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Summary

Space-time trellis codes (STTC) provide a promising technique to offer high

data rates and reliable transmissions in wireless communications. Although most

researches on STTC assume that perfect channel state information (CSI) is avail-

able at the receiver, this assumption is difficult and maybe impossible to realize

in practice due to the time-varying characteristic of wireless channels. In this the-

sis, we examine the receiver structure and performance of linear STTC over rapid,

nonselective, Rayleigh fading channels with channel estimation. Based on the per-

formance analysis results obtained, code design and transmission schemes of STTC

are investigated.

The time-varying MIMO channels are estimated by a pilot-symbol-assisted-

modulation (PSAM) scheme. To achieve channel estimation of satisfactory accu-

racy with reasonable complexity, a systematic procedure is proposed to determine

the optimal values of the design parameters used in PSAM, namely, the pilot spac-

ing and the Wiener filter length. Based on the channel estimates obtained, the

maximum likelihood (ML) receiver structure with imperfect channel estimation

is derived for both independent, identically distributed (i.i.d.) and independent,

non-identically distributed (i.n.i.d.) fading channels. Our results show that for

the i.n.i.d. case, the channel estimation accuracy plays an important role in de-

termining the weight on the signals received at each receive antenna. New results

for the pair-wise error probability and the bit error probability are derived for the

ML receiver obtained. The explicit results show clearly that the effects of channel

estimation on the performance of STTC depend on the variances of the channel

vi



Summary

estimates and those of the estimation errors. Using the performance analysis re-

sults obtained, we can optimally distribute the given average energy per symbol

between the data symbols and the pilot symbols. By using the optimal pilot power

allocation, performance can be improved without additional cost of power and

bandwidth.

Based on the performance results obtained, a new code design criterion is pro-

posed. This criterion gives a guide to STTC design with imperfect CSI over rapid

fading channels. The key feature of our proposed criterion is the incorporation of

the statistical information of the channel estimates. Therefore, the codes designed

using this criterion are more robust to channel estimation errors for both i.i.d. and

i.n.i.d. channels. For the i.n.i.d. case, due to the inherent unequal distributions

among channels, it is more important to use our new design criterion by exploiting

the statistical information of the channel estimates. To reduce the complexity of

code search, an iterative code search algorithm is proposed. New STTC are de-

signed which can work better than existing codes even when there exist channel

estimation errors.

Finally, we study the closed-loop system, where it is assumed that only imper-

fect channel estimates are known to the receiver, and either complete or partial

knowledge of this imperfect CSI is conveyed to the transmitter as the side informa-

tion. A new lower bound on the capacity with imperfect CSI at both the transmitter

and receiver is derived. Several optimal transmit power allocation schemes based

on the side information at the transmitter are proposed.
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Notations

Throughout this thesis, scalars are denoted by lowercase letters (a), vectors by
boldface lowercase letters (a), and matrices by boldface uppercase letters (A).

•
√
−1 = j.

• P (X) is the probability of the event X.

• P (X|Y ) is the conditional probability of the event X given that the event Y
has occurred.

• pX(x) is the probability density function of the random variable X.

• E[X] is the expectation of the random variable X.

• a∗ is the conjugate of the complex scalar a.

• AT is the transpose of A.

• AH is the complex conjugate transpose of A.

• 0T×N is the T × N zero matrix.

• IM is the M × M identity matrix.

• ‖A‖2 is the squared Euclidean norm of the M×N matrix A with the (m,n)th
entry [A]m,n = am,n.

• rank(A) is the rank of the matrix A.

• |A| is the determinant of the matrix A.

• tr(A) is the trace of the matrix A.

• diag[a1, a2, · · · , aM ] is an M × M diagonal matrix with diagonal elements
a1, a2, · · · , aM .
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Chapter 1

Introduction

The history of wireless communication can be traced back to the 1890s. In 1897,

Guglielmo Marconi first demonstrated the ability to communicate remotely with

radio. Since then an exciting era of wireless communications has been unveiled.

With the convenience of mobile communications and ease of deployment without

wire, wireless communication has enjoyed rapid growth since the 1990s’, and it now

pervades our daily life.

1.1 Evolution of Wireless Communication

Due to limitations in analogue techniques of first generation (1G) wireless sys-

tems, second generation (2G) systems have employed digital modulation and signal

processing techniques in transmission. Most of today’s cellular networks are based

on 2G techniques. Envisioning providing multimedia communications, third gen-

eration (3G) wireless systems are under construction, whose data rates are up to 2

megabits per second. However, the explosive growth of the Internet creates increas-

ing demand for broadband wireless access. The data rates are set to exceed 100

megabits per second, which cannot be achieved by the current systems. Therefore,

the aim of the next generation systems, the fourth generation (4G), is to provide

1



CHAPTER 1. INTRODUCTION

high transmission rate and highly reliable wireless communication. Reliable trans-

mission with high peak data rates is expected to be 100 megabits per second to 1

gigabits per second, or higher for this 4G and systems beyond 4G. Therefore, a sin-

gle wireless network that integrates both computing and communication systems

can be used to provide ubiquitous services. This goal poses a tremendous challenge

to design systems that are both power and bandwidth efficient, and manageable in

complexity.

In wireless communication, the fundamental difficulty is the fading caused by

multipath propagation which severely impacts system performance. However, the

effects of fading can be substantially mitigated by using diversity techniques. Three

main forms of diversity are exploited for fading channels: temporal, spectral and

spatial diversity. Recently, it was found that the space domain can be exploited to

significantly increase channel capacity, i.e., using multiple-input multiple-output

(MIMO) systems, without increasing spectral and power consumption. MIMO

systems are those that have multiple antenna elements at both the transmitter and

receiver. In fact, antenna diversity at the receiver has long been widely used in

wireless communication to combat the effects of fading. Although antenna diversity

at the receiver has been studied for more than 50 years, research on transmit

diversity is much more recent. Pioneering works by Winters [4], Foschini [5], and

Telatar [6] show remarkable spectral efficiencies for wireless systems with multiple

antennas. Under the rich scattering environments with independent transmission

paths, the capacity of a MIMO system with NT transmit and NR receive antennas is

linearly proportional to min(NR, NT ). Thus, the capacity is increased by a factor of

min(NR, NT ) compared to a system with just one transmit and one receive antenna.

The advantages of multiple antennas is due to two effects. One is diversity gain

since it reduces the chances that several antennas are in a deep fade simultaneously.

The other is the beamforming gain obtained by combining the signals from different

antennas to achieve a higher signal-to-noise ratio (SNR). Since multiple antennas

introduce a new dimension of space on top of the conventional time dimension at

the transmitter, this triggers tremendous research interests on multi-dimensional
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coding procedures for MIMO systems, which are generally referred to as space-time

coding schemes. More detailed literature reviews on space-time coding schemes will

be given in the next section.

1.2 Space-time Coding Schemes

Tarokh et al. [1] first introduced the concept of space-time coding by de-

signing codes over both time and space dimensions. Their original work gave the

well known rank-determinant and product distance code design criteria of space-

time codes for quasi-static fading and rapid fading channels, respectively. For the

quasi-static fading case, the fading coefficients remain constant over an entire trans-

mission frame, while, for the rapid fading case, the coefficients vary independently

from symbol to symbol. Following Tarokh’s work, much research efforts have been

made to develop powerful space-time codes based on different design criteria or

improved search algorithms [2], [7], [8], [9], [10], [11], [12] and [13]. The family

of space-time codes includes space-time trellis codes (STTC) [2], [7], [8], [9], [10],

and space-time block codes (STBC) [11], [12] and [13]. The beauty of STBC is

its simplicity, which can achieve the maximum diversity with a simple decoding

algorithm. However, no coding gain can be provided by STBC, and non-full rate

STBC reduce bandwidth efficiency. In this thesis, we will concentrate on effective

space-time trellis codes (STTC), which is a joint design of coding, modulation and

diversity.

So far, many papers in the literature on the design criterion of STTC consid-

ered quasi-static fading channels. To design codes with optimal performance, we

first need certain performance measures. One of the most important performance

measures is the error probability. Tarokh et al. proposed the well known STTC

scheme in [1] by minimizing the worst pair-wise error probability (PEP). Based on

their derived PEP upperbound, their code design criterion relies on the minimum

determinant of codeword difference matrices. This criterion is mainly for high SNR.
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Alternatively, the Euclidean distance criterion was presented by Yuan and Vucetic

in [7], which indicates that when the diversity gain is reasonably large, the trace

of the codeword distance matrix, or, equivalently, the minimum square Euclidean

distance, will dominate the code performance. It was also found in Tao [8] that

the Euclidean distance criterion should be used for moderate and low SNR. Based

on these popular design criteria, several powerful STTC are obtained using com-

puter search techniques in [2], [7], [8], and [10]. To simplify code search complexity,

some systematic code design algorithms were proposed. Using delay diversity, [14]

converted the two-dimensional design problems to the traditional one-dimensional

problem, and greatly reduced the code search complexity. Also, a systematic search

algorithm was provided in [15] to design codes with full diversity gain. Diversity

gain can characterize the error probability performance at high SNR. Using diver-

sity gain as a performance measure is more convenient, but the price is that coding

gain cannot be guaranteed. Instead of using error probability as the performance

measure, a novel scheme was proposed by [5] aiming to achieve the outage capac-

ity with reasonable complexity, and this is the so-called layered space-time (LST)

architecture that can attain a tight lower bound on the MIMO channel capacity.

There are a number of LST architectures, depending on whether error control cod-

ing is used or not, and on the way the modulated symbols are assigned to transmit

antennas. An uncoded LST structure, known as vertical Bell Laboratories layered

space-time (VBLAST) scheme is first proposed in [16]. In this scheme, the input

information sequence is demultiplexed into NT sub-streams and each of them is

modulated and transmitted from a transmit antenna. The receiver in [16] is based

on a combination of interference suppression and cancelation. The interferences

are suppressed by a zero-forcing (ZF) approach. Following this, more researches

[17], [18], [19] exploited the combination of layered space-time coding and signal

processing. By using a spatial interleaver, a better performance can be achieved.

With the spatial interleaver, the modulated codeword of each layer is distributed

among the NT antennas, which introduces space diversity. Note that these LST

systems require a quasi-static channel as the iterative cancelation process requires
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a precise knowledge on the channel coefficients.

Compared with the case of the quasi-static channels, the works on the design

criteria for the rapid fading channels do not follow so much the approach of [1].

There remains much room to improve on the design criteria for the case of rapid

fading. Recently, an improved code design criterion by minimizing the node error

probability was presented in [9] for the rapid fading case with perfect channel state

information (CSI). With the development of more performance analysis results for

STTC, it has been shown that the distance spectrum need to be considered to fully

characterize STTC performance [20], [21]. Although new, improved STTC for the

rapid fading channels are few, the performance analysis for this case has attracted

lots of research interests. Some exact PEP results are provided in [22], [23]. These

exact PEP expressions are not explicit, and rely either on numerical integration

or residue computation. Several tighter PEP bounds than those in [1] are also

provided in [24]. In addition to the PEP analysis, [23], [25] and [26] examined the

BEP bounds. Note that all these papers assume perfect CSI at the receiver, and

the results are not explicit. Thus, they provide little insights into how to improve

the design criterion for STTC over rapid fading channels.

The space-time coding schemes mentioned above all are open-loop systems. For

open-loop systems, there is no CSI available at the transmitter. However, if CSI

is available, it should be utilized to improve performance. Therefore, closed-loop

MIMO systems have recently attracted great research interests. In closed-loop sys-

tems, CSI at the receiver can be conveyed to the transmitter by using feedback. We

call information that is known to the transmitter as side information. By incorpo-

rating side information, closed-loop systems have been shown to achieve improved

performance [27], [28], [29]. With the available side information concerning the

channels, the transmitter can employ strategies such as adaptive coding, and mod-

ulation schemes [30], [31], and transmit antenna selection [32]. Side information

at the transmitter can also be exploited to take advantage of sophisticated signal

processing techniques [33], [34]. It is well known that when perfect CSI is assumed
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at the transmitter, beamforming can be used to maximize the received SNR. How-

ever, due to the limited bandwidth of the feedback channel, or the feedback errors

and delays, perfect CSI at the transmitter is practically impossible. Recently, much

research has been done on partial or imperfect side information scenarios [28], [35],

[36]. It is shown in [28] that in the extreme of perfect feedback, the optimal strategy

entails transmission in a single direction specified by the feedback, i.e., the beam-

forming strategy. Conversely, with no channel feedback, the optimum strategy is

to transmit equal power in orthogonal independent directions, i.e., the diversity

scheme. Between these two extremes, some appropriate transmitter strategies are

provided when the side information at the transmitter is imperfect. In [28], both

quantized and noisy side information are considered, and the optimal transmission

strategy depends on the rank of its input correlation matrix given side information.

In [35], two feedback schemes are proposed, namely, mean and variance feedback.

For both schemes, the beamforming strategy appears to be a viable transmission

strategy when meaningful channel feedback is present. However, [35] only con-

sidered the case of one receive antenna. More results are obtained for multiple

antenna systems with space-time coding in [36]. All these papers [28], [35], [36]

assume that perfect CSI is available to the receiver.

Throughout the development of space-time codes, most researches have focused

on the idealistic assumption that perfect CSI is available to the receiver. However,

in practical systems, perfect CSI may not be available due to channel estimation

errors. This is especially true for the rapid fading case, where perfect CSI is gener-

ally unavailable. To overcome this problem, either noncoherent detection methods,

where no CSI is needed at the receiver, or channel estimation techniques can be

used. Noncoherent differential modulation schemes were developed in [37] and [38].

However, it is known that there is a performance loss with noncoherent detection.

Furthermore, signal constellation design for differential modulation schemes is diffi-

cult. To achieve satisfactory performance with noncoherent differential modulation

schemes, it is required that channels are constant for a sufficient long time dura-

tion. Therefore, in this thesis, we consider instead the use of channel estimation at
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the receiver. In the limit of perfect channel estimation, performance can approach

that of ideal coherent detection, which is optimal. Although channel estimation

techniques are well understood for single-input single-output (SISO) systems [39],

[40], channel estimation schemes for MIMO systems are different from those of

SISO systems. To estimate MIMO channels is not a trivial problem because of

the additional spatial dimension. In addition to the difficulties of MIMO channel

estimation, the performance analysis and code design of STTC over MIMO sys-

tems with channel estimation errors are even more challenging. There have been

a few works on STTC error performance analysis with imperfect CSI [41], [42],

and [43]. However, all these works on STTC with imperfect CSI considered only

the quasi-static fading case, where the fading coefficients are assumed to remain

constant over an entire frame. For the quasi-static fading channels, Tarokh et

al. [41] presented a PEP upperbound with channel estimation. Their result is

a function of the correlation coefficients between channel fading coefficients and

their estimates. Also, the result is only approximately correct at high SNR [42].

Therefore, the result is implicit and does not reveal explicitly the effects of chan-

nel estimation errors on code performance or code design. Garg et al. [43, eq.

(39)] provided an analytical PEP expression for STTC with imperfect CSI. Their

method requires the computation of residues of the characteristic function of a

random variable, and the computation has to resort to some numerical softwares

like MATLAB. The implicit expression obtained fails to give insights into the per-

formance loss caused by channel estimation errors. This PEP result also makes its

applications to code design cumbersome. To our knowledge, STTC performance

analysis with imperfect CSI over rapid fading channels has not been considered so

far. The performance analysis and code design of STTC over rapid fading channels

are nearly untouched research areas in the literature, and these will be the key

research topics in this thesis. Rapid fading channels are frequently encountered in

many practical communication systems. The rapid fading may arise from complete

interleaving/de-interleaving to achieve better performance. Over rapid fading, an

additional form of diversity, namely, time diversity, can be exploited, and full di-
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versity is equal to the product of the number of receive antenna and the minimum

Hamming distance between codevectors.

1.3 Research Objectives and Main Contributions

In this thesis, we will examine linear STTC over rapid Rayleigh fading with

imperfect CSI for both open-loop and closed-loop systems. The effects of channel

estimation errors on the receiver structure, performance and channel code design of

STTC systems are investigated. Throughout this thesis, we consider point-to-point

communications with the common M -ary phase shift keying (MPSK) modulation

scheme. The channels are modeled by frequency non-selective, rapid, Rayleigh fad-

ing processes. In most applications, rapid fading channels are desirable because

the time diversity achieved can combat channel fading effectively. The usual way

to produce the rapid fading scenario is by using interleaving/deinterleaving tech-

niques. For illustration purpose, throughout this thesis, the rapid fading scenario is

produced by perfect multiplexing/de-multiplexing of the time division multiplexing

(TDM) system. This TDM technology can not only be implemented easily on the

existing wireless networks, but also reduce the memory size and the transmission

delay for each user. The idea behind the TDM system is that each user can experi-

ence independent channel fading over time by perfect interleaving/de-interleaving

through the multiplexing/de-multiplexing with a sufficiently large number of users.

This rapid fading channel model is important from both practical and theoret-

ical viewpoints. The widely deployed wireless network in Europe, Asia, etc. is the

Global System for Mobile (GSM) system, which is based on time division multiple

access (TDMA) techniques. Thus, it provides a convenient, implementation plat-

form to boost the data rate by applying MIMO techniques to TDMA systems. In

TDMA systems, the data from all users are multiplexed into frames. In each frame,

each user is assigned one time slot to transmit data. Then, he must wait for a frame

length to transmit again. Therefore, the data from each user are interleaved by one
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frame length. When the number of users is sufficiently large, the data from each

user are completely interleaved, and the fading coefficients experienced by each user

are independent from one symbol to the next. By accommodating a sufficiently

large number of users in the practical TDMA system, it consequently produces the

rapid fading channel model. This brings out the time diversity advantage, which

has been widely exploited in SISO systems. With space and time diversity, the

increased capacity promised by MIMO systems [6] can be achieved. The other ex-

tensively examined fading channel model, namely, the quasi-static fading channel

model can be understood in a similar way in TDMA systems. Whether the rapid

fading channel model or the quasi-static model should be used first depends on the

relationship between the channel coherence time Tc and the symbol duration time

Ts. The coherence time is a statistical measure of the time duration over which

the channel impulse response is essentially invariant. If the coherence time of the

channel is much greater than the symbol period of the transmitted signal, i.e.,

Tc À Ts, then, the channel changes at a rate much lower than that of the trans-

mitted signal, and the channel fading coefficients can be assumed to be constant

over several symbol intervals. Otherwise, if the coherence time is approximately

equal to the symbol duration, i.e., Tc ≈ Ts, the channel fading coefficients are only

symbol-wise constant. For the quasi-static fading model, the channel fading coef-

ficients remain constant over the transmission of a block of data. Therefore, this

model is only suitable for the very low mobility applications, where the coherence

time of channels is sufficiently larger than the symbol duration, and the channels

are assumed to be block-wise constant. On the other hand, the symbol duration is

also dependent on the channel coherence bandwidth. For flat fading channels, the

reciprocal of the symbol duration needs to be much less than the channel coherence

bandwidth in order to avoid intersymbol interference. Thus, the channel coherence

time, the channel coherence bandwidth and the symbol duration all play a role in

determining the channel fading model to be used. Compared with the quasi-static

fading model, the rapid fading model is more realistic since it only assumes the

fading coefficients to be symbol-wise constant, which is realizable for most practi-
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cal systems. Besides these practical considerations, the rapid fading channel model

also provides attractive properties for theoretic analysis. For this case, explicit per-

formance results can be obtained, which can clearly show the effects of the channel

estimation errors on MIMO systems. Therefore, we concentrate on the rapid fading

case in this thesis.

The time-varying MIMO channels are estimated by a pilot-symbol-assisted-

modulation (PSAM) scheme. For open-loop systems, i.e., there is no side infor-

mation at the transmitter, both independent, identically distributed (i.i.d.) and

independent, non-identically, distributed (i.n.i.d.) fading channels are considered.

For the i.i.d. case, the maximum likelihood (ML) receiver structure with imper-

fect channel estimation is derived. Then, performance analysis for this receiver is

analyzed. The explicit results show clearly the effects of channel estimation errors

on the performance of STTC. With the performance results, a new code design

criterion is proposed. This criterion gives a guide to STTC design with imperfect

CSI over rapid fading channels. The key feature of our proposed criterion is the

incorporation of the statistical information of the channel estimates. Therefore, the

codes designed using this criterion are more robust to channel estimation errors.

New STTC are designed which can work better than existing codes even when

there exist channel estimation errors. This is very important for practical systems

where channel estimation errors are common. The codes designed with perfect

CSI assumption may not be optimal in actual channel estimation conditions. After

the study of the i.i.d. case, we extend the work to the i.n.i.d. channel conditions

by relaxing the constraint of identical statistical distribution on each link. This

is motivated by the fact that the requirement of i.i.d. fading channels may have

limitations in some applications where different paths have non-identical statistics,

such as for wideband code division multiple access (CDMA) and indoor ultrawide

bandwidth communications [44]. The channel multipath intensity profile of IMT-

2000 channel models [45] and JTC channel models [46] is variable, i.e., the mean

square fading gain of each diversity branch is different. The i.n.i.d. fading channel

model has been examined in [47, 48], because it is realistic and general. For the
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i.n.i.d. case, the ML receiver is different from that obtained for i.i.d. channels. The

i.i.d. ML receiver is only a special case of the i.n.i.d. receiver. A method different

from that used in the i.i.d. case is employed to analyze the performance of STTC,

where both the exact PEP and several PEP bounds are obtained. Similarly, we also

examine the effect of non-identical distributions of the MIMO fading channels on

the code design. The effects of both the non-identical distribution of channels and

the imperfect channel estimation are all represented in the same way by the differ-

ent variances of the channel estimates among the transmit antennas. With i.n.i.d.

fading channels, it is even more important to exploit the statistical information

of the channel estimates since the imbalance among the different transmit-receive

antenna pair is greater.

After examining the open-loop systems, we next consider the closed-loop sys-

tems by assuming that side information of the imperfect CSI is available at the

transmitter. We study the optimal power allocation schemes for the closed-loop

STTC system with imperfect CSI. The criterion is either the channel capacity or

the error probability. It is worth mentioning that the channel capacity with imper-

fect CSI cannot simply be obtained by replacing the channel fading matrix by its

estimate. The capacity with channel estimation is also affected by the variances of

the channel estimation errors. For bandwidth-limited feedback systems, the CSI

available to the transmitter is partial. Based on the side information at the trans-

mitter, different power allocation schemes are presented. In addition to studying

the power allocation for the transmit power, the power allocation for pilot symbols

is also examined to achieve the optimum error performance with the constraint

of a fixed total transmission power. The details of the contribution and the main

results obtained are listed in the following paragraphs.

First, we propose a simple PSAM scheme to estimate MIMO channels. The

two design parameters of this scheme are the pilot spacing and Wiener filter

length, respectively. A smaller pilot spacing and a larger Wiener filter length offer

better estimation accuracy with other factors fixed. However, high transmission
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rate/bandwidth efficiency dictates a large pilot spacing, while a reduced receiver

complexity dictates a smaller Wiener filter length. Therefore, suitable compromise

values for the pilot spacing and Wiener filter length should be chosen. We propose

a systematic approach to determine suitable values of these two design parameters.

It will be shown that suitable values should be chosen in a tradeoff between esti-

mation accuracy, transmission rate/pilot overhead, and receiver complexity. With

the PSAM scheme and the minimum mean square error (MMSE) estimator, the

statistical information of the channel estimates is derived. By incorporating the pi-

lot channel measurements obtained from the PSAM scheme, the ML receiver with

imperfect CSI is derived, assuming that no CSI is available to the transmitter.

The fading channels are assumed to be i.i.d.. The ML receiver has a simple form

for MPSK modulation. A new, explicit PEP upperbound on the ML receiver is

derived. Our PEP result clearly presents the effects of channel estimation errors on

the error performance. The channel estimation errors introduce additional noise at

the receiver as shown by an effective noise term. In other words, the channel esti-

mation errors increase the noise power at each receive antenna. Furthermore, the

error performance results show that the Euclidean distances between code symbols

are weighted by the different variances of the estimated channel coefficients associ-

ated with the different transmit antennas. Thus, the structure and performance of

codes are expected to be affected by the quality of the channel estimates. Based

on the PEP upperbound obtained, a tight upperbound on the bit error probabil-

ity (BEP) is presented using the dominant error events approach. The maximum

length of the dominant error events considered increases with the number of states

of the codes. It will be shown that the performance loss caused by channel estima-

tion errors increases with the channel fade rate. For high fade rates, the transmit

diversity gain of a large number of transmit antennas can be significantly offset by

the increased estimation error variance.

The performance results show that STTC performance with imperfect CSI is

affected by the variances of the channel estimates. This motivate us to provide an

effective design criterion for STTC over rapid fading channels with imperfect CSI.
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This criterion exploits the statistical information of the channel estimates in the

code design, and can reduce the performance loss caused by the channel estimation

errors. The statistical information of the channel estimates depends on the channel

parameters, such as the variances and the fade rates of the fading processes. Here,

we first concentrate on the i.i.d. fading case. For this case, the key parameter

which affects the statistical information of the channel estimates is the channel

fade rate. With different channel fade rates, the most suitable values for the design

parameters of the estimator should be modified, and the corresponding statistical

information of the channel estimates is different. Based on the knowledge of the

fade rate at the transmitter, two situations for code design are considered. For

fading channels with invariant fade rates, the channel fade rate can be treated as a

priori-known knowledge at the transmitter. When the channel fade rate is known

to the transmitter, codes whose design parameters are matched to this channel fade

rate perform best. It will be shown that adaptive code design based on knowledge

of the channel fade rate should be used to achieve the optimal performance. On the

other hand, when the channel fade rate is unknown to the transmitter, robust codes

are proposed based on the distribution of the channel fade rates. The codes are

robust in a statistical sense. This means that the robust codes have the best average

performance over all the possible channel fade rates. The average performance can

be obtained by averaging the conditional performance at each fade rate over the

probability distribution of channel fade rates. To achieve the optimum average

performance, the robust code can be designed based on the average variance vector

of the channel estimates. In general, robust codes are designed based on the average

variance vector. However, this can be simplified, if the channel has a dominant fade

rate, which occurs with much higher probability than the sum of the probabilities

of occurrence of other fade rates. With the proposed design criteria of STTC

with imperfect CSI, new codes will be designed using an search algorithm with

reduced implementational complexity. As is known, one challenging problem of

space-time code design is the high search complexity over a very large set of possible

generator matrices, which is caused by the cross-dimensional design of space-time
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codes over both space and time. Thus, we provide a new, iterative code search

algorithm to greatly reduce the high code search complexity. The iterative code

search algorithm with reduced complexity provides a systematic way to design

codes with good performance. In the presence of channel estimation errors, the

codes designed based on our new criterion assuming imperfect CSI have improved

bit error probability performance compared to existing codes that were designed

under the perfect CSI assumption. It is shown that the effect of channel estimation

on code design increases with the channel fade rate and the number of transmit

antennas. Simulation results also verify the advantages of our proposed new codes

under actual channel estimation conditions.

Extending from the case of the i.i.d. fading channels, we next relax the identi-

cal distribution constraint and consider the i.n.i.d. fading channels. Both unequal

variances and unequal fade rates on the different links are assumed. For the i.n.i.d.

channels, the corresponding ML receiver is derived. Due to the i.n.i.d. fading

channels, the receiver requires in its signal detection function, both the channel

estimates and the second order statistical information of the estimates, which can

be obtained from the channel estimator. The variances of the channel estimation

errors increase the total noise power at each receive antenna, and lead to the effec-

tive noise being different from one receive antenna to another. Therefore, the ML

receiver for the i.n.i.d. case with imperfect CSI cannot be obtained from the per-

fect CSI ML receiver by replacing the known channel matrix with the imperfectly

estimated channel matrix. In fact, channel estimation accuracy plays an important

role in determining the weight on the signals received at each receive antenna. The

exact PEP result for the ML receiver is obtained using the moment generating func-

tion. Based on the exact PEP expression, several PEP bounds, which are explicit

and simple to compute, are derived. The union bounds on the BEP of STTC are

also derived by using both the transfer function approach and the method of dom-

inant error events. All these results are extensions of those obtained for the i.i.d.

case. Following the performance analysis, code design for i.n.i.d. channels with

imperfect CSI is studied. First, we examine the effects of the differences among the
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channel fade rates and the differences among the variances on code design. Both

the effects of the different channel fade rates and variances can be all reflected

in the same way by the statistical information of the channel estimates. Similar

to the i.i.d. case, the effect of channel estimation on code design is measured by

the maximum variance difference of the channel estimates. Our results show that

with satisfactory channel estimation accuracy, the effects of the different variances

is more important, compared with the differences among the channel fade rates.

Employing the node error event as the cost function, a practical code design crite-

rion is presented, and new STTC are obtained using the iterative search algorithm

proposed early in the i.i.d. case. Due to the inherent non-identical distributions

among the fading channels, it is more important to use our new design criterion by

exploiting the statistical information of the channel estimates. Under non-identical

channel conditions, our proposed codes perform better than the existing codes in

the literature which are designed on the assumption of i.i.d. channels, and perfect

CSI at the receiver. When the variance differences among channel fading processes

increase, the performance gains achieved by our proposed STTC are greater. It is

also shown that optimal codes matched to the channel and estimator parameters

should be used when these parameters are known at the transmitter.

