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NOMENCLATURE 
 
A  absorber area  ][ 2m  

)(tA  transient area of forming droplet ][ 2m  
a  constant used in equilibrium temperature and LiBr-concentration relationship 
b   constant used in equilibrium temperature and LiBr-concentration relationship  [ 1−K ] 

pwc  specific heat of water [ 11 −− KkJkg ] 

Tc   specific heat capacity of solution [ 11 −− KkJkg ] 

wc   specific heat capacity of solution [ 1−kJkg ] 
D  mass diffusivity [ 12 −sm ] 
d  tube diameter [ m ] 
e   internal energy [ 1−kJkg ] 
Ga   Galileo number 
g   gravitational acceleration [ 2−ms ] 

waterh  convective heat transfer coefficient of coolant water [ 12 −− KWm ] 

ih   heat transfer coefficient from solution bulk to the wall [ 12 −− KWm ] 

oh     heat transfer coefficient from the interface to the solution bulk [ 12 −− KWm ] 

vh        vapour-side heat transfer coefficient [ 12 −− KkWm ]  
h  tube gap [ m ] 
abi   enthalpy of absorption [ 1−kJkg ] 

i   enthalpy [ 1−kJkg ] 

vsi   difference between enthalpy of vapor and  enthalpy of solution [ 1−kJkg ] 
J   mass flux ratio [%] 
k   thermal conductivity [ 11 −− KWm ] 

efk        effective mass transfer coefficient  [ 1−ms ] 

mk        mass transfer coefficient  [ 1−ms ] 

mk        average mass transfer coefficient  of the absorber [ 1−ms ] 
L  tube length [ m ] 

sM  mass flow rate of solution along one side of the tube [ 11. −− smkg ] 
M  no of grid points along the flow direction 

em&       rate of inflow to form drop  [ 1−kgs ] 

om&       rate of outflow from  form drop  [ 1−kgs ] 

ebm&      rate of inflow during bridging period  [ 1−kgs ] 

vm&  mass flux of water vapor [ 12. −− smkg ] 

vm  mass flux of water vapor [ 12. −− smkg ] 

vdm&  absorption rate of water vapor by droplet [ 1. −skg ] 

wm   mass flow rate of coolant [ 1. −skg ] 

wsm  absorption rate of water vapor along one side of the tube [ 11. −− smkg ] 

sm  mass flow rate of solution along one side of the tube [ 11. −− smkg ] 

sdm  mass of forming droplet [ kg ] 
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sjm  mass flow rate of jet/sheet [ 1. −skg ] 

lm  mass flow rate of LiBr along one side of the tube [ 11. −− smkg ] 
N  no of grid points across the flow direction 
p   pressure [ Pa ] 
Q  heat transfer rate per unit length of the tube [ 1. −mW ] 
Re   Reynolds number  

or  outside radius of tube [ m ] 

ir   inside radius of tube [ m ] 

dr   radius of the forming droplet [ m ] 
T     temperature [ C0 ] 

wallT  wall temperature [ C0 ] 

wT  temperature of coolant [ C0 ] 

ifT  temperature of solution at the vapor-liquid interface [ C0 ] 
t     time of formation [s] 

bwU      overall heat transfer coefficient from the bulk solution to the coolant [ 12 −− KWm ] 

bwU      average heat transfer coefficient of the absorber [ 12 −− KWm ] 
u   velocity along the direction of flow [ 1−ms ] 
V  volume [ 3m ] 
v  cross flow velocity [ 1−ms ] 
W  mass concentration of LiBr [kg of LiBr/kg of solution] 
WR  wetting ratio 

ifw  Li-Br concentration at the vapor-liquid interface [kg of LiBr/kg of solution] 
w  mass concentration of LiBr [kg of LiBr/kg of solution] 
x  axis in flow direction [ m ] 
y  axis in cross flow direction [ m ] 
z  axis along the tube length [ m ] 
 
Greek symbols 
α   thermal diffusivity, [ 12 −sm ] 

1 2,α α    roots of the quadratic equation 
β   spacing between neighboring droplets or jets [ m ] 

bτ         duration of bridging [s] 
λ   departure site spacing [ m ] 
Γ   peripheral mass flow rate   [ 11. −− smkg ] 
δ   film thickness [ m ] 
η          dimensionless y-axis  
ν         kinematic viscosity, [ 12 −sm ] 
μ         dynamic viscosity, [ 11. −− smkg ] 
σ         surface tension [ 1. −mN ] 
ξ    dimensionless x-axis  
ρ    density [ 3. −mkg ] 
θ   angle radian 
φ   temperature driving potential [ C0 ] 
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ψ   concentration driving potential [kg of LiBr/kg of solution] 
ϕ   angular displacement [degree] 

bVΔ       decrease in the drop volume ][ 3m  

domΔ      mass transferred during bridging period [ kg ] 
 
 
Subscripts 
av       average 
b         break up 
co        coolant outlet 
c         coolant 
d        droplet 
e         entrance 
i          inlet 
in        inlet 
if        interface 
0  inlet  
o         outlet/exit 
s         solution 
si        solution inlet 
sb        solution bulk 
sf        solution falling film 
so        solution outlet 
bulk        solution bulk 
v          vapor 
vs        solution-vapor   
w         water 
wo       coolant/water outlet 
wall     wall 
 n         tube number 
f          formation 
max     maximum 
 
 



                                                                                                                                             Table of contents                          

  
v

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENT  
NOMENCLATURE 
TABLE OF CONTENTS 
LISTS OF FIGURES 
LISTS OF TABLES 
SUMMARY 

i 
ii 
v 
ix 
xix 
xx 

  
CHAPTER 1 
          1.1 
          1.2 
          1.3 
          1.4 
                
          1.5 
          1.6 
          
          1.7 
          1.8 
          1.9 

INTRODUCTION 
Vapor absorption systems 
Role of absorbers in vapour absorption system 
General configurations of absorbers 
Factors affecting the performances of conventional 
tubular absorbers 
Performance improvements of tubular absorbers 
Review of previous researches on tubular 
absorbers 
Objectives of present research  
Significance of present research 
Scopes of present research 

1 
2 
4 
5 
7 
 
8 
9 
 

11 
12 
13 

CHAPTER 2 
           2.1 
           2.2  
                
           2.3 
                
           2.4 
           2.5 
 
           2.6 
           2.7 

LITERATURE REVIEW 
Theoretical studies of absorption processes  
Experimental investigations with conventional 
absorbers 
Study of falling film hydrodynamics in horizontal 
tube banks 
Study of existing droplet hydrodynamics model 
Study of falling film absorption models in the 
inter-tube flow regime 
Study of film-inverting falling film absorber 
Summary 

16 
17 
25 
 

27 
 

31 
33 
 

34 
35 

CHAPTER 3 THEORETICAL STUDIES 37 
           3.1 
              3.1.1 

            
              3.1.2 
              3.1.3 
              3.1.4                 

        3.1.4.1 
        3.1.4.2  
        3.1.4.3   
        3.1.4.4  
         3.1.4.5        

3.1.5 
               3.1.6 
               3.1.7 
            3.2 

Numerical models of horizontal tubular absorbers 
Detail round tube model and segmented plate 
model 
Numerical simulation model of a single tube 
Modeling of counter-flow coolant 
Numerical model for a tube-bundle absorber 
Solution method 
Non-uniform mesh generation 
Solution steps 
Grid independence 
Incomplete wetting of the tubes 
Vertical flat plate model 
Results: numerical model 
Inter-tube flow and absorption 
Simplified model of horizontal tubular absorbers 

38 
39 
 

40 
43 
45 
45 
45 
46 
51 
52 
52 
54 
58 
59 



                                                                                                                                             Table of contents                          

  
vi

 3.2.1  
                3.2.2 
                   3.2.2.1 
                   3.2.2.2 
                   3.2.2.3 
                   3.2.2.4 

Simplified model for a single horizontal tube 
Inter-tube absorption 
Droplet formation model 
Idealized droplet formation model 
Steady-jet/sheet model 
Transfer coefficients in the inter-tube flow regime 

59 
65 
66 
74 
75 
78 

  3.2.3         
             

   3.2.4 
   3.2.5 

            3.2.5.1 
            3.2.5.2 

Simplified model for a horizontal- tube-bundle 
absorber 
Approximate expressions for driving potentials 
Results and discussion : modeling 
Comparison of idealized droplet formation model 
Comparison of numerical and simplified coupled 
models 

79 
 

82 
83 
83 
87 

             3.3 
 

Summary 99 

CHAPTER 4 EXPERIMENTAL PROGRAM 100 
             4.1 
                4.1.1 
                4.1.2 
                4.1.3 
                4.1.4 
                4.1.5 
                4.1.6 
             4.2                
             4.3 
                4.3.1 
                4.3.2 
                4.3.3 
                4.3.4 
             4.4 
             4.5 
                4.5.1 
             4.6 
             4.7 
                                       

Description of the set-up  
Test section 
Flow distributor 
Test tubes 
Flow circuit 
Liquid pump 
Working fluid 
Alignment testing 
Measuring Equipments 
Flow meter 
Video camera 
Image grabbing software 
Analyzing software 
Instrumentation 
Inter-tube flow hydrodynamics 
Spacing between the droplets and jets 
Analysis of experimental data 
Summary 
 

100 
103 
103 
104 
104 
105 
105 
105 
107 
107 
107 
107 
107 
108 
108 
113 
114 
117 

CHAPTER 5 RESULTS AND DISCUSSION: INTER-
TUBE FLOW  

118 

             5.1 
             5.2    
                5.2.1  
                5.2.2  
                5.2.3           
             5.3 
             5.4 
 

Tube gap configuration at 15 mm 
Tube gap configuration at 10 mm 
Time variations of droplet size 
Inter-tube flow hypothesis 
Flow pattern changes over the tube gaps 
Tube gap configuration at 6 mm 
Summary 

118 
123 
132 
132 
134 
136 
145 

 
CHAPTER 6  
              
             6.1                     
              
             6.2 
             6.3 
      

RESULTS AND DISCUSSION: INTER-TUBE 
ABSORPTION  
Comparison of the inter-tube absorption models 
applied to a single drop/jet 
Simulation results for absorption performance 
Summary 
 

146 
 

146 
 

148 
159 

 



                                                                                                                                             Table of contents                          

  
vii

           
CHAPTER 7 

 
FILM INVERTING ABSORBERS 

 
160 

            7.1               
            7.2                   
            7.3 
               7.3.1 
 
                  7.3.1.1 
                  7.3.1.2 
                  7.3.1.3 
            7.4   
 
               7.4.1 
               7.4.2 
                 
            7.5 
               7.5.1 
               7.5.2 
                   
                  7.5.2.1 
                    
               7.5.3                
                  7.5.3.1 
              7.5.4 
           7.6              

Operating principles of film-inverting absorbers 
The Coanda Effect 
Film-inversion based on the Coanda Effect 
Experimental investigations of the Coanda-Effect 
Based Film-Inverting Process 
Experimental procedure  
Experimental results: flow observations 
Effect of solution flow rate 
Coanda-Effect Based Film-Inverting 
Absorber(CEBFIA)-numerical model 
Numerical results for  SFT-CEBFIA  
Performance improvement by the film-inverting 
absorber 
Design considerations for film inverting absorbers 
Working principle of Two-Film-Tube CEBFIA 
Performance evaluation of Two-Film-Tube 
CEBFIA 
Numerical simulation: Two-Film-Tube and Single -
Film-Tube CEBFIA designs 
Hydrodynamics of the TFT film-inverting absorber 
Experimental results  
Practical design aspects of TFT- CEBFIA 
Summary 

160 
163 
165 
166 

 
167 
167 
170 
170 

 
172 
181 

 
185 
189 
191 

 
195 

 
200 
202 
205 
206 

 
CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 207 
   
REFERENCES  213 
 
APPENDICES 

  

APPENDIX-A 
            
          A.1 
 
           A.2 
 
           A.3 
                  
               A.3.1 
                   A.3.1.1 
                   A.3.1.2 
                A.3.2 
                   A.3.2.1 
                   A.3.2.2 
                A.3.3 
                   A.3.3.1 
                   A.3.3.2 
            A.4 

NUMERICAL MODEL OF TUBULAR 
ABSORBERS 
Numerical solution of the governing equations for 
the round tube 
Numerical solution of the governing equations for 
the flat plate 
Discretization of governing 
equations 
Non-uniform grid generation 
Backward difference scheme 
Central difference scheme 
Discretization of energy equation 
Near wall treatment 
Near interface treatment 
Discretization of species concentration equation 
Near wall treatment 
Near interface treatment 
Sensitivity analysis of entering and leaving angle 
to a tube 
 

221 
 

221 
 

223 
 

225 
 

225 
225 
227 
230 
232 
232 
234 
235 
235 
237 



                                                                                                                                             Table of contents                          

  
viii

APPENDIX-B 
             B.1 
             B.2 
                 
             B.3 
             B.4 
 

UNCERTAINTY OF IMAGE ANALYSIS  
Manual edge detection process 
Semi-automated edge detection 
process  
Comparison of the two edge detection process 
Image quality and manual edge detection 
process  
 

240 
240 
241 

 
243 
245 

APPENDIX-C 
             C.1 
                 
             C.2 
                 
 

SENSITIVITY ANALYSIS  
Sensitivity analysis with varying transfer 
coefficients 
Sensitivity analysis with inlet temperature and 
concentration 

249 
249 

 
253 

APPENDIX-D 
                 
             D.1 
             D.2 
             D.3    
 
APPENDIX-E 
             E.1 
        

CALIBRATION OF FLOW METER AND 
FABRICATION DETAILS 
Flow meter calibration 
Detailed drawings of the test tubes 
Detailed drawing of the distributor 
 
INTER-TUBE FLOW HYPOTHESIS 
Mass continuity of the flow between the tubes 

257 
 

257 
258 
259 

 
261 
261 

 



                                                                                                                                     List of figures 

 
ix

LISTS OF FIGURES 
 

Number Title Page
 

Figure 1.1  

Figure 1.2 

Figure 1.3 

Figure 1.4 

Figure 3.1 

Figure 3.2.(a) 

Figure 3.2.(b) 

Figure 3.3 

Figure 3.4 

Figure 3.5 

Figure 3.6  

 

Figure 3.7 

Figure 3.8  

 

Figure 3.9  

 

Vapor compression and vapor absorption cycles 

Horizontal tubular absorber configuration 

Continuous falling film absorber.         

Film-inverting falling film   absorber. 

Different models of horizontal tubular absorber 

Single tube falling film configuration(flat plate model)           

Single tube falling film configuration (round tube model)       

Actual horizontal tubular absorber 

Schematic representation of coolant flow model. 

Computational domain 

Schematic diagram of film entering and leaving angle to a 

tube. 

Solution flow diagram. 

Bulk concentrations along the absorber length at different 

grid sizes 

Schematic representation of coolant flow of a vertical plate 
absorber 

2 

6 

7 

7 

38 

39 

39 

43 

43 

45 

49 

 

50 

51 

 

53 

Figure 3.10  

 

Film thickness [m] variations along the length of the 
absorber; (a) detailed round tube model, (b) segmented 
plate model, (c) vertical plate model. 
 

55 

Figure 3.11  

 

Absorbed mass flux [kg.m-2s-1] variations along the length 
of the absorber; (a) detailed round tube model, (b) 
segmented plate model, (c) vertical plate model. 
 

56 

Figure 3.12  

 

Bulk solution temperature variations along the length of the 
absorber; (a) detailed round tube model, (b) segmented 
plate model, (c) vertical plate model. 
 

57 

Figure 3.13  

 

Bulk solution concentration [%LiBr/100] along the length 
of the absorber; (a) detailed round tube model, (b) 
segmented plate model, (c) vertical plate model. 
 

57 

Figure 3.14  Continuous sheet flow between the tubes 58

Figure 3.15  Physical model of the falling-film over a tube. 60

Figure 3.16  Schematic diagram of tube-bundle absorber 60

  



                                                                                                                                     List of figures 

 
x

Number Title Page

Figure 3.17(a) 

Figure 3.17(b) 

Figure 3.17(c) 

Figure 3.18 

 

Figure 3.19 

Droplet profile during formation. 

Droplet profile during bridging. 

Steady jet profile. 

Schematic diagram of the formation of a hemispherical 
droplet. 
 
Physical model for inter-tube flow. 

66 

66 

66 

73 

 

75

Figure 3.20 

 

 

 

 

 

Comparison of droplet formation models. Graphs: (a) bulk 
temperature change by the present model; (b) bulk 
temperature change by the model of Siyoung and Garimella 
[88]; (c) interface temperature change by the present 
model; (d) interface temperature change by the model of 
Siyoung and Garimella [88]; Experimental conditions: 
Seventh tube, Γ = 0.024 11 −− skgm , WR=0.8; as described in 
[88]. 

84 

Figure 3.21 

 

 

 

 

Comparison of droplet formation models. Graphs: (a) bulk 
and interface concentration change by the present model; 
(b) bulk and interface concentration change by the model 
of Siyoung and Garimella [88]; Experimental conditions: 
Seventh tube, Γ = 0.024 11 −− skgm , WR=0.8; as described 
in [88]. 

85

Figure 3.22 Comparison of tube surface temperature. Graphs: (a) 
numerical model with inter-tube flow; (b) simplified model 
with inter-tube flow; (c) simplified model without inter-
tube flow; (d) numerical model without inter tube flow; ( ) 
experiment of Nomoura et al. [75]; conditions: 
Γ =0.058 11 −− skgm , siT = 540C, siw =0.62, 8.0=WR . 
 

86

Figure 3.23 Comparison of inter-tube solution temperature. Graphs: (a)  
numerical model with inter-tube flow; (b) simplified model 
with inter-tube flow; (c) tube surface temperature of 
simplified model with inter-tube flow;(d) continuous 
temperature plot of simplified model with inter tube flow;  
( ) experiment of Nomoura et al. [75]; conditions: 
Γ =0.058 11 −− skgm , siT = 540C, siw =0.62, 8.0=WR . 
 

86

Figure 3.24  

 

Local and average overall heat transfer coefficient along 
the absorber; experimental conditions: Γ =0.0595 11 −− skgm , 

siT = 39.80C, siw =0.604, 0.1=WR [43]. 
 

88

Figure 3.25  Local and average mass transfer coefficient along the 
absorber; experimental conditions: Γ =0.0595 11 −− skgm , 

siT = 39.80C, siw =0.604, 0.1=WR [43]. 

89



                                                                                                                                     List of figures 

 
xi

 
Number 

 
Title Page

Figure 3.26 

 

Comparison of tube-wise bulk temperature of solution. 
Graphs: (a) numerical model; (b)simplified model with 
tube-wise variable transfer coefficients; (c) simplified 
model with constant transfer coefficients; conditions: 
Γ =0.0595 11 −− skgm , siT = 39.80C, siw =0.604, 

0.1=WR [43]. 
 

91 

Figure 3.27 Comparison of tube-wise bulk concentration of LiBr 
(%/100). Graphs: (a) numerical model; (b)simplified model 
with tube-wise variable transfer coefficient; (c) simplified 
model with constant transfer coefficient; conditions: 
Γ =0.0595 11 −− skgm , siT = 39.80C, siw =0.604, 

0.1=WR [43]. 
 

91

Figure 3.28 

 

 

 

Comparison of tube-wise coolant average temperature. 
Graphs: (a) numerical model; (b) simplified model with 
tube-wise variable transfer coefficient; (c) simplified model 
with constant transfer coefficient; conditions: 
Γ =0.0595 11 −− skgm , siT = 39.80C, siw =0.604, 

0.1=WR [43]. 
 

92 

 

 

Figure 3.29    

 

Comparison of ‘extracted’ and ‘averaged’ overall heat 
transfer coefficients; experimental conditions of Islam [43].  

92

Figure 3.30  

 

Comparison of  ‘extracted’ and ‘averaged’ effective mass 
transfer coefficients; experimental conditions of Islam [43]. 

93

Figure 3.31 

 

Bulk concentration of LiBr changes over a tube. Graphs: 
(a) simplified model with constant film thickness; (b) 
simplified model with variable film thickness. 
 

94

Figure 3.32 Bulk temperature changes over a tube. Graphs: (a) 
simplified model with constant film thickness; (b) 
simplified model with variable film thickness. 
 

94

Figure 3.33     

 

Comparison of the driving potentialφ  along the absorber. 
Graphs: (a) simplified model with exact roots; (b) 
simplified model with approximate roots; experimental 
conditions of Nomoura et al.[75]. 
 

95 

Figure 3.34 Comparison of the driving potential ψ  along the absorber. 
Graphs:(a) simplified model with exact roots; (b) simplified 
model with approximate roots; experimental conditions of 
Nomoura et al.[75]. 
 
 
 

    96



                                                                                                                                     List of figures 

 
xii

 

Number Title Page

Figure 3.35 Comparison of tube-wise averaged bulk temperature and 
tube surface temperature at the top of a tube by the 
numerical model without inter-tube absorption. Graphs: (a) 
variable wetting ratio from Nomoura et al. [75] ;(b) wetting 
ratio 0.8; (c) wetting ratio 1.0 ; ( ) tube surface temperature 
from the experiment of Nomoura et al. [75]; conditions: 
Γ =0.058 11 −− skgm , siT = 540C, siw =0.62. 
 

97

Figure 3.36

  

 

Comparison of tube-wise averaged bulk temperature and 
tube surface temperature at the top of a tube by the 
simplified model without inter-tube absorption. Graphs: 
(a) variable wetting ratio from Nomoura et al. [75] ;(b) 
wetting ratio 0.8; (c) wetting ratio 1.0 ; ( ) tube surface 
temperature from the experiment of Nomoura et al. [75]; 
conditions: Γ =0.058 11 −− skgm , siT = 540C, siw =0.62. 
 

98

Figure 4.1  Schematic diagram of experimental set-up 101

Figure 4.2   Photographs of the experimental set-up 101

Figure 4.3  Schematic diagram of the test section side view 102

Figure 4.4 Assembly of the guide bar, (b) Complete assembly of the 
structure, (c) Testing of vertical alignment of the tube array 
 

102

Figure 4.5   Distance between two horizontal guide bars 104

Figure 4.6  Change in wetted length of the tubes as the flow progresses 112

Figure 4.7 Flow diagram of the experimental program. 115

Figure 4.8 Use of image analysis program 

 

116

Figure 5.1  A typical droplet cycle [images are taken at solution flow 
rate 0.0079 kg.s-1] 
 

119

Figure 5.2 The volume and surface area changes during a droplet cycle 
[images are taken at solution flow rate 0.0079 kg.s-1]. 
 

119

Figure 5.3 Sequential video images at solution flow rate 0.008 kg.s-1 
[Re: 17.6] for a tube gap of 15 mm 
 

121

Figure 5.4  

 

Sequential Sequential video images at solution flow rate 
0.0145 kg.s-1 [Re: 30.3] for a tube gap of 15 mm. 

122 

Figure 5.5  

 

Sequential video images at flow rate 0.0079 kg.s-1 [Re: 
16.5] for a tube gap of 10 mm. 

125 
 



                                                                                                                                     List of figures 

 
xiii

Number Title Page

Figure 5.6 Sequential video images at flow rate 0.0118 kg.s-1 [Re: 
24.7]; for a tube gap of 10 mm 
 

126

Figure 5.7  Sequential video images at flow rate 0.0145 kg.s-1 [Re: 
28.85] for a tube gap of 10 mm. 
 

127

Figure 5.8   Sequential video images at solution flow rate 0.022 kg.s-1 
[Re: 45.1] for a tube gap of 10 mm. 
 

128

Figure 5.9  

 

Transient volume and surface area variation at each of the 6 
droplet sites   [ 16Re = ; solution flow rate: 0.0079 kg.s-1]. 

129 

Figure 5.10  

 

Transient volume and surface area variation at each of the 7 
droplet sites   [ 7.24Re = ; solution flow rate: 0.0118 kg.s-1]. 

130 

Figure 5.11 

 

Transient volume and surface area variation at each of the 6 
droplet sites   [ 85.28Re = ; solution flow rate: 0.0145 kg.s-

1]. 
 

131

Figure 5.12 

 

Sequential video images to show the droplet behaviors 
among several tube gaps. 

135

Figure 5.13 Sequential video frames at flow rate 0.0079kg.s-1; tube gap 
6mm 
 

138

Figure 5.14 Transient volume and surface area variation at solution 
flow rate 0.0079kg.s-1: tube gap 6mm. 
 

140

Figure 5.15 Sequential video images at solution flow rate 0.011 kg.s-1; 
tube gap 6mm. 
 

141

Figure 5.16 Transient volume and surface area at solution flow rate 
0.011 kg.s-1; tube gap 6mm. 

142

Figure 5.17 Sequential video images at solution flow rate 0.0163 kg.s-1 
[Re: 34.02]; tube gap 6mm. 
 

143

Figure 5.18 Transient volume and surface area at solution flow rate 
0.0163 kg.s-1 [Re: 34.02]; tube gap 6mm. 

144 

Figure 6.1 

 

Experimental data of a droplet surface area profile with 
polynomial fit during formation at 6 mm tube gap situation. 

147

Figure 6.2 Variation of drop area with time. Graphs:  (a) tube gap = 6 
mm, flow rate =Γ 0.027 kg.m-1s-1, (b) tube gap = 10 mm, 
flow rate =Γ 0.02 kg.m-1s-1. 

151

Figure 6.3 Variation of drop volume with time. Graphs:  (a) tube gap = 
6 mm, flow rate =Γ 0.027 kg.m-1s-1, (b) tube gap = 10 mm, 
flow rate =Γ 0.02 kg.m-1s-1. 
 

151



                                                                                                                                     List of figures 

 
xiv

Number Title Page
Figure 6.4 Schematic description of inter-tube droplet flow regime; 

operating conditions are 60.0, =insw , cT o
ins 8.39, = , 

kpap 388.1= , mL 2.0= , mri 011.0= . 
 

152

Figure 6.5 Schematic description of inter-tube jet flow regime; 
operating conditions are 60.0, =insw , cT o

ins 8.39, = , 
kpap 388.1= , mL 2.0= , mri 011.0= . 

 

   152

Figure 6.6 Mass flux ratio at varying flow rate and tube gap.  
 

   156

Figure 6.7 Sensitivity of mass flux ratio with higher mass transfer 
coeff. ; Tube gap: 10 mm. 
 

158

Figure 7.1  Flow over the film-inverting round tube absorber.    162

Figure 7.2 Pressure variation perpendicular to streamlines. 163

Figure 7.3 Demonstration of Coanda Effect [17] 164

Figure 7.4 Coanda Effect based film inversion; by single film 
arrangement of the tubes. 
 

165

Figure 7.5(a) Left hand side view with light 168

Figure 7.5(b) Right hand side view without light. 
 

168

Figure 7.6 A closer view of the alternate flow surfaces.      168

Figure 7.7  Film flow at three different flow rates (a) 0.022 kg.s-1 (b) 
0.016 kg.s-1 (c) 0.008 kg.s-1 
 

169 

Figure 7.8 

 

Temperature profile across the flow [ δη y= ] for the first 
tube in film-inverting absorber; operating conditions: set-1 
in Table 7.2. 
 

173 

Figure 7.9 Concentration profile across the flow [ δη y= ] for the first 
tube in film-inverting absorber; operating conditions: set-1 
in Table 7.2. 
 

174 

Figure 7.10 Concentration profile (% of LiBr/100) across the flow 
[ δη y=  ] for tube 2 in film-inverting absorber; operating 
conditions: set-1 in Table 7.2. 
 

175 

Figure 7.11 Concentration profile (% of water/100) across the flow 
[ δη y=  ] for tube 2 in film-inverting absorber, operating 
conditions: set-1 in Table 7.2. 

176 



                                                                                                                                     List of figures 

 
xv

Number 
 

Title Page

Figure 7.12 Temperature profile across the flow [ δη y= ] for tube 2 in 
film-inverting absorber, operating conditions: set-1 in Table 
7.2. 

177

Figure 7.13(a) Variation of mass flux of water vapor along the direction of 
flow; (a) film-inverting absorber; (b) continuous falling 
film absorber, operating conditions: set-1 in Table 7.2. 
 

178 

Figure 7.13(b) Variation of bulk and interface temperature along the 
direction of flow; (a) film-inverting absorber; (b) 
continuous falling film absorber [ ]πθξ = , operating 
conditions: set-1 in Table 7.2. 
 

179 

Figure 7.13(c) Variation of bulk and interface concentration along the 
direction of flow; (a) film-inverting absorber; (b) 
continuous falling film absorber [ ]πθξ = , operating 
conditions: set-1 in Table 7.2. 
 

179 

Figure 7.14 

 

Tube-wise variation of mass flux; (a) by the film inverting 
tubular absorber, (b) by the conventional absorber without 
film-inversion, operating conditions: set-2 in Table 7.2. 
 

181

Figure 7.15 Variation of tube-wise averaged interface and bulk 
concentration (%LiBr/100); by the (a) film inverting 
tubular absorber, (b) conventional absorber without any 
film-inversion, operating conditions: set-1 in Table 7.2. 

182 

 

Figure 7.16 Variation of tube-wise averaged interface and bulk 
temperature; by the (a) film inverting tubular absorber, (b) 
conventional absorber without any film-inversion, 
operating conditions: set-1 in Table 7.2. 
 

183

Figure 7.17 Tube-wise variation of coolant average temperature; by the 
(a) film inverting tubular absorber, (b) conventional 
absorber without any film-inversion, operating conditions: 
set-1 in Table 7.2. 
 

183

Figure 7.18 (a) Film-inverting design with guide vane [45] 
 

186

Figure 7.18 (b) Semi-circular film-inverting design [single column] 
 

186 

Figure 7.18 (c) Semi-circular film-inverting design [multiple columns]. 
 

186

Figure 7.19 Two-Film-Tube [TFT] assembly of film-inverting absorber.  
 

188

Figure 7.20 (a) Tube arrangement for separation of the flow  
 

188



                                                                                                                                     List of figures 

 
xvi

Number Title Page

Figure 7.20 (b) Tube arrangement for flow merging  
 

188

Figure 7.21 Single-Film-Tube [SFT] assembly of film-inverting 
absorber.  

190

Figure 7.22 (a) Number of participating films in a TFT column of Figure 
7.19 
 

191

Figure 7.22 (b) Number of participating films in a SFT column of Figure 
7.21 
 

191

Figure 7.22 (c) Film entering and leaving angles for TFT assembly. 
 

192

Figure 7.22 (d) Film entering and leaving angles for SFT assembly. 
 

192

Figure 7.23 

 

Variation of  (i) vapour mass flux [kg.m-2.s-1] (ii) Bulk 
concentration [%LiBr/100] (iii) Bulk temperature in the 
first two tubes of TFT and SFT assembly shown in Figure 
7.22(a) and 7.22(b); operating conditions: set 4 in Table 
7.2; angular positions are given in Table 7.4 for TFT and 
configuration 1 in Table 7.5 for SFT. 
 

196

Figure 7.24 Tube-wise variation of coolant temperature of TFT and 
SFT arrangements shown in Figure 7.22(a) and 7.22(b); 
operating conditions: set 4 in Table 7.2; angular positions 
are given in Table 7.4 for TFT and configuration 1 in Table 
7.5 for SFT. 
 

197

Figure 7.25 Photograph of the test set up with modified test section. 
 

200

Figure 7.26 Images to explain mechanism of TFT film inversion. 201

Figure 7.27 Experimental verification of the TFT film-inverting 
concept  

202 

Figure 7.28 Final TFT configurations [flow rate: 0.0163 kg.s-1]. 202 

Figure 7.29 Final TFT configurations [flow rate: 0.008kg.s-1]. 204

Figure A.1 Transformation of co-ordinates.  221 

Figure A.2 

 

Taylor series representation for non-uniform grid; 
backward difference scheme. 

226

Figure A.3  Taylor series representation for non-uniform grid; central 
difference scheme. 

227

Figure A.4  Non-uniform grid along η direction. 228

Figure A.5  Nodal distribution 230

Figure A.6  Control volume near the wall 232



                                                                                                                                     List of figures 

 
xvii

Number 
 

Title Page

Figure A.7 
 

Sensitivity of mass flux [ 12. −− smkg ] at different angular 
values: operating conditions of Islam [43]. 
 

237 

Figure A.8 Sensitivity of bulk concentration [%LiBr/100] at different 
angular values: operating conditions of Islam [43]. 
 

238

Figure A.9 Sensitivity of bulk temperature [K] at different angular 
values: operating conditions of Islam [43]. 
 

238

Figure B.1  

 

Manual edge detection process using Matrox inspector 241

Figure B.2  

 

Comparison of the two edge detection processes for a 
sample jet at 6 mm tube gap situation. 
 

242

Figure B.3  Comparison of the two edge detection processes for a 
sample jet at 10 mm tube gap situation. 

242

Figure B.4 Sample images taken by video camera (400x300 pixels). 
 

245

Figure B.5 Sample images taken by still camera (3008x2000 pixels) 245

Figure B.6 Application of manual edge detection on image taken by 
video camera [CANON MVX 35i]. 
 

246

Figure C.1 Sensitivity of mass flux ratio with varying mass transfer 
coeff. mk [tube gap: 10 mm] 
 

250

Figure C.2 Sensitivity of mass flux ratio with varying mass transfer 
coeff. mk [tube gap: 6 mm] 
 

251

Figure C.3 Sensitivity of mass flux ratio with varying heat transfer 
coeff. oh [tube gap;10 mm] 
 

252

Figure C.4 Sensitivity of mass flux ratio with varying heat transfer 
coeff. oh [tube gap: 6 mm] 
 

253

Figure C.5 Sensitivity of inter-tube mass flux with varying inlet 
concentration of LiBr solution [%LiBr/100] for a tube gap 
of 10 mm. 

254

Figure C.6 Sensitivity of inter-tube mass flux with varying inlet 
temperature LiBr solution [0C] for a tube gap of 10 mm. 
 

255

Figure D.1 Flow meter calibration chart for 54% wt. concentration of 
LiBr. 

