing the probability of false 

alarms (α) at a certain acceptable level. For example, it can be 0.0027 so as to be 

consistent with 3-sigma limits. Let F(X) denote the cumulative distribution function 
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(CDF) of the control statistic X, then the probability limits can be obtained by solving 

the following equations, 

 

( ) ( ) ( )
2

;
2
1;

2
1 αα

==−= LCLFCLFUCLF     (2.1) 

 
The Cumulative Count of Conforming (CCC) chart, first proposed by Calvin (1983) 

and further developed by Goh (1987) and Bourke (1991), monitors the cumulative 

number of conforming items to obtain a nonconforming item with probability limits. 

Let X denotes the cumulative counts of items inspected until a nonconforming item is 

observed, and the fraction of nonconforming of the process is p. X can be modeled 

using the geometric distribution with parameter p, and the mass probability function of 

X is: 

 
( ) ( ) L,2,1,1 1 =−== − xppxXP x     (2.2) 

 
Fixing the false alarm probability α at an acceptable level, the probability limits UCL, 

CL, and LCL of CCC charts can be derived from the CDF of geometric distribution as 

follows: 
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Because the geometric distribution is discrete, the control limits can be rounded to 

integers and the points that fall on the UCL or LCL are regarded as out-of-control 

signals, i.e., 2/}{}{ α=≤=≥ LCLXPUCLXP . In this case, the UCL and LCL of 

CCC chart can be calculated as follows: 
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where [Y] stands for the largest integer not greater than Y. 

 

Note that in order to get a meaningful LCL, 2α<p  should be satisfied. Since the 

value of α is usually very small, then the value of p should be small too. It implies that 

the CCC chart is particularly suitable for high-quality processes.  

 

The continuous counterpart of the CCC chart is the Cumulative Quantity Control 

(CQC) chart (Chan et al., 2000). It plots the quantity produced before observing one 

event, which is not necessarily an integer. CQC can be employed for monitoring 

continuous TBE data. Assuming that the event occurrence rate is constant and the 

occurrence of events can be modeled by a homogeneous Poisson process. Therefore, 

the cumulative quantity before observing one event follows exponential distribution. 

The control limits of CQC chart can be calculated as: 

 

( ) ( ) ( )2/1ln1,2ln1,2/ln1 α
λλ

α
λ

−−==−= LCLCLUCL   (2.5) 

 
where λ  is the events occurrence rate of the exponential distribution. When the actual 

parameter is unknown, an estimation parameter should be used instead of the true 

value. Some authors compared different estimators for the parameter λ and discussed 

their properties; see Bischak & Sliver (2001). The performance of CQC charts will no 

doubt be affected by the accuracy of estimation. This will be discussed in the later part 

of this chapter. 
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Motivated by the idea of the CCC chart and the CQC chart, Chan et al. (2002) 

proposed another type of chart, namely cumulative probability control (CPC) chart 

based on geometric and exponential distributions. In a CPC chart, the cumulative 

probability of the geometric or exponential random variable is plotted against the 

sample number, and hence the actual cumulative probability is indicated on the chart. 

The CPC chart has all the favorable features of CCC and CQC charts, and can resolve 

the technical plotting inconvenience of CCC and CQC charts. Moreover, since its 

vertical axis is standardized to be [0,1], this makes it possible to compare several 

characteristics simultaneously by plotting their corresponding CPC-chart at the same 

time.  

 

2.1.2 TBE CUSUM Chart 

Page (1954) first proposed the CUmulative SUM (CUSUM) control scheme based on 

normal distribution, and was proved to be effective for detecting small shift of process. 

The Exponential CUSUM was first studied by Vardeman & Ray (1985) and Lucas 

(1985) based on the inter-arrival times for monitoring the Poisson rate. A simple 

procedure for designing an optimal exponential CUSUM chart was given by Gan 

(1994). An algorithm for computing the average run length (ARL) of an exponential 

CUSUM chart can be found in Gan and Choi (1994). 

 

Lucas (1985) described design and implementation procedures for both Poisson 

CUSUM and exponential CUSUM, and for detecting either an increase or a decrease 

in event occurrence rate.  He suggested that an exponential CUSUM should be used if 

it is convenient to update the CUSUM with each new event and it is possible to record 

the time since the last event occurs.  
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In the design of exponential CUSUM, the first step is to determine the reference value 

k. The mean time between events is the reciprocal of the number of events per 

sampling interval. The reference value k for the exponential CUSUM depends on the 

acceptable event occurrence rate (μ0) (event occurrence rate is the number of events 

occurring per sampling interval) and the event occurrence rate that is to be detected 

quickly (μ1). The reference value k for the exponential CUSUM chart can be achieved 

by 
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Once the reference value k has been calculated, a suitable value of h can be found out 

to give an acceptable in-control average run length. The average run length of the 

CUSUM scheme can be approximately calculated by the Markov Chain approach, see 

Brook and Evans (1972) and Lucas (1985). There’s also an accurate method of 

evaluating ARL for exponential CUSUM charts by solving a set of differential 

equations, see Vardeman and Ray (1985). The value of h should give an appropriately 

large ARL when the event occurrence rate is at the acceptable level. It should also be 

chosen to give an appropriately small ARL value when the process is running at the 

event occurrence rate that should be detected quickly. 

 

Then the exponential CUSUM can be implemented using the formulas  
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The decision on the statistical control of the process is taken depending on whether St
- 

≤ -h or St
+ ≥ h.  

 

Borror et al. (2003) investigated the robustness of TBE CUSUM, which refers to the 

sensitivity of the TBE CUSUM to make proper decisions regarding a shift in the mean 

defect rate when the TBE is not exponentially distributed. They examined the Average 

Run Length (ARL) properties under both Weibull and lognormal distributions, and the 

results indicated that the TBE CUSUM is extremely robust for a wide variety of 

parameter values for both Weibull and lognormal distributions.  

 

The discrete counterpart of exponential CUSUM is the geometric CUSUM chart, 

which monitors the cumulative count of conforming items until a nonconforming item 

is found. Bourke (2001) studied the geometric CUSUM chart with both 100% 

inspection and sampling inspection for monitoring discrete TBE data. In the study, 

Bourke considered two cases where the shift occurs at a defective item or the shift 

occurs at any item in the process. The zero-state and steady-state performance of the 

geometric CUSUM were evaluated in terms of ARL, ANI (Average Number of items 

Inspected), and ANDO (Average Number of Defectives Observed) by Markov chain 

approach. The comparisons with the np chart showed that the geometric CUSUM is 

efficient in detecting upward shifts in fraction of nonconforming with sampling 

inspection. A more interesting finding is that the geometric CUSUM is better for 

detecting both small and large shifts compared with p chart and np chart; besides, a 

geometric CUSUM designed for detecting a specified shift can work quite well for a 

moderate range of neighboring shift-sizes.  
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2.1.3 TBE EWMA Chart 

Gan (1998) introduced an exponential EWMA method based on the inter-arrival times 

of events, which are independent and identically distributed exponential random 

variables. A decrease in the mean of inter-arrival times indicates that more events 

occur, and an increase in the mean indicates that fewer events occur on the average. 

Gan discussed the design of one-sided and two-sided EWMA chart, and provided a 

simple design procedure for determining the chart parameters of an optimal 

exponential EWMA chart. With examples, he also compared the performance of 

EWMA, CUSUM and Shewhart charts for monitoring the time-between-events (TBE). 

 

Let X1, X2, … be a sequence of TBE data with the exponential probability density 

function 
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The upper-sided EWMA chart is intended for detecting an increase in the exponential 

mean θ and is obtained by plotting 

 
})1(,max{ 1 tQtQt XQAQ λλ +−= −     (2.9)   

                       
against t, for t =1, 2, …, where Qλ  is a smoothing constant such that 10 ≤< Qλ , A is a 

nonnegative boundary and QhuAuQ <≤= ,0 . hQ is the upper control limit, and an 

out-of-control signal is issued at the first t for which Qt hQ ≥ . 
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Similarly, the lower-sided EWMA chart is intended for detecting a decrease in the 

mean and is obtained by plotting  

 
})1(,min{ 1 tqtqt XqBq λλ +−= −     (2.10)  

                       
against  t, for t =1, 2, …, where qλ  is a smoothing constant such that 10 ≤< qλ , B is a 

positive boundary and Bvhvq q ≤<= ,0 . hq is the lower control limit, and an out-of-

control signal is issued at the first t for which qt hq ≤ . 

 

Two-sided EWMA chart is obtained by plotting  

 
tZtZt XZZ λλ +−= −1)1(      (2.11) 

 
against t, for t =1, 2, …, where Zλ  is a smoothing constant such that 10 ≤< Zλ , and 

ul hwhwZ <<= ,0  are the lower and upper control limits, respectively. A signal is 

issued at the first t for which lt hZ ≤  or ut hZ ≥ .  

 

The exact method of computing ARL of exponential EWMA charts by solving a set of 

differential equations is discussed in Gan (1998). Subsequently, Gan and Chang (2000) 

provided a FORTRAN program for computing both the in-control and out-of-control 

ARL. 

 

The discrete TBE EWMA was described by Sun and Zhang (2000). They introduced 

the method of using CUSUM and EWMA charts based on the number of consecutive 

conforming items which can be modeled by geometric distribution. Tables and figures 

were also provided to facilitate the choice of control parameters for the design of 
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CUSUM and EWMA charts. Comparisons of the geometric CUSUM, the geometric 

EWMA and the two-stage CCC chart (Chan et al. 1997) were conducted, and the 

results show that CUSUM and EWMA charts are more efficient than the two-stage 

CCC chart in terms of Average Number of Nonconforming (ANNC).       

 

2.1.4 Shewhart Control Charts for TBE Monitoring 

Standard Shewhart charts for attributes like the c, u, p and np charts that are generally 

used for the monitoring of the number of defects/defectives in a sample can also be 

used to monitor the TBE data. This can be accomplished by grouping the TBE data 

into sub-intervals with a proper subgroup size and then plotting the defects/defectives 

observed in that sub-interval. Radaelli(1998) presented a unified methodology for 

planning one-sided and two-sided TBE Shewhart charts which can be applied to any 

underlying distribution of the events. The methods of selecting control limits and 

evaluating the sensitivity of the chart were also described.  

 

However, as explained in Section 1.2, this approach requires a large number of 

defects/defectives (events) per interval and it is not appropriate especially for 

application in a high quality environment. When there are an excessive number of 

events, the chart will signal an out-of-control situation. In such cases, the actual false 

alarm probability will be much higher than the anticipated probability of 0.0027, 

corresponding to the 3σ limits, due to the poor approximation. Moreover, as pointed 

out before, the lower control limit is usually set at zero, thus making the chart 

unsuitable for identifying any improvement in the process. 
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Another approach to use Shewhart control chart for TBE monitoring is to transform the 

TBE data to Normal distribution first, and then use the traditional Shewhart chart for 

monitoring the process. Nelson (1994) proposed a method by raising exponential data 

to the 1/3.6 power so that the transformed data become approximately normal. 

Subsequently, McCool and Joyner-Motley (1998) compared the Nelson’s 

transformation and logarithmic transformation for setting up control charts with 3-

sigma control limits, probability control limits, and the EWMA chart. Their results 

indicate that either power or log transformation can improve the control chart 

performance effectively when an EWMA scheme is applied. Besides, the power 

transformation is recommended over the log transformation for setting up an EWMA 

chart. Kittlitz (1999) further demonstrated why the double square root (SQRT) 

transformation is recommended for transforming exponentially-distributed data to 

normal for SPC application like I chart, EWMA and CUSUM chart. Moreover, some 

advanced techniques for Shewhart control chart can be applied, such as using synthetic 

control chart which combines Shewhart with EWMA scheme. These will be presented 

in the next section.  

 

2.2 Some Advanced Design Schemes for TBE Charts 

2.2.1 Extensions of the CCC & CQC Chart 

Studies found that the conventional CCC charting technique, in which a point is 

plotted whenever a nonconforming item is observed, is not sensitive enough to detect 

small changes in the process fraction non-conforming. Therefore, the idea of CCC 

chart was extended to monitoring the cumulative count of conforming items until 

obtaining a fixed number of non-conforming items. This extended chart is referred to 

as a CCC-r chart, which is based on negative binomial distribution, where r is the 
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number of non-conforming items observed before a point is plotted, see Xie  et al. 

(1999) and Ohta et al. (2001).  

 

For an acceptable probability of false alarm α, let p be the probability that an item is 

nonconforming, the control limits of CCC-r chart can be obtained by solving the 

following equations, 
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Similar to the idea of CCC-r chart, CQC-r chart was proposed to monitor the time 

between r defects/events based on Gamma distribution. This approach gives more 

credibility to the decision regarding the statistical control of the process as the decision 

is made on the basis of r points rather than a single point.  

 

Given acceptable probability false alarm α, the control limits UCLr, CLr, LCLr of 

CQC-r chart can be calculated using the following equations, 
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where λ and r are the parameters of Gamma distribution.  
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 A disadvantage of the CQC-r chart compared with the CQC chart is that the average 

time taken to plot a point increases with r. Another problem is that the Average Time 

to Signal (ATS) increases as the process improves beyond a certain level. This 

problem also exists for the CQC chart. However, it is more significant in the case of 

CQC-r chart due to the effect of r.   

 

2.2.2 ARL-unbiased Design 

An undesirable feature of the CCC chart is that the average time to give an alarm may 

initially increase when the process deteriorates, i.e., the ARL achieves its maximum 

value at process FNC level which is a bit lower than the in-control FNC. In order to 

solve this problem, Xie et al. (2000) proposed a modified CCC chart with adjusted 

control limits either to minimize the undesirable increasing ARL area or to maximize 

the ARL at the desired process average.  The new control limits can be derived by 

multiplying the probability limits with a constant adjustment factor αγ , where 
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With similar motivation, Zhang  et al. (2004) proposed another improvement design of 

CCC chart, which results in a nearly ARL-unbiased design. In their design, possible 

design parameters (LCL, UCL) are first found so that the probability  
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is most nearly equal to α.   
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Let (LCL, UCL) ∈C and set  
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where ρ is the ratio of out-of-control FNC and in-control FNC (ρ= p’/p). Then ARL (ρ) 

attains the maximum value at ρ*. If a certain pair of control limits (LCL, UCL) ∈C, 

and ρ* equals 1, then the pair of (LCL, UCL) is the ARL-unbiased design. This 

method is much more tedious compared with the method proposed by Xie et al. (2000). 

On the other hand, they proposed another optimal design method called two points 

criterion (TPC) design in which the CCC chart can be designed to be optimal at certain 

out-of-control levels. Let ARL (ρ; LCL, UCL) denotes the ARL of the CCC chart with 

parameters ρ, LCL, and UCL. The optimal design is that minimizing 

 
( ) ( )UCLLCLARLUCLLCLARL ,;1,;1 21 εε ++−   (2.17) 

 
among all possible pairs of (LCL, UCL) ∈C, where the parameters ε1 and ε2 are the 

percentage decrease and increase, respectively, from the in-control FNC level p.  

 

The ARL-unbiased design method proposed by Zhang et al. (2004) is much more  

complicated compared with the scheme discussed in Xie et al. (2000). On the other 

hand, it provides another design method for the CCC chart so that the optimal design 

can be achieved according to the specified out-of-control FNC p level and this makes 

the CCC chart more flexible and efficient especially when the out-of-control FNC can 

be well estimated.  
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2.2.3 Conditional Decision Procedures 

For the CCC chart, since the decision is only based on a single point, it is relatively 

insensitive to process shifts. In order to solve this problem, Kuralmani et al. (2002) 

proposed a conditional decision procedure which adds some supplementary run rules 

to the decision procedure. The conditional procedure is used when the process is 

outside of the control limits whereas the supplementary run rules focus on the in-

control situation. Besides, optimal limits are defined so that the ARL becomes the 

maximum when the process average is at the nominal level. The performance analysis 

showed that the conditional procedure can improve the sensitivity of the CCC chart 

without sacrificing its original in-control probability. 

 

With the similar motivation, Chan et al. (1997) developed a two-stage decision 

procedure based on the CCC chart. The idea of this two-stage CCC chart is analogous 

to that of double sampling plan in acceptance sampling. The occurrence of a defective 

within n1 items inspected in the first stage indicates that the process is out-of-control. If 

no defective occurs within n1 items inspected, the occurrence of two defectives within 

the next (n2 - n1) items in the second stage also indicates that the process is out-of-

control. The probabilities of making a false alarm at the first and second stages are 

equal to α1 and α2, respectively. This procedure combines the advantages of the CCC 

chart and the CCC-r chart, and also overcomes their weakness, i.e. it improves the 

sensitivity of the control chart while keeping the Average Number of Items Inspected 

(ANI) to obtain a signal short. 

 

Lai et al. (2001) investigated the distributions of runs in a two-stage CCC chart. Chan 

et al. (2003) continued studying on the two-stage CCC chart, namely CCC1+γ chart, 
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with the same decision rules. However, the FAR of a CCC1+γ chart is set to be (1-γ)α at 

the first stage and γα at the second stage. Let q=1- p. The analytic expression for the 

ANI of the CCC1+γ chart can be expressed by 
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where a1, a2, a3 , μ0, μ1, and μ2 can be calculated by 
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and  
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Furthermore, an economic model was proposed to calculate the optimal values of 

probabilities of false alarm set at the first and second stages of the two-stage CCC 

chart so that an expected total cost can be minimized.  

 

Another conditional decision procedure is the synthetic control chart proposed by 

Scariano and Calzada (2003) for the monitoring of exponentially-distributed TBE. The 

study was motivated by Wu and Spedding (2000)’s paper on a synthetic control chart 

for detecting changes in the mean of a normally distributed process.  
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Wu and Spedding’s synthetic chart integrates a Shewhart X chart with a conforming 

run length chart (i.e. the CCC chart) in order to detect the shift in normal process mean. 

The synthetic chart consists of an X /S sub-chart and a CRL/S (CRL: Conforming Run 

Length) sub-chart. The sample mean X  is plotted in the X /S sub-chart first, and the 

chart continues until a point outside the UCL or LCL is found. The number of samples 

until the last out-of-control point is taken as CRL, and is then plotted in the CRL/S 

sub-chart with only LCL, and the process is still considered as in-control if the CRL is 

above the LCL; otherwise, an out-of-control signal will arise. The performance tests 

show that this synthetic chart is more effective in detecting shifts in the process mean 

than the Shewhart X  chart, and it is even better than Shewhart X  chart with run rules, 

the EWMA chart, and the synthetic EWMA- X  chart especially when the shift is 

between 0.5σ and 1.5σ.  

 

Following their procedures, Scariano and Calzada (2003) extended the synthetic chart 

for exponentially-distributed TBE data. The synthetic chart consists of a lower-sided 

Shewhart individual sub-chart and a CCC chart for tracking the number of samples 

observed between nonconforming observations. Hence, this synthetic chart will be 

useful when the increase of the events occurrence rate (i.e. the decrease of the 

exponential mean) is the only concern. Comparisons of the ARL for the synthetic 

control chart were conducted to that of the lower-sided Shewhart, lower-sided 

exponential EWMA and CUSUM. Results indicate that the synthetic chart outperforms 

the Shewhart chart for individuals, but the worst case exponential EWMA and 

CUSUM (Gan, 1998) are still superior for detecting the decreases in the exponential 

mean.    
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The conditional decision procedures can improve the performance as well as cost 

effectiveness of the charts at the expense of increasing the complexity of the 

implementation. Therefore, they should be used if the efficiency gain overrides the 

operational inconvenience caused by the conditional decision procedures.      

 

2.2.4 Estimation Error, Inspection Error and Correlation 

Woodall (1997) and Woodall & Montgomery (1999) pointed the research issue that 

estimation error of distribution parameters, as well as the inspection error, would affect 

the performance of control charts. Chen (1997) discussed the mean and standard 

deviation of the run length distribution of X  charts when control limits are estimated. 

Later, Chen (1998) also studied the run length distribution of R, s, and s2 control charts 

when σ is estimated. Besides, Braun (1999) investigated the effect of estimation error 

on the run length distributions for attribute charts. Jones (2002) looked into the 

estimation problem in EWMA chart and developed the design procedures for EWMA 

control charts that do not require the assumption of known parameters to achieve a 

specified ARL.   

 

As for the TBE control chart, Yang et al. (2002) investigated the performance of CCC 

charts with estimated control limits. The error in estimated control limits is caused by 

the estimation error of FNC p, which in turn is attributed to the limited sample size 

used to estimate FNC p.  The traditional estimator used is: 

 

n
rp =0ˆ      (2.21) 
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where r is the number of nonconforming items and n is the total number of items 

sampled. The effect of value of  n was examined and results indicate that the true false 

alarm rate can deviate significantly from its desired value when the above estimator is 

used, especially when p0 is small and the sample size n is not large enough. In their 

study, explicit equations for the false alarm probability and run length distribution 

were derived with estimated limits. The alternative measures of run length that show 

much faster detection of process deterioration are also introduced. 

 

Another factor that may influence the performance of control chart is the inspection 

error. Collins & Case (1978) studied the performance of p chart under inspection error, 

and Suich (1988) investigated the case of c chart with consideration of inspection error. 

The similar studies also go for TBE charts. Ranjan et al. (2003) investigated the effect 

of inspection errors for the CCC chart and discussed the method of setting optimal 

control limits for CCC charts so as to maximize the average run length when the 

process is at the normal level. Let pt denote the probability of non-conforming, and it 

can be represented as  

 
)1/()( 0 ψθθ −−−= ppt     (2.22) 

 
Where p0 is the estimated nonconforming fraction, θ is the probability of classifying a 

conforming item as non-conforming, and ψ is the probability of classifying a non-

conforming item as conforming. The adjusted UCL and LCL can be shown as  
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and  
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The new control limits that take into account the presence of inspection errors is 

actually the old control limits multiplied by an adjustment factor Af, which can be 

shown as 
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On the other hand, Tang and Cheong (2006) investigated the design of CCC chart 

when the inspections are taken in groups and the output characteristic within a group is 

correlated. The performance of the proposed scheme in terms of ARL and ATS is 

derived with a Markov model, and the effects of correlation and sample size are also 

discussed.  

   

2.2.5 Monitoring TBE Data Following Weibull Distribution 

Most of the studies on TBE monitoring, as discussed above, are based on the 

assumption that the TBE data follow exponential distribution. However, this is not 

always true. For example, in reliability monitoring, inter-failure time is usually 

modeled by Weibull distribution. Actually, Weibull distribution is a more general case 

compared with exponential distribution as it can take into consideration the increasing 

or decreasing as well as constant events occurrence rate.  
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Nelson (1979) designed a set of control charts for Weibull processes with standards 

given. The median chart, range chart, location chart, and scale chart were used at the 

same time to monitor Weibull processes. Bai & Choi (1995) described the design 

method of X  and R chart for skewed population like exponential or Weibull 

distribution. Ramalhoto & Morais (1999) proposed the Shewhart control chart for 

monitoring scale parameter of a Weibull control variable with fixed and variable 

sampling intervals.    

  

Xie et al. (2002b) developed a charting method, named t-chart, for monitoring Weibull 

distributed time between failures based on probability limits. Let X1, X2, …denote  a 

sequence of time between events data, which are independent Weibull random 

variables with probability density function: 
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where θ and η are the scale parameter and shape parameter, respectively. The 

cumulative density function is 
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Given acceptable probability of false alarm α, the probability control limits UCL, CL, 

and LCL can be calculated as, 
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Furthermore, a new procedure based on the monitoring of time between r failures, 

named tr-chart, was also proposed in order to improve the sensitivity to process shift. 

Here the Erlang distribution was used to model the time until the occurrence of r 

failures in a Poisson process. Note that Erlang distribution is a special case of the 

Gamma distribution, and the probability control limits of  tr-chart is the same as that of 

the CQC-r chart mentioned above. This new procedure has the advantage of being able 

to detect process improvement as well as deterioration compared to traditional 

Shewhart attribute charts. 

 

Xie et al. (2002b) also investigated the ARL properties when only shape or scale 

parameter changes, and both of them change at the same time. The results showed that 

when shape parameter is not very small, the t-chart is able to detect the increase or 

decrease of scale parameter. However, when the shape parameter shifts from the 

original value, this chart can only detect the decrease of shape parameter, and the 

increasing shift cannot be detected effectively.  On the other hand, Kanji and Arif 

(2001) proposed a control chart, referred to as Median rankit control chart, to monitor 

Weibull data by using quantile approach. 

 

The Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average 

(EWMA) charts can also be applied for monitoring Weibull-distributed data. Johnson 

(1966) developed a V-mask CUSUM method for controlling the scale change of a 

Weibull distribution. Chang and Bai (2001) proposed a heuristic method of 

constructing X , CUSUM, and EWMA charts for skewed populations with weighted 

standard deviations obtained by decomposing the standard deviation into upper and 
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lower deviations adjusted in accordance with the direction and degree of skewness. 

This method can be used for TBE data that follow exponential, Weibull, or Gamma 

distribution. Hawkins and Olwell (1998) provided the optimal design of CUSUM for 

Weibull data with fixed shape parameter based on Wald’s sequential probability ratio 

test (SPRT) theory. Borror et al. (2003) investigated the robustness of TBE CUSUM 

for Weibull-distributed and Lognormal-distributed TBE data. However, they use the 

same design approach as well as ARL calculation method as shown in Lucas (1985).  

Another limitation of their study is that they fixed the scale parameter and only let the 

shape parameter changes when evaluating the ARL performances of TBE CUSUM for 

Weibull distributed data. However, the scale parameter is more likely to change when 

the process shifts from the target level. Few methods have been proposed using 

EWMA chart. Zhang and Chen (2004) developed a lower-sided and upper-sided 

EWMA chart for detecting mean changes of censored Weibull lifetimes with fixed 

censoring rate and shape parameter.  

 

Since the monitoring techniques based on exponential-distributed TBE data is 

relatively well developed, another way to monitor Weibull distributed TBE data is to 

transform Weibull to exponential and then do the monitoring and analysis. Xie et al. 

(2000b) discussed the Weibull-to-exponential transformation when the mean time to 

failure or reliability is to be estimated, and investigated the effect of mis-specification 

of shape parameter.  Transforming Weibull to normal is another possible approach to 

the monitoring of Weibull-distributed TBE with the help of well-designed control 

charts for normal.  
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2.2.6 Artificial Neural Network-based Procedure 

Recently, Artificial Neural Networks (ANN) techniques have been introduced to the 

quality control area for the purpose of improving the efficiency and intelligence of 

process control (Guh, 2003; Guh, 2005; Guh and Shiue, 2005). The advantages of 

applying ANN to control charts analysis consist of the following: first, neural networks 

have the ability to learn the relationships through the data themselves rather than 

assuming probability distributions. Meanwhile, neural networks can handle multiple 

related or non-related inputs and outputs simultaneously. Besides, the performance of 

neural networks can be improved by performing incremental training, as more data 

become available.  

 

The application of ANN approach to the TBE chart was explored by Cheng & Cheng 

(2001). They proposed a three-layer fully connected feed-forward network with a 

back-propagation training rule which can be used in combination with exponential 

CUSUM for the monitoring of exponential TBE mean. The performance of the neutral 

network is evaluated on the basis of ARL, and the sensitivity analysis for neural 

network was also performed for different in-control ARL values, and different 

exponential events occurrence rate. The results obtained with simulated data suggest 

that using exponential CUSUM chart and neural network together is feasible and 

significantly more sensitive to process shifts than the exponential CUSUM chart.  

 

2.2.7 Economic Design of TBE Charts  

Economic design of control charts attracts great interests from researchers with the 

growing concern on the production cost. Much research regarding the economic design 

was initiated from the time-between-events point of view. A common assumption is 
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that the sample average X-bar and the process in-control time follow normal and 

exponential distributions, respectively (see, for example, Duncan, 1956). Recent 

research on economic design of control charts extends the scope to adaptive control 

charts (Stoumbos and Reynolds, 2005; Yu and Chen, 2005), control chart for 

correlated or non-normal data (Chou et al., 2001; Chen, 2004), multivariate control 

charts (Chen, 2006), control charts with multiple assignable causes or Weibull in-

control time (Yang and Rahim, 2005; Chen and Cheng , 2006), etc.   

 

The economic design of geometric TBE chart as first studied by Xie et al. (1997), was 

further developed by Tang et al. (2000), Xie et al.(2001). The economic design of 

geometric TBE chart was based on the Lorenzen and Vance (1986) model which 

involves cost considerations and can be applied to all control charts regardless of the 

monitoring statistic. In their study, the selection of design parameters is investigated 

from an economic point of view, and the sampling interval and the control limit for 

CCC charts were studied. A simplified procedure is used to derive the optimum setting 

of sampling and control parameters. Moreover, Tang  et al. (2000) also proposed an 

economic-statistical model for CCC chart. The idea of economic-statistical design is to 

minimize the cost of control charts while keeping reasonable Type I and II error 

probabilities (in-control ARL and out-of-control ARL). 

 

Ohta et al. (2001) also discussed the economic design of CCC-r chart, and proposed a 

simplified optimal method for the design of a CCC-r chart by applying Collani and 

Drager’s economic design method for control charts that monitor discrete quality 

characteristics. 
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The economic design of exponential TBE charts was studied by Zhang et al. (2005). 

The economic model was described and the performance of the chart was evaluated in 

terms of ATS. An economic-statistical design approach was interpreted from a multi-

objective optimization viewpoint. The performance of exponential TBE chart based on 

economic design was compared to those based on statistical design, and economic-

statistical design. Results show that the economic-statistical design of exponential 

charts is virtually a multi-objective approach and has reasonably good statistical 

performance especially when the cost of false alarm and assignable causes is difficult 

to estimate. 

 

2.3 Summary 

In this chapter, the basic TBE charts and some advanced design schemes are 

substantially reviewed.  The initial study on the TBE monitoring started with the CCC 

chart based on discrete TBE data, and then extended to the monitoring of continuous 

TBE with CQC chart, CUSUM or EWMA chart. The advanced design schemes 

considered the biased ARL problem, the estimation error, the inspection error, the 

correlation within the sample, etc., and made the TBE chart more applicable and 

efficient for practical situations. However, there are still some problems unsolved 

which motivate the study involved in this dissertation. 

 

As can be seen from the previous sections, each TBE chart has its advantages, 

weaknesses and applicable conditions. Therefore, the choice and application of these 

control charts need to be carefully examined according to the particular conditions of 

the process where the control charts need to be applied. The first and most important 

step is to test the distribution of the TBE chart. As indicated from the review, most of 



                                                                                             Chapter 2 Literature Review 

 42

the TBE charts are set up based on either discrete TBE distributions like geometric or 

negative binomial, or continuous TBE, e.g. exponential, Gamma, Weibull or 

lognormal. Table 2.1 summarizes the possible charts that can be used for different TBE 

distributions. On the other hand, if the TBE data do not follow any of the distributions 

mentioned above, transformations can be employed to transform it to a proper 

distribution and then apply the TBE charts.  

 

Table 2.1 Summary of TBE charts 

Data type Distributions Probability limits CUSUM EWMA Shewhart 
charts 

Geometric 

 
CCC 

(Calvin,1983;Goh,198
7; Bourke,1991) 

CPC  
(Chan et al.,2002) 

 

Geometric 
CUSUM 

(Bourke,2001) 

Geometric 
EWMA 
(Sun & 

Zhang,2000) 
Discrete 

Negative 
binomial 

 
CCC-r 

(Xie  et al. ,1999; Ohta 
et al. , 2001). 

 

  

Exponential 

CQC 
(Chan et al.,2000) 

CPC  
(Chan et al.,2002) 

 
Exponential 

CUSUM 
(Vardeman & 

Ray, 1985; 
Lucas, 1985; 
Gan,1994) 

 

Exponential 
EWMA 

(Gan,1998) 

Gamma 

 
CQC-r 

(Xie et al.,2002b) 
 

  

Weibull 
CQC 

(Xie et al.,2002b) 
 

 
TBE CUSUM 
(Borror et al. 