Finally, we turn our attention to closed-loop systems, where it is assumed that

only imperfect channel estimates are known to the receiver, and either complete

or partial knowledge of this imperfect CSI is conveyed to the transmitter as the

side information. With the partial information at the transmitter, the optimal

power allocation schemes are investigated. From information theory, the known

water-filling scheme can be used to allocate the optimal power for each transmit

antenna when perfect CSI is available at the transmitter. For the case of imperfect

CSI at both the transmitter and receiver, the optimal power allocation scheme has

not been examined. Thus, we derive MIMO capacity bounds with both imperfect

CSI at both the transmitter and receiver. Unlike the commonly used capacity

expression with imperfect CSI at the transmitter, where only the channel fading

matrix is replaced by its estimate, it is worth noting that the power of the noise at
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the receiver is also increased by the estimation errors. Since the variances of the

estimation errors depends on the transmit power, the maximization of the capacity

is now different from that of the perfect CSI case. The optimization problem now

changes to a fractional programming problem, and the conventional water-filling

scheme cannot apply here. Based on the capacity lower bound, we propose a new

power allocation scheme using a general nonlinear programming method. Besides

using the capacity lower bound as the objective function, we also employ the up-

per bound on the PEP as the objective function to design the optimal transmit

weighting matrix. Therefore, two additional power allocation schemes are proposed

based on the knowledge of estimated CSI at the transmitter. In the first case, we

assume that the knowledge of the estimated channel fading matrix is available at

the transmitter. Thus, the conditional PEP given the pilot channel measurements

is used as the objective function. With imperfect CSI at the receiver, both the

estimated channel fading matrix, and a matrix, which depends on the variances

of the channel estimation errors and the average SNR, should be used jointly to

minimize the error performance. When the channel estimates are sufficiently reli-

able, the transmitter should transmit signals along the direction of the eigenvector

corresponding to the largest eigenvalue of a matrix, where the estimated channel

fading matrix is modified by its corresponding estimation accuracy. This power al-

location scheme has lower complexity than that based on the capacity lowerbound.

However, it also requires the knowledge of the estimated channel matrix be known

at the transmitter. To be more practical, the second case considers the bandwidth-

limited feedback systems, where only partial CSI is available at the transmitter.

Then, the above two schemes are not suitable, since the estimated channel fading

matrix is unavailable at the transmitter due to the limited feedback bandwidth.

For this case, we assume that only the variances of the channel estimates are known

at the transmitter. Then, the average PEP is used here as the metric. Compared

with the optimal weighting vector obtained for the first case, the correlation matrix

of the estimated channel fading matrix is replaced by the matrix consisting of the

variances of the channel estimates. It is intuitively clear that the performance gain
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achieved by the optimal weighting vector of the second case is worse than that of

the first case, due to the loss of some information. However, it will be shown by

our numerical results that there is a tradeoff between the performance gain and

the complexity of feedback.

1.4 Organization of the Thesis

The organization of the thesis is given as follows.

In Chapter 2, the MIMO communication systems and some basic ideas of

channel estimation are introduced.

In Chapter 3, performance analysis of STTC over i.i.d. rapid, Rayleigh, fad-

ing channels with channel estimation is presented. The ML receiver is derived

by incorporating the pilot channel measurements. Tight PEP and BEP bounds

are obtained. In Chapter 4, we discuss the code design of STTC with channel

estimation. The encoder structure is given. An improved code design criterion is

proposed, and an iterative code search algorithm is introduced. When the channel

fade rate is known at the transmitter, the imperfect CSI codes for that fade rate

can be used. On the other hand, when the chanel fade rate is time-variant, the

robust codes are designed based on the probability model of the channel fade rates.

After the study on the performance analysis and code design of STTC for

i.i.d. fading channels, the whole work is extended to the i.n.i.d. fading channels in

Chapter 5. More general results are obtained. In Chapter 6, we focus on the power

allocation scheme for closed-loop STTC systems with imperfect CSI at the both

transmitter and receiver. Given the side information at the transmitter, several

power allocation schemes are proposed.

Finally, we provide concluding remarks and suggestions for future research in

Chapter 7.
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Chapter 2

MIMO Communication Systems

with Channel Estimation

In this chapter, we first introduce the MIMO communication systems. The

capacity of MIMO channels with perfect CSI known at the receiver is the maximum

achievable data rate for an arbitrarily low probability of error, if the signal may be

encoded by an arbitrarily long space-time code. Then, the MIMO channel model

used in this thesis is described. The simulator to generate the fading channels is

presented. Finally, mean-square channel estimation is presented.

2.1 MIMO Communication Systems

We consider a point-to-point MIMO system with NT transmit and NR receive

antennas. The system block diagram is shown in Fig. 2.1. The input data stream

is encoded by the space-time encoder. The encoded data is split into NT streams.

Each stream is pulse-shaped and modulated. At each time slot t, a NT × 1 signal

vector s(t) = [s1(t) · · · sNT
(t)]T is transmitted simultaneously, where sj(t) is

transmitted by the jth antenna. The total transmitted power is constrained to P ,
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Fig. 2.1: Block diagram of a MIMO system.

which can be represented as

P = tr(Rss) (2.1)

where tr(·) denotes the trace of a matrix, and Rss is the covariance matrix of the

transmitted signal. It is given by

Rss = E[s(t)sH(t)] (2.2)

where E[·] denotes the expectation and the superscript H denotes the Hermitian

transpose of a vector/matrix. The signal at each receive antenna is a noisy su-

perposition of the NT transmitted signals corrupted by the channel fading. The

NR×1 received signal vector r(t) = [r1(t) · · · rNR
(t)]T , where the ith element ri(t)

refers to the signal received at antenna i, is given by

r(t) = H(t)s(t) + n(t) (2.3)

where n(t) is the vector of additive, channel white noises at the receiver. Its

components are i.i.d. complex, zero-mean, Gaussian random variables. The co-

variance matrix of n(t) is given by Rnn = E[n(t)nH(t)] = N0INR
, where INR

is

the NR × NR identity matrix. The receive branches have identical noise power of

N0. The symbol-wise constant channel fading matrix is described by an NR × NT

complex matrix H(t) = [hij(t)]. The component hij(t) is the channel fading coef-

ficient on the (i, j)th link, i.e., from the jth transmit to the ith receive antenna.

The elements of H(t) are modeled by independent random variables. The channel

fading processes are assumed to be independent of the additive noises.
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When the channel matrix is unknown at the transmitter, the optimum distri-

bution of transmitted signals s(t) achieving the channel capacity is Gaussian, and

the elements of s(t) are i.i.d. Gaussian variables. Thus, the signals transmitted

from each antenna have equal powers of Es = P/NT . We normalize the average

energy of the constellation, contracting the elements in the constellation by a factor

of
√

Es. Then the received signals, r(t), can be expressed as

r(t) =
√

EsH(t)v(t) + n(t) (2.4)

where s(t) =
√

Esv(t). The elements in v(t) have unit energy.

Based on the theoretical work developed by Foschini [5] and Telatar [6], it is

known that the capacity C for rapid fading MIMO channels can be obtained by

C = E

[
W log2 det(Ir +

Es

N0

Q)

]
(2.5)

where W is the bandwidth of each channel, r is the rank of H(t), and Q is defined

as

Q =

 H(t)HH(t) NR < NT

HH(t)H(t) NR ≥ NT

(2.6)

Suppose NT = NR = n and perfect CSI is known at the receiver, the asymptotic

capacity is given by [6]

lim
n→∞

C

Wn
=

1

π

∫ 4

0

log2(1 +
P

N0

ν)

√
1

ν
− 1

4
dν . (2.7)

By observing that log(1 + x) ≥ log(x), (2.7) can be bounded as

lim
n→∞

C

Wn
≥ 1

π

∫ 4

0

log2(
P

N0

ν)

√
1

ν
− 1

4
dν = log2(

P

N0

) − 1 . (2.8)

The bound in (2.8) shows that the capacity increases linearly with the number of

antennas, and logarithmically with the SNR.

2.2 The Radio Channel Model

In a wireless communication environment, the channel is the space between

the transmit and the receive antennas. The presence of reflecting objects and
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scatterers in this space creates a constantly changing environment that dissipates

the signal in amplitude, phase, and time. These effects result in multiple versions of

the transmitted signal that arrive at the receiving antenna, displaced with respect

to one another in time and spatial orientation. Assuming that the number of

multipaths is large enough, the fading gain can then be modeled as a complex,

symmetric Gaussian random variable. If there is no dominant path, then the

absolute value of the complex Gaussian gain follows the Rayleigh distribution.

The Rayleigh distribution is frequently used to model the statistics of signals

transmitted through radio channels such as cellular radio. The probability density

function (PDF) of a random variable R with a Rayleigh distribution is given by

pR(r) =
r

σ2
e−r2/2σ2

. (2.9)

Thus, the Rayleigh-distributed random variable R can be formed as R =
√

X2
1 + X2

2 ,

where X1 and X2 are two zero-mean, statistically independent, Gaussian random

variables, each having a variance of σ2. As a generalization, consider the random

variable

R =

√√√√ n∑
i=1

X2
i (2.10)

where the Xi, i = 1, · · · , n, are statistically i.i.d., zero-mean, Gaussian random

variables with variance σ2. The random variable R has a Gamma distribution,

whose PDF is given by

pR(r) =
rn−1

2(n−2)/2σnΓ(n/2)
e−r2/2σ2

(2.11)

where Γ(p) is the gamma function, defined as Γ(p) =
∫ ∞
0

tp−1e−tdt, where p > 0.

The Jakes spectrum is commonly used to model the Rayleigh fading process

for the land-mobile cellular channel [49]. The Jakes power spectrum density (PSD)

is defined as

S(ω) =


2σ2

wd

√
1−(w/wd)2

|w| < wd

0 |w| > wd

(2.12)
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where wd is the maximum radian Doppler frequency. The corresponding autocor-

relation of the Jakes spectrum is given by

R(τ) = E[x(t)x∗(t + τ)] = σ2J0(wdτ) (2.13)

where J0(τ) is the Bessel function of the first kind of order zero.

We will use the sum-of-sinusoids statistical simulation models proposed in [50]

to simulate Rayleigh fading channels with Jakes PSD. This simulator has improved

properties than others in the literature, which introduces random path gain, ran-

dom initial phase, and conditional random Doppler frequency for all individual

sinusoids. Thus, the autocorrelation and crosscorrelation of the quadrature compo-

nents, and the autocorrelation of the complex-envelope of this simulator match the

desired ones exactly, even if the number of sinusoids is as small as a single-digit inte-

ger. The normalized lowpass fading process h(t) of the statistical sum-of-sinusoids

simulation model is defined by

h(t) = xc(t) + jxs(t) (2.14a)

xc(t) =
2√
M

M∑
n=1

cos(ψn) · cos(wdt cos αn + φ) (2.14b)

xs(t) =
2√
M

M∑
n=1

sin(ψn) · cos(wdt cos αn + φ) (2.14c)

with

αn =
(2n − 1)π + θ

4M
(2.15)

where ψn, φ, and θ are statistically independent and uniformly distributed over

[−π, π) for all n. It has been shown in [50] that

Rxcxc(τ) = Rxsxs(τ) = J0(wdτ) (2.16a)

Rxcxs(τ) = Rxsxc(τ) = 0 (2.16b)

Rhh(τ) = 2J0(wdτ) . (2.16c)

It worth emphasizing that the autocorrelation and cross-correlation functions given

by (2.16) do not depend on the number of sinusoids M , and they match the desired
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second-order statistics exactly. When M approaches infinity, the envelope |h(t)|

is Rayleigh distributed and the phase θh(t) = arctan xs(t)
xc(t)

is uniformly distributed

over [−π, π).

Throughout the thesis, MIMO channels are modeled by spatially independent,

Rayleigh fading processes. This is reasonable when antenna element spacing is con-

siderably larger than the carrier wavelength, or the incoming wave incidence angle

spread is relatively large, such as the down link in cellular mobile systems. Also,

we focus on the case of frequency non-selective channels, where the transmitted

signal bandwidth is narrow enough, so that the channel is non-selective.

2.3 Channel Estimation

Channel estimation is one of the most basic issues in communication theory

over fading channels, since coherent receivers depend on some information of the

current channel state to decode the transmitted signals. There are lots of works

devoted to channel estimation and coding, but most of these papers deal with either

channel estimation in uncoded systems, or design channel codes on fading channels

with perfect CSI. Such simplifications facilitate the analysis, but do not give full

insights into the effects of imperfect channel estimation. In this thesis, we will

examine the effects of imperfect CSI on the receiver structure, performance and

channel code design of MIMO systems. Before we examine these effects, a brief

introduction of channel estimation methods is given.

2.3.1 Channel Estimation For SISO Systems

The channel estimation schemes can be classified into training, blind, and semi-

blind techniques. For training estimation schemes, sequences of pilot symbols are

transmitted to help estimate the channels [40]. With the known pilot symbols,
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Fig. 2.2: The frequency non-selective SISO fading channel model.

good channel estimates can be obtained at the cost of spectrum efficiency. On

the contrary, blind estimation schemes do not use any pilot symbols. The channel

estimation is done based on the received noisy signals and the statistical informa-

tion of the channels. Although blind schemes have high spectrum efficiency, their

performances are worse than pilot-aided schemes when the length of the received

signal sequence is not sufficiently long. Also, blind schemes have high computa-

tional complexity, and require the channels to be constant during estimation. Thus,

blind schemes cannot be used to estimate time-varying channels [51]. Between these

two extremes, semi-blind schemes are developed to achieve satisfactory estimates

with high spectrum efficiency. In semi-blind schemes, short sequences of pilot sym-

bols are transmitted at the beginning of the data burst. This helps obtain good

channel estimates at the beginning. Then, detected data symbols are exploited to

estimate the channel [52]. Here, we only focus on the non-blind estimation schemes

to obtain satisfactory estimates for time-varying channels.

For flat SISO fading channels, the baseband channel model is given in Fig. 2.2,

where v(t) and r(t) are the transmitted and received signals, respectively. The mul-

tiplicative channel gain h(t) is introduced by the medium while the additive, white,

Gaussian noise (AWGN) n(t) arises from the electronic circuitry in the receiver. At

the receiver, perfect sample timing is assumed, and thus the multiplicative channel

gain is assumed to be piecewise constant for a symbol duration. The model in Fig.

2.2 can be expressed in discrete-time k, where k is the symbol index. The received

signal over the kth symbol interval [kTs, (k+1)Ts), where Ts is the symbol duration

time [53], is given by

r(k) = h(k)s(k) + n(k) . (2.17)
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In flat fading, if we have a good estimate of the complex channel fading coeffi-

cient h(k), then we can perform coherent detection. To obtain a good estimate,

one solution is to use the decision-feedback method [52]. This method belongs to

semi-blind estimation schemes. It provides satisfactory estimation accuracy with

high spectrum efficiency when data decisions are reliable. In [52], the author has

provided the conceptual and analytical approach to the optimal receiver design

for the nonselective Rayleigh fading channel, based on the criterion of minimum

symbol error probability. It has been shown that the optimal minimum symbol

error probability receiver has the detector-estimator structure. For the optimal

detection of the kth symbol of the transmit signals, the totality received signal due

to the entire transmitted data sequence outside the kth interval should be used

to estimate the channel fading coefficient h(k), based on all the possible values

taken by the transmitted data sequence. Therefore, this optimal receiver is diffi-

cult to implement due to the exponential growth in complexity as a function of

sequence length. Then, a suboptimal, realizable, decision-feedback receiver is pro-

vided. This decision-feedback receiver only uses the past received signals and the

past decisions to estimate the channel fading gain h(k) in the kth symbol inter-

val. The decision-feedback channel estimation method is efficient in practice due

to its low complexity. However, the decision-feedback channel estimation method

assumes that all the data decisions are correct. If there exit errors in the decisions,

the performance of the decision-feedback receiver degrades, which is especially true

for low SNR.
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Fig. 2.3: Transmitted frame structure for SISO PSAM.

Another promising channel estimation method is to transmit known signals

embedded in the data. The receiver picks out the known signals, estimates the

complex fading coefficient, and compensates for it during demodulation. This
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Fig. 2.4: Channel estimation for flat SISO fading channels.

method is called pilot-aided modulation. There are two pilot-aided modulation

schemes. One is the pilot-tone assisted modulation (PTAM) scheme [54]. The

other is the pilot symbol assisted modulation (PSAM) [40]. Compared with PTAM,

PSAM is more preferable. In the PSAM scheme, the reference signal is introduced

in the time domain. Known symbols are inserted periodically into the data sequence

prior to pulse shaping. The resulting frame structure is shown in Fig. 2.3, where

P denotes a pilot and D a data symbol. For rapid fading channels, PSAM is a

popular scheme to estimate the channels. In PSAM schemes, the training symbols

are separated from the information symbols in time (TDM training). This method

can be employed in TDMA systems, such as GSM, where the training symbols are

time multiplexed with the user’s data.

Suppose s(k) in (2.17) is a pilot symbol, which is known to the receiver. Then,

we divide the received signal r(k) by the transmit signal as

y(k) = r(k)/s(k) = h(k) + n(k)/s(k) (2.18)

where we want to recover the fading coefficient h(k) buried in the white noise

n(k)/s(k). The aim of any channel estimation procedure is to minimize an error

criterion. The general criterion is the mean-square error (MSE). Here, we give a

brief review on the mean-square estimation. Consider the problem of estimating a

random variable X in terms of a random observation data vector Y = [Y1 · · ·YN ]T .

Let us denote an estimate of the value taken by X as x̂ when we know Y = y. In

26



2.3. CHANNEL ESTIMATION

general, x̂ will not equal x, the actual value taken by X. An average measure of

the error is provided by

E[‖X − x̂‖2|Y = y] (2.19)

where ‖·‖ is the Frobenius norm. We define a minimum mean square error (MMSE)

estimate x̂0 of x as one for which

E[‖X − x̂0‖2|Y = y] ≤ E[‖X − x̂‖2|Y = y] (2.20)

for all estimates x̂, determined in some way from y. A major property of the

MMSE estimate is contained in the following theorem [55].

Proposition 2.1 Let X and Y be two jointly distributed random vectors, and let

Y be measured as taking the value y. Let x̂0 be the MMSE estimate of X. Then

x̂0 is also uniquely sepcified as the conditional mean of X given that Y = y, i.e.

x̂0 = E[X|Y = y] . (2.21)

For Gaussian random variables, it can be shown that the MMSE estimate is

equal to the linear MMSE estimate. For linear MMSE estimation, the estimate x̂

of X given that Y = y is given by

x̂ = wHy (2.22)

where w is the optimal weight vector such that the mean square value ε = E[‖X −

x̂‖2] of the estimation error X − x̂ is a minimum. Here we use the orthogonality

principle to solve for the optimal weight vector w [39].

Proposition 2.2 The mean square value ε is a minimum if the error X − x̂ is

orthogonal to the data y:

E
[
(X − wHy)yi

]
= 0 i = 1, · · · , N . (2.23)
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The above proposition yields the optimum weight vector

w = Σ−1
YYΣXY (2.24)

where ΣYY = E[YYH ] is the data autocorrelation matrix, and ΣXY = E[X∗Y]

is the crosscorrelation between the variable to be estimated and the data. Since

(X − x̂)⊥yi for every i, we conclude that (X − x̂)⊥x̂; hence

ε = E[(X − x̂)x̂] = E[X2] − ΣH
XY(Σ−1

YY)HΣXY . (2.25)

The optimal weight vector w obtained above is the Wiener filter weight vector.

It is well known that if the temporal correlation of the fading process is known,

Wiener filter is the optimal filter. If the fading process is generated by an infinite

impulse response (IIR) filter or an autoregressive (AR) filter, a Kalman filter can

carry out the estimation recursively, which is computationally efficient.

2.3.2 Channel Estimation For MIMO Systems

For MIMO systems, channel estimation schemes have been mostly based on

pilot-assisted approaches, assuming the quasi-static fading channel model. The

effects of pilot assisted channel estimation on the achievable data rates over a

frequency non-selective, quasi-static fading channel were analyzed in [56]. The

lower bounds on the capacity derived in [56] show that the capacity is reduced

if a part of channels are allocated to pilot symbols. The effects of the channel

estimation errors are represented by the covariance of the effective noise.

Data-assisted channel estimation schemes for MIMO systems are few. It has

been known that unlike SISO systems, it is impossible to obtain the estimate of the

channel fading matrix based on the MIMO signal model given in (2.4), even if an

estimate of the data vector v(t) is available. This is because the received signal at

each receive antenna is the sum of the transmitted data symbols from all transmit

antennas. The interantenna interference makes it impossible to solve the estimated
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channel fading matrix with only the knowledge of the current data vector. Recently,

it is shown that this problem can be solved by using a sequence of data decisions. In

[57], an iterative method was derived to estimate channel parameters for an MIMO

systems. However, they assume data decisions over the entire transmission have

already been made, i.e., the whole data matrix is known to the receiver. In [58],

a decision-directed maximum a posteriori probability (MAP) channel estimation

scheme for MIMO time-varying fading channels is provided. To estimate the fading

coefficient on a link at time t, a window of W channel measurements proceeding

time t is used. The channel measurements are constructed by the received signals

and the data symbol decisions. However, this method involves the inversion of

the data decision matrix. Thus, the complexity increases rapidly with the window

size W . Also, as mentioned, the performance degrades at low SNR due to error

propagations.

In our thesis, we use the pilot-assisted channel estimation scheme for simple

implementation and the satisfactory estimation accuracy. This scheme is first pro-

posed in [59]. In the next chapter, we will build up the TDM STTC system with

PSAM for MIMO channel estimation.
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Chapter 3

Performance Analysis of STTC

over i.i.d. Channels with Channel

Estimation

In this chapter, we focus on the performance analysis of STTC over rapid

fading channels with channel estimation. Here, i.i.d. channels are assumed. The

PSAM channel estimation scheme is proposed for MIMO systems and its design

parameters are analyzed. Then, the ML receiver incorporating the pilot channel

measurements is derived. With the simple ML receiver metric, both analytical PEP

and BEP results are obtained. Finally, simulation results are provided to verify

the analysis.

3.1 Introduction

Developing effective techniques to evaluate the performance of STTC has at-

tracted great research interests [20], [22], [23], [24], [26], [60], [61], [62]. Tarokh et al.

[1] first evaluated the PEP of STTC over fading channels using a Chernoff bound.

Based on this PEP bound, a design criterion for STTC over fading channels was
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presented. Later, some efforts have been made to obtain the exact PEP, or tighter

upper bounds on the PEP [22], [23], [24]. Most recently, researchers found that

the distance spectrum should be considered to characterize the error performance

of STTC effectively [20], [21], [60]. However, all these papers [1], [20], [22], [23],

[24], [26], [60], [61], [62] only consider the case where perfect CSI is available to the

receiver. There have been only a few works on STTC error performance analysis

with imperfect CSI [41],[42], [43]. All these works on STTC with imperfect CSI,

however, considered only the quasi-static fading case. To our knowledge, STTC

performance analysis with imperfect CSI over rapid fading channels has not been

considered so far. The works of [1], [22], [23] and [26] have considered the rapid

fading case, but, as mentioned, they assumed perfect CSI. We also note that all the

PEP results with perfect CSI in [22], [23], [26] are implicit, and require the compu-

tation of eigenvalues, residues or the numerical evaluation of an integral. The same

is true for the PEP results with imperfect CSI in [41]-[43]. The asymptotic PEP

result in [62] is explicit. However, their result is only an asymptotic one, valid for

a large number of antennas over quasi-static fading channels.

In this chapter, we consider the error performance analysis of STTC with

MPSK modulation over rapid, nonselective, Rayleigh fading channels with PSAM

for channel estimation. The rapid fading scenario is assumed to be produced by

perfect interleaving and de-interleaving. Channel estimation will be performed by

exploiting the correlation of the fading process over time before de-interleaving.

The choice of the pilot spacing and the Wiener filter length used in the PSAM

scheme is a tradeoff between estimation accuracy, transmission rate/pilot overhead

and receiver complexity. A direct derivation of the ML receiver with channel es-

timation is given. A new upper bound on the PEP is obtained in the presence of

channel estimation errors. The bound shows explicitly the dependence of the PEP

on the MSE of the channel estimates. The channel estimation MSE, in turn, is

determined completely by the spectral model of the channel fading process and the

channel estimator employed. In the limit of perfect CSI, or no channel estimation

errors, our PEP bound reduces to a form similar to that in [1] for rapid fading,
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but is tighter. Based on the newly derived PEP bound, an upper bound on the

BEP is obtained. The BEP analysis is done using the method of dominant error

events proposed in [63]. The choice of the maximum length of the dominant error

events to be included in this analysis is critical in this method. We will examine

in detail the convergence of the BEP upperbound as the maximum error event

length increases. Our work here enables one to analyze the BEP of STTC under

actual channel estimation conditions in rapid fading. The BEP upperbound is

shown to be very tight in comparison with simulated BEP results. This, in turn,

also indicates that the PEP upperbound is tight. The performance loss caused by

channel estimation errors increases with the channel fade rate. For high fade rates,

the diversity gain achieved by using a large number of transmit antennas can be

significantly reduced by the increased estimation error variance.

3.2 The MIMO System with Rapid Fading

The general way to produce the rapid fading scenario is by using interleav-

ing/deinterleaving techniques. Interleaving techniques are traditionally used to

enhance the quality of transmission over the bursty wireless channel. This is usu-

ally accomplished by scrambling successive symbols of the transmitted sequence

into different time slots. A channel is considered fully interleaved when the fad-

ing coefficients experienced by consecutive symbols of the received sequence are

independent. This is achieved when adjacent symbols of the transmitted sequence

are separated by more than the channel coherent time. A channel is considered

partially interleaved when consecutive symbols of the received sequence are af-

fected by the coherent fading. Interleaving improves the performance of wireless

systems at the cost of increasing memory space requirements, system complexity,

and time-delay. An F × K block interleaver consists of a rectangular array of F

rows and K columns. The vertical dimension, F , of the array is called the inter-

leaving depth. The transmitted sequence is usually fed into the array row by row
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(1,1) (1,2) (1,3) (1,4) ... (1,K)
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Fig. 3.1: A diagram of a block interleaver.

and shifted out column by column. Successive symbols of the transmitted sequence

appear over the channel F symbols apart. The structure of the received sequence

is restored by an inverse operation using an F × K array as a deinterleaver. The

block interleaver/deinterleaver memory space requirements and time-delay is 2FK

symbols for both. Here, we employ the TDMA technique to produce the rapid

fading scenario. This can not only be implemented on the existing networks, but

also reduce the memory space requirements and the time delay at the transmitter

side for each user. In TDMA systems, the data from multiple users are multiplexed

and transmitted. The required memory space for each user is only K symbols, and

the delay time at the transmission side is F symbols.

We consider a TDM communication system using STTC with NT transmit and

NR receive antennas. Referring to Fig. 3.2, the data from each user are encoded

by a channel encoder and divided into NT parallel streams. Each stream is pulse

shaped and modulated. Here, we consider equal-energy, MPSK modulation. The

modulated streams from all users are multiplexed into frames. In one frame, there

are F time slots which can support U users, and U is less than F because some time

slots are reserved for pilot symbols used for channel estimation. In each time slot,

only one user is allowed to access the channel. The user transmits the NT coded

symbols simultaneously in the assigned time slot. Then he must wait for F time

slots before he can transmit again in the next frame. Thus, F is the equivalent

interleaving depth. Assuming the length of the data packet for a user is KNT
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Fig. 3.2: Illustration of the TDM communication system.

symbols, it takes K frames for a user to transmit a packet. At the receiver, the

received frames are demultiplexed to the detectors of the different users.

In the kth (1 ≤ k ≤ K) frame, a codevector v(k, u) = [v1(k, u) · · · vNT
(k, u)]T

from the uth user is transmitted in the uth (1 ≤ u ≤ F ) time slot, where vj(k, u) is

the code symbol transmitted by the jth antenna. Here, the parameter u not only

indicates the time slot index but also labels the user. The pair (k, u) corresponds

to a time point t on the real time axis, which is given by

t = (k − 1)F + u . (3.1)

The unit of time is the duration of one code symbol. Then the output of the

matched filter of the ith receive antenna sampled at the uth time slot in the kth
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frame, ri(k, u), can be expressed as

ri(k, u) =
√

Es

NT∑
j=1

hij(k, u)vj(k, u)+ni(k, u) i = 1 · · ·NR, 1 ≤ k ≤ K, 1 ≤ u ≤ F.

(3.2)

Here, {ni(k, u)} is the additive, channel white noise sequence at receive antenna i.

It is a sequence of i.i.d., complex, Gaussian random variables with E[ni(k, u)] = 0

and E[ni(k, u)n∗
i (k

′, u′)] = N0δ(t − t′) where δ(x) is the Kronecker delta, t is given

by (3.1), and t′ similarly by t′ = (k′−1)F +u′. The quantity hij(k, u) is the fading

coefficient experienced by the uth user’s data at time t on the (i, j)th link. Each link

(i, j) introduces slow, nonselective, Rayleigh fading. Thus, the fading coefficient

process {hij(k, u)} is a complex, Gaussian process with mean zero and autocorre-

lation function E[hij(k, u)h∗
ij(k

′, u′)] = 2σ2R(t − t′), where R(τ) is the normalized

autocorrelation function of both the real and imaginary parts of the fading process,

which are independent of one another. The quantity 2σ2 is the common covariance

of the fading coefficients for the different links. We assume that both the additive

noises and the fading processes are spatially independent for all links (i, j). We cau-

tion the reader that all the variables in (3.2) are functions of a single time variable t

which is related to the parameters k and u through (3.1). We show the dependence

on k and u in (3.1) for the sake of clarity. Combining the received signals of all

the receive antennas at time t as r(k, u) = [r1(k, u) r2(k, u) · · · rNR
(k, u)]T , the

matrix/vector representation of this MIMO system is

r(k, u) =
√

EsH(k, u)v(k, u) + n(k, u) . (3.3)

Here n(k, u) = [n1(k, u) n2(k, u) · · · nNR
(k, u)]T is the noise vector for all the re-

ceive antennas. The symbolwise constant fading matrix is H(k, u), where H(k, u)

is assumed to be independent of n(k, u) for all times t. Since our system incor-

porates multiplexing and de-multiplexing the data from all the users, the fading

process experienced by the uth user’s data on each link (i, j) is {hij(k, u)}K
k=1, which

is a complex, Gaussian process with correlation function E[hij(k, u)h∗
ij(l, u)] =

2σ2R (|k − l|F ). For sufficiently long frame length F , this correlation approaches

zero. Thus, in the limit of large F , the data transmitted by a given user experience
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independent fading over time on the link, i.e., E[hij(k, u)h∗
ij(l, u)] = 2σ2δ(k−l). Un-

der this independent fading scenario, both space and time diversities are achieved

for each user, and this is called the rapid fading case [1]. All the papers that have

considered STTC over rapid fading channels assume that perfect CSI is available

to the receiver, i.e., the channel fading matrix H(k, u) is known to the receiver.