257

Figure D.2 Detailed drawings of the test tube [dimension unit: mm]. 258



                                                                                                                                     List of figures 

 
xviii

Number Title Page
Figure D.3 Detailed drawings of the distributor [dimension unit: mm]. 259

Figure E.1 Typical droplet cycle; (a) development stage, (b) bridge 
form stage, (c) pull back stage 
 

257

 



                                                                                                                                     Lists of tables 

 xix

 
LISTS OF TABLES 

 
Name 
 

Title Page

Table 4.1  Operating conditions 106

Table 4.2  Working fluid properties 106

Table 4.3  Camera specifications 106

Table 4.4  Transition film Reynolds number for 54% wt concentration LiBr 

solution 

109

Table 4.5  Experimental observations-1; Tube gap: 10mm; wetted length: 21 

cm 

110

Table 4.6  Experimental observations-2; Tube gap: 6mm; wetted length: 20 

cm 

111

Table 4.7  Drop/jet spacing calculated from video images; Tube gap: 10mm 113

Table 4.8  Drop/jet spacing calculated from video images; Tube gap: 6 mm 113

Table 6.1  

Table 6.2 

Model comparisons; results of the seventh tube from [88] 

Mass transfer coefficient for inter-tube droplet flow 

147

149

Table 6.3  Absorption rate/Tube gap: 10mm, wetted length: 21cm 154

Table 6.4  Absorption rate/Tube gap: 6mm, wetted length: 20cm 155

Table 7.1  Sensitivity of the entering and leaving angles 172

Table 7.2  Experimental operating conditions of Islam et al. [45] 172

Table 7.3  Absorption performance of tubular film-inverting absorbers 184

Table 7.4  TFT assembly of CEBFIA; angular arrangement of Figure 7.22 
(c) 

193

Table 7.5  SFT assembly of CEBFIA; angular arrangement of Figure7.22 (d) 194

Table 7.6  Comparison absorption performances of TFT and SFT assembly 199

Table B.1  Error analysis of the edge detection processes. 244

Table B.2 Error analysis of different images. 247

Table E.1 Error estimation at flow rate  0.0079 kg.s-1; tube gap 10 mm 263

Table E.2 Error estimation at flow rate  0.0118 kg.s-1: tube gap 10 mm. 264

Table E.3 Error estimation at flow rate  at 0.0145 kg.s-1: tube gap 10 mm. 265

 
 

 
 



                                                                                                                                            Summary  

 
xx

Summary 
 

The improvement in efficiency of absorption cooling machines requires a deeper 

understanding of the heat and mass transfer processes occurring between the liquid and 

vapor phases in the absorber. The main objective of the present study is to develop a 

realistic model of the horizontal bank of tubes absorber, which may be used in studies to 

improve the efficiency of absorption machines. In order to fulfill this objective, detailed 

mathematical models are developed and simulations are carried out for a tubular 

absorber in which simultaneous heat and mass transfer occurs to a falling-film.  An 

attempt is made to take into account the detailed geometry of the bank of horizontal 

tubes. A numerical model is developed initially for the single tube and is later extended 

to simulate the bank of horizontal tubes in the practical absorber. The same modelling 

procedure is followed for the conventional flat plate model of the horizontal bank of 

tubes absorber. A detailed comparison between the predictions of the models is made. 

Some practical phenomena regarding the inter-tube flow and the partial wetting of the 

absorber tubes are considered to test the applicability of the model to practical designs. 

The simulation results of the present round tube absorber model with inter-tube flow are 

compared with well known experimental data from the literature [75]. The comparisons 

show reasonable agreement.  

A simplified model is developed for the design analysis of horizontal tubular absorbers. 

The analytical procedure follows the model presented by Islam et al. [46] for vertical 

plate absorbers. However, considerable modifications are done to make the model 

applicable to a bank of horizontal tubes with the coolant flowing in a serpentine fashion 

in the opposite direction. The present model, which also includes a simplified analysis of 

inter-tube flow, is therefore more realistic when applied to counter-flow tubular 

absorbers.  Moreover, the model can be used to extract overall heat and mass transfer 

coefficients from experimental data of horizontal tubular absorber. 
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Inter-tube absorption models are developed for three different modes of inter-tube flow 

which are droplet, jet and sheet flow mode. First, the inter-tube sheet flow absorption 

model is numerically developed introducing a continuous sheet between each tube 

junction. Later, semi-empirical heat and mass transfer models of the inter-tube droplet 

and steady jet/sheet flow modes are developed based on known transfer coefficients for 

inter-tube absorption. The models operate extracting the hydrodynamics data from the 

experiments. Hence, a detailed experimental program is undertaken in order to obtain 

inter-tube flow hydrodynamics data for a wide range of operating conditions. The 

experimental data are processed by a digital image analysis program. At first, the inter-

tube flow events at various operating conditions are recorded with the video camera. The 

sequential video images are then analyzed with the image analysis program.  The time-

dependent droplet volume and surface area profiles are developed at varying flow rates 

which form the basis of the developed models to operate. This way, the absorption data 

obtained from the developed models provide more realistic absorption performances of a 

tubular absorber. The contribution of inter-tube absorption is thoroughly examined at 

several operating conditions. The contribution of inter-tube absorption into the total 

performance of the horizontal tubular absorber is found to be significant, though the 

results depend on the assumed heat and mass transfer coefficients in the developed 

models.   

The film-inverting absorber model shows significant improvement of absorption 

performance. It is believed that the film-inverting absorber can resolve some of the 

issues regarding the inter-tube flow and partial wetting of the tubes. Islam et al. [45] 

developed a film-inverting tubular absorber which resulted in experimental performance 

improvements of 90-100 percents. However, they used guide fins between the tubes to 

affect the film inversion.  In the present study, a new film-inverting tubular absorber is 

proposed using the Coanda Effect to achieve film-inversion. The film-inverting 



                                                                                                                                            Summary  

 
xxii

mechanism is analyzed in detail with the help of the absorption model of the new film-

inverting absorber. The experimental investigation of the Coanda-Effect Based film-

inverting hydrodynamics is also performed to verify the practical feasibility of the new 

design. In order to increase the vapour absorption rate more, a Two-Film-Tube (TFT) 

film-inverting absorber design is proposed. The performance of the TFT film-inverting 

absorber is simulated numerically and compared with the Single-Film-Tube (SFT) film-

inverting absorber. The TFT film-inverting absorber increased the absorption rate over 

the SFT design. The practical feasibility of the new design concept was verified by 

performing experimental investigations of the film-flow hydrodynamics of the TFT 

absorber. The experimental results demonstrate the feasibility of this novel design.  
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CHAPTER 1 

INTRODUCTION 

Absorbers of vapor absorption cooling systems are critical components of the system. 

The lower coefficient of performance (COP) of the vapor absorption system is invariably 

related to the poor performance of the absorber. The performance of the absorber is 

dependent on the available absorption surface area which in turn is dependent on the 

geometric configuration of the absorber. Among various configurations, falling- film 

type horizontal tubular absorber is most common because of its lower manufacturing 

cost and ease of installation. However, the performance of the horizontal tubular 

absorbers is affected by some practical issues related to the tubular configuration. 

The major issue related to the tubular absorber performance is the partial wetting of the 

absorber tubes. In this absorber design a thin film of solution falls down over the 

horizontal tubes. As the flow progresses, the wetted surface of the horizontal tubes 

gradually decreases due to poor surface wettability of the solution over the tubes. This 

effect becomes so severe that in some cases absorber could suffer from ‘drying out’. Due 

to the absorber drying out, less surface area participates in the absorption, which reduces 

absorption performance. 

Another issue related to the absorber performance is the variation in inter-tube flow 

modes. The type of inter-tube flow depends on several controlling factors which are 

discussed in detail in a later chapter. Moreover, the different modes of inter-tube flow 

affects partial wetting of the tubes.  

Prior to addressing the details of the above issues, it is useful to consider the role of the 

absorber in the vapor absorption cooling system. This will provide the background to 

identify the factors which affect the performance of the horizontal tubular absorbers and 

develop techniques for the performance improvement. 
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1.1 Vapour absorption systems 

 
 

 

 

 

 

 

 

Figure 1.1 Vapour compression and vapor absorption cycles 

 
The vapour absorption system is the viable alternative to the vapor compression 

refrigeration system because it has several advantages.  Vapour absorption systems use 

working fluids that have no known adverse environmental effects like global warming 

and ozone depletion. Figure 1.1 (a) and (b) illustrate the working principles of both the 

vapour compression and vapour absorption refrigeration cycles respectively. A 

refrigeration cycle normally operates with the condenser, expansion valve and 

evaporator as shown in both figures. The low pressure refrigerant vapour from the 

evaporator is transformed into high pressure vapour and is delivered to the condenser. 

The vapour compression system uses a compressor for this task as shown schematically 

in Figure 1.1 (a). In the condenser, the vapour is condensed and the resulting heat is 

released to the ambient. The condensed refrigerant is finally expanded to the evaporator 

pressure through an expansion valve to continue the cycle. 

However, in the vapour absorption system, the compressor is replaced by a combination 

of an absorber and a generator as shown schematically in Figure 1.1 (b). In this system, 

the low pressure vapour leaving the evaporator is first absorbed in an appropriate 

absorbing liquid in the absorber. The associated absorption process is the conversion of 

(a) Vapour compression cycle    (b) Vapour absorption cycle 
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vapour into liquid with rejection of heat. In the next step, the pressure of the liquid is 

elevated with a liquid pump and is delivered to the generator. Finally, in the generator, 

the vapour is driven off the liquid by the help of the heat from a high temperature source. 

The liquid solution returns to the absorber through a pressure reducer or throttle valve to 

maintain the pressure difference between the generator and absorber. The refrigerant on 

the other hand continues its passage through the rest of the cycle in a manner similar to 

that of a vapour compression system.  

 
The main advantage of the vapour absorption system is that the absorption cycle is 

basically a heat operated cycle whereas the vapour compression cycle is a work operated 

cycle. For the work operated cycle, the pressure of the refrigerant is elevated by a 

compressor which requires work. The heat operated cycle on the other hand is mainly 

operated by the heat required to drive off the vapour from the generator. Though there is 

a requirement of some work in the absorption cycle to drive the pump, the amount of 

work is small compared with that needed in the vapour-compression cycle.  

 
The heat required in the generator unit of vapour absorption system can be provided 

from various sources such as heat derived from solar collectors. Moreover, because of 

the rapidly rising cost of energy, low temperature level heat rejected to the atmosphere 

in chemical or process plants can be used to operate absorption system. Thus the vapour 

absorption system is an energy saving and environmental friendly device.  

 
Lithium Bromide-water is widely used as an absorbent and refrigerant pair in vapour 

absorption systems due to their various advantageous properties. Lithium bromide is a 

solid salt crystal. In the presence of water vapour it absorbs the vapour and becomes a 

liquid solution. The boiling point of Lithium-Bromide is much higher than that of water 

which helps the refrigerant water vapour to boil off from the liquid as pure vapour. This 

is the major advantage of using Lithium Bromide-water solution in the vapour 
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absorption system because no absorbent can possibly be carried over to the other 

sections of the refrigeration cycle such as the evaporator.  

 
1.2 Role of absorbers in vapour absorption system 

The absorber is usually the largest and the most expensive component of the absorption 

cooling system. It is a place where the low pressure refrigerant vapour or the absorbate is 

absorbed in an absorbent solution. In practical absorbers, a thin film of liquid solution 

composed of absorbent and absorbate flows down over the absorber surface. The film is 

in contact with stagnant vapour of absorbate at a constant pressure different from the 

equilibrium vapour pressure of the inlet solution. As a result of this difference, mass 

transfer of absorbate takes place at the liquid-vapour interface. The absorbed absorbate 

diffuses into the liquid film. The heat generated in the absorption process, that is the heat 

of absorption flows through the film to the external coolant. The purpose of the coolant 

is to sustain the absorption process by continually removing the heat released.  

 
The performance of the vapour absorption system is greatly dependent on the rate of 

absorption of the refrigerant vapour into the absorbent liquid. Lower absorption rate can 

reduce the flow of refrigerant which in effect can reduce the overall system performance. 

So a lower coefficient of performance (COP) of the absorption refrigeration machines is 

mainly due to the lower performance of the absorber. 

 
Another major feature of vapor absorption machines is the absorber being the most 

expensive part of the system mostly due to its size, weight and complexity of the 

absorption process. It is the size of the absorber which greatly affects the heat and mass 

transfer processes during the cycle operation. If the transport processes are improved, 

greater reduction in the absorber size can be achieved and hence a reduction of overall 

system cost. Therefore, much of recent work is focused on the performance 

improvement of the absorber by enhancing the transport processes.  
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Enhancement of the vapour absorption rate in the absorber can also be achieved through 

the increase of useful surface area of absorption. The higher the participating surface 

area of absorption, the higher is the vapor absorption rate without increasing the overall 

size of the absorber. The useful surface area of absorption is affected by the flow 

hydrodynamics involved in any design. Therefore, it is important to study the various 

configurations of the absorbers in order to understand how much useful surface area of 

absorption could be achieved by these designs. 

   
1.3 General configurations of absorbers 

Falling film absorbers are widely used in most of the vapour absorption refrigeration 

machines because of their higher heat transfer coefficients and smaller need of liquid 

inventories than flooded absorbers. Among them horizontal tubular absorbers are the 

most popular because they offer advantages in dealing with liquid distribution, non-

condensable gases and ease of installation as also described by Hu and Jacobi [39].  

In this configuration, a thin film of absorbent solution leaving the distributor falls down 

over the horizontal bank of tubes which is surrounded by a pool of refrigerant vapour 

from the evaporator as shown in Figure 1.2. Absorption of the refrigerant vapour occurs 

as the solution falls over and between the tubes. During the absorption process, the heat 

of absorption is released at the vapour-liquid interface. If this heat is not removed, it will 

impede the absorption process. To remove the heat of absorption, cooling water is 

passed through the tubes in serpentine form.  

The flow over horizontal tubular absorbers is divided into two distinct flow regimes, 

which are i) falling film flow regime and ii) inter-tube flow regime. The falling film flow 

regime is a thin-film flow over each tube under the action of gravity. After falling down 

the tube, the solution film enters into the inter-tube flow regime. The nature of flow of 

solution in the inter-tube regime is mainly dependent on solution mass flow rate. The 

flow in this regime may take various forms like droplet, jet and sheet flow [39]. 
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Absorption process continues in this flow regime regardless of the mode of inter tube 

flow. The solution film enters into a new falling film regime right after leaving the inter-

tube flow regime. Thus the falling film flow over the bank of horizontal tubes is 

composed of alternate falling film and inter-tube flow regimes.  

 

 

 

 

 

 

 

 

 

           
 
 Figure 1.2 Horizontal tubular absorber configuration 

 
 

If a bank of horizontal bare tubes is used in the absorber, the configuration is called a 

continuous falling film absorber for which the flow patterns are discussed above. The 

schematic representation of this conventional falling film absorber is shown in Figure 

1.3. Recently, a film-inverting falling film absorber was introduced by Islam et al. [45] 

where the solution film is guided to flow in alternate directions by the use of guide 

vanes. The schematic representation of this film-inverting falling film absorber is shown 

in Figure 1.4. The flow pattern of the film-inverting absorber is different than that of 

continuous falling film absorber mainly due to the absence of so called inter-tube flow 

regime. The performance of the film-inverting falling film absorbers is discussed later in 

Chapter 7.  
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Figure 1.3 Continuous falling film absorber.         Figure 1.4 Film-inverting falling film   
absorber. 

 

1.4 Factors affecting the performances of conventional tubular absorbers 

The performance of conventional horizontal tubular absorber is greatly controlled by 

several factors which are described in the following paragraphs. 

• Distribution of solution in the absorber 

The uniform distribution of solution film over the absorber tubes must provide as 

large surface area as possible for exposure to the absorbate vapour so to enhance the 

rate of vapour absorption. Due to complex surface phenomena and flow instabilities, 

a uniform distribution of solution film over the tubes is difficult to maintain. As a 

result, the wetted surface of the absorber tubes gradually decreases as the flow 

progresses downwards. In some cases more than 50 percents of the tubular surface 

may not participate in the absorption process [75].  The absorber will perform poorly 

under these ‘dry-out’ conditions.  

• Flow pattern 

The flow pattern especially in the inter-tube flow regime may increase the exposed 

surface area of absorption depending on the several flow modes.  In most industrial 

absorbers the solution flow rate is usually maintained such that droplet flow exists in 

d
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each inter-tube flow regime for which the exposed area of absorption may be high as 

stated by Kirby and Perez-Blanco [59]. The details of the inter-tube flow and 

absorption phenomena are discussed in Chapter 5 and 6.  

• Transport processes in the film  

When the non-adiabatic absorption process occurs in a falling film at the liquid-

vapour interface, the temperature of the film rises. If this heat is not transferred 

rapidly across the film towards the external coolant, the vapour absorption process 

may be ceased. On the other hand, lower diffusion coefficient of water in the 

absorbent solution causes the vapour to remain closed to the interface which could 

retard the vapour absorption process. Eventually the interface becomes saturated 

because of which the rate of vapour absorption decreases significantly as the film 

flows down. Therefore the enhancement of vapour absorption process becomes 

necessary. 

• Subcooling  

Subcooling characterizes the lack of equilibrium between the solution film and the 

vapour at the absorber exit. It is a measure of difference between the solution 

saturation temperature and the actual solution temperature at the absorber exit. It 

offers a good opportunity for improved absorber performance.  

 
1.5 Performance improvements of tubular absorbers 

The performance of the conventional tubular absorbers decreases significantly specially 

in the later part of the absorber mainly for the reasons described above. To improve the 

performance of the conventional tubular absorber three types of modifications can be 

done as described by Islam et al. [45]. The first type of modification is the use of 

modified surface absorber. The surface structures like the fins or protrusions are added 

to the external surface of the absorber to facilitate the formation of a stable liquid film 

over a maximum section of the falling film with more uniform distribution of liquid.  
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The second modification is achieved through the use of surface active agents to the 

absorbent liquid to enhance the vapour absorption process. By adding surface acting 

chemical agents, turbulence at the surface of the falling film is induced which in turn 

improves the rate of absorption.  

The third type of modification is based on the fluid flow characteristics of the falling 

film and the thermodynamic aspects of the absorption process. The enhancement of rate 

of absorption of vapour can be achieved by using film-inverting concept as reported by 

Islam et al. [45]. The concept of film-inversion is to achieve repeated inversion of the 

surface of the falling-film so that vapour absorption process is enhanced at the liquid-

vapour interface. During film inversion, alternate surface inversion causes the relatively 

colder surface to come in contact with vapour tube after tube. As a result, this 

regenerated surface provides better absorption performance. This phenomenon can 

increase the absorption rate greatly especially in the later part of the absorber.  

 
1.6  Review of previous research on tubular absorbers 

The flow structure in a conventional horizontal-tube absorber consists of both falling 

film and inter-tube flow regimes which have been discussed in section 1.3. In order to 

make satisfactory prediction of the absorber performance, both the film flow regimes 

should be taken into consideration during the modeling of horizontal tubular absorbers. 

A literature review presented in chapter 2 reveals that most of the previous researchers 

have focused on the falling film regime of the tubular absorbers because of their 

simplified view of the tubular configuration. The actual configuration of the horizontal 

tubular absorbers have been simplified with an equivalent vertical flat plate absorber 

where the solution film falls down the face of one side of the plate with cooling water 

flowing on the other side of the plate in counter-current direction. This equivalent flat 

plate absorber model is unable to incorporate the inter-tube absorption phenomena.  
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The inter-tube flow issues are not only common to the horizontal tubular absorbers, but 

also are equally important to any heat exchangers with horizontal bank of tubes 

configuration. Researchers have performed detailed fluid flow studies to characterize 

inter-tube flow in general because of its importance in a number of applications. 

However, very few researchers have incorporated the inter-tube flow issues in the 

absorption model. A few attempts have been made for the incorporation of inter-tube 

droplet flow and absorption, but with simplified views on the flow hydrodynamics and 

tubular design [59, 88]. Very recently, Killion and Garimella [53] developed a method to 

obtain droplet hydrodynamics data using high speed video photography. Their 

experimental arrangement provided large spaces between the tubes which may not apply 

in the case of practical absorber configuration. Moreover, the hydrodynamics data were 

not used for the prediction of absorption rate in the inter-tube flow regime.  

The lack of experimental data on the actual contribution of the inter-tube flow and 

absorption into the overall absorber performance suggests that a realistic and complete 

tubular absorber model needs to be developed so that better prediction can be achieved. 

Hence the inter-tube absorption models have to be developed based on the various flow 

modes. Furthermore, in the falling film regime, the tubular absorber model should 

consider the actual curvature effect of each tube avoiding any design simplification. A 

model incorporating these features would better represent the performance of practical 

absorbers. 

The performance improvement of the horizontal tubular absorber is a major 

consideration of this current research. Among the various performance improvement 

techniques, film inversion mechanism has been proved to be very effective. Islam et al. 

[45] found that film-inversion leads to 90 % to 100 % improvement in the absorption 

rate. However, there is need to consider practical and cost-effective optimum design of 

the film-inverting tubular absorber for commercial operation. Hence the current research 
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is focused on the development of an absorber model and the performance improvement 

analysis of the horizontal tubular absorber by taking into consideration the features 

stated in this section. 

 
1.7 Objectives of present research 

The main objective of the present research was to study the thermal performance of 

horizontal tubular absorbers with and without film inversion with a view to improve 

their absorption effectiveness. In order to fulfill this objective, following detailed tasks 

were undertaken.  

1. Mathematical models of horizontal tubular absorbers with and without film inversion 

were developed. In order to develop a more realistic absorber model, both the falling 

film regime and the inter-tube flow regime are incorporated into the absorption 

model when no film-inversion is considered. The falling film absorption model takes 

into consideration the curvature effect of the tubes. The inter-tube absorption model 

is developed such that it incorporates the possible modes of inter-tube flow such as 

droplet, jet and sheet flows. The film-inverting absorber model is developed based 

on the alternate surface inversion of the falling film.  

2. An experimental study of inter-tube flow hydrodynamics was performed. The 

absorption models for different inter-tube flow modes require information regarding 

the flow mode hydrodynamics. To fulfill this requirement, actual experiments on the 

inter-tube flow hydrodynamics are conducted. Later, data extracted from the 

experiments are incorporated to the corresponding absorption models. 

3. A comparison of performances of horizontal tubular absorbers with and without 

incorporation of inter-tube flow was performed. In order to estimate reliably the 

performance improvement, the inter-tube absorption is compared to the total 

absorption in both falling film and inter-tube flow regimes. 
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4. A simplified model of the horizontal tubular absorber was developed. In order to 

reduce the computational effort needed for a detailed numerical model stated in 1, an 

analytical model is developed taking into consideration the curvature effect of the 

round tubes and the counter-flow coolant. This analytical model can be used as a 

design tool of the horizontal tubular absorber specially for the extraction of the 

overall transfer coefficients of the absorber. Similar to the detailed numerical model, 

simplified model also incorporates the absorption into the inter-tube flow regime.  

5. Design proposal of a Coanda-effect based film-inverting absorber was introduced.  

Several alternative designs are proposed to make use of maximum possible surface 

area of absorption in the film-inverting configuration. Hydrodynamics tests are 

carried out to test the practical feasibility of the designs. 

6. Comparison of the predictions of horizontal tubular absorber model with and without 

film inversion was carried out.  

 
1.8  Significance of present research 

The numerical model of the horizontal tubular absorbers of this study takes into 

consideration curvature effect of the tubes. This work is a direct extension of similar 

work on single tube absorber by Chowdhury et al. [19]. Incorporation of the curvature 

effect of the tubes actually provides the opportunity to take into consideration inter-tube 

flow issues. Thus the aim of developing a more realistic absorber model is realized.   

In the experiments conducted on horizontal tubular absorbers, inter-tube flow issues are 

inseparable. Due to the lack of experimental data, the actual contribution of the inter-

tube absorption can be predicted from the developed absorber model for wide range of 

operating conditions. There is need to estimate the impact of the absorption in the inter-

tube flow on the overall performance of the absorber. The simulation data will be helpful 

in  understanding and quantifying the contribution of  the inter-tube flow to the overall  

absorption process, a feature   previously considered to be not very significant.  



Chapter 1                                                                                                                       Introduction 

 
13

The simplified model of the tubular absorber is developed as a design tool for the 

extraction of overall heat and mass transfer coefficients of the absorber. Previously, a 

similar approach was used for the development of a simplified model of the vertical 

plate absorber by Islam et al. [46]. Their study did not consider the tube bundle absorber 

for which the film flow characteristics are different. In the present study, the simplified 

model is developed for the horizontal tube bundle absorber with regard to curvature 

effects of the tubes, serpentine flow of coolant and inter-tube absorption. The extraction 

of transfer coefficients from the simplified model is obtained for sets of operating 

conditions of Islam [43] and compared with the values obtained from the detailed 

numerical model. A satisfactory comparison was obtained which justified the simplified 

model as a design tool in further applications.  

The film-inverting absorber has been found to improve the performance of horizontal 

tubular absorber. In the current research, the proposed design configuration of the film 

inverting absorber will contribute to the design and manufacture of tube-bundle absorber 

with improved performance. The hydrodynamics test results would lead to practical 

design models which do not require guide vanes or fins for inverting the LiBr solution 

film.  

 
1.8 Scope of present research 

This study is essentially focused on the development of mathematical models of 

horizontal tubular absorbers. The simulation results obtained from the developed models 

will be compared with relevant experimental data from published studies. The 

experimental studies of different falling film flow modes and the newly proposed film-

inverting tube bundle absorber were conducted under purely hydrodynamic conditions. 

These experimental studies did not consider absorption. It is believed that the effect of 

absorption of water vapour into the LiBr-H2O solution would not have a significant 
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effect on the liquid flow behavior of the inter-tube flow or the design of the tube bundle 

configuration. 

 
In chapter 2, a literature survey is performed in order to study both previous and 

contemporary researches on falling film tubular absorbers. The purpose is to identify the 

gaps in the current state-of-the-art which provide a focus for the present work. 

 
In chapter 3, a detailed numerical model is developed taking into consideration actual 

horizontal tubular absorber configuration. Practical issues regarding the inter-tube flow 

and absorption are discussed and incorporated into the model. A simplified heat and 

mass transfer model is developed which provides a simplified design tool for the 

performance evaluation of the tubular absorber. 

 
In order to study the various inter-tube flow hydrodynamics, an experimental program 

was undertaken and discussed in chapter 4. The test set-up design and fabrication details 

are presented together with the data analysis program. The different inter-tube flow 

patterns are verified with the similar experimental results obtained by the previous 

researchers. This way the results obtained from the present experiments form the basis of 

data analysis program. A digital image analysis program used to study the sequential 

video images is presented.   

 
In chapter 5, both the qualitative and quantitative results are presented for different inter-

tube flow hydrodynamics for a wide range of operating conditions. The inter-tube flow 

behaviour is studied from the sequential video images. Later, the transient characteristic 

profiles of inter-tube flow modes are presented and analyzed.  The findings form the 

basis of predicting the absorption performances of inter-tube flow regime.  

 
In chapter 6, absorption models are developed for inter-tube droplet and jet or sheet flow 

mode. The developed models are used to predict the inter-tube absorption rate at various 
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operating conditions. The simulated absorption performance of the inter-tube flow 

regime is presented and discussed. 

In chapter 7, new design proposals are made for the film-inverting tubular absorbers 

based upon Coanda Effect of fluid flow. The numerical absorption model is developed 

for the new film inverting design and is used for the analysis of detailed film-inverting 

mechanism.  The Coanda-Effect Based Film-Inverting Absorber, CEBFIA, is assembled 

in multiple columns to form the basis of Two-Film-Tube film-inverting absorber. The 

performance evaluation of the proposed Two-Film-Tube film-inverting absorber is 

numerically performed. The experimental investigations of the film-inverting 

hydrodynamics of both proposed designs are performed using the same experimental 

set-up described in chapter 4. The main conclusions of the study are presented in chapter 

8, together with the recommendations for future work on absorbers. 

 



Chapter 2                                                                                                                Literature review 

                                                                                                   
16

CHAPTER 2 

LITERATURE REVIEW 

The absorber of an absorption refrigeration system is widely acknowledged as the most 

critical part of the system both in terms of cycle performance and system cost as stated 

by Killion and Garimella [48]. As the heat transfer area of an absorber is about 40% of 

the total heat transfer area in an absorption machine [65], the manufacturing cost of the 

machine would drop significantly, if the heat transfer area of the absorber is decreased 

by enhancing heat and mass transfer in the absorber. Clear understanding of the heat and 

mass transfer processes in the absorber therefore becomes important to achieve this goal. 

In this chapter, a review of the published literature that is directly related to the 

absorption process is presented. In order to develop a complete model of a horizontal 

tube-bundle absorber, it is important to understand the behavior of a falling liquid film 

over the tube bank. There are several unresolved issues regarding the inter-tube flow 

such as different modes of flow between the tubes and the associated effect of 

incomplete wetting of the tube surfaces. To understand the above phenomena, the 

reported literature on falling film hydrodynamics is reviewed. Few researchers have 

attempted to incorporate the inter-tube flow and absorption into the study of horizontal 

tubular absorbers. To develop a complete and realistic tubular absorber model, 

incorporation of inter-tube flow modes with associated absorption is vital. Hence the 

previous attempts on the study of inter-tube flow hydrodynamics and absorption are 

closely analyzed. As a result, this review is divided into several sections including 

theoretical studies of absorption processes, experimental investigations, the 

investigations of falling film hydrodynamics over the horizontal tube banks and the 

studies of existing inter-tube absorption models. Attention has also been given to the 

absorption heat pumps, which utilize water as the refrigerant and lithium-bromide as the 

absorbent.  



Chapter 2                                                                                                                Literature review 

                                                                                                   
17

Among the various performance improvement techniques of horizontal tubular 

absorbers, the film-inversion technique was found very effective as stated by Islam et al. 

[45]. One of the main objectives of the current research is to investigate the film-

inverting falling film absorber performance. Therefore, in the last section of this chapter, 

descriptions are presented on the previous studies of film-inverting falling film 

absorbers.  

 
2.1 Theoretical studies of absorption processes 

In recent years, researchers have made significant efforts to mathematically model the 

coupled heat and mass transfer phenomena that occur during falling film absorption. 

They used simplifying assumptions about governing equations for momentum, energy 

and mass conservation, boundary conditions, numerical and analytical solution methods. 

Experimental validations of their models were also provided. It is found that most 

reported work in the literature has focused on the simplified situations of absorption in 

laminar vertical films of lithium bromide-water. Few papers have considered the 

important situations of wavy films, turbulent films and films on horizontal tubes. Most 

of the previous numerical studies have also assumed a simplified geometry of the 

absorber in order to simulate the overall heat and mass transfer phenomena as well as the 

local phenomenon. Most of them represented the usual geometry of an absorption unit 

with bank of horizontal tubes by a vertical flat plate with the solution film flowing down 

the face of the plate. Very few researchers have considered individual tubes in order to 

simulate the absorption process by using numerical formulation with a grid fitted to the 

film shape over the tube.  

     
Nakoryakov and Grigor’eva [73] modeled the absorption process in a smooth laminar 

film falling down an isothermal, impermeable vertical wall. Their modeling approach 

considered numerous assumptions many of which are still applicable in current research 
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attempts. They neglected the variation of film thickness because the change in solution 

flow rate due to absorption of vapour was likely to be low. Fourier separation of variable 

technique was used for the solution of the governing equations because the estimation of 

the solutions required to handle a large number of eigenvalues. Temperature and 

concentration distributions throughout the vertical falling film were determined. One of 

the interesting finding was that the mathematical solution depended not only on the 

boundary conditions like solution inlet concentration and temperature, wall temperature 

and the equilibrium constants, but also on the dimensionless parameters including the 

Lewis, Prandtl and Reynolds numbers. 

 
Grossman [32] studied simultaneous heat and mass transfer process in a vertical falling 

film under laminar flow conditions. Both the adiabatic and isothermal wall conditions 

were taken into consideration. Most of the simplifying assumptions of Nakoryakov and 

Grigor’eva [73] were recognized in this study except for the assumptions of fully 

developed Nusselt velocity profile, and the isothermal wall case in which the solution 

temperature at the inlet was equal to the wall temperature. Two methods of solution 

were undertaken in order to solve the energy and diffusion equations simultaneously. 

The first method used was the same analytical approach of Nakoryakov and Grigor’eva 

extending for both adiabatic and isothermal wall cases. The second method was a 

numerical approach based on finite difference method. In both the cases, the author 

reported on the difficulty of applying the solution techniques near the absorber inlet. A 

similarity solution was therefore proposed to be used near the inlet region whereas either 

the analytical or the numerical solution was recommended to be used elsewhere in the 

film sufficiently away from the inlet.  The results were plotted for various parameters 

like interface, bulk and wall temperatures and concentrations at several locations both 

along the film and across the film directions. Results were also plotted showing the 
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variations of interface to bulk solution heat and mass transfer coefficients and the bulk 

solution to wall heat transfer coefficient. 

 
Andberg and Vliet [2] developed an absorption model for a vertical flat plate falling film 

absorber with constant temperature wall. The numerical model of the laminar film flow 

considered inter-diffusion term in the energy equation.  Fully developed Nusselt’s 

velocity profile together with variable film thickness, mass flow rate and change in 

velocity due to absorption of vapour were included in their model.  A co-ordinate 

transformation was undertaken to incorporate the change in the flow field due to variable 

film thickness. A finite difference method of solution was used. Results were obtained 

for the variations of interface and bulk temperatures and concentrations, heat and mass 

fluxes and mass flow rate of solution. Comparisons were made with some experimental 

data available in the literature and good agreement was found except in the region of 

absorber inlet.   

 
Andberg and Vliet [3] derived design guidelines of falling film absorbers. The detailed 

simulation results were obtained using their previous model Andberg and Vliet [2] under 

various operating conditions typical for commercial absorbers. They arrived at the 

common conclusion that as the solution approaches equilibrium condition, absorption 

process greatly slows down. A connection between absorber length and preferred 

concentration change was developed for variations of several independent variables like 

solution mass flow rate, inlet concentration, inlet temperature, absorber pressure and 

wall temperature.  It was found that among the other variables, the mass flow rate of 

solution showed the most significant impact on required absorber length for a preferred 

percentage of absorption.  

 
Andberg and Vliet [4] developed a simplified model for the absorption of water vapour 

into a laminar liquid film flowing over cooled horizontal tubes. The energy and species 
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transport equations were solved by employing a finite difference solution scheme for 

temperatures and a similarity solution for concentrations assuming a known 

concentration profile. The concentration profile was derived from a power-law estimate 

of the error function at the liquid-vapour interface. The results obtained from this 

simplified model and those obtained from a detailed model were compared for the input 

of known inlet conditions. Comparison showed agreement of the outlet concentration 

and temperature. Finally, the results obtained from the model were compared with 

commercially available absorber performance data. The actual and predicted outlet 

conditions of the horizontal tubular absorber showed satisfactory agreement.    