2003) 
Weibull 
CUSUM 

(Hawkins & 
Olwell, 1998) 

 

 

Continuous 

Lognormal 

 
CQC 

(Xie et al.,2002b) 
 

 
TBE CUSUM 
(Borror et al. 

2003) 

 

p, np, c or 
u chart 

(Radaelli,
1998; 

Kittlitz , 
1999; 

Nelson, 
1994; 

McCool & 
Joyner-
Motley, 
1998) 
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Another important consideration when choosing a suitable chart is the performance. It 

is hard if not impossible to design a control chart so that it has the best performance for 

all situations. The users may choose a TBE chart which performs best under the 

condition which is most compatible to the practical situation. Chapter 3 is motivated 

by this problem, and several most typical TBE charts are compared in order to provide 

some insights and guidelines for the users on how to find out the most suitable TBE 

charts for different situations.  
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Chapter 3 A Comparative Study of Exponential Time 

Between Events Charts 

 

3.1 Introduction 

As discussed in Chapter 1, control charts for attributes have been popularly adopted for 

monitoring the fraction nonconforming (p-chart) or nonconformities (c-chart or u-chart) 

in a process. However, they may face some practical problems when the process 

fraction of nonconforming is very low, say, at ppm or even ppb levels. A good solution 

to those problems is to employ TBE charts.  

 

A common assumption for TBE charts is that the occurrence of events can be modeled 

by a homogeneous Poisson process, and thus the time between two successive events 

follows exponential distribution. Based on this assumption some TBE charts, referred 

to as Conforming Run Length (CRL) charts, are designed for discrete TBE data based 

on geometric or negative binomial distribution. Other TBE charts are designed for 

monitoring continuous TBE data based on exponential distribution.  

 

All these TBE charts show some advantages in one way or another. Some comparing 

studies have been carried out for discrete TBE charts. Xie et al. (1998) did a 

comparative study between the CCC and CUSUM charts. Borror et al. (1998) 

compared the ARL of the Poisson EWMA with that of the Shewhart c-chart. Wu et al. 

(2000) compared the design and performance of the np chart, CRL-CUSUM and 

SCRL (Sum of CRLs) chart for discrete TBE data. Sun & Zhang (2000) conducted a 
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comparative study using discrete TBE data on the CUSUM, the EWMA chart, and the 

two-stage CCC chart proposed in Chan et al. (1997). On the other hand, even though 

the continuous TBE charts represent more general cases compared to the discrete TBE 

charts, little literature is available on their relative performance. Gan (1998) compared 

the ARL performance of exponential EWMA with that of the exponential CUSUM and 

Shewhart charts. The results indicated that the Shewhart chart is highly insensitive 

compared to the exponential EWMA or CUSUM chart. Ranjan et al. (2003) looked 

into the CQC chart, CQC-r chart and exponential CUSUM chart and compared their 

performance based on Average Time to Signal (ATS).  

 

This chapter extends the comparisons to a wider range, and compares the performance 

of continuous TBE charts among the CQC chart, CQC-r chart, exponential EWMA 

and exponential CUSUM chart based on ATS performance. These TBE charts are 

referred to as exponential TBE charts since all of them are set up based on exponential 

distribution. The purpose of this study was to investigate the comparative performance 

of different exponential TBE charts and provide some insights of their strengths as 

well as shortcomings. The results will be useful for the quality engineers on the 

implementation of TBE charts under different situations.  

 

A uniform model of the exponential TBE charts involved in this study is that the 

occurrence of events is modeled by a Poisson process, and the time between events Xi 

(i= 1, 2,…) are independent and identically distributed exponential random variables 

with probability density function: 

 

⎪⎩

⎪
⎨
⎧

≥=
−−

otherwise
xifexf

x

,0
0,)(

1 θθ     (3.1) 
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where θ is the reciprocal of the events occurrence rate, i.e. the mean of the time 

between events data.  

 

3.2 ATS Properties of TBE Charts 

The ARL is one of the most frequently used criteria to measure the performance of 

control charts. However, it is not a good measurement for TBE charts because the time 

spent on plotting each point is different, and the ARL does not consider the time factor. 

A better alternative is the ATS, which is defined as the expected value of total length 

of time to observe an out-of-control point.  

 

Let S be the total amount of time before an out-of-control signal occurs. Then it is 

obvious that ∑
=

=
R

i
iXS

1
, where R is the number of points plotted on the chart until an 

out-of-control signal occurs. Using Wald’s identity, the ATS of the CQC-r chart can be 

calculated as: 

 

( ) ( ) ( ) β
θ

βλλ −
=

−
=⋅==⎟

⎠

⎞
⎜
⎝

⎛
== ∑

=
− 11

)(
1

rrrARLXEREXESEATS
R

i
irCQC  (3.2) 

 

  
 

where β  denotes the type II error of the CQC-r chart, λ is the event occurrence rate of 

the Poisson process, and θ is the reciprocal of  λ, i.e. the mean of time between events 

data.  

 

Since the time between r events follows Gamma distribution, the type II error β can be 

calculated as:   
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Substituting the values of β  into equation (3.2), ATS of CQC-r chart is obtained as: 
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Using similar deduction method, the expression of ATS for exponential EWMA and 

exponential CUSUM can be derived as 

 

θ
λ

θ
λ

⋅=×====

⋅=×====

∑

∑

=

=

CUSUMCUSUM

R

i
iCUSUM

EWMAEWMA

R

i
iEWMA

ARLARLXEREXESEATS

ARLARLXEREXESEATS

1)()()()(

1)()()()(

1

1

    

(3.5) 

 
Here in this study the exact methods of computing ARL are used following the 

methods shown in Gan (1998) for exponential EWMA and Vardeman and Ray (1985) 

for exponential CUSUM.  

 

When detecting the process improvement or deterioration separately, the one-sided 

CQC and CQC-r chart are used instead of two-sided charts. The control limits of the 

lower-sided and the upper-sided CQC-r chart can be calculated by solving the 

following equations: 
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Accordingly, the ATS for lower-sided CQC-r chart can be expressed as: 
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and the ATS for upper-sided CQC-r chart can be expressed as: 
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The control limits and the ATS formulae for CQC chart can be computed from (3.6), 

(3.7) and (3.8) for r = 1.  

 

3.3 Comparisons of Performance 

A series of comparative study have been done on the performance of these continuous 

exponential TBE charts, i.e. CQC chart, CQC-r chart, exponential CUSUM chart and 

exponential EWMA chart, with different design parameters combinations. Some 

representative results from the study is shown in this section, which reveal some 

insights of relative performance of these control charts.     

 
3.3.1 Upper-sided TBE Charts 

The upper-sided TBE chart is designed for monitoring process improvements. In order 

to assess the relative performance of upper-sided CQC-r chart (r =1, 2, 3, and 4), 

exponential EWMA and exponential CUSUM charts, the ATS performances of these 

exponential TBE charts are compared. In this comparison the in-control ATS value 

(ATS0) is set to be the same (ATS0=500), and the out-of-control ATS (ATS1) values for 
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different shifts are then calculated. The in-control mean of TBE data is assumed to be 

1 (θ0=1.00), and the exponential EWMA chart and CUSUM chart are designed to be 

optimal in detecting the out-of-control TBE mean θ1 of 2.00 and 5.00, respectively. 

The ATS values of the CQC-r chart, exponential EWMA and exponential CUSUM 

charts are listed in Table 3.1. The ATS curves of the CQC, CQC-r (r =4), exponential 

EWMA, and CUSUM charts are displayed in Figure 3.1.   

 

It can be seen from Table 3.1 and Figure 3.1 that the exponential EWMA and 

CUSUM charts outperform the CQC-r charts at all shifts levels listed in Table 3.1.  

When detecting the shifts at designed optimal level, exponential EWMA and CUSUM 

show similar performance. On the other hand, when the shift is relatively small and 

moderate, the exponential EWMA chart shows better performance than the 

exponential CUSUM chart; and when the shift is large (up to 5 times of the in-control 

value and above), the exponential CUSUM chart is slightly better than the exponential 

EWMA chart .  

 

For the CQC-r charts, when the shift is small, the larger the value of r, the better the 

performance of the chart is. When the shift becomes large, the CQC chart with a 

smaller r value will be better than the CQC chart with a larger r value. It also shows 

that when the mean of TBE θ increases, the ATS of the CQC chart decreases faster 

than that of the CQC-r charts, and thus make the CQC chart more sensitive to large 

process improvement. 

 

To investigate the effect of different in-control ATS levels, which also represent 

different false alarm rate α, the above exponential TBE charts with in-control ATS of 
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370.37 are compared again and the corresponding ATS values are listed in Table 3.2. 

The in-control TBE mean is assumed to be 1 (θ0=1.00), and the exponential EWMA 

chart and CUSUM chart are designed to be optimal in detecting the out-of-control TBE  

mean θ1 of 3.00 and 4.00, respectively. Note that the exponential EWMA and CUSUM 

charts are designed such that the ATS may not be exactly equal to, however the values 

are very close to 370.37. The results are shown in Table 3.2 and Figure 3.2.  

 

Table 3.1 ATS values of upper-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA 
and exponential CUSUM charts (ATS0 = 500) 

 

θ 
CQC 

α=0.002 
UCL=6.21 

CQC-2 
α=0.004 

UCL=7.68 

CQC-3 
α=0.006 

UCL=9.05 

CQC-4 
α=0.008 

UCL=10.35 

EWMA1 
λQ=0.10 
hQ=1.71 
Q0=1.00 
θ1=2.00 

CUSUM1 
kS=1.39 
hS=7.42 
S0=1.00 
θ1=2.00 

EWMA2 
λQ=0.27 
hQ=2.60 
Q0=1.01 
θ1=5.00 

CUSUM2 
kS=2.01 
hS=4.86 
S0=0.25 
θ1=5.00 

1.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00

1.02 451.46 446.43 442.45 439.08 411.16 419.93 433.09 440.13

1.04 409.42 400.61 393.73 388.02 342.68 356.10 377.73 389.58

1.10 312.59 297.48 286.13 277.02 212.96 228.80 260.59 278.41

1.20 212.96 195.59 183.19 173.66 116.64 127.32 156.60 173.40

1.30 154.90 138.72 127.64 119.43 75.92 82.55 104.65 117.91

1.50 94.49 82.16 74.29 68.81 43.80 46.20 58.65 66.15 

2.00 44.72 38.49 35.10 33.13 24.20 24.20 28.00 30.20 

5.00 17.33 18.33 20.60 23.69 16.00 15.50 15.00 15.00 

10.00 18.62 24.39 32.04 40.87 19.00 19.00 18.00 18.00 
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Figure 3.1 ATS curves for upper-sided CQC, CQC-4, exponential CUSUM and 

EWMA charts (ATS0 = 500) 
 

Comparing the results in Table 3.1 and Table 3.2, we notice that the superiority of 

exponential EWMA and CUSUM charts in ATS will be less obvious when the in-

control ATS decreases from 500 to 370.37. Exponential EWMA and exponential 

CUSUM charts outperform and CQC-r charts when the upper shifts are small, while 

the superiority in ATS become less significant when the TBE mean increases up to 3 

or 4 times of the in-control mean. Another interesting finding is that when the shift is 

up to 3.50 and above, the CQC chart shows better ATS performance compared to the 

CQC-r chart with r =2, 3, or 4. Therefore, the CQC chart is desirable when the shift is 

relatively large, and CQC-r charts can be employed when the shift is small. 
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Table 3.2 ATS values of upper-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA 
and CUSUM charts (ATS0 = 370.37) 

 

θ 
CQC 

α=0.0027 
UCL=5.9145 

CQC-2 
α=0.0054 

UCL=7.3428 

CQC-3 
α=0.0081 

UCL=8.6718 

CQC-4 
α=0.0108 
UCL=9.94 

EWMA1 
λQ=0.167 
hQ=2.00 
Q0=0.50 
θ1=3.00 

EWMA2 
λQ=0.229 
hQ=2.30 
Q0=0.50 
θ1=4.00 

CUSUM1 
kS=1.648 
hS=5.473 
S0=0.00 
θ1=3.00 

CUSUM2 
kS=1.848 
hS=4.86 
S0=0.00 
θ1=4.00 

1.00 370.37 370.37 370.37 370.37 370.22 370.22 370.49 370.01 

1.10 237.96 227.17 219.10 212.68 186.33 196.053 200.62 209.528

1.20 165.85 153.19 144.20 137.33 112.4 120.732 123.79 132.924

1.30 122.97 110.99 102.83 96.82 77.194 83.135 84.539 92.131 

1.40 95.69 85.00 78.00 73.01 58.142 62.188 62.454 68.446 

1.60 64.49 56.35 51.36 48.04 39.504 41.264 40.352 44.032 

1.80 48.12 41.89 38.33 36.15 31.014 31.626 30.276 32.598 

2.00 38.49 33.66 31.10 29.71 26.42 26.4 24.88 26.4 

2.50 26.63 23.95 22.96 22.82 21.15 20.45 18.875 19.425 

3.00 21.54 20.12 20.08 20.78 19.05 18.12 16.59 16.77 

3.50 18.97 18.41 19.11 20.50 18.095 17.08 15.575 15.54 

4.00 17.55 17.69 19.01 21.03 17.68 10.28 15.12 15.00 

 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Time between events mean

A
TS

CQC
CQC-4
EWMA1
CUSUM1

 
Figure 3.2 ATS curves for upper-sided CQC, CQC-4, exponential CUSUM and 

EWMA charts (ATS0 = 370.37) 
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3.3.2 Lower-sided TBE Charts 

Lower-sided TBE charts are employed to detect process deteriorations. Using the 

similar analysis method as the above, the in-control ATS value is assumed to be 500, 

and the out-of-control ATS values of the CQC-r chart (r =1, 2, 3, 4), exponential 

EWMA and exponential CUSUM charts for different shifts are compared. Again, the 

in-control mean of TBE data is assumed to be 1 (θ0= 1.00), and the exponential 

EWMA chart and exponential CUSUM chart are designed to detect the out-of-control 

TBE mean of 0.50 and 0.20, respectively. Table 3.3 shows the ATS values of the 

CQC-r, exponential EWMA and exponential CUSUM charts. 

 

Table 3.3 shows that for the intended design shifts, the exponential CUSUM charts 

outperform the exponential EWMA charts, and the exponential EWMA charts show 

better ATS performance than the CQC-r charts. However, when the process shift is 

relatively small, exponential EWMA charts show better performance than the 

CUSUM charts, and CUSUM charts outperform the CQC-r charts (including the CQC 

chart). When detecting large shifts, say, one tenth of the in-control mean, all these 

exponential TBE charts have similar ATS performance except for the CQC chart. For 

the CQC-r chart, the larger the value of r, the better the performance of the chart is at 

the expense of larger probability of false alarms. Therefore, we suggest using 

exponential EWMA or exponential CUSUM chart when the shift is relatively small 

and choosing CQC-r chart when the shift is large.    
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Table 3.3 ATS values of lower-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA 
and exponential CUSUM charts (ATS0 = 500) 

 

θ 
CQC 

α=0.002 
LCL=0.002 

CQC-2 
α=0.004 

LCL=0.092 

CQC-3 
α=0.006 

LCL=0.361 

CQC-4 
α=0.008 

LCL=0.771 

EWMA 
λq=0.10 
hq=0.55 
q0=1.00 
θ1=0.50 

CUSUM 
kT=0.69 
hT=4.16 
T0=-0.78 
θ1=0.50 

EWMA 
λq=0.33 
hq=0.25 
q0=0.98 
θ1=0.20 

CUSUM 
kT=0.40 
hT=1.24 
T0=-0.14 
θ1=0.20 

1.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00

0.95 451.27 430.08 412.98 399.28 297.73 320.72 358.53 379.62

0.90 405.04 366.99 337.87 315.55 181.26 204.84 255.24 284.49

0.85 361.31 310.39 273.51 246.54 113.22 130.90 180.37 210.38

0.80 320.08 259.94 218.83 190.23 72.80 84.08 126.64 153.28

0.70 245.10 176.04 134.47 108.47 32.97 36.12 61.32 77.63 

0.60 180.12 112.47 77.27 57.75 16.74 16.98 29.16 36.84 

0.50 125.12 66.42 40.66 28.19 9.30 8.80 13.75 16.45 

0.20 20.08 5.09 2.22 1.49 1.70 1.48 1.36 1.22 

0.10 5.05 0.85 0.43 0.42 0.72 0.62 0.49 0.42 

 

A similar comparative study is also conducted with in-control ATS of 370.37. The in-

control TBE mean is assumed to be 1 (θ0=1.00), and the exponential EWMA chart 

and CUSUM chart are designed to detect the out-of-control TBE mean of 0.40 and 

0.30, respectively. The results are shown in Table 3.4.  

 

From the results in Table 3.3 and Table 3.4, similar conclusions can be drawn as in the 

comparison of upper-sided TBE charts. The superiority of exponential EWMA and 

CUSUM charts in ATS will be less significant when the in-control ATS decreases 

from 500 to 370.37. For larger process shifts, CQC-4 chart shows similar performance 

as the exponential CUSUM and EWMA charts. The performance of the CQC chart in 

detecting process deterioration is worse than the rest. Therefore, exponential EWMA 

or CUSUM should be used when the shift is small, and CQC-r charts can be 

employed when the shift is large.  
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Table 3.4 ATS values of lower-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA 
and exponential CUSUM charts (ATS0 = 370.37) 

 

θ 
CQC 

α=0.0027 
LCL=0.0027 

CQC-2 
α=0.0054 
LCL=1077 

CQC-3 
α=0.0081 

LCL=0.4032

CQC-4 
α=0.0108 

LCL=0.8424

EWMA 
λq=0.152 

hq=0.4662 
q0=2.00 
θ 1=0.40 

EWMA 
λq=0.228 

hq=0.3632 
q0=2.00 
θ 1=0.30 

CUSUM 
kT=0.611 
hT=2.794 

T0=0 
θ 1=0.40 

CUSUM 
kT=0.516 
hT=1.909 

T0=0 
θ 1=0.30 

1.00 370.37 370.37 370.37 370.37 370.73 370.17 370.65 370.56 

0.95 334.31 318.75 306.41 296.61 243.94 256.22 259.22 271.88 

0.90 300.06 272.15 251.12 235.14 162.35 177.39 179.75 197.24 

0.85 267.67 230.33 203.69 184.36 109.62 123.05 123.78 141.48 

0.80 237.13 193.04 163.33 142.81 75.29 85.69 84.85 100.40 

0.70 181.60 130.97 100.90 82.20 37.68 42.37 39.83 49.13 

0.60 133.46 83.88 58.39 44.31 20.47 21.77 19.18 23.45 

0.50 92.72 49.70 31.02 22.00 11.91 11.71 9.73 11.19 

0.40 59.38 26.35 14.67 9.85 7.20 6.54 5.21 5.47 

0.30 33.44 11.79 5.88 3.87 4.34 3.68 2.85 2.74 

0.20 14.90 3.92 1.83 1.32 1.72 1.96 1.47 1.32 

 

 

3.3.3 Two-sided TBE Charts 

Two-sided TBE charts are preferred when both process improvement and 

deterioration are of interest or the direction of the shift cannot be predicted. To assess 

the relative performance of the two-sided TBE charts, the ATS performance of the 

CQC-r chart (r =1, 2, 3, 4), exponential EWMA and exponential CUSUM charts are 

compared. The in-control ATS value is set to be 370.37, and the in-control TBE mean 

is assumed to be 1 (θ0 = 1.00). The exponential CUSUM and EWMA charts are 

designed to be optimal in detecting the out-of-control TBE mean θ1 of 0.3 and 3.0, 

respectively. Table 3.5 presents the ATS values of the two-sided TBE charts described 

above.  
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Table 3.5 ATS values of two-sided CQC-r (r =1, 2, 3, 4) chart, exponential EWMA 
and CUSUM charts (ATS0 = 370.37) 

 

CQC CQC2 CQC3 CQC4 Two-sided CUSUM Two-sided EWMA 

 
θ 

α=0.0027 
UCL=6.608 
LCL=0.001 

α=0.0054 
UCL=8.125 
LCL=0.075 

α=0.0081 
UCL=9.534 
LCL=0.313 

α=0.0108 
UCL=10.875  
LCL=0.687 

θs=0.3 θT=3.0  
ks=0.516 kT=1.648  

hs=2.20 hT=6.5 

θs=0.2 θT=5.0  
ks=0.402  kT=2.012 
hs=1.33  hT=5.366 

λ=0.202 
hq=0.36  
hQ=2.35 
θ1=0.3 

λ=0.152 
hq=0.43  
hQ=2.05 
θ1=3.0 

0.30 66.76 22.45 10.17 6.04 10.46 11.33 14.19 15.72 

0.50 185.15 97.29 58.21 39.29 13.79 19.56 14.99 14.89 

0.60 264.80 164.95 111.76 82.06 31.32 45.52 30.07 27.94 

0.70 348.62 254.13 193.92 155.29 72.32 99.55 64.47 57.51 

0.80 411.04 347.84 298.98 262.51 160.26 197.33 142.98 128.26 

0.90 419.00 398.38 379.59 363.51 300.81 321.92 288.07 275.27 

1.00 370.35 370.34 370.37 370.38 370.66 370.14 370.85 370.17 

1.10 298.19 295.85 293.70 291.35 285.70 301.74 269.21 247.09 

1.20 231.40 222.25 214.39 207.31 185.21 211.74 162.46 135.40 

1.50 114.38 100.96 91.58 84.63 65.24 80.70 50.60 36.98 

1.80 68.70 58.78 52.66 48.59 37.28 44.60 26.75 19.04 

2.00 53.45 45.57 41.02 38.22 29.80 34.52 20.58 14.72 

3.00 27.03 24.25 23.40 23.53 6.29 6.53 4.06 2.83 
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Figure 3.3 ATS curves for two-sided CQC, CQC-4, exponential CUSUM and 

exponential EWMA charts 
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Figure 3.3 displays the ATS curves for two-sided CQC, CQC-4, exponential CUSUM 

and exponential EWMA charts. It is obvious from Table 3.5 and Figure 3.3 that in 

general the exponential CUSUM and EWMA charts outperform the CQC-r charts. For 

the CQC-r charts, the larger the value of r, the better the chart performs. Moreover, 

when the process improves, the r value does not influence the ATS value a lot, while 

when the process deteriorates, the CQC-r chart with larger value of r (r = 2, 3 or 4) 

shows distinct superiority to the CQC chart, and the ATS performance of CQC-4 chart 

is comparable to the corresponding exponential EWMA and exponential CUSUM 

charts. Moreover, the CQC-4 chart overcomes the drawback of the CQC chart that the 

ATS value increases when the process has a small lower-sided shift.  

 

A practical disadvantage of two-sided exponential CUSUM and exponential EWMA 

charts is that the design procedures are quite complicated. A two-sided EWMA chart 

with one smoothing factor and different upper and lower limits hq and hQ can only be 

designed to detect either an upper or lower shift quickly, while two charts with two 

sets of design parameters have to be employed if the users intend to detect certain 

upper and lower shifts quickly. For two-sided exponential CUSUM chart, two 

individual charts have to be used to detect shifts in different directions.  

 

3.4 Results & Discussions 

The following conclusions can be drawn by summarizing the analysis results above: 

1. Among the upper-sided exponential TBE charts, the difference in ATS values 

is not very significant. When the process improvement is small, exponential 

EWMA charts are slightly better than exponential CUSUM chart, and both of 

them are better than the CQC and CQC-r charts. However, the CQC chart 
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shows better performance than the CQC-r charts, and its ATS is similar to the 

exponential EWMA and CUSUM charts when the shift becomes large.   

2. Among the lower-sided exponential TBE charts, the ATS performance of 

exponential EWMA and CUSUM charts are much better than the CQC and the 

CQC-r chart. The exponential EWMA is more sensitive to small deterioration, 

while the exponential CUSUM is suitable for large deterioration. For the CQC-

r charts, the larger the value of r, the better the performance of the chart, 

though at the expense of large false alarm probability. 

3. Among the two-sided exponential TBE charts, the exponential CUSUM and 

exponential EWMA charts outperform the CQC-r charts. For CQC-r charts, 

when the process improves, the parameter r does not influence the ATS 

performance to a large extent, while when the process deteriorates, the CQC-r 

chart with large value of r shows distinct superiority to the CQC chart. 

4. The in-control ATS value, as a design parameter of the TBE charts, has certain 

effect on the comparative performance of the charts. The superiority of 

exponential EWMA and exponential CUSUM charts in ATS will be less 

significant when the in-control ATS decreases, and thus making CQC and 

CQC-r charts better choices because of their simple design procedures and less 

requirement of process information. 

 

Comparing the design procedures of CQC chart, CQC-r chart (Xie et al., 2002b), 

exponential CUSUM chart (Gan,1994) and exponential EWMA chart (Gan, 1998), 

CQC and CQC-r chart are much easier to design because the upper and lower control 

limits can be easily calculated by formula (2.5) and (2.13) with predetermined False 

Alarm Rate α and value of r. On the other hand, to achieve the optimal design of 
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exponential CUSUM or exponential EWMA chart, the out-of-control level p1 has to be 

known or well-estimated. The optimal design parameters are determined by following 

complicated design procedures with the formula and counterplots as shown in the 

corresponding papers. If the out-of-control shift level varies along the time, the optimal 

design parameters have to be adjusted also. The previous optimal design of exponential 

CUSUM or EWMA chart could not achieve its best performance if the design 

parameters are not adjusted in time. 

 

Based on the analysis above, we recommend that if the purpose of employing a TBE 

chart is to monitor process improvement or when the users do not really know whether 

the process will improve or deteriorate, i.e. where it is difficult to predict the process 

shift, the CQC or the CQC-r chart is a better choice as they are easy to design and 

implement, and have relatively good ATS performance. On the other hand, if the focus 

is only on process deterioration, and the out-of-control shift can be accurately 

predicted according to past data or other information, the exponential CUSUM or 

EWMA charts will be more efficient tools especially when the shift is small. 

Alternatively, CQC-r charts can also be employed to detect relatively large 

deterioration. 

 

3.5 On-line Process Monitoring Based on TBE Charts 

For high-quality processes, products are generally manufactured automatically in a 

production line within a very short period. Thus early detection of change in the 

process parameters has become even more critical. Early detection of any malfunctions 

in a production line results in less defective items being produced and greater up time 

of critical process equipment, which in turn equates to higher profitability. As a result, 
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online process monitoring becomes a great need. 

 

A typical on-line process monitoring system usually consists of several modules such 

as data acquisition and processing, SPC monitoring, Expert System diagnosing, and 

Engineering Process Control (EPC) adjustment. Firstly the data are collected from the 

processes by using sensors or other tools; then the most important process variables are 

prioritized in the initial implementation of SPC. This useful information is then sent 

into the on-line SPC module, which employs suitable control charts to monitor the 

process and provide useful information to diagnose the reasons of failures. For 

continuous flow process, data correlation also needs to be considered when designing a 

control chart. Some authors proposed using Artificial Neural Network (ANN) 

techniques, for control chart pattern (CCP) recognition, and expert system for cause 

diagnoses. The corrective actions are usually done by an EPC system which may make 

necessary feedback adjustment according to the information provided by SPC and 

failure diagnosis system. All those sub-systems in the process are important to fulfill 

on-line process monitoring. However, this study focuses on the SPC section, which is 

the most fundamental and effective part in the entire system. 

 

From the analysis in the previous sections, it can be seen that the CQC and CQC-r 

charts have some advantages compared to exponential CUSUM and EWMA charts 

especially for on-line process monitoring. Firstly, they are more flexible and need less 

information about the process. This feature is very beneficial for implementing on-line 

process monitoring, because most of the time users are not sure about the out-of-

control process defect rate that would be interested to be detected quickly, or even the 

direction of possible shifts. 
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Secondly, the flexibility of CQC and CQC-r charts make the on-line process 

monitoring system more stable without too many changes of the chart design 

parameters due to the change of user’s requirements. Besides, the control limits and 

other important parameters such as the ARL and ATS are much easier to compute 

compared with exponential CUSUM and exponential EWMA. Therefore, the CQC 

and CQC-r charts are strongly suggested to be used for on-line process monitoring.  

 

Besides, the CQC and CQC-r charts are also more suitable for on-line monitoring 

compared with Shewhart control charts. The CQC and CQC-r charts do not require a 

sampling interval to form a rational subgroup, and can directly show the time-between-

event data along with time; therefore it allows continuous operation without stopping 

unless something has happened. On the other hand, for constructing Shewhart control 

charts, e.g. c-chart or u-chart, a rational subgroup is needed; thus the user has to wait 

for a sampling interval to form a rational subgroup and then plot the data point on the 

chart. This is not convenient for implementation in the sense of “on-line” monitoring. 

 

The design parameter r of the CQC-r chart can be chosen based on the need and 

understanding of the processes. The advantage of CQC-r is that the decision is made 

on more than one data point and thus is more reliable than CQC chart. Meanwhile, the 

CQC-r chart compensates the drawback of the CQC chart that the ATS value increases 

when the process has a small lower-sided shift. However, the average time taken to 

plot a point increases with r and the average time to alarm increases as the process 

improves beyond a certain level. As shown in the above analysis results, the larger the 

value of r, the better the performance of the chart even with same probability of false 
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alarm. 

 

Here a simple example is used to illustrate how the TBE charts work for on-line 

process monitoring. Suppose during the manufacturing process, the time between 

defects was recorded. Table 3.6 shows the time between two consecutive defects for 

the last 20 defects. Figures 3.4 and 3.5 show the CQC and CQC-2 charts plotted with 

the above data and the same false alarm probability of 0.0027. Figure 3.6 is the 

corresponding exponential CUSUM chart with in-control ARL equal to 370. The in-

control time-between-events mean is estimated to be 10,000 minutes, and the shifted 

mean is estimated to be 5,000 minutes.  The design parameters of exponential CUSUM 

chart are determined using the method provided by Gan (1994). 

 
Table 3.6 Time between defects data 

 

 No. TBD 
(minutes) 

TBD2 
(minutes) No. TBD (minutes) TBD2 

(minutes) 
1 6395.4  11 97.2  

2 19390.8 25786.2 12 9384 9481.2 

3 4948.6  13 10693.1  

4 9093.8 14042.4 14 1961.7 12654.8 

5 19991.2  15 288.1  

6 5742.5 25733.7 16 3638.2 3926.3 

7 8471.2  17 90.3  

8 2797.6 11268.8 18 49.3 139.6 

9 4551.6  19 8509.2  

10 7081.4 11633 20 16110 24619.2 

 

TBD: Time between two consecutive defects; TBD2: Time interval for detecting two defects 
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Figure 3.4 A CQC chart for on-line process monitoring 

 

 

Figure 3.5 A CQC-2 chart for on-line process monitoring 
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Figure 3.6 An Exponential CUSUM chart  
(In-control ARL=370. k=6931.47, h=38000, θ0=10,000, θ1=5,000; FIR: Fast Initial 

Response = h/2) 
 

It can be seen from Figures 3.4, 3.5 and 3.6 that the CQC-2 chart raised an alarm, 

while CQC chart and exponential CUSUM chart failed to do so. However, the pattern 

on both the CQC chart and exponential CUSUM chart revealed that there might be a 

process shift. This may provide straightforward evidence that CQC-2 chart is more 

sensitive to small changes compared with CQC chart, and may be even more sensitive 

than exponential CUSUM under certain conditions.  

 

Besides SPC techniques, the effectiveness of on-line process monitoring system is also 

decided by many other factors such as the integration of EPC and SPC, the capacity of 

the expert system and its decision logic. Some scholars (see Smith and Boning,1997) 

have used artificial neural network (ANN) techniques for EPC compensation and 

achieved good effects. ANN methods can also be used for control chart pattern 

recognition. These methods can then be applied to check whether something really 

went wrong when there is an out of control situation or when there is some form of 

pattern present on the chart as in the case of the above example.  
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3.6 Conclusions 

Today’s industrial environment is data-rich and highly automated. Even a small delay 

in detecting process variability may cause large number of “bad” units being produced 

and thus reduce the efficiency and increase the cost of the product. Using TBE chart to 

monitor processes is a good solution to solve this problem and realize on-line process 

monitoring. 