This is, of course, too idealistic an assumption. Channel estimates are required in

order for the receiver to perform coherent detection [52]. The details of channel

estimation will be discussed in the next section.

3.3 PSAM Scheme for Channel Estimation

We estimate the channel using the PSAM scheme in which known symbols are

inserted periodically into the data sequence. A description of the PSAM method

for single-input single-output systems is provided in [40]. A PSAM scheme for

MIMO systems without channel coding is presented in [59]. We use a modification

of the scheme in [59] below.

The transmitted frame structure is shown in Fig. 3.2. A frame consists of

multiple blocks. Each block has a pilot phase and a data phase. The length of

a block is L time slots where F/L is an integer, and in each block NT slots are

assigned to pilots and the rest to data. During the pilot phase, NT pilot symbols

are transmitted one at a time in each time slot from each transmit antenna to

allow estimation of all the channels associated with that antenna. Within each

block, without loss of generality, let the pilot symbol for the jth transmit antenna

be transmitted in the jth time slot during which only the jth transmit antenna

is active while the other transmit antennas are silent. The pilots for a transmit

antenna are thus spaced by L time slots. L is a design parameter that is chosen

based on the channel fade rate, among other factors. Since channel estimation

exploits the correlation of the slow Rayleigh fading process before de-multiplexing

at the receiver, we first rewrite the received signal model of (3.2) in terms of time
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t given by (3.1), and thus we have

ri(t) =
√

Es

NT∑
j=1

hij(t)vj(t) + ni(t), t = 1, · · · , KF . (3.4)

The received pilot symbols from the jth transmit antenna in the lth block sampled

at the ith receive antenna, ri(tlj), are thus given by

ri(tlj) =
√

Eshij(tlj)v
p
j (tlj) + ni(tlj) . (3.5)

Here, vp
j (tlj) is the pilot symbol transmitted from the jth transmit antenna in the

lth block, i.e., at time tlj, where tlj = j + lL, l = 0, 1, · · · , F/L, · · · , ((KF/L)−1).

From (3.5), it can be seen that the energy of the pilot symbols is assumed to be

equal to that of the data symbols. In practical systems, the energy of the pilot

symbols could be different from that of the data symbols. High pilot symbol energy

may be required to achieve good channel estimation. Thus, to be more general, we

rewrite (3.5) as

ri(tlj) =
√

Ephij(tlj)v
p
j (tlj) + ni(tlj) (3.6)

where Ep is the energy of the pilot symbols. The value of Ep may be equal to Es, or

be set to a value based on the requirements of the channel estimation accuracy. In

Chapter 6, we will examine how to determine the optimal relationship between Ep

and Es. Since the pilot symbols are known, we define the normalized measurement

sample zi(tlj) as

zi(tlj) = ri(tlj)/(
√

Epv
p
j (tlj)) = hij(tlj) + n′

i(tlj) . (3.7)

Each zi(tlj) is a noisy measurement on the channel coefficient hij(tlj). Here {n′
i(tlj)}

is a set of i.i.d. complex, Gaussian random variables with mean zero and variance

N0/Ep, for all tlj and all i.

We define I = {{{zi(tlj)}(KF/L)−1
l=0 }NR

i=1}
NT
j=1 as the set of all channel measure-

ments obtained from the pilot symbols. In theory, the MMSE estimate of hij(t)

at any time t is E[hij(t)|I]. However, due to the spatial independence among

the channels and the de-correlation of each channel over time, the estimator will
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use only the N nearest (in time) received pilot samples on the (i, j)th link to

estimate hij(t), where N is a design parameter that depends on the fade rate

among other factors. The estimator uses bN/2c pilot symbols from the previous

blocks, the pilot symbol from the current block where hij(t) is located, and the

pilot symbols from the b(N − 1)/2c subsequent blocks. The pilot symbol from

the current block is located at the time tj = j + bt/LcL. Consequently, the

N nearest pilot symbols for hij(t) are located at times {tlj = tj + lL}b(N−1)/2c
l=−bN/2c .

Let the N × 1 vector of noisy pilot measurements on the (i, j)th link be zij(t) =

[zi(tj − bN/2c)L) · · · zi(tj + b(N − 1)/2c)L)]T . The MMSE estimate of hij(t) thus

reduces to

ĥij(t) = E [hij(t)|I] ≈ E [hij(t)|zij(t)] = wHzij(t) . (3.8)

Here, w is the Wiener filter weight vector that minimizes the mean square estima-

tion error εij(t) = E

[∣∣∣hij(t) − ĥij(t)
∣∣∣2]. By the well-known orthogonality principle,

εij(t) is a minimum if the estimation error eij(t) = hij(t) − ĥij(t) is orthogonal to

all the noisy fading measurements in zij(t). This yields the estimated channel

coefficient ĥij(t) as

ĥij(t) = ΣH
hijzij

(Σ−1
zij

)Hzij(t) (3.9)

where the N ×N matrix Σzij
= E

[
zij(t)(zij(t))

H
]

is the autocorrelation matrix of

zij(t), with the (m,n)th entry given by

Σzij
(m,n) =

 2σ2R ((m − n)L) m 6= n

2σ2 + N0/Ep m = n
(3.10)

while the N ×1 vector Σhijzij
= E

[
h∗

ij(t)zij(t)
]

is the crosscorrelation vector of the

fading coefficient hij(t) with the N noisy fading measurements zij(t), with its nth

entry given by

Σhijzij
(n) = 2σ2R ((n − 1 − bN/2c)L − τ) . (3.11)

Here τ is the time interval between the fading coefficient to be estimated, hij(t),

and the corresponding pilot symbol of the current block transmitted at time tj,

and is given by

τ = t − tj = t − j − bt/LcL .
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Using the expression for t in (3.1), we get from the last equation,

τ = u − j − bu/LcL . (3.12)

The time interval τ can be seen to be a function of the user index u and the transmit

antenna index j. The results in (3.9) through (3.11) show that the Wiener filter

weight vector, w = Σ−1
zij

Σhijzij
, depends on the time interval τ . The channel

estimate ĥij(t) is a zero-mean, complex, Gaussian random variable with a variance

of

E

[∣∣∣ĥij(t)
∣∣∣2] = 2σ̂2

ij(τ) = ΣH
hijzij

(Σ−1
zij

)HΣhijzij
. (3.13)

The corresponding mean square estimation error is given by

2σ̄2
ij(τ) = E

[∣∣∣hij(t) − ĥij(t)
∣∣∣2] = 2σ2 − 2σ̂2

ij(τ) . (3.14)

We model the actual fading coefficient hij(t) at any time t as

hij(t) = ĥij(t) + eij(t) (3.15)

where eij(t) is the estimation error. The estimation error eij(t) is also a zero-mean,

complex, Gaussian random variable, and attains its minimum variance of 2σ̄2
ij(τ).

It can be seen from (3.13) and (3.14) that both the estimate variance σ̂2
ij(τ) and the

estimation error variance σ̄2
ij(τ) depend on the time interval τ . Since the quantity

τ is a function of the transmit antenna index j, the accuracy in estimating the

channel coefficient hij(t) varies from one transmit antenna to another. But both the

estimate variance σ̂2
ij(τ) and the estimation error variance σ̄2

ij(τ) are independent

of the receive antenna index i. Thus, we can drop i in the sequel, and because of

the one-to-one relationship between τ and u for a fixed transmit antenna index j

given in (3.12), these two variances will be written more briefly as σ̂2
j (u) and σ̄2

j (u),

respectively.

At the receiver, the estimated channel fading processes {ĥij(t)} together with

the received signal sequences are demultiplexed to the detectors of the different

users. After de-multiplexing, the estimated channel fading process for each user u,

{ĥij(k, u)}K
k=1, can be easily obtained from {ĥij(t)} by relating t to u and k as in
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(3.1). Since the actual fading coefficients experienced by each user are all indepen-

dent due to perfect interleaving, the corresponding estimated fading coefficients

for the uth user, {ĥij(k, u)}K
k=1, is a sequence of zero-mean, complex, Gaussian

random variables which are all mutually uncorrelated, with E
[
ĥij(k, u)ĥ∗

ij(l, u)
]

=

2σ̂2
j (u)δ(k − l).

3.4 The ML Receiver Structure

Since the data from different users are independent, the data detection for

different users can proceed in parallel. In the following, we thus focus on one user

and drop the user index u. Then the signal model (3.2) may be rewritten in terms

of the frame index k alone, as

r(k) =
√

EsH(k)v(k) + n(k) k = 1, · · · , K .

Suppose the entire transmitted signal sequence of a user is v =
[
vT (1) · · · vT (K)

]T
.

Then, the received signal, r =
[
rT (1) · · · rT (K)

]T
, is given by

r =
√

EsHv + n (3.16)

where H = diag [H(1) · · · H(K)] is the combined channel fading matrix and the

combined noise vector is n =
[
nT (1) · · · nT (K)

]T
. The estimated channel fading

matrix is Ĥ = E [H|I], and it clearly has the structure Ĥ = diag
[
Ĥ(1) · · · Ĥ(K)

]
.

Here, the (i, j)th element of Ĥ(k) is ĥij(k) given in (3.8). All the elements in Ĥ are

independent, zero-mean, complex, Gaussian random variables with a variance of

E
[
ĥij(k)ĥ∗

ij(l)
]

= 2σ̂2
j δ(k − l), as we have discussed. The estimation error matrix

is E = diag [E(1) · · · E(K)], where E(k) = H(k) − Ĥ(k). The elements {eij(k)}

of E are also independent, zero-mean, complex, Gaussian random variables, each

with variance E
[
eij(k)e∗ij(l)

]
= 2σ̄2

j δ(k − l).

The estimated channel fading matrix Ĥ and the associated estimation error

covariance matrix summarize all the information concerning the channel matrix

40



3.4. THE ML RECEIVER STRUCTURE

H given by the set of pilot channel measurements I. Based on the set of all

pilot channel measurements I and the entire received sequence r, the ML receiver

detects the transmitted signal sequence v by computing the likelihood function

Ql = p (r, I|v = vl) for each possible value vl of v, and deciding that v = vj if

Qj = max
l

Ql. The likelihood function may be rewritten as

Ql = p (r|I,v = vl) p (I|v = vl) .

Since the pilot channel measurements I are independent of the data sequence vl,

we have p (I|v = vl) = p(I) and we can thus drop the term p (I|v = vl) in the

expression of Ql. The ML receiver is reduced to computing the conditional prob-

ability density function p (r|I,v = vl). Given I and v, r is a complex, Gaussian

random vector with a mean of

η = E [r|I,v] =
√

EsĤv (3.17)

and a covariance matrix of

Γ = E
[
(r − η)(r − η)H |I,v

]
= EsE

[
EvvHEH

]
+ N0INRK . (3.18)

We now show that the conditional covariance matrix Γ is proportional to an identity

matrix for equal-energy MPSK modulation. We first define α = Ev. Due to the

block-diagonal structure of the estimation error matrix E, we can easily show that

α =
[
αT (1) · · · αT (K)

]T
, where α(k) = E(k)v(k) = [α1(k) · · · αNR

(k)]T for each

k. Each element αi(k) of α(k) is now given by

αi(k) =

NT∑
j=1

eij(k)vj(k) . (3.19)

Due to the independence of the elements {eij(k)} of E, we have from (3.19) that

E
[
αi(k)αH

i′ (l)
]

= E

∣∣∣∣∣
NT∑
j=1

eij(k)vj(k)

∣∣∣∣∣
2
 δ(k − l)δ(i − i′) . (3.20)

Next, noting that the estimation error variances, σ̄2
j ’s, are independent of receive

antenna index i, as mentioned before, (3.20) reduces to

E
[
αi(k)αH

i′ (l)
]

=

(
2

NT∑
j=1

σ̄2
j |vj(k)|2

)
δ(k − l)δ(i − i′) . (3.21)
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The result in (3.21) is also independent of receive antenna index i. Using (3.21) in

the first term on the rightmost side of (3.18) gives

E
[
EvvHEH

]
= E

[
ααH

]
= diag [Λ(1) · · · Λ(K)] (3.22)

where Λ(k) = 2
(∑NT

j=1 σ̄2
j |vj(k)|2

)
INR

for k = 1, · · · , K. The diagonal elements

of the matrix E
[
EvvHEH

]
in (3.22) have different values in general. However, for

equal-energy MPSK modulation, we have |vj(k)|2 = 1, for all k and j. This leads

to the result from (3.22), that

E
[
EvvHEH

]
= 2

(
NT∑
j=1

σ̄2
j

)
INRK .

Thus, the covariance matrix Γ in (3.18) can now be simplified to

Γ =

(
N0 + 2Es

NT∑
j=1

σ̄2
j

)
INRK = N0INRK . (3.23)

It can be seen that Γ is proportional to an identity matrix. Here, we have defined

N0 by

N0 = N0 + 2Es

NT∑
j=1

σ̄2
j (3.24)

which is a constant dependent only on the statistical information of channel estima-

tion error. We can think of N0 as the variance of the effective noise at each receive

antenna. It is made up of the additive channel noise and the channel estimation

errors.

Having obtained the conditional mean η and the conditional covariance matrix

Γ of the Gaussian random vector r, its conditional probability density function can

be expressed as

p(r|I,v = vl) =
1

(π)NRK |Γ|
exp {−(r − η)HΓ−1(r − η)} .

Using the expression for Γ in (20), the ML receiver can be seen to reduce to

minimizing the metric

m(r,v) = ‖r − η‖2 = ‖r −
√

EsĤv‖2 . (3.25)
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Thus, the receiver only computes the metric m(r,vl) for each possible value vl of

v, and decides that v = vj if m(r,vj) = min
l

m(r,vl). The metric (3.25) uses the

channel estimate Ĥ as if it were the actual channel fading matrix H. The fact that

the ML receiver reduces to minimizing the simple metric (3.25) is due to the fact

that Γ is proportional to the identity matrix as shown in (3.23). This property of Γ

is attributed to the equal-energy MPSK modulation and to the PSAM scheme for

channel estimation. The structure of our PSAM channel estimation scheme leads

to the channel estimation error variances, σ̄2
j ’s, being independent of the receive

antenna index i. For general non-equal-energy modulation schemes, the diagonal

elements of Γ are not equal. The decision metric would then have to take into

account the effect of the covariance matrix Γ. Although the extension of the ML

receiver to non equal-energy modulation is straightforward, we will not consider

it here. We focus on equal-energy MPSK modulation here, and derive an explicit

upper bound on the PEP.

Reference [64] presents a similar receiver derivation but it considers the quasi-

static fading case.

3.5 Error Performance Analysis

3.5.1 The PEP Upper Bound

Since the ML metric (3.25) is a Euclidean distance metric given the pilot chan-

nel measurements I, the conditional PEP P (vc → ve|I,v = vc) that the receiver

decides in favor of an erroneous codeword ve when the actual codeword sent is vc

and ve is the only other alternative, is given by [65]

P (vc → ve|I,v = vc) = P
(
‖r −

√
EsĤve‖2 − ‖r −

√
EsĤvc‖2 < 0|I,v = vc

)
= Q

√
Es‖Ĥvce‖2

2N0

 (3.26)
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where vce = vc−ve is the code difference vector, each of whose elements {vcej(k)}NT , K
j, k=1

is a code difference symbol vcej(k) = vcj(k) − vej(k). We first write the quantity

‖Ĥvce‖2 as

‖Ĥvce‖2 =

NR∑
i=1

∑
k∈κ

∣∣∣∣∣
NT∑
j=1

ĥij(k)vcej(k)

∣∣∣∣∣
2

. (3.27)

Here κ is the set of frame indices k where vc(k) 6= ve(k). We define

gi(k) =

NT∑
j=1

ĥij(k)vcej(k) . (3.28)

From (3.28), gi(k) is a linear combination of independent, Gaussian random vari-

ables {ĥij(k)}NT
j=1. It is then obvious that gi(k) is a complex, Gaussian random vari-

able with a mean of zero and a variance of E
[
|gi(k)|2

]
= 2σ2

g(k) = 2
∑NT

j=1 σ̂2
j d

2
j(k)

that is independent of receive antenna index i. The quantity dj(k) = |vcej(k)| is

the Euclidean distance between the erroneous code symbol vej(k) and the actual

transmitted code symbol vcj(k) from the jth transmit antenna in the kth frame.

Also, gi(k) is independent of gi′(k
′), for i 6= i′ or k 6= k′ or both, due to the inde-

pendence of the estimated channel coefficients ĥij(k). The conditional PEP (3.26)

can now be expressed as

P (vc → ve|I,v = vc) = Q


√√√√ Es

2N0

NR∑
i=1

∑
k∈κ

|gi(k)|2
 . (3.29)

From the conditional PEP (3.29), we need to average over all possible realizations

of {gi(k)}NR, K
i, k=1 to obtain the desired PEP P (vc → ve|v = vc). In general, this is

an average over a weighted chi-square distribution. Although there are numerical

methods to calculate this PEP exactly [22], [23], such methods do not lead to

explicit results and would not provide any insight into code design. This motivates

us to obtain a simple, explicit, tight upper bound on the average PEP. First, using

the bound Q(x) < e−x2/2/2, the right hand side in (3.29) can be bounded as

P (vc → ve|I,v = vc) <
1

2

NR∏
i=1

∏
k∈κ

exp

(
− Es

4N0

|gi(k)|2
)

. (3.30)

The right hand side of (3.30) is now a product of independent random variables,

and the average can be taken term by term. Noting that the average of each term
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over the quantity gi(k) is

E

[
exp

(
− Es

4N0

|gi(k)|2
)]

=

(
1 +

2σ2
g(k)Es

4N0

)−1

for all i [65, eq. (2.1-109)], we obtain the PEP upper bound 1

P (vc → ve|v = vc)|ICSI <
1

2

∏
k∈κ

1 +
Es

∑NT

j=1 σ̂2
j d

2
j(k)

2
(
N0 + 2Es

∑NT

j=1 σ̄2
j

)
−NR

. (3.31)

The result (3.31) is our new upper bound on the PEP over rapid Rayleigh fading

channels with imperfect CSI at the receiver. The effect of channel estimation on

the error performance is clear. First, the channel estimation errors introduce more

noise at the receiver as shown by the effective noise term N0 = N0 + 2Es

∑NT

j=1 σ̄2
j .

Second, the Euclidean distances between code symbols are weighted by the different

variances of the estimated channel coefficients associated with the different transmit

antennas. Thus, the structure and performance of codes are expected to be affected

by the quality of the channel estimates. Optimum code design with imperfect CSI

should take into consideration the statistical information of the channel estimates.

Finally, our result is explicit. Both the variances σ̂2
j ’s in (3.13) of the estimated

channel coefficients and the channel estimation error variances σ̄2
j ’s in (3.14) are

completely determined by the channel estimator and the channel fading spectral

model. Thus, the PEP upperbound (3.31) is easy to compute once the channel

fading model and the channel estimator are given. Our results are the first to show

explicitly the effect of channel estimation error on the PEP performance of STTC

over rapid fading channels. This result promises to ease performance analysis and

code design.

From (3.31), in the limit of perfect channel estimation, where we have σ̄2
j = 0,

or σ̂2
j = σ2 for all j, the PEP bound reduces to that of the perfect CSI case. Thus,

for perfect CSI (PCSI), we have

P (vc → ve|v = vc)|PCSI <
1

2

∏
k∈κ

(
1 +

2σ2Es

4N0

(
NT∑
j=1

d2
j(k)

))−NR

. (3.32)

1Imperfect CSI is abbreviated as ICSI in equations and figures throughout this thesis.
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Since ‖vce(k)‖2 =
∑NT

j=1 d2
j(k) by definition, the new PEP upper bound (3.32) for

perfect CSI channels is similar to the well-known bound in [1, eq. (17)] given by

P (vc → ve|v = vc)|PCSI <
∏
k∈κ

(
2σ2Es‖vce(k)‖2

4N0

)−NR

.

However, our bound (3.32) is tighter.

3.5.2 The Estimated BEP Upperbound

We apply here the PEP upperbound (3.31) to obtain an upperbound on the

BEP, which is ultimately the performance measure of interest. Since the PEP

result (3.31) is in a product form, the upper bound on the BEP can be obtained

by using, for instance, the transfer function technique in [60]. Alternatively, an

accurate estimate of the BEP Pb can be obtained more simply through the method

of dominant error events [23], [63]. This method estimates the BEP Pb as

Pb ≈
1

n

∑
vc

∑
ve

a(vc → ve)P (vc → ve|v = vc)P (vc) (3.33)

where n is the number of input bits per code sequence under consideration, and

a(vc → ve) is the number of bit errors associated with the error event of deciding

in favor of ve when vc was sent. In (3.33), we only sum over erroneous codewords

ve with error event lengths from the minimum value Lpmin which depends on the

code structure, up to a certain maximum value Lpmax which we choose. The choice

of Lpmax is critical in this BEP estimation method. If Lpmax is too small, the

estimated BEP may not be accurate enough because it does not take into account

enough dominant error events. On the other hand, we do not need a very large

Lpmax, because the BEP computed via (3.33) converges rapidly as Lpmax increases.

Thus, a proper Lpmax should be chosen. We will examine the choice of Lpmax in

the next section. Our work here is an extension of the method of using dominant

error events to estimate the BEP to the case with channel estimation errors.
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Since each term P (vc → ve|vc) in (3.33) can be upper-bounded using the result

in (3.31), we can express the estimated BEP upperbound as

Pb <
1

n

∑
vc

∑
ve

a(vc → ve)P (vc)

2

∏
k∈κ

1 +
Es

∑NT

j=1 σ̂2
j d

2
j(k)

2
(
N0 + 2Es

∑NT

j=1 σ̄2
j

)
−NR

 .

(3.34)

In the next section, we will show the tightness of the upperbound (3.34) when

computed using the choice of Lpmax given by Lpmax = Lpmin + ν − 1, where ν is the

memory order of the code and Lpmin is the shortest error event length. This work

will serve also to show the tightness of our PEP upperbound (3.31).

3.6 Performance Results

We use the codes of [1] and [2] (abbreviated here as TSC and FVY codes,

respectively) as examples to demonstrate the validity of our performance analy-

sis. Codes with different numbers of states and using different MPSK modulation

schemes will be considered. We assume each channel fading process has a Jake’s

power spectrum so that R(τ) = J0(2πfdτ), although our analysis is not restricted

to this specific model. The PSAM scheme is used to estimate the channels. In the

numerical examples below, we consider a user whose time slot is located immedi-

ately after the pilot phase in a block. The energy of the pilot symbols is assumed

to be equal to that of the data symbols, i.e., Ep = Es.

Using the PSAM scheme to estimate the channels, we first need to get an idea

of the pilot spacing L and the Wiener filter length N for optimum performance.

To obtain the optimum performance, we should minimize the performance loss

caused by estimation errors. We measure the effect of estimation errors by the total

estimation error variance σ̄2, which is the sum of the estimation error variances from

all transmit antennas, i.e., σ̄2 =
∑NT

j=1 σ̄2
j . As can be seen in (3.31), minimizing

the total estimation error variance σ̄2 minimizes the PEP and, hence, the BEP in

(3.34). In Fig. 3.3 and Fig. 3.4, we plot the total estimation error variance σ̄2
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Fig. 3.3: The surface of the total estimation error variance σ̄2 as a function of the pilot spacing

L and the Wiener filter length N , with two transmit antennas and fdT = 0.05 at

Es/N0 = 15 dB.

as a function of the pilot spacing L and the Wiener filter length N for SNR of

Es/N0 = 15 dB, and for two values of the normalized fade rate, i.e., fdT = 0.05

and fdT = 0.01, respectively. We assume NT = 2 transmit antennas. To be fair,

we have to account for the energy spent on the pilot symbols. Thus, the effective

energy per data symbol in the PSAM scheme is E ′
s = Es(L−NT )/L. The fraction

of overhead is NT /L. It can be observed that for a given Wiener filter length

N , the total estimation error variance σ̄2 increases rapidly with L for L greater

than a certain value. On the other hand, one would like to use as large a value

of L as possible to minimize the faction of overhead NT /L, and to maximize the

data transmission rate. This means that as a tradeoff we should choose a suitable

compromise value for the pilot spacing L. Similarly, one would in general like to

have a longer Wiener filter length N to minimize the total estimation error variance

σ̄2. However, as can be observed in Fig. 3.3 and Fig. 3.4, for each pilot spacing

L, the total estimation error variance σ̄2 decreases very slowly for values of N
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greater than a certain value. The decrease in the total estimation error variance

σ̄2 obtained by increasing N beyond this value is not sufficiently significant to

justify the increase in filter complexity. Thus, again, as a tradeoff, we also choose

a suitable compromise value for N . For each value of SNR Es/N0, fade rate fdT

and number of transmit antennas NT , we use a plot like that in Fig. 3.3 or Fig.

3.4 to determine values Lc and Nc, which are the most suitable ones to be used

for the pilot spacing L and the Wiener filter length N , respectively, based on the

above considerations. For the case of NT = 2, Es/N0 = 15 dB, and fdT = 0.05

in Fig. 3.3, we choose Lc = 8 and Nc = 10, respectively. Decreasing the fade

rate to fdT = 0.01 in Fig. 3.4, we find that we can increase Lc to 16 and Nc to

12, respectively. Our investigations show that Lc and Nc are not very sensitive to

SNR, varying only slightly as SNR changes. We find that the values of Lc and Nc

chosen at a SNR of Es/N0 = 15 dB work well for the entire SNR range of about 8

dB to about 30 dB.
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Fig. 3.4: The surface of the total estimation error variance σ̄2 as a function of the pilot spacing

L and the Wiener filter length N , with two transmit antennas and fdT = 0.01 at

Es/N0 = 15 dB.
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Fig. 3.5: The simulated BEP performances of the 8-state QPSK TSC code of [1] with different

channel estimation parameters L and N , using two transmit and one receive antenna,

and fdT = 0.05.

The choice of L and N discussed here is verified in Fig. 3.5, where we show

the simulated BEP performance of the 8-state QPSK TSC code with two transmit

and one receive antenna and a normalized fade rate of fdT = 0.05. Through all the

simulated results, we take the data packet length as K = 100. The simulations show

that the performance is near optimum with L = 8 and N = 10. The performance

with L = 8 and N = 12 is nearly the same as that with N = 10 above, but this is

achieved at the cost of higher receiver complexity. When the pilot spacing is too

large, for instance, when L is increased to 10, there is a high error floor caused by

the large channel estimation errors. In fact, we can obtain satisfactory performance

close to optimum with the lowest complexity using L = 8 and N = 6. Taking into

account channel estimation accuracy, transmission rate, fraction of overhead, and

filter design complexity, we will hereafter choose the pilot spacing as L = 8 and

the Wiener filter length as N = 6 for the case of two transmit antennas to estimate

channels whose normalized fade rate fdT is less than or equal to 0.05, unless stated
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Fig. 3.6: Convergence of the BEP upperbound (3.34) for the 8-state QPSK TSC code of [1] with

two transmit and one receive antenna, where L = 8, N = 6 and fdT = 0.05.

otherwise.

Fig. 3.6 shows the BEP of the 8-state QPSK TSC code of [1], computed using

the BEP upperbound (3.34) with various values of Lpmax. The results show that the

upperbound (3.34) converges rapidly as the value of Lpmax used increases, especially

at high SNR. This is also true for the 8-state QPSK FVY codes of [2], as shown

in Fig. 3.7. Thus, we do not need a very large Lpmax to get an accurate estimate

of the BEP upperbound, especially at high SNR. In general, the BEP upperbound

(3.34) has practically converged when Lpmax = Lpmin + ν − 1. Therefore, a larger

Lpmax is needed for codes with a larger number of states. For QPSK modulation,

the 8-state STTC with the linear structure of [66] has Lpmin = 2, and the 32-state

STTC has Lpmin = 3.

Next, we will show that the BEP upperbound (3.34) is tight when computed

using the choice of Lpmax given by Lpmax = Lpmin + ν − 1. In Fig. 3.8 and

Fig. 3.9, we consider TSC/FVY codes with different numbers of states under
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Fig. 3.7: Convergence of the BEP upperbound (3.34) for the 8-state QPSK FVY code of [2] with

two transmit and one receive antenna, where L = 8, N = 6 and fdT = 0.01.

two modulation schemes, namely, QPSK and 8PSK. Two normalized fade rates

are considered, namely, fdT = 0.05 and fdT = 0.01. The simulation results

show that the computed BEP upperbound (3.34) is tight when computed using

Lpmax = Lpmin + ν − 1. Thus, we conclude that the BEP upperbound (3.34) has

practically converged by choosing Lpmax = Lpmin + ν − 1, and it provides the de-

sired accuracy.

