

A FRAMEWORK FOR PERVASIVE WEB CONTENT DELIVERY

HENRY NOVIANUS PALIT

(S. Kom., ITS, Surabaya; M. Kom., UI, Jakarta)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2006

ii

Acknowledgements

Praise and glory be to the Lord, who has given me strength to pursue my purposes in life,

courage to confront any challenge, perseverance to carry on in the midst of turbulence, and

wisdom to keep me humble. He is my shepherd and my comfort; I shall not be in want.

I would like to take this opportunity to express my utmost gratitude to Prof. Chi

Chi Hung for his inspiration, encouragement, and invaluable advice throughout the course

of my research. Not only is he the best supervisor to guide me in this research field, but

outside of the research work he is also a great mentor, from whom I learn a lot about

important things in life. For the time he made available for research discussions, the effort

he spent on reading and revising my research papers and thesis, the help he offered when

I was in trouble, and the patience he showed against my late progress, I am always

thankful.

I would also like to thank my replacement supervisor, Asst. Prof. Ken Sung Wing

Kin, for allowing me to stay in his laboratory and for assisting me with all the

administrative matters. I am sincerely grateful for his tremendous effort to help my

research keep on as smoothly as possible.

This study would not have been possible without the Research Scholarship I

received from the National University of Singapore. Therefore, I thank the University –

and the School of Computing, in particular – for giving me the opportunity to pursue my

postgraduate study.

iii

Through my many years in Multimedia Information Laboratory, I had worked

with not just colleagues but caring and hospitable friends. I have benefited from many

research discussions with Hongguang, William, Junli, Li Xiang, Su Mu, and Choon Keng

as much as I have enjoyed their warm and sincere friendship. My interaction with other

friends like Meng, Rain Zhang, Akanksha, Wenjie, and Xiao Yan has made my stay there

pleasant and lively.

Moreover, I am indebted to my brothers and sisters in Christ for their support,

prayers, and companionship. In particular, I would like to thank – among others – Eni and

Martin, Henny and Karim, Evelyne and Didi, Aini, and my Cell Group’s and Prayer

Group’s friends. I thank Heng Thong, my flatmate, for the same support, prayers, and

companionship he has given me. An abundance of appreciation and gratitude also goes to

Dina, who kept “jia you”-ing me all the way till the completion of this thesis. I really

hope one day I can repay you the same favor.

Above all, I would like to express my highest appreciation to my parents, sister,

and brother for their endless love, compassion, encouragement, and persistent prayers.

Forever, I owe them an immense debt of gratitude. To them, I dedicate this thesis.

iv

Table of Contents

Acknowledgements ii

Summary x

List of Tables xii

List of Figures xiv

Publications xvii

Chapter 1 Introduction 1

1.1 Overview of Web Content Delivery 2

1.2 Challenges in Web Content Delivery 4

1.3 Efforts to Address the Challenges 6

1.3.1 Content Caching and Replication 6

1.3.2 Intelligent Network 9

1.3.3 Multimedia Standard 11

1.4 Motivation: What Will Be the Future Web Content Delivery? 13

1.4.1 Pervasive or Ubiquitous Service 13

1.4.2 Fine-Grained Entities with Heterogeneous Properties 14

1.4.3 On-Demand Delivery with Efficient Data Reuse 14

1.4.4 Rich Meta-data 15

1.5 Objectives and Contributions 16

1.5.1 Objectives 16

1.5.2 Contributions 17

1.6 Scope and Organization of the Thesis 18

v

Chapter 2 Literature Review 20

2.1 Content Caching and Replication 21

2.1.1 HTTP and Web Caching 21

2.1.2 Content Distribution Network 24

2.1.3 Techniques for Reducing Latency 27

2.1.4 Techniques for Handling Dynamic Contents 29

2.2 Intelligent Network 33

2.2.1 Web Protocol’s Support 34

2.2.2 Transcoding Systems 36

2.2.3 ICAP and OPES 47

2.2.4 Semantic Web 52

2.3 Multimedia Standards 55

2.3.1 JPEG 2000 57

2.3.2 MPEG-4 60

2.4 Concluding Remarks 67

Chapter 3 A Fine-Grained, Scalable Data Model 70

3.1 Background 71

3.2 Concept of Object Decomposition and Construction 73

3.3 Specifications of Data Model 77

3.3.1 Definition 1: Object 77

3.3.2 Definition 2: Segment and Atom 79

3.3.3 Definition 3: Representation 80

3.3.4 Definition 4: Supplement 81

3.3.5 Operation 1: Selection 83

vi

3.3.6 Operation 2: Inverse-Selection 83

3.3.7 Operation 3: Join 84

3.3.8 Operation 4: Translation 85

3.3.9 How Is It Useful? 86

3.4 Modulation – A Scalable Adaptation 87

3.5 Related Work 93

Chapter 4 Modulation in JPEG 2000 96

4.1 Why Use JPEG 2000? 97

4.2 JPEG 2000 Modulators 98

4.2.1 General Issues 99

4.2.2 Modulator 1: JP2Selector 106

4.2.3 Modulator 2: JP2Joiner 115

4.2.4 Modulator 3: JP2Converter 116

4.3 Related Work 119

Chapter 5 Evaluation: Modulation vs. Transcoding 122

5.1 Rationale of Using Two Different Image Standards 123

5.2 Experimental Setup 124

5.2.1 Experimented Adaptors 124

5.2.2 Image Test Data 126

5.3 Generating Image Representations 129

5.3.1 Bit-Rate Performance 131

5.3.2 Visual Comparison 135

5.4 Processing Time 137

vii

5.4.1 Adaptation in Quality Aspect 137

5.4.2 Adaptation in Resolution Aspect 144

5.4.3 Adaptation in Component Aspect 149

5.5 Concluding Remarks 153

Chapter 6 Framework for Pervasive Web Content Delivery 155

6.1 Proxy- vs. Server-Based Adaptation 156

6.2 Evaluation of Adapting Approaches 158

6.2.1 Scenario 1: First-Time Delivery 161

6.2.2 Scenario 2: Subsequent Delivery 165

6.3 Prediction of Adaptation Delay 170

6.3.1 Adaptation Delay in a Downscaling Operation 172

6.3.2 Adaptation Delay in a Upscaling Operation 178

6.4 Proposed Framework 180

6.4.1 System Architecture 180

6.4.2 Adapting Modules 183

6.4.3 Supporting Meta-Data 184

6.5 Related Work 186

Chapter 7 Model Prototype of Pervasive Web Content Delivery 191

7.1 What Do We Have So Far? 192

7.2 Meta-Data Specifications 193

7.2.1 Client Meta-Data 199

7.2.2 Server Meta-Data 202

7.3 Modifications in Server Application 205

viii

7.4 Modifications in Proxy Application 209

7.4.1 Modified Workflow 211

7.4.2 External Modules 217

7.4.3 Rule-Based Decision Maker 220

7.4.4 Adapting Proxy Commands 225

7.5 Implemented Architecture 228

7.6 Related Work 231

Chapter 8 Performance Evaluation on Proposed Pervasive Web Content 235

Delivery

8.1 Experimental Setup 236

8.1.1 Experimented Adaptors 236

8.1.2 Image Test Data 236

8.1.3 Server Meta-Data Documents 240

8.1.4 Client Meta-Data Documents 242

8.2 Evaluating Adaptation at Web Server 243

8.2.1 Experimental Objectives 244

8.2.2 Response Time Analyses 245

8.2.3 Stress Test 250

8.3 Evaluating Adaptation at Web Server and Proxy 260

8.3.1 Experimental Objectives 262

8.3.2 Response Time Analyses 262

8.3.3 Stress Test 274

8.3.4 Exploration of Data Reuse 282

8.4 Concluding Remarks 287

ix

Chapter 9 Conclusions and Future Work 289

9.1 Conclusions 290

9.1.1 Fine-Grained, Scalable Web Data Model 290

9.1.2 Modulation in JPEG 2000 291

9.1.3 Framework for Pervasive Web Content Delivery 292

9.1.4 Model Prototype of Pervasive Web Content Delivery 293

9.2 Future Work 296

9.2.1 Wide Implementation of Modulation 296

9.2.2 Enhanced Adapting Proxy 297

9.2.3 Resource-Friendly Adaptor 297

9.2.4 High Data Reuse vs. Data Replication 298

Bibliography 299

Appendix A: ADP Schema 315

Appendix B: Experimental Server Meta-Data 319

Appendix C: Experimental Client Meta-Data 332

x

Summary

The integration of the Internet and the wireless network is inevitable.

Consequently, Web clients become more heterogeneous, and therefore, pervasive services

are required. This is one major challenge that the Web content providers face nowadays.

Other challenges are, among others, increased multimedia data traffic, personalized

content, and demand for efficient Web content delivery. Learning from the past

researches, this thesis tries to address the challenges as a whole. In doing so, two

objectives have been set out.

The first objective is to devise a fine-grained, scalable Web data model. The data

model is the key factor to attain efficiency, in addition to adaptability, in Web content

delivery. According to the data model, an object is heterogeneous as a whole but can be

divided into homogeneous “atoms”. The object can be represented by composing some of

its atoms; the greater the number of atoms, the better is the object’s presentation. Thus, a

variety of representations – along different types of scalability, perhaps – can be

generated from the object with less, or even, no complex computations.

Modulation, a novel adaptation, was proposed to exploit the data model.

Modulation is characterized as fast, exclusive, and reversible. Alas, modulation can only

be applied to scalable data formats such as progressive and hierarchical JPEG, MPEG-4,

JPEG 2000, and H-264. Nevertheless, the multimedia trends head toward scalable data

formats. To demonstrate its efficiency, modulation has been implemented in the JPEG

xi

2000 image standard. Comparison with transcoding – the oft-cited content adaptation – in

the JPEG standard confirms that modulation outperforms transcoding in processing time.

To replicate the benefits of modulation to the Web content delivery, the existing

framework needs modifications. Therefore, the second objective of this thesis is to design

a conceptual framework for pervasive Web content delivery. In stark contrast to the

existing one, the proposed framework requires re-definition of the roles of server, proxy,

and client in Web content delivery. The framework emphasizes collaboration between the

origin server and the proxy, and gets benefits of both server- and proxy-based adapting

approaches. Modulation is the center piece of the framework’s operations. Moreover, a

variety of supporting meta-data are essential for providing the best-fit presentation for

each and every client. The overall goal is “on-demand” Web content delivery.

As a proof of concept, a model prototype has been developed based on the

proposed framework. Two types of meta-data are involved; one is the client meta-data

(CC/PP was used) and the other is the server meta-data (ADP was devised). It was found

in the development that the current server application (Apache was employed) just

required minor additions and some adjustments, but the proxy application (Squid was

employed) had to go through quite a considerable makeover. By contrast, the client’s

browser only needs to add an extension header to its requests. Evaluation on the model

prototype has shown that it greatly benefits from modulation and exhibits high data reuse.

Some tangible benefits are improved client perceived latency, conserved Internet

bandwidth, and reduced server’s load.

xii

List of Tables

4.1 Image-and-tile-size marker segment 99

4.2 Coding-style-default marker segment 101

4.3 Coding style parameter values for Scod parameter 102

4.4 Progression orders for SGcod parameter 102

4.5 Code-block style for SPcod parameter 102

4.6 Replacement-indicator marker segment 104

4.7 Insertion-flag marker segment 105

4.8 Input parameters for generating a representation or a supplement 109

4.9 Header modifications in a generated representation 111

4.10 Additional input parameters for generating a supplement 112

5.1 Representations of the JPEG images and their data-sizes 130

5.2 Representations of the JPEG 2000 images and their data-sizes 131

5.3 Processing times of transcoding the JPEG images in quality aspect 138

5.4 Processing times of modulating the JPEG 2000 images in quality aspect 139

5.5 Processing times of recovering the JPEG 2000 images in quality aspect 142

5.6 Processing times of transcoding the JPEG images in resolution aspect 145

5.7 Processing times of modulating the JPEG 2000 images in resolution aspect 145

5.8 Processing times of recovering the JPEG 2000 images in resolution aspect 148

5.9 Processing times of transcoding the JPEG images in component aspect 149

5.10 Processing times of modulating the JPEG 2000 images in component aspect 149

5.11 Processing times of recovering the JPEG 2000 images in component aspect 151

xiii

6.1 Test data for predicting the adaptation delay in a downscaling operation 173

6.2 Processing times of enhancing various representations of image boat.jp2 178

7.1 Matching rule’s operators in precedence order 222

7.2 Adapting proxy commands (apcoms) 226

8.1 Representations of boat.jpg adapted by JPEG transcoders (SDT) 238

8.2 Representations of boat.jpg adapted by JPEG transcoders (FDT) 238

8.3 Representations of boat.jp2 adapted by JPEG 2000 modulators 238

8.4 Results of stressing the server running adaptation [max. concurrent

connections = 300]

252

8.5 Results of stressing the server running adaptation [max. concurrent

connections = 30]

256

8.6 Total benefit/cost of server/proxy-based adaptation as compared to server-

based adaptation

272

8.7 Results of stressing the server/proxy system employing server-based

adaptation

276

8.8 Results of stressing the server/proxy system employing server/proxy-based

adaptation

279

xiv

List of Figures

2.1 ICAP data flow for (a) request modification and (b) response modification 48

2.2 OPES architecture 49

2.3 Block diagram of the JPEG 2000 (a) encoder and (b) decoder 57

2.4 (a) MPEG-4 scene and (b) its tree structure 61

2.5 Block diagram of the basic MPEG-4 hybrid DPCM/DCT encoder and

decoder

63

3.1 Object decomposition 74

3.2 Construction of representations 76

3.3 Modulation on an image 89

5.1 The reference images for test data 126

5.2 Bit-rate performance (luminance only) 133

5.3 Bit-rate performance (all color components) 134

5.4 Representations of boat.jpg and boat.jp2 at 0.22 bpp (partial images) 135

5.5 Data-size vs. processing time of the three adapting methods in quality aspect 139

5.6 Data-size vs. processing time of modulating the JPEG 2000 images in

quality aspect

143

5.7 Data-size vs. processing time of the three adapting methods in resolution

aspect

146

5.8 Data-size vs. processing time of modulating the JPEG 2000 images in

resolution and component aspects

152

6.1 Analytical model of pervasive Web content delivery 158

6.2 Timeline for fetching the original image from the server 159

xv

6.3 Timeline for the first-time delivery of the adapted image 162

6.4 Timeline for the subsequent delivery of the adapted image 165

6.5 Processing-times of transcoding JPEG images in quality aspect vs. indicated

factors

174

6.6 Processing-times of modulating JPEG 2000 images in quality aspect vs.

indicated factors

176

6.7 System architecture of pervasive Web content delivery 181

7.1 Three basic components of Squid 210

7.2 Modified Squid’s workflow to include the meta-data retrieval 212

7.3 Modified Squid’s workflow to include the decision-making process 213

7.4 Modified Squid’s workflow to include the adaptation process 215

7.5 System architecture of model prototype 229

8.1 1/8-scaled, gray representations of boat.jpg and boat.jp2 (partial images) 240

8.2 Response times (in seconds) of requesting boat.jpeg’s SDT representations

from the server

246

8.3 Response times (in seconds) of requesting boat.jpg’s FDT representations

from the server

248

8.4 Response times (in seconds) of requesting boat.jp2’s representations from

the server

249

8.5 CDFs of periodic numbers of concurrent connections (max. 300) while

stressing the server

253

8.6 CDFs of periodic numbers of concurrent connections (max. 30) while

stressing the server

257

8.7 Data reuses among image representations in (a) JPG-SDT & JPG-FDT, and

(b) JP2-MOD

265

8.8 Response times of requesting image representations (all schemes) in first-

time delivery

267

xvi

8.9 Response times of requesting image representations (JPG-SDT) in

subsequent delivery

268

8.10 Response times of requesting image representations (JPG-FDT) in

subsequent delivery

270

8.11 Response times of requesting image representations (JP2-MOD) in

subsequent delivery

271

8.12 CDFs of periodic numbers of concurrent connections while stressing the

server/proxy system employing server-based adaptation

277

8.13 CDFs of periodic numbers of concurrent connections while stressing the

server/proxy system employing server/proxy-based adaptation

280

8.14 Data reuses among image representations in JPG-SDT with relaxed policy 283

8.15 Response times of serving a sequence of requests in server/proxy-based

adaptation

284

xvii

Publications

H. Palit and C. H. Chi. Modulation for Scalable Multimedia Content Delivery. In Proc. of

the 6
th

 International Conference on Web-Age Information Management (WAIM 2005),

Hangzhou (China), October 2005.

C. H. Chi, H. Palit, and L. Liu. Proxy-Based Pervasive Multimedia Content Delivery. In

Proc. of 30
th

 Annual International Computer Software and Applications Conference

(COMPSAC 2006), Chicago (IL), September 2006.

H. N. Palit, C. H. Chi, and L. Liu. Framework for Pervasive Web Content Delivery. In

Proc. of 7
th

 Pacific-Rim Conference on Multimedia (PCM 2006), Hangzhou (China),

November 2006.

1

Chapter 1

Introduction

This chapter starts with an overview of Web content delivery. Following the overview,

the challenges in Web content delivery and the efforts to address them are explained.

After that, motivation of this thesis is expressed, its objectives set out, and its

contributions listed. Organization of the thesis is outlined at the end of this chapter.

 Chapter 1. Introduction 2

1.1 Overview of Web Content Delivery

The Internet has evolved tremendously from a limited, research-oriented,

hundreds-of-host network to a worldwide, multi-purpose, millions-of-host network. In

fact, it is still growing at a fast pace, particularly in many developing countries. It has also

been penetrating many aspects of modern civilization and becoming part and parcel of

our daily activities. Owing to its instantaneity, the electronic mail (e-mail) has

considerably replaced the snail mail as the medium of communication and document

transfer. Chatting with distant friends and colleagues can be done economically by means

of an instant messenger.

Nevertheless, the vast majority of users draw on the Internet to surf the World

Wide Web (or simply the Web). Such user activities in the Web include reading news,

searching for a particular subject or a product, tracking stock market performance,

Internet banking, online shopping, and so forth. In the near future, more activities will be

performed online through the Web. Thus, it is hardly surprising that the Web takes the

lion’s share of the Internet traffic. A study by Thompson et al. [ThMW97] concluded that

the Web seized up to 75% of the overall bytes and 70% of the overall packets on the

Internet traffic. A more thorough study by McCreary and Claffy [McC00] also affirmed

the Web’s dominance over other Internet applications. The Web’s dominance is a

fundamental reason why research on the Web is still exciting.

For the past few years we have witnessed the proliferation of mobile/wireless

devices, such as cellular phones and PDAs (Personal Digital Assistants). Mobility has

been the trend around the globe. Everyday we can see around us people of different ages

 Chapter 1. Introduction 3

clutching mobile devices. Modern people crave for mobility to work and communicate

with others anywhere and anytime without much restriction. Some people even feel

helpless without any mobile device. Considering people’s dependency on Internet

applications and mobile devices, the integration of the Internet and wireless networks

seems inevitable. Nowadays, many mobile devices are enabled to surf the Web. A market

research report by Computer Industry Almanac
1
 predicted that, by year-end 2005, 48% of

Internet users would surf through wireless devices. Hence, the Web clients become more

heterogeneous.

Meanwhile, the technologies behind the Internet applications keep on improving

as communications and computer technologies are enhanced. The advancement of digital-

imaging and digital-sound gadgets (e.g., digital camera, video camera, scanner, MP3

player, etc.), in addition to the proliferation of high speed broadband Internet connections,

has bolstered multimedia data transfer over the Internet. Furthermore, Web-content

providers also upgrade their sites regularly with enhanced multimedia content to attract

more visitors. The content may employ a new multimedia technology with improved data

compression, but it is often enlarged in spatial resolution (width and height) and may be

more animated. Consequently, the overall multimedia content’s data-size is increasingly

large. The above factors, and many others, are the causes of an increase in multimedia

data traffic observed in the Web.

The Web clients’ heterogeneity and the increased multimedia data traffic are some

technological factors that shape the trend of Web content delivery. There are also

1
 http://www.c-i-a.com/pr032102.htm

 Chapter 1. Introduction 4

psychological factors, associated with the users’ and providers’ expectations, which

influence the trend. Typical Web users’ expectations are fast access and personalized

(customizable) content, whereas Web-content providers want rich, attractive multimedia

content and easy, efficient deployment of Web services. Discrepancies among the

technological and psychological factors instigate challenges to the Web content delivery.

Some of the challenges are mentioned in the following section.

1.2 Challenges in Web Content Delivery

The Web-content providers’ desire for rich multimedia content is in line with the

advancement of multimedia technologies, but may not be compatible with the users’

expectation of fast Web access. As multimedia Web content grows larger and

consequently multimedia data traffic increases, some Web users with a low-bandwidth

Internet connection suffer slow access. Something that Web-content providers want is to

be able to send the “context” of the multimedia content sooner than the content itself,

regardless of the Internet traffic’s condition. The context, which is much smaller than the

content, could be in the form of a thumbnail or low-quality representation of the

multimedia content. Digesting the context, the user may comprehend the multimedia

content even before completion of the content’s transfer. In this way, all users – high- and

low-bandwidth-connected – can be served quite satisfactorily. This is a tough challenge

facing the Web-content providers.

The problem above is further complicated by the Web clients’ heterogeneity and

different user preferences (the issue of personalization). There are varieties of Web-

 Chapter 1. Introduction 5

enabled – wired and wireless – devices, such as desktop, laptop, PC tablet, PDA, and

cellular phone. Besides different communication media, those client devices vary greatly

in hardware (i.e., screen’s resolution, color depth, processing speed, memory size, etc.)

and software (i.e., operating system, browser, video/audio support, rendering applications,

etc.). Presenting multimedia content to different client devices is particularly difficult

since – considering each device’s limitations – not all multimedia objects can be

universally displayed. For instance, an image of 800 × 600 (width × height) pixels may be

displayed properly in a desktop’s monitor, but may not be in a cellular phone with a small

screen, let us say, of 160 × 240 pixels. In addition, different clients (users) tend to have

different preferences with respect to information of interest, latency time tolerance,

multimedia content inclusion, and so forth. Thus, Web-content providers should no longer

adopt the “single presentation for all clients” paradigm. They need to cater for different

presentations if they do not intend to alienate particular clients.

The traditional method of addressing the above problems is by providing multiple

prearranged versions (representations) of a Web resource. The versions are created offline

before the service time (i.e., before starting to serve any client request). Each version is to

serve a specific class of client devices or a certain user preference. Although this method

is simple, it has several drawbacks. Firstly, it requires more disk space to store lots of

resources’ versions. Secondly, to reduce the disk space usage, often the number of

versions is restricted. The extensibility of the Web site is also limited since the disk space

may be taken up rapidly. In other words, this method is quite rigid. Lastly and more

importantly, it is troublesome to maintain the resource’s versions since any modification

on a particular version must be disseminated to the other versions. Apparently this

 Chapter 1. Introduction 6

method clashes with the Web-content providers’ expectation of easy, efficient

deployment of Web services.

Note that the challenges mentioned in the previous paragraphs are interlinked.

Therefore, it is better to address the challenges as a whole instead of trying to solve them

one by one. Past research efforts, coming from different research areas, have been

devoted to address the challenges. Alas, each effort tried to solve one challenge at a time,

independent of the other challenges. These isolated efforts may not solve the problems

thoroughly. The following section highlights some of the efforts.

1.3 Efforts to Address the Challenges

The past efforts to address the Web content delivery’s challenges are discussed

within three research areas, namely content caching and replication, intelligent network,

and multimedia standard. Each of them has made considerable contributions to the

current Web content delivery.

1.3.1 Content Caching and Replication

Since the introduction of the Web proxy [LuA94], Web caching had been

considered as its key feature. Indeed, the Web protocol (the latest is HTTP/1.1 [FiGM99])

has defined some headers to support Web caching, such as Expires and Cache-

Control. By caching the passing Web content locally and using it to serve neighboring

clients, the proxy can help reduce the client latency. Hence, the use of a Web caching

proxy can meet the Web users’ expectation of fast Web access.

 Chapter 1. Introduction 7

Another but similar way of speeding up the Web content delivery is by employing

a CDN (Content Distribution Network [Ver02], also known as Content Delivery Network

[RaS02]). Unlike the caching proxy, which stores any passing Web content so long as it is

cacheable, a CDN replicates Web content selectively – only one belonging to a paying

CDN customer – and the content may be uncacheable. Furthermore, the Web content in a

CDN server is fully controlled by the content provider (i.e., the CDN customer). A CDN

is often employed to deliver dynamic and streaming content.

Web-content providers opt for dynamic content due to reasons like avoiding stale

delivery and personalizing content for a given user. Since dynamic content is often made

uncacheable, a Web caching proxy is ineffective to deal with it. By contrast, a CDN

server in collaboration with the original server can deliver dynamic content effectively. In

the past research efforts, some techniques (e.g., HPP [DoHR97], ESI [ESI01], and CSI

[RaXD03]) have been proposed to handle dynamic content delivery. They basically

divide a dynamically generated Web page into static and dynamic fragments. Forming a

template, the static fragments are infrequently changed and therefore cacheable. When the

Web page is assembled (usually at a CDN server), the dynamic fragments are requested

from the origin server to fill the specified positions in the template.

Streaming content is sometimes just played partially, and as a result, may not be

cached properly by a proxy. In turn, the following client requests for the same streaming

content could not be served by the caching proxy. On the other hand, streaming content

can be prepopulated in a CDN server before being served to the clients. In that case, the

CDN server can deliver streaming content better than what the caching proxy can offer.

 Chapter 1. Introduction 8

Although a caching proxy may prefetch streaming content, the accuracy of the

prefetching is limited.

Another technique to reduce the client latency is delta-encoding [MoKD02]. A

delta is the difference between old and new versions of a Web resource. When an old

version is expired, instead of sending the entire new version, the delta between the old

and new versions is generated and sent out. The new version can be constructed from the

old version plus the delta. The delta’s size is usually much smaller than the version’s size,

so less network traffic is required and lower client latency expected.

Studies on content caching and replication mainly focus on client latency

reduction (or, fast Web access). It is understandable since the studies are mostly

perceived from the Internet service providers’ point of view. In general, the latency

reduction can be attained by use of a caching/replication system (either a proxy or a CDN

server) and fragmentation of Web content. In the former technique, the caching/

replication systems are distributed around the globe to accelerate the content distribution

to the clients. In the latter technique, the fragments are grouped according to their

cacheability; only stale (modified) fragments are then fetched from the original server.

The studies do not pay much attention to the client devices’ heterogeneity; i.e., all clients

are treated equally. Although some techniques resulting from the studies can support

efficient delivery of personalized and multimedia content, the construction of such

content is not their main concern. It is, nevertheless, addressed more by the studies on

intelligent network and multimedia standard discussed below.

 Chapter 1. Introduction 9

1.3.2 Intelligent Network

The term “intelligent network” is associated with the network’s ability to process

passing data. The network here is not in its true sense, but it refers to the network’s nodes

which have the processing capability. In the Web, the involvement of Web proxies is

again required to process content. The content processing functions include filtering,

translation, adaptation, and so forth. Obviously the functions are more advanced than just

caching and constructing Web content as done in the previous research studies.

ICAP (Internet Content Adaptation Protocol) [ElC03] is a lightweight protocol for

executing transformation and adaptation on HTTP messages. Some value-added services

supported by ICAP are virus scanning, content blocking/filtering, advertising insertion,

human language translation, and markup language translation. An ICAP client may

intercept and redirect a client response (or request) to an ICAP server for modification,

and then send the modified response (or request) to the corresponding client (or the origin

server). By off-loading these value-added services to dedicated ICAP servers, the origin

server’s load can be reduced. An ICAP client is often, but not always, a surrogate (i.e., a

reverse proxy) acting on behalf of a user. So far, ICAP has defined the transaction

semantics but it is yet to define the accompanying application framework.

In the multimedia domain, the process of converting a data object from one

representation to another is called transcoding [HaBL98] (also known as distillation

[FoGB96]). Transcoding is lossy (inessential or unrenderable information is removed

[Mog01]), data-type specific, and irreversible (the original object cannot be recovered

from the resulting representation). There are two main objectives of transcoding a

 Chapter 1. Introduction 10

multimedia object: 1) to make the object presentable to the client, and 2) to reduce the

client latency delay. Transcoding is required when a multimedia object with its original

characteristics (i.e., data format, resolution, color depth, etc.) cannot be presented in the

given client device. Or perhaps the multimedia object is presentable but too large and,

consequently, takes too long to display; hence, transcoding is employed to reduce its data-

size. Such examples of transcoding are transformations within a media data-format (e.g.,

quality reduction in a JPEG image) and transformations between media data-formats –

either same-domain (e.g., GIF to JPEG image conversion) or cross-domain (e.g., video to

images conversion).

Studies on intelligent network focus on personalized and adapted content. They

try to address clients’ heterogeneity in capabilities and preferences. While ICAP works on

mainly textual content (especially Web pages or containers), transcoding typically works

on multimedia content (especially embedded objects). Adapting multimedia content is

particularly challenging considering Web-content providers’ eagerness to exploit it and

due to the complexity it involves. Although transcoding can reduce the client latency

delay, it usually involves complex computations which may introduce another latency

delay and undermine the expected reduction’s benefit. Therefore, transcoding should be

employed only if the expected reduction of latency delay can offset the introduced latency

delay. That is why transcoding is data-type specific; understanding of the associated

multimedia data-formats is needed. Unless those issues are taken into consideration,

transcoding may end up with inefficiencies. Related to this, the following research topic

discusses the latest development in the multimedia standards.

 Chapter 1. Introduction 11

1.3.3 Multimedia Standard

Due to its commonly large data-size, researchers have tried to find ways to stream

multimedia content. In the streaming mode, few initial segments of a multimedia object

are fetched, and then displayed immediately while the following segments are fetched.

Since the multimedia object is displayed before the client receives it in its entirety, the

client’s perceived latency delay may be cut down. In a movie clip, those initial segments

normally correspond with the first few seconds of the clip; this is quite the expected

result. In an image, however, they may just give the first few lines of the image. The

client may still need to wait for another few segments before the image’s context can be

digested. To improve this, progressive data-formats have been devised. Instead of

displaying the image one line after another, the progressive data-format may present it in

different increasing details, such as blurred-to-clear or coarse-to-fine. This way, the client

may grasp the image’s context sooner. Instances of progressive data-formats are

interlaced GIF, interlaced PNG, and progressive and hierarchical JPEG.

In recent years, new multimedia standards – like MPEG-4, H.264, and JPEG 2000

– have come up with better features. Compared to their predecessors, they are more

advanced in data compression, error robustness, and more importantly, progressive data

transmission. Accordingly, they can handle the clients’ heterogeneity better. In the JPEG

2000 standard, for instance, an image can be easily streamed to clients with different

screen resolutions. By exploiting the JPEG 2000’s advanced progressive data-format, the

image’s resolution can be scaled down, if necessary, without much effort. This is because

the image may be composed of some image-planes with increasing resolutions, so the

 Chapter 1. Introduction 12

client device just needs to select the appropriate image’s resolution and discard the

unnecessary image data. The notion of “scalable presentation” is aptly attached to these

new multimedia standards.

Studies on multimedia standards have contributed some solutions to the Web

content delivery’s problems. Firstly, owing to better streaming techniques, Web clients

may perceive fast access. Secondly, the scalable presentation bestowed upon the new

multimedia standards may meet the clients’ heterogeneity fairly well. Last but not least,

strong support from the multimedia standards helps Web-content providers to deliver rich

multimedia content without so much taxing on the Internet bandwidth. However, there is

still room for improvement to efficiently deliver the multimedia content. Since

multimedia objects are typically large in data-size, it would be better if they can be

fetched once but used repeatedly to serve many clients. Placing a caching system between

the server and the clients may help improve the multimedia content delivery. Moreover,

the delivery of unnecessary multimedia data should be avoided. For example, if the client

wants a low-resolution representation of a scalable image, only the corresponding image

data should be transmitted. Alas, in reality that is not always the case. Perhaps because it

does not know the client’s preferences or maybe due to its inability to scale down the

image, the server just sends the whole image to the client and lets the client discard the

unnecessary image data. Such an inefficiency wastes time and the Internet bandwidth.

Collaboration between the Web-content providers and the Internet service providers may

be the best way to rectify the problems.

 Chapter 1. Introduction 13

1.4 Motivation: What Will Be the Future Web Content Delivery?

As observed above, studies on the different research areas shared a similar interest

in the development of Web content delivery. Although they did not deal with the holistic

problems of Web content delivery and, consequently, fell short of offering a satisfactory

answer to all challenges mentioned in Section 1.2, they had contributed methods or

techniques to improve Web content delivery. It is our belief that the solution should begin

with the blueprint of the projected Web content delivery. The non-existence of this

blueprint is the motivation of our thesis. Considering all the affecting factors, the

challenges, and the previously proposed techniques, we may develop the blueprint. Below

are the supposed characteristics of the future Web content delivery.

1.4.1 Pervasive or Ubiquitous Service

As the Web client base expands to include mobile users with diverse computation

and/or communication appliances, content providers have to extend their services to meet

the users’ demands. Therefore, the Web services should be accessible for heterogeneous

clients. That is why they are dubbed “pervasive services”; the services can be accessed

from anywhere, at anytime, by any user.

Besides the client devices’ capabilities and limitations, the pervasive services

should also take the client preferences into consideration. As mentioned earlier, some

examples of the client preferences are information of interest, latency time tolerance, and

multimedia content inclusion. The client capabilities, limitations, and preferences are

collectively labeled the client characteristics.

 Chapter 1. Introduction 14

1.4.2 Fine-Grained Entities with Heterogeneous Properties

Techniques proposed for dynamic content delivery center on page fragmentation

which partitions a Web page or container into fragments with different cacheability. In a

progressive multimedia standard, an object is decomposed into several layers of

presentation with increasing quality or resolution. In general, the current Web resource is

no longer the smallest entity in the Web. The resource should be divisible into smaller

entities (fragments, segments, or others alike), each of which has a unique combination of

properties. When the resource is fetched, validated, presented, or manipulated by other

means, only particular entities of the resource may really be engaged. The manipulated

entities are determined by their properties’ values.

Instances in Section 1.3 show that fine-grained entities of a Web resource can

serve clients’ heterogeneity in an efficient manner. Various representations of the

resource may be constructed from its entities. In addition, the resource’s entities can be

streamed one by one and displayed immediately on the client side, so that the perceived

latency delay can be improved.

1.4.3 On-Demand Delivery with Efficient Data Reuse

Considering its large data-size and supported by its fine-grained entities, a Web

resource should be delivered on-demand. Here, “on-demand delivery” suggests that only

needed entities of the resource are transmitted to the requesting client. Thus, the Internet

bandwidth is consumed sensibly.

 Chapter 1. Introduction 15

The use of a caching system can further conserve the bandwidth usage. Not only

can a cached resource (i.e., a representation) be used fully to serve the same client request

(requesting the same representation), but it may also be used partially to serve another

client request (requesting another representation). This is particularly sound since entities

of a resource’s representation may be used to construct other representations, perhaps

with additional entities of the resource. Then, the overall use – and reuse – of data in the

Web content delivery will be very efficient.

1.4.4 Rich Meta-data

Deploying pervasive services requires knowledge of the client characteristics.

Obtaining a suitable Web resource’s representation for a given client requires information

about fine-grained entities of the resource and their properties. Likewise, the on-demand

delivery can only be done if information about the resource is known. All of these reveal

the requirement for additional data besides the Web resources. Data that describe other

data are commonly called meta-data. Clearly, the future Web content delivery will

demand more and more meta-data.

There are many ways to distribute meta-data. They can be embedded in the object

they describe. Most multimedia objects have meta-data within, usually dubbed “the

headers”. Meta-data can be attached to the protocol carrying the object. The Web protocol

(HTTP) defines request, response, as well as entity headers; many are used for describing

the object in the HTTP body. Lastly, meta-data can be placed in a separate document. The

emerging XML format is commonly used to construct such a meta-data document. Owing

 Chapter 1. Introduction 16

to its ease and extensibility, the last method has been widely exploited. In the near future,

with the proliferation of the Semantic Web, uses of meta-data will gain more popularity.

1.5 Objectives and Contributions

Intrigued by the benefits that the future Web content delivery – specified in

Section 1.4 – may bring, this thesis tries to have the future Web content delivery

materialized. In this section, we declare the objectives and contributions of this thesis.

1.5.1 Objectives

The blueprint of the future Web content delivery is accomplished in two stages. In

each stage, an objective is set out. The objectives of this thesis are as follows:

1. Devise a fine-grained, scalable Web data model.

The characteristics of the future Web content delivery indicate the importance of a

data model. The data model should be able to decompose a Web resource into fine-

grained entities with heterogeneous properties. Of the entities, a variety of

representations can be generated. The data model should also exhibit scalability, so

that on-demand and efficient delivery can be attained. Studies on multimedia

standards have introduced a progressive data-format which can offer scalable

presentation. This will be the starting point for our data model.

2. Design a conceptual framework for pervasive Web content delivery.

The conceptual framework should exhibit all characteristics of the future Web content

delivery. Since the main purpose of improving the current Web content delivery is to

 Chapter 1. Introduction 17

serve users better – whilst the targeted users are heterogeneous, the framework should

uphold pervasive Web content delivery. The data model proposed in point 1 above

will be fundamental to the framework. The main components of the framework will

be outlined and their functions elaborated.

For each of the two stages, an illustration will be given to demonstrate the efficacy

of our proposals. Comparison with the current practices will be conducted as well to see

the improvements we may get from the proposed data model and framework.

1.5.2 Contributions

We believe that our research efforts on this thesis will enrich the knowledge base

of several research areas, particularly on the field of Web content caching and

distribution. Our contributions are as follows:

1. Modulation – a scalable adaptation.

We have stated above that devising a fine-grained, scalable Web data model is our

first objective. The data model also includes some transforming operations. The

operations materialize into a new adaptation, called modulation. Modulation has

exceptional characteristics which benefit the Web content delivery.

2. JPEG 2000 modulators.

To show the efficacy of modulation, we give an illustration using the JPEG 2000

standard. Based on the specified modulating operations, some JPEG 2000 modulators

are developed. Later on, modulation in the JPEG 2000 standard will be compared

 Chapter 1. Introduction 18

with transcoding in the JPEG standard. Results of the comparison should affirm the

benefits of modulation.

3. A framework for pervasive Web content delivery.

Our framework is quite distinct from previously proposed frameworks. The main

distinction is its holistic approach in dealing with the challenges in Web content

delivery. The framework is proxy-centric. In addition to caching and adapting passing

content, the proxy matches the client’s characteristics to the requested resource’s

characteristics so that the best representation can be served to the client.

4. A model prototype of the pervasive Web content delivery.

A model prototype is developed to show the efficacy of our proposed framework. In

the development, modifications to the system’s components – particularly the server

and proxy applications – are detailed. The model prototype is extensible; various

adaptors (transcoders and modulators) can be plugged into it quite easily. The model

prototype will be evaluated and analyzed to see the improvements that it may offer.

Primarily the results should exhibit a marked reduction in the client latency delay and

conservation of the Internet bandwidth.

1.6 Scope and Organization of the Thesis

This thesis will not put emphasis on the widespread implementation of the

framework in the Web. The emphasis should be on the efficacy and efficiency of the

framework. Hence, the widespread implementation is beyond the scope of this thesis. The

implemented systems – developed here for the JPEG 2000 and JPEG standards – are just

 Chapter 1. Introduction 19

to give an illustration of their workings and to show their benefits. However, the efficacy

and efficiency achieved here should be upheld for other standards alike.

The rest of this thesis is organized as follows. Literature review is given in

Chapter 2. The fine-grained, scalable data model is proposed in Chapter 3. Modulation,

the novel adaptation, is specified at the end of Chapter 3 and then implemented in Chapter

4, using the JPEG 2000 image standard as an illustration. In Chapter 5, modulation in the

JPEG 2000 standard is compared and contrasted with transcoding in the JPEG standard.

Chapter 6 proposes a framework for pervasive Web content delivery, in which

modulation will be fully utilized. As a proof of concept, a model prototype based on the

proposed framework is developed, and the development is elaborated in Chapter 7.

Evaluation of the model prototype is presented in Chapter 8, and it will reveal the attained

benefits as well as the costs. The whole thesis is concluded in Chapter 9.

20

Chapter 2

Literature Review

Section 1.3 of the Introduction has mentioned the efforts to address the challenges in Web

content delivery. The efforts are classified into three research areas: content caching and

replication, intelligent network, and multimedia standard. In this chapter, researches on

those three areas are discussed in depth. Learning from the prior researches, the last

section of this chapter summarizes the factors that may affect the accomplishment of

pervasive Web content delivery.

 Chapter 2. Literature Review 21

2.1 Content Caching and Replication

Caching for the Web clients is analogous to the cache memory for CPU. Both are

employed to speed up data access. In the Web environment, the data are the Web

contents, each of which has a URI as its identity. The temporal locality [Den05],

exploited by the caches, says that a resource that is referenced at one point in time will be

referenced again sometime in the near future. By caching the Web contents, future client

requests may be served from the cache, as opposed to from the origin server. The

expected benefits are improved response time and reduced Internet traffic. Thereby, Web

caching can meet the Web users’ expectation of fast Web access.

In recent years, Web caching has grown along with the nature of Web contents. In

the past, the contents were all static resources like Web pages, documents, images, etc. As

the trend goes towards dynamic contents, the efficacy of the traditional Web caching was

challenged. New methods in Web caching thus came up to address the challenge. In the

following subsections, the history and development of Web caching, the proliferation of

Web replication, as well as some techniques to reduce latency and to handle dynamic

contents are presented.

2.1.1 HTTP and Web Caching

Caching had been incorporated in the Web protocol just after the birth of the Web.

The original Hypertext Transfer Protocol (HTTP) [Ber91], known as HTTP/0.9, was very

primitive and did not have any header in its messages (both requests and responses).

However, Tim Berners-Lee immediately upgraded the original HTTP to include some

 Chapter 2. Literature Review 22

headers [Ber92]. Two of the request headers specified in the latter document were

Pragma (with no-cache as the only defined value) and If-Modified-Since, which

suggest the possible existence of a caching system where a copy of the requested Web

object may be stored. Further, the Expires response header was also specified to notify

when a cached Web object has to be refreshed. Those three cache-related headers were

still preserved in HTTP/1.0 [BeFF96] and further expanded in HTTP/1.1 [FiGM99] with

other cache-related headers, such as Cache-Control, Age, ETag, and Vary (note: ETag

and Vary were classified as cache-related headers by Krishnamurthy and Rexford

[KrR01]).

Web caching can be performed at the client’s side, at the server’s side, or at a

proxy (intermediary) server. Most client browsers are equipped with a cache. This is very

logical since the user may visit the same page again (temporal locality). Caching at the

server’s side may be useful if the contents are periodically changed and generated.

Caching the generated contents, the server need not execute the generation process

repeatedly and can manage its resources more efficiently. Nevertheless, Web caching is

more beneficial if it is applied to a proxy server.

Luotonen and Altis [LuA94] suggested few benefits of caching Web contents at

the proxy server. Firstly, the proxy can save disk space since only a single copy – as

opposed to one copy per client – is cached. Secondly, serving multiple clients, the proxy

can cache more efficiently Web objects that are often referenced. Thirdly, the proxy may

prefetch more effectively Web objects that soon will be referenced because it has a larger

sample size to base its statistics (or, other predictive algorithms) on. Lastly, to a certain

extent, the caching proxy can offer availability, even if the external Internet connection is

 Chapter 2. Literature Review 23

cut off. Those benefits complement the other two benefits we have mentioned earlier;

those are improved response time and reduced Internet traffic.

One of the initial evaluations on the efficacy of a caching proxy was done by

Abrams et al. [AbSA95]. Some findings from that study are worth noting here. The

maximum hit rate achieved by a caching proxy is around 30–50%. The caching proxy’s

hit rate tends to decline with time, and this may be attributed to the client browsers’ cache

filling over time. Caching all kinds of objects is more beneficial than caching selective

objects (i.e., certain object type, object size, or domain); selective caching may drop the

hit rate by 10–50%.

A study by Feldmann et al. [FeCD99] suggested that a Web proxy should not only

cache data but cache connection as well; caching connection implies that the proxy uses

persistent connections. They found that, in the low-bandwidth environment, data caching

reduces average user-perceived latency by only 8%, whereas combined data and

connection caching produces up to 28% latency reduction. Likewise, in the high-

bandwidth environment, data caching improves mean latency by 38% but the

combination of data and connection caching improves it by 65%. They also suggested

that cookies (commonly used for personalized contents) can reduce the efficacy of a

caching proxy since most cookied objects are uncacheable.

Bent et al. [BeRV04] conducted a study on commercial Websites and found that

most of them use cookies indiscriminately and do not take advantage of Cache-Control

directives. The study shows that around 66% of responses are uncacheable. A Content

Distribution Network (CDN) was suggested to improve their performance.

 Chapter 2. Literature Review 24

2.1.2 Content Distribution Network

One way to speed up the delivery of Web contents is by caching them, the other

way is by replicating them [KrR01, RaS02, Ver02]. Unlike Web caching, Web replication

is a server-side approach employed to scale up the Web. In Web replication, the contents

are copied to mirror sites. Clients can directly access or be redirected to the closest mirror

site. The term “closest” may refer to geographical distance, network distance, and latency

metrics. To efficiently utilize the storage capacity, replication is usually applied

selectively to the most popular contents. The mirror sites, called surrogates or reverse

proxies, are operated by a Content Distribution Network (CDN), also known as Content

Delivery Network. For the rest of discussion, the surrogates are referred to as CDN

servers. Content providers who sign up with a CDN for content delivery are called CDN

customers, whereas Web clients that download contents through a CDN are called CDN

clients.

Compared to forward proxies (i.e., the normal caching proxies), CDNs can offer

the following benefits:

1. While deployment of forward proxies has some limitations – namely, requiring the

client to explicitly configure its browser in non-transparent deployment and violating

the end-to-end principle in transparent deployment – CDN servers can be deployed

without such predicaments.

2. The Web contents are fully controlled by the content providers, so their consistency

can be maintained effectively. In addition, access statistics can be accurately

 Chapter 2. Literature Review 25

collected. Overall, those features eliminate any reason for cache busting (i.e.,

purposely preventing responses from being cached).

3. Access to uncacheable contents – such as dynamic, streaming, and secured ones – can

be improved.

4. The CDN servers can be prepopulated with precise contents from their customers.

That eliminates the need to determine the contents to be prefetched.

Although there are a few techniques to direct a client to a particular CDN server,

two techniques commonly employed are DNS redirection and URL rewriting [KrWZ01].

In DNS redirection, the authoritative DNS name server is controlled by the CDN. When

this DNS server receives a DNS request from the client’s local DNS server, it resolves the

request with the IP address of one closest CDN server, depending on the availability of

resources and the network conditions. There are two types of DNS redirection: full- and

partial-site content delivery. The former delivers the entire contents of the CDN

customer’s site, the latter delivers only the embedded objects (primarily images) of Web

pages. In URL rewriting, the origin server rewrites URL links as part of dynamically

generating pages to redirect clients to different CDN servers.

Canali et al. [CaCC04] studied the benefits of CDNs from the client’s point of

view. They particularly examined partial-site content delivery provided by Akamai
2
 and

Speedera
3
, two commercial CDN companies. Some interesting findings of their study are

as follows:

2
 http://www.akamai.com

3
 Speedera was acquired by Akamai in June 2005.

 Chapter 2. Literature Review 26

• CDNs can offer significant performance gains and reduction in response time

variance over a centralized Web server.

• CDNs show heavy time-dependent behavior, in which response times are far higher

during the busiest hours of the day. Also, CDN benefits are reduced under heavy

network traffic.

• Sites with a greater fraction of CDN-served objects achieve higher speedup. However,

a heavy usage of CDN-enabled delivery is not sufficient to achieve high speedup.

• CDNs give better performance when only a few edge servers are used.

• DNS resolution time is a significant portion of the total response time under normal

traffic condition.

More standard concepts and protocols used in Web caching and replication are

discussed by Cooper et al. [CoMT01]. Some of the protocols are Cache Digests, CARP,

ICP, PAC, WPAD, and WCCP. Their uses can be found in Thomas’ book [Tho01].

Recently, there is also an idea to create collaboration between forward proxies and CDNs,

as well as between individual CDNs, to improve access to Web contents. The

collaboration is termed Content Distribution Internetworking (CDI) [RaS02], or simply,

Content Internetworking [DaCT03]. Basically, it is a larger-scaled CDN, which includes

components like request distribution, content distribution, and accounting. Request

distribution (or, request routing) is to find the appropriate forward proxy or CDN server

for a given client’s request. Content distribution deals with distributing the content to

CDN servers and forward proxies which eventually serve it. Finally, accounting measures

and records the distribution activities, especially when the information recorded is

ultimately used as a basis for the subsequent transfer of money, goods, or obligations. The

 Chapter 2. Literature Review 27

general challenge of realizing CDI is to standardize the complex interactions between

multiple CDNs and ISPs (Internet Service Providers) without restricting innovation.

2.1.3 Techniques for Reducing Latency

Besides caching and replication, researches have proposed varied techniques to

help reduce the user-perceived latency. Some of the techniques are data compression,

prefetching, and delta-encoding.

The inclusion of data compression in the Web can be traced back to the early

protocol, i.e., HTTP/1.0 [KrR01]. The Content-Encoding entity header can be used in

end-to-end data transfer to indicate whether transformation (including compression) has

been applied to a response’s body. In HTTP/1.1 [FiGM99], the Transfer-Encoding

general header has been added for the same purpose as the Content-Encoding header,

but in host-to-host basis. Nielsen et al. [NiGB97] suggested that data compression applied

to an HTML document can increase the probability of finding more embedded objects

sooner, so that enough requests (for the embedded objects) can be issued immediately in a

pipelined persistent connection; using zlib (deflate) compression, the resulting

savings are about 16% of the TCP packets and 12% of the transmission time. Mogul et al.

[MoDF97] also observed 19.8% bytes saving and 14.2% time saving when gzip

compression was employed. As predicted, data compression is not really effective on

JPEG and GIF images, since they are already compressed when generated.

Prefetching means retrieval of the Web object in advance of the client’s request.

This may reduce the latency delay perceived by the client at the expense of additional

 Chapter 2. Literature Review 28

load on the network and the server [KrR01]. Prefetching is not useful unless later a client

requests the object and the prefetched response is still fresh. On the one hand, prefetching

during periods of inactivity can make more effective use of the limited bandwidth. On the

other hand, prefetching when the client is downloading another Web page would result in

higher latency for the current page. Kroeger et al. [KrLM97] categorized prefetching into

two types: local and server-hint. In local prefetching, the agent doing prefetching (i.e., a

client’s browser or a proxy) uses local information (e.g., reference patterns) to determine

which objects to prefetch. In server-hint prefetching, the server uses its content specific

knowledge of the requested objects and the reference patterns from a far greater number

of clients to determine which objects should be prefetched. The actual prefetching,

however, must be done by the agent; the server provides hints that assist the agent in

prefetching. Kroeger et al.’s simulations show that a combined caching and prefetching

proxy can provide at best 60% latency reduction, compared to 26% latency reduction in a

pure caching proxy. Nevertheless, the cost of prefetching could be high and finding such

an accurate prefetching algorithm is a difficult task.

When a Website changes its page, it is common that only some parts of the page

are changed while the majority of them are still the same. Then, one may start thinking

that, given that the client has a cached copy of the old page, sending the difference – or

“delta” – between the old and new pages may be more efficient than sending the entire

new page. That is the basic idea of delta encoding [MoKD02]. Suppose a Web resource

(i.e., URI) has more than one representation at any given instant, a particular

representation at a given time is called an instance. Delta encoding requires a unique

identity for each instance. The Last-Modified or ETag response header defined in

 Chapter 2. Literature Review 29

HTTP/1.1 may be used as the instance’s identity. A new request header, A-IM (stands for

Accept-Instance-Manipulation), and two new response headers, IM and Delta-Base,

were proposed for delta encoding. Some applications that may be employed for delta

encoding are diff, vcdiff (previously known as vdelta), and gdiff. While vcdiff

is considered the best overall delta algorithm, diff is relatively fast but can only be used

on textual objects. Mogul et al. [MoDF97] investigated some delta encoding, data

compression, and both combined algorithms applied to proxy traces. They found that

vdelta can save 83% of the delta-eligible response-body bytes (31% of all response-

body bytes) and 39% of the transfer time for delta-eligible responses (12% of the total

transfer time). They suggested that delta encoding should be used when possible, and

compression should be used otherwise. The added overheads for encoding and decoding

are quite reasonable, but the remaining issues are which and how long deltas should be

retained in the server. Finding a suitable delta-encoding algorithm for images (GIF,

JPEG, etc.), which take 64% of the responses, is another open issue.

2.1.4 Techniques for Handling Dynamic Contents

The inspiration behind delta encoding is also applied to handling dynamic

contents. Dynamically generated contents are generally used for news, auctions, stock

quotes, and many others. Most of them are set uncacheable to enforce data integrity. Yet,

not the entire page is changed at once. The frame, tables, and outline of the page are often

static. Only some fragments need to be frequently changed. Instead of enforcing the

whole page to be uncacheable, the page should be decomposed into fragments. Based on

 Chapter 2. Literature Review 30

their change frequencies (or, TTL/time-to-live), the fragments can be classified into

groups. Hence, the changes can be applied to these small groups, as opposed to the whole

page. By caching static fragments and only retrieving dynamic fragments, the

dynamically generated page can be displayed fast and more efficiently. Some techniques

employing this principle among others are HPP, ESI, and CSI.

HTML Pre-Processing (HPP) [DoHR97] divides an HTML document into static

and dynamic portions. The static portion, called the template, contains macro-instructions

for inserting dynamic information. The dynamic portion, called the bindings, contains the

values of macro-variables to fill those in the template. The template can be cached,

whereas the bindings are obtained for every access. After retrieving the bindings, the

template is expanded by the client prior to rendering the document. The HTML syntax is

extended with new tags denoting the macro-instructions. A plug-in needs be installed in

the client’s browser to expand the template with the bindings. Compared to the original

document, HPP bindings reduce the size by factors of 4–8 without compression, or 2–4

when comparing compressed bindings to the compressed original document. In fact, the

dynamic data is comparable in size to an efficient delta encoding. The end-to-end latency

and the server’s load also decrease.

Edge Side Includes (ESI) [ESI01] defines a simple, XML-based markup language

that developers can use to identify content fragments for dynamic assembly at the

network edge (i.e., a surrogate or a CDN server). ESI breaks down a Web page into a

template and some fragments of differing cacheability profiles. When a page is requested,

the corresponding template and page fragments are delivered to the edge server to

assemble the requested page. The template can be cached at the edge server for a long

 Chapter 2. Literature Review 31

time. The page fragments may also be cached, and therefore, only uncacheable or expired

fragments are fetched from the origin Website when serving subsequent requests. Unlike

the template expansion in HPP, page assembly at the edge server can be conditional,

based on information given in HTTP request’s headers or end-user cookies. Since its

release, ESI has been widely adopted by many companies, particularly CDNs.

Rabinovich et al. [RaXD03] argued that although ESI can speed up delivery of

highly dynamic contents, page assembly at the edge server does not improve the response

time for dial-up clients. To complement ESI, Rabinovich et al. proposed Client-Side

Includes (CSI), in which page assembly occurs at the client’s side. In this way, the client

just needs to retrieve changed page fragments rather than download the whole Web page

repeatedly. CSI does not require the presence of an edge server, although CSI can still

utilize edge servers for scalable delivery of page templates and fragments. For the page

assembler, CSI uses a generic JavaScript program that will download the template and

any page fragments and assemble the page. Experimental results show that CSI can

reduce the end-to-end (from the origin server to the client) traffic.

Compared to static contents, dynamic contents require more computational power,

storage space, and Internet traffic. Most systems delivering dynamic contents employ a

three-tiered architecture consisting of the Web, application, and database servers. As

dynamic contents flourish and become the norm in the Web, the scalability of delivering

dynamic contents is challenged. A number of approaches have been proposed in recent

years to address that challenge. Basically the proposed approaches not only cache data at

edge servers (this replicates the Web server’s functionality only) but also try to replicate

the lower levels of the three-tiered architecture, i.e., application and database servers. The

 Chapter 2. Literature Review 32

approaches can be classified into four techniques: application code replication, database

engine replication, content-aware data caching, and content-blind data caching.

EdgeComputing [DaPW04] and ACDN [RaXA03] are some platforms for

deploying and executing Web applications at edge servers. The data itself is still

centralized, and that can become performance bottleneck and cause additional latency.

Caching or replicating the data to the edge servers may address the problems.

Replicating database engines at edge servers, such as in Ganymed [PlA04], can

offer scalability and reliability to dynamic Web applications. Nevertheless, since each

update needs to be propagated to all other replicas to maintain data consistency,

potentially enormous network traffic may be introduced.

DBCache [AlLK02, BoAM04] and DBProxy [AmPT02, AmPT03] cache database

records (or tables) partially. The edge database caches are loaded with tuples resulting

from queries on the central database. The cached tuples may be used to serve locally the

following queries. The edge databases must be aware of the central database’s data

schema and are only modified through insert or update queries. While this technique can

avoid the network traffic overhead yielded by database engine replication, it requires

strong understanding on the central database’s data schema, which requires more

computations and may limit its scalability.

In contrast to content-aware data caching, content-blind data caching [OlMG05,

SiPS06] stores each query result independently and does not merge (by means of insert or

update queries) different query results in edge databases. This technique incurs minimal

computational load but does not perform well on Web applications with poor query

locality.

 Chapter 2. Literature Review 33

Researches on content caching and replication have contributed many

improvements to Web content delivery. Notable improvements are improved response

time, reduced Internet traffic, decreased server’s load, better scalability and reliability.

While uses of caching proxies and surrogates (including edge servers) can share the

origin server’s load in serving clients around the globe, new proposed techniques further

help deliver the contents efficiently and effectively. In summary, the techniques involve

data compression, prefetching, delta encoding, page fragmentation, as well as application

and database replication at edge servers.

It can be noticed that the proxy’s existence is very important to attain fast and

efficient Web content delivery. But a proxy is not only useful for Web caching, more

benefits of utilizing a proxy can be found next.

2.2 Intelligent Network

As noted in the previous chapter, the term “intelligent network” refers to the

network’s ability to process passing data. In the past, network was deemed passive; its

sole task was to transfer packets from one host to another without knowing the packets’

contents. However, the Web’s proliferation has changed the old paradigm. People have

come to realize that the network is a vast resource waiting to be tapped. Instead of waiting

for the packets to reach the destined host before they can be processed, why could they

not be processed on the network? Processing on the network can offer benefits like

protection, efficiency, scalability, inter-operability, and many others. One example is a

firewall, which blocks packets that may be harmful to the computers behind it. A caching

 Chapter 2. Literature Review 34

proxy, which has been thoroughly elaborated in the previous section, is another example.

All of these are generally termed “active network” [TeSS97]. The intelligent network that

we will discuss shortly is a set of applications dealing with Web contents. In particular,

the intelligent network is employed to adapt the contents so that they can be served to

heterogeneous Web clients.

To begin with, the Web protocol’s support for representations of a resource is

highlighted. Next, previously proposed transcoding systems are presented and analyzed.

Elaboration of ICAP and OPES – two well-known adaptation architectures – follows. In

the last subsection, the development of Semantic Web is summarized.

2.2.1 Web Protocol’s Support

One of the key features of HTTP/1.1, compared to HTTP/1.0, is its support for

representations of a Web resource [KrMK99]. In the protocol’s specification [FiGM99],

this feature is discussed under “Content Negotiation” (Section 12 of the document).

Acknowledging different users’ preferences and user-agents’ capabilities, the protocol

provides some mechanisms for selecting the best representation (variant) for a given

response when there are multiple representations available. HTTP/1.1 provides two

orthogonal forms of content negotiation:

1. Server-driven negotiation.

The decision to select the best representation is done by the server. The client may

send its preferences to the server, using request headers such as Accept, Accept-

Charset, Accept-Encoding, Accept-Language, and User-Agent. The server,

 Chapter 2. Literature Review 35

on the other hand, can use the Vary response header to express the parameters it uses

to select the representation. This method can avoid additional round-trips but may not

accurately give what the client wants, particularly due to the limited preferences that

the client may be able to use.

2. Agent-driven negotiation.

The decision to select the best representation is done by the client manually (by

clicking the selected hypertext) or automatically (by the user-agent). In this method,

the client requests a varying resource, and the server replies with a 300 (Multiple

Choices) response that contains a list of available representations and a description of

each representation’s properties (such as its content-type, language, and character set).

While allowing the client to select its best available representation, this method needs

a second request to fetch the representation. In addition, the HTTP working group did

not complete the specification of this method, so its usability is still uncertain.

Even though the content negotiation specified in HTTP/1.1 may help address the

users’ expectation of personalized content, the properties used to describe a representation

are very limited. That is why both forms of content negotiation above are rarely

employed. Besides, the properties are only suitable to describe textual documents (e.g.,

HTML documents); the multimedia objects, taking the lion’s share of Web objects,

require a completely different set of properties. Another problem is that the protocol lacks

support for describing the client itself (e.g., device’s characteristics), which is more

sensible than describing the content it wants.

HTTP/1.1 provides the method of communicating users’ preferences, but the

generation of the object’s representations is another issue that needs to be addressed. The

 Chapter 2. Literature Review 36

next subsection discusses various transcoding systems that can generate different

representations of a Web object to serve heterogeneous client requests.

2.2.2 Transcoding Systems

Transcoding is the process of converting a data object from one representation to

another [HaBL98]. Previous researchers termed it as distillation, which is highly lossy,

real-time, datatype-specific compression preserving most of the semantic content of an

object [FoB96]. Hence, the characteristics of transcoding are lossy (inessential or

unrenderable information is removed [Mog01]), datatype-specific, and irreversible (the

original object cannot be recovered from the resulting representation). There are two

objectives of transcoding a Web object:

1. To make the object presentable to the client.

Due to limited capabilities of the client device, the object cannot be displayed on it. In

other case, the object does not fit well to the client device’s screen. Transcoding may

convert the object to a representation of a different data-type supported by the client

device, or it may reduce the object’s spatial resolution for a proper presentation.

2. To reduce the client’s perceived latency.

The object’s data-size may be large, and by contrast, the client’s Internet bandwidth is

low. Thus, the client may have to wait for a long time before it can comprehend the

large object. To mitigate this discrepancy, transcoding may be employed to reduce the

object’s data-size.