 
Wekken and Wassenaar [97] presented a physical model of simultaneous heat and mass 

transfer in a laminar falling film over a cooled wall. Their formulation was based on 

similar assumptions made by Grossman [32] including fully developed velocity profile 

and constant film thickness. But the major contribution of their newly developed model 

was to incorporate the cross-flow coolant in the absorber model instead of assuming an 

adiabatic or isothermal wall. The results were obtained by employing a finite difference 

method of solution and data were presented for the variation of Nusselt number and 

Sherwood number with Fourier number for several values of the dimensionless 

parameters.   

 
Habib and Wood [34] developed a numerical model for two-phase absorption in a 

laminar falling film along a vertical wall. In addition to the typical assumptions such as 

constant film thickness and isothermal wall conditions, the heat and mass transfer in the 

vapour phase was incorporated to the model. Moreover, the model considered the 

pressure gradients along the absorber and interfacial shear between the liquid-vapour 

phases. The results were obtained for the change of absorption rate along the absorber 

length for several input parameters like inlet film concentration, absorber pressure and 
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wall temperature.  The maximum absorption rate was found to be located immediately 

after the absorber inlet and decayed exponentially thereafter.  

 
Neima [74] studied non-isothermal vapour absorption into falling film in order to 

explicate and assess the effect of absorbate concentration level. He developed an integral 

formulation of the continuity, diffusion and energy equations for the analysis of 

combined heat and mass transfer process in a falling film under both adiabatic and 

isothermal wall conditions. It was found that the lateral convective term at the interface 

was essential to account for the case of physical system with finite absorbate 

concentration level. The addition of convective term resulted in enhanced transfer rates. 

 
Yang and Wood [100] developed a numerical model for the absorption process on a 

smooth liquid falling film. This work was an extension of similar work performed by 

Grossman [32] for a case where the inlet solution temperature was different from the 

isothermal wall temperature. Using both LiCl-H2O and LiBr-H2O as the working fluids, 

an empirical thermodynamic equilibrium relationship among temperature, concentration 

and pressure was used in their formulation. The results were obtained for the similar 

cases of Andberg and Vliet [2] and good agreements were found. 

  
Ibrahim and Vinnicombe [41] developed a hybrid method of solution which combined 

an analytical solution with the finite difference method for the analysis of the 

performance of falling film absorbers. The analytical solution was used near the entry 

region to obtain the concentration and temperature profiles as starting values for the 

finite difference method at a sufficient distance away from the entry region. The 

analytical solution was also used near the liquid-vapour interface to evaluate the 

boundary conditions along the whole length of the absorber. Theoretical performance 

data were obtained and compared with those of earlier works. Their  model was found to 

be accurate and  consistent with practical absorbers.  
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Conlisk [20] analyzed the falling film absorption using boundary layer techniques. The 

assumptions were essentially similar to those of Grossman [32] except for the film 

thickness. The film thickness was allowed to vary due to the absorption of vapour. The 

transverse velocity component was neglected in the energy equation but was 

incorporated to the species conservation equation. The solution of the governing 

equations was performed by using Laplace Transformation technique. The simulation 

results were presented for the variation of different parameters e.g. wall temperature, 

solution flow rate and tube length.   

 
Chowdhury et al. [19] developed a numerical model for the simultaneous heat and mass 

transfer process during absorption of vapour into laminar liquid film flowing over cooled 

horizontal tubes. The single tube model was developed for the constant temperature of 

the tube wall. The change in solution flow rate and film thickness due to the absorption 

of vapour was incorporated to the model for which Nusselt’s condensation theory was 

implemented. The longitudinal velocity and the transverse velocity were determined 

from the Nusselts’s fully developed velocity profile and continuity equation 

respectively. The co-ordinate transformations were performed with necessary step to 

incorporate the change in film thickness with angular position. Due to the steeper 

gradient of concentration and temperature profile, uniform fine meshes were used near 

the interface region. The finite difference method of solution was used for the 

simultaneous solution of energy and species conservation equations. The simulation 

results were obtained to show the contour profiles of temperature and concentration over 

the entire flow field. Results were also plotted for the variation of mass and heat fluxes, 

bulk temperature and concentration, interface temperature and concentration along the 

dimensionless distance of the tube. Parametric studies were undertaken to show the 

optimum solution flow rate that maximized the vapour absorption rate.      

 



Chapter 2                                                                                                                Literature review 

                                                                                                   
23

Tsai and Perez-Blanco [93] studied the limits of mass transfer enhancement for vertical 

falling film absorption. In order to ascertain the transfer coefficients of a fully mixed 

film, mathematical formulation was developed relating the transfer coefficient to the 

exposure time of a transient film. The relation established that the increase of transfer 

coefficients was achieved with the increase of mixing frequency and subsequent 

decrease of exposure time.  

 
Min and Choi [68] solved the Navier-Stokes equations in order to investigate the 

absorption process on a horizontal tube. Their main objective was to develop a model 

taking into consideration the surface tension effects especially near the upper and lower 

stagnation points during the film flow over a horizontal tube. The momentum, 

temperature and concentration equations were solved using SIMPLER algorithm. The 

free surface location was achieved through the use of MAC method. Detailed simulation 

results of the flow field, temperature and concentration fields were presented for various 

solution flow rates with and without the effects of surface tension. Regions of 

recirculation near both upper and lower stagnation points were detected when the surface 

tension effects had been considered. Heat and mass transfer data were also presented in 

terms of Sherwood number and Nusselt number variations along the angular 

displacement of the tube with and without the effects of surface tension. Surface tension 

effects caused sharp drop off absorption rate in the near entrance region because of the 

thick layer of the film. Absorption rate recovered well after that when the film thinned 

down again. The change in absorption rate without the effects of surface tension on the 

other hand showed a steady decrease and leveled off at certain angular distance. 

Absorption rate with effect of surface tension was found 4% higher than that of without 

any surface tension effect. 
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Killion and Garimella [48] provided a comprehensive review of the considerable efforts 

made by the previous researchers for the development of coupled heat and mass transfer 

model of falling-film absorption. Their review was not focused on the experimental 

works or the effects of additives and non-absorbable gases in falling film absorption. 

The objective was to emphasize the key areas of future interests which were summarized 

as film and vapour hydrodynamics, the potential interaction of the heat and mass transfer 

process on film hydrodynamics, surface wetting, heat transfer in vapour phase and 

common simplifications of governing equations. They also pointed out the importance of 

experimental validation of the developed models with assessment of local absorption 

phenomena along with the overall performance predictions.  

  
Siyoung and Garimella [88] studied falling film and droplet mode heat and mass transfer 

in a horizontal tube absorber. The effect of incomplete wetting was introduced by the 

wetting ratio of the tubes. They developed mathematical models for the falling film flow 

regime as well as the droplet formation and fall flow regime. Simulation results for 

temperature, concentration variations and heat and mass transfer rates were presented 

and compared with similar experimental data from the literature. The effects of wetting 

ratio and solution flow rate on cooling capacity were discussed in detail. 

 
Islam et al. [46] developed simplified models for coupled heat and mass transfer in 

falling-film absorbers. The main objective was to develop a coupled model which could 

be used as a design tool of falling film absorbers. The initially developed non-linear 

coupled model was simplified to the linearized coupled model by making simplifying 

assumptions. The developed model was intended to extract the heat and mass transfer 

coefficients from experimental data. The data were obtained from their experiments and 

also from those of Miller [65] for this purpose. The results were obtained for the 

variation of Nusselt number and effective Sherwood number, which included the overall 
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heat transfer coefficient and effective mass transfer coefficient respectively, with film 

Reynolds number using the linearized coupled model. 

 
Farhanieh and Babadi [16] developed a finite difference method of solution for the 

vapour-absorption into liquid films flowing over the tube bundle of an absorber. They 

employed boundary layer assumptions for the transport of mass, momentum and energy 

similar to those made by Chowdhury et al. [19] for film flow over single horizontal tube. 

During extension of the numerical model of single tube for tube bundle, they assumed 

the absorber tube bundle to be a single-pass coolant stream.  As a result, the tube surface 

temperature remained unchanged for all the tubes in a column. The mass transfer within 

the inter-tube region was ignored.  Parametric studies were performed in order to 

examine the effects of solution flow rate, absorber pressure and tube radius on the 

overall heat and mass transfer for a single tube and tube bundle absorber.  

 
2.2 Experimental investigations with conventional absorbers 

Cosenza and Vliet [22] experimentally investigated the falling film absorption for 

smooth horizontal tubular surfaces. A correlation was developed for the absorption heat 

transfer in terms of the film Nusselt number as a function of film Reynolds number from 

the experimental data. The experimental results were compared with those obtained from 

their previous falling film absorption model and good agreement was found. Estimation 

of the effects of tube diameter and use of additives on absorption process were also 

accomplished. 

 
Nomura et al. [75] observed the internal heat transfer and absorption phenomena of a 

falling film absorber of a bank of tubes configuration. An experimental set-up was 

fabricated for the measurement of film temperatures on the tube surfaces and also in the 

inter-tube region. Observing the upstream tube surface temperatures which were lower 

than the inter-tube film temperatures, they suggested that a significant amount of vapour 
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might have been absorbed in the inter-tube region. Photographic evidence was provided 

to show the film flow characteristics over the bank of horizontal tubes. It was observed 

that the wetted surface area of the tubes gradually decreased as the film traveled 

downwards. As a result, the local wetting ratio sometimes could become less than 0.5.   

 
Matsuda et al. [62] experimentally investigated absorber and generator performances in 

an absorption-refrigeration machine. The effects of Lithium-Bromide concentration and 

vapour pressure on the performance of a vertical falling film absorber were assessed. 

Both the heat and mass transfer coefficients were found to increase with the increase of 

vapour-pressure. An increase of concentration caused a reduction or negligible changes 

of the transfer coefficients. The reason for this behavior was believed to be the increase 

of film thickness due to the increase of viscosity of highly concentrated solution.  

 
Hoffman et al. [37] experimentally investigated the detailed mechanisms of heat and 

mass transfer in a falling film tubular absorber. The test set-up consisted of 24 horizontal 

tubes was operated under vacuum in a glass cylinder. Heat transfer coefficients were 

determined for sets of operating conditions including variations of solution flow rate, 

concentration, temperature and vapour pressure. Heat transfer coefficient was correlated 

to surface tension and viscosity of solution. No correlation of the heat and mass transfer 

coefficients was reported.  

 
Wassenaar [96] predicted and measured the effect of flow rate and tube spacing on 

horizontal tube absorber performance. A model was developed for absorption in a 

cooled falling film. This model considered the flow domain in the inter-tube region. The 

inter-tube flow was incorporated to the absorber model by assuming that the flow causes 

complete mixing of the liquid in this region. The film flow along each side of a tube was 

simplified to that along the side of an equivalent vertical flat plate with a length of half 

of the tube perimeter. Thus the model was consisted of a series of segmented cooled 
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vertical plates. The experimental results were obtained for a range of tube spacing and 

compared to the model predictions.  The model predictions using experimental wetted 

fraction of absorber tubes were in satisfactory agreement with the experimental data. 

The wetted fraction of the tubes was attributed to the change in surface tension gradient.  

 
Deng and Ma [24] experimentally investigated the characteristics for a falling film 

tubular absorber. The experimental results showed much greater increase in the mass 

transfer coefficient than the heat transfer coefficient as the solution flow rate increases. 

An expression for the heat transfer coefficient was developed which incorporated the 

effect of solution inlet concentration. 

 
Miller and Keyhani [67] experimentally investigated the mechanisms of heat and mass 

transfer processes in a falling film. An experimental vertical tube absorber was 

fabricated for the measurement of the temperature profile along the length of the 

absorber using thermo-graphic phosphors. Experimental data were used for the 

validation of the developed correlations of coupled heat and mass transfer processes.  

 
2.3 Study of falling film hydrodynamics in horizontal tube banks for  inter-tube 

and falling-film flow regimes   
 
Sideman et al. [91] studied the transport characteristics of films flowing over horizontal 

smooth tubes. An experimental set-up was fabricated to investigate the film flow 

characteristics and the inter-tube flow modes. Inter-tube flow modes were identified in 

the form of films/drops/jets based on liquid flow rate and tube spacing. The effects of 

flow characteristics and changes of inter-tube flow modes were examined for the 

variation of local, spatial and time average transfer coefficients. The mode of liquid 

feeding also showed influence on the transfer rate. Theoretical models were also 

developed taking into consideration the continuous film flow and falling drop case 

between the tubes. The falling drop case was simplified to the falling of an orderly sheet 
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along the tube with the same average flow rate. The simulation results showed good 

agreement with the experimental data for both smooth film flow and dripping between 

the tubes. 

 
Ganic and Roppo [28] experimentally observed the sub-cooled film flowing over an 

electrically heated cylinder. Their observation revealed two major inter-tube flow 

regimes; droplet flow regime at lower flow rate and column or jet flow regime at higher 

flow rate.  They identified tube spacing to be a factor for the flow mode transition. It was 

predicted that the liquid columns gradually transformed to the continuous sheet between 

the tubes at very high flow rate.  

 
Rogers [83] studied laminar falling film flow on horizontal tubes. An analytical 

approach was employed to study the film flow behavior specially the interruption of 

falling films. The laminar film flow over the tube was divided into a developing and a 

developed region. Integral method was used for the solution of the equations of motion 

and energy in both regions. Heat transfer characteristics of the falling film were also 

studied.  

 
Kutateladze et al. [61] studied the film condensation of stationary vapour on horizontal 

tube banks. The effect of condensate flow rate on heat transfer was investigated. They 

recommended a modified Archimedes number for the flow mode transitions based on 

the capillary constant.   

 
Kocamustafaogullari and Chen [51] studied the flow along a vertical tube bank of 

horizontal evaporators. The tube-to-tube evaporating film heat transfer coefficients were 

analyzed. A hydrodynamic model was developed to incorporate a thin liquid sheet 

falling between the tubes. The flow was approximated as a uniform velocity impinging 

jet on the top of a tube. Stagnation point boundary layer theory was used to determine 



Chapter 2                                                                                                                Literature review 

                                                                                                   
29

the velocity profile near the impinging point. Simulation data were obtained for the local 

variation of average heat transfer coefficient for a tube in the bank under various 

operating conditions such as variable flow rate, saturation temperature, tube spacing. 

Gradual decrease of heat transfer coefficient from the topmost tube was noticed until a 

fully developed region was achieved. 

 
Rogers and Goindi [84] experimentally investigated the laminar falling film 

characteristics on a large diameter horizontal tube. A test rig was fabricated for the 

measurement of local heat transfer coefficients from the steam heated tube to the thin 

films of water. For the prediction of local heat transfer coefficients, the theoretical model 

developed by Rogers [83] was used and good agreement between the measured and 

predicted values of the transfer coefficient was found.   

 
Armbruster and Mitrovic [6] studied falling film flow patterns over smooth horizontal 

tubes. A model was developed for the inter-tube flow mode transitions based on 

Reynolds number and Galileo number which were related by an empirical constant. The 

identifiable three modes of inter-tube flow were; droplet, jet and sheet flow modes. The 

jet flow mode was also divided into two categories which were staggered jet at higher 

pressure of the stagnation point, and in-line jet at lower pressure of the stagnation point. 

They concluded that mode transition occurred entirely because of liquid flow rate and 

mode transition hysteresis occurred entirely for the event of transition from jet to sheet 

mode. 

 
Armbruster and Mitrovic [7] studied the heat transfer characteristics in falling film on a 

horizontal smooth tube. An experimental program was undertaken to perform 

experiments under the variations of a wide range of parameters. The flow patterns 

showed three modes of inter-tube flow; droplet/jet/sheet with the varying solution flow 

rates. Observations were also made on the film breakdown which was mainly controlled 
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by the changes of flow modes, heat transfer and thermo-physical properties of liquid.  

The temperature distributions in axial and circumferential direction of the test tube were 

measured and these were found to be affected by the change in flow mode. 

 
Hu and Jacobi [39] experimentally observed the inter-tube film flow characteristics and 

mode transitions. The inter-tube flow modes were classified into six different categories; 

a) droplets, b) droplets-jets, c) in-line jets, d) staggered jets, e) jet-sheet and f) sheet. The 

parameters which actually controlled the inter-tube flow mode transition were 

thoroughly investigated. In their case, mode transition hysteresis was present for all flow 

mode transitions and correlations were provided for the mode transition Reynolds 

number and modified Galileo number with and without the effect of hysteresis. Finally, 

a simplified flow regime map was provided for all the possible flow mode transitions.  

 
Hu and Jacobi [40] measured the departure-site spacing or the spacing between droplet 

or jet generation sites falling between horizontal tubes. For a wide range of operating 

conditions, measurements of the departure site spacing were accomplished. The 

departure-site spacing varied due to the variation of solution flow rate and showed a 

decrease with the increase of flow rate specially for the liquids with higher Galileo 

number. Moreover, the departure site spacing did not show any dependence on the 

change of tube spacing. Based on the important observations, improved correlations 

were developed for the departure-site spacing and the other parameters like Reynolds 

number, Galileo number and tube size. They also presented visual observations of jet 

shape for a range of tube spacing and suggested further work to be done in this regard. 

 
Killion and Garimella [52] studied the flow of liquid films and inter-tube droplets in a 

horizontal tube bank. The main purpose was to observe detailed droplet flow 

hydrodynamics in the absence of actual absorption using water as the working fluid. 

Sufficient spacing was allowed between the tubes in a column for better visualization. 
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The high-speed digital video photography was used to capture the formation of a droplet 

underneath a tube from its development, shape transitions sequences throughout the 

development until its detachment from the base.  The detached part of the droplet was 

then observed to collide on the surface of the next tube below with allied waves and film 

disturbances.  Recommendations were made to observe the similar phenomena coupled 

with absorption because the droplet evolution process might affect absorption 

performance. 

 
Frances and Ojer [27] reproduced empirical relationships for a plane surface taking into 

account of the inter-tube hydrodynamics belonging to the droplets or droplets-jets/jets. 

From those relationships, a non-dimensional peripheral flow rate was found.  A critical 

value of the peripheral flow rate below which incomplete wetting occurred was then 

calculated depending on the contact angle. Based upon their visual observation, the 

steady wetted fraction after film rupture was estimated. For the wetting model of a 

whole tube bundle, wetting fraction adjustments as well as a peripheral mass flow rate 

adjustment were made. 

 
2.4 Study of existing droplet hydrodynamics model 

In the preceding section, a review of theoretical and experimental studies on falling-film 

flows in a single absorber tube and in a tube bundle was presented. These studies were 

concerned mainly on characteristics of falling films, and less so on droplet 

characteristics. Published studies on droplet characteristics are presented here. 

 
Yung et al. [105] studied vapor-liquid interaction and entrainment in falling film 

evaporators. Thin film Taylor wavelength formula was used to determine the spacing 

between droplet and column generation sites along the horizontal tube. The primary and 

secondary droplet sizes were determined from a standard correlation derived from the 

observation of droplet flow hydrodynamics such as drop detachment and break up. 
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Criteria were established for the commencement of column formation. The deflection of 

droplets and columns due to vapor cross-flow was incorporated in a mathematical 

expression.  

 
Yoshinori et al. [104] developed a model in order to estimate the diameter of drops and 

bubbles formed in a flow normal to the nozzle axis. During the formation of drops and 

bubbles in flowing liquids, the acting force balance was used in this formulation. The 

drops and bubbles were allowed to form in two stages, viz. the expansion and 

detachment stages. The model predictions were tested with existing experimental data 

and good agreement was found. 

 
Pallas and Harrison [77] developed an automated drop shape apparatus for the 

determination of interfacial tension. An exclusive computer-based image acquisition 

system was developed which eliminated manual analysis. The various types of droplets 

like pendant, emergent, sessile or captive drops were generated employing the 

mechanical high-pressure cell and plumbing system. The measurement technique was 

based upon the principle of reading the profile of a drop of one fluid poised in a second 

fluid to obtain the tension between the two fluids. High speed image analysis procedure 

was developed coupled with the statistical reduction of errors.   

 
Del Rio and Neumann [23] developed axisymmetric drop shape analysis (ADSA) 

techniques for the determination of interfacial properties from the profiles of pendant 

and sessile drops. By establishing a numerical fit between the actual and predicted shape 

of a drop, computation of interfacial properties was accomplished. For the prediction of 

the drop shape, a mathematical model was developed based on Laplace equation of 

capillarity. The method was also capable of computing volume and surface area of the 

axisymmetric drops.   
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Killion and Garimella [53] developed a method to determine the shape of pendant 

droplets in falling film tubular absorbers. They used a digital image analysis program in 

order to obtain the exact shape of the developing droplet. By using spline fits to the 

transient droplet profiles and assuming droplet profiles to be axisymmetric, the transient 

volume and surface area of the developing droplet were calculated. They allowed 

sufficient space between the tubes so that the droplets could grow completely and 

detached to form tiny spherical droplets during falling.    

 
2.5 Study of falling film absorption models in the inter-tube flow regime 

Morioka et al. [47] analyzed the steam absorption by a sub-cooled droplet of aqueous 

solution of LiBr by placing it into a stream of steam at low pressure.  The absorption of 

steam by the droplet was numerically examined. The shape of the droplet was assumed 

to be a sphere with negligible deformation in spherical shape. It was found that the 

distributions of temperature and concentration in a droplet were significantly influenced 

by the circulatory motion due to the contact with the steam flow. The absorption rate 

was found to be increased by about several tens of a percent compared with that for the 

stagnant droplet.  

 
Kirby and Perez Blanco [59] presented a design model for horizontal tubular absorbers 

incorporating three distinct flow regimes, viz. the falling-film, droplet formation and fall 

flow regimes. In each flow regime, mass and energy balances for absorber elements 

were undertaken in a 2-D model of the absorption process. The droplet was assumed to 

be consisted of a repeated series of spherical shells or layers. The droplet formation 

model considered the fresh surface assumption in order to determine the interface 

conditions during the formation period. Thus, the interface temperature of the drop 

during the formation period remained unchanged with the temperature of the fresh 

solution. The model well predicted the absorber performance. They furthermore 
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recommended that the role of droplets might be crucial for improved absorber 

performance. 

 
Siyoung and Garimella [88] developed a model for droplet formation and fall during 

absorption similar to the models developed by Kirby and Perez Blanco [59]. In their 

case, a hemispherical droplet during formation stage was allowed to grow until its 

volume reaches half of the volume of a falling spherical droplet. The free fall droplet 

size was calculated using the correlation developed by Yung et al. [105].  Absorption 

performances of both the falling film regime and the droplet formation and fall flow 

regime were calculated at various operating conditions of Nomoura et al. [75]. The 

contribution of vapour absorption during droplet formation was found significant 

especially at higher flow rate.  

 
2.6 Study of film-inverting falling film absorber 

In this section, a review of research studies on film inversion of falling film absorbers is 

presented. Islam et al. [45] developed a novel absorber that contributed to the 

improvement of performance of a falling-film absorber by enhancing the rate of 

absorption of vapor. The enhancement of vapor absorption was achieved by inverting 

the liquid film flowing down the cooled absorber surface in alternate directions. The 

film-inverting absorber performances were investigated both experimentally and 

numerically. A conventional horizontal tube absorber was modified to change the 

continuous film into a repeatedly inverting film by inserting guide vanes at each tube 

junction in a vertical array. The measured performances of the film-inverting absorber 

were compared with those of conventional tubular absorber resulting in 100 percent 

performance improvement due to film-inversion. The numerical simulation results of a 

film-inverting vertical-plate absorber also showed equally high performance 

improvement.  
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 Goel and Goswami [30] presented a new design of a compact falling film absorber. 

They studied several enhancement techniques to improve the absorber performance, but 

found a method more effective than others which utilized the vertical space between the 

nearby coolant tubes. Thus, their main concern was to form a falling film between 

adjacent tubes to increase the liquid-vapour interfacial area. Since the intermediate 

falling film in continuous sheet flow mode requires a higher solution flow rate, they 

proposed for an alternative solution to be applicable for lower flow rates, wrapping a 

mesh/fabric between the left and right sides of two adjacent tubes. Their proposal also 

considered selection of the mesh material with good wetting characteristics. The new 

design concept was numerically investigated. The proposed design was found to be more 

compact and efficient than the falling film absorber where absorption in the vertical 

spacing was not taken into account. An absorber size reduction of about 25 percent was 

reported for the operating conditions considered.  

 
2.7 Summary 

In this chapter, review of the research studies on falling film tubular absorbers was 

presented. Both the theoretical studies and the experimental studies of the falling film 

absorbers were reviewed. The review of the theoretical studies aimed to highlight the 

modeling approaches taken by previous researchers and to present governing equations, 

boundary conditions, assumptions and the solution methods used. The reported studies 

on the flow characteristics of falling film over horizontal tube banks were taken into 

consideration especially for the inter-tube flow. This review helped to categorize the 

distinct modes of inter-tube flow and the influential parameters for the mode changes. 

The hydrodynamic models developed for inter-tube droplet flow mode were included in 

this review to serve the purpose of developing a complete absorber model. The smaller 

number of studies which incorporated the inter-tube absorption to the tubular absorber 

model was also analyzed. Finally a review was conducted on the performance 
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improvement of the horizontal tubular absorbers using the film-inverting concept. This 

study helped to understand the mechanism of film-inversion which might overcome 

various unresolved issues created by the conventional tubular absorbers.   
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CHAPTER 3 

THEORETICAL STUDIES 

Among the different absorber configurations used in absorption cooling machines, the 

most common design is the absorber with a bundle of horizontal tubes. The vapour 

absorbing solution is sprayed at the top from a distributor and cooling water flows   

through the tubes in countercurrent fashion. The solution flows over the tubes in the 

form of a falling film and drips from one tube to the next as sheets, jets or drops. The 

wetted surface of the absorber tubes is found to decrease progressively as the solution 

flows down to the bottom. Even when the partial tube wetting and inter-tube flow 

patterns are ignored, the modeling of the horizontal tubular absorber as a heat and mass 

exchanger is complex because the flow over the tube surface may not be in the form of a 

smooth circumferential film. Despite these physical complexities, there have been a 

number of papers published on the modeling of horizontal tubular absorbers. 

 
It was observed from the theoretical studies of horizontal tubular absorbers discussed in 

section 2.1 that most of the previous modeling attempts assumed a simplified geometry 

of the horizontal tubular absorber instead of the actual bank of tubes configuration. In 

this section, however, a detailed numerical model of the horizontal tubular absorber is 

developed taking into account of the tubular effect of individual tubes. The single round 

tube model of Chowdhury et al. [19] is extended for the bank of horizontal tubes with 

counter-flow coolant through the absorber tubes. The numerical models are also 

developed for the equivalent vertical flat plate absorber and the segmented flat plate 

absorber which were previously considered as the simplified geometry of tubular 

absorbers. Model predictions are compared later to discuss the effect of making such 

geometrical simplifications. A simplified design model for horizontal tubular absorbers 

with a counter-flowing coolant is developed next. The simplified model was previously 
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developed by Islam et al. [46] for the vertical plate absorber. Necessary modifications 

are made to their model to incorporate the actual tubular configuration of the absorber. 

The detailed numerical model, discussed in the following section, is used as the base line 

to obtain the relevant heat and mass transfer coefficients. The predictions of the models 

are compared with available experimental data 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.1 Different models of horizontal tubular absorber 

 
3.1 Numerical models of horizontal tubular absorbers 

The development of a detailed numerical model for a round tube absorber is, in general, 

tedious. It is therefore more convenient to simulate the round tube absorber with cooled 

vertical plate segments as was done by Islam et al. [44, 46] and Wassenaar [96]. The 

effect of approximating the geometry  is investigated numerically by performing 

computations with three geometrical models which included  (i) a series of round tubes 

which is the geometry of the real absorber  (ii) a series of vertical plate segments where 

2 parallel segments represented each tube with coolant flow between the segments and 

(iii)  two parallel continuous vertical plates with a coolant passage between them where 
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the total area of the plates is equal to the circumferential area of the tubes. The schematic 

diagrams of the three geometrical models of the tubular absorbers are shown in Figure 

3.1. Among the three geometrical models, the numerical model of the detailed round 

tube and the segmented plate model are nearly similar and hence discussed together. The 

vertical plate model is briefly described later.  

 
 
 

 

 

 

 

 

 

 

Figure 3.2 (a) Single tube falling film configuration      Figure 3.2 (b) Single tube falling film 
configuration (Flat plate model)                  (Round tube model)  

 

3.1.1 Detailed round tube model and segmented plate model 

Both the detailed round tube model and segmented plate model consider each absorber 

tube individually.  A single isolated tube is considered first. In this, the film flow is 

initiated by the absorbent solution, which is introduced onto the top-most tube as 

droplets or a sheet from the distributor as shown in Figure 3.1. This single tube model is 

solved numerically with a similar approach taken by Chowdhury et al. [19]. The 

computations are performed per unit length of each tube as demonstrated in Figure 3.2. 

The falling film configurations are slightly different for the round tube and the 

segmented plate models. The major differences are shown in Figure 3.2 (a)-(b). The 

round tube falling film configuration shows thicker film near the entrance and exit 

region of the tube because of the asymptotic nature of the film thickness variation with 
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angular position. However in the case of the flat plate falling film configuration, the film 

thickness is not dependent on its angular position. It varies solely due to the change in 

solution flow rate due to vapour absorption. The same coolant flow model is used for 

both round tube and segmented flat plate models in order to extend the single tube model 

for whole bank of absorber tubes as discussed in section 3.1.3. 

 
3.1.2 Numerical simulation model of a single tube 

A single isolated tube is considered in which the film flow is initiated by the absorbent 

solution, which is introduced onto the top-most tube from the solution distributor. In this 

section the main equations of a numerical simulation model for the falling film over a 

round tube are presented. The analysis is first carried out for a single horizontal tube and 

later extended to a series of horizontal tube which constitutes the tube-bundle absorber.   

The following assumptions are made in developing the physical model; 

(i) all  thermo-physical properties of solution are assumed  constant 

(ii) heat  transfer from the vapor is neglected  

(iii) the solution film flow is laminar and non-wavy 

(iv) the  velocity distribution and the thickness variation of the film is assumed to 

be similar to those obtained in Nusselt model for condensation and  

(v) there is no chemical reaction. 

 
Subject to the above assumptions, the governing mass and energy conservation 

equations for two-dimensional imcompressible, steady and laminar film flow are written 

for an elemental control volume as follows. 

Conservation of mass gives: 

0=
∂
∂

+
∂
∂

y
v

x
u               (3.1)              

Conservation of energy gives: 
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The species conservation equation for the absorbent is:  
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The applicable boundary conditions are listed below. 

At entry to the tube the temperature and concentration of the solution are uniform 

⎭
⎬
⎫

≤≤
=

δy
xx i

0
      ,siT T=    siw w=                     (3.4)   

The temperature of the wall at a section of the tube is uniform and the wall is 

impermeable.  
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The rate of vapour absorption at the interface of the film is equal to the radial diffusion 

rate   
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The rate of absorption enthalpy release at the interface is equal to the heat conduction 

rate   
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The interface equilibrium condition can be expressed as 
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The heat transfer coefficient from the bulk solution to the tube wall is obtained from the 

expression: 
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The heat transfer coefficient from the interface to the bulk solution is given by: 
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The mass transfer coefficient from the interface to the bulk solution is given by: 
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The film thickness and the velocity distribution across the film are taken as those 

obtained in the Nusselt analysis of laminar condensation over a round horizontal tube 

[72]. 

Hence, film thickness is given by 

3
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and velocity along the flow is written as: 

[ ]22
2
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            (3.13)             

 
The governing equations,  Eqs.(3.1)-(3.3) subject to the boundary Eqs. (3.4)-(3.8) are 

solved numerically using the control volume approach. The solution domain is 

transformed from the circular shape to a rectangular form as was done by Chowdhury et 

al. [19] for the case of round tube model. In the interest of brevity, these transformations 

and additional details of the numerical solution procedure are summarized in Appendix 

A.1 and A.3. Moreover, the transformation of the governing equations and the boundary 

conditions for the segmented flat plate model are presented in Appendix A.2  
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                                Figure 3.3 Actual horizontal tubular absorber. 

 
 

 

 

 

 

 

 

 
                Figure 3.4 Schematic representation of coolant flow model. 

 
 
3.1.3 Modeling of counter-flow coolant 

The horizontal tubes are arranged in a vertical plane with cooling water flowing in a 

serpentine path as shown in Figure 3.3. For the overall system modeling of the counter-

flow absorber, the following assumptions are made. 

(i) Each absorber tube is divided into equal number of segments. 

(ii) The wall temperature is assumed to be constant of each segment.  

(iii) The falling film is uniformly distributed along each segment. 

(iv) The edges of the tube bank are perfectly insulated.  
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The schematic diagram of the segmented tube is exhibited in Figure 3.4. For each 

differential tube segment, the following energy balance equations can be written; 
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By rearranging the above equations, the following expressions are developed, 
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Eqs. (3.14)-(3.19) together with Eqs. (3.1)-(3.13) are iteratively solved for segments 1 to 

6 of a particular tube ‘n’ as demonstrated in Figure 3.4. After getting converged results 

for the particular tube, the solution film enters to the next tube below in such way that 

the liquid film leaving segment 1 of nth tube enters to the segment 6 of (n-1)th tube with 

the same temperature and concentration profiles leaving the previous segment directly 

up. Similarly, the solution film leaving the segment 2 of nth tube enters to the segment 5 

of (n-1)th tube with same temperature and concentration profiles during leaving the 

previous segment. This procedure continues until the entire tube length is covered. Thus 

except the topmost tube of the horizontal tube bank, the inlet conditions of the solution 

film differ segment –wise. The detailed solution procedure is discussed in the following 

section. 
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3.1.4 Numerical model for a tube-bundle absorber 

The extension of the single-tube numerical model to a series of horizontal tubes follows 

the procedures outlined below.  

3.1.4.1 Solution method 

The governing equations are discretized using the finite difference method and solved 

numerically using a 2nd order scheme. Due to the presence of strong convection along 

the flow direction, three-point backward difference scheme is used in this direction. 

Central difference scheme is used along the cross flow direction. The discretized forms 

of the governing equations are given in Appendix A.3. 
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Figure 3.5 Computational domain 
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Chowdhury et al. [19]. Because of strong convection present along the flow, a fine mesh 

is also used at the entrance boundary as suggested by Ibrahim and Vinnicombe [41].  