In Fig. 3.10, we use our BEP bound (3.34) to analyze the performance loss,

due to increasing fade rates, of STTC with PSAM channel estimation over rapid

fading channels, compared with the case of perfect CSI. In this case, we choose

the channel estimation parameters L and N for different fade rates, as discussed

above. It is shown that at a very low fade rate, i.e., fdT = 0.001, the performance

loss is about 1 dB compared with that of perfect CSI. For a higher fade rate of

fdT = 0.005, the loss increases to about 2 dB, because the higher fade rate leads

to a greater estimation error variance.
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Fig. 3.8: The BEP analysis and simulation results for the QPSK TSC codes of [1] under imperfect

CSI with fdT = 0.05, using two transmit and one receive antenna, with L = 8 and

N = 6.
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Fig. 3.9: The BEP analysis and simulation results for the 8PSK FVY codes of [2] under imperfect

CSI with fdT = 0.01, using two transmit and one receive antenna, with L = 8 and
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In our PSAM scheme, the number of transmit antennas NT determines the

pilot duration for channel estimation. A larger NT leads to a greater decorrela-

tion between the channel coefficients to be estimated and the corresponding pilot

symbol measurements. The decorrelation increases with the fade rate, and leads

to a larger total estimation error variance σ̄2. Thus, a larger NT can lead to a

greater performance loss, especially for high fade rates. While the diversity gain of

STTC increases with NT for the perfect CSI case, it can be reduced or even lost

in the imperfect CSI case. This motivates us to analyze the performance loss of

STTC with different numbers of transmit antennas. In Fig. 3.11, we examine the

performance of two STTC with imperfect CSI. One is the QPSK 8-state FVY code

of [2] with two transmit antennas, while the other is the QPSK 8-state code of

[3] (abbreviated as CVYL code) with four transmit antennas. Channel estimation

parameters L and N are again chosen as in Fig. 3.10. It can be seen that for

a small fade rate of fdT = 0.001, the diversity gain achieved by the CVYL code

using NT = 4 transmit antennas is still maintained. However, for a high fade rate

of fdT = 0.05, the CVYL code performs worse than the FVY code with NT = 2

transmit antennas. The diversity gain achieved by the larger number of transmit

antennas is thus lost due to the increased channel estimation error variance caused

by a high fade rate.
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Fig. 3.10: The BEP analysis of the QPSK 8state FVY code of [2] with two transmit and one

receive antenna for the perfect CSI case, and the imperfect CSI case.
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3.7 Summary

In this chapter, we used a PSAM scheme to estimate the Rayleigh, rapid fading

MIMO channels. The pilot spacing and the Wiener filter length are chosen to

achieve good estimation accuracy while maintaining low receiver complexity. Based

on the channel estimates obtained, we derived a ML receiver with imperfect CSI for

STTC with MPSK modulation. Explicit, tight upperbounds on the PEP and the

BEP of the ML receiver are obtained. The BEP bound enables us to easily evaluate

the performance of STTC over rapid fading channels with channel estimation errors.

Using the BEP result, we observed that the performance loss of STTC caused by

channel estimation errors increases with the channel fade rate. More importantly, it

is shown that in contrast to the perfect CSI case, increasing the number of transmit

antennas in the imperfect CSI case may lead to a reduced or even negative transmit

diversity advantage if the fade rate is high, because of the increased total estimation

error variance.
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Chapter 4

Code Design of STTC over i.i.d.

Channels with Channel

Estimation

4.1 Introduction

In the previous chapter, we have presented the receiver structure and perfor-

mance analysis of STTC with imperfect CSI at the receiver. Based on the analysis

results, we here will focus on code design of STTC over rapid fading channels with

channel estimation. Research on space-time block codes with channel estimation

has been done in [67], but we will consider here STTC. Although a closed-form

expression for the PEP of space-time codes with imperfect CSI was presented in

[43] for the quasi-static fading case, the complicated and implicit nature of the ex-

pression made the implementation of code design difficult. The PEP upperbound

obtained in chapter 3, which is published in [68], is the only closed-form, explicit

result so far for STTC over rapid fading channels with imperfect CSI. The exact

PEP and tighter PEP bounds are further derived in [69]. These PEP upperbounds

promise to ease the design and search for STTC over rapid fading channels with

imperfect CSI.
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In this chapter, we propose a new code design criterion for STTC using MPSK

modulation over rapid, nonselective, Rayleigh fading channels with imperfect CSI

at the receiver, based on the explicit PEP upperbound obtained in chapter 2. This

PEP upperbound shows explicitly the dependence of the code performance on the

mean square error (MSE) of the channel estimates. Using these simple and explicit

PEP expressions, our code search is practical to implement. The PEP results lead

to a union bound on the node error event probability. Our design criterion uses the

node error event probability as the performance measure, which takes into account

the number of error event paths. This is necessary because for general STTC,

the geometrical uniform property is not always satisfied, and considering only the

minimum PEP as a code design criterion is not sufficient [21]. More importantly,

our criterion incorporates the statistical information concerning the channel esti-

mates, and this leads to codes which have better performance under actual channel

estimation conditions. It is found that the effect of channel estimation errors on

code design can be measured by the maximum estimation variance difference. This

maximum estimation variance difference increases with the channel fade rate and

the number of transmit antennas. This implies that with an increase in the channel

fade rate or the number of transmit antennas, the codes based on our new crite-

rion can achieve more performance gains than those of existing STTC which are

designed under the perfect CSI assumption. Since the effect of channel estimation

depends on the channel fade rate, based on the knowledge of the channel fade rate

at the transmitter, we consider two channel conditions for code design. When the

channel fade rate is known to the transmitter, new STTC with imperfect CSI are

obtained by using a novel iterative search algorithm. The BEP simulation results

demonstrate the advantages of our new STTC under actual channel estimation

situations. On the other hand, when the channel fade rate is unknown to the

transmitter, robust codes are proposed based on the knowledge of the distribution

of the channel fade rates, and shown to have the best average performance.
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4.2 Code Design with Channel Estimation

It has been shown in (3.31) the PEP upperbound of STTC over rapid fading

channels with imperfect CSI is given by

P (vc → ve|v = vc)|ICSI <
1

2

∏
k∈κ

[b (vc(k),ve(k))]−NR (4.1)

where κ is the set of frame indices k where vc(k) 6= ve(k), and the branch distances

b(vc(k),ve(k))’s are defined by,

b(vc(k),ve(k))|ICSI = 1 +
Es

∑NT

j=1 σ̂2
j d

2
j(k)

2
(
N0 + 2Es

∑NT

j=1 σ̄2
j

) (4.2)

for all k ∈ κ, and dj(k) = |vcej|, where vcej is the jth element of vce(k) = vc(k) −

ve(k).

Based on the explicit PEP result (4.1) obtained with imperfect CSI, we next

present a new code design criterion for STTC over rapid fading channels with

imperfect CSI.

4.2.1 Code Construction

For space-time trellis codes, the encoder maps binary data to modulation sym-

bols, where the mapping function is described by a trellis diagram. As in [66], the

encoder of a STTC is implemented as a set of feedforward shift registers. Let us

consider an encoder of space-time trellis coded MPSK modulation with multiple

transmit antennas as shown in Fig. 4.1. The input information sequence of a user,

denoted by u is given by

u =
[
uT (1) uT (2) · · · uT (k) · · ·

]T

where u(k) = [u1(k) · · · um(k)]
T

is a group of m = log2 M information bits trans-

mitted by the user in the kth frame. Thus, m binary input sequences u1 · · · um
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Fig. 4.1: Encoder for STTC.

are fed into the encoder. At the ith branch, ui = [ui(1) · · · ui(k) · · · ]T is passed

to the shift registers. The space-time trellis coded MPSK can achieve a bandwidth

efficiency of m bits/s/Hz. The total memory order of the encoder, denoted by ν,

is given by

ν =
m∑

i=1

νi (4.3)

where νi, i = 1, · · · ,m is the memory order for the ith encoder branch. The value

of νi for MPSK constellations is determined by

νi = b(ν + i − 1)/mc . (4.4)

The total number of states for the trellis encoder is 2ν .

Since the memory orders for all branches, {ν, ν + 1, · · · , ν + m − 1}, are m

consecutive numbers, there is only one number among them, denoted as ν + i0 − 1,

that can be divided by m. For i < i0, we have νi = ν1 = (ν + i0 − 1)/m − 1, while

for i ≥ i0, we have νi = ν2 = ν1 + 1. If i0 = 1, i.e., ν can be divided by m, we have

νi = ν2, for all i. Let uk be the sub-sequence of u, which affects the output code
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symbols of the user concerned in the kth frame. It is given by

uk =

 [u1(k) · · · um(k) · · · ui0(k − ν2) · · · um(k − ν2)]
T

i0 6= 1

[u1(k) · · · um(k) · · · u1(k − ν2) · · · um(k − ν2)]
T

i0 = 1 .

The dimension of uk is P × 1, where P = mν2 + (m − i0 + 1) = m + ν. These

input bits are combined by the encoder, which can be described by using the

generator matrix GP×NT
. Each element gij of the generator matrix takes on a

value in the set {0, 1, · · · M − 1}. The output code vector in the kth frame, c(k) =

[c1(k) · · · cNT
(k)]T , is obtained as the linear, modulo-M sum of the current and

delayed binary inputs, and can be expressed as

c(k) = GTuk mod M . (4.5)

The encoder output symbols c(k) are modulated on to the transmitted code sym-

bols v(k) via the mapping vi(k) = ej2πci(k)/M , for each transmit antenna i, as in

[1].

4.2.2 The New Design Criterion

We will use the node error event probability as the performance measure in

code design, instead of the PEP. The node error event probability P (e) can be

union bounded tightly at high SNR as in [65] by

P (e) =
∑
vc

P (v = vc)P (e|v = vc) ≤
∑
vc

P (v = vc)
∑
ve

P (vc → ve|v = vc) (4.6)

where P (e|v = vc) is the conditional node error event probability given that the

correct codeword sent is vc, and the PEP P (vc → ve|v = vc) is given by (4.1).

Define Λ by

Λ = max
vc

1

2

∑
ve

∏
k∈κ

[b (vc(k),ve(k))]−NR (4.7)

which is the maximum conditional node error probability. The union bound on the

node error event probability on the right side of (4.6) can be further bounded as

P (e) ≤ Λ
∑
vc

P (v = vc) = Λ . (4.8)
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From (4.8), the maximum conditional node error probability Λ, which is determined

by the branch distances b (vc(k),ve(k))’s, should be minimized to reduce the node

error probability P (e). Therefore, we arrive at the following design criterion.

Design Criterion: To minimize the node error event probability, one should

minimize Λ, i.e., minimize the maximum sum of the products of the inverse of the

branch distances,
∑
ve

∏
k∈κ

[b (vc(k),ve(k))]−1, over all possible codewords.

Here the kth branch distance b (vc(k),ve(k)) is computed by (4.2) based on

knowledge of the channel fading model and the channel estimator used. The above

criterion is the first to incorporate the statistical information of the channel esti-

mates in STTC design over rapid fading channels. The effect of channel estimation

on code design is reflected by the branch distances b (vc(k),ve(k)) through the

variances 2σ̂2
j ’s of the estimated channel coefficients and the variances 2σ̄2

j ’s of the

estimation errors, which can be obtained from (3.13) and (3.14), respectively. The

kth branch distance b(vc(k),ve(k)) in (4.2) can be easily computed once the chan-

nel fading model and the channel estimator are given. With this explicit criterion,

STTC design with imperfect CSI over rapid fading channels is easy to implement

in practice. As will be seen, the loss caused by the channel estimation errors can be

minimized by our proposed design criterion by exploiting the statistical information

of the channel estimates.

4.2.3 The Optimally Distributed Euclidean Distances

According to (4.2), given the different channel estimation variances 2σ̂2
j ’s as-

sociated with each transmit antenna, the code symbol Euclidean distances dj(k)’s

should be optimally distributed among all transmit antennas to minimize the PEP.

The general analytical study of the optimally distributed Euclidean distances for

STTC is difficult, because the distribution depends on the structure of STTC, and

the modulation scheme. Here, we examine the optimal distribution of the symbol-

wise Euclidean distances for a particular example. It illustrates how to optimally
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distribute the symbol-wise Euclidean distances when the statistical information of

the channel estimates is available.

Consider two sets of codewords C1 and C2 with different code generator ma-

trices. Assume the all-zeros bit sequence is transmitted. At high SNR, only the

shortest error events are important. The vector-wise Euclidean distances of a short-

est error event path for the codeword set {Ci}2
i=1 are given by {A2

i (k)}k∈κmin
, where

κmin is the frame index set of the shortest error event, and A2
i (k) =

∑NT

j=1 d2
j(k).

Assume that both C1 and C2 have the same Euclidean distances on the segments

of the shortest error event paths, i.e., A2
1(k) = A2

2(k) = A2(k) for all k ∈ κimin.

Therefore, according to (4.1), the PEP upperbounds of C1 and C2 are approximately

the same at high SNR, if perfect CSI is available to the receiver. However, for the

imperfect CSI case, the performance of the codes may be different if we change

the distribution of the symbol Euclidean distances d2
j(k)’s among all the transmit

antennas. Thus, the PEP optimization problem can be outlined as

1. maximize D(σ̂) =
∏

k∈κ

∑NT

j=1 σ̂2
j d

2
j(k)

2. subject to

(a) {dj(k)}k∈κ ⊂ ∆ where ∆ is the set of all the possible Euclidean distances

that can be assumed in the MPSK constellation, and each element ∆i

in ∆ is given by ∆i = 2 sin(iπ/M) , i = 1, · · · ,M/2, and

(b)
∑NT

j=1 d2
j(k) = A2(k)

To maximize D(σ̂), we note first that

NT∑
j=1

σ̂2
j d

2
j(k) ≤

NT∑
j=1

σ̂2
maxd

2
j(k) ≤ σ̂2

maxA
2(k) (4.9)

where σ̂max = max
j

σ̂j. The antenna with the largest estimate variance 2σ̂2
max has

the highest channel estimation accuracy. We denote this antenna as the jmth trans-

mit antenna. The equality sign in (4.9) holds, i.e., the maximum of
∑NT

j=1 σ̂2
j d

2
j(k)
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is attained only when

dj(k) =

 0 j 6= jm

A2(k) j = jm .
(4.10)

Therefore, the PEP attains its minimum when the vector-wise Euclidean distance

A2(k) is all assigned to the jmth transmit antenna at each transmission time.

However, this is only suitable for A2(k) ≤ 2, since 2 is the maximum symbol-wise

Euclidean distance that can be achieved by the normalized MPSK constellation.

For general STTC systems with imperfect CSI, the symbol-wise Euclidean distance

of the transmit antenna with higher estimation accuracy, should be larger.

4.2.4 The Effect of Channel Estimation on Code Design

As mentioned, it is the differences of the channel estimate variances that lead

to the importance of channel estimation information in code design with imper-

fect CSI. It is intuitively clear that if the differences between the variances of the

channel estimates are larger, the effect of channel estimation on code design will be

greater. Thus, we measure the effect of channel estimation on code design by using

the maximum estimation variance difference. The maximum estimation variance

difference 4σ̂2
max is the difference between the maximum channel estimate variance

σ̂2
max and the minimum channel estimate variance σ̂2

min among all the transmit an-

tennas, i.e., 4σ̂2
max = σ̂2

max − σ̂2
min, where σ̂2

max = max
j

σ̂2
j and σ̂2

min = min
j

σ̂2
j for all

j = 1, · · · , NT .

Here, we focus on the effect of the channel fade rate fdT on the maximum esti-

mation variance difference 4σ̂2
max by fixing L, N with their robust values. The ro-

bust values are used because choosing L and N adaptively on-line greatly increases

the complexity of the receiver. Also, the measurement of channel parameters such

as fade rate requires additional overhead, and cannot be done frequently, in most

cases. The robust value is defined in a statistical sense, which indicates that this

value can work well with high probability when the channel fade rate is variable.
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Fig. 4.2: The maximum estimation variance difference as a function of the channel fade rate fdT

for different numbers of transmit antennas, with fixed parameters L = 8 and N = 6 at

Ep/N0 = 30 dB.

Due to the physical limit on the speeds of mobiles and the symbol-wise constant

channel model, the channel fade rate caused by this mobility can be assumed to

have a maximum value of, say, fd, maxT . In practice, the channel fade rate fdT can

be assumed less than a certain threshold value fcT with a high probability. From

our work in chapter 3, the optimum values of L and N for a high fade rate can

work for the lower fade rates, while the converse is not true. Thus, we take the

optimum values of L and N at the fade rate of fdT = fcT as the robust values.

These values can work well with high probability for fade rates that are less than

the threshold value fcT .

For the purpose of illustration, we assume here the threshold channel fade

rate is fcT = 0.05, and the maximum channel fade rate is fd, maxT = 0.1. The

robust values for the pilot spacing and the Wiener filter length are L = 8 and

N = 6, respectively, which are determined at the threshold channel fade rate of

fcT = 0.05, as shown in the previous chapter. In Fig. 4.2, we show the maximum
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estimation variance difference 4σ̂2
max as a function of fdT , for different numbers of

transmit antennas. A high pilot SNR of Ep/N0 = 30 dB is used. The values of

the channel estimate variances become steady with the increase of SNR. Thus, the

dependence of the channel estimate variances on SNR can be dropped at high SNR.

Fig. 4.2 shows that the steady maximum estimation variance difference 4σ̂2
max will

increase with the fade rate fdT . Also, 4σ̂2
max increases with NT , but the increase

in 4σ̂2
max is smaller for larger values of NT . Since robust values of L and N are

chosen according to the threshold channel fade rate of fcT , the channel estimation

accuracy is only guaranteed for those fade rates that are less than fcT . Thus, Fig.

4.2 can be seen to have two parts. One is the matched region (0 ≤ fdT ≤ fcT ),

where accurate channel estimation can be obtained; the other is the unmatched

region (fcT < fdT ≤ fd, maxT ), where the channel estimation accuracy is poor.

The maximum estimation variance difference 4σ̂2
max is very small in the matched

region, while it becomes much larger in the unmatched region. With the larger

4σ̂2
max, there is greater effect of channel estimation on code design. It is expected

that codes designed with imperfect CSI can achieve greater performance gains

for high fade rates or a large number of transmit antennas, compared with those

designed assuming perfect CSI. This will be verified in our numerical results later.

Based on the knowledge of the channel fade rate at the transmitter, we will consider

two channel conditions for code design in the following sections.
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Table 4.1: The proposed code generator matrices GT for perfect and imperfect CSI, and the

known generator matrices in the literature using QPSK modulation scheme.

NT Codes State No. QPSK

2

New

ICSI

fdT = 0.05

8 [2 0 3 0 2; 2 2 2 1 3]

16 [2 1 0 2 3 2; 1 2 2 0 2 3]

32 [1 2 2 0 3 0 2; 2 3 2 2 2 3 1]

ICSI fdT = 0.1 8 [2 1 3 1 2; 2 1 2 3 3]

PCSI

8 [2 0 1 2 2; 2 2 2 1 0]

16 [2 0 2 3 1 2; 1 2 0 2 2 3]

32 [2 3 2 2 2 3 1; 3 2 2 0 1 0 2]

Known

TSC

8 [0 0 2 1 2; 2 1 0 0 2]

16 [0 0 1 2 2 0; 1 2 2 0 0 2]

32 [2 0 1 2 1 2 0; 3 2 2 2 0 1 2]

FVY

8 [0 2 1 1 2; 2 2 3 2 0]

16 [0 2 0 1 2 0; 2 0 1 2 2 2]

32 [0 1 2 1 3 2 1; 1 3 0 2 0 1 2]

ZQWL

8 [2 1 0 2 1; 1 2 2 1 1]

16 [0 0 1 2 2 0; 1 2 2 0 0 2]

32 [0 0 1 2 2 3 2; 1 2 1 2 0 3 2]

3 New
ICSI fdT = 0.05 8 [2 0 3 0 2; 2 2 2 1 3; 2 1 2 1 1]

ICSI fdT = 0.1 8 [2 0 3 0 2; 2 2 2 1 3; 2 0 2 3 3]

PCSI 8 [2 0 1 2 2; 2 2 2 1 0; 2 3 2 0 3]

4.2.5 Code Design for Known Fade Rates

When the channel fade rate fdT is known to the transmitter, the variances σ̂2
j ’s

of the channel estimates, which are functions of fdT , can be easily computed using

(3.13). With the variances of the channel estimates σ̂2
j ’s calculated for a given fade

rate, the optimum codes for that fade rate with channel estimation can be obtained
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using the proposed design criterion. We term these codes the ICSI codes for the

given fade rate. In the limit of perfect channel estimation, the PCSI codes are

obtained. While we will present in section IV an iterative search algorithm for the

design of codes using our design criterion, we consider here first the performance

of some codes we obtained. In Tab. 4.1, we present the ICSI codes for fdT = 0.05

and fdT = 0.1 and the PCSI codes, with QPSK modulation and two or three

transmit antennas. The ICSI codes for fdT = 0.05 and the PCSI codes with 8PSK

modulation are listed in Tab. 4.2

Table 4.2: The proposed code generator matrices GT for perfect and imperfect CSI, and the

known generator matrices in the literature using 8PSK modulation scheme.

NT Codes State No. 8PSK

2

New

ICSI

fdT = 0.05

8 [4 4 2 2 4 3; 4 0 2 0 1 4]

16 [3 4 4 2 4 3 2; 1 4 2 4 0 2 1]

32 [3 2 4 4 4 2 4 2; 4 0 3 4 0 2 1 1]

PCSI

8 [4 2 4 2 4 3; 4 2 0 0 1 4]

16 [2 4 4 4 3 4 2; 4 1 4 0 4 2 2]

32 [4 4 3 4 2 4 2 4; 4 2 0 3 2 0 4 1]

Known

TSC

8 [0 0 0 4 2 5; 4 2 1 0 0 0]

16 [0 0 0 4 2 5 1; 4 2 1 4 2 1 5]

32 [0 0 0 4 2 5 2 3; 4 2 1 4 2 1 2 7]

FVY

8 [0 2 4 2 4 2; 1 4 6 4 0 1]

16 [0 1 2 4 2 6 0; 4 5 1 2 1 4 5]

32 [3 1 1 0 0 3 6 1; 4 1 2 4 6 1 1 0]

To show the effect of channel estimation on code design, we compare the perfor-

mances of our proposed ICSI codes with some PCSI codes available in the literature

over rapid fading channels with channel estimation. Fig. 4.3 shows the simulated

BEP of STTC with NT = 2 transmit antennas and NR = 1 receive antenna at the

channel fade rate of fdT = 0.05. On each link, the fading process has a Jake’s
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Fig. 4.3: Comparison of simulated BEP comparison of STTCs with two transmit and one receive

antenna, where the channel fade rate is fdT = 0.05, which is estimated with L = 8, and

N = 6, (Es)PSAM = Es(L − NT )/L, and Ep = (Es)PSAM .

power spectrum. The fading coefficients are estimated using the PSAM scheme

with the pilot spacing L = 8, and the Wiener filter length N = 6. It can be seen

that the newly obtained 8-state/32-state QPSK, ICSI codes for fdT = 0.05 out-

perform those STTC of [1], [2], [9] (abbreviated as TSC, FVY, and ZQWL codes,

respectively, after the authors’ names) in the presence of imperfect CSI with chan-

nel estimation errors. Our codes have better performance, especially at high SNR.

The performance gain achieved by our 8-state ICSI code over the ZQWL code is

about 1 dB. In fact, the modulation scheme, the number of transmit antennas, and

the channel conditions affect the performance gain achieved by our proposed ICSI

codes. The performance gain decreases as the number of code states increases,

but increases as the number of modulation levels increases. The larger the maxi-

mum estimation variance difference, the greater the performance gains that can be

achieved. Furthermore, code design with imperfect CSI is based on the variances of

the channel estimates. Thus, the optimal ICSI codes are those that have design pa-
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rameters matched to the channel conditions. In Fig. 4.4, we demonstrate adaptive

coding is needed when the maximum estimation variance difference is sufficiently

high. It can be seen from Fig. 4.4(a) that the PCSI code has the best performance

when perfect CSI is available to the receiver. However, when the channel situation

changes to a high fade rate of fdT = 0.1 and only ICSI is available, the ICSI code

for fdT = 0.1 is best as shown in Fig. 4.4(b). The high BEP in Fig. 4.4(b) is due

to the fact of the large mean square estimation errors since the high fade rate of

fdT = 0.1 falls into the unmatched region defined in Fig. 4.4(b). We choose this

unmatched case of fdT = 0.1 because the maximum estimation variance is large

for this case, which can satisfy the condition for adaptive code design. The per-

formance improvement shown in Fig. 4.4 using adaptive coding is not very large.

This is reasonable for i.i.d. channels, where the maximum estimation variance dif-

ference is not so large because the statistics of the different links are the same,

and, thus, the effect of channel estimation on code design is not obvious. However,

it is an indication of the usefulness of adaptive code design. As the variances of

the channel estimates change with the channel conditions, different optimum codes

should be used, if the effect of channel estimation on code design is sufficiently

large. For non-identical channels, the maximum estimation variance difference is

usually large when the imbalance among the links is high. Thus, for non-identical

channels, the performance gain achieved by the optimal ICSI codes matched to the

channel conditions is great. The details of code design for non-identical channels

with imperfect CSI will be discussed in Chapter 5.

It is also worth noting that the performance gains achieved by taking into

account the statistical information of the channel estimates may not be obvious

when the maximum estimation variance difference is small. In our investigation,

we found that if the maximum estimation variance difference falls in the range

of 0 ≤ 4σ̂2
max ≤ 0.15, the ICSI codes obtained for different fade rates have sim-

ilar performances. However, when 4σ̂2
max becomes larger than 0.15, significant

performance gains can be obtained especially for high SNR. In Fig. 4.5, two situ-

ations with greater 4σ̂2
max are assumed. One has 4σ̂2

max = 0.2 with σ̂2
1 = 0.2, and
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σ̂2
2 = 0.4. The other has 4σ̂2

max = 0.4 with σ̂2
1 = 0.3, and σ̂2

2 = 0.7. As shown in

Section 3.6, the variances of the channel estimates 2σ̂2
j for j = 1, · · · , NT depend on

SNR, the vales taken by the PSAM parameters L and N , and the channel fade rate.

For i.i.d. channels, the large value for 4σ̂2
max can be obtained for high channel fade

rates with a large number of transmit antennas, such as in the unmatched region

shown in the Fig. 4.2. Here, we assume these large values of 4σ̂2
max to show the

effect of channel estimation on code design more clearly. For both cases, the total

estimation error variance is assumed to be
∑NT

j=1 σ̄2
j = 0.1. The results in Fig. 4.5

clearly show that the performance gains achieved by the ICSI code for fdT = 0.1 is

much better than the ICSI code for fdT = 0.05 and the PCSI code. This is because

when fdT = 0.1, the maximum estimation variance difference is the largest among

the three codes, which is close to the assumed channel situation. Therefore, the

ICSI code for fdT = 0.1 performs best and achieves significant performance gains.

Comparing Fig. 4.5(a) and Fig. 4.5(b), we can see that the performance gain

increases with the maximum estimation variance difference.

The above results indicate that adaptive code design based on knowledge of

the channel fade rate should be used to achieve the optimal performance. Since the

channel fade rates fall in the range of [0, fd,maxT ], the range can be divided into Q

segments. Let 4max be the maximum estimation variance difference at the fade rate

of fd,maxT , Q = 4max/0.15 and 4f = fd,max/Q. For the fade rates falling into a

segment [(i−1)4f, i4f ] where i = 1, · · · , Q, the differences among the associated

4σ̂2
max’s are less than 0.15, and the performances of the ICSI codes designed for

each fade rate are similar. Thus, the same code can be used for all fade rates in

each segment for efficiency. However, if the fade rates vary over different segments,

adaptive coding should be employed by assigning the corresponding optimum codes

for different segments.
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4.2.6 Robust Code Design for Unknown Fade Rates

In wireless communication, the knowledge of channel fade rate obtained at the

transmitter may be outdated or imperfect because of the time-variance of the chan-

nel fade rates and the feedback errors. This motivates us to look for robust codes

which can perform well when the channel fade rate is unknown to the transmitter.

The robust codes are to be understood from a statistical viewpoint. That means

although the robust codes may perform worse than the code for a certain channel

fade rate, the robust codes do have the best average performance due to the vari-

ance of the channel fade rates. The average performance is obtained by averaging

the conditional performance at each fade rate over the probability distribution of

the channel fade rates. For the purpose of illustration, we assume that there is a

finite number of discrete fade rates. We assume here that a probability model for

the channel fade rate in which the probability of each possible channel fade rate

is known to the transmitter and the receiver. The set of all the possible values

for the channel fade rate is denoted as χ = {xi}q
i=1, where q is the cardinality of

χ. The probability of the channel fade rate taking the value of xi is denoted as

P (xi) = P (fdT = xi). To achieve the optimum average performance, the robust

code can be designed based on the average variance vector Ω of the channel esti-

mates. Given a channel fade rate, the conditional variance of the channel estimate

associated with the jth transmit antenna σ̂2
j can be calculated by (3.13). We define

the conditional variance vector Ω|fdT=x of the channel estimates at the fade rate

of fdT = x as Ω|fdT=x = [σ̂2
1 · · · σ̂2

NT
]T |fdT=x. The average variance vector Ω of the

channel estimates can be computed by averaging Ω|fdT=x over P (x). The elements

Ωj’s (j = 1, · · · , NT ) in Ω can be viewed as the equivalent estimation variances.