 Chapter 2. Literature Review 37

Transcoding is often applied to multimedia objects (or conversely, multimedia

objects, especially images, are often the target of transcoding). Few reasons may be

suggested. Firstly, multimedia objects take the lion’s share of Web access (about 58% of

requests and 70% of data bytes accessed in the Web come from multimedia objects

[OrCA97]). The proliferation of digital-imaging devices – such as digital camera, video

camera, scanner, etc. – simply means that demands for multimedia objects are increasing.

Secondly, multimedia objects are commonly large in data-size, compared to textual

documents. Access to these large multimedia objects is one of the culprits of the “World

Wide Wait” problem. Lastly, transcoding multimedia objects are more challenging than

squeezing textual documents. Even if it is not squeezed, a textual (HTML) document can

be duly displayed on a small screen, most likely still well-aligned, albeit spanning over

many screen’s pages. On the other hand, it is very inconvenient to see a high-resolution

image displayed on a low-resolution screen.

More features of transcoding are covered in the rest of this subsection. Some past

transcoding systems are mentioned and used as illustrations of the associated features.

Classification

In general, transcoding processes can be classified into two groups: 1)

transformations within a media data-format, and 2) transformations between media data-

formats. Examples of the first group are quality reduction in a JPEG image, color

remapping or dithering in a GIF image, and so on. The second group may further be

divided into same-domain and cross-domain conversions. Instances of same-domain

conversions are GIF-to-JPEG, WMA-to-MP3, and PostScript-to-HTML conversions,

 Chapter 2. Literature Review 38

whereas those of cross-domain conversions are video-to-images and speech-to-text

conversions.

InfoPyramid [SmML98, MoSL99] has a unique way to classify the object’s

representations. The representations are placed along the dimensions of modality (video,

image, text, and audio) and fidelity (degree of summarization, compression, or reduction).

This way, the transcoding processes to change both the modality and fidelity of an object

from one representation to another can be well defined, and the cost-benefit analysis can

be done.

Deployment

There are three aspects of deploying a transcoding system. The first aspect is the

instantaneity of a transcoding service, whether it is executed online (on the fly) or offline

(a priori). Online transcoding is more flexible and efficient in storage space, but it is also

complex, burdensome, and sometimes time-consuming. In the offline approach, the

object’s representations are generated during creation time. Serving a client request, the

system employed offline transcoding just needs to provide the correct object’s

representation; it is simple, but rigid and difficult to maintain. The majority of past

transcoding systems employ the online approach; e.g., Pythia [FoB96] (later evolving into

GloMop [FoGB96] and TranSend [FoGC97, FoGC98]), Mowser [JoWM96, BhJA98],

SDT [Mog01, KnLM03], and TransSquid [MaSR02]. To our knowledge, InfoPyramid

[MoSL99] and Quality Aware Transcoding [ChEV00] are the only offline transcoding

systems.

 Chapter 2. Literature Review 39

The second aspect of deploying a transcoding system is the placement of a

transcoding service, whether it is executed at the server, proxy, or client. Execution at the

client causes more losses than benefits, so it should only be considered as the last

alternative. Proxy-based transcoding is more scalable, cost-saving, and helpful to reduce

the server’s load, especially if a caching system is also employed. Server-based

transcoding, however, gives more control to content providers over how the contents

should appear to different clients. A proxy-based transcoding system can only use the

online approach. In contrast, a server-based transcoding system usually trades the storage

space for the computing resources and employs the offline approach; but the online

approach is still workable. All online transcoding systems above are proxy-based,

whereas InfoPyramid and Quality Aware Transcoding are both offline, server-based

transcoding systems. Although implemented at the proxy, SDT also gains benefits of the

server-based approach. Mogul et al. (i.e., SDT’s creators) [Mog01, KnLM03] argued that

transcoding may undermine the content’s semantics if the server’s explicit guidance to the

transcoding proxy is not involved. SDT preserves the end-to-end semantics while offering

more effective content transformation.

The last aspect of deploying a transcoding system is the architecture of a

transcoding service. Most of the proposed transcoding systems run in a single machine,

although they may be extended to multiple machines. Fox et al. [FoGC98] proposed a

cluster-based architecture to give scalability, availability, and cost effectiveness to its

transcoding service. Canali et al. [CaCC03], in contrast, favored a distributed architecture

to prevent network bottlenecks. Further, Canali et al. examined a few cooperative

schemes among transcoding proxies. Some of their findings are: 1) flat (peer-to-peer)

 Chapter 2. Literature Review 40

topologies give better hit-rates than hierarchical topologies, 2) query-based discovery

protocols (e.g., ICP) offer better performance than summary-based discovery protocols

(e.g., Cache Digests), and 3) employing a load-aware algorithm among cooperative

transcoding proxies can yield smaller response times than employing a load-blind

algorithm, particularly if the client load is unevenly distributed among the edge servers.

In recent work, Canali et al. [CaCL05, CaCL06b] also incorporated CDN architecture in

their two-level topology for content adaptation services. The two-level topology

comprises internal nodes (located in the network core) and edge nodes (located on the

borders of the Internet). By distributing adaptation load between the two nodes (i.e.,

assigning adaptation services requiring sensitive information on the internal nodes and

those not requiring sensitive information on the edge nodes), not only can it preserve a

high level of user privacy, but it can also increase scalability. In addition, they found that

collaboration between the content provider and adaptation service provider can improve

the performance further.

Client Profile

To serve the client with the best-fit representation, a transcoding system needs to

know the client profile consisting of the client device’s capabilities and the client’s

preferences. As stated before, the current Web protocol lacks support for describing the

client profile. The past transcoding systems have proposed some alternatives to obtain the

client profile.

In Pythia and Mowser, each client has to store its profile in the transcoding proxy.

Each client profile contains an IP address so that, for every request received by the proxy,

 Chapter 2. Literature Review 41

the corresponding profile can be determined. The drawback of this mechanism is that the

client is confined to its IP address for obtaining the service.

In GloMop, the client sets the desired options – e.g., download time, resolution of

the image, and color depth of the image – provided by the specially built image browser.

Similarly, TranSend embeds a Java dashboard (i.e., a Java Applet) to the HTML browser,

by which the client can specify its quality preference. In the proxy, the preferences are

converted into parameters used to execute transcoding.

In TransSquid, the client specifies its profile using CC/PP (Composite Capability /

Preference Profiles) and registers the profile to the proxy. Similar to the use of IP address

above, here a unique key is used in every sent request to link the request to the respective

CC/PP.

Media Feature Sets is employed in SDT to express the client device’s

characteristics. The device’s characteristics are added to each request’s header. The proxy

matches the device’s characteristics with the requested content’s characteristics – also

expressed using Media Feature Sets – and invokes a particular applet, if necessary, to

transcode the content.

Canali et al. use requester-specific capability information (RCI), attached to the

client request, to convey information describing the capabilities of the requesting client.

Caching

A caching system is employed by most proxy-based transcoding systems. The

proxy fetches the original object from the origin server and stores it in the cache, in

addition to transcoding it according to the client profile. Serving future client requests for

 Chapter 2. Literature Review 42

the same object, the proxy just fetches the cached object and transcodes it promptly. A

server-based transcoding system commonly does not need a caching system but provides

various representations of an object (note that the offline approach is employed).

Nevertheless, InfoPyramid still uses a caching system to store client-specific versions of

the object’s container (e.g., the generated HTML documents); hence, the cache can

improve response times.

Quite a tricky issue is whether the transcoded results should also be cached. SDT

seems to support that idea since caching the transcoded results avoids the need to execute

the costly transcoding operations repeatedly. Differentiating one transcoded result from

another can be done by the use of an HTTP extension header registered with the Vary

header. However, selecting the transcoded result that matches a given client profile

requires an additional match-making process. TransSquid tries to simplify the match-

matching process by limiting the number of transcoded results. It classifies the client

devices into certain categories and divides the cache into several levels according to the

number of categories. Thus, for every request it receives, TransSquid firstly determines

the device’s category, and then fetches the cached transcoded result in the respective

cache’s level. If the object’s representation is not found in the cache, then it is generated

and stored in the appropriate level of the cache. In spite of that, caching multiple

representations can affect the cache replacement policy.

Canali et al. [CaCL06a] put an additional string to the resource’s URL to

differentiate one version to another. The added string is extracted from the HTTP ETag

header of a client’s request; in this case, the ETag’s content indicates the resource’s

version requested by the client. Thus, multiple versions of a resource can be present at the

 Chapter 2. Literature Review 43

same time in the proxy’s cache. The downside is that the client must specify the requested

version in the ETag header, thus the mechanism is not so transparent to the client.

Some caching policies had been studied in the past. Cardellini et al. [CaYH00]

examined whether caching the retrieved (more detailed) version, the transcoded version,

or both versions was more beneficial. Their study found that caching the transcoded

version gives shorter response time and higher cache hit than the other two caching

policies. Similar study was done by Shen et al. [ShLB04] on caching transcoded

streaming video clips. They concluded that caching a single version of video content is

desirable in a less heterogeneous environment (e.g., in a corporation), whereas caching

multiple versions of video content is beneficial in a heterogeneous environment showing

strong temporal locality in the access pattern. Chang and Chen [ChC03] proposed an

efficient cache replacement algorithm for transcoding proxies based on a generalized

profit function. The function considers the reference rate of each version, the delay of

fetching the original object, the delay of transcoding, the size of each version, and the

aggregate effect of caching multiple versions of the same object. PTC [SiTR04] employs

a similar cache replacement algorithm to Chang and Chen’s, but it also takes dynamic

factors – such as the current proxy load and network traffic – into account.

Other Features

Most transcoding systems only deal with the responses carrying the documents or

multimedia objects to be transformed. Mowser may modify the requests, as well, to be

HTTP/1.1 compliant and to append an Accept header. Used in content negotiation, the

Accept header field contains data-types (i.e., MIME types) that a client is able to

 Chapter 2. Literature Review 44

display; the list of data-types is already predefined in the client’s profile. A few MIME

types are further specified in Mowser to indicate special data-types.

Besides transcoding multimedia objects, some transcoding systems also modify

the container (i.e., HTML document), particularly if it contains embedded objects

requiring transcoding. Pythia, for an instance, modifies the URL of an embedded image,

and therefore, will recognize the modified URL’s request as belonging to an embedded

image. Next to the modified image tag, Pythia also inserts a hyperlink that, if it is clicked,

will request the original image. Mowser, on the other hand, replaces the URL of an

embedded image with a local URL that refers to the transcoded image in the proxy.

URICA (Usage-awaRe Interactive Content Adaptation) [MoCC06] can change the layout

of images on a Web page according to the client’s preferences.

Cardellini et al. [CaYH00] suggested the idea of multiple transcoding, in which a

transcoded object may be further transcoded to yield a less detailed (lower in quality

and/or resolution) object. TransSquid allows inter-cache transcoding, in which a high-

fidelity representation stored in a high cache’s level can be transcoded into a low-fidelity

representation stored in a low cache’s level. Later transcoding systems [ChC03, SiTR04,

ShLB04, CaCC03, CaCL06a] also support the idea of multiple transcoding.

Ihde et al. [IhMM01] proposed multiple transcoding in the form of a chain. Rather

than creating complex, unlimited number of transcoders, Ihde et al. championed the idea

of simple, modular transcoders. The modular transcoders may compose a chain (pipeline)

of transformations if a single transcoder cannot give the expected result. Suppose three

modular transcoders – JPEG-to-GIF, GIF-to-PNG, and PNG-to-TIFF converters – are

available and the original image to be transcoded is in JPEG. The image’s representations

 Chapter 2. Literature Review 45

in GIF, PNG, and TIFF can be attained by executing one or a chain of the three

converters; e.g., converting the JPEG image to a PNG image can be done by composing

the JPEG-to-GIF and GIF-to-PNG converters. Although their idea may reduce the

number of transcoders, its success in reality is doubtful. Note that transcoding is a lossy

process. Multiple conversions may cause a large amount of loss on the transcoded result.

Odyssey [NoSN97] supports application-aware adaptation, which emphasizes a

collaborative partnership between the operating system and applications, for mobile

information access. On the one hand, the operating system monitors resource levels

(network bandwidth, computing cycles, memory usage, battery power, etc.) and notifies

applications of relevant changes; on the other hand, each individual application adapts to

the changes accordingly when notified.

Wijnants et al. [WiMQ05] integrated transcoding-enabled proxies to a Networked

Virtual Environment framework. Each proxy is capable of transcoding video streams (i.e.,

avatars) in real time. Without the proxy, each client had to send three versions (high,

medium, and low quality) of the same video stream; now only a single video stream is

required. Intelligence is embedded in the proxy, so that it can monitor the network

condition and consequently transcode the video stream to a suitable version.

URICA [MoCC06] collects a client’s preferences through an interactive learning

process. When a client is unsatisfied with the current adaptation result, he/she can

interactively make changes to the adaptation process until the content is suitably adapted.

URICA then stores the client’s preferences and uses them for future adaptation, not only

for the particular client but also for others having the same context (e.g., device type,

screen size, network bandwidth, and user location).

 Chapter 2. Literature Review 46

BlackBerry
4
 is a commercial Internet service, provided by Research In Motion

(RIM), for wireless devices. Services like Web content filtering and compression as well

as Web content transcoding are done by the BlackBerry Internet Service, acted as an

HTTP gateway and placed at the other end of the wireless network. Through the services,

HTML content is parsed and stripped of extraneous tags and unrenderable content,

images are scaled down and converted to PNG file format, the whole page is partitioned

and compressed for delivery, and other format translation activities may be performed for

the purpose of fast and efficient delivery.

Transcoding can help reduce the client’s perceived latency and make

unpresentable content presentable. However, a transcoding process is often complex and

time-consuming; hence, it introduces another latency delay. Han et al. [HaBL98]

developed an analytical framework to determine whether and how much to transcode an

image. In brief, to reduce response time, transcoding should be employed only if the

expected reduction of latency delay in delivery can offset the introduced latency delay of

executing the transformation.

Interested readers are referred to Colajanni and Lancellotti’s survey paper

[CoL04] for a range of solutions, issues, as well as research directions in Web content

adaptation services. In addition, Colajanni et al. [CoLY05] presented the trend of

distributed architectures for content generation, adaptation, and delivery services. The

four identified architectures are progressively improved from a centralized, cluster-based

system to a geographically replicated, multi-cluster system.

4
 http://www.blackberry.com

 Chapter 2. Literature Review 47

In connection with transcoding, the next subsection elaborates two well-known

adaptation architectures: ICAP and OPES. While transcoding focuses more on the

adaptation processes, the architectures deal with a broad range of issues, including

protocol, components, and procedure calls.

2.2.3 ICAP and OPES

In this subsection, ICAP and its prospective benefits are discussed first.

Discussion on OPES, which is a more general architecture, follows shortly.

ICAP

ICAP (Internet Content Adaptation Protocol)
5
 is a lightweight protocol for

executing a “remote procedure call” on HTTP messages [ElC03]. It is designed to off-

load specific Internet-based content to dedicated servers, thereby freeing up resources and

standardizing the way in which features are implemented [ICAP01]. The dedicated ICAP

servers may be focused on a specific function like virus scanning, markup language

translation, advertising insertion, human language translation, content filtering, or data

compression. An ICAP client is often, but not always, a surrogate acting on behalf of a

user. To a certain extent, ICAP is very similar to HTTP, as we will see shortly.

There are two major components in ICAP architecture: 1) transaction semantics,

and 2) control of policy. So far, ICAP just defines the transaction semantics, which

specifies the communication between an ICAP client and an ICAP server, the URI of an

5
 http://www.i-cap.org

 Chapter 2. Literature Review 48

ICAP resource, and the format of ICAP messages. This wire-protocol is of limited use

without the second part, an accompanying application framework in which it operates.

The second issue is beyond the scope of the current ICAP protocol, but is planned in

future work.

1

2

3

4

5
6

1
2

3

4

5

6

Client Client

ICAP Client ICAP Client

ICAP Server ICAP Server

Web Server Web Server
(a) (b)

Figure 2.1 ICAP data flow for (a) request modification and (b) response modification

In a very general sense, ICAP can be used to modify both HTTP requests and

responses. In the request modification [Figure 2.1(a)], the ICAP client passes a client

request to the ICAP server, which in turn replies either a modified request or a response

to the request back to the ICAP client. If a modified request is received, the ICAP client

passes it on to the Web server and gets the response. The response – either from the ICAP

server or the Web server – is returned to the requesting client. An example use of the

request modification is content filtering. In the response modification [Figure 2.1(b)], the

ICAP client passes the Web server’s response to the ICAP server, which processes the

response and returns the possibly modified response to the ICAP client. Then, the ICAP

client sends the response – maybe different from the original – to the requesting client.

 Chapter 2. Literature Review 49

Instances of utilizing the response modification are markup language translation, human

language translation, and virus checking. Readers interested in the details are referred to

the ICAP specification [ElC03].

OPES

Callout Server A

OPES Processor

OPES Service
Application

Data Dispatcher

HTTP

TCP/IP
OCP

OPES Service
Application A

OCP

Callout Server X

OPES Service
Application X

OCP

…

Data Provider
Application

Data Consumer
Application

Figure 2.2 OPES architecture

OPES (Open Pluggable Edge Services) provides an architecture that enables the

creation of an application service in which a data provider, a data consumer, and zero or

more application entities cooperatively implement a data stream service [BaPC04]. OPES

offers a bigger picture of content services than ICAP does. Its architecture, as depicted in

Figure 2.2, comprises three interrelated concepts:

1. OPES entities

An OPES entity is an application that operates on a data flow between a data provider

application and a data consumer application. There are two forms of OPES entities: 1)

an OPES service application, and 2) a data dispatcher. An OPES service application

analyzes and possibly transforms messages exchanged between the data provider

application and the data consumer application. A data dispatcher invokes an OPES

service application based on an OPES ruleset and application-specific knowledge. In

 Chapter 2. Literature Review 50

the network, OPES entities reside inside OPES processors, which are explicitly

addressable at the IP layer by the end user (data consumer application) and consented

to by either the data consumer or data provider application. Every OPES processor

must include a data dispatcher.

2. OPES flows

An OPES flow is a cooperative undertaking between a data provider application, a

data consumer application, zero or more OPES service applications, and one or more

data dispatchers. At least one data dispatcher, which enforces policies, is required in

the OPES flow.

3. OPES rules

Policy regarding the OPES services and the data provided to them is determined by a

ruleset consisting of OPES rules. The OPES ruleset, installed in a data dispatcher,

indicates which service applications will operate on a data stream.

In some cases, the OPES processor may distribute the responsibility of service execution

by communicating with one or more callout servers, each of which has an OPES service

application. A data dispatcher invokes the service of a callout server by using the OPES

callout protocol (OCP).

There are three types of OPES services [BaBC04]: 1) services performed on

requests, 2) services performed on responses, and 3) services creating responses. An

OPES service performed on HTTP requests may occur when a request arrives at an OPES

processor or when it is about to leave the OPES processor. The service may or may not

modify the requests on behalf of the data consumer or the data provider. Such services are

content filtering, redirection, preferences addition, usage tracking, user profiling, etc. An

 Chapter 2. Literature Review 51

OPES service performed on HTTP responses may occur when a response arrives at an

OPES processor or when it is about to leave the OPES processor. This service, too, may

or may not modify the responses. Instances of the service are content adaptation,

language translation, logging, usage billing, and so on. OPES services may create

responses by dynamically assembling Web pages based on the context of the data

consumer application; e.g., generating a local weather forecast Web page.

OPES services network can be deployed in two scenarios: surrogate overlays and

delegate overlays. Surrogate overlays act on behalf of data provider applications (one or

more origin servers), so the elements of surrogate overlays logically belong to the

authoritative domain of the respective origin server. Delegate overlays act on behalf of

one or more data consumer applications, and therefore, the elements of delegate overlays

logically belong to the authoritative domain of the respective data consumer application.

Within an enterprise environment, those two scenarios can be combined under the same

administrative domain. More details about OPES and its specifications can be found in

the official Website
6
.

ICAP and OPES frameworks are quite complete and detailed. Nevertheless, they

are on-going projects, and their adoption and implementation remain to be seen. An

emerging technology for supporting intelligent network that we will discuss shortly is

Semantic Web. It is dubbed the next-generation Web, in which meta-data play an

important role. Although Semantic Web does not have a direct association with content

6
 http://www.ietf-opes.org

 Chapter 2. Literature Review 52

adaptation, it provides a mechanism to convey the client’s context seamlessly to the

adaptation services; the mechanism of which the current Web protocol is lacking of.

2.2.4 Semantic Web

The Semantic Web is not a separate Web but an extension of the current one, in

which information is given well-defined meaning, better enabling computers and people

to work in cooperation [BeHL01]. Web information varies along many axes. One of these

is the difference between information produced primarily for human consumption and

that produced mainly for machines. To date, the Web has developed most rapidly as a

medium of documents for people rather than for data and information that can be

processed automatically. The Semantic Web aims to make up for this. It provides a

common framework that allows data to be shared and reused across application,

enterprise, and community boundaries. It is a collaborative effort led by W3C (World

Wide Web Consortium) with participation from a large number of researchers and

industrial partners.

For the Semantic Web to function, computers need structured collections of

information and sets of inference rules to conduct automated reasoning; this technique is

known as knowledge representation. Traditional knowledge-representation systems

typically have been centralized, but central control is stifling and inflexible. Moreover,

these systems usually limit the questions that can be asked so that the computer can

answer reliably – or not answer at all. Semantic Web researchers, in contrast, want

versatility at the price of unanswerable questions. The challenge of the Semantic Web,

 Chapter 2. Literature Review 53

therefore, is to provide a language that expresses both data and rules for reasoning about

the data and that allows rules from any existing knowledge-representation system to be

exported onto the Web. In other words, the task is to add logic to the Web so that rules

can be used to make inferences, choose courses of action, and answer questions.

The first two technologies for developing the Semantic Web are the eXtensible

Markup Language (XML) and the Resource Description Framework (RDF). XML lets

everyone create or add arbitrary structure to their documents but says nothing about what

the structures mean. The meaning is expressed by RDF, which encodes it in sets of

triplets; the triplets themselves can be written using XML tags. In RDF, a document

makes assertions that particular things (i.e., the subjects) have properties (the verbs) with

certain values (the objects). Subjects and objects are each identified by a Universal

Resource Identifier (URI), just as used in a link on a Web page. The verbs are also

identified by URIs, enabling anyone to define a new concept – a new verb – just by

defining a URI for it somewhere on the Web. Because RDF uses URIs to encode this

information in a document, the URIs ensure that concepts are not just words in a

document but are tied to a unique definition that everyone can find on the Web.

A problem may later come up. Two databases may use different terms for what is

in fact the same concept, so a program that wants to compare or combine information

across the two databases has to know that these two terms are being used to mean the

same thing. A solution to this problem is provided by collections of information called

ontologies; hence, the third basic component of the Semantic Web is the Web Ontology

Language (OWL). An ontology is a document or file that formally defines the relations

among terms. The most typical kind of ontology for the Web has a taxonomy and a set of

 Chapter 2. Literature Review 54

inference rules. The taxonomy defines classes of objects and relations among them. The

inference rules empower the program to make deductive reasoning. OWL builds on RDF

and adds more vocabulary for describing properties and classes, like relations between

classes, cardinality, equality, richer typing of properties, characteristics of properties, and

enumerated classes.

In short, each of the three standards in the Semantic Web has its own function;

i.e., XML is for syntax, RDF semantics, and OWL domain specific vocabularies. A range

of meta-data platforms have been developed using the Semantic Web’s standards,

particularly the RDF/XML syntax, and many are still to come in the near future. Some of

the meta-data platforms are CC/PP (describing client profile), P3P (expressing privacy),

PICS (associating meta-data with Internet content), RSS (summarizing a Website’s

channel), and so forth. They essentially have brought the existing Web closer to the

projected Semantic Web, albeit more efforts and collaboration among developers are

needed for greater proliferation of their uses.

Researches on intelligent network aim at exploiting the network resources for

providing value-added services to the users. The services discussed in this section are

mainly confined to delivering the best-fit representation of Web content to heterogeneous

clients. Briefly, the current Web protocol is inadequate to describe the content’s and the

client’s characteristics. That is why researchers have come up with new methods, either

specific (as found in many transcoding systems) or general (e.g., ICAP, OPES, and

Semantic Web), to address the protocol’s inadequacies. Studies on past transcoding

systems have demonstrated the viability of content transformation on the network (i.e., at

 Chapter 2. Literature Review 55

an intermediary or proxy). The ICAP and OPES frameworks further affirm the benefits of

processing on the network. The intelligent network can offer personalized/customizable

content while easing the origin servers’ burden. While past research has contributed

tremendously to the advancement of Web content adaptation, we observe that new

multimedia standards championing scalable presentation open a new way of delivering

content more efficiently. We also observe that an important element for content

transformation is meta-data, which is used among others to describe the client profile,

specify content’s properties, and convey directives/instructions. Even the Semantic Web

suggests more data and information that can be processed automatically. These

observations plus others will be revealed further in Section 2.4.

As noted before, the multimedia objects have been dominant in the Web, yet

many of them are large in data-size and not really presentable to varied client devices.

Thereby, they are the common target of content transformation. In recent years, new

multimedia standards have been devised and equipped with advanced features like

superior bit-rate performance, improved data robustness, and progressive transmission.

Learning about the multimedia standards may give us insight on how to deliver the

multimedia objects better in the Web. The next section summarizes some features of the

emerging multimedia standards.

2.3 Multimedia Standards

In the past, a multimedia object had to be downloaded completely before it can be

viewed by a user. It may take a long while to download a large multimedia object. To

 Chapter 2. Literature Review 56

mitigate the long-winded display of multimedia presentation, people have come up with

the streaming technique. While the multimedia object’s data is transmitted bit by bit at the

sender’s side, it is immediately decoded and displayed at the receiver’s side even though

the data transmission is not complete. The decoding process takes place repeatedly every

time a certain part of the multimedia object’s data is received. As a result, the user views

the multimedia presentation gradually. In case of an image file, the user can see the image

presentation line after line.

Although the streaming technique can display the multimedia object gradually,

sometimes it does not help reduce the user’s perceived latency. For example, if the

important image’s region is at the bottom part, then the user has to wait for the image to

be fully displayed. Then, researchers devised the progressive refinement technique, by

which the image can be displayed at full size but initially blurred and becoming clearer

with time. Some image standards employing the progressive refinement technique are

interlaced GIF, interlaced PNG, and progressive and hierarchical JPEG. [Note: In the

interlaced GIF and PNG standards, the image display may give a “venetian blind” effect

due to the respective four-pass and Adam7 interlacing techniques they adopt.]

New multimedia standards, like JPEG 2000, MPEG-4, and H.264, have emerged

in recent years. Compared to their old predecessors, they have more sophisticated features

that are favorable to Web access. This section outlines two emerging multimedia

standards: JPEG 2000 and MPEG-4.

 Chapter 2. Literature Review 57

2.3.1 JPEG 2000

JPEG2000 is the latest digital image standard developed by JPEG (Joint

Photographic Experts Group)
7
. Superior low bit-rate performance, progressive

transmission by pixel accuracy and resolution, and robustness to bit-errors are some of the

JPEG2000’s features [ChSE00] that are beneficial for pervasive Internet access. Due to

progressive transmission, user may receive a JPEG2000 image with increasing pixel

accuracy (known as SNR scalability), from a blurred image to a completely clear image.

Alternatively, the image may be reconstructed with increasing resolution (spatial

scalability), from a coarse, blocky image to a completely fine, smooth image.

Figure 2.3 Block diagram of the JPEG 2000 (a) encoder and (b) decoder [ChSE00]

Figure 2.3 illustrates the encoding and decoding procedures of the JPEG 2000. In

the encoding procedure, the source image data is firstly discrete wavelet transformed

(DWT). The resulting transform coefficients are then quantized and entropy encoded to

form the output codestream. Reversely, the codestream is entropy decoded, dequantized,

and inverse discrete transformed by the decoder to obtain the reconstructed image data.

The procedures are applied to image tiles. The term ‘tiling’ refers to the partition of the

7
 http://www.jpeg.org/jpeg2000/index.html.

 Chapter 2. Literature Review 58

original (source) image into rectangular non-overlapping blocks (tiles), which are

compressed independently, as though they were entirely distinct images.

To recapitulate, the detailed, step-by-step encoding procedure works as follows:

• The source image is decomposed into components.

• The image and its components are decomposed into rectangular tiles. The tile-

component is the basic unit of the original or reconstructed image.

• By means of DWT, each tile-component is decomposed into different decomposition

levels. These decomposition levels can create components with different resolutions.

• The decomposition levels are made up of sub-bands of coefficients describing the

frequency characteristics of local areas of the tile-component.

• The sub-bands of coefficients are quantized and collected into rectangular arrays of

precincts. Each precinct is further divided into non-overlapping code-blocks.

• The bit-planes of the coefficients in a code-block are entropy encoded in three coding

passes: significance propagation, magnitude refinement, and cleanup. Some of the

coefficients can be coded first at a higher quality than the background to provide a

region of interest (ROI).

• The coding passes from the code-blocks are collected in layers.

• Packets, the basic units of the compressed data, are composed of one partition

(precinct) of a single layer of a single decomposition level of a single tile-component.

• All the packets from a tile are interleaved in one of several progression orders and

placed in one or more tile-parts, which have a descriptive tile-part header and can be

interleaved in any order.

 Chapter 2. Literature Review 59

• Markers are added in the codestream to allow error resilience.

• The codestream has a main header at the beginning that describes the original image

and the various decomposition and coding styles used to locate, extract, decode, and

reconstruct the image with the desired resolution, fidelity, region of interest, and other

characteristics.

• The optional file format, describing the meaning of the image and its components in

the context of the application, may be applied to the codestream.

Thus, the data representing a specific tile, component, resolution, precinct, and

layer appears in the codestream in a contiguous segment called a packet. Packet data is

aligned at 8-bit (one-byte) boundaries. The order in which these packets are interleaved is

called the progression order. The interleaving of the packets can progress along four axes:

layer (L), component (C), resolution (R), and precinct/position (P). There are five built-in

progression orders defined in the JPEG 2000 standard [ISO15444-1]: 1) LRCP, 2) RLCP,

3) RPCL, 4) PCRL, and 5) CPRL.

The SNR scalability can be demonstrated if the image’s packets are transmitted

from the lowest to the highest layers. The transmission of an image codestream

employing the LRCP progression order may have the same effect. The spatial scalability,

on the other hand, can be demonstrated if the image’s packets are transmitted from the

lowest to the highest resolutions. Employing the RLCP or RPCL progression order for the

image codestream may generate the same effect in transmission. Overall, the employed

progression order determines how the JPEG 2000 image is gradually displayed.

 Chapter 2. Literature Review 60

2.3.2 MPEG-4

MPEG-4 is a new standard for digital audio and video developed by MPEG

(Moving Picture Experts Group)
8
. In addition to the frame-based functionalities of the

previous standards (MPEG-1 and MPEG-2), MPEG-4 also supports object-based

manipulation. Officially called “Coding of Audio-Visual Objects”, MPEG-4 is the first

audio-visual representation standard that understands an audio-visual scene as a

composition of objects (audio, video, or audio-visual/AV), according to a script that

describes their spatial and temporal relationship [PeA97]. This object-based approach is

also motivated by the increasing convergence between the telecommunications,

computer, and TV/film technologies, leading to the mutual exchange of elements,

formerly typical for each one of these areas. Other important features of MPEG-4 are

improved coding efficiency, robustness in error-prone environments, and content-based

scalability. MPEG-4’s bit rates targeted for the video standard are between 5-64 kb/s for

mobile applications and up to 2 Mb/s for TV/film applications [Sik97].

MPEG-4 supports quality scalability, which can be achieved by scaling the spatial

or temporal resolutions. The spatial scalability is associated with the representation of an

object at a certain moment in time; this means it may be associated with the number of

pixels in the object, the accuracy of these pixels, the discrete cosine transform (DCT)

coefficients, or other parameters. On the other hand, the frame/display rate is the issue of

the temporal scalability. In addition, MPEG-4 supports object scalability, which is

associated with the capability to control the number of simultaneous objects decoded and

8
 http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm.

 Chapter 2. Literature Review 61

displayed. A user with a low bandwidth Internet connection, for example, may request

only the most important objects and drop the rest.

(a) (b)

Figure 2.4 (a) An MPEG-4 scene and (b) its tree structure [Lia99]

The basic building block of a multimedia presentation in MPEG-4 is object

[Lia99]. There are many basic object types supported in MPEG-4: video objects, audio

objects, texts, graphics, 2-D meshes, 3-D meshes, HTML objects, etc. These objects are

placed inside a scene with a description describing their location, orientation, and other

necessary properties. A scene in MPEG-4 is described using Binary Format for Scenes

(BIFS), an efficient syntax for describing the composition of a scene with binary data. An

example of an MPEG-4 scene is given in Figure 2.4(a). In this scene, the teacher is a

moving video object. An audio object that stores the speeches spoken by the teacher is

also associated with the video object. There are also graphic objects, such as the globe,

the desk, and the white board. Simultaneously, a dynamic web page object – the

presentation material for the course – is displayed on the white board. Each object has a

built-in timing attribute, which can be utilized to synchronize the presentation timing of

different objects. For instance, the synchronization of the lip movement of the video

object and the audio object, the synchronization of the audio object and the page changes

 Chapter 2. Literature Review 62

on the white board, and so forth. BIFS describes an MPEG-4 scene with a hierarchical

structure, which can be represented with a tree, as depicted in Figure 2.4(b). Each node of

the tree is an AV object. In addition, the scene can be dynamic; that is, BIFS supports

streaming delivery, so that the scene description can be updated dynamically. This feature

allows the creation of a very complicated and lively presentation with little overhead.

MPEG-4 also supports user interactivity at the object level. A user can click on

any object or move the mouse inside the perimeter of an object. This event may trigger a

signal sent back to the server/encoder side. The property or composition of the scene can

be changed according to this event. This object-based interactivity is very valuable for

multimedia learning application, where users can explore on their own terms and the

scene is adapted according to the user preferences.

To better understand the MPEG-4 mechanism, let us look into the MPEG-4 Video

standard. The MPEG-4 Video Verification Model [Sik97] introduces the concept of video

object plane (VOP) to enable the content-based interactive functionalities. It is assumed

that each frame of an input video sequence is segmented into a number of arbitrarily

shaped image regions (VOPs); each VOP may possibly cover particular image or video

content of interest. Successive VOPs belonging to the same physical object in a scene are

referred to as video objects (VOs), i.e., a sequence of VOPs of possibly arbitrary shape

and position. The shape
9
, motion, and texture

10
 information of the VOPs belonging to the

same VO is encoded and transmitted or coded into a separate video object layer (VOL).

9
 The VOP shape matrix is also referred as the alpha plane.

10
 Commonly each VOP has Y, U, and V texture matrices.

 Chapter 2. Literature Review 63

In addition, relevant information needed to identify each of the VOLs – and how the

various VOLs are composed – is also included in the bitstream. This allows the separate

decoding of each VOP and the required flexible manipulation of the video sequence.

The MPEG-4 compression algorithm employed for coding each VOP image

sequence is based on the successful block-based hybrid DPCM (Differential Pulse Code

Modulation) / DCT (Discrete Cosine Transform) coding technique. The coding algorithm

encodes the first VOP in intraframe VOP coding mode (I-VOP). Each subsequent frame

is coded using interframe VOP prediction (P-VOPs), in which only data from the nearest

previously coded VOP frame is used for prediction. In addition, the coding of bi-

directionally predicted VOP (B-VOPs) is also supported. After coding the VOP shape

information, each color input VOP image in a VOP sequence is partitioned into non-

overlapping “macroblocks”. Each macroblock contains blocks of data from both

luminance and chrominance bands – four luminance blocks (Y1, Y2, Y3, Y4) and two

chrominance blocks (U, V) – each with size 8 × 8 pixels.

Figure 2.5 Block diagram of the basic MPEG-4 hybrid DPCM/DCT encoder and decoder [Sik97]

The basic diagram of the hybrid DPCM/DCT encoder and decoder structure for

processing single Y, U, or V blocks and macroblocks is depicted in Figure 2.5. The

 Chapter 2. Literature Review 64

previously coded VOP frame N-1 is stored in a VOP framestore in both encoder and

decoder. Motion estimation is performed on a block or macroblock basis; only one

motion vector is estimated between VOP frame N and VOP frame N-1 for a particular

block or macroblock to be encoded. The motion-compensated prediction error is

calculated by subtracting each pixel in a block or macroblock belonging to the VOP

frame N with its motion shifted counterpart in the previous VOP frame N-1. An 8 × 8

DCT is then applied to each of the 8 × 8 blocks followed by quantization (Q) of the DCT

coefficients with subsequent run-length coding and entropy coding (VLC/Variable

Length Coding). A video buffer is needed to ensure that a constant target bit rate output is

produced by the encoder. The quantization stepsize for the DCT-coefficients can be

adjusted for each macroblock in a VOP frame to achieve a given target bit rate and to

avoid buffer overflow or underflow. The decoder uses the reverse process to reproduce a

macroblock of VOP frame N at the receiver. After decoding the variable length words

contained in the video decoder buffer, the pixel values of the prediction error are

reconstructed. The motion-compensated pixels from the previous VOP frame N-1

contained in the VOP frame store are added to the prediction error to recover the

particular macroblock of frame N.

The techniques adopted for the MPEG-4 Video Verification Model allow the

“content-based” access or transmission of arbitrarily-shaped VOPs at various temporal or

spatial resolutions. Receivers either not capable or willing to reconstruct the full

resolution arbitrarily-shaped VOPs can decode subsets of the layered bitstream to display

the objects at lower spatial or temporal resolution. A multiresolution representation can

be achieved by downscaling the input video signal into a lower resolution video. The

 Chapter 2. Literature Review 65

downscaled version is encoded into a base layer bitstream with reduced bit rate. The

prediction error (between an upscaled version – or the original input video signal – and

the downscaled version) is encoded into an enhancement layer bitstream. Downscaled

VOP signals can be reconstructed by only decoding the lower layer bitstream. It is

important to notice that the display of the VOP at the highest resolution with reduced

quality is also possible by only decoding the lower bit-rate base layer(s). Similarly,

different frame rates can also be supported with a layered bitstream. Layering is achieved

by providing a temporal prediction for the enhancement layer based on coded video from

the lower layers. It is also possible to provide different display rates for different VOLs

within the same video sequence (i.e., a foreground person of interest may be displayed

with a higher frame rate than the remaining background). Last but not least, object

scalability is supported as well. Some objects may not be decoded and used for

reconstruction, while others are decoded and displayed using subsequent scaling or

rotation. Moreover, new objects that do not belong to the original scene may be included.

Since the bitstream of the sequence is organized in an object-layered form, the

manipulation is performed on the bitstream level – without the need for further

transcoding.

A few years back, a new scalable coding mechanism, called FGS (Fine

Granularity Scalability), was amended to the MPEG-4 standard as the coding scheme for

the streaming video profile [Li01]. Similar to the previous scalabilities, FGS also codes a

video sequence into a base layer and an enhancement layer (some researchers considered

the enhancement layer to be multiple layers). The base layer uses nonscalable coding to

reach the lower bound of the bit-rate range. The enhancement layer is to code the

 Chapter 2. Literature Review 66

difference between the original picture and the reconstructed picture using bit-plane

coding of the DCT coefficients. After encoding is completed, the bitstream of the FGS

enhancement layer may be truncated into any number of bits per picture. The

enhancement-layer video quality is proportional to the number of bits decoded by the

decoder for each picture. Hence, FGS is capable of achieving continuous rate control for

the enhancement layer.

A variation of FGS, labeled as progressive fine granularity scalability (PFGS), has

been proposed to improve the efficiency of scalable video coding [WuLZ01]. PFGS has

all the features of FGS, such as fine granularity bit-rate scalability, bandwidth adaptation,

and error recovery. Unlike FGS, which only uses the base layer as a reference for motion

prediction, PFGS uses several high-quality references to reduce the prediction error,

resulting in higher coding efficiency.

The new, emerging multimedia standards – such as JPEG 2000, MPEG-4, and

H.264 – give more advanced features than their predecessors. The most promising feature

is their support for multi-scale presentation. Employing this feature, a multimedia object

is transformed into a datastream that supports a range of scalabilities, such as quality,

resolution, temporal, and object scalabilities. A user that is not capable or willing to view

the full-quality or full-resolution of the object may opt for its representation, which is

lower in quality or resolution and can be easily obtained from the datastream without

further transcoding. Thus, the new multimedia standards can suit the user’s constraints

and preferences, in addition to reducing the user’s perceived latency.

 Chapter 2. Literature Review 67

Nevertheless, an interactive application – involving continuous communication

between the sender and the receiver – is often required to select the best-fit object’s

representation for a certain user. In an environment without such interactivity, like the

Web, the server may send out the entire object and let the client selectively get the

representation it wants. Alternatively, the server may give several options –

corresponding to some predetermined constraints and preferences – for the client to

explicitly choose one of them. While the former is wasting the Internet bandwidth, the

latter is rigid and requires user’s involvement perhaps for every visited Website. Use of

client and content profiles, as suggested in the previous section, may help address the

problem. Yet, it also asks for an automatic system that can understand both profiles and

process the client requests accordingly.

2.4 Concluding Remarks

Researches on content caching and replication, intelligent network, and

multimedia standards face the same challenges, which have been revealed in the previous

chapter. Some of the challenges are clients’ heterogeneity, increased multimedia data

traffic, reduced user’s perceived latency, personalized/customizable content, and easy,

efficient deployment of Web services. Although each research area has its own emphases

in dealing with the challenges, there is some common ground in their efforts. Some

techniques are shared by researchers in different research areas. Some are unique to one

research area but possibly can be applied to other research areas, as well. Overall, their

 Chapter 2. Literature Review 68

contribution has improved the Web content delivery considerably, in comparison with the

Web in its early years.

Based on the findings of the past researches, we may deduce the essential factors

that can improve the Web content delivery (some factors may overlap with the

characteristics of future Web content delivery, listed in Section 1.4):

1. Use of Web intermediaries.

Proxies and surrogates are greatly utilized in content distribution and intelligent

network. Web intermediaries can reduce the origin servers’ burden as well as offer

technical and economical benefits.

2. Use of a caching system.

Equipped with a caching system, a Web intermediary can further reduce Internet

traffic and improve response time.

3. Efficiency of compressed data.

Transferring compressed data can reduce Internet traffic and improve response time,

too. Data compression has long been accommodated in the Web protocol. One

important feature of the new multimedia standards is better coding efficiency, which

means more advanced data compression.

4. Decomposition of a Web object.

Dynamic content is decomposed into fragments so that it can be dealt with faster and

more efficiently. Similarly, a multimedia object is decomposed and transformed into

smaller packets or units, which can support multi-scale presentation well. This factor

can directly address the problems of clients’ heterogeneity and personalized /

customizable content.

 Chapter 2. Literature Review 69

5. Delivery of deltas.

A technique in content distribution, delta encoding was proposed to reduce data

transfer. In the multimedia domain, motion compensation and prediction error are

kinds of deltas. Moreover, the progressive display of a multimedia object is, in fact,

the result of adding deltas to the presentation of the base layer. Delivery of deltas

supports high data reuse, and consequently, reduces Internet traffic and user latency.

6. Use of meta-data.

Intelligent network requires client’s profile and content’s description to be able to

serve heterogeneous clients properly. Objects of the new multimedia standards are

also rich of meta-data. A JPEG 2000 image has main, tile-part, and packet headers,

each of which describes a specific part of the image data. Likewise, an MPEG-4 video

object contains many meta-data, e.g., the shape, motion, and texture information of a

VO (Video Object), the description of a VOL (Video Object Layer), and so forth.

Three out of six factors above are related to the Web object’s data; those three

factors are points 3–5. Thus, we may conclude that the object’s data-type plays a vital

role in the Web content delivery. If Web objects share the same data-type, surely they

will be easy to maintain and efficient to process. However, it is very difficult, if not

impossible, to enforce all Web objects to have a single data-type. Yet, we may suggest a

data model, which all Web objects may refer to, to support fast, efficient, pervasive Web

content delivery. The proposed data model is discussed shortly in the following chapter.

We will return to the remaining factors (i.e., points 1, 2, and 6) in the later chapters.

70

Chapter 3

A Fine-Grained, Scalable Data Model

A fine-grained, scalable data model is presented in this chapter. It begins with an

observation on some well-known multimedia standards. Based on the observation, the

concept of object decomposition and construction is drafted. Then, the fine-grained,

scalable data model is formally specified. Bringing out the data model’s benefits into the

Web content delivery, we devise a new adaptation called modulation. It is fast, reversible,

yet exclusive content adaptation.

 Chapter 3. A Fine-Grained, Scalable Data Model 71

3.1 Background

If we observe most of the well-known multimedia data-formats, there exists the

smallest unit of coded data which is quite recognizable and usually aligned to a particular

number of bits boundary. For simplicity, the smallest unit is called an atom for the rest of

this chapter. The atom usually cannot be partitioned anymore without firstly being

decoded. For instance, let us look into three multimedia standards, namely JPEG, JPEG

2000, and MPEG-4.

JPEG [ITU92]

In the JPEG standard, compressed image data consists of exactly one image. The

image contains one frame (in case of sequential and progressive modes) or more (for

the hierarchical mode). Further, a frame contains one or more scans. If all components

are interleaved together, just one scan is required for the given frame; by contrast, one

scan is needed for each non-interleaved component. The progressive mode requires

several scans, each of which improves the image presentation. A scan comprises

minimum coded units (MCUs). An MCU in the JPEG standard can be regarded as an

atom. [Note: Although an MCU may contain some data units, the data units are partial

in the progressive mode so that they are less recognizable than the MCU.]

JPEG 2000 [ISO15444-1]

An image in the JPEG 2000 standard can be divided into tile-components. Each tile

component is decomposed into several decomposition levels, each of which is made

up of sub-bands of coefficients. The individual sub-bands are further divided into

code-blocks. Compressed data of associated code-blocks is grouped in layers. Packets

 Chapter 3. A Fine-Grained, Scalable Data Model 72

of bit-stream data are then formed. A packet is a particular partition of one layer of

one decomposition level of one tile-component. Hence, in the JPEG 2000 standard, a

packet is an atom.

MPEG-4 [PeE02]

In MPEG-4 Visual, a video scene can be composed of some visual/video objects

(VOs). A video object is an area of the video scene that may occupy an arbitrarily-

shaped region and exist for an arbitrary length of time. Each VO comprises one or (in

case of scalable video coding) more video object layers (VOLs). Each VOL contains

some video object planes (VOPs). Each VOP is basically an instance of the video

object at a particular time. When a VOP is coded and a time stamp is attached to it, it

becomes an access unit (AU). Similarly, the MPEG-4 Audio decomposes an audio

signal into frames, and the compressed data of one audio frame forms an access unit

(AU). In both cases, an AU is an atom.

In a non-scalable multimedia data-format, only a single presentation can be

constructed from those atoms. Therefore, all of the atoms must be obtained and decoded

altogether to display the multimedia presentation. In a scalable multimedia data-format,

however, more than one presentation can be constructed. In that case, some atoms

represent the additional information which makes the multimedia presentation clearer (in

case of SNR/signal-to-noise-ratio scalability) or finer (in case of spatial scalability).

Exploiting this feature, we may generate different representations of a multimedia object

without the need for converting the coded data. The only required processes are

determining and collecting the necessary atoms and perhaps – if it is to be stored in a file

format – modifying the meta-data embedded in the object so that the representation can

 Chapter 3. A Fine-Grained, Scalable Data Model 73

be displayed correctly. The simplicity of these processes should result in a minimal delay.

And more importantly, it offers high data reuse. The representation can be used to get an

improved representation by raising its atoms. Even the original object can be recovered.

Realizing the benefits above, we specify a fine-grained, scalable data model that

matches well with many scalable multimedia data-formats. By formally specifying the

data model, we can define the adapting processes applied to the scalable data model and

later convey the benefits to Web content delivery. Following this idea, let us explain how

an object should be decomposed and later be constructed in a scalable manner.

3.2 Concept of Object Decomposition and Construction

As mentioned in the previous section, an atom is the smallest unit of an object.

Each atom should be distinct. Therefore, the atoms have attributes (properties) that

differentiate one atom from another. In a scalable multimedia object, the attributes may

correspond with the types of scalability. A scalable multimedia object may support more

than one type of scalability. For an instance, a multimedia object may support quality

(SNR) and resolution (spatial) scalability. For each atom of the object, we may say that it

contributes to a certain level of quality scalability and a certain level of spatial scalability;

those are the atom’s attribute values.

Atoms with the same attribute values can be grouped together. The resulting

groups are called segments. Referring back to the example above, the object’s atoms can

be grouped based on quality or resolution scalability. Different attributes employed in the

grouping may result in different segments. The reason of introducing the segment is to

 Chapter 3. A Fine-Grained, Scalable Data Model 74

balance fine granularity and easy data processing. The granularity of an atom is so fine

that handling and processing it may be troublesome and inefficient.

SET2
SET3SET1

A
T

O
M

S
E

G
M

E
N

T
P

R
E

S
E

N
T

A
T

IO
N

attr1 attr2 attr3

OBJ

S3.4 S5.6 S7.8 S1.2.5.6S1.3 S2.4 S5.7 S6.8 S3.7 S4.8S1.2

A1 A2 A3 A4 A5 A6 A7 A8

Figure 3.1 Object decomposition

Consequently, the data model comprises three data layers: presentation, segment,

and atom. The presentation layer is where an object and its representations (also called

versions or variants) are sorted into. Obviously, segments and atoms of the object are

placed in the segment and atom layers, respectively. Figure 3.1 depicts the organization of

the data layers. Entities in each data layer have specific characteristics. An entity of the

presentation layer is heterogeneous since it contains fragments with diverse attribute

values. As indicated by the data layer’s name, the entity is presentable to the clients. On

the contrary, an entity of the segment layer cannot be presented. However, homogeneity

starts to appear in the segment layer; that is, the entity’s fragments share one or more

attribute values. An entity of the atom layer is homogeneous and has a unique

combination of attribute values. Clearly, the entity is very primitive and far from being

 Chapter 3. A Fine-Grained, Scalable Data Model 75

presentable. In general, the entity becomes finer in granularity and more homogeneous in

attribute values as it goes from the presentation layer to the atom layer.

In the illustration (see Figure 3.1), object OBJ can be decomposed into segments

S1.2, S3.4, S5.6, and S7.8 (note: in reality the segments are often imaginary, that is why they

are enclosed with dotted line) based on a set of attributes attr1. Further, the segments can

be decomposed into atoms A1–A8. This is a two-way transformation. We can regard it as

a top-down transformation (from the presentation to atom layer). Likewise, we can also

view it as a bottom-up transformation (from the atom to presentation layer). Hence, we

can say that segments S1.2, S3.4, S5.6, and S7.8 are constructed by collecting the atoms

according to the shared values of attributes in set attr1. Since there may be more than one

alternative to decompose the object, different sets of segments may be produced. Of

object OBJ in the illustration, three sets of segments – SET1, SET2, and SET3 – can be

produced. Each set is associated with a distinct set of attributes, respectively attr1, attr2,

and attr3.

Continuing the previous illustration, Figure 3.2 demonstrates how various object’s

representations can be constructed. An object’s representation is constructed from one or

more segments. For examples: employing SET1, representation P1.2 is made up of

segment S1.2, while representation P1.2.3.4 is made up of segments S1.2 and S3.4. Note that

segment S1.2 itself is not presentable; some headers (meta-data) need be added to the

segment to become representation P1.2. Adding one or more segments to a representation

can give a higher-fidelity representation, e.g., adding segment S5.6 to representation P1.2.3.4

gives representation P1.2.3.4.5.6. On the other hand, eliminating one or more segments from

a representation can give a lower-fidelity representation, e.g., eliminating segment S3.4

 Chapter 3. A Fine-Grained, Scalable Data Model 76

from representation P1.2.3.4 gives representation P1.2. When the segments of SET1 are

combined altogether, the resulting representation is indeed the original object, OBJ. We

may also work on segments of the other set (SET3, for example) to construct the object’s

representations.

SET1 SET3

S
E

G
M

E
N

T
P

R
E

S
E

N
T

A
T

IO
N

(a)

(b)S1.2 S3.4 S5.6 S7.8 S1.2.5.6 S3.7 S4.8

P1.2.3.4.5.6

P1.2.3.4.5.6.7.8

P1.2

P1.2.5.6

P1.2.3.5.6.7

P1.2.3.4.5.6.7.8

P1.2.3.4

Figure 3.2 Construction of representations

Adaptability aspects: (a) Scalability and (b) Variability

Analyzing the construction of various object’s representations, we can observe

two kinds of adaptability in the data model. Figure 3.2 shows the two adaptability aspects:

scalability and variability. The scalability aspect (the vertical dimension in Figure 3.2)

deals with the variety of representations constructed from a particular set of segments.

The variability aspect (the horizontal dimension in Figure 3.2) deals with the variety of

decomposing alternatives supported by the object. Elaboration on the adaptability aspects

can be found in the discussion about the data model.

Now we are ready to formally specify the fine-grained, scalable data model. The

concept of object decomposition and construction discussed here can help to understand

the proposed data model.

 Chapter 3. A Fine-Grained, Scalable Data Model 77

3.3 Specifications of Data Model

The fine-grained, scalable data model is specified in this section using the set

theory. We begin with some definitions.

3.3.1 Definition 1: Object

An object comprises segments. The decomposition of an object into segments

depends on one or more attributes. Moreover, there may be more than one alternative to

decompose an object into segments. A set of attributes determining a decomposing

alternative is called a variation
11

. The object decomposition can be formulated as follows

{ }
{ }

{ }

∪∪∪=

∪∪∪=

∪∪∪=

,21

21

21

V
v

VVV

B
b

BBB

A
a

AAA

SSSO

SSSO

SSSO

OBJ

K

MMMM

K

K

where superscript upper-case letters A,B,…,V denote the variations employed by sets

(better called obsets
12

) VBA OOO ,,, K respectively, and subscript lower-case letters

a,b,…,v are arbitrary numbers, each of which signifies the number of segments (or, the

scale) in the respective obset.

To present the object appropriately, each segment of an employed obset requires

the preceding segments. Suppose a variation (e.g., V) is employed for the presentation, the

11
 A variation in the data model corresponds to a type of scalability in the common term (e.g., quality

scalability, resolution scalability, object scalability, etc.).

12
 Derived from the words “object” and “set” since the whole set is indeed the object itself.

 Chapter 3. A Fine-Grained, Scalable Data Model 78

first segment of the respective obset (V
S1) must be present early on, the second segment

(V
S2) must be present if the third segment (V

S3) is present, the third segment must be

present if the fourth segment (V
S4) is present, and so forth. Let ��� be the universe of all

variations and Present(S) be a function returning true when segment S is present in the

presentation, the condition above can be stated as follows

() () ()V
j

V
i SSijjiV PresentPresent::: 11 ⇒∧<•∃•∀•∀ ����� .

In the above definition, two terms – “variation” and “scale” – have been

introduced. These two terms are closely related to “variability” and “scalability”
13

,

introduced in the earlier section. The variability of an object is determined by the number

of variations supported by (or, the number of obsets possibly generated from) the object.

On the other hand, the scale (number of segments) in a given obset (e.g., the scale of

obset A
O is a) determines the scalability of the object with respect to the obset’s variation

(variation A). Note that a variation must be specified when we talk about scale and

scalability. We can compare the adaptability of two objects in these two aspects, namely

variability and scalability. For an example, suppose we compare the adaptability between

objects OBJA and OBJB. Object OBJA supports two variations, qty and res, with scales

4 and 3 respectively; whereas object OBJB just supports variation qty, and its scale is 5.

We may say that the variability of OBJA is better than that of OBJB since OBJA has more

variations than OBJB. However, the scalability of OBJA with respect to variation qty is

inferior to that of OBJB; OBJA’s scale is 4 while OBJB’s scale is 5, with respect to

13
 Scalability here is not to be confused with scalability in the usual sense. We refer to the types of

scalability as “variations” (look at footnote 11 in this chapter).

 Chapter 3. A Fine-Grained, Scalable Data Model 79

variation qty. The object’s scalability and variability will be exploited later in the

adapting operations.

3.3.2 Definition 2: Segment and Atom

A segment is a collection (set) of atoms. An atom is the smallest unit of an object.

Atoms are indivisible, and they are the basic building blocks of an object. The relation

between segments and atoms is depicted as follows

{ }
{ }

{ },,,,

,,,

,,,

21

212

211

V
n

V
m

V
m

V
v

V
j

V
i

V
i

V

V
i

VVV

AAAS

AAAS

AAAS

K

MMMM

K

K

++

++

=

=

=

where { } OBJOSSS VV
v

VV ==∪∪∪ obset21 K , and n is the total number of atoms in

object OBJ. Here, V is the employed variation. Replacing all segments of obset V
O with

the atoms, we get

{ }{ } OBJOAAAAAAAAA VV
n

V
m

V
m

V
j

V
i

V
i

V
i

VV ==++++ ,,,,,,,,,,,, 212121 KKKK .

The subscript ordered numbers 1,2,…,n attached to the atoms signify the atoms’ identity

with respect to variation V. Employing different obsets in the replacement should give

exactly the same atoms, even though they may not be in the same order and may have

different identity numbers. In other words, of an object, the composition and the number

of segments vary with respect to the employed variation (or, obset), but the atoms

contained in the entire segments as well as the total number of atoms remain the same.

Notice also that a segment is a set of atoms, whereas an object is a set of a single set of

 Chapter 3. A Fine-Grained, Scalable Data Model 80

atoms. To put it simply, there is just one entity in an object, and that entity is the set of

atoms. Thus, it shows that the concept of segments can be imaginary.

Within a particular obset, there are no overlapping segments; that is, an atom can

only be contained in one segment. This condition can be expressed as follows

()∅=∩⇒≠•∀•∀ V
j

V
i SSjijiV 1:,: ���� .

3.3.3 Definition 3: Representation

A representation is part of an object which can represent the object well. A

representation is constructed from one or more sequential segments of a particular obset.

The scale in the obset determines the number of representations that can be constructed.

Given that object OBJ = obset { }V
v

VVV SSSO ∪∪∪= K21 , there are exactly v

representations that can be constructed from the obset. Those are,

() { }
() { }

() { }.21
/

21
2/

1
1/

V
v

VVvV

VVV

VV

SSSP

SSP

SP

∪∪∪=

∪=

=

K

MM

In general, the symbol ()sVP / denotes a representation with V as its variation and s as its

scale in the respective variation (where 1 ≤ s ≤ v, and v is the number of segments in obset

V
O). Simply, the symbol ()sVP / means a representation containing segments of obset V

O ,

the indices of which are lower than or equal to s. Since the number of segments in obset

V
O is v, representation ()vVP / is identical to obset V

O . Alternatively, the variation can be

ignored if its scale is at the fullest; that is ()vVP / = OBJ (not P, since it is unusual to use

 Chapter 3. A Fine-Grained, Scalable Data Model 81

the representation’s symbol without at least a variation and its corresponding scale).

Although object OBJ may have other variations, they are ignored (not printed) in the

representation since their corresponding scales are at the fullest.

Since a representation is part of an object, the atoms of the representation are also

part of the object’s atoms. The condition can be depicted as follows

() ()
12

//
21 :!:! TTOBJPPTOBJT

sVsV
⊆⇒⊆•∃•∃ .

It means: given that T1 is the only entity of object OBJ and T2 is the only entity of

representation ()sVP / (recall that an object – and a representation, too – is a set containing

just one entity, i.e., the set of atoms), ()sVP / is a representation of object OBJ if T2 ⊆ T1.

3.3.4 Definition 4: Supplement

Similar to a representation, a supplement is also part of an object. However, a

supplement cannot represent the object and often is not presentable. It is used to enhance

a representation to be more presentable. There are more varieties of supplements than

those of representations. This is reasonable since there are many representations and each

representation can be enhanced differently by some supplements. Given that object OBJ =

obset { }V
v

VVV SSSO ∪∪∪= K21 and representation () { }VV SP 1
1/ = , possible supplements to

enhance the representation are

() { }
() { }

() { }.
~

~

~

32
~1/

32
3~1/

2
2~1/

V
v

VVvV

VVV

VV

SSSP

SSP

SP

∪∪∪=

∪=

=

K

MM

 Chapter 3. A Fine-Grained, Scalable Data Model 82

In general, the symbol ()tsVP ~/~
 denotes a supplement that can enhance the scale of

representation ()sVP / with respect to variation V from s to t (where 1 ≤ s < t ≤ v, and v is

the number of segments in obset V
O). Supplement ()sVP /~

 implicitly has the same

meaning as supplement ()vsVP ~/~
, which can enhance the scale of representation ()sVP /

with respect to variation V to its fullest (provided that v is the number of segments in

obset V
O).

Since a supplement is also part of an object, the atoms of the supplement are part

of the object’s atoms, as well. Further, the condition can be depicted as follows

() ()
12

~/~/
21

~~
:!:! TTOBJPPTOBJT

tsVtsV
⊆⇒⊆•∃•∃ .

Referring back to the object decomposition in Figure 3.1, a supplement cannot be placed

in any layer. On the one hand it is not in the presentation layer since it is not presentable;

on the other hand it cannot be classified as a segment due to its heterogeneity. Perhaps it

should be placed in between the presentation and segment layers. Anyway, we prefer not

to place a supplement in any data layer since it is a sideline in the object decomposition.

The role of a supplement, however, is quite important to achieve efficiency.

In addition to the basic entities specified above, the data model also involves some

adapting operations to transform one entity to another. The adapting operations are

specified shortly. For the next discussion, assume that

{ }
{ },21

21

W
w

WWW

V
v

VVV

SSSO

SSSOOBJ

∪∪∪==

∪∪∪==

K

K

where V and W are variations supported by object OBJ.

 Chapter 3. A Fine-Grained, Scalable Data Model 83

3.3.5 Operation 1: Selection

Selection (sVF =) is an operation to derive a representation from an object or

another representation. Selection is defined as follows

() ()

==
=

==

U
s

i

V
i

VsVsV
SOFOBJF

1

,

where V is the reference variation and s is the reference scale (1 ≤ s ≤ v, v is the number

of segments in obset V
O). The example below shows how to get a representation of an

object by a selection operation.

() ()

()
{ }()

{ } ,21

2

1

21
2

2

22/

VV

i

V
i

V
v

VVV

VV

VV

SS

S

SSSF

OF

OBJFP

∪=

=

∪∪∪=

=

=

=

=

=

=

U

K

where ()2/VP is a representation of object OBJ with the scale in variation V equal to 2.