To save computational time, instead of using a uniform fine mesh, a gradually increasing 

non-uniform fine mesh is introduced. The non-uniform mesh spacing used in this study 

follows a geometric progression in both directions of flow as shown in Figure 3.5. 

Intermediate boundaries are specified until where the mesh size spacing follows a 

geometric progression as illustrated with the break lines in Figure 3.5. In the regions 

after the intermediate boundaries, the mesh sizes match with the last mesh size from the 

geometric progression series before the boundaries. The reason of not using fine mesh in 

the entire computational field is simple. The concentration and temperature gradients 

gradually decrease away from the interface region as well as the entrance region. 

Therefore, fine meshes beyond some distance from the boundary regions do not increase 

the accuracy of computations while increasing the computational time. Sensitivity of the 

results is tested before setting the position of the intermediate boundaries. More 

descriptions are given in Appendix A.3.1.  

 
3.1.4.3 Solution steps 

Single tube 

The computation begins with the tube segments of Figure 3.4. The thin film flow over 

the tube cross-section is assumed to be uniformly distributed in each segment. The 

computational domain is therefore the solution film over the tube cross-section as shown 

in Figure A.1. At the beginning of the computations, the system design parameters and 

the fluid properties are specified. Due to the asymptotic nature of the film thickness 

variation with angular position expressed in Figure 3.2(b), the computation starts and 

stops at sufficient distance away from the inlet and the outlet of the flow domain. Hence 

the initial angular position iθ  and the corresponding value for iξ  are determined 

following a sensitivity analysis presented in Appendix A.4. Likewise, the final or the 
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outlet angular position oθ and the corresponding value of oξ  are determined. Once the 

inlet and the outlet boundaries are fixed, computation is started. As the computation 

begins, all the nodes on the tube wall along 0=η of Figure 3.5 are entered with a guessed 

value of constant wall temperature. Subsequently, the entrance nodes along 0=ξ are 

established on the basis of input parameters such as mass flow rate, inlet temperature 

and concentration of the solution. Once the entrance conditions are known, the 

calculation cycle starts for film thickness, velocity components, temperature and 

concentration on the nodes at a section adjacent to the entrance nodes.  

As demonstrated in Figure 3.5(b), at a particular row j along the ξ  direction, use of the 

2nd order backward difference scheme requires information from two corresponding 

back rows. Hence the entrance conditions for the temperature, concentration are 

extended at two corresponding back rows i.e. at (j-1) and (j-2) th. Operation begins with 

the determination of the film thickness, δ  using Eq. (3.12). Afterward velocity u and v 

at all the nodes on the (j-1), (j-2) and j-th rows are calculated by Eq. (3.13) and Eq. (3.1) 

respectively. An approximate mass flux vm&  is assumed. With this assumption all the 

matrix coefficients of the Tri-diagonal matrix (TDM) for concentration are determined 

as expressed in Appendix A.3.3. A TDM solver is needed to get the concentration at 

every inner node along η direction. Concentrations on the surface nodes are determined 

from the boundary conditions.  

Once the interface concentration is known, Eq. (3.8) provides the interface temperature 

followed by the determination of all the coefficients of the temperature matrix expressed 

in Appendix A.3.2. With the same TDM solver, temperature at every inner node is 

calculated. Boundary temperatures are known already. When the temperature and the 

concentration at all nodes of the j-th row are known, the mass flux of vapor, vm& is 

calculated from Eq. (3.7). The difference between the assumed mass flux and the 

calculated mass flux is checked. If the difference is greater than a pre-determined small 
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value, the cycle is repeated. When the convergence for a particular row, j is reached, the 

sequence of operations described above proceeds to the next row (j+1) with the increase 

of ξ  by an incremental value ξkd . The value of k depends on types of mesh used 

described in Appendix A.3.1. When uniform meshes are used along the direction ofξ , 

the value of k is 1 otherwise for non-uniform meshes, value of k is not equal to 1. The 

calculations stop at oξξ =  for a particular tube. 

The amount of net heat transfer to the coolant flowing through the particular tube 

segment is calculated using Eq. (3.15). With this calculated total heat transfer to the 

coolant and the guessed coolant outlet temperature, Eq. (3.18) calculates a new wall 

temperature. When the difference between the assumed wall temperature and the 

calculated wall temperature is less than a prescribed accuracy value, the calculations are 

ended for the tube segment.  After obtaining the converged solution for wallT , Eq. (3.19) 

provides the coolant inlet temperature of the tube segment. The calculated wiT  is 

considered the outlet coolant temperature, woT  for the next tube segment. The entire 

computational sequence is repeated until the last tube segment is reached. The coolant 

entering temperature to the last segment is assigned as the coolant entering temperature 

to the present and the outlet temperature for the next tube as shown in Figure 3.4.   

 
Solution of the bank of tubes  

Figure 3.4 explains that every tube is divided into an equal number of segments. LiBr 

solution after leaving a segment of a tube enters the segment of next tube just underneath 

with the same distribution patterns of temperature, concentration during its leaving the 

previous computational domain. It is assumed that the solution enters the present tube at 

the same angle during its leaving the previous tube as demonstrated in Figure 3.6.  
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Figure 3.6 Schematic diagram of film entering and leaving angle to a tube. 

 
 
Therefore, for the next consecutive tubes both the film entering and the leaving angles to 

a tube become equal to each other. The choices of entering and leaving angles to a tube 

are made after a thorough sensitivity analysis presented in Appendix A.4. As the 

computation continues for the tube bank, with the known coolant outlet temperature,  

computation begins with the assumption of a constant wall temperature in the present 

tube segment. The solution procedures for the single tube model are repeated. The tube-

by-tube solution procedure is used until the last tube is considered. The coolant inlet 

temperature computed for the last tube is then compared with the experimentally known 

value. If the difference between the computed and the experimental values is greater 

than a predetermined small value, the whole calculation procedure is repeated with a 

new value assumed for the coolant outlet temperature. The use of under-relaxation 

parameters speeds up convergence of the solutions. A simplified block diagram of the 

entire solution procedure is represented in Figure 3.7 for further clarification. It is 

important to specify that the computational sequences for the tube segments are skipped 

in the diagram just for simplicity. 
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 Figure 3.7 Solution flow diagram. 
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Figure 3.8 Bulk concentration along the absorber length at different grid sizes 

 

3.1.4.4 Grid independence 

As already demonstrated in Figure 3.5, the grid sizes in the non-uniform region 

gradually increases following a geometric progression rule along ηξ − directions. 

Selecting different values of geometric series constants βα , along ηξ , directions 

respectively, a great deal of grid size variations can be achieved. In this study however, 

the βα , selections are kept equal. The grid size variations in both non-uniform and 

uniform regions along ηξ −  are therefore achieved by maneuvering the number of grid 

points in each region and the total non-uniform grid length along ηξ ,  for different 

choices of βα , . The values of βα , are chosen in this study from 1.1 to 1.5 with 

increment of 0.1 at each level. It is to be noted that 1== βα generates uniform grids 

along ηξ −  fields. Grid independence is tested for the single tube model before 

extending it to the column of tubes. Grid independence is also tested for overall 

performance of the horizontal tubular absorber for which sample results are presented in 

Figure 3.8. 
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3.1.4.5 Incomplete wetting of the tubes 

A major issue related to the tubular absorber performance is the partial wetting of the 

absorber tubes as the solution flows across the tubes under gravity. Due to partial 

wetting less surface area of the falling film participates in vapour absorption. In order to 

investigate the effect of partial wetting on the performance, this effect is incorporated in 

the modeling. The absorber models described in sections 3.1.2-3.1.3 and later in section 

3.2 are modified to include variable wetting ratios for the different tubes in a manner 

similar to that of Frances and Ojer [27]. 

Due to partial wetting there is a progressive decrease in the effective length of the tubes 

which is computed by multiplying the actual tube length by the local wetting ratio. 

If the wetting ratio changes from one tube to the next, the mass flow rate per unit length 

is given by: 

LWR
mN

WR
WRmm

n

vdd

n

n
nsns

&
+= −

−
1

1,,                                           (3.20) 

where the second term on RHS represents the mass of vapour absorbed  in the inter-tube  

flow and dN is the number of droplet/jet generating locations underneath the tube to be 

described in chapter 5 and chapter 6. 

 
3.1.5 Vertical flat plate model 

An equivalent vertical plate model of a horizontal tubular absorber is also considered in 

the present study. As shown in Figure 3.1, in the vertical plate model, a film of solution 

forms on the face of the plate and cooling water flows on the other side of the plate in a 

counter-current direction. The effective length of the vertical plate is determined from 

the following relation: 

hNorNpL )1( −+= π ;         (3.21) 

Where N is total number of tubes with length L and h is the gap between tubes. 
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Figure 3.9 Schematic representation of coolant flow of a vertical plate absorber 

 
Since the coolant flows on the other side of the plate, the wall temperature varies along 

the entire length of the absorber. Hence, the coolant flow model is developed based on 

variable wall temperature. The schematic representation of counter-flow coolant is 

exhibited in Figure 3.9. The governing equations Eqs. (3.1) - (3.3) are still used though 

the boundary conditions are revised as stated below. 

 
At entry to the plate the temperature and concentration of the solution are uniform 
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The rate of vapour absorption at the interface of the film is equal to the radial diffusion 

rate   
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Film thickness is defined as  
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3
1

3
⎥
⎦

⎤
⎢
⎣

⎡ Γ
=

gρ
νδ                                                            (3.25) 

and velocity along the flow is written as: 

[ ]22
2

yygu −= δ
ν

                          (3.26) 

On the coolant side, following energy balance equations are written; 

( )wiTwoTpwcwmQL −=2                (3.27) 

where  
0=∂

∂
=

yy
TdLkQ ps                                      (3.28) 

( )wavwallpwater TTLdLhQL −=                             (3.29) 

where 
2

wowi
wav

TTT +
=                (3.30) 

The governing equations Eqs. (3.1)-(3.3), (3.25)-(3.26), together with the boundary 

conditions Eqs. (3.22)-(3.24) are solved simultaneously with Eqs. (3.27)- (3.30). The 

solution procedure described for detailed round tube absorber is also applicable for 

vertical plate absorber with some minor changes.  

 
3.1.6 Results : numerical model 

The results obtained from three geometrical models of horizontal tubular absorbers are 

summarized below. For the sake of comparison, none of the models incorporate inter-

tube absorption. The operating conditions are taken from the experiments of Islam [43]. 

Under the same operating conditions, film thickness, absorbed mass flux, bulk 

temperature and concentration of LiBr, variations along the length of the absorber are 

shown in Figures 3.10-3.13. The length of the absorber is the same for the three models, 

which is calculated from )006.02324( 0 ×+×= rLp π on one side for total 24 tubes with 6 mm 

tube-to-tube distance [43].  
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Figure 3.10 Film thickness [m] variations along the length of the absorber; (a) 
detailed round tube model, (b) segmented plate model, (c) vertical plate model. 

 
 

The variation of the absorbed mass flux predicted by the three geometrical models are 

shown in Figure 3.11. The solution enters the first tube with a high degree of sub-

cooling. Here the solution film enters the absorber with a temperature ( C08.39 ) much 

lower than the equilibrium temperature )25.53( 0 C  at the inlet condition )604.0( =inw . This 

results in a high mass absorption rate in the first tube. The mass flux after the first tube 

shows oscillatory changes due to the variation of the film thickness with angular position 

as predicted by the detailed round tube model. The tube-wise variation of film thickness 

is clearly visible in Figure 3.10 by the different models. Following the asymptotic 

variations of film thickness over the round tubes, at the entrance and exit of a tube where 

the film is thicker, the absorption rate is lower while it is a maximum near the middle of 

the tube. But the other two flat plate models show continuous decrease of the mass flux 

along the entire length of the absorber. Among the two plate models, the continuous 
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plate model shows higher mass flux even though the film thickness is same for both 

which is expressed in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Absorbed mass flux [kg.m-2s-1] variations along the length of the 
absorber; (a) detailed round tube model, (b) segmented plate model, (c) vertical 

plate model. 
 
 

The difference between the predictions of the two plate models is due mainly to the 

differences in the coolant temperature variation for the two models. For the segmented-

plate model, each segment represents a single tube across which the coolant temperature 

is constant where as for the vertical plate model, the coolant temperature varies 

continuously from inlet to outlet, as in a vertical tube absorber. The continuous cooling 

of the vertical plate leads to higher mass absorption rate.  

The variation of the solution bulk temperature predicted by the three geometrical models 

are shown in Figure 3.12. The solution bulk temperature rises rapidly across the first 

tube as seen in the figure and decrease gently thereafter. The predictions of the round 

tube model and the segmented plate model agree closely. The vertical plate model 

predicts a higher solution temperature due to the larger mass absorption rate.  
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   Figure 3.12 Bulk solution temperature variations along the length of the 
absorber; (a) detailed round tube model, (b) segmented plate model, (c) vertical 

plate model. 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.13 Bulk solution concentration[%LiBr/100] along the length of the 

absorber; (a) detailed round tube model, (b) segmented plate model, (c) vertical 
plate model. 

 
In Figure 3.13, the variation of bulk concentration of LiBr solution is plotted along the 

length of the absorber. Comparing the three model results, vertical plate model exhibits 

much lower drop in bulk concentration followed by segmented flat plate model and the 
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detailed round tube model. The concentration drop is directly proportional to the mass 

flux of absorbed vapour which explains the concentration change by the three models. 

 
3.1.7 Inter-tube flow and absorption 

When the thin film of solution leaves a tube, it enters to the inter-tube flow regime. 

Inter-tube flow may take several forms like droplet or jet or sheet depending on solution 

mass flow rate as described by Hu and Jacobi [39]. In a later chapter, details of the 

experimental and theoretical studies on different inter-tube flow modes are presented. 

Among the three possible modes of inter-tube flow, inter tube sheet flow is taken into 

consideration here because of the possible implementation of numerical solution 

explained in Figure 3.14.  

 

 

 

 

 

 

 

 

 
 
(a) Schematic diagram of inter-tube sheet flow 
 
 
Figure 3.14 Continuous sheet flow between the tubes 
 

 

The numerical model of inter-tube sheet flow necessitates using an adiabatic flat plate 

formulation in between the tubes as demonstrated in Figure 3.14 (a) and (b). The 

governing equations in section 3.1.5 are used with a modified wall side boundary 
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condition. Instead of using a variable wall temperature, an adiabatic wall is defined on 

the boundary [ 0=wallQ ]. 

The necessary changes are made in the discretization of the governing equations. The 

numerical solution procedure remains the same as that discussed in section 3.1.4.3. Row-

wise computation begins with an assumption of mass flux vm&  at x = 0 of Figure 3.14 

(b). After getting a converged solution for the mass flux of vapor at each row, the 

calculation stops at the near entrance of the next consecutive tube at x = h, where h is the 

gap between two tubes as shown in Figure 3.14 (b).  

 
3.2 Simplified model of horizontal tubular absorbers 

The detailed numerical simulation model developed in the forgoing section incorporates 

most of the important physical processes in a tubular absorber. Nevertheless it may not 

be suitable for routine design application and for the analysis of experimental data. For 

use in the latter situations, it is desirable to develop a simplified model similar to the 

models used in heat exchanger analysis. Such a model is presented in the following 

section. The simplified design model is developed for horizontal tubular absorbers with 

a counter-flowing coolant. The detailed numerical model described above is used as the 

base line to obtain the relevant heat and mass transfer coefficients. The predictions of the 

models are compared with available experimental data. 

 
3.2.1 Simplified model for a single horizontal tube 

In this section a simplified model is developed for the design analysis of horizontal 

tubular absorber. The analytical procedure follows the model presented by Islam et al. 

[46] for vertical plate absorbers. However, considerable modifications are done to make 

the model applicable to a bank of horizontal tubes with the coolant flowing in a 

serpentine fashion in the opposite direction. The present model, which also includes a 

simplified analysis of inter-tube flow, is therefore more realistic when applied to 
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counter-flow tubular absorbers.  Moreover, the model can be used to extract overall heat 

and mass transfer coefficients from experimental data of horizontal tubular absorber.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.15     Physical model of the falling-film over a tube. 

  

 

 

 

 

 

 

 

 

Fig. 3.16    Schematic diagram of tube-bundle absorber. 

 
The governing equations are written for a control volume at a section in a single 

horizontal tube as shown in Figures 3.15 and 3.16. The heat and mass transfer from the 
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interface to the bulk solution and the heat transfer from the bulk solution to the coolant 

are represented in terms of the respective heat and mass transfer coefficients.  

Mass balance for the control volume in Figure 3.15 gives  

θδ dmrmdmm wsosss )( ++=+             (3.2.1) 

where wsm  is the rate of absorption of water vapour per unit length at the interface , δ is 

the local film thickness and or  is the outer radius of the tube. 

The energy conservation equation of the control volume is 

( )( ) ( ) θθδ drTTUdiidmmdrmiim owsbwssssowsvss −+++=++ )(        (3.2.2) 

where  bwU  is the overall heat transfer coefficient from the bulk solution to the coolant. 

The cooling water temperature wT  at the section is assumed uniform and independent of 

the angular positionθ . 

From Eqs. (3.2.1) and (3.2.2)  

( )wsbwo
s

s
s

vs TTUr
d
di

m
d
dm

i −+=
θθ

            (3.2.3) 

 where  svvs iii −=  

Enthalpy of the solution is expressed as a function of temperature and concentration 

( )sss wTfi ,=                                                                                              (3.2.4) 

Differentiating Eq. (3.2.4) 

θθθ d
dT

c
d
dw

c
d
di s

T
s

w
s +=               (3.2.5) 

The coefficients wc  and Tc  which are essentially specific heat capacities that are 

assumed constant over the narrow range of temperatures and mass fractions encountered 

in real absorbers. Also, the solution mass flow rate is assumed constant in coefficient of 

Eq. (3.2.3). 

Subject to the above assumptions, the energy Eq. (3.2.3) for the solution film can be 

written as,  
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           (3.2.6) 

The overall heat transfer coefficient from solution bulk to the coolant is given by 

wall

wall

iwaterbw khhU
δ

++=
111                      (3.2.7)  

The mass transfer rate equation can be written as: 

 θδρ drwwkdm oifsmss ))(( +−=                                                              (3.2.8) 

The interface boundary condition is obtained by applying the energy equation to an 

infinitesimal control volume surrounding the interface. This gives:     

θθρ drTThdriwwk osifooabifssm )()( −=−                                        (3.2.9) 

where abi  is the enthalpy of absorption. 

Assuming the interface equilibrium condition to be linear 

ifif bTaw +=                                               (3.2.10) 

where a and b are functions of the absorber pressure 

From Eqs. (3.2.9) and (3.2.10) it follows that 

( )
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bwbTa
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if +
++

=
λ

λ
           where         

smab

o
ki
h
ρ

λ =                          (3.2.11) 

Substituting in  Eq. (3.2.8) for ifw  

( )[ ]ssefso
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d
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+−+= ρδ
θ

)(                       (3.2.12) 

where the effective mass transfer coefficient is defined as:          

o

sab

mef h
bi

kk
ρ

+=
11               (3.2.13) 

Since the mass flow rate of absorbent is constant 

s

l
s w

m
m =                                                                      (3.2.14) 

Differentiating Eq. (3.2.14)  
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The RHS of the above expression is made linear by approximating the variable term 2
sw    

with the average value  2
sw  . The validity of assumption has been discussed in [46]. 

From Eqs. (3.2.12) and (3.2.15)                 
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                                                    (3.2.16) 

Substituting in Eq. (3.2.6) from Eq. (3.2.16) the following form of the energy equation is 

obtained. 
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Eqs. (3.2.16) and (3.2.17) can be expressed in terms of two new variables, as was done 

in [46]. These variables are essentially driving potentials for heat transfer and mass 

transfer respectively and they may be expressed as:  

ws TT −=φ         and    )( ss bTaw +−=ψ                                   (3.2.18) 

For the present analysis with a round tube the water temperature wT  is assumed to be 

independent ofθ .  

The Eqs. (3.2.16) and (3.2.17) when expressed in terms of the new variables take the 

forms: 
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Eqs. (3.2.19) and (3.2.20) are nonlinear due to a significant variation of the film 

thickness with the angular positionθ . However, if the solutions of the equations are 

sought at angular distances away from the inlet and the outlet positions, 0 andπ , the 
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above equations may be made linear by assuming an average film thickness. Moreover, 

the effective mass transfer coefficient efk  may be averaged to include the film thickness 

variation. The effect of these assumptions on the predictions of the model is investigated 

numerically later in the chapter. By assuming the coefficients of the coupled Eqs. 

(3.2.19) and (3.2.20) to be constant an analytical solution can be obtained. For this 

purpose these equations are expressed in the form: 

 φψ
θ
φ

21 gg
d
d

−=                                              (3.2.21) 

 φψ
θ
ψ

34 gg
d
d

+−=                                         (3.2.22) 

 where 
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The solutions for Eqs. (3.2.21) and (3.2.22) are obtained using the Laplace transform 

technique and the final form can be expressed as follows: 

)exp()exp()( 2211 θαθαθφ aa +=                                                   (3.2.25) 

)exp()exp()( 2211 θαθαθψ bb +=                                           (3.2.26) 

where the roots of the characteristic equation are: 

                         (3.2.27) 

The coefficients of the solutions are given by: 
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5.0
3142

2
424221 )](4)[(5.0)(5.0, gggggggg −−+±+−=αα



Chapter 3                                                                                                          Theoretical studies 

  
65
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30220
2

)(
αα

φαψ
−

++
=

gg
b                                         (3.2.31) 

where 0φ     and  0ψ    are the values at the inlet angular position inθ .  

The above model can be applied to each section of the various horizontal tubes of the 

absorber. The application of the model to obtain the overall performance of the tube-

bundle absorber is considered in a later section. 

 

3.2.2 Inter-tube absorption 

The solution flow between consecutive tubes of a tube-bundle absorber is a complex, 

often transient, process that could involve drop flow, jet flow or sheet flow. In the drop 

flow mode, drops originate at sites located on the underside of a tube. Depending on the 

inter-tube spacing and the liquid flow rate, a developing drop could touch the surface of 

the tube below. When this happens, the drop forms a narrow neck at which point it 

breaks up and part of the liquid is pulled back towards the point of origin while the rest 

of the liquid is transferred to the tube below. If the inter-tube spacing is sufficiently 

large, the drop will develop fully and break up at a narrow neck with the separated liquid 

taking a spherical shape and falling under gravity as a drop to land on the tube below.  

The details of these drop generation and break-up processes are reported in chapter 5 of 

present study. 

In this section, simplified coupled heat and mass transfer models for the absorption of 

vapour during drop formation and steady jet flow are developed. Several assumptions, 

similar to those described in section 3.2.1 are made in the development of the present 

simplified model. 
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3.2.2.1 Droplet formation model 

The formation of a droplet under a tube is likened to the filling of a flexible vessel with 

solution entering through the opening at the top of the vessel as illustrated schematically 

in Figure 3.17(a). As time progresses, the drop expands in volume and eventually 

touches the tube below as seen in Figure 3.17(b) when fluid begins to flow out  through 

an outlet port in the control volume representing the drop. This phase is usually called 

( )xfy =  

 

y

dA  
vm&  

Figure 3.17(c) Steady jet profile. 

Figure 3.17(a) Droplet profile during 
formation. 

em&  

( )tA  

( )tV  

vm&  

om&  

vm&  

em&  

x  

Figure 3.17(b) Droplet profile during 
bridging. 
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the bridge formation stage. The present drop formation model is developed to include 

the physical processes shown in both Figures 3.17(a) and 3.17(b). Since the control 

volume in Figure 3.17(b), with an entry and exit port, is more general, the governing 

conservation equations of mass, species and energy are derived for this configuration of 

the control volume. For the processes in Figure 3.17(a), the exit port closed.      

Vapour is absorbed at the outer surface of the drop whose shape changes with time as 

illustrated in Figure 3.17(a). The state of the contents of the drop is defined by a mean 

temperature and concentration which change with time.  The drop formation model is 

developed in terms of the time dependent droplet volume )(tV and surface area )(tA , 

where vapour absorption occurs. In the present study, the variation of the volume and 

surface area of the droplet is obtained from experimental data as described in section 

5.2-5.3 for different tube gaps and fluid flow rates. In a recent paper, Killion and 

Garimella [53] also presented such data on the variation of drop volume and surface 

area.   

 The heat and mass transfer rates from the outer surface of the droplet to the bulk liquid 

are expressed in terms of an overall heat transfer coefficient oh  and a mass transfer 

coefficient mk . The heat transfer from the liquid-vapour interface to the bulk vapour is 

represented by the heat transfer coefficient .vh  This  heat loss, in general, is estimated to 

be small [88]. However, the present formulation allows the formal inclusion of the 

vapour-side heat transfer with little additional effort.  

The overall mass balance for the drop gives:     

oevd
sd mmm

dt
dm

&&& −+=                                                                          (3.2.32)                        

where  LHS is the rate of  increase of mass while the RHS is the sum of the vapour 

absorption rate and the net  mass flow rate into the control volume.   sdm  is the mass of 
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the forming drop and om&  is the rate of outflow of liquid when the bridge is formed.  It 

should be noted that,  0=om&  for the drop development stage shown in Figure 3.17(a). 

Mass balance of LiBr in the drop can be expressed as:         

soee
ssd wmwm

dt
wmd

&& −=
)(

                                                                     (3.2.33) 

where sw  is the average concentration of LiBr in the drop. The concentration of the 

liquid leaving through the bridge is assumed to be the same as that of the bulk liquid.      

Energy conservation gives:                 

 ( ) )()(
vifvsoeevvd

ssd TThtAimimim
dt

emd
−−−+= &&&                                             (3.2.34)                       

where the RHS is the sum of the enthalpy of  absorbed vapour , the net enthalpy flow 

into the control volume and the vapour-side heat transfer  while the LHS is the rate of 

increase of the internal energy of the drop. The enthalpy of the leaving liquid and the 

bulk liquid are assumed equal.  Heat transfer from the forming drop to the coolant tube 

is neglected.  

The vapour absorption rate can be expressed by a mass transfer rate equation:       

( ) )( ifssmvd wwktAm −= ρ&                                                                       (3.2.35) 

where ( )tA  is  the exposed area of the drop which varies with time and ifw  is the 

concentration at the interface.  

Energy balance at the vapour-liquid interface of the drop gives:      

( ) ( ) ( ) )()()( vifvsifoabifssm TThtATThtAiwwktA −+−=−ρ                         (3.2.36)  

where abi  is the enthalpy of absorption , ifT  is the temperature at the interface and vT  is 

the temperature of the vapour.  

The internal energy of the solution is assumed to vary linearly with temperature and 

concentration. Therefore  
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oswsts cwcTce ++=                                                                                               (3.2.37) 

oewete cwcTce ++=                                                                                          (3.2.38) 

where owte ccce ,,,  are constants.  

Differentiating Eq. (3.2.37)  

 
dt

dTc
dt

dwc
dt

de s
t

s
w

s +=                                                                                        (3.2.39) 

The equilibrium relation at the interface is expressed in the linear form given by  

 ifif bTaw +=                                                     (3.2.40) 

Substituting for ifw  in Eq. (3.2.36) from Eq. (3.2.40), the following expression is 

obtained for ifT , 

absmvo

vvsosabsm
if bikhh

ThThawikT
ρ

ρ
++

++−
=

)(                                                                           (3.2.41) 

Eliminating  ifw  between Eqs. (3.2.35) and (3.2.40), the vapour mass flow can be 

written as:  

( ) )]([ ifssmvd bTawktAm +−= ρ&                                                                                 (3.2.42) 

Substituting for ifT in Eq. (3.2.42) from Eq. (3.2.41), the vapour absorption rate can be 

expressed as: 

( ) )]()[( vs
o

v
sssefvd bTaw

h
h

bTawktAm −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−= ρ&                                                (3.2.43)      

where the effective mass transfer coefficient is defined as:   
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⎞
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⎝

⎛
+= 111                                                (3.2.44)                        

From Eqs. (3.2.32) and (3.2.33)  

)( seesvd
s

sd wwmwm
dt

dwm −+−= &&                                                                             (3.2.45) 

From Esq. (3.2.32) and (3.2.34)  
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( ) )()()()( vifvssossesvvd
s

sd TThtAeimeimeim
dt

de
m −−−−−+−= &&&                        (3.2.46) 

In Eq. (3.2.46) the enthalpies of liquid ei  and si   are approximately equal to the 

corresponding internal energies ee  and  se  respectively, which can be expressed in 

terms of the temperature and concentration using the linear relations (3.2.37) and 

(3.2.38).  The LHS of Eq. (3.2.46) is expressed in terms of temperature and 

concentration using with Eq. (3.2.39).   These manipulations result in the following 

equation: 

( ) )()()()( vifvsewesetesvvd

s
tsd

s
wsd

TThtAwwcmTTcmeim
dt

dT
cm

dt
dw

cm

−−−+−+−=

+

&&&
                          (3.2.47)  

Eliminating ( dtdws / ) between Eqs. (3.2.45) and (3.2.47),  

( ) )()()( vifvesteswsvvd
s

tsd TThtATTcmwceim
dt

dT
cm −−−++−= &&                          (3.2.48)                        

Substituting for vdm&   from   Eq. (3.2.43) in Eq. (3.2.45), the following equation is 

obtained. 
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Substituting for vdm&  from Eq. (3.2.43) and for ifT  from Eq. (3.2.42) in Eq. (3.2.47) the 

following equation is obtained. 
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                                  (3.2.50) 

where the coefficients are given by : 

swsv wceig +−=5      and           abswsv iwceig −+−=6                                      (3.2.51) 
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The simultaneous solution of Eqs. (3.2.49) and (3.2.50) gives the variation of the 

concentration and temperature of the drop with time allowing for vapour –side heat 

transfer.  

When the vapour-side heat transfer is neglected ( )0=vh  and the mass of the drop is 

expressed by, )(tVm ssd ρ=  , Eqs. (3.2.49) and (3.2.50 ) become: 

( )
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                                      (3.2.52) 

and 
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                             (3.2.53) 

where   )( svvs eii −= , which is assumed constant at the average value.  

As a further simplification, Eqs. (3.2.52) and (3.2.53) can be reduced to a single 

equation  by defining new variable  given by : 

)]([ sss bTaw +−=φ                                                                                               (3.2.54) 

Differentiating Eq. (3.2.54) and substituting for ( dtdws / ) and ( dtdTs / ) from Eqs. 

(3.2.52) and (3.2.53) respectively, the combined Eq. (3.2.55) is obtained. 
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where:  
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⎡
++=
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vs

t

sw
sefd c

bi
c

wbcwkβ                                                                            (3.2.56) 

It is seen that sφ  is the departure of the bulk concentration of the drop from the 

equilibrium concentration at the corresponding bulk temperature.  The corresponding 

value for the entering solution is eφ . 
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If the time variation of the drop area  )(tA  and drop volume )(tV , are  known 

experimentally , Eq. (3.2.55) can be solved directly to obtain the variation of )(tsφ  

provided the liquid inflow rate can be estimated. Since the change in the volume of the 

drop resulting from the absorption of vapour is very small, it would be reasonable to 

assume that ( ) )/( dttdVm se ρ≈& , for the drop development shown in Figure 3.17(a). The 

term )/( dtdV can be obtained from the slope of the volume versus time curve as shown 

in chapter 5 and 6.  

It is interesting to note that the governing Eqs. (3.2.49) and (3.2.50) with vapour-side 

heat loss and Eqs.(3.2.52) and (3.2.53) without it are applicable to both the drop 

development stage shown in Figure 3.17(a) and the bridge formation stage shown in 

Figure 3.17(b). Although these equations do not involve the outflow rate, om&  explicitly,   

the difference between the two situations is implicit in variation of )(tA  and )(tV  with 

time.   For the bridge formation stage, an assumption has to be made about the liquid 

inflow rate to the control volume during the period.  In the absence of any other 

information, it is reasonable to assume the liquid inflow rate remains constant at the 

value just before the formation of the liquid bridge.  

The liquid outflow rate from the control volume during the bridging phase is given by:  

( )
dt

tdVmm sebo ρ−≈ &&                                                                                              (3.2.57) 

 The total liquid mass transferred to the tube below during bridging is: 

 bsbebdo Vmm Δ+=Δ ρτ&                                                                                       (3.2.58) 

where bτ  is the duration of liquid bridging and bVΔ  is the decrease in the drop volume 

during this period.  

The quantities involved in Eqs. (3.2.57) and (3.2.58) can be obtained from time 

variation of )(tV . 
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θ  
dr  

em&  

vdm&  ( )tA  

( )tV  

Tube 

 After the variation of )(tsφ  is computed by solving Eq. (3.2.55), the resulting values 

are substituted in Eqs. (3.2.52) and (3.2.53) to solve for sw  and sT  respectively. The 

solution procedure is carried out continuously from the start of the drop formation to 

the break up of the liquid bridge using a fourth- order Runge-Kutta solution scheme. 

When the vapour-side heat transfer is included in the analysis, Eqs. (3.2.49) and 

(3.2.50) are solved using a similar numerical scheme.  The variation of  )(tA  and )(tV , 

obtained from the video image analysis, is supplied as input data.  The other input 

parameters are stated below. 

 
• The thermo-physical property data required as input are: density, viscosity, specific 

heat, thermal conductivity, thermal and mass diffusivity of the LiBr solution. 

• The initial conditions required are: mass, temperature, concentration of solution at the 

beginning of drop formation. The initial mass is assigned zero of the forming droplet. 

Initial temperature and concentration are assigned with the known values leaving the 

last falling film regime. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.18 Schematic diagram of the formation of a hemispherical droplet. 
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3.2.2.2 Idealized droplet formation model 

The droplet formation model stated above in section 3.2.2.1 can be applied for any 

known shape of the flexible vessel. In the present idealized model of the forming 

droplet, the shape is taken as a cap of a sphere as shown schematically in Figure 3.18. As 

time proceeds the angle )(tθ  of the cap increases from zero to 2/π . The area and 

volume of the cap at any instant is obtained from the geometry of the spherical cap as: 

( ) [ ]θπ cos12 2 −= drtA                                   (3.2.59) 

and 

3/]coscos32[)( 33 θθπ +−= drtV                                                                       (3.2.60) 

 
The equations developed in section 3.2.2.1 are applicable to the idealized droplet 

formation model in this section except the following assumptions.  