 

In this chapter the ATS performance of the CQC chart, CQC-r chart, exponential 

EWMA and exponential CUSUM chart are compared. The method of on-line process 

monitoring with TBE charts is described and an example is given to illustrate its 

application in practice. The findings in this study suggest that employing time-

between-events charts, especially the CQC and CQC-r charts, is an effective way for 

implementing on-line process monitoring  system. 
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Chapter 4 CUSUM Charts with Transformed Exponential 

Data 

 
4.1 Introduction 

Comparative study in Chapter 3 have shown that the exponential CUSUM and 

exponential EWMA charts are more sensitive to small shifts, while their design 

procedures are quite complicated. The CQC and CQC-r charts, on the other hand, are 

not so sensitive to small shifts, but are easy for design and implementation.  

 

As reviewed in Chapter 2, an alternative to monitoring TBE is using of 

transformations. Previous study proposed several transformations that can be used for 

transforming exponentially distributed TBE data to normal and investigated their 

performance for setting up control charts with 3-sigma control limits, probability 

control limits, EWMA chart or CUSUM chart (Nelson, 1994; McCool and Joyner-

Motley, 1998; Kittlitz, 1999). Montgomery (2005) again emphasized the idea of 

monitoring time between events data based on transformation method, and stated that 

“in many cases, the CUSUM and EWMA control charts would be better alternatives 

because these charts are more effective in detecting small shifts in mean.”  However, 

the former studies did not investigate the ARL properties and optimal design of the 

CUSUM chart with transformed exponential data.  

 

In this chapter, a new CUSUM chart is proposed to monitor a set of exponentially 

distributed data after transformation. Different transformation methods such as 

Nelson’s method, Double SQRT method, and log transformation are compared. The 
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calculation of ARL using Markov chain approach is investigated and the design 

procedures are developed. Comparative study on the ARL properties is also conducted 

between the transformed CUSUM and other control charts, such as the X-MR(Moving 

Average) chart, the CQC chart, and the exponential CUSUM chart. This study 

provided a proof of Montgomery’s statement, and further proposed another alternative 

for monitoring TBE data. 

 

4.2 Some Transformation Methods 

Consider a set of time between events data X1, X2,…,obtained from a process. Assume 

that the time between events Xi (i= 1, 2,…) can be modeled as independent and 

identically distributed (iid) exponential random variables with probability density 

function: 

 

 
⎪⎩

⎪
⎨
⎧

≥=
−−

otherwise
xifexf

x

,0
0,)(

1 θθ     (4.1) 

 
where θ is the mean of exponential data. Many normalizing transformation methods 

have been proposed by different authors (e.g. Box and Cox, 1964; Taneichi et al, 2002). 

However, to keep the control chart easy for implementation, only some simple 

transformations that can be applied to achieve approximate normal distributed data are 

discussed as follows. 

 

• Nelson’s transformation 

Nelson (1994) suggested transforming the exponential random variable to a Weibull 

random variable W(θ0.2777, 3.6) , which is an approximate normal distribution. The 

transformation formula is  
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2777.06.31 xxy ==      (4.2) 

 
After this transformation, the user could construct a control chart on y, assuming that y 

follows a normal distribution.  

 

• The natural log transformation 

The natural log transformation may turn the right-skewed data to approximately 

symmetric or even normal. The formula for natural log transformation is 

 
0),ln( >= xxy      (4.3) 

 

• Double Square-root (SQRT) transformation 

Kittlitz (1999) has also investigated transforming the exponential for control charting 

purpose. He suggests using the transformation  

 
 0,25.0 ≥= xxy      (4.4) 

 
Kittliz (1999) also explained that a log transformation will stabilize the variance of the 

exponential distribution, but produces a rather negatively skewed distribution. 

Independently, a similar method was proposed in Xie et al. (2000c). 

 

To compare the performance of these transformation methods, 50,000 exponentially 

distributed random numbers were generated with mean θ equals to 1.0. The three 

transformation methods described above were applied separately, and the normality 

statistics skewness and kurtosis were calculated as shown in Table 4.1. As indicated 

with * in Table 4.1, Nelson’s transformation is preferable in terms of skewness, while 
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the double SQRT transformation is better in kurtosis. The natural log is not a suitable 

choice since both of the two normality statistics are much worse than the other two 

methods. On the other hand, the difference between the normality statistics of data 

after the Nelson’s transformation and double SQRT transformation is indistinctive. 

Since the double SQRT is much easier for implementation, it is chosen for setting up 

the CUSUM chart with transformed exponential data chart. 

 

Table 4.1 Comparison results of Nelson’s transformation, natural log transformation, 
and double SQRT transformation 

 

 Nelson’s Natural log Double SQRT 

Skewness  
(=0 for normal distribution) 0.0111* -1.1235 -0.0763 

Kurtosis 
(=3 for normal distribution) 2.7133 5.3545 2.7413* 

 

4.3 CUSUM Chart with Transformed Exponential Data  

The idea of the proposed CUSUM chart is to use a simple transformation method to 

convert the exponential data to approximate normal data, and then apply conventional 

design methods of CUSUM chart for normal data to monitor the process. It can be set 

up by following the steps below. 

 

Step 1: Transform the exponential data to approximate normal, using double SQRT 

transformation (Formula 4.4); 

Step 2: Set up the tabular CUSUM designed for normal data, that is 
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where reference value
22

01 μμ
σδ −

==K . δ is the size of the shift in standard deviation 

units; μ0 is the in-control mean of transformed data; μ1 is the out-of-control mean after 

transformation that is specified to be detected quickly, and σ2 is the variance of the 

data after transformation; 

 

Step 3: The process is considered to be out of control when either Ct
+ or Ct

- exceeds 

the decision interval H. The method of determining the optimal value of H will be 

introduced in section 4.5. The μ0 and σ are estimated from the transformed exponential 

data with  
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X follows an exponential distribution with mean of θ, which is also a Weibull variable 

with parameters W(θ,1). It has been proved (Kittlitz, 1999) that after the double SQRT 

transformation Y=X0.25, Y is also a Weibull variable with parameters W(θ0.25,4). The 

mean and variance can be calculated as: 

 
( )

( ) ( ) 25.0225.0
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Equation (4.7) can be used to estimate the mean and variance of the transformed data if 

the in-control exponential mean is known or can be well estimated.  
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4.4 Calculation of ARL with Markov Chain Approach  

Hawkins (1992) studied the evaluation of ARL for CUSUM chart with an arbitrary 

data distribution. Basically, the ARL of CUSUM chart with transformed exponential 

data can be calculated using the Markov chain approach discussed by Brook and Evans 

(1972). The properties of the continuous-state Markov chain were approximately 

evaluated by discretizing the infinite-state transition probability matrix.  

 

As shown in Figure 4.1, for either upper-sided or the lower-sided CUSUM chart with 

transformed exponential data chart, the interval between the upper and lower control 

limits (0,H) can be divided into m sub-intervals of width w (w=H/m). The control 

statistics Ci is said to be in transient state (j) at time (i) if jw≤Ci < (j+1)w for 

j=0,1,…m-1. The midpoint of the subinterval corresponding to state(j), can be written 

as mj=(j+0.5)w, j=0,1,…m-1. The control statistics Ci is in the absorbing state m if Ci 

falls beyond decision interval. i.e. Ci ≥ H.  

 

 

Figure 4.1 Subintervals division for CUSUM chart with transformed exponential data 
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 Let Pij represents the probability that the control statistics Ci goes from state (i) to 

state (j) in one step.  To approximate the probability, it is assumed that the control 

statistics Ci is equal to mi whenever it is in state (i).  

 

For the upper-sided CUSUM chart with transformed exponential data, the elements of 

the transition probability matrix of the Markov chain P = [ pij ] can be calculated with 

the following formulas: 
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Based on the Markov chain theory, the expected first passage times from state (i) to the 

absorbing state are  
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μi is the ARL given that the process started in state (i). Let R be the matrix of transition 

probabilities obtained by deleting the last row and column of P. The vector of ARLs μ 

can be calculated with 

 
1)( 1−−= RIμ       (4.10)  

 
where 1 is an m×1vector of 1s and I is a m×m identity matrix. The first element of the 

vector μ gives the average run length for the CUSUM chart starting from zero. 
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With the similar method, the ARL of lower-sided CUSUM chart with transformed 

exponential data, which is designed to detect the decrease of exponential mean θ, can 

also be calculated with Markov chain approach. The elements of the transition 

probability matrix of the Markov chain P=[pij] can be calculated with formulas (4.11): 
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The ARL of two-sided transformed CUSUM can be calculated by 

 

LU ARLARLARL
111

+=      (4.12) 

 
Since Y follows Weibull distribution with W(θ0.25,4), the pij can be calculated from the 

cumulative density function of Y, and then ARL values can be found. This can be 

easily done with computing software, e.g. Matlab.  

 

4.5 Design of CUSUM Chart with Transformed Exponential 

Data  

Previous studies have investigated the optimal design for CUSUM with normal data, 

exponential data, etc. see Hawkins and Olwell (1998). Basically, the reference value K 

is chosen for optimal response to specified shift, and the decision interval H is set to 

give an acceptable in-control ARL.  
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Define H=hσ and K=kσ. For normal data, it has been proved that when k=0.5δ, it 

comes very close to minimizing the ARL value for detecting a shift of size δ for fixed 

in-control ARL value. However, it is difficult to interpret the size of the shift of 

exponential mean in terms of δ. Therefore, an expression with exponential mean θ is 

needed for determining the value of k. The reference value K can be expressed as, 
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Let θ1=qθ0.  k can be expressed by 
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It indicates that k is determined by the ratio of out-of-control mean θ1 to the in-control 

mean θ0.  Meanwhile, it is worth noting that the in-control ARL of a CUSUM chart 

with transformed exponential data is not influenced by the value of θ0.  Therefore, the 

design of the CUSUM chart with transformed exponential data is conducted based on 

the parameters k and h.  

 

According to the Markov chain method in the previous section, the in-control ARL can 

be calculated given k and h, based on which the contour plot of in-control ARL can be 

achieved. Figures 4.2, 4.3, 4.4, and 4.5 show the contour plots of in-control ARL from 

100 to 2000, or 3000, with different range of h and k for two-sided CUSUM chart with 

transformed exponential data. The design procedures of a CUSUM chart with 

transformed exponential data is summarized in the following steps: 
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Step 1: Choose the acceptable in-control ARL; 

 

Step 2: Decide the out-of-control mean θ1 that is required to be detected quickly; 

 

Step 3: Use formula (4.13) to determine the value of k to minimize the out-of-control 

ARL value for detecting θ1, the reference value K=kσ;  

 

Step 4: Find the value of h with in-control ARL and k value from Figures 4.2, 4.3, 4.4, 

or 4.5. Calculate the decision interval H with H=hσ.  
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Figure 4.2 Values of h for two-sided CUSUM with transformed exponential data  

(0.1≤  k ≤ 0.3) 
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Figure 4.3  Values of h for two-sided CUSUM chart with transformed exponential data  
(0.3≤  k ≤ 0.5) 
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Figure 4.4 Values of h for two-sided CUSUM chart with transformed exponential data 
(0.5≤  k ≤ 0.7) 
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Figure 4.5 Values of h for two-sided CUSUM chart with transformed exponential data 
(0.7≤  k ≤ 1) 

 

Here is an example to illustrate the procedures described above. Suppose now a 

CUSUM chart with transformed exponential data is required to quickly detect the out-

of-control exponential mean θ1=0.25, in-control θ0=1.00, and in-control ARL =370 

(FAR α= 0.0027). The design procedures are shown as follows, 

1.     Substitute the values of θ0 and θ1 to Formula (4.13), get k=0.52; 

2.     From Figure 4.4, find h=4.6; 

3.     Set up the CUSUM chart with transformed exponential data based on the steps 

explained in section 4.3.   

 

To simplify the design procedures by avoiding checking Figures 4.2, 4.3, 4.4, and 4.5, 

some recommended values of h are listed in Table 4.2, which will give relative good 
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performance for commonly used control chart with in-control ARL approximately 

from 300 to 500. This is a rough way to decide the decision interval H, and more 

accurate h values can be found from the contour plots (Figure 4.2 ~ 4.5). 

 

Table 4.2 Some recommended h values for the design of CUSUM chart with 
transformed exponential data 

 

k 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.85 0.85~1 

h 11 9 6.5 5.5 4.5 3.8 3.2 2.8 
 
 

4.6 Comparative Study 

4.6.1 CUSUM Chart with Transformed Exponential Data vs. X-MR 

Chart 

To compare the performance of transformed CUSUM with that of the Shewhart chart 

(X-MR chart), a simulation is conducted by transforming the exponential data to 

normal using double SQRT transformation and then setting up the X-MR chart to 

monitor the data. Let the in-control exponential mean θ0=1.0. When the actual 

exponential mean varies from 0.1 to 5.0, the ARL values of the X-MR chart with 

transformed data are calculated as shown in Table 4.3.  

 

The corresponding transformed CUSUM is designed to have the same in-control ARL 

with the transformed X-MR chart (131.41). Assume the predicted θ1=0.2. The 

reference value parameter k can be calculated from formula (4.13) (k=0.59); and h is 

approximated to 3.25 from Figure 4.4. After determining the design parameters, the 



                                     Chapter 4 CUSUM Charts with Transformed Exponential Data 

 79

out-of-control ARL values can be calculated using the Markov chain method, and the 

results are shown in Table 4.3.  

 

Table 4.3 ARL values of X-MR chart and CUSUM chart with transformed exponential 
data 

 

ARL ARL ARL 
 θ1 

X-MR 
transformed 

CUSUM 

 θ1 
X-MR 

transformed 

CUSUM 

 θ1
X-MR 

transformed 

CUSUM 

0.1 272.48 3.99 1.8 30.29 16.24 3.5 7.05 4.93 

0.2 540.54 6.25 1.9 27.39 14.07 3.6 6.57 4.77 

0.3 709.22 9.85 2 23.57 12.41 3.7 6.42 4.63 

0.4 675.68 16.18 2.1 20.91 11.11 3.8 6.01 4.50 

0.5 531.91 27.27 2.2 18.84 10.07 3.9 5.74 4.37 

0.6 389.11 45.50 2.3 17.43 9.22 4 5.52 4.26 

0.7 290.70 72.83 2.4 15.89 8.51 4.1 5.26 4.15 

0.8 206.19 107.61 2.5 14.12 7.92 4.2 5.09 4.06 

0.9 153.61 135.08 2.6 13.20 7.42 4.3 4.91 3.97 

1 131.41 131.20 2.7 11.72 6.99 4.4 4.75 3.88 

1.1 105.15 101.91 2.8 10.96 6.61 4.5 4.59 3.80 

1.2 85.03 72.23 2.9 10.36 6.28 4.6 4.45 3.72 

1.3 71.28 51.30 3 9.48 5.99 4.7 4.28 3.65 

1.4 58.93 37.80 3.1 8.85 5.73 4.8 4.17 3.58 

1.5 50.56 29.05 3.2 8.21 5.50 4.9 3.99 3.52 

1.6 40.60 23.21 3.3 7.90 5.29 5 3.92 3.46 

1.7 37.31 19.16 3.4 7.38 5.10    

 

Figure 4.6 displays the ARL curves of both X-MR chart and transformed CUSUM 

with double SQRT transformation. It can be seen from the results that when 

exponential mean θ increases from in-control level θ0=1.0, which indicates process 

improvement, the CUSUM chart with transformed exponential data is more sensitive 
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than the transformed X-MR chart especially for small shifts. On the other hand, it is 

worth pointing out that the CUSUM chart with double SQRT transformation achieved 

the maximum ARL value at the in-control level θ0=1.0. However, the maximum ARL 

value of transformed X-MR chart was achieved when exponential mean θ is about 0.3. 

The trend of ARL curve for the transformed X-MR chart implies that when the 

exponential mean drops from 1.0 to 0.3, the out-of-control ARL value will increase 

greatly, from 131.41 to 709.22. As a result, it will take longer time to raise an out-of-

control signal even if the process has deteriorated a lot. Therefore, the CUSUM chart 

with transformed exponential data is more effective in detecting process deteriorations 

than the X-MR chart with double SQRT transformation.  
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Figure 4.6 The ARL curves of X-MR chart and CUSUM chart with transformed 
exponential data  

 

4.6.2 CUSUM Chart with Transformed Exponential Data vs. CQC 

Chart 

In order to investigate the comparative performance of control charts with 

transformation and without transformation, another comparison of ARL properties was 
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conducted between CUSUM chart with transformed exponential data and CQC chart. 

The in-control ARL were set to be 370.37 for both of them, which is corresponding to 

the traditional three-sigma limits. Same as the former example, the transformed 

CUSUM is designed to detect out-of-control exponential mean shift at θ1= 0.2, and the 

design parameters can be achieved by following the steps in section 5 (k=0.59, h= 

4.093). The out-of-control ARL were calculated as shown in Table 4.4.  

 

Table 4.4 ARL values of CQC chart and CUSUM chart with transformed exponential 
data 

 
ARL ARL ARL 

θ1 
CQC 

transformed 

CUSUM 

θ1 
CQC 

transformed 

CUSUM 

θ1
CQC 

transformed 

CUSUM 

0.1 74.51 4.85 1.8 38.16 23.20 3.5 6.59 6.07 
0.2 148.52 7.67 1.9 31.66 19.58 3.6 6.25 5.87 
0.3 222.53 12.33 2 26.73 16.91 3.7 5.95 5.68 
0.4 296.53 21.39 2.1 22.91 14.89 3.8 5.68 5.51 
0.5 370.30 40.02 2.2 19.91 13.31 3.9 5.43 5.35 
0.6 441.33 76.52 2.3 17.51 12.05 4 5.21 5.20 
0.7 498.04 141.71 2.4 15.56 11.02 4.1 5.00 5.07 
0.8 513.80 244.10 2.5 13.95 10.17 4.2 4.81 4.94 
0.9 465.56 357.65 2.6 12.61 9.46 4.3 4.64 4.82 
1 370.35 370.35 2.7 11.49 8.86 4.4 4.48 4.71 

1.1 271.08 262.67 2.8 10.54 8.34 4.5 4.34 4.61 
1.2 192.83 160.54 2.9 9.72 7.88 4.6 4.20 4.51 
1.3 138.10 100.02 3 9.01 7.49 4.7 4.07 4.42 
1.4 101.20 66.61 3.1 8.40 7.14 4.8 3.96 4.34 
1.5 76.25 47.47 3.2 7.86 6.83 4.9 3.85 4.26 
1.6 59.07 35.82 3.3 7.38 6.55 5 3.75 4.18 
1.7 46.94 28.31 3.4 6.96 6.30      

 

The ARL curves in Figure 4.7 indicate that CUSUM chart with transformed 

exponential data can detect the process shifts faster than the CQC chart especially for 

the smaller process improvements or deteriorations. Only when the process 

improvements are very significant (θ1≈5), the CQC chart is slightly better than the 



                                     Chapter 4 CUSUM Charts with Transformed Exponential Data 

 82

CUSUM chart with transformed exponential data. In particular, when the in-control 

exponential mean decreases slightly from in-control level, the out-of-control ARL of 

transformed CUSUM will drop a lot, and thus the shift can be detected quickly. 

However, the out-of-control ARL values of CQC chart will increase for small process 

deterioration, and therefore they are not effective compared with the CUSUM chart 

with transformed exponential data. This can be attributed to the skewness of 

exponential distribution that makes the control limits not symmetrical without 

transformation. 

 

 
 
Figure 4.7 The ARL curves of CQC and CUSUM charts with transformed exponential 

data 
 

 
4.6.3 CUSUM Chart with Transformed Exponential Data vs. 

Exponential CUSUM Chart 

The performance of CUSUM chart with transformed exponential data and exponential 

CUSUM are also assessed. The upper-sided and lower-sided CUSUM are used 

separately, and the ARL profiles of these charts for detecting some intended out-of-
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control means are compared. The statistics of upper-sided and lower-sided exponential 

CUSUM are given by:  
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An out-of-control signal occurs at the first i with Si

- ≤ -h or Si
+ ≥ h. 

 

Let the in-control exponential mean θ0 equals to 1.0. The upper-sided CUSUM charts 

were designed for detecting out-of-control exponential mean of θ1=2.0 and 5.0; and the 

lower-sided CUSUM charts are designed for detecting θ 1=0.5 and 0.2, respectively. 

The procedures of parameter determination are the same, except that the ARL contour 

plots for one-sided CUSUM chart with transformed exponential data obtained using 

Markov chain approach are used instead of that for two-sided CUSUM charts. All the 

CUSUM charts are designed with in-control ARL equal to or approximated to 500. 

The design parameters and ARL values of exponential CUSUM are quoted from Gan 

(1998). The results are shown in Table 4.5. 

 

It can be seen from Table 4.5 that CUSUM charts with transformed exponential data 

and exponential CUSUM charts have similar performance in terms of ARL, and both 

of them can detect either upward or downward shifts in a shorter period. CUSUM chart 

with transformed exponential data tends to be slightly better than exponential CUSUM 

when the shift is large; while exponential CUSUM shows more superiority when the 

shift is small. One possible reason for this may be the transformation deflates the 

amount of mean shift in exponential mean, which in turn makes the CUSUM statistics 
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not very sensitive to the transformed data compared with monitoring exponential data 

directly.  

 

Table 4.5 ARL values of exponential CUSUM and CUSUM charts with transformed 
exponential data 

 

Upper-sided CUSUM Lower-sided CUSUM 

θ 

Exp 

k=1.39 

h=7.42 

θ1=2.0 

Tran 

k=0.34 

h=5.804 

θ1=2.0 

Exp 

k=2.01 

h=4.86 

θ1=5.0 

Tran 

k=0.88 

h=2.426 

θ1=5.0 θ 

Exp 

k=0.69 

h=4.16 

θ1=0.5 

Tran 

k=0.28 

h=6.859 

θ1=0.5 

Exp 

k=0.40 

h=1.24 

θ1=0.2 

Tran 

k=0.59 

h=3.877 

θ1=0.2 

1.00 500.0 500.2 500.0 500.1 1.00 500.0 500.1 500.0 499.8 

1.02 411.7 411.2 431.5 428.0 0.95 337.6 354.4 399.6 397.1 

1.04 342.4 341.9 374.6 368.8 0.90 227.6 249.6 316.1 307.6 

1.10 208.0 209.2 253.1 245.1 0.85 154.0 175.4 247.5 240.3 

1.20 106.1 109.6 144.5 138.0 0.80 105.1 123.8 191.6 184.1 

1.30 63.5 67.4 90.7 86.4 0.70 51.6 64.1 110.9 100.3 

1.50 30.8 34.8 44.1 42.4 0.60 28.3 36.4 61.4 57.3 

2.00 12.1 15.2 15.1 15.1 0.50 17.6 23.0 32.9 26.5 

5.00 3.1 4.8 3.0 3.0 0.20 7.4 8.3 6.1 4.3 

10.00 1.9 3.1 1.8 2.0 0.10 6.2 5.9 4.2 4.0 

 

* Exp stands for exponential CUSUM, and Tran stands for CUSUM chart with transformed exponential 
data. 
 

Here is an example of using CUSUM chart with transformed exponential data and 

exponential CUSUM for detecting process shifts. The first 20 observations are 

generated following exponential distribution with mean equals to 1.0 (θ0 =1.0), and the 

next 10 points are generated using exponential mean θ = 0.2. The lower-sided CUSUM 

charts were employed to detect the deterioration of the process.  
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Table 4.6 Data for the CUSUM chart with transformed exponential data and 
exponential CUSUM 

 

  

Transformed 

CUSUM 

(K=0.59σ =0.126; 

H=3.877σ = 0.829) 

exponential 

CUSUM 

(k=0.4; h=1.24) 

i Xi Yi μ0-K-Yi Ci
- Xi-k Si

- 

0       0   -0.78 
1 2.7804 1.2913 -0.4148 0.0000 2.3804 0.0000 
2 2.1152 1.2060 -0.3294 0.0000 1.7152 0.0000 
3 0.9873 0.9968 -0.1203 0.0000 0.5873 0.0000 
4 0.5389 0.8568 0.0197 0.0197 0.1389 0.0000 
5 1.2284 1.0528 -0.1762 0.0000 0.8284 0.0000 
6 0.2314 0.6935 0.1830 0.1830 -0.1687 -0.1687 
7 1.2952 1.0668 -0.1903 0.0000 0.8952 0.0000 
8 0.7744 0.9381 -0.0615 0.0000 0.3744 0.0000 
9 2.8236 1.2963 -0.4198 0.0000 2.4236 0.0000 
10 0.0550 0.4843 0.3922 0.3922 -0.3450 -0.3450 
11 1.2780 1.0632 -0.1867 0.2055 0.8780 0.0000 
12 1.0056 1.0014 -0.1249 0.0806 0.6056 0.0000 
13 2.1290 1.2079 -0.3314 0.0000 1.7290 0.0000 
14 0.3715 0.7807 0.0958 0.0958 -0.0285 -0.0285 
15 0.5484 0.8606 0.0160 0.1118 0.1484 0.0000 
16 1.5206 1.1105 -0.2339 0.0000 1.1206 0.0000 
17 2.1879 1.2162 -0.3397 0.0000 1.7879 0.0000 
18 0.2967 0.7380 0.1385 0.1385 -0.1033 -0.1033 
19 1.3015 1.0681 -0.1916 0.0000 0.9015 0.0000 
20 1.5992 1.1245 -0.2480 0.0000 1.1992 0.0000 
21 0.2178 0.6832 0.1934 0.1934 -0.1822 -0.1822 
22 0.0220 0.3853 0.4913 0.6846 -0.3780 -0.5602 
23 0.6398 0.8944 -0.0178 0.6668 0.2398 -0.3204 
24 0.0202 0.3770 0.4996 1.1664 -0.3798 -0.7002 
25 0.3751 0.7826 0.0940 1.2603 -0.0249 -0.7251 
26 0.2046 0.6725 0.2040 1.4643 -0.1954 -0.9206 
27 0.4263 0.8080 0.0685 1.5328 0.0263 -0.8943 
28 0.0125 0.3344 0.5421 2.0750 -0.3875 -1.2818 
29 0.0426 0.4542 0.4223 2.4973 -0.3574 -1.6392 
30 0.0830 0.5367 0.3398 2.8370 -0.3170 -1.9562 
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With the design parameters shown in Table 4.5, two CUSUM charts are set up 

separately, and the calculation procedures are shown in Table 4.6. Figure 4.8 includes 

both the CUSUM chart with transformed exponential data and exponential CUSUM 

within one chart, from which we can see that the CUSUM chart with transformed 

exponential data becomes out-of-control at the 24th point while the exponential 

CUSUM chart raises the signal at the 28th point. Therefore, the CUSUM chart with 

transformed exponential data is superior to the exponential CUSUM chart in this case. 

This is consistent with the results in Table 4.5. 
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Figure 4.8 The CUSUM chart with transformed exponential data and exponential 
CUSUM chart 

 

4.7 Conclusions  

This chapter discusses an alternative way of monitoring exponential distributed time 

between events data by control chart. The exponential data can be transformed using 

double SQRT transformation, and then monitored by the CUSUM chart designed for 

normal data. The results indicate that the proposed CUSUM chart with transformed 

exponential data is more effective than the X-MR, CQC chart, and is comparable with 

exponential CUSUM in detecting either process improvement or deterioration. The 
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proposed method is easy for implementation especially when a company already has a 

system to monitor the normal mean with CUSUM charts.  
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Chapter 5 EWMA Charts with Transformed 

Exponential Data  

 
5.1 Introduction 

Similar to the idea of the previous chapter, using Exponentially Weighted Moving 

Average (EWMA) chart after transformation is another possible alternative to monitor 

the TBE data. The EWMA chart attracts great interests from engineers for its ability of 

detecting small process shifts and predicting the process level at the next time period. 

Refer to Chen & Guo (2001), Del Castillo & Rajagopal (2002), and Tseng & Hsu 

(2005). 

 

Another favorable property of the EWMA chart is its robustness to nonnormality, 

which is beneficial for transformed scheme since the data after transformation will not 

strictly follow normal distribution even if a proper transformation method is applied. 

However, the previous studies did not investigate in detail on how to design the 

EWMA chart with transformed exponential data, and how the transformed EWMA 

performs compared to other control charts. 

 

The purpose of this study is to investigate the performance of EWMA chart with 

transformed exponential data and develop the design method for it. The ARL 

properties are investigated and the design procedures are developed. Furthermore, the 

performance of EWMA chart with transformed exponential data is compared to that of 

the X-MR chart, CQC chart, and exponential EWMA, respectively. The robustness of 
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the proposed EWMA chart to Weibull TBE data is then investigated, followed by an 

illustrative example. This study provides an alternative for monitoring exponentially-

distributed TBE data. 

 

5.2 The Transformed EWMA Chart 

5.2.1 Setting-up Procedures 

Assume that TBE data follow exponential distribution with probability density 

function: 

 

⎪⎩

⎪
⎨
⎧

≥=
−−

otherwise
xifexf

x

,0
0,)(

1 θθ     (5.1) 

 
where θ is the mean of exponential time between events, which is also called Mean 

Time to Failure (MTTF) in reliability analysis. Kittlitz (1999) showed that double 

SQRT transformation produced similar properties as the power transformation 

suggested by Nelson (1994) with the added benefit of ease of use. Hence it is decided 

that the double SQRT transformation be used for this study. The main procedures of 

setting up an EWMA chart with transformed exponential data are as follows: 

 

Step 1:  Transform the exponential data Xt to approximate normal Yt using the double 

SQRT transformation: 

 
0,25.0 ≥= xxy       (5.2) 

 
Step 2:  Set up the two-sided EWMA chart with the recursion statistics: 

 
( ) 11 −−+⋅= ttt zyz λλ      (5.3) 
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where 0<λ≤1 is the smoothing factor. The starting value is the target value μ0, i.e. 

the mean of data after transformation.  

 

Step 3:  The center line and control limits can be calculated by 
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where L is a design parameter, which will be discussed later. 

 

Step 4:  The process is considered to be out-of-control when zt exceeds either the UCL 

or LCL. The μ0 and σ0 can be estimated from the transformed data with 
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5.2.2 Calculation of Average Run Length (ARL) 

There are mainly two approaches in the literature to the calculation of ARL for 

EWMA charts. One is the exact method based on the solution of a set of differential 

equations. Another is an approximate method using Markov chain method proposed by 

Brook and Evans (1972), where the properties of the continuous-state Markov chain 

can be approximately evaluated by discretizing the infinite-state transition probability 

matrix. Former studies on EWMA charts for normal data (Lucas and Saccucci, 1990) 

and Poisson data (Borror et al. 1998) have shown that Markov chain approach can 
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achieve an accurate approximation of ARL with enough number of states. Therefore, 

the Markov chain approach is employed to calculate the ARL for the EWMA chart 

with transformed exponential data.  

 

Following the method in Lucas and Saccucci (1990), and Borror, Champ, and Rigdon 

(1998), the ARL of EWMA chart with transformed exponential data can be calculated 

with Markov chain approach. Consider a two-sided EWMA chart with transformed 

exponential data with design parameters λ and L. The interval between the lower 

control limit and upper control limit (LCL, UCL) is divided into m subintervals of 

width w. Since the control limits (LCL, UCL) will change with time t, and will be 

approximately constant when t is large, the asymptotic control limits are used to 

calculate the ARL instead of the exact control limits. Let hU and hL be the asymptotic 

control limits. Then  
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λ
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Note that when calculating the in-control ARLs, the time t is usually large, and 

therefore this approximation of control limits will not influence the accuracy of the 

results a lot. On the other hand, when the process is going out-of-control at the very 

beginning before the real control limits reach the asymptotic value, the out-of-control 

ARLs that are obtained by this approximation method may under-estimate the 

performance of EWMA chart with transformed exponential data. This is especially the 

case when λ is very small, and the effect of starting value will last for a while before 

the upper and lower control limits converge to the asymptotic values. The Markov 
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chain approach with asymptotic control limits is not very accurate in that case and the 

real out-of-control ARLs may be even shorter.  