3.3.6 Operation 2: Inverse-Selection

Inverse-selection (tsVF ~~ =) is an operation to derive a supplement from an object or

a representation. Inverse-selection is defined as follows

() ()

==
+=

==

U
t

si

V
i

VtsVtsV
SOFOBJF

1

~~ ~~
,

where V is the reference variation, s the reference scale, and t the target scale (1 ≤ s < t ≤ v,

v is the number of segments in obset V
O). If the target scale is not given, the default

 Chapter 3. A Fine-Grained, Scalable Data Model 84

target scale – which is the number of segments in the corresponding obset – is assumed.

Thus, operation sVF =~
 implicitly means

() () ()

===
+=

===

U
v

si

V
i

VvsVvsVsV
SOFOBJFOBJF

1

~~ ~~~
.

The next example shows how to get a supplement of an object by an inverse-selection

operation.

() ()

()
{ }()

{ } ,

~

~

~~

43

4

12

4321
4~2

4~2

4~24~2/

VV

i

V
i

V
v

VVVVV

VV

VV

SS

S

SSSSSF

OF

OBJFP

∪=

=

∪∪∪∪∪=

=

=

+=

=

=

=

U

K

where ()4~2/~ VP is a supplement of object OBJ which can enhance the scale of

representation ()2/VP with respect to variation V from 2 to 4.

3.3.7 Operation 3: Join

Join (+VF) is an operation to construct a representation by combining a lower-

fidelity representation and a suitable supplement. Join is defined as follows

() ()()

=

=
=+==

++

UUU
t

i

V
i

t

si

V
i

s

i

V
i

VtsVsVV
SSSFPPF

111

~// ,
~

, ,

where V is the reference variation, ()sVP / and ()tsVP ~/~
 the relevant representation and

supplement, s the reference scale, and t the target scale (1 ≤ s < t ≤ v, v is the number of

segments in obset V
O). Notice that the reference variation and scale of both the

 Chapter 3. A Fine-Grained, Scalable Data Model 85

representation and the supplement must match each other for the operation to work

properly. The target scale of the supplement also becomes the scale of the resulting

representation. In the example below, representation ()2/VP and supplement ()4~2/~ VP –

both are the results of the selection and inverse-selection operations in the previous

examples – are combined by a join operation.

() () ()()

{ } .

,

~
,

4321

4

1

4

12

2

1

4~2/2/4/

VVVV

i

V
i

i

V
i

i

V
i

V

VVVV

SSSS

S

SSF

PPFP

∪∪∪=

=

=

=

=

+==

+

+

U

UU

The result, ()4/VP , is a representation with scale 4 in variation V.

3.3.8 Operation 4: Translation

Translation (WVF →) is an operation to change the variation of a representation.

Translation is defined as follows

()() () () ()

=∩

=∩=
==

→

UU
w

i

sVW
i

sV
w

i

W
i

sVWsVWV
SPSPOPF

1

//

1

// ,

where V and W are the reference and target variations, respectively. The operation neither

drops nor adds the representation’s atoms, but merely rearranges them into different

segments (i.e., changes the grouping of the atoms). Translation is never employed alone,

since it does not change the representation in any way. It is employed only if the

representation’s current variation does not match the variation exploited by the operation

being applied to the representation. In the example below, a selection operation in

 Chapter 3. A Fine-Grained, Scalable Data Model 86

variation W is applied to representation ()4/VP , the result from the previous example.

Since the selection operation exploits a different variation (W) to the representation’s

currently-employed variation (V), a translation operation is required to change the

representation’s variation.

() ()() ()()()
()()

{ }

()

()

() (){ } ,4/
2

4/
1

2

1

4/

1

4/2

4321

1

2

4/2

4/24/24/;2/

VWVW

i

VW
i

w

i

VW
i

W

VVVV
w

i

W
i

W

VWW

VWVWVWVW

SS

S

SF

SSSSSF

POF

PFFPFP

∪=

=

=

∪∪∪∩

=

∩=

==

=

=

=

=

=

=

→==

U

U

U

where ()4/;2/ VWP is a representation with scale 2 in variation W and scale 4 in variation V.

Translation operation WVF → changes the variation of representation ()4/VP (and its

underlying segments) from V to W, whilst selection operation 2=WF obtains the first two

segments of the translated representation.

3.3.9 How Is It Useful?

Selection, inverse-selection, and join are operations exploiting the scalability of an

object in a particular variation. Applying these operations to a given object’s

representation, not only may we obtain a lower-fidelity representation, but we may also

obtain a higher-fidelity representation. Suppose this feature is implemented in Web

content delivery, a cached object’s representation may be used to serve client requests for

 Chapter 3. A Fine-Grained, Scalable Data Model 87

the same, lower-fidelity, as well as higher-fidelity representations. The high data reuse

portrayed here offers efficiency greatly needed in Web content delivery.

Translation, on the other hand, is an operation exploiting the variability of an

object. Translation makes inter-variation operations possible. Combining translation with

the other operations, we may obtain varied representations (in different variations) from a

given object’s representation. In Web content delivery, this feature even bolsters high

data reuse.

Exploiting this benefit, a new content adaptation is devised. Compared to

transcoding – the oft-cited content adaptation – the new adaptation should be faster since

its adapting operations are simpler, as noticed in the above specifications. The following

section elaborates modulation, the new adaptation, in detail.

3.4 Modulation – A Scalable Adaptation

The Oxford English Dictionary
14

 defines modulation as the action of forming,

regulating, or varying according to due measure and proportion. Here, we define

modulation as the process to obtain an object’s representation by means of adjusting

(dropping and/or adding) the building blocks of the object. The building blocks (atoms) of

an object could be fragments, layers, packets, units, or whatever applicable. Modulation

has the following characteristics:

14
 The Oxford English Dictionary, 2

nd
 edition; prepared by J. A. Simpson and E. S. C. Weiner; Vol. IX,

page 955; Oxford University Press, 1989.

 Chapter 3. A Fine-Grained, Scalable Data Model 88

1. Since processes in modulation are basically dropping atoms from and/or adding ones

to an object’s representation without involvement of any complex computation, the

demand for computing resources is expected to be minimal. The overall processes

should be fast. Thereby, it can be carried out anywhere, even at the Web server,

without noticeable decrease in performance. By contrast, transcoding is quite resource

consuming and, therefore, rarely executed at the Web server.

2. Modulation is an exclusive process. It is an adaptation within a data-format. It means

the modulation’s result always has the same data-format as the original object.

Scalable data-formats like progressive JPEG, JPEG 2000, and MPEG-4 are potential

targets for modulation. If a client device does not support the scalable data-format,

then transcoding is required for conversion between data-formats. This may be the

only drawback of modulation.

3. Unlike transcoding, which just transforms a high-fidelity representation to a low-

fidelity one, modulation is reversible
15

. A representation can be obtained by dropping

a few atoms from an object. Conversely, the original object can be retrieved by adding

the missing atoms to the representation. As mentioned before, this reversible property

causes high data reuse possible in modulation.

An illustration is given here to demonstrate modulation’s benefits. Suppose an

image supports two types of scalability, namely quality (qty) and resolution (res)

scalability. The image comprises 8 (eight) atoms. Classification of the image’s atoms

follows the illustration in Figure 3.2. It is reproduced in the top-right box of Figure 3.3;

15
 Another definition of modulation in the Oxford English Dictionary:

 [Biol.] Reversible variation in the activity or form of a cell in response to a changing environment.

 Chapter 3. A Fine-Grained, Scalable Data Model 89

the bottom set consists of 4 (four) segments of quality scalability, whereas the top set

consists of 3 (three) segments of resolution scalability. The image resides in a Web server

and is served to 4 (four) clients with different devices. Moreover, there is a caching

proxy, placed between the server and clients, to store passing data locally for future reuse.

Then, the following events occur in sequence (please refer to Figure 3.3).

SERVER

PROXY

CLIENT1

CLIENT2

CLIENT4

CLIENT3

1st content delivery

2nd content delivery

3rd content delivery

4th content delivery

1st content delivery

2nd content delivery

3rd content delivery

4th content delivery

S1.2 S3.4 S5.6 S7.8

S1.2.5.6 S3.7 S4.8

S1.2 S3.4 S5.6 S7.8

S1.2.5.6 S3.7 S4.8

S4.8

S1.2.5.6 S3.7

S1.2.5.6

S3.7

S1.2.5.6

S1.2 S3.4 S5.6

S1.2

S3.4

S5.6

S7.8

Figure 3.3 Modulation on an image

1. The first client, using a PDA, requests the image through the proxy. A medium-sized

representation of the image is considered suitable for the PDA’s screen. Not having

the image in its cache, since this is the first request, the proxy passes on the request to

the Web server. The server replies the request by modulating the image (dropping a

segment with respect to resolution scalability by applying a selection operation 2=resF

to the image) and sending out the resulting image (the medium-sized representation)

comprising segments S1.2.5.6 and S3.7. Receiving the representation, the proxy stores it

 Chapter 3. A Fine-Grained, Scalable Data Model 90

in the proxy’s cache while simultaneously sending it to the first client (note: observe

arrows of the 1
st
 content delivery in the figure).

2. The second client requests the image from a cellular phone. Due to its smaller screen,

the cellular phone can only display a small-sized representation of the image. The

proxy can reply this request – without the server’s involvement – by modulating the

cached representation (dropping another segment with respect to resolution scalability

by applying a selection operation 1=resF to the representation) to obtain the small-

sized representation comprising just segment S1.2.5.6. Hence, no data transfer from the

server is required for the second request (note: there is no arrow from the server to the

proxy for the 2
nd

 content delivery in the figure).

3. Using a notebook connected to the Internet via a modem, the third client requests the

image. Because of its sophisticated device, the client can display the full-sized

representation of the image. However, its slow bandwidth connection only allows the

client to obtain a less-quality representation of the image. There are two separate

modulating operations at the server and proxy. Since the proxy only has a medium-

sized representation in its cache, it requests for a supplement comprising just segment

S4.8 from the server. The server, in turn, modulates the image to obtain the requested

supplement (by applying an inverse-selection operation 2~ =resF to the image) and

returns the result to the proxy. Receiving the server’s reply, the proxy joins the

supplement with the cached representation (by applying a join operation +resF). Up

until this point, the proxy has a full-sized image. It then modulates the image to obtain

a less-quality representation (by applying a translation operation qtyres→F , followed

 Chapter 3. A Fine-Grained, Scalable Data Model 91

by a selection operation 3=qtyF). The end result (corresponding with a representation

comprising segments S1.2, S3.4, and S5.6 with respect to quality scalability) is

transferred to the third client. The server-to-proxy link here is used to transfer

segment S4.8 only (note: observe the arrow from the server to the proxy for the 3
rd

content delivery in the figure).

4. The fourth client requests the image from a desktop PC connected to the Internet via a

high-speed broadband. The client can be served with a full-sized, full-quality image.

Since the proxy has the requested image fully in its cache, it just sends the image out

to the client without any adaptation. Once again, the server is not involved in serving

the client (note: no arrow from the server to the proxy for the 4
th

 content delivery in

the figure).

The third client may be served differently and more efficiently. Instead of

requesting a supplement comprising segment S4.8, the proxy may request for a supplement

comprising segment S4 from the server. Later on when serving the fourth client, the proxy

then requests for a supplement comprising segment S8 from the server. In that case, the

term “on-demand delivery” can be aptly applied. Another thing, while waiting for the

server’s reply, the proxy can transfer the cached segments to the client, if possible. For an

example, when serving the third client, the proxy may transfer segment S1.2 to the client;

segment S5.6 cannot be sent out because the preceding segment S3.4 – which has not been

constructed at that time – must be sent out first. By employing this non-delaying data

transfer, the client’s perceived latency may be kept low.

The illustration shows that modulation can serve every single client with the best-

fit representation of the image. The image’s representations can be generated in a simple

 Chapter 3. A Fine-Grained, Scalable Data Model 92

and fast way. Clients would be able to access the image within a short delay. To gain the

most benefits, modulation should be employed at the proxy as well as at the origin server.

This way, on-demand delivery – which does not strain the Internet traffic – can be

attained. The illustration also demonstrates the reversible property of modulation, which

offers high data reuse. Any cached representation often can be used – either fully or

partially – to serve subsequent client requests.

Emerging video standards like MPEG-4 and H.264 support scalable presentation.

To a certain extent, modulation can also help in delivering video objects of those

standards in a heterogeneous environment. There are two ways of transmitting a video

object from a server to a client. First, the video object can be sent out just like a normal

Web object. Second, it can be streamed by means of an RTSP (streaming) server.

Modulation is definitely beneficial in the former case. Since the video object is in a

scalable data format, modulation can adapt it to fit the client’s characteristics in a fast and

efficient manner. For example, modulation may drop some enhancement layers of the

video object corresponding to high quality presentation, drop some enhancement layers

corresponding to high resolution presentation, or drop some frames to reduce the video

presentation’s frame rate. As for the latter case, modulation’s benefit is limited since

some RTSP servers can stream the video object in multiple channels – each of which

contains just a layer – which the client can selectively subscribe according to its needs.

However, if the RTSP server is unable to split the video object into multiple layers (and

stream them in multiple channels), or if the client is unable to subscribe to multiple

channels, a proxy with modulation’s capability can be placed between the RTSP server

and the client to provide the service.

 Chapter 3. A Fine-Grained, Scalable Data Model 93

3.5 Related Work

The idea of partitioning a multimedia object and delivering the part(s) to represent

the object on the Internet is not entirely ours. Some previous work on this research aspect

is outlined in this section.

Kangasharju et al. [KaKO98] proposed a Soft Caching Proxy, in which a

progressive JPEG image can be served to the clients in different qualities. The purposes

of serving a range of image qualities to the clients are to reduce the delivery time, in

particular for the clients with a low-bandwidth Internet connection, and to allow more

efficient cache usage. The rationale behind the second purpose is as follows: a cached

large image (>15KB), which is being evicted to make space for new objects, is recoded

by the proxy into a progressive JPEG image, and then, one or two layers of the

progressive image are discarded. Since the evicted image is just partially discarded from

the proxy’s cache, it can still be served to clients requesting the image. So, the system can

reduce the requirement for fetching images from the origin servers and can keep more

objects in the proxy’s cache.

Smith et al. [SmCL99] partitioned large images (> 10K × 10K pixels) in the

spatial and frequency domains for fast image retrieval. Partitioning an image in the spatial

domain creates equal-sized tiles, each of which corresponds to a spatial portion (i.e., a

certain region) of the image. On the other hand, partitioning an image in the frequency

domain – usually by means of wavelet – creates subbands that are logarithmically spaced.

The low-frequency wavelet subband serves as a coarse, low-resolution version of the

image. The result of partitioning the image in both domains is a set of view elements,

 Chapter 3. A Fine-Grained, Scalable Data Model 94

which are smaller, easier to maintain, and cheaper to process than the original large

image. Later on, a particular image view (representing a certain region and resolution of

the image) can be synthesized from the view elements.

Rejaie et al. [ReYH00] employed hierarchical encoding to split a video stream

into a base layer, containing the most essential low quality information, and higher layers,

providing optional quality enhancement information, so that quality adaptive streaming

can be delivered through the Internet. Further, each layer of the encoded stream is divided

into equal-sized pieces called segments to allow fine-grained prefetching and cache

replacement in the multimedia proxy cache. Initially, the proxy cache only fetches

segments of the base layer of the video stream. When there is spare bandwidth, due to less

traffic or a cache hit, the proxy cache may prefetch segments of the higher layers to

improve the video stream’s quality. Cache replacement is done by discarding segments of

the higher layers from the end; hence, it can maximize the cache’s efficiency.

It is obvious that previous work had exploited inherent scalability in some

multimedia data-formats. Alas, study on the general data model of the scalable

multimedia data-formats is still lacking. A formal data model is necessary to understand

clearly the concept of object decomposition and construction in the scalable multimedia

data-formats. Moreover, the operations specified in the data model can help develop the

appropriate applications to adapt the scalable multimedia objects. Actually, Chi and Cao

[ChC02] had proposed a scalable data model. However, their proposal does not enlighten

the heterogeneous attributes inherent in a scalable multimedia object. In addition, it only

considers a single scalability’s type, i.e., the quality scalability. Our proposed data model

 Chapter 3. A Fine-Grained, Scalable Data Model 95

offers a more extensive perspective of the characteristics of a scalable multimedia data-

format.

Modulation, an adapting mechanism directly derived from the data model, has

been introduced and further illustrated with a scalable image. Modulation is not just

limited to an image adaptation; it can be applied to any scalable multimedia data-format.

Actually, it should be extended to all kinds of Web contents – including textual content, if

possible – since it could bring a dramatic improvement in the overall Web content

delivery. However, before we could come to that supposition, let us first investigate its

benefits in a smaller scope. The next chapter discusses modulation’s implementation in

the JPEG 2000 standard.

96

Chapter 4

Modulation in JPEG 2000

In this thesis, modulation – specified at the end of the previous chapter – is implemented

in the JPEG 2000 standard. This chapter elaborates on the implementation. To begin with,

the reasons of using the JPEG 2000 standard to illustrate modulation are explained. Three

JPEG 2000 modulators – namely JP2Selector, JP2Joiner, and JP2Converter – are

then presented in detail.

 Chapter 4. Modulation in JPEG 2000 97

4.1 Why Use JPEG 2000?

In a scalable multimedia data-format, an object’s coded data has been placed in a

particular arrangement so that the object can be displayed progressively, resulting in a

multimedia presentation with increasing clarity, resolution, detail, or others alike. In the

Web environment, the progressive multimedia presentation is preferable to the line-by-

line or, worse, the late-appearing multimedia presentation. It is true that the progressive

multimedia presentation demands more computing resources at the client appliances for

repeated decoding. Yet, it may cut down the client’s perceived latency since the client

may grasp the object’s context sooner. Although there are not many scalable multimedia

data-formats currently, the figure will surely improve in the near future as client

appliances become more sophisticated.

In the previous chapter, modulation has been specified and explained in detail.

Modulation works exclusively on scalable multimedia data-formats, such as progressive-

and-hierarchical JPEG, JPEG 2000, MPEG-4, and H.264. As revealed in the previous

chapter, modulation can offer efficiency to Web content delivery. Short latency offered

by scalable multimedia data-formats plus efficiency offered by modulation is the ideal

combination for the future Web content delivery.

In this chapter, the JPEG 2000 still image standard is exploited to illustrate

modulation. The JPEG 2000 image standard is selected due to several reasons. Firstly,

exploiting a still image is simpler than exploiting a video stream, which involves motion

compensated prediction and time dimension. Thus, at the moment we leave out the video

coding standards (MPEG-4 and H.264), but we may consider them in the future study.

 Chapter 4. Modulation in JPEG 2000 98

Secondly, the JPEG 2000 standard is based on DWT (Discrete Wavelet Transform),

which provides better coding efficiency than DCT (Discrete Cosine Transform) employed

by the JPEG standard. In addition, since DWT is applied to the entire image, rather than

to blocks of usually 8 x 8 pixels, it does not exhibit the characteristic blocking artefacts

found in a DCT-based compression method. Lastly, JPEG 2000 supports several types of

scalability, such as quality, resolution, and component scalability. Moreover, exploiting

the ROI (region of interest) feature in JPEG 2000, we may display only a particular

region of an image. The rich scalability in JPEG 2000 plus its fine granularity gives us a

strong reason to select it over other multimedia data-formats.

4.2 JPEG 2000 Modulators

As indicated in the previous chapters, in the JPEG 2000 standard, an image’s

coded data is arranged into packets. Each packet contains data of a specific quality layer,

a specific position (or, precinct), a specific resolution, and a specific color component.

The layer, position, resolution, and component are thus the attributes (properties) that can

differentiate one packet from another. In a codestream, packets of the image are

interleaved along the four attributes. The interleaving of the packets follows one of the

five progression orders predefined in the JPEG 2000 standard.

Packets of a JPEG 2000 image correspond to the atoms of an object in the

proposed data model. The four attributes governing the interleaving of the packets can be

used as variations to classify the packets and build the imaginary segments. Since the

image’s entities fit in nicely with the data model’s entities, modulation can be applied to

 Chapter 4. Modulation in JPEG 2000 99

the JPEG 2000 image. Modulation can generate various representations of the image by

simply dropping some packets of the image.

4.2.1 General Issues

Modulation in the JPEG 2000 still image standard was done in three types of

scalability; those of quality, resolution, and component scalability. They can be associated

with the respective layer, resolution, and component – three out of four attributes used to

interleave packets. To modulate a JPEG 2000 image correctly, some information (meta-

data) about the image must be retrieved. The information is available in the image’s main

header, where markers and marker segments are held. To be precise, the information we

need is stored in the SIZ and COD marker segments. Their specifications [ISO15444-1]

are reproduced below in more concise forms.

Image and tile size (SIZ)

Function: Provides information about the uncompressed image such as the width and

height of the reference grid, the width and height of the tiles, the number of components,

component bit depth, and the separation of component samples with respect to the

reference grid.

Usage: Main header. There shall be one and only one in the main header immediately

after the SOC marker segment. There shall be only one SIZ per codestream.

Length: Variable depending on the number of components.

Table 4.1 Image-and-tile-size marker segment

Parameter
Size

(bits)
Values Notes

SIZ 16 0xFF51 Image and tile size marker.

Lsiz 16 41 – 49 190
Length of marker segment in bytes (not

including the marker).

 Chapter 4. Modulation in JPEG 2000 100

Parameter
Size

(bits)
Values Notes

Rsiz 16

0000 0000 0000 0000

(no restrictions)

0000 0000 0000 0001

(Profile-0 compliant)

0000 0000 0000 0010

(Profile-1 compliant)

Capabilities of the codestream.

Xsiz 32 1 – (2
32

 - 1) Width of the reference grid.

Ysiz 32 1 – (2
32

 - 1) Height of the reference grid.

XOsiz 32 0 – (2
32

 - 2)
Horizontal offset from the origin of the

reference grid to the left side of the image area.

YOsiz 32 0 – (2
32

 - 2)
Vertical offset from the origin of the reference

grid to the top side of the image area.

XTsiz 32 1 – (2
32

 - 1)
Width of one reference tile with respect to the

reference grid.

YTsiz 32 1 – (2
32

 - 1)
Height of one reference tile with respect to

the reference grid.

XTOsiz 32 0 – (2
32

 - 2)
Horizontal offset from the origin of the

reference grid to the left side of the first tile.

YTOsiz 32 0 – (2
32

 - 2)
Vertical offset from the origin of the reference

grid to the top side of the first tile.

Csiz 16 1 – 16 384 Number of components (Ncmp) in the image.

Ssiz
i
 8

0000 0000 –

0010 0101

or

1000 0000 –

1010 0101

Precision (depth) in bits and sign of the i
th

component samples; depth = value + 1.

0xxx xxxx unsigned values

1xxx xxxx signed values

XRsiz
i
 8 1 – 255

Horizontal separation of a sample of i
th

component with respect to the reference grid.

YRsiz
i
 8 1 – 255

Vertical separation of a sample of i
th

component with respect to the reference grid.

Coding style default (COD)

Function: Describes the coding style, number of decomposition levels, and layering that

is the default used for compressing all components of an image (if in the main header) or

a tile (if in the tile-part header). The parameter values can be overridden for an individual

component by a COC marker segment in either the main or tile-part header.

Usage: Main and first tile-part header of a given tile. It shall be one and only one in the

main header. Additionally, there may be at most one for each tile. If there are multiple

 Chapter 4. Modulation in JPEG 2000 101

tile-parts in a tile, and this marker segment is present, it shall be found only in the first

tile-part.

Length: Variable depending on the value of Scod.

Table 4.2 Coding-style-default marker segment

Parameter
Size

(bits)
Values Notes

COD 16 0xFF52 Coding style default marker.

Lcod 16 12 – 45
Length of marker segment in bytes (not

including the marker).

Scod 8 (see Table 4.3) Coding style for all components.

SGcod 32 Defined below

Progression

order
8 (see Table 4.4) Progression order.

Number of

layers
16 1 – 65 535 Number of layers (Nlyr).

Multiple

component

transformation

8

0000 0000

(no MCT used)

0000 0001

(MCT used)

Multiple component transformation usage.

If used, irreversible component

transformation used with 9-7 irreversible

filter and reversible component

transformation used with 5-3 reversible

filter. [Note: refer to the Transformation

field of SPcod]

SPcod variable Defined below

Number of

decomposition

levels

8 0 – 32

Number of decomposition levels (Nlvl);

zero implies no transformation.

[Note: number of resolutions = Nlvl + 1]

Code-block

width
8

xxxx 0000 –

xxxx 1000

Code-block width exponent offset value;

xcb = value + 2.

Code-block

height
8

xxxx 0000 –

xxxx 1000

Code-block height exponent offset value;

ycb = value + 2. (xcy + ycb ≤ 12)

Code-block

style
8 (see Table 4.5) Style of code-block coding passes.

Transformation 8
0000 0000 –

0000 0001

Wavelet transformation used.

0 = 9-7 irreversible filter

1 = 5-3 reversible filter

Precinct size variable
0000 0000 –

1111 1111

Precinct size (only if Scod = xxxx xxx1).

4 LSBs are the precinct width exponent,

PPx = value; and 4 MSBs are the precinct

height exponent, PPy = value.

 Chapter 4. Modulation in JPEG 2000 102

Table 4.3 Coding style parameter values for Scod parameter

Values (bits)

MSB LSB
Coding style

xxxx xxx0 Entropy coder, precinct with PPx = 15 and PPy = 15

xxxx xxx1 Entropy coder with precinct defined below

xxxx xx0x No SOP marker segments used

xxxx xx1x SOP marker segments may be used

xxxx x0xx No EPH marker used

xxxx x1xx EPH marker shall be used

 All other values reserved

Table 4.4 Progression orders for SGcod parameter

Values (bits)

MSB LSB
Progression order

0000 0000 Layer – resolution level – component – position progression

0000 0001 Resolution level – layer – component – position progression

0000 0010 Resolution level – position – component – layer progression

0000 0011 Position – component – resolution level – layer progression

0000 0100 Component – position – resolution level – layer progression

 All other values reserved

Table 4.5 Code-block style for SPcod parameter

Values (bits)

MSB LSB
Code-block style

xxxx xxx0

xxxx xxx1

No selective arithmetic coding bypass

Selective arithmetic coding bypass

xxxx xx0x

xxxx xx1x

No reset of context probabilities on coding pass boundaries

Reset context probabilities on coding pass boundaries

xxxx x0xx

xxxx x1xx

No termination on each coding pass

Termination on each coding pass

xxxx 0xxx

xxxx 1xxx

No vertically causal context

Vertically causal context

xxx0 xxxx

xxx1 xxxx

No predictable termination

Predictable termination

xx0x xxxx

xx1x xxxx

No segmentation symbols are used

Segmentation symbols are used

 All other values reserved

 Chapter 4. Modulation in JPEG 2000 103

When a representation of the image is constructed, besides dropping some packets

of the image, some parameter values in the marker segments may need to be modified so

that they describe the resulting image correctly. Thereby, common rendering applications

can properly display the resulting image. This is also in agreement with one of the rules
16

specified in the JPEG 2000 standard (Annex A, Subsection A.1.4 [ISO15444-1]). For

instance, to construct a representation with one-quarter resolution (half width and half

height) of the original image, packets associated with the highest decomposition level are

dropped from the image; along with the action, the width and height of the resulting

image (in the SIZ marker segment) as well as the number of decomposition levels (in the

COD marker segment) are modified. Detailed modifications on the image’s header will be

explained later when we discuss the modulators.

In order to improve a representation, up to the original image, a supplement

containing some missing packets is required. The representation and the suitable

supplement are then joined together to yield an improved representation. A supplement

should also include some meta-data (information) to help the joining operation. There are

two things that the meta-data can help. Firstly, the meta-data can indicate which marker

segments of the current representation shall be replaced to reflect the improved

representation’s characteristics. Note again that if a JPEG 2000 image is modified, the

marker segments shall be updated accordingly. Secondly, the meta-data can guide how to

insert the supplement’s packets into the representation. Correspondingly, we introduce

16
 The marker segments shall correctly describe the image as represented by the codestream. If truncation,

alteration, or editing of the codestream has been performed, the marker segments shall be updated

accordingly.

 Chapter 4. Modulation in JPEG 2000 104

two marker segments, namely RPL and FLG, to be used by a supplement for carrying the

meta-data. The proposed marker segments are specified below.

Replacement indicator (RPL)

Function: Indicates marker segments – in this codestream – which shall replace the

respective ones in the resulting (joined) codestream. It just contains a list of replacement

markers; the indicated marker segments shall be found in the latter part of the header.

Usage: It is strictly used in a supplement’s header. Optional in the main and tile-part

headers. If it is present in the main header, there shall be only one immediately after the

SOC marker segment (note: it shall precede the SIZ marker segment, as well). Likewise,

if it is present in a tile-part header, there shall be only one immediately after the SOT

marker segment.

Length: Variable depending on the number of replacement markers.

Table 4.6 Replacement-indicator marker segment

Parameter
Size

(bits)
Values Notes

RPL 16 0xFF80 Replacement indicator marker.

Lrpl 16 4 – 65 534
Length of marker segment in bytes (not

including the marker).

Mrpl
i
 16 0xFFXX

The i
th

 replacement marker. The first byte

is always 0xFF (a marker indicator)

Insertion flag (FLG)

Function: Guides the insertion of packets – in this codestream – into the resulting

(joined) codestream.

Usage: It is strictly used in a supplement’s header. There shall be one and only one in a

tile-part header.

Length: Variable depending on the number of packets in the resulting tile-part.

 Chapter 4. Modulation in JPEG 2000 105

Table 4.7 Insertion-flag marker segment

Parameter
Size

(bits)
Values Notes

FLG 16 0xFF81 Insertion flag marker.

Lflg 16 4 – 65 535
Length of marker segment in bytes (not

including the marker).

LBflg 8 1 – 8
Number of real bits in the last data-byte of

Fflg.

Fflg variable N/A

A sequence of flag bits. The number of

flag bits (Nbits) corresponds to the number

of packets in the resulting tile-part.

Nbits = (Lflg − 4) × 8 + LBflg

bit 0 = a packet from the representation to

be improved (enhanced)

bit 1 = a packet from this supplement

As mentioned earlier, packets in the JPEG 2000 codestream are interleaved along

layer, position, resolution, and component attributes. The “Progression order” field of the

SGcod parameter (see Table 4.2) determines the interleaving of the packets. The data-

sizes of the packets are variable. If the SOP marker segments (see Table 4.3) are not used,

the boundaries between two adjacent packets are undetected. Nevertheless, each packet

has a packet header which can tell, among others, the size of the packet body. Yet, the

packet header has to be decoded to get the information. To sum up, in the modulators,

iterations based on the progression order’s attributes are done to determine which layer,

which position, which resolution, and which component each packet contributes to. Once

a packet’s contribution is determined, a decision can be made whether to keep or drop the

packet. The packet header is then decoded to get the size of the packet body, and thereby,

the whole packet can be correctly determined. Although the modulators involve decoding

the packet headers, the process just comprises some addition and bit-shifting for each

 Chapter 4. Modulation in JPEG 2000 106

traversed code-block; moreover, the decoding process is passed if there are no data

carried by the code-block.

Based on the adapting (modulating) operations specified in the previous chapter,

three JPEG 2000 modulators were devised; those are JP2Selector, JP2Joiner, and

JP2Converter. Each modulator is detailed in the following subsections.

4.2.2 Modulator 1: JP2Selector

JP2Selector is used to generate both representations and supplements of a

JPEG 2000 image. So, it emulates the selection, inverse-selection, and – to a certain

extent – translation operations (referring to the data model in Section 3.3). Since

JP2Selector can produce two different types of results – i.e., representations and

supplements – the processes within it are explained along the results’ types.

A. Generating Representations

Of a JPEG 2000 image, various representations may be generated. As mentioned

earlier, there are three attributes (variations) that can be exploited in generating

representations. In general, a representation is generated by dropping some packets

corresponding to particular layers, particular decomposition levels (resolutions), and/or

particular components. [Note: With respect to the JPEG 2000 standard, we may use the

terms “resolution” and “decomposition level” interchangeably. “Resolution” is more

commonly used; “decomposition level” is often used when we refer to the number of

decomposition levels (Nlvl) in the image. The number of resolutions = the number of

decomposition levels + 1; see Table 4.2.]

 Chapter 4. Modulation in JPEG 2000 107

Dropping some layers of the image gives a lower-quality representation. The

layers to be dropped must be in sequence starting from the highest layer. If the number of

layers in the image is reduced by l, the associated action is the dropping of packets

corresponding to the l highest layers.

Dropping some decomposition levels of the image gives a smaller-resolution

representation. Similar to the above condition, the decomposition levels to be dropped

must be in sequence starting from the highest level. If the number of decomposition levels

in the image is reduced by r, the associated action is the dropping of packets

corresponding to the r highest levels.

Dropping some components of the image gives a less-color representation. Any

components may be dropped at will. If component c is removed, the associated action is

the dropping of packets corresponding to the c
th

 component. Most images have three color

components: one luminance (luma) and two chrominance (chroma)
17

. However, there is a

condition attached to the component removal in the JPEG 2000 standard that it requires

the CPRL (component–position–resolution–layer) progression order to be employed;

otherwise, the resulting image cannot be displayed. Here is the plausible explanation. Our

preliminary study revealed that the number of components (Ncmp) in the image (the Csiz

parameter of Table 4.1) cannot be changed without re-coding since that information has

been integrated into the image’s coded data. Therefore, the dropping of components

17
 In the frequency domain, an image can be separated into luminance and chrominance components. The

luminance (symbolized by Y) component determines the brightness/darkness (grayscale) of the image,

while the chrominance (Cb and Cr) components carry the color (saturation and hue) of the image. The

human eye is less sensitive to chrominance than to luminance. Thus, we can afford to lose a lot more

information in the chrominance components than we can in the luminance component.

 Chapter 4. Modulation in JPEG 2000 108

without changing the number of components may cause inconsistency in fetching the

image’s packets. For instance, suppose the LRCP progression order is employed for the

component removal and at this point the number of components is inconsistent; if the

iteration of the component attribute (in LRCP, the third iteration after the iterations of the

layer and resolution attributes) goes beyond the actual number of components, the next

fetched packet will fall in the wrong attribute values. The problem does not occur when

the CPRL progression order is employed, because there is no packet after the actual

number of components is surpassed (notice that, in CPRL, the component attribute is the

outer-most iteration). JP2Converter (described in Subsection 4.2.4) is used to change

the progression order of a JPEG 2000 image.

In generating a representation, the three attributes – layer, resolution, and

component – can be exploited concurrently, so more varieties of representations can be

obtained from the combination of the three attributes. This is a major advantage gained

from the JPEG 2000 data format. In theory (i.e., in the data model), those three attributes

signify distinct variations of the object decomposition. The generation of a representation,

involving modifications on scales of different variations, requires several selection and

translation operations. But in practice (in this case), those several operations can be

performed in a single execution. By the iterations of progression order’s attributes, the

image’s packets can be easily identified. Hence, the dropping of packets – corresponding

to different attributes – can be executed in one scan.

Corresponding to the three exploited attributes, there are three input parameters

involved in generating a representation. The input parameters – namely Rlyr, Rres, and Rcmp

– are specified in Table 4.8. Constants Nlyr and Nlvl are respectively the number of layers

 Chapter 4. Modulation in JPEG 2000 109

and the number of decomposition levels in the input image; both values can be obtained

from the image’s COD marker segment (refer to Table 4.2). Constant Ncmp is the number of

components in the input image; it can be obtained from the image’s SIZ marker segment

(refer to Table 4.1). A specific example of using parameter Rcmp: if components 1 and 2

(chroma) are to be removed, then Rcmp = 6 (= 2
1
 + 2

2
); component 0 (luma) will be

retained, and the result should be a grayscale image.

Table 4.8 Input parameters for generating a representation or a supplement

Input Value Range Notes

Rlyr { }lyrlyrlyr NRR <•∀ �:

Number of layers to be reduced. If it is not

provided, the default is Rlyr = 0 (all layers retained

in the representation).

Rres { }lvlresres NRR ≤•∀ �:

Number of resolutions to be reduced. If it is not

provided, the default is Rres = 0 (all resolutions

retained in the representation).

Rcmp { }cmpN
cmpcmp RR 2: <•∀ �

Flag bits of components (starting from LSB) to be

removed. If it is not provided, the default is Rcmp = 0

(all components retained in the representation).

The following pseudo-code snippet shows how JP2Selector determines packets

for generating a representation.

/**/

/* JP2Selector: Determining packets for a representation */

/**/

// Input parameters:

// FD_img => the image’s file descriptor

// N_lyr => number of layers (from the image’s COD)

// N_lvl => number of decomposition levels (COD)

// N_cmp => number of components (SIZ)

// R_lyr => number of reduced layers

// [default: R_lyr = 0]

// R_res => number of reduced resolutions

// [default: R_res = 0]

// R_cmp => flag-bits of removed components

// [default: R_cmp = 0]

 Chapter 4. Modulation in JPEG 2000 110

// S_lyr denotes the reference number of layers

S_lyr = N_lyr – R_lyr;

// S_res denotes the reference number of resolutions

S_res = N_lvl – R_res + 1;

// S_cmp denotes the flag-bits of retained components

S_cmp = (1 << N_cmp) – R_cmp – 1;

WHILE (NOT End_Of_File(FD_img)) {

 // Packet denotes an image’s packet

 Packet = Read_Packet(FD_img);

 IF ((Packet.lyr < S_lyr) AND

 (Packet.res < S_res) AND

 ((1 << Packet.cmp) & S_cmp)) {

 // Output packets of the representation

 PRINT Packet;

 }

}

The code basically selects packets, the layer’s identity of which is less than the reference

number of layers (referring to the reference scale in Subsection 3.3.5), the resolution’s

identity of which is less than the reference number of resolutions, and the component’s

identity of which is in the retained components. Besides the packets, the resulting

representation also inherits the image’s header but with some modifications, particularly

on the SIZ and COD marker segments. The modifications are necessary for the

representation to be properly displayed. For each affected attribute, the necessary

modifications are given in Table 4.9.

A representation may be generated from another higher-fidelity representation. In

that case, no special treatment is required. The higher-fidelity representation is just

considered “the original image”, and all the procedures can be applied without any

alteration. In fact, the above modifications on the image’s header keep all information

consistent, so successive generation of representations will have no problem.

 Chapter 4. Modulation in JPEG 2000 111

Table 4.9 Header modifications in a generated representation

Attribute SIZ Marker Segment COD Marker Segment

Layer No modification required.

“Number of layers” in SGcod is

reduced.

lyrlyr
REP
lyr RNN −=

Resolution

Xsiz, Ysiz, XOsiz, YOsiz, XTsiz,

YTsiz, XTOsiz, and YTOsiz are

corrected.
§

 resRREP X*sizX*siz 2/=

 resRREP Y*sizY*siz 2/=

“Number of decomposition levels”

in SPcod is reduced.

reslvl
REP
lvl RNN −=

Unused (the last Rres) precinct sizes

in SPcod, if defined, are discarded.

Component No modification required. No modification required.

Note:
§
 In the formula, Xsiz, XOsiz, XTsiz, and XTOsiz are symbolized by X*siz,

whereas Ysiz, YOsiz, YTsiz, and YTOsiz are symbolized by Y*siz.

B. Generating Supplements

Generating supplements of a JPEG 2000 image is very similar to generating

representations. JP2Selector also needs to drop some packets corresponding to

particular layers, particular decomposition levels, and/or particular components to

generate a supplement. However, a supplement usually does not include packets of the

lowest layer or the lowest decomposition level, therefore, it cannot be displayed.

Furthermore, many marker segments of the image are stripped off in a supplement. A

supplement is only useful for enhancing a certain representation.

Like the process in generating a representation, the three attributes – layer,

resolution, and component – can be exploited concurrently when generating a

supplement. So, the supplement’s generation can be executed in one scan, too. The input

parameters specified in Table 4.8 are also used for generating a supplement. Besides, four

more input parameters are added; the additional parameters are specified in Table 4.10.

The most important parameter is Inv, which determines whether a representation or a

 Chapter 4. Modulation in JPEG 2000 112

supplement is to be generated. The other input parameters – namely Tlyr, Tres, and Tcmp –

are non-zero and meaningful only if a supplement is to be generated (Inv = 1). Notice also

that additional conditions take effect when the parameters are used. The conditions

regulate the relation between the reduction (prior) and the target (additional) parameters.

Table 4.10 Additional input parameters for generating a supplement

Input Value Range Notes

Inv 0 | 1
0 = generating a representation (selection)

1 = generating a supplement (inverse-selection)

Tlyr { }lyrlyrlyr NTT ≤•∀ 1:�

Target number of layers (only if Inv = 1). If it is not

provided, the default is Tlyr = Nlyr.

Additional condition: Rlyr < Tlyr

Tres { }1: 1 +≤•∀ lvlresres NTT �

Target number of resolutions (only if Inv = 1). If it

is not provided, the default is Tres = Nlvl + 1.

Additional condition: Rres < Tres

Tcmp { }cmpN
cmpcmp TT 2: 1 <•∀ �

Target flag bits of components (only if Inv = 1). If it

is not provided, the default is 12 −= cmpN
cmpT .

Additional condition: (Rcmp | Tcmp) = Tcmp

The pseudo-code snippet below is an extension to the previous JP2Selector’s

code. Besides determining packets for generating a representation, the code now

accommodates the supplement’s generation.

/**/

/* JP2Selector: Determining packets for a representation */

/* or a supplement */

/**/

// Input parameters:

// FD_img => the image’s file descriptor

// N_lyr => number of layers (from the image’s COD)

// N_lvl => number of decomposition levels (COD)

// N_cmp => number of components (SIZ)

// R_lyr => number of reduced layers

// [default: R_lyr = 0]

// R_res => number of reduced resolutions

// [default: R_res = 0]

// R_cmp => flag-bits of removed components

// [default: R_cmp = 0]

 Chapter 4. Modulation in JPEG 2000 113

// Inv => 0 – selection; 1 – inverse-selection

// T_lyr => target number of layers

// [default: T_lyr = N_lyr]

// T_res => target number of resolutions

// [default: T_res = N_lvl + 1]

// T_cmp => target flag-bits of components

// [default: T_cmp = (1 << N_cmp) – 1]

// S_lyr denotes the reference number of layers

S_lyr = T_lyr – R_lyr;

// S_res denotes the reference number of resolutions

S_res = T_res – R_res;

// S_cmp denotes the reference flag-bits of components

S_cmp = T_cmp – R_cmp;

// Re-set values of T_lyr, T_res, and T_cmp, if (Inv == 0)

// [This is to optimize the selection operation]

IF (NOT Inv) {

 T_lyr = S_lyr;

 T_res = S_res;

 T_cmp = S_cmp;

}

WHILE (NOT End_Of_File(FD_img)) {

 // Packet denotes an image’s packet

 Packet = Read_Packet(FD_img);

 IF ((Packet.lyr < T_lyr) AND

 (Packet.res < T_res) AND

 ((1 << Packet.cmp) & T_cmp)) {

 IF (NOT Inv) {

 // Output packets of the representation

 PRINT Packet;

 } ELSE {

 // Flag “0” denotes a representation’s packet

 Flag = 0;

 IF ((Packet.lyr >= S_lyr) OR

 (Packet.res >= S_res) OR

 NOT ((1 << Packet.cmp) & S_cmp)) {

 // Flag “1” denotes a supplement’s packet

 Flag = 1;

 // Output packets of the supplement

 PRINT Packet;

 }

 // This function accumulates all flag-bits

 Accumulate_Flags(Flag);

 }

 }

}

 Chapter 4. Modulation in JPEG 2000 114

When generating a supplement, the code filters the packets in two steps. The outer filter

(condition) selects packets, which are within the target number of layers, the target

number of resolutions, and the target components (referring to the target scale in

Subsection 3.3.6). The packets construct the targeted representation that will be obtained

if the supplement is joined with the reference representation. The inner filter selects

packets, which are missing from the reference representation; those packets construct the

supplement. This filter is also applied to the layer, resolution, and component attributes.

Based on the attributes involved in generating the targeted representation, the modified

SIZ and/or COD marker segments are created (following the directions in Table 4.9) and

included in the supplement’s header. Later the marker segments will replace ones

belonging to the reference representation when the targeted representation is generated.

Information about the modified marker segments are noted in the supplement’s RPL

marker segment (refer to Table 4.6). Lastly, the accumulated flag-bits are stored in the

supplement’s FLG marker segment (refer to Table 4.7). The flag-bits will help in joining

packets for generating the targeted representation.

A supplement may be generated from a representation, too. Again, no special

treatment is required. However, a supplement cannot be generated from another

supplement. The reason is because much information – i.e., marker segments – has been

stripped off in the supplement, so inconsistency may occur if a successive supplement is

to be generated.

The representation’s generation and the supplement’s generation are similar in

procedure but different in result. Both processes select certain packets of a JPEG 2000

image and drop the rest to get the sought results. But the selected packets are

 Chapter 4. Modulation in JPEG 2000 115

contradictory between the two processes. While the former selects packets which

construct a representation, the latter select packets which do not construct but can

enhance a representation. Owing to their similarity, we can combine the two processes in

a single modulator, which is the JP2Selector. As seen in the pseudo-code, the

processes are quite simple. No complex computations are required. Therefore, fast results

are very much expected.

4.2.3 Modulator 2: JP2Joiner

As described by its name, JP2Joiner is used to join a JPEG 2000 representation

and its suitable supplement to construct an improved (enhanced) representation, with

respect to quality, resolution, and/or color. Clearly it emulates the join operation of the

data model (refer to Subsection 3.3.7). JP2Joiner works in tandem with JP2Selector,

in particular to construct an enhanced representation. JP2Joiner does not need any

input parameter besides the representation to be enhanced and its suitable supplement.

The pseudo-code snippet below demonstrates how JP2Joiner joins packets from

the representation and the supplement to construct the enhanced representation.

/**/

/* JP2Joiner: Joining packets to create a representation */

/**/

// Input parameters:

// FD_rep => the representation’s file descriptor

// FD_sup => the supplement’s file descriptor

// F_bits => sequence of flag-bits (from the supplement’s FLG)

// Looping until the end of bit-sequence F_bits

WHILE (NOT End_Of_Sequence(F_bits)) {

 // Flag denotes a flag-bit

 Flag = Get_Bit(F_bits);

 Chapter 4. Modulation in JPEG 2000 116

 IF (Flag == 0) {

 // Get a packet from the representation

 Packet = Read_Packet(FD_rep);

 } ELSE {

 // Get a packet from the supplement

 Packet = Read_Packet(FD_sup);

 }

 // Output packets of the enhanced representation

 PRINT Packet;

}

The code reads the sequence of flag-bits – obtained from the supplement’s FLG marker

segment – one bit at a time. If the flag is zero, a packet from the representation is fetched;

otherwise, a packet from the supplement is fetched. In this way, the representation’s and

the supplement’s packets are perfectly blended. The resulting sequence of packets

constructs a new representation, i.e., an enhanced one. The enhanced representation

inherits the old representation’s header but some marker segments may be replaced. The

replacement of the marker segments is directed by the supplement’s RPL marker segment.

The simplicity of modulating operations is shown again here. JP2Joiner’s

process is even much simpler than JP2Selector’s. By employing JP2Selector and

JP2Joiner, any representation can be improved to any level, even to its original image.

And more importantly, it is lossless; no information loss occurs in the process. This

verifies the reversible property of modulation.

4.2.4 Modulator 3: JP2Converter

JP2Converter is used to change the progression order of a JPEG 2000 image

(or its representation). It neither drops nor adds the representation’s packets, but merely

rearranges the packets according to the sought progression order. There is a strong

 Chapter 4. Modulation in JPEG 2000 117

resemblance between the JP2Converter’s process and the translation operation in the

data model (refer to Subsection 3.3.8). However, there is also a marked difference

between the two. It is stated before that the translation operation is never employed

without another adapting operation, but here JP2Converter is a stand-alone application.

The reasons of creating JP2Converter are given in the following paragraphs.

A change of progression order can have an effect on the image’s progressive

display. For an instance, if the LRCP (layer–resolution–component–position) progression

order is employed, the layer (L) attribute will be dominant since it is the outer-most

attribute in the progression order’s iterations. Hence, the progressive display of the image

will go from blurred to clear presentation; it exhibits the quality (SNR) scalability. On the

other hand, if the RLCP (resolution–layer–component–position) progression order is

employed, the resolution (R) attribute will be dominant and, therefore, the progressive

display of the image will go from coarse (due to its low resolution) to fine presentation; it

exhibits the resolution (spatial) scalability. So, the first reason of creating

JP2Converter is to give users the option to choose the preferable progressive display of

a JPEG 2000 image.

In the JPEG 2000 standard, generating representations and supplements hardly

requires an explicit translation application since JP2Selector can perform the

translation operation implicitly. An exception is if the component attribute is exploited. In

that case, the CPRL (component–position–resolution–layer) progression order must be

employed. Changing progression order involves processes – as we will see shortly – that

are completely different from the JP2Selector’s processes. Therefore, it would be

 Chapter 4. Modulation in JPEG 2000 118

better to build a separate application to change the progression order. This is the second

reason of creating JP2Converter.

Besides the image’s codestream, JP2Converter needs just one input parameter;

that is, the new (targeted) progression order. The following pseudo-code snippet outlines

its process.

/**/

/* JP2Converter: Re-arranging packets in different */

/* progression order */

/**/

// Input parameters:

// FD_img => the image’s file descriptor

// FD_tmp => temporary file descriptor

// PO_new => new progression order (PO)

WHILE (NOT End_Of_File(FD_img)) {

 // Packet denotes an image’s packet

 Packet = Read_Packet(FD_img);

 // With respect to the packet’s attributes, note its size

 // and the position of the temporary FD’s pointer

 Note_Size_And_Position(Packet, FD_tmp);

 // Output packets to temporary file descriptor

 Print_To_File(Packet, FD_tmp);

}

// Initialize variables for the new progression order

Initialize_New_PO(PO_new);

// Iterate the PO_new’s attributes

WHILE (Next_Iteration(PO_new)) {

 // With respect to the PO_new’s attributes,

 // get the associated packet’s size and position

 Size = Get_Packet_Size(PO_new);

 Position = Get_Packet_Position(PO_new);

 // Fetch the packet from temporary file descriptor

 Packet = Read_Packet_From_File(Size, Position, FD_tmp);

 // Output packets in new PO

 PRINT Packet;

}

 Chapter 4. Modulation in JPEG 2000 119

There are two iterations observed in the above code. The first iteration reads all of the

image’s packets and stores them to a temporary file. For each of the packets, the iteration

also takes notes of its size and its position in the temporary file and stores the information

in the memory. The sequence of packets in the first iteration is based on the old

progression order, stated in the COD marker segment (see Table 4.2). Employing the new

progression order, the second iteration determines one associated packet at a time,

retrieves its information (size and position) from the memory, fetches it from the

temporary file based on the information, and promptly outputs it. In addition to

rearranging the packets, JP2Converter also rectifies the progression order in the COD

marker segment with the new one. JP2Converter can also be applied to any image’s

representation; however, it cannot change the progression order of an image’s

supplement.

4.3 Related Work

Since the JPEG 2000 standard is a relatively new standard for image compression,

there are only a few JPEG 2000 applications available in the public domain. Commonly,

the applications deal with the creation or conversion of an image from one standard (out

of a range of standards) to the JPEG 2000 standard, and vice versa. Hence, the main

JPEG 2000 applications are the encoder (compressor) and decoder (decompressor), also

known as the JPEG 2000 codec. Raw, uncompressed image standards, such as PPM

(Portable Pixel Map) and PGM (Portable Grey Map), are often used as intermediaries in

 Chapter 4. Modulation in JPEG 2000 120

the image conversion. Instances of such applications can be found in JasPer
18

, JJ2000
19

,

and Kakadu
20

. They are software packages, each of which contains a collection of

applications mainly related to the JPEG 2000 standard. JasPer and JJ2000 are the formal

JPEG 2000 reference software, specified in Part 5 of the JPEG 2000 standard [ISO15444-

5]. The former is written in C, and the latter in Java. They are both available under open-

source type licensing, and their source code can be retrieved from their respective

Websites. Kakadu, on the other hand, is proprietary freeware, and therefore a license is

required to access its source code.

Alas, the collections of applications mentioned above do not support packet-based

processing, which can selectively retrieve certain packets of a JPEG 2000 image. With

respect to modulation, the packet-based processing is required to generate the JPEG 2000

image’s representations in a fast and efficient way. Actually, Kakadu includes an

application, called kdu_transcode, that can generate different image’s representations

in quality, resolution, and component aspects. However, the application seems to combine

and rearrange data in the image’s packets, particularly when it reduces the image’s

quality. Such kind of adaptation obviously takes more processing time. Our preliminary

study found that, compared to kdu_transcode, our modulator (JP2Selector) can

achieve 83–92% processing-time improvement in quality aspect, 44–70% in resolution

aspect, and 15–35% (64–71%, if CPRL is used as the progression order) in component

aspect.

18
 http://www.ece.uvic.ca/~mdadams/jasper

19
 http://jpeg2000.epfl.ch

20
 http://www.kakadusoftware.com

 Chapter 4. Modulation in JPEG 2000 121

Nevertheless, the major benefit of our JPEG 2000 modulators is the ability to

improve an image’s representation. This also demonstrates the reversible property of

modulation. To improve the representation, the targeted representation is determined, a

suitable supplement containing the missing image’s packets is then generated, and

eventually the entire packets of the representation and supplement are joined together to

construct the targeted representation. In the context of Web delivery, this feature may

reduce the bandwidth consumption and improve the client perceived latency.

This chapter has described the development of the JPEG 2000 modulators, which

closely follow the concepts and operations specified in the fine-grained, scalable data

model (in Chapter 3). The three resulting modulators are JP2Selector (used to generate

various representations and supplements of a JPEG 2000 image), JP2Joiner (used to

construct an improved representation by joining the prior representation and its suitable

supplement), and JP2Converter (used to change the progression order of a JPEG 2000

image or its representation). In the next chapter, modulation (the fast and scalable

adaptation) is evaluated in comparison with transcoding (the traditional adaptation). The

JPEG 2000 modulators developed in this chapter are employed in the evaluation, along

with some JPEG transcoders.

122

Chapter 5

Evaluation: Modulation vs. Transcoding

Modulation is characterized by fast adaptation, thanks to the simplicity of its process. To

verify this, in this chapter, modulation is compared and contrasted with transcoding, the

oft-cited multimedia adaptation. Modulation in the JPEG 2000 still image standard is

performed on one side, while transcoding in the JPEG image standard is performed on the

other. The results beyond doubt substantiate the superiority of modulation.

 Chapter 5. Evaluation: Modulation vs. Transcoding 123

5.1 Rationale of Using Two Different Image Standards

JPEG is comparable to JPEG 2000 in several aspects. Firstly, JPEG is by far the

commonly used standard in the Web to present natural images, and JPEG 2000 has

recently put a strong challenge to JPEG. Secondly, both standards support lossy

compression that reduces not only the image’s data-size but its quality as well. The

quality reduction in both standards can be adjusted easily, so they are suitable for

differentiated services in the Web. Chandra and Ellis [ChE99] utilized the quality value to

quantify the loss of information in transcoding a JPEG image. We will see shortly how

the quality reduction is done in JPEG 2000. Last but not least, both standards are royalty

and license-fee free – but not patent-free – so their proliferating use can be assured.

In the previous chapter, we have mentioned the reasons of implementing our

modulators in JPEG 2000. One of the reasons is JPEG 2000’s support of multiple types of

scalability. JPEG also supports scalability in quality and resolution, but its progressive

and hierarchical formats lack public support. We could not get the source code

implementing the JPEG hierarchical format; perhaps, because there are some patents

associated with it. So, we are more comfortable with modulating JPEG 2000. However, in

this evaluation we do not use JPEG 2000 for their transcoding counterparts. We have two

reasons to back our decision. Firstly, DWT (Discrete Wavelet Transform), the

compression method employed by JPEG 2000, is a complex process, much more complex

than DCT (Discrete Cosine Transform) which is employed by JPEG. Our preliminary

study shows that transcoding in JPEG 2000 is 7–8 times more delaying than that in JPEG;

in the study, transcoding JPEG images took between 0.5 and 2 seconds, whereas

 Chapter 5. Evaluation: Modulation vs. Transcoding 124

transcoding JPEG 2000 images took 4 to 16 seconds. Secondly, whatever image standard

is used will not change much the evaluation’s results here. What we want to evaluate is

mainly the contrasting techniques used in transcoding and modulation. While modulation

just drops parts of the image data with minimal computation, transcoding involves

complex computations like encoding and decoding, quantization and de-quantization,

compression and decompression, and the reduction of quality and/or resolution applied to

the raw image. In the end, we decided to use the JPEG 2000 image standard for

modulation and the JPEG image standard for transcoding.

5.2 Experimental Setup

In this first section, the adaptors (modulators and transcoders) used in the

experiments are discussed. After that, the creation of image test data is described.

5.2.1 Experimented Adaptors

The JPEG 2000 modulators – the development of which has been discussed in the

previous chapter – are employed for modulation. JP2Selector is the main application

to generate representations of a JPEG 2000 image. JP2Joiner is a supporting

application used to construct a high-fidelity representation from a low-fidelity one.

JP2Converter is used, only if necessary, to change the image’s progression order.

As for the counterpart, two different JPEG transcoding methods are employed.

The particulars of the two methods are as follows:

 Chapter 5. Evaluation: Modulation vs. Transcoding 125

1. Spatial-Domain Transcoding (SDT) – using the djpeg and cjpeg applications of the

Independent JPEG Group (IJG) library
21

 release 6b. The djpeg application is used to

decompress a JPEG image to a non-compressed image; in this case, to a PNM

(Portable aNyMap) image. Conversely, the cjpeg application is used to compress a

non-compressed image to a JPEG image.

2. Frequency-Domain Transcoding (FDT) – using our developed application called

jpegfdt. The core of this application is two transcoding modules. One is a module
22

,

devised by Surendar Chandra, which changes the JPEG compression metric

(determining the image’s quality) in the frequency domain. The other is a module

which scales down the image’s resolution also in the frequency domain; the module is

based on the approximate algorithm proposed by Natarajan and Vasudev [NaV95].

The former method operates in the spatial domain; it is a naive approach that

decompresses the image into the spatial domain, and later, compresses the spatial image

data back to the JPEG format after/with adaptation. The latter method operates in the

compressed (frequency) domain directly; the image is entropy decoded and de-quantized

to obtain its coefficients, the equivalent frequency-domain adaptation is then applied to

the coefficients, and finally, the modified coefficients are quantized and entropy encoded.

Supported adapting processes in the adaptors are reductions in quality, resolution,

and (color) component aspects. Not only can the adaptors execute adaptation in a

particular aspect at a time, but they too can execute it in multiple aspects simultaneously.

21
 http://www.ijg.org

22
 Source code: http://www.cse.nd.edu/~csesys/qat/source/transcode.c

 Chapter 5. Evaluation: Modulation vs. Transcoding 126

5.2.2 Image Test Data

Hawaii (actual res. 2097×1391)

Boat (actual res. 1976×2960)

Venice (actual res. 1055×1568)

Figure 5.1 The reference images for test data

Three images (in Figure 5.1) were employed in the experiments. The source

images are lossless, JPEG 2000 images obtained from the CD-ROM accompanying

Taubman and Marcellin’s book [TaM02]; those are boat4_2100.jp2 (1976×2960),

hawaii1_1500.jp2 (2097×1391), and venice1_1500.jp2 (1407×2091). The last

two images are quite similar in number of pixels. In the beginning, the images were

transformed into PPM (Portable Pixel Map) images using the jasper application of the

JasPer software package version 1.700.2. The last image (venice) was further

downsized 25% horizontally and vertically, hence its resolution became 1055×1568. The

 Chapter 5. Evaluation: Modulation vs. Transcoding 127

resulting images were called boat.ppm, hawaii.ppm, and venice.ppm. They were the

reference images for the subsequent image creation and processes.

Three JPEG images (i.e., boat.jpg, hawaii.jpg, and venice.jpg) were

created from the reference images using the cjpeg application of the above-mentioned

IJG library. To create the JPEG images, the quality parameter of the application was set

to 100 (the highest quality). The data-sizes of the resulting images are about 5 MB (to be

exact, 5,065,493 bytes), 2.4 MB (2,455,504 bytes), and 1.2 MB (1,258,420 bytes),

respectively.

Three JPEG 2000 images (i.e., boat.jp2, hawaii.jp2, and venice.jp2) were

also created from the reference images. This time, the kdu_compress application of

Kakadu software package version 3.4 was employed. The number of decomposition

levels, which determines the resolution (spatial) scalability, and the number of layers,

which determines the quality (SNR) scalability, can be specified during the images’

creation. The application provides parameters Clevels and Clayers to specify the number

of decomposition levels and the number of layers, respectively. The JPEG 2000 images

were created with the respective parameters set to 5 (the default value) and 10. The

default progression order, LRCP (layer–resolution–component–position), was not

changed. The intended data-size of a JPEG 2000 image can also be specified in the

application through parameter rate, which is given in bpp (bits per pixel). We tried to

make the JPEG 2000 images as comparable in data-size as possible to their JPEG

counterparts. Hence, the data-sizes of the previously created JPEG images were used as a

reference for governing the JPEG 2000 images’ data-sizes. For an instance, the

 Chapter 5. Evaluation: Modulation vs. Transcoding 128

5,065,493-byte data-size of boat.jpg is equal to 6.9284 bpp (= 5065493 bytes × 8

bits/byte ÷ [1976 pixels-width × 2960 pixels-height]). This value was set as the rate for

creating image boat.jp2. The rate values for creating images hawaii.jp2 and

venice.jp2 – 6.7345 and 6.0858 bpp, respectively – were determined in the similar

way. Further, the rate parameter can be used to control the quality rates – and the

associated data-sizes – of the image’s presentations having different numbers of layers.

This is a simple way to specify the quality reduction in a JPEG 2000 image: every time a

layer is removed from the image, the image presentation’s data-size is reduced by a

certain factor. For image boat.jp2, the reduction factor is 2; it means removal of a layer

will reduce the image’s data-size by half. The initial rate value, 6.9284 bpp, is the quality

rate of the full presentation (containing 10 layers) of image boat.jp2. We then need to

specify the quality rate of the lowest presentation (containing one layer only). Its quality

rate is 0.01353 bpp (= 6.9284 bpp ÷ 2
9
); where 2 is the reduction factor and 9 is the

number of layers that can be removed. Thus, we fed the rate parameter with the intended

highest and lowest quality rates of presentations in image boat.jp2, which were 6.2984

and 0.01353 bpp. [Note: the application can automatically determine the rates of other

presentations in between.] For images hawaii.jp2 and venice.jp2, the reduction

factors are 1.85 and 1.7, respectively. Correspondingly, the rate parameter was set with

6.7345 and 0.02653 bpp for image hawaii.jp2, and 6.0858 and 0.05132 bpp for image

venice.jp2. The data-sizes of the respective JPEG 2000 images are 5,065,561 bytes,

2,455,540 bytes, and 1,258,403 bytes.