Assuming that the rate of inflow of solution from top, em&  to form the idealized drop is 

constant the mass balance for LiBr gives: 

twmwm eessd &=                                                               (3.2.61) 

The mass inflow rate em&  is determined in a manner similar to that stated in section 

3.2.5.1.  

The solution of Eqs. (3.2.52) and (3.2.53) require as input the thermo-physical properties 

of the solution which are obtained from property tables. The mass transfer coefficient mk  

is calculated using the correlation in Siyoung and Garimella [88] for this idealized 

droplet formation case.  The convective heat transfer coefficient oh  during drop 

formation is determined from the heat and mass transfer analogy stated in section 3.2.2.4 

where the exponent ‘n’ is taken as 0.33. The solution of Eqs. (3.2.52) and (3.2.53) 

involves an iterative procedure due to the non-linear form of the equations. As the drop 

develops, an increment in the time t  and the angle θ  are assumed. The values of )(tA  , 
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Water 

Solution 
Vapor 

)(tV , sdm  , sw  and sT  are computed using Eqs. (3.2.59), (3.2.60), (3.2.61), (3.2.52) 

and (3.2.53) respectively. Iteration for the final value of θ  at a particular time t is carried 

out until the relation ssd tVm ρ)(=  is satisfied. Thereafter the value of θ  is increased 

incrementally and the procedure is repeated until the value of θ  reaches 2/π . At this 

stage the drop has attained a hemispherical shape and is assumed to be dislodged from 

the tube.  

 

3.2.2.3 Steady-jet / sheet model 

For the jet and sheet flow modes, the simplified model developed in section 3.2.1 could 

be applied with suitable modifications. The main equations of the model are outlined 

below. Figure 3.17(c) shows a jet profile and Figure 3.19 shows a sheet-flow strip 

between two tubes. The vapour is absorbed at outer exposed surface of the jet/sheet-flow 

strip which is assumed to have a fixed shaped. The flow is assumed steady but all the 

other assumptions made in the simplified model developed in section 3.2.1 are applied to 

the inter-tube flow situation. As in the case of drop formation, the liquid is not cooled 

during inter-tube jet/sheet flow and therefore the absorption process is adiabatic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 3.19 physical model for inter-tube flow. 
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The governing equation for the bulk solution concentration and bulk solution 

temperature are obtained by applying conservation equations of energy and mass to the 

small control volume shown in Figure 3.17(c) or 3.19. In this formulation, the heat 

transfer from the liquid-vapour interface to the bulk vapour is assumed to be zero. This 

gives: 

sjvssj dmiimd =)(                                                                             (3.2.62) 

The above equation can be expanded in a manner similar to equations (3.2.1) to (3.2.6) 

to yield the following equation:          

swsjsTsjsjvs dwcmdTcmdmi +=                                          (3.2.63) 

where   svvs iii −=  

The mass transfer rate equation from the interface to the bulk of the solution may be 

expressed as: 

dAwwkdm ifsmssj )( −= ρ                                                                   (3.2.64) 

where dA is the exposed area of the small control volume shown in Figure 3.17(c) or 

Figure 3.19. 

Assume that the interface energy balance, given by Eq. (3.2.9), and the linear 

equilibrium condition expressed by Eq. (3.2.10) apply to the interface. Carrying out the 

manipulation leading Eq. (3.2.11), the mass flux may be expressed in following form: 

dAbTawkdm ssefssj )]([ +−= ρ                                                    (3.2.65) 

Since the mass of LiBr is constant 

s

l
sj w

m
m =                                                                                   (3.2.66) 

Differentiating Eq. (3.2.66) and linearizing the resulting expression in a manner similar 

to Eq. (3.2.15), the following expression is obtained: 

s
s
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= 2                                                                          (3.2.67) 
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Substitution of Eq. (3.2.67) into Eq. (3.2.65) gives: 

( )[ ]ssefs
l

ss bTawk
m
w

dA
dw

+−−= ρ
2

                                             (3.2.68) 

By substituting Eq. (3.2.65) and (3.2.68) into Eq. (3.2.63), the equation for the solution 

temperature may be written as: 
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Substituting the new driving potential, )( ss bTaw +−=ψ , the above equations are  

reduced to a single equation given by 
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                                                 (3.2.70) 

 The solution of Eq. (3.2.70) gives exit value of the driving potential of the inter-tube 

flow as: 

Α−= 5g
ino eψψ                                                                                             (3.2.71) 

where   
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5 ρ                                                            (3.2.72) 

The solution concentration and temperature are obtained by direct substitution in Eqs. 

(3.2.68) and (3.2.69) as: 
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In Eq. (3.2.75), efk  is the effective mass transfer coefficient which has to be suitably 

evaluated by using Eq. (3.2.44) with vapour side heat transfer coefficient 0=vh   and 

sjm  is the mass flow rate through the jet.  

The profile of the steady jet is fitted with a polynomial as in the case of the evolving 

drops. The shape of the jet is taken as the solid of revolution obtained by rotating the jet 

profile curve about the axis of symmetry.  The external area of the jet, shown in Figure 

3.17(c), is given by   

∫ ′+= dxyxA 2/12 )1(2π                                                        (3.2.76) 

 where   )(xfy =   is the  polynomial curve of the profile and  dxdyy /=′ . 

 
The bulk mean concentration and temperature of the jet/sheet at each section of A  is 

obtained directly from Eq. (3.2.73) and Eq. (3.2.74) respectively. The initial values of 

these quantities siw , siT  and the mass flow rate sjm  are known from the leaving 

conditions of the falling film from which the jet/sheet originates.  

 

3.2.2.4 Transfer coefficients in the inter-tube flow regime 

The measured data for the mass transfer coefficient mk for drop formation or jet/sheet 

flow are not available at the present time. Siyoung and Garimella [88] have used a 

correlation for mass transfer coefficient during drop formation which was developed by 

Skelland and Minhas [89] for drop formation in liquid-liquid extraction. In view of these 

uncertainties with regard to mk , its value for drop formation or jet/sheet flow is taken to 

be the same as that for falling film. In the falling film regime, the mass transfer 

coefficient is determined from the detailed numerical model described in section 3.1. 

However, a detailed sensitivity study was carried out for which results are documented 

in Appendix C and also discussed in section 6.2. The heat transfer coefficient during 

inter-tube flow is determined from following heat and mass transfer analogy: 
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( )( )n
ababsmo DDkkh α=                       (3.2.77) 

where abD  is the mass diffusivity of LiBr solution.  

Unfortunately, no reported data on a suitable value for the exponent ‘n’ could be found 

in the literature. Therefore the effect of the value of the exponent on the predicted 

absorption rate was explored by a sensitivity study also described in Appendix C. 

 
3.2.3 Simplified model for a horizontal- tube-bundle absorber 

A schematic diagram of a horizontal tube-bundle absorber is shown in Figure 3.16. The 

analysis in section 3.2.1 for a single tube is now applied to the  thn  tube of a series of N 

tubes. In the present analysis, the temperature and concentration of the solution entering 

a horizontal tube from top and leaving at the bottom are assumed to be spatially uniform. 

Although the analysis takes into consideration the variation of the cooling water 

temperature in a tube, for the purpose of estimating the heat transfer from the solution 

film to the water, the latter is assumed to be the average water temperature in the tube.  

Application of the energy equation to the cooling water gives: 

∫∫ =−=
o

i

o

i

dUrdUTTr
dz

dT
cm bwobwwnsno

wn
pww

θ

θ

θ

θ

θφθ 2)(2                                    (3.2.78) 

The average water temperature for the thn  tube is wnT . 

Substituting from equation (3.2.25) forφ  and rearranging 

∫ +=
o

i

daaUr
dz

dT
cm bwo

wn
pww

θ

θ

θθαθα )]exp()exp([2 2211                  (3.2.79) 

In Eq. (3.2.79) the quantities that vary from tube to tube are the inlet values of 0φ  and 

0ψ  that occur in the coefficients 1a  and 2a as seen from Eqs. (3.2.28) and (3.2.29).  The 

expressions for these coefficients are first substituted in Eq. (3.2.79) and the integration 

is carried out over θ  from entry to exit of the solution flow. The water temperature rise 

in a tube is then obtained by integrating the resulting expression over the tube length z  
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from inlet to outlet. These manipulations result in the following expression for the inlet 

and outlet water temperatures of the  thn  tube: 

ininwinwon HGTT ψφ +=−                                      (3.2.80) 

where  inφ  and inψ  are values of the driving potentials at entry to the thn  tube. Once 

evaluated, the coefficients G and H, given below, have the same value for all the tubes. 
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Now      )(5.0sinsin wonwinwnin TTTTT +−=−=φ                                         (3.2.83) 

Substituting in Eq. (3.2.80) the expression for inφ  from Eq. (3.2.83) the relation between 

the inlet and outlet water temperatures is obtained in terms of quantities that are all 

known at the inlet to the thn tube.   

)]([22)2()2( sinsinsin TbawHTGTGTG winwon +−+=−++              (3.2.84) 

The outlet values of the potential onφ  and onψ  for the thn  tube are obtained by direct 

substitution in Eqs. (3.2.25) and (3.2.26) respectively. The outlet solution temperature 

from the thn  tube is given by the expression 

onwonwinson TTT φ++= )(5.0                                                         (3.2.85) 

If inter-tube absorption is neglected, the average temperature and concentration of the 

solution leaving one tube is equal to the corresponding average quantities of the solution 

entering the tube below. This is also true for cooling water leaving one tube and entering 

the next. Therefore; 

sonnsi TT =+ )1(  ,   sonnsi ww =+ )1(    , onni ψψ =+ )1(  and winnwo TT =+ )1(             (3.2.86) 
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It is seen from Eq. (3.2.83) that the heat transfer potentialφ  for the solution at exit of a 

tube is not equal to the value at entry to the next tube because the average water 

temperature changes from one tube to the next. 

When inter-tube vapour absorption, in the form of absorption into drops/jets or sheets 

between the two tubes, is included in the analysis, the concentration and temperature of 

the solution entering the tube below are obtained using Eqs. (3.2.52) and (3.2.53) or Eqs. 

(3.2.73) and  (3.2.74) respectively.   

The computational steps for the application of the above simplified model are 

summarized below. The basic input design data are used to calculate the coefficients 1g  

to 4g , the roots 1α  , 2α  and finally  the coefficients H and G . These quantities apply to 

all the absorber tubes. For a counter flow design, the inlet water temperature is usually 

known only at the inlet to the last (N) tube. Therefore the outlet water temperature from 

the first tube is guessed to be later corrected in an iterative manner. Eq. (3.2.84) is used 

to calculate the inlet water temperature to the first tube and the average water 

temperature in the tube. Since the values of the potentials inφ  and inψ  are known at the 

inlet to the tube, the corresponding values at exit are computed by direct application of 

Eqs. (3.2.25) and (3.2.26). Eqs. (3.2.85) and (3.2.86) give all the quantities needed to 

apply the above steps to the next tube when inter-tube absorption is neglected. When 

inter-tube absorption into drops/jets or sheets is included, Eqs. (3.2.52) and (3.2.53) or 

Eqs. (3.2.73) and (3.2.74) are used to compute the entry conditions to the next tube. 

Finally, the inlet water temperature of the last tube N, computed in the above manner, is 

compared with the actual water inlet temperature and the iteration is terminated when 

convergence is achieved.   
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3.2.4 Approximate expressions for driving potentials 

Computations carried out using the experimental data from Islam [43] for a horizontal 

tubular absorber and from Miller [65] for a vertical tube absorber revealed that for 

practical situations one of the roots given by expression (3.2.27) is much larger than the 

other root [46].  It is therefore possible to derive approximate closed-form expressions 

for the roots of Eq. (3.2.27) which in turn may be used to obtain closed-form expressions 

for the temperature and concentration distributions across the absorber. The main 

expressions are outlined below.  

Eliminating the potential ψ  between the differential Eqs. (3.2.21) and (3.2.22) the 

following second order equation is obtained for the potentialφ . 

0)()( 3142242

2
=−+++ φ

θ
φ

θ
φ gggg

d
dgg

d
d                                                        (3.2.87) 

Exact solution of Eq. (3.2.87), which is given by Eq. (3.2.25), shows that for practical 

ranges of operation of absorbers [43], the third term of the equation is much smaller than 

the other two terms for small values of θ . Therefore neglecting the third term and 

integrating the resulting equation the following asymptotic form is obtained for small 

values ofθ . 

142 )( cgg
d
d

=++ φ
θ
φ                                                                                          (3.2.88) 

where 1c   is a constant.  

For large values of θ , the first term in equation (3.2.87) is found to be much smaller 

than the other two terms. Neglecting the first term the asymptotic form of the equation is 

obtained as: 

0
42

3142 =⎥
⎦

⎤
⎢
⎣

⎡
+
−

+ φ
θ
φ

gg
gggg

d
d                                                                                  (3.2.89) 

Eqs. (3.2.88) and (3.2.89) are similar to the governing equation for the fluid temperature 

difference of a counter-flow heat exchanger [25] with the exponents given by:  
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Substituting from expressions (3.2.23) and (3.2.24), the exponents may be written in 

terms of the basic system parameters as: 
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It is interesting to note that the exponent a1α  is equal to the weighted sum of the number 

of transfer units for heat transfer, ⎥
⎦

⎤
⎢
⎣

⎡

Ts

bwo

cm
Ur and mass transfer, ⎥

⎦

⎤
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⎡ +

s

efso

m
kr ρδ )(

. The 

exponent a2α  is the reciprocal of the weighted sum of the reciprocals of the above 

transfer units. The parameter cf  is the sum of a dimensionless effective heat capacity 

and the mean concentration of the solution. The initial variation of the heat and mass 

transfer potentials given by Eqs. (3.2.25) and (3.2.26) is determined by the numerically 

larger exponent  a1α  while the variation at larger distances from the entrance of the 

absorber is dominated by the numerically smaller exponent a2α .  The validity of the 

approximate expressions and their variations are explored numerically later in the 

chapter. 

 
3.2.5 Results and discussion: modeling 

3.2.5.1 Comparison of idealized droplet formation model 

The predictions of the drop formation model presented in section 3.2.2.2 can be 

compared with those of the corresponding model available in Siyoung and Garimella 
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[88] for the same experimental conditions. In their case, a hemispherical droplet during 

formation stage was allowed to grow until its volume reaches half of the volume of a 

falling spherical droplet. Similar to Kirby and Perez-Blanco [59], the interface condition 

of droplet at each instant of time was assumed such that interface temperature of the 

drop remained equal to the temperature of fresh solution. The time of formation of the 

droplet was calculated from the known final mass of the hemispherical droplet and the 

incoming solution flow rate, βse mm 2=& .  Here β  is the droplet site spacing and sm is 

the flow rate of solution along one side of the tube. The distance between the two 

neighboring droplets, β  was calculated from Eq. (4.4). The details of their droplet 

model are described in [88].  The governing equations of the model were solved with 4th 

order RK method of solution.  

 

 
 
 

 

 

 

 

 

 

 

 

 

 
Fig. 3.20 Comparison of droplet formation models. Graphs: (a) (  ) bulk 

temperature change by the present model; (b) (   ) bulk temperature 
change by the model of Siyoung and Garimella [88]; (c) (    ) interface 
temperature change by the present model; (d) (    ) interface temperature 
change by the model of Siyoung and Garimella [88]; Experimental 
conditions: Seventh tube, Γ = 0.024 11 −− skgm , WR=0.8; as described in 
[88]. 
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Fig. 3.21  Comparison of droplet formation models. Graphs: (a) (    ) bulk and 
interface concentration change by the present model; (b) (    ) bulk and 
interface concentration change by the model of Siyoung and Garimella 
[88]; Experimental conditions: Seventh tube, Γ = 0.024 11 −− skgm , 
WR=0.8; as described in [88]. 

 
 
 

The results for the temperature and concentration variations with time during the 

formation of the drop for a given set of conditions in [88] are shown in Figures 3.20-

3.21. The results of Siyoung and Garimella [88] are included for comparison. There is 

reasonably good agreement between the predictions of the two models. As expected, the 

bulk temperature increases rapidly with time while the LiBr concentration decreases due 

to vapour absorption by the drop. 

The comparison of the interface temperature and concentration variation is also plotted 

in Figures 3.20 and 3.21 respectively. Both the interface temperature and concentration 

are over predicted by the present model compared to the constant interface temperature 

and concentration predicted by Siyoung and Garimella [88]. Because of the difference in 

the interface conditions of the two models, present model exhibits slightly different bulk 

conditions as well.   

Bulk concentration 

Interface concentration by present model 

Interface concentration by [88] 
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Fig. 3.22 Comparison of tube surface temperature. Graphs: (a) (    ) numerical 

model with inter-tube flow; (b) (    ) simplified model with inter-tube 
flow; (c) (    ) simplified model without inter-tube flow; (d)(    ) numerical 
model without inter tube flow; ( ) experiment of Nomoura et al. [75]; 
conditions: Γ =0.058 11 −− skgm , siT = 540C, siw =0.62, 8.0=WR . 

 
 
 

 

 

 

 

 

 

 

 

 

Fig. 3.23 Comparison of inter-tube solution temperature. Graphs: (a) (   ) numerical 
model with inter-tube flow; (b)(   ) simplified model with inter-tube flow; 
(c) (  ) tube surface temperature of simplified model with inter-tube 
flow;(d)(  ) continuous temperature plot of simplified model with inter 
tube flow; ( ) experiment of Nomoura et al. [75]; conditions: 
Γ =0.058 11 −− skgm , siT = 540C, siw =0.62, 8.0=WR . 
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Figures 3.22 and 3.23 show the predictions of the numerical model and the simplified-

coupled model of the tube surface temperature and the inter-tube solution temperature 

for a set of experimental conditions in Nomura et al. [75] where there was droplet flow 

between the tubes. For comparison, computations are done both with and without 

idealized drop flow between the tubes as stated in section 3.2.2.2. In the simplified 

model, the same transfer coefficients were used for both the film-flow over the tubes as 

well as droplet flow between tubes.  These coefficients were obtained using Eqs. (3.9), 

(3.10) and (3.11) of the numerical model as described in section 3.1.2. A constant tube 

wetting ratio of 0.8 was assumed in both models as was done by Siyoung and Garimella 

[88]. It is seen from the Figures 3.22 and 3.23 that the predictions of the models 

including idealized inter-tube droplet-flow are closer to the experimental data. The 

solution temperature variation predicted by the numerical model is the closest to the 

measurements.   

A comparison of inter-tube solution temperatures predicted by the two models is shown 

in Figure 3.23. Here again, the models including idealized inter-tube drop flow gives 

better prediction of the experimental data. When the tube surface temperatures and the 

inter-tube solution temperatures of successive tubes, predicted by the simplified model, 

are joined, the ‘saw tooth’ temperature profile shown in Figure 3.23 is obtained. This is 

because the solution temperature rises in the inter-tube region due to the adiabatic 

absorption of the vapour as is also seen in Figure 3.20.  The numerical model predicts a 

similar behaviour in the temperature variation. 

 
3.2.5.2 Comparison of numerical model and simplified coupled model 

Effect of heat and mass transfer coefficients 

The predictions of the numerical model and the simplified-coupled model were 

compared with published experimental data available in the literature. The simplified 

model requires as input the heat transfer coefficients, ih  , oh  and the mass transfer 
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coefficient mk  which are obtained from the results of the numerical simulation.  The 

temperature and concentration fields are first obtained by solving the energy and species 

concentration Eqs. (3.2) and (3.3) using the finite difference method. Subsequently, the 

local values of ih , oh  and mk are computed using  Eqs. (3.9)- (3.11) and the overall 

transfer coefficients , bwU , efk  are obtained by substitution in  Eqs. (3.2.7) and (3.2.13). 

The average values of the transfer coefficients for entire tube bundle absorber, which are 

termed ‘averaged’ values, are then determined by computing the numerical average of 

the corresponding tube-wise values.   

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 3.24  Local and average overall heat transfer coefficient along the absorber; 
experimental conditions: Γ =0.0595 11 −− skgm , siT = 39.80C, siw =0.604, 0.1=WR [43]. 

 
 

The simplified model can also be used to ‘extract’ the overall heat and mass transfer 

coefficients for a tube bundle absorber from measured experimental data. For each test 

run, the values of the driving potentials φ   and ψ  at the inlet and outlet of the absorber 

are computed by substituting the measured values of the solution temperature and 

concentration and the coolant temperature in Eq. (3.2.18). When these inlet and outlet 

potentials are substituted in Eqs. (3.2.25) and (3.2.26) the only unknowns in the resulting 

extracted  
 averaged 
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equations are bwU  and efk  which can be obtained by direct solution of the two 

simultaneous equations. The values of the transfer coefficients thus obtained are termed 

‘extracted’ values. 

          

   

    
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.25  Local and average mass transfer coefficient along the absorber; experimental 

conditions: Γ =0.0595 11 −− skgm , siT = 39.80C, siw =0.604, 0.1=WR [43]. 
 

Figures 3.24-3.25 show the variation of the local transfer coefficients together with the 

‘extracted’ transfer coefficients obtained from the experimental data of Islam [43] and 

‘averaged’ transfer coefficients from the numerical model for the same experimental 

conditions. The curves indicate that there is significant variation in the local transfer 

coefficients bwU  and mk  across the tubes of the absorber. The numerical simulation 

indicates that for low inlet solution temperatures, as in the case of the experimental data  

from Islam [43],  bwU  increases over the first three tubes and then decrease steadily. The 

value of mk  on the other hand decreases continuously from the first to the last tube. In 

contrast, when the inlet solution temperature is high, as in the case of the experiments of 

Nomoura et al. [75], both local transfer coefficients bwU  and mk  were found to decrease 

continuously across the tubes.   

extracted 
averaged 
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When the solution enters the absorber with a temperature much lower than the 

corresponding equilibrium temperature, as is the case of Islam [43], equilibrium at the 

vapor-liquid interface is established almost instantaneously thus providing large driving 

potential for absorption. As a result, the vapor absorption rate is very high near the 

entrance of the absorber. On the other hand, if the driving potential at the entrance is 

low, as in the case of the data of Nomoura et al. [75], the initial sharp rise of the vapor 

absorption rate is not observed and the local transfer coefficients decrease continuously 

across the tubes. There is reasonable agreement between the ‘extracted’ and ‘averaged’ 

values of the transfer coefficients as seen in Figures 3.24 and 3.25 for the same 

experimental conditions [43].  

For the application of the simplified model it is necessary to input the transfer 

coefficients, efk  and bwU . Since the simplified model is developed in a tube-wise- 

modular manner in section 3.2.3, it is possible to include the tube-wise variation of the 

above transfer coefficients shown in Figures 3.24 and 3.25. Alternatively, the ‘averaged’ 

transfer coefficients indicated in the above figures, may be used following the practice in 

traditional heat exchanger design.  

The effect of the above two choices on the predicted solution bulk temperature, 

concentration and the coolant temperature are shown in Figures 3.26, 3.27 and 3.28 

respectively. The predictions of the numerical model and the simplified model agree 

well when the tube-wise variable transfer coefficients are used in the simplified model.  

When the ‘averaged’ or constant transfer coefficients are used, the initial fluctuation in 

the solution temperature is damped due to the averaging of the transfer coefficients but 

the outlet solution temperature is predicted within about one degree.  The predicted 

outlet concentration approaches the numerically obtained value towards the exit of the 

absorber when variable transfer coefficients are used. There is however, a significant 

deviation in the outlet concentration when ‘averaged’ transfer coefficients are used.  As 
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seen in Figure 3.28 the predicted coolant temperature variation across the tubes is much 

less sensitive to the use of variable or ‘averaged’ transfer coefficients. 

 
 

 

 

 

 

 

  

 

     

Fig. 3.26  Comparison of tube-wise bulk temperature of solution. Graphs: (a) (   ) 
numerical model; (b) (   ) simplified model with tube-wise variable 
transfer coefficients; (c) (   ) simplified model with constant transfer 
coefficients; conditions: Γ =0.0595 11 −− skgm , siT = 39.80C, siw =0.604, 

0.1=WR [43]. 
 

 
 

          

         

         

     

 

 

           

Fig. 3.27   Comparison of tube-wise bulk concentration of LiBr (%/100). Graphs: (a) 
(    ) numerical model; (b) (    ) simplified model with tube-wise variable 
transfer coefficient; (c)(  )simplified model with constant transfer 
coefficient; conditions: Γ =0.0595 11 −− skgm , siT = 39.80C, siw =0.604, 

0.1=WR [43]. 
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Fig. 3.28 Comparison of tube-wise coolant average temperature. Graphs: (a) (   ) 

numerical model; (b) (   ) simplified model with tube-wise variable 
transfer coefficient; (c) (   ) simplified model with constant transfer 
coefficient; conditions: Γ =0.0595 11 −− skgm , siT = 39.80C, siw =0.604, 

0.1=WR [43]. 
 

 
 

   

   

    

   

   

   

    

 

 

 Fig. 3.29 Comparison of ‘extracted’ and ‘averaged’ overall heat transfer coefficients; 
experimental conditions of Islam [43].  
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      Fig. 3.30  Comparison of  ‘extracted’ and ‘averaged’ effective mass transfer 

coefficients; experimental conditions of Islam [43]. 
 

One of the important applications of the simplified model is to extract the heat and mass 

transfer coefficients from experimental data for subsequent use in the design of 

absorbers. When the inlet and outlet values of the solution temperature, solution 

concentration and coolant temperature   for an experimental test run are known, the inlet 

and outlet values of the driving potentials φ  andψ  can be calculated by substituting in 

Eq. (3.2.18). These values are then substituted in Eqs. (3.2.25) and (3.2.26) which are 

solved simultaneously to obtain the two transfer coefficients bwU  and efk . As these 

equations are non-linear, an iterative procedure has to be adopted for their solution.  

The above procedure to extract  bwU  and efk was applied to the experimental data of 

Islam [43], who tested an absorber with 24 horizontal tubes under a series of test 

conditions. The Reynolds number for the solution flow for all the test conditions were in 

the laminar flow regime. The average values of the transfer coefficients for the same test 

data were calculated using the numerical model which is applicable to laminar falling 

films. A comparison of the extracted and numerically computed transfer coefficients for 

-30% 
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15 test runs is shown in Figures 3.29 and 3.30. For most of the data points the values of 

bwU  agree within about 20 percent while the average values of efk predicted by the 

numerical model are about 30 percent higher than the extracted values.  

 
 

 

 

   

 

    

  

     

 

   Fig. 3.31 Bulk concentration of LiBr changes over a tube. Graphs: (a) (    ) simplified 
model with constant film thickness; (b) (    ) simplified model with variable 
film thickness. 

       

    

    

  

 

 

 

    

 

              
          Fig. 3.32  Bulk temperature changes over a tube. Graphs: (a) (    ) simplified 

model with constant film thickness; (b) (   ) simplified model with 
variable film thickness. 

 

(b) 

(a) 

(b) 

(a) 



Chapter 3                                                                                                          Theoretical studies 

  
95

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 2 4 6 8 10 12 14
Tube number

φ

Effect of liquid film thickness variation 

As was mentioned in section 3.2.1, the variation of the film thickness with angular 

position makes the governing equations Eq. (3.2.19) and (3.2.20) of the simplified model 

for a round tube non-linear. These equations were linearized by assuming an average 

film thickness, which lead to the analytical solutions given by Eq. (3.2.25) and (3.2.26). 

The effect of this assumption was investigated numerically solving the non-linear 

equations Eq. (3.2.19) and (3.2.20) using the Runge-Kutta method of solution. The 

variations of the predicted bulk solution concentration and temperature with angular 

position are shown in Figure 3.31 and 3.32 respectively. The differences in the predicted 

changes in concentration and temperature at the bottom of the tube by the non-linear and 

the linear forms of the simplified model are less than 0.1 percent. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.33 Comparison of the driving potentialφ  along the absorber. Graphs: (a) 
(    ) simplified model with exact roots; (b) (     ) simplified model with approximate 

roots; experimental conditions of Nomoura et al. [75]. 
 
 

Effect of approximate exponents 

The exponents 1α  and 2α  that occur in the development of the simplified model were 

approximated by more convenient expressions given by Eqs. (3.2.91) and (3.2.92). This 

(a) 
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approximation was possible because for all experimental conditions considered in the 

present study, one of the roots of the characteristic equation Eq. (3.2.27) was much 

larger than the other root,  typical values for a round tube absorber being -0.18 and -

0.0026. The variation of the driving potentials φ  andψ , predicted by using the 

approximate expressions is shown in Figures 3.33 and 3.34 respectively. There is good 

agreement between the exact and approximate distributions. The initial steep slope in the 

variations of φ  and ψ  near the entrance of the absorber is governed by the larger 

exponent given by Eq. (3.2.91) whose contribution diminishes rapidly. The variation of 

the driving potentials thereafter is controlled by the smaller exponent given by Eq. 

(3.2.92). 

 

 

 

 

 

 

 

 

 

Fig. 3.34 Comparison of the driving potential ψ  along the absorber. Graphs:(a) 
                 (    ) simplified model with exact roots; (b) (    ) simplified model with 

approximate roots; experimental conditions of Nomoura et al. [75].  
 
 

Effect of wetting ratio 

The simulation results obtained from both simplified and numerical models using 

different wetting ratios of the tubes are presented in Figures 3.35-3.36. The contribution 

of inter-tube flow was not included in the simulations. The predictions using constant 

wetting ratios of 1.0, 0.8 were compared with those obtained with an experimentally-

(b) 

(a) 
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determined variable wetting ratio [75].  Variable wetting ratios for successive absorber 

tubes can be conveniently included in the simulation because of the tube-wise modular 

nature of the model presented in section 3.2.3. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 3.35 Comparison of tube-wise averaged bulk temperature and tube surface 
temperature at the top of a tube by the numerical model without inter-tube 
absorption. Graphs: (a) (     ) variable wetting ratio from Nomoura et al. 
[75] ;(b) (     ) wetting ratio 0.8; (c) (    ) wetting ratio 1.0 ; ( ) tube surface 
temperature from the experiment of Nomoura et al. [75]; conditions: 
Γ =0.058 11 −− skgm , siT = 540C, siw =0.62. 

 
 

The results from the numerical model and the simplified model shown in Figure 3.35 

and 3.36 indicate that the predicted drop in the tube-wise averaged bulk solution 

temperature and the tube surface temperature at the top of a tube increases with the 

wetting ratio. This is to be expected because a lower wetting ratio results in a shorter 

effective length of the absorber tube and a thicker liquid film for the same total flow rate 

of liquid. These result in a diminished area for vapour absorption and a larger resistance 

to heat flow across the film. The numerical model predicts a larger effect of the wetting 

ratio on the temperature distribution compared to the simplified model.  This is 

(a)  (c)

(c)

Bulk temperature 

Surface temperature 
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presumably due to the averaging effect that results from the use of transfer coefficients 

in the simplified model which, however, are obtained from the numerical simulation.  

 
 

 

 

 

 

 

 

 

 

 
Fig. 3.36 Comparison of tube-wise averaged bulk temperature and tube surface 

temperature at the top of a tube by the simplified model without inter-tube 
absorption. Graphs: (a) (    ) variable wetting ratio from Nomoura et al. 
[75]; (b) (    ) wetting ratio 0.8; (c) (    ) wetting ratio 1.0; ( ) tube surface 
temperature from the experiment of Nomoura et al. [75]; conditions: 
Γ =0.058 11 −− skgm , siT = 540C, siw =0.62. 

 

 
The effect of the wetting ratio is less pronounced in the first few tubes of the absorber 

where the wetting ratio is about 70 to 80 percent [75]. However, in the rest of the 

absorber the effect of wetting ratio is very significant because of its large decrease. The 

experimental results of Nomoura et al. [75] for the tube surface temperature measured at 

the top of each tube are also plotted in Figures 3.35 and 3.36. For both models, the 

simulation results with a variable wetting ratio are closer to the experimental data.  

 
 
 
 
 
 
 

Bulk temperature 

Surface temperature 
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3.3 Summary 

The development of a detailed numerical model of horizontal tubular absorber, 

incorporating the curvature effects of the absorber tubes, was presented in this chapter. 

The single round tube model was developed first which was later extended for the bank 

of absorber tubes with serpentine coolant flow through the tubes. Models were also 

developed for the simplified geometry of horizontal tubular absorber such as segmented 

flat plate and vertical plate absorber.  Model comparisons were made. Later, a simplified 

coupled heat and mass transfer model of the horizontal tubular absorber was presented 

which also incorporated the tubular effects of absorber tubes with serpentine flow of 

coolant and inter-tube absorption. The transfer coefficients required as an input to the 

simplified coupled model were determined from the previously developed detailed 

numerical model. The simulation data were obtained from both detailed numerical 

model and simplified coupled model under known operating conditions of the tubular 

absorbers taken from prominent literatures. The predictions of the simplified coupled 

model agreed well with the results obtained from detailed numerical model especially 

when tube-wise variable transfer coefficients were used. Furthermore, the usefulness of 

the simplified coupled model as a design tool was demonstrated by extracting the 

transfer coefficients for heat and mass transfer of horizontal tubular absorber for sets of 

actual operating conditions. The experimental results for a horizontal tube-bundle 

absorber of Nomoura et al. [75] were used to compare with results predicted by the 

models developed in this study. Good agreement was found especially when idealized 

inter-tube drop flow was incorporated to the models. Partial wetting of the absorber 

tubes by the solution showed marked effect on the predictions of the models. 
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CHAPTER 4 

EXPERIMENTAL STUDIES 

Experimental investigations were undertaken to obtain the hydrodynamic data of various 

inter-tube flow modes. The range of the experiments covers the inter-tube flow studies at 

various flow rates and tube spacing using water and aqueous solution of Lithium 

Bromide as the working fluid. The test set-up was designed and fabricated in a manner 

that would allow the testing of different tubular configurations of the absorber. Provision 

was made in the design to permit flow visualization from all available positions. The 

experimental program including the design and construction of the test set-up, the 

instrumentation and the measurement is presented in this chapter. The data analysis 

methodology for the extraction of hydrodynamic data is also presented.  Since the main 

purpose of the experimental arrangement is to obtain data on inter-tube flow 

hydrodynamics, no provisions were made for heat and mass transfer studies. 