 

Using the asymptotic control limits, w can be expressed as: 
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The EWMA control statistics zt is said to be in transient state (j) at time (t) if hL+jw ≤ zt 

< hL+(j+1)w for j=0,1,…,m-1. The midpoint of subinterval corresponding to state (j) 

can be written as  

 
( ) 1,1,0,5.0 −=++= mjwjhm Lj K     (5.8) 

 
The control statistics zt is regarded as in the absorbing state m if the point goes outside 

the control limits, i.e. zt≥hU or zt<hL.  

 

Let pij represents the transition probability that the control statistics zi goes from state 

(i) to state (j) in one step.  To approximate the probability, we assume that the control 

statistics zt is equal to mi whenever it is in state (i). This approximation is accurate 

enough when the number of states m is large. Then pij is given by 
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Based on the Markov chain theory, the expected first passage times from state (i) to the 

absorbing state are  
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μi is the ARL given that the process started in state (i). Let R be the matrix of transition 

probabilities obtained by deleting the last row and column of P. The vector of ARLs μ 

can be calculated with 

 
1)( 1−−= RIμ       (5.11) 

 
where 1 is an m×1 vector of with all elements equal to 1,  and I is an m×m identity 

matrix. The elements in the vector μ are the ARLs when the EWMA chart starts in 

various states. The first element in the vector μ gives the average run length for the 

EWMA chart starting from zero, and the ARL given that z0=μ0 is just the middle entry, 

that is the ((m+1)/2)th element in the vector μ. In order to get a unique middle value, m 

is chosen to be an odd number.  

 

Since X follows an exponential distribution with mean of θ, which is a special case of 

Weibull distribution with scale θ and shape 1.0, i.e. W(θ,1), it is easy to prove that 

after the double SQRT transformation, Y is also a Weibull variable which follows W(θ 

0.25,4) (Murthy et al. 2004). The mean and variance can be estimated with: 
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Hence, the cumulative distribution function of Y can be expressed as  
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Then the transition probability matrix can be computed and the ARLs can be easily 

obtained with the help of computing software like Matlab. 

 

In order to find a suitable value of m, the in-control ARL of the EWMA chart given L 

and λ (L=3 and λ=0.2) is calculated following the above method. The results show that 

when m increases up to 301, the in-control ARL becomes stable. Therefore, the 

interval (hL,hU) is divided into m=301 subintervals for getting the ARLs with Markov 

chain approach.  
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Figure 5.1 The in-control ARLs of an EWMA chart with transformed exponential data 
calculated with different m values (L=3 and λ=0.2) 
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5.3 Design of EWMA Chart with Transformed Exponential Data 

Most of the previous studies on the design of EWMA chart or CUSUM are based on 

ARL consideration. That is, an acceptable in-control ARL is specified at the beginning 

to determine the probability of false alarm, and the optimal design is to find out the 

values of design parameters so as to provide the shortest ARL at certain specified out-

of-control level.  

 

5.3.1 In-control ARL 

The in-control ARL values with different design parameters λ and L are calculated by 

the Markov chain approach. Figures 5.2 and 5.3 provide the contour plots for some 

commonly used in-control ARL levels. For other in-control ARL values, the 

relationship of λ and L can be achieved by interpolation. Appendix I also provide some 

in-control ARL values for different combinations of design parameters λ and L. 

 

It is worth noting that the in-control ARL of an EWMA chart with transformed 

exponential data depends on the value of λ and L, and it is independent of the 

exponential mean θ. Therefore, Figures 5.2 and 5.3 can be used for any in-control 

exponential mean θ not only when θ0=θ1=1. The detailed proof is as follows:  
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formula 5.12).  Then the pij (i =0, 1,…,m-1; j = 0,1,…,m-1) can be expressed as 
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 (5.14) 

 

It can be seen from the formula (5.14) that when the process is in-control, i.e. θ0=θ1, 

the value of pij only depends on the value of design parameters λ and L and calculation 

parameter m. Therefore, the in-control ARL value only depends on the value of λ and L, 

and is independent of the exponential mean θ. On the other hand, when the process 

becomes out-of-control, the proportion of θ1 to θ0 will influence the out-of-control 

ARL values.  
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Figure 5.2 The in-control ARL contour plot of EWMA chart with transformed 

exponential data (0< λ≤ 0.1) 

10
0

100 100 10020
0

200 200 20030
0

300 300
35

0

350
350 350400

400
400

500 500
500

600 600
600

700 700
700

800
800

800

1000
1000

1000

2000
2000

2000

Smoothing factor λ

L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.1

2.2

2.3

2.4

2.5
2.6

2.7
2.8

2.9

3
3.1

3.2

3.3

3.4
3.5

 
Figure 5.3 The in-control ARL contour plot of EWMA chart with transformed 

exponential data (0.1< λ≤ 1) 
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5.3.2 Out-of-control ARL 

The out-of-control ARL is influenced by the shift level (θ1/θ0) as well as the design 

parameters λ and L. The optimal design scheme should have the shortest out-of-control 

ARL at certain shift level. The following Table 5.1 provides an illustration of this 

decision criterion with a fixed in-control ARL equals to 500. 

 

Table 5.1 The ARLs of some selective EWMA charts with transformed exponential 
data  (in-control ARL=500) 

 

L 2.279 2.611 2.799 2.921 2.953 2.953 2.938 2.865 2.843 Shift 
(θ1/θ0) λ 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.8 1 

0.1  8.44 6.67 5.65 5.06 5.13 5.71 6.98 22.84 88.84 
0.2  11.35 9.23 8.18 8.17 9.55 12.40 17.32 59.31 177.18 
0.3  14.85 12.48 11.72 13.38 17.82 25.29 36.52 109.71 265.52 
0.4  19.53 17.16 17.38 22.95 33.36 48.43 68.54 174.05 353.86 
0.5  26.39 24.66 27.50 41.17 61.61 87.30 118.03 252.60 442.06 
0.6  37.60 38.26 47.42 76.11 110.92 149.01 190.26 345.28 528.33 
0.7  58.90 66.82 89.90 142.28 193.35 242.06 290.21 448.08 603.08 
0.8  109.30 136.85 184.80 262.26 321.17 369.80 413.93 540.18 639.74 
0.9  263.96 319.67 376.61 436.24 470.10 494.49 515.82 570.45 604.59 

1  500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 499.95 
1.2  122.04 137.01 160.76 194.59 216.72 231.59 241.84 256.63 266.27 
1.5  42.28 40.65 43.44 51.58 59.46 66.49 72.71 88.06 101.42 
1.8  26.25 23.27 22.73 24.54 27.11 29.78 32.41 40.36 48.65 

2  21.36 18.39 17.30 17.77 19.05 20.54 22.11 27.33 33.29 
2.5  15.17 12.54 11.19 10.61 10.75 11.12 11.61 13.72 16.64 

3  12.17 9.87 8.57 7.78 7.61 7.65 7.80 8.78 10.44 
3.5  10.38 8.33 7.13 6.30 6.03 5.94 5.95 6.43 7.47 

4  9.19 7.32 6.20 5.39 5.08 4.93 4.88 5.10 5.81 
5  7.67 6.06 5.08 4.33 4.00 3.81 3.71 3.71 4.09 

10  4.96 3.88 3.21 2.66 2.38 2.21 2.10 1.97 2.02 
 

It can be obviously seen in Table 5.1 that the EWMA charts with smaller λ are more 

sensitive to small shifts (θ1/θ0 close to 1), while those with larger λ are more effective 

in detecting larger shifts.  For small downward shifts (θ1/θ0<1), the EWMA charts with 



                                       Chapter 5 EWMA Charts with Transformed Exponential Data 

 99

large λ between 0.5 and 1.0 may have longer out-of-control ARLs than their in-control 

ARLs. The reason behind this is that the data after double SQRT transformation is not 

exactly symmetric and is slightly skewed to the right; meanwhile, as λ approaches 1, 

an EWMA will approximate to a Shewhart chart, which is sensitive to non-normality. 

As indicated in bold and italic figures in Table 5.1, the optimal EWMA chart with 

transformed exponential data for a certain shift level (θ1/θ0) should have shortest out-

of-control ARL among others. For example, when the proportion of θ1 to θ0 is equal to 

0.5, the EWMA chart with λ=0.05 and L=2.611 is the optimal design with minimum 

out-of-control ARL=24.66. Consequently, optimal design schemes of EWMA chart 

with transformed exponential data can be found from the results in Table 5.1 when in-

control ARL equals to 500. 

 

Similarly, to facilitate the optimal design schemes of EWMA chart with transformed 

exponential data at other in-control ARL levels, the out-of-control ARL properties are 

investigated following the same procedures. Some commonly used in-control ARL 

levels are considered, i.e., in-control ARL=100, 300, 500, 800, 1000, and 2000. To 

simplify the calculation for achieving these optimal schemes, only some selective λ 

levels (0.02, 0.05, 0.08,  0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00) are 

considered, and the L values are determined to achieve the specified in-control ARL 

with the help of Figures 5.2 and 5.3. Then the optimal design schemes are found to 

give the shortest out-of-control ARLs at certain shift levels (θ1/θ0). Table 5.2 lists the 

optimal design parameters as well as the optimal out-of-control ARL values achieved 

from the study.   
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Table 5.2 Optimal schemes of EWMA chart with transformed exponential data 
 

In-control ARL Shift 
(θ1/θ0)  100 300 500 800 1000 2000

0.2 λ 0.20 0.20 0.20 0.10 0.10 0.10
 L 2.344 2.752 2.921 2.963 3.037 3.256
 ARLmin 5.57 7.28 8.17 8.86 9.18 10.21

0.5 λ 0.05 0.05 0.05 0.05 0.05 0.05
 L 1.880 2.397 2.611 2.794 2.877 3.118
 ARLmin 15.23 21.48 24.66 27.74 29.27 34.29

0.8 λ 0.02 0.02 0.02 0.02 0.02 0.02
 L 1.469 2.033 2.279 2.490 2.585 2.862
 ARLmin 50.59 87.08 109.3 133.45 146.39 194.43

1.2 λ 0.05 0.02 0.02 0.02 0.02 0.02
 L 1.880 2.033 2.279 2.490 2.585 2.862
 ARLmin 52.44 95.94 122.04 150.22 165.26 220.94

1.5 λ 0.08 0.05 0.05 0.05 0.05 0.02
 L 2.065 2.397 2.611 2.794 2.877 2.862
 ARLmin 22.81 34.50 40.65 46.89 50.09 59.63

1.8 λ 0.20 0.10 0.10 0.08 0.08 0.05
 L 2.344 2.608 2.799 2.915 2.992 3.118
 ARLmin 13.92 19.72 22.73 25.53 26.94 31.37

2 λ 0.20 0.10 0.10 0.10 0.10 0.08
 L 2.344 2.608 2.799 2.963 3.037 3.218
 ARLmin 10.92 15.28 17.3 19.26 20.23 23.34

3 λ 0.50 0.40 0.30 0.30 0.30 0.20
 L 2.472 2.808 2.953 3.087 3.148 3.328
 ARLmin 5.26 6.84 7.61 8.34 8.70 9.82

4 λ 0.60 0.60 0.50 0.50 0.50 0.40
 L 2.476 2.787 2.938 3.055 3.108 3.303
 ARLmin 3.58 4.45 4.88 5.28 5.48 6.12

5 λ 0.70 0.70 0.50 0.60 0.60 0.60
 L 2.474 2.769 2.938 3.024 3.074 3.220
 ARLmin 2.82 3.38 3.71 3.91 4.04 4.44

 

The results in Table 5.2 indicate that the optimal λ for a certain amount of shift (θ1/θ0) 

decreases with the increase of in-control ARL level; however, it is rather stable for a 
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certain range of in-control ARLs. For example, when θ1 is half of θ0, the optimal λ is 

always 0.05 for the in-control ARL from 100 to 2000. The stableness of λ also justifies 

that in the above study, the selective values instead of the continuous range of λ can be 

accurate enough for application. Meanwhile, since the optimal value of λ is stable for a 

range of in-control ARLs, it is reasonable to choose a suitable λ value using Table 5.2 

even if the desired in-control ARL is not included.  

 

It is also worth noting that the design schemes with very small λ values less than 0.1 

are optimal for small shifts of the process, and the corresponding ARLmin values are 

usually large. In that case, the inaccuracy of out-of-control ARL from the Markov 

chain approach is not very serious and will not affect the parameters chosen of EWMA 

chart with transformed exponential data. Moreover, the real out-of-control ARL is 

even better than that achieved from the Markov chain approach. 

 

5.3.3 Optimal Design Procedures 

Based on the analysis above, the recommended design procedures of an optimal 

EWMA chart with transformed exponential data are as follows: 

 

Step 1: Specify the desired in-control ARL and the out-of-control shift (θ1/θ0) to be 

detected quickly; 

 
Step 2:  Find the λ value according to Table 5.2; 

 
Step 3: Obtain the corresponding L value using Figures 5.2 or 5.3; 
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Step 4: The entire ARL profile for the EWMA chart can be achieved using the Markov 

chain approach. It can be used to evaluate the performance of the chart and 

ensure that the chart provides sufficient protection against other shifts. 

 

5.4 A Comparative Study on Chart Performance 

5.4.1 EWMA chart with transformed exponential data vs. X-MR 

chart 

To compare the ARL property of EWMA chart with transformed exponential data and 

X-MR chart, a simulation is conducted by transforming the exponential data to normal 

using double SQRT transformation and then setting up the X-MR chart(with 3σ 

control limits) to monitor the data. On the other hand, two EWMA charts with 

transformed exponential data are designed so that the in-control ARL is almost equal 

to that of the X-MR chart. Two EWMA charts are designed to be optimal in detecting 

shift (θ1/θ0) equals to 0.5 and 2.0, respectively. Table 5.3 presents the ARL profiles of 

the charts, where (θ1/θ0)opt stands for the out-of-control shift (θ1/θ0) level at which the 

EWMA chart with transformed exponential data is optimal. 

 

Figure 5.4 includes the ARL curves of X-MR chart and the EWMA charts with 

transformed exponential data described above. It can be seen from Table 5.3 that both 

EWMA charts achieve the maximum ARL value at the in-control level θ1/θ0=1.0. 

However, the maximum ARL value of transformed X-MR chart is achieved when the 

shift (θ1/θ0) is about 0.3. The trend of ARL curve for the transformed X-MR chart 

implies that when the downward shift occurs up to 0.3 of the in-control exponential 

mean, the out-of-control ARL value will increase greatly, from 131.41 to 709.22. As a 

result, it will take longer time to raise an out-of-control signal even if the process has 
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deteriorated a lot. Therefore, the X-MR chart is not effective in detecting process 

deteriorations. The ARL curves show that the EWMA chart with transformed 

exponential data is more sensitive in detecting process shifts than the X-MR chart for 

process improvement as well as process deterioration. 

 

Table 5.3 The ARLs of X-MR chart and EWMA charts with transformed exponential 
data (TE EWMA) 

 

Shift 

(θ1/θ0) 

X-MR 

 

TE EWMA1 
λ=0.05 

L=2.0151 
(θ1/θ0)opt=0.5 

TE EWMA2 
λ=0.20 

L=2.4523 
(θ1/θ0)opt=2.0

Shift 

(θ1/θ0) 

X-MR 

 

TE EWMA1 
λ=0.05 

L=2.0151 
(θ1/θ0)opt=0.5 

TE EWMA2 
λ=0.20 

L=2.4523 
(θ1/θ0)opt=2.0 

0.1 272.48 5.10 3.97 1.4 58.928 32.31 35.27 

0.2 540.54 6.92 5.98 1.5 50.556 25.71 27.09 

0.3 709.22 9.14 8.90 1.6 40.601 21.38 21.73 

0.4 675.68 12.19 13.51 1.7 37.313 18.36 18.04 

0.5 531.91 16.70 21.12 1.8 30.294 16.14 15.40 

0.6 389.11 24.06 33.89 1.9 27.39 14.46 13.43 

0.7 290.7 37.31 55.20 2 23.574 13.14 11.92 

0.8 206.19 63.33 88.38 2.5 14.118 9.31 7.81 

0.9 153.61 108.50 125.15 3 9.4796 7.46 6.00 

1 131.41 131.42 131.42 3.5 7.0507 6.37 4.99 

1.1 105.15 96.40 101.45 4 5.5154 5.65 4.34 

1.2 85.034 62.43 69.57 4.5 4.5884 5.12 3.89 

1.3 71.276 43.17 48.31 5 3.9153 4.73 3.56 
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Figure 5.4 The ARL curves of the X-MR and EWMA charts with transformed 

exponential data 
 

5.4.2 EWMA chart with transformed exponential data vs. CQC chart 

Another comparison of ARL properties is conducted between EWMA chart with 

transformed exponential data and the CQC chart. Two EWMA charts with transformed 

exponential data and the CQC chart are designed to achieve equal in-control ARL 

(370.37). The EWMA charts with transformed exponential data are designed to be 

optimal in detecting shift (θ1/θ0) equal to 0.2 and 5.0, respectively. The control limits 

of the CQC chart are UCL=6.6226 and LCL=0.0013. The out-of-control ARLs are 

listed in Table 5.4.  

 

The ARL curves in Figure 5.5 show that both of the EWMA charts can detect the 

process shifts faster than the CQC chart whenever the process improves or deteriorates. 

In particular, when the in-control exponential mean decreases slightly from in-control 

level, the out-of-control ARL of the EWMA charts with small λ will drop greatly, and 

thus the shift can be detected quickly. However, the out-of-control ARLs of the CQC 
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chart will increase for small process deterioration, and therefore it is not effective in 

this case. This can be attributed to the skewness of exponential distribution that makes 

the control limits not symmetrical without transformation. Note that when the 

smoothing factor λ is relatively large, EWMA chart with transformed exponential data 

may also have longer out-of-control ARL for downward shifts, but this is not so 

serious compared with the CQC chart. Furthermore, for EWMA chart with 

transformed exponential data, large smoothing factor λ will be employed only for 

detecting large upward mean shift. Thus it will not affect the performance of the chart.  

 

Table 5.4 The ARLs of CQC chart and EWMA charts with transformed exponential 
data (TE EWMA) 

 

Shift 

(θ1/θ0) CQC  
chart 

 

TE EWMA1 
λ=0.20 

L=2.8235 
(θ1/θ0)opt=0.2 

TE EWMA2 
λ=0.70 

L=2.8193 
(θ1/θ0)opt=5.0

Shift 

(θ1/θ0) CQC  
chart 

 

TE EWMA1 
λ=0.20 

L=2.8235 
(θ1/θ0)opt=0.2 

TE EWMA2 
λ=0.70 

L=2.8193 
(θ1/θ0)opt=5.0 

0.1 74.51 4.81 11.69 1.4 101.20 62.62 94.92 

0.2 148.52 7.64 30.52 1.5 76.25 44.68 69.02 

0.3 222.53 12.22 59.16 1.6 59.07 33.86 52.01 

0.4 296.53 20.34 98.73 1.7 46.94 26.89 40.50 

0.5 370.30 35.30 150.41 1.8 38.16 22.15 32.45 

0.6 441.33 63.14 215.13 1.9 31.66 18.78 26.65 

0.7 498.04 114.48 291.64 2 26.73 16.29 22.36 

0.8 513.80 204.95 367.71 2.5 13.95 9.94 11.68 

0.9 465.56 329.89 406.57 3 9.01 7.37 7.71 

1 370.35 370.40 370.36 3.5 6.59 6.00 5.78 

1.1 271.08 261.15 282.49 4 5.21 5.16 4.68 

1.2 192.83 154.54 196.81 4.5 4.34 4.58 3.98 

1.3 138.10 94.53 135.14 5 3.75 4.16 3.49 

 



                                       Chapter 5 EWMA Charts with Transformed Exponential Data 

 106

1

10

100

1000

0 1 2 3 4 5 6
Shift(β1 /β0 )

AR
L

CQC

TE EWMA1

TE EWMA2

 
Figure 5.5 The ARL curves of the CQC chart and EWMA charts with transformed 

exponential data 
 

 
5.4.3 EWMA chart with transformed exponential data vs. Exponential 

EWMA 

It is worth comparing the performance of EWMA chart with transformed exponential 

data with the exponential EWMA (Gan, 1998), which has been shown to be effective 

in monitoring the exponentially-distributed TBE data. Four pairs of two-sided EWMA 

charts are designed to achieve in-control ARL=500, while optimal in detecting 

downward or upward shifts at different levels (θ1/θ0 = 0.3, 0.5, 2.0, and 3.0 

respectively). The out-of-control ARLs are calculated accordingly and the results are 

shown in Table 5.5. The relative difference in Table 5.5 is calculated by 

 
Relative difference= (ARLTE-ARLExp)/ARLExp  (5.15) 
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Table 5.5 The ARLs of EWMA charts with transformed exponential data and 
exponential EWMA chart 

 

(θ1/θ0)opt=0.3 (θ1/θ0)opt=0.5 
Shift 

(θ1/θ0) 
TE 1 
λ=0.1 

L=2.799 

Exp 1 
λ=0.190 
hL=0.361 
hU=2.359

Relative 
difference

TE 2 
λ=0.05 

L=2.611

Exp 2 
λ=0.100 
hL=0.502 
hU=1.801 

Relative 
difference

0.2 8.18 8.11 0.01 9.23 9.80 -0.06
0.3 11.72 10.96 0.07 12.48 12.25 0.02
0.4 17.38 16.08 0.08 17.16 16.24 0.06
0.5 27.50 26.05 0.06 24.66 23.38 0.05
0.6 47.42 46.84 0.01 38.26 37.83 0.01
0.7 89.90 92.23 -0.03 66.82 71.12 -0.06
0.8 184.80 192.21 -0.04 136.85 156.80 -0.13
0.9 376.61 379.86 -0.01 319.67 365.51 -0.13

1 500.00 500.00 0.00 500.00 500.00 0.00
1.2 160.76 194.02 -0.17 137.01 140.19 -0.02
1.5 43.44 49.59 -0.12 40.65 36.87 0.10
1.8 22.73 22.85 -0.01 23.27 18.77 0.24

2 17.30 16.21 0.07 18.39 14.01 0.31
2.5 11.19 9.27 0.21 12.54 8.67 0.45

3 8.57 6.57 0.30 9.87 6.40 0.54
(θ1/θ0)opt=2.0 (θ1/θ0)opt=3.0 

Shift 

(θ1/θ0) 

TE 3 
λ=0.1 

L=2.799 

Exp 3 
λ=0.100 
hL=0.504 
hU=1.806

Relative 
difference

TE 4 
λ=0.3 

L=2.953

Exp 4 
λ=0.144 
hL=0.429 
hU=2.100 

Relative 
difference

0.2 8.18 9.73 -0.16 9.55 8.59 0.11
0.3 11.72 12.16 -0.04 17.82 11.10 0.61
0.4 17.38 16.09 0.08 33.36 15.37 1.17
0.5 27.50 23.11 0.19 61.61 23.33 1.64
0.6 47.42 37.25 0.27 110.92 39.67 1.80
0.7 89.90 69.62 0.29 193.35 76.12 1.54
0.8 184.80 152.45 0.21 321.17 161.77 0.99
0.9 376.61 355.09 0.06 470.10 345.91 0.36

1 500.00 500.00 0.00 500.00 500.00 0.00
1.2 160.76 143.23 0.12 216.72 181.59 0.19
1.5 43.44 37.37 0.16 59.46 45.20 0.32
1.8 22.73 18.95 0.20 27.11 21.40 0.27

2 17.30 14.13 0.22 19.05 15.45 0.23
2.5 11.19 8.73 0.28 10.75 9.11 0.18

3 8.57 6.44 0.33 7.61 6.57 0.16
* TE represents the EWMA chart with transformed data, Exp stands for exponential EWMA chart. 



                                       Chapter 5 EWMA Charts with Transformed Exponential Data 

 108

 

Figure 5.6 presents the ARL curves for the four pairs of EWMA charts, from which we 

can see the two charts have similar performance in terms of ARL. The EWMA charts 

with transformed exponential data are slightly worse in detecting designed shifts, and 

the relative difference is very small. Especially, when the chart is designed for 

detecting process deterioration, i.e., the optimal shift (θ1/θ0)opt is less than 1.0, the 

EWMA charts with transformed exponential data have shorter out-of-control ARL for 

small process shifts. Only when the chart is designed for detecting large process 

improvement (e.g. (θ1/θ0)opt=3.0), the overall performance of exponential EWMA is 

better than the EWMA chart with transformed exponential data.  

 

 
Figure 5.6 The ARL curves of EWMA charts with transformed exponential data and 

exponential EWMA charts 
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5.5 Robustness of EWMA Chart with Transformed Exponential 

Data to Weibull Data 

The above study is carried out based on the assumption that the TBE data can fit into 

an exponential distribution with a constant event occurrence rate. However, this is not 

always true in many cases, and Weibull distribution can be a better alternative to 

model the time between events data when the event occurrence rate varies with time.  

A former study (Borror et al., 1999) on the EWMA chart for normal data proved that 

the EWMA chart can be designed so that it is robust to the normality assumption. 

Borror et al. (2003) investigated the robustness of the TBE CUSUM and demonstrated 

that the TBE CUSUM is robust for a wide variety of parameter values for the Weibull 

distribution. Since in this study the TBE data are transformed to close normal, we 

suspect it may also have the robust property to other distributions besides exponential. 

The following study is to test this supposition.     

 

As Weibull distribution is a more widely used distribution to model the time between 

events data,  the robustness of the EWMA chart with transformed exponential data to 

Weibull data is investigated in this study. The probability density function (pdf) of the 

two-parameter Weibull distribution can be written as: 
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   (5.16) 

 
where θ is the scale parameter and η is the shape parameter. When η is equal to 1, the 

Weibull distribution will reduce to the exponential distribution.  
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Note that a Weibull distribution with scale parameter θ and shape parameter η, i.e. W(θ, 

η) is still a Weibull distribution W(θ0.25, 4η) after the double SQRT transformation. 

Therefore, the Markov chain approach for calculating ARL is still applicable while the 

mean and variance can be estimated with 
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The cumulative distribution function changes to  
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It has been proved that the in-control ARL value of EWMA chart with transformed 

exponential data depends on the design parameters λ and L, and is independent of the 

scale parameter θ for exponentially-distributed TBE data. A study on the in-control 

ARL of EWMA chart with transformed Weibull data shows that this conclusion is true 

for Weibull TBE data as well. When keeping the shape parameter η as a constant, the 

in-control ARL of EWMA chart with transformed Weibull data is also constant even if 

the scale parameter θ varies. However, different shape parameters η lead to different 

in-control ARLs. Therefore, without loss of generality, we fix the scale parameter θ  to 

1.0, and change the shape parameter η to investigate the in-control ARL properties. 

 

Table 5.6 presents some in-control ARLs of eight selective EWMA charts with double 

SQRT transformation while the actual TBE data follow Weibull distributions. The first 

four charts are designed to obtain approximately the same in-control ARL of 500, and 
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the last four charts with in-control ARL close to 370.4.  It can be observed from Table 

5.6 that the smaller the smoothing factor λ, the better the robustness of the EWMA 

chart. Figure 5.7 presents the trend of in-control ARLs with different shape parameters 

η (with data from the first four columns in Table 5.6). When the smoothing factor λ is 

equal to 0.05, the in-control ARL is very stable. In fact,  when the shape parameter η is 

larger than 0.5, the in-control ARL is always within 3% of 500 which is designed for 

the exponential data.  The trend is the same for EWMA charts with transformed 

Weibull data when in-control ARL equals to 370.4. According to the optimal design 

schemes (Table 5.2), small smoothing factor λ (=0.05) is also favorable since it is 

optimal in detecting small process shifts. 

 

Table 5.6 In-control ARLs of EWMA charts with transformed Weibull data 
 

 EWMA charts with transformed Weibull data 

(θ1/θ0)opt 0.2 0.5 2 5 0.2 0.5 2 5 

λ 0.20 0.05 0.10 0.50 0.20 0.05 0.10 0.70 
η L 2.921 2.611 2.799 2.938 2.824 2.487 2.689 2.819 

0.2  144.22 428.67 261.78 63.91 130.30 355.32 229.48 46.43 

0.5   400.73 499.22 476.13 217.32 316.93 371.82 361.47 138.01 

0.8  510.44 501.04 503.30 523.14 377.51 370.76 372.75 392.22 

1  499.54 500.16 499.61 499.88 370.23 370.30 370.48 370.11 

1.5  435.49 497.20 481.17 296.53 333.04 369.46 361.09 189.33 

2  389.93 494.61 465.44 219.36 305.64 368.83 353.13 138.58 

2.5  361.18 492.57 453.86 185.97 287.75 368.35 347.20 118.29 

3  342.12 490.97 445.26 168.06 275.59 367.96 342.75 107.71 

3.5  328.75 489.69 438.71 157.06 266.92 367.66 339.32 101.29 

4  318.92 488.65 433.58 149.66 260.47 367.41 336.63 97.00 

4.5  311.42 487.80 429.48 144.35 255.50 367.20 334.45 93.94 

5  305.53 487.08 426.13 140.38 251.56 367.03 332.67 91.66 
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Figure 5.7 In-control ARL curves of EWMA chart with transformed Weibull 
distribution with different shape parameters η 

 

For the out-of-control situations, four EWMA charts (as indicated in bold) with good 

robustness of in-control ARL are chosen from the Table 5.6. The TBE data following 

Weibull distribution with some specified shape parameters η=0.5, 1.0, 2.0, 3.0, and 4.0 

are investigated. The out-of-control ARLs are calculated in different mean shift levels.  

For a certain shape parameter η value, mean shifts occur due to a change in scale 

parameter θ. The out-of-control ARLs are listed in Table 5.7.  

 

The ARLs in the same row of Table 5.7 provide the out-of-control ARLs when the 

Weibull distributions have same shape parameter η and different scale parameters so 

that the shift in the mean (μ1/μ0= θ1/θ0) will be at the different levels. This is reasonable 

since in practical applications the scale parameter is more likely to change due to 

assignable causes, while the shape parameter is more related to the natural properties 

of the system and is rather stable.   
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Table 5.7 Out-of-control ARLs of EWMA charts with transformed Weibull data 
 

 shift in mean (θ1/θ0) 

EWMA η 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

0.5 73.48 499.22 92.70 42.00 27.62 21.14 17.48 15.13 

1 24.66 500.16 40.65 18.39 12.54 9.87 8.33 7.32 

2 10.48 494.61 16.94 8.50 6.09 4.93 4.25 3.79 

3 6.72 490.97 10.56 5.61 4.12 3.40 2.95 2.64 

λ=0.05 

L=2.611 

(θ1/θ0)opt =0.5 

4 5.00 488.65 7.70 4.24 3.18 2.61 2.30 2.14 

0.5 132.52 476.13 93.32 41.37 26.25 19.56 15.86 13.53 

1 27.49 499.61 43.43 17.30 11.19 8.57 7.12 6.20 

2 9.47 465.44 16.03 7.31 5.10 4.08 3.50 3.11 

3 5.72 445.26 9.31 4.67 3.38 2.77 2.43 2.23 

λ=0.10 

L=2.799 

(θ1/θ0)opt =2 

4 4.15 433.58 6.56 3.49 2.58 2.21 2.00 1.79 

0.5 63.59 371.82 81.27 38.32 25.60 19.75 16.41 14.24 

1 22.77 370.30 36.96 17.19 11.83 9.35 7.91 6.96 

2 9.89 368.83 15.85 8.06 5.80 4.71 4.06 3.63 

3 6.39 367.96 9.97 5.34 3.94 3.25 2.82 2.53 

λ=0.05 

L=2.487 

(θ1/θ0)opt =0.5 

4 4.77 367.41 7.31 4.06 3.04 2.50 2.23 2.10 

0.5 104.86 361.47 81.00 37.42 24.21 18.23 14.88 12.75 

1 24.84 370.48 38.75 16.10 10.56 8.14 6.79 5.93 

2 8.95 353.13 14.92 6.95 4.88 3.92 3.36 3.00 

3 5.46 342.75 8.81 4.48 3.25 2.68 2.36 2.17 

λ=0.10 

L=2.689 

(θ1/θ0)opt =2 

4 3.98 336.63 6.26 3.35 2.50 2.16 1.93 1.71 

 

The data in Table 5.7 reveal that the EWMA chart is more sensitive for Weibull 

distribution with shape parameter η>1 than for exponential distribution (η =1.0), for 

both upward and downward shifts. The larger the shape parameter, the better the 

performance of the EWMA chart. One possible reason for this property could be the 

different shift levels are caused by the change of scale parameters. The increase of 

scale parameter θ while holding shape parameter η constant has the effect of stretching 

out the pdf curve, which in turn leads to a shorter out-of-control ARL. However, the 

performance of the EWMA chart is not good for transformed Weibull data with η<1.0, 

and this maybe because the double SQRT transformation is not suitable in that case. It 
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is worth noting that in order to transform Weibull distribution to approximate normal, 

power transformation can still be applied; however instead of using the power of 0.25, 

the following transformation can be employed. 