 Chapter 5. Evaluation: Modulation vs. Transcoding 129

The JPEG and JPEG 2000 images were the test data used in the following

experiments. JPEG images were used as the test data for transcoding, while JPEG 2000

images the test data for modulation. In the subsequent section, the generation of both sets

of images’ representations by transcoding and modulation, respectively, is explained.

5.3 Generating Image Representations

As described earlier, there are two methods of transcoding a JPEG image. We

employed the two methods to generate representations of the JPEG images. Employing

the first method (SDT), each image was decompressed by djpeg and then re-compressed

by cjpeg with different quality parameter values. We used nine different quality values,

ranging from 90 to 10 (with a down step of 10), to generate the representations. The

second method (FDT) uses the jpegfdt application to transcode the images. Similar to

the first method, each image was transcoded with nine different quality parameter values,

from 90 to 10. So, for each of the experimented JPEG images, there were ten

representations – including the original image – resulting from each exercised method.

The JPEG images’ representations – generated by means of SDT and FDT – and

their corresponding data-sizes are listed in Table 5.1. In general, the lower the quality

value of the representation, the smaller is the representation’s data-size. Furthermore, the

representations resulting from FDT are smaller (by 15–26%) in data-size than those

resulting from SDT.

 Chapter 5. Evaluation: Modulation vs. Transcoding 130

Table 5.1 Representations of the JPEG images and their data-sizes

boat.jpg hawaii.jpg venice.jpg

Representation Data-Size
*

(SDT)

Data-Size
*

(FDT)

Data-Size
*

(SDT)

Data-Size
*

(FDT)

Data-Size
*

(SDT)

Data-Size
*

(FDT)

quality = 100 5,065,493 5,065,493 2,455,504 2,455,504 1,258,420 1,258,420

quality = 90 1,483,904 1,197,587 794,689 673,854 374,434 310,868

quality = 80 958,115 737,940 537,540 438,997 249,615 196,903

quality = 70 746,605 559,725 429,022 343,943 196,693 151,332

quality = 60 614,404 454,139 361,932 285,065 163,776 124,761

quality = 50 530,833 390,703 318,645 248,358 142,838 108,445

quality = 40 453,216 335,622 278,035 214,266 123,573 93,831

quality = 30 376,508 284,239 235,565 179,578 104,395 79,258

quality = 20 292,435 225,800 185,112 139,452 82,315 62,866

quality = 10 202,689 159,873 124,298 93,606 56,633 44,479

Note:
*
 in bytes

JP2Selector was employed to generate representations of the JPEG 2000

images. As a matter of fact, the representations have been predetermined during the

image’s creation; that is, by specifying the number of layers and the quality rates of the

resulting presentations. Since the number of layers in the images was ten, there were nine

representations we could generate when each image was modulated along quality

scalability. Accordingly, JP2Selector was applied to the images with different R_lyr

(number of reduced layers) parameter values, ranging from 1 to 9. In total, for each of the

experimented JPEG 2000 images, there were ten representations – including the original

image – resulting from this exercise.

The JPEG 2000 images’ representations and their corresponding data-sizes are

given in Table 5.2. As designed during the creation of the images and as seen in the table,

every time a layer was removed from the three JPEG 2000 images, the resulting

representations’ data-sizes were reduced by approximately 50%, 46%, and 41%.

 Chapter 5. Evaluation: Modulation vs. Transcoding 131

Table 5.2 Representations of the JPEG 2000 images and their data-sizes

boat.jp2 hawaii.jp2 venice.jp2
Representation

Data-Size
*
 Data-Size

*
 Data-Size

*

R_lyr = 0 5,065,561 2,455,540 1,258,403

R_lyr = 1 2,529,546 1,327,471 740,500

R_lyr = 2 1,264,125 717,521 434,745

R_lyr = 3 633,431 388,177 256,639

R_lyr = 4 316,433 210,156 150,657

R_lyr = 5 158,748 113,824 89,009

R_lyr = 6 79,570 61,554 52,603

R_lyr = 7 40,024 33,561 31,001

R_lyr = 8 20,256 18,338 18,435

R_lyr = 9 10,362 10,135 10,993

Note:
*
 in bytes

In the next two subsections, the image quality exhibited by both sets of images –

JPEG and JPEG 2000 – is assessed to verify JPEG 2000’s superiority over JPEG. Two

methods, which involve the test images’ representations, are employed for the

assessment. The first method measures the bit-rate performance of the test images. The

second method visually contrasts the low-quality representations of the test images.

5.3.1 Bit-Rate Performance

JPEG 2000 is claimed to offer better bit-rate performance than other existing

image standards [ChSE00], including JPEG. An image standard is superior in bit-rate

performance to another standard if it can carry more information than what the other can

have within the same amount of data. It also means that the superior standard gives more

compressed (smaller) data-size than what the other standard may produce without

compromising the image quality. In this sense, the bit-rate performance has a parallel

 Chapter 5. Evaluation: Modulation vs. Transcoding 132

meaning with the data compression; that is, better bit-rate performance implies better data

compression. Both terms may be used interchangeably for the rest of the section. In this

subsection, we examine the bit-rate performance of the representations resulting from

transcoding (SDT and FDT) the JPEG images and modulating the JPEG 2000 images.

The bit-rate performance of an image is determined by two factors, namely bit-

rate and quality. In fact, we have used the image bit-rate when creating the JPEG 2000

images in Subsection 5.2.2 (i.e., parameter rate). The bit-rate of an image can be attained

by dividing the data-size of the image (in bits) by the number of pixels in the image. The

quality of an image, on the other hand, can be attained by measuring the quality

difference (PSNR / peak signal to noise ratio) between the assessed image and its

reference image. Hence, to measure the image quality, we need the reference images (i.e.,

boat.ppm, hawaii.ppm, and venice.ppm), which are the origins of all images and

representations in the experiments. Note that the image quality measured here is different

from the quality value specified in generating a JPEG representation. The former results

from the actual pixel-by-pixel comparison between the assessed image and the reference

image, while the latter is the value used to determine the scale factor applied to the

quantization table – the effect of which is quality reduction – in JPEG compression.

For each image representation – of both JPEG and JEPG 2000 images – the image

bit-rate and image quality were assessed. The image bit-rate could be determined easily

since the data-size of each representation was known (refer to Table 5.1 and Table 5.2)

and so was the number of pixels in the representation. In contrast, the imgcmp application

(also from the JasPer software package version 1.700.2) had to be employed to determine

the image quality. The application compared each image representation with the reference

 Chapter 5. Evaluation: Modulation vs. Transcoding 133

image. Three PSNR values resulted from each assessment: one for the luminance

component (Y) and two for the chrominance components (Cb and Cr).

Figure 5.2 shows the results for the luminance component only. The horizontal

axis is the image data-size (in bits per pixel), and the vertical axis is the image quality (in

decibels). As shown in the figure, images of venice have higher quality than images of

hawaii and boat. Also, the JPEG images’ representations resulting from FDT have

slightly lower quality than those resulting from SDT. If the comparison is applied to

every two corresponding representations generated with the same quality value (i.e.,

representations of the same row in Table 5.1), the quality of FDT-based results is lower

by 0.5–3.2 dB than that of SDT-based results. However, if the evaluation is based on the

normalized data-size, it can be inferred that the quality of FDT-based results is lower by

0.1–0.9 dB. Nevertheless, FDT produces a smaller data-size than SDT.

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7
Data-Size (bpp)

P
S

N
R

 (
d

B
)

JP2-MOD (venice) JP2-MOD (hawaii) JP2-MOD (boat)

JPG-SDT (venice) JPG-SDT (hawaii) JPG-SDT (boat)

JPG-FDT (venice) JPG-FDT (hawaii) JPG-FDT (boat)

Figure 5.2 Bit-rate performance (luminance only)

 Chapter 5. Evaluation: Modulation vs. Transcoding 134

Clearly, representations of the JPEG 2000 images have better bit-rate performance

than those of the JPEG images. For the same normalized data-size, the quality of JPEG

2000 representations is 1.5–8.0 dB higher than that of JPEG representations. The JPEG

2000 standard is really a remarkable feat of image data compression technique. Further,

the bit-rate performance for all color components is detailed for each image in Figure

5.3(a)–(c).

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7
Data-Size (bpp)

P
S

N
R

 (
d

B
)

JP2-Y JPG-Y

JP2-Cb JPG-Cb

JP2-Cr JPG-Cr
20

25

30

35

40

45

50

0 1 2 3 4 5 6 7
Data-Size (bpp)

P
S

N
R

 (
d

B
)

JP2-Y JPG-Y

JP2-Cb JPG-Cb

JP2-Cr JPG-Cr
20

25

30

35

40

45

50

0 1 2 3 4 5 6 7
Data-Size (bpp)

P
S

N
R

 (
d

B
)

JP2-Y JPG-Y

JP2-Cb JPG-Cb

JP2-Cr JPG-Cr

(a) Boat (b) Hawaii (c) Venice

Figure 5.3 Bit-rate performance (all color components)

As seen in the latter figures, curves of the JPEG 2000 representations with respect

to the three color components (Y, Cb, and Cr) are all above those of the JPEG

representations. The JPEG 2000 luminance component (Y) takes about 35–55% data-size

of what the JPEG luminance component requires to acquire certain image quality.

Likewise, around 50–70% and 30–50% data-sizes of the JPEG chrominance components

(Cb and Cr, respectively) are required by the JPEG 2000 chrominance components to

bring in the same image quality.

The results are in agreement with the previous study [ChSE00]. The previous

study found that the JPEG 2000 image standard significantly outperforms the JPEG

 Chapter 5. Evaluation: Modulation vs. Transcoding 135

image standard in bit-rate performance. Likewise, here the images (representations)

resulting from modulating the JPEG 2000 images give better quality than those resulting

from transcoding the JPEG images. Further, we split each of the three JPEG 2000 images

into its components and found that the Y, Cb, and Cr components on average take 49%,

19%, and 32% of the image’s data-size. Based on the components’ shares and their

above-mentioned quality’s advantage over JPEG components, we may conclude that to

achieve the same image quality, we just need a JPEG 2000 image having at most 60%

data-size of its JPEG counterpart; often, less than a half data-size is adequate.

5.3.2 Visual Comparison

(a) JPEG (SDT): 160,107 bytes (b) JPEG (FDT): 159,873 bytes (c) JPEG 2000: 158,748 bytes

Figure 5.4 Representations of boat.jpg and boat.jp2 at 0.22 bpp (partial images)

It can even be visually evaluated in Figure 5.4(a)–(c) that, with a similar data-size

(i.e., 0.22 bpp), the modulated JPEG 2000 image offers better image quality than the

 Chapter 5. Evaluation: Modulation vs. Transcoding 136

transcoded JPEG images. The JPEG image on the left (a) resulted from spatial-domain

transcoding image boat.jpg with quality = 6, whereas the one on the centre (b) resulted

from frequency-domain transcoding the same image with quality = 10. The JPEG 2000

image (c) resulted from modulating image boat.jp2 with R_lyr = 5 (i.e., five layers

removed). For comparison’s sake, the resulting data-sizes of the corresponding

representations are provided below the images.

To show the details, only a part (200×400 pixels) of each representation is

presented in the figures. The partial images are focused on the same region; that is, the

farther boat on the left. As seen in the figure, the left and centre images exhibit the

characteristic blocking artefacts commonly found in a low-quality DCT-based image. In

addition, the centre image seems more blurred than the left image although it resulted

from transcoding with a higher quality value. This corroborates the previous finding that,

with respect to the same resulting data-size, FDT produces representations with lower

quality than those produced by SDT. The right image, the JPEG 2000 representation, does

not exhibit the blocking artefacts, and it is obviously the clearest among the three

representations. The data compression in the JPEG 2000 standard is indeed more

advanced than that employed by the JPEG standard.

The superior data compression in JPEG 2000 is one of the main reasons why it

has proliferated rapidly in recent years. Aside from its superior data compression, we can

be benefited from its scalability. As we will demonstrate shortly, using modulation’s

techniques to adapt a JPEG 2000 image, we can get much shorter processing times.

Please be mindful, however, that JPEG 2000 is used in the experiments just to illustrate

 Chapter 5. Evaluation: Modulation vs. Transcoding 137

modulation’s work and to reveal modulation’s benefits. Other scalable data formats can

surely get the same benefits from using modulation.

5.4 Processing Time

The objective of the following experiments is to corroborate our previous claim

that modulation is a fast adaptation. The processing time of executing modulation is thus

compared to that of executing transcoding. The same JPEG transcoders and JPEG 2000

modulators as mentioned earlier were employed in the experiments. All experiments were

executed on a 1.3 GHz Pentium 4 system, with 128 MB of RAM, and Fedora Core 2

Linux is used as the operating system. To obtain the processing time, the standard time
23

command of the Linux OS was put in front of every execution of transcoding and

modulating instructions. The experiments were conducted along three adapting attributes:

quality, resolution, and component. The next subsections detail the experimental results.

5.4.1 Adaptation in Quality Aspect

The two transcoding methods – SDT and FDT – were employed to generate

representations of images boat.jpg, hawaii.jpg, and venice.jpg with different

quality. For each representation’s generation, the processing time was determined. Table

5.3 presents the resulting processing times of transcoding (SDT and FDT) the JPEG

images in quality aspect. The results have been averaged from several runs.

23
 http://directory.fsf.org/GNU/time.html

 Chapter 5. Evaluation: Modulation vs. Transcoding 138

Table 5.3 Processing times of transcoding the JPEG images in quality aspect

boat.jpg hawaii.jpg venice.jpg

Representation Prc.Time
*

(SDT)

Prc.Time
*

(FDT)

Prc.Time
*

(SDT)

Prc.Time
*

(FDT)

Prc.Time
*

(SDT)

Prc.Time
*

(FDT)

quality = 90 2,318.1 1,234.0 1,168.3 612.3 630.8 328.0

quality = 80 2,187.2 1,155.1 1,107.2 573.4 594.6 308.3

quality = 70 2,131.9 1,123.6 1,082.4 557.6 582.2 300.4

quality = 60 2,092.0 1,104.3 1,065.7 549.2 571.2 295.8

quality = 50 2,070.8 1,093.0 1,053.7 540.9 565.7 293.2

quality = 40 2,048.4 1,082.4 1,042.5 535.6 561.2 290.3

quality = 30 2,024.7 1,073.5 1,031.8 528.7 556.1 287.7

quality = 20 2,001.1 1,061.7 1,016.7 520.9 548.8 285.1

quality = 10 1,977.5 1,047.6 998.7 513.0 541.0 281.0

Note:
*
 in milliseconds

The quality reduction in the JPEG standard is done by changing the quantization

tables as well as the image coefficients. In the SDT method, the image coefficients are

converted to the spatial domain, and then converted back to the frequency domain with

the new quantization tables. In the FDT method, the image coefficients are directly

multiplied by the ratio of the new to old quantization tables, so no conversion is required.

As a result and as noticed in the table, the processing times of generating FDT-based

representations are just about a half of generating their SDT-based counterparts.

Similarly, the JPEG 2000 modulator (JP2Selector) was used to generate the

boat.jp2’s, hawaii.jp2’s, and venice.jp2’s representations with different reduced

layers, and the processing times were recorded as well. In stark contrast to the transcoding

results above, modulation took much less time; at least, 97% and 94% faster than the

processing times of SDT and FDT, respectively. The complete processing times of

modulating the JPEG 2000 images in quality aspect are listed in Table 5.4. Like the

previous results, here the processing times have been averaged from several runs, too.

 Chapter 5. Evaluation: Modulation vs. Transcoding 139

Table 5.4 Processing times of modulating the JPEG 2000 images in quality aspect

boat.jp2 hawaii.jp2 venice.jp2
Representation

Prc. Time
*
 Prc. Time

*
 Prc. Time

*

R_lyr = 1 61.6 34.3 20.7

R_lyr = 2 43.5 26.0 16.3

R_lyr = 3 34.8 21.1 14.0

R_lyr = 4 30.1 19.0 12.2

R_lyr = 5 28.0 17.1 11.4

R_lyr = 6 26.9 16.7 11.0

R_lyr = 7 26.2 16.1 10.4

R_lyr = 8 26.0 16.0 10.1

R_lyr = 9 25.9 16.0 10.0

Note:
*
 in milliseconds

y = 0.2678x + 1926.2

y = 0.1784x + 1022.2

y = 0.0142x + 25.711

0

400

800

1200

1600

2000

2400

0

5
0

0

1
0
0

0

1
5
0

0

2
0
0

0

2
5
0

0

3
0
0

0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JPG-SDT

JPG-FDT

JP2-MOD

y = 0.2795x + 525.99

y = 0.1747x + 273.88

y = 0.0145x + 10.018

0

100

200

300

400

500

600

700

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JPG-SDT

JPG-FDT

JP2-MOD

y = 0.2511x + 971.92

y = 0.1709x + 498.26

y = 0.014x + 15.767

0

200

400

600

800

1000

1200

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0
0

0

1
2
0

0

1
4
0

0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JPG-SDT

JPG-FDT

JP2-MOD

(a) Boat (b) Hawaii (c) Venice

Figure 5.5 Data-size vs. processing time of the three adapting methods in quality aspect

To further contrast the processing times of transcoding and modulation, we put

them in the same graphs. For each respective image, both processing times (in Table 5.3

and Table 5.4) are plotted against their corresponding data-sizes (presented earlier in

Table 5.1 and Table 5.2, respectively) and the resulting graphs are depicted in Figure

5.5(a)–(c). As shown in the graphs, the processing times of modulation (curves JP2-

MOD) are well below the processing times of transcoding (curves JPG-SDT and JPG-

FDT). The graphs also show that the representations of the JPEG 2000 images are more

 Chapter 5. Evaluation: Modulation vs. Transcoding 140

distributed in data-size than those of the JPEG images; actually the distribution could be

predetermined when the images were created (i.e., the setting of the rate parameter).

Nevertheless, the most interesting finding is that all curves appear almost linear.

Therefore, we can assert that the processing times of generating the representations –

either by transcoding or modulation – correspond directly with the resulting data-sizes.

Due to their linearity, a trend-line can be fitted to the data of each curve. The equations of

the trend-lines are displayed next to the respective curves in Figure 5.5(a)–(c). The slope

of the trend-line indicates the increase rate of processing time. As an example, for the

image of boat (a), the increase rate of SDT’s processing time is 0.2678 milliseconds/

1,000 bytes. It means an increase of 1,000 bytes in the resulting data-size corresponds

with an increase of 0.2678 milliseconds in the processing time. To reduce the fractional

part, the increase rate can be normalized to a better measurement unit. The nanoseconds

per byte is used to denote the increase rate; thus, 0.2678 milliseconds/1,000 bytes = 267.8

nanoseconds/byte (ns/byte). In the figures, the increase rates of SDT’s processing time

range from 250 to 280 ns/byte, whereas the increase rates of FDT’s processing time are

between 170 and 180 ns/byte. The increase rates of modulation’s processing time, by

contrast, are just 14.0–14.5 ns/byte, which are 5.4% and 8.2% (on average) of the

respective increase rates of SDT’s and FDT’s processing times.

The trend-lines’ equations may also be used to predict the processing time of an

adaptation (either by a transcoding or modulating process), if the expected data-size is

known. For an instance, the processing times of generating representations of image boat

with the same data-size of 2,500,000 bytes by SDT, FDT, and modulation are about

2,596, 1,468, and 61 milliseconds, respectively. Prediction of the processing time may be

 Chapter 5. Evaluation: Modulation vs. Transcoding 141

useful for deciding whether an adaptation is beneficial or for selecting the best-fit (i.e.,

the most suitable) representation among several alternatives.

Recovering the JPEG 2000 images

Besides generating representations with reduced quality, modulation can be

employed to recover the original JPEG 2000 images. Recall that modulation is reversible.

Two operations are involved for the recovery. The first operation is to generate a suitable

supplement, and the second is to construct the original image by joining the

representation and the supplement. JP2Selector and JP2Joiner were employed for

the respective operations. We ran the experiments to recover images boat.jp2,

hawaii.jp2, and venice.jp2 from their representations, and the processing times are

presented in Table 5.5.

As shown in Table 5.5, the processing times of generating the supplements are

mostly higher than those of generating the representations (compare the processing times

in Table 5.5 column 4 and Table 5.4) since the data-sizes of the supplements are generally

bigger than those of the representations (compare also the data-sizes in Table 5.5 column

3 and Table 5.2). The more the number of removed layers in a representation (from the

representation at the top of the table to that at the bottom), the smaller is the data-size of

the representation, but the bigger is the data-size of the suitable supplement required to

recover the original image. This is reasonable and quite self-explanatory. On the other

hand, the processing times of constructing the original images from various

representations and supplements are quite steady at 37–38 ms for boat.jp2, 21 ms for

hawaii.jp2, and 13 ms for venice.jp2 (see the last column of Table 5.5).

 Chapter 5. Evaluation: Modulation vs. Transcoding 142

Table 5.5 Processing times of recovering the JPEG 2000 images in quality aspect

Image Representation
Supplement’s

Data-Size
*

Supplement’s

Prc. Time
+

Construction’s

Prc. Time
+

R_lyr = 1 2,536,081 61.7 37.4

R_lyr = 2 3,801,502 79.1 37.4

R_lyr = 3 4,432,196 87.7 38.0

R_lyr = 4 4,749,194 92.2 37.8

R_lyr = 5 4,906,879 94.6 38.0

R_lyr = 6 4,986,057 95.7 37.8

R_lyr = 7 5,025,603 96.1 37.9

R_lyr = 8 5,045,371 96.4 38.0

boat.jp2

R_lyr = 9 5,055,265 96.6 37.9

R_lyr = 1 1,128,135 31.8 21.0

R_lyr = 2 1,738,085 40.3 21.1

R_lyr = 3 2,067,429 45.3 21.1

R_lyr = 4 2,245,450 47.6 21.0

R_lyr = 5 2,341,782 48.9 20.9

R_lyr = 6 2,394,052 49.6 21.2

R_lyr = 7 2,422,045 50.1 21.0

R_lyr = 8 2,437,268 50.2 21.2

hawaii.jp2

R_lyr = 9 2,445,471 50.2 20.8

R_lyr = 1 517,969 17.4 12.9

R_lyr = 2 823,724 21.9 13.0

R_lyr = 3 1,001,830 24.7 12.9

R_lyr = 4 1,107,812 26.0 13.0

R_lyr = 5 1,169,460 26.9 13.1

R_lyr = 6 1,205,866 27.3 13.0

R_lyr = 7 1,227,468 27.6 13.0

R_lyr = 8 1,240,034 27.7 12.9

venice.jp2

R_lyr = 9 1,247,476 27.7 13.0

Note:
*
 in bytes;

+
 in milliseconds

The data overhead in the JPEG 2000’s modulation can be calculated by

subtracting the data-size of the original image from the total data-sizes of the coupled

representation and supplement. Of interest to note is that the data overheads for the three

 Chapter 5. Evaluation: Modulation vs. Transcoding 143

experimented JPEG 2000 images are the same, i.e., 66 bytes. The data overhead comes

from the supplement’s FLG, RPL, and COD marker segments.

For each image, we further analyzed the results in a graph by plotting the

processing times against the data-sizes. The graphs of analyzing different images are

shown in Figure 5.6(a)–(c). For comparison’s sake, the processing times of generating the

representations are included in the graphs; curves JP2-qlty-reps are re-drawn from curves

JP2-MOD of the graphs in Figure 5.5(a)–(c). The processing times of generating the

supplements are depicted by curves JP2-qlty-sups (in dotted line). The last curves, JP2-

qlty-rcvr, are the total processing times of recovering the images from different

representations. The total processing times come from adding the processing times of

generating the supplements and the processing times of constructing the original images

(the fourth and fifth columns of Table 5.5).

y = 0.0142x + 25.711

y = 0.0141x + 63.199

0

20

40

60

80

100

120

140

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JP2-qlty-reps
JP2-qlty-sups
JP2-qlty-rcvr

y = 0.014x + 15.767

y = 0.0141x + 37.005

0

10

20

30

40

50

60

70

80

0

5
0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JP2-qlty-reps
JP2-qlty-sups
JP2-qlty-rcvr

y = 0.0145x + 10.018

y = 0.0143x + 23.023

0

5

10

15

20

25

30

35

40

45

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0

0
0

1
2

0
0

1
4

0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JP2-qlty-reps
JP2-qlty-sups
JP2-qlty-rcvr

(a) Boat (b) Hawaii (c) Venice

Figure 5.6 Data-size vs. processing time of modulating the JPEG 2000 images in quality aspect

The graphs in Figure 5.6 show that curves JP2-qlty-reps and JP2-qlty-sups lie on

the same line. Indeed, both resulted from the same modulator, i.e., JP2Selector. Once

again they demonstrate that the processing times in modulation correspond directly with

 Chapter 5. Evaluation: Modulation vs. Transcoding 144

the resulting data-sizes. Curves JP2-qlty-rcvr are quite parallel to the other two curves.

Remind that these curves resulted from the sequential executions of two modulators:

JP2Selector and JP2Joiner. The trend-lines applied to curves JP2-qlty-rcvr have

similar slopes to the trend-lines applied to curves JP2-qlty-reps. Thus, the increase rates

of processing time in recovering the JPEG 2000 images (i.e., 14.1–14.3 ns/byte) are

equivalent to those in generating the images’ representations (i.e., 14.0–14.5 ns/byte). In

summary, the overall results verify the linearity of modulating operations, and in turn,

their simplicity (i.e., no involvement of any complex computation).

5.4.2 Adaptation in Resolution Aspect

The same three methods were compared and contrasted in adapting images in

resolution aspect. The djpeg+cjpeg and jpegfdt applications were used to adapt the

JPEG images, whereas the JP2Selector application was used to adapt the JPEG 2000

images. Table 5.6 shows the data-sizes and processing times of transcoding (SDT and

FDT) the JPEG images in resolution aspect, while Table 5.7 shows the data-sizes and

processing times of modulating the JPEG 2000 images in resolution aspect.

Different from the finding in quality aspect, here the representations resulting

from FDT are generally bigger in data-size than those resulting from SDT. The reason is

because the jpegfdt application employs an approximate downscaling algorithm which

may result in bigger image coefficients, and consequently, give a larger data-size. The

approximate algorithm is quite fast since it involves addition and shift operations only;

any multiplication operation is purposely avoided. The downside is that the image quality

 Chapter 5. Evaluation: Modulation vs. Transcoding 145

is compromised. In the experiments, we found that the quality of FDT-based

representations was up to 6.5 dB lower than that of SDT-based representations.

Table 5.6 Processing times of transcoding the JPEG images in resolution aspect

Image Representation
Data-Size

*

(SDT)

Prc.Time
+

(SDT)

Data-Size
*

(FDT)

Prc.Time
+

(FDT)

scale = 1/2 1,340,018 1,299.6 1,557,164 964.4

scale = 1/4 362,128 786.9 403,494 712.6 boat.jpg

scale = 1/8 98,052 485.3 92,727 643.2

scale = 1/2 742,132 637.1 845,026 467.0

scale = 1/4 218,079 381.0 236,306 341.2 hawaii.jpg

scale = 1/8 60,663 232.9 56,607 305.8

scale = 1/2 349,702 346.0 406,760 252.0

scale = 1/4 95,620 207.2 107,414 184.2 venice.jpg

scale = 1/8 27,813 126.5 26,971 165.4

Note:
*
 in bytes;

+
 in milliseconds

Table 5.7 Processing times of modulating the JPEG 2000 images in resolution aspect

boat.jp2 hawaii.jp2 venice.jp2
Representation

Data-Size
*
 Prc.Time

+
 Data-Size

*
 Prc.Time

+
 Data-Size

*
 Prc.Time

+

R_res = 1 2,403,166 59.5 1,150,789 32.1 607,484 19.0

R_res = 2 790,186 37.0 409,569 22.0 198,265 13.0

R_res = 3 236,283 29.3 129,049 18.0 61,478 11.0

R_res = 4 70,624 27.0 38,654 16.2 19,337 10.3

R_res = 5 21,923 26.2 11,436 16.0 6,262 10.1

Note:
*
 in bytes;

+
 in milliseconds

The results in Table 5.6 also show that the processing times of SDT are just a little

higher, on average, than those of FDT. Actually, the SDT method employed by the

djpeg application is not entirely run in the spatial domain. The downscaling process in

djpeg is carried out simultaneously with the inverse-DCT process; in fact the inverse-

DCT with downscaling process has less number of operations than the normal inverse-

 Chapter 5. Evaluation: Modulation vs. Transcoding 146

DCT. As a result, it just occupies a short delay to downscale a JPEG image. It is even

very simple to downscale the image by a scale of 1/8 since the necessary operation is just

to get the DC coefficient and divide it by 8 (eight). As seen in the table, for downscaling

by a scale of 1/8, the SDT method takes shorter processing times than the FDT method.

After the image data is downscaled and converted to the spatial domain, it is converted

back to the frequency domain by the cjpeg application. The largest part of the SDT

processing time is used to compress the image (i.e., execute the cjpeg application).

Once again, modulation demonstrates its superiority over transcoding. The

processing times of executing modulation (in Table 5.7) are much lower than those of

executing transcoding (in Table 5.6). The cost of modulation is 91–95% smaller than the

cost of transcoding. Figure 5.7(a)–(c) reveals more the modulation’s superiority.

y = 0.014x + 25.97

y = 0.219x + 623.47

0

200

400

600

800

1000

1200

1400

0

5
0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JPG-SDT

JPG-FDT

JP2-MOD

y = 0.0141x + 15.942

y = 0.205x + 293.57

0

100

200

300

400

500

600

700

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0

0
0

1
2

0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JPG-SDT

JPG-FDT

JP2-MOD

y = 0.0148x + 10.043

y = 0.2276x + 159.48

0

50

100

150

200

250

300

350

400

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JPG-SDT

JPG-FDT

JP2-MOD

(a) Boat (b) Hawaii (c) Venice

Figure 5.7 Data-size vs. processing time of the three adapting methods in resolution aspect

Curves JPG-SDT appear non-linear in Figure 5.7(a)–(c). Different downscaling

processes for different scaling factors in the djpeg application may cause the non-

linearity. In contrast, the other two curves – JPG-FDT and JP2-MOD – are quite linear.

Hence, the trend-lines can be fitted to both curves’ data. The equations of the trend-lines

 Chapter 5. Evaluation: Modulation vs. Transcoding 147

are displayed next to the respective curves. Similar to the previous graphs, the slope of

the trend-line indicates the increase rate of processing time. Thereby, the increase rates of

FDT’s processing time are 200–230 ns/byte, whereas those of modulation’s processing

time are just 14–15 ns/byte. Notice that the increase rates of modulation’s processing time

are consistent with the previous findings. The slopes of curves JP2-MOD in Figure

5.7(a)–(c) are comparable to those in Figure 5.5(a)–(c). Based on the equations, it may be

asserted that both curves are alike. This corroborates that the modulating processes in the

JP2Selector application for quality and resolution reduction are exactly the same.

Recovering the JPEG 2000 images

The JPEG 2000 images can also be recovered from the representations given in

Table 5.7. The JP2Selector and JP2Joiner applications were employed respectively

for generating the supplements and constructing the original images from the

corresponding representations and supplements. The supplements’ data-sizes and the

processing times resulting from the experiments are presented in Table 5.8. The

processing times of generating the supplements are also higher than those of generating

the representations due to the supplements’ bigger data-sizes. The processing times of

constructing the original images from various representations and supplements are also

steady, as seen in the last column of Table 5.8. The results are quite consistent with the

previous results in quality aspect (see Table 5.5). The data overhead for the modulation is

117 bytes, coming from the supplement’s FLG, RPL, SIZ, and COD marker segments.

When the processing times were plotted against the data-sizes, we discovered the

same findings as the previous analyses in quality aspect. It also proves the linearity and

 Chapter 5. Evaluation: Modulation vs. Transcoding 148

simplicity of modulating operations. The plotted graphs can be found in Figure 5.8(a)–(c)

(in the next subsection). In the graphs, curves JP2-resl-reps are reproduced from curves

JP2-MOD of the graphs in Figure 5.7(a)–(c), curves JP2-resl-sups (in dotted line) denote

the processing times of generating the supplements, and curves JP2-resl-rcvr denote the

total processing times of recovering the original images. Notice the similar slopes of

curves JP2-resl-reps (14 ns/byte) and JP2-resl-rcvr (14–15 ns/byte). Notice also the

closeness of curves JP2-resl-rcvr in the graphs to those in Figure 5.6(a)–(c). This shows

the similarity of their processes, albeit the adapting attributes are different.

Table 5.8 Processing times of recovering the JPEG 2000 images in resolution aspect

Image Representation
Supplement’s

Data-Size
*

Supplement’s

Prc. Time
+

Construction’s

Prc. Time
+

R_res = 1 2,662,512 62.7 38.0

R_res = 2 4,275,492 85.5 38.1

R_res = 3 4,829,395 93.3 38.2

R_res = 4 4,995,054 95.4 38.0

boat.jp2

R_res = 5 5,043,755 96.1 38.2

R_res = 1 1,304,868 33.9 21.0

R_res = 2 2,046,088 44.2 21.1

R_res = 3 2,326,608 48.3 21.0

R_res = 4 2,417,003 49.1 21.0

hawaii.jp2

R_res = 5 2,444,221 50.0 21.2

R_res = 1 651,036 19.2 13.0

R_res = 2 1,060,255 25.0 13.0

R_res = 3 1,197,042 26.9 13.0

R_res = 4 1,239,183 27.4 13.0

venice.jp2

R_res = 5 1,252,258 27.6 13.0

Note:
*
 in bytes;

+
 in milliseconds

 Chapter 5. Evaluation: Modulation vs. Transcoding 149

5.4.3 Adaptation in Component Aspect

Finally, we come to the last adapting attribute, the color component. The three

adapting methods – SDT, FDT, and modulation – were also experimented in component

aspect. There was only one representation resulting from transcoding (SDT or FDT) a

JPEG image. The resulting image was grayscale since the luminance (luma) component

was kept but the chrominance (chroma) components were dropped. The resulting data-

sizes and processing times of generating the JPEG images’ representations by SDT and

FDT are presented in Table 5.9. In contrast, two representations resulted from modulating

a JPEG 2000 image. One representation was obtained by dropping one chroma

component, the other was obtained by dropping two chroma components. The resulting

data-sizes and processing times of modulating the JPEG 2000 images in component

aspect are presented in Table 5.10. Remind that the R_cmp parameter contains the flag-

bits of the removed components.

Table 5.9 Processing times of transcoding the JPEG images in component aspect

Image Representation
Data-Size

*

(SDT)

Prc.Time
+

(SDT)

Data-Size
*

(FDT)

Prc.Time
+

(FDT)

boat.jpg grayscale 3,537,044 1,891.0 3,525,507 1,348.8

hawaii.jpg grayscale 1,776,010 930.2 1,765,952 642.4

venice.jpg grayscale 907,397 510.0 902,729 351.0

Note:
*
 in bytes;

+
 in milliseconds

Table 5.10 Processing times of modulating the JPEG 2000 images in component aspect

boat.jp2 hawaii.jp2 venice.jp2
Representation

Data-Size
*
 Prc.Time

+
 Data-Size

*
 Prc.Time

+
 Data-Size

*
 Prc.Time

+

R_cmp = 2
2
 3,312,387 194.5 1,728,796 103.2 871,215 58.7

R_cmp = 2
2
+2

1
 2,431,367 182.1 1,221,116 96.1 614,940 55.1

Note:
*
 in bytes;

+
 in milliseconds

 Chapter 5. Evaluation: Modulation vs. Transcoding 150

As shown in Table 5.9, the processing times of FDT are lower than those of SDT.

Actually the process of transcoding a JPEG image in component aspect is quite simple. In

the SDT method, the djpeg application just decompresses the luma component and omits

the chroma components, and then the cjpeg application re-compresses the image data.

Likewise, in the FDT method, the jpegfdt application selects the image coefficients

associated with the luma component and encodes them directly. The difference between

the two transcoding methods is that the FDT method need not convert the image

coefficients to the spatial domain; as a result, the FDT method is faster by 30%.

Modulating a JPEG 2000 image in component aspect requires two operations: 1)

converting the image’s progression order to CPRL (component–position–resolution–

layer), and 2) removing some color components from the image. Recall that there is a

condition attached to modulating a JPEG 2000 image in component aspect that the CPRL

progression order must be employed. The first operation was carried out by

JP2Converter, while JP2Selector was employed for the second operation. Although

two modulating applications were used to generate the representations, modulation still

took shorter processing times than transcoding (SDT and FDT alike). Comparing the

results in Table 5.10 (the last row) and Table 5.9, the modulation’s processing times are

90% and 85% faster than the SDT’s and FDT’s counterparts, respectively. The

modulation’s processing times here are quite high compared to the same processing times

in quality and resolution aspects. This is mainly attributed to the JP2Converter’s

process, which scans all of the image’s packets twice to rearrange them. If the progression

order of the image is already CPRL, of course, the JP2Converter’s involvement will

not be required, and the resulting processing times will be much lower. In the

 Chapter 5. Evaluation: Modulation vs. Transcoding 151

experiments, the progression orders of all JPEG 2000 images were deliberately set to

LRCP (layer–resolution–component–position) in order to test all of the modulators.

Recovering the JPEG 2000 images

The original JPEG 2000 images can also be recovered from representations

resulting from modulation in component aspect. For this purpose, in the experiments, all

three JPEG 2000 modulators were used. Firstly, JP2Converter was used to convert the

progression order of the images to CPRL. JP2Selector was then used to generate the

suitable supplements. Lastly, JP2Joiner was used to construct the original images from

the corresponding representations and supplements. The supplements’ data-sizes and the

processing times resulting from the experiments are presented in Table 5.11. In the table,

the supplement’s processing times (the fourth column) signifies the execution time of

JP2Converter and JP2Selector together.

Table 5.11 Processing times of recovering the JPEG 2000 images in component aspect

Image Representation
Supplement’s

Data-Size
*

Supplement’s

Prc. Time
+

Construction’s

Prc. Time
+

R_cmp = 2
2
 1,753,220 172.0 38.1

boat.jp2
R_cmp = 2

2
+2

1
 2,634,240 184.3 38.1

R_cmp = 2
2
 726,790 89.1 21.0

hawaii.jp2
R_cmp = 2

2
+2

1
 1,234,470 96.2 21.0

R_cmp = 2
2
 387,234 51.9 13.0

venice.jp2
R_cmp = 2

2
+2

1
 643,509 55.5 13.0

Note:
*
 in bytes;

+
 in milliseconds

Compared to the previous results in quality and resolution aspects, the

supplements’ processing times in component aspect are also higher (compare Table 5.11

with Table 5.5 and Table 5.8). Again, this is attributed to the JP2Converter’s process.

 Chapter 5. Evaluation: Modulation vs. Transcoding 152

On the contrary, the construction’s processing times are equal to the corresponding results

in quality and resolution aspects. The data overhead for the modulation in component

aspect is 46 bytes, which comes from the supplement’s FLG marker segment.

y = 0.014x + 185.62

y = 0.0141x + 147.88

y = 0.014x + 25.97

y = 0.0141x + 63.207

0

40

80

120

160

200

240

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JP2-comp-reps JP2-resl-reps

JP2-comp-sups JP2-resl-sups
JP2-comp-rcvr JP2-resl-rcvr

y = 0.014x + 79.022

y = 0.014x + 99.936

y = 0.0141x + 15.942

y = 0.014x + 36.599

0

20

40

60

80

100

120

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JP2-comp-reps JP2-resl-reps

JP2-comp-sups JP2-resl-sups
JP2-comp-rcvr JP2-resl-rcvr

y = 0.014x + 46.462

y = 0.014x + 59.46

y = 0.0148x + 10.043

y = 0.014x + 23.114

0

10

20

30

40

50

60

70

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

JP2-comp-reps JP2-resl-reps

JP2-comp-sups JP2-resl-sups
JP2-comp-rcvr JP2-resl-rcvr

(a) Boat (b) Hawaii (c) Venice

Figure 5.8 Data-size vs. processing time of modulating the JPEG 2000 images

in resolution and component aspects

The plotting of the processing times against the data-sizes is displayed in Figure

5.8(a)–(c). The plotted graphs of modulating the images in component aspect are shown

at the top of the figures (note: at the bottom are the plotted graphs of modulating the

images in resolution aspect). As noticed in the graphs, curves JP2-comp-reps and JP2-

comp-rcvr have similar slopes; the indicated increase rates of processing time of the two

curves are about 14 ns/byte. In addition, the curves appear quite parallel to the curves

belonging to the modulation in resolution aspect (notice their similar slopes); it also

means that they are also parallel to the curves belonging to the modulation in quality

aspect (see Figure 5.6(a)–(c)). Thus, the previous assertion is still upheld that modulating

operations are quite linear, simple, and apparently fast.

 Chapter 5. Evaluation: Modulation vs. Transcoding 153

5.5 Concluding Remarks

The JPEG 2000 standard is superior to the JPEG standard in data compression.

The experimental results show that, to attain the same image quality, a JPEG 2000 image

needs at most 60% the data-size of a JPEG image. Further, JPEG 2000’s superiority over

JPEG can be visibly observed in a low-quality image. While the JPEG low-quality image

exhibits the characteristic blocking artefacts, the JPEG 2000 counterpart does not.

Executing modulation takes much less time than executing transcoding. Some

experiments were conducted by measuring the processing times required to execute

modulation and transcoding (SDT and FDT) in quality, resolution, and component

aspects. In quality aspect, executing modulation is at least 30 and 16 times faster than

executing transcoding – SDT and FDT, respectively. In resolution aspect, the processing

time of modulation is 11–20 times smaller than that of transcoding. In component aspect,

modulation is faster than transcoding by a factor of 10 and 6.5 – SDT and FDT,

respectively – albeit several modulators were involved.

The increase rates of processing time may further indicate the characteristics of

modulation and transcoding. The increase rates of transcoding’s processing time vary in

different aspects and are found to be over 170 ns/byte in the experiments. By contrast, the

increase rates of modulation’s processing time are steady at 14–15 ns/byte. This is

attributed to the linearity and simplicity of modulating operations. Modulation just selects

or drops the image’s packets, and hence, no complex computation is involved.

More importantly, it has been demonstrated that, by modulation, the original

images can be recovered from their representations. The recovery process is efficient (i.e.,

 Chapter 5. Evaluation: Modulation vs. Transcoding 154

the data overhead is minimal) and consistent with modulation’s linearity. Also, this

corroborates our claim that modulation is reversible.

This chapter has shown the benefits of modulation, which is characterized as fast,

efficient, and reversible. These characteristics are very beneficial if applied to the Web

content delivery. Just imagine the gains that we may obtain if any Web object can be

modulated easily. Meanwhile, the multimedia trend also tells us that more scalable

(modulation-friendly) data-formats will come out in the near future. To serve a client’s

request, an object’s representation can be generated as easily as taking part(s) of the

object. Later on, if the client wants a better representation of the object, only the

necessary part(s) of the object is (are) delivered. Putting a caching proxy between the

server and the client can further increase the object’s reusability since the object now may

be shared among many clients. Thereby, the Internet bandwidth can be reasonably

consumed and the client perceived latency can be much improved. However, a new

framework in Web content delivery is required to exploit modulation’s benefits. The

following chapters discuss how to accommodate modulation in the existing Web content

delivery.

155

Chapter 6

Framework for Pervasive Web
Content Delivery

The fine-grained, scalable data model, proposed in Chapter 3, is the fundamental aspect

of the future Web content delivery. As indicated in Chapter 5, modulation – the content

adaptation based on the data model – is very beneficial to the delivery of Web content.

However, modulation requires some modifications on the existing Web content delivery.

This chapter presents the framework which can exploit modulation’s benefits to its

fullest. It begins with a comparison of two adapting approaches: proxy- and server-based

adaptation. Different kinds of scenarios are further evaluated. At the end of the chapter,

the proposed framework is discussed and its elements are detailed.

 Chapter 6. Framework for Pervasive Web Content Delivery 156

6.1 Proxy- vs. Server-Based Adaptation

To deploy pervasive Web content delivery, the content providers have to deal with

heterogeneous clients. For a Web object, various representations (variants) are needed to

serve the clients. The representations can be generated either offline or online. As

exposed in Section 1.2, the offline approach is space-consuming, rigid, and difficult to

maintain. It is unfavorable to the content providers. The online approach, on the other

hand, involves on-demand adaptation to serve each client with a particular representation

of the Web object. Since the online approach is the ultimate choice, adaptation is essential

for deploying pervasive Web content delivery.

Now we face another decision-making task with regard to the location where

adaptation should take place. Initially we have three options for the location: server,

proxy, or client. Although currently some browsers can perform adaptation, many client

devices do not have the capability – due to lack of resources or applications – to adapt a

Web object. Moreover, if the Web objects are adapted at the client side, the client will

suffer not only the transmitting time of the full objects but also the delay of adapting the

objects; in short, no time gain is obtained. Therefore, we set aside the option of adapting

the Web objects at the client side.

Proxy-based (both forward and reverse proxies) adaptation offers technical and

economical benefits. The proxy can help reduce the server’s load particularly in adapting

Web objects. In addition, adaptation can be extended more easily at the proxy than it is at

the server. Even if a new adapting method cannot be installed in the existing proxy, a new

proxy can always be set up without much difficulty. It is also more efficient to apply

 Chapter 6. Framework for Pervasive Web Content Delivery 157

adaptation at the proxy because the proxy runs and adapts on behalf of many servers, and

therefore, a less number of installations are required. Furthermore, the cost of running the

adapting proxy may be shared by many parties. Due to the proxy’s dependency on other

servers and proxies, running adaptation at the proxy may also speed up the

standardization drive. More benefits may be attained if the proxy is equipped with a

caching system. In that case, some Internet traffic may be avoided and the response time

may be shortened.

On the other hand, employing server-based adaptation, the content provider can

maintain its control over its Web objects. Since the content provider knows exactly which

aspects of each object need to be presented to the clients, it can adapt the objects without

losing essential information. Thereby, the end-to-end semantics of the Web objects can be

preserved between the server and the clients. In addition, by performing adaptation at the

server, the gain resulting from the reduced response time may be higher than the gain

obtained if the adaptation is done at the proxy. Adaptation usually has the effect of

reducing the object’s data-size, so that the transmitting time – and consequently, the

response time – can be cut down. It is plausible that transmitting a smaller, adapted object

consumes less time than transmitting the original object, and certainly, the earlier the

adaptation takes place (at the server rather than at the proxy) is the better. However, some

adapting processes are quite complex and resource-consuming, so they may cause a

burden to the server. Alternatively, a surrogate may be placed in front of the server to

help with the adaptation.

Clearly, each of the two approaches above has its advantages as well as

disadvantages. The server-directed transcoding (SDT) [Mog01, KnLM03] has been

 Chapter 6. Framework for Pervasive Web Content Delivery 158

proposed to get benefits of both the proxy-based and server-based approaches. In SDT,

the adaptation is done by the proxy under the server’s direction. In this fashion, the

technical and economical benefits from the proxy-based approach are attained, while the

end-to-end semantics of the Web objects is duly preserved.

6.2 Evaluation of Adapting Approaches

In order to find out which one of the approaches is best suited to deploy pervasive

Web content delivery, let us evaluate analytically all of the possible approaches. The

analytical model used here follows closely the model proposed by Han et al. [HaBL98],

and it is presented in Figure 6.1. Suppose the Web object to be distributed is an image of

data-size S. When the image is adapted, the resulting representation has the data-size of

Srep. The original image resides in the Web server. The image or its representation is

transmitted to the Web client via the caching proxy. The effective bandwidth on the

server-proxy link is Bsp, whereas the effective bandwidth on the proxy-client link is Bpc.

Web ServerCaching ProxyWeb Client

Bandwidth
Bsp

Bandwidth
Bpc

Image Size
S

Image Size
Srep

Figure 6.1 Analytical model of pervasive Web content delivery

As mentioned before and also in the previous chapters, the objective of adaptation

is to reduce the Web object’s data-size, in addition to addressing the client device’s

 Chapter 6. Framework for Pervasive Web Content Delivery 159

limitations. The reduction is sometimes necessary to overcome different bandwidths and

delays of the communication media stretching between the server and the client. By

reducing the object’s data-size, the overall response time is expected to be shorter than

the time required to fetch the original object. Hence, the response time of fetching the

original image from the server becomes the benchmark that other response times have to

beat. The response time measured here starts the moment a TCP connection is initiated

and ends when the last TCP packet is received by the client.

Figure 6.2 Timeline for fetching the original image from the server

Figure 6.2(a) – taken from Chi et al.’s paper [ChC02] – shows the TCP packets

transmitted among the client, the proxy, and the server. Packets 1–3 are respectively

SYN, SYN/ACK, and ACK packets, which constitute the three-way handshake in

establishing a TCP connection between the client and the proxy. Packet 4 is the client’s

HTTP request for the image. Packets 5–7 again constitute the three-way handshake, but

now between the proxy and the server. Packet 8 is the client’s HTTP request that the

proxy passes on to the server. Packets 9 and 10 are the first and the last packets of the

Client Client Proxy Proxy Server Server

RTTpc

RTTsp

�

S/Bsp
S/Bpc

�
�

�
�

�

�
�

	

(a) Bpc > Bsp (b) Bpc < Bsp

 Chapter 6. Framework for Pervasive Web Content Delivery 160

server’s HTTP response, which carries the requested image; there are likely other packets

between packets 9 and 10.

Suppose Ro is the response time of fetching the original image from the server

without adaptation and assuming that the server-proxy link is slower than the proxy-client

link (which is a typical case), we may formulate Ro – based on the timeline presented in

Figure 6.2(a) – as follows

 ()

sp

sppco

B

S
RTTRTTR +⋅+⋅= 22i (1)

RTTpc is the roundtrip time between the client and the proxy; that is, the time required to

send a packet back and forth between the client and the proxy. Likewise, RTTsp is the

roundtrip time between the proxy and the server. Since Bsp (the bandwidth on the server-

proxy link) is less than Bpc (the bandwidth on the proxy-client link), the proxy receives

the image’s packets more slowly than it may send. As depicted in Figure 6.2(a), the

overall speed of transmitting the packets is determined by Bsp. On the other hand, if Bsp is

greater than Bpc, as depicted in Figure 6.2(b), the proxy receives the entire image’s

packets much earlier and needs to buffer them. So, the transmission of some of the

packets is delayed at the proxy due to the slower proxy-client link. The overall speed of

transmitting the packets is instead determined by Bpc, and therefore, Ro needs be re-

formulated as follows

 ()

pc

sppco

B

S
RTTRTTR +⋅+⋅= 22ii (2)

Combining equations (1) and (2), we get the generic response time of fetching the

original image from the server without adaptation; that is,

 Chapter 6. Framework for Pervasive Web Content Delivery 161

()sppc

sppco

BB

S
RTTRTTR

,min
22 +⋅+⋅= (3)

Now we are ready to analyze the two adapting approaches: proxy- and server-

based. In the following subsections, two different scenarios are examined. The first

scenario is when the image is requested for the first time; that is, no representation of the

image can be found in the proxy’s cache. The second scenario is when a particular

representation of the image exists in the proxy’s cache, and the cached representation may

be used to serve the current client request, either fully or partly.

6.2.1 Scenario 1: First-Time Delivery

In the following analyses, assume that the adaptation takes the same amount of

time whether it is executed at the proxy or at the server. When a client requests for the

image from the proxy and the proxy does not have any representation of the image in its

cache, the request is passed on to the server. The server may send the original image to

the proxy for adaptation, and the proxy sends the adapted image to the client.

Alternatively, the server may adapt the image by itself and send the representation to the

client via the proxy. These two different approaches are depicted in Figure 6.3.

If the adaptation is done at the proxy, the transmission of the original image –

from the server to the proxy – may take a long time. However, the long transmission of

the image may be compensated by the following transmission of the adapted image –

supposedly smaller in data-size than the original image – from the proxy to the client. As

depicted in Figure 6.3(a), the response time of delivering for the first time the image

adapted by the proxy is as follows

 Chapter 6. Framework for Pervasive Web Content Delivery 162

 ()
pc

rep
repd

sp

sppc
fst
p

B

S
SSD

B

S
RTTRTTR +++⋅+⋅= ,22 (4)

Srep is the data-size of the adapted image, which is smaller than S. The delay of adapting

the image is indicated by Dd(S, Srep); the subscript ‘d’ signifies a downscaling operation,

by which a lower-fidelity representation can be obtained. In modulation, this is done by

the selection operation. As denoted by the operation’s input parameters, the adaptation

delay depends on the input and output images’ data-sizes. The smaller the input and/or

output image’s data-size, the smaller is the adaptation delay, and vice versa. As a matter

of fact, the adaptation delay also depends on many other factors such as the image’s data-

type, resolution, number of blocks, and the adapting parameters applied to the image. The

later section will discuss in more detail how to predict the adaptation delay.

Figure 6.3 Timeline for the first-time delivery of the adapted image

If shortening the response time is the objective of the adaptation, then o
fst
p RR <

must be satisfied. As asserted by Han et al. [HaBL98], the condition may be fulfilled only

Client Proxy Server

RTTpc

RTTsp

S/Bsp

Srep/Bpc

Dd(S,Srep)
Srep/min(Bpc,Bsp)

Dd(S,Srep)

Client Proxy Server

(a) Proxy-based (b) Server-based

 Chapter 6. Framework for Pervasive Web Content Delivery 163

if Bpc < Bsp. [Comparing equations (1) and (4), when Bpc > Bsp, it is always the case that

o
fst
p RR > .] Hence, the adaptation’s objective can be attained if

 ()
sppc

rep
repd

B

S

B

SS
SSD −

−
<, (5)

The first term on the right-hand side of inequality (5) denotes the benefit of transmitting

the adapted image over transmitting the original image on the proxy-client link. The

second term on the right-hand side, by contrast, denotes the cost of transmitting the

original image on the server-proxy link. Thus, the inequality basically says that, in order

to attain the adaptation’s objective, the delay of adapting the image should be less than

the benefit gained from transmitting the adapted image.

If the adaptation is done at the server, the object transmitted to the proxy, and

subsequently to the client, is indeed the adapted image. Since the adapted image is

smaller in size than the original image, the response time here is correspondingly smaller

than the response time of delivering the original image (Ro). As depicted in Figure 6.3(b),

the response time of delivering for the first time the image adapted by the server is as

follows

 ()
()sppc

rep
repdsppc

fst
s

BB

S
SSDRTTRTTR

,min
,22 ++⋅+⋅= (6)

In this case, if the same objective is to be attained, then o
fst

s RR < must be

satisfied. Replacing fst
sR and Ro with equations (6) and (3), respectively, the objective’s

inequality becomes as follows

 ()
()sppc

rep
repd

BB

SS
SSD

,min
,

−
< (7)

 Chapter 6. Framework for Pervasive Web Content Delivery 164

Similar to inequality (5), this inequality also says that the adaptation’s objective can be

attained if the delay of adapting the image is less than the benefit gained from

transmitting the adapted image. While the benefit in inequality (5) only comes from

transmitting the adapted image on the proxy-client link, the benefit in inequality (7)

comes from the overall transmission, not just on the particular proxy-client link. In

addition, inequality (5) has a condition attached that Bpc < Bsp must be satisfied, whereas

inequality (7) does not have any other condition. Apparently, inequality (7) is easier to

attain than inequality (5).

We may further evaluate the proxy-based and server-based approaches by

comparing equations (4) and (6). If Bpc < Bsp, it is always the case that fst
s

fst
p RR > since

() ()
()

0

,min
,,

>

>+

+>++

sp

pc

rep

pc

rep

sp

sppc

rep
repd

pc

rep
repd

sp

B

S

B

S

B

S

B

S

BB

S
SSD

B

S
SSD

B

S

Likewise, if Bpc > Bsp, then

() ()
()

0

,min
,,

>+
−

>+

+>++

pc

rep

sp

rep

sp

rep

pc

rep

sp

sppc

rep
repd

pc

rep
repd

sp

B

S

B

SS

B

S

B

S

B

S

BB

S
SSD

B

S
SSD

B

S

Thus, fst
pR is always greater than fst

sR in any condition. In conclusion, the server-based

approach is more beneficial than the proxy-based one in delivering the adapted image for

the first time.

 Chapter 6. Framework for Pervasive Web Content Delivery 165

6.2.2 Scenario 2: Subsequent Delivery

For subsequent delivery, assume that a representation of the image has been stored

in the proxy’s cache. The cached image’s representation may be used to serve a

subsequent client request for the same image, particularly in the case of modulation. It is

also possible to serve the request directly from the server like what is done before in the

first-time delivery, but serving the request with the cached representation may further

shorten the response time since it may exclude the server in the image delivery, as shown

in Figure 6.4(a).

Figure 6.4 Timeline for the subsequent delivery of the adapted image

Actually there are two possibilities of making use of the representation cached in

the proxy. The first possibility is when the cached representation can fully serve the client

request. This is indeed the situation depicted in Figure 6.4(a). In this case, the response

time can be expressed as follows

 () ()
pc

rep
repcacdpc

ssq
p

B

S
SSDRTTR ++⋅= ,2full (8)

Client Proxy Server

RTTpc

RTTsp

Srep/Bpc

Dd(S,Ssup)

Client Proxy Server

(a) Proxy-based (full-contentment) (b) Proxy-based (partial-contentment)

Ssup/Bsp
Du(Srep)

Srep/Bpc

Dd(Scac,Srep)

 Chapter 6. Framework for Pervasive Web Content Delivery 166

Since the server is not involved in the delivery, no connection is set up between the proxy

and the server. Notice also that the delay of adapting the image depends on the data-sizes

of the cached representation (Scac) as the input and the resulting representation (Srep) as

the output. This adaptation delay is less than the delay of generating the requested

representation from the original image (S), since Scac ≤ S. Moreover, the adaptation delay

can be discarded if the cached representation is actually the requested representation; that

is, no adaptation is required. To attain the adaptation’s objective, the response time of this

full-contentment scheme (()fullssq
pR) should be less than the response time of fetching the

original image (Ro). The relevant inequality is expressed as follows

 ()

()

()

⋅+−<>

⋅+
−

<<

<

sp

pc

rep

sp

repcacdsppc

sp

pc

rep
repcacdsppc

o
ssq
p

RTT
B

S

B

S
SSDBB

RTT
B

SS
SSDBB

RR

2,, if

2,, if
full (9)

As mentioned earlier, one of the possible challenges that the Web content delivery has to

overcome is the different media bandwidths. However, the challenge may bring benefit,

too, as demonstrated here in this scheme. In the upper case of inequality (9), if Bpc << Bsp

(Bpc is very much less than Bsp), the value on the right-hand side of the inequality gets

bigger. Similarly, in the lower case, if Bpc >> Bsp (Bpc is very much greater than Bsp), the

value on the right-hand side of the inequality gets bigger. Either way, the smaller the

representation’s data-size (Srep), the bigger is the value on the right-hand side of the

inequality. When the value on the right-hand side of the inequality gets bigger, the

scheme’s benefit increases. Apparently, the adaptation’s objective is pretty attainable in

the full-contentment scheme, so long as the adaptation itself is not really delaying.

 Chapter 6. Framework for Pervasive Web Content Delivery 167

The second possibility of reusing the representation cached in the proxy is when

the cached representation can only partly serve a subsequent client request. This is a

unique case found only in modulation. In this case, the requested representation is more

sophisticated than the cached one. A supplement is thus required from the server to

enhance the cached representation. Receiving the supplement, the proxy joins it with the

cached representation to obtain the requested representation. So, there are two adapting

processes involved. The first adapting process is the generation of the supplement at the

server, and the second is the join of the cached representation and the supplement at the

proxy. As depicted in Figure 6.4(b), the response time of this scheme is as follows

 () () ()
pc

rep
repu

sp

sup
supdsppc

ssq
p

B

S
SD

B

S
SSDRTTRTTR ++++⋅+⋅= ,22part (10)

Dd(S, Ssup) is the delay of generating the supplement; remind that in modulation the delay

of generating a supplement is exactly the same as that of generating a representation.

Since Ssup < Srep, this adaptation delay is less than the delay of generating the requested

representation. On the other hand, Du(Srep) is the delay of joining the cached

representation and the supplement; the subscript ‘u’ denotes an upscaling operation, by

which a higher-fidelity representation can be obtained. The adaptation delay of the join

operation is determined by the data-size of the resulting representation (Srep); this will be

elaborated in the later section. Employing the partial-contentment scheme is more

beneficial than fetching the original image if the following conditions are satisfied.

 ()

() ()

() ()

−
−

<+>

−
−

<+<

<

pc

rep

sp

sup
repusupdsppc

sp

sup

pc

rep
repusupdsppc

o
ssq
p

B

S

B

SS
SDSSDBB

B

S

B

SS
SDSSDBB

RR

,, if

,, if
part (11)

 Chapter 6. Framework for Pervasive Web Content Delivery 168

Similar to the full-contentment scheme before, the partial-contentment scheme benefits

from the different bandwidths between the proxy-client and server-proxy links. In the

upper case of inequality (11), the scheme’s benefit (i.e., the value on the right-hand side

of the inequality) increases if Bpc << Bsp. Likewise, the scheme’s benefit increases in the

lower case if Bpc >> Bsp. When the data-size of the requested representation or that of the

supplement gets smaller, the scheme’s benefit increases, as well. Although it is not as

good as the full-contentment scheme, the partial-contentment scheme can still be

beneficial.

Both schemes depicted in Figure 6.4 employ the proxy-based approach. If the

server-based approach is employed to serve the subsequent client request, the situation is

not different from the server-based, first-time delivery of the adapted image; the timeline

of which is shown in Figure 6.3(b) and its response time is expressed in equation (6).