 
4.1 Description of the test rig  

A schematic diagram and a photograph of the experimental test-rig are shown in Figure 

4.1 and 4.2, respectively. The main components of the experimental test-rig are the test 

section, solution pump, flow meter, flow control valve and reservoir. The test section 

consists of 6 rows of horizontal tubes assembled in a single column. The liquid is 

distributed onto the topmost tube from a distributor so that a thin film of solution flows 

down along both sides of the test tubes. In between two consecutive tubes, the inter-tube 

flow pattern is varied depending on the solution flow rate. After leaving the test section 

and passing through an intermediate collector the solution is stored in a reservoir. The 

solution is pumped out from the reservoir using a positive displacement pump. The 

pump adds the sufficient pressure to the liquid so that it can reach the flow distributor in 
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the test section to complete the cycle. A flow control valve and a volume flow meter 

helps to maintain the desired solution flow rate. 

 

 

 

 

 

 

 

 

 

 

 

 
               Figure 4.1 Schematic diagram of experimental set-up. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
              Figure 4.2  Photograph of the experimental set-up. 
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                Figure 4.3 Schematic diagram of the test section side view. 

 

 

 

 

 

 

                       (a)                                                                      (b) 
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Figure 4.4(a) Assembly of the guide bar, (b) Complete assembly of the structure, (c) 
Testing of vertical alignment of the tube array. 
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 4.1.1 Test section 

The main objective of this experiment was to study the inter-tube flow hydrodynamics at 

different tube gaps and solution flow rates. The range of tube gap is specified in Table 

4.1. To accommodate the variable tube gap, the test section was designed to provide 

both the horizontal and vertical movement of the test tubes. Moreover, for the ease of 

flow visualization, viewing windows were provided in the front and the sides of the test 

section.  

 
The components of the test section are shown schematically in Figure 4.3. The figure 

represents a side view of the test tube assembly. The main components are: (i) side 

stands (ii) horizontal guide bars (iii) vertical guide bars iv) test tubes and (v) flow 

distributor. The side stands and the guide bars are made of Perspex as shown in Figure 

4.4. The vertical slots in the side stands help to support the horizontal guide bars to carry 

the test tubes from both sides. The distance between the horizontal guides is determined 

based on the required gap between two consecutive tubes as explained in Figure 4.5.  

The purpose of the long slot in each horizontal guide bar is to allow the test tubes to be 

fixed with screws in the gap. All the horizontal guide bars are identical except for the 

bars carrying the liquid distributor. The slot in the two uppermost horizontal guide bars 

is of a different size depending on the size of the inner tube of the distributor as shown 

Figure 4.3. 

 
4.1.2 Flow distributor 

In order to design a suitable flow distributor, various arrangements used by previous 

researchers were considered. After testing several proposals, the design of Killion and 

Garimella [52] was chosen with minor changes to ensure uniform distribution of liquid. 

The present flow distributor consists of two concentric annular tubes with equally spaced 

holes drilled in a single row in each tube. The holes of the inner tubes are positioned 
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upward while those of the outer tube are positioned downward. The annular space 

between the tubes, number of holes and the distance between two consecutive holes 

were determined by trial and error.  The detailed drawing of the distributor is given in 

Appendix D. 

 

 

 
Figure 4.5 Distance between two horizontal guide bars. 

 
4.1.3 Test tubes 

Six horizontal copper tubes of outer diameter 22 mm and length 240 mm are used in the 

present experimental investigation. The test tubes are supported from both sides in the 

tube bank as described in the previous section. From each side, flat aluminum bars with 

a threaded center hole is pressed into the hollow copper tube so that the tube can be 

fixed with the horizontal guide bars using screws. Detailed drawings of the test tubes are 

provided in Appendix-D. The test tubes were sufficiently rigid when they were fixed 

from both sides and also it was easy to maintain the horizontal alignment. 

 
4.1.4 Flow circuit 

The solution flow circuit is shown schematically in Figure 4.1. The solution is pumped 

from the storage reservoir to the distributor at the top of the test section through a flow 

meter and a control valve. The solution flowing over the six horizontal tubes is collected 

a  

d  ( )[ ]ad2rh o −+=

d -Tube gap 
a -Height of guide bar 
h -Vertical distance between 

guide bars  
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at the bottom of the test section and then transferred to the storage reservoir by gravity, 

thus completing the cycle. 

 
 4.1.5 Liquid pump 

The type of liquid pump used in the present experiment is a magnetic gear pump which 

is suitable for pumping aqueous Lithium-bromide to be used as the working fluid. The 

capacity of the pump is 0.36 /hm3  with a maximum differential pressure of 16.63 kPa. 

The pump works with a by-pass connection including a control valve as shown in 

Figures 4.1-4.2.  

 
4.1.6 Working fluid 

Both the aqueous lithium bromide of 54 percent concentration by weight and water are 

used as working fluids in the present experiment. However, all the experimental data 

were recorded using aqueous lithium bromide as the working fluid. Water was used 

mainly for exploratory tests to ensure the proper functioning of the experimental system. 

The thermo-physical properties of aqueous lithium bromide of 54 percent concentration 

are obtained from the property charts available in published data sources [9]. The 

thermo-physical properties of LiBr solution are given in Table 4.2. 

 
4.2 Alignment testing  

For the gravity driven flow, it is essential to have all the test tubes in a vertical plane. 

The alignment of the horizontal guide bars was tested with level gauges during 

assembly. After fixing the side stands to the walls of the test section, the vertical 

distance between two horizontal guide bars was calculated to obtain the desired tube 

spacing. The distance between the two horizontal bars was calculated from the simple 

relation as shown in Figure 4.5. For N tubes (N=6 in this study), 2N bars were needed. 

At each step, 2 guide bars were fixed with the stand using screws after ensuring the 

perfect horizontality with the level gauges as shown in Figure 4.4(a). Since the bars were 
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sufficiently long, two gauges were needed simultaneously. When both the gauge 

indicated horizontal alignment, the screws were tightened. This procedure was repeated 

until all the bars were correctly aligned. The test tubes were then fixed with screws to 

the slots of the guide bars. To ensure the vertical alignment of the tubes, all the tubes in a 

column must be on the same vertical plane. For this purpose, the use of the vertical bars, 

similar to the horizontal guide bars from both sides of the tubes became very effective as 

shown in Figure 4.3. The orientation of the vertical bars was tested with the tri-squares. 

Finally, the test section was positioned in such way that the level gauge could be used to 

check the horizontal level of the vertical plane of the tube array as demonstrated in 

Figure 4.4(c). Both the horizontal and the vertical alignments of the tubes were tested 

before the experiment and often during running the experiments if necessary.   

 
Table 4.1 Operating conditions 

Tube size 
24cmL
22mmD

=
=  

Tube spacing 6,10,15 mm 

Working fluid Water, Aqueous LiBr (54% wt concentration)  

Flow rate 0.42 to 1.65 Lpm 

Operating pressure in the test section Atmospheric pressure 

Operating temperature of solution 20-22 C0  

 

Table 4.2 Working fluid properties 

ρ  
3. −mkg  

σ  
1. −mN  

μ   
12. −− smkg

 

4

3

μ
ρσ
g

Ga =

 

4
1

Ga

1600 9.1E-02 4.8E-03 2.31E+08 123 

 
 

 

 30 ms 2.0Mpixels CANON MVX35i 

Frame speed      Resolution Model number Video camera 

Table 4.3 Camera specification 
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4.3 Measuring Equipment 

The following sections contain description of the measuring equipment used in the 

present experimental study. 

4.3.1 Flow meter 

A rotameter was used to measure the volume flow rate of both water and aqueous 

solution of LiBr as the working fluid. The measuring range of the rotameter is 0.4 to 4.5 

Lpm. The liquid flow rate was controlled by a globe valve installed upstream of the flow 

meter as shown in Figures 4.1 and 4.2. For the two working fluids, the flow meter was 

calibrated separately measuring the liquid mass flow in specific time period. The 

calibration charts are provided in Appendix D.  

4.3.2 Video camera 

To capture the various inter-tube flow patterns at different operating conditions, a 

Digital Video Camera was used. The type of camera is CANON MVX35i with the frame 

speed of 30 per second. The specifications are listed in Table 4.3. The camera can be 

operated from different viewing angles including the frontal views of the tube array as 

well as the side views. For improved visualization, colored side screen and illuminating 

lights were used during video recording of the events. 

4.3.3 Image grabbing software  

Video Frame Capture software was used to obtain the frame-by-frame images. This 

software is operated within the frame speed limit of the video camera used.  

4.3.4 Analyzing software 

The image analysis software, MATROX INSPECTOR was used to perform the 

measurement of droplet and jet profiles from the sequential video images. The profiles 

of the droplets and jets were determined employing a manual edge detection process 

which is described in section 4.6. 
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4.4 Instrumentation 

Before starting a test run of the experiments, the tubes were thoroughly cleaned with 

sand paper. This ensures better wetting of the tubes. During any operating condition, the 

test tubes were arranged with the required tube spacing. The liquid was introduced onto 

the topmost tube from the distributor with a sufficiently high flow rate to ensure proper 

wetting of the tubes.  The flow rate was controlled by the valve and measured with the 

flow meter. After ensuring proper wetting of the tubes, the flow rate was gradually 

decreased and set at the desired value. The change of inter-tube flow modes was 

observed and verified to the flow regime map available in the literature [39].  After the 

flow became steady with the desired flow mode at a particular flow rate, video recording 

of inter-tube events was carried out from different viewing positions.  

 
4.5 Inter-tube flow hydrodynamics 

The experimental set-up described above was used to obtain the inter-tube flow 

hydrodynamics data. Previously similar experiments performed by Hu and Jacobi [39] 

helped them to develop a simplified flow regime map for the inter-tube flow modes. 

Neglecting the effect of hysteresis, the correlations developed by them [39] for the 

different flow modes transitions are; 

Droplet/droplet-jet 
Or        302.0074.0Re Ga=      (4.1) 
Droplet-jet/droplet  
 

Droplet-jet/jet 
Or        301.0096.0Re Ga=      (4.2) 
Jet/droplet-jet 
 

Jet/jet-sheet 
Or        233.0414.1Re Ga=      (4.3) 
Jet-sheet/jet  
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The aim of the current experiments, however, is not entirely to find out the mode 

transition flow rates. The above relations are used as a guide to achieve the flow mode 

transitions with changes in the solution flow rate. For this purpose, before taking 

experimental data, the inter-tube flow modes are verified with the flow regime map 

given by Hu and Jacobi [39]. For the current working fluid, the transition Re is 

calculated first based on the developed correlations stated above whose values are given 

in Table 4.4. For example, when the flow Reynolds number is less than 24.83, the 

desired flow mode is the droplet mode. For Re number greater than 24.83 but less than 

36.86, the desired mode is the mixed flow or the droplet-jet flow mode. When the Re 

number is greater than 36.86 but lower than 125.6, a jet flow mode is expected. For Re 

number greater than 125.6, the flow mode is changed to jet-sheet mode. However for 

practical tubular absorbers, Re greater than 125.6 may not be desirable since the waves 

and turbulence in the falling film flow may be created at higher flow rate.   

 
Table 4.4 Transition film Reynolds number for 54% wt concentration LiBr solution 

Transitions Re  

Droplet/droplet-jet 24.83 

Droplet-jet/jet 36.86 

Jet/jet-sheet 125.65 

 

The observations of flow modes at different solution flow rates are summarized in Table 

4.5-4.6. Observations were made based on the flow pattern in the gap between the 2nd 

and 3rd tubes. The authors, Hu and Jacobi [39] concluded that the tube diameter and the 

spacing between the tubes were not significant in the flow mode transitions. Hence the 

developed correlations pertained only to the Re and Ga of the working fluid. Based on 

their discussion, the same correlations are used to compare the flow modes at different 

tube spacing studied in the current experiment. The results given in Tables 4.5 and 4.6 
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indicate that the observed flow patterns are more or less similar to the theoretical flow 

patterns at various flow rates and tube spacing configurations.  

 
Table 4.5 Experimental observations-1; Tube gap: 10mm; wetted length: 21cm 

Flow 
rate 

1. −skg  

Γ  

11. −− smkg  

Re  Status Theoretical 
regime 

    Actual observation 

0.0227 0.0542 45.19 6.125Re86.36 〈〈 Jets Jets 

 

0.0191 0.0457 38.08 6.125Re86.36 〈〈 Jets Droplet/jets 

0.0145 0.0346 28.85 86.36Re83.24 〈〈 Droplet/jets Droplet/jets 

0.0118 0.0282 23.52 83.24Re〈  Droplets Droplets 

0.0079 0.0188 15.71 83.24Re〈  Droplets Droplets 
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Table 4.6 Experimental observations-2; Tube gap: 6mm; wetted length: 20 cm 

Flow 
rate 

1. −skg  

Γ  

1. −− smkg
 

Re         Status Theoretical 
regime 

     Actual observation 

0.0227 0.0569 

 

47.44 

 

6.125Re86.36 〈〈 Jets Jets 

 

0.0213 0.0533 

 

44.46 

 

6.125Re86.36 〈〈 Jets Jets 

 

0.0188 0.0471 

 

39.24 

 

6.125Re86.36 〈〈 Jets Droplet/jets 

 

0.0163 

 

0.0408 

 

34.02 

 

86.36Re83.24 〈〈 Droplets/jets Droplets/jets 

 

0.0129 

 

0.0323 

 

26.93 

 

86.36Re83.24 〈〈 Droplets/jets Droplets/jets 

 

0.0109 

 

 

0.0274 

 

22.83 

 

83.24Re〈  Droplets Droplets 

 

0.0077 

 

 

0.0193 

 

16.12 

 

83.24Re〈  Droplets Droplets 

 

 

The above observations may not produce similar results if a gap between the lower tubes 

e.g. gap between the 3rd and 4th or 4th and 5th is selected. It has been observed throughout 
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the experiment that, the topmost tube shows most uniform distribution of flow which is 

the nearest to the flow distributor as shown in Figure 4.6 (a) and (b). That is why the 

flow pattern between the 1st and 2nd tubes will not be representative of the average flow 

pattern. The current observations were mostly based on the 2nd and the 3rd tube gap. The 

gap between the other lower tubes may also not exhibit average flow pattern because of 

the following reasons. The deviations of the flow modes at several tube gaps under the 

same configuration could occur due to the gradual decrease of wetted surface as the flow 

progresses downwards as also demonstrated by Nomoura et al. [75]. Decrease of wetted 

surface increases the flow rate per unit length of the tube. Eventually the flow Re will 

increase and possibly exhibit slightly different flow regimes in the subsequent tube gaps.   

 
 

 

 

 

 

 

 
(a) 5 tube gaps                                            (b) 4 tube gaps 

         
        Figure 4.6 Change in wetted length of the tubes as the flow progresses. 

 

However, from present observations, the change in wetted length of the tubes did not 

vary so much as shown in Figure 4.6 (a) and (b). Based on that, the flow pattern at the 

lowermost tube gaps may not deviate much from the theoretical flow pattern at a 

particular flow rate situation. This is probably due to the proper distribution of liquid 

over the tubes. Nevertheless use of more tubes in the same column could help to show 

the decrease in wetted length more clearly, similar to the observations of Nomoura et al. 

[75]. The present experiment was restricted to using six tubes mostly. 
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    Table 4.7 Drop/jet spacing calculated from video images; Tube gap: 10mm 

Flow rate 

[ 1. −skg ] 

Tube length in each image 

[ m ] 

No of droplet 

stations 

Spacing between drops/jets 

λ  [m] 

0.0145 0.120 6 0.02 

0.0118 0.147 7 0.021 

0.0079 0.142 6 0.0236 

 

     Table 4.8 Drop/jet spacing calculated from video images; Tube gap: 6 mm 

Flow rate 

[ 1. −skg ] 

Tube length in each image 

[ m ] 

No of droplet 

stations 

Spacing between drops/jets 

λ  [m] 

0.0147 0.134 6 0.022 

0.0109 0.139 6 0.023 

0.0077 0.138 5 0.0236 

 
 
4.5.1 Spacing between the droplets and jets 

In their work on the measurement of departure site spacing of the droplet and jet along a 

tube, Hu and Jacobi [40] proposed a correlation believed to be an improved version by 

taking into consideration the tube spacing and flow rate effects which were absent in 

previous correlations developed by others. The correlation is stated below: 

 

1212

4
1

4
1

4
1

/8575.0

Re/863.0836.01

Re/863.0836.0

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−Α

−Α
+

−Α
=

Ga

Ga

Ga
λ  where 

( )2//

21

32

gd ρσ

π

+

=Α            (4.4) 

 



Chapter 4                                                                                                          Experimental studies 

 
114

Similar measurements were performed from the video images of present experimental 

conditions which are tabulated in Tables 4.7 and 4.8 for two tube gap situations. At first 

the number of droplet or jet generating locations was counted over a series of sequential 

video images. The number of generating locations remains more or less constant over a 

certain period of time. Afterward the tube length of each image was measured and 

divided by the number of generating locations. The result was the possible measurement 

of the spacing between two consecutive droplets or jets. Instead of using the above 

mentioned correlation Eq. (4.4), the data given in Tables 4.7 and 4.8 is used in the inter-

tube absorption models stated in chapter 6.  

 
4.6 Analysis of experimental data 

In this section, the data analysis methodology is discussed for the measurement of 

transient volume and surface area of the droplets. The transient volume and surface area 

of each droplet from the sequential video images were measured with the help of the 

image analysis program described here. The present image analysis program is based 

upon the manual edge detection process. As suggested by Killion and Garimella [53], 

detection of droplet edges relying on human eyes to regenerate the droplet profiles from 

the video images is a simple technique of edge detection. However the accuracy of such 

manual edge detection process greatly depends on image quality for which more 

discussions are available in Appendix B. The procedure is described below. 

At each operating condition, the video recording of the inter-tube flow patterns were 

accomplished with a digital video camera. The sequential video images were obtained at 

the frame speed of 30 per second with the help of an image grabbing software.  In order 

to determine the shape of the droplets from the video images, co-ordinate points on the 

droplet profile were selected with the help of image analysis software. These co-

ordinates were used to obtain the best-fit polynomial for the droplet profile. Due to the 

often irregular shape of the droplet, an approximate polynomial profile was found to be 
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satisfactory. Choosing an axis of symmetry preferably at the centre of the droplet, the 

axi-symmetric droplet volume and surface area were calculated as discussed in section 

3.2.2.3. A program written in COMPAQ VISUAL FORTRAN is used where the best 

polynomial fit was found out for the respective profile of the droplet, so as the volume 

and surface area. The procedure was repeated for each of the droplet generating 

locations within the same time period.  The complete experimental program in 

conjunction with the output of data analysis program is schematically expressed in 

Figure 4.7.  

 
 

 

                      Figure 4.7 Flow diagram of the experimental program.  

 
The development of the transient volume and surface area profiles at each of the droplet 

generating locations were based on several assumptions mainly due to the flow 

randomness involved. These are; 

 
• The number of droplet generating sites remains constant during a particular time 

period. 

• The shift of the centre of the droplet is relatively small. 

 
The above assumptions were based upon the experimental observation data presented in 

the next chapter. During extraction of  the hydrodynamic data from the images, focus 

was given on each consistent droplet generating site. Visually observing a set of 

sequential video images, the number of consistent droplet generating sites was 

determined. Droplets which originated in between two distinct droplet sites but did not 

Digital video camera Frame grabber 

Data analysis program Output hydrodynamic data Absorber models Simulation results 

Image analysis software Test 
 Section 



Chapter 4                                                                                                          Experimental studies 

 
116

go through the entire droplet cycle were not included in the total number of distinct 

droplet sites. 

 
 
          

 

 

 

 

 

 

 

 

     Figure 4.8 Use of image analysis program. 

 
In Figure 4.8, the use of the image analysis program Matrox Inspector is pictorially 

documented.  Samples images are used as examples to show the measurement from one 

of the several frames in fixed time period.  The manual edge detection process for a 

particular droplet is explained in Figure 4.8(a) by clicking the edges of the droplet 

profile. The generated profile is then superimposed to the original image as shown in 

Figure 4.8(c). The best fitted superimposed profile to the original profile is found 

reasonable comparing the Figures 4.8(b) and 4.8(c). The uncertainty involved during 

manual edge detection process is discussed in details in appendix B. In Appendix B, a 

comparison was made between the manual edge detection and a semi-automated edge 

detection process in terms of accuracy. It was found that the accuracy of manual edge 

detection process greatly improved for higher resolution image. 

 
 
 

(a)  

(b)  

(c)  

Before fitting the curve 

After fitting the curve 
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4.7 Summary 

The detailed experimental program for the study of inter-tube flow hydrodynamics was 

described in this chapter. The design and fabrication details of the test set-up were 

highlighted and discussed. The inter-tube flow patterns captured on the video camera 

were compared to the theoretical flow patterns at various operating conditions. The data 

analysis methodology for the quantitative measurements from the digital video images 

was provided. The manual edge detection image analysis program was described. Both 

the qualitative and quantitative experimental data will be discussed in the next chapter 

based on the image analysis program described here.  
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CHAPTER 5 

RESULTS AND DISCUSSION: INTER-TUBE FLOW  

The results obtained from the experimental investigation of inter-tube flow 

hydrodynamics are presented in this chapter. For three different tube-gap-configurations, 

video recordings of the inter-tube flow phenomena were accomplished at various 

solution flow rates. The tube gaps were 6, 10 and 15 mm while the flow rate varied from 

0.42 to 1.65 Lpm for each of the tube- gap-configurations. The experimental results 

obtained for 15 mm tube-gap-configuration are described qualitatively while the 

experimental results obtained for 6 mm and 10 mm tube-gap-configurations are 

discussed in detail both qualitatively and quantitatively. In most of the practical tubular 

absorbers, the gap between the tubes is about 6 mm [24, 37, 44, 75]. Hence the inter-

tube flow hydrodynamics data were obtained for this design configuration of the tubular 

absorber. Besides this, tube gaps of 10 mm and 15 mm were selected to observe the 

effect of varying tube gap on the inter-tube flow behaviour and to achieve better flow 

visualization.  

 
5.1 Tube-gap-configuration at 15 mm 

The following discussion is based on the sequential video images obtained at 15 mm 

tube gap configuration. At lower flow rates, the inter-tube flow generally takes the form 

of droplet flow which has been discussed in section 4.5. Under this circumstance, 

droplets are repeatedly generated from several locations along the tube. The frame-by-

frame video images help to illustrate the evolution of droplet cycles and the stages 

involved in each cycle. Before considering the details of how these droplets are 

distributed at several locations, a few close-up images of a typical droplet growth are 

presented in Figure 5.1. Each droplet cycle consists of three distinct stages as indicated 
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in the figure. During the development stage, the mass of the droplet starts increasing 

until the droplet touches the tube surface below.  

 

 

 

 

 

    

 

 

 

 
   Figure 5.1 A typical droplet cycle [images are taken at solution flow rate 0.0079 kg.s-1] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The volume and surface area changes during a droplet cycle [images are 
taken at solution flow rate 0.0079 kg.s-1]. 

 
The volume and surface area of the droplet during this stage start increasing because of 

the gradual decrease of surface tension force. If the spacing between the tubes is large, 

the droplet keeps increasing in size until it detaches from its base. When the spacing 

between the tubes is small the droplet touches the tube surface below at the end of the 

development stage and forms a liquid bridge which allows the accumulated liquid mass 
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to flow through. During this bridge formation stage, the droplet starts to regain the 

surface tension force. Because of the increasing surface tension force, the liquid bridge 

is stretched downwards and eventually breaks up. After the break up, surface tension 

force quickly builds up in the remainder of the droplet and starts to pull back some of the 

liquid. The cycle ends as the pull back is completed followed by the beginning of the 

next droplet cycle. The part of the droplet which leaves the particular generating location 

during break up is considered as separate phenomena and hence is not included to the 

present analysis. 

The changes of volume and surface area of the droplet during cycle of evolution are 

presented in Figure 5.2. These profiles are generated by applying the image analysis 

program, described in section 4.6 of chapter 4, to the sequential images of Figure 5.1. A 

typical droplet formation cycle starts at a point such as A at the left of Figure 5.2. As the 

drop grows in size its surface area and volume increase until it reached a point B where 

it touches the tube below forming a liquid bridge between the two tubes. At point C the 

bridge snaps at the narrow neck pulling the upper part of the bridge towards the top tube 

thus completing the droplet cycle at point D. The interesting observation is that the 

volume or the surface area never becomes zero at the two ends of the cycle with the 

indication of presence of residual droplet at the specific location.   

In Figure 5.3, sequential video images are presented at a solution flow rate  of 0.0079 

kg.s-1. The images are depicted for the gap between the second and the third tube which 

was considered to be the representative of the average flow pattern as discussed in 

section 4.5. The Roman numbers indicated at the top of the figure demarcate the number 

of droplet generating locations. At this flow rate, the theoretical flow regime is a droplet 

flow regime according to the transition Reynolds number given in Table 4.4. 

Furthermore, the sequential images indicate that within 0-0.72 seconds, none of the 

droplet generating locations exhibit jet flow mode. Instead, droplets repeatedly undergo 
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the evolution stages at all the locations. The bridge formation stage of any cycle does not 

stay longer to indicate jet flow mode. Thus this flow mode is exclusively a droplet flow 

mode. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3 Sequential video images at solution flow rate 0.008 kg.s-1 [Re: 17.6] for a 

tube gap of 15 mm. 
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Figure 5.4 Sequential video images at solution flow rate 0.0145 kg.s-1 [Re: 30.3] for a 
tube gap of 15 mm. 

 
In Figure 5.4, the sequential video images are shown for a slightly higher flow rate for 

the same tube gap. Under this condition, the flow regime is identifiable as a mixed flow 
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or droplet-jet flow regime as indicated in Table 4.4.  The images shown in this figure 

also suggest the mixed flow behaviour. For instance, at droplet generating location II, 

the liquid bridge exists for 0-0.48 seconds out of the total period of 0.69 seconds. The 

presence of liquid bridge for such a long period of time indicates that the flow mode is 

about to change to the jet flow mode at this location. Moreover, within a droplet cycle, 

the duration of bridge formation stage becomes more longer as shown at droplet location 

V, from 0.09 to 0.3 seconds. All these imply that with further increase of flow rate, the 

flow mode will change to the steady droplet mode or jet flow mode. 

 
5.2 Tube-gap-configuration at 10mm 

The experimental results for inter-tube flow hydrodynamics are presented in this section 

for a tube spacing of 10 mm. Figure 5.5 shows a series of video images that depict the 

droplet-flow regime between the second and the third tubes at 10 mm tube spacing. 

Vertical lines are drawn to demarcate the droplet sites I to VI at the bottom of the second 

tube. The time-evolution of a typical drop at site III is indicated in the video images by 

the numbers 0 to 7. The drop development phase continues from time 0.03 sec until 0.12 

sec. At this point the drop comes into contact with the bottom tube thus forming a bridge 

between the tubes. This liquid bridge exists for a brief time before it forms a narrow 

neck and breaks to pull back some of the liquid to the bottom of the top tube.  At 0.18 

sec, the breakup and pull back of the liquid bridge is almost complete. The break up 

stage is so short-lived that it could not be captured with frame speed limit of the present 

camera.  After a brief interval of time, a new drop generation cycle is observed to start at 

the same site III. Figure 5.5 also shows that as time progresses, the number of droplet 

sites remains nearly the same except for a small random horizontal shift of the point of 

generation of the drop. Sometimes a droplet was observed to originate in between two 

distinct droplets but it did not go through the entire droplet cycle described above. Such 

droplets, marked with an ‘x’ in Figure 5.5, are not included in the total number of 
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distinct droplets. For instance, at site I, the drop seen between 0.21-0.42 is excluded in 

the analysis.  

 
Figure 5.6 shows the sequential video images at a slightly higher flow rate of 0.0118 

kg.s-1. As the flow rate increases, it is noticeable from the images that spacing between 

two consecutive droplet sites becomes narrower as seen from the spacing between the 

vertical demarcating lines drawn in the figure. Furthermore, for a droplet cycle to be 

completed, slightly longer time is spent; 9 frames at present flow rate whereas 7 frames 

at previous flow rate at nearly same location, site-III. Comparing the time spent for 

different stages within a droplet cycle, it is seen that the bridge form stage exists slightly 

longer than previous flow rate. It suggests that with the increase of flow rate the droplet 

development stage becomes quicker whereas the bridge form stage becomes longer.  

 
Figure 5.7 shows the sequential video images at a much higher flow rate of 0.0145 kgs-1. 

At this flow rate, the droplet flow randomness increases significantly. The droplet 

generating sites are not found uniformly spaced along the tube as in Figure 5.5. The shift 

of the droplet generating sites is seen clearly in the images, specially the position of site 

II. This can be attributed to the increase of randomness in droplet behavior with the 

increase of flow rate. Similar observations were made by Wassenar [96], who found 

considerable randomness in the position of the drop generation sites and the time 

interval between consecutive drops in their experiments. When the flow rate is increased 

to 0.022 1−kgs , steady liquid jets are formed between the two tubes as depicted in Figure 

5.8. Although there are slight random variations in the shape of jets at the various sites, 

the position of the sites themselves appear to remain almost stationary.  
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Figure 5.5 Sequential video images at flow rate 0.0079 kg.s-1 [Re: 16.5] for a tube gap of 

10 mm. 
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Figure 5.6 Sequential video images at flow rate 0.0118 kg.s-1 [Re: 24.7]; for a tube gap 

of 10 mm 
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   Figure 5.7 Sequential video images at flow rate 0.0145 kg.s-1 [Re: 28.85] for a tube 
gap of 10 mm. 
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Figure 5.8 Sequential video images at solution flow rate 0.022 kg.s-1 [Re: 45.1] for a 

tube gap of 10 mm. 
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Figure 5.9 Transient volume and surface area variation at each of the 6 droplet sites   
[ 16Re = ; solution flow rate: 0.0079 kg.s-1].  
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Figure 5.10 Transient volume and surface area variation at each of the 7 droplet sites   
[ 7.24Re = ; solution flow rate: 0.0118 kg.s-1]. 
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Figure 5.11 Transient volume and surface area variation at each of the 6 droplet sites   
[ 85.28Re = ; solution flow rate: 0.0145 kg.s-1]. 
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5.2.1 Time variations of droplet size  

The transient volume and surface area computation for each droplet evolution cycle 

originating at several generating locations of a tube has been accomplished. The 

methodology for the computation of the volume and surface area from the video images 

was described in section 4.6. The time dependent volume and surface area thus obtained 

are plotted separately for each droplet.  Figure 5.9 shows the transient variation of the 

volume and surface area for the 6 droplets over a total period of about 1.2 s, where data 

are extracted from the video images shown in Figure 5.5. For cycles shown in Figure 

5.9, the period for each cycle varies from about 0.25 s to 0.3 s. As expected from the 

video images, the droplet cycles originating at the same site as well as those across the 6 

sites show random variations of the volumes and areas of the drops.  

Figure 5.10 shows the transient volume and surface area curves at flow rate 0.0118 kg.s-1 

over a total period of about 1.3 s. With the increase of flow rate, at most of the 

generating sites, the droplet cycles are repeated before the surface area or the volume 

could decrease to a minimum value at the end of a cycle.     

Figure 5.11 shows the transient volume and surface area curves at a flow rate of 0.0145 

kg.s-1. At this flow rate the flow pattern approaches the droplet-jet mode.  The droplet 

cycles at various sites are not as clearly identifiable as in Figure 5.9. The time interval 

from the formation of the bridge to the break up of the neck is in general longer as 

marked by B and C at the top of Figure 5.11. The random nature in the variation of the 

area and volume of the drops is more pronounced at this higher flow rate. 

 
5.2.2 Inter-tube flow hypothesis 

The following hypothesis is developed based on the observations of the study of inter-

tube flow hydrodynamics described in the preceding sections. It was stated in section 5.1 

that a droplet undergoes three stages in each cycle. The development of a droplet is 

initiated by the local flow rate defined as the filling rate em& . During the development 
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period, the liquid does not flow through the droplet, instead liquid is accumulated 

showing the increase of mass of the droplet. Based on this developing droplet behavior, 

following equation can be written;  

f
e t

V
m maxρ

=&                         (5.1) 

where maxV is the droplet volume at the end of development stage and ft is the time 

required for the development of the droplet or the time of formation of the droplet. 

During the bridge formation stage, the liquid starts flowing through the droplet to the 

tube below. However, the liquid flow rate at this stage is not known. If an assumption is 

made for the flow rate of bridge formation stage to remain unchanged at em& , the amount 

of liquid flows through in bt period of time is 

bef tmm &=1                           (5.2) 

where bt  is the duration of bridge formation stage.  

The break up phenomena causes certain mass of liquid to be transferred which is 

calculated as: 

( )ρbf VVm −= max2             (5.3) 

where bV  is the volume of the droplet right after break up. 

Therefore the actual amount that flows through the droplet in each cycle can be 

estimated as the summation of the above two equations Eqs. (5.2) and (5.3). However, if 

total summation is taken for each droplet cycle at each location within τ  sec of time, a 

new mass flow rate is estimated as presented in Appendix E. The estimated mass flow 

rate is then compared to the actual mass flow rate of liquid and percent difference is 

found out. The percent difference between the two mass flow rates indicates the percent 

error in making assumption for the mass flow rate to remain same during the 

development and the bridge formation stages of a droplet cycle. The percent error varies 
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from 27-37 percents. It is to be realized that the percent error is generated not only 

because of making a flow rate assumption but also because of the measurement 

difficulties of bVV ,max  from the video images. Because of the frame speed limit of the 

video camera used in the present study, the exact break up moment could not be 

captured in most of the droplet cycles. As a result, a time lag appeared and accurate 

measurement of volume bV , right after break up, was difficult. More discussions are 

available in Appendix E. The implementation of this inter-tube flow hypothesis is useful 

in the formulation of droplet flow absorption model to be discussed in the next chapter.  

 
5.2.3 Flow pattern changes over the tube gaps 

In the preceding sections, the inter-tube flow patterns were studied for the gap between 

the second and the third tubes. The absorption model is therefore able to compute the 

average absorption in a particular tube gap which will be discussed in the next chapter. 

In order to apply the inter-tube absorption models for the bank of horizontal tubes, the 

flow pattern in a tube gap must be considered independent of any other variable except 

the flow rate. In other words, once a configuration is chosen i.e. the vertical distance 

between the tubes, flow pattern or the inter-tube flow regime is only controlled by the 

flow rate. The reason for making this assumption is described in details below. 