Based on the proposed code design criterion, robust codes can be obtained, using

the calculated average variance vector Ω as the statistical information of the chan-

nel estimates, for the imperfect CSI case and the fade rates are unknown to the

transmitter.

In general, robust codes are designed based on the average variance vector Ω.
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Fig. 4.6: The performance analysis of the QPSK 8-state PCSI, ICSI and robust code over the

channel with time-variant fade rates, where NT = 2, NR = 1, L = 8, N = 6,

(Es)PSAM = Es(L − NT )/L, Ep = (Es)PSAM and P (x) is the assumed probability

distribution of the channel fade rates.

However, this can be simplified, if the channel has a dominant fade rate, which

occurs with a probability much higher than the sum of the probabilities of other

fade rates. In this situation, the average variance vector can be approximated by

the variance vector of the dominant fade rate, because the contribution from the

variances of the channel fade rate with the highest probability is the largest. Thus,

the variance vector of the dominant fade rate can be used to design codes instead

of the average variance vector. In other words, the robust code becomes the same

as the code of the dominant fade rate. In Fig. 4.6, we show the performances of the

8-state QPSK PCSI code, the ICSI code for fdT = 0.1, and the robust code over

channels with time-varying fade rates, when only the distribution of the channel

fade rates is available at the transmitter. We assume that the channel fade rate has

three possible states, namely fdT = 0.01, fdT = 0.05 and fdT = 0.1, respectively.

For the four different distributions assumed in Fig. 4.6, the dominant fade rate is

fdT = 0.05. The robust code is thus the ICSI code for the fade rate of fdT = 0.05.

For all the four time-variant channel conditions, the robust code performs best, and
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the PCSI code is a bit worse than the robust code because of the small maximum

estimation variance difference. The ICSI code for fdT = 0.1 is the worst. Although

the ICSI code for fdT = 0.1 is the best when the channel fade rate is fdT = 0.1,

it performs no better than the robust code because of the small probability of the

fade rate fdT being equal to 0.1 that we assumed. It is found that with the increase

of the probability of fdT = 0.1, the performance gap between the ICSI code for

fdT = 0.1 and the robust code is reduced. From Fig. 4.4 and Fig. 4.6, we conclude

that the robust code is a good tradeoff between performance and complexity of

adaptive coding for unknown fade rate channels.

4.3 Iterative Code Search Algorithm

As is well known, the complete code search is highly complex because it requires

a search over MP×NT matrices over all possible code sequences. The number of

possible code sequences is exponentially increasing with the sequence length. Thus,

it is important to keep the code search complexity low. To do this, we rewrite the

union bound on the error event probability (4.6) as

P (e) ≤
∑
vc

P (v = vc)
∞∑

Lp=Lpmin

∑
ve∈VLp

P (vc → ve|v = vc) . (4.11)

by categorizing the error events according to their lengths. Here, Lp is the error

event length, which varies from the shortest error event length Lpmin to infinity.

VLp is the set of the error events whose error event lengths are equal to Lp. Without

considering all the error events at one time, we focus on the error events with lengths

up to a certain value Lpmax, where Lpmin ≤ Lpmax < ∞. Since for a small Lpmax,

the number of possible error events is quite small, we can first obtain sub-optimal

codes with relatively low complexity. Then, the sub-optimal codes can be refined

by increasing Lpmax step by step. The final optimal codes can be obtained via an

iterative search. This iterative search algorithm can guarantee the optimality of

the codes for high SNR, since the error events with the shortest error event lengths
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determine the PEP for high SNR. Also, it can achieve good performance at low

SNR by increasing the error event length step by step.

Suppose the generator matrix set to be searched is Θ. We assume initially

Θ includes all the MP×NT possible generator matrices. At the first iteration, our

algorithm searches over Θ to choose those matrices that have the minimum Λ given

by (4.7) over the shortest error events, by setting Lpmax = Lpmin. The matrices

chosen form a new set Θn. The old set Θ is replaced by Θn. Increasing Lpmax

by one and repeating the search process, the set Θ can be further refined. The

iterations continue until there is no more change to the set Θ. This way, we

finally obtain the optimal generator set Gopt. In addition to using the iterative

search algorithm, the complexity of the search can be further reduced by using

some rules to discard unsatisfactory codes efficiently at the initial step. First,

the one-to-one code mapping property should be guaranteed, i.e., different input

bits at a state produce different output code bits. Second, detection ambiguity

should be avoided by ensuring that the code labels converging to the same state

are different. Combined with the criterion presented, the final search algorithm

can be summarized as follows.

Search Algorithm

1. Initially, the maximum error event length is set to L1
pmax = Lpmin. Search

for generator matrices which have minimum Λ given by (4.7) over the set Θ.

Those matrices found will comprise the set Θn. Update Θ by letting Θ = Θn.

2. During the search, there are some generator matrices discarded directly with-

out computing Λ because they do not satisfy the following rules:

(a) All code labels diverging from the same state should be different.

(b) The code labels converging to the same state should be different.

3. At the lth step, we set Ll
pmax = Ll−1

pmax + 1 and search the current set Θn by

looking for matrices that minimize Λ. Then, update Θ by letting Θ = Θn.
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4. Repeat step 3) until there are no more changes to the generator matrix set

Θ, which is then the final optimal generator set Gopt.

Actually, the initial size of the set Θ can be reduced by using a row-wise search

idea proposed in [70], which is used in the code design for 8PSK because of the high

search complexity. The proposed new codes (in Tab. 4.1) are chosen from the final

optimal generator set Gopt. Most of the optimum codes obtained from our new

search algorithm have better BEP performance under actual channel estimation

conditions than the existing ones in the literature that are designed under the

perfect CSI assumption. The superiority of the optimal codes obtained from our

search is more obvious at high SNR. It is because the iterative algorithm favors the

generator matrices whose performances are better when the error events have small

error event lengths. The error events with small lengths dominate the performance

at high SNR. The performance gains achieved by our proposed codes increase with

the channel fade rate and the number of transmit antennas. This will be shown in

the next section.

4.4 Code Search Results and Performances

Based on the code design criterion and the iterative code search algorithm, new

STTC for both perfect and imperfect CSI with two or three transmit antennas are

obtained, as shown in Tab. 4.1. As mentioned, they are termed ICSI and PCSI

codes, respectively. There are two kinds of ICSI codes. One is the ICSI code for

a given channel fade rate. The other is the robust ICSI code. Under simplified

situations, the robust code can be reduced to the ICSI code corresponding to the

dominant fade rate. Since the perfect CSI case is too idealistic, the codes that have

optimal performance under real channel estimation conditions have more practical

importance. In this section, numerical results of the proposed codes are presented.

In the simulations, we assume σ2 = 0.5, and each channel fading process has a
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Jake’s power spectrum so that R(τ) = J0(2πfdτ). We take the user whose time

slot is located immediately after the pilot phase in a block as the user of interest.

The total number of frames is K = 100. We account for the energy spent on the

pilot symbols by taking the effective energy per data symbol in the PSAM scheme

as (Es)PSAM = Es(L−NT )/L, where Es is the data symbol energy for the case of

PCSI when no pilots are transmitted. Two situations for the pilot symbol energy

are considered. In one case, the pilot symbol energy is assumed to be equal to the

data symbol energy, i.e., Ep = (Es)PSAM . In the other case, a high pilot symbol

energy is used to obtain steady variances of the channel estimates, where we assume

Ep/N0 = 30 dB. The robust values of the pilot spacing and the Wiener filter length

are L = 8 and N = 6, respectively.
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Fig. 4.7: The performance gains of the proposed 8-state 8PSK ICSI code compared with the FVY

in [2], and the TSC in [1] over different channel fade rates, with two transmit and one

receive antenna. For imperfect CSI, the channel is estimated using L = 8, N = 6,

(Es)PSAM = Es(L − NT )/L, and Ep = (Es)PSAM .

Fig. 4.7 verifies that more performance gains can be achieved by our ICSI codes

with an increase in the channel fade rate. Three codes, namely the FVY code, the

TSC code, and our ICSI code are examined under different channel conditions.
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Both perfect CSI and imperfect CSI channel conditions are considered. For the

perfect CSI case, the channel fading coefficients are independent from symbol to

symbol, and known to the receiver. For the imperfect CSI case, the channel fade

rates considered are fdT = 0.01 and fdT = 0.05, respectively. The channel fading

coefficients are estimated using the PSAM scheme. The performance gain of our

ICSI code over the FVY code is great. For instance, a 1.5 dB gain is achieved under

the perfect CSI condition at a BEP of 10−3.5; in the imperfect CSI condition, a 2.6

dB gain is obtained for fdT = 0.01, and a gain of up to 4.3 dB for fdT = 0.05, at

the same BEP. Thus, the higher the channel fade rate, the greater the performance

gain achieved by our codes designed under actual channel estimation conditions,

by incorporating the statistical information of the channel estimates in the code

design.

8 10 12 14 16 18 20

10
−0.21

10
−0.19

10
−0.17

10
−0.15

10
−0.13

Es/N0

B
it 

E
rr

o
r 

P
ro

b
a

b
ili

ty

PCSI code

ICSI code for
fdT = 0.05

ICSI code for
fdT = 0.1

Fig. 4.8: The BEP performance of the proposed 8-state QPSK PCSI code and the ICSI codes

under channel estimation, using three transmit and one receive antenna. The channel

fade rate is fdT = 0.1, which is estimated with L = 8, N = 6, (Es)PSAM = Es(L −

NT )/L, and Ep/N0 = 30 dB.

Not limiting the importance of using the statistical information of channel

estimates to high fade rate conditions, we also found that with an increase in the
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transmit antenna number, more performance improvements could be achieved by

using ICSI codes obtained using our code design criterion. Due to the complexity of

the code search for larger numbers of transmit antennas, we give only one example

of the codes designed with NT = 3. These codes are obtained using the sub-optimal

search method in [3]. Based on the code generators obtained for NT = 2, we only

search for the remaining column corresponding to the third transmit antenna of

the generator matrix G. It can be seen in Fig. 4.8 that the performance gains

achieved by the ICSI codes compared to the PCSI code is greater in the case

when NT = 3 than in the case when NT = 2, which was shown in Fig. 4.4(b). The

greater improvement is due to the fact the maximum estimation variance difference

increases with the number of transmit antennas, as shown in Fig. 4.2. The BEP in

Fig. 4.8 is high because the high fade rate of fdT = 0.1 falls in the unmatched region

in Fig. 4.2. This unmatached scenario is used to produce the maximum possible

4σ̂2
max, which can lead to the maximum possible performance gain. Our results

demonstrate that the performance gain achieved by adaptive coding increases as

the number of transmitter antennas increases, as well as when the channel fade

rate increases.

From the above results, we conclude that greater performance gains can be

achieved by exploiting the statistical information of the channel estimates when

the number of transmit antennas is large, or when the fade rate is high. These

results also verify the analysis of the effect of channel estimation on code design.

With an increase in the maximum estimation variance difference, there are greater

performance improvements that can be obtained by using the proposed design cri-

terion incorporating channel estimation. Our results here can be straightforwardly

extended to the case of independent, non-identical Rayleigh fading channels. In

that case, the incorporation of the statistical information of the channel estimates

is even more important, as will be shown in the next chapter.
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4.5 Summary

In this chapter, we presented a new, practical code design criterion for STTC

over rapid, nonselective, Rayleigh fading channels with imperfect CSI. The codes

designed via this criterion achieve performance gains over those designed under

the perfect CSI assumption, when the receiver operates with imperfect CSI. We

optimally distribute the symbol-wise Euclidean distances between codewords to

minimize the error event probability under actual channel estimation conditions,

by taking into account the statistical information of the channel estimates. The

effect of channel estimation on code design can be measured by the maximum

estimation variance difference, which, in turn, depends on the channel fade rate,

the values taken on by the PSAM parameters, and SNR. The larger the maximum

estimation variance difference, the more the performance improvement that can be

achieved by using our code design criterion. When the channel fade rate is known

to the transmitter at each time, the codes whose design parameters match those

of channels and estimators perform best. Thus, adaptive coding can be used to

achieve the optimal performance, when the maximum variance is sufficiently large.

However, for i.i.d. channels, the improvement achieved by adaptive coding is not

much because the statistics of the different links are nearly the same. Therefore,

the maximum estimation variance difference is usually small, and the effect of

channel estimation on code design is not so much. When only the knowledge of

the distribution of the channel fade rates is known, robust codes can be obtained

based on the average variance vector of the channel estimates. An iterative code

search algorithm is developed to facilitate the search for new codes. This algorithm

reduces the code search complexity by iteratively increasing the maximum error

event length considered, one step at a time. Our investigation shows that with

increasing channel fade rate or with a larger number of transmit antennas, greater

performance gains can be achieved by exploiting the statistical information of the

channel estimates.

82



Chapter 5

STTC over Non-identically

Distributed Channels with

Channel Estimation

5.1 Introduction

In this chapter, we will examine the performance analysis and code design of

STTC over independent, non-identically distributed (i.n.i.d.), rapid, fading chan-

nels with imperfect channel estimation. Most works on STTC assume that fading

channels are i.i.d. and perfect CSI is available at the receiver. In many situa-

tions, this assumption may not hold. First, the fading processes may have different

variances, or different channel fade rates depending on the individual scattering en-

vironment on each propagation path. For example, the channel multipath intensity

profile of IMT-2000 channel models [45] and JTC channel models [46] is variable,

i.e., the mean square fading gain of each diversity branch is different. Second, in

practice, perfect CSI may not be obtained due to channel estimation errors, espe-

cially for time-varying channels. These factors motivate us to extend our work in

Chapters 3 and 4 and consider the general i.n.i.d. MIMO channels.
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First, the ML receiver is derived for STTC over non-selective, i.n.i.d. rapid,

Rayleigh fading channels with channel estimation. Due to the i.n.i.d. fading

channels, the receiver requires in its signal detection function, both the channel

estimates and the second order statistical information of the estimates, which

can be obtained from the channel estimator. The exact PEP, PEP bounds and

union bounds on the BEP of STTC for the ML receiver are obtained. The new

PEP bounds are explicit and simple to compute, which is helpful in providing

insights into suppressing the performance loss caused by imperfect channel estima-

tion. Based on the performance analysis, a design criterion and new STTC over

i.n.i.d. channels with imperfect channel estimation are proposed. To minimize the

performance loss caused by channel estimation errors, the symbol-wise Euclidean

distances among codewords should be optimally distributed based on the statistical

information of the channel estimates. Under i.n.i.d. channel conditions, our newly

proposed codes perform better than the existing codes in the literature which are

designed assuming i.i.d. fading channels and perfect CSI at the receiver. When

prior knowledge of the channel and estimator is available at the transmitter, the

codes whose design parameters are matched to the channel and estimator param-

eters should be used to achieve the optimal performance.

5.2 The System Model

For the i.n.i.d. case, we still employ the TDM STTC system as shown in Fig.

3.2. However, unlike the i.i.d. case, the statistics of the fading processes of the

links are non-identical. Here, we give a brief review of the system model. In the

TDM STTC system, the data streams and the pilot symbols are multiplexed into

frames. In one transmission frame, there are F time slots, and F/L blocks, where

L is the pilot spacing and F/L is a positive integer. Each block has two phases.

One is the data phase; the other is the pilot phase. The signal models for the two

phases are given below.
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5.2.1 The Data Phase

During the data phase, only one user is allowed to access the channel in each

time slot. The user transmits the NT coded symbols simultaneously in the assigned

time slot. The outputs of the receiver matched filters sampled at the uth time slot

in the kth frame, r(k, u), can be expressed as,

r(k, u) =
√

EsH(k, u)v(k, u) + n(k, u) 1 ≤ k ≤ K; 1 ≤ u ≤ F . (5.1)

The pair (k, u) corresponds to a time point t on the real time axis, which is given

by t = (k − 1)F + u. H(k, u) = [hij(k, u)] is the NR × NT channel fading matrix.

On the (i, j)th link, {hij(k, u)} is a complex, Gaussian sequence with mean zero

and autocorrelation function E[hij(k, u)h∗
ij(k

′, u′)] = 2σ2
ijRij(t − t′), where Rij(τ)

is the normalized autocorrelation function of both the real and imaginary parts of

the fading process on the (i, j)th link, which are independent of one another. The

variances σ2
ij’s and the correlation functions Rij(τ)’s for different links are different

in general. We assume that both the additive noises and the fading processes are

spatially independent, and are independent of one another.

5.2.2 The Pilot Phase

During the pilot phase, NT pilot symbols are transmitted one at a time in

each time slot from each transmit antenna to allow estimation of all the channels

associated with that antenna. The pilot for the jth transmit antenna is transmitted

in the jth time slot in each block, i.e., at time tlj = (l − 1)L + j, where l =

0, · · · , ((KF/L) − 1) and j = 1, · · · , NT . The received pilot symbol at the ith

receive antenna is

ri(tlj) =
√

Ephij(tlj)v
p
j (tlj) + ni(tlj), 1 ≤ i ≤ NR , (5.2)

where Ep is the pilot energy. The normalized received pilot symbol zi(tlj) =

ri(tlj)/(Epv
p
j (tlj)) is used as the channel measurement. Similar to the i.i.d. case,
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let I = {{{zi(tlj)}(KF/L)−1
l=0 }NR

i=1}
NT
j=1 be the set of all channel measurements obtained

from the pilot symbols. The estimator only uses the nearest N noisy pilot measure-

ments on the (i, j)th link, i.e., zij(t) = [zi(tj − bN/2c)L) · · · zi(tj + b(N − 1)/2c)L)]T ,

to estimate hij(t). The pilot symbol from the current block is located at the time

tj = j + bt/LcL.

5.2.3 The Statistics of the Channel Estimates

Using the PSAM channel estimation scheme, the estimate ĥij(t) of hij(t) is a

complex, Gaussian, random variable with mean zero and variance

E
[
ĥij(t)ĥ

∗
ij(t)

]
= 2σ̂2

ij(τ) = ΣH
hijzij

(Σ−1
zij

)HΣhijzij
. (5.3)

For the i.n.i.d. fading channels, the autocorrelation matrix of the channel measure-

ments, Σzij
= E[zij(t)z

H
ij (t)], and the crosscorrelation vector between the channel

measurements and the fading coefficient to be estimated, Σhijzij
= E[zij(t)h

∗
ij(t)],

are given by different expressions from those obtained in the i.i.d. case in (3.10)

and (3.11). Here, the (m,n)th entry of Σzij
, is given by

Σzij
(m,n) =

 2σ2
ijRij ((m − n)L) m 6= n

2σ2
ij + N0/Ep m = n .

(5.4)

The nth entry of Σhijzij
is given by

ΣH
hijzij

(n) = 2σ2
ijRij ((n − 1 − bN/2c)L − τ) . (5.5)

Here τ is the time interval between hij(t), and the corresponding pilot symbol of

the current block transmitted at time tj, and is given by

τ = t − tj = u − bu/Lc × L − j . (5.6)

The estimation error eij(t) = hij(t)− ĥij(t) is also a zero-mean, complex, Gaussian

random variable, and attains its minimum variance of [39]

2σ̄2
ij(τ) = 2σ2

ij − 2σ̂2
ij(τ) . (5.7)
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It can be seen from (5.3) to (5.7) that both the estimate variance σ̂2
ij(τ) and the esti-

mation error variance σ̄2
ij(τ) depends on the link index (i, j), which varies from one

link to another. These two variances are also functions of the time interval τ . Simi-

lar to the i.i.d. case, the variances will be written more briefly as σ̂2
ij(u) and σ̄2

ij(u),

respectively, because of the one-to-one relationship between τ and u for a fixed

transmit antenna index j. At the receiver, after de-multiplexing, the estimated

channel fading process for each user u, {ĥij(k, u)}K
k=1, can be easily obtained. Due

to perfect interleaving, the corresponding estimated fading coefficients for the uth

user, {ĥij(k, u)}K
k=1, is a sequence of zero-mean, complex, Gaussian random vari-

ables which are all mutually uncorrelated, with E
[
ĥij(k, u)ĥ∗

ij(l, u)
]

= 2σ̂2
ij(u)δ(k − l).

In the following, we focus on one particular user and drop the user index u for sim-

plicity.

5.3 Performance Analysis

By incorporating the pilot channel measurements into the receiver, we next

derive the ML receiver structure under channel estimation.

5.3.1 The ML Receiver

Suppose the entire sequence of transmitted signals over K frames for the user

concerned is v = [vT (1) · · ·vT (K)]T . Then, the received signal, r =
[
rT (1) · · · rT (K)

]T
,

is given by

r =
√

EsHv + n (5.8)

where H = diag [H(1) · · · H(K)] is the combined channel fading matrix and the

combined noise vector is n =
[
nT (1) · · · nT (K)

]T
. The estimated channel fading

matrix is Ĥ = E [H|I] = diag
[
Ĥ(1) · · · Ĥ(K)

]
. The estimation error matrix is

E = diag [E(1) · · · E(K)], where E(k) = H(k) − Ĥ(k).
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Based on the set of all pilot channel measurements I and the entire received

sequence r, the ML receiver detects the transmitted signal sequence v by computing

the conditional probability density function p (r|I,v = vl). Conditioned on I and

v, r is a complex, Gaussian random vector with mean

η = [ηT (1) · · ·ηT (k) · · ·ηT (K)]T = E [r|I,v] =
√

EsĤv . (5.9)

The ith element of η(k) is ηi(k) =
√

Esĥ
T
i (k)v(k), where ĥi(k) is the ith column

of ĤT (k). The conditional covariance matrix of r is given by

Γ = E
[
(r − η)(r − η)H |I,v

]
= EsE

[
EvvHEH

]
+ N0INRK . (5.10)

In Appendix A, it is shown that the covariance matrix Γ has a block diagonal

structure, and can be expressed as

Γ = IK ⊗ N0 (5.11)

where ⊗ denotes the Kronecker product. The NR × NR effective noise matrix is

N0 = diag
[
N01 · · ·N0NR

]
. The diagonal element N0i

is the variance of the effective

noise at the ith receive antenna, and can be computed as

N0i
= N0 + 2Es

NT∑
j=1

σ̄2
ij . (5.12)

From (5.12), it can be seen that the variances of the channel estimation errors

increase the total noise power at each receive antenna, and lead to the effective noise

being different from one receive antenna to another because of the non-identical

channel statistics. The unequal elements in N0 result in Γ not being proportional

to an identity matrix. Note that both N0 and Γ are independent of the signal

sequence v, and this results from the equal-energy MPSK modulation. Given

the conditional mean η and the conditional covariance matrix Γ of the Gaussian

random vector r, its conditional probability density function can be expressed as

p(r|I,v) =
1

(π)NRK |Γ|
exp {−(r − η)HΓ−1(r − η)} (5.13)

where |Γ| denotes the determinant of Γ. Recall that Γ is independent of the signal

sequence v, and thus 1
(π)NRK |Γ| is a common term for all hypothesized transmitted
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signal sequences. Taking the logarithm of p(r|I,v), and dropping the common

term, the ML decision metric can be reduced to

m(r,v) = (r − η)HΓ−1(r − η) (5.14)

=
K∑

k=1

NR∑
i=1

(N0i
)−1|ri(k) −

√
Esĥ

T
i (k)v(k)|2 .

Thus, the ML receiver detects the transmitted signal sequence v by comput-

ing m(r,v) for each possible value vl of v, and deciding that v = vj if mj =

min
l

m(r,vl). In this i.n.i.d. channel case, channel estimation accuracy plays an

important role in determining the weight on the signals received at each receive

antenna. In the limit of perfect channel estimation, where we have σ̄2
j = 0 and

N0i
= N0, the receiver (5.14) reduces to the known receiver for the perfect CSI

case.

5.3.2 The exact PEP and the PEP Bounds

Based on the ML metric derived in (5.14), the conditional PEP P (vc →

ve|I,v = vc) that the receiver decides in favor of an erroneous codeword ve when

the actual codeword sent is vc and ve is the only other alternative, is given by

P (vc → ve|I,v = vc) = P (X > 0|I,v = vc) . (5.15)

Here X is given by

X =
K∑

k=1

NR∑
i=1

(N0i
)−1

{
|ri(k) −

√
Esĥ

T
i (k)vc(k)|2 − |ri(k) −

√
Esĥ

T
i (k)ve(k)|2

}
.

It is shown in Appendix B that X is a conditional Gaussian random variable given

I, with conditional mean and variance given by

E [X|I,v = vc] = −Es

∑
k∈κ

NR∑
i=1

(N0i
)−1|ĥT

i (k)vce(k)|2 (5.16)

and

Var [X|I,v = vc] = 2Es

∑
k∈κ

NR∑
i=1

(N0i
)−1|ĥT

i (k)vce(k)|2 (5.17)
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where vce(k) = vc(k) − ve(k) is the code difference vector, and κ is the set of

frame indices k where vc(k) 6= ve(k). The conditional PEP in (5.15) can thus be

computed as

P (vc → ve|I,v = vc) = Q


√√√√Es

2

∑
k∈κ

NR∑
i=1

(N0i
)−1|ĥT

i (k)vce(k)|2

 . (5.18)

We define

ĥ(k) = vec(ĤT (k)) = [ĥT
1 (k) · · · ĥT

NR
(k)]T (5.19a)

BH(k) = (N0)
− 1

2 ⊗ v∗
ce(k) (5.19b)

A(k) = BH(k)B(k) (5.19c)

where vec(·) is the vectorization operator. Then, (5.18) can be rewritten as P (vc →

ve|I,v = vc) = Q
(√

Es

2
D

)
, where D =

∑
k∈κ ĥH(k)A(k)ĥ(k). In Appendix C,

we show that the characteristic function of D is

ψD(ω) = E[eωD] =
∏
k∈κ

NR∏
i=1

(
1 − 2ω(N0i

)−1

NT∑
j=1

σ̂2
ijd

2
j(k)

)−1

(5.20)

where dj(k) = |vcej(k)|, and vcej(k) is the jth element of vce(k). The average of

the conditional PEP in (5.18) over all realizations of ĥij(k) can be expressed as

P (vc → ve|v = vc) = Eĥ

[
Q

(√
Es

2
D

)]
= Eĥ

[
1

π

∫ π/2

0

e−
EsD

4 sin2 θ dθ

]
. (5.21)

Interchanging the integration and expectation operations, and using the result

obtained in (5.20), we have the final average PEP as follow:

P (vc → ve|v = vc) =
1

π

∫ π/2

0

∏
k∈κ

NR∏
i=1

 sin2 θ

sin2 θ + Es

2N0i

∑NT

j=1 σ̂2
ijd

2
j(k)

dθ . (5.22)

The result (5.22) is the exact PEP of STTC over i.n.i.d. fading channels with

imperfect CSI. Since sin2 θ ≥ 0, it can be dropped in the denominator of the

integrand in (5.22), which gives the first PEP upperbound (abbreviated as PUB1)

with imperfect CSI as

PUB1|ICSI =
1

π

∫ π
2

0

∏
k∈κ

 sin2NR θ∏NR

i=1

[
γi

2

∑NT

j=1 σ̂2
ijd

2
j(k)

]
 dθ (5.23)
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where γi = Es/N0i
is the effective SNR at the ith receive antenna with imperfect

channel estimation, and N0i
is given by (5.12). The SNR per receive antenna for

the perfect CSI case is γ = Es/N0. Using the identity:
∫ π

2

0
sin2n θ = π

2
(2n−1)!!

2n!!
,

n > 0 [71, sect. 3.621 eq. (3)], PUB1|ICSI can be reduced to

PUB1|ICSI =
1

2

(2q − 1)!!

(2q)!!

∏
k∈κ

NR∏
i=1

(
γi

2

NT∑
j=1

σ̂2
ijd

2
j(k)

)−1

=
1

2

(2q − 1)!!

(2q)!!

∏
k∈κ

NR∏
i=1

( ∑NT

j=1 σ̂2
ijd

2
j(k)

2(γ−1 + 2
∑NT

j=1 σ̄2
ij)

)−1

. (5.24)

Here, q = NR × |κ| is the total diversity order achieved over rapid fading channels,

where |·| denotes the cardinality of the set, (2q)!! = 2q(2q−2) · · · 2, and (2q−1)!! =

(2q − 1)(2q − 3) · · · 1. Alternatively, applying the inequality: sin2 θ
sin2 θ+a

≤ 1
1+a

, a > 0

to (5.22), we have

PUB2|ICSI =
1

2

∏
k∈κ

NR∏
i=1

(
1 +

γi

2

NT∑
j=1

σ̂2
ijd

2
j(k)

)−1

=
1

2

∏
k∈κ

NR∏
i=1

(
1 +

∑NT

j=1 σ̂2
ijd

2
j(k)

2(γ−1 + 2
∑NT

j=1 σ̄2
ij)

)−1

. (5.25)

On the other hand, with the inequality: sin2 θ
sin2 θ+a

≥ sin2 θ
1+a

, a > 0 in (5.22), we have

the lower bound on the PEP (abbreviated as PLB) given by

PLB|ICSI =
1

2

(2q − 1)!!

2q!!

∏
k∈κ

NR∏
i=1

(
1 +

γi

2

NT∑
j=1

σ̂2
ijd

2
j(k)

)−1

=
1

2

(2q − 1)!!

2q!!