 
η

θ
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XU      (5.19) 

In this case, the optimal design procedures will be similar to the described in Section 

5.3, while optimal parameters may be somewhat different. Basically, small smoothing 

factor λ (=0.05, 0.10, or 0.20) is also suggested when the EWMA chart is designed to 

detect small process shifts. 

 

 
5.6 An Illustrative Example 

A simulated example is shown below to demonstrate the use of EWMA chart with 

transformed exponential data for detecting process shifts. The first 20 observations are 

generated following exponential distribution with mean equals to 1.0, and the next 10 

points are generated using exponential mean θ =0.2. The in-control ARL is set to be 

500. The design parameters of the EWMA chart are determined following the 

procedures discussed above (λ=0.20, L=2.921), and the starting value Z0 is the mean of 

the first 20 observations. Figure 5.8 presents the EWMA charts with transformed 

exponential data, which becomes out-of-control at the 24th point.   
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Table 5.8 The data for the EWMA chart with transformed exponential data 

Failure 
No 

Time 
between 

failures(Xt)

Transformed 
data(Yt) 

TE 
EWMA 

(Zt) 
UCL LCL 

0     1.0027     
1 2.7804 1.2913 1.0604 1.1276 0.8778 
2 2.1152 1.2060 1.0895 1.1627 0.8427 
3 0.9873 0.9968 1.0710 1.1815 0.8238 
4 0.5389 0.8568 1.0281 1.1926 0.8127 
5 1.2284 1.0528 1.0331 1.1994 0.8060 
6 0.2314 0.6935 0.9652 1.2036 0.8018 
7 1.2952 1.0668 0.9855 1.2063 0.7991 
8 0.7744 0.9381 0.9760 1.2080 0.7974 
9 2.8236 1.2963 1.0401 1.2090 0.7964 
10 0.0550 0.4843 0.9289 1.2097 0.7957 
11 1.2780 1.0632 0.9558 1.2101 0.7953 
12 1.0056 1.0014 0.9649 1.2104 0.7950 
13 2.1290 1.2079 1.0135 1.2106 0.7948 
14 0.3715 0.7807 0.9670 1.2107 0.7947 
15 0.5484 0.8606 0.9457 1.2108 0.7946 
16 1.5206 1.1105 0.9786 1.2108 0.7946 
17 2.1879 1.2162 1.0261 1.2109 0.7945 
18 0.2967 0.7380 0.9685 1.2109 0.7945 
19 1.3015 1.0681 0.9884 1.2109 0.7945 
20 1.5992 1.1245 1.0157 1.2109 0.7945 
21 0.2178 0.6832 0.9492 1.2109 0.7945 
22 0.0220 0.3853 0.8364 1.2109 0.7945 
23 0.6398 0.8944 0.8480 1.2109 0.7945 
24 0.0202 0.3770 0.7538 1.2109 0.7945 
25 0.3751 0.7826 0.7595 1.2109 0.7945 
26 0.2046 0.6725 0.7421 1.2109 0.7945 
27 0.4263 0.8080 0.7553 1.2109 0.7945 
28 0.0125 0.3344 0.6711 1.2109 0.7945 
29 0.0426 0.4542 0.6277 1.2109 0.7945 
30 0.0830 0.5367 0.6095 1.2109 0.7945 
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Figure 5.8 The EWMA chart with transformed exponential data 

 

 
5.7 Conclusions 

This chapter discusses an alternative way of monitoring exponentially distributed TBE 

data, which can help to monitor the processes with very low fraction nonconforming 

levels. The exponential data can be transformed using double SQRT transformation 

and then monitored by the EWMA chart. Comparisons showed that the proposed 

EWMA chart with transformed exponential data is more effective than the X-MR and 

CQC charts especially in detecting process deteriorations. It has similar ARL 

performance to the exponential EWMA chart. Besides, the proposed EWMA chart 

with small smoothing factor λ (=0.05) is very robust to Weibull distribution for the in-

control ARL. It can be even more sensitive for Weibull data with shape parameter η>1 

than it is for the exponential data. 

 

The results also show that the performance of EWMA chart with transformed 

exponential data is not very sensitive to the design parameters λ and L, thus leading to 

rather easy design procedures without too much rigorous parameter-chosen procedures 
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as the exponential EWMA. This may encourage the engineers to use it more frequently 

in practical applications, and in turn help to enhance process quality.  
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Chapter 6 CCC Charts with Variable Sampling 

Intervals 

 
6.1 Introduction  

As introduced in chapter 2, CCC chart monitors the cumulative number of conforming 

items between two consecutive nonconforming items based on geometric distribution, 

and it is particularly suitable for high-quality processes with very low FNC. A 

summary of research and application of this useful technique can be found in Xie et al. 

(2002). 

 

Bourke (1991) suggested using 100% inspection for generating the CCC chart. 

However, when taking into consideration practical factors such as inspection time and 

cost, this may lead to a relatively high inspection cost and thus limit the application of 

the CCC chart. Because of the memoryless property of geometric distribution, one 

possible approach to solve this problem is to use the CCC chart with Variable 

Sampling Intervals (VSI). Instead of inspecting the items one by one, we take samples 

from them. Note that we regard every individual item inspected as a sample (i.e., the 

sample size is equal to one), and the sampling interval is the time between taking two 

successive samples. 

 

The motivation of employing variable sampling scheme is to reduce the inspection cost 

while maintaining the detection speed of control charts for process changes. For a VSI 

chart, the length of sampling interval varies with the process status. A shorter sampling 
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interval is used if there is some indication that the process may have changed, and a 

longer sampling interval is used if there is no such indication.  This means that a 

shorter sampling interval should be used next if the current value of the control statistic 

is close to but not actually outside the control limits, and a longer sampling interval 

should be used if the current value is close to the target. If the current value is actually 

outside the control limits, then the chart signals in the same way as the standard Fixed 

Sampling Interval (FSI) chart, in which the sampling interval length is fixed without 

any change through the sampling process.  

 

A significant amount of research has been carried out on VSI control charts to improve 

their sensitivity of detecting process disturbances without increasing the rate of 

inspected items and false alarm occurrences. Reynolds et al. (1988) investigated the 

normally distributed processes monitored by the X  chart using sample means. They 

evaluated the Average Time to Signal (ATS) and the Average Number of Samples to 

Signal (ANSS) properties for the FSI and VSI X  charts, and showed that the VSI 

chart is substantially more efficient.  

 

Prabhu et al. (1993) and Costa (1994) proposed Variable Sample Size (VSS) schemes 

for X  chart. They used a smaller sample size for the next sample when the current X  

value is close to the center line, and a larger sample size otherwise. Subsequent studies, 

see Prabhu et al. (1994) and Costa (1997), considered both the VSI and VSS schemes. 

Carot et al. (2002) further combined the double sampling method with the VSI X  

chart. Lin & Chou (2005) studied the design of VSS and VSI  X  charts under non-

normality based on Burr distribution. Besides, Lee & Bai (2000) further extended the 

idea and developed two VSI schemes in X  control charts with run rules. Bai & Lee 
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(2002) then proposed the VSI X  control charts with an improved switching rule and 

proved that the proposed charts can reduce the average number of switches between 

short and long sampling intervals with comparable ATS.   

 

Moreover, the variable sampling methods can also be used to improve the efficiency of 

control charts for attributes, see Epprecht & Costa (2001), and Vaughan (1993). 

Recently, Epprecht et al. (2003) developed a general model for adaptive c, np, u and p 

control charts in which one, two or three design parameters, i.e., sample size, sampling 

interval and control limit width, switch between two values. They also provided 

general guidance on choosing effective design schemes.  Wu & Luo (2004) 

investigated the optimal design of the VSI, VSS and VSIVSS np charts, and found that 

the adaptive np charts do improve effectiveness significantly, especially for detecting 

small or moderate process shifts.   

 

Saccucci et al. (1992) extended the VSI method to EWMA chart, and Reynolds & 

Arnold (2001) investigated the EWMA charts with both VSI and VSS schemes. The 

VSS CUSUM chart was studied by Annadi et al. (1995), and the VSSVSI CUSUM 

chart was developed by Arnold & Reynolds (2001). Subsequently, Villalobos et al. 

(2005) studied the FSI and VSI multivariate SPC charts for on line SMD (surface 

mounted devices) monitoring.   

 

On the other hand, studies on economic design of control charts also revealed that VSI 

control charts show better performance than FSI charts with respect to cost. Bai & Lee 

(1998) constructed a cost model which involves the cost of false alarms, the cost of 

detecting and eliminating an assignable cause, and the cost of sampling and testing, etc. 
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It is proved that with proper design parameters, the VSI X  chart provides lower 

expected cost per unit time compared with the corresponding FSI X  chart. 

Furthermore, Chen (2004) extended this study to the VSI X  chart with non-normal 

data. 

 

In this study the variable sampling scheme was extended to the CCC chart. Note that 

individual observations are used when implementing the CCC chart; therefore only the 

CCC chart with variable sampling intervals, namely, CCCVSI chart, will be discussed. 

The description and properties of the CCCVSI chart are discussed, followed by 

comparisons of performance between the CCCVSI and the CCCFSI chart. Finally, the 

design procedures and decision rules of the CCCVSI chart are described together with 

an example. 

 

6.2 Description of the CCCVSI Chart  

Notations:  

p0  the in-control process nonconforming rate. 

p’  the out-of-control process nonconforming rate. 

α the acceptable probability of false alarm. 

α’ the true probability of false alarm. 

Xi the cumulative count of items inspected after the (i-1)th nonconforming item 

until the ith nonconforming item is observed (including the last nonconforming 

item).  

n the number of different interval lengths of the CCCVSI chart.  

dj j=1,2,…, n. sampling interval lengths of the CCCVSI chart, , i.e., the time 

between two items inspected consecutively (dn<dn-1<…<d2<d1).  
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d the sampling interval length of the CCCFSI chart. 

ILj the interval limits in the CCCVSI chart which divide the region between UCL 

and LCL into n sub-regions I1, I2,…, In (ILn-1 < ILn-2 < …< IL2 < IL1). 

R the number of points in the CCC chart until an alarm arises. 

S the total number of items inspected before a signal occurs, ∑ =
= R

i iXS 1 . 

Li the sampling interval length which is used to get Xi. 

ARL the average run length. 

ATSV the in-control average time to signal of the CCCVSI chart. 

ATSF the in-control average time to signal of the CCCFSI chart. 

ATSV’ the out-of-control average time to signal of the CCCVSI chart. 

ATSF’ the out-of-control average time to signal of the CCCFSI chart. 

I  improvement factor, defined as '

'

F

V

ATS
ATS

I = , 

qj the probability that point Xi falls in region Ij when the process nonconforming 

rate is p0, i.e. RinjppIXPq jij ,...2,1;,,2,1},|{ 0 ===∈= L  

qj’ the probability that point Xi falls in region Ij when the process nonconforming 

rate shifted to p’,i.e., RinjpppIXPq jij ,...2,1;,,2,1},'|{ 0
' ==>=∈= L .  

 

Let X denote the cumulative counts of items inspected until a nonconforming item is 

observed. X can be modeled using the geometric distribution with parameter p0, and 

the mass probability function of X is: 

 
,)1(}{ 0

1
0 ppxXP x−−==  L,2,1=x     (6.1) 

 
Since the geometric distribution is highly skewed, instead of using the traditional kσ as 

control limits, probability control limits are used, see Xie & Goh (1997). On the other 
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hand, because the geometric distribution is discrete, the control limits are rounded to 

integers and the points that fall on the UCL and LCL are regarded as out-of-control 

signals, i.e., 2/}{}{ α=≤=≥ LCLXPUCLXP . The UCL and LCL of the CCC chart 

can be calculated as follows: 
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    (6.2) 

 
where [Y] stands for the largest integer not greater than Y.  

 

Note that because the control limits are rounded to integers, the true false alarm rate α’ 

may not be exactly equal to the given value of α. Rather, it can be expressed as 

 
LCLUCL pp )1(1)1(' 0

1
0 −−+−= −α      (6.3) 

 

However, since CCC charts are used in high-quality environment where p0 is very 

small, α’ should be very close to α, and the difference between α and α’ can be 

neglected.  

 

Generally speaking, the VSI schemes are used for the CCC chart in order to detect the 

increase of nonconforming rate quickly. The CCCVSI chart refers to CCC chart 

designed based on variable sampling intervals, that is, the sampling interval varies with 

the accumulative count of conforming items. The sampling interval length Li used for 

inspection between the (i-1)th nonconforming item and the ith nonconforming item 

depends on the value of 1−iX .  
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When implementing the CCCVSI chart, a finite number of sampling interval lengths d1, 

d2, …, dn (dn<dn-1<…<d2<d1) are used. These sampling interval lengths should be 

chosen under practical considerations of manufacturing processes. For example, the 

minimum sampling interval length could not be less than the time lag between two 

continuous items. In that case, we use 100% inspection. The maximum sampling 

interval length can be chosen according to the maximum amount of time that is 

allowed for the process to run without inspection.  

 

On the other hand, interval limits IL1, IL2,…, ILn-1 (ILn-1 < ILn-2 < …< IL2 < IL1) are 

added in the CCCVSI chart,  and thus divide the region between UCL and LCL into n 

sub-regions I1, I2,…, In, corresponding to the n different sampling interval lengths. It 

follows that 
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The IL1, IL2,…, ILn-1 can be calculated by the following formulas 
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For example, when n =3, three different sampling interval lengths are employed. To 

implement the CCCVSI scheme, control limits IL1 and IL2 are added between UCL and 

LCL, and the region (LCL, UCL) is thus divided into three sub-regions as shown in 

Figure 6.1.  
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Figure 6.1 The CCCVSI chart with three sampling interval lengths 
 

When 1IX i ∈ , the process is running very well, and its quality even has a large 

possibility to have improved. In this case, a longer sampling interval length d1 (d1>d) is 

used in the following inspection of items in order to reduce cost. When 2IX i ∈ , the 

nonconforming rate of the process most probably remains unchanged, so the equal 

sampling interval length d2 as the corresponding CCCFSI chart (d2=d) is chosen. 

When 3IX i ∈ , the process nonconforming rate may have increased, and the next point 

Xi+1 has a large probability to fall below LCL, which means the process will be out of 

control. Then a relatively shorter sampling interval length d3 (d3<d) is employed in 

order to judge whether the next point will fall below LCL in a shorter period and 

therefore reduce the amount of time the out-of-control condition remains undetected.  
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Note that a larger sampling interval is used when the nonconforming rate decreases to 

a certain level and a smaller sampling interval is employed when it increases; therefore 

this CCCVSI chart scheme is only suitable for monitoring the increase of 

nonconforming rate. In practice, we suggest using the shortest interval length as the 

initial sampling interval length in order to protect against problems that may occur 

during start-up.  

 

6.3 Properties of the CCCVSI Chart  

The Average Run Length (ARL), i.e., the average number of points that must be 

plotted before a point indicates an out-of-control condition, is a useful performance 

measure of control charts. However, because the sampling intervals of a VSI chart are 

not constant, it is necessary to record both the time and the number of samples 

inspected until a signal occurs. Average Time to Signal (ATS) and Average Number of 

Items inspected (ANI) are two parameters to evaluate those properties. ATS is defined 

as the average length of time it takes the chart to produce a signal. When the process is 

in control, larger ATS may reduce the false alarm rate; whereas when process is out of 

control, smaller ATS may help detect the increase of nonconforming rate p more 

quickly. ANI is defined as the expected value of the number of items inspected until a 

nonconforming signal occurs. 

 

For common control charts, such as Shewhart, CUSUM and EWMA charts applied to 

the statistics X-bar, R, S, np, p, c, u, etc., the ATS is the average length of time the 

chart takes to produce a signal only under the condition that the state of the process 

does not change between two samples. When the process shifts from the in-control to 
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the out-of-control state between two samples, the average time from the moment of the 

shift to the moment the chart signals can be obtained by subtracting from the ATS the 

amount of time between the last sample before the shift and the moment of shift.  

However, due to the memoryless property of the geometric distribution, ATS of the 

CCC chart is a good approximation to the average time from the moment of the shift to 

the moment of the signal when p’ is small.  

 

As defined before, R is the number of points in the CCC chart until an alarm arises, i.e., 

the accumulative count of nonconforming items until an alarm arises. The expected 

value of R is the average number of points in the chart before an alarm arises including 

the point that gives the alarm, i.e., the ARL for the CCC chart. Using Wald’s identity, 

the ANI for both the CCCFSI and the CCCVSI chart can be calculated as: 
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    (6.6) 

 
The ARL for the CCC chart can be expressed as 

 

1)1()1(1
1

−−+−−
= UCLLCL pp

ARL     (6.7) 

 
Therefore, ATSF can be calculated using following equation 

 

d
p

ARLdANIATSF ×=×=      (6.8) 

 
On the other hand, for the CCCVSI chart, the total time used before an alarm arises can 

be calculated as i
R
i i LXT ∑ =

=
1

, and the ATSV can be expressed as 
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If the process is in-control, it satisfies 
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Then the ATSv can be calculated as 
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Note that equation (6.11) is derived under the assumption that )1()( 1 α−== jj qdLP , 

i.e., the sampling interval length used before observing the first nonconforming item is 

chosen at random with these probabilities. As mentioned before, it is recommended to 

use the shortest sampling interval during process start-up in practice. In such a case, 

equation (6.11) is not exactly accurate; however, it is a good approximation to the 

ATSV because the effect of the initial sampling interval length can be neglected 

provided that nonconforming rate p0 is very small and the ARL is large.   

 

6.4 Performance Comparisons between the CCCVSI and the 

CCCFSI Chart 

To evaluate the efficiency of the CCCVSI chart, we compared its performance with that 

of the CCCFSI chart. Note that with same nonconforming rate p0 and acceptable false 

alarm rate α, both the CCCFSI and the CCCVSI chart have the same ANI function. In 
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order to compare their ATS property under a constant standard, proper design 

parameters of the CCCVSI and the CCCFSI chart are chosen so that the equation ATSF= 

ATSV is satisfied. Therefore the CCCVSI chart will be matched to the corresponding 

CCCFSI chart in the sense that when p=p0 both of them have the same in-control ATS. 

On the other hand, when the process nonconforming rate shifts to p’ (>p0), we compare 

the value of ATSF’ and ATSV’. The control chart with smaller out-of-control ATS’ is 

considered to be able to detect the increase of nonconforming rate more quickly.  

 

Let ATSF = ATSV, the following equation should be satisfied according to equations 

(6.8) and (6.11). 
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Without loss of generality, the sampling interval length of the CCCFSI chart is set to 1, 

i.e. d=1. By choosing suitable values of ),,,( 21 nddd L  and ),,,( 21 nqqq L  that satisfy 

equation (6.12), the matched CCCVSI and CCCFSI charts that have same in-control ATS 

can be obtained. Then, when the process nonconforming rate shifts to p’, the 

performance of the CCCVSI chart can be evaluated by calculating the value of I, which 

is the ratio of out-of-control ATS of the CCCVSI and the CCCFSI chart. 
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When I is less than 1.00, the ATSV’ is less than ATSF’, which means that the CCCVSI 

chart outperforms the CCCFSI chart. Here we name I as improvement factor. The 

smaller the improvement factor, the better the performance of the CCCVSI chart. 
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The values of qj’ can be calculated using the following equations, 
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6.4.1 Improvement Factors for Different Numbers of Sampling 

Intervals  

Following the above calculation method, we now investigate the behavior of CCCVSI 

chart for different numbers of sampling interval lengths n. Here the equal probability 

intervals are used, i.e.  
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Using equation (6.12) and d =1, the following equation can be obtained, 
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which is equal to the following equation, 

 
nddd n =+++ L21      (6.16) 

 
Given α  and 0p , for example, α =0.0027 and p0=0.0005, some representative values 

of nonconforming rate p’ are chosen for this analysis. The sampling interval lengths 

(d1, d2,…,dn) can be chosen as follows: Fixed d=1; n=2, d1=1.9,d2=0.1; n=3, d1=1.9, 

d2=1, d3=0.1; n=5, d1=1.9, d2=1.5, d3=1, d4=0.5, d5=0.1; n=7, d1=1.9, d2=1.7, d3=1.5, 
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d4=1, d5=0.5, d6=0.3, d7=0.1. Using formulas (6.5), (6.13) and (6.14), the values of 

corresponding improvement factors I are calculated, and the results are shown in Table 

6.1. 

 

Table 6.1 Improvement factors I for representative number of intervals 
 

Improvement Factor I 
p'/p0 

n=2 n=3 n=5 n=7 

1 1.000 1.000 1.000 1.000 
1.1 0.940 0.945 0.949 0.948 
1.2 0.884 0.895 0.902 0.901 
1.3 0.832 0.848 0.859 0.857 
1.4 0.783 0.804 0.819 0.816 
1.5 0.738 0.764 0.782 0.778 
1.6 0.695 0.726 0.747 0.743 
1.7 0.655 0.692 0.716 0.710 
1.8 0.618 0.659 0.686 0.680 
1.9 0.584 0.629 0.658 0.652 
2 0.551 0.601 0.633 0.625 
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Figure 6.2 Improvement factors with different number of sampling intervals 
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Figure 6.2 shows how improvement factor I changes with different process shifts using 

different numbers of sampling intervals, from which it can be seen that the greater the 

increase in the nonconforming rate(p’/p0), the smaller the improvement factor I, and 

the greater improvement in the CCCVSI chart compared with the matched CCCFSI chart.  

 

As shown in Table 6.1, when the nonconforming rate p becomes twice as much as the 

original level, I =0.55106 provided that n=2. That means the average time for the 

CCCVSI chart to detect the process shift is about half of that of the CCCFSI chart. 

Meanwhile, the results also reveal that among the four different numbers of sampling 

intervals n=2, 3, 5, and 7, the CCCVSI chart gets the best performance when n=2. This 

is also convenient for practical applications since there are only two different sampling 

interval lengths, and consequently it may be easier to control the inspection sampling 

rate without frequent changes. 

 

6.4.2 Improvement Factors for Different Sampling Interval Lengths 

Based on the analysis above, we fix the number of sampling intervals n=2 here, and 

change the length of sampling intervals to investigate how the performance of CCCVSI 

charts vary. Four different sets of (d1, d2) are used and their corresponding 

improvement factors I are calculated. Other parameters remain unchanged as in the last 

example. The results are shown in Table 6.2. The summarized results indicating the 

trends of improvement factors are also shown in Figure 6.3. 

 

It can be seen from Figure 6.3 that when the shift of nonconforming rate from original 

level (p’/p0) becomes larger, improvement factor I decreases and the performance of 
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CCCVSI charts becomes better compared with the matched CCCFSI charts. Moreover, it 

also shows that the larger the difference of interval lengths (d1 - d2), the smaller the 

improvement factor I , and the better the performance of CCCVSI charts.  

 

Table 6.2 Improvement factors I with different sampling interval lengths 

 
FSI VSI 

p'/p0 
(1,1) (1.9, 0.1) 

(1.7, 
0.3) 

(1.5, 0.5) (1.2, 0.8) 

1 1 1.000 1.000 1.000 1.000 
1.1 1 0.940 0.954 0.967 0.987 
1.2 1 0.884 0.910 0.936 0.974 
1.3 1 0.832 0.869 0.907 0.963 
1.4 1 0.783 0.831 0.880 0.952 
1.5 1 0.738 0.796 0.854 0.942 
1.6 1 0.695 0.763 0.831 0.932 
1.7 1 0.655 0.732 0.808 0.923 
1.8 1 0.618 0.703 0.788 0.915 
1.9 1 0.584 0.676 0.769 0.907 
2 1 0.551 0.651 0.751 0.900 
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Figure 6.3 Improvement factors with different sampling interval lengths 
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6.4.3 Improvement Factors for Different Probability Allocations 

The above analysis on the number of sampling intervals and the length of sampling 

interval is based on the equal probability allocation, i.e., the region between UCL and 

LCL is divided into n parts so that the points have equal probability of falling into the 

n regions (q1=q2=…= qn). The results indicate that when the number of sampling 

intervals n=2, a larger difference between d1 and d2, i.e. (d1 - d2), may produce better 

performance for the CCCVSI chart.  

 

In order to investigate the performance of CCCVSI charts when the equation 

q1=q2=…= qn is not satisfied, we fix n=2 and d1= 1.9, and only change the value of q1. 

The corresponding value of p2 and d2 can be achieved using equation (6.12), and the 

corresponding improvement factors I are then calculated. The results are shown in 

Table 6.3 as follows. 

 

Note that  

 

01

2

11
2 >

−−
=

q
qdd α      (6.17) 

 
So for fixed d1, q1 should satisfy the inequality 11 /)1( dq α−< . Table 6.3 and Figure 

6.4 indicate that when (q2-q1) decreases, the improvement factor I also decreases, and 

the performance of CCCVSI charts becomes better. So it is reasonable to use equal 

probabilities q1=q2=…= qn when designing a CCCVSI chart.  
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Table 6.3 Improvement factors I with different probability allocation 
 

(q1,q2) (0,10, 0.8973) (0.2,0.7973) (0.3,0.6973) (0.4, 0.5973) (0.49865, 
0.49865)   

(d1,d2) (1.9,0.8997) (1.9,0.7742) (1.9,0.6128) (1.9,0.3973) (1.9, 0.1) 
1 1.000 1.000 1.000 1.000 1.000 

1.1 0.980 0.967 0.957 0.948 0.940 
1.2 0.964 0.939 0.918 0.900 0.884 
1.3 0.951 0.914 0.884 0.856 0.832 
1.4 0.940 0.894 0.853 0.816 0.783 
1.5 0.932 0.876 0.826 0.780 0.738 
1.6 0.925 0.861 0.802 0.747 0.695 
1.7 0.920 0.848 0.781 0.716 0.655 
1.8 0.916 0.837 0.762 0.688 0.618 
1.9 0.913 0.828 0.745 0.663 0.584 

p'/p0 

2 0.910 0.820 0.730 0.640 0.551 
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Figure 6.4 Improvement factors with different probability allocation 
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6.5 Design of a CCCVSI Chart 

Based on the above analysis results, the design procedures of a CCCVSI chart are 

suggested to be the following: 

 

Step 1: Determine the control limits for fixed false alarm rate α   

The control limits UCL and LCL of a CCCVSI chart can be calculated using equation 

(6.2). In order to get a meaningful LCL ( 1
)1ln(
)21ln(

>⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

p
LCL α ), the inequality 

p<α/2 should be satisfied, i.e. α >2p. Notice that the CCC chart is particularly suitable 

for high-quality processes, which have very low nonconforming rate p, so this is not a 

serious problem. Here it is assumed that the nonconforming rate p is known, or it can 

be estimated from historical data.  

 

Step 2: Choose the number of sampling intervals n=2. 

 

Step 3: Use equal probability allocation
2

1
21

α−
== qq , so the interval limit 

is
)1ln(

)5.0ln(

0
1 p

IL
−

= . 

 

Step 4: Calculate the sampling interval lengths (d1, d2)  

Given n=2 and
2

1
21

α−
== qq , from equation (6.12) we may get 221 =+ dd . 
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It can be seen from Table 6.2 and Figure 6.3 that larger difference of interval lengths 

(d1 - d2) may produce better performance for CCCVSI charts. However, the difference 

of interval lengths (d1 - d2) cannot be too large. Suppose that the matched CCCFSI takes 

one sample for every m items, when using n=2 and equal probability allocation q1=q2 , 

d2 must not be less than 1/m, and d1 should not be larger than (2- 1/m). In the case 

when d2=1/m and d1= (2-1/m), we take every item as a sample if the process becomes 

worse. Table 6.4 shows the recommended values of d1 and d2 for CCCVSI charts with 

respect to the sampling frequency of the matched CCCFSI chart. With increasing m, (d1 

- d2) also increases. Hence, the efficiency of the matched CCCVSI chart becomes more 

significant. However, since the CCC chart is particularly suitable for high-quality 

processes with very low nonconforming rate p, m cannot be too large. Meanwhile, 

when determining the value of m, as well as d1, other factors, e.g. the maximum 

amount of time that is allowed for the process to run without sampling, should be taken 

into consideration.  

 

Table 6.4 Sampling Interval Lengths (d1, d2) for the CCCVSI Charts with Different 
Matched Sampling Interval Lengths m for the CCCFSI Charts 

 

m 1 2 3 4 5 6 7 8 9 10 

d1 1 1.5 1.67 1.75 1.8 1.83 1.86 1.88 1.89 1.90 

d2 1 0.5 0.33 0.25 0.2 0.17 0.14 0.13 0.11 0.10 

 

Step 5: Evaluate the efficiency of CCCVSI charts 

All the design parameters of the CCCVSI chart can be determined following the four 

steps mentioned above. Given the shifted nonconforming rate p’, the probability (q1’, 

q2’) that a point falls into each region can be calculated using equation (6.14),  and 
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then the improvement factor I can be calculated using equation (6.13), which can be 

used to evaluate the efficiency of  the CCCVSI chart. 

 

Note that because the geometric distribution is discrete, the equation q1=q2=…= qn 

may not be rigorously satisfied. However, given that p0 is very small, the formulas 

above are accurate enough for a good design. 

 

6.5.1 Charting Procedures of a CCCVSI Chart 

After determining all the design parameters following the five steps mentioned above, 

the CCCVSI chart is ready for process monitoring. Figure 6.5 presents the charting and 

decision making procedures for the CCCVSI chart. To protect against problems that 

may arise when the process starts up, the initial sampling interval length is set to be the 

shortest interval dn. The charting procedure is same as for the traditional CCC chart 

except that the sampling interval length varies with the position of preceding point 

plotted. Therefore, the users have to determine the sampling interval length for plotting 

Xi, according to the region in which Xi-1 has fallen in.  

 

6.5.2 An Example 

To illustrate the design method of a CCCVSI chart, an example with simulated data is 

discussed in this section. Table 6.5 shows a set of randomly generated data that follow 

the geometric distribution with nonconforming rate  p0=0.0005. 

 

Let false alarm rate α=0.0027. Using formula (6.2), we get UCL= 13212, LCL= 2.  Let 

q1= q2 = (1-α)/2 = 0.49865, we obtain the interval limit IL1= 1385 using equation (6.5). 
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Given that the sampling frequency for the CCCFSI chart is one sample every five items, 

we set d2=0.2, and the corresponding d1=1.8. The CCCVSI chart is shown in Figure 6.6. 

 

Start

Calculate the control limits
UCL, IL 1 ,IL 2 ,...IL n-1, LCL

Set Q = 0

Wait a time dj and inspect
an item; Q=Q+1

i =i+ 1, Plot (i,Q)

Is the item
conforming?

Q>UCL or
Q<LCL?

Stop the process
and look for

assignable causes

Take Corrective
Action

Has p
changed?

No

Yes

No

Yes

Set i = 0

Determine Design
Parameters for CCCVSI Chart

Set initial sampling interval
length=dn

Yes

No
Set j = 1

 (i, Q) falls in
region Ij ?

j = j+1

No

Yes

Set sampling
interval= dj

 

 

Figure 6.5 Charting procedures and decision rules for the CCCVSI chart. 
 