Now let us compare the response times of the proxy-based (full- and partial-contentment)

and server-based approaches in serving the subsequent client request. Comparing

equations (8) and (6), we get

() ()
()

() ()

() ()()

() ()

() ()()

() ()[]SSSSDSSD

RTT
B

S

B

S
SSDSSD

RTT
B

S
SSD

B

S
SSD

BB

RTTSSDSSD

RTT
B

S
SSD

B

S
SSD

BB

RTT
BB

S
SSD

B

S
SSD

cacrepdrepcacd

sp

pc

rep

sp

rep
repcacdrepd

sp

sp

rep
repd

pc

rep
repcacd

sppc

sprepcacdrepd

sp

pc

rep
repd

pc

rep
repcacd

sppc

sp

sppc

rep
repd

pc

rep
repcacd

≤≤

⋅+

−+−<

⋅++<+

>

⋅+−<

⋅++<+
<

⋅++<+

 since , ,,:Note

2,,0

2,,

 if

2,,0

2,,
 if

2
,min

,,

 Chapter 6. Framework for Pervasive Web Content Delivery 169

The evaluation shows that ()fullssq
pR is always less than fst

sR . It means that the full-

contentment, proxy-based approach is more beneficial than the server-based approach.

However, it is totally different when equations (10) and (6) are compared; the

result below may not be as obvious as above.

() () ()
()

() () ()

() () ()()

() () ()

() () ()()

() ()[]repsuprepdsupd

supdrepdrepu

pc

rep

sp

rep

sp

sup

sp

rep
repd

pc

rep

sp

sup
repusupd

sppc

supdrepdrepu

sp

sup

pc

rep
repd

pc

rep

sp

sup
repusupd

sppc

sppc

rep
repd

pc

rep
repu

sp

sup
supd

SSSSDSSD

SSDSSDSD
B

S

B

S

B

S

B

S
SSD

B

S

B

S
SDSSD

BB

SSDSSDSD
B

S

B

S
SSD

B

S

B

S
SDSSD

BB

BB

S
SSD

B

S
SD

B

S
SSD

<<

−+

−−

++++

>

−+

++++

<

++++

 since , ,,:Note

,,

,,

 if

,,

,,

 if

,min
,,

><

><

><

><

><

As revealed by the evaluation, () fst
s

ssq
p RR ><

part means that the response time of the

partial-contentment, proxy-based approach could be less than, equal to, or greater than

that of the server-based approach. In the upper case (Bpc < Bsp), the partial-contentment,

proxy-based approach will be more beneficial than the server-based approach if the data-

size of the supplement gets smaller. The smaller supplement decreases the delay of

generating the supplement (Dd(S, Ssup)), and therefore, increases the total benefit on the

right-hand side of the inequality. In the same time, the smaller supplement also decreases

the cost of delivering the supplement from the server to the proxy (Ssup ⁄ Bsp), as suggested

by the left-hand side of the inequality. Similarly, in the lower case (Bpc > Bsp), the smaller

the supplement’s data-size, the more beneficial is the partial-contentment, proxy-based

approach than the server-based approach. In addition, if Bpc >> Bsp (Bpc is very much

 Chapter 6. Framework for Pervasive Web Content Delivery 170

greater than Bsp), the terms in the brackets at the left-hand side of the inequality gets

bigger, and hence the benefit of the proxy-based approach increases, too. Comparing the

left-hand sides of both upper and lower cases, we can assert that the partial-contentment,

proxy-based approach is more beneficial when Bpc > Bsp (the lower case).

Considering the overall possible schemes (full- and partial-contentment), it can be

inferred that the proxy-based approach is more beneficial than the server-based one in

serving the subsequent client request, although in some cases the server-based may be

more beneficial.

The evaluations presented in this section show that the server-based approach is

beneficial in some adaptation’s cases, but in other cases the proxy-based approach is more

beneficial. Generally, the server-based approach is more beneficial in serving the first-

time client request for the Web object, whereas the proxy-based approach is more

beneficial in serving the subsequent client request (assuming that there is an object’s

representation available and reusable in the proxy’s cache). This finding is a key

determinant in building the proposed framework for pervasive Web content delivery.

Before discussing the proposed framework, as indicated before, the next section discusses

how the delay of adapting an image is predicted.

6.3 Prediction of Adaptation Delay

The delay of adapting a Web object may contribute considerably to the overall

response time in serving a client request. That is why predicting the adaptation delay is

 Chapter 6. Framework for Pervasive Web Content Delivery 171

important. In agreement with the model shown in Figure 6.1, this section tries to predict

the delay of the image adaptation. The JPEG transcoding (FDT) and the JPEG 2000

modulation – described and exploited in the previous chapters – are used as illustrations.

The prediction is confined to the image adaptation in quality aspect.

As mentioned earlier, the delay of adapting an image depends on many factors,

which can be classified into four groups as follows:

1. The input image’s attributes, such as: data-size, data-type, resolution (width × height),

number of color components, number of blocks, etc.

2. The output image’s attributes, such as: data-size, data-type, resolution, etc.

3. The adapting parameters, such as: type of adaptation, expected quality of the result,

downscaling factor, etc.

4. The implementation issues, such as: efficiency and optimization of the implemented

algorithm, CPU’s speed of the machine where the adaptation is executed, etc.

Among the factors mentioned above, we are interested in examining some of them which

can significantly affect the adaptation delay. The factors mentioned in point 4 are

disregarded since they vary widely; instead we evaluate the same adapting applications in

a single machine without considering their efficiency or whether they are optimal. Since

only the image adaptation in quality aspect is considered in this examination, most of the

adapting parameters (in point 3) can be dropped, too. In the previous chapter, the results

of transcoding a JPEG image and modulating a JPEG 2000 image have shown that there

is a strong correlation between the output data-size and the adaptation delay (i.e.,

processing time). This is indicated by the linear appearances of the resulting curves. Other

significant factors may be the input image’s attributes such as its data-size, resolution,

 Chapter 6. Framework for Pervasive Web Content Delivery 172

and number of blocks; the number of color components is not affected by the image

adaptation in quality aspect.

Two types of adapting operations are analyzed in the following subsections. The

first is the downscaling operation (denoted as Dd in the previous section); this can be

analyzed in transcoding as well as in modulation. The second is the upscaling operation

(denoted as Du in the previous section), which is exclusive to modulation only.

6.3.1 Adaptation Delay in a Downscaling Operation

The following experiments were conducted to understand which factors

considerably determine the delay of the image adaptation in a downscaling operation

(with respect to modulation, it is also known as the selection operation). Using some

images obtained from the CD-ROM accompanying Taubman and Marcellin’s book

[TaM02], the JPEG and JPEG 2000 images were created for the test data. The same

methodology explained in Subsection 5.2.2 was used to create the JPEG and JPEG 2000

images. For each of the image standards, ten different images – varied in width and height

– were created. The JPEG images were created first, and then, the JPEG 2000 images

were created using the associated JPEG images’ data-sizes as references; therefore, the

associated JPEG and JPEG 2000 images had similar data-sizes. Table 6.1 shows the

particulars of the test data.

For each of the JPEG images, the number of DCT blocks is calculated and

presented under the JPEG header in Table 6.1. The number of DCT blocks is determined

by counting the number of 8×8-pixel blocks in a JPEG image. Likewise, for each of the

 Chapter 6. Framework for Pervasive Web Content Delivery 173

JPEG 2000 images, the number of packets and the number of code-blocks are calculated

and displayed under the JPEG 2000 header in the table. There is not much variation in the

number of packets since the JPEG 2000 images have the same numbers of color

components and layers, so only the different numbers of decomposition levels determine

the number of packets. The number of code-blocks in a JPEG 2000 image, on the other

hand, is more complex to calculate. As the default resolution of the code-block is 64×64

pixels, the number of code-blocks is determined by counting the number of 64×64-pixel

blocks in each decomposition level.

Table 6.1 Test data for predicting the adaptation delay in a downscaling operation

JPEG JPEG 2000

Image
Width

(pixels)

Height

(pixels)
Data-Size

(bytes)

DCT

Blocks

Data-Size

(bytes)
Packets

Code-

Blocks

Boat 1,976 2,960 5,065,493 91,390 5,065,266 180 46,140

Wharf 2,944 1,966 4,689,377 90,528 4,689,348 180 44,700

Flower 1,418 1,825 2,653,184 40,762 2,653,069 180 22,080

Hawaii 2,097 1,391 2,455,504 45,762 2,455,510 180 23,820

Yosemite 1,551 1,045 1,544,959 25,414 1,544,947 180 15,240

Venice 1,055 1,568 1,258,420 25,872 1,258,309 180 15,240

Bath 1,054 704 786,216 11,616 786,083 150 6,990

NewYork 706 1,029 574,491 11,481 574,541 150 6,930

Rome 353 528 181,841 2,970 181,917 120 2,130

Eiffel 351 526 163,095 2,904 163,077 120 2,130

The experiments were executed by reducing the JPEG images’ quality and

reducing the JPEG 2000 images’ number of layers. For each adaptation, its processing

time was duly noted. Furthermore, each adaptation was executed several times and the

recorded processing times were averaged from those several runs.

 Chapter 6. Framework for Pervasive Web Content Delivery 174

0

200

400

600

800

1000

1200

1400

0 500 1000 1500
Output Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

boat (R2=0.9993)

wharf (R2=0.9968)

flower (R2=0.9968)

hawaii (R2=0.9933)

yosemite (R2=0.9962)

venice (R2=0.9965)

bath (R2=0.9947)

newyork (R2=0.9965)

rome (R2=0.9921)

eiffel (R2=0.9915)

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000
Input Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

Qty-90 (R2=0.9990)

Qty-80 (R2=0.9988)

Qty-70 (R2=0.9985)

Qty-60 (R2=0.9985)

Qty-50 (R2=0.9983)

Qty-40 (R2=0.9982)

Qty-30 (R2=0.9983)

Qty-20 (R2=0.9982)

Qty-10 (R2=0.9981)

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000
Resolution (1,000 pixels)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

Qty-90 (R2=0.9901)

Qty-80 (R2=0.9911)

Qty-70 (R2=0.9913)

Qty-60 (R2=0.9922)

Qty-50 (R2=0.9925)

Qty-40 (R2=0.9924)

Qty-30 (R2=0.9920)

Qty-20 (R2=0.9918)

Qty-10 (R2=0.9911)

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100
No. of DCT Blocks (1,000 blocks)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

Qty-90 (R2=0.9905)

Qty-80 (R2=0.9915)

Qty-70 (R2=0.9917)

Qty-60 (R2=0.9925)

Qty-50 (R2=0.9929)

Qty-40 (R2=0.9928)

Qty-30 (R2=0.9924)

Qty-20 (R2=0.9922)

Qty-10 (R2=0.9915)

Figure 6.5 Processing-times of transcoding JPEG images in quality aspect vs. indicated factors

For the experiments with the JPEG images, the outcomes are drawn against four

indicated factors: output data-size, input data-size, resolution (width × height), and

number of DCT blocks. The resulting graphs are shown in Figure 6.5. For each group of

data-points in the graphs, a trend-line is plotted and its coefficient of determination (R
2
) is

figured out. The coefficient of determination gives us the percentage of the explained

variation (i.e., the trend-line) compared to the total variation of the data-points; quite

 Chapter 6. Framework for Pervasive Web Content Delivery 175

simply, it indicates the linearity of the data-points (scale 0 to 1, with 1 indicating very

linear). The coefficients of determination are attached to the respective data-point groups

in the graph’s legend. Now let us analyze one by one the graphs in Figure 6.5.

In the first graph (top-left), the processing times are drawn against the output data-

sizes. The data-points are grouped according to their input images (e.g., boat, wharf,

flower, and so on). As seen in the graph, the trend-lines have quite similar slopes; they

appear parallel to each other. The bigger the input image’s data-size, the higher is its

trend-line’s position in the graph. In the remaining graphs, the processing times are drawn

against the input data-sizes (top-right), the resolutions (bottom-left), and the numbers of

DCT blocks (bottom-right). The data-points are grouped according to their targeted

quality values, ranging from 90 to 10. The trend-lines in the graphs seem converging,

where the trend-line of a higher quality value’s group has a steeper slope. In all four

graphs, the coefficients of determination are considerably high (above 99%), suggesting a

strong correlation between the processing time and each of the four indicated factors. The

input data-size and the output data-size seem to be the most influential factors since their

average coefficients of determination are higher than those belonging to the other two

factors (i.e., resolution and number of DCT blocks).

The processing times of modulating the JPEG 2000 images are also drawn against

four indicated factors: output data-size, input data-size, resolution, and number of code-

blocks. Figure 6.6 shows the resulting graphs. Like what is done to the previous graphs,

the trend-lines are plotted and the coefficients of determination are figured out in the

graphs.

 Chapter 6. Framework for Pervasive Web Content Delivery 176

0

20

40

60

80

100

0 1000 2000 3000 4000
Output Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

boat (R2=1)

wharf (R2=1)

flower (R2=0.9999)

hawaii (R2=0.9999)

yosemite (R2=0.9994)

venice (R2=0.9987)

bath (R2=0.9968)

newyork (R2=0.9927)

rome (R2=0.9074)

eiffel (R2=0.8848)

0

20

40

60

80

100

0 2000 4000 6000
Input Data-Size (1,000 bytes)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

9 Layers (R2=0.9994)

8 Layers (R2=0.9990)

7 Layers (R2=0.9988)

6 Layers (R2=0.9984)

5 Layers (R2=0.9981)

4 Layers (R2=0.9976)

3 Layers (R2=0.9970)

2 Layers (R2=0.9966)

1 Layer (R2=0.9962)

0

20

40

60

80

100

0 2000 4000 6000
Resolution (1,000 pixels)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

9 Layers (R2=0.9915)

8 Layers (R2=0.9916)

7 Layers (R2=0.9926)

6 Layers (R2=0.9933)

5 Layers (R2=0.9934)

4 Layers (R2=0.9920)

3 Layers (R2=0.9925)

2 Layers (R2=0.9924)

1 Layer (R2=0.9924)

0

20

40

60

80

100

0 10 20 30 40 50
No. of Code-Blocks (1,000 blocks)

P
ro

c
e

s
s

in
g

 T
im

e
 (

m
s

)

9 Layers (R2=0.9941)

8 Layers (R2=0.9945)

7 Layers (R2=0.9955)

6 Layers (R2=0.9959)

5 Layers (R2=0.9956)

4 Layers (R2=0.9958)

3 Layers (R2=0.9959)

2 Layers (R2=0.9961)

1 Layer (R2=0.9964)

Figure 6.6 Processing-times of modulating JPEG 2000 images in quality aspect vs. indicated factors

Drawing the processing times against the output data-sizes (the top-left graph)

gives parallel trend-lines, too. While the trend-lines of the first four images have very

high coefficients of determination (almost 100%), the coefficients of determination

deteriorate in the trend-lines of the last four images. This is because in the smaller-sized

images the differences of processing times between two adjacent data-points are so small

(i.e., less than 1 ms) that they cannot be distinguished definitely. Also of interest to note is

 Chapter 6. Framework for Pervasive Web Content Delivery 177

that the trend-line of image hawaii.jp2 is above that of image flower.jp2, albeit

their input data-sizes should indicate the opposite tendency. It seems there is another

factor affecting the results. We speculate that the other factor is the number of code-

blocks since image hawaii.jp2’s number of code-blocks is greater than that of image

flower.jp2 (kindly refer to the last column of Table 6.1). In the remaining graphs, the

data-points are grouped according to the resulting numbers of layers, ranging from 9 to 1.

Drawing the processing times against input data-sizes (the top-right graph), resolutions

(the bottom-left graph), and the numbers of code-blocks (the bottom-right graph) results

in convergent trend-lines. Generally the coefficients of determination in all four graphs

are very high (above 99%), except for the trend-lines of the last two images in the top-left

graph. Thus, there is a strong correlation between the processing time and each of the four

indicated factors. The most influential factors seem to be the input data-size, the output

data-size, and the number of code-blocks.

It can be inferred from the results of the JPEG transcoding (FDT) and the JPEG

2000 modulation above that the delay (i.e., processing time) of adapting an image by

means of a downscaling operation in quality aspect is mainly determined by the input

image’s and output image’s data-sizes, besides other lesser factors like the image’s

number of blocks (either DCT blocks or code-blocks) and resolution. This corroborates

our claim in the previous section (notice the input parameters of operation Dd).

 Chapter 6. Framework for Pervasive Web Content Delivery 178

6.3.2 Adaptation Delay in a Upscaling Operation

The analysis here is exclusive to modulation since transcoding operations are not

reversible. Modulation in the JPEG 2000 standard is again used for illustration purpose.

To enhance a JPEG 2000 image’s representation, application JP2Joiner – which carries

out the upscaling operation – is employed. Image boat.jp2, which creation has been

described in Subsection 5.2.2, was used as the test data in the experiments. Of the image,

nine representations could be generated, each of which had a particular number of

(quality) layers ranging from 1 to 9. Each representation was then enhanced by different

but fitting supplements, and as a result, different representations were produced. The

representation and each of the supplements were combined by application JP2Joiner,

and the processing times were noted. The resulting adaptation delays (i.e., processing

times) presented in Table 6.2 have been averaged from several runs.

Table 6.2 Processing times of enhancing various representations of image boat.jp2

Targeted Rep.
Origin Rep.

L=2 L=3 L=4 L=5 L=6 L=7 L=8 L=9 L=10

Layer = 1 3.0 ms 3.3 ms 4.0 ms 5.0 ms 6.4 ms 9.0 ms 14.1 ms 22.0 ms 37.9 ms

Layer = 2 N/A 3.3 ms 4.0 ms 5.0 ms 6.5 ms 9.0 ms 14.1 ms 22.1 ms 38.0 ms

Layer = 3 N/A N/A 4.0 ms 5.0 ms 6.3 ms 9.1 ms 14.0 ms 22.1 ms 37.9 ms

Layer = 4 N/A N/A N/A 5.0 ms 6.6 ms 9.0 ms 14.1 ms 22.1 ms 37.8 ms

Layer = 5 N/A N/A N/A N/A 6.4 ms 9.1 ms 14.0 ms 22.0 ms 38.0 ms

Layer = 6 N/A N/A N/A N/A N/A 9.0 ms 14.0 ms 22.0 ms 37.8 ms

Layer = 7 N/A N/A N/A N/A N/A N/A 14.0 ms 22.0 ms 38.0 ms

Layer = 8 N/A N/A N/A N/A N/A N/A N/A 22.0 ms 37.4 ms

Layer = 9 N/A N/A N/A N/A N/A N/A N/A N/A 37.4 ms

Note: N/A = Not Applicable

 Chapter 6. Framework for Pervasive Web Content Delivery 179

The first column of Table 6.2 lists the image boat.jp2’s representations that

were enhanced by the suitable supplements. Each representation is identified by the

number of layers it has. The remaining columns are the resulting representations, each of

which is identified by the contained number of layers, as well. Hence, the join operations

are to enhance the representations on the first column (labeled as the origin

representations) to become the representations indicated by the headers of the remaining

columns (labeled as the targeted representations). Some operations are marked “not

applicable” in the table as they cannot be done.

As observed in the table, the adaptation delays are similar for the join operations

in the same column. It means that the adaptation delays depend on the targeted

representations. In other words, the delay of adapting an image by means of an upscaling

operation in quality aspect is determined by the output data-size. Once more, this finding

confirms our claim in the previous section (notice the input parameter of operation Du).

Although adapting an image in other aspects (i.e., resolution, color component,

etc.) is not examined here, by learning from the experiments above and in the previous

chapter, it is likely that the image adaptation in other aspects would yield similar results.

Understanding the determining factors can help predict the adaptation delay. More

realistically, if the trend-line’s equation of an adapting process can be figured out, the

adaptation delay can be easily determined.

 Chapter 6. Framework for Pervasive Web Content Delivery 180

6.4 Proposed Framework

In order to serve Web clients with heterogeneous devices and varied preferences,

a supplementary framework to the existing Web content delivery is required. The

framework should be able to deliver Web contents to the heterogeneous clients effectively

and efficiently. The fundamental element of the framework is the fine-grained, scalable

data model, which has been discussed and detailed in Chapter 3. Employing the data

model, a Web object can be adapted in a simple manner and in a short time. In addition,

the data model supports high data reuse, in which not only can the object’s representation

– resulting from an adaptation – be used to serve the subsequent client requests for either

the same or a lower-fidelity representation but it can also be used to construct a higher-

fidelity representation. Based on the data model, the novel adaptation – called modulation

– has further been illustrated and evaluated using the JPEG 2000 image standard in

Chapters 4 and 5.

The proposed data model and adaptation might not be that useful unless they are

supported by a new paradigm in the Web content delivery. The new paradigm involves

re-defining the server’s and proxy’s roles in serving the client requests. Thus,

modifications on the current system architecture are inevitable.

6.4.1 System Architecture

The findings in Section 6.2 have revealed that the server-based adaptation is more

beneficial in serving the first-time client request, whereas the proxy-based adaptation is

more beneficial in serving the subsequent client request. To gain the most benefits for all

 Chapter 6. Framework for Pervasive Web Content Delivery 181

parties involved, it is best if the origin server and the proxy can collaborate in delivering

the adapted Web objects. If the adaptation is done by the origin server only, the delivery

of the adapted Web object may not be efficient since the adaptation’s result may not be

used to serve other client requests and, therefore, the adaptation may have to be done for

every request. On the other hand, adapting a Web object at the proxy without the original

server’s involvement may diminish the object’s semantics. Hence, collaboration between

the server and the proxy is the best way to address the problems. Depending on the

circumstances, the adaptation may be carried out either by the server or by the proxy.

PROXY SERVER

Web

Contents
Cache

Downscaling
Modules

Downscaling
Modules

Upscaling
Modules

Upscaling
Modules

Downscaling

Modules

Downscaling

Modules

Transcoding

Modules

Transcoding

Modules

CLIENT

Rendering
Applications
Rendering

Applications

Object’s Properties

Server Directions &

Policies

Client Constraints &

Preferences

Proxy-Client

Network Condition

Server-Proxy

Network Condition

Figure 6.7 System architecture of pervasive Web content delivery

Figure 6.7 shows the proposed system architecture for delivering Web contents to

heterogeneous clients. The supporting factors of pervasive Web content delivery, listed in

Section 2.4, are taken into consideration in building the system architecture. In general, it

does not differ much from the current system architecture. The client sends a request for a

particular representation of a Web object to the original server via the proxy. Initially

 Chapter 6. Framework for Pervasive Web Content Delivery 182

there is no representation of the Web object found in the proxy’s cache. Hence, the proxy

passes the client request on to the server. The server replies to this first-time client request

by generating the requested representation of the Web object and sending it back to the

proxy. The proxy then stores the representation in its cache while simultaneously passing

the representation on to the requesting client. For the subsequent client requests, asking

for the same Web object, the representation in the proxy’s cache can be used to serve

them, perhaps with additional data from the server to enhance the representation.

The challenge in the system architecture is how and which party determines the

best-fit representation of a Web object for a particular client. To address this challenge,

Knutsson et al. [KnLM03] have clarified the roles of the three parties involved in the

content adaptation; their roles are as follows

• The origin server controls the semantics of the adapted content.

• The client controls the presentation of the adapted content.

• The proxy controls the resources used for adaptation, caching, and network traffic.

Slightly different from the Server-Directed Transcoding proposed by Knutsson et al., in

our proposed system architecture, the proxy – as opposed to the server – is the decision

maker, although the server still gives its directives. The proxy collects the server’s and the

client’s directives – in addition to other information like network traffic’s condition – and

then decides on the best-fit representation of the Web object for the corresponding client.

Based on the decision, the proxy subsequently serves the client by reusing the cached

representation, if one exists and if possible, or by consulting the server. This is where the

collaboration between the server and the proxy is brought into play.

 Chapter 6. Framework for Pervasive Web Content Delivery 183

The adapting modules and the meta-data involved in the system architecture are

elaborated further in the following subsections.

6.4.2 Adapting Modules

Since the server is involved in the adaptation, it is equipped with downscaling

modules. The downscaling modules are used to reduce the building blocks (i.e.,

fragments, layers, packets, or units) of a Web object. Referring to the data model in

Chapter 3, the downscaling modules comprise the selection, inverse-selection, and

translation operations. Hence, the server can generate various representations as well as

supplements of the Web object. Some Web objects may not need to be adapted and can

be sent out directly, as depicted by the left arrow coming out from the Web Contents in

the system architecture.

The proxy stores the representation of the Web object in its cache (depicted by the

right arrow coming in to the proxy’s Cache in the system architecture). The cached

representation may be used to serve the following requests for the same Web object.

There are three possibilities of serving the cached representation to the clients:

1. The cached representation may be sent out as it is. In that case, the cached

representation is already the best-fit representation for the requesting client (depicted

by the left arrow coming out from the Cache).

2. The cached representation may need to be enhanced to fulfill the client request.

Hence, upscaling modules are required by the proxy to construct the enhanced

representation. The upscaling modules comprise the join and, perhaps, translation

 Chapter 6. Framework for Pervasive Web Content Delivery 184

operations. As depicted in the system architecture, the associated supplement –

generated by the server’s downscaling modules – is fetched from the origin server and

combined with the cached representation using the proxy’s upscaling modules.

3. A lower-fidelity representation than the cached one may be requested by the client.

The cached representation, therefore, is downscaled by executing one or more

downscaling modules at the proxy.

Remind that modulation is an exclusive process (kindly refer to Section 3.4). It is possible

that the client device is not equipped with the application to render the scalable data-

format, so the proxy may still need transcoding modules to convert the data-format.

However, the transcoding modules are not our main concern, and therefore, they may be

set aside (shaded in grey) in the system architecture.

6.4.3 Supporting Meta-Data

As mentioned earlier, the server’s and the client’s directives are required by the

proxy to select the best-fit representation of a Web object for the particular client. The

directives come in the form of meta-data. The meta-data may be separated from the Web

(HTTP) requests and responses, so that they can be stored in the proxy’s cache and used

in subsequent requests. The system architecture in Figure 6.7 displays different types of

meta-data, which are detailed below.

Clients may access the Web objects with heterogeneous devices. Each device has

particular characteristics in terms of dimensions, number of colors, multimedia support,

and many others. These characteristics, known as the client device’s constraints, should

 Chapter 6. Framework for Pervasive Web Content Delivery 185

be sent to the proxy to assist it in making decision. Besides those constraints, sometimes

the client has certain preferences like acceptable latency delay, multimedia interest, and

so on. The client’s preferences may as well be conveyed to the proxy.

Every Web object residing in the server has particular properties such as its width

and height, supported color space, number of bits per pixel, and other else. The object’s

properties are required by the proxy to properly adapt the object. Some of the object’s –

perhaps intangible – properties may need to be preserved during adaptation, such that the

semantics of the object is duly preserved. For that purpose, the server (i.e., the content

provider) should give its directions regarding how the object should be adapted. For an

instance, the server may dictate the maximum amount of quality reduction that can be

applied to an image to maintain the image’s clarity. Also, the server may have policies

that the proxy must/should follow. The policies often help maintain the object’s integrity.

Examples of the policies are the adapting modules that must/should be employed, the

time-to-live (TTL) of the resulting representation that must/should be observed, and so

forth. All of these are the meta-data typically gathered from the server’s side.

The last type of meta-data is the network traffic’s condition. Since there are two

network segments connecting the client to the server, the network traffic’s condition can

be observed on the proxy-client and server-proxy links. The network traffic’s condition –

comprising, among others, the bandwidth (i.e., network throughput) and the roundtrip

time (i.e., network latency) – is useful for predicting the overall latency delay (response

time) of the Web access, as already illustrated in Section 6.2. Based on the predicted

latency delay, the proxy may determine the best-fit representation to meet client

preferences like the acceptable latency delay.

 Chapter 6. Framework for Pervasive Web Content Delivery 186

6.5 Related Work

Previous work has proposed varied frameworks to address the issue of Web

clients’ heterogeneity. Since adaptation is the ultimate answer to the issue, the proposed

frameworks cover a range of adaptation and transcoding systems. Most of them have been

mentioned and discussed in the previous chapters. Here, some of them are highlighted

and, if necessary, contrasted with our solution.

Han et al. [HaBL98] and Chi and Cao [ChC02] have previously analyzed the

conditions when it is beneficial to perform transcoding. Both focused their analyses on a

proxy-based transcoding system. While the former analyzed the benefit of a traditional

transcoding proxy, the latter evaluated that of an improved transcoding proxy which can

store and reuse partial objects. Compared to the previous studies, our evaluation was

broader, taking both proxy- and server-based approaches into consideration. Moreover,

various scenarios were also involved in our evaluation. This extensive study makes us see

the benefits of each approach. Based on the evaluation, a framework that can utilize both

approaches’ benefits was proposed. The framework emphasizes the collaboration between

the server and the proxy as the condition to attain efficient Web content delivery.

Apparently, modulation – the novel, scalable adaptation – can fit well into the framework.

The need for information about the client’s constraints and preferences was also

recognized by previously proposed transcoding systems. GloMop [FoGB96] requires the

client device to be equipped with a special browser, through which the client can specify

its preferences. In Mowser [JoWM96, BhJA98], the client stores its preferences directly

in the transcoding proxy. TransSquid’s [MaSR02] client uses CC/PP (Composite

 Chapter 6. Framework for Pervasive Web Content Delivery 187

Capability/Preference Profiles) to communicate its capabilities and preferences to the

proxy. Lastly, Server-Directed Transcoding (SDT) [KnLM03] adopts Media Feature Sets,

which the client may employ in its requests to express its capabilities and preferences.

Our framework was not confined to any specific method. That issue is better addressed in

the implementation.

Although information about the client’s constraints and preferences helps the

transcoding system in serving the client with the best-fit presentation, the transcoding

system should also acquire information about the requested object so that it can transform

the object properly without destroying essential information. Mogul [Mog01] observed

that existing transcoding systems relied on implicit information, such as the HTTP

Content-Type header, to transform the requested object. Such transformation may

undermine the object’s semantics and disturb end-to-end information transfer from the

server to the client. To address this problem, Mogul proposed the use of explicit server’s

directions to transform the object. The directions are put in the responses’ header. Sharing

Mogul’s idea, we have included two kinds of meta-data – namely the object’s properties

and the server directions and policies – in the framework. The specific method employed

is again up to the implementer.

Most transcoding systems face the predicament of storing the original or

transcoded objects in their cache. If it is cached, an original object can be reused many

times and transcoded into various representations. Caching different representations, on

the other hand, may avoid the need to run the delaying transcoding processes repeatedly,

but they occupy a large amount of the cache’s space. In addition, a representation is

usually so specific to particular client characteristics that it is difficult to reuse the

 Chapter 6. Framework for Pervasive Web Content Delivery 188

representation for serving other clients; in other words, caching it may be less beneficial.

TransSquid has a unique way to improve the cache’s performance. It divides its cache’s

space into several levels in accordance with the client devices’ categories. A higher-

fidelity representation, stored in a higher-level cache, can be transcoded into a lower-

fidelity representation and the result is stored in a lower-level cache. Our framework does

not need such division in the cache’s space, and only one representation of a Web object

is kept in the cache. The cached representation may get bigger – and better – when a more

sophisticated client requests it, yet the cache still keeps the one and only representation,

thanks to the reversible property in the adaptation’s mechanism.

ICAP [ElC03], a well-known adaptation framework, is a lightweight protocol for

executing a “remote procedure call” on HTTP messages. An ICAP client (usually a

surrogate) may redirect a client’s request or a server’s response to an ICAP server for

some sort of transformation or adaptation. By doing this, the ICAP server can off-load the

burdens of the origin servers. Alas, the current ICAP only offers a means for

communication between the ICAP client and the ICAP server. An application framework,

which is another important component in an adaptation, is yet to be defined. Our

proposed framework can be considered as an application framework, which is specific to

dealing with the clients’ heterogeneity. So, ICAP may be used to realize our framework.

A more general framework for edge services, OPES [BaPC04] offers a standard,

cooperative way to perform a data stream service between a provider (i.e., the origin

server) and a consumer (i.e., the client). It supports a wide range of transformation

services. Its architecture includes components like OPES processors and callout servers.

Some cooperative OPES processors may be put in between a provider and a consumer to

 Chapter 6. Framework for Pervasive Web Content Delivery 189

perform various transformation services; each OPES processor may distribute the

responsibility of service execution to one or more callout servers. Communication

between the two components is through the OPES Callout Protocol (OCP). Similar to the

previous assertion, our system architecture may be implemented as a transformation

service in the OPES framework.

Compared to the past adaptation and transcoding systems, our proposed

framework has the following advantages:

1. “On-demand” Web content delivery.

The adaptation can be carried out at the server’s or the proxy’s side, wherever it is

more efficient. As the analyses in Section 6.2 have revealed, the server-based

adaptation is more beneficial in serving the first-time client request, whereas the

proxy-based adaptation is more beneficial in serving the subsequent client request.

The on-demand Web content delivery, suggested by the framework, bases its actions

on those analyses. In the first-time client request, the proxy determines the best-fit

representation of a Web object for the client and asks the server to adapt the Web

object accordingly. The proxy serves subsequent client requests with the cached

representation and only consults the server if more data (supplements) are required.

Thus, only required data are delivered from the server to the proxy and from the proxy

to the client. The outcome is fast and efficient Web content delivery.

2. Scalable service.

The adaptation service provided by the framework is greatly scalable. It can be

implemented in multiple proxies, even if they are arranged in a hierarchy. The

adaptation service will not tax the proxies’ performance. On the contrary, the on-

 Chapter 6. Framework for Pervasive Web Content Delivery 190

demand Web content delivery – which also can be applied to the proxy-to-proxy data

transfer – may improve their performance in serving heterogeneous Web clients.

3. Detailed meta-data.

The framework involves a variety of meta-data that are needed to correctly provide

the best-fit presentation for a particular client and to effectively preserve the end-to-

end semantics of the Web objects. As mentioned earlier, the rich meta-data –

unsupported by the current Web protocol, i.e., HTTP/1.1 – may be detached from the

client’s request and the server’s response and be fetched separately. To circumvent

repeated access to the server where the meta-data resides in, the meta-data may be

stored in the cache, too.

The framework specified in this chapter is still very general. Many issues – such

as how the meta-data look like, what modifications required in the server application, and

how to apply modulation to the proxy application – are left unanswered. The next chapter

details our experience in developing a model prototype based on the framework.

Realistically, developing the model prototype helps us address those issues.

191

Chapter 7

Model Prototype of Pervasive
Web Content Delivery

The development of a model prototype of the pervasive Web content delivery is discussed

in this chapter. The prototype was built based on the framework proposed in the previous

chapter. This chapter begins with assessment of the incomplete elements in constructing

the prototype. The necessary specification, development, and enhancement to complete

the model prototype are then discussed in detail. The prototype serves as a proof of

concept of the proposed framework. Instead of emphasizing the completeness of the

framework’s features, we emphasize its efficacy. The main contribution of the prototype

is the efficiency in pervasive Web content delivery.

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 192

7.1 What Do We Have So Far?

As mentioned before, the fundamental element of the framework is the data model

which, if it is employed in the Web objects’ data-formats, can help generate

representations of the Web objects in a fast and efficient manner. Modulation, a novel

adaptation based on the data model, has been devised and further implemented. For the

implementation, the JPEG 2000 standard has been used as an illustration in this thesis, as

described in Chapter 4. Thus, the adapting modules of the framework have been

materialized.

The adapting modules need be integrated into the origin server and the proxy.

Apart from the integration, the server’s and the proxy’s behavior in response to the client

requests may need to be modified, as well. Using the right adapting modules, the server

should be able to generate on-the-fly either a representation or supplement of the

requested Web object. Besides passing on the representation – received from the server –

to the client, the proxy should be able to reduce or enhance a representation stored in its

cache, depending on the circumstances. In short, the current server and proxy applications

have to be customized to incorporate the new framework.

The last but equally important element is the meta-data, which help the proxy in

choosing the best-fit Web object’s representation for a particular client. As described in

the proposed framework’s system architecture, there are a variety of meta-data required

by the proxy. The meta-data are collected from the origin server, the requesting client,

and maybe other sources on the Internet. However, the meta-data may come in different

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 193

formats and that needs to be addressed properly. Unless the meta-data are standardized,

the three parties (i.e., client, server, and proxy) may be lost in communication.

To sum up, things that need to be done – in orderly fashion – to complete the

model prototype are: 1) the supporting meta-data have to be standardized and clearly

defined; 2) the server application has to be extended to integrate the adapting modules;

and 3) the proxy application has to be extended to integrate the adapting modules,

accommodate the decision-making process, and improve the cache’s efficacy. The rest of

this chapter discusses the development of these three elements.

7.2 Meta-Data Specifications

Basically there are three types of meta-data required by the proxy for the decision-

making process. The meta-data originating from the client informs the proxy about the

client device’s constraints and the client’s preferences. The meta-data gathered from the

server gives information about the object’s properties as well as the server’s directions

and policies. Another meta-data conveys the network traffic’s condition on the proxy-

client and server-proxy links. The last meta-data is discussed first in the following

paragraphs.

The network traffic’s condition primarily provides information about network

latency and network throughput. The network latency may be determined in a few ways:

1. By using the roundtrip time (RTT), which is the amount of time required by a packet

to travel from the sender to the receiver and then back to the sender. The RTT can be

measured by running the ping utility, which is supported by almost every known

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 194

operating system. The ICMP (Internet Control Message Protocol) packet sent by

ping is time-stamped. When the sender receives back the packet, the RTT is

calculated as the elapsed time between the sending and receiving events. The network

latency in one direction (from the sender to the receiver, or vice versa) is more or less

half of the RTT.

2. By using the packet’s time stamp. This may be done in the protocol layer above the

transport layer (TCP/UDP). For instance, by calculating the time difference between

the current time and the time stated in the Date header of an HTTP packet, the

latency time required to deliver the packet from the sender to the receiver can be

determined. However, the two systems – sender and receiver – should synchronize

their time, so that an accurate result can be obtained; NTP (Network Time Protocol)

application can be used to synchronize their time to a particular NTP server or to the

global time. Another drawback is that it can only estimate with a 1-second precision.

3. By an assist from a global infrastructure comprising distributed servers. The idea is to

have the dedicated servers measure each other distances24; this may also be pre-

determined. The servers are, in turn, used as a reference to measure the distance

between two hosts. Some proposed systems that follow this idea are IDMaps [FrJJ01]

and NPS [NgZ04] (previously known as GNP [NgZ01]). In IDMaps, the nearest

server is determined for each host. The distance between two hosts can be calculated

as the sum of the distances from the hosts to their nearest servers and the distance

between the two servers. In NPS, the host probes some reference servers to determine

24 Here, the distance means the latency time on the network connection between two hosts/servers.

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 195

its position in the Euclidean space. By obtaining the other host’s position, the (former)

host can calculate the distance between them.

4. By an assist from an existing global infrastructure. This is similar to the method in

point 3. The only difference is, instead of creating a new infrastructure, it exploits an

existing one. King [GuSG02] estimates the latency between two hosts by measuring

the latency between nearby DNS servers. Like GNP and NPS, Vivaldi [DaCK04] also

uses the Euclidean space model to estimate the latency between two hosts. Vivaldi,

however, can base its estimation on the RTT data gathered from any existing

infrastructure, like DNS and peer-to-peer systems.

The first method requires an additional packet (i.e., an ICMP packet) to determine

the network latency, whereas the second method does not since the network latency can

be determined from the HTTP packet (either a request or a response) itself. Yet, the

second method is imprecise and requires time synchronization between the sender and the

receiver. The last two methods can estimate the network latency almost immediately but

by means of indirect measurement; the error rate is still relatively high. Either way, it is

difficult to obtain the network latency accurately in real time due to several reasons.

Firstly, the packet routing on the Internet is rather dynamic. Two packets sent from one

node to another may take different routes. Therefore, the network latency between two

nodes on the Internet may vary over time. Furthermore, the sending and receiving packets

may also take different routes, causing different latency in opposite directions. Secondly,

depending on network load, the queuing delays in network routers are varied. When the

network load is high, a packet may stay for a longer time in the router’s queue buffer,

resulting in high network latency. The more router-hops a packet traverses, the greater is

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 196

the variability of the network latency. Lastly, packet loss may contribute to high network

latency, too. If the network traffic is too congested, the router starts discarding some

packets at random to ease the congestion. A replacement packet then may need to be sent,

and as a result, the overall network latency may increase. Since the network latency

changes frequently, it would be better if the network latency is measured based on a

number of packets. The downside is that the cost is too high for a short-time connection.

The network throughput refers to the rate of data transfer – in bits per second

(bps) – between two nodes on the Internet. The network throughput is different from the

bandwidth capacity. Often the network throughput – also known as the effective

bandwidth – is much lower than the bandwidth capacity due to several reasons. Firstly,

the protocol overhead, such as the header’s data-size and control overhead, makes the

actual data being delivered smaller. Since the protocol overhead is generally not

considered in the evaluation, the network throughput is less than the bandwidth capacity.

Secondly, packet collision and packet loss can further reduce the network throughput.

Lastly, the network latency may affect the network throughput, too. This is true in the

case of TCP, which requires acknowledgement for the packets sent. As the network

latency increases, the sender may spend lots of time waiting on acknowledgements

instead of sending packets. Apparently, the network throughput is even more difficult to

measure than the network latency above. There are two ways of measuring the network

throughput:

1. By querying network devices for stored information. Most network devices, like

routers, store basic network information about the traffic on the device. The

information includes the data rate capacity of each interface, the number of data-bytes

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 197

transmitted and received per interface, the number of erroneous and discarded packets

on the interfaces, and so forth. The information may be queried using SNMP (Simple

Network Management Protocol) periodically, so that the network throughput can be

deduced. The drawback is that many network providers do not allow us to access this

information due to security concern. Moreover, this information is just from a

network segment, whereas a packet may have to traverse many segments of the

Internet before reaching its destination. Querying all the information from many

network devices at a time is quite strenuous. Even if all of the network information is

obtained, the network throughput is anything but difficult to deduce.

2. By sending some test packets and measuring their transmission delays. The network

throughput is then determined from the packets’ sizes and the associated transmission

delays. A variety of techniques have been proposed based on this idea. Generally they

can be classified into two categories: one-packet and packet-pair. The one-packet

technique assumes that transmission delay varies linearly with packet size while the

latency remains constant for different packet sizes. By sending a large number of

packets of different sizes along the network path, their transmission delays will

approximate a line whose slope is the inverse of the network throughput. Some tools

based on the one-packet technique are pathchar [Jac97], clink [Dow99], and pchar

[Mah99]. The packet pair technique sends two large same-sized packets consecutively

with the expectation that they are positioned one after another at the bottleneck queue.

After traversing the bottleneck link, the time dispersion between the two packets

linearly corresponds with the bottleneck link bandwidth (i.e., the network throughput).

Some tools employing the packet-pair technique are bprobe/cprobe [CaC96], nettimer

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 198

[LaB01], pathrate [DoRM01], and SProbe [SaGG02]. Besides the two main

categories, other tools worth noting here are NWS [WoSH99] and pathload [JaD02].

NWS measures the link bandwidths among machines in a distributed system through

active sensors; each sensor resides in a single machine and probes other sensors (in

other machines) periodically. Similarly, pathload also sends a fleet of packets

regularly to measure the network throughput between two end-hosts. Further

information about tools for throughput measurement can be found in CAIDA’s

Webpage25.

Either way, the network throughput can only be obtained after some processes are done

and calculations made. Thus, there may be a delay in obtaining the network throughput.

Both network latency and throughput are helpful for the decision-making process

to select the best-fit representation of a Web object. However, it is extremely difficult to

obtain their precise values due to the dynamic nature of the Internet traffic. In addition,

there is no way to obtain their values before hand; that is, they can only be evaluated after

the associated sender and receiver are determined. Another unresolved issue is which

party (or, parties) – client, server, or proxy – is (are) supposed to provide the network

information, since different parties may supply different information. Owing to these

problems, the meta-data carrying information about the network traffic’s condition is

excluded from the model prototype. Taking its place in the decision-making process,

other properties (such as the maximum object’s size) from the client meta-data may be

used in the model prototype, albeit they are different.

25 http://www.caida.org/tools/taxonomy/performance.xml#bw

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 199

The two remaining meta-data are those coming from the client and the server. The

client meta-data is detailed in the next subsection, followed by description of the server

meta-data.

7.2.1 Client Meta-Data

As mentioned earlier, the client meta-data should carry information about the

client device’s capabilities (or perhaps, constraints) and the client’s preferences. The

purpose of sending the meta-data is to help the proxy select the best-fit representation of a

Web object for the respective client. The HTTP/1.1 standard [FiGM99] has introduced

some request-header fields such as Accept, Accept-Charset, Accept-Encoding,

and Accept-Language for indicating the client’s preferences. However, the request-

header fields are basically used to indicate a preference for a particular object over other

objects having the same context but different data-formats, character sets, or languages.

They do not give a clear description of the client device’s capabilities. To resolve this

problem, IETF (Internet Engineering Task Force) proposed Media Feature Sets [Kly99a,

Kly99b]. They provide an extensible way of describing the client device’s capabilities.

The syntax of Media Feature Sets also allows a complex expression using Boolean

operators to combine individual predicates.

Meanwhile, W3C (World Wide Web Consortium) released CC/PP (Composite

Capability/Preference Profiles)26, which is a profile describing device capabilities and

user preferences. CC/PP is developed based on RDF (Resource Description Framework),

26 http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 200

a general purpose meta-data description language. The XML syntax for RDF is called

RDF/XML. Commonly, CC/PP is expressed in the RDF/XML syntax. CC/PP is

compatible with IETF’s Media Feature Sets in the sense that all media feature tags and

values can be expressed in CC/PP, but not all CC/PP profiles can be expressed as media

feature tags and values. However, CC/PP does not have mechanisms matching those in

the IETF media feature framework to express certain comparisons (e.g., pix-x<=640)

and complex expressions (e.g., pix-x=640 & pix-y=480 | pix-x=800 & pix-y=600).

Owing to its extensibility and user-friendliness, CC/PP was preferred to Media

Feature Sets for expressing the client meta-data. The CC/PP schema can be found in site

http://www.w3.org/2002/11/08-ccpp-schema. According to the schema, a CC/PP profile

has one or more components, and each component contains one or more attributes.

Examples of the client device’s components are hardware platform, software platform,

and individual application (like browser). The client capabilities and preferences are

described by the components’ attributes. The CC/PP schema has a mechanism where the

attributes of a component may be specified by reference to a default profile, which may

be stored separately and accessed using its specified URI. When an attribute is specified

in the component, but is also specified in the referenced default profile, the directly

defined attribute value takes precedence. If necessary, new attributes can be added easily

to CC/PP by specifying an extension schema.

Each client should specify its capabilities and preferences in a CC/PP document

and deliver it to the proxy. There are several ways for the client to deliver the CC/PP

document; those are:

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 201

1. The client attaches the CC/PP document (in its entirety) to the request’s header.

However, the XML-based document may need to be translated into a compact form

(like the compact policy in P3P) to suit the HTTP header field’s style; otherwise, the

HTTP header may become too bulky.

2. Instead of attaching the CC/PP document to the request’s header, the client embeds it

in the request’s body. In that case, POST – rather than GET – would be better used as

the request’s method since the action is pretty similar to the POST-based form

submission. The downside is that the request’s data-size is bigger than usual, and

since the CC/PP document is embedded in every request, it may slowdown the

requests’ delivery.

3. The client just puts a reference to the CC/PP document (i.e., its URI) in the request’s

header, whereas the CC/PP document itself can reside in any Website (perhaps, of the

client device’s vendor). Different from the other two alternatives before, the client’s

meta-data cannot be found in the client’s request. Only the URI of the client’s meta-

data is available in the request’s header. While this alternative offers the least

modifications to the HTTP request, there is an extra roundtrip required by the proxy

to fetch the client’s meta-data.

Among the three alternatives, we chose the last alternative to be implemented in the

prototype. Four reasons can be suggested here. Firstly, it is simple and requires just a

small modification to the client’s browser. Secondly, by placing the CC/PP document in a

public Website (let us say, the device vendor’s site), the device’s characteristics specified

in the document can be shared with many clients. If a user wants to specify his/her

preferences, he/she can create a new CC/PP document, in which he/she may indicate the

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 202

vendor’s CC/PP document as the default and change any property as he/she likes (if there

is an overlapping property, the user-specified one will take precedence over the default).

He/she then needs to place the new CC/PP document in a public Website and refers to it

in the request’s header. So, the third reason is that the chosen alternative is also flexible.

And lastly, since the CC/PP document is separated from the client’s request, it may be

cached in the proxy and used for subsequent requests, either of the same client or of other

clients having the same device’s characteristics. This way, the extra roundtrip is required

only for the first request. URI of the CC/PP document is given in an HTTP extension

header called CCPP.

7.2.2 Server Meta-Data

The server meta-data needs to be generated for every Web object residing in the

server. In the designed prototype, it basically tells two things to the proxy. The first is the

object’s description containing the attributes (properties) of all alternative representations,

such as content-type, height, width, data-size, supported color, quality, and so on. Based

on this detailed information about the object’s representations, the proxy may select the

best-fit representation for a particular client. The second thing that the meta-data tells the

proxy is the adapting module(s) used to generate the object’s representations. The

adapting parameters applied to the module(s) for each generated representation may also

be included in the meta-data.

The HTTP/1.1 standard [FiGM99] does not say much about the Web object’s

description. Maybe it is because the standard focuses more on the server-driven

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 203

negotiation, in which only the client’s characteristics are required by the server for

choosing the best-fit representation. With respect to the object’s description, the standard

just specifies status code “300 Multiple Choices”, which should include an entity

(i.e., the response’s body) containing a list of resource characteristics and locations

(URIs) from which the client can select the one most suitable; this mechanism is called

the user-driven negotiation as opposed to the server-driven negotiation earlier.

The Media Feature Sets [Kly99a, Kly99b] can also be used to specify the object’s

description. The attributes used to characterize the client device can be squarely used to

describe the object’s representations. As there are a number of object’s representations,

the data-size of the object’s description is definitely larger, or even much larger, than that

of the client device’s characteristics. If the object’s description is to be attached to the

server’s response, it is better placed in the response’s body; placing the large description

in the response’s header would look awkward. Nevertheless, Media Feature Sets is

basically predicate-based processing and cannot be used to describe the content

adaptation; that is, the adapting modules and parameters have to be described elsewhere.

Since there is no fitting meta-data to fulfill our needs, we devised a meta-data

profile – called ADP (Adaptation Profiles) – to describe the server meta-data. Like

CC/PP, ADP is based on RDF/XML. The ADP schema is presented in Appendix A. In

ADP, a document can have several object-profiles (or simply, profiles), one of which

should be the main object-profile. The main profile describes the original Web object,

whereas the other profiles describe its representations. The schema specifies four initial

profile types corresponding to four object-types: image, video, audio, and text. Each

profile contains attributes for describing an object’s or a representation’s characteristics.

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 204

One of the attributes is adp:representation, which is used to list representations of

the respective object. Hence, the representations’ profiles – along with their attributes –

should be nested within the main object’s profile and neatly enclosed by the

<adp:representation> and </adp:representation> tags. Alternatively, the

representations’ profiles can be placed outside at the same level as the main object’s

profile, but their URIs are still listed in the main object’s profile, also enclosed by the

designated tags. Another important attribute is adp:adaptedBy, used to refer to URI of

the adapting module employed for generating the representation. The schema further

specifies a resource of type adp:Adaptor for indicating an adapting module. Some

attributes are also specified for describing the adapting module’s characteristics. Just like

CC/PP, the ADP schema can be extended to include more profile types and attributes.

Since every adaptable Web object should have its own ADP document – detailing

its representations and characteristics – the document is better placed in the server. There

are some alternatives for the proxy to fetch the ADP document:

1. URI of the ADP document is derived from that of the Web object it describes. So, the

ADP document is placed in the same directory as the Web object. Suppose the Web

object’s URI is http://www.foo.com/images/picture.jpg, then the ADP document’s

URI should be http://www.foo.com/images/picture.jpg.adp. This method is simple

since the proxy can make a request for a definite resource, i.e., the ADP document’s

URI. However, it may not work if the Web object’s URI contains a query string.

2. The proxy negotiates the ADP document’s URI with the server. So, the server points

out where the proxy can fetch the ADP document. This may solve the problem in

point 1, but it suffers from extra roundtrips for the negotiation.

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 205

3. The proxy sends the usual request for the Web object, but the server replies it with

part of the object and piggybacks the ADP document with the response. The difficulty

is to determine how big and which part of the object should be sent out. Furthermore,

the penalty is almost the same as the first method since a second request may still be

needed after the proxy makes a decision on the best-fit representation.

For the development of the model prototype, we opted for the first method. Again, the

reason is because it is much simpler than the other two methods. By clearly separating the

ADP document from the HTTP response, it is also easier to cache the meta-data in the

proxy and reuse it for serving subsequent requests.

7.3 Modifications in Server Application

The server application employed in the model prototype is Apache27 version

2.0.51. It is the most popular Web server on the Internet. In September 2005, the Netcraft

Web Server Survey28 found that almost 70% of the Websites on the Internet were using

Apache, making it more widely used than all other Web servers combined.

Most adapting modules (adaptors), available in the public domain, are stand-alone

applications, and so are our already-built adaptors (i.e., JPEG transcoders and JPEG 2000

modulators). To utilize these adaptors directly in the server, we need to develop some

interfaces to link the server application with the adaptors; one interface may be needed for

each adaptor. There are two options that can be considered to develop the interfaces. The

27 http://www.apache.org

28 http://news.netcraft.com/archives/2005/09/05/september_2005_web_server_survey.html

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 206

first is to use Apache API to create an adaptation’s module, and the second is to use a

scripting language (i.e., PHP, Perl, JavaScript, etc.) to create a dynamic Web resource.

Although it may not be optimal, we opt for the second method for simplicity’s sake.

We developed three interfaces – two for the JPEG transcoders (SDT and FDT)

and the other for the JPEG 2000 modulators – using PHP (Hypertext Preprocessor)

scripting language. The interfaces (i.e., jpgtranscoder-sdt.php, jpgtranscoder-

fdt.php, and jp2modulator.php, respectively) can be located by certain URIs, which

are accessible to the Web users. Each interface requires two inputs, namely the image to

be adapted and the adapting parameters. The interface’s tasks are to translate the received

inputs into the adaptor’s input parameters, execute the adaptor with the corresponding

input parameters, and output the resulting image.

The image to be adapted can be determined from the extra path information found

in the request’s URI. When a client requests the interface’s service, it directs the request

to the interface’s URI with some extra path information. For instance, the interface’s URI

is http://www.foo.com/adaptor/jpgtranscoder-sdt.php and the client may request its

service at http://www.foo.com/adaptor/jpgtranscoder-sdt.php/images/picture.jpg, hence

the extra path information is /images/picture.jpg. This extra path information can be

obtained from the server-supplied environment variable PATH_INFO by accessing PHP

predefined variable $_SERVER. Obtaining the extra path information, the interface in turn

can determine the exact location of the image in the server.

The adapting parameters may be delivered to the interface in two ways: 1) using

the query string of the request’s URI, and 2) using an HTTP extension header in the

request. Both methods were implemented in the interface. In the first method, the

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 207

adapting parameters are given in the request’s query string (the string following ‘?’ and

containing ‘param=value’ pairs separated by ‘&’). For instance, the client requests for

http://www.foo.com/adaptor/jpgtranscoder-sdt.php/images/picture.jpg?s=2&q=60&g, so

the request’s query string is “s=2&q=60&g”. PHP automatically splits the query string

into parameter names and their corresponding optional (may or may not exist) values. So,

the interface just needs to access PHP predefined variable $_GET to obtain these passing

adapting parameters. In the second method, an HTTP extension header called ADP-Qry is

defined and used to deliver the adapting parameters. The format of the passing adapting

parameters is the same as the query string’s format; that is, ‘param=value’ pairs separated

by ‘&’. But in this case, the interface itself has to split the content of the ADP-Qry header

field into parameter names and their corresponding values.

Once the interface attains the requested image’s location and the adapting

parameters, it can translate and arrange them into the input parameters of the associated

adaptor. Then, the interface can execute the adaptor and return the resulting image’s

representation accordingly. Thus, the interface’s tasks are rather simple; in fact, each of

our developed interfaces comprises less than a hundred lines of PHP instructions.

It can be noticed that the client’s request looks quite awkward with the exposed

interface’s URI. Actually, the interface’s URI can be concealed using the mod_rewrite

Apache module. This way, the client can just request an image as normally as it requests

the image’s URI. If the mod_rewrite module determines that the requested image needs

to be adapted (by checking the image extension), it will rewrite the requested image’s

URI with the interface’s URI plus the image’s path as the extra path information. As an

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 208

illustration, let us say that the image’s URI (including the query string) requested by the

client is http://www.foo.com/images/picture.jpg?s=2&q=60&g. Since the image

extension is ‘.jpg’, the mod_rewrite module then rewrites the requested URI with

http://www.foo.com/adaptor/jpgtranscoder-sdt.php/images/picture.jpg?s=2&q=60&g, that

is the URI of the JPEG-SDT transcoder’s interface plus the image’s path. Consequently,

the requested image will be adapted by the JPEG-SDT transcoder according to the

adapting parameters given in the query string.

Last but not least, the server should supply the correct Content-Type for the

ADP documents it delivers. As indicated earlier, each adaptable Web object – in this case

an image – is accompanied by an ADP document describing the object’s characteristics

and guiding the adaptation. The ADP document can be fetched from the server using the

object’s URI plus the ‘.adp’ extension. For an example, an adaptable image at

http://www.foo.com/images/picture.jpg is accompanied by an ADP document at

http://www.foo.com/images/picture.jpg.adp. Since the content of an ADP document

begins with “<?xml”, by default the server will supply text/xml as its Content-Type.

To help the proxy or the client recognize the ADP document easily, we added an AddType

directive in the Apache configuration so that the server would instead supply

text/xml+adp as the document’s Content-Type.

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 209

7.4 Modifications in Proxy Application

As for the proxy application in the model prototype, we employ Squid29 version

2.5.STABLE9. Squid is an open-source Web proxy cache, designed to run on Unix

systems (including Linux). It supports FTP, Gopher, Wais, and HTTP data objects.

Among the Squid’s components, there are three basic components determining its

main workflow. Those components are client side, server side, and storage manager. The

client side is where requests are accepted, parsed, processed, and replied. This component

determines whether a request is a cache hit or miss, and takes actions accordingly. The

server side is responsible for forwarding cache misses to other proxy caches or origin

servers. It can serve requests of different protocols such as FTP, Gopher, Wais, but

primarily HTTP. The storage manager is the glue between client and server sides. It

handles objects stored in the cache. Figure 7.1 depicts the three basic components,

together with some of their important routines. In the server side component, only

routines for HTTP are shown. As seen in the figure, the client side component is quite

complicated since there are many possibilities that a request may go into. Therefore, it

needs elaboration in the following paragraph; the other two components – server side and

storage manager – are quite self-explained in the figure.

Every request initially comes to routine clientReadRequest. After traversing some

checking routines, it will arrive at routine clientProcessRequest, which determines

whether a corresponding cached object exists. If the cached object does not exist, routine

29 http://www.squid-cache.org

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 210

clientProcessMiss is called to trigger the object’s retrieval from another proxy cache or

the origin server. If it does exist, the cached object is fetched from the storage manager,

and the control is passed to routine clientCacheHit. In this routine, the cached object is

assessed. If it is valid and fresh, the cached object is sent to the requesting client via

routine clientSendMoreData. Otherwise, depending on the circumstances, routine

clientProcessExpired (if it is not fresh), clientProcessRequest (if the Vary header has to

be included in the object’s retrieval), or clientProcessMiss (for other reasons) is called. If

routine clientProcessExpired is elected, later – after retrieving a fresh object from the

server – the control is passed to routine clientHandleIMSReply to determine whether the

old (i.e., cached) or the new object should be sent back to the client. Any replied object is

sent to the client bit by bit, so routine clientSendMoreData may be called repeatedly

during delivery of the object.

CLIENT SIDE

SERVER SIDE
STORAGE
MANAGER

storeAppend

storeClientCallback storeClientCopy

clientProcessMiss

clientReadRequest clientProcessRequest

clientSendMoreData

httpSendRequest

httpReadReply

storeComplete

C
L

IE
N

T

S
E

R
V

E
RclientHandleIMSReply

clientCacheHit

clientProcessExpired

Figure 7.1 Three basic components of Squid

The “brain” of our model prototype, the proxy application had to go through

modifications to support our proposed framework. Some notable modifications are:

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 211

1. The proxy’s workflow was modified to accommodate retrieval of the meta-data

documents, execution of the decision-making process, and adaptation to the object

stored in the proxy’s cache.

2. A number of external modules were attached to the proxy. They were CC/PP parser,

ADP parser, and interfaces for accessing the adaptors.

3. A rule-based decision maker was embedded to the proxy to select the best-fit object’s

representation for a particular client.

4. Simple adapting commands called apcoms
30 – a kind of API – were devised to

accommodate the adaptation into the proxy’s cache.

The next subsections discuss the four modifications in detail.

7.4.1 Modified Workflow

As stated before, the Squid’s workflow was extended with three additional

processes: meta-data retrieval, decision-making process, and adaptation process. Those

processes are important to support our proposed framework. They are discussed and

detailed in this subsection.

Meta-data retrieval

The meta-data retrieval should be done before the requested object is fetched

either from the local cache or from an external server. Referring to the workflow in

Figure 7.1, the meta-data retrieval should be placed after a request is received (routine

30 Stands for “Adapting Proxy Commands”

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 212

clientReadRequest) but before the request is processed (routine clientProcessRequest). In

fact, a few checking processes take place between the two routines; those are access

check (whether the request is allowed), redirection check (whether the request needs to be

redirected), and no-cache check (whether the request must not be satisfied from the

proxy’s cache). We decided to place the meta-data retrieval just after the access check.

This is to make sure that the request is already allowed to continue. Figure 7.2 shows the

modified workflow after the meta-data retrieval is put in. The dotted-line arrow in the

figure is the original workflow, the diagonal-striped box (clientAccessCheckDone) the

affected routine, and the shaded, dotted-line box (clientRedirectParser) the new routine

for retrieving the meta-data.

clientReadRequest

clientProcessRequest

clientAccessCheck

clientAccessCheckDone

clientRedirectStart

clientRedirectDoneclientCheckNoCache

clientCheckNoCacheDone

clientRedirectParser

Figure 7.2 Modified Squid’s workflow to include the meta-data retrieval

Initially, routine clientRedirectParser contains three execution phases. Phase 0 is

the initial phase; that is when the routine is called for the first time. Phase 1 is when the

client’s CC/PP document is retrieved. URI of the CC/PP document can be found in the

request’s CCPP header and is conveyed to the CC/PP parser, an external module

analyzing the CC/PP document. Phase 2 is when the requested object’s ADP document is

retrieved. URI of the ADP document is determined by adding ‘.adp’ to the object’s URI

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 213

and is conveyed to the ADP parser, another external module analyzing the ADP

document. The CC/PP and ADP parsers will be discussed shortly in Subsection 7.4.2.