∏
k∈κ

NR∏
i=1

(
1 +

∑NT

j=1 σ̂2
ijd

2
j(k)

2(γ−1 + 2
∑NT

j=1 σ̄2
ij)

)−1

. (5.26)

The PEP bounds obtained above are easy to compute once the channel fading

model and the channel estimator are given. They also provide new criteria for

code design because they clearly indicate that the Euclidean distances between code

symbols are weighted by the different variances of the estimated channel coefficients

on the different links. The details of code design with imperfect CSI over i.n.i.d.

channels will be given in the following section.

For a simplified semi-i.n.i.d. scenario, the ML receiver and the PEP results

obtained above can be shown to reduce to the same as those for i.i.d. channels. The
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semi-i.n.i.d. channels assume that all the fading links associated with a transmit

antenna have the same distribution; but the distribution changes from one transmit

antenna to another. Such a situation is common for the downlink of a cellular

system, where the antennas on the base station are separated far enough, whereas

the antennas on a mobile handset are closely mounted. Mathematically, we have

σ2
ij = σ2

i′j, and Rij(τ) = Ri′j(τ) for all i, i′ = 1, · · · , NR. In other words, σ2
ij and

Rij(τ) are independent of the receive antenna i, which render the channel estimate

variances σ̂2
ij and the estimation error variances σ̄2

ij independent of i. Therefore,

we can drop the subscript i in the variances, and the covariance matrix Γ in (5.11)

is reduced to

Γ = N0INRK (5.27)

where N0 = N0 + 2Es

∑NT

j=1 σ̄2
j . It can now be seen that the effective noise matrix

N0 for the full-i.n.i.d. case is reduced to being proportional to an identity matrix.

The ML receiver can then be seen to reduce to minimizing the metric

m(r,v) = ‖r − η‖2 = ‖r −
√

EsĤv‖2 . (5.28)

This metric is the same as that obtained for the case of i.i.d. fading channels in

(3.25), and depends only on the estimated channel matrix Ĥ. This result shows

that in this semi-i.n.i.d. case, the ML receiver reduces to the same form as in the

i.i.d. case. The corresponding exact PEP expression and PEP bounds for the semi-

i.n.i.d. case are, thus, the same as those in [68] obtained for i.i.d. channels. Due

to the independence of σ̂2
ij and σ̄2

ij on i, these PEP results can be easily obtained

from (5.22) through (5.26) by replacing σ̂2
ij and σ̄2

ij by σ̂2
j and σ̂2

j , respectively.

5.3.3 The Upper Bounds on the BEP

Since the PEP results obtained above are in product form, the transfer func-

tion approach in [65] can be used to derive the union bound on the BEP, which is

ultimately the performance measure of interest. For a geometrically uniform STTC
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over Rayleigh fading channels, the error probability does not depend on the trans-

mitted code sequences. Consequently, we can assume without loss of generality

that the all-zero code sequence is transmitted. In the kth frame, for a transition

from state a to state b, the branch in the state diagram of a STTC is labeled by

La,b(θ) = Nwa,bDa,b(θ) (5.29)

where the exponent of the factor N indicates the number of error bits, i.e., the

Hamming weight of the input bits associated with this transition. The factor

Da,b(θ) indicates the product distance between the output codevector associated

with this transition and the actual transmitted codevector. From the expression of

the exact PEP in (5.22), Da,b(θ) is given by

Da,b(θ) =


∏NR

i=1
sin2 θ

sin2 θ+ Es
2N0i

∑NT
j=1 σ̂2

ijd2
j (k)

if the transition a → b exists

0 otherwise .

(5.30)

The transfer function T (Da,b(θ), N) of a STTC with 2ν states, whose branch labels

are given by (5.29), can be determined by solving the nodal equations [26],

T (Da,b(θ), N) = [ξ1, ξ2, · · · , ξ2ν−1]


L1,0(θ)

L2,0(θ)
...

L2ν−1,0(θ)

 (5.31)

where 
ξ1

ξ2

...

ξ2ν−1

 (5.32)

=


1 − L1,1(θ) −L2,1(θ) · · · −L2ν−1,1(θ)

−L1,2(θ) 1 − L2,2(θ) · · · −L2ν−1,2(θ)
...

...
. . .

...

−L1,2ν−1(θ) −L2,2µ−1(θ) · · · 1 − L2ν−1,2ν−1(θ)



−1 
L0,1(θ)

L0,2(θ)
...

L0,2ν−1(θ)

 .
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With the transfer function obtained in (5.31), the union bound on the BEP Pb is

given by [65]

Pb ≤
1

π

∫ π/2

0

1

m

∂T (Da,b(θ), N)

∂N
|N=1dθ (5.33)

where m = log2 M is the number of bits per MPSK symbol. Thus, for geometrically

uniform STTC over Rayleigh fading channels, the union bound on the BEP can

be numerically computed as in (5.33). Alternatively, for general STTC, a simple,

accurate estimate of the BEP Pb can be obtained more simply through the method

of dominant error events. As shown in eq. (3.33) in Chapter 3, the BEP Pb can be

estimated as

Pb ≈
1

n

∑
vc

∑
ve

a(vc → ve)P (vc → ve|v = vc)P (vc) . (5.34)

Since each term P (vc → ve|vc) in (5.34) can be upper-bounded by PUB2 in

(5.25),the estimated BEP can be upperbounded as

Pb <
1

n

∑
vc

∑
ve

a(vc → ve)P (vc)

2

∏
k∈κ

NR∏
i=1

1 +

∑NT

j=1 σ̂2
ijd

2
j(k)

2
(
γ−1 + 2

∑NT

j=1 σ̄2
ij

)
−1 .

(5.35)

In (5.35), we only sum over erroneous codewords ve with error event lengths from

the minimum value Lpmin which depends on the code structure, up to a certain

maximum value Lpmax which we choose. Using PUB2, the BEP upperbound is

shown in [68] to be tight with Lpmax = Lpmin + ν − 1, where ν is the memory order

of the code and Lpmin is the shortest error event length.

5.4 Code Design with Channel Estimation

In this section, we will discuss the code design of STTC with imperfect channel

estimation over i.n.i.d. fading channels. From the above performance analysis, it

can be seen that the effects of imperfect channel estimation are also reflected by

the variances of the channel estimates and the channel estimation errors, which
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is similar to the observation for the i.i.d. case. The effects of channel estimation

on code design can be measured by the maximum variance difference among the

channel estimates. Thus, the design criterion for STTC with channel estimation

for the i.n.i.d. case is same as that for the i.i.d. case in principle. However, the

computation of the variances of the channel estimates is different between the i.i.d.

and the i.n.i.d. case. For the i.n.i.d. case, the differences among the variances of the

channel estimates are attributed to two factors. One is the inherent non-identical

statistics of the fading processes among the links. The other is that the correlation

functions between the pilot symbols and the fading coefficient to be estimated are

unequal among different transmit antennas. For the i.i.d. case, only the second

factor matters.

We apply here the simple, explicit performance bounds to design new STTC,

taking into account the statistical information of the channel estimates. We will use

the node error event probability P (e) as the performance measure in code design

[72], which can be union bounded tightly at high SNR by

P (e) =
∑
vc

P (v = vc)P (e|v = vc) ≤ Λ (5.36)

where P (e|v = vc) ≤
∑
ve

P (vc → ve|v = vc) is the conditional node error event

probability given that the correct codeword sent is vc. The maximum conditional

node error probability Λ = max
vc

P (e|v = vc) is upperbounded by

Λ < max
vc

1

2

∑
ve

∏
k∈κ

NR∏
i=1

[bi (vc(k),ve(k))]−1 . (5.37)

where the bi (vc(k),ve(k))’s are the kth branch distances at the ith receive antenna.

The value of bi (vc(k),ve(k)) can be obtained from the PEP upperbounds. Here, we

use PUB2 in (5.25) as it has the same trend as the exact PEP. Thus, bi (vc(k),ve(k))

is given by

bi (vc(k),ve(k)) = 1 +

∑NT

j=1 σ̂2
ijd

2
j(k)

2(γ−1 + 2
∑NT

j=1 σ̄2
ij)

. (5.38)

To minimize the node error probability P (e), the upperbound on the maximum

conditional node error probability Λ should be minimized. Therefore, we arrive at

the following design criterion.
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Design Criterion

To minimize the node error event probability, one should minimize Λ, i.e.,

minimize the maximum sum of the products of the inverses of the branch distances,∑
ve

NR∏
i=1

∏
k∈κ

b−1
i (vc(k),ve(k)), over all possible codewords.

The branch distances b−1
i (vc(k),ve(k))’s can be easily computed based on

knowledge of the channel fading model and the channel estimator used. The pro-

posed criterion incorporates the statistical information of the channel estimates.

The performance degradation caused by the channel estimation errors can be min-

imized by optimally distributing the symbol-wise Euclidean distances based on the

variances of the channel estimates. Thus, the codes designed using this criterion

are more robust to channel estimation errors. Compared with the design criterion

for the i.i.d. case with channel estimation, here b−1
i (vc(k),ve(k))’s are dependent

on the receive antenna index because the variances of the channel estimates are

different from one link to another. It has been shown that the variances of the

channel estimates depend on the channel and estimator parameters. The channel

parameters include the channel fade rates and the variances of the fading processes.

The estimator parameters refer to the pilot spacing and the Wiener filter length.

These parameters can be conveyed to the transmitter by a feedback link. Then, the

corresponding optimal codes are designed by using parameters matched to these

parameters. Using the design criterion given above, new STTC for non-identical

channels with imperfect channel estimation can be obtained by using our reduced-

complexity, iterative search algorithm proposed in Chapter 4. For different channel

conditions, different optimal codes may be obtained. It will be shown that our pro-

posed codes have improved error performances compared with those existing codes

in the literature that are designed assuming i.i.d. channels and perfect CSI at the

receiver. The performance improvement achieved by our codes over existing codes

increases as the variance differences among all the fading links become greater.

When the channel and the estimation parameters are known at the transmitter,

the optimal codes should be used to achieve the best performance.
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5.5 Numerical Results

In the numerical results, we assume the TDM PSAM system has NT = 2

transmit and NR = 1 receive antenna. On the (i, j)th link, the channel fading

process has a Jake’s power spectrum so that Rij(τ) = J0(2πfdijτ), where the

channel fade rate is denoted by fdij. The variance of the fading process of the

first transmit antenna is denoted by σ2
1, and that of the second is σ2

2. The PSAM

scheme is used to estimate the channels with pilot spacing L = 8 and Wiener

filter length N = 6, for all channel fade rates that are lower than fdT = 0.05, as

suggested in Chapter 3. Without loss of generality, we consider the user whose

time slot is located immediately after the pilot phase in the first block. To be fair,

we account for the energy spent on the pilot symbols by taking the energy per data

symbol in the PSAM scheme as (Es)PSAM = Es(L − NT )/L, where Es is the data

symbol energy for the perfect CSI case when no pilots are transmitted.

In Fig. 5.1, we examine the effects of the differences among the channel fade

rates and the variances on the maximum variance difference 4σ̂2
max. The maximum

variance difference 4σ̂2
max is given by σ̂2

2 − σ̂2
1, which reflects the effect of channel

estimation on code design, as shown in Chapter 4. The x-axis represents the differ-

ence between the channel fade rates, i.e., fd2T − fd1T . Without loss of generality,

we assume fd2T > fd1T , and fd1T = 0.01. Thus, the range of the channel fade

rates considered is [0.01, 0.05], during which channel estimates with satisfactory

accuracy can be obtained using L = 8 and N = 6. Compared with the difference

among the channel fade rates, the effects of the different variances can be seen to

be more important. Thus, we examine here the i.n.i.d. channels by focusing on the

different variances. The channel fade rates on each link are assumed to be equal.

Using the proposed iterative search algorithm in Chapter 4, we obtained new

8-state QPSK STTC’s over i.n.i.d. channels with imperfect CSI, as shown in Tab.

5.1. These proposed codes are termed ICSI codes. The three optimal ICSI codes

in Tab. 5.1 are designed for channels with different variances σ2
1 and σ2

2, and with a
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Fig. 5.1: The effects of the differences among the channel fade rates and the variances on the

maximum estimation variance difference.

Table 5.1: The proposed 8-state QPSK code generator matrices GT with two transmit antennas

for i.n.i.d. channels with imperfect CSI.

(σ2
1, σ

2
2) ICSI

σ2
1 = 0.1, σ2

2 = 0.9 [1 3 2 1 1; 2 3 2 1 1]

σ2
1 = 0.3, σ2

2 = 0.7 [2 1 1 3 2; 2 3 2 3 1]

σ2
1 = 0.4, σ2

2 = 0.6 [2 0 1 2 2; 2 2 2 1 0]

fade rate of fdT = 0.05. In Fig. 5.2, the exact PEP in (5.22), PEP upper bounds in

(5.24) and (5.25), and PEP lower bound in (5.26) are plotted. We take the 8-state

QPSK code of [1] (abbreviated as TSC code) over the shortest error event path as

an example. It can be seen that PUB1 and PLB are very close to the exact PEP,

especially for high SNR. Due to the use of the Chernoff bound, PUB2 is a bit loose.

However, the advantage of PUB2 is that it nearly has the same trend as the exact

PEP.

Fig. 5.3 shows both analytical and simulated BEP performance results for the
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Fig. 5.2: The exact PEP and the PEP bounds for the 8-state QPSK TSC code of [1] over the

shortest error event path with imperfect CSI, where σ2
1 = 0.3, σ2

2 = 0.7, and fdT = 0.05.
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Fig. 5.3: The simulated and analytical BEP results for the 8-state QPSK TSC code of [1] over

i.n.i.d. Rayleigh fading channels at fdT = 0.05 with imperfect CSI.
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Fig. 5.4: The simulated and analytical BEP results for the 8-state QPSK FVY code of [2] over

i.n.i.d. Rayleigh fading channels at fdT = 0.05 with imperfect CSI.

8-state QPSK TSC code over i.n.i.d. fading channels. For all the simulated results,

we take the number of frames as K = 100. Two channel conditions are considered.

One has the variances (σ2
1 = 0.3, σ2

2 = 0.7). The other has (σ2
1 = 0.1, σ2

2 = 0.9). It

can be seen that the analytical BEP results obtained using the method of dominant

error events are very close to the simulated BEP results. The maximum error event

length considered is given by Lpmax = Lpmin+ν−1. Similar results can be obtained

for the 8-state FVY code of [2], as shown in Fig. 5.4.

Fig. 5.5 demonstrates that the proposed 8-state QPSK ICSI code with (σ2
1 =

0.3, σ2
2 = 0.7) (abbreviated as ICSI-37 code) offers about 3dB performance gain

over the TSC code at a BEP of 10−4, when the actual channel variances are

(σ2
1 = 0.3, σ2

2 = 0.7). In Fig. 5.6, we compare the proposed 8-state QPSK ICSI

code with (σ2
1 = 0.1, σ2

2 = 0.9) (abbreviated as ICSI-19 code) with the TSC code

over channels with (σ2
1 = 0.1, σ2

2 = 0.9). It can be seen that the performance

gain increases to nearly 4dB at the BEP of 10−4. Thus, the results have shown

the superiority of our proposed ICSI codes when only imperfect CSI is available
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Fig. 5.5: The comparison of the simulated BEP results among the 8-state QPSK ICSI-37 code,

the TSC code, and the FVY code over i.n.i.d. fading channels with σ2
1 = 0.3, σ2

2 = 0.7.

at the receiver. Furthermore, when the variance differences among channels in-

crease, greater performance gains can be obtained by the proposed codes, and the

advantage of using our proposed STTC is more obvious.

In addition to comparing our proposed ICSI codes with the codes known in the

literature, Fig. 5.7 and Fig. 5.8 compare the performances of the three proposed

ICSI codes under different channel conditions. In Fig. 5.7, the channels have

variances (σ2
1 = 0.4, σ2

2 = 0.6). The ICSI code designed with (σ2
1 = 0.4, σ2

2 = 0.6)

(abbreviated as ICSI-46 code) performs best, and this is to be expected because the

design parameters of this code are matched to the channel parameters. In Fig. 5.8,

the channels have variances (σ2
1 = 0.1, σ2

2 = 0.9). Again, it is obvious have that the

ICSI-19 code outperforms the other two codes. Thus, we have demonstrated that

optimal codes matched to the channel and estimator parameters should be used

when these parameters are known at the transmitter, if the degree of imbalance

among links is sufficiently high.
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Fig. 5.6: The comparison of the simulated BEP results among the 8-state QPSK ICSI-19 code,

the TSC code, and the FVY code over i.n.i.d. fading channels with σ2
1 = 0.1, σ2

2 = 0.9.
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Fig. 5.7: The analytical BEP results of the three proposed 8-state QPSK ICSI codes over i.n.i.d.

channels with NT = 2, NR = 1, fdT = 0.05, σ2
1 = 0.4 and σ2

2 = 0.6.
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Fig. 5.8: The analytical BEP results of the three proposed 8-state QPSK ICSI codes over i.n.i.d.

channels with NT = 2, NR = 1, fdT = 0.05, σ2
1 = 0.1 and σ2

2 = 0.9, which are estimated

with L = 8, N = 6, (Es)PSAM = Es(L − NT )/L, and Ep = (Es)PSAM .

5.6 Summary

We have extended the work on performance analysis and code design of STTC

over rapid, Rayleigh fading channels with imperfect CSI to the i.n.i.d. case, by

relaxing the constraint of identical statistical distribution on each link. This will

lead to broader applications of STTC in practical MIMO systems. The ML receiver

is derived, and shown to use not only the channel estimates but also the second-

order statistical information of the estimates. It cannot simply be obtained from

the perfect CSI ML receiver by replacing the known channel matrix H with the

imperfectly estimated Ĥ. Its exact PEP expression, and PEP bounds are derived.

Employing the node error event probability as the cost function, a practical code

design criterion is presented and new STTC are obtained. When the channels

have non-identical distributions, our proposed STTC have better performance than

previous codes designed for rapid fading channels. When the variance differences

among channel fading processes increase, the performance gains achieved by our

proposed STTC are greater.
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Chapter 6

Power Allocation with Side

Information at the Transmitter

In the previous chapters, we have examined the performance analysis and code

design of STTC over rapid Rayleigh fading channels with imperfect CSI at the

receiver. The transmitter was assumed to have no knowledge of CSI in the open-

loop system. However, the performance of the closed-loop system can be expected

to be better than that of the open-loop system, by exploiting side information of

channel at the transmitter. Thus, if CSI is available at the receiver, it is desirable to

feed back CSI to the transmitter if it is possible. One way to improve performance

of closed-loop systems is to use adaptive power allocation schemes based on the

side information at the transmitter. Some other schemes, such as adaptive rate or

adaptive modulation, may also be adopted. However, these are beyond the scope

of this thesis due to the time limitation. We will here focus on the adaptive power

allocation schemes.

6.1 Introduction

The study of communication systems with side information at the transmitter

can be traced back to Shannon [73]. Then, Goldsmith and Varaiya [27] studied the
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case with perfect CSI at the receiver and transmitter, and presented an adaptive

coding scheme to achieve capacity. Caire and Shamai [74] investigated the case of

imperfect CSI at the transmitter. All these works mentioned concentrate on SISO

systems. For MIMO systems, Telatar [6] first examined the capacity with no or

perfect CSI at the transmitter, and perfect CSI at the receiver. With no CSI at

the transmitter, the optimal transmission strategy to achieve capacity is to allocate

equal power in independent orthogonal directions along different transmit anten-

nas. Conversely, with perfect CSI at the transmitter, optimum power allocation to

each transmit antenna can be carried out by the well-known water-filling algorithm

[75]. The information-theoretic capacity of MIMO channels with imperfect feed-

back is the subject of recent publications. There are still many open problems that

remain to be solved in this area [76]. Narula et al [28] studied how to efficiently

use side information in multiple-antenna data transmission over fading channels.

The side information is modeled by a random vector, which may consist of noisy

estimates of the channel coefficients, or the quantized channel information. Both

expected SNR and mutual information are considered as performance measures.

Lower performance is obtained as the quality of the side information degrades. For

the multiple-input single-output (MISO) case, the optimum SNR can be achieved

by beamforming in a direction determined by the eigenstructure of the conditional

channel correlation matrix. For the mutual information criterion, unlike for the

SNR criterion, beamforming is not always optimum. The condition that deter-

mines when beamforming is optimal for two transmit antennas is given. Since

computation of the capacity for general channel distribution at the transmitter is

a difficult problem, most research focused on some special distributions such as in

the mean feedback or the variance feedback cases. For the mean feedback case, the

estimate of the channels based on the feedback is known at the transmitter. The

variance matrix of the channels is modeled as a matrix that is a scalar multiple of

an identity matrix. The scalar may be interpreted as the variance of the estimation

error. For the variance feedback case, the transmitter models the channel coeffi-

cients as Gaussian random variables with mean zero. The covariance matrix of the
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channels is known at the transmitter, and is not necessary to be a scalar multiple

of an identity matrix. In [35], the optimum transmission schemes to achieve ca-

pacity for MISO systems were presented with either mean feedback or covariance

feedback. For mean feedback, when the feedback SNR is larger than a threshold,

the optimum scheme is to use beamforming along the mean vector. Otherwise,

the optimum scheme is to use transmit diversity, i.e., the principal eigenvector of

the optimal input covariance matrix is along the channel mean vector, and the

eigenvalues corresponding to the remaining eigenvectors are shown to be equal.

For covariance feedback, the optimum solution consists of transmit independent

Gaussian inputs along the eigenvectors of the covariance matrix. It is worth noting

that all the works mentioned above assumed perfect CSI at the receiver. For more

general scenarios, such as the case where only partial or imperfect CSI is known

at transmitter/receiver [76, 77], or even no information of the channels is available

[78], the capacity analysis is much more difficult. From the results obtained in the

previous chapters, it has been known that for the open-loop system, the imperfect

CSI at the receiver not only affects the performance and the receiver structure, but

also the transmission scheme. Thus, it is important to examine how to exploit the

side information at the transmitter for the closed-loop system when only imperfect

CSI is available to the receiver. The scenario of imperfect CSI at the receiver has

only been examined recently by [56], [79], [80], and [81]. Since the capacity with

imperfect CSI at the receiver is difficult to evaluate even for the SISO system, only

some bounds are obtained in the aforementioned works. References [56] and [80]

considered quasi-static MIMO fading channels, and [79] focused on time-varying

SISO systems. The most recently work in [81] extended the results in [80] and [79].

Spatial-temporal power allocation schemes were proposed. However, all the papers

which considered the imperfect CSI case assumed both the channel fading gains

and the channel estimates are i.i.d. random variables. Therefore, the water-filling

power allocation policy [75] can be employed due to the i.i.d. assumption. Our

results will show that this water-filling policy cannot work for i.n.i.d. channels.

New power allocation schemes need be proposed. Compared with the quasi-static
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fading channels, channel estimation for the rapid fading channels is different due to

the time-varying nature of the channels. Thus, this results in that the effects of the

channel estimation errors on the capacity of the rapid fading channels is different

from that of the quasi-static fading channels. These factors motivate us to further

explore the capacity of rapid, i.n.i.d. MIMO channels.

We examine here the capacity and the optimal power allocation schemes for

STTC over semi-i.n.i.d. rapid, Rayleigh fading channels with imperfect CSI at the

receiver. The semi-i.n.i.d. channels assume all the fading links associated with a

transmit antenna have the same distribution; but the distribution changes from

one transmit antenna to another. This system model for semi-i.n.i.d. channels has

been described in Chapter 5. The channel estimates and the corresponding statis-

tics obtained in Chapter 5 are used directly. Conditioned on the pilot channel

measurements, a new lower bound on the capacity of rapid, semi-i.n.i.d. MIMO

fading channels with imperfect CSI at the receiver is obtained, and the correspond-

ing optimal power allocation scheme is derived. Due to the computational burden

of this scheme, we transform the problem into one of designing the optimal trans-

mit weighting matrix by using the analyzed PEP results derived in Chapter 5 as

the objective function. When the estimated channel fading matrix is known at the

transmitter, and the estimates are sufficiently reliable, a beamforming scheme is

proposed to minimize the error performance. On the other hand, if only partial

information, such as only the statistical information of channels, is available due

to the limited-bandwidth feedback, a simple power allocation scheme is derived.

6.2 Closed-loop TDM System Model

Consider the closed-loop TDM MIMO system model of Fig. 6.1. There are

NT transmit and NR receive antennas. The data from each user are encoded and

multiplexed into frames. The frame structure is same as that of the open-loop

TDM system in Chapter 3. Then, frames consisting of data from all users and

107



CHAPTER 6. POWER ALLOCATION WITH SIDE INFORMATION AT THE TRANSMITTER

Encoder
User 1

Multiplexer

User U

Pilots

MIMO

Channel

Encoder

Decoder

Demultiplex

er

Estimator

Decoder

Feedback

Channel

User 1

User U

T
N

R
N

t{b }
Feedback

Scheme

t{f }

Fig. 6.1: The closed-loop TDM MIMO system model with PSAM.

inserted pilot symbols are transmitted over time-varying MIMO channels. The

fading processes between each pair of transmit and receive antennas are assumed

to be correlated over time, but independent over space. The channel information

at the receiver and transmitter obtained at time t are represented by b(t) and f(t),

respectively. The side information {f(t)} can be obtained by conveying {b(t)} via a

feedback channel. Here we assume the feedback channel is error-free and delay-free.

The feedback scheme is described by a function f(·). Thus, we have

f(t) = f(B) (6.1)

where B = {b(1), · · · ,b(t), · · · } is the sequence of channel information at the

receiver. It should be emphasized here that the channel information are revealed

to the transmitter in a causal fashion, and therefore no predictive encoding is

possible [74]. The feedback scheme f(·) may be an estimator, equalizer or encoder,

etc., which maps the channel information at the receiver to that at the transmitter.

With the side information at the transmitter, the optimal transmission scheme to

achieve capacity can be employed by adapting to the channel conditions.

In the TDM system, the data from each user are encoded and detected in-

dependently. Without loss of generality, we focus on one particular user in the

following, and the signal model for one user is reduced to Fig. 6.2. The encoder of
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the user produces a NT × 1 vector x(k) in the kth frame. The transmitted signal

x(k) is a function of the input signals {u(k)} and the side information f(k). The

corresponding received NR × 1 vector, r(k), can be expressed as

r(k) = H(k)x(k) + n(k) . (6.2)

The noise vector n(k) is CN (0, N0INR
) distributed, where CN (µ,Σ) denotes the

complex Gaussian distribution with mean µ and variance Σ. The channel fading

matrix is H(k) = [hij(k)], where for a given k, hij(k)’s are all mutually independent,

CN (0, 2σ2
j ) distributed. Here we considier the semi-i.n.i.d. fading channels. Thus,

the variances of the fading processes are assumed to depend only on the transmit

antenna index j. With the perfect interleaving/de-interleaving of the TDM system,

it can be easily shown that the stationary fading process {hij(k)}K
k=1 experienced by

the user is i.i.d. over time. The fading and noise processes are independent of one

another. In practice, the exact channel realization H(k) is not available. We use

the PSAM scheme proposed in Chapter 3 to estimate it, and the estimated channel

matrix is denoted as Ĥ(k). In the PSAM scheme, pilot symbols are transmitted,

and the normalized received pilot symbols are used as the channel measurements.

The channel measurements from all pilot symbols during the entire transmission

are denoted as I. With channel estimation at the receiver, either the channel

measurements I or the estimated channel matrix Ĥ(k) obtained can be fed to

the feedback channel. However, using the channel measurements during the pilot

phase as the input of the feedback channel is more spectrum efficient than using

the estimated channel matrix during the data phase as the input. This is due to

the fact that the duration of the pilot phase is always shorter than that of the data

phase, and, therefore, less data are needed to be transmitted.

The channel information at the receiver, i.e., the channel measurements, is used

in two ways for the closed-loop system, as shown in Fig. 6.1. On the one hand,

the channel estimator uses the channel measurements to obtain the MMSE channel

estimates. On the other hand, the channel measurements are fed to the feedback

channel. The usage of the channel measurements I to estimate the channel fading
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Fig. 6.2: The closed-loop TDM MIMO system model with PSAM for one user.

matrices at the receiver is well-known. We have examined the statistical informa-

tion of the channel estimates in the previous chapters. For the semi-i.n.i.d. case,

the elements of Ĥ(k) are independent, CN (0, 2σ̂2
j ) distributed. The elements in the

estimation error matrix, E(k) = H(k) − Ĥ(k), are also independent, CN (0, 2σ̄2
j )

distributed. Since H(k) are i.i.d. over time due to complete interleaving, the corre-

sponding estimate Ĥ(k) and estimation error matrix E(k) are also i.i.d. over time.