Table 6.6 shows the improvement factors I when different amount of shifts in the 

nonconforming rate p’ occurs. The results shows that when p’ increases to 0.001, the 

ATS of the CCCVSI chart is only 60.09% of that of the matched CCCFSI chart. 
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Table 6.5 A set of data from geometric distribution with nonconforming rate  
p0=0.0005 

 

Defect 

Sequence 
CCC 

Defect 

Sequence 
CCC 

Defect 

Sequence 
CCC 

Defect 

Sequence 
CCC 

Defect 

Sequence 
CCC 

1 102 11 970 21 5696 31 8361 41 353 

2 2928 12 466 22 2082 32 583 42 7858

3 998 13 162 23 413 33 1618 43 767 

4 1442 14 606 24 9235 34 141 44 1937

5 230 15 3470 25 3947 35 1526 45 368 

6 543 16 1803 26 3190 36 1741 46 1374

7 1568 17 133 27 3230 37 333 47 686 

8 7977 18 173 28 1008 38 1287 48 1692

9 393 19 1781 29 2601 39 3191 49 2376

10 1620 20 224 30 3229 40 794 50 3324
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Figure 6.6 An example of the CCCVSI chart 
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Table 6.6 Improvement factors I with different  p’ values 
 

p' 0.0005 0.00055 0.0006 0.00065 0.0007 0.00075 

I 1 0.9469  0.8972 0.8507 0.8073  0.7667  

p' 0.00075 0.0008 0.00085 0.0009 0.00095 0.001 

I 0.7667  0.7288  0.6935 0.6605 0.6297  0.6009  

 

6.6 Conclusions 

From the analysis above, it can be seen that compared with the CCCFSI chart, the 

CCCVSI chart can detect increase in the nonconforming rate more quickly, and thus 

reduce the average count of nonconforming items of the process. The greater the 

increase in the nonconforming rate, the greater the improvement in the CCCVSI chart 

performance relative to the performance of the matched CCCFSI chart with equal in-

control ATS. On the other hand, when the amount of nonconforming rate shift p’ 

remains constant, the efficiency of CCCVSI charts can be enhanced by increasing the 

difference of interval lengths (d1 - d2). When designing a CCCVSI chart, the number of 

sampling intervals n is suggested to be two, and the discrete uniform probability 

distribution q1=q2=…= qn is recommended to be used.  

 

Since in practical applications, people are more concerned about the process 

deterioration rather than improvement, this CCCVSI chart is designed to detect the 

increase of process nonconforming rate. In the case that process improvement is the 

major concern, the design method of a CCCVSI chart is similar to the scheme presented 

above, except that a shorter sampling interval should be chosen when the 

nonconforming rate decreases and a longer sampling interval is to be used when it 

increases.   
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Chapter 7 Sampling CCC Chart with Random Shift 

Model and Implementation Issues 

   

7.1 Introduction 

CCC chart is originally designed under full inspection plan in order to detect the 

process shifts as fast as possible (Bourke,1991). It is convenient for implementation 

when the inspection is done by machines and the inspection results can be 

automatically saved in computers or database. However, even in highly-automated 

manufacturing industry, manual inspections are still in use for some processes due to 

the limitation of technology or facility. In this case, sampling methods can help to 

minimize the inspector’s work as well as inspection cost. Therefore, it is necessary to 

investigate the design and performance of CCC chart with sampling inspection so as to 

provide some guidance for engineers when the full inspection cannot be applied.  

 

The adaptive sampling plan, i.e., the CCC chart with variable sampling intervals, has 

been studied in Chapter 6. In this chapter, sampling CCC chart with random-shift 

model will be discussed. The commonly used method for evaluating the performance 

of a TBE control chart has implicitly assumed that the process shift occurs exactly 

when the events happen, say, a nonconforming item was found. This is called the 

“fixed-shift” model in Wu & Spedding (1999). However, in practical situations, the 

process shift may occur anytime during the process, not only when an event happens, 

and this phenomenon can be modeled with a more realistic model, namely, the 

“random-shifted” model (see Wu & Spedding, 1999).  
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The rest of this chapter is organized as follows. Section 7.2 discusses the minimum 

sample size required for the estimation of fraction nonconforming p. The calculation 

method of Average Number of items Inspected (ANI) with sampling plan based on 

random-shift model is presented in Section 7.3, together with the selection of sampling 

frequency based on the specified Average Time to Signal (ATS) value. In Section 7.4 a 

case study on the implementation of CCC chart is presented, some practical issues are 

discussed and a prototype experiment was carried out to verify the effectiveness of 

proposed methods in practical applications. The case study was done with a 

semiconductor manufacturing company in Singapore to improve the effectiveness of 

CCC chart for the monitoring of automatic testing process.  

 

7.2 Estimation of Fraction of Nonconforming (FNC) 

Assume that the inspection of each item can be modeled as a sequence of Bernoulli 

trials, and thus the number of nonconforming items x in each sample (sample size=n) 

follows binomial distribution with probability mass function: 

 
xnx pp

x
n

xXPxf −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=== )1(}{)( 00    (7.1) 

 
Here the value of fraction of nonconforming p0 is usually estimated from observed 

process data. A traditional approach is to simply divide the total number of 

nonconforming items by the total number of items inspected i.e. 
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where k is the total number of samples taken, ni is the sample size of the ith sample, and 

ri is the number of nonconforming items in the ith sample. 

 

However, this formula may become meaningless when the number of nonconforming 

items in samples is always zero. This may frequently occur when the fraction 

nonconforming p0 is very low at ppm or even ppb levels and the sample size is not 

large enough.  

 

A possible alternative is to estimate the fraction nonconforming based on binomial 

distribution. Assume that a sample of size n was taken and r nonconforming items 

were found. If additional sampling with same sample size is taken, the process would 

produce no more than r nonconforming items with 50% chance; and more than r 

nonconforming items with 50% probability as well. The reason why the probability 0.5 

is chosen is that n could be a good estimation of minimum sample size required in the 

sense that it creates at least 50% opportunity for observing  r nonconforming items in 

the additional sample rather than less than r or even zero nonconforming items.. 

 

Based on this assumption, the estimation of p0 can be achieved by solving the 

following equation: 
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    (7.3) 

 
The relationship between sample size, and the probability that zero-defect may be 

found within a sample can be derived from formula (7.1), i.e. 
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Figure 7.1 provides a curve of the minimum sample size that is required to get zero-

defect and non-zero-defects in a sample with same probability (=0.5). Some detailed 

values of sample size n can be found in Table 7.1, where Categories A, B, C, and D 

were grouped according to four ranges of the process fraction nonconforming average 

normally used in practice. 
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Figure 7.1 Sample size n with different fraction nonconforming levels p0 

 

Table 7.1 Some sample size n values with different fraction nonconforming levels p0 
 

 
Category A 

(<20ppm) 
Category B (20-100ppm) Category C (100-1000ppm) 

Category D 

(>1000ppm) 

p(ppm) 20 40 60 100 200 500 1000 1200 

n 34657.01 17328.33 11552.11 6931.13 3465.39 1385.95 692.80 577.28 
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Based on the analysis above, the following procedures are suggested for setting up a 

CCC chart: 

 

Step 1: Estimate the process fraction nonconforming according to historical data or 

experience; 

 

Step 2: Find a proper sample size n that is corresponding to the estimated p0, based on 

values suggested in Figure 7.1 or Table 7.1; 

 

Step 3:  Do the sampling inspection, and get the number of nonconforming items r 

within the sample; 

 

Step 4:  Determine the estimation of process fraction nonconforming p0 using formula 

(7.3)  

 
Step 5: Set up the CCC chart using the estimated value p0. The control limits can be 

calculated by formula (2.3). If they are not integer values, the UCL can be rounded 

down and LCL rounded up to an integer as shown in formula (2.4). An out-of-control 

signal will be raised when CCC is above UCL or below LCL.  

 

7.3 Sampling CCC with Random-shift Model 

ARL is the most frequently used criterion to measure the performance of a control 

chart. However, since the number of items inspected to plot every point is different for 

CCC chart, ANI, which is defined as the expected value of the number of items 

inspected until an out-of-control signal occurs, would be a better measurement to 

evaluate the performance of a CCC chart. An effective CCC chart should have a large 
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in-control ANI value to keep the false alarm rate to an acceptable level, and a small 

out-of-control ANI so that shifts in process fraction nonconforming can be detected in 

a short time. 

 

The ANI of a CCC chart based on fixed-shift model may be calculated with equation 

(7.5) and the in-control ARL and out-of-control ARL’ can be expressed as formula 

(7.6). 

 

( ) ( )
p

ARL
XEREXESEANI fix

i

R

i
ifix ==⎟
⎠

⎞
⎜
⎝

⎛
== ∑

=1
)(   (7.5) 

 

11
1

1
1'

;1

−−+
=

−
=

=

LCLUCLfix

fix

qq
ARL

ARL

β

α     (7.6) 

 
where q =1- p. 

 

It is worth noting that formulas (7.5) and (7.6) are derived based on the fixed-shift 

model assumption, i.e., that the fraction nonconforming shifts immediately after a 

nonconforming item and will not occur in the middle of a run length while conforming 

items are accumulated. That is to say the shift will directly cause a nonconforming 

immediately without any delay of the cumulative effect. From a practical point of view, 

especially when p0 is very small and the CCC is always large, this assumption will be 

too restrictive and cannot represent the real process accurately. Wu & Spedding (1999) 

discussed this issue and derived a set of accurate formulas for the random-shift model 

of CCC chart with full (100%) inspection, where a shift may occur at any time 
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between two nonconforming units. The random-shift model ANI can be calculated 

with formulas (7.7) and (7.8). 
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For the random-shift model with 100% inspection, the shift may occur at a 

nonconforming item with probability p0, and occur at a conforming item with 

probability q0=1-p0, where a cross-over CCC including two geometric random 

variables with fraction of nonconforming p0 and p1, respectively, will be observed. 

Correspondingly, the observed CCC data before and after a shift can be either of the 

following two cases:(i) A series of conforming counts produced by a process with 

fraction of nonconforming p=p0, followed by a series of conforming counts from a 

process with p=p1; (ii) A series of conforming counts produced by a process with 

fraction of nonconforming p=p0, followed immediately by a cross-over count of 

conforming, and then a series of conforming counts from a process with p=p1. For easy 
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referring, the CCC data generated in case (i) is named as CCC-single, and for case(ii), 

namely CCC-crossover. 

 

In most sampling plans, the inspection process may have periods of inspection of n 

contiguous items, alternating with periods of non-inspection, with an overall sampling 

fraction at certain stable level, say f. f indicates the percentage of number of items 

sampled within the total number of items produced throughout the process.  Under 

sampling inspection, there will be four situations for generating CCC data. Table 7.2 

lists the types of CCC data and the probability of each situation corresponding to the 

four situations. 

 

Table 7.2 Four situations for generating CCC data under sampling plans 
 

 Shift occur at a 
nonconforming item 

Shift occur at a 
conforming item 

The shift item is 
sampled 

CCC-single 
0pf ⋅  

CCC-crossover 
( )01 pf −⋅  

The shift item is 
not sampled 

CCC-crossover 
0)1( pf ⋅−  

CCC-crossover 
( ) ( )011 pf −⋅−  

 
 

As can be seen from Table 7.2, under sampling plans, since the shift of p may occur 

during the non-inspection period, the probability of CCC-crossover will increase 

compared with that of the 100% inspection (1-p0). Therefore, formulas (7.7) and (7.8) 

have to be modified when calculating the ANI with sampling plans.  

 

The ANI with 100% inspection can be expressed as:  
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( ) ranfixfull ANIpANIpANI ⋅−+⋅= 1     (7.9) 

 
Therefore, the ANIran which stands for the ANI based on random-shift model can be 

derived from equations (7.7) and (7.9): 
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Based on the probability provided in Table 7.2, the overall ANI under sampling plan 

can be calculated with: 
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The ATS can then be estimated with 

 

mATS
ANIf

fm
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where m is the average number of items produced per day. A proper sampling fraction 

f can be chosen based on the required ANI and ATS values according to formula (7.12). 

 

In order to provide a more straightforward understanding on how the factors influence 

ANI property,  the ANI for fixed-shift model and random-shift model with sampling 

plans are calculated with some representative process fraction nonconforming levels 

and sampling frequency (Table 7.3). Figure 7.2 provides ANI curves of CCC chart 

with full inspection and 50% inspection, respectively. The in-control fraction 

nonconforming p0=0.0002 (200ppm), and the out-of-control p varies from 0.0001 to 
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0.05. The ANI achieved the maximum value when the process was in-control and 

dropped sharply when p increased or decreased from p0. 

 
Table 7.3 The ANI values with some representative parameters (with α=0.0027) 

 

p0 f p1 ANIfix ANIsampling 
0.0001 267725 258409 
0.0004 1041918 1041604 
0.001 167084 167802 

0.1

0.002 41875 42313 
0.0001 267725 258409 
0.0004 1041918 1041604 
0.001 167084 167802 

0.5

0.002 41875 42313 
0.0001 267725 258410 
0.0004 1041918 1041605 
0.001 167084 167802 

0.0002 

1 

0.002 41875 42313 
0.00025 107335 103588 

0.001 499796 499446 
0.0025 80100 80365 

0.1

0.005 20050 20221 
0.00025 107335 103589 

0.001 499796 499446 
0.0025 80100 80365 

0.5

0.005 20050 20221 
0.00025 107335 103590 

0.001 499796 499446 
0.0025 80100 80365 

0.0005 

1 

0.005 20050 20221 
0.0005 53649 51777 
0.002 249774 249599 
0.005 40000 40133 

0.1

0.01 10000 10086 
0.0005 53649 51777 
0.002 249774 249599 
0.005 40000 40133 

0.5

0.01 10000 10086 
0.0005 53649 51778 
0.002 249774 249600 
0.005 40000 40133 

0.001 

1 

0.01 10000 10086 
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Figure 7.2 The ANI curves with full and sampling inspection 
 

From Table 7.3 and Figure 7.2, it can be found that the sampling frequency f has slight 

influence on the ANI value. This can be attributed to the memoryless property of 

geometric distribution and the very small value of p, which reduce the effect of f on 

ANIsampling value as can be seen from formula (7.11). However, it is worth noting that 

although the sampling frequency f does not influence the average number of items 

inspected (ANI) until a signal arises much, when the production frequency is stable, 

smaller sampling fraction f will lead to a longer data collection time, which may in turn 

increase the ATS of the CCC chart.  Therefore, it may also cause a delay of signaling a 

shift if the sampling frequency is very low.  

 

It can also be observed from Table 7.3 that the use of random-shift model does affect 

the ANI value compared with the fixed-shift model. The reason for this could also be 

due to the low fraction nonconforming level, which leads to a long run length between 

two successive nonconforming items, and a larger possibility of process shifts in 

between. 
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7.4 Implementation of the CCC Chart: A Case Study 

A case study was done by looking at the Automatic Test Equipment (ATE) process, 

where the Cumulative Count of Conforming (CCC) chart is used with visual inspection 

data. The operation procedures and data collection process were reviewed. Some 

implementation problems were analyzed and possible improvements methods were 

proposed. A prototype experiment was done on one ATE handler (SUM31/NPT03) for 

three consecutive weeks, and results show that the proposed inspection scheme can 

improve the effectiveness of the CCC chart currently in use. 

 

7.4.1 Review of the processes 

The ATE is employed for the initial class test. Two types of test are conducted in this 

step: electronic test and mechanical test. The electronic test is to test the performance 

of the chips, and the mechanical test is to check whether there is any reject (e.g. 

bending, chipping, appearance, etc.) caused during the process of moving due to the 

handler setting. Before doing the electronic test, the chips are moved by a handler from 

outside to the test equipment. After testing, there will be a mechanical test by visual 

inspection to check whether the chips have any problem caused by the handler. Figure 

7.3 shows the detailed testing procedures.  
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Figure 7.3   Flowchart for the testing procedures 

 

As for the mechanical testing, the visual inspection is done 100% or by sampling, 

depending on the product. For those types of products with high requirement on 

quality, full inspection (100%) will be done. For the sampling process, the visual 

inspection is done for every new lot or when the operator shifts. The current sample 

size is 2 trays with 24 chips. It is worth noting that before the new lot is tested; a trial 

model instead of the real products will be put in the machine and run, to make sure the 

setting of the handler is fine. If everything is fine, the real products will be put into the 
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machines and run.  If any rejection occurs, the machine will be re-set by the 

technicians. The sampling procedures are shown in Figure 7.4.  

 

 

 

Figure 7.4 Flowchart for sampling procedures 

 

The CCC chart is used to monitor the number of conforming chips between successive 

nonconforming chips, which in turn indicates the setting of the handler. The CCC chart 

is supposed to detect any setting problem of the handler within a short period of time 

to avoid more nonconforming from arising. There are around 50 ATE machines, and a 

separate CCC chart for each individual machine/handler.  
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The control limits (UCL and LCL) of the CCC chart are calculated based on the 

estimated process fraction of nonconforming (FNC) p according to the formula 

 

000,000,1)7.0().( ⋅
+

=
n

rppmEstPbar    (7.13) 

 
where n is the sample size, and r is the number of nonconforming in the sample 

(Calvin,1983). 

 

The control limits of CCC chart are calculated by the formulas 

 

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛==

2
ln;

2
;7.0 αα nUCLnLCLnCL    (7.14) 

 
where pn 1=  is the expected average number of units that have to be inspected 

before finding a nonconforming unit, and α is the false alarm rate. When the actual 

CCC from sampling data goes beyond the UCL, the p will be estimated again with the 

recent data, and the UCL and LCL will be updated to a new value. 

 

7.4.2 Existing problems of implementation 

Some problems are observed from current implementation of CCC chart for the ATE 

processes: 

 

• The cumulative count of conforming may keep on hitting the UCL of CCC chart, 

and the control limits were revised again and again, without an end; 

 

• No nonconforming was found throughout the whole process for quite a long time;  
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• Should the user combine all data from different ATE machines, or use individual 

CCC chart for each machine? 

 

• Different handlers may have different nonconforming rate p. How to balance the 

ppm level among all handlers?  

 

7.4.3 Cause-and-effect analysis 

A cause-and-effect analysis is conducted to isolate the potential causes that affect the 

effectiveness of CCC chart. Figure 7.5 is the cause-and-effect (fishbone) diagram. 

 

 
Figure 7.5 The cause-and-effect diagram for the effectiveness of CCC chart 

 

From the cause-and-effect diagram, some influence factors and possible improvements 

can be found as elaborated in the following. The bold and italic characters indicate the 

factors shown in the cause-and-effect diagram. 
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7.4.3.1 Chart design 

The estimation of p is made based on historical data; it is important to collect more 

data under the same or at least similar conditions, e.g. the type of machine, kind of 

chips, etc. 

 

The acceptable false alarm α is chosen so that it will not cause too many false alarms 

(if it is too large); while the CCC chart can maintain its sensitivity on small process 

shifts (detect the p-bar change in a short period of time). Usually, 0.0027 is used to 

keep consistent to traditional Shewhart charts, or a little larger value can be chosen to 

be strict with the monitoring since the process quality is quite high, and any delay on 

signal of undesired shift may lead to great cost.  

 

Control limits can be calculated with formulas (2.3) or (2.4)  for a more accurate result. 

 

7.4.3.2 Sampling scheme 

Study shows that sampling fraction has slight effect on the Average Number of Items 

Inspected (ANI) until a signal occurs for a certain shift. However, when the production 

rate is rather constant/stable, it will take a longer time to detect the shift if sampling 

fraction is small. Therefore, we encourage enlarging the sampling fraction to a certain 

acceptable level while taking into consideration of the inspection cost, manpower, etc. 

 

Sample size may influence the accuracy of the estimation of p for initial set-up of the 

CCC chart. Also larger sample size is preferred to a smaller one. 
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Sampling interval can be adjusted based on the status of the process. A general 

guideline is to have a larger sampling interval when the process is running well, and 

take a smaller sampling interval when any indication of process deterioration appears. 

 

7.4.3.3 Operator 

Operator plays a very important role in the implementation of any control chart. For 

CCC chart, two possible kinds of inspection error may occur: to take a nonconforming 

one as conforming, or take a conforming one as nonconforming. Data input error may 

also happen occasionally or even purposely. Training may be helpful to reduce such 

kind of error by operators. On the other hand, if the error can be well-estimated with 

certain probability, the design of control chart may also be changed by a certain 

adjustment factor to compensate the error following the method reviewed in Chapter 2. 

 

7.4.3.4 Data grouping 

If the purpose of employing a CCC chart for the ATE handler is to detect any problem 

caused by the handler, then a separate CCC chart would be recommended as it may 

focus on detecting the system variation of certain handler instead of all handlers at the 

same time, with one single control chart. Therefore, data from different ATE 

machines are suggested to be separated.   

 

Data from the same ATE handler with different lots, operator, and type of defects can 

be put together if these factors will not cause big variance on the level of p.  
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7.4.3.5 Machine/handler 

Machine utilization need to be balanced and optimized to reduce the variation of the 

process caused by different lots, operator, and type of defects, etc.  Also, the less 

frequent shift of product or the operator, the more stable the process will be.     

 

From the investigation of the process, we also notice that one important factor that 

leads to the poor effectiveness of the CCC chart is the data collection. In many cases, 

the data of the CCC chart is not fully captured. Some improvement ways are suggested 

as follows: 

 

• During the inspection, no matter full inspection or sampling inspection, all the 

nonconforming data need to be recorded. This can be done by design of certain 

paper-based forms if it cannot be implemented with computer at this stage. 

 

• For the sampling process, if a pre-production model is used to check the setting 

of the handler, the sampling inspection can be done some time later after the 

real product starts running, instead of taking samples just after the trial. The 

time interval that the operator has to wait to take the first sample can be 

decided based on past data and experience.  

 

• Not every nonconforming/rejects from visual inspection means the process is 

out-of-control and the machine setting has to be adjusted. Too many adjustment 

of machine setting may cause more problems. Control chart is a way to help 

engineers to check whether and when the machines really need adjustment.  
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7.4.4 Prototype experiment 

A prototype experiment was done on the handler SUM31/NPT03 for three consecutive 

weeks in November 2005 following the improvement suggestions. The cumulative 

number of conforming items were recorded when the next non-conforming item was 

found or the machine restarts due to undock or device failure. The sampling fraction is 

2 out of 5 trays, i.e. 40%.  The raw data from production engineers are shown in Table 

7.4. 

 

From Table 7.4, the total number of rejections is 6, and total number of sampling items 

is 6756 (total number of insertions × sampling fraction). The process FNC level can be 

estimated using formula (7.13) 

 

ppm
n

rppmEstPbar 99210
6756

7.06000,000,1)7.0().( 6 =×
+

=⋅
+

=  

 

Therefore, the control limits can be calculated by formula (2.3). Figure 7.6 presents the 

CCC chart with data listed in Table 7.4. In the CCC chart, the dotted lines represent the 

UCL and LCL calculated based on 3-sigma control limits (false alarm α=0.0027), the 

dashed lines show the UCL and LCL with 2-sigma limits (false alarm α=0.0455) , and 

the solid lines denote the 1 sigma limits with false alarm α=0.3173. From the CCC 

chart, it can be seen that no out-of-control signal appears during this period, and the 

process is stable. On the other hand, following the old data collection methods, none 

rejects can be shown in the CCC chart and the cumulative number of conforming items 

keeps on increasing, which may give a wrong indication that the process is improving 

all the way.  
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Table 7.4 The raw data from handler SUM31/NPT03 
 

No No of 
insertions 

No of VM 
rejects 

Remark Badge no/Shift 

1 0  0  Start  311829/E 
 2 3509  0  Undock; failed device  324819/B 
 3 3048  0  Undock; failed device  324713/A 
 4 3747  0  Undock; failed device  324713/A 
 5 1406 1  Bent lead due to device drop 427884/C 
 6 1143 2  Bent lead 427884/C 
 7 223 3  Bent lead due to input gantry 427884/C 
 8 54 0  Undock 427884/C 
 9 3516 0  Undock 427884/C 
 10 243 0  Undock 323956/C 
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Figure 7.6 The CCC chart for handler SUM31/NPT03 
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7.5 Conclusions 

In this chapter, the CCC chart with sampling plan based on random-shift model is 

discussed. The results indicate that the sampling frequency f does not influence ANI 

much, especially when the process FNC is low. However, smaller sampling fractions f 

will increase the ATS of the CCC chart, and thus may cause a delay in signaling a shift 

if the sampling frequency is very low.  

 

The case study on the implementation of CCC chart does reveal some problems which 

may not be serious issues from the research point of view, but does affect the 

effectiveness of the TBE chart for practical applications.  On the other hand, it also 

revealed that the TBE chart can be very useful for the monitoring of high-quality 

processes, and the CQC and CCC charts attract engineers’ interests because of their 

simplicity for application.  
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Chapter 8 EWMA Chart for Weibull-distributed 

Time Between Events 

 

8.1 Introduction 

It has been pointed out in Chapter 2 that most of the current studies on TBE charts are 

based on the assumption that the occurrence of events can be modeled by a 

homogeneous Poisson process, and thus the time between two successive events 

follows exponential distribution. However, the assumption is true only when the events 

occurrence rate is constant, and thus may limit the application scope of TBE charts. A 

possible extension is to use Weibull distribution to simulate various TBE situations 

(including exponential) with non-constant events occurrence rate by varying its scale 

and shape parameters. This is especially useful in reliability monitoring, where events 

occurrence rate is rarely constant due to the aging property. 

 

A detailed literature survey on the monitoring of Weibull-distributed TBE data can be 

found in Section 2.2.5. Earlier studies focus on Shewhart control charts (e.g. Nelson, 

1979; Ramalhoto and Morais, 1999), and then control charts based on probability, 

namely,  t-chart  was proposed by Xie et al.(2002b). The performance of t-chart  shows 

that when the shape parameter shifts from the original value, the chart can only detect 

the decrease of shape parameter, and the increasing shift cannot be detected effectively. 

The optimal design of CUSUM for Weibull data is limited to fixed shape parameter 

and can only detect the shifts in scale parameter (Hawkins and Olwell, 1998). However, 

there are few studies on EWMA for Weibull TBE data, especially on the method of 
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detecting shifts in shape parameter. Zhang and Chen (2004) developed lower-sided and 

upper-sided EWMA charts for detecting mean changes of censored Weibull lifetimes 

with fixed censoring rate and shape parameter.  

 

In this study the EWMA for complete Weibull data with known parameters is 

investigated.  A summary of parameter estimation methods for Weibull distribution 

can be found in Murthy et al (2004).  

 

8.2 The Weibull EWMA Chart 

Let X1, X2, …denote  a sequence of time between events data, which are independent 

Weibull random variables with probability density function: 
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where θ is the scale parameter and η is the shape parameter. The mean and variance 

can be expressed as: 
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Define 

 
ηXY =       (8.3) 

 
Then Y is also Weibull-distributed with scale parameter θη and shape parameter 1 as an 

exponential variable. Therefore, if the shape parameter η can be assumed to be a 

constant, the monitoring of Weibull random variable can be easily done by 
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transforming to exponential first using formula (8.3), and then following the design 

method of exponential EWMA proposed in Gan (1998) or the method proposed in 

Chapter 5. Otherwise, if the shape parameter η may also vary during the process, a 

Weibull EWMA is needed to monitor the changes.  

 

The statistic for two-sided Weibull EWMA is 

 
( ) 11 −−+= ttt ZXZ λλ     (8.4) 

 
where λ is the smoothing constant that satisfies 0 <λ ≤1. Usually the starting value is 

set to be the process target, i.e. the mean of Weibull data, 

 
00 μ=Z       (8.5) 

 
With this definition, it can be obtained that 
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Therefore, the UCL, CL and LCL for two-sided Weibull EWMA can be calculated by 
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where the LU and LL are the design parameters which influence the width of the control 

limits, and by convention, they are set to be equal, i.e. LU = LL. An out-of-control 

signal will arise when X exceeds either UCL or LCL. Since the time between events is 

always positive, the LCL will be set to be zero if the calculated LCL is less than zero. 
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For large values of t, the variance of Zt will be approximately constant, and the upper 

and lower asymptotic control limits hU and hL are given by 
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An out-of-control signal will arise when Zt ≤ hL or  Zt  ≥ hU.   

 

On the other hand, if the direction of the shift can be well predicted, the upper-sided or 

lower-sided Weibull EWMA chart is recommended for use to detect an increase or 

decrease in mean, respectively. The successive values of one-sided Weibull EWMA 

can be described by 
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against t (t =1,2,3…), where λU and λL are smoothing constants such that 0<λU≤1, 

0<λL≤1. Reflecting boundaries A and B are included to prevent the EWMA statistics 

from drifting to one side indefinitely. The starting values are Z0
U and Z0

L that satisfy 

A≤ Z0
U <hU and  hL< Z0

L ≤B. 

 

8.3 Calculation of ARL and ATS 

The ARL properties of an EWMA scheme can be approximated using Markov Chain 

approach similar to that described by Brook and Evans (1972). The continuous state 

Markov chain is evaluated by discretizing the infinite-state transition probability 

matrix.  
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8.3.1 Two-sided Weibull EWMA 

Consider a two-sided Weibull EWMA chart with design parameters λ, hU and hL, and 

the interval between the lower and upper control limits (hL, hU) is divided into m 

subintervals of width w. w can be expressed as: 

 

m
hhw LU −

=       (8.10) 

 
The EWMA control statistics Zt is said to be in transient state (j) at time (t) if 

hL+jw≤Zt< hL+(j+1)w for j=0,1,…,m-1. The midpoint of the subinterval corresponding 

to state (j) can be written as  
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The control statistics Zt is regarded as in the absorbing state m if the point goes outside 

the control limits, i.e. Zt ≥ hU or Zt <hL.  

 

Let pij represents the transition probability that the control statistics Zt goes from state 

(i) to state (j) in one step.  To approximate the probability, it is assumed that the 

control statistics Zt is equal to mi whenever it is in state (i). This approximation is 

accurate enough when the number of states m is large. Then pij is given by 
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Based on the Markov chain theory, the expected first passage times from state (i) to the 

absorbing state are  
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φi is the ARL given that the process started in state (i). Let Q be the matrix of 

transition probabilities obtained by deleting the last row and column of P. The vector 

of ARLs φ can be calculated with 
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where 1 is an m×1 vector of 1s and I is a m×m identity matrix. The elements in the 

vector φ are the ARLs when the EWMA chart starts in various states. The first element 

in the vector φ gives the average run length for the Weibull EWMA chart starting from 

zero. Let the kth element be the ARL that the EWMA chart starts from k, it can be 

achieved by 
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where [C] stands for the largest integer not greater than C.  

 



                                                   Chapter 8 Control Charts for Weibull-distributed TBE 

 170

The ATS, defined as the expected value of total length of time to observe an out-of-

control point, can be calculated with Wald’s identity. Let S be the total amount of time 

before an out-of-control signal occurs. It satisfies  
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where R is the number of points plotted on the chart until an out-of-control signal 

occurs. Then the ATS of Weibull EWMA can be obtained as 
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8.3.2 One-sided Weibull EWMA 

The calculation method of ARL for one-sided Weibull EWMA chart is similar except 

that the in-control interval and transition probability matrix will be somewhat different.   

 

For upper-sided Weibull EWMA chart, the interval (A, hU) is divided into m 

subintervals and the width wU can be expressed as: 
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The EWMA control statistics Zt

U is said to be in transient state (j) at time (t) if A+jwU 

≤Zt
U< A+(j+1)wU for j=0, 1,…,m-1.  The midpoint of the subinterval corresponding to 

state (j) can be written as  
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The control statistics Zt
U is regarded as in the absorbing state m if Zt

U
 ≥ hU.  

 

Let pU
ij represents the transition probability that the control statistics Zt

U goes from 

state (i) to state (j) in one step. The pU
ij can be derived as 
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For lower-sided Weibull EWMA chart, the interval (hL, B) is divided into m 

subintervals with width wL. 
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Similarly, the Weibull EWMA control statistics Zt

L is said to be in transient state (j) at 

time (t) if ( ) L
L
tL jwBZwjB −≤<+− 1  for j=0,1,…,m-1. The midpoint of the 

subinterval corresponding to state (j) can be written as  
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The control statistics Zt

L is regarded as in the absorbing state m if Zt
L

 ≤ hL.  