The inter-tube flow behaviour is associated with flow randomness which includes non-

uniform spatial distribution of the droplets along the tube; repeatable droplet evolution 

cycles even though the temporal distribution of these cycles is non-uniform. All these 

phenomena have been studied before focusing mainly a tube gap on particular. In 

addition to the above mentioned flow behavior, the spatial distribution of the droplets at 

different tube gaps is also non-uniform. It is very unlikely that the droplet sites become 

in-line over the tubes. Most of the droplet sites at different tube gaps are not along the 

same vertical plane.  
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 Figure 5.12 Sequential video images to show the droplet behaviors among several tube 
gaps. 

 

More interestingly, a droplet may begin formation at any location or site without any 

direct vertical feed as shown in regions 1, 3 indicated by rectangles in Figure 5.12. Also 
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the liquid bridge which actually causes the flow between the tubes may not be able to 

initiate any droplet formation directly underneath as shown in regions 2, 4, 5 and 6 

indicated by rectangles in Figure 5.12.  All these indicate that the transient droplet 

volume and surface area curves at any tube gap may not be the representative curves for 

the droplets at other tube gaps.  

Thus the generated transient droplet characteristic profiles cannot be generalized. For a 

bank of tubes absorber, it is therefore necessary to produce the transient profiles at all 

possible tube gaps which requires a considerable volume of image analysis effort. 

Although not identical to the droplet behavior discussed above for the gap between the 

second and the third tube, the general behavior in the rest of the tube gaps usually 

exhibit similar trends.  In order to estimate the overall effect of the entire tube bank it is 

therefore assumed that the transient volume and surface area data obtained above for the 

gap between the second and the third tube could be used. It is speculated that this 

approach will still make a considerable estimate of the overall vapour absorption in the 

inter-tube flow region for the entire multi-tube absorber. 

 
5.3 Tube-gap-configuration at 6mm 

Figures 5.13-5.18 present the video images and the corresponding transient volume and 

surface area profiles of the droplets for a tube spacing of 6mm. Most conventional 

falling film tubular absorbers comprise  bank of tubes in a vertical array with about 6 

mm tube to tube spacing. For this practical configuration, inter-tube flow hydrodynamic 

data were obtained at various solution flow rates. Similar to the previous tube spacing 

configurations, sequential video images of the flow regimes between the second and the 

third tube are presented. The video images shown in Figures 5.13, 5.15 and 5.17 reveal 

that the shape of the droplets is much different from the shape of the droplets formed at 

10 mm tube spacing. Wider and nearly parabolic shaped droplets are formed underneath 

the tubes as less vertical space is available. Hu and Jacobi [40] also presented the change 
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of the shape of the jets with decrease in vertical spacing of the inter-tube flow regime. 

However their experimental study [39] revealed that the mode transition remains almost 

independent on vertical tube spacing.   

Figure 5.13 shows sequential video images of the inter-tube droplet flow regime at flow 

rate 0.0077 kg.s-1. The droplets are distributed at several generating sites along the tube 

length though the distribution is not uniform. The width of droplet generating sites III-V 

is narrower than the width of the droplet generating sites I and II as seen from the 

spacing between the vertical demarcating lines drawn in the figures. The droplet 

generating sequence from site-I is somewhat ambiguous and prominent droplet phases 

are not clearly visible. Most of the droplets originating at this site are in the bridge 

formation mode or steady droplet mode within the specified time period. However, the 

rest of the droplet generating sites produce repeated droplet cycles which are to be 

expected at the current flow rate.   

In Figure 5.14, the transient droplet volume and surface area profiles are presented at the 

same flow rate. The droplet site I or droplet -1 exhibited inconsistent behaviour at the 

current flow rate showing extended droplet cycle with longer bridge formation period as 

marked by B and C in the top of the figure. The presence of droplet cycles with a longer 

bridge formation stage at one or two droplet generating sites even at a low flow rate 

could be an indication that the time distribution between the stages of a droplet cycle is 

influenced by the limitation of space. Since the flow is not uniformly distributed along 

the tube, not all the droplet generating locations show this behaviour. This may be why 

for the present flow rate the other droplet generating sites exhibit consistent behaviour 

with short droplet cycles at regular intervals except the droplet generating site-I. 

However, the transient profiles of  droplet site II or droplet-2 and III or droplet-3  

indicate that volume and surface area of the diminishing droplet does not always attain a 

minimum level or near zero level at the end of a cycle.  
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Figure 5.13 Sequential video frames at flow rate 0.0079kg.s-1; tube gap 6mm. 
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This behaviour of the droplet cycle at site II and III can also be verified with the video 

images shown in Figure 5.13.  As shown in Figure 5.13, a new droplet cycle is initiated 

from the same location of III, before the pull back stage could be completed.  

In Figure 5.15, the sequential video images are presented at a slightly increased flow rate 

of 0.011 kg.s-1. As the flow rate increases, the exhibition of distinct droplet cycles by the 

different droplet generating locations or sites becomes unclear as depicted in the figure. 

The number of droplet generation sites increases slightly with the increase of flow rate. 

The durations of different droplet cycles originating at the same location are found 

uneven. For instance, at droplet generating site-III, the evolutions of the droplets are 

shown by the numbers 0-6 between 0.06-0.24 s and 0-12 between 0.27-0.63 s. The 

droplet cycle from 0.27-0.63 s at this present location indicates that the duration of the 

bridge formation stage of this cycle is longer starting from 0.45-0.54 s before the 

necking starts at 0.57 s. The next cycle from the same location becomes normal again 

continuing from 0.66-0.87 s marked by 0-7 in the figure. Another interesting behaviour 

of the droplets formed at 6 mm tube gap is that the change of shape of the droplets 

during necking of the liquid bridge and break up are different from those of the droplets 

formed at 10 mm tube gap.  

The time-dependent volume and surface area profiles at the flow rate of 0.011 kg.s-1 for 

the several droplet generating sites are plotted in Figure 5.16. Since most of the sites 

generate droplets with slightly longer bridge formation stage, most of the droplet cycles 

are somewhat elongated after reaching the peak. The droplet generating site-VI or 

droplet-6 shows longest droplet cycle from 0.1 to 0.5 s because of the existence of the 

nearly steady droplet at this location.  

More results are given in Figures 5.17-5.18 at a higher flow rate of 0.016 kg.s-1. Both the 

sequential video images of Figure 5.17 and the corresponding transient characteristics 

profiles of Figure 5.18 show the droplet behaviour at several locations which are mostly 
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dominated by the bridge formation stage, especially at site I and VI marked by B and C 

at the top and bottom of Figure 5.18. At this flow rate of 0.011 kg.s-1, the flow mode is 

recognized as droplet-jet flow mode as was mentioned in Table 4.6. Therefore, the 

existence of droplets with longer bridge form stage at one or two locations is anticipated 

at this condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.14 Transient volume and surface area variation at solution flow rate 

0.0079kg.s-1: tube gap 6mm. 
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Figure 5.15 Sequential video images at solution flow rate 0.011 kg.s-1; tube gap 

6mm. 
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Figure 5.16 Transient volume and surface area at solution flow rate 0.011 kg.s-1; tube 
gap 6mm. 
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Figure 5.17 Sequential video images at solution flow rate 0.0163 kg.s-1 [Re: 34.02]; 
tube gap 6mm. 
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Figure 5.18 Transient volume and surface area at solution flow rate 0.0163 kg.s-1 
[Re: 34.02]; tube gap 6mm. 
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5.4 Summary 

The experimental data on inter-tube flow were discussed in this chapter for different 

tube gap configurations. The inter-tube droplet and jet flow behaviors were explained in 

detail with the help of the sequential video images and the corresponding transient 

characteristics profiles. The transient droplet volume and surface area profiles were 

generated using the image analysis program described in section 4.6. The usefulness of 

these characteristics profiles will be discussed in the next chapter in which the 

absorption rate will be calculated for the inter-tube droplet and jet flow modes.  
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CHAPTER 6 

RESULTS AND DISCUSSION: INTER-TUBE ABSORPTION  

The prediction of vapour absorption in the inter-tube flow regimes is the main focus of 

this chapter. The hydrodynamics of inter-tube fluid flow, presented in chapter 5, were 

obtained from the video image analysis described in chapter 4. The hydrodynamic data 

are used into the semi-empirical models developed in chapter 3 to simulate the vapour 

absorption process in the inter-tube flow regime. Upon successful development of the 

theoretical models for inter-tube droplet and jet flows, the heat and mass transfer 

coefficients incorporated to the models are determined using a detailed numerical model 

of falling film regime described in chapter 3. The contribution of the inter-tube 

absorption to the total absorption is obtained for a range of design and operating 

conditions of a typical tubular absorber.  

 
6.1 Comparison of the inter-tube absorption models applied to a single drop/jet 

For comparison of present droplet formation model described in section 3.2.2.1 with that 

of Siyoung and Garimella [88] under the same conditions, the developing drop size was 

idealized with a hemisphere described in section 3.2.2.2. The results of the present 

idealized droplet formation model were compared with those of the corresponding 

model of Siyoung and Garimella [88] in that section too.  

The steady jet absorption model described in section 3.2.2.3 can also be solved under the 

same operating conditions by assuming a hemispherical profile of the steady jet. The 

absorption rates calculated by the three models for the particular tube gap are presented 

in the first three rows of Table 6.1. The absorption rates or the change of solution flow 

rates due to vapour absorption in the tube gap predicted by the three models show a 

certain amount of variations, but the differences are small.  
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     Table 6.1 Model comparisons; results of the seventh tube from [88] 

 

Models used 
Absorption rate, 11. −− smkg  

[At the end of formation period] 

Droplet formation model [idealized, 

hemispherical droplet] 
4.9E-05 

Steady jet model [idealized, 

hemispherical jet] 
5.2E-05 

Model used by Siyoung and Garimella 

[hemispherical droplet-formation model]
4.3E-05 

Droplet formation model [Present 

experimental hydrodynamics data] 
3.7E-05 

 
 
 

 

 

 

 

 

 

 

 

 
 
 

Figure 6.1 Experimental data of a droplet surface area profile with polynomial fit during 
formation at 6 mm tube gap situation. 

 
 

Present drop formation model described in section 3.2.2.1 is also solved using the 

hydrodynamics data from chapter 5. For a typical droplet evolution cycle, the rate of 
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Garimella [88]. For their case, the tube gap was 6 mm for which present hydrodynamics 

data are available from section 5.3. The sample droplet surface area profile is presented 

in Figure 6.1 from which a fitted polynomial is extracted to be used as a direct input to 

the absorption model of section 3.2.2.1. The droplet volume profile, the time of 

formation, ft  and so as the filling rate fse tVm /maxρ=&  are also extracted from the 

experiment. Except the hydrodynamics data, all other thermo-physical properties and the 

inlet conditions are kept unchanged with those of [88]. The simulation result for the rate 

of absorption given by the sample droplet is presented in the last row of Table 6.1 

together with the other model results. The rate of absorption varies from the other model 

results mainly because of the difference in hydrodynamics of present forming droplet.  

 
6.2 Simulation results for absorption performance 

The inter-tube absorption models described in section 3.2.2.1 and 3.2.2.3 are used to 

calculate the amount of vapour absorbed in the gap between the second and the third 

tube of present experimental conditions stated in chapter 4. The hydrodynamic data were 

presented in section 5.2-5.3. Depending on the flow pattern, relevant models are used for 

the prediction of vapour absorption rate. 

 
Transfer coefficients for inter-tube absorption 

The transfer coefficients in the inter-tube flow regime of a horizontal tubular absorber 

are difficult to determine especially when the change of flow modes is considered. Based 

on the modes of inter-tube flow, the heat and mass transfer coefficients could vary. For 

the droplet or droplet-jet mode inter-tube flow, the correlation used in Siyoung and 

Garimella [88] could be used in the development stage of the droplet. The correlation is 

given by Eq. (6.1) below: 
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where ft is the time of formation of a droplet. However, for the bridge formation stage 

of a droplet cycle or the steady jet/sheet flow modes, the above correlation may not be 

applicable. In the correlation, the mass transfer coefficient is inversely proportional to 

the time of formation of the droplet. The experimental data presented in chapter 5 

revealed that the time of formation of a droplet varies (0.09 s to 0.18 s) even within the 

droplet cycles originating from the same generating location underneath the tube. For a 

typical operating condition of the absorber, mass transfer coefficient mk  could vary from 

2.1 E-04 to 1.5 E-04 1. −sm  for the time of formation from 0.09 to 0.18 s respectively, if 

the correlation in Eq. (6.1) is used.  

 
             Table 6.2 Mass transfer coefficient for inter-tube droplet flow 

Time of 
formation 

ft  
[sec] 

mk  
[using Eq.(6.1)] 

 
[ 1. −sm ] 

mk  
[from detailed numerical 
model in the falling film 

regime] 
 [ 1. −sm ] 

0.09 2.1E-04 
0.12 1.8E-04 
0.15 1.6E-04 
0.18 1.5E-04 

 
0.8E-04 

 

On the other hand, if the mass transfer coefficient is assumed to remain same as that in 

the falling film regime over the tube, the detailed numerical model gives the value as 

0.8E-04 1. −sm  for the same operating condition. Thus the falling film regime mass 

transfer coefficient is much lower than those values calculated using Eq. (6.1) as 

presented in Table 6.2. A sensitivity analysis presented in Appendix C revealed that if 

the mass transfer coefficient is lower, the inter-tube mass flux is lower as well. 

Moreover, for the steady state process like inter-tube jet/sheet flow mode or the bridge 

formation stage of a droplet cycle, Eq. (6.1) may not be valid. Hence, the falling film 

regime mass transfer coefficient is used for the inter-tube jet/sheet flow mode. If the 
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same assumption is not considered for the droplet development stage, the absorption rate 

during droplet or droplet-jet flow mode will become much higher because of the use of 

Eq. (6.1). Therefore, as a conservative approach, the values of mk  obtained numerically 

from the falling film are used to obtain the results in Table 6.3-6.4 for all inter-tube flow 

modes. For the heat transfer coefficient oh , the heat and mass transfer analogy given in 

section 3.2.2.4 is used. A detailed sensitivity analysis was carried out to estimate the 

effect of varying the heat and mass transfer coefficients on the results in Table 6.3-6.4 

which are discussed later in this chapter. 

 
Absorption in the droplet/droplet-jet flow regime 

When the flow pattern shows droplet or droplet-jet flow regime, the droplet formation 

model stated in section 3.2.2.1 is used to compute rate of vapour absorption in the 

droplet development and liquid bridge stages until break up. Due to the shorter existence 

of the pull back stage of a droplet cycle as shown in Figure 5.1, the absorption 

performance of this stage is ignored. Figures 6.2 and 6.3 show respectively the time 

variation of the area and the volume of a typical drop for a tube gap of 6 mm and 10 mm 

respectively. The time interval between measured data points from the video images was 

0.03 s as stated in chapter 4. The area and volume at intermediate times were obtained 

by fitting cubic splines between the measured points using the numerical procedure 

available in [29]. The cubic splines allow the accurate estimation of the gradient of the 

drop volume versus time curve which in turn is used to obtain the liquid inflow rate, em& , 

to the forming drop as described in section 3.2.2.1.  It is seen that the volume and area 

increase steadily up to the bridging point B when the forming drop makes contact with 

the tube surface below. After this point the fluid accelerates towards the bottom tube 

thus decreasing the effective volume and area of the drop. At point C, the liquid bridge 

between the tube surfaces, snaps and the volume and area are rapidly reduced to zero.  
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For the application of the present model, the liquid inflow rate during the period AB is 

obtained by computing the slope of the volume curves in Figure 6.3 at different times 

which was obtained by differentiating the expressions for the cubic splines.. The slope of 

the section BC of the curve gives the net outflow of liquid.  The liquid inflow during the 

period BC is assumed to be constant at the value just before the bridge is formed. 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 Variation of drop area with time. Graphs:  (a) tube gap = 6 mm, flow rate 

=Γ 0.027 kg.m-1s-1, (b) tube gap = 10 mm, flow rate =Γ 0.02 kg.m-1s-1. 
 

 
 
                        

 

 

 

 

 

 

                  
Figure 6.3 Variation of drop volume with time. Graphs:  (a) tube gap = 6 mm, flow rate 

=Γ 0.027 kg.m-1s-1, (b) tube gap = 10 mm, flow rate =Γ 0.02 kg.m-1s-1. 
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Figure 6.4 Schematic description of inter-tube droplet flow regime; operating conditions 

are 60.0, =insw , cT o
ins 8.39, = , kpap 388.1= , mL 2.0= , mri 011.0= . 

 
 

   

 

 

 

 

 

 

 

 

 
Figure 6.5 Schematic description of inter-tube jet flow regime; operating conditions 

are 60.0, =insw , cT o
ins 8.39, = , kpap 388.1= , mL 2.0= , mri 011.0= . 

 
 
A schematic configuration of droplet mode absorption is shown in Figure 6.4. In this 

inter-tube flow mode, the amount of absorbed vapour by all the droplets generated at 

several locations underneath a tube is summed up in a total time period of τ  s. For the 

droplet formation and bridging period, integration of Eq. (3.2.43) is performed by setting 

vapour side heat transfer coefficient 0=vh   for the determination of actual amount of 

L
m

m ins
e

,β
=&  em&  em& em& em& em& em&  

Lower falling film regime 

Upper falling film regime 

insfm ,

vfinsfins mmm += ,,

viins mm +,

em&  

1,em&  2,em&  3,em& 4,em& 5,em& 6,em& 7,em& 8,em&  

vm&

No of droplet sites, dN  

Lower falling film regime 

Upper falling film regime 

insfm ,

vfinsfins mmm += ,,

viins mm +,
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absorbed vapour of each droplet cycle. The average amount absorbed is therefore 

calculated dividing the total sum of absorbed vapour by total time period τ  seconds. 

 

Absorption in the jet flow regime 

When the flow pattern shows jet flow regime, the steady jet model discussed in section 

3.2.2.3 is used to simulate the absorption performance. The schematic configuration of 

jet mode inter-tube flow and absorption is shown in Figure 6.5. At this flow pattern, the 

shape of jets at the various sites and the position of the sites appeared to remain almost 

stationary as shown in Figure 5.8 of chapter 5. Hence, a jet profile is selected by fitting 

polynomial curve to an image similar to those presented in Figure 5.8 and is kept 

unchanged for an operating condition.  

The use of steady jet absorption model helps to calculate the amount absorbed into the 

specific tube gap. The mass flow rate of each steady jet is found out from the equation 

given below: 

L
m

m ins
e

,β
=&                                  (6.2) 

where insm , is the total solution flow rate leaving the upper falling film regime as shown 

in Figure 6.5. The spacing between the jets β  was given in Table 4.7-4.8 for different 

operating conditions. The rate of absorption during jet mode inter-tube flow is 

determined by integrating Eq. (3.2.65).  

 
Simulation results 

The absorption rate in the upper falling film regime of Figures 6.4 and 6.5 is computed 

with the help of the detailed numerical model described in section 3.1.2. The mass 

transfer coefficient is extracted from the numerical model of falling film regime. The 

heat transfer coefficient of drop formation and steady jet is obtained from heat and mass 

transfer analogy stated by Eq. (3.2.77). Though the values of the transfer coefficients 
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remain constant in present situation, detailed sensitivity analysis is presented in 

Appendix C for a wide range of transfer coefficients. 

 
Table 6.3 Absorption rate/Tube gap: 10mm, wetted length: 21cm 

 

Flow 

rate 
1. −skg

 

Model 

used 

Time 

duration, 

τ  s 

Total 

droplet 

cycles in 

τ  s 

Falling 

film abs.  

vfm  

11. −− smkg
 

Inter-

tube abs. 

vim  

11. −− smkg
 

Inter-tube 

contribution in 

total absorption 

100×
+ vimvfm
vim

 

% 

 

0.0227 
Jet 

model 

Not 

applicable 

Not 

applicable 
4.30E-04 

 
1.95E-04 

 

 
31.1 

 

0.0191 
Jet 

model 

Not 

applicable 

Not 

applicable 
4.07E-04 

 
2.02E-04 

 

 
33.2 

 

0.0145 
Droplet  

model 
1.08 21 3.72E-04 

 
2.06E-04 

 

 
35.7 

 

0.0118 
Droplet 

model 
1.32 31 3.50E-04 1.97E-04 

 
36.0 

 

0.0079 
Droplet 

model 
1.2 22 3.17E-04 

 
1.54E-04 

 
32.7 

 
 
The absorption rates in both upper falling film regime and inter-tube flow regime shown 

in Figures 6.4 and 6.5 are compared for which results are presented in Tables 6.3-6.4 for 

two tube gap situations. The percentage of inter-tube absorption is computed with 

respect to the total absorption of both upper falling film and inter-tube flow regime. In 

Table 6.3, the percent contribution of inter-tube absorption to the total absorption is 

presented at various solution flow rate for the 10 mm tube gap situation. The rate of 

absorption in both flow regimes is given too. The results indicate that the falling film 

absorption rate increases with the increase of flow rate whereas inter-tube absorption 
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rate does not follow similar pattern. The percentage of inter-tube absorption rate varies 

from 31 to 36 percents of total absorption which is the summation of both upper falling 

film and inter tube absorption rate. 

 
Table 6.4 Absorption rate/Tube gap: 6mm, wetted length: 20cm 

 

Flow 

rate 
1. −skg  

Model 

used 

Time 

duration 

τ  s 

Total 

droplet 

cycles in 

τ  s 

Falling 

film abs. 

vfm  

11. −− smkg
 

Inter-tube 

absorption 

vim  

11. −− smkg  

Inter-tube 

contribution in 

total absorption 

100×
+ vimvfm
vim

 

% 

 

0.0227 
Jet 

model 

Not 

applicable 

Not 

applicable 
4.09E-04 1.80E-04 30.6 

0.0188 
Jet 

model 

Not 

applicable 

Not 

applicable 
3.84E-04 1.87E-04 32.8 

0.0147 
 

Droplet 

model 
1.08 21 3.13E-04 1.63E-04 34.3 

 
0.0109 

 

Droplet 

model 
1.32 31 

 
3.29E-04 

 

 
1.67E-04 

 

 
33.6 

 

 
0.0077 

 

Droplet 

model 
1.2 22 

 
3.009E-04 

 

 
1.35E-04 

 
31.1 

 
 
The maximum contribution of inter-tube absorption occurs at the solution flow rate 

0.0145 kg.s-1 which actually provides a droplet-jet flow mode. The minimum 

contribution on the other hand occurs at flow rate 0.0227 kg.s-1 which provides a jet flow 

mode. Similar results for 6 mm tube gap situation are presented in Table 6.4. The 

absorption rate in the falling film regime slightly varies due to the slight variation of the 

operating conditions. The absorption rate in the inter-tube flow regime varies too. In this 

present tube gap situation, the size of the droplets differs from those of 10 mm tube gap 
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situation. Also the transient variations of droplet volume and surface area are different 

which have been discussed in detail in section 5.3.  Due to the differences in flow 

hydrodynamics, absorption performances are slightly different at this tube gap situation. 

The maximum absorption rate is found in the droplet-jet flow regime at 0.0147 kg.s-1 

solution flow rate. The percentage of inter-tube absorption rate however varies within 

narrow range like 30.6 to 34.3 percents. 

 
  
  
  
  
  
  
  
   

 

 

    
 

 
          
 
 
 
 
 
 
 

    Figure 6.6 Mass flux ratio 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
= 100

vivf mm
vim

J at varying flow rate and tube gap.  

 
 
The results presented in Table 6.3 and 6.4 of the mass flux ratio are also plotted 

graphically in Figure 6.6 for the two tube gap situations. It seems that contribution of 

vapour absorption is more when 10 mm tube gap situation is considered. However, 

arriving at general conclusion from these results is hard because of difficulties of inter-

tube fluid flow randomness, inter-tube flow hypothesis, uncertainty in data analysis and 

model predictions. Furthermore, the significance of mass flux ratio could become more 

useful if a mass flux ratio map is developed with solution mass flow rate similar to the 

Droplet 
flow 
regime 

Droplet-jet flow 
regime 

Jet flow 
regime 
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flow regime map developed by Hu and Jacobi [39]. For such development huge amount of 

numerical simulation data will become necessary, but the methodology developed in this 

present study could easily be used for this purpose. 

 

Results from the sensitivity test for the transfer coefficients 

The simulation data presented in Table 6.3 and 6.4 are based upon the known values of 

transfer coefficients to be used in the inter-tube absorption models. The model prediction 

could vary if the values of the transfer coefficients vary. As already discussed in section 

3.2.2.4, the exact values of transfer coefficients during drop formation or steady jet 

absorption are unknown. A detailed sensitivity test for the use of varying transfer 

coefficients in the inter-tube absorption models was therefore undertaken and results are 

presented in Appendix C. The sensitivity tests reveal that if the values of the heat 

transfer and the mass transfer coefficient are increased, the inter-tube mass flux for 

vapour absorption increases with corresponding increase of mass flux ratio 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
= 100

vivf mm
vim

J and vice versa.  

From a scrutiny of the sensitivity data presented in Appendix C, a 40 percent increase of 

mass transfer coefficient from the base line value ( mk =1.12E-04 1. −sm ) produces 

maximum 25 percent increase of mass flux ratio ( J = 37 %) compared to that ( J = 

29.5%) using the base line mass transfer coefficient ( mk =0.8E-04 1. −sm ) among all the 

operating conditions. Whereas, a 40 percent decrease of mass transfer coefficient from 

the base line value ( mk =0.48E-04 1. −sm ) produces maximum 36 percent decrease of 

mass flux ratio ( J = 19 %) compared to that ( J = 29.5%) using the base line mass 

transfer coefficient ( mk =0.8E-04 1. −sm ) among those operating conditions. Similar 

sensitivity data are obtained for heat transfer coefficient for which model predictions are 

found less sensitive. For example, a 40 percent increase of heat transfer coefficient from 
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the base line value produces maximum 9 percent increase of mass flux ratio among all 

the operating conditions. Whereas, a 40 percent decrease of heat transfer coefficient 

from the base line value produces maximum 16 percent decrease of mass flux ratio 

among those operating conditions. More data are presented in Appendix C from the 

sensitivity analysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Sensitivity of mass flux ratio with higher mass transfer coefficient; Tube gap: 
10 mm. 

 

Sensitivity tests were further extended using the mass transfer coefficients given in 

Table 6.2.  The results are plotted in Figure 6.7.  The range varies from 2.1 E-04 to 1.5 

E-04  1. −sm  for the mass transfer coefficient, mk . The corresponding values of the mass 

flux ratio at different flow rate are compared to those values obtained using the baseline 

mass transfer coefficient 0.8 E-04 1. −sm . Figure 6.7 shows that when the mass transfer 

coefficient is 2.1E-04 1. −sm , the mass flux ratio is found average 16 % more than the 

baseline chart.  Similarly, when the mass transfer coefficient is 1.5 E-04 1. −sm , the mass 

flux ratio is found average 13 % more than the baseline chart.  
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6.3 Summary 

The inter-tube flow was studied in an experimental set-up with LiBr as the working fluid 

as described in chapter 4. Video images obtained were used to determine the time 

variation of the volume and surface area of the drops formed in the inter- tube region. 

The volume and surface area of jets formed were obtained in a similar manner. The time 

dependent volume and surface area profiles were found at several droplet generating 

sites at different flow rates and at different tube gap situations. The detailed 

experimental results were presented in chapter 5. The hydrodynamic data obtained from 

the experiments formed the basis of a simplified model to estimate the vapour absorption 

rate in the inter-tube region. In this chapter, the simplified models were developed for 

droplet formation and steady jet flow in order to simulate the absorption performance in 

the inter-tube region. The predictions of the present models showed satisfactory 

agreement with those using the semi-empirical model developed by Siyoung and 

Garimella [88]. The contribution of the inter-tube absorption was calculated at different 

operating conditions and was found to vary from about 30 to 36 percents of the total 

absorption with assumed transfer coefficients. A sensitivity analysis showed significant 

dependence of the simulation results predicted by the models on the varying transfer 

coefficients.   
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CHAPTER 7 

FILM-INVERTING ABSORBERS 

Film-inverting absorber is a potentially viable alternative for the performance 

improvement of horizontal tubular absorbers. It provides better wetting of the tubes in 

the absence of various inter-tube flow modes. The alternate surface inversion helps to 

keep the vapor-liquid interface cool tube after tube. As a result Islam et al. [45] found 

significant performance improvement using the film-inverting configuration. However, 

the design of a practical film-inverting absorber needs further development. Islam et al. 

[45] developed a round-tube film-inverting absorber where guide vanes were used in 

between the tubes to affect inversion of the film surface. With the use of the guide vanes, 

the tubes remained in the same vertical plane as for a conventional tube bank. But there 

was no straightforward procedure for the design of guide vanes. In practice, the design 

of the guide vanes and their location was somewhat tedious. In this chapter, a new 

design is proposed for the round tube film-inverting absorber without the use of the 

guide vanes. The film-inverting hydrodynamics of this novel absorber configuration is 

tested experimentally to verify the film-inversion process. Later a numerical absorber 

model is developed to simulate the absorption performance with the film-inverting 

absorber. Several alternative designs are proposed to make use of the maximum possible 

surface area of the round tubes in the film-inverting configuration. 

 
7.1 Operating principles of film-inverting absorbers 

In the conventional horizontal tubular absorber, the absorbent solution flows over the 

cooled absorber surface as a falling film into which the refrigerant vapour is absorbed. 

The absorption of vapour at the vapour-liquid interface of the film results in the 

generation of heat of absorption which tends to raise the liquid film temperature. If this 

heat is not transferred rapidly across the film to the external coolant, the vapour 
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absorption process could be retarded by the high interface temperature. Much research 

effort has been devoted to find ways to enhance the vapour absorption process in the 

conventional tubular absorber [45]. The different types of modifications to improve the 

performance of the conventional design were discussed in chapter 1. The type of 

modification based upon the fluid flow characteristics of the falling film and the 

thermodynamic aspects of the absorption process was stated in section 1.5. One such 

technique was explored by Islam et al. [45] by implementing the film-inversion process. 

The purpose of film-inversion is to achieve repeated surface inversion of the falling film. 

The alternate surface inversion provides the relatively colder surface to come in contact 

with vapour, tube after tube. As a consequence, a higher vapour absorption rate of the 

falling film is retained over the tubes similar to the initial part of the absorber.  

The principal of operation of the film-inverting round tube absorber is shown 

schematically in Figure 7.1. The solution flow is introduced at the top-most tube from 

the distributor on to one half of the first tube. The liquid flows over the tubular surface 

as a falling film and vapour is absorbed at the exposed surface of the film. Just before 

the liquid reaches the lowest point in the circular tube, it is guided to flow onto the 

opposite side of the second tube located directly below the first tube. A flow guiding fin 

is attached to the second tube to help smooth film-inversion between the tubes. With the 

help of the guide fin, the surface which was previously in contact with the wall of the 

first tube is exposed in the second tube. Simultaneously, the exposed film surface over 

the first tube is the inner surface of the second tube in contact with the wall. The same 

process continues in the reversed manner over the rest of the tubes. The periodic reversal 

of the exposed surface over the various tubes results in the enhancement of vapour 

absorption compared to the vapour absorption rate in the conventional design with same 

number of tubes.   
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Figure 7.1 Flow over the film-inverting round tube absorber. 

 
The film-inverting round tube absorber proposed by Islam et al. [45] required guide-fins 

for the purpose of guiding the film flow in the opposite direction as shown in Figure 7.1. 

The design parameters like the width, angular position of the fins have to be determined 

for the design of the film-inverting tubular absorbers. Furthermore, the location of the 

guide fins on the tubular surface decreases a fraction of the participating area of the 

tubes. In some instances more than 50 percent of the total surface area of the tubular 

absorber may become unused. In the present study, an alternative design of the film-

inverting round tube absorber without the need for guide fins is explored. The basic 
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concept is to make use of the Coanda Effect for fluid flow over curved surfaces, as 

described in the following section. 

  
7.2 The Coanda Effect 

Coanda Effect is the tendency of a moving fluid, liquid or gas, to attach itself to a curved 

surface and flow along it. It means that when one side of a falling jet is close to a large 

solid curved surface, a partial vacuum is created between the jet and the surface, as a 

consequence of which, the jet tends to attach itself to the surface [17].  This is an 

important consequence of the pressure variation perpendicular to curved streamlines. 

Though from the definition of a streamline, fluid particles do not have any velocity 

component perpendicular they nevertheless experience an acceleration perpendicular to 

the curved streamline. Hence, a pressure variation occurs across the curved streamline 

because the acceleration requires a net force in the same direction. 

 
   
 

 

 

 

 

 
 
 
Figure 7.2 Pressure variation perpendicular to streamlines. 
 

Considering two streamlines sufficiently close together and having same center of 

curvature as shown in Figure 7.2, a force balance of the fluid element of length δ  

normal to streamlines, with cross-sectional area ( )θrd  and weight ( )θδρgrd  per unit 

length of the streamlines, follows that, 

 

θd  θ  

p

dpp +
δ  

( )θδρ rdg

( ) θδθρ cosrdgW =  

r
θ  
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( )( ) ( ) ( ) ( ) nardgrdrdpdrdpp δθρθδθρθθδ =+−++ cos                                          (7.1) 

where p  is the pressure at radius r , ( )dpp +  is the pressure at radius ( )δ+r  and ρ  is the 

density of fluid. The centripetal acceleration is rvna /2= ; where v  is the velocity along 

the radius r . Further simplification gives an expression for the pressure difference in the 

perpendicular direction of the streamlines as: 

r
vdP

2
ρδ=                                   (7.2) 

                          
    

 

 

 

 

 

 

 Figure 7.3 Demonstration of Coanda Effect [17]. 

 
As a consequence of this pressure variation, a jet of fluid has a tendency to attach itself 

to a convex solid body. A simple demonstration is the deflection of water jet by using a 

hollow cylinder as shown in Figure 7.3. When the cylinder is brought closer to the 

straight falling jet, the streamlines quickly follow the curvature of the cylinder because 

of a partial vacuum created in the neighborhood of the surface of cylinder. If the outer 

edge of the stream is at atmospheric pressure, the pressure at the surface of the cylinder 

is below atmospheric. As a result, the jet does not continue to flow downward at the end 

of the cylinder; instead it tries to bend towards the bottom of the cylinder and turns over 

to the opposite side depending on the fluid velocity as indicated in the Figure 7.3.   
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Coanda Effect has its many applications specially in the development of various fluid-

flow devices. In the present study, the Coanda Effect is used to develop a novel film-

inverting absorber which is described in the following section 

  
 

 

 

 

 

 

 

 

 

 

 

     
 
 

 
    

   Figure 7.4 Coanda Effect based film inversion; by single film arrangement of the 
tubes. 