After the meta-data retrieval, the process returns to the normal workflow, i.e., executing

routine clientRedirectStart.

Decision-making process

The decision-making process is carried out to select the best-fit object’s

representation for a particular client. It is done by matching the client’s characteristics (in

the CC/PP document) with the object’s characteristics (in the ADP document). Thus, this

process can only take place after both meta-data are retrieved. We opted to extend routine

clientRedirectParser to include the decision-making process. We added the fourth phase

(Phase 3) to the routine to call routine clientSelectRepresentation, where the decision-

making process takes place. Once routine clientSelectRepresentation is completed, the

representation for that client is already decided, and the control is returned to routine

clientRedirectParser. Figure 7.3 depicts the new addition to the Squid’s workflow.

clientReadRequest

clientProcessRequest

clientAccessCheck

clientAccessCheckDone

clientRedirectStart

clientRedirectDoneclientCheckNoCache

clientCheckNoCacheDone

clientRedirectParser

clientSelectRepresentation

Figure 7.3 Modified Squid’s workflow to include the decision-making process

In the decision-making process, to match the client’s characteristics to the object’s

characteristics, a list of rules is needed. It is very likely that both meta-data have different

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 214

semantics. Often they do not share the same attributes’ names, or worse, they may share

some attributes’ names but those names have different meanings. Hence, the rules help

indicate which attributes of the client’s characteristics are to be matched with which

attributes of the object’s characteristics. In addition, the list of rules offers us a sense of

priority. More important attributes are to be matched first, whereas less important

attributes are compared later. More discussion on this decision-making process can be

found in Subsection 7.4.3.

Adaptation process

The adaptation process includes retrieval of the requested object (whether from

the proxy’s cache or from an external server), communication with a variety of adaptors,

and construction of the object’s representation that fits the client’s characteristics.

Different from the previous two additional processes, the adaptation process could not be

added to the Squid’s workflow in a single location since the adaptation might involve

modifications to the requests as well as the responses. Instead, it was spread over various

places in the client side and storage manager components.

First of all, once the decision-making process selects the fitting object’s

representation, the adaptation process has to modify the request to get that particular

representation. In other words, it has to determine the adapting parameters needed to

obtain the representation. Due to this task’s closeness to the decision-making process, we

assigned the task to routine clientRedirectParser, right after completion of decision-

making process (in Phase 3). An appointed adaptor is required to help generate the

adapting parameters. The upper left part of Figure 7.4 illustrates this task.

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 215

CLIENT SIDE

clientCacheHit

ADAPTOR

clientRedirectParser clientAdapt clientExecuteInstruction

SERVER SIDE

STORAGE

MANAGER

storeAppend

storeClientCallback storeClientCopy httpSendRequest

httpReadReply

storeComplete

clientProcessMiss

clientReadRequest clientProcessRequest

clientSendMoreData

clientHandleIMSReply clientProcessExpired

AA

AA

AA CC

CC

BB

BB

C
L

IE
N

T

S
E

R
V

E
R

EE

EE

DD

DD

DD

Figure 7.4 Modified Squid’s workflow to include the adaptation process

Next, the adaptation process may have to transform the cached representation into

the best-fit one, if the two are different. This transformation is particularly applied to

modulation, where high data reuse is possible. To carry out the transformation, again the

adaptation process needs assistance from the appointed adaptor. This task is performed by

a new routine, clientAdapt. The routine can only be called after the cached representation

has been determined, and there are two places where the routine may be needed. The first

is in routine clientCacheHit and the second is in routine clientHandleIMSReply. The

added and modified routines are depicted in Figure 7.4 with shaded and striped boxes,

respectively. Connector A in the figure represents the routine calls from routines

clientCacheHit and clientHandleIMSReply to routine clientAdapt. Up till this point, the

adaptor has given instructions how the adaptation should be done, but the process itself

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 216

has not begun yet. The adapting instructions are given in the form of a sequence of

apcoms, discussed later in Subsection 7.4.4.

Lastly, the adapting instructions given by the adaptor need to be executed in a

controlled manner. Another new routine, clientExecuteInstruction was created to handle

the execution. Routine clientExecuteInstruction gets the control for the first time after the

adaptor conveys the adapting instructions. It executes one instruction at a time – perhaps

by calling another routine. Every time the execution of one instruction is completed, it

gets the control back to execute the next instruction, and this goes on until all instructions

are executed. Depending on the cached and targeted representations, there are many ways

that the execution may take up. Therefore, routine clientExecuteInstruction may have

wide access to many routines. It may fetch the cached representation (Connector B and

C), output the cached representation to and ask for service from the adaptor, or replace

the cached representation with another one (Connector D). It may also send a request to

an external server (i.e., another proxy cache or the original server), either by calling

routine clientProcessRequest or routine clientProcessMiss. And of course, it can send a

response to the corresponding client (Connector E); usually, this is done after all adapting

instructions are completely executed.

The proxy application may have a variety of adaptors attached to it. Our modified

Squid communicates with standalone adaptors – like JPEG transcoders and JPEG 2000

modulators – through some interfaces. Actually, the adaptor depicted in Figure 7.4 refers

to the standalone adaptors and the corresponding interfaces as one package. There are

three different times during the adaptation process that the proxy application may need

the adaptor’s assistance. The proxy application has to send different directives to indicate

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 217

the kind of assistance it needs. The first is when it needs the adapting parameters of a

particular object’s representation; routine clientRedirectParser will send a QRY directive

to the adaptor. The second is when it needs specific instructions to transform one

representation to another; routine clientAdapt will send an ADP directive to the adaptor.

The last is when it asks the external adaptor to execute the adaptation; routine

clientExecuteInstruction will send an EXE directive to the adaptor. The interfaces and

their supporting roles are further discussed in the next subsection.

7.4.2 External Modules

To understand the client’s characteristics (i.e., its capabilities and preferences) as

well as the requested object’s characteristics, the proxy cache has to be equipped with

respective parsers: CC/PP and ADP parsers. We developed the parsers as external

modules to the proxy application, so that it is possible to run several parsing processes

concurrently. Both meta-data documents (CC/PP and ADP) are based on RDF/XML. In

order to speed up and simplify the parsers’ development, we had better utilize available

RDF libraries. Therefore, libraries from Redland RDF Application Framework31 version

1.0.0 were employed to develop the parsers.

The CC/PP and ADP schemas were hard-coded into the respective parsers. So, the

parsers need not read the schemas any more. The input of each parser is just the URI of a

meta-data document. The parser will fetch the meta-data document with help from

31 http://librdf.org

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 218

Redland and cURL32 libraries. In the header of the meta-data document, some extension

schemas may be declared. The parser will then fetch the extension schemas and extend its

default schema with those schemas. Therefore, during parsing the meta-data document, it

can understand the properties already specified in its extended schema. Any unknown

property may generate an error. The output of the parser is the attribute’s names and

values in a certain format. The CC/PP and ADP parsers generate output in slightly

different formats, which can be understood by the respective internal modules in the

proxy cache [Note that, in Squid, every external module must be coupled with an internal

module. Those two modules communicate each other through two channels; one –

connecting the internal module’s stdout with the external module’s stdin – is used by

the internal module to send instructions and the other – connecting the internal module’s

stdin with the external module’s stdout – is used by the external module to send

results.]

The temporal and spatial locality in Web traces tells us that the same client may

request again and the same object may be requested again soon. Considering this premise,

it would be better if the client’s CC/PP document and the Web object’s ADP document

are cached in the proxy. It can save time and bandwidth. Coincidentally, the CC/PP and

ADP parsers use cURL to fetch the meta-data documents, and cURL may use the

http_proxy environment variable, if defined, to direct its requests. To store the meta-data

documents in the local proxy’s cache, the http_proxy environment variable is set to

“localhost[:port]”, where port – in a default Squid installation – is 3128.

32 http://curl.haxx.se

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 219

Other external modules required by the modified proxy application are interfaces

to link the proxy application with the adaptors. These interfaces are comparable to those

implemented in the server application. However, here each interface has three tasks to

deal with, and the tasks are initiated by Squid. The tasks, corresponding to the Squid’s

adaptation process, are as follows:

1. Generating the adapting parameters used to get a particular representation of a Web

object. This task is run when the interface receives a QRY (referring to the URI’s

query string) directive. The combination of the adapting parameters is unique and can

be used as the representation’s identity when it is stored in the cache.

2. Determining the kind of adaptation needed to get a representation from another (i.e.,

cached) representation. This task is run when the interface receives an ADP directive.

Completion of this task produces a sequence of apcoms employed to obtain the

targeted representation.

3. Executing an appointed adaptor with particular parameters. This task is run when the

interface receives an EXE directive. This is the primary task of the interface, which

conveys the proxy’s executing instructions to the associated adaptors.

Like the parsers, these interfaces are also coupled and communicate with internal

modules, but here the internal modules are uniform and standardized to provide

extensibility and modularity.

All external modules can be controlled in the Squid configuration. Each of them

can easily be included in or excluded from Squid. Of each module, the number of

children (i.e., concurrently running processes) and other settings, if any, can be specified

in the configuration, too. In addition, use of external modules makes the proxy cache

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 220

extensible. New adaptors can be easily attached to the proxy cache by creating the

corresponding interfaces and registering them in the Squid configuration.

7.4.3 Rule-Based Decision Maker

As indicated before, our modified Squid includes a decision-making process to

assist in selecting the best-fit representation of a Web object for a particular client. Two

kinds of meta-data are involved in the process; those are the client’s and the object’s

characteristics. To select the representation, the client’s characteristics are matched

against the characteristics of each object’s representation. The matching process is

directed by a list of rules. As explained earlier, these rules serve two purposes: 1) pointing

out the attributes to be matched against, and 2) bringing in prioritization to the matching

process. The following paragraphs elaborate how this rule-based decision maker works in

our modified Squid.

After analyzing the client’s CC/PP document, the external CC/PP parser returns

the client’s characteristics to Squid, which in turn stores them in CC/PP components (i.e.,

CCPP_comp structures). Based on the examples presented in the CC/PP structure and

vocabularies33, there are three predefined types of CC/PP components: hardware,

software, and browser. Any CC/PP component that cannot be classified into one of the

three predefined types will be marked unknown. Similarly, the external ADP parser

analyzing the object’s ADP document returns the object’s characteristics, which are then

stored in ADP objects (i.e., ADP_obj structures). Five types of ADP objects are

33 http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 221

predefined; those are general, image, video, audio, and text. Besides that, the adaptors –

which are also stored in ADP objects – have a type of their own. Both, CC/PP

components and ADP objects, are kept in the client request’s data object (i.e.,

clientHttpRequest structure). But without any help, those meta-data are just meaningless.

Hence, external assistance is required to explain the meta-data.

Attributes of the client’s and the object’s characteristics that will be used in the

matching process need to be declared. A declared attribute of the client’s characteristics is

represented by a CC/PP variable, whereas that of the object’s characteristics represented

by an ADP variable. Thus, there are two things done in a single action. When a variable is

linked to a particular attribute, the variable being defined can be used by and the attribute

being declared recognized by the Squid’s decision maker. Definition of the CC/PP and

ADP variables are done in the Squid’s configuration. Below is the definition’s example:

ccpp_def dev_width H -i pix-x width

ccpp_def dev_height H -i pix-y height

adp_def rep_width GEN -i width

adp_def rep_height GEN -i height

The first line defines a CC/PP variable called dev_width. The variable is linked to any

CC/PP hardware (H) attribute, which contains strings “pix-x” or “width” in its name. The

“-i” option means that the name matching is case insensitive. The name matching is

preferred here since different content providers may employ different semantics for the

meta-data. Similarly, the second line defines another CC/PP variable, dev_height, which

is linked to any CC/PP hardware attribute containing case-insensitively strings “pix-y” or

“height” in its name. The last two lines define ADP variables, i.e., rep_width and

rep_height. They are linked to ADP general attributes containing case-insensitively

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 222

strings “width” and “height”, respectively. Hence, attributes presentationWidth and

presentationHeight, which are specified in the ADP schema (see Appendix A), will

be linked to respective variables rep_width and rep_height.

Once they are defined, the CC/PP and ADP variables can be matched against each

other under direction of some matching rules. The matching rules have to be specified in

the Squid’s configuration, as well. An example of the matching rules is presented below:

obj_match 0 [rep_width + 10 <= dev_width]

obj_match 1 [rep_height <= dev_height]

Each matching rule has an identity number, which also determines the rule’s priority; the

smaller the rule’s identity number, the higher is its priority. In the example, the first rule

(Rule 0) has a higher priority than the second (Rule 1). All rules must be Boolean

expressions consisting of operands (i.e., CC/PP and ADP variables) and operators. The

list of supported operators for the matching rules is shown in Table 7.1.

Table 7.1 Matching rule’s operators in precedence order

Operators Operand(s) Description

() (B/I/R/S) Parentheses

! (B) Unary logical negation

∗ / % (I/R, I/R) Multiplication, division, and modulus
Exception: operands for modulus are (I, I)

+ − (I/R, I/R) Addition and subtraction

$ (S, I) Substring

< <= > >= = != (I/R/S, I/R/S) Relational operators

& (B, B) Logical AND

| (B, B) Logical OR

Note: B = Boolean, I = Integer, R = Real, S = String

For the decision maker, the rule-matching process is the means of selecting the

best-fit representation for a particular client. Simplistically, the overall decision-making

process looks as follows:

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 223

/**/

/* Decision Maker: Selecting the best-fit representation */

/**/

// Variables:

// Rules => a list of matching rules

// Rule => a matching rule

// Reprs => a list of ordered representations (ADP_obj struct)

// Repr => a single representation (ADP_obj struct)

// Comps => a list of CC/PP components (CCPP_comp struct)

// Prsvd => the list of preserved representations

// Dropd => the list of dropped representations

WHILE (Rules != NULL) {

 // Get the top matching rule in list Rules

 Rule = Dequeue(Rules);

 // Initially, Prsvd and Dropd are empty

 Prsvd = NULL;

 Dropd = NULL;

 WHILE (Reprs != NULL) {

 // Get the top representation in list Reprs

 Repr = Dequeue(Reprs);

 // The rule-matching process =>

 // a Boolean value results from the execution

 IF (Match_Repr_and_Comps(Repr, Comps, Rule)) {

 // Add Repr to the end of list Prsvd

 Enqueue(Prsvd, Repr);

 } ELSE {

 // Add Repr to the end of list Dropd

 Enqueue(Dropd, Repr);

 }

 }

 // Determine Reprs for the next rule-matching process

 IF (Prsvd != NULL) {

 Reprs = Prsvd; /* Preserved representations */

 } ELSE {

 Reprs = Dropd; /* Dropped representations */

 }

}

// Returning the top-most representation

RETURN Pop(Reprs);

The pseudo-code above shows that each matching rule is applied to filtering out some

representations. The matching rule employs specific representation’s and client’s attribute

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 224

values in its matching process. Once it is dropped, a representation may not be processed

further. For each matching rule being executed, the preserved representations are

collected and used in the execution of the following matching rule. However, if there is

no preserved representation, then the dropped representations are used in the next

execution; the associated matching rule is just ignored as if it does not exist. After the

matching process is completed, one of the remaining representations (i.e., the top-most) is

selected. Since the representations in the list have been arranged in a particular order,

which can be determined by the content provider, the selected representation implies the

best-fit one in the client’s and the content provider’s points of view.

The priority given to a matching rule determines its execution order and,

consequently, the end result. Different arrangements for the rules may yield different

results. For a fast example, if the two rules in the earlier example are combined into a

single rule, the results may be different. The two-rule and one-rule cases look as follows:

/* Case 1 */

obj_match 0 [rep_width + 10 <= dev_width]

obj_match 1 [rep_height <= dev_height]

/* Case 2 */

obj_match 0 [rep_width + 10 <= dev_width &

 rep_height <= dev_height]

Assume that a Web object initially has 5 representations. Also assume that in the first

case, Rule-0 filters out 3 representations and Rule-1 filters out the remaining 2

representations. Accordingly, Rule-0 in the second case will drop all representations. In

the first case, Rule-0 holds but Rule-1 is ignored; hence, one of the 2 remaining

representations will be selected. In the second case, Rule-0 is promptly ignored, and

therefore, one of the 5 representations will be selected. Depending on the representations

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 225

being filtered out, the selected representations in the first and second cases may be

different.

There are some hidden, but somehow beneficial, features that this decision maker

may offer. It has been suggested before that the content provider can determine the

representations’ arrangement in the list. Actually, the representations are arranged in an

ascending order based on their identities (stated in attribute rdf:about or rdf:ID). So,

indirectly the content provider may indicate the arrangement through the representations’

identities. Another useful feature is the rule-based nature in the decision-making process.

It offers flexibility to the network providers (i.e., the proxy’s owner) to prioritize the

matching rules. Different network providers may have different ways to specify the rules,

resulting in different representations being selected. Yet, semantics’ loss in the end-to-end

Web content delivery does not occur since the selection is made on the predefined list of

representations given by the content provider through the ADP document.

7.4.4 Adapting Proxy Commands

To perform transcoding, Squid requires some modifications to the client side

component (please refer to Figure 7.1), particularly to the routines handling responses.

However, Squid performing modulation requires further modifications not only to the

routines handling requests but also to those managing cached objects (in the storage

manager component). This is because modulation may need to change the requests (e.g.,

to fetch a supplement instead of a representation) and the cached objects (e.g., to replace a

representation with an improved one).

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 226

To offer flexibility to Squid in adapting Web objects, a set of adapting instructions

(commands) was devised to accommodate various adaptors with different behavior. As

indicated earlier, this set of adapting commands is called apcoms. An adapting interface,

linking Squid to the associated adaptors, should give a sequence of apcoms when it

receives an ADP directive (the interface’s second task). The apcoms are then executed in

Squid by routine clientExecuteInstruction (please refer to Figure 7.4). The list of apcoms

that are currently supported by our modified Squid is presented in Table 7.2.

Table 7.2 Adapting proxy commands (apcoms)

Apcom Longform Param(s) Description

FTO FTOUCH (flh) Touch (create) a temporary file

FST FSTORE (flh) Store entry’s object to a temporary file

FLO FLOAD (flh) Load entry’s object from a temporary file

SES SESHFT N/A Shift (move) entry’s object to old-entry

SEC SECLR N/A Clear entry

SEN SENEW N/A Create new entry

SEU SEUPDT N/A Update entry’s info with its reply’s info

SER SEREL N/A Mark entry’s object released (deleted)

OER OEREL N/A Mark old-entry’s object released (deleted)

RPC RPCOPY N/A Copy (duplicate) old-entry’s reply to entry’s reply

RPD RPDATE N/A Store reply’s Date header to variable tmp_date

RPS RPSWOT N/A Swap reply out (to entry’s object)

CHA CHADPQ (str) Change reply’s ADP-Qry header

CHC CHCLEN (flh) Change reply’s Content-Length header

CHD CHDATE N/A Change reply’s Date header with variable tmp_date

RQC RQCHG (str) Change request’s query string and send it out

RQD RQDEL N/A Delete request’s query string

LOG LOGPAR (flh’/’flh) Calculate partial hit info for logging

EXE EXEC (str) Execute adaptation in an appointed adaptor

Note: flh = file handle, str = string, N/A = not applicable

The apcoms listed in Table 7.2 are the commands required to accommodate JPEG

transcoders and JPEG 2000 modulators that have been earlier developed. It is not our

objective to develop a complete and powerful proxy’s API, but it may be considered for

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 227

future work. To understand clearly what each apcom does, it would be better to get

familiar with the terms used in Squid. An object in the Squid’s cache can only be created,

added, and modified if it is linked to a StoreEntry structure. A request’s data object (of

clientHttpRequest structure) has two pointer variables (of StoreEntry structure) to handle

cached objects; one is called entry (the main pointer variable) and the other called old-

entry. The cached object itself contains a variable, called reply, to hold the response. Now

let us examine closely the adapting commands.

The first three apcoms handle an external temporary file. The channels connecting

Squid and an interface are used merely for communication; they cannot be used to

transfer data. Hence, a temporary file is the alternative to transfer data between Squid and

an interface (and, inevitably, the adaptors). The parameter of the three apcoms is a file

handle in the form of “$n”, where n is a number starting from 1. The actual temporary file

will be created and maintained by Squid.

The next six apcoms (SES–OER) handle the request’s entry and old-entry

variables. Of interest to note is that apcom SEC clears entry without releasing (deleting)

the cached object; the apcom just unlinks entry from the cached object. Instead, apcom

SER should be used to release entry’s object; the cached object is not immediately

released but later when the request is released. These six apcoms do not need any

parameter.

The next six apcoms (RPC–CHD) handle reply of the entry’s cached object. The

last three, in particular, modify the reply’s header fields: CHA modifies the ADP-Qry

header (i.e., the adapting parameters), CHC modifies the Content-Length header (with

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 228

data-size of the given temporary file), and CHD modifies the Date header. Apcom RPD is

the opposite of apcom CHD; while RPD stores the reply’s Date header to variable

tmp_date, CHD updates the header with that variable. Apcom RPS is employed to write

reply to the entry’s object; the apcom updates the cached object and usually is called if

reply has been modified.

The next two apcoms (RQC and RQD) deal with the request’s query string. Note

that RQC not only changes the query string but also sends the request to the server by

calling routine clientProcessRequest. On the other hand, RQD does the opposite operation

to RQC. It deletes the request’s query string, if one exists, and does not pass on the request

to the server.

Apcom LOG is used to determine the percentage of partial hit. Two file handles,

separated by ’/’, are needed. The partial hit’s percentage is the ratio of the first temporary

file’s data-size to the second temporary file’s data-size. Finally, apcom EXE is used to

execute a particular adaptor. The accompanied string parameter is the complete executing

command to run the adaptor, including the adapting parameters, input file, and output file.

7.5 Implemented Architecture

CC/PP and ADP, the meta-data to support Web content adaptation has been

specified. The server application (Apache) has been extended to integrate the adapting

modules. Enhancement is also done to the proxy application (Squid) to integrate the

adapting modules, accommodate a decision-making process, and improve the cache’s

efficacy. Thus, all necessary elements to complete the model prototype have been detailed

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 229

and developed. The overall system architecture of the model prototype can be depicted as

shown in Figure 7.5.

ServerProxy

C
li

e
n

ts

CC/PP

ADP

Cache

Adaptors

ADP Parser

CC/PP Parser

Adp. Interfaces Adp. Interfaces

Contents

1

2

3

4

56

Figure 7.5 System architecture of model prototype

As seen in the figure, the proxy undergoes the most number of changes in the

model prototype. The enhanced proxy includes CC/PP parser, ADP parser, and some

adapting interfaces. The CC/PP parser is to fetch and analyze clients’ CC/PP documents,

whereas the ADP parser is to fetch and analyze objects’ ADP documents. The adapting

interfaces help in bridging the proxy and adaptors. The enhanced server also includes

adapting interfaces. But the server’s adapting interfaces are much simpler than those

installed in the proxy. Both, proxy’s and server’s adapting interfaces often access the

same collection of adaptors (i.e., transcoders and modulators), mostly standalone and

provided by many parties. The client just goes through a very minor change, which is

adding the CCPP header – containing the URI of its CC/PP document – in its requests.

The step by step data transfer among the three parties – client, proxy, and server –

in the Web content delivery is as follows:

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 230

1. The client sends a request for a particular object to the server via the proxy. The

request’s header contains the URI of the client’s CC/PP document.

2. Receiving the client’s request, the proxy parses the request’s header, gets the URI of

the client’s CC/PP document, and passes on the URI to the CC/PP parser. The CC/PP

parser then fetches the CC/PP document (usually from a public Website referenced by

the URI), parses it, and returns the client’s characteristics to the proxy.

3. Based on the request’s URI, the proxy determines the URI of the requested object’s

ADP document and passes on the URI to the ADP parser. The ADP parser fetches the

ADP document (from the server), parses it, and returns the object’s characteristics to

the proxy.

4. Matching the client’s and the object’s characteristics, the proxy selects the best-fit

representation of the object, revises the request accordingly, and sends the modified

request to the server.

5. Receiving the proxy’s request, the server fetches the requested object, adapts it

accordingly, and returns the resulting representation to the proxy.

6. Receiving the server’s response, the proxy stores the object’s representation in its

cache and passes on the response to the client.

All of the above steps have to be executed if the client makes a request for the first time

or if the object is requested for the first time. For the following requests, steps 2 and 3

may not be needed. Steps 4 and 5 may be skipped too, if the proxy can satisfy the client’s

request with its cached objects. Compared to the original system architecture, the new one

suffers additional roundtrips owing to the processes in steps 2 and 3. However, as

mentioned earlier, the additional roundtrips only occur in the first time requests.

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 231

Moreover, the new system architecture may reduce data transfer in step 5, particularly if

modulation is employed for adapting the requested object.

7.6 Related Work

Although ICAP [ElC03] or OPES [BaPC04] framework may be employed for

developing the model prototype – as indicated in the previous chapter – we opted to apply

modifications directly to the server and proxy applications. A few reasons may be

suggested. Firstly, ICAP and OPES are ongoing projects. Many things are still to be

completed, and wider adoption and implementation remain to be seen. Secondly, both

ICAP and OPES involve quite complex procedures. A lot of work is required to develop

the model prototype using either of them. Anyway, the existing server and proxy

applications do not support ICAP or OPES, so modifications to those applications are still

needed. Lastly, separating the adaptation server(s) from the proxy – as what ICAP and

OPES suggest – may incur another latency delay due to distant calls and additional

network hops. Moreover, we believe that modulation comprises lightweight adapting

operations that will not burden the proxy (or, even the server) so much.

Up till now, the only transcoding system that considers the client’s as well as the

server’s directives is the Server-Directed Transcoding (SDT) [KnLM03]. SDT’s client

and server employ Media Feature Sets in the header of HTTP messages to convey their

directives, whereas those in our model prototype use RDF/XML-based documents

separated from the HTTP messages. While the former is standardized, the latter offers

more extensibility and user-friendliness. In addition, separated from the HTTP messages,

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 232

the meta-data documents can be cached and reused for future references. The SDT’s

server uses applets to send transcoding instructions. The applets are comparable to the

interfaces in our model prototype since the real adaptors are still needed in the

transcoding proxy; SDT employs ImageMagick software package as the image adaptors.

But SDT requires the applets or their parameters – although the applets are cacheable – to

be fetched from the server for every different request, either because each applet may

perform a specific transcoding operation or because a different set of parameters is

required to fulfill a different request. That is not the case in our model prototype; all

adapting instructions and information are already in the plugged-in interfaces or the

cacheable meta-data documents. Last but not least, SDT stores multiple transcoded results

in its cache. Employing modulation, our modified proxy may store just one representation

for every object.

We are not the first to exploit the JPEG 2000 image standard in Web content

delivery. Deshpande and Zeng [DeZ01] proposed an architecture for streaming JPEG

2000 images using HTTP. In their proposal, each JPEG 2000 image is accompanied by an

index file, containing information about the image’s structure and the URL of the image

itself. The client firstly accesses the index file. Based on the MIME type of the index file,

a helper application is invoked. The helper application uses the information in the index

file to send one or more requests for parts of the image, and later, decodes the image’s

parts and displays the resulting image. The HTTP Range header is used to request the

image’s parts. A user’s action – such as zooming and panning – will generate more

requests to obtain the relevant image’s parts. The index file here is comparable to the

object’s meta-data in our framework. Deshpande and Zeng’s proposal expects the client

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 233

to be the active party making some specific requests based on the given information.

Also, their architecture does not involve a caching proxy (anyway, partial contents

commonly are uncacheable), so the server’s responses cannot be shared with other clients.

Chi and Cao [ChC02] also used the HTTP Range header to request part of a JPEG

2000 image, but no knowledge about the image’s structure is required. The image data

presented to the client is always contiguous and may be truncated at an arbitrary point. As

a result, their system can only offer quality scalability. However, a caching proxy that can

store partial contents is involved in their system; thus, the image data can be shared

among many clients.

Li and Sun [LiS03] and Taubman and Prandolini [TaP03] proposed new protocols

– namely Vmedia and JPIP, respectively – for browsing JPEG 2000 images. Both

protocols support interactivity between a client application and a remote server. The

client makes a request for a JPEG 2000 image based on the current spatial region and

resolution of interest. During the image data transfer, the client may revise its interest by

user’s zooming and/or panning, which generates a new request to replace the previous

one. The server may send the image data out-of-order, and it may keep track the sent data

to avoid retransmission. On the other hand, the client caches the image data – either in

memory or in disk – to prevent repeated requests. Understandably, the image data needs

to be arranged in a certain data format; Vmedia uses MU/SMU structures while JPIP uses

data-bins. Both protocols may be run on top of HTTP (TCP) or UDP. While

acknowledging the excitement of interactive access to the images, we think that caching

the image data in the proxy to be shared with others is more beneficial to the Web

community. The interactive nature of the new protocols, on the contrary, may cause

 Chapter 7. Model Prototype of Pervasive Web Content Delivery 234

partial responses that cannot be cached at all in the Web proxy. Although JPIP’s

deployment may involve a proxy server, it is a special-purpose proxy – not a Web proxy

– that can only serve JPIP requests. The interactivity between the client and the server

also generates more data overheads owing to the multiple requests and responses. In

addition, implementation of Vmedia and JPIP requires special applications at the server

as well as at the client, which may consume quite a lot of resources. By contrast, our

framework can be implemented easily to the existing server’s application and client’s

Web browser without taxing much on their performance. Our framework requires a

number of modifications on the proxy’s application, yet its functionality is not reduced

but improved. And more importantly, our framework can offer high data reuse in

delivering Web contents.

In this chapter, a working model prototype – based on our proposed framework –

has been developed. Development of the simple model prototype involves meta-data

specifications and modifications on the current server and proxy applications. To verify

the framework’s benefits, the next chapter describes some evaluations on the model

prototype.

235

Chapter 8

Performance Evaluation on Proposed
Pervasive Web Content Delivery

In this chapter, the model prototype – the development of which is detailed in the

previous chapter – is evaluated. Since the framework for pervasive Web content delivery

– on which the model prototype is based – expects collaboration between the origin server

and the proxy, the evaluation was conducted in two stages. In the first stage we evaluated

the adaptation at the server only, whereas in the next stage we evaluated the adaptation at

both the server and the proxy. Through the evaluation, the benefits as well as costs of our

proposed framework will be revealed, analyzed, and discussed.

 Chapter 8. Performance Evaluation on Proposed PWCD 236

8.1 Experimental Setup

In this section, the adapting applications, image test data, and meta-data

documents used in the experiments are detailed. The adapting applications and image test

data, in particular, have been created and used previously in Chapter 5.

8.1.1 Experimented Adaptors

All experiments in this chapter employed the same sets of adaptors as those

already used before. There are three sets of adaptors:

1. JPEG spatial-domain transcoders (SDT);

2. JPEG frequency-domain transcoders (FDT); and

3. JPEG 2000 modulators.

Readers are referred to Subsection 5.2.1 for the detailed particulars of the respective sets

of adaptors. All sets of adaptors were installed at the server and the proxy. The server’s

specification is a 650 MHz Pentium III system, with 128 MB of RAM and Fedora Core

Linux 2 as the OS. The machine employed as the proxy, on the other hand, is a 1.3 GHz

Pentium 4 system, with 128 MB of RAM; Fedora Core 2 Linux is also used as the

operating system.

8.1.2 Image Test Data

Two images – in the JPEG and JPEG 2000 standards – were used in the

experiments. The experimented images had been used in the previous experiments, as

 Chapter 8. Performance Evaluation on Proposed PWCD 237

well. They are boat.jpg and boat.jp2, the creation of which can be found in

Subsection 5.2.2. To refresh our memory, both images originated from the same source

image (i.e., boat.ppm), shared the same resolution of 1976 × 2960 (width × height)

pixels, and had similar data-sizes – almost 5 MB. The progression order of image

boat.jp2 used here has been changed to CPRL (the original employs LRCP), so that it

can be directly modulated along component aspect without changing the progression

order. Both images resided in the server.

For each experimented image, six representations with different characteristic

settings were determined. Particulars of the six representations resulting from SDT, FDT,

and modulation are listed in Table 8.1, Table 8.2, and Table 8.3, respectively. The

resolution reduction was restricted until a one-eighth resolution of the original image

since it is the maximum limit that the JPEG transcoders (SDT and FDT) can do.

As shown in the tables, the six predetermined representations vary in quality,

resolution, color, and – more importantly – data-size; they are to serve different client

preferences. Two of them have a half resolution of the original image, two have a quarter

resolution of the original image, and two have a one-eighth resolution of the original

image. Three of them have full color components, whereas the other three are grayscale

(having the luminance component only). All of the JPEG 2000 representations (Table 8.3)

contain five quality layers; it means the top five quality layers were dropped when the

original image was modulated. The quality values of the JPEG representations (Table 8.1

and Table 8.2) resulting from SDT and FDT were determined such that their data-sizes

are comparable to the data-sizes of the corresponding JPEG 2000 representations.

 Chapter 8. Performance Evaluation on Proposed PWCD 238

Table 8.1 Representations of boat.jpg adapted by JPEG transcoders (SDT)

Representation
Data-Size

(bytes)

Resolution

(width ×××× height)
Color/Gray Qty Value

1/2-scaled 157,673 988 × 1480 Color 47

1/2-scaled, gray 131,034 988 × 1480 Grayscale 41

1/4-scaled 114,579 494 × 740 Color 88

1/4-scaled, gray 86,810 494 × 740 Grayscale 84

1/8-scaled 57,329 247 × 370 Color 96

1/8-scaled, gray 37,473 247 × 370 Grayscale 93

Table 8.2 Representations of boat.jpg adapted by JPEG transcoders (FDT)

Representation
Data-Size

(bytes)

Resolution

(width ×××× height)
Color/Gray Qty Value

1/2-scaled 157,538 988 × 1480 Color 57

1/2-scaled, gray 130,310 988 × 1480 Grayscale 50

1/4-scaled 115,150 494 × 740 Color 90

1/4-scaled, gray 87,382 494 × 740 Grayscale 87

1/8-scaled 62,054 247 × 370 Color 98

1/8-scaled, gray 37,114 247 × 370 Grayscale 95

Table 8.3 Representations of boat.jp2 adapted by JPEG 2000 modulators

Representation
Data-Size

(bytes)

Resolution

(width ×××× height)
Color/Gray

No. of Qty

Layers

1/2-scaled 158,733 988 × 1480 Color 5

1/2-scaled, gray 130,454 988 × 1480 Grayscale 5

1/4-scaled 115,217 494 × 740 Color 5

1/4-scaled, gray 86,958 494 × 740 Grayscale 5

1/8-scaled 58,439 247 × 370 Color 5

1/8-scaled, gray 36,860 247 × 370 Grayscale 5

 Chapter 8. Performance Evaluation on Proposed PWCD 239

As noticed, the quality values of SDT-based representations are lower than those

of their FDT-based counterparts. However, PSNR measurement reveals that the qualities

of SDT-based representations are 1–6 dB (in case of grayscale, 2–11.5 dB) higher than

those of FDT-based representations. This finding is in agreement with the previous

finding in Subsection 5.3.1. The previous finding gives lower quality difference than the

present finding perhaps because the reduction of resolution and component, which is done

here but not in the previous experiments, further increases the quality gap between the

SDT and FDT results.

The qualities of JPEG 2000 representations, by contrast, are further lower by up to

6 dB (in case of grayscale, up to 7 dB) when compared to those of FDT-based, JPEG

representations. This finding is in stark contrast to the JPEG 2000’s superiority over

JPEG in bit-rate performance – as noted in Subsection 5.3.1 – and may be explained by

the multi-scale presentation within the JPEG 2000 image. Since multiple layers,

resolutions, and components are bestowed on the image, removal of a single layer,

resolution, or component – by means of modulation – always corresponds with a decline

in the image’s quality. Moreover, the quality decline is consistent in all adaptation aspects

of the image; it means that combined removal of layer, resolution, and component further

decreases the image’s quality. This is different from transcoding, which does not suffer

much from multi-aspect reduction.

Nevertheless, visual comparison reveals that the representations do not differ so

much. Figure 8.1 shows the 1/8-scaled, gray representations (the last rows of the above

tables) of SDT-ed boat.jpg, FDT-ed boat.jpg, and modulated boat.jp2. Please

note that representation (a) is 11.5 dB better than representation (b), whereas

 Chapter 8. Performance Evaluation on Proposed PWCD 240

representation (b) is 7 dB better than representation (c). But visually representation (c) is

better than representation (b) and is almost comparable to (perhaps slightly brighter than)

representation (a), albeit there is 18.5 dB quality gap between them. [Note: observe

particularly the boat’s mast and rigging to contrast the images’ difference in quality]

(a) (b) (c)

Figure 8.1 1/8-scaled, gray representations of boat.jpg and boat.jp2 (partial images)

(a) SDT-JPEG; (b) FDT-JPEG; and (c) Modulated JPEG 2000

8.1.3 Server Meta-Data Documents

Each experimented image is accompanied by an ADP document describing the

image’s characteristics and listing the suggested representations of the image. The ADP

schema extension and ADP documents used in the experiments are attached at Appendix

 Chapter 8. Performance Evaluation on Proposed PWCD 241

B. To differentiate images for SDT and FDT processes, a symbolic link
34

 named

boat.jpeg was created at the server and pointed to image boat.jpg; hence, accessing

any of them (boat.jpeg or boat.jpg) gives the same image data. Image boat.jpeg

was used for SDT, and image boat.jpg for FDT. The associated ADP documents for

the transcoding processes are boat.jpeg.adp and boat.jpg.adp, respectively. Each

of the ADP documents has size of about 6.3 KB and contains 15 representations

(including the original and the six predetermined representations) of image boat.jpg.

The ADP document for modulating boat.jp2 is boat.jp2.adp. It has size of about

8.8 KB and contains 21 representations (also including the original and the six

predetermined representations) of image boat.jp2. Thus, generally the description of an

image’s representation takes around 420–430 bytes.

Each representation in the ADP documents has a unique identity (rdf:ID) so that

it can be accurately addressed. Notice also that the naming of the representations’

identities has been purposely arranged. As noted in the previous chapter, the proxy’s

decision-making process sorts the representations based on their identities. In case there is

more than one representation matching a client’s profile, the representation on top of the

list will be selected as the best-fit representation for the client.

Among the image’s attributes, the most difficult one to obtain is probably the

data-size of a representation. For the boat.jpg’s representations, each of them had to be

created (by SDT and FDT) to obtain the data-size. The data-sizes of the boat.jp2’s

representations are easier to obtain. Since modulation basically just drops the image’s

34
 In Linux OS, it is created by executing command “/bin/ln -s”.

 Chapter 8. Performance Evaluation on Proposed PWCD 242

packets, we can devise an application to get the bytes of all packets of the image and

calculate the exact data-sizes of all possible representations.

8.1.4 Client Meta-Data Documents

In line with the six predetermined representations described in Subsection 8.1.2,

we also created six client profiles, each of which should get one of the six representations

when used in a request for the experimented images. The client profiles were specified in

the form of CC/PP documents, which are attached at Appendix C. The six client profiles

are called Client1 to Client6. If a client holding profile Client1 requests the

experimented images, the 1/2-scaled representations should be returned. A client holding

profile Client2 should get the 1/2-scaled, gray representations, and the arrangement

continues until a client holding profile Client6 gets the last representations, i.e., the 1/8-

scaled, gray ones. These client profiles – CC/PP documents – were stored in a separate

server and could be referred to by their URIs (i.e., the server’s domain name plus the

location path of respective documents). Remind that the CC/PP document can be attached

to the client’s request by putting the document’s URI in the CCPP header.

The matching of a client’s profile and a particular image’s representation cannot

be separated from the decision-making process at the proxy. Considering the client’s

profile and the image’s characteristics, the proxy has to decide which image’s

representation is served to the client. Some matching rules have to be specified at the

proxy so that the expected results can be precisely achieved. The employed matching

rules will be revealed later when we discuss the experiments at the proxy. For now, it is

 Chapter 8. Performance Evaluation on Proposed PWCD 243

enough to say that the client profile’s attributes, used in the decision-making process,

were the display screen’s dimensions and supported color, as well as the availability of

the browser’s scrollbars.

All applications, image test data, and meta-data documents have been described in

this section. Now, we are ready to begin with the first evaluation concerning adaptation at

the server.

8.2 Evaluating Adaptation at Web Server

We start with an assertion that adaptation at the proxy alone may not be beneficial

and even causing an increase in the client’s response time. This has been analytically

studied in Section 6.2. Here, let us verify that assertion. Consider the following

illustration. Suppose a client requests one of the experimented images above (boat.jpg

or boat.jp2) via a proxy. Due to the client device’s constraints, the requested image

needs to be adapted. For instance, the best-fit representation for the client is the 1/2-scaled

representation. If the adaptation is done at the proxy, the original 5 MB-sized image has

to be fetched by the proxy from the server. Assuming that the server-proxy link has a

bandwidth of 1 Mbps (considered quite a fast connection by today’s standard), it takes

about 40.8 seconds in our preliminary test to deliver the image data from the server to the

proxy. We have not considered the adaptation delay yet, but the delivery time has already

been beyond most clients’ patience. And surely it is not acceptable for pervasive Web

content delivery. In contrast, if the image is adapted at the server, the total response time

 Chapter 8. Performance Evaluation on Proposed PWCD 244

of adapting the image and delivering the adapted result is less than 3 seconds. This

preliminary study corroborates that adaptation at the server is necessary, especially if the

server-proxy link has a low bandwidth.

In the following subsections, the objectives of evaluating adaptation at the server

are specified and the conducted experiments are detailed. Two sets of experiments have

been conducted: 1) response time analyses, and 2) stress test. Explanation of the

experiments is smoothly intermingled with the results and discussion.

8.2.1 Experimental Objectives

Some objectives of evaluating adaptation at the server have been specified.

Firstly, the costs and benefits of the server-based adaptation can be identified. As noted

earlier, one clear benefit has been the reduction in the client response time. Details of the

benefit will be exposed by the experiments. At the same time, the experiments are

expected to uncover the involved costs, as well.

Secondly, through the experiments, the two adaptation methods – transcoding and

modulation – can be compared and contrasted. Chapter 5 has compared and contrasted the

JPEG transcoders and JPEG 2000 modulators in a secluded environment. Here, we want

to compare and contrast them in a near-real environment, where their differences may be

further highlighted.

Lastly, the experiments may indicate some problems, inefficiencies, or other

unexpected findings on the proposed server-based adaptation. They can be used as

feedback to improve it in the future work.

 Chapter 8. Performance Evaluation on Proposed PWCD 245

8.2.2 Response Time Analyses

The response time of the Web server’s service was measured for three different

schemes. Each scheme corresponded with the employed sets of adaptors. The first scheme

was transcoding (SDT) boat.jpeg, the second was transcoding (FDT) boat.jpg, and

the last was modulating boat.jp2; respectively, they are referred to as JPG-SDT, JPG-

FDT, and JP2-MOD schemes, for the rest of this section. All adaptation processes were

executed at the server, and the proxy was not involved at all in the adaptation. The

experiments simply measured the time required to get an adapted image directly from the

server. The measured time started when a request was sent out and ended when the last

byte of the response was received.

As the experiments did not involve adaptation at the proxy, which is the decision

maker in our proposed framework, the meta-data documents (i.e., CC/PP and ADP

documents) could not be used. Instead, each request included a specific query string to

indicate the wanted image’s representation. For an example, to get the 1/2-scaled

representation of image boat.jpeg (stored at http://svr.my-dom.org/images/boat.jpeg),

the corresponding request would be http://svr.my-dom.org/images/boat.jpeg?s=2&q=47.

Readers may refer back to Section 7.3 for the format of the request’s query string.

In addition to requests for the images’ representations resulting from adaptation,

for comparison purpose, direct requests for the representations without adaptation should

be made possible. Hence, the images’ representations were also generated and stored as

resources at the server; these are referred to as the pre-generated representations. Later on,

 Chapter 8. Performance Evaluation on Proposed PWCD 246

the response times of requesting the representations with adaptation will be compared

with those of requesting the representations without adaptation.

To simulate heterogeneous network environments, the experiments were executed

on different bandwidth constraints, i.e., 56 Kbps (the common modem speed), 128 Kbps,

256 Kbps, 512 Kbps, and 1 Mbps. An Apache module, bw_mod
35

 version 0.6, was

installed at the server to limit each connection’s bandwidth as wanted.

a. Link Bandwidth = 56 Kbps

5.914

8.867

13.198

17.354

19.682

23.934

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

SDT-Latency

Dlvr-Latency

c. Link Bandwidth = 256 Kbps

6.312

5.033

4.542

3.483

2.443

1.706

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

SDT-Latency

Dlvr-Latency

d. Link Bandwidth = 512 Kbps

3.843

2.982

2.746

2.124

1.544

1.116

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

SDT-Latency

Dlvr-Latency

e. Link Bandwidth = 1 Mbps

2.646

1.987

1.877

1.465

1.108

0.830

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

SDT-Latency

Dlvr-Latency

b. Link Bandwidth = 128 Kbps

11.245

9.133

8.127

6.204

4.242

2.883

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

SDT-Latency

Dlvr-Latency

Figure 8.2 Response times (in seconds) of requesting boat.jpeg’s SDT representations from the server

The results of requesting boat.jpeg’s SDT representations (as listed in Table

8.1) in different network environments are presented in Figure 8.2. The corresponding

response times, in seconds, are shown at the right-hand side of the bars. Each response

time is composed of the transcoding (SDT) latency and the delivery latency. The delivery

latency is actually the response time of requesting the pre-generated representation

(without adaptation) from the server. The latency difference between the response time of

35
 http://ivn.cl/apache/

 Chapter 8. Performance Evaluation on Proposed PWCD 247

requesting a representation resulting from SDT and that of requesting the associated pre-

generated representation is considered as the SDT latency. In the figure, the SDT latency

and the delivery latency are depicted as percentages of the response time.

There are two trends that we may observe in Figure 8.2. The first trend is that the

percentage of SDT latency increases as the bandwidth constraint is relaxed. On the 56

Kbps connection, the percentages of SDT latency are between 4.7% and 8.7% (on

average, 6.2%), whereas those on the 1 Mbps connection are between 46.3% and 62.2%

(on average, 53.1%). This trend is reasonable, since the SDT latency is relatively

unchanged but the delivery latency decreases when the bandwidth constrain is relaxed.

From this trend, again we may assert that the server-based adaptation is more beneficial

when the bandwidth on the server-proxy connection is restricted.

Also observed is that the percentage of SDT latency tends to increase as the

resulting representation’s data-size decreases. This second trend may be attributed to the

different data throughputs (in bytes/second) in generating the representations. If we refer

back to the processing times of generating the representations in Section 5.4, many of

them can be formulated in the form of y = mx + c, where m is the increase rate of

processing time and c is a constant indicating the minimum processing time. If c is zero,

then the data throughput will be steady (which is equal to 1⁄m). But since c is a positive

number, the bigger the resulting representation’s data-size, the higher is the data

throughput, and consequently, the lower is the percentage of SDT latency here.

However, while the 1/8-scaled, gray representation (the smallest in data-size) is

taking the highest percentage of SDT latency as compared to other representations, the

1/2-scaled, gray representation takes the lowest percentage of SDT latency; if it follows

 Chapter 8. Performance Evaluation on Proposed PWCD 248

the pattern, the 1/2-scaled representation – which is the biggest in data-size – should take

the lowest percentage of SDT latency. This phenomenon may be caused by the distinct

performance of SDT processes in different aspects. Results in Section 5.4 have indicated

that SDT processes in resolution and component aspects perform better than those in

quality aspect. These collective factors make the SDT latency’s percentage of 1/2-scaled,

gray representation lower than that of 1/2-scaled representation.

Next, the response times of requesting boat.jpg’s FDT representations (as listed

in Table 8.2) in different network environments are shown in Figure 8.3. Each response

time is composed of the transcoding (FDT) latency and the delivery latency, both of

which are determined in the same way as the previous results.

a. Link Bandwidth = 56 Kbps

23.737

19.723

17.468

13.445

9.779

6.190

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

FDT-Latency

Dlvr-Latency

c. Link Bandwidth = 256 Kbps

6.133

5.158

4.593

3.668

2.828

2.023

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

FDT-Latency

Dlvr-Latency

d. Link Bandwidth = 512 Kbps

3.666

3.118

2.789

2.300

1.855

1.440

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

FDT-Latency

Dlvr-Latency

e. Link Bandwidth = 1 Mbps

2.473

2.129

1.915

1.636

1.383

1.157

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

FDT-Latency

Dlvr-Latency

b. Link Bandwidth = 128 Kbps

11.061

9.237

8.197

6.406

4.775

3.189

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

FDT-Latency

Dlvr-Latency

Figure 8.3 Response times (in seconds) of requesting boat.jpg’s FDT representations from the server

The two trends observed in the previous results are also found in Figure 8.3. The

percentage of FDT latency increases from 5.0–13.7% (on average, 7.6%) on the 56 Kbps

connection to 48.2–73.1% (on average, 56.9%) on the 1 Mbps connection. Overall, this

JPG-FDT scheme takes higher percentages of adaptation latency than the JPG-SDT

 Chapter 8. Performance Evaluation on Proposed PWCD 249

counterpart; in fact, most of JPG-FDT’s response times are also higher than JPG-SDT’s

response times, even though the data-sizes of representations in both schemes are

comparable. As concluded in Section 5.4, FDT processes are superior to SDT processes

for adaptation in quality aspect, but not so for adaptation in resolution and component

aspects. This may explain the slightly inferior performance of the JPG-FDT scheme to the

JPG-SDT scheme.

The percentage of FDT latency also increases when the resulting representation’s

data-size decreases, i.e., from the 1/2-scaled representation to the 1/8-scaled, gray

representation. The pattern here is even sounder than that of the previous results, and this

may be attributed to the more linearity of FDT processes in all adaptation aspects.

With respect to the last scheme, Figure 8.4 presents the response times of

requesting boat.jp2’s representations (as listed in Table 8.3) in different network

environments. Like the previous results, each response time is composed of the

modulation latency and the delivery latency.

a. Link Bandwidth = 56 Kbps

5.368

8.451

12.526

16.564

18.741

22.781

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

MOD-Latency

Dlvr-Latency

c. Link Bandwidth = 256 Kbps

5.042

4.158

3.680

2.796

1.904

1.229

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

MOD-Latency

Dlvr-Latency

d. Link Bandwidth = 512 Kbps

2.558

2.116

1.877

1.434

0.988

0.648

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

MOD-Latency

Dlvr-Latency

e. Link Bandwidth = 1 Mbps

1.355

1.126

1.003

0.774

0.543

0.367

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

MOD-Latency

Dlvr-Latency

b. Link Bandwidth = 128 Kbps

10.009

8.240

7.288

5.520

3.737

2.387

0% 20% 40% 60% 80% 100%

1/2-scaled

1/2-scaled,gray

1/4-scaled

1/4-scaled,gray

1/8-scaled

1/8-scaled,gray

Adaptation vs. Delivery Latency

MOD-Latency

Dlvr-Latency

Figure 8.4 Response times (in seconds) of requesting boat.jp2’s representations from the server

 Chapter 8. Performance Evaluation on Proposed PWCD 250

The response times of the JP2-MOD scheme exhibit the two trends observed in

the previous results. The percentage of modulation latency increases from 0.3–1.1% (on

average, 0.5%) to 4.7–15.9% (on average, 8.6%) as the connection’s bandwidth improves

from 56 Kbps to 1 Mbps. The percentage of modulation latency also increases as the

resulting representation’s data-size decreases.

Compared to the previous results, the JP2-MOD scheme’s response times give the

lowest percentages of adaptation latency; that is, 4–20 times better than the percentages of

adaptation latency in the JPG-SDT scheme and 5–18 times better than those in the JPG-

FDT scheme. This is due to the fast and efficient processes performed by modulation. In

addition, the response times resulting from modulation give the clearest trends since

modulating processes are very linear and consistent in all adaptation aspects, as already

demonstrated in Section 5.4.

8.2.3 Stress Test

The server was further examined through a stress test to figure out its performance

while adaptation was being carried out. It is common knowledge that a running adaptation

application requires system resources like CPU cycles and memory. If adaptation is

executed at the server, each service to a client may consume more resources than usual

(i.e., the server without adaptation), and therefore, the overall server’s performance is

expected to decrease. The purpose of the experiments is to reveal how much performance

decrement that the server may suffer. The server’s number of maximum clients was left

unchanged, which was 150. [Note: we used Apache distributed by Fedora Core Linux.]

 Chapter 8. Performance Evaluation on Proposed PWCD 251

The stress test was done by executing a benchmarking application on a machine

acting as a client. ApacheBench
36

 version 0.63 was used here. It is a Perl API for Apache

benchmarking and regression testing. ApacheBench was inspired by an application called

ab, which is bundled in the Apache Web server package. Within the ApacheBench

package, there is a ready Perl application called ab, too. For our stress test purpose, the

ab application was slightly modified so that it could send requests for multiple Web

resources concurrently. Besides executing the ab application, a monitoring application

was devised and used to collect the periodic numbers of concurrent connections.

The three adaptation schemes used in the previous experiments (i.e., JPG-SDT,

JPG-FDT, and JP2-MOD) were employed while the server was being stress-tested. In

addition, requests for the pre-generated image’s representations were also made to see the

server’s normal performance; this is called the no-adaptation scheme. [Please refer to the

previous subsection for explanation about the pre-generated representations.] Thus,

totally there were four schemes used for the stress test. For each scheme, there were six

image’s representations (i.e., from 1/2-scaled to 1/8-scaled, gray representations)

requested from the server. A thousand requests were generated for each image’s

representation, so totally there were six thousand requests. The number of concurrent

connections at any time was restricted to three hundred (300). Also, the server limited the

bandwidth to 1 Mbps/connection.

Three schemes – i.e., no-adaptation, JPG-SDT and JP2-MOD – were successfully

experimented, but the JPG-FDT scheme caused the server to crash due to its high demand

36
 http://adiraj.org/sw/ApacheBench/

 Chapter 8. Performance Evaluation on Proposed PWCD 252

for resources, particularly memory. If we examine closely the two types of JPEG

transcoders, JPG-SDT comprises two applications (cjpeg and djpeg) whereas JPG-FDT

comprises just one application (jpegfdt). Application cjpeg compresses a raw image

into the JPEG format, and conversely, application djpeg decompresses a JPEG image

into the raw format. In application jpegfdt, the decompressing and compressing data

structures are allocated in the same time and additional buffer is also needed for the

adaptation processes; that is why it demands a lot of memory space. We will return to

experimenting with JPG-FDT later. Now let us analyze the results of the three successful

schemes, as shown in Table 8.4.

Table 8.4 Results of stressing the server running adaptation [max. concurrent connections ==== 300]

Scheme No. of Reqs
*

Attained

Req Rate

(req/sec)

Attained

Xfer Rate

(KB/sec)

Conn. Time
+

(milliseconds)

Resp. Time
+

(seconds)

No-adapt 6000 (6000) 58.21 5,571.08 825.00 (3) 3.18 (2.47)

JP2-MOD 6000 (5988) 13.69 1,298.42 5,447.18 (1) 16.57 (12.29)

JPG-SDT 6000 (5621) 1.09 103.18 5,289.49 (2) 244.80 (240.57)

Note:
*
 values are sent (completed);

+
 values are mean (median)

The second column of Table 8.4 indicates the numbers of sent and completed

requests; the number of completed requests is in the brackets. All requests were

successfully served in the no-adaptation scheme. But in the JP2-MOD and JPG-SDT

schemes, 0.2% and 6.3%, respectively, of the total requests could not be accomplished

due to connection timeout. Without adaptation, the server could handle 58 requests per

second, yield an average connection time of 825 milliseconds, and give an average

response time of 3.18 seconds. With adaptation, the server’s attained request rates were

dropped to 14 and 1 requests per second, its average connection times delayed by 6.6 and

 Chapter 8. Performance Evaluation on Proposed PWCD 253

6.4 times, and its average response times slowed down by factors of 5.2 and 77.0 in the

respective JP2-MOD and JPG-SDT schemes. Clearly, under a heavy load (about 300

concurrent connections), the server employing the no-adaptation scheme could serve all

requests well. The server employing the JP2-MOD scheme could serve the majority of the

requests but with increased response times. The server employing the JPG-SDT scheme,

by contrast, suffered a higher percentage of failed requests and a much bigger drop in

response times. The server employing the JPG-FDT scheme performed the worst since it

crashed due to the scheme’s high demand for memory space.

Further, for each successful scheme, the number of established concurrent

connections to the server was periodically noted. The cumulative distributions of the

collected data (i.e., periodic numbers of concurrent connections) are plotted in Figure 8.5.

The figure reveals different characteristics of the three schemes: no-adaptation, JP2-

MOD, and JPG-SDT.

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

Concurrent Connections

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

no-adapt

jp2-mod

jpg-sdt

Figure 8.5 CDFs of periodic numbers of concurrent connections (max. 300) while stressing the server

 Chapter 8. Performance Evaluation on Proposed PWCD 254

Although the maximum possible number of concurrent connections was set to

300, the no-adaptation scheme (curve no-adapt) used at most about 250 established

connections; close observation revealed that the remaining connections were in

synchronization and closing states. Since the pre-generated representations could be

directly delivered without adaptation, the connections were relatively short, and therefore,

some of them were found not in the established state. The server’s performance, in turn,

was determined more by the connections’ availability rather than by the availability of the

server’s other resources. As noticed in the curve, around half of the periodic numbers of

concurrent connections are zero. This happened because the server ran out of sockets, so

new connections could not be set up. The TIME_WAIT timeout may be the reason of this

connection blockage. For every connection being closed, the server has to wait for some

time to handle packets still in the network. These slow-to-be-released connections reduce

the number of active sockets and, if there is no available socket left, may block or delay

new connections. The curve also shows that most of the time (more than 80% of the

collected data) the number of concurrent connections is 25 or less.

The number of concurrent connections in the JP2-MOD scheme (curve jp2-mod)

topped at 200. Examining the data traces reveals that the number of concurrent

connections increased gradually and reached 200 before it declined. The modulation

processes running at the server may be the plausible explanation. The multiple

connections caused the server’s load to increase, and as a result, the server could not set

up new connections fast enough and less number of established connections resulted; this

is in agreement with the increased average connection time. At the same time, the fast

modulation processes also restrained the number of established connections from going

 Chapter 8. Performance Evaluation on Proposed PWCD 255

beyond 200. About 10% of the periodic numbers of concurrent connections are less than

100, 30% of them between 100 and 150, and 60% of them in the range of 150 to 200.

In the JPG-SDT scheme (curve jpg-sdt), most of the time (about 60% of the

collected data) the number of concurrent connections reached 299–300, which is the

maximum possible number. This was due to the transcoding processes taking quite some

time to complete so that the number of concurrent connections rapidly increased to the

maximum. Only 10% of the periodic numbers of concurrent connections have values less

than 200, another 10% between 200 and 275, and the remaining 20% in the range of 275

to 299.

This preliminary stress test corroborates our early assertion that the server

employing modulation performs much better than the server employing transcoding

(either SDT or FDT). Under a heavy load, the average response time in the JP2-MOD

scheme is at least 14 times faster than that in the JPG-SDT scheme. More over, sixty

percent of the time, the number of concurrent connections in the JP2-MOD scheme is

between 150 and 200, but that in the JPG-SDT counterpart is close to 300 – the maximum

possible number of concurrent connections.

In the next experiments, all schemes – including the JPG-FDT – were examined

again under a normal condition, meaning that the server’s resources are not stretched to

their limits. The JPG-FDT scheme, which seemed to perform the worst, was used to

determine the load applied to the server. After several trials, we found that the JPG-FDT

scheme could only succeed if the maximum number of concurrent connections was

limited to 30. Accordingly, the number of requests was reduced to 600; that means 100

requests for each image’s representation. The bandwidth for each connection was still

 Chapter 8. Performance Evaluation on Proposed PWCD 256

restricted to 1 Mbps. Even under this condition, the JPG-FDT scheme took about 5.5

hours to complete; for comparison, the no-adaptation, JP2-MOD, and JPG-SDT schemes

took roughly 0.5, 1, and 9 minutes to complete. The test’s results are shown in Table 8.5.

Table 8.5 Results of stressing the server running adaptation [max. concurrent connections ==== 30]

Scheme No. of Reqs
*

Attained

Req Rate

(req/sec)

Attained

Xfer Rate

(KB/sec)

Conn. Time
+

(milliseconds)

Resp. Time
+

(seconds)

No-adapt 600 (600) 22.65 2,168.02 1.86 (1) 0.84 (0.94)

JP2-MOD 600 (600) 10.84 1,037.61 1.84 (1) 1.99 (1.75)

JPG-SDT 600 (600) 1.14 108.98 1.85 (1) 22.42 (22.15)

JPG-FDT 600 (600) 0.03 2.97 4.96 (1) 938.98 (977.40)

Note:
*
 values are sent (completed);

+
 values are mean (median)

As shown in the table, under the normal condition, all requests were successfully

served. Compared to the previous results, the attained request rate in the no-adaptation

scheme dropped 60% (i.e., from 58 to 23 requests/second), that in the JP2-MOD scheme

dropped 21% (i.e., from 14 to 11 requests/second), and that in the JPG-SDT scheme

remained unchanged (at 1 request/second). The attained request rate in the JPG-FDT

scheme was extremely low, just 2 requests/minute. Logically, the attained transfer rate

always follows the request rate; thus, the no-adaptation and JPG-FDT schemes

respectively had the highest and lowest transfer rates. The no-adaptation, JP2-MOD, and

JPG-SDT schemes yielded similar average connection time, around 1.85 milliseconds.

The average connection time in the JPG-FDT scheme was slightly higher at about 5

milliseconds. While the average response time in the no-adaptation scheme was

reasonably low (0.84 seconds), that in the JP2-MOD scheme was just 2.4 times higher

(about 2 seconds). By contrast, the average response times in the JPG-SDT and JPG-FDT

 Chapter 8. Performance Evaluation on Proposed PWCD 257

schemes were 26.6 and 1114.8 times higher than that in the no-adaptation scheme. The

JPG-FDT scheme, in particular, performed very badly. Twenty two seconds (i.e., the

average response time in the JPG-SDT scheme) is already considered too long to display

an image’s representation, not to mention 15–16 minutes (i.e., the average response time

in the JPG-FDT scheme). The low average connection times in all schemes meant that the

server did not experience much trouble in setting up 30 concurrent connections. However,

the high average response times in the JPG-SDT and JPG-FDT schemes meant that the

server was heavily loaded. Again, the results prove that transcoding is resource-

consuming. Modulation, on the other hand, is less burdensome due to the nature of its

processes, which involve much less or no complex computations.