 

The elements pL
ij of transition probability matrix of Markov chain can be derived as 
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The ARL vector can then be calculated with formulae (8.13) and (8.14) after achieving 

the transition probability matrix. The ATS can also be obtained by formula (8.17). 

 

8.4 Design of Two-sided Weibull EWMA 

Based on the calculation methods described above, the in-control ARL can be achieved 

with known chart parameters λ, LU, and LL, and Weibull distribution parameters θ, and 

η. Compared to the design of exponential EWMA chart, Weibull EWMA is more 

complicated since the in-control ARL not only varies with chart parameters λ, LU, and 

LL, but is also affected by the Weibull distribution parameters.  
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As known from previous research on EWMA chart, the optimal design scheme would 

have the particular combination of design parameters λ, LU, and LL so that the chart 

will achieve the desired in-control ARL and have the shortest out-of-control ARL at 

the specified shift level. The smoothing factor λ is determined to be optimal at certain 

out-of-control shift level and the control limits parameters LU and LL are selected to 

achieve the specified in-control ARL.  

 

Note that given the design parameters of Weibull EWMA, the in-control ARL is 

affected only by the shape parameter η, and the scale parameter has no influence. This 

can be proved using the calculation method shown in Section 8.3. Assuming control 

chart design parameters λ, LU, and LL are fixed, and the in-control ARLs of Weibull 

EWMA with various Weibull distributions are can be calculated. Therefore, to achieve 

a certain in-control ARL, the chart design parameters λ, LU, and LL are determined by 

the shape parameter η. 

 

To make the design procedures simpler, the smoothing factor λ is suggested to be 0.05, 

0.10 or 0.20. This is reasonable as from former study on EWMA chart for normal data 

(Lucas and Saccucci, 1990), EWMA for exponential (Gan, 1998), EWMA for Poisson 

(Borror et al. 1998), Weibull EWMA for censored data (Zhang and Chen, 2004), or the 

EWMA chart proposed in Chapter 5 of this thesis, there is a common result that values 

of smoothing factor λ in the interval [0.05, 0.25] works well in practice for small to 

median shifts, and a smaller value of λ is preferred to detect smaller shifts.  

 

Therefore, for each value of smoothing factor λ (0.05, 0.10 and 0.20), the in-control 

ARLs are calculated given different combinations of control limits parameter L (Set 
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LU=LL=L) and shape parameter η. The detailed ARL values are listed in Appendix II. 

Based on the results, the in-control ARL contour plots are drawn to facilitate the 

design procedures (Figures 8.1, 8.2, 8.3, 8.4, 8.5, and 8.6). From the in-control ARL 

study (Appendix II), it can be found that when shape parameter η is greater than 2, the 

in-control ARL is very stable with only slight changes; in this case, the value of  

control limits parameter L can be chosen according to the L value when η=2. 

 

Hence, the design procedures of Weibull EWMA chart can be described as follows: 

 

Step 1: Specify the desired in-control ARL, and estimate the out-of-control mean shift 

(μ1/μ0) to be detected quickly; 

 
Step 2:  Choose a λ value from 0.05, 0.10, or 0.20 according to the out-of-control mean 

shift (μ1/μ0). A smaller value of λ is suggested for smaller process shifts; 

 
Step 3: Obtain the corresponding L value according to the value of shape parameter η 

and the in-control ARL (using Figure 8.1~8.6); 

 

Step 4: The entire ARL profile for the Weibull EWMA chart can be achieved using the 

Markov chain approach described in Section 8.3. This can be used to evaluate the 

performance of the chart and ensure that the chart provides sufficient protection 

against other shifts. 
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Figure 8.1 The in-control ARL contour plot of Weibull EWMA chart (λ=0.05, shape 
parameter 0.2≤ η≤ 1. LU=LL=L) 
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Figure 8.2 The in-control ARL contour plot of Weibull EWMA chart (λ=0.05, shape 

parameter 1≤ η≤ 2. LU=LL=L) 
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Figure 8.3 The in-control ARL contour plot of Weibull EWMA chart (λ=0.1, shape 
parameter 0.2≤ η≤ 1. LU=LL=L) 
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Figure 8.4 The in-control ARL contour plot of Weibull EWMA chart (λ=0.1, shape 
parameter 1≤ η≤ 2. LU=LL=L) 
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Figure 8.5 The in-control ARL contour plot of Weibull EWMA chart (λ=0.2, shape 

parameter 0.2≤ η≤ 1. LU=LL=L) 
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Figure 8.6 The in-control ARL contour plot of Weibull EWMA chart (λ=0.2, shape 
parameter 1≤ η≤ 2. LU=LL=L) 
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A major difficulty in the design of the Weibull EWMA chart is that Weibull 

distribution contains two parameters and a shift in any of them may cause an out-of-

control signal. Former studies on Weibull CUSUM and Weibull EWMA with censored 

data are all based on the assumption that the shape parameter is fixed at certain level. It 

is somewhat reasonable since the scale parameter is usually related to operating 

condition and is likely to change because of assignable causes. However, sometimes 

the shape parameter may also change due to assignable causes.  Since the fixed shape 

parameter Weibull variable can be easily transformed to an exponential variable using 

formula (8.3), the existing exponential EWMA and exponential CUSUM can be 

applied.  

 

On the other hand, if only the shape parameter varies, most probably, the shape 

parameter tends to increase along with time. This could be attributed to the nature 

aging property from a practical point of view.  In reliability engineering studies, most 

time between failure data will have three main phases: the infant mortality phase, when 

the sample is newly introduced and has a high failure rate; the constant failure rate 

phase, when the product is stable and with low failures; followed by the wear-out 

phase, when the failure rate is significantly increased. This kind of time between 

events data can be modeled with a combined or extended Weibull distribution referred 

to as bathtub shaped failure rate (BFR) distribution. During this process, the shape 

parameter of the Weibull distributions is increasing from less than 1, equal to 1, to 

finally greater than 1. According to the bathtub curve, the shape parameter of Weibull 

TBE data is more likely to increase with time.  
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As can be deduced from the formula (8.2), when the scale parameter is fixed, the shift 

in mean (μ1/μ0) is determined by 
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As shown in Figure 8.7 and Table 8.1, a study on the relationship between shift in 

mean and shift in shape parameter shows that when the shape parameter first increases 

from a very small in-control value, say, 0.2 or 0.5, the mean of the Weibull variable 

will decrease fast at the beginning. However, it tends to be stable when the out-of-

control shape parameter reaches 1.0 or 1.5. That is to say, when the out-of-control 

shape parameter is greater than 1.0 or 1.5, the shift in shape parameter will have little 

influence on the shift in mean, and therefore, the Weibull EWMA which monitors the 

mean shift may not be able to detect the shift at that time. On the other hand, it can 

detect the increase in shape parameter when it varies within the range (0, 2) in a short 

time since the shift in mean is significant.  However, when both shape and scale 

parameter varies at the same time, the trend in mean may have various situations, and 

it has to be studied case by case. 
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Figure 8.7 The trend of mean shift when the shape parameter η varies 

 

Table 8.1 The mean shift (μ1/μ0) values when the shape parameter η varies 

 
(η0=0.2) (η0=0.5) (η0=0.8) (η0=1) 
η1 μ1/μ0 η1 μ1/μ0 η1 μ1/μ0 η1 μ1/μ0 

0.2 1.0000  0.5 1.0000 0.8 1.0000 1 1.0000  
0.3 0.0772  0.6 0.7523 0.9 0.9287 1.1 0.9649  
0.4 0.0277  0.7 0.6329 1 0.8826 1.2 0.9407  
0.5 0.0167  0.8 0.5665 1.1 0.8516 1.3 0.9236  
0.6 0.0125  0.9 0.5261 1.2 0.8302 1.4 0.9114  
0.7 0.0105  1 0.5000 1.3 0.8152 1.5 0.9027  
0.8 0.0094  1.1 0.4825 1.4 0.8044 1.6 0.8966  
0.9 0.0088  1.2 0.4703 1.5 0.7968 1.7 0.8922  

1 0.0083  1.3 0.4618 1.6 0.7913 1.8 0.8893  
1.1 0.0080  1.4 0.4557 1.7 0.7875 1.9 0.8874  
1.2 0.0078  1.5 0.4514 1.8 0.7849 2 0.8862  
1.3 0.0077  1.6 0.4483 1.9 0.7832 2.1 0.8857  
1.4 0.0076  1.7 0.4461 2 0.7822 2.2 0.8856  
1.5 0.0075  1.8 0.4446 2.1 0.7817 2.3 0.8859  
1.6 0.0075  1.9 0.4437 2.2 0.7817 2.4 0.8865  
1.7 0.0074  2 0.4431 2.3 0.7819 2.5 0.8873  
1.8 0.0074  2.1 0.4428 2.4 0.7824 2.6 0.8882  
1.9 0.0074  2.2 0.4428 2.5 0.7831 2.7 0.8893  

2 0.0074  2.3 0.4430 2.6 0.7839 2.8 0.8905  
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8.5 An Illustrative Example 

Here is an illustrative example of the Weibull EWMA chart. Table 8.2 shows a set of 

time between failures data for monitoring the reliability of a process. The first 20 

observations are simulated following Weibull distribution with shape parameter η=2 

and scale parameter θ=10 hours. The next 20 observations were generated following 

Weibull distribution with η=2 and θ=5 hours. A two-sided Weibull EWMA chart is 

designed so that the in-control ARL=370 (λ=0.10, LU=LL=2.70). Figure 8.8 shows the 

Weibull EWMA chart for the data in Table 8.2. An out-of-control alarm is raised from 

the 33rd point, which indicates that the mean time to failure may have decreased. 

Therefore, engineers need to check the process and try to find out the reasons for it so 

as to further improve the reliability of the process. 

 

Table 8.2 Time between failures (TBF) data for Weibull EWMA chart 
 

Failure 
No. 

TBF 
(hours) EWMA UCL LCL Failure 

No. 
TBF 

(hours) EWMA UCL LCL

1 8.37 6.31 6.85 5.33 21 1.13 6.69 7.82 4.35 
2 3.25 6.01 7.11 5.06 22 6.05 6.63 7.82 4.35 
3 4.43 5.85 7.28 4.89 23 3.53 6.32 7.82 4.35 
4 6.62 5.93 7.40 4.77 24 4.25 6.11 7.83 4.35 
5 4.48 5.78 7.49 4.68 25 1.70 5.67 7.83 4.35 
6 6.44 5.85 7.56 4.61 26 2.61 5.36 7.83 4.35 
7 10.36 6.30 7.62 4.55 27 4.43 5.27 7.83 4.34 
8 11.13 6.78 7.66 4.51 28 5.99 5.34 7.83 4.34 
9 10.37 7.14 7.69 4.48 29 2.22 5.03 7.83 4.34 
10 7.92 7.22 7.72 4.45 30 3.50 4.88 7.83 4.34 
11 5.65 7.06 7.74 4.43 31 3.48 4.74 7.83 4.34 
12 10.83 7.44 7.76 4.41 32 2.41 4.50 7.83 4.34 
13 4.20 7.11 7.77 4.40 33 1.43 4.20 7.83 4.34 
14 7.52 7.16 7.78 4.39 34 2.75 4.05 7.83 4.34 
15 9.97 7.44 7.79 4.38 35 4.59 4.11 7.83 4.34 
16 5.94 7.29 7.80 4.37 36 4.75 4.17 7.83 4.34 
17 7.77 7.34 7.81 4.37 37 1.29 3.88 7.83 4.34 
18 9.00 7.50 7.81 4.36 38 1.47 3.64 7.83 4.34 
19 6.04 7.36 7.81 4.36 39 4.72 3.75 7.83 4.34 
20 6.90 7.31 7.82 4.35 40 1.68 3.54 7.83 4.34 
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Figure 8.8 The two-sided EWMA chart for monitoring Weibull distributed time 
between failures 

 

Table 8.3 lists some ARL and ATS values for the Weibull EWMA chart in the 

illustrative example (λ=0.10, LU=LL=2.70). The shape parameter is fixed at 2.0, and 

scale parameter varies from 2 to 10. The in-control scale θ=10 hours, and in-control 

ARL=370. Fig. 8.9 presents the ARL curve for the Weibull EWMA chart, from which 

we can see that the Weibull EWMA chart is very sensitive to the scale parameter shifts. 

The ATS value implies that the average time to an out-of-control alarm will be around 

46 hours for detecting the scale parameter’s change from 10 hours to 5 hours. 

 

Table 8.3 Some ARL and ATS values for the Weibull EWMA chart 

 
Scale θ 2 5 6 8 8.5 9 10

ARL 5.34 10.38 15.16 64.94 120.67 249.19 370.84

ATS 9.47 45.99 80.63 460.40 908.99 1987.51 3286.48

Scale θ 11 12 13 14 15 18 20

ARL 89.19 35.14 19.89 13.55 10.24 5.98 4.74

ATS 869.48 373.76 229.12 168.14 136.14 95.40 84.07
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Figure 8.9 The ARL curve of the Weibull EWMA chart 

 

 
8.6 Conclusions 

In this chapter, an EWMA scheme for the monitoring of Weibull-distributed TBE data 

is proposed, the calculation of ARL and ATS is discussed and the design procedures of 

the chart are investigated. Weibull EWMA chart can be very effective for TBE 

monitoring when the events occurrence rate is not constant.  
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Chapter 9 Conclusions and Future Research  

 

This study was motivated by the problems and deficiencies that existing control charts 

encountered when monitoring high-quality processes. The aim of the study is to 

explore the causes and effects of those problems and develop new control schemes that 

make the monitoring of high-quality processes more efficient and economical. With a 

focus on modeling and monitoring of time between events, this study investigated 

some issues of existing control charting methods, and developed several new schemes 

that enhanced the performance of existing methods. The results and methodologies 

proposed in this study can be applied to not only manufacturing processes, but also 

other areas such as reliability monitoring, maintenance or service industries. Served as 

the end of the thesis, this chapter summarizes major contributions and significances of 

this study; besides, some recommendations for future research are also presented.  

 

9.1 Major Contributions 

This study has investigated several topics on modeling and monitoring of TBE data. 

There are especially six major contributions. 

 

Firstly, a comparative study of some existing TBE charts was conducted, and the 

performance of CQC chart, CQC-r chart, exponential EWMA and exponential 

CUSUM charts were compared based on Average Time to Signal (ATS). These control 

charts, although have been proposed by different researchers and shown to be effective 

under their particular situations, may make the users more confused when several 



                                                                   Chapter 9 Conclusions and Future Research 

 185

approaches are available. Using an unsuitable TBE chart may lead to lower efficiency 

if not useless.  The results of the comparative study in Chapter 3 provide useful 

guidelines of how to choose an appropriate TBE chart in different situations. Based on 

the comparison results, the method of on-line process monitoring with TBE charts has 

been described and an example was given to illustrate its application in practice. The 

findings in this study suggest that employing time-between-events charts, especially 

the CQC and CQC-r charts, is an effective way for implementing on-line process 

monitoring system. 

 

Secondly, a new CUSUM chart with transformed exponential data is proposed. 

CUSUM chart has been known to be very effective in detecting small and persistent 

shifts because of its inherent ability of accumulating deviations for successive 

observations. Using transformations before setting up control charts is not a new idea, 

and it is strongly suggested by many researchers because of its ease of use property 

and applicability to a wide range of data which are unnecessarily normally-distributed 

as most of the control charts require. On the other hand, an undesirable feature of 

control charts with transformed data is that points plotted on the chart may lose their 

original meaning thus leading to difficulties for interpreting the results. However, 

transformation will not induce such problems for the proposed CUSUM chart because 

the CUSUM statistic is a recursive function and does not have as apparent meaning as 

Shewhart control charts do. Results in Chapter 4 have shown that CUSUM charts with 

transformed exponential data are effective in detecting shifts in mean of TBE.  The 

design and performance of CUSUM chart with transformed exponential data were 

investigated. Different transformation methods such as Nelson’s method, Double 

SQRT transformation, and log transformation were examined in order to find the most 
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appropriate transformation method. The calculation method of ARL was derived and 

the performance of the CUSUM chart was assessed. A comparative study on the 

performance between the CUSUM chart with transformed exponential data and the X-

MR chart, the CQC chart and the exponential CUSUM chart was conducted, 

respectively. Furthermore, the optimal design procedures of CUSUM chart with 

transformed exponential data were proposed. This study provides another possible 

alternative for monitoring TBE data with easy design procedures and relatively good 

performance. 

 

Thirdl, with similar motivation of CUSUM chart with transformed exponential data, a 

new EWMA chart was proposed to monitor exponentially-distributed TBE data with 

the help of transformation. Previous studies have shown that EWMA charts have 

similar efficiency in detecting process shifts as CUSUM charts do. Moreover, 

additional advantages of EWMA charts include the ability of predicting the process 

level at the next time period, and the robustness to nonnormality. In Chapter 5, a new 

EWMA scheme was proposed in which the TBE data are transformed to approximate 

normal using the double square root (SQRT) transformation before applying EWMA 

method. The ARL properties of EWMA chart with transformed exponential data were 

investigated, based on which the control chart optimal design procedures were 

developed. Subsequently, the performance of the EWMA chart with transformed 

exponential data was compared to that of the X-MR chart, the CQC chart and the 

exponential EWMA chart respectively. Moreover, the robustness of proposed EWMA 

chart to Weibull-distributed TBE data was examined, followed by an example to 

illustrate the design and application procedures. Results of this study show that the 
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EWMA chart with transformed exponential data performs well in monitoring 

exponentially-distributed TBE data. 

 

Fourthly, a variable sampling interval CCC chart was proposed. The CCC chart was 

shown to be useful for process monitoring in automated and discrete manufacturing. 

Current design of CCC chart is based on fixed sampling interval scheme which 

prevents the application of CCC chart to those processes where fixed sampling plan is 

not convenient if not impossible. Moreover, fixed sampling schemes may lead to 

longer detection time of assignable causes, more inspection effort or higher inspection 

cost, which in turn lose interests from customers. In this study, the CCC chart with 

variable sampling intervals was investigated. The ATS was calculated, and the 

efficiency of variable sampling interval CCC chart was compared with that of fixed 

sampling interval CCC chart. Based on the results from the comparative study, the 

design procedures of variable sampling interval CCC chart were developed. It has been 

proved in this study that the use of variable sampling interval scheme can further 

enhance the cost effectiveness of CCC chart implementation from a practical point of 

view. 

 

Fifthly, the sampling CCC chart with random-shift model was studied which considers 

a more realistic case where the shift may occur any time during the process. Previous 

study on CCC chart relies on an implicit assumption that the process shifts occur just at 

the moment when events happen, e.g. a nonconforming item was found. However, in 

reality, the process shifts always randomly arise at any time between successive events, 

rather than only happen together with an event in the meanwhile. In chapter 7, 

sampling CCC chart with random-shift model was studied. The minimum sample size 
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required for estimation of fraction nonconforming was derived; performance of 

sampling CCC chart was evaluated; and the methods of selecting appropriate sampling 

frequency were also presented. A case study was done in a semiconductor 

manufacturing company in order to verify the proposed methods and to further 

improve this research with consideration of practical implementation issues. Although 

the research in this chapter looked at monitoring fraction of nonconforming in 

manufacturing processes, the methods can be applied to monitoring events occurrence 

rate for other processes as well.   

 

Last but not the least, the TBE charts were extended to Weibull-distributed TBE data, 

and thus can serve for more general situations where events occurrence rate varies 

along with time. Existing TBE charts for exponentially-distributed data assume that 

events occurrence rate is constant throughout the whole ‘life’ of monitoring. This is 

only true when the process is stable with constant events occurrences rate, or lifetime 

is relatively short and variability in events occurrence rate can be ignored.  Actually, 

processes with variable events occurrence rate are not rare in practice, and the 

monitoring of those processes is of great interest for both researchers and users.  The 

Weibull distribution is recommended to model the time-between-events because of its 

versatility in modelling a variety of events occurrence behaviors. In this study, a 

Weibull EWMA chart was proposed to monitor TBE with increasing, decreasing, or 

constant events occurrence rate. The performance of Weibull EWMA chart is 

evaluated in terms of ARL and ATS, based on which the design procedures are 

recommended. At the end, a simulated example is given to illustrate the design and 

implementation of the chart.  
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In this study, although motivated by some modelling and monitoring problems from 

high-quality manufacturing processes, the results can also be used in more broad areas 

such as service processes, traffic systems or even management processes to improve 

their performance as long as it could fit in the model proposed. For example, the study 

of time between customers arrival may help the hospital to optimize the service system 

and shorten the waiting time. The time-between-events monitoring may also help to 

detect some changes in a chemical reaction process. As the fourth coordinate other 

than the traditional three-dimensional space, time becomes a very important measure 

for many kinds of processes, and the time-between-events monitoring can be helpful in 

the monitoring and control of those kinds of processes and helps to detect the process 

shifts as fast as possible. 

 

These control charting methods can be applied to most of the TBE data the users may 

have from the practical processes. This study is conducted based on the exponential 

and Weibull distributions. The real data may not be able to fit those distributions quite 

well. In that case the performance of the control chartings schemes may not be so good 

as the designed scheme with the assumed mathematical model. The robustness study in 

chapter 5 proved that the EWMA chart with transformed TBE data still shows good 

ability to monitor the process if the distribution of data is not quite far from the model.  

 

Another limitation found during the process of case studies is that this study focused 

on the design of control charts and starts from the stage where the data have been 

collected already, and ends with the in-time alarms for any process shifts or changes. 

In some cases, the real data may need to be processed before employing the control 

charting procedures as proposed in the thesis to filter out the noise or useless 
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information. Also, since the high-quality processes are often highly automated, after 

the signal is found from the control charts, timely failure diagnosis and feedback 

adjustment are also important to improve the overall performance of the monitoring 

and control system.  

 

9.2 Future Research 

Although this thesis attempts to provide more comprehensive, efficient and effective 

control charting methods for modeling and monitoring TBE data, there are still some 

aspects that were not addressed yet, and deserve further explorations. 

 

Firstly, it is interesting to investigate how the control charts perform when the data 

actually departs from the original assumed distribution. The influence factors may 

include the estimation error of process parameters, inspection error, etc. The proposed 

control charts may need some modification or adjustment to compensate for the 

deviations. On the other hand, the users may also consider using transformation 

methods to help fit the data to a certain model developed.  

 

Secondly, the performances of proposed control chart schemes in this study are 

evaluated using the Average Run Length or Average Time to Signal. Further study on 

confidence interval of the ARL and ATS values could be carried out by deriving run 

length distribution of the control charts or running Monte Carlo simulation. 

 

Thirdly, since the delay of feedback to the process may also lead to a big loss, timely 

diagnosis and feedback adjustment are also quite important for the overall performance 

of the system. Some studies have devoted to these issues with the help of Artificial 
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Intelligence, Artificial Neural Network, Expert System techniques etc., and have 

shown good effect to solve these problems. How to connect and integrate the control 

charts monitoring system with the failure diagnosis and feedback adjustment is a 

useful topic and deserves attention. 

 

Finally, the TBE charts can be extended to multivariate variables, since in reality there 

are always several events happening at the same time during the process, and the 

events occurrence rate may be different or may also be correlated among all the events. 

Therefore, a multivariate TBE chart can be used to analyze several TBE variables at 

the same time, identify the relationships of different TBE variables, and thus control 

the multivariable processes more effectively.  
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Appendix 

 
Appendix I: In-control ARLs of EWMA Chart with Transformed 

Exponential Data 
 

Table A.1 the in-control ARLs of EWMA chart with transformed exponential data 
 (0< λ≤ 0.07) 

 
λ 

L 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
2 526.02 280.61 196.51 153.60 127.43 109.73 96.94 

2.05 581.33 310.38 217.50 170.11 141.21 121.66 107.53 
2.1 643.13 343.69 241.03 188.64 156.68 135.08 119.46 

2.15 712.31 381.05 267.45 209.47 174.10 150.19 132.90 
2.2 789.93 423.05 297.19 232.95 193.75 167.26 148.11 

2.25 877.19 470.34 330.73 259.46 215.97 186.58 165.33 
2.3 975.51 523.73 368.65 289.47 241.16 208.50 184.89 

2.35 1086.53 584.14 411.62 323.52 269.76 233.42 207.16 
2.4 1212.17 652.63 460.41 362.24 302.33 261.84 232.57 

2.45 1354.68 730.48 515.96 406.38 339.51 294.31 261.65 
2.5 1516.70 819.17 579.34 456.81 382.04 331.50 294.98 

2.55 1701.31 920.43 651.84 514.58 430.82 374.20 333.31 
2.6 1912.16 1036.34 734.95 580.90 486.90 423.37 377.48 

2.65 2153.54 1169.33 830.47 657.24 551.53 480.10 428.52 
2.7 2430.52 1322.27 940.51 745.33 626.21 545.74 487.64 

2.75 2749.12 1498.58 1067.60 847.21 712.72 621.87 556.30 
2.8 3116.46 1702.34 1214.73 965.35 813.18 710.39 636.24 

2.85 3541.02 1938.40 1385.50 1102.69 930.13 813.60 729.56 
2.9 4032.89 2212.54 1584.19 1262.75 1066.63 934.23 838.78 

2.95 4604.15 2531.70 1815.95 1449.75 1226.36 1075.59 966.96 
3 5269.20 2904.19 2086.96 1668.80 1413.75 1241.68 1117.76 

3.05 6045.35 3340.00 2404.66 1926.04 1634.16 1437.33 1295.66 
3.1 6953.38 3851.17 2778.04 2228.89 1894.08 1668.40 1506.08 

3.15 8018.30 4452.24 3217.98 2586.36 2201.39 1942.03 1755.64 
3.2 9270.32 5160.78 3737.66 3009.41 2565.67 2266.92 2052.39 

3.25 10745.93 5998.11 4353.09 3511.33 2998.64 2653.69 2406.22 
3.3 12489.36 6990.15 5083.79 4108.39 3514.57 3115.34 2829.24 

3.35 14554.34 8168.43 5953.56 4820.46 4130.98 3667.84 3336.35 
3.4 17006.22 9571.46 6991.53 5671.90 4869.40 4330.85 3945.90 

3.45 19924.73 11246.35 8233.42 6692.65 5756.30 5128.60 4680.59 
3.5 23407.33 13250.83 9723.10 7919.57 6824.36 6091.04 5568.52 
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Table A.2 the in-control ARLs of EWMA chart with transformed exponential data 
(0.07< λ≤ 0.30) 

 
λ 

L 0.08 0.09 0.10 0.15 0.20 0.25 0.30 

2 87.23 79.62 73.47 54.67 45.04 39.18 35.26 

2.05 96.82 88.41 81.62 60.88 50.27 43.83 39.53 

2.1 107.62 98.32 90.82 67.91 56.20 49.12 44.41 

2.15 119.80 109.52 101.22 75.90 62.97 55.18 50.01 

2.2 133.59 122.20 113.01 84.98 70.71 62.12 56.45 

2.25 149.23 136.59 126.40 95.35 79.56 70.10 63.88 

2.3 167.01 152.97 141.66 107.21 89.74 79.30 72.49 

2.35 187.27 171.66 159.08 120.81 101.45 89.94 82.47 

2.4 210.41 193.02 179.01 136.44 114.98 102.27 94.10 

2.45 236.91 217.51 201.89 154.47 130.65 116.62 107.67 

2.5 267.34 245.66 228.21 175.31 148.84 133.35 123.58 

2.55 302.35 278.09 258.56 199.46 170.02 152.93 142.27 

2.6 342.76 315.55 293.66 227.53 194.75 175.89 164.30 

2.65 389.49 358.93 334.36 260.24 223.73 202.92 190.36 

2.7 443.70 409.30 381.66 298.47 257.75 234.83 221.28 

2.75 506.73 467.94 436.79 343.27 297.84 272.62 258.10 

2.8 580.20 536.38 501.21 395.92 345.21 317.51 302.07 

2.85 666.09 616.48 576.70 457.97 401.35 371.02 354.78 

2.9 766.74 710.47 665.39 531.30 468.08 434.99 418.19 

2.95 885.00 821.06 769.87 618.23 547.65 511.72 494.71 

3 1024.34 951.52 893.30 721.55 642.82 604.08 587.41 

3.05 1188.95 1105.86 1039.49 844.73 757.00 715.60 700.11 

3.1 1383.93 1288.92 1213.14 992.02 894.42 850.73 837.63 

3.15 1615.51 1506.65 1419.97 1168.66 1060.35 1015.03 1006.06 

3.2 1891.30 1766.33 1667.00 1381.11 1261.32 1215.49 1213.13 

3.25 2220.63 2076.90 1962.88 1637.41 1505.55 1460.92 1468.70 

3.3 2614.98 2449.34 2318.24 1947.54 1803.29 1762.48 1785.34 

3.35 3088.48 2897.25 2746.27 2323.95 2167.48 2134.37 2179.22 

3.4 3658.57 3437.39 3263.27 2782.20 2614.43 2594.64 2671.17 

3.45 4346.86 4090.60 3889.50 3341.80 3164.80 3166.42 3288.13 

3.5 5180.13 4882.75 4650.22 4027.28 3844.81 3879.40 4065.09 
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Table A.3 the in-control ARLs of EWMA chart with transformed exponential data 
(0.30< λ≤ 0.65) 

 
λ 

L 0.35 0.40 0.45 0.50 0.55 0.60 0.65 

2 32.46 30.38 28.78 27.53 26.54 25.75 25.11 

2.05 36.47 34.21 32.48 31.14 30.09 29.25 28.57 

2.1 41.07 38.62 36.76 35.33 34.21 33.33 32.63 

2.15 46.37 43.72 41.72 40.20 39.02 38.11 37.39 

2.2 52.49 49.62 47.49 45.88 44.66 43.73 43.01 

2.25 59.57 56.48 54.21 52.53 51.28 50.35 49.66 

2.3 67.80 64.48 62.08 60.35 59.10 58.20 57.57 

2.35 77.39 73.84 71.33 69.57 68.35 67.54 67.03 

2.4 88.60 84.82 82.22 80.48 79.36 78.70 78.37 

2.45 101.74 97.75 95.11 93.45 92.50 92.08 92.05 

2.5 117.20 113.04 110.42 108.92 108.26 108.22 108.63 

2.55 135.46 131.17 128.66 127.45 127.24 127.76 128.83 

2.6 157.08 152.76 150.49 149.75 150.20 151.55 153.58 

2.65 182.78 178.54 176.70 176.69 178.10 180.65 184.05 

2.7 213.44 209.47 208.32 209.37 212.18 216.42 221.79 

2.75 250.14 246.70 246.61 249.19 253.99 260.64 268.80 

2.8 294.24 291.69 293.18 297.96 305.55 315.60 327.74 

2.85 347.40 346.29 350.06 357.94 369.47 384.30 402.08 

2.9 411.75 412.80 419.84 432.08 449.11 470.67 496.46 

2.95 489.92 494.16 505.83 524.18 548.90 579.91 617.07 

3 585.27 594.11 612.29 639.16 674.63 718.93 772.27 

3.05 702.01 717.43 744.72 783.46 833.96 896.97 973.38 

3.1 845.53 870.25 910.25 965.52 1037.05 1126.50 1235.87 

3.15 1022.68 1060.47 1118.18 1196.50 1297.51 1424.38 1581.00 

3.2 1242.26 1298.34 1380.70 1491.18 1633.62 1813.63 2038.22 

3.25 1515.60 1597.20 1713.86 1869.31 2070.16 2325.88 2648.57 

3.3 1857.31 1974.47 2138.94 2357.40 2640.85 3004.86 3469.64 

3.35 2286.39 2453.08 2684.27 2991.28 3391.94 3911.45 4582.83 

3.4 2827.60 3063.30 3387.79 3819.62 4387.29 5131.00 6103.81 

3.45 3513.38 3845.30 4300.58 4909.02 5715.63 6783.94 8197.99 

3.5 4386.42 4852.71 5491.89 6351.14 7501.06 9041.31 11103.14 
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Table A.4 the in-control ARLs of EWMA chart with transformed exponential data 
(0.65< λ≤ 1) 