Compared to the advanced state of knowledge of using channel information at the

receiver, the study of using the channel information at the transmitter for MIMO

systems is still at the beginning stage [76]. Here, we assume the feedback scheme

is the MMSE estimator. Thus, based on the output of the noisy-free and delay-

free feedback channel, the same estimated channel matrix as that at the receiver

can be obtained at the transmitter. The channel information at the receiver and

transmitter can be expressed as

B = I (6.3)

f(k) = Ĥ(k) . (6.4)

6.3 Capacity of MIMO Channels with Imperfect

CSI at the Transmitter and Receiver

The capacity of MIMO channels with perfect CSI at the transmitter and re-

ceiver is well known. For a given channel realization, the capacity is given by
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[6]

C(H(k)) = max
Q(k):Tr(Q(k))=P

log2

∣∣∣∣INR
+

1

N0

H(k)Q(k)HH(k)

∣∣∣∣ (6.5)

where Q(k) = E[x(k)xH(k)] is the input covariance matrix. The maximum C(H(k))

is achieved by transmitting the signals along the eigenvectors of HH(k)H(k). With

the singular value decomposition of the channel matrix, the MIMO channel is con-

verted into parallel SISO channels. The power allocated to these parallel channels

can be found by water-filling, i.e.,

Pi =

(
% − N0

λ2
i

)+

, 1 ≤ i ≤ min(NT , NR) (6.6)

where {λi}’s are the singular values of H(k), and % is the waterfill level which

satisfies
∑min(NT ,NR)

i=1 Pi = P . Pi is the power in the ith eigenmode of the channel

and (x)+ is defined as max(x, 0). Thus, the channel capacity given H(k) is

C (H(k)) =

min(NT ,NR)∑
i=1

log2

(
%λ2

i

N0

)
. (6.7)

By averaging C(H(k)) over all channel realizations, we obtain the ergodic capacity

C = EH(k) [C(H(k))] . (6.8)

However, the capacity of MIMO channels with only imperfect CSI at the transmit-

ter and receiver has not been fully examined because of the difficulty to determine

the optimum distribution of the input signals [82], and the problem of computing

the differential entropy of the received signal given the imperfect CSI. Some bounds

are obtained for i.i.d. fading channels in [56], [81]. No research has been done on

the capacity of i.n.i.d. MIMO channels. We next will study the capacity bound for

the semi-i.n.i.d. rapid fading channels with imperfect CSI at the transmitter and

receiver.

With the rapid fading model considered in Section 6.2, for each use of the

channels an independent realization of H(k) is drawn. In this case, the capacity can

be computed as the maximum mutual information [6]. Thus, we start by computing

the mutual information I(x(k); r(k)|I) between the input and the output of the
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channels given the channel measurements at both the transmitter and receiver.

Because of the Gaussian statistics, the estimated channel fading matrix Ĥ(k) and

the associated estimation error covariance matrix summarize all the information

concerning H(k) given in the channel measurements I. The mutual information

I(x(k); r(k)|I) given I is

I(x(k); r(k)|I) = h(x(k)|I) − h(x(k)|r(k), I) (6.9)

where h(·) denotes the differential entropy. For the noise-free feedback channel, the

channel information at the transmitter is a deterministic function of that at the

receiver. It allows optimal codes to be constructed directly over the input alphabet,

and be independent of the channel measurements [74].

Since the entropy of a random variable with given variance is upper-bounded

by the entropy of a Gaussian random variable with the same variance, we have [79]

h(x(k)|r(k), I) = h(x(k) − c(k)r(k)|r(k), I)

≤ h(ε(k)|I)

≤ log2

[
(2πe)NT

∣∣Σε(k)|I
∣∣] (6.10)

where c(k) is any NT × NR real matrix, ε(k) is given by x(k) − c(k)r(k), and

Σx = E[xxH ] denotes the autocorrelation function of random vector x, Σ(x, y) =

E[xyH ] denotes the crosscorrelation function of x and y, and Σ(x, y|z) = E[xyH |z]

is the conditional crosscorrelation function of x and y given z. Combining (6.9)

and (6.10), the mutual information I(x(k); r(k)|I) can be lower-bounded by

I(x(k); r(k)|I) ≥ log2

∣∣∣Σx(k)Σ
−1
ε(k)|I

∣∣∣ . (6.11)

The equality holds when c(k)r(k) is the linear minimum mean-square error (LMMSE)

estimate of x(k) in terms of r(k) [79]. The optimal NT ×NR coefficient matrix c(k)

is given by

c(k) = Σ(x(k), r(k)|I)Σ
−1
r(k)|I (6.12)

and the minimum variance of the estimation error ε(k) is [55]

Σε(k)|I = Σx(k) − Σ(x(k), r(k)|I)Σ
−1
r(k)|IΣ

H
(x(k), r(k)|I) . (6.13)
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With the signal model (6.2), it is easy to know that

Σ(x(k), r(k)|I) = Σx(k)Ĥ
H(k) (6.14)

and due to the independence among x(k), E(k) and n(k), we obtain

Σr(k)|I = ΣĤ(k)x(k) + ΣE(k)x(k) + Σn(k) (6.15)

= Ĥ(k)Σx(k)Ĥ
H(k) + Σn̄(k)

where Σn̄(k) = ΣE(k)x(k) + Σn(k) is the variance matrix of the effective noises.

The part of E(k)x(k) can be viewed as additional noises caused by the channel

estimation errors. Recall that the elements of E(k) are independent, CN (0, 2σ̄2
j )

distributed. Thus, Σn̄(k) can be easily shown to be

Σn̄(k) = N0INR
(6.16)

where N0 = 2
∑NT

j=1 Pjσ̄
2
j + N0, and Pj = E[xj(k)x∗

j(k)]. The power of the effec-

tive noise is N0, which is increased by the channel estimation errors. Replacing

Σ(x(k), r(k)|I) and Σr(k)|I by their expressions in (6.14) and (6.15), respectively, the

variance Σε(k)|I is given by

Σε(k)|I = Σx(k) − Σx(k)Ĥ
H(k)

[
Ĥ(k)Σx(k)Ĥ

H(k) + Σn̄(k)

]−1

Ĥ(k)Σx(k) . (6.17)

Using the Woodbury’s equation [83, sec. A.1], i.e.,

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

the inverse of the variance Σε(k)|I can be expressed as

Σ−1
ε(k)|I = Σ−1

x(k) + ĤH(k)Σ−1
n̄(k)Ĥ(k) . (6.18)

Thus, the lower-bound on (6.11) can be shown to be

I(x(k); r(k)|I) ≥ log2

∣∣∣I + ĤH(k)Σ−1
n̄(k)Ĥ(k)Σx(k)

∣∣∣ . (6.19)

Denote the singular value decomposition of Ĥ(k) as Ĥ(k) = ÛHD̂V̂, where ÛNR×NR

and V̂NT×NT
are unitary matrices, and D̂NR×NT

is a real diagonal matrix. Define
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D̂ = diag[λ̂1, · · · , λ̂r, 0, · · · , 0], where λ̂i’s are the singular values and r is the rank of

Ĥ(k). Then, with the aid of (6.16), Ĥ(k)HΣ−1
n̄(k)Ĥ(k) can be written as 1

N0
V̂HΛV̂,

where Λ = D̂HD̂. The lower bound on the mutual information on the right hand

side of (6.19) can then be computed as

Ilower(Ĥ(k)) = log2

∣∣∣∣I +
1

N0

ΛΣ̃x(k)

∣∣∣∣ (6.20)

where Σ̃x(k) = V̂Σx(k)V̂
H . This is our new lower bound on the mutual information

with imperfect CSI at both the transmitter and receiver. The key difference of our

result from others in [80, 81] is that the effective noise N0 depends on the unequal

variances of the estimates at each transmit antenna due to the nonidentical channel

assumption. This leads to that N0 is coupled with the transmitted symbol powers

at the transmit antennas. Based on Ilower(Ĥ(k)), the lower bound Clower(Ĥ(k))

on the capacity of the MIMO channels in (6.2), conditioned on a realization of the

estimated channel matrix Ĥ(k) available at both transmitter and receiver, is given

by

Clower(Ĥ(k)) = max
p(x(k)|Ĥ(k))

log2

∣∣∣∣I +
1

N0

ΛΣ̃x(k)

∣∣∣∣ (6.21)

and the lower bound Clower on the ergodic capacity with the estimated channel

matrix Ĥ(k) known at both transmitter and receiver is given by

Clower = EĤ(k)

[
Clower(Ĥ(k))

]
= EĤ(k)

[
max

p(x(k)|Ĥ(k))
log2

∣∣∣∣I +
1

N0

ΛΣ̃x(k)

∣∣∣∣
]

. (6.22)

With the average power constraint of Tr(Σ̃x(k)) ≤ P , the right side of (6.21) is

maximized with Σ̃x(k) a diagonal matrix, i.e., Σ̃x(k) = diag[P1 · · ·PNT
]. Thus, the

lower bound on the capacity in (6.21) can be calculated as

Clower(Ĥ(k)) = max
Pj

r∑
j=1

log2

(
1 +

λ̂2
jPj

N0

)
(6.23)

subject to

NT∑
j=1

Pj ≤ P, Pj ≥ 0

Note that N0 is a function of Pj due to the unequal variances of the channel

estimates associated with different transmit antennas. The tight lower bound on
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the capacity can be achieved by optimally allocating the power on eigenmodes of

the estimated channel matrix. In the next section, we will examine the power

allocation schemes.

6.4 Transmit Power Allocation Schemes

In principle, information throughput of MIMO systems can be further increased

via an optimized allocation of the available power over transmit antennas [28]. The

adaptive transmit power allocation has to be performed based on the channel infor-

mation at the transmitter. Contrary to the perfect CSI case, the optimal transmit

power allocation strategy for MIMO systems when both the transmitter and re-

ceiver have only imperfect CSI is still an open problem [84, 85]. Power allocation

schemes were designed based on the SNR and the expected mutual information in

[28]. However, the expression of mutual information in [28, eq. (26)] considered

only imperfect CSI at the transmitter, and perfect CSI at the receiver. The same

situation was also examined by [36], but the design of the weighting matrix in [36] is

based on a PEP lowerbound. In [36], the authors presented a transmission scheme

which adapts a predetermined space-time code to available channel knowledge by

a linear transformation. The proposed optimal transmit weighting matrix can be

obtained by computer search. Only for some simplified scenarios can the analytical

expression for the transmit weighting matrix be obtained. The power allocation

for multiple-antenna systems with imperfect channel estimation was examined in

[84]. The proposed water-filling policy based on the conditional capacity given the

estimated channel information is suboptimal, because they simply replaced the ac-

tual channel matrix by its estimate. In this section, we will first design the optimal

transmit power allocation scheme using the capacity bound derived in (6.21) for

the i.n.i.d. channels with imperfect CSI at both the transmitter and receiver. It

is worth noting that the power allocation for the i.n.i.d. channels is quite different

from that of i.i.d. channels when there are channel estimation errors. This is due

to the fact that the effective noise N0 at the receiver is dependent on the power
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allocated at each transmit antenna.

6.4.1 Design Based on the Capacity Lower Bound

Given the lower bound on the capacity of MIMO channels with imperfect CSI

at the receiver obtained above, one way to design the transmit power allocation

scheme is to maximize the right hand side of (6.23). Unlike the optimal power

allocation for the perfect CSI case, whether the power allocation based on the

capacity lowerbound for the imperfect CSI case is a convex optimization problem

is not obvious, because the effective noise N0 in the denominator of the capacity

lowerbound (6.23) is also a function of the transmission powers Pj, as mentioned.

Based on the expression of Clower(Ĥ(k)) in (6.23), the second derivation of the

function

f(Pj) =
r∑

j=1

log2

(
1 +

λ̂2
jPj

N0

)
(6.24)

is given by

∂2f(Pj)

∂2Pj

= −
λ2

j(N0 − 2Pjσ̄
2
j )(4N0σ̄

2
j + λ2

jN0 + 2λ2
jPjσ̄

2
j )

(N
2

0 + Pjλ2
jN0)2

. (6.25)

Since N0 = 2
∑NT

j=1 Pjσ̄
2
j + N0, we have N0 − 2Pjσ̄

2
j > 0. Therefore, it is easy to

show that the second derivation of f(Pj) is negative, i.e.,

∂2f(Pj)

∂2Pj

< 0 (6.26)

Thus, the function f(Pj) is concave, and the optimization problem belongs to the

class of convex optimization problems. Maximizing the capacity lower bound is

equivalent to minimizing its negative. Since the capacity lower bound is a concave

function of power, its negative is convex. The constraints are linear, so they are also

convex. Thus, the optimum set of powers Pj’s satisfies the Karush-Kuhn-Tucker
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(KKT) conditions

NT∑
j=1

Pj = P, Pj ≥ 0 (6.27)

− 1

ln 2

N0λ̂
2
j − 2λ̂2

jPjσ̄
2
j

N
2

0 + λ̂2
jPjN0

+ µ − νj = 0 (6.28)

µ ≥ 0, νj ≥ 0, νjPj = 0 (6.29)

where j = 1, · · · , NT , µ and νj are the positive Lagrange multipliers for the power

constraint and the positivity constraints on Pj, respectively. Finally, it can be

shown that the optimal Pj is

Pj =

(
N0(λ̂

2
j − µN0 ln 2)

λ̂2
j(2σ̄

2
j + µN0 ln 2)

)+

(6.30)

where µ is chosen so that
∑NT

j=1 Pj = P . The optimization tool fmincon in Matlab

can be used to compute the optimal power allocation at each transmit antenna.

From the equation of Pj in (6.30), we have Pj = 0 if

λ̂2
j

N0

≤ µ ln 2 (6.31)

It indicates that no power is assigned to a channel which is in a bad condition.

The channel condition is affected by the effective channel noise N0, which, in

turn, depends on the channel estimation accuracy and the average SNR. When

one channel has much better condition than the others, the beamforming scheme

can be used to achieve the capacity. Although this power allocation scheme can

approach the channel capacity, it entails high complexity due to the computation

of singular values λ̂i and the adaptive optimization procedure. The approximating

constant-power allocation scheme may be used to simplify the transmitter design

[86]. However, it is only suitable for high SNR because of the saturation property

of the logarithmic function at high SNR. To reduce the computational complexity,

we may resort to some other possible cost functions.
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6.4.2 Design Based on the PEP Lower Bounds

To avoid the computation of the eigenvalues and the numerical search for the

optimal transmit powers, we alternatively use the PEP as the criterion to design

the optimal power allocation schemes. Some PEP results with imperfect CSI at the

receiver have been obtained in the previous chapters, which can be easily computed.

6.4.2.1 The Signal Model with Transmit Weights

By focusing on adapting the transmit power to the channel conditions, we

convert the problem into one of designing the optimal transmit weighting matrix

at the transmitter. Thus, the signal model in (6.2) can be rewritten as

r(k) =
√

EsH(k)W(k)v(k) + n(k) (6.32)

where Es is the average symbol energy, and each element in the transmit codevector

v(k) has unit energy. W(k) = diag[w1 · · ·wNT
] is the diagonal transmit weighting

matrix with Frobenius norm ‖W(k)‖2 = 1. Suppose the entire sequence of trans-

mitted and received signals for the user concerned are v = [vT (1) · · ·vT (K)]T and

r = [rT (1) · · · rT (K)]T , respectively. The combined weighting matrix and chan-

nel fading matrix are W = diag[W(1) · · ·W(K)] and H = diag[H(1) · · ·H(K)],

respectively. The estimated channel fading matrix Ĥ = diag[Ĥ(1) · · · Ĥ(K)] is ob-

tained based on the channel measurements I. The elements in Ĥ(k) = [ĥij(k)] are

independent, CN (0, 2σ̂2
j ) distributed. For this semi-i.n.i.d. case, the ML receiver,

as shown in (5.28), detects the transmitted signal sequence v by computing the

decision metric m(r,v) = ‖r −
√

EsĤWv‖2 for each possible value vl of v, and

deciding that v = vj if m(r,vj) = min
l

m(r,vl).

If there is no bandwidth limit on the feedback channel, the channel measure-

ments can be conveyed to the transmitter, and the estimated channel matrix is cal-

culated at the transmitter. Otherwise, for the bandwidth-limited feedback channel,
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the estimated channel matrix may not be available at the transmitter. The practi-

cal assumption is that only partial or quantized channel state information is known

at the transmitter. Recalling that the statistical information of the channel esti-

mates depends only on the channel fading model and the channel estimator used,

we thus can use a simple feedback scheme, which conveys the design parameters

of the channel estimator, namely the pilot spacing and the Wiener filter length,

to the transmitter. As for the channel fading model, it is a long-term statistical

information of the channel, which can be measured. It is reasonable to assume that

the fading model is known at both the transmitter and receiver as a priori informa-

tion. This simple feedback scheme requires small bandwidth, since only the design

parameters of the channel estimator are fed back. Using this feedback scheme,

the variances of the channel estimates can be easily computed via (5.3). Based on

the information of the channel estimates at the transmitter, we next propose two

simple power allocation schemes.

6.4.2.2 Estimated Channel Matrix Known at Transmitter

We assume here that the knowledge of the estimated channel fading matrix

is available at the transmitter. Thus, the conditional PEP P (vc → ve|I,v =

vc) given the channel measurements I, is used as the objective function. This

conditional PEP that the receiver decides in favor of an erroneous codeword ve =

[vT
e (1) · · · vT

e (K)]T when the actual codeword sent is vc = [vT
c (1) · · · vT

c (K)]T

and there are no other alternative codewords, is given by (5.18) in Chapter 5,

P (vc → ve|I,v = vc) = Q

√√√√∑
k∈κ

Es‖Ĥ(k)W(k)vce(k)‖2

2Ñ0(k)

 (6.33)

where vce(k) = vc(k)−ve(k) is the code difference vector, and κ is the set of frame

indices k where vc(k) 6= ve(k). Here, W(k)vce can be viewed as the effective code

difference vector. The power of the effective noise at each receive antenna is given

by

Ñ0(k) = N0 + 2Es

NT∑
j=1

σ̄2
j |wj(k)|2 (6.34)
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If the same power is allocated to each transmit antenna, i.e., wj(k) = 1 for all

j = 1, · · · , NT , equations (6.33) and (6.34) will reduce to the same as those obtained

for the open-loop system in (3.26) and (3.24). With the estimated channel matrix

known at the transmitter, the optimal transmit weighting matrix can be obtained

by minimizing the conditional PEP in (6.33). Define

w = [w1 · · ·wNT
]T (6.35a)

Φ̄ = diag[σ̄2
1, σ̄

2
2, · · · , σ̄2

NT
] (6.35b)

Ψ =
N0

2Es

INT
+ Φ̄ (6.35c)

where w is the equivalent transmit weighting vector. Then, the matrix form of

Ñ0(k)/(2Es) is given by

Ñ0(k)/(2Es) = wH(k)Ψw(k) (6.36)

Due to the monotonically decreasing property of the Q-function, the problem of

interest can be formulated into the following constrained optimization problem:

Find arg max
w(k)

f(w(k)) =
vH

ce(k)WH(k)ĤH(k)Ĥ(k)W(k)vce(k)

wH(k)Ψw(k)

subject to

NT∑
j=1

|wj(k)|2 = 1 (6.37)

Note that the optimal weighting matrix obtained by using this objective function is

dependent on the code difference vector. This is impractical to implement. Thus,

we use an lower bound on the conditional PEP to obtain the optimal weighting

matrix. Replacing the symbol-wise Euclidean distance |vcej(k)|, which is the jth

element of vce(k), by its maximum value dmax on the right hand side of (6.33), we

have

P (vc → ve|I,v = vc) ≥ Q

√√√√∑
k∈κ

Esd2
max‖Ĥ(k)w(k)‖2

2Ñ0(k)

 (6.38)

where dmax = 2 for MPSK schemes with unit energy. Using the PEP lowerbound

in (6.38) and dropping the constants, the optimization problem can be reduced to

the following:

Find arg max
w(k)

f(w(k)) =
wH(k)ĤH(k)Ĥ(k)w(k)

wH(k)Ψw(k)
(6.39)
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Since Ψ is a positive definite matrix, it is known from [87, eq. (2.4.9)] that

λ′
NT

≤ wH(k)ĤH(k)Ĥ(k)w(k)

wH(k)Ψw(k)
≤ λ′

1 (6.40)

where λ′
1 and λ′

NT
are the largest and smallest eigenvalues of Ψ−1ĤH(k)Ĥ(k) with

normalized eigenvectors q1 and qNT
, respectively. The maximum f(w) can thus

be obtained at

wo|Ĥ(k) = q1 . (6.41)

This is the optimal power allocation scheme based on the PEP lower bound with

the estimated channel fading matrix known at the transmitter. With imperfect CSI

at the receiver, both the estimated channel fading matrix Ĥ(k), and the matrix Ψ

in (6.35c), which depends on the variances of the channel estimation errors and the

average SNR, should be used jointly to minimize the error performance. When the

channel estimates are sufficiently reliable, beamforming is the optimal transmis-

sion scheme. Then, the transmitter should transmit signals along the direction of

the eigenvector corresponding to the largest eigenvalue of Ψ−1ĤH(k)Ĥ(k), where

the estimated channel fading matrix is modified by its corresponding estimation

accuracy. Most results on the beamforming scheme assumed that perfect CSI is

available at the receiver [28, 36]. No results have been published on the opti-

mal beamforming scheme with imperfect CSI at both the transmitter and receiver.

Here, our result clearly shows that with imperfect CSI at the both transmitter and

receiver, we cannot simply replace the channel matrix H(k) by its estimate Ĥ(k).

The variances of the channel estimation errors should be taken into account.

This power allocation scheme has lower complexity than that based on the

capacity lowerbound in the previous section. However, it requires the knowledge of

the estimated channel matrix be known at the transmitter. In bandwidth limited

feedback systems, the above two schemes may not be suitable. Thus, in the next

subsection, we will derive a power allocation scheme based only on the variances of

the channel estimates for the bandwidth limited feedback systems, which is simpler

to implement.
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6.4.2.3 Power Allocation Based on Variances of Channel Estimates

In this case, the estimated channel fading matrix is unknown at the transmitter,

and only the variances of the channel estimates are available. The matrix which

consists of these variances is defined as

Φ̂ = diag[σ̂2
1, · · · , σ̂2

NT
]. (6.42)

The average PEP is used here as the metric. It can be obtained by averaging the

conditional PEP in (6.33) over all realizations of the channel fading matrix, and is

given by

P (vc → ve|v = vc) =
1

π

∫ π
2

0

∏
k∈κ

 sin2 θ

sin2 θ + Es

2Ñ0(k)

∑Nt
j=1 σ̂2

j w
2
j |vcej|2

NR

dθ . (6.43)

Using the lower bound on the PEP derived in (5.26), and replacing |vcej| by its

maximum value dmax, Ñ0(k) by its expression in (6.36), the lower bound on (6.43)

can be shown to be

P (vc → ve|v = vc) >
1

2

(2q − 1)!!

2q!!

∏
k∈κ

(
1 +

Esd
2
maxw

H(k)Φ̂w(k)

2Ñ0(k)

)−NR

.(6.44)

where q = NR ×|κ| is the total diversity order achieved over rapid fading channels,

(2q)!! = 2q(2q−2) · · · 2, and (2q−1)!! = (2q−1)(2q−3) · · · 1, as defined in Chapter

5. By minimizing the lowerbound on the average PEP, we can obtain the optimal

transmit weighting matrix. Thus, we have the following optimization problem:

arg max
w

f(w) =
wH(k)Φ̂w(k)

wH(k)Ψw(k)
(6.45)

subject to

NT∑
j=1

|wj(k)|2 = 1 (6.46)

We can easily obtain the optimal wo given Φ̂ as

wo|Φ̂ = q′
1 (6.47)

where q′
1 is the normalized eigenvector corresponding to the largest eigenvalue of

Ψ−1Φ̂. With the definition of Ψ and Φ̂ given in (6.35c) and (6.42), we have

Ψ−1Φ̂ = diag[ζ1, · · · , ζNT
] (6.48)
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where

ζj =
σ̂2

j

σ̄2
j + N0/2Es

(6.49)

for j = 1, · · · , NT . Compared with the optimal weighting vector wo|Ĥ(k) in (6.39),

the matrix ĤH(k)Ĥ(k) is replaced by Φ̂ when only the variances of the channel

estimates are available at the transmitter. Due to the fact that the matrix Ψ−1Φ̂ in

(6.48) is diagonal, the eigenvalues of Ψ−1Φ̂ are equal to the corresponding diagonal

values. With the beamforming scheme, the transmit antenna which has the largest

ζj is assigned the total power. From the expression of ζj in (6.49), it is seen that the

choice of the transmit antenna with the best channel condition depends not only

on the corresponding variance of the channel estimate σ̂2
j , but also on the effective

noise caused by the estimation error from that transmit antenna, i.e. N0 + 2Esσ̄
2
j .

Our result is the first one to show explicitly the effect of both channel estimation

accuracy and the effective noise on the power allocation. Another advantage of this

scheme is that the matrix Ψ−1Φ̂ is only dependent on the variances of the channel

estimates and those of the estimation errors. Thus, the transmit weighting vector

can be precomputed once the design parameters, namely, the pilot spacing and the

Wiener filter length, are known at the transmitter.

6.5 Pilot Power Allocation Schemes

After examining the transmit power allocation scheme, we will investigate the

design of the pilot power allocation schemes. Given a fixed average transmission

power, the problem of how to allocate the power between the data symbols and the

pilot symbols is an important research topic. The power allocated to the pilot sym-

bols directly affects the channel estimation accuracy and the error performance. A

good pilot power allocation scheme can enhance performance at no additional cost

of bandwidth and power. Due to the power limitation in wireless communications,

pilot power allocation to improve power efficiency has practical importance. In this

chapter, we model the relationship between the power of the data and the pilot
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symbols by using one parameter. The goal of the pilot power allocation scheme is

to find the optimal parameter by minimizing the error performance.

In the previous section, we have discussed several transmit power allocation

schemes based on different criteria. Either the estimated channel matrix or the

variances of the channel estimates are assumed to be known at the transmitter.

The accuracy of the channel estimates is highly related to the power of the pilot

symbols. In this section, we will examine how to optimally distribute the power

between the data symbols and the pilot symbols. The average BEP performance

is used as the design criterion, and no feedback information is needed to determine

the pilot power allocation policy. As indicated in the signal models (5.1) and (5.2),

we assume that the energy for all pilot symbols is the same, which is denoted by

Ep. Similarly, the energy for all data symbols is Es. However, Ep and Es could be

different. We model the relationship between Ep and Es by

Ep = αEs (6.50)

where α is the pilot-to-data energy ratio. Based on the transmission frame struc-

ture, the average energy per symbol is

E =
NT Ep + (L − NT )ES

L
=

(L + (α − 1)NT )ES

L

= [1 + ρ(α − 1)]Es (6.51)

where ρ = NT /L . Given the average energy per symbol E, we can easily obtain

the pilot symbol energy Ep and the data symbol energy Es as

Es =
1

[1 + ρ(α − 1)]
E (6.52)

Ep =
α

[1 + ρ(α − 1)]
E . (6.53)

Our pilot power allocation scheme is to find the optimal α to achieve the

minimum error probability, subject to the constraint of a given average SNR per

symbol per receive antenna E/N0. Here, we uses the BEP upperbound obtained by

using the dominant error events as the objective function to determine the optimum

value of α. Thus, the optimization problem is outlined as
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Minimize the BEP upperbound f(α), i.e.,

f(α) =
1

n

∑
vc

∑
ve

a(vc → ve)P (vc → ve|v = vc)P (vc) (6.54)

where the probability of each codeword P (vc) is assumed to be the same, and the

PEP P (vc → ve|vc) is upperbounded by (5.35)

P (vc → ve|v = vc) ≤
1

2

∏
k∈κ

NR∏
i=1

1 +

∑NT

j=1 σ̂2
j d

2
j(k)

2
(

N0

E
[1 + ρ(α − 1)] + 2

∑NT

j=1 σ̄2
j

)
−1

(6.55)

Subject to

E/N0 = γ̄

where γ̄ is the given average SNR per symbol per receive antenna.

We can use the optimization toolbox in Matlab to obtain the optimal value

of α, which provides the minimum BEP performance for a given average SNR γ̄.

Given the error events, d2
j(k)’s in (6.55) are easy to obtain. The channel estimate

variance σ̂2
j and the channel estimation error variance σ̄2

j can be computed based

on the channel fading model and the estimator employed. Thus, the objective

function f(α) only depends on α. The optimal value for α, αo, varies with γ̄.

However, our computations show that αo is actually not very sensitive to γ̄. Thus,

we use the value of αo obtained at γ̄ = 15 dB as the reference. In Tab. 6.1, we

listed the optimum αo for two 8-state QPSK STTC over rapid fading channels.

Our numerical results in the next section show that about 1 dB performance gain

can be achieved by using the optimum pilot power allocation scheme.

6.6 Numerical Results and Discussion

In the numerical results, we assume that the channel fading process on each link

has a Jake’s power spectrum so that R(τ) = J0(2πfdτ). The variance of the fading
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Table 6.1: The optimal αo for the QPSK 8-state TSC code of [1] and FVY code of [2] over rapid

fading channels.

αo TSC FVY

σ2
1 = 0.5, σ2

2 = 0.5 2.4391 2.4390

σ2
1 = 0.3, σ2

2 = 0.7 2.434 2.4349

σ2
1 = 0.1, σ2

2 = 0.9 2.4235 2.4226

processes associated with the jth antenna is denoted by σ2
j . The PSAM scheme is

used to estimate the channels with pilot spacing L = 8 and the Wiener filter length

N = 6, for all channel fade rates that are lower than fdT = 0.05. Without loss of

generality, we consider the user whose time slot is located immediately after the

pilot phase in the first block.

We first compare the capacity lower bound for the case of imperfect CSI at

the receiver with that of perfect CSI. Either the optimal transmit power allocation

scheme based on the capacity lower bound, or the constant power scheme that

assigns equal power to each transmit antenna, is used. Fig. 6.3 and 6.4 present the

capacity lower bounds with fixed Ep for semi-i.n.i.d. channels. All the results show

that there is capacity loss due to the imperfect CSI at the receiver. Capacity gain

can be achieved with the optimal transmit power allocation, especially at low SNR.