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30

Concurrent Connections

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

no-adapt

jp2-mod

jpg-sdt

jpg-fdt

Figure 8.6 CDFs of periodic numbers of concurrent connections (max. 30) while stressing the server

The cumulative distributions of the periodic numbers of concurrent connections in

different schemes are depicted in Figure 8.6. In the no-adaptation scheme (curve no-

adapt), the data are mainly distributed on numbers which are products of five, such as 5,

10, 15, and so forth. The plausible explanation can be found in how the benchmarking

 Chapter 8. Performance Evaluation on Proposed PWCD 258

application, ab, operates. To reach 30 concurrent connections, we had configured the ab

application to send five requests for the first image’s representation, followed by five

requests for the second image’s representation, and the pattern continues until the last –

the sixth – image’s representation. Since no adaptation was involved, those five requests

– being sent out concurrently – might be completed in the same time, causing the periodic

numbers of concurrent connections to be crowded by products of five.

The cumulative distributions in Figure 8.6 can be contrasted by evaluating the

percentages of data representing the maximum number of concurrent connections, which

is 30 by design. Those percentages are roughly 25%, 50%, 60%, and 90% for the

respective no-adaptation, JP2-MOD, JPG-SDT, and JPG-FDT schemes. The higher is the

percentage, the heavier is the server’s load. Unsurprisingly, the no-adaptation scheme

gives the best performance, followed by the JP2-MOD and JPG-SDT schemes. The JPG-

FDT scheme exhibits the worst performance.

To sum up, we have discussed experiments on the server-based adaptation to

figure out its costs and benefits. Adaptation at the server is particularly beneficial if the

bandwidth of the server-proxy link is restricted. One cost can be measured from the

resulting response time, which can be broken down into the delivery latency and the

adaptation latency. The delivery latency is unavoidable, whereas the adaptation latency is

the cost of performing server-based adaptation. The other cost comes in form of

decrement in performance.

Three distinct adaptation schemes had been examined in the experiments; they are

JPEG spatial-domain transcoding (JPG-SDT), JPEG frequency-domain transcoding (JPG-

 Chapter 8. Performance Evaluation on Proposed PWCD 259

FDT), and JPEG 2000 modulation (JP2-MOD). Analyses on those three adaptation

schemes show that the JP2-MOD scheme gives the lowest cost; its ratio of adaptation

latency to total response time ranges from 0.3–1.1% on 56 Kbps connection to 4.7–15.9%

on 1 Mbps connection. Comparing that ratio to those resulting from other schemes, the

JP2-MOD scheme is 4–20 times better than the JPG-SDT scheme and 5–18 times better

than the JPG-FDT scheme.

With regard to the server’s performance under a heavy load (300 concurrent

connections), the JP2-MOD and JPG-SDT schemes managed to serve 14 and 1

requests/second, which were 76.5% and 98.1% drops from 58 requests/second in the no-

adaptation scheme (i.e., the server without adaptation). However, under a normal load (30

concurrent connections), the JP2-MOD and JPG-SDT schemes were able to serve 11 and

1 requests/second, representing 52.1% and 95.0% drops from 23 requests/second in the

no-adaptation scheme. Surprisingly, the JPG-FDT scheme performed very badly due to

its high demand for memory space; it crashed under a heavy load and just managed to

serve 2 requests/minute under a normal load. While the average response time in the JP2-

MOD scheme was quite fast (i.e., 2 seconds), those in the JPG-SDT and JPG-FDT

schemes were considered too long (22 and 939 seconds, respectively). Moreover,

analyses on the periodic numbers of concurrent connections reveal that the JPG-SDT and

JPG-FDT schemes required 30 concurrent connections (the maximum possible number)

60% and 90% of the time, but the JP2-MOD topped at that number half of the time.

Evidently, the costs of implementing modulation at the server are lower than those

of implementing transcoding. Although the benefits of server-based adaptation are scarce,

it is easier to manage (less number of Web resources) and to extend (adding more types of

 Chapter 8. Performance Evaluation on Proposed PWCD 260

adaptation) than providing multiple pre-generated versions of Web resources. In our

framework, the server-based adaptation is coupled with the proxy-based adaptation to

give greater benefits. The benefits will be demonstrated shortly in the following section.

8.3 Evaluating Adaptation at Web Server and Proxy

Our framework suggests greater collaboration between the origin server and the

proxy in delivering the best-fit representations for heterogeneous clients. The proposed

system is proxy-centric, in which the proxy decides the representation to be served to a

particular client. For the decision-making process to succeed, the proxy requires

information about the object’s characteristics and some guidance from the server, in

addition to information about the client’s characteristics. All of this information is

available in form of the server and client meta-data documents.

The current evaluation tested and analyzed the performance of our model

prototype, which was built according to the proposed framework. Each experimented

image was accompanied by an associated ADP document (i.e., the server meta-data

document) residing in the server. The three ADP documents used in the experiments –

namely, boat.jpeg.adp, boat.jpg.adp, and boat.jp2.adp – have been described

in Subsection 8.1.3. Each client’s request carried a reference (URI) to the client’s CC/PP

document (i.e., the client meta-data document) in its CCPP header. The experiments used

six CC/PP documents (Client1–Client6), each of which corresponded with a

particular image’s representation. Details about the CC/PP documents can be found in

Subsection 8.1.4.

 Chapter 8. Performance Evaluation on Proposed PWCD 261

Aside from the meta-data documents, some matching rules had to be configured in

the proxy so that the expected representation was correctly selected by the decision-

making process. The defined variables and installed matching rules are as follows:

CC/PP Variables

ccpp_def dev_width H -i pix-x

ccpp_def dev_height H -i pix-y

ccpp_def dev_color H -i color

ccpp_def dev_scrollbar B -i scrollbar

ADP Variables

adp_def rep_width GEN -i width

adp_def rep_height GEN -i height

adp_def rep_gray IMG -i grayscale

Matching Rules

obj_match 0 [rep_width + 10 <= dev_width]

obj_match 1 [(rep_height <= dev_height) |

 (dev_scrollbar $ 4 = "vert")]

obj_match 2 [rep_gray | (dev_color = "full")]

The top four lines define CC/PP variables – namely dev_width, dev_height, dev_color,

and dev_scrollbar – corresponding with attributes of a CC/PP document which names

contain words “pix-x” (display width), “pix-y” (display height), “color” (supported

color), and “scrollbar” (browser’s scrollbars). The next three lines define ADP variables –

namely rep_width, rep_height, and rep_gray – corresponding with attributes of an ADP

document which names contain words “width” (presentation width), “height”

(presentation height), and “grayscale” (grayscale image). At last, using the defined

variables, three matching rules are specified. Rule 0 says that the addition of the

representation’s width and 10 should be less than or equal to the display width. Rule 1

says that representation’s height should be less than or equal to the display height, but the

rule may be ignored if the browser has a vertical scrollbar. The last rule basically prevents

a color representation to be displayed on a device supporting grayscale only.

 Chapter 8. Performance Evaluation on Proposed PWCD 262

In the following subsections, three sets of experiments are discussed. The first is

response time analyses between server/proxy-based (meaning a combination of server-

and proxy-based) adaptation and merely server-based adaptation. The second is a stress

test applied to the systems running server-based and server/proxy-based adaptation.

Finally, the third set of experiments demonstrates the benefits of data reuse. Before

discussing the experiments, let us start with the objectives of this evaluation.

8.3.1 Experimental Objectives

Similar to the previous evaluation, the primary objective of evaluating adaptation

at the server/proxy is to analyze its costs and benefits. We believe that the benefits of

server/proxy-based adaptation should be greater than those of server-based adaptation.

The experiments here will elaborate those benefits. Pragmatically, we may have to trade

the benefits in certain aspects for some overheads in other aspects. This evaluation is

expected to unveil those overheads, too.

The secondary objective is to understand the distinct characteristics of

server/proxy-based adaptation in our proposed framework. These experiments may reveal

invaluable information that can be used to improve the framework and further open up

new research ideas, particularly in pervasive Web content delivery.

8.3.2 Response Time Analyses

Our proposed framework greatly exploits data reuse of Web objects. A typical

caching proxy stores the object received from the origin server and uses it to respond

 Chapter 8. Performance Evaluation on Proposed PWCD 263

subsequent client requests for the same object. The stored object may be the product of

adaptation, reusability of which is usually low. However, with the proliferation of

scalable data formats such as MPEG-4, JPEG 2000, and H-264 standards, data reusability

can now be improved. Our caching proxy may reuse the cached representation – of a

particular object, for instance – to serve not only requests for the same object’s

representation but perhaps also requests for other representations of the object. In our

implementation (model prototype), the reuse of a cached object’s representation can be

specified in the proxy. As noted in the previous chapter, any adaptor can be plugged into

our enhanced proxy so long as it is coupled with a suitable adapting interface (readers are

referred to Subsections 7.4.2 and 7.4.4 for development of such an adapting interface).

The adapting interface determines whether or not a cached object’s representation can be

reused for serving a request for a different representation of the same object.

Three adapting interfaces had been devised for the model prototype. They were

developed to communicate with the external JPEG transcoders (SDT and FDT) and JPEG

2000 modulators. For simplicity, again we may refer them by the schemes’ names; those

are JPG-SDT, JPG-FDT, and JP2-MOD. With regard to data reuse in case the requested

image’s representation is different from the cached image’s representation, the JPG-

SDT’s and JPG-FDT’s adapting interfaces can only reuse the cached representation if it

satisfies the following three conditions:

1. It must have a higher resolution than or equal to the requested representation;

2. It must have full color components if the requested representation is also in full color;

3. It must have a higher quality value than or equal to the requested representation.

 Chapter 8. Performance Evaluation on Proposed PWCD 264

Actually, any representation resulting from transcoding should not be transcoded again

since the quality of the resulting representation decreases by 0.4–2 dB, but we trade the

image’s quality for more data reuse. In contrast, the JP2-MOD’s adapting interface

generally can reuse any cached representation, either partly or fully, without sacrificing

the image’s quality by means of downscaling and/or upscaling operations.

The six predetermined representations of images boat.jpeg (for SDT),

boat.jpg (for FDT), and boat.jp2 – as listed in Table 8.1 to Table 8.3 – were used as

the experimental test cases. By employing the above mentioned JPG-SDT’s adapting

interface, possible data reuses among the predetermined representations are as depicted in

the diagram of Figure 8.7(a). The 1/2-scaled representation, if cached, can only be reused

to generate the 1/2-scaled, gray representation. The reverse data reuse is not allowed since

it would violate conditions 2 and 3 above. Likewise, the cached 1/4-scaled and 1/8-scaled

representations can be reused to generate the 1/4-scaled, gray and 1/8-scaled, gray

representations, respectively. The 1/2-scaled representation has a higher resolution than

the 1/4-scaled and 1/8-scaled representations, but its quality value is lower than theirs;

due to the third condition, it cannot be reused to generate the other two representations.

The JPG-FDT’s adapting interface behaves exactly the same as the JPG-SDT counterpart.

On the other hand, the JP2-MOD’s adapting interface may reuse any cached

representation to generate other representations, as depicted in the diagram of Figure

8.7(b). Note that the transitive law is in effect here; it means that since the 1/2-scaled

representation can be reused to generate the 1/4-scaled representation and the 1/4-scaled

representation can be reused to generate the 1/8-scaled representation, then the 1/2-scaled

representation can also be reused (directly) to generate the 1/8-scaled representation. If a

 Chapter 8. Performance Evaluation on Proposed PWCD 265

requested representation is partly satisfied by the cached representation, additional image

data is required and an upscaling operation is involved. The upscaling operations are

indicated by the up-pointing arrows in the diagram.

1/2-scaled

Representation

1/2-scaled, gray

Representation

1/4-scaled

Representation

1/4-scaled, gray

Representation

1/8-scaled

Representation

1/8-scaled, gray

Representation

1/2-scaled

Representation

1/2-scaled, gray

Representation

1/4-scaled

Representation

1/4-scaled, gray

Representation

1/8-scaled

Representation

1/8-scaled, gray

Representation

(a) (b)

1/2-scaled

Representation

1/2-scaled, gray

Representation

1/4-scaled

Representation

1/4-scaled, gray

Representation

1/8-scaled

Representation

1/8-scaled, gray

Representation

1/2-scaled

Representation

1/2-scaled, gray

Representation

1/4-scaled

Representation

1/4-scaled, gray

Representation

1/8-scaled

Representation

1/8-scaled, gray

Representation

(a) (b)

Figure 8.7 Data reuses among image representations in (a) JPG-SDT & JPG-FDT, and (b) JP2-MOD

Some experiments were conducted to analyze the costs and benefits between the

system running server/proxy-based adaptation and the system only running server-based

adaptation. To be fair, both systems involved a server and a caching proxy. The former

employed our enhanced server and enhanced proxy; the latter employed our enhanced

server and a normal proxy. The cost-benefit analyses are in term of the response times of

requesting the images’ representations. The analyses are carried out in two scenarios:

first-time delivery and subsequent delivery. [To some extent, we are trying to corroborate

our analytical evaluation in Section 6.2.] The experiments were tested on the JPG-SDT,

JPG-FDT, and JP2-MOD schemes, which have also been used in the prior experiments.

 Chapter 8. Performance Evaluation on Proposed PWCD 266

For the experiments with the system running server-based adaptation, each

generated request included a specific query string to indicate the wanted image’s

representation. This is because the proxy was not involved in the adaptation (see also

Subsection 8.2.2). However, the proxy could still cache the images’ representations.

In contrast, for the experiments with the system running server/proxy-based

adaptation, the image’s resource was directly requested without an extra query string, but

each request carried a reference (URI) to one CC/PP document – out of the six – in its

CCPP header to indicate the client’s profile. Using the specified matching rules, the

enhanced proxy would make a decision about the best-fit representation according to the

given client’s profile and the image’s characteristics (retrieved from the server).

All response times in the experiments were measured at the proxy. We did not

dedicate a special machine to be a client. Besides, the striking contrast between the

server-based and server/proxy-based adaptation takes place along the server-proxy link,

not on the proxy-client link. It was also assumed in the experiments that there might be

only one representation of an image in the cache at any given time; this condition was

necessary to make the analyses possible and comparable. The experimental results and

discussion are given in the following paragraphs. The first-time delivery’s results are

discussed first, and then, the subsequent delivery’s results.

A. First-time delivery

Figure 8.8 compares the response times of requesting the images’ representations

for the first time between the server-based adaptation (s-adp) and the server/proxy-based

adaptation (sp-adp). The results are classified according to the requested representations

 Chapter 8. Performance Evaluation on Proposed PWCD 267

(notice the horizontal axis). For each representation, there are two collections of bars; the

left-hand side is the results of server-based adaptation and the right-hand side the results

of server/proxy-based adaptation. Each collection comprises three bars corresponding

with the employed schemes – i.e., JPG-SDT, JPG-FDT, and JP2-MOD.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1/2-scl 1/2-scl,gry 1/4-scl 1/4-scl,gry 1/8-scl 1/8-scl,gry

Requested Representation

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

JPG-SDT (s-adp) JPG-FDT (s-adp) JP2-MOD (s-adp)

JPG-SDT (sp-adp) JPG-FDT (sp-adp) JP2-MOD (sp-adp)

Figure 8.8 Response times of requesting image representations (all schemes) in first-time delivery

As seen in the figure, the response times of requesting the representations for the

first time in s-adp and sp-adp do not differ so much. The response times in sp-adp are

slightly higher than those in s-adp, owing to the decision-making process involved. The

excess delays caused by the decision-making process in sp-adp are considered costs. The

average costs in the respective JPG-SDT, JPG-FDT, and JP2-MOD schemes are about 28,

28, and 35 milliseconds. The JP2-MOD scheme has a higher cost than the other schemes

probably because image boat.jp2 had more representations in its ADP document than

the specified numbers of representations for images boat.jpeg and boat.jpg; the

ADP documents defined twenty-one representations for boat.jp2 compared to fifteen

representations each for boat.jpeg and boat.jpg. Conceivably, the greater the

 Chapter 8. Performance Evaluation on Proposed PWCD 268

number of representations, the longer is the time taken by the decision-making process to

accomplish.

B. Subsequent delivery

The proxy may satisfy a subsequent request by reusing the representation that has

been cached in the first-time delivery or, conversely, fetching the requested representation

from the origin server. The former is deemed a cache hit and the latter a cache miss. A

cache hit usually can be served faster than a cache miss because the image data is

delivered directly from the proxy, which is closer to the client. Consequently, a cache hit

has a lower cost than a cache miss.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1/2-scl 1/2-scl,gry 1/4-scl 1/4-scl,gry 1/8-scl 1/8-scl,gry

Requested Representation

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
) 1/2-scl (s-adp)

1/2-scl,gry (s-adp)

1/4-scl (s-adp)

1/4-scl,gry (s-adp)

1/8-scl (s-adp)

1/8-scl,gry (s-adp)

1/2-scl (sp-adp)

1/2-scl,gry (sp-adp)

1/4-scl (sp-adp)

1/4-scl,gry (sp-adp)

1/8-scl (sp-adp)

1/8-scl,gry (sp-adp)

Figure 8.9 Response times of requesting image representations (JPG-SDT) in subsequent delivery

Figure 8.9 compares the response times of requesting boat.jpeg’s

representations (adapted by the JPG-SDT scheme) in the subsequent delivery between the

server-based (s-adp) and server/proxy-based (sp-adp) adaptation. The results are also

classified according to the requested representations. Since it is a subsequent request, a

representation from the previous request is supposed to exist in the cache. The bar chart in

 Chapter 8. Performance Evaluation on Proposed PWCD 269

the figure takes all possible cached representations into consideration. Each bar signifies

the response time if a particular representation (indicated in the legend) is in the cache.

In s-adp, a cache hit occurs when the requested representation precisely matches

the cached representation; in that case, the response time was very short, just about 5–6

milliseconds in our experiments. Otherwise, it is a cache miss and the requested

representation has to be satisfied from the server; therefore, the resulting response time

was not different from that in the first-time delivery.

In sp-adp, besides the typical cache hit above, the proxy may adapt the cached

representation to generate the requested representation. As prearranged (refer to Figure

8.7(a)) and expected, there are three occasions in Figure 8.9 where the cached

representation can be reused to generate the requested representation. The first occasion is

when the 1/2-scaled, gray representation is requested and the 1/2-scaled one in the cache.

The second is when the 1/4-scaled, gray representation is requested and the 1/4-scaled

one in the cache. And the third is when the 1/8-scaled, gray representation is requested

and the 1/8-scaled one in the cache. For the typical cache hit, sp-adp took about 33–35

milliseconds; the excess delay due to the decision-making process was also observed

here. For the cache hit with adaptation, sp-adp took between 67 and 233 milliseconds (or,

about 8–12% of the response times in the associated cache misses).

In general, sp-adp lost to s-adp if the requested representation was one of the 1/2-

scaled, 1/4-scaled, and 1/8-scaled representations. In the remaining cases, sp-adp might

win. Considering the average response time, for the subsequent delivery using the JPG-

SDT scheme, the server/proxy-based adaptation (sp-adp) proves to be more beneficial,

albeit marginally. Later on, detailed calculations of the benefits will be presented.

 Chapter 8. Performance Evaluation on Proposed PWCD 270

Similarly, the response times of requesting boat.jpg’s representations (adapted

by the JPG-FDT scheme) in the subsequent delivery between s-adp and sp-adp are

compared in Figure 8.10. A cache hit in s-adp corresponded to a 5–6 millisecond delay,

whereas that in sp-adp was translated to a 33–35 millisecond delay; notice the similarity

of both delays as compared to the previous results. Since the JPG-FDT scheme in sp-adp

also exploits more data reuse, a cache hit with adaptation may occur, as well. Depending

on the cached representation, the cache hit with adaptation took between 57 and 163

milliseconds (or, roughly 5–8% of the response times in the associated cache misses).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1/2-scl 1/2-scl,gry 1/4-scl 1/4-scl,gry 1/8-scl 1/8-scl,gry

Requested Representation

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
) 1/2-scl (s-adp)

1/2-scl,gry (s-adp)

1/4-scl (s-adp)

1/4-scl,gry (s-adp)

1/8-scl (s-adp)

1/8-scl,gry (s-adp)

1/2-scl (sp-adp)

1/2-scl,gry (sp-adp)

1/4-scl (sp-adp)

1/4-scl,gry (sp-adp)

1/8-scl (sp-adp)

1/8-scl,gry (sp-adp)

Figure 8.10 Response times of requesting image representations (JPG-FDT) in subsequent delivery

Like the previous results, sp-adp also won some cases and lost some to s-adp.

Still, for the subsequent delivery using the JPG-FDT scheme, the overall results show that

sp-adp manages to better s-adp.

Figure 8.11 compares the response times of requesting boat.jp2’s

representations (adapted by the JP2-MOD scheme) in the subsequent delivery between s-

adp and sp-adp. In s-adp, benefits were obtained in cases of cache hits, which took only

5–6 milliseconds to serve the requests. In sp-adp, those cache hits required about 39–41

 Chapter 8. Performance Evaluation on Proposed PWCD 271

milliseconds to complete; it means that there was an excess delay of 34–35 milliseconds

for the decision-making process. In addition, more benefits can be obtained in sp-adp due

to modulation’s support for high data reuse. Any cached representation can be reused –

either partly or fully – to generate the requested representation (see also Figure 8.7(b)).

As observed in the bar chart, the response times in sp-adp are less than those in s-adp,

except for the cases of cache hits in s-adp. Clearly, for the subsequent delivery using the

JP2-MOD scheme, sp-adp significantly outperforms s-adp.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2-scl 1/2-scl,gry 1/4-scl 1/4-scl,gry 1/8-scl 1/8-scl,gry

Requested Representation

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
) 1/2-scl (s-adp)

1/2-scl,gry (s-adp)

1/4-scl (s-adp)

1/4-scl,gry (s-adp)

1/8-scl (s-adp)

1/8-scl,gry (s-adp)

1/2-scl (sp-adp)

1/2-scl,gry (sp-adp)

1/4-scl (sp-adp)

1/4-scl,gry (sp-adp)

1/8-scl (sp-adp)

1/8-scl,gry (sp-adp)

Figure 8.11 Response times of requesting image representations (JP2-MOD) in subsequent delivery

Having assessed the response times in the first-time and subsequent deliveries, we

can now analyze the total benefit/cost of the server/proxy-based adaptation (sp-adp) as

compared to the server-based adaptation (s-adp). For each requested representation, the

benefit/cost is determined by the difference between the response time in sp-adp and that

in s-adp. It is regarded a gain (benefit) if the response time in sp-adp is less than that in s-

adp; otherwise, it is a loss (cost). Thus, the formula to determine the benefit/cost is

δ = s-adp_response_time − sp-adp_response_time

 Chapter 8. Performance Evaluation on Proposed PWCD 272

The server/proxy-based adaptation is more beneficial (detrimental) than the server-based

adaptation if the value of δ is positive (negative). Using the formula, we calculate the

total benefit/cost of sp-adp as compared to s-adp, with respect to the employed schemes –

namely JPG-SDT, JPG-FDT, and JP2-MOD. The calculations are detailed in Table 8.6.

Table 8.6 Total benefit/cost of server/proxy-based adaptation as compared to server-based adaptation

JPG-SDT JPG-FDT JP2-MOD Requested

Representation 1st Ssq Total 1st Ssq Total 1st Ssq Total

1/2-scaled (-28.3) (-28.4) (-28.3) (-28.4) (-28.4) (-28.4) (-34.2) 530.6 248.2

1/2-scaled, gray (-28.0) 258.6 115.3 (-28.5) 304.2 137.8 (-35.0) 543.2 254.1

1/4-scaled (-27.4) (-27.5) (-27.4) (-27.8) (-27.8) (-27.8) (-34.0) 484.7 225.4

1/4-scaled, gray (-28.3) 200.9 86.3 (-27.8) 235.0 103.6 (-35.3) 440.0 202.4

1/8-scaled (-27.3) (-27.4) (-27.4) (-27.8) (-27.8) (-27.8) (-34.3) 284.3 125.0

1/8-scaled, gray (-28.0) 104.0 38.0 (-27.4) 160.5 66.5 (-35.2) 261.0 112.9

Total B(C) 26.1 37.3 194.6

All values in Table 8.6 are in milliseconds. The calculations are done for each

requested representation. As noticed, there are three columns for each employed scheme.

The first column (with header “1st”) is the calculated benefit/cost in the first-time

delivery. The second column (with header “Ssq”) is the calculated benefit/cost in the

subsequent delivery; it is the average response times’ difference of the six cases of cached

representations. The third column (with header “Total”) is the total benefit/cost of

requesting the respective representation; it is the average of the previous two columns. At

the bottom of the table (the last row), the total benefit/cost of server/proxy-based

adaptation with respect to that particular scheme is determined; it is the average of the

values in column “Total”. Let us now examine the results for each scheme.

 Chapter 8. Performance Evaluation on Proposed PWCD 273

In the JPG-SDT scheme, any representation requested for the first time is always a

loss, whereas the subsequent delivery may be a gain or a loss, depending on the requested

representation. Combining the first-time and subsequent deliveries, requesting the

grayscale representations may be beneficial whereas requesting the full color

representations is perhaps detrimental. But overall, employing the JPG-SDT scheme, the

server/proxy-based adaptation is slightly more beneficial than the server-based adaptation

since the average response time is faster by 26.1 milliseconds.

Employing the JPG-FDT scheme gives similar characteristics to employing the

JPG-SDT scheme. So, requesting the grayscale representations may offer more benefits

than requesting the full color representations. In this scheme, the server/proxy-based

adaptation is also more beneficial than the server-based adaptation; the average response

time in the former is less than that in the latter by 37.3 milliseconds.

Requesting any representation for the first time in the JP2-MOD scheme is also a

loss. But the subsequent request has a very high chance to be beneficial. All combined

results of the first-time and subsequent deliveries are beneficial, too. In general,

employing the JP2-MOD scheme, the server/proxy-based adaptation may gain 194.6

milliseconds in the average response time over the server-based adaptation.

It can be inferred from the above results that the server/proxy-based adaptation is

more advantageous than the server-based adaptation in any scheme employed. Moreover,

the JP2-MOD scheme gives the highest total benefit as compared to the total benefits of

the JPG-SDT and JPG-FDT schemes. The gain from the average response time in the

JP2-MOD scheme is greater than those in the JPG-SDT and JPG-FDT counterparts by

factors of 7.5 and 5.2, respectively.

 Chapter 8. Performance Evaluation on Proposed PWCD 274

8.3.3 Stress Test

Like the previous evaluation of adaptation at the server, the evaluation of

adaptation at the server/proxy is not complete without running a stress test on the system.

With the help of a caching proxy (either original or enhanced), the server’s load is

expected to decrease. Since cases of cache hits can shorten the response times, the

average response time is also expected to be lower than the average response time of the

adaptation system without a caching proxy.

In accordance with the previous response time analyses, two distinct systems had

been stress-tested in the experiments. Both systems consisted of a server and a caching

proxy. The first system, comprising our enhanced server and a normal (original) proxy,

employed server-based adaptation. The second system, comprising our enhanced server

and proxy, employed server/proxy-based adaptation.

The same benchmarking application – i.e., ab of the ApacheBench package – was

employed to stress-test both systems. It was carried out at the proxy; thus, a dedicated

client’s machine was unnecessary. In addition, the same three adaptation schemes –

namely JPG-SDT, JPG-FDT, and JP2-MOD – plus the no-adaptation scheme were also

compared and contrasted in the experiments. Six hundred requests were sent out during

the stress test; it means 100 requests for each image’s representation. Similarly, the

number of concurrent connections was monitored periodically, but this time there were

two links – i.e., the proxy-to-server and client-to-proxy links – to monitor. The maximum

number of concurrent connections was set to thirty (30). In the adapting proxy, ten (10)

 Chapter 8. Performance Evaluation on Proposed PWCD 275

adaptors – depending on the scheme – were run simultaneously to serve requests for

adaptation. The bandwidth of each connection to the server was also limited to 1 Mbps.

A. System employing server-based adaptation

Different from the previous assumption, in the system, there may be more than

one image’s representation stored in the proxy’s cache. This is actually the typical

behavior of the original proxy. Since objects in the cache are identified by the requests

and since every request for an image’s representation is unique (due to the attached query

string at the end of the request’s URI), all representations of the image may be stored as

distinct objects in the cache. The benefit of storing multiple representations of an image

in the proxy’s cache is the avoidance of repeated adaptation processes. Furthermore, if

there are many representations stored in the cache, chance is higher that a cache hit may

happen for the next request for the image. However, the downside is that adaptation at the

proxy may not be feasible. For the adaptation at the proxy to work effectively, the cached

representation should be able to be identified so that a decision can be made whether the

requested representation can be generated from the cached one. If multiple

representations are allowed to be stored in the cache, the identification and decision-

making processes will be difficult, if possible, to do. Some reasons may be suggested.

First of all, it is hard to tell which cached objects are indeed the representations of the

requested image; this is because they are considered distinct objects. Secondly, since

direct identification of the existing representations in the cache is difficult to do, another

alternative is to check exhaustively whether certain representations are in the cache, but

this may be inefficient. Lastly, even if the cached representations can be identified,

 Chapter 8. Performance Evaluation on Proposed PWCD 276

selection has to be made with regard to the one used for adaptation; this makes the overall

adaptation procedure more complex. Besides that, other drawbacks of caching multiple

representations include more disk space’s consumption and difficulty in maintenance.

Nevertheless, the use of a proxy in this system was merely for caching the

representations and not for adaptation. The adaptation was done only at the server; hence,

it is termed server-based adaptation. The test’s results are presented in Table 8.7.

Table 8.7 Results of stressing the server/proxy system employing server-based adaptation

Scheme No. of Reqs
*

Attained

Req Rate

(req/sec)

Attained

Xfer Rate

(KB/sec)

Conn. Time
+

(milliseconds)

Resp. Time
+

(seconds)

No-adapt 600 (600) 213.45 20,436.71 1.03 (0) 0.12 (0.06)

JP2-MOD 600 (600) 153.77 14,722.56 1.01 (0) 0.17 (0.06)

JPG-SDT 600 (600) 21.69 2,070.81 0.91 (0) 1.17 (<0.01)

JPG-FDT 600 (600) 1.26 120.81 0.98 (0) 20.93 (<0.01)

Note:
*
 values are sent (completed);

+
 values are mean (median)

Compared to the system comprising just the server (called the server system, for

simplicity), the server/proxy system’s performance is greatly improved. This can be

verified by contrasting the results presented in Table 8.7 with those presented in Table

8.5. The attained request rates increase by factors of 9.4, 14.2, 19.0, and 40.6 in the

respective no-adaptation, JP2-MOD, JPG-SDT, and JPG-FDT schemes. Another key

performance indicator is the average response time, which the current system manages to

speed up by 7 to 45 times as compared to the server system. Obviously, the server/proxy

system outperforms the server system.

Figure 8.12 depicts the cumulative distributions of the periodic numbers of

concurrent connections on the proxy-to-server and client-to-proxy links. As seen in both

 Chapter 8. Performance Evaluation on Proposed PWCD 277

graphs of the figure, the characteristics of the proxy-to-server concurrent connections are

very similar to those of the client-to-proxy counterparts. Examining the data traces indeed

reveals that the periodic numbers of concurrent connections in both links were almost the

same most of the time. It seems that one request on the proxy-to-server link determined

several similar requests on the client-to-proxy link. Once a representation had been

retrieved from the server and stored in the proxy’s cache, the following requests for that

representation could be served very briskly. That is why the number of client-to-proxy’s

concurrent connections resembled that of proxy-to-server’s concurrent connections during

the stress test.

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30

Concurrent Connections

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

no-adapt

jp2-mod

jpg-sdt

jpg-fdt

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30

Concurrent Connections

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

no-adapt

jp2-mod

jpg-sdt

jpg-fdt

(a) Proxy-to-Server link (b) Client-to-Proxy link

Figure 8.12 CDFs of periodic numbers of concurrent connections while stressing

the server/proxy system employing server-based adaptation

The number of concurrent connections in the no-adaptation and JP2-MOD

schemes was almost at the maximum (30) most of the time. On the proxy-to-server link,

only 5% and 10% of the periodic numbers of concurrent connections for the two schemes

have values in the range of 25 to 29; the remainders, which are 95% and 90%

 Chapter 8. Performance Evaluation on Proposed PWCD 278

respectively, are 30. On the client-to-proxy link, thirty concurrent connections were

occupied all the time in both schemes. The similarity between the no-adaptation and JP2-

MOD schemes means that adaptation by modulation is very fast.

In the graphs, curve jpg-sdt is steeper than curve jpg-fdt, particularly in the range

of 20 to 29; it means that the periodic numbers of concurrent connections are more

distributed if the JPG-FDT scheme, rather than the JPG-SDT scheme, is employed.

Nevertheless, the graphs also demonstrate that the JPG-SDT scheme performs better than

the JPG-FDT scheme in the tested system. Employing the JPG-SDT scheme, the system

reached the maximum number of concurrent connections about half of the time. By

contrast, employing the JPG-FDT scheme, the system occupied 30 concurrent

connections almost 70% of the time.

B. System employing server/proxy-based adaptation

In the second system, which employed our enhanced server and proxy, adaptation

might be carried out at the server or at the proxy, depending on the circumstances.

Thereby, it is termed the server/proxy-based adaptation. The proxy may adapt the cached

representation if the conditions allow it (refer to the diagrams of data reuses in Figure

8.7). If the proxy cannot reuse the cached representation, adaptation to the original image

is then carried out at the server. Contrary to the condition in the previous server/proxy

system employing server-based adaptation, here the proxy may keep only one

representation of an image in its cache at any given time since the objective is to exploit

data reuse by means of adaptation. Consequently, only the three adaptation schemes could

be tested; the no-adaptation scheme was not involved in the stress test. Running the stress

 Chapter 8. Performance Evaluation on Proposed PWCD 279

test on this system produced rather diverse results. This is understandable since

adaptation at the proxy depends on what representation available in the cache, and this

may affect the overall system’s performance. However, some forms of consistency can

still be found in the results. Table 8.8 shows the test’s results.

Table 8.8 Results of stressing the server/proxy system employing server/proxy-based adaptation

Scheme No. of Reqs
*

Attained

Req Rate

(req/sec)

Attained

Xfer Rate

(KB/sec)

Conn. Time
+

(milliseconds)

Resp. Time
+

(seconds)

JP2-MOD 600 (600) 19.05 1,978.63 31.91 (0) 1.35 (0.94)

JPG-SDT 600 (600) 4.08 390.34 0.80 (0) 4.57 (0.06)

JPG-FDT 600 (600) 0.80 76.82 0.51 (0) 26.91 (0.06)

Note:
*
 values are sent (completed);

+
 values are mean (median)

The test’s results of the current server/proxy system also show some

improvements over those of the server system, although the improvements are not as

great as those achieved by the server/proxy system employing server-based adaptation.

Compared to the server system, the attained request rates in this server/proxy system are

improved by 1.8, 3.6, and 25.9 times in the JP2-MOD, JPG-SDT, and JPG-FDT schemes,

respectively. In addition, the average response times are reduced by 32.2%, 79.6%, and

97.1% in the respective schemes. We found that, among the results’ metrics, the average

connection time might be the most inconsistent; they varied greatly from one test to

another. Nonetheless, they did not affect much the system’s performance.

Compared to the server/proxy system employing server-based adaptation, the

current server/proxy system employing server/proxy-based adaptation is rather inferior.

The latter’s attained request rates in the JP2-MOD and JPG-SDT schemes are less than

one-eighth and one-fifth of the former’s attained request rates. But in the JPG-FDT

 Chapter 8. Performance Evaluation on Proposed PWCD 280

scheme, the latter’s attained request rate can achieve better, about 64% of the former’s

attained request rate. Similarly, the average response times of the server-based adaptation

are faster by factors of 7.8, 3.9, and 1.3 than those of the server/proxy-based adaptation in

the respective JP2-MOD, JPG-SDT, and JPG-FDT schemes. This inferiority is quite

expected since the server/proxy-based adaptation allows only one representation in the

proxy’s cache and exploits adaptation greatly to reuse the cached representation. These

conditions have contributed to higher response times, and subsequently, lower request

rates. The server-based adaptation, on the other hand, can store multiple representations

in its proxy’s cache and attain more cache hits without the need for adapting the cached

representations.

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30

Concurrent Connections

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

jp2-mod

jpg-sdt

jpg-fdt

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30

Concurrent Connections

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

jp2-mod

jpg-sdt

jpg-fdt

(a) Proxy-to-Server link (b) Client-to-Proxy link

Figure 8.13 CDFs of periodic numbers of concurrent connections while stressing

the server/proxy system employing server/proxy-based adaptation

The cumulative distributions of periodic numbers of concurrent connections while

stressing this system are shown in Figure 8.13. Notice that on the client-to-proxy link the

number of concurrent connections can reach beyond 30 (the maximum); the cumulative

 Chapter 8. Performance Evaluation on Proposed PWCD 281

distributions are not 100% at point 30 (see Figure 8.13(b)). This is because the proxy’s

CC/PP and ADP parsers may retrieve meta-data documents via the proxy, and these

actions may increase the number of concurrent connections to the proxy. But these extra

connections are temporary and insignificant.

As depicted by curves jpg-sdt and jpg-fdt, the periodic numbers of concurrent

connections are very much dispersed when the system employed the JPG-SDT or JPG-

FDT scheme. The graphs also demonstrate that the JPG-SDT scheme is still better than

the JPG-FDT scheme. Employing the JPG-SDT scheme, the system reached the

maximum number of concurrent connections 20% of the time. The amount of time of

reaching the maximum number was doubled (becoming 40% of the time) if the JPG-FDT

scheme was employed.

Of interest to note are characteristics of the concurrent connections when the JP2-

MOD was employed (curve jp2-mod). On the proxy-to-server link, almost 10% of the

periodic numbers of concurrent connections are zero. This happened when the cached

image was the 1/2-scaled representation, which could be reused to satisfy further requests

without the need for retrieving more image data from the server. Also, the periodic

numbers of concurrent connections to the server are concentrated between 15 and 25;

some tests gave a higher range and some gave a lower range. But more importantly, the

system employing the JP2-MOD scheme hardly ever reached 30 (the maximum)

concurrent connections. By contrast, on the client-to-proxy link, most (at least, 90%) of

the time requests to the system employing the JP2-MOD scheme used 30 concurrent

connections or even more; thus, the requests were still served at the full speed. All of

these mean that employing the JP2-MOD scheme can reduce the server’s load and reuse

 Chapter 8. Performance Evaluation on Proposed PWCD 282

more the cached data. This feature is unique to the server/proxy system employing

server/proxy-based adaptation and cannot be found in the previously tested systems.

8.3.4 Exploration of Data Reuse

To comprehend the benefits of data reuse in our proposed framework, further

exploration is required. Some adaptation schemes were again compared in the following

experiments to differentiate one scheme from another in reusing cached data. One scheme

is modulation in the JPEG 2000 image standard (JP2-MOD), which has demonstrated its

support for high data reuse. The diagram of Figure 8.7(b) depicts the possible data reuses

among boat.jp2’s representations. Another scheme is transcoding in the JPEG image

standard, which data reuses among boat.jpg’s representations are depicted in the

diagram of Figure 8.7(a). Since there are two types of JPEG transcoders – SDT and FDT

– and both behave similarly in data reuse, we used just one of them in the experiments.

The JPG-SDT scheme was selected over the JPG-FDT scheme because the previous

experimental results have shown that the former generally betters the latter. The last

scheme is a relaxed version of the JPG-SDT scheme. In Subsection 8.3.2, three conditions

have been suggested to guide data reuse in the JPG-SDT scheme. Basically, the cached

representation can only be reused to generate the requested representation if the former

has higher resolution, color feature, and quality value than or equal to the latter. In the

relaxed JPG-SDT scheme, the last condition regarding the quality value is omitted. By

doing this, the data reuse in the relaxed JPG-SDT scheme is higher than that in the

original JPG-SDT scheme, as depicted in Figure 8.14. Employing the relaxed JPG-SDT

 Chapter 8. Performance Evaluation on Proposed PWCD 283

scheme may deteriorate the average quality of the resulting representations, but this may

be compensated by the benefits reaped from data reuse. An associated adapting interface

was developed to accomplish the relaxed JPG-SDT scheme.

1/2-scaled
Representation

1/2-scaled, gray

Representation

1/4-scaled

Representation

1/4-scaled, gray

Representation

1/8-scaled

Representation

1/8-scaled, gray

Representation

1/2-scaled
Representation

1/2-scaled, gray

Representation

1/4-scaled

Representation

1/4-scaled, gray

Representation

1/8-scaled

Representation

1/8-scaled, gray

Representation

Figure 8.14 Data reuses among image representations in JPG-SDT with relaxed policy

In the following experiments, the system comprising our enhanced server and

proxy was used to explore data reuse among the three adaptation schemes. Images

boat.jp2 and boat.jpg were used as the test data. Each request for the images also

contained a reference (URI) to one out of six client profiles, each of which corresponded

with a particular representation. The contained reference was generated randomly, and as

a result, the images’ representations were requested randomly, as well. The requests were

sent out in sequence, meaning that each request must be completed before the next

request can be sent out. The server also limited each connection’s bandwidth to 1 Mbps.

The response time of completing each request was noted, and the accumulated results are

plotted in Figure 8.15.

 Chapter 8. Performance Evaluation on Proposed PWCD 284

In the JPG-SDT scheme, the response times above 0.5 seconds were cache misses

and those below 0.5 seconds were cache hits, either with or without adaptation. When a

cache miss happens, the cached representation is replaced by the new representation

retrieved from the server. Hence, the JPG-SDT scheme still requires data retrieval from

the server from time to time. As observed in the figure, the average response time of the

JPG-SDT scheme is likely greater than 1.5 seconds.

0.0

0.5

1.0

1.5

2.0

2.5

Request Sequence

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

JPG-SDT

JPG-SDT (+relaxed)

JP2-MOD

Figure 8.15 Response times of serving a sequence of requests in server/proxy-based adaptation

Similarly, the response times in the relaxed JPG-SDT scheme that are above 0.5

seconds were cache misses and those below 0.5 seconds were cache hits. Different from

the original version, the relaxed version has more cache hits. As shown in the figure, for

this scheme, there are only two peaks denoting cache misses. The last peak was actually

the response time of requesting the 1/2-scaled representation of image boat.jpg. Once

this particular representation was obtained, the subsequent requests could be served

locally by the proxy, and therefore, there was no further cache miss. In the relaxed JPG-

 Chapter 8. Performance Evaluation on Proposed PWCD 285

SDT scheme, a cache hit without adaptation took less than 40 milliseconds whereas a

cache hit with adaptation took between 90 and 240 milliseconds.

The JP2-MOD scheme emerged the winner in data reuse. By employing this

scheme, whatever representation available in the cache, the proxy can always reuse it –

either partly or fully – to satisfy the upcoming requests. When the cached representation

can only partly satisfy a request, the proxy needs to retrieve more image data from the

server to fully satisfy the request; the cached representation is not replaced but instead

enhanced. The two peaks for the JP2-MOD scheme in the figure signify the times when

the proxy needed to retrieve more image data from the server. In both cases, the response

times were only about 0.5 seconds. The last peak, too, was the response time of

requesting the 1/2-scaled representation of image boat.jp2. After retrieving that

representation, the remaining requests resulted in cache hits. In the JP2-MOD scheme, a

cache hit without adaptation took about 45 milliseconds whilst a cache hit with adaptation

took between 50 and 60 milliseconds.

The results evidently corroborate our initial proposition that data reuse can reduce

the average response time of serving client requests. Among the three schemes tested,

modulation in the JPEG 2000 standard – which offers high data reuse – gives the lowest

average response time. The relaxed JPG-SDT scheme, which is a modified version of the

JPG-SDT scheme, gives higher data reuse and produces lower average response time than

the original JPG-SDT scheme.

The second stage of our evaluation has analyzed the costs and benefits between

the server-based adaptation and the server/proxy-based adaptation in a system comprising

 Chapter 8. Performance Evaluation on Proposed PWCD 286

a server and a caching proxy. Response time analyses have shown that the server/proxy-

based adaptation is more beneficial than the server-based adaptation. The server/proxy-

based adaptation gains 26.1, 37.3, and 194.6 milliseconds in the average response time

over the server-based adaptation when the JPG-SDT, JPG-FDT, and JP2-MOD schemes,

respectively, are employed. However, to make the analyses possible, it was assumed that

only one representation of an object could stay in the proxy’s cache all the time. When

that assumption was removed in the server-based adaptation, we saw a great improvement

in the system’s performance. Compared to the system without a caching proxy, the

server/proxy system employing server-based adaptation gains an increase of 9–41 times

in the attained request rate and a decrease of 86–98% in the average response time. Alas,

at the moment we could not repeat the same success to the server/proxy-based adaptation

since the condition of one representation for each object was still upheld. Compared to

the system without a caching proxy, the server/proxy system employing server/proxy-

based adaptation gains an increase of 2–26 times in the attained request rate and a

decrease of 32–97% in the average response time.

Further, we have explored data reuse in different adaptation schemes. In the JPG-

SDT scheme, data reuse is limited to certain cases, and therefore, cache hits rarely occur.

For this scheme, the attained average response time in the experiments is higher than 1.5

seconds. In the relaxed JPG-SDT scheme, the cached representation can be reused most

of the time, particularly after the representation with the highest fidelity is cached. The

average response time in the relaxed JPG-SDT scheme is slightly over 200 milliseconds.

The JP2-MOD scheme is the winner, among the three schemes, in data reuse. In addition

to the features in the relaxed JPG-SDT scheme, the JP2-MOD scheme does not replace

 Chapter 8. Performance Evaluation on Proposed PWCD 287

the cached representation but top it up with additional image data to form a representation

with a higher fidelity; thereby, the cached representation can always be reused albeit,

perhaps, partly. Consequently, the average response time in the JP2-MOD scheme is

below 100 milliseconds, which is 18–23 times better than that in the JPG-SDT scheme

and 2.4–2.5 times better than that in the relaxed JPG-SDT scheme.

8.4 Concluding Remarks

The first evaluation has shown the benefits and costs of adaptation at the server.

The server-based adaptation can reduce the response time of serving a client’s request,

particularly if the bandwidth on the server-proxy link is limited. Instead of sending the

original image to the proxy for adaptation, the server may adapt the image and deliver the

adapted result. However, there are some costs of executing adaptation at the server, and

most are related to the server’s performance. Due to its need for memory and computation

cycles, adaptation may escalate the server’s load. Consequently, the attained request rate

is declined and the average response time is prolonged, as compared to the original

server’s performance. That is why fast and efficient adaptation processes are needed. Fast

alone is not enough. The frequency-domain JPEG transcoder is supposed to process faster

than the spatial-domain JPEG transcoder, but due to its high demand for memory space, it

is hardly usable for serving simultaneous requests. Modulation has proven to fit the

requirements. It is significantly faster and more efficient than transcoding.

Another way to reduce the server’s load above is to utilize a caching proxy. This

has been demonstrated in the second evaluation. The caching proxy can store an image’s

 Chapter 8. Performance Evaluation on Proposed PWCD 288

representation adapted and retrieved from the server and use it for serving the subsequent

requests. By doing this, the need for involving the server in subsequent requests is

reduced. Eventually, the average response time of serving the requests is cut down. In

addition to returning exactly the requested image’s representation, our enhanced proxy

can adapt the cached representation and produce another (usually lower in fidelity)

representation of the image. Thus, the enhanced proxy can highly reuse the cached

representation and further reduce the server’s involvement. Moreover, it is very efficient

in utilizing the cache space. Nevertheless, there is a trade-off in accomplishing the high

data reuse. In our enhanced proxy, only one representation of each image is allowed to

exist in the cache at any given time. The restriction is necessary so that the adaptation can

be carried out effectively in a straightforward fashion. But the loss due to the restriction is

quite substantial, too. The evaluation shows that employing the normal proxy – which

regards each image’s representation as a distinct object – can achieve better system’s

performance than employing our enhanced proxy if simultaneous requests are considered.

To improve the performance of our model prototype, future work is required to balance

the need for high data reuse (efficiency) and the benefit of caching multiple

representations (data replication).

289

Chapter 9

Conclusions and Future Work

The first section concludes the entire discussion – proposal, implementation, evaluation,

and others alike – in the thesis. The second section suggests some future work to improve

our proposed framework for pervasive Web content delivery.

 Chapter 9. Conclusions and Future Work 290

9.1 Conclusions

Web content delivery is facing challenges from many fronts: users’ demands,

providers’ needs, and technologies’ advancement. Some of the challenges are clients’

heterogeneity, increased multimedia data traffic, demand for customized content, and

demand for easy and fast deployment of Web services. This thesis tried to address the

challenges. In doing so, two objectives have been set out. The first objective is to devise a

fine-grained, scalable Web data model, and the second is to design a framework for

pervasive Web content delivery. Our contributions, in the efforts to achieve those

objectives, are concluded in the following subsections.

9.1.1 Fine-Grained, Scalable Web Data Model

We devised a fine-grained, scalable data model, which was inspired by the object

decomposition and construction found in the latest multimedia standards, in particular

progressive and hierarchical JPEG, JPEG 2000, MPEG-4, and H.264. By employing the

proposed data model, various representations of a multimedia object can be generated in a

fast and simple manner. The rationale behind the fast and simple processes is the absence

of complex computations, which are usually involved in the multimedia adaptation.

Based on the scalable data model, a novel content adaptation was specified.

Modulation, the new content adaptation, is the process to obtain an object’s representation

by means of adjusting (dropping and/or adding) the building blocks of the object.

Modulation is characterized as a fast, reversible, but exclusive adaptation process. As

mentioned earlier, the fast process is attributed to the absence of complex computations.

 Chapter 9. Conclusions and Future Work 291

Modulation is reversible because, from an object’s representation, not only can a lower

fidelity representation be constructed, but a higher fidelity representation can be, as well.

Finally, modulation is exclusive because it always results in the same data-format as the

original object.

9.1.2 Modulation in JPEG 2000

Modulation was further implemented using the JPEG 2000 standard as an

illustration. Modulation in JPEG 2000 was done in three types of scalability: quality,

resolution, and component scalability. Three JPEG 2000 modulators were developed. The

first modulator, JP2Selector, is used to generate representations and supplements of a

JPEG 2000 image. JP2Joiner, the second JPEG 2000 modulator, combines a

representation and a suitable supplement to produce an enhanced representation. The last

modulator, JP2Converter, is used to change the progression order of a JPEG 2000

image (or its representation); this modulator cannot be applied to a supplement.

Further, we compared and contrasted modulation (the new content adaptation) and

transcoding (the oft-cited content adaptation) through experiments. While JPEG 2000 was

selected to illustrate modulation, JPEG was employed for transcoding. Two types of

JPEG transcoders were experimented; those are spatial-domain (SDT) and frequency-

domain (FDT) transcoders. Results show that modulation outperforms transcoding in all

three adaptation aspects – namely quality, resolution, and component. Depending on the

adaptation aspects, the processing times of modulation are 7–33 times faster than those of

transcoding. More importantly, the processing times of modulation are linear and

 Chapter 9. Conclusions and Future Work 292

consistent in those three adaptation aspects; that corroborates the simplicity of modulating

processes. In addition, the experiments have demonstrated that modulation is reversible.

9.1.3 Framework for Pervasive Web Content Delivery

We evaluated two adapting approaches, i.e., server-based and proxy-based

adaptation, using an analytical model. Proxy-based adaptation offers technical and

economical benefits whereas server-based adaptation gives more control over the Web

contents and is better in preserving their end-to-end semantics. The analytical model

shows that, in the first-time delivery, the server-based adaptation is more beneficial than

the proxy-based one. By contrast, in the subsequent delivery, the proxy-based adaptation

is more beneficial than the server-based one.

Based on the findings, we concluded that the best way to deploy the adaptation

service is to blend those two approaches and get most of the benefits. To put it simply,

collaboration between the origin server and the proxy may yield the best adaptation

approach. Accordingly, the system architecture of pervasive Web content delivery was

founded on that collaboration. At a given time and condition, adaptation may be carried

out at the server or at the proxy, whichever is more beneficial.

To perform content adaptation, the system architecture involves some adapting

modules and supporting meta-data. The adapting modules comprise downscaling

modules, upscaling modules, and transcoding modules (used only if necessary). The

downscaling modules, used to construct an object’s representation by reducing the

building blocks of the object, are installed at the server and the proxy. The upscaling

 Chapter 9. Conclusions and Future Work 293

modules, used to construct an enhanced object’s representation, are installed at the proxy.

And finally, the transcoding modules are employed by the proxy to convert the data-

format, in case the client device cannot render the scalable data-format. The supporting

meta-data may come from the server (e.g., directives regarding the content adaptation),

the client (e.g., information about the client’s constraints and preferences), or other

intermediaries on the Internet (e.g., the network traffic’s condition).

9.1.4 Model Prototype of Pervasive Web Content Delivery

We developed a model prototype based on the proposed framework for pervasive

Web content delivery. For the client meta-data, CC/PP (Composite Capability/Preference

Profiles) – a profile developed by W3C – is employed to describe device capabilities and

user preferences. A client’s CC/PP document can be stored in any Website (perhaps, of

the client device’s vendor) and should be referred to by every request belonging to the

client in its CCPP header. For the server meta-data, we devised ADP (Adaptation Profiles)

using RDF/XML to list representations of a Web object, including their characteristics

and generation. An ADP document, which describes a particular Web object, has a

similar resource name to the object but with the extra ‘.adp’ extension. By separating the

client and server meta-data from the HTTP messages, the proxy may cache them as

different entities and reuse them for subsequent requests.

The server application (i.e., Apache) was enhanced to accommodate the image

adaptors (JPEG transcoders and JPEG 2000 modulators). Some interfaces, developed

using PHP scripting language, are employed to link the server application to the adaptors.

 Chapter 9. Conclusions and Future Work 294

Some improvements were applied to the proxy application (i.e., Squid) so that adaptation

can be performed at the proxy. There are four notable improvements on the proxy

application: changes in the workflow, incorporation of external modules (such as CC/PP

parser, ADP parser, and several adapting interfaces), addition of a rule-based decision

maker, and adoption of API-liked adapting commands (apcoms).

The model prototype was then evaluated and compared with the existing Web

content delivery. The first evaluation analyzed the costs and benefits of adaptation at the

server. Adaptation at the server, as compared to that at the proxy alone, can reduce the

client response time, in particular if the bandwidth of the server-proxy link is limited.

Compared to the Web service without adaptation, adaptation at the server incurs some

losses owing to the adaptation process. The cost of adaptation latency varies in different

network environments and adaptation schemes. Overall, JPEG 2000 modulation (JP2-

MOD) scheme has the lowest cost, followed by JPEG spatial-domain transcoding (JPG-

SDT) and JPEG frequency-domain transcoding (JPG-FDT) schemes, in that order.

Another cost of adaptation at the server is performance decrement signified by decreased

request rate, prolonged average response time, and increased server’s load. The request

rate drops by 52.1% in JP2-MOD, 95.0% in JPG-SDT, and 99.9% in JPG-FDT. The

average response time escalates by factors of 2.4, 26.6, and 1114.8 in JP2-MOD, JPG-

SDT, and JPG-FDT, respectively. The server’s load is determined by the percentage of

time that the system spends in holding the maximum number of concurrent connections;

the percentages in the respective JP2-MOD, JPG-SDT, and JPG-FDT are about 2, 2.4,

and 3.6 times higher than that in the system without adaptation. It can be concluded that

JP2-MOD is pretty fast, JPG-SDT barely acceptable, and JPG-FDT unacceptable.

 Chapter 9. Conclusions and Future Work 295

The second evaluation analyzed the costs and benefits of an adaptation system

comprising a server and a proxy. Cost-benefit analyses between a server/proxy system

employing server-based adaptation and that employing server/proxy-based adaptation

show that the latter is in general more beneficial than the former. However, it was

assumed in the analyses that only one representation of an image could be cached at any

given time. This condition is necessary to make the analyses possible and comparable.

When the condition was lifted up, the performance of the system employing server-based

adaptation proves to be better than that of the system employing server/proxy-based

adaptation. Compared to the server system without a caching proxy, the server/proxy

system employing server-based adaptation gains an increase of 9–41 times in the attained

request rate and a decrease of 86–98% in the average response time. By contrast, the

server/proxy system employing server/proxy-based adaptation only gains an increase of

2–26 times in the attained request rate and a decrease of 32–97% in the average response

time. Nevertheless, the system employing server/proxy-based adaptation (particularly, in

the JP2-MOD scheme) shows a marked reduction in the server’s load. The reduction is

attributed to the high data reuse offered by modulation.

We may conclude that the fine-grained, scalable data model indeed changes the

paradigm of content adaptation in the Web. Adaptation can be accomplished in a fast and

efficient manner, with minimal computations. Modulation, the novel content adaptation

based on the data model, has proven to work well on a scalable data-format. The data

model requires a new framework for Web content delivery. The framework, which is

based on the collaboration between the origin server and the proxy, can effectively reduce

the client response time and reduce the server’s load by means of high data reuse.

 Chapter 9. Conclusions and Future Work 296

9.2 Future Work

Even though this thesis has thoroughly demonstrated the benefits of our proposed

data model and framework for pervasive Web content delivery, much work is still needed

to improve them and to see them materializing into real practice. Some of the efforts that

we may pursue in the future are elaborated in the following subsections.

9.2.1 Wide Implementation of Modulation

As noted in the thesis, modulation is an exclusive adaptation, which can be

applied to a scalable data-format. Although this condition may limit the proliferation of

modulation, we observe that the trend in the multimedia standards goes toward scalable

presentation. Besides JPEG 2000, the latest multimedia standards such as MPEG-4 and

H.264 also support scalable presentation. We believe that they can be exploited by

modulation, as well. If Web objects of those multimedia standards are served to

heterogeneous clients, modulation may be the fastest and most efficient way to

accomplish it. Hence, implementation of modulation should be extended to them, too.

It is equally important to explore the possibilities to implement modulation on a

textual document, particularly on a Web container. The challenge is to define a textual

document’s building blocks which can be dropped and added without sacrificing its

semantics. A Web container – i.e., an HTML (or XML) document – usually contains

several embedded objects. Each object’s presentation may depend on the others’, and

together they should show an integral presentation. Modulation on the Web container will

focus on the supposed dimensions of an embedded object relative to the container, the

 Chapter 9. Conclusions and Future Work 297

priority of each object, the relation among objects, and others alike. Since special tags

may be required, modulation on an HTML document may not be suitable, but that on an

XML-based document is recommended. Modulation in other structured text formats –

namely PDF, PS, RTF, etc. – may deal with removal of some sentences, phrases, or even

images without changing the overall semantics of the contents.

9.2.2 Enhanced Adapting Proxy

As stated before, our current research does not put emphasis on completeness of

the adapting proxy’s features. Thus, there is still room for improvement in our work. One

of them is manipulation of the cached objects which was done through the adoption of a

set of adapting commands (apcoms), similar to an API library in other applications. We

do not close the possibility to extend the set of adapting commands with more functions

in future work. This is especially important if the enhanced proxy is to be used in real

practice.

Another candidate for improvement is the proxy’s rule-based decision maker. For

now, only limited operations are supported in the matching rules. More operations,

perhaps complex ones, may be added in the future.

9.2.3 Resource-Friendly Adaptor

In the experiments we found that our JPEG frequency-domain transcoder did not

perform as expected. In fact, its performance was very disappointing, in particular when it

was employed at the server to serve simultaneous requests. The frequency-domain

 Chapter 9. Conclusions and Future Work 298

transcoding may require a less number of complex computations than what the spatial-

domain transcoding needs, but it demands more memory space. The lesson makes us

realize that a resource-friendly adaptor is necessary to support pervasive Web content

delivery. More research is required to find out how a resource-friendly adaptor employing

a particular adaptation technique (i.e., transcoding, modulation, and so forth) may be

developed. The research may range from finding better frequency-domain processing to

practicing data (and code) optimization.

9.2.4 High Data Reuse vs. Data Replication

The experimental results also highlight the need to balance high data reuse with

data replication, in regard to caching an object. The former tries to greatly reuse the

cached object by means of adaptation, and the latter stores all adapted representations of

the object in the cache. As mentioned, to carry out adaptation at the proxy effectively and

efficiently, there should not be many representations of the object in the proxy’s cache;

otherwise, there would be additional delay in finding and fetching the proper object’s

representation to be adapted. However, by restricting the number of object’s

representations in the cache, the system may lose some benefits resulting from pure cache

hits (i.e., cache hits without adaptation). Future research should consider this trade-off to

improve the system’s performance.

Equally important is to see the benefits modulation can give to the cache

replacement policies. Instead of evicting a cached object entirely, using modulation, we

may reduce the object’s fidelity and still keep it in the cache. The benefits will be great.

299

Bibliography

[AbSA95] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox.

Caching Proxies: Limitations and Potentials. In Proc. of 4
th

 International

World Wide Web (WWW) Conference, Boston (MA), December 1995.

[AlLK02] M. Altinel, Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, B. G.

Lindsay, H. Woo, and L. Brown. DBCache: Database Caching for Web

Application Servers. In Proc. of 2002 ACM SIGMOD International

Conference on Management of Data, Madison (WI), June 2002.

[AmPT02] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. A Self-Managing Data

Cache for Edge-of-Network Web Applications. In Proc. of 11
th

International Conference on Information and Knowledge Management

(CIKM), McLean (VA), November 2002.

[AmPT03] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A Dynamic

Data Cache for Web Applications. In Proc. of 19
th

 International

Conference on Data Engineering (ICDE), Bangalore (India), March 2003.

[BaBC04] A. Barbir, E. Burger, R. Chen, S. McHenry, H. Orman, and R. Penno.

Open Pluggable Edge Services (OPES) Use Cases and Deployment

Scenarios, RFC 3752, IETF, April 2004.

[BaPC04] A. Barbir, R. Penno, R. Chen, M. Hofmann, and H. Orman. An

Architecture for Open Pluggable Edge Services (OPES), RFC 3835, IETF,

August 2004.

 Bibliography 300

[BeFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol

– HTTP/1.0, RFC 1945, IETF, May 1996.

[BeHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web, Scientific

American, May 2001.

[Ber91] T. Berners-Lee. The HTTP Protocol As Implemented in W3. 1991.

 URL: http://www.w3.org/Protocols/HTTP/AsImplemented.html.

[Ber92] T. Berners-Lee. HTTP: A Protocol for Networked Information. 1992.