 

λ 
L 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

2 24.59 24.18 23.86 23.62 23.46 23.35 23.32 

2.05 28.03 27.61 27.28 27.03 26.85 26.75 26.71 

2.1 32.07 31.64 31.30 31.05 30.87 30.77 30.73 

2.15 36.83 36.39 36.06 35.82 35.64 35.54 35.50 

2.2 42.46 42.04 41.73 41.50 41.34 41.25 41.21 

2.25 49.15 48.78 48.50 48.31 48.18 48.11 48.07 

2.3 57.14 56.84 56.65 56.52 56.44 56.39 56.37 

2.35 66.72 66.56 66.49 66.47 66.47 66.47 66.46 

2.4 78.27 78.32 78.45 78.59 78.72 78.80 78.82 

2.45 92.28 92.65 93.07 93.48 93.81 94.01 94.07 

2.5 109.34 110.20 111.08 111.88 112.50 112.90 113.02 

2.55 130.25 131.83 133.40 134.79 135.87 136.55 136.77 

2.6 156.03 158.68 161.25 163.53 165.31 166.44 166.81 

2.65 188.01 192.21 196.29 199.91 202.75 204.55 205.15 

2.7 227.92 234.39 240.72 246.36 250.81 253.65 254.61 

2.75 278.06 287.86 297.51 306.20 313.13 317.59 319.11 

2.8 341.49 356.16 370.76 384.09 394.84 401.82 404.22 

2.85 422.29 444.07 466.08 486.50 503.20 514.17 517.98 

2.9 525.97 558.18 591.29 622.59 648.64 666.00 672.08 

2.95 659.98 707.52 757.34 805.45 846.32 873.98 883.77 

3 834.54 904.65 979.68 1053.88 1118.42 1162.90 1178.81 

3.05 1063.68 1167.12 1280.28 1395.11 1497.63 1569.84 1595.98 

3.1 1366.85 1519.61 1690.54 1868.70 2032.35 2150.44 2193.77 

3.15 1771.21 1997.10 2255.57 2532.24 2793.96 2987.83 3060.06 

3.2 2314.91 2649.38 3040.28 3469.26 3886.57 4203.98 4324.12 

3.25 3051.86 3547.68 4138.24 4799.99 5458.72 5971.42 6168.35 

3.3 4058.77 4794.29 5683.97 6695.15 7714.90 8519.20 8831.09 

3.35 5445.31 6536.37 7869.97 9392.68 10923.66 12124.10 12588.47 

3.4 7369.00 8985.71 10969.58 13216.99 15421.32 17087.49 17715.84 

3.45 10056.81 12446.63 15366.93 18601.10 21619.74 23734.07 24481.10 

3.5 13836.62 17354.80 21595.47 26115.45 30040.19 32504.01 33277.92 
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Appendix II: In-control ARLs of Two-sided Weibull EWMA Chart  
 

Table A.5 The in-control ARLs of Weibull EWMA chart (λ=0.10, shape parameter 
0.2≤  η≤  0.55. LU=LL=L) 

 
Shape parameter η 

L 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 

1.5 352.31  191.24 131.20 102.67 86.88 77.26  68.27  58.41 

1.6 377.23  205.56 141.61 111.03 94.47 84.27  77.50  69.69 

1.7 402.60  220.28 152.33 120.04 102.33 91.76  85.13  79.42 

1.8 428.67  235.51 163.50 129.36 110.96 99.96  93.06  88.58 

1.9 455.30  251.22 175.19 139.39 119.91 108.50  101.56  97.26 

2 482.40  267.45 187.38 149.70 129.43 117.87  110.91  106.54 

2.1 510.18  284.04 200.05 160.62 139.54 127.71  120.75  116.77 

2.2 538.43  301.26 213.28 172.10 150.26 138.24  131.38  127.67 

2.3 567.34  319.02 227.03 184.16 161.64 149.51  142.86  139.77 

2.4 596.73  337.15 241.27 196.80 173.70 161.58  155.24  152.77 

2.5 626.69  355.91 256.15 210.08 186.46 174.47  168.63  166.91 

2.6 657.31  375.23 271.58 223.99 199.93 188.23  183.08  182.30 

2.7 688.42  394.94 287.40 238.35 214.24 202.93  198.64  199.04 

2.8 720.10  415.26 304.00 253.57 229.35 218.61  215.41  217.28 

2.9 752.41  436.04 321.18 269.51 245.31 235.32  233.46  237.10 

3 785.24  457.36 338.78 285.96 262.13 252.86  252.88  258.66 

3.1 818.63  479.41 357.19 303.37 279.64 271.80  273.78  281.71 

3.2 852.65  501.83 376.05 321.48 298.34 292.01  295.92  307.13 

3.3 887.19  524.98 395.70 340.22 318.03 313.50  320.05  334.74 

3.4 922.31  548.52 415.84 360.01 338.52 336.05  345.96  364.69 

3.5 957.99  572.62 436.83 380.39 360.30 360.32  373.45  396.81 

3.6 994.26  597.45 458.30 401.86 382.98 385.78  403.28  432.05 

3.7 1031.13  622.70 480.46 423.97 407.07 413.12  435.30  470.25 

3.8 1068.55  648.52 503.47 447.23 432.11 442.11  469.27  511.25 

3.9 1106.54  675.07 527.03 471.17 458.66 472.55  506.03  556.06 

4.0 1145.10  702.06 551.49 496.29 486.26 505.11  545.03  604.19 
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Table A.6 The in-control ARLs of Weibull EWMA chart (λ=0.10, shape parameter 
0.60≤  η≤  0.95. LU=LL=L) 

 
Shape parameter η 

L 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1.5 50.69  45.26  41.43 38.64 36.52 34.90 33.66  32.67 

1.6 61.78  55.46  50.78 47.33 44.79 42.75 41.16  39.91 

1.7 72.98  66.96  61.79 57.75 54.63 52.25 50.32  48.76 

1.8 83.99  78.74  73.84 69.82 66.32 63.53 61.34  59.51 

1.9 94.03  90.68  86.79 82.92 79.64 76.80 74.36  72.40 

2 104.19  102.15  99.68 97.14 94.34 91.76 89.58  87.54 

2.1 114.72  113.68  112.91 111.63 110.07 108.43 106.67  105.17 

2.2 126.11  125.95  126.36 126.65 126.74 126.30 125.79  124.95 

2.3 138.75  139.22  140.70 142.56 144.18 145.62 146.48  147.20 

2.4 152.55  153.95  156.46 159.64 163.08 166.28 169.19  171.58 

2.5 167.60  170.17  173.97 178.56 183.71 188.93 194.00  198.64 

2.6 184.20  188.13  193.41 199.80 206.78 214.20 221.58  228.88 

2.7 202.42  208.06  215.20 223.65 232.85 242.65 252.83  262.97 

2.8 222.43  230.30  239.57 250.47 262.47 275.18 288.48  302.03 

2.9 244.40  254.34  266.74 280.75 296.10 312.40 329.49  347.14 

3 268.50  281.46  297.24 315.01 334.40 355.11 376.87  399.60 

3.1 294.99  311.52  331.40 353.70 378.07 404.22 431.89  460.80 

3.2 323.63  344.84  369.65 397.27 427.90 460.80 495.73  532.43 

3.3 355.51  381.77  412.48 447.02 484.69 525.99 569.90  616.46 

3.4 390.47  422.26  459.95 502.53 549.90 601.13 656.37  715.15 

3.5 428.81  467.66  513.69 565.98 624.10 688.09 757.19  831.20 

3.6 470.40  517.98  573.91 637.85 709.43 788.50 874.66  967.88 

3.7 516.46  573.74  640.88 718.72 807.14 904.78 1012.42  1129.43 

3.8 566.91  635.05  716.53 811.00 918.51 1039.66 1173.10  1319.93 

3.9 621.74  703.51  801.33 915.64 1046.89 1195.35 1361.79  1545.99 

4.0 682.26  779.35  895.82 1033.72 1194.15 1376.71 1583.35  1813.44 
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Table A.7 The in-control ARLs of Weibull EWMA chart (λ=0.10, shape parameter 
1.00≤ η≤ 2.40. LU=LL=L) 

 
Shape parameter η 

L 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

1.5 31.88  29.86  28.81 28.21 27.84 27.61 27.46  27.36 

1.6 38.92  36.37  35.05 34.28 33.81 33.51 33.32  33.19 

1.7 47.53  44.36  42.70 41.74 41.15 40.76 40.51  40.34 

1.8 58.01  54.18  52.13 50.95 50.21 49.72 49.40  49.18 

1.9 70.71  66.25  63.82 62.39 61.47 60.88 60.47  60.20 

2 85.87  81.05  78.32 76.65 75.58 74.86 74.37  74.04 

2.1 103.61  99.13  96.33 94.52 93.33 92.52 91.96  91.56 

2.2 124.23  121.01  118.63 116.96 115.79 114.96 114.36  113.93 

2.3 147.42  147.19  146.17 145.16 144.32 143.65 143.13  142.73 

2.4 173.63  178.38  180.12 180.63 180.69 180.55 180.34  180.11 

2.5 202.85  214.96  221.62 225.23 227.17 228.24 228.79  229.03 

2.6 235.67  257.89  272.22 281.13 286.70 290.15 292.28  293.55 

2.7 272.98  307.99  333.61 351.22 362.98 370.84 375.98  379.29 

2.8 315.65  366.70  408.05 438.78 460.88 476.32 486.95  494.06 

2.9 365.08  435.97  498.19 548.33 586.49 614.65 634.79  648.77 

3 422.90  518.06  607.87 685.21 747.98 796.51 832.70  858.70 

3.1 490.69  616.28  741.74 856.88 955.71 1036.24 1098.83  1145.34 

3.2 570.65  734.62  906.18 1072.64 1223.79 1353.10 1458.09  1539.08 

3.3 665.13  877.94  1109.49 1345.20 1570.51 1773.24 1945.22  2083.00 

3.4 777.04  1052.41  1362.23 1691.34 2021.03 2332.09 2608.20  2838.51 

3.5 909.81  1265.68  1678.32 2133.19 2609.01 3078.73 3514.64  3893.51 

3.6 1067.67  1527.27  2075.76 2700.68 3380.17 4080.32 4759.21  5374.58 

3.7 1255.74  1849.06  2577.74 3433.68 4397.64 5431.06 6476.21  7464.48 

3.8 1479.82  2246.06  3214.46 4385.49 5747.61 7262.47 8857.49  10430.00 

3.9 1747.95  2737.19  4025.39 5627.89 7548.91 9759.39 12177.29  14660.44 

4.0 2068.36  3346.28  5062.01 7257.72 9966.71 13184.53 16832.93  20730.72 
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Table A.8 The in-control ARLs of Weibull EWMA chart (λ=0.10, shape parameter 
2.60≤ η≤ 4.00. LU=LL=L) 

 
Shape parameter η 

L 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 

1.5 27.29  27.25  27.22 27.21 27.21 27.22 27.23  27.24 

1.6 33.10  33.04  33.01 32.99 32.98 32.99 33.00  33.01 

1.7 40.23  40.15  40.10 40.08 40.07 40.07 40.07  40.09 

1.8 49.03  48.94  48.87 48.84 48.82 48.81 48.82  48.83 

1.9 60.01  59.88  59.80 59.75 59.72 59.70 59.70  59.71 

2 73.80  73.64  73.53 73.45 73.41 73.38 73.38  73.38 

2.1 91.27  91.07  90.93 90.83 90.77 90.73 90.70  90.69 

2.2 113.61  113.37  113.20 113.07 112.98 112.91 112.86  112.83 

2.3 142.41  142.16  141.96 141.80 141.67 141.56 141.47  141.40 

2.4 179.89  179.67  179.47 179.28 179.11 178.94 178.78  178.64 

2.5 229.09  229.02  228.87 228.68 228.45 228.19 227.93  227.66 

2.6 294.25  294.55  294.59 294.44 294.15 293.77 293.33  292.84 

2.7 381.31  382.42  382.89 382.90 382.57 382.01 381.28  380.43 

2.8 498.63  501.36  502.74 503.15 502.84 502.02 500.82  499.35 

2.9 658.08  663.89  667.10 668.37 668.21 667.01 665.05  662.54 

3 876.55  888.08  894.77 897.80 898.09 896.37 893.16  888.90 
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Table A.9 The in-control ARLs of Weibull EWMA chart (λ=0.05, shape parameter 
0.2≤ η≤ 0.55. LU=LL=L) 

 
Shape parameter η 

L 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 

1.5 518.91  296.96 210.50 167.99 142.01 111.01  92.87  79.54 

1.6 556.90  320.12 228.02 183.05 158.24 136.22  113.02  96.69 

1.7 595.52  344.50 246.93 199.36 174.34 156.28  133.78  118.97 

1.8 635.33  369.77 266.45 216.20 189.95 173.94  157.27  141.93 

1.9 676.15  396.01 286.99 234.68 206.72 191.39  180.05  165.17 

2 717.96  423.23 308.98 253.78 225.07 209.94  200.36  189.53 

2.1 760.78  451.44 331.68 274.10 244.56 229.60  221.27  215.57 

2.2 804.49  480.65 355.50 295.67 266.14 250.46  243.58  240.25 

2.3 849.33  510.85 380.49 318.57 288.62 273.79  267.95  266.40 

2.4 895.07  541.69 406.63 343.35 312.72 298.66  294.19  294.82 

2.5 941.92  573.92 434.05 369.07 338.53 325.72  323.50  326.53 

2.6 989.71  607.18 462.33 395.80 366.17 355.04  355.21  361.07 

2.7 1038.57  641.47 492.19 424.59 395.73 386.77  389.81  399.75 

2.8 1088.40  676.48 523.60 455.01 427.33 421.10  427.46  442.43 

2.9 1139.24  712.87 556.36 487.14 460.46 458.20  469.16  489.54 

3 1191.16  750.02 589.96 521.03 496.49 498.29  514.79  541.52 

3.1 1244.05  788.56 625.51 556.79 534.94 540.79  564.69  598.58 

3.2 1297.98  827.90 662.50 593.99 575.92 587.50  618.30  662.72 

3.3 1352.95  868.63 700.40 633.64 619.57 637.88  677.90  733.78 

3.4 1408.93  910.20 740.35 675.40 665.45 692.17  742.98  812.46 

3.5 1465.95  953.15 781.28 718.83 714.92 749.88  814.03  898.43 
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Table A.10 The in-control ARLs of Weibull EWMA chart (λ=0.05, shape parameter 
0.60≤ η≤ 0.95. LU=LL=L) 

 
Shape parameter η 

L 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1.5 71.02 66.08  62.05 59.35 57.27 55.62  54.42  53.38 

1.6 87.76 80.48  75.94 72.36 69.73 67.77  66.16  64.95 

1.7 106.45 98.47  92.54 88.14 85.01 82.46  80.57  79.00 

1.8 128.02 119.72  112.15 107.51 103.33 100.53  98.06  96.22 

1.9 154.25 143.32  136.53 130.03 126.03 122.12  119.58  117.20 

2 180.75 170.58  163.62 157.57 152.39 148.84  145.32  143.03 

2.1 207.82 201.74  193.83 189.20 183.71 180.11  177.05  173.98 

2.2 236.27 233.35  228.72 224.26 221.12 216.87  214.47  212.03 

2.3 266.94 266.49  266.53 263.67 262.64 260.88  258.37  257.19 

2.4 298.93 302.35  306.30 308.61 309.22 310.78  310.56  310.29 

2.5 333.31 341.58  349.53 357.30 362.06 366.98  371.27  373.22 

2.6 371.21 384.48  397.16 410.41 422.13 431.02  440.10  447.61 

2.7 414.27 432.09  450.75 469.86 488.53 504.63  519.18  533.08 

2.8 461.77 485.42  511.14 537.26 563.54 588.76  610.90  632.23 

2.9 515.00 545.93  579.69 614.41 649.57 684.58  717.92  748.44 

3 574.95 613.97  657.31 703.06 749.21 795.74  842.06  885.55 

3.1 642.00 691.80  746.88 805.26 865.11 926.03  987.56  1047.93 

3.2 717.47 779.89  849.45 923.27 1000.73 1079.56  1159.80  1240.39 

3.3 802.34 879.62  967.21 1060.69 1159.27 1260.73  1364.80  1470.63 

3.4 896.10 994.27  1102.66 1220.37 1345.69 1476.25  1610.35  1747.85 

3.5 1002.81 1123.76  1258.38 1406.17 1564.82 1731.81  1904.46  2083.47 
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Table A.11 The in-control ARLs of Weibull EWMA chart (λ=0.05, shape parameter 
1.00≤ η≤ 1.50. LU=LL=L) 

 
Shape parameter η 

L 1 1.1 1.2 1.3 1.4 1.5 

1.5 52.61  51.39 50.53 49.90 49.43  49.08  

1.6 63.91  62.40 61.34 60.56 59.99  59.54  

1.7 77.75  75.86 74.53 73.57 72.85  72.30  

1.8 94.70  92.40 90.74 89.53 88.63  87.94  

1.9 115.41  112.59 110.63 109.21 108.11  107.25  

2 140.78  137.66 135.29 133.53 132.24  131.25  

2.1 172.00  168.31 165.72 163.87 162.34  161.16  

2.2 209.52  206.19 203.66 201.54 199.97  198.76  

2.3 255.46  252.82 250.40 248.72 247.29  246.06  

2.4 310.57  309.33 308.59 307.67 306.71  306.07  

2.5 375.52  378.52 380.42 381.12 381.90  382.02  

2.6 452.67  462.58 468.43 473.29 476.39  478.78  

2.7 544.68  562.98 576.95 587.86 595.70  602.17  

2.8 652.07  683.68 710.35 730.11 746.75  759.21  

2.9 778.05  829.46 872.57 907.54 936.66  960.09  

3 927.30  1005.19 1070.92 1128.77 1176.11  1217.27  

3.1 1105.52  1216.24 1314.73 1403.07 1479.21  1545.58  

3.2 1319.50  1472.01 1615.43 1745.05 1863.36  1966.56  

3.3 1576.81  1784.31 1986.06 2173.76 2349.46  2508.48  

3.4 1887.98  2168.03 2445.51 2713.60 2967.96  3207.76  

3.5 2266.72  2641.59 3019.16 3395.36 3759.32  4111.20  
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Table A.12 The in-control ARLs of Weibull EWMA chart (λ=0.05, shape parameter 
1.60≤ η≤ 2.00. LU=LL=L) 

 
Shape parameter η 

L 1.6 1.7 1.8 1.9 2 

1.5 48.80 48.59 48.42 48.28 48.17  

1.6 59.20 58.92 58.71 58.53 58.39  

1.7 71.87 71.52 71.25 71.03 70.86  

1.8 87.41 86.98 86.64 86.37 86.15  

1.9 106.59 106.07 105.65 105.31 105.04  

2 130.44 129.80 129.30 128.88 128.55  

2.1 160.25 159.51 158.91 158.43 158.03  

2.2 197.72 196.92 196.27 195.71 195.27  

2.3 245.15 244.33 243.68 243.14 242.67  

2.4 305.32 304.77 304.27 303.84 303.48  

2.5 382.18 382.19 382.15 382.10 381.99  

2.6 480.56 481.83 482.86 483.56 484.15  

2.7 606.82 610.75 613.62 616.05 617.86  

2.8 769.69 777.74 784.49 789.75 794.16  

2.9 979.52 995.31 1008.31 1019.02 1027.76  

3 1250.66 1279.46 1302.90 1322.87 1339.28  

3.1 1602.45 1650.84 1692.43 1727.18 1757.02  

3.2 2059.11 2138.57 2208.36 2268.17 2319.43  

3.3 2652.40 2781.27 2894.30 2994.65 3081.06  

3.4 3426.96 3629.26 3810.54 3973.08 4117.47  

3.5 4442.38 4751.87 5038.50 5297.67 5532.90  
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Table A.13 The in-control ARLs of Weibull EWMA chart (λ=0.20, shape parameter 
0.20≤ η≤ 0.55. LU=LL=L) 

 

Shape parameter η 

L 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 
1.5 244.69  127.76 85.24 65.20 54.10 47.38 42.96  39.95 
1.6 261.26  136.73 91.49 70.16 58.44 51.26 46.62  43.52 
1.7 278.11  146.01 98.04 75.35 62.95 55.48 50.64  47.43 
1.8 295.34  155.51 104.73 80.84 67.69 59.86 54.82  51.53 
1.9 312.82  165.23 111.67 86.47 72.75 64.50 59.40  56.06 
2.0 330.64  175.26 118.89 92.39 78.02 69.53 64.19  60.80 
2.1 348.75  185.57 126.27 98.56 83.56 74.76 69.30  65.91 
2.2 367.17  196.07 133.97 104.99 89.37 80.29 74.73  71.40 
2.3 385.97  206.87 141.94 111.69 95.47 86.13 80.55  77.30 
2.4 405.02  217.89 150.13 118.58 101.85 92.32 86.74  83.63 
2.5 424.38  229.24 158.55 125.81 108.56 98.87 93.33  90.41 
2.6 444.11  240.80 167.31 133.33 115.50 105.78 100.34  97.70 
2.7 464.10  252.71 176.26 141.08 122.87 112.97 107.78  105.51 
2.8 484.40  264.81 185.55 149.22 130.58 120.65 115.72  113.87 
2.9 505.01  277.19 195.05 157.66 138.55 128.73 124.15  122.82 
3.0 525.97  289.88 204.91 166.33 146.97 137.16 132.97  132.28 
3.1 547.21  302.80 214.99 175.40 155.74 146.14 142.46  142.51 
3.2 568.76  316.00 225.43 184.72 164.83 155.60 152.52  153.48 
3.3 590.62  329.55 236.09 194.42 174.41 165.43 163.07  165.20 
3.4 612.79  343.31 247.04 204.42 184.31 175.88 174.36  177.58 
3.5 635.27  357.35 258.33 214.86 194.74 186.86 186.33  190.94 
3.6 658.07  371.68 269.89 225.56 205.50 198.28 198.88  205.07 
3.7 681.20  386.32 281.76 236.62 216.81 210.35 212.29  220.28 
3.8 704.62  401.22 294.01 248.14 228.49 222.93 226.34  236.49 
3.9 728.35  416.40 306.51 259.96 240.74 236.13 241.33  253.64 
4.0 752.39  431.88 319.33 272.16 253.39 250.07 257.04  272.08 
4.1 776.75  447.65 332.48 284.86 266.54 264.57 273.77  291.56 
4.2 801.42  463.79 346.05 297.87 280.28 279.88 291.29  312.46 
4.3 826.40  480.15 359.86 311.29 294.49 295.79 309.80  334.56 
4.4 851.69  496.81 374.01 325.23 309.25 312.56 329.43  358.07 
4.5 877.30  513.77 388.50 339.50 324.69 329.98 350.02  383.23 
4.6 903.23  531.03 403.40 354.21 340.60 348.20 371.86  409.82 
4.7 929.47  548.60 418.59 369.43 357.11 367.37 394.73  438.23 
4.8 956.01  566.47 434.13 385.04 374.33 387.28 418.83  468.26 
4.9 982.87  584.71 450.04 401.12 392.08 408.07 444.36  500.28 
5.0 1010.05  603.20 466.31 417.67 410.49 429.88 471.07  534.13 
5.1 1037.54  621.99 483.04 434.71 429.67 452.56 499.18  570.06 
5.2 1065.35  641.10 500.05 452.33 449.43 476.22 528.89  608.33 
5.3 1093.47  660.53 517.44 470.36 469.90 500.90 559.99  648.75 
5.4 1121.90  680.27 535.21 488.90 491.08 526.78 592.67  691.59 
5.5 1150.66  700.33 553.38 507.96 513.12 553.62 627.15  737.17 
5.6 1179.73  720.72 571.93 527.55 535.81 581.59 663.22  785.26 
5.7 1209.11  741.42 590.92 547.78 559.28 610.85 701.10  836.19 
5.8 1238.82  762.50 610.27 568.46 583.55 641.21 740.98  890.11 
5.9 1268.84  783.86 630.03 589.71 608.64 672.81 782.71  947.34 

6 1299.18  805.54 650.19 611.52 634.65 705.71 826.48  1007.70 
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Table A.14 The in-control ARLs of Weibull EWMA chart (λ=0.20, shape parameter 
0.60≤ η≤ 0.95. LU=LL=L) 

 

Shape parameter η 

L 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 
1.5 37.67  34.88  31.70 28.88 26.64 24.83  23.43  22.32 
1.6 41.38  39.58  37.35 34.80 32.47 30.48  28.81  27.45 
1.7 45.21  43.66  42.28 40.56 38.62 36.73  35.02  33.53 
1.8 49.28  47.83  46.79 45.84 44.64 43.23  41.77  40.36 
1.9 53.81  52.31  51.44 50.88 50.36 49.66  48.76  47.74 
2.0 58.61  57.32  56.51 56.15 56.06 55.99  55.79  55.39 
2.1 63.80  62.64  62.09 61.90 62.09 62.49  62.92  63.25 
2.2 69.41  68.45  68.13 68.26 68.75 69.52  70.46  71.43 
2.3 75.48  74.78  74.76 75.24 76.13 77.32  78.74  80.30 
2.4 82.18  81.66  82.03 82.94 84.27 86.02  88.00  90.19 
2.5 89.29  89.16  90.00 91.45 93.37 95.77  98.42  101.33 
2.6 96.83  97.33  98.75 100.85 103.48 106.74  110.17  113.97 
2.7 105.12  106.22  108.33 111.23 114.75 118.96  123.40  128.32 
2.8 114.06  115.89  118.85 122.71 127.28 132.46  138.36  144.63 
2.9 123.72  126.42  130.38 135.38 141.25 147.84  155.28  163.08 
3.0 134.15  137.85  142.86 149.40 156.80 165.09  174.41  184.25 
3.1 145.39  150.14  156.72 164.70 174.12 184.47  196.07  208.40 
3.2 157.37  163.68  171.91 181.82 193.23 206.25  220.37  235.97 
3.3 170.42  178.38  188.55 200.73 214.75 230.72  248.16  267.46 
3.4 184.48  194.35  206.62 221.64 238.74 258.01  279.67  303.21 
3.5 199.48  211.54  226.61 244.56 265.48 288.96  315.41  344.40 
3.6 215.79  230.37  248.51 270.09 295.10 323.78  355.75  391.56 
3.7 233.34  250.65  272.31 298.32 328.37 362.73  401.83  445.60 
3.8 252.06  272.83  298.58 329.32 365.46 406.85  454.18  507.30 
3.9 272.36  296.91  327.33 363.79 406.63 456.51  513.44  578.39 
4.0 294.01  322.85  358.61 401.68 452.81 512.22  581.10  659.73 
4.1 317.45  351.16  393.05 443.77 504.09 575.24  657.82  753.47 
4.2 342.46  381.67  430.55 490.26 561.56 646.00  745.41  861.21 
4.3 369.47  414.92  471.78 541.41 625.67 726.03  845.12  984.81 
4.4 398.31  450.76  516.68 598.14 696.97 816.23  958.40  1127.33 
4.5 429.44  489.76  565.99 660.57 776.77 917.64  1087.73  1291.08 
4.6 462.65  531.80  619.69 729.76 865.57 1032.26  1234.81  1479.97 
4.7 498.44  577.48  678.60 805.92 964.88 1161.24  1402.74  1697.27 
4.8 536.62  626.74  742.76 890.24 1075.44 1306.96  1593.88  1948.03 
4.9 577.54  680.02  813.07 983.07 1198.78 1471.01  1812.12  2236.82 
5.0 621.55  737.85  889.65 1085.52 1336.64 1656.05  2060.71  2570.22 
5.1 668.48  800.15  973.47 1198.82 1490.14 1865.02  2344.57  2954.54 
5.2 718.91  867.69  1064.77 1323.56 1661.61 2100.42  2668.09  3398.40 
5.3 772.68  940.45  1164.41 1461.40 1852.55 2366.23  3037.22  3910.46 
5.4 830.19  1019.03  1273.37 1613.14 2065.73 2665.71  3458.76  4502.07 
5.5 891.86  1104.08  1391.97 1780.46 2303.13 3003.79  3939.52  5185.05 
5.6 957.62  1195.67  1521.31 1965.13 2567.79 3384.77  4488.57  5974.12 
5.7 1027.88  1294.49  1662.55 2168.41 2863.06 3814.44  5114.95  6886.28 
5.8 1103.13  1401.30  1816.24 2392.65 3191.85 4299.31  5830.01  7940.20 
5.9 1183.28  1516.26  1983.70 2639.39 3558.23 4845.77  6646.67  9158.94 

6 1268.86  1640.19  2166.35 2911.15 3966.71 5461.98  7578.70  10567.75 
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Table A.15 The in-control ARLs of Weibull EWMA chart (λ=0.20, shape parameter 
1.0≤ η≤ 1.5. LU=LL=L) 

 
Shape parameter η 

L 1.0 1.1 1.2 1.3 1.4 1.5 

2.0 54.85  53.54 52.22 51.05 50.06  49.22  

2.1 63.39  63.20 62.65 61.95 61.23  60.57  

2.2 72.33  73.64 74.33 74.57 74.52  74.33  

2.3 81.92  84.91 87.26 88.96 90.10  90.85  

2.4 92.51  97.24 101.58 105.24 108.16  110.45  

2.5 104.44  111.02 117.59 123.67 129.01  133.55  

2.6 118.03  126.71 135.78 144.71 153.11  160.70  

2.7 133.55  144.78 156.76 169.05 181.16  192.69  

2.8 151.31  165.69 181.21 197.51 214.15  230.64  

2.9 171.66  189.98 209.91 231.16 253.36  276.06  

3.0 195.00  218.23 243.72 271.19 300.37  330.89  

3.1 221.86  251.16 283.65 319.05 357.13  397.63  

3.2 252.77  289.61 330.92 376.44 425.99  479.42  

3.3 288.09  334.53 387.01 445.46 509.85  580.16  

3.4 329.11  387.22 453.66 528.67 612.32  704.79  

3.5 376.43  449.01 533.03 629.23 737.90  859.54  

3.6 431.08  521.28 627.70 751.05 892.23  1052.36  

3.7 493.98  606.59 741.02 898.95 1082.42  1293.39  

3.8 567.06  707.05 876.39 1078.94 1317.46  1595.65  

3.9 651.68  825.17 1039.15 1298.37 1608.66  1975.91  

4.0 749.47  964.97 1234.72 1566.83 1970.45  2455.73  
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Table A.16 The in-control ARLs of Weibull EWMA chart (λ=0.20, shape parameter 
1.6≤ η≤ 2.0. LU=LL=L) 

 
Shape parameter η 

L 1.6 1.7 1.8 1.9 2.0 

2.0 48.54 47.97 47.49 47.10 46.77  

2.1 59.98 59.45 59.00 58.61 58.27  

2.2 74.07 73.78 73.49 73.21 72.94  

2.3 91.30 91.56 91.69 91.72 91.70  

2.4 112.18 113.49 114.47 115.18 115.71  

2.5 137.30 140.37 142.85 144.83 146.40  

2.6 167.38 173.16 178.07 182.19 185.61  

2.7 203.37 213.05 221.65 229.16 235.65  

2.8 246.58 261.62 275.52 288.15 299.44  

2.9 298.75 320.94 342.23 362.25 380.77  

3.0 362.23 393.85 425.16 455.58 484.62  

3.1 440.15 484.11 528.86 573.63 617.65  

3.2 536.46 596.66 659.37 723.75 788.80  

3.3 656.30 738.03 824.85 915.97 1010.28  

3.4 806.24 916.74 1036.09 1163.76 1298.74  

3.5 994.71 1143.91 1307.47 1485.34 1676.93  

3.6 1232.61 1434.18 1658.19 1905.44 2176.20  

3.7 1534.06 1806.75 2113.85 2457.55 2839.65  

3.8 1917.45 2287.04 2708.84 3187.36 3726.87  

3.9 2406.84 2908.76 3489.46 4157.24 4920.57  

4.0 3033.77 3716.82 4518.36 5452.91 6535.99  
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