At high SNR, the capacity lower bound with constant power allocation is shown

to be very close to that with optimal power allocation. Since the power of pilot

symbols Ep is fixed, the variances of the channel estimates are determined. The

increase in average SNR of data symbols P/N0 leads to a greater effective noise

N0 = 2
∑NT

j=1 Pjσ̄
2
j + N0. Thus, the capacity bound for the imperfect CSI case

does not increase linearly with the average SNR of data symbols after a certain

threshold. It is also observed that the capacity lower bound with imperfect CSI for

the channel with (σ2
1 = 0.1, σ2

2 = 0.9) is less than that with (σ2
1 = 0.3, σ2

2 = 0.7) for

the same fade rate of fdT = 0.05. Therefore, the capacity loss is increased with the

difference among the variances of the channel fading coefficients associated with

different transmit antennas. In Fig. 6.5 and 6.6, the capacity lower bounds with
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Fig. 6.3: The capacity lower bound with optimal transmit power allocation (TPA) in (6.30) or

constant power allocation (CPA) for both the perfect CSI and imperfect CSI cases.

The channels with two transmit and two receive antennas have σ2
1 = 0.3, σ2

2 = 0.7 and

fdT = 0.05, which are estimated with L = 8, N = 6 at Ep/N0 = 15 dB.
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Fig. 6.4: The capacity lower bound with optimal transmit power allocation (TPA) in (6.30) or

constant power allocation (CPA) for both the perfect CSI and imperfect CSI cases.

The channels with two transmit and two receive antennas have σ2
1 = 0.1, σ2

2 = 0.9 and

fdT = 0.05, which are estimated with L = 8, N = 6 at Ep/N0 = 15 dB.
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Fig. 6.5: The capacity lower bound with optimal transmit power allocation (TPA) in (6.30) or

constant power allocation (CPA) for both the perfect CSI and imperfect CSI cases.

The channels with two transmit and two receive antennas have σ2
1 = 0.1, σ2

2 = 0.9 and

fdT = 0.05, which are estimated with L = 8, N = 6 at Ep = P/NT .

EP = P/NT are presented. It can be seen that the capacity loss is larger for the

channel with fade rate of 0.05 than for the channel with fade rate of 0.01. The

larger capacity loss, either for the case of higher channel fade rates, or for the

case of larger variance differences, can be explained by the accuracy of channel

estimation. It has been shown by Fig. 5.1 in Chapter 5 that the variances of

the channel estimation errors increase with the channel fade rate and the variance

differences of the channel fading coefficients associated with the different transmit

antennas.

We use the power allocation gain (PAG) to show the effectiveness of the pro-

posed allocation schemes. PAG is computed as

PAG =
f∗(P1 · · ·PNT

)

f (0)(P1 · · ·PNT
)

where f(P1 · · ·PNT
) can be the capacity lowerbound (6.23), or the functions in-

versely proportional to the conditional PEP lowerbound (6.39) and the average

PEP lowerbound (6.45), respectively. Thus, the larger the value of f(P1 · · ·PNT
),
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Fig. 6.6: The capacity lower bound with optimal transmit power allocation (TPA) in (6.30) or

constant power allocation (CPA) for both the perfect CSI and imperfect CSI cases.

The channels with two transmit and two receive antennas have σ2
1 = 0.5, σ2

2 = 0.5 and

fdT = 0.01, which are estimated with L = 8, N = 6 at Ep = P/NT .

the better the performance that can be achieved for all the three criteria. The PAG

of each scheme is obtained by using the corresponding expression of f(P1 · · ·PNT
).

Note that f∗(P1 · · ·PNT
) is attained by distributing the total available power over

all transmit antennas using the optimal allocation scheme, and f (0)(P1 · · ·PNT
) by

evenly distributing the total power over all transmit antennas. Since the func-

tion f(P1 · · ·PNT
) used is related to the lower bound on the capacity or the

PEP, the PAG achieved by the optimal allocation scheme derived by optimizing

f(P1 · · ·PNT
), thus, depends on the tightness of the bound. Furthermore, PAG also

depends on operating SNR and the variances of the channel estimates [80]. When

the variances of the channel estimates or the operating SNR is high, the PAG ob-

tained approaches unity. The PAG’s shown in our numerical results are obtained

by averaging over a large number of realizations of Ĥ(k). When PAG > 1, it

means exploiting the feedback at the transmitter is useful. When PAG approaches

unity, the feedback information provides no gains.

Fig. 6.7 presents the PAG attained by the optimal power allocation scheme
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Fig. 6.7: The power allocation gain achieved by power allocation scheme based on the capacity

lower bound in (6.30). The channels have a fade rate of fdT = 0.05, which are estimated

with L = 8, N = 6 at Ep/N0 = 15 dB.

in (6.30) based on the capacity lower bound. The total available power is P .

Both i.i.d. and i.n.i.d. channels are examined. It can be seen that PAG is high

for low SNR and approaches unity with the increase of SNR. The reason is that

capacity is a logarithmic function of power, and is insensitive to the exact power

allocation at high SNR. Thus, the constant-power allocation concept, i.e., the active

transmitter antennas are assigned the same power, can also be adopted for the

channel estimation scenario. It is also found that the PAG attained over i.n.i.d.

channels is greater than that over i.i.d. channels at low SNR.

Fig. 6.8 compared the two power allocation schemes based on PEP bounds, i.e.,

(6.41) and (6.47), respectively. The results show that PAG > 1 can be obtained,

and the PAG obtained by exploiting the estimated channel fading matrix is greater

than that when only the variances of the channel estimates are known at the

transmitter. Obviously, there is a tradeoff between the performance gain and the

complexity of the feedback implementation.

Fig. 6.9 shows both analytical and simulated BEP performance results for
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Fig. 6.10: The simulated BEP results for the 8-state QPSK code of [2] over i.n.i.d. Rayleigh fading

channels at fdT = 0.05, using two transmit and one receive antenna. The channel is

estimated with L = 8, N = 6, (Es)PSAM = Es(L − NT )/L, and Ep = α(Es)PSAM .
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Fig. 6.11: The simulated BEP results for the 8-state ICSI code over i.n.i.d. Rayleigh fading

channels at fdT = 0.05, using two transmit and one receive antenna. The channel is

estimated with L = 8, N = 6, (Es)PSAM = Es(L − NT )/L, and Ep = α(Es)PSAM .
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the 8-state TSC code of [1] over i.n.i.d. fading channels. Two channel situations

are considered. One has the variances (σ2
1 = 0.3, σ2

2 = 0.7). The other case has

(σ2
1 = 0.1, σ2

2 = 0.9). For both cases, two pilot power schemes are examined.

Without using the optimal pilot power allocation scheme, the pilot symbol energy

is simply assumed to be equal to the data symbol energy, i.e., α = 1. Otherwise, the

optimal pilot power allocation is employed by using αo obtained in Tab. 6.1. There

is a performance gain of about 1 dB that can be achieved by the proposed pilot

allocation scheme at no extra cost of bandwidth and power. Thus, it is efficient to

use the pilot power allocation scheme, especially at low SNR. Similar results can

be obtained for the 8-state FVY code of [2], as shown in Fig. 6.10. Besides using

the known codes in the literature, we also examine the BEP performance of the

proposed codes with imperfect CSI at the receiver for the i.n.i.d. channels. Take

the ICSI code designed for the (σ2
1 = 0.3, σ2

2 = 0.7) case, for example, which is given

in Tab. 5.1. It is shown in Fig. 6.11 that the performance gain achieved by the ICSI

code is similar to the TSC and FVY codes. However, the performance gap between

the two channel conditions, i.e., (σ2
1 = 0.3, σ2

2 = 0.7) and (σ2
1 = 0.1, σ2

2 = 0.9), are

smaller than that of the TSC and the FVY codes. This shows that our proposed

ICSI codes are more suitable for the i.n.i.d. channels, and are robust to the channel

variations.

6.7 Summary

In this chapter, we examine power allocation schemes for closed-loop TDM

MIMO systems with imperfect CSI at the receiver. First, the closed-loop system

model is built up. The estimated channel matrix can be obtained at the transmit-

ter as the side information. The capacity of a MIMO system with side information

at the transmitter is studied. A new lower bound on the channel capacity with

imperfect CSI at both the transmitter and receiver for semi-i.n.i.d. channels is

derived. There is capacity loss due to the channel estimation errors. Based on the
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capacity lower bound obtained, an optimal transmit power allocation scheme is de-

signed to approach the capacity. To reduce the complexity of the power allocation

scheme, the PEP bounds are alternatively used as the criterion, and the problem

is transformed into one of designing the optimal transmit weighting matrix. Based

on the side information at the transmitter, different optimal transmit weighting

matrices are derived. Our results show that all the proposed transmit power al-

location schemes can achieve performance gains, compared to the case with no

feedback information at the transmitter. However, there is a tradeoff between the

complexity of the feedback scheme and the performance gain. In addition to using

transmit power allocation schemes, we also investigated how to optimally distribute

the power between the data and pilot symbols. With the power allocation schemes,

about 1 dB performance gain can be achieved at no additional cost of bandwidth

and power.
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Chapter 7

Conclusions and Proposals for

Future Research

7.1 Conclusions

In this thesis, we addressed two important, practical topics of STTC for both

open-loop and closed-loop systems, where only imperfect CSI is available at the re-

ceiver. One is error performance analysis and code design. The other is space-time

transmission schemes. For the open-loop system, we investigated the performance

analysis of STTC over rapid Rayleigh fading channels with imperfect CSI, and

analyzed the effects of channel estimation on the performance. Some useful in-

sights were gained to combat the performance loss caused by channel estimation

errors. This also provided a powerful design criterion for the imperfect CSI case.

New, improved codes were proposed based on our general design criterion. For the

closed-loop system, transmit power allocation schemes were examined to achieve

performance gains. These schemes adapted the power at each transmit antenna to

the current channel state based on the side information at the transmitter. Further,

pilot power allocation schemes were developed to improve the achievable perfor-

mance of STTC at no additional cost of power and bandwidth. In the following,

we first summarize the results for open-loop systems.
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7.1.1 Performance Analysis Results

Performance analysis is based on receiver structure. First, the ML receiver

structure with channel estimation is derived. It is found that when the MIMO

channel is i.i.d., the receiver use the estimated channel matrix as if it were the ex-

act channel matrix, for constant-energy modulation schemes. However, when the

channel is i.n.i.d., the receiver also requires the second-order statistical information

of channel estimates, in addition to the estimates themselves. The channel esti-

mation accuracy plays an important role in determining the weight on the signals

received at each receive antenna. Both the first and second-order statistical infor-

mation of the channel estimates can be easily computed, once the channel fading

model and the channel estimator are given. The receiver for the i.n.i.d. channels

is more general and practical, which can be reduced to that of the i.i.d. channels.

After obtaining the ML receiver, we proceed to derive the performance results.

Based on the ML receiver, both an exact expression of PEP, explicit PEP upper-

bounds and a tight BEP upperbound are derived for the general i.n.i.d. fading

channels. The corresponding results for i.i.d. channels can be easily obtained from

those of the i.n.i.d. channels. Our explicit PEP upperbounds clearly show that the

effects of channel estimation can be completely summarized in the variances of the

channel estimates and those of the estimation errors. For i.n.i.d. channels, these

variances depend on both the transmit and receive antenna index. For i.i.d. chan-

nels, they only depend on the transmit antenna index. Under imperfect channel

estimation conditions, channel estimation errors increase the power of the effective

noise at each receiver antenna, and result in performance degradation. The chan-

nel estimation accuracy is determined by the channel fade rate, pilot SNR, and the

design parameters of the PSAM scheme at the receiver. The optimal values of the

design parameters, namely, the pilot spacing and the Wiener filter length, can be

found by the general systematic procedure that we proposed. The estimation ac-

curacy is increased with the increase in pilot SNR, but decreased with the increase

in the channel fade rate. The performance loss of STTC caused by channel esti-
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mation errors is directly related to the channel estimation accuracy. In contrast to

the perfect CSI case, increasing the number of transmit antennas in the imperfect

CSI case may lead to a reduced or even negative transmit diversity advantage if the

fade rate is high, because of the increased total estimation error variance. Another

important finding from our explicit PEP results is that the symbol-wise Euclidean

distances between any two codewords are weighted by the unequal variances of the

channel estimates among different transmit antennas. Therefore, to minimize the

error performance, the symbol-wise Euclidean distances should be optimally dis-

tributed based on the statistical information of the channel estimates. This makes

the code design of STTC with channel estimation different from previous code de-

signs, which assume that perfect CSI is available at the receiver and each channel

has identical distribution.

7.1.2 Code Design of STTC with Channel Estimation

Based on the performance analysis results, a new, practical code design cri-

terion with imperfect CSI is provided. We employ the node error probability as

the performance measure, instead of using the traditional PEP as the objective

function. More importantly, our new design criterion incorporates statistical infor-

mation of channel estimates to minimize the performance loss caused by channel

estimation errors. It is found that the effect of channel estimation errors on code

design can be measured by the maximum estimation variance difference. For i.i.d.

channels, this maximum estimation variance difference increases with the channel

fade rate and the number of transmit antennas. This implies that with an increase

in the channel fade rate or the number of transmit antennas, the codes based

on our new criterion can achieve more performance gains than those of existing

STTC which are designed under the perfect CSI assumption. For i.n.i.d. channels,

the maximum estimation variance difference is mainly related to the differences

among the variances of the actual channel fading coefficients associated with dif-

ferent transmit antennas. The advantage of our new code design criterion is more
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obvious for i.n.i.d. channels, because of the inherent variance differences among

transmit and receive antennas. Because of the practical importance of non-identical

statistical distributions among different links, and imperfect CSI at the receiver, it

is important to use our proposed design criterion in practice. By exploiting the sta-

tistical information of channel estimation, improved performance can be achieved

by our new codes. The new codes are obtained by our proposed iterative code

search algorithm. In the iterative algorithm, the codewords are grouped based on

their error event lengths. At each iterative step, the codewords with the same

error event length are considered. At the first step, the error event length is set

to its minimum value. The codewords are compared to choose those that have the

optimal performance over this minimum error event length. Then, the error event

length is increased by one from the previous step, and the same search process is

performed. The search keeps running until the set of the optimal code generators

obtained does not change for two consecutive steps. At each step, many codes

which do not satisfy the design criterion can be discarded. Thus, a smaller set

needs to be searched at each step, and the search complexity is reduced.

7.1.3 Power Allocation Schemes

All the above results are for open-loop systems, where no side information

is available at the transmitter. In closed-loop systems, side information can be

obtained by using feedback schemes. Due to the power limitation in wireless com-

munication, it is very important to use the available power efficiently. In this thesis,

we focused on investigating the optimal power adaptation to the current channel

state based on the feedback information in closed-loop systems. Three optimal

transmit power allocation schemes are proposed based on different criteria, for the

case of imperfect CSI at both the transmitter and the receiver. One widely used

criterion is the channel capacity. Due to the difficulty of the capacity analysis with

only imperfect CSI at the transmitter and receiver, a new capacity lower bound

is derived for this purpose. Using the capacity lower bound, an optimal transmit
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power allocation scheme is obtained. It is found that when one channel has much

better condition than other channels, the beamforming scheme is the optimal one

to achieve the channel capacity. The estimated channel matrix known at the trans-

mitter, and the effective noise at the receiver convey the channel condition. The

effective noise includes both the additive channel noise and the noise due to the

channel estimation errors. To reduce the complexity of the power allocation based

on the capacity lower bound, another commonly used error performance criterion,

namely, the PEP criterion, is adopted to design the optimal transmit weighting

matrix. Different optimal transmit weighting matrices are obtained based on the

side information at the transmitter. When the estimated channel matrix is known

at the transmitter, the optimal transmit weighting matrix can achieve great perfor-

mance gains, especially at low SNR. However, it requires that the feedback channel

has enough bandwidth. For bandwidth-limited feedback channels, we also proposed

a simple feedback scheme where only the variances of the channel estimates are fed

back to the transmitter. Then, the optimal transmit weighting matrix is easier

to compute, but the performance gain is less than that achieved by the previous

case due to the loss of some channel information. Therefore, there is a tradeoff

between the complexity of the feedback scheme and the performance gain. All

these schemes can be used to achieve performance gains over those that distribute

the same power to all transmit antennas. Using the optimal transmit allocation

schemes at the transmitter, more transmission power is assigned to the channels

with better channel condition. In addition to using transmit weight matrix, the

power allocation between the pilot and the data symbols is also exploited. By op-

timally allocating the pilot power based on minimizing the BEP upperbound, we

can achieve performance enhancement for MIMO systems at no cost of additional

bandwidth and power.
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7.2 Proposals for Future Research

As shown in this thesis, it is important to consider the actual imperfect CSI

case in practical systems. In addition to the performance analysis and code design,

the transmission schemes are also affected by the imperfect channel estimates.

Although our analysis is based on the Rayleigh fading model, the principal ideas

can be straightforwardly extended to other fading models. Recently, the selection

diversity-based MIMO systems have received a great deal of research attention since

the antenna selection schemes can reduce complexity and maintain the advantage of

full diversity when perfect CSI is available at both the transmitter and receiver [88].

However, when only imperfect CSI is available, the research on transmit/receive

antenna selection is not much. Thus, this area deserves further exploration. The

performance analysis results obtained in this thesis can be applied to help the study

of antenna selection by incorporating imperfect CSI. After extensive investigation

of MIMO in physical layer, research interests are now shifting to MIMO in wireless

networks. Cross-layer design [89] and cooperative diversity [90] are the two hot

research topics. How to develop the corresponding physical layer signaling schemes

for wireless networks is very important and interesting. In the following sections,

we present some ideas that we feel ought to be addressed in future research.

7.2.1 Other Fading Models

The Rayleigh fading channel, which is one of the widely used channel model for

land mobile terrestrial systems, has been examined in this thesis for the imperfect

CSI case. For a Rayleigh fading channel, the channel impulse response is modeled

as a zero-mean, complex, Gaussian process. When there exists line-of-sight paths,

the channel impulse response can no longer be modeled as having zero-mean. In

this case, the envelope of the response has a Rice distribution and the channel is

said to be a Rician fading channel [91]. The Nakagami-m fading model is a more

general distribution, which provides greater flexibility in matching experimental
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data collected in a variety of fading environments [91]. Thus, it is straightforward

to extend our current work from the Rayleigh to the Rician or Nakagami-m fading

model. In fact, the performance analysis of space-time coding with Nakagami-m

fading model is only the topic of recent publications, even for the perfect CSI case

[92–95]. There are no results yet on the performance of space-time coding over

Nakagami fading channels with imperfect CSI. A lot of open problems still remain

in this area. Following the procedures in this thesis, the design of the ML receiver,

the performance analysis and the computation of the capacity of the rapid fading

channel model for the more general statistical fading distributions with imperfect

CSI can be addressed.

7.2.2 Transmit Antenna Selection

Using selection diversity-based techniques, a subset of the available antennas

are selected at transmitter and/or receiver based on some criteria, such as the

capacity, average SNR or error probability. These techniques not only cut the im-

plementation cost by reducing the number of RF chains, but also achieve the full

diversity as all antennas are used [88]. Since the increase in the number of anten-

nas at the receiver leads to larger combining gains, much research effort has been

devoted to transmit antenna selection with maximal ratio combing (MRC) at the

receiver [96–98]. With selection combining (SC) scheme, a single transmit antenna

is selected and MRC is performed at the receiver. By choosing the transmit antenna

with the highest channel power, this scheme can maximize the total received signal

power at the receiver. If the feedback information is perfect, the SC/MRC scheme

is the optimal. However, when the feedback a transmitter receives experiences a

time-delay, the current best antenna may have changed at the moment when the

transmitter receives the feedback after the delay. Under this nonideal transmit

antenna selection situation, more than one transmit antenna should be selected to

increase the degree of robustness against feedback errors [98]. Selection combing

with space-time coding is one way to solve the above-mentioned problem. Either
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SC-STBC or SC-STTC can be used. The selection criterion and performance anal-

ysis of transmit antenna selection schemes mostly focus on the slow, i.i.d. fading

model, and assume perfect CSI at both the transmitter and the receiver. STBC

using transmit antenna selection with imperfect CSI was studied in [99]. The re-

sults for STTC using transmit antenna selection with imperfect CSI are few. Based

on the receiver structure derived in Chapter 5 for the general i.n.i.d. channels, we

can further study the performance of STTC with transmit antenna selection. It is

expected that the imperfect CSI at the transmitter and the receiver will affect the

selection criterion. With the performance analysis results, the investigation of the

optimal number of the active transmit antennas can proceed. Here, the imperfect

CSI considered is caused by the channel estimation errors at the receiver. For some

cases, the imperfect CSI at the transmitter may be due to the quantized feedback

information [100]. If the quantization errors can be modeled properly, a general

framework for the performance analysis with imperfect CSI can be established in

future works.

7.2.3 MIMO Wireless Networks

As is well known, the layered-design is not efficient for wireless networks due

to the nature of mobile channels [89, 101]. For wireless communications, chan-

nel quality changes dynamically, which leads to a tight interdependence among

layers. Thus, cross-layer design is often considered [102–104], in which the overall

system performance can be improved by taking advantage of the available informa-

tion across different layers. If the instantaneous CSI is known, the channel-aware

scheduling at the link layer can be used to improve the system throughput. How-

ever, again, the effect of imperfect CSI on the channel-aware scheduling is still

unclear. Therefore, the performance analysis results obtained in this thesis can

be used to facilitate the cross-layer design for wireless networks by providing the

actual physical layer information.

MIMO channels promise an increase in capacity only if independent signals
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are present at the antenna elements. Naturally, physical limitations within the

mobile terminal will lead to mutual correlation among the elements, which results

in reduced MIMO capacity [105]. A novel solution to overcome this problem is

user cooperative diversity [90]. Through cooperation of in-cell users, a new form

of spatial diversity can be achieved by the use of other users’ antennas. The

antennas of the cooperative users create virtual MIMO channels [106]. For the

downlink transmission, a base station array consisting of several antenna elements

transmits a space-time encoded data stream to the associated mobile terminals.

Each mobile terminal within a group receives the entire data stream, extracts

its own information and concurrently relays the information of other users to their

mobile terminals. It then receives more of its own information from the surrounding

mobile terminals and, finally, processes the entire data stream. In this distributed

MIMO system, the statistics of the fading coefficients on different virtual links are

likely to be quite different, since the users may be separated far away. Therefore, our

performance analysis and code design for i.n.i.d. fading channels with imperfect CSI

can be further explored in the distributed MIMO systems. The optimal cooperative

coding scheme based on the error performance need be carefully addressed. For

the uplink transmission, each user not only transmits his own information, but

also the information of his partners. However, this is complicated by the fact that

the interuser channel is noisy [90]. How to track the fading coefficients of the

interuser channel, and how to decode the information for each user with imperfect

knowledge of the fading parameters have not yet been examined. The channel

estimation techniques and system designs deserve further investigation in the user

cooperative wireless networks.
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Appendix A

Derivation of The Covariance

Matrix Γ in (5.11)

In this appendix, we derive the covariance matrix Γ in (5.11) of the receive

signal r for the i.n.i.d. case.

We first define α = Ev. Due to the block-diagonal structure of the estimation

error matrix E, we can easily show that α =
[
αT (1) · · · αT (K)

]T
, where α(k) =

E(k)v(k) = [α1(k) · · · αNR
(k)]T for each k. Each element αi(k) of α(k) is now

given by

αi(k) =

NT∑
j=1

eij(k)vj(k) . (A.1)

Due to the independence of the elements {eij(k)} of E, it can be shown that

E
[
αi(k)αH

i′ (l)
]

= E

∣∣∣∣∣
NT∑
j=1

eij(k)vj(k)

∣∣∣∣∣
2
 δ(k − l)δ(i − i′) . (A.2)

With equal-energy MPSK modulation, we have |vj(k)|2 = 1, for all k and j. Then,

the result in (A.2) can be reduced to

E
[
αi(k)αH

i′ (l)
]

=

(
2

NT∑
j=1

σ̄2
ij

)
δ(k − l)δ(i − i′) . (A.3)
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Thus, we have

E
[
EvvHEH

]
= E

[
ααH

]
= IK ⊗ Ξ (A.4)

where Ξ is given by,

Ξ = diag.

[
2

NT∑
j=1

σ̄2
1j · · · 2

NT∑
j=1

σ̄2
NRj

]
. (A.5)

By substituting the expression for E
[
EvvHEH

]
in (A.4) into the first term on the

rightmost side of (5.10), we can straightforwardly obtain the covariance matrix Γ

of r in (5.11).
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Appendix B

The Statistics of X in (5.15)

To compute the conational PEP given in eq. (5.15) in Chapter 5, we first need

derive the statistics of the random variable X. Here X is given by

X =
K∑

k=1

NR∑
i=1

(N0i
)−1

{
|ri(k) −

√
Esĥ

T
i (k)vc(k)|2 − |ri(k) −

√
Esĥ

T
i (k)ve(k)|2

}
.

(B.1)

Define

qic(k) =
√

Esĥ
T
i (k)vc(k) (B.2a)

qie(k) =
√

Esĥ
T
i (k)ve(k) (B.2b)

where qic(k) is the conditional mean of ri(k), i.e., qic(k) = E [ri(k)|I,v]. Thus, X

can be rewritten as

X =

NR∑
i=1

(N0i
)−1

∑
k∈κ

{
|ri(k) − qic(k)|2 − |ri(k) − qie(k)|2

}
.

where

|ri(k) − qic(k)|2 − |ri(k) − qie(k)|2

=
(
−r∗i (k)qic(k) − ri(k)q∗ic(k) + |qic(k)|2 + r∗i (k)qie(k) + ri(k)q∗ie(k) − |qie(k)|2

)
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Given the pilot measurements I and the transmitted signal sequence v, X is con-

ditionally Gaussian and the conditional mean of X can be calculated as

E [X|I,v = vc]

=

NR∑
i=1

(N0i
)−1

∑
k∈κ

(
−2|qic(k)|2 + |qic(k)|2 + q∗ic(k)qie(k) + qic(k)q∗ie(k) − |qie(k)|2

)
=

NR∑
i=1

(N0i
)−1

∑
k∈κ

(
−|qic(k) − qie(k)|2

)
= −Es

NR∑
i=1

(N0i
)−1

∑
k∈κ

|ĥT
i (k)vce(k)|2 . (B.3)

Letting qice(k) =
√

Esĥ
T
i (k)vce(k), X may be rewritten again as

X =

NR∑
i=1

(N0i
)−1

∑
k∈κ

(
−r∗i (k)qice(k) − ri(k)q∗ice(k) + |qic(k)|2 − |qie(k)|2

)
. (B.4)

Thus, the conditional variance of X can be calculated as

Var [X|I,v = vc] = 4

NR∑
i=1

(N0i
)−2

∑
k∈κ

Var [<(r∗i (k)qice(k))|I,v = vc]

= 2

NR∑
i=1

(N0i
)−2

∑
k∈κ

N0i
|qice(k)|2

= 2Es

NR∑
i=1

(N0i
)−1

∑
k∈κ

|ĥT
i (k)vce(k)|2 . (B.5)
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Appendix C

Derivation of The Characteristic

Function in (5.20)

It has shown that the PEP in eq. (5.21) in Chapter 5 can be obtained by

the method of moment generation function, based on the characteristic function

of D =
∑

k∈κ ĥH(k)A(k)ĥ(k). Here, we give the derivation of the characteristic

function of D.

Define ĥ(k) = vec(ĤT (k)) = [ĥT
1 (k) · · · ĥT

NR
(k)]T , BH(k) = (N0)

− 1
2 ⊗ v∗

ce(k),

and A(k) = BH(k)B(k), where vec(·) is the vectorization operator. Then, (5.18)

can be rewritten as P (vc → ve|I,v = vc) = Q
(√

Es

2
D

)
, where D =

∑
k∈κ Dk.

The quantity Dk = ĥH(k)A(k)ĥ(k) is a quadratic form in the NRNT × 1 random

vector ĥ(k), and ĥ(k) ∼ CN (0, 2Λ), where CN (u,Σ) denotes a complex, Gaussian

random vector with mean u and covariance matrix Σ. Here Λ is given by

Λ = diag.[Λ1 · · ·ΛNR
] (C.1)

where

Λi =


σ̂2

i1 0 · · · 0

0 σ̂2
i2 · · · 0

...
...

. . .
...

0 · · · 0 σ̂2
iNT

 . (C.2)

157



APPENDIX C. DERIVATION OF THE CHARACTERISTIC FUNCTION IN (5.20)

From [87], the characteristic function of Dk is

ψDk
(ω) = E[eωDk ] = |I − 2ωΛ

1
2A(k)Λ

1
2 |−1 =

r∏
i=1

(1 − 2ωλi)
−1 (C.3)

where λ1, · · ·λr are the eigenvalues of Φ = Λ
1
2A(k)Λ

1
2 . Due to the block structure

of both A(k) and Λ, Φ can be expressed as Φ = diag.[Φ1 · · ·ΦNR
], where Φi is

given by

Φi =
Λ

1
2
i v∗

cev
T
ceΛ

1
2
i

N0i

. (C.4)

Since the rank of Φi is one, the corresponding eigenvalue is

λi =

∑NT

j=1 σ̂2
ijd

2
j(k)

N0i

(C.5)

where dj(k) = |vcej(k)|, and vcej(k) is the jth element of vce(k). Thus, the charac-

teristic function of Dk is

ψDk
(ω) =

NR∏
i=1

[
1 − 2ω(N0i

)−1

NT∑
j=1

σ̂2
ijd

2
j(k)

]−1

. (C.6)

Due to the independence of the Dk’s, the characteristic function of D can be ex-

pressed as

ψD(ω) =
∏
k∈κ

NR∏
i=1

[
1 − 2ω(N0i

)−1

NT∑
j=1

σ̂2
ijd

2
j(k)

]−1

. (C.7)
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