 URL: http://www.w3.org/Protocols/HTTP/HTTP2.html.

[BeRV04] L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao. Characterization of a

Large Web Site Population with Implications for Content Delivery. In

Proc. of 13
th

 International World Wide Web (WWW) Conference, New

York (NY), May 2004.

[BhJA98] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul. An Active Transcoding

Proxy to Support Mobile Web Access. In Proc. of 17
th

 IEEE Symposium

on Reliable Distributed Systems, West Lafayette (IN), October 1998.

[BoAM04] C. Bornhovd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald.

Adaptive Database Caching with DBCache. Data Engineering, vol. 27, no.

2, pp. 11–18, June 2004.

[CaC96] R. L. Carter and M. E. Crovella. Measuring Bottleneck Link Speed in

Packet-Switched Networks. Technical Report BU-CS-96-006, Boston

University, Boston (MA), 1996.

[CaCC03] C. Canali, V. Cardellini, M. Colajanni, R. Lancellotti, and P. S. Yu.

Cooperative Architectures and Algorithms for Discovery and Transcoding

 Bibliography 301

of Multi-Version Content. In Proc. of 8
th

 International Workshop on Web

Content Caching and Distribution (WCW), Hawthorne (NY), September

2003.

[CaCC04] C. Canali, V. Cardellini, M. Colajanni, and R. Lancellotti. Evaluating

User-Perceived Benefits of Content Distribution Networks. In Proc. of

2004 International Symposium on Performance Evaluation of Computer

and Telecommunication Systems (SPECTS), San Jose (CA), July 2004.

[CaCL05] C. Canali, S. Casolari, and R. Lancellotti. Architectures for Scalable and

Flexible Web Personalization Services. In Proc. of 1
st
 International

Workshop on Advanced Architectures and Algorithms for Internet Delivery

and Applications (AAA-IDEA), Orlando (FL), June 2005.

[CaCL06a] C. Canali, V. Cardellini, and R. Lancellotti. Content Adaptation

Architectures Based on Squid Proxy Server. World Wide Web, vol. 9, no.

1, pp. 63–92, March 2006.

[CaCL06b] C. Canali, M. Colajanni, and R. Lancellotti. Distribution of Adaptation

Services for Ubiquitous Web Access Driven by User Profiles. In Proc. of

11
th

 IEEE Symposium on Computers and Communications (ISCC),

Cagliari – Sardinia (Italy), June 2006.

[CaYH00] V. Cardellini, P. S. Yu, Y. W. Huang. Collaborative Proxy System for

Distributed Web Content Transcoding. In Proc. of 9
th

 International

Conference on Information and Knowledge Management (CIKM), McLean

(VA), November 2000.

 Bibliography 302

[ChC02] C. H. Chi and Y. Cao. Pervasive Web Content Delivery with Efficient

Data Reuse. In Proc. of 7
th

 International Workshop on Web Content

Caching and Distribution (WCW), Boulder (CO), August 2002.

[ChC03] C. Y. Chang and M. S. Chen. On Exploring Aggregate Effect for Efficient

Cache Replacement in Transcoding Proxies. IEEE Transactions on

Parallel and Distributed Systems, vol. 14, no. 6, pp. 611–624, June 2003.

[ChE99] S. Chandra and C. S. Ellis. JPEG Compression Metric as a Quality Aware

Image Transcoding. In Proc. of 2
nd

 USENIX Symposium on Internet

Technologies and Systems (USITS), Boulder (CO), October 1999.

[ChEV00] S. Chandra, C. S. Ellis, and A. Vahdat. Differentiated Multimedia Web

Services Using Quality Aware Transcoding. In Proc. of IEEE INFOCOM

2000 – 19
th

 Annual Joint Conference of the IEEE Computer and

Communications Societies, Tel Aviv (Israel), March 2000.

[ChSE00] C. Christopoulos, A. Skodras, and T. Ebrahimi. The JPEG2000 Still Image

Coding System: An Overview. IEEE Transactions on Consumer

Electronics, vol. 46, no. 4, pp. 1103–1127, November 2000.

[CoL04] M. Colajanni and R. Lancellotti. System Architectures for Web Content

Adaptation Services. IEEE Distributed Systems Online, Web Systems

Invited Article, June 2004.

[CoLY05] M. Colajanni, R. Lancellotti, and P. S. Yu. Distributed Architectures for

Web Content Adaptation and Delivery. Web Content Delivery (X. Tang, J.

Xu, and S. T. Chanson – eds.), Chapter 13, pp. 285–304, Springer, 2005.

 Bibliography 303

[CoMT01] I. Cooper, I. Melve, and G. Tomlinson. Internet Web Replication and

Caching Taxonomy, RFC 3040, IETF, January 2001.

[DaCK04] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized

Network Coordinate System. In Proc. of ACM SIGCOMM 2004

Conference, Portland (OR), August 2004.

[DaCT03] M. Day, B. Cain, G. Tomlinson, and P. Rzewski. A Model for Content

Internetworking (CDI), RFC 3466, IETF, February 2003.

[DaPW04] A. Davis, J. Parikh, and W. E. Weihl. EdgeComputing: Extending

Enterprise Applications to the Edge of the Internet. In Proc. of 13
th

International World Wide Web (WWW) Conference, New York (NY), May

2004.

[Den05] P. J. Denning. The Locality Principle. Communications of the ACM, vol.

48, no. 7, pp. 19–24, July 2005.

[DeZ01] S. Deshpande and W. Zeng. Scalable Streaming of JPEG2000 Images

using Hypertext Transfer Protocol. In Proc. of 9
th

 ACM Multimedia

Conference, Ottawa (Canada), October 2001.

[DoHR97] F. Douglis, A. Haro, and M. Rabinovich. HPP: HTML Macro-

Preprocessing to Support Dynamic Document Caching. In Proc. of 1
st

USENIX Symposium on Internet Technologies and Systems (USITS),

Monterey (CA), December 1997.

[DoRM01] C. Dovrolis, P. Ramanathan, and D. Moore. What do Packet Dispersion

Techniques Measure? In Proc. of IEEE INFOCOM 2001 – 20
th

 Annual

 Bibliography 304

Joint Conference of the IEEE Computer and Communications Societies,

Anchorage (AK), April 2001.

[Dow99] A. B. Downey. Using Pathchar to Estimate Internet Link Characteristics.

In Proc. of ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication

(SIGCOMM’99), Cambridge (MA), August 1999.

[ElC03] J. Elson and A. Cerpa. Internet Content Adaptation Protocol (ICAP), RFC

3507, IETF, April 2003.

[ESI01] ESI – Accelerating E-Business Applications: Overview, 2001.

 URL: http://www.esi.org/overview.html.

[FeCD99] A. Feldmann, R. Cáceres, F. Douglis, G. Glass, and M. Rabinovich.

Performance of Web Proxy Caching in Heterogeneous Bandwidth

Environments. In Proc. of IEEE INFOCOM 1999 Conference, New York

(NY), March 1999.

[FiGM99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.

Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, IETF,

June 1999.

[FoB96] A. Fox and E. A. Brewer. Reducing WWW Latency and Bandwidth

Requirements by Real-Time Distillation. In Proc. of 5
th

 International

World Wide Web (WWW) Conference, Paris (France), May 1996.

[FoGB96] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to Network

and Client Variability via On-Demand Dynamic Distillation. In Proc. of

7
th

 International Conference on Architectural Support for Programming

 Bibliography 305

Languages and Operationg Systems (ASPLOS), Cambridge (MA), October

1996.

[FoGC97] A. Fox, S. D. Gribble. Y. Chawathe, A. S. Polito, A. Huang, B. Ling, and

E. A. Brewer. Orthogonal Extensions to the WWW User Interface Using

Client-Side Technologies. In Proc. of 10
th

 Annual ACM Symposium on

User Interface Software and Technology (UIST), Banff – Alberta

(Canada), October 1997.

[FoGC98] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer. Adapting to

Network and Client Variation Using Active Proxies: Lessons and

Perspectives. IEEE Personal Communications, vol. 5, no. 4, pp. 10–19,

August 1998.

[FrJJ01] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang.

IDMaps: A Global Internet Host Distance Estimation Service. IEEE/ACM

Transactions on Networking, vol. 9, no. 5, pp. 525–540, October 2001.

[GuSG02] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating Latency

between Arbitrary Internet End Hosts. In Proc. of ACM SIGCOMM

Internet Measurement Workshop (IMW) 2002, Marseille (France),

November 2002.

[HaBL98] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J. Rubas.

Dynamic Adaptation in an Image Transcoding Proxy for Mobile Web

Browsing, IEEE Personal Communications, vol. 5, no. 6, pp. 8–17,

December 1998.

 Bibliography 306

[ICAP01] ICAP White Paper v1.01, July 2001.

 URL: http://www.i-cap.org/docs/icap_whitepaper_v1-01.pdf.

[IhMM01] S. C. Ihde, P. P. Maglio, J. Meyer, and R. Barrett. Intermedia-based

Transcoding Framework. IBM Systems Journal, vol. 40, no. 1, 2001.

[ISO15444-1] International Organization for Standardization. Information Technology –

JPEG 2000 Image Coding System – Part 1: Core Coding System, ISO/IEC

15444-1:2004 (E).

[ISO15444-5] International Organization for Standardization. Information Technology –

JPEG 2000 Image Coding System – Part 5: Reference Software, ISO/IEC

15444-5:2003 (E).

[ITU92] International Telecommunication Union. Information Technology –

Digital Compression and Coding of Continuous-Tone Still Images –

Requirements and Guidelines (ITU-T T.81), September 1992.

[Jac97] V. Jacobson. Pathchar – A Tool to Infer Characteristics of Internet Paths.

Presented at the Mathematical Sciences Research Institute (MSRI); slides

available from ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf, Berkeley (CA),

April 1997.

[JaD02] M. Jain and C. Dovrolis. End-to-End Available Bandwidth: Measurement

Methodology, Dynamics, and Relation with TCP Throughput. In Proc. of

ACM SIGCOMM 2002 Conference, Pittsburgh (PA), August 2002.

[JoWM96] A. Joshi, R. Weerasinghe, S. P. McDermott, B. K. Tan, G. Bernhardt, and

S. Weerawarana. Mowser: Mobile Platforms and Web Browsers. Bulletin

of the IEEE Computer Society Technical Committee on Operating Systems

 Bibliography 307

and Application Environments (TCOS), vol. 8, no. 1, pp. 13–16, Spring

1996.

[KaKO98] J. Kangasharju, Y. G. Kwon, and A. Ortega. Design and Implementation

of a Soft Caching Proxy. In Proc. of 3
rd

 International WWW Caching

Workshop, Machester (England), June 1998.

[Kly99a] G. Klyne. A Syntax for Describing Media Feature Sets, RFC 2533, IETF,

March 1999.

[Kly99b] G. Klyne. Corrections to “A Syntax for Describing Media Feature Sets”,

RFC 2738, IETF, December 1999.

[KnLM03] B. Knutsson, H. Lu, J. Mogul, and B. Hopkins. Architecture and

Performance of Server-Directed Transcoding. ACM Transactions on

Internet Technology (TOIT), vol. 3, no. 4, pp. 392–424, November 2003.

[KrLM97] T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the Bounds of

Web Latency Reduction from Caching and Prefetching. In Proc. of 1
st

USENIX Symposium on Internet Tecnologies and Systems (USITS),

Monterey (CA), December 1997.

[KrMK99] B. Krishnamurthy, J. C. Mogul, and D. M. Kristol. Key Differences

between HTTP/1.0 and HTTP/1.1. In Proc. of 8
th

 International World

Wide Web (WWW) Conference, Toronto (Canada), May 1999.

[KrR01] B. Krishnamurthy and J. Rexford. Web Protocols and Practice: HTTP/1.1,

Networking Protocols, Caching, and Traffic Measurement. Addison-

Wesley, 2001.

 Bibliography 308

[KrWZ01] B. Krishnamurthy, C. Willis, and Y. Zhang. On the Use and Performance

of Content Distribution Networks. In Proc. of ACM SIGCOMM Internet

Measurement Workshop (IMW) 2001, San Francisco (CA), November

2001.

[LaB01] K. Lai and M. Baker. Nettimer: A Tool for Measuring Bottleneck Link

Bandwidth. In Proc. of 3
rd

 USENIX Symposium on Internet Technologies

and Systems (USITS), San Francisco (CA), March 2001.

[Li01] W. Li. Overview of Fine Granularity Scalability in MPEG-4 Video

Standard. IEEE Transactions on Circuits and Systems for Video

Technology, vol. 11, no. 3, pp. 301–317, March 2001.

[Lia99] J. Liang. New Trends in Multimedia Standards: MPEG4 and JPEG2000.

Informing Science: Special Issue on Multimedia Informing Technologies –

Part I, vol. 2, no. 4, pp. 101–106, 1999.

[LiS03] J. Li and H. H. Sun. On Interactive Browsing of Large Images. IEEE

Transactions on Multimedia, vol. 5, no. 4, pp. 581–590, December 2003.

[LuA94] A. Luotonen and K. Altis. World-Wide Web Proxies. In Proc. of 1
st

International World Wide Web (WWW) Conference, Geneva

(Switzerland), May 1994.

[Mah99] B. A. Mah. Pchar: Child of Pathchar. Presented at the Department of

Energy, Next Generation Internet Program (DOE NGI) Testbed

Workshop; slides available from

http://www.kitchenlab.org/www/bmah/Talks/pchar-NGI-99-Slides.pdf,

Berkeley (CA), July 1999.

 Bibliography 309

[MaSR02] A. Maheshwari, A. Sharma, K. Ramamritham, and P. Shenoy. TranSquid:

Transcoding and Caching Proxy for Heterogeneous E-Commerce

Environments. In Proc. of 12
th

 International Workshop on Research Issues

in Data Engineering (RIDE): Engineering e-Commerce / e-Business

Systems, San Jose (CA), February 2002.

[McC00] S. McCreary and K. C. Claffy. Trends in Wide Area IP Traffic Patterns: A

View from Ames Internet Exchange. In Proc. of 13
th

 ITC Specialist

Seminar on Measurement and Modeling of IP Traffic, Monterey (CA),

September 2000.

[MoCC06] I. Mohomed, J. C. Cai, S. Chavoshi, and E de Lara. Context-Aware

Interactive Content Adaptation. In Proc. of 4
th

 International Conference on

Mobile Systems, Applications, and Services (Mobisys), Uppsala (Sweden),

June 2006.

[MoDF97] J. C. Mogul, F. Douglis, A. Feldmann, and B. Kryshnamurthy. Potential

Benefits of Delta Encoding and Data Compression for HTTP. In Proc. of

ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication

(SIGCOMM’97), Cannes (France), September 1997.

[Mog01] J. C. Mogul. Server-Directed Transcoding. Computer Communications,

vol. 24, no. 2, pp. 155–162, February 2001.

[MoKD02] J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann, Y. Goland, A. van

Hoff, and D. Hellerstein. Delta Encoding in HTTP, RFC 3229, IETF,

January 2002.

 Bibliography 310

[MoSL99] R. Mohan, J. R. Smith, and C. S. Li. Adapting Multimedia Internet

Content for Universal Access. IEEE Transactions on Multimedia, vol. 1,

no. 1, pp. 104–114, March 1999.

[NaV95] B. K. Natarajan and B. Vasudev. A Fast Approximate Algorithm for

Scaling Down Digital Images in the DCT Domain. In Proc. of IEEE

International Conference on Image Processing (ICIP) 1995, vol. 2, pp.

241–243, Washington D.C., October 1995.

[NgZ01] T. S. E. Ng and H. Zhang. Towards Global Network Positioning. In Proc.

of ACM SIGCOMM Internet Measurement Workshop (IMW) 2001, San

Fransisco (CA), November 2001.

[NgZ04] T. S. E. Ng and H. Zhang. A Network Positioning System for the Internet.

In Proc. of USENIX 2004 Annual Technical Conference, Boston (MA),

June 2004.

[NiGB97] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W. Lie,

and C. Lilley. Network Performance Effects of HTTP/1.1, CSS1, and

PNG. In Proc. of ACM SIGCOMM Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication

(SIGCOMM’97), Cannes (France), September 1997.

[OlMG05] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M. Maggs, and T. C.

Mowry. A Scalability Service for Dynamic Web Applications. In Proc. of

2
nd

 Biennial Conference on Innovative Data Systems Research (CIDR),

Asilomar (CA), January 2005.

 Bibliography 311

[OrCA97] A. Ortega, F. Carignano, S. Ayer, and M. Vetterli. Soft Caching: Web

Cache Management Technigues for Images. In Proc. of 1
st
 IEEE Signal

Processing Society Workshop on Multimedia Signal Processing (MMSP),

Princeton (NJ), June 1997.

[PeA97] F. Pereira and T. Alpert. MPEG-4 Video Subjective Test Procedures and

Results. IEEE Transactions on Circuits and Systems for Video

Technology, vol. 7, no. 1, pp. 32–51, February 1997.

[PeE02] F. Pereira and T. Ebrahimi (eds.). The MPEG-4 Book. Prentice Hall PTR,

2002.

[PlA04] C. Plattner and G. Alonso. Ganymed: Scalable Replication for

Transactional Web Applications. In Proc. of 5
th

 International Middleware

Conference, Toronto – Ontario (Canada), October 2004.

[RaS02] M. Rabinovich and O. Spatscheck. Web Caching and Replication.

Addison-Wesley, 2002.

[RaXA03] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing on the Edge: A

Platform for Replicating Internet Applications. In Proc. of 8
th

 International

Workshop on Web Content Caching and Distribution (WCW), Hawthorne

(NY), September 2003.

[RaXD03] M. Rabinovich, Z. Xiao, F. Douglis, and C. Kalmanek. Moving Edge-Side

Includes to the Real Edge – the Clients. In Proc. of 4
th

 USENIX

Symposium on Internet Technologies and Systems (USITS), Seattle (WA),

March 2003.

 Bibliography 312

[ReYH00] R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia Proxy Caching

Mechanism for Quality Adaptive Streaming Applications in the Internet.

In Proc. of IEEE INFOCOM 2000 – 19
th

 Annual Joint Conference of the

IEEE Computer and Communications Societies, Tel Aviv (Israel), March

2000.

[SaGG02] S. Saroiu, P. K. Gummadi, and S. D. Gribble. SProbe: A Fast Technique

for Measuring Bottleneck Bandwidth in Uncooperative Environments.

 URL: http://sprobe.cs.washington.edu/sprobe.ps.

[ShLB04] B. Shen, S. J. Lee, and S. Basu. Caching Strategies in Transcoding-

Enabled Proxy Systems for Streaming Media Distribution Networks. IEEE

Transactions on Multimedia, vol. 6, no. 2, pp. 375–386, April 2004.

[Sik97] T. Sikora. The MPEG-4 Video Standard Verification Model. IEEE

Transactions on Circuits and Systems for Video Technology, vol. 7, no. 1,

pp. 19–31, February 1997.

[SiPS06] S. Sivasubramanian, G. Pierre, M. v. Steen, and G. Alonso. GlobeCBC:

Content-Blind Result Caching for Dynamic Web Applications. Technical

Report IR-CS-022, Vrije Universiteit, Amsterdam (The Netherlands), June

2006.

[SiTR04] A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy. PTC: Proxies that

Transcode and Cache in Heterogeneous Web Client Environments. World

Wide Web, vol. 7, no. 1, pp. 7–28, March 2004.

[SmCL99] J. R. Smith, V. Castelli, and C. S. Li. Adaptive Storage and Retrieval of

Large Compressed Images. In Proc. of IS&T/SPIE Symposium on

 Bibliography 313

Electronic Imaging: Science and Technology – Storage & Retrieval for

Image and Video Databases VII, San Jose (CA), January 1999.

[SmML98] J. R. Smith, R. Mohan, and C. S. Li. Transcoding Internet Content for

Heterogeneous Client Devices. In Proc. of IEEE International Symposium

on Circuits and Systems (ISCAS), Monterey (CA), May/June 1998.

[TaM02] D. S. Taubman and M. W. Marcellin. JPEG2000: Image Compression

Fundamentals, Standards and Practice. Kluwer Academic Publisher,

2002.

[TaP03] D. Taubman and R. Prandolini. Architecture, Philosophy and Performance

of JPIP: Internet Protocol Standard for JPEG2000. Visual Communications

and Image Processing 2003 (VCIP2003), Proc. of SPIE vol. 5150, pp.

791–805, Lugano (Switzerland), June 2003.

[TeSS97] D. L. Tennenhouse, J. M. Smith, W. D. Siscoskie, D. J. Wetherall, and G.

J. Minden. A Survey of Active Network Research. IEEE Communications

Magazine, vol. 35, no. 1, pp. 80–86, January 1997.

[ThMW97] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area Internet Traffic

Patterns and Characteristics. IEEE Network, vol. 11, no. 6, pp. 10–23,

November 1997.

[Tho01] S. A. Thomas. HTTP Essentials: Protocols for Secure, Scaleable Web

Sites. John Wiley & Sons, 2001.

[Ver02] D. C. Verma. Content Distribution Networks: An Engineering Approach.

John Wiley & Sons, 2002.

 Bibliography 314

[WiMQ05] M. Wijnants, P. Monsieurs, P. Quax, and W. Lamotte. Exploiting Proxy-

Based Transcoding to Increase the User Quality of Experience in

Networked Applications. In Proc. of 1
st
 International Workshop on

Advanced Architectures and Algorithms for Internet Delivery and

Applications (AAA-IDEA), Orlando (FL), June 2005.

[WoSH99] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A

Distributed Resource Performance Forecasting Service for

Metacomputing. Journal of Future Generation Computing Systems, vol.

15, no. 5–6, pp. 757–768, October 1999.

[WuLZ01] F. Wu, S. Li, and Y. Q. Zhang. A Framework for Efficient Progressive

Fine Granularity Scalable Video Coding. IEEE Transactions on Circuits

and Systems for Video Technology, vol. 11, no. 3, pp. 332–344, March

2001.

315

Appendix A

ADP Schema
[http://rdfs.example.org/adp-schema]

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

 <!ENTITY ns-rdfs 'http://www.w3.org/2000/01/rdf-schema#'>

 <!ENTITY ns-xsd 'http://www.w3.org/2001/XMLSchema#'>

 <!ENTITY ns-adp 'http://rdfs.example.org/adp-schema#'>

]>

<rdf:RDF

 xmlns:rdf =' &ns-rdf;'

 xmlns:rdfs =' &ns-rdfs;'

 xmlns:adp =' &ns-adp;'>

<!-- ADP (Adaptation Profiles) class definitions -->

 <rdfs:Class rdf:about='&ns-adp;Profile'>

 <rdfs:label xml:lang="en">ADP Profile</rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-rdfs;Resource'/>

 <rdfs:comment xml:lang="en">

 This class is the super-class of all object profiles.

 </rdfs:comment>

 </rdfs:Class>

 <rdfs:Class rdf:about='&ns-adp;ImageProfile'>

 <rdfs:label xml:lang="en">ADP Image Profile</rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-adp;Profile'/>

 <rdfs:comment xml:lang="en">

 This class is to specify the profile of an image object.

 </rdfs:comment>

 </rdfs:Class>

 <rdfs:Class rdf:about='&ns-adp;VideoProfile'>

 <rdfs:label xml:lang="en">ADP Video Profile</rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-adp;Profile'/>

 <rdfs:comment xml:lang="en">

 This class is to specify the profile of a video object.

 </rdfs:comment>

 </rdfs:Class>

 <rdfs:Class rdf:about='&ns-adp;AudioProfile'>

 <rdfs:label xml:lang="en">ADP Audio Profile</rdfs:label>

 Appendix A: ADP Schema 316

 <rdfs:subClassOf rdf:resource='&ns-adp;Profile'/>

 <rdfs:comment xml:lang="en">

 This class is to specify the profile of an audio object.

 </rdfs:comment>

 </rdfs:Class>

 <rdfs:Class rdf:about='&ns-adp;TextProfile'>

 <rdfs:label xml:lang="en">ADP Text Profile</rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-adp;Profile'/>

 <rdfs:comment xml:lang="en">

 This class is to specify the profile of a textual document.

 </rdfs:comment>

 </rdfs:Class>

 <rdfs:Class rdf:about='&ns-adp;Adaptor'>

 <rdfs:label xml:lang="en">ADP Adapting Module</rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-adp;Resource'/>

 <rdfs:comment xml:lang="en">

 This class is to specify the adapting module.

 </rdfs:comment>

 </rdfs:Class>

<!-- ADP Structure and Attribute class definitions -->

 <rdfs:Class rdf:about='&ns-adp;Structure'>

 <rdfs:label xml:lang="en">ADP Structural Property</rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-rdf;Property'/>

 <rdfs:comment xml:lang="en">

 All properties that are structural elements of an ADP profile

 are defined as instances of adp:Structure.

 </rdfs:comment>

 </rdfs:Class>

 <rdfs:Class rdf:about='&ns-adp;Attribute'>

 <rdfs:label xml:lang="en">ADP Attribute Property</rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-rdf;Property'/>

 <rdfs:comment xml:lang="en">

 All object properties should be defined as instances of

 adp:Attribute.

 </rdfs:comment>

 </rdfs:Class>

<!-- ADP structural property definitions -->

 <adp:Structure rdf:about='&ns-adp;representation'>

 <rdfs:label xml:lang="en">ADP representation property</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Profile'/>

 <rdfs:range rdf:resource='&ns-rdfs;List'/>

 <rdfs:comment xml:lang="en">

 A property listing the representations of an object.

 </rdfs:comment>

 </adp:Structure>

 Appendix A: ADP Schema 317

 <adp:Structure rdf:about='&ns-adp;adaptedBy'>

 <rdfs:label xml:lang="en">ADP adaptor property</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Profile'/>

 <rdfs:range rdf:resource='&ns-adp;Adaptor'/>

 <rdfs:comment xml:lang="en">

 A property indicating the module used for the adaptation.

 </rdfs:comment>

 </adp:Structure>

<!-- ADP attribute property definitions -->

 <!-- Profile Attributes -->

 <adp:Attribute rdf:about='&ns-adp;contentType'>

 <rdfs:label xml:lang="en">Content-type</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Profile'/>

 <rdfs:range rdf:resource='&ns-xsd;string'/>

 <rdfs:comment xml:lang="en">

 A string describing the content-type of an object.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-adp;dataSize'>

 <rdfs:label xml:lang="en">Data-size</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Profile'/>

 <rdfs:range rdf:resource='&ns-xsd;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the data-size of an object.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-adp;presentationWidth'>

 <rdfs:label xml:lang="en">Presentation's Width</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Profile'/>

 <rdfs:range rdf:resource='&ns-xsd;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the minimum width (in pixels) required

 to display an object.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-adp;presentationHeight'>

 <rdfs:label xml:lang="en">Presentation's Height</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Profile'/>

 <rdfs:range rdf:resource='&ns-xsd;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the minimum height (in pixels) required

 to display an object.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-adp;adaptingParams'>

 <rdfs:label xml:lang="en">Adapting Parameters</rdfs:label>

 Appendix A: ADP Schema 318

 <rdfs:domain rdf:resource='&ns-adp;Profile'/>

 <rdfs:range rdf:resource='&ns-rdf;Bag'/>

 <rdfs:comment xml:lang="en">

 A list of parameters used to adapt an object.

 </rdfs:comment>

 </adp:Attribute>

 <!-- Adaptor Attributes -->

 <adp:Attribute rdf:about='&ns-adp;runEnvironment'>

 <rdfs:label xml:lang="en">Running Environment</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Adaptor'/>

 <rdfs:range rdf:resource='&ns-xsd;string'/>

 <rdfs:comment xml:lang="en">

 A string describing the running environment of an adaptor,

 e.g. linux-executable, windows-executable, java, javascript,

 VBScript, etc.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-adp;runEnvVersion'>

 <rdfs:label xml:lang="en">Running Env.'s Version</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Adaptor'/>

 <rdfs:range rdf:resource='&ns-xsd;string'/>

 <rdfs:comment xml:lang="en">

 A string describing the version of the running environment

 mentioned in attribute adp:runEnvironment, e.g. if

 adp:runEnvironment='java', perhaps adp:runEnvVersion='1.4.2'.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-adp;additionalLibs'>

 <rdfs:label xml:lang="en">Additional Libraries</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Adaptor'/>

 <rdfs:range rdf:resource='&ns-rdf;Bag'/>

 <rdfs:comment xml:lang="en">

 A list of libraries that may be needed by an adaptor.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-adp;reversible'>

 <rdfs:label xml:lang="en">Reversible Adaptation</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;Adaptor'/>

 <rdfs:range rdf:resource='&ns-xsd;boolean'/>

 <rdfs:comment xml:lang="en">

 A boolean value denoting whether an adaptation is reversible.

 </rdfs:comment>

 </adp:Attribute>

</rdf:RDF>

319

Appendix B

Experimental Server Meta-Data

ADP Schema Extension
[http://svr.my-dom.org/ADP/adp-svr-profile]

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

 <!ENTITY ns-rdfs 'http://www.w3.org/2000/01/rdf-schema#'>

 <!ENTITY ns-xsd 'http://www.w3.org/2001/XMLSchema#'>

 <!ENTITY ns-adp 'http://rdfs.example.org/adp-schema#'>

 <!ENTITY ns-sprof 'http://svr.my-dom.org/ADP/adp-svr-profile#'>

]>

<rdf:RDF

 xmlns:rdf = '&ns-rdf;'

 xmlns:rdfs = '&ns-rdfs;'

 xmlns:adp = '&ns-adp;'>

<!-- ADP Image Profile Attributes -->

 <adp:Attribute rdf:about='&ns-sprof;grayscale'>

 <rdfs:label xml:lang="en">Grayscale</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;ImageProfile'/>

 <rdfs:range rdf:resource='&ns-xsd;boolean'/>

 <rdfs:comment xml:lang="en">

 A boolean describing whether the image is grayscale.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-sprof;jpgScaledownFactor'>

 <rdfs:label xml:lang="en">SD Factor of JPEG image</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;ImageProfile'/>

 <rdfs:range rdf:resource='&ns-xsd;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the scaled-down (SD) factor used to

 retrieve the JPEG image presentation from the original.

 Note: the factor is in 1/N

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-sprof;jpgQuality'>

 <rdfs:label xml:lang="en">Quality of JPEG image</rdfs:label>

 Appendix B: Experimental Server Meta-Data 320

 <rdfs:domain rdf:resource='&ns-adp;ImageProfile'/>

 <rdfs:range rdf:resource='&ns-xsd;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the JPEG image's quality.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-sprof;jp2ProgressionOrder'>

 <rdfs:label xml:lang="en">PO of J2K image</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;ImageProfile'/>

 <rdfs:range rdf:resource='&ns-xsd;string'/>

 <rdfs:comment xml:lang="en">

 A string describing the progression order (PO) in a JPEG 2000

 image, e.g. lrcp, rlcp, rpcl, pcrl, cprl.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-sprof;jp2NoComponents'>

 <rdfs:label xml:lang="en">No of Cmps of J2K image</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;ImageProfile'/>

 <rdfs:range rdf:resource='&ns-xsd;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the number of color components in

 a JPEG 2000 image.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-sprof;jp2NoResolutions'>

 <rdfs:label xml:lang="en">No of Lvls of J2K image</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;ImageProfile'/>

 <rdfs:range rdf:resource='&ns-xsd;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the number of decomposition levels

 (resolutions) in a JPEG 2000 image.

 </rdfs:comment>

 </adp:Attribute>

 <adp:Attribute rdf:about='&ns-sprof;jp2NoLayers'>

 <rdfs:label xml:lang="en">No of Lyrs of J2K image</rdfs:label>

 <rdfs:domain rdf:resource='&ns-adp;ImageProfile'/>

 <rdfs:range rdf:resource='&ns-xsd;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the number of quality layers in

 a JPEG 2000 image.

 </rdfs:comment>

 </adp:Attribute>

</rdf:RDF>

 Appendix B: Experimental Server Meta-Data 321

Profile of boat.jpeg (for SDT)
[http://svr.my-dom.org/images/boat.jpeg.adp]

<?xml version='1.0'?>

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:rdfs = 'http://www.w3.org/2000/01/rdf-schema#'

 xmlns:adp = 'http://rdfs.example.org/adp-schema#'

 xmlns = 'http://svr.my-dom.org/ADP/adp-svr-profile#'

 xml:base = 'http://svr.my-dom.org/images/boat.jpeg'>

 <!-- Quality Indicator in rdf:ID

 0 - original

 1 - very high

 2 - high

 3 - average

 4 - low

 5 - very low

 -->

 <adp:ImageProfile

 rdf:about='http://svr.my-dom.org/images/boat.jpeg'>

 <adp:contentType>image/jpeg</adp:contentType>

 <adp:dataSize>5065493</adp:dataSize>

 <adp:presentationWidth>1976</adp:presentationWidth>

 <adp:presentationHeight>2960</adp:presentationHeight>

 <grayscale>false</grayscale>

 <jpgScaledownFactor>1</jpgScaledownFactor>

 <jpgQuality>100</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Resolution Representation(s) -->

 <adp:ImageProfile rdf:ID='p03-half_resl'>

 <adp:dataSize>1340018</adp:dataSize>

 <adp:presentationWidth>988</adp:presentationWidth>

 <adp:presentationHeight>1480</adp:presentationHeight>

 <jpgScaledownFactor>2</jpgScaledownFactor>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p00-def-half_resl-3'>

 <adp:dataSize>157673</adp:dataSize>

 <jpgQuality>47</jpgQuality>

 Appendix B: Experimental Server Meta-Data 322

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p00-half_resl-gray-3'>

 <adp:dataSize>131034</adp:dataSize>

 <grayscale>true</grayscale>

 <jpgQuality>41</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p03-half_resl -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl'>

 <adp:dataSize>362128</adp:dataSize>

 <adp:presentationWidth>494</adp:presentationWidth>

 <adp:presentationHeight>740</adp:presentationHeight>

 <jpgScaledownFactor>4</jpgScaledownFactor>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl-2'>

 <adp:dataSize>205983</adp:dataSize>

 <jpgQuality>96</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-def-quarter_resl-3'>

 <adp:dataSize>114579</adp:dataSize>

 <jpgQuality>88</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-quarter_resl-4'>

 <adp:dataSize>64401</adp:dataSize>

 <jpgQuality>67</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-quarter_resl-5'>

 <adp:dataSize>38096</adp:dataSize>

 <jpgQuality>30</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl-gray'>

 Appendix B: Experimental Server Meta-Data 323

 <adp:dataSize>268245</adp:dataSize>

 <grayscale>true</grayscale>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-def-quarter_resl-gray-3'>

 <adp:dataSize>86810</adp:dataSize>

 <grayscale>true</grayscale>

 <jpgQuality>84</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p01-quarter_resl -->

 <adp:ImageProfile rdf:ID='p02-eighth_resl'>

 <adp:dataSize>98052</adp:dataSize>

 <adp:presentationWidth>247</adp:presentationWidth>

 <adp:presentationHeight>370</adp:presentationHeight>

 <jpgScaledownFactor>8</jpgScaledownFactor>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p02-def-eighth_resl-3'>

 <adp:dataSize>57329</adp:dataSize>

 <jpgQuality>96</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p02-eighth_resl-4'>

 <adp:dataSize>23568</adp:dataSize>

 <jpgQuality>77</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p02-eighth_resl-gray-3'>

 <adp:dataSize>37473</adp:dataSize>

 <grayscale>true</grayscale>

 <jpgQuality>93</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd-sdt'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p02-eighth_resl -->

 </adp:representation>

 </adp:ImageProfile>

 <!-- END OF http://svr.my-dom.org/images/boat.jpeg -->

 Appendix B: Experimental Server Meta-Data 324

 <adp:Adaptor rdf:about='http://svr.my-dom.org/ADP/jpgxcd-sdt'>

 <adp:runEnvironment>Linux executable</adp:runEnvironment>

 <adp:reversible>false</adp:reversible>

 </adp:Adaptor>

</rdf:RDF>

Profile of boat.jpg (for FDT)
[http://svr.my-dom.org/images/boat.jpg.adp]

<?xml version='1.0'?>

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:rdfs = 'http://www.w3.org/2000/01/rdf-schema#'

 xmlns:adp = 'http://rdfs.example.org/adp-schema#'

 xmlns = 'http://svr.my-dom.org/ADP/adp-svr-profile#'

 xml:base = 'http://svr.my-dom.org/images/boat.jpg'>

 <!-- Quality Indicator in rdf:ID

 0 - original

 1 - very high

 2 - high

 3 - average

 4 - low

 5 - very low

 -->

 <adp:ImageProfile

 rdf:about='http://svr.my-dom.org/images/boat.jpg'>

 <adp:contentType>image/jpeg</adp:contentType>

 <adp:dataSize>5065493</adp:dataSize>

 <adp:presentationWidth>1976</adp:presentationWidth>

 <adp:presentationHeight>2960</adp:presentationHeight>

 <grayscale>false</grayscale>

 <jpgScaledownFactor>1</jpgScaledownFactor>

 <jpgQuality>100</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Resolution Representation(s) -->

 <adp:ImageProfile rdf:ID='p03-half_resl'>

 <adp:dataSize>1557164</adp:dataSize>

 <adp:presentationWidth>988</adp:presentationWidth>

 <adp:presentationHeight>1480</adp:presentationHeight>

 <jpgScaledownFactor>2</jpgScaledownFactor>

 Appendix B: Experimental Server Meta-Data 325

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p00-def-half_resl-3'>

 <adp:dataSize>157538</adp:dataSize>

 <jpgQuality>57</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p00-half_resl-gray-3'>

 <adp:dataSize>130310</adp:dataSize>

 <grayscale>true</grayscale>

 <jpgQuality>50</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p03-half_resl -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl'>

 <adp:dataSize>403494</adp:dataSize>

 <adp:presentationWidth>494</adp:presentationWidth>

 <adp:presentationHeight>740</adp:presentationHeight>

 <jpgScaledownFactor>4</jpgScaledownFactor>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl-2'>

 <adp:dataSize>203633</adp:dataSize>

 <jpgQuality>96</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-def-quarter_resl-3'>

 <adp:dataSize>115150</adp:dataSize>

 <jpgQuality>90</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-quarter_resl-4'>

 <adp:dataSize>63838</adp:dataSize>

 <jpgQuality>75</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 Appendix B: Experimental Server Meta-Data 326

 <adp:ImageProfile rdf:ID='p01-quarter_resl-5'>

 <adp:dataSize>37742</adp:dataSize>

 <jpgQuality>43</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl-gray'>

 <adp:dataSize>293718</adp:dataSize>

 <grayscale>true</grayscale>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-def-quarter_resl-gray-3'>

 <adp:dataSize>87382</adp:dataSize>

 <grayscale>true</grayscale>

 <jpgQuality>87</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p01-quarter_resl -->

 <adp:ImageProfile rdf:ID='p02-eighth_resl'>

 <adp:dataSize>92727</adp:dataSize>

 <adp:presentationWidth>247</adp:presentationWidth>

 <adp:presentationHeight>370</adp:presentationHeight>

 <jpgScaledownFactor>8</jpgScaledownFactor>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p02-def-eighth_resl-3'>

 <adp:dataSize>62054</adp:dataSize>

 <jpgQuality>98</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p02-eighth_resl-4'>

 <adp:dataSize>23985</adp:dataSize>

 <jpgQuality>87</jpgQuality>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representations -->

 <adp:ImageProfile rdf:ID='p02-eighth_resl-gray-3'>

 <adp:dataSize>37114</adp:dataSize>

 <grayscale>true</grayscale>

 <jpgQuality>95</jpgQuality>

 Appendix B: Experimental Server Meta-Data 327

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jpgxcd'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p02-eighth_resl -->

 </adp:representation>

 </adp:ImageProfile>

 <!-- END OF http://svr.my-dom.org/images/boat.jpg -->

 <adp:Adaptor rdf:about='http://svr.my-dom.org/ADP/jpgxcd'>

 <adp:runEnvironment>Linux executable</adp:runEnvironment>

 <adp:reversible>false</adp:reversible>

 </adp:Adaptor>

</rdf:RDF>

Profile of boat.jp2 (for Modulation)
[http://svr.my-dom.org/images/boat.jp2.adp]

<?xml version='1.0'?>

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:rdfs = 'http://www.w3.org/2000/01/rdf-schema#'

 xmlns:adp = 'http://rdfs.example.org/adp-schema#'

 xmlns = 'http://svr.my-dom.org/ADP/adp-svr-profile#'

 xml:base = 'http://svr.my-dom.org/images/boat.jp2'>

 <!-- Quality Indicator in rdf:ID

 0 - original

 1 - very high

 2 - high

 3 - average

 4 - low

 5 - very low

 -->

 <adp:ImageProfile

 rdf:about='http://svr.my-dom.org/images/boat.jp2'>

 <adp:contentType>image/jp2</adp:contentType>

 <adp:dataSize>5065561</adp:dataSize>

 <adp:presentationWidth>1976</adp:presentationWidth>

 <adp:presentationHeight>2960</adp:presentationHeight>

 <grayscale>false</grayscale>

 <jp2ProgressionOrder>cprl</jp2ProgressionOrder>

 <jp2NoComponents>3</jp2NoComponents>

 <jp2NoResolutions>5</jp2NoResolutions>

 Appendix B: Experimental Server Meta-Data 328

 <jp2NoLayers>10</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Resolution Representation(s) -->

 <adp:ImageProfile rdf:ID='p05-half_resl'>

 <adp:dataSize>2403166</adp:dataSize>

 <adp:presentationWidth>988</adp:presentationWidth>

 <adp:presentationHeight>1480</adp:presentationHeight>

 <jp2NoResolutions>4</jp2NoResolutions>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p00-def-half_resl-3'>

 <adp:dataSize>158733</adp:dataSize>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p00-half_resl-gray-3'>

 <adp:dataSize>130454</adp:dataSize>

 <grayscale>true</grayscale>

 <jp2NoComponents>1</jp2NoComponents>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p05-half_resl -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl'>

 <adp:dataSize>790186</adp:dataSize>

 <adp:presentationWidth>494</adp:presentationWidth>

 <adp:presentationHeight>740</adp:presentationHeight>

 <jp2NoResolutions>3</jp2NoResolutions>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl-1'>

 <adp:dataSize>494679</adp:dataSize>

 <jp2NoLayers>8</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 Appendix B: Experimental Server Meta-Data 329

 <adp:ImageProfile rdf:ID='p01-quarter_resl-2'>

 <adp:dataSize>200964</adp:dataSize>

 <jp2NoLayers>6</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-def-quarter_resl-3'>

 <adp:dataSize>115217</adp:dataSize>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-quarter_resl-4'>

 <adp:dataSize>64299</adp:dataSize>

 <jp2NoLayers>4</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-quarter_resl-5'>

 <adp:dataSize>37937</adp:dataSize>

 <jp2NoLayers>3</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p01-quarter_resl-gray'>

 <adp:dataSize>316270</adp:dataSize>

 <grayscale>true</grayscale>

 <jp2NoComponents>1</jp2NoComponents>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p01-def-quarter_resl-gray-3'>

 <adp:dataSize>86958</adp:dataSize>

 <grayscale>true</grayscale>

 <jp2NoComponents>1</jp2NoComponents>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p01-quarter_resl -->

 <adp:ImageProfile rdf:ID='p02-eighth_resl'>

 <adp:dataSize>236283</adp:dataSize>

 <adp:presentationWidth>247</adp:presentationWidth>

 <adp:presentationHeight>370</adp:presentationHeight>

 <jp2NoResolutions>2</jp2NoResolutions>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 Appendix B: Experimental Server Meta-Data 330

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p02-eighth_resl-2'>

 <adp:dataSize>127253</adp:dataSize>

 <jp2NoLayers>7</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p02-def-eighth_resl-3'>

 <adp:dataSize>58439</adp:dataSize>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <adp:ImageProfile rdf:ID='p02-eighth_resl-4'>

 <adp:dataSize>23723</adp:dataSize>

 <jp2NoLayers>3</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p02-eighth_resl-gray-3'>

 <adp:dataSize>36860</adp:dataSize>

 <grayscale>true</grayscale>

 <jp2NoComponents>1</jp2NoComponents>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p02-eighth_resl -->

 <adp:ImageProfile rdf:ID='p03-sixteenth_resl'>

 <adp:dataSize>70624</adp:dataSize>

 <adp:presentationWidth>124</adp:presentationWidth>

 <adp:presentationHeight>185</adp:presentationHeight>

 <jp2NoResolutions>1</jp2NoResolutions>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 <adp:representation rdf:parseType='Collection'>

 <!-- Reduced-Quality Representation(s) -->

 <adp:ImageProfile rdf:ID='p03-def-sixteenth_resl-3'>

 <adp:dataSize>25438</adp:dataSize>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 <!-- Reduced-Component Representation(s) -->

 <adp:ImageProfile rdf:ID='p03-sixteenth_resl-gray-3'>

 Appendix B: Experimental Server Meta-Data 331

 <adp:dataSize>13356</adp:dataSize>

 <grayscale>true</grayscale>

 <jp2NoComponents>1</jp2NoComponents>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile> <!-- END OF #p03-sixteenth_resl -->

 <adp:ImageProfile rdf:ID='p04-thirtysecond_resl-3'>

 <adp:dataSize>10672</adp:dataSize>

 <adp:presentationWidth>62</adp:presentationWidth>

 <adp:presentationHeight>93</adp:presentationHeight>

 <jp2NoResolutions>0</jp2NoResolutions>

 <jp2NoLayers>5</jp2NoLayers>

 <adp:adaptedBy

 rdf:resource='http://svr.my-dom.org/ADP/jp2mod'/>

 </adp:ImageProfile>

 </adp:representation>

 </adp:ImageProfile>

 <!-- END OF http://svr.my-dom.org/images/boat.jp2 -->

 <adp:Adaptor rdf:about='http://svr.my-dom.org/ADP/jp2mod'>

 <adp:runEnvironment>Linux executable</adp:runEnvironment>

 <adp:reversible>true</adp:reversible>

 </adp:Adaptor>

</rdf:RDF>

332

Appendix C

Experimental Client Meta-Data

CC/PP Schema Extension
[http://cli.my-dom.org/CCPP/gen-cli-profile]

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

 <!ENTITY ns-ccpp 'http://www.w3.org/2002/11/08-ccpp-schema#'>

 <!ENTITY ns-cprof 'http://cli.my-dom.org/CCPP/gen-cli-profile#'>

]>

<rdf:RDF

 xmlns:rdf = '&ns-rdf;'

 xmlns:rdfs = 'http://www.w3.org/2000/01/rdf-schema#'

 xmlns:ccpp = '&ns-ccpp;'>

<!-- CC/PP Component Definitions -->

 <rdfs:Class rdf:about='&ns-cprof;HardwarePlatform'>

 <rdfs:label xml:lang="en">CC/PP Hardware Platform Component

 </rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-ccpp;Component'/>

 <rdfs:comment xml:lang="en">

 This class is to specify hardware component.

 </rdfs:comment>

 </rdfs:Class>

 <rdfs:Class rdf:about='&ns-cprof;SoftwarePlatform'>

 <rdfs:label xml:lang="en">CC/PP Software Platform Component

 </rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-ccpp;Component'/>

 <rdfs:comment xml:lang="en">

 This class is to specify software component.

 </rdfs:comment>

 </rdfs:Class>

 <rdfs:Class rdf:about='&ns-cprof;BrowserUA'>

 <rdfs:label xml:lang="en">CC/PP Browser User Agent Component

 </rdfs:label>

 <rdfs:subClassOf rdf:resource='&ns-ccpp;Component'/>

 <rdfs:comment xml:lang="en">

 This class is to specify browser component.

 Appendix C: Experimental Client Meta-Data 333

 </rdfs:comment>

 </rdfs:Class>

<!-- CC/PP Attribute Definitions -->

 <ccpp:Attribute rdf:about='&ns-cprof;name'>

 <rdfs:label xml:lang="en">Item's Name</rdfs:label>

 <rdfs:domain rdf:resource='&ns-ccpp;Component'/>

 <rdfs:range rdf:resource='&ns-ccpp;string'/>

 <rdfs:comment xml:lang="en">

 A string describing an item's name.

 </rdfs:comment>

 </ccpp:Attribute>

 <ccpp:Attribute rdf:about='&ns-cprof;vendor'>

 <rdfs:label xml:lang="en">Item's Vendor</rdfs:label>

 <rdfs:domain rdf:resource='&ns-ccpp;Component'/>

 <rdfs:range rdf:resource='&ns-ccpp;string'/>

 <rdfs:comment xml:lang="en">

 A string describing the vendor of the item.

 </rdfs:comment>

 </ccpp:Attribute>

 <ccpp:Attribute rdf:about='&ns-cprof;version'>

 <rdfs:label xml:lang="en">Item's Version</rdfs:label>

 <rdfs:domain rdf:resource='&ns-ccpp;Component'/>

 <rdfs:range rdf:resource='&ns-ccpp;string'/>

 <rdfs:comment xml:lang="en">

 A string describing the version of the item.

 </rdfs:comment>

 </ccpp:Attribute>

 <ccpp:Attribute rdf:about='&ns-cprof;cpu'>

 <rdfs:label xml:lang="en">CPU Type</rdfs:label>

 <rdfs:domain rdf:resource='&ns-cprof;HardwarePlatform'/>

 <rdfs:range rdf:resource='&ns-ccpp;string'/>

 <rdfs:comment xml:lang="en">

 A string describing the CPU type.

 </rdfs:comment>

 </ccpp:Attribute>

 <ccpp:Attribute rdf:about='&ns-cprof;scrollbars'>

 <rdfs:label xml:lang="en">Supported Scrollbars</rdfs:label>

 <rdfs:domain rdf:resource='&ns-cprof;BrowserUA'/>

 <rdfs:range rdf:resource='&ns-rdf;Bag'/>

 <rdfs:comment xml:lang="en">

 A list of supported scrollbars in the browser's window

 (i.e.: horizontal, vertical).

 </rdfs:comment>

 </ccpp:Attribute>

 <ccpp:Attribute rdf:about='&ns-cprof;htmlVersionsSupported'>

 <rdfs:label xml:lang="en">Supported HTML Versions</rdfs:label>

 Appendix C: Experimental Client Meta-Data 334

 <rdfs:domain rdf:resource='&ns-cprof;BrowserUA'/>

 <rdfs:range rdf:resource='&ns-rdf;Bag'/>

 <rdfs:comment xml:lang="en">

 A list of supported HTML versions.

 </rdfs:comment>

 </ccpp:Attribute>

 <ccpp:Attribute rdf:about='&ns-cprof;maxObjectSize'>

 <rdfs:label xml:lang="en">Max Size of a Web Object</rdfs:label>

 <rdfs:domain rdf:resource='&ns-cprof;BrowserUA'/>

 <rdfs:range rdf:resource='&ns-ccpp;integer'/>

 <rdfs:comment xml:lang="en">

 An integer describing the maximum size of a web object to be

 presented.

 </rdfs:comment>

 </ccpp:Attribute>

</rdf:RDF>

Profile of Client1
[http://cli.my-dom.org/CCPP/Client1]

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-ccpp 'http://www.w3.org/2002/11/08-ccpp-schema#'>

 <!ENTITY ns-cprof 'http://cli.my-dom.org/CCPP/gen-cli-profile#'>

]>

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:ccpp = '&ns-ccpp;'

 xmlns:ccpp-cli = 'http://www.w3.org/2002/11/08-ccpp-client#'

 xmlns:prf = '&ns-cprof;'>

 <rdf:Description rdf:about='http://cli.my-dom.org/CCPP/Client1'>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Hardware_Color'>

 <rdf:type rdf:resource='&ns-cprof;HardwarePlatform'/>

 <prf:name>Desky</prf:name>

 <prf:vendor>Dell</prf:vendor>

 <prf:version>Optiplex GX280</prf:version>

 <prf:cpu>Intel Pentium 4 -- 3.0 GHz</prf:cpu>

 <ccpp-cli:pix-x>1024</ccpp-cli:pix-x>

 <ccpp-cli:pix-y>768</ccpp-cli:pix-y>

 <ccpp-cli:color>full</ccpp-cli:color>

 </rdf:Description>

 </ccpp:component>

 Appendix C: Experimental Client Meta-Data 335

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Software'>

 <rdf:type rdf:resource='&ns-cprof;SoftwarePlatform'/>

 <prf:name>GNU/Linux</prf:name>

 <prf:vendor>Fedora Core</prf:vendor>

 <prf:version>3.0</prf:version>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Browser_Scroll'>

 <rdf:type rdf:resource='&ns-cprof;BrowserUA'/>

 <prf:name>Firefox</prf:name>

 <prf:vendor>Mozilla</prf:vendor>

 <prf:version>1.0.1</prf:version>

 <prf:scrollbars>

 <rdf:Bag>

 <rdf:li>horizontal</rdf:li>

 <rdf:li>vertical</rdf:li>

 </rdf:Bag>

 </prf:scrollbars>

 </rdf:Description>

 </ccpp:component>

 </rdf:Description>

</rdf:RDF>

Profile of Client2
[http://cli.my-dom.org/CCPP/Client2]

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-ccpp 'http://www.w3.org/2002/11/08-ccpp-schema#'>

 <!ENTITY ns-cprof 'http://cli.my-dom.org/CCPP/gen-cli-profile#'>

]>

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:ccpp = '&ns-ccpp;'

 xmlns:ccpp-cli = 'http://www.w3.org/2002/11/08-ccpp-client#'

 xmlns:prf = '&ns-cprof;'>

 <rdf:Description rdf:about='http://cli.my-dom.org/CCPP/Client2'>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Hardware_Grey'>

 Appendix C: Experimental Client Meta-Data 336

 <rdf:type rdf:resource='&ns-cprof;HardwarePlatform'/>

 <prf:name>Desky</prf:name>

 <prf:vendor>Dell</prf:vendor>

 <prf:version>Optiplex GX280</prf:version>

 <prf:cpu>Intel Pentium 4 -- 3.0 GHz</prf:cpu>

 <ccpp-cli:pix-x>1024</ccpp-cli:pix-x>

 <ccpp-cli:pix-y>768</ccpp-cli:pix-y>

 <ccpp-cli:color>grey</ccpp-cli:color>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Software'>

 <rdf:type rdf:resource='&ns-cprof;SoftwarePlatform'/>

 <prf:name>GNU/Linux</prf:name>

 <prf:vendor>Fedora Core</prf:vendor>

 <prf:version>3.0</prf:version>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Browser_Scroll'>

 <rdf:type rdf:resource='&ns-cprof;BrowserUA'/>

 <prf:name>Firefox</prf:name>

 <prf:vendor>Mozilla</prf:vendor>

 <prf:version>1.0.1</prf:version>

 <prf:scrollbars>

 <rdf:Bag>

 <rdf:li>horizontal</rdf:li>

 <rdf:li>vertical</rdf:li>

 </rdf:Bag>

 </prf:scrollbars>

 </rdf:Description>

 </ccpp:component>

 </rdf:Description>

</rdf:RDF>

Profile of Client3
[http://cli.my-dom.org/CCPP/Client3]

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-ccpp 'http://www.w3.org/2002/11/08-ccpp-schema#'>

 <!ENTITY ns-cprof 'http://cli.my-dom.org/CCPP/gen-cli-profile#'>

]>

 Appendix C: Experimental Client Meta-Data 337

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:ccpp = '&ns-ccpp;'

 xmlns:ccpp-cli = 'http://www.w3.org/2002/11/08-ccpp-client#'

 xmlns:prf = '&ns-cprof;'>

 <rdf:Description rdf:about='http://cli.my-dom.org/CCPP/Client3'>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Hardware_Color'>

 <rdf:type rdf:resource='&ns-cprof;HardwarePlatform'/>

 <prf:name>Desky</prf:name>

 <prf:vendor>Dell</prf:vendor>

 <prf:version>Optiplex GX280</prf:version>

 <prf:cpu>Intel Pentium 4 -- 3.0 GHz</prf:cpu>

 <ccpp-cli:pix-x>1024</ccpp-cli:pix-x>

 <ccpp-cli:pix-y>768</ccpp-cli:pix-y>

 <ccpp-cli:color>full</ccpp-cli:color>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Software'>

 <rdf:type rdf:resource='&ns-cprof;SoftwarePlatform'/>

 <prf:name>GNU/Linux</prf:name>

 <prf:vendor>Fedora Core</prf:vendor>

 <prf:version>3.0</prf:version>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Browser_NoScroll'>

 <rdf:type rdf:resource='&ns-cprof;BrowserUA'/>

 <prf:name>Firefox</prf:name>

 <prf:vendor>Mozilla</prf:vendor>

 <prf:version>1.0.1</prf:version>

 </rdf:Description>

 </ccpp:component>

 </rdf:Description>

</rdf:RDF>

Profile of Client4
[http://cli.my-dom.org/CCPP/Client4]

<?xml version='1.0'?>

 Appendix C: Experimental Client Meta-Data 338

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-ccpp 'http://www.w3.org/2002/11/08-ccpp-schema#'>

 <!ENTITY ns-cprof 'http://cli.my-dom.org/CCPP/gen-cli-profile#'>

]>

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:ccpp = '&ns-ccpp;'

 xmlns:ccpp-cli = 'http://www.w3.org/2002/11/08-ccpp-client#'

 xmlns:prf = '&ns-cprof;'>

 <rdf:Description rdf:about='http://cli.my-dom.org/CCPP/Client4'>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Hardware_Grey'>

 <rdf:type rdf:resource='&ns-cprof;HardwarePlatform'/>

 <prf:name>Desky</prf:name>

 <prf:vendor>Dell</prf:vendor>

 <prf:version>Optiplex GX280</prf:version>

 <prf:cpu>Intel Pentium 4 -- 3.0 GHz</prf:cpu>

 <ccpp-cli:pix-x>1024</ccpp-cli:pix-x>

 <ccpp-cli:pix-y>768</ccpp-cli:pix-y>

 <ccpp-cli:color>grey</ccpp-cli:color>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Software'>

 <rdf:type rdf:resource='&ns-cprof;SoftwarePlatform'/>

 <prf:name>GNU/Linux</prf:name>

 <prf:vendor>Fedora Core</prf:vendor>

 <prf:version>3.0</prf:version>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PC_Browser_NoScroll'>

 <rdf:type rdf:resource='&ns-cprof;BrowserUA'/>

 <prf:name>Firefox</prf:name>

 <prf:vendor>Mozilla</prf:vendor>

 <prf:version>1.0.1</prf:version>

 </rdf:Description>

 </ccpp:component>

 </rdf:Description>

</rdf:RDF>

 Appendix C: Experimental Client Meta-Data 339

Profile of Client5
[http://cli.my-dom.org/CCPP/Client5]

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-ccpp 'http://www.w3.org/2002/11/08-ccpp-schema#'>

 <!ENTITY ns-cprof 'http://cli.my-dom.org/CCPP/gen-cli-profile#'>

]>

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:ccpp = '&ns-ccpp;'

 xmlns:ccpp-cli = 'http://www.w3.org/2002/11/08-ccpp-client#'

 xmlns:prf = '&ns-cprof;'>

 <rdf:Description rdf:about='http://cli.my-dom.org/CCPP/Client5'>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PDA_Hardware_Color'>

 <rdf:type rdf:resource='&ns-cprof;HardwarePlatform'/>

 <prf:name>Palmo</prf:name>

 <prf:vendor>PalmOne</prf:vendor>

 <prf:version>Tungsten</prf:version>

 <prf:cpu>Intel XScale</prf:cpu>

 <ccpp-cli:pix-x>320</ccpp-cli:pix-x>

 <ccpp-cli:pix-y>480</ccpp-cli:pix-y>

 <ccpp-cli:color>full</ccpp-cli:color>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PDA_Software'>

 <rdf:type rdf:resource='&ns-cprof;SoftwarePlatform'/>

 <prf:name>Palm OS</prf:name>

 <prf:vendor>PalmSource</prf:vendor>

 <prf:version>5.4</prf:version>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PDA_Browser'>

 <rdf:type rdf:resource='&ns-cprof;BrowserUA'/>

 <prf:name>Blazer</prf:name>

 <prf:vendor>Handspring</prf:vendor>

 <prf:version>4.0</prf:version>

 <prf:scrollbars>

 <rdf:Bag>

 Appendix C: Experimental Client Meta-Data 340

 <rdf:li>horizontal</rdf:li>

 <rdf:li>vertical</rdf:li>

 </rdf:Bag>

 </prf:scrollbars>

 </rdf:Description>

 </ccpp:component>

 </rdf:Description>

</rdf:RDF>

Profile of Client6
[http://cli.my-dom.org/CCPP/Client6]

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [

 <!ENTITY ns-ccpp 'http://www.w3.org/2002/11/08-ccpp-schema#'>

 <!ENTITY ns-cprof 'http://cli.my-dom.org/CCPP/gen-cli-profile#'>

]>

<rdf:RDF

 xmlns:rdf = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:ccpp = '&ns-ccpp;'

 xmlns:ccpp-cli = 'http://www.w3.org/2002/11/08-ccpp-client#'

 xmlns:prf = '&ns-cprof;'>

 <rdf:Description rdf:about='http://cli.my-dom.org/CCPP/Client6'>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PDA_Hardware_Grey'>

 <rdf:type rdf:resource='&ns-cprof;HardwarePlatform'/>

 <prf:name>Palmo</prf:name>

 <prf:vendor>PalmOne</prf:vendor>

 <prf:version>Tungsten</prf:version>

 <prf:cpu>Intel XScale</prf:cpu>

 <ccpp-cli:pix-x>320</ccpp-cli:pix-x>

 <ccpp-cli:pix-y>480</ccpp-cli:pix-y>

 <ccpp-cli:color>grey</ccpp-cli:color>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PDA_Software'>

 <rdf:type rdf:resource='&ns-cprof;SoftwarePlatform'/>

 <prf:name>Palm OS</prf:name>

 <prf:vendor>PalmSource</prf:vendor>

 <prf:version>5.4</prf:version>

 Appendix C: Experimental Client Meta-Data 341

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

 rdf:about='http://cli.my-dom.org/CCPP/PDA_Browser'>

 <rdf:type rdf:resource='&ns-cprof;BrowserUA'/>

 <prf:name>Blazer</prf:name>

 <prf:vendor>Handspring</prf:vendor>

 <prf:version>4.0</prf:version>

 <prf:scrollbars>

 <rdf:Bag>

 <rdf:li>horizontal</rdf:li>

 <rdf:li>vertical</rdf:li>

 </rdf:Bag>

 </prf:scrollbars>

 </rdf:Description>

 </ccpp:component>

 </rdf:Description>

</rdf:RDF>