 
 
7.3 Film-inversion based on the Coanda Effect  

The basic concept of the proposed film-inversion process is to make use of Coanda 

Effect of fluid flow over a round tube surface. A thin film of liquid flowing down the 

side of a tube turns around the opposite side of a second tube when the latter is brought 

to touch the film. Such behavior of a liquid film can be explained with the help of 

Coanda Effect described above. The application of this effect actually turns the liquid 

film between two round tubes arranged vertically as shown schematically in Figure 7.4. 

Spacing of tube centers, e  

( )δ+02r  
θ  δ  

Vertical plane 
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Just after turning on the opposite side of the second tube, the exposed surface of the film 

flowing over the first tube becomes the inner surface of the film over the second tube 

and vice versa. Using a number of tubes in an array, repeated film surface reversal, 

which is the main characteristic of a film-inverting absorber, can be achieved.  

Use of Coanda Effect: array of tubes 

Unlike the conventional design, the arrangement of the tubes for the Coanda-Effect 

based film-inversion requires the centers of alternate tubes to be in two vertical planes 

which are slightly separated as seen in Figure 7.4.  The horizontal distance between the 

centers of two consecutive tubes in the array depends on tube gap δ and leaving angleθ . 

Thus the spacing of tube centers e  shown in Figure 7.4 can be expressed as:  

( ) θδ sin2 += ore                   (7.3) 

Experimental investigations reveal that the radial gap between two neighboring tubes 

has to be of the same order as the film thickness. The leaving angle θ  of the film must 

be selected to achieve maximum possible surface area of the film. The total participating 

area is then the sum of the exposed area of the film. Practical value of the leaving angle 

will be investigated experimentally.   

 
7.3.1 Experimental investigations of the Coanda-Effect Based Film-Inverting  

process 

An experimental program was undertaken to investigate the Coanda Effect-Based Film-

Inverting (CEBFI) hydrodynamics. The same experimental set-up described in section 

4.1 of chapter 4 was used to study the Coanda effect. For the present study, the test 

section was modified in order to arrange 6 tubes with their centers in two vertical planes. 

The rest of the set-up remained unchanged. The distributor was placed above the top-

most tube in such way that the flow was only distributed to one side of the top most 

tube. A photograph of the set-up is shown in Figure 4.2. 
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7.3.1.1 Experimental procedure 

Before starting the experiments, the test tubes are cleaned thoroughly with sand papers 

so that surface roughness is increased to provide better surface wetting. The test tubes 

are assembled in two vertical planes with the desired separation as shown in Figure 7.4. 

The radial gap between two neighboring tubes, which is nearly equal to the film 

thickness, is set by trial and error. The test tubes are adjustable from the sides which 

provide the required flexibility to change the gap. In particular, the horizontal or vertical 

distances between the axes of the tubes in the assembly could be adjusted even during 

the running of the experiment to ensure proper solution distribution in alternate 

directions. The experiment is normally started with a higher solution flow rate to ensure 

better surface wetting. The flow rate is then gradually decreased and the film flow is 

observed closely. At the desired flow rate when the film flow alternates from one tube to 

the next. The screws shown in Figure 7.5 are tightened to ensure the stability of the tube 

assembly. At different flow conditions, the flow pattern is recorded in video with a 

digital video camera [CANON MVX 35i], the purpose of which is to obtain the 

qualitative behaviour of the flow in the CEBFI absorber. The experiments were carried 

out with water as the working fluid.  

 
7.3.1.2 Experimental results: flow observations  

The flow characteristics of the film-inverting arrangement are observed from the video 

images. In Figure 7.5 (a), a left hand sided view of the film flow over the 6 tubes in the 

presence of illuminating light is shown. At the same operating conditions another view 

from the right hand side of the tubular arrangement is depicted in Figure 7.5 (b) without 

the use of the illuminating light. In both the figures, the alternate flow surfaces of the 

tubular arrangement are clearly noticeable.  Studying closely the film flow over the 

tubes, the following observations are made.  
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   Figure 7.5(a) Left hand side view with light.     Figure 7.5(b) Right hand side view 
without light. 

 
 

 

 

 

 

 

                     

 

Figure 7.6 A closer view of the alternate flow surfaces. 

 
The flow is introduced at the top-most tube from a distributor which is placed on one 

side of the top tube. As seen in the bottom-most tube of the arrangement of Figure 7.5(a) 

and (b), it is interesting to observe that the film flowing down one side of the tube turns 

around the bottom of the tube and leaves on the opposite side as jets. However in the 

presence of another tube, positioned slightly off the vertical plane of the first tube and 

touching the liquid film, the film turns around the second tube. It turns around the 

nearest curved surface as shown in the case of the upper tubes in the arrangement. This 
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way the film travels around the alternate sides of the tubes if a bank of staggered tubes is 

constructed.  The radial gap between any two tubes is nearly equal to the film thickness 

as illustrated in Figure 7.4, which is sufficient for the liquid film to turn and flow 

without any obstruction. 

In Figure 7.6, a closer view of the alternate flow surfaces is presented. The wet surface 

of the liquid film, falling down the first tube, is seen in the figure. Because the film 

makes the turn on the opposite side of the second tube, after leaving the first tube, the 

dry surface of the second tube is observed. In the third tube, where the film turns around 

the opposite side shows a wet surface in the image. The wet surfaces are identifiable in 

the figure as reflecting surfaces in the presence of illuminating light. Thus for the bank 

of six tubes, the alternate film inversion is achieved without the use of guide vanes. 

 
 
 
 

 

 

 

 

                           

                      

 

 

 

 

 

Figure 7.7  Film flow at three different flow rates (a) 0.022 kg.s-1 (b) 0.016 kg.s-1 (c) 
0.008 kg.s-1 

 

(c) 

(a) (b) 
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7.3.1.3 Effect of solution flow rate 

The effect of varying solution flow rate during film-inversion was investigated. Figures 

7.7(a)-(b) show the film flow over the tubes at higher flow rates while Figure 7.7(c) 

shows the same at lower flow rate. The tube configurations were not changed with the 

increase of flow rate. At higher flow rate, the flow surface over the tubes is wavier 

though the waviness diminishes if the flow rate is gradually decreased. Presence of 

surface waves in the form of rings especially at the higher flow rate may prevent 

uniform distribution of the flow. It is therefore desirable that the gap between the tubes 

be such that the film flows with uniform surface wetting and without any flow 

obstruction. If the tube gap is too large film inversion will not occur because the adjacent 

tube looses contact with the liquid film. Thus an optimum tube gap has to be provided to 

ensure film flow without obstruction but sufficiently narrow to cause the Coanda Effect.   

 
7.4 Coanda-Effect Based Film-Inverting Absorber (CEBFIA) - numerical model 

A detailed numerical model was used to make performance assessment of the Single 

Film Tube- Coanda- Effect Based Film-Inverting Absorber (SFT-CEBFIA). The model 

is based on the single round tube model described in section 3.1. It has been discussed 

previously in section 3.1 that the round tube model requires as an input the incoming and 

leaving angles of a film to the tube. Since these parameters can be selected arbitrarily, 

single film tube distributions in a vertical column can easily be incorporated for the 

CEBFIA model.                                          

The single-tube-model is extended to incorporate the film-inverting process at each 

inversion point keeping the flow along one side of a tube as illustrated in Figure 7.4. 

Therefore changes have to be made in the detailed round tube model by defining the 

film flow path over the tube arrangement. The boundary conditions for the solution film 

in the physical model are changed as the film flows from one tube to the next so that the 

inner film surface of the upper tube becomes the exposed surface of the next tube 
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below. Similarly, the film interface of the upper tube becomes the inner surface of the 

lower tube. To represent these boundary conditions at each film inversion, the 

concentrations and temperatures of the solution film at different grid points are changed 

as follows 

( ) ( )
( ) ( ) 1

1

,,

,,

−

−

−=

−=

LoLi

LoLi

iNTiT

iNwiw

θθ

θθ
                 For Ni ≤≤0        (7.4) 

where L is the current tube, oi θθ , are the entering and leaving angles of the film to the 

tube. 

For all segments of the tube, the direction of the y-axis is taken as positive from the 

tube surface to the exposed film surface and x-axis is positive along the solution flow 

direction. The velocity field is assumed to be fully-developed following each film 

inversion and given by the Nusselt velocity distribution [19]. The serpentine coolant 

flow model is the same as discussed in section 3.1.3 except that the heat flow from the 

solution film to the coolant occurs only from one side of the tube over which the 

solution film flows. Solution procedure described in section 3.1.4.3 is followed here 

with the inclusion of film-inversion tube after tube.  

As explained in Figure 3.1, the variation of the film thickness is such that it becomes 

thicker in the regions nearer to the top and bottom of a tube. Therefore, the solution flow 

domain has to begin and end sufficiently away from these points of the tube. Since the 

choices of the film entering and leaving angles to a tube are arbitrary at this stage, a 

sensitivity analysis was carried out to determine their impact on the predictions of the 

model. Some results of the sensitivity tests are presented in Table 7.1. For a particular 

film entering angle to the first tube (90), the film leaving angle to the first tube is varied. 

The film entering and leaving angles for the rest of the tubes are equal to the film 

leaving angle to the first tube. For 4 different values of film leaving angle for the first 

tube ( 0000 26,21,16,9 ), the outlet conditions of bulk temperature, concentration, coolant 
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outlet temperature and mass flux of absorbed vapour are computed. The results 

presented in the last four columns of Table 7.1 indicate that the outlet conditions of the 

film-inverting tubular absorber are not strongly dependent on the film entering and 

leaving angles for the absorber tubes.   

 
Table 7.1 Sensitivity of the entering and leaving angles 

 

iθ  

[First 
tube] 

oθ  

[First 
tube] 

iθ  

[Second 
tube 

onwards]

oθ  

[Second 
tube 

onwards]

soT  

[ C0 ] 

sow  

[%LiBr/100]

woT  

[ C0 ] 

vm  

[ 12. −− smkg ]

9 9 9 9 39.82 0.55991 28.77 0.004122 

9 16 16 16 40.08 0.55995 28.76 0.004117 

9 21 21 21 40.11 0.56020 28.73 0.004092 

9 26 26 26 40.09 0.56060 28.69 0.004052 

 
                  Table 7.2 Experimental operating conditions of Islam et al. [45] 
 

Set siT [ C0 ] siw [%LiBr/100] wiT [ C0 ] wm [ 1. −skg ] sim [ 11. −− smkg ] p [kPa] 
1 39.8 0.604 26.53 0.0887 0.0595 2.15 

2 39.8 0.604 26.58 0.0887 0.0446 2.08 

3 39.8 0.604 29.43 0.0887 0.0446 2.08 

4 39.8 0.604 26.45 0.0887 0.0298 2.21 

5 39.8 0.604 29.3 0.0887 0.0298 2.21 

 

7.4.1 Numerical results for Single Film Tube-CEBFIA 

The behaviour of SFT-CEBFIA is investigated by performing a detailed numerical 

simulation study. The operating conditions are selected from the experiments of Islam 

et al. [45] which are listed in Table 7.2. To obtain a clear understanding of the film 

inverting mechanism, variation of film temperature, concentration of lithium- bromide 

and also the concentration of water vapour in the solution are presented in the following 
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figures 7.8-7.12 at different cross-sections of the flow. The results shown in these 

figures provide useful information about the development of both the temperature and 

concentration field after the film inversion at each tube. The lithium-bromide and water 

vapour concentration variation across the film are shown separately in Figures 7.9 and 

7.10 respectively.  

 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.8  Temperature profile across the flow [ δη y=  ]for the first tube in film-

inverting absorber; operating conditions : set-1 in Table 7.2. 
 
 
In Figure 7.8 temperature profiles at different cross sections of the film along the flow 

direction of film-inverting absorber are drawn to show the development of temperature 

field in the very first tube. The solution enters the first tube with a uniform distribution 

of temperature at the film entering angle 90. With the increase of angular position, the 

temperature profile gradually becomes linear as expected. Figure 7.9 shows the 

development of concentration field where the concentration of LiBr at various cross 

sections of the film along the flow direction is plotted. Similar to the temperature 

profile, the film enters to the absorber tube with a uniform concentration profile which 
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gradually changes to take the shape of fully developed profile. Figure 7.9 suggests that 

the concentration changes sharply near the interface region and remains nearly constant 

in the rest of the film. However, as the flow progresses along the tube circumference, 

the lithium-bromide concentration gradually decreases even near the inner-side of the 

film, as seen for angles from 800 to 1710.    

 
 

 

 

 

                

   

 

 

 

 

 

 

 

Figure 7.9 Concentration profile across the flow [ δη y=  ]for the first tube in film-
inverting absorber; operating conditions: set-1 in Table 7.2. 

 
 
After film inversion, the solution film enters the next tube below with an inverted 

concentration and temperature profiles from the exit of the upper tube for which results 

are presented in Figures 7.10-7.12. When the surface with higher percentage of LiBr or 

lower percentage of water becomes the exposed surface of the next tube due to film 

inversion, rapid absorption occurs at the interface region. As a result LiBr concentration 

drops significantly at this surface and absorbed vapor diffuses into the stream of solution 

across the film which is presented in Figure 7.10. 
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Figure  7.10  Concentration profile (% of LiBr/100) across the flow [ δη y=  ]for tube 2 

in film-inverting absorber ; operating conditions : set-1 in Table 7.2. 
 
 
However the water vapour does not penetrate deep into the film because the 

concentration of water vapour is higher at the inner side of the film which previously 

was the exposed surface of the film. At the inner side of the film nearer to the tube wall, 

higher percentage of water vapour exists just after the film inversion which is exhibited 

in Figure 7.11. Consequently higher concentration of water vapour in this region causes 

the diffusion of water vapour from the inner surface to the bulk of solution. Therefore, a 

zone showing an almost flat concentration profile is seen at the middle of the film in 

both Figures 7.10 and 7.11. After traveling further distance down the tube with 

continuous vapour absorption at the exposed surface, more vapour penetrates the 

solution film towards the inner side of the film. Moreover, water vapour from the near 

wall region gradually moves from that side which shows a decrease of water percentage 

there as shown in Figure 7.11 for angles from 180 to 1710. Hence the near wall LiBr 
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concentration increases with the increase of angular position shown in Figure 7.10 for 

the same angles from 180 to 1710. 

 
 
 
 
 
 
 
 

 

           

              

                

 

 

 

 

 

 
  Figure 7.11 Concentration profile (% of water/100) across the flow [ δη y=  ] for tube 2 

in film-inverting absorber; operating conditions: set-1 in Table 7.2. 
 
 
The development of the temperature field in the second tube is shown in Figure 7.12. 

After the film inversion the cold surface of the film becomes the exposed surface and 

hot surface of the film becomes the inner surface. Therefore the new film interface 

temperature is lower than the equilibrium temperature of the solution which actually 

causes rapid absorption of vapour right after the film inversion. As a result of this, the 

interface temperature increases very sharply which gradually decreases towards the 

bulk region. Since there is hot solution in the near wall region, the temperature starts 

increasing again after about the middle section of the film. This is the reason for the S-

shaped profile of temperature as seen at around 10 to 20 degree from the entrance of the 

tube. Thereafter, heat flows from the hot film to the coolant causing a decrease of 
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temperature which tends to produce an almost linear profile indicating that temperature 

field has become fully developed.   

 
 

 
 

 

 

 

 

 

 

  

 
 
 
 
 
 
 
 

 
 
Figure 7.12 Temperature profile across the flow [ δη y=  ] for tube 2 in film-inverting 

absorber; operating conditions: set-1 in Table 7.2. 
 
 
Figures 7.13 (a)-7.13(c) show the mass flux, bulk and interface temperature and 

concentration variations over the first few tubes for the continuous falling film and 

inverted falling film predicted by the respective models. It was observed from the 

experimental study that in the film-inverting arrangement the liquid film moved 

continuously from one tube to the next because of the smaller gap between the absorber 

tubes. At each film-inversion, the small gap between the tubes helps to redistribute the 

film without drop/jet/sheet flow as happens in conventional tubular absorber. Therefore, 

for the sake of comparison, the inter-tube absorption contribution is not included in the 

continuous falling film absorber model. 
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Figure 7.13(a) Variation of mass flux of water vapor along the direction of flow [ ]πθξ = ; 
(a) film-inverting absorber; (b) continuous falling film absorber; operating conditions: 

set-1 in Table 7.2. 
 

In Figure 7.13(a), the film-inverting arrangement shows much higher absorption rate 

especially in the tubes after the first tube. The steep rise in absorption rate at the entering 

region of the falling film just after each film inversion demonstrates the usefulness of 

film-inverting concept as a means for performance improvement. Following the film 

inversion, the colder interface quickly attains equilibrium conditions after absorbing a 

large amount of water vapour. This is the reason for the sudden increase of mass flux 

seen at the entrance region of tube 2. The high absorption rate at this region also 

generates a large amount of heat which slowly diffuses into the film. Because of the rapid 

rise of the temperature at the interface there is a steep decrease of absorption rate shortly 

after the entrance region. However, with the gradual development of temperature field as 

exhibited in Figure 7.12, the absorption rate gradually decreases, though with a higher 

rate than the continuous falling film absorption rate, until film inversion is repeated in the 

next tube.  
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Figure 7.13(b) Variation of bulk and interface temperature along the direction of 

flow [ ]πθξ = ; (a) film-inverting absorber; (b) continuous falling film absorber; operating 
conditions: set-1 in Table 7.2. 

 
 

Figure 7.13(c) Variation of bulk and interface concentration along the direction of 
flow [ ]πθξ = ; (a) film-inverting absorber; (b) continuous falling film absorber; operating 

conditions: set-1 in Table 7.2. 
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In Figure 7.13(b), the variations of bulk and interface solution temperature are shown 

over the first few tubes of the absorbers. In the continuous falling film absorber, the bulk 

temperature shows gradual increase in the first tube which slowly decreases in the rest of 

the tubes. When film is inverted in the second tube, bulk temperature drastically drops 

right after the film inversion. As the vapour absorption continues at the interface, bulk 

temperature gradually increases and attains a maximum at the end of the tube. The 

whole process is repeated in the other tubes showing an oscillatory pattern of bulk 

temperature variation in the film inverting absorber. The interface temperature shows 

gradual decrease along the entire length of the continuous falling film absorber as also 

seen in Figure 7.13(b). When film inversion occurs in the second tube, the interface 

temperature drastically drops because of the surface reversal at the entry region of this 

tube. But unlike the bulk temperature, due to a large amount of vapour absorption the 

interface temperature sharply increases right after the film inversion and remains nearly 

steady in the rest part of the tube. The whole process is again repeated in the rest of the 

tubes with an oscillatory pattern of temperature variation at the interface.     

As shown in Figure 7.13(c), the variations of bulk and interface concentration of LiBr 

are plotted along the first few tubes of both film inverting and continuous falling film 

absorbers. In both absorbers, bulk concentration gradually decreases along the flow 

direction. However, the drop in LiBr concentration is more in the film inverting absorber 

due to the higher absorption rate in this absorber. In the interface region, the gradual 

drop in LiBr concentration is shown in the figure by the continuous falling film 

absorber. When film inversion occurs, surface reversal causes drastic drop of 

concentration in the entrance region of a tube. But concentration sharply rises shortly 

after the film inversion followed by a gradual increase. In the later part of the tube, 

concentration shows slight decrease until film inversion is repeated in the next tube. The 
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oscillatory pattern of interface concentration is visible as the film inversion continues 

tube-after-tube.   

  
 

 

 

 

 

 

 

 

 
 

 
Figure 7.14 Tube-wise variation of mass flux; (a) by the film inverting tubular absorber, 
(b) by the conventional absorber without film-inversion; experimental condition: set-2 in 

Table 7.2. 
 
 

7.4.2 Performance improvement by the film-inverting absorber 

Islam et al. [45] tested the performance of a tubular absorber with and without film 

inversion in the same experimental set-up under similar operating conditions. They 

developed a numerical model assuming the flow over the tubes to be equivalent to the 

flow over vertical plate segments. The predictions of the physical model were then 

compared with experimental data. In the present study, the film-inverting absorber model 

is developed based on single tube model taking into consideration the curvature effect of 

each tube. The numerical results obtained from present film-inverting model are 

compared with the experimental results of Islam et al. [45] in order to verify the 

predictions.  The experimental conditions are given in Table 7.2. 

Figure 7.14 shows the tube-wise variation of vapour mass flux by the two tubular 

absorbers. For the conventional tubular absorbers, the mass flux drops drastically after 
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the first tube. When the absorption begins at the first tube, the film-interface temperature 

rises sharply. The interface temperature reduces thereafter as the heat starts to diffuse 

from bulk solution to the coolant. But continuous absorption process retains higher 

interface temperature which actually impedes further absorption, especially after the first 

tube of the conventional tubular absorber.   

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 7.15 Variation of tube-wise averaged interface and bulk concentration 

(%LiBr/100); by the (a) film inverting tubular absorber, (b) conventional absorber 
without any film-inversion; experimental condition: set-2 in Table 7.2.  

 
 
 

For the film-inverting absorber, the alternate surface inversion helps a colder surface to 

take part in absorption at the interface such that the average temperature at the interface 

region is lower. As a consequence, the absorption rate remains higher tube after tube. 

This way the film-inverting absorber produces a larger absorption of vapour than the 

conventional tubular absorber. Figure 7.15 illustrates the changes of tube-wise averaged 

interface and bulk concentration of LiBr solution over the tubes. The bulk concentration 

drop of the film-inverting absorber is larger because of the higher mass flux of absorbed 

vapour.   
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Figure 7.16 Variation of tube-wise averaged interface and bulk temperature;  
by the (a) film inverting tubular absorber, (b) conventional absorber without any film-

inversion; experimental condition: set-2 in Table 7.2.  
 

 
   

 

 

 

 

 

 

 

 
Figure 7.17 Tube-wise variation of coolant average temperature; by the (a) film 

inverting tubular absorber, (b) conventional absorber without any film-inversion; 
experimental condition: set-2 in Table 7.2.  

 
In Figure 7.16, the variation of tube-wise averaged interface and bulk temperature of 

LiBr solution is shown.  The solution leaves the film-inverting absorber with higher bulk 

temperature. The initial sharp rise of temperature in the conventional absorber is reduced 

in the case of film-inverting absorber. The sharp rise of bulk temperature in the first few 
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tubes of the conventional absorber occurs mainly because of the difference between the 

inlet solution temperature and the equilibrium temperature at the inlet concentration. If 

the inlet solution temperature is much lower than the equilibrium temperature at the inlet, 

which is the case of the experiments of Islam et al. [45], initially a large amount of 

vapour is absorbed. As a result, the bulk temperature increases sharply in this region. The 

details of this process are also discussed in section 3.2.5. In the case of film-inverting 

absorber, surface reversal helps better transfer of heat in the film causing reduced rise of 

temperature near the entrance of the absorber. 

Figure 7.17 shows the coolant average temperature variation along the absorber. The rise 

of coolant temperature for the film-inverting absorber is less than the rise of temperature 

by the conventional absorber because only half of the coolant tubes are participating in 

the process. As a result, less heat is transferred to the coolant which actually causes the 

solution film to leave the absorber with higher bulk temperature as shown in Figure 7.16. 

              

             Table 7.3 Absorption performance of tubular film-inverting absorbers 

 
Average mass flux with 

film inversion 
[ 12. −− smkg ] 

Average mass flux 
without film inversion 

[ 12. −− smkg ] 

Percent change with film 
inversion 

Set 
no. 

Present 
model 

Experiments 
of Islam et 

al.[45] 

Present 
model 

Experiments 
of Islam et 

al.[45] 

Present 
model 

Experiments 
of Islam et 

al.[45] 
1 0.004702 0.004060 0.002522 0.002130 86.4 90.6 

2 0.004123 0.004140 0.002242 0.002050 83.9 102.0 

3 0.004082 0.004170 0.002229 0.002070 83.1 101.4 

4 0.004473 0.004070 0.002296 0.002120 94.8 92.0 

5 0.004390 0.003930 0.002259 0.002090 94.4 88.0 

 

Table 7.3 presents average mass flux computed for a tubular absorber with and without 

film inversion at various operating conditions of Islam et al. [45]. The average mass flux 

was computed based upon the inlet and outlet concentration difference of LiBr solution 
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after flowing over the bank of horizontal tubes. The operating conditions are 

summarized in Table 7.2. The numerical model predicts an enhancement of vapour mass 

flux due to film inversion of about 83-95 percent whereas the vapour mass flux 

enhancement measured in the actual experiments of Islam et al.[45] were 88-102 

percent. The numerical results verify the significant performance improvement due to 

film inversion as was also observed in the actual experiments of Islam et al. [45]. 

However the numerical model under predicts the vapour mass flux enhancement. The 

reason for this lower enhancement predicted by the numerical models is probably due to 

the limitations of the models, in particular, the exclusion of partial wetting of the tubes. 

It was observed that film-inverting process causes better film flow distribution over the 

tubes as shown in Figure 7.5(b). Hence the use of complete wetting of absorber tubes is 

justified for the film-inverting absorber. On the contrary, for the conventional design 

without the film-inversion, complete wetting of the tubes is an over-estimation, because 

the conventional design does involve the partial wetting, as discussed in section 3.3. 

Therefore, assumption of complete wetting for both the models predicts less 

performance improvement by the film-inversion process compared to the experimentally 

measured improvement.  

 
7.5 Design considerations for film inverting absorbers 

In-line semi-circular tube design 

The basic film-inverting round-tube absorber tested by Islam et al. [45] is shown in 

Figure 7.18(a). The tubes are arranged in an ‘in-line’ configuration and only about one-

half of each tube has the liquid film flowing over it. This is a major disadvantage of the 

design tested by Islam et al. [45].  Several alternative designs are proposed here in order 

to enable as much surface area as possible to be covered with the liquid film. In Figure 

7.18 (b), a design is proposed using semi-circular tubes instead of the full-circular tubes. 

This design has the advantage of saving some non-participating surface area, but the 
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vertical flat sides will not carry liquid films. Shown in Figure 7.18 (c) is another design 

with few columns of semi-circular tubes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.18 (c) Semi-circular film-inverting design [multiple columns]. 
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In this case, most of the straight parts of the semi-circular tubes take part in absorption 

due to the inclusion of inclined fins. The tubes which are at the two ends of the tube 

bank will not have the inclined fins. This design could be a better alternative to the 

design shown in Figure 7.18 (b), but the location of proper inclined fins is difficult to 

achieve in practice. Moreover, the film flow over the inclined fin is adiabatic, which 

therefore will increase the temperature of the film. An important consideration for both 

semi-circular tube designs is the selection of the material for the tubes for operating 

under vacuum. For the copper tubes, it may be difficult to prevent the flat surface from 

buckling with the surrounding vacuum pressure and the coolant, flowing inside the tubes 

at ambient pressure.    

 
Two-Film-Tube (TFT) film-inverting absorber 

For further design improvement, a Two-Film-Tube (TFT) film inverting absorber is 

proposed. In this case, multiple columns of Single-Film-Tube (SFT) Coanda Effect-

Based Film-Inverting Absorber (SFT-CEBFIA) are used in such way that both surfaces 

of the round tubes take part in the absorption.  Figure 7.19 shows the TFT arrangement 

for three columns of CEBFIA with 4 tubes in each column. The solution is introduced at 

the top tube of each column from a common distributor with multiple outlets. The flow 

rate of different outlets is individually controlled. The objective is to have half of the 

total solution flow rate along each side of the tube. The solution is collected at the 

bottom after flowing over the tube array. Except for the tubes at the two outer edges, a 

significant part of all the inner tubes could participate in the absorption. The vapour is 

introduced in a cross-flow direction through the gap between the tubes to fully occupy 

the chamber without any obstruction due to the TFT arrangement. The coolant flows in a 

serpentine form through the tubes in each column with individual inlet and outlet as 

indicated in Figure 7.19.  
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Figure 7.19 Two-film-tube [TFT] assembly of film-inverting absorber. 
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7.5.1 Working principle of Two-Film-Tube CEBFIA 

Following description of the CEBFIA-design is based on the configuration shown in 

Figure 7.19. For convenience, tubes which are participating in absorption with solution 

flow along both sides are designated by F whereas the tubes which are participating from 

one side only are designated by H. The middle column of the assembly consists of the 

tubes which are all designated by F since all are participating from both sides in the 

absorption. However, the columns on the two sides of the assembly consist of alternate 

H –tubes and F- tubes. The liquid flowing from both sides of a tube B1 is separated by 

the two tubes A2 and B2 before reaching the lowermost point of the tube. Tube B3 

brings the two separated flow streams to flow over itself from both sides. Tube A4 and 

B4 separate two streams coming from both sides of B3 and flow along the respective 

sides of the next two tubes. Adding tubes on the left, right sides of tubes B1, A2, B2 and 

B3 as shown in Figure 7.19, a TFT assembly is formed which maximizes the 

participating areas of the film.   

 
Geometry of Two-Film-Tube (TFT) array 

The flow separation angle sθ  is determined from the geometry of the tubes as shown in 

Figure 7.20 (a) and (b). For the equilateral triangle, ABD formed in Figure 7.20 (a), the 

minimum separation angle is taken as 600. Since, the gap between two lower tubes ‘x’ 

should be greater than twice the film thicknessδ , the separation angle can be determined 

from the geometry of triangle ABC as : 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠

⎞
⎜
⎝

⎛
+

+

=
δ

θ

or

x
or

s
2

2

2
sin                (7.5) 

From Eq. (7.5), the separation angle can be expressed as follows: 
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where average film thickness δ is given by the Nusselts theory [72] as  

∫
=

=

−Γ
= ⎥

⎦

⎤
⎢
⎣

⎡ πθ

θ
θθ

ρ

ν

π
δ

0

31sin
31

31
d

g
                                      (7.7) 

Examining Eq. (7.6) and (7.7), the separation angle is found to be a function of tube 

distance, x and flow rate, Γ . Since the change in average film thickness with change in 

solution flow rate is very small (<1mm), separation angle is actually controlled by the 

tube spacing x. In section 7.5.3.1, experimental values of the variables sx θ,  are obtained 

under actual operating flow rates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      

  
    Figure 7.21 Single-Film-Tube [SFT] assembly of film-inverting absorber.  
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7.5.2 Performance evaluation of Two-Film-Tube (TFT) CEBFIA 

The performance of the proposed TFT-CEBFIA has been compared with that of a Single 

Film Tube, SFT-CEBFIA. The SFT assembly with the same number of tubes as the TFT 

assembly is shown in Figure 7.21. In this arrangement the film flows only on one side of 

a tube. This is the main difference between the TFT assembly in Figure 7.19 and the 

SFT assembly in Figure 7.21.  In contrast to the TFT assembly, the distributor shown in 

Figure 7.21 introduces the flow from multiple openings along one side of the first tube 

of each column. The serpentine coolant flow path is nearly the same for both designs. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comparison of film areas of TFT and SFT assembly 

In Figure 7.19, the TFT assembly of CEBFIA shows that the columns which are at the 

two outer edges consist of alternate single film and two film tubes. However, in practical 
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design with a large number of columns, the contribution of the two outermost columns 

would be relatively small. Therefore for the following comparison, the representative 

two-film-tube column is taken as one of the inner tube-columns indicated in Figure 

7.22(a). In contrast to the two-film-tube columns in Figure 7.19, the columns of single-

film-tube assembly are all similar to the representative column shown in 7.22(b).  

Both designs shown in Figure 7.22 (a) and 7.22(b) consist of 4 tubes in each column. 

Though the number of tubes is the same, the number of participating liquid films is 

different. Compared to the films A, B, C, D of the single-film-tube column shown in 

Figure 7.22(b), a typical two-film-tube column has four more participating films 

indicated by E, F, G and H in Figure 7.22 (a).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In Figure 7.22(c), the angular positions at which the liquid film enters and leaves the 

tubes of TFT column in Figure 7.22(a) are shown. The solution film, coming out from 

the distributor, enters the top tube at an angle which is different from the film entering 

angle to the rest of the tubes. The solution film leaves the top tube at an angle which is 

equal to the half of the separation angle sθ  as shown in Figure 7.20(a). The film entering 
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and leaving angles to the rest of the tubes are therefore equal to the half of the separation 

angle sθ . The corresponding angular positions for the SFT column in Figure 7.22(b) are 

shown in Figure 7.22(d). The total participating film area of the two arrangements 

depends mainly on the angular positions where the film enters and leaves the tubes.  

 
Table 7.4 TFT assembly of CEBFIA; angular arrangement of Figure 7.22 (c) 

 
Tube 
[as 

shown in 
Figure 

7.22(a)] 
n  

Films per 
tube   

[as shown 
in Figure 
7.22(a)] 

 

iθ  [first 
tube] 
[deg.] 

oθ [first 
tube] or 
iθ [second 

tube 
onwards] 

[deg.] 

Participating area 
for the two-film-

tube  
nA = 

2 o
oi rπθθ

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−
180

1  

Total 
participating 

area 

∑
=

=

4

1

n

n
nA  

1 A,E 10 50 1.30 orπ  
2 B,F 50 50 0.89 orπ  
3 C,G 50 50 0.89 orπ  
4 D,H 50 50 0.89 orπ  

3.97 orπ  

 
 
Table 7.4 presents the total participating area of the TFT assembly shown in Figure 

7.22(a) when separation angle is 0100=sθ . The solution film enters the top tube at 

010=iθ  whereas solution film leaves the tube at 0502/ == so θθ as shown in Figure 7.22 

(c). Both the film entering and leaving angles to the rest of the tubes are 500s. For this 

configuration, the participating tube surface area which is covered with the liquid film is 

calculated for each tube as shown in the 5th column of Table 7.4. The total participating 

area is therefore the sum of the tube-wise participating areas An ( orπ97.3 ), where or  is the 

outer radius of a tube.  

Table 7.5 shows similar calculations for the SFT assembly shown in Figure 7.22 (b) for 

different entering and leaving angles indicated in Figure 7.22 (d). Each tube of the SFT 

assembly has only one side of it covered with a film. Therefore the number of films is 

equal to the number of tubes in this design. Based on the different film entering and 

leaving angle to the tubes, the total participating area is calculated for three 
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configurations as shown in the last column of Table 7.5. For 010== oi θθ , total 

participating area is found to be orπ55.3  which is about 10  percent less than the total 

participating area of the TFT assembly shown in Table 7.4. 

 
Table 7.5 SFT assembly of CEBFIA; angular arrangement of Figure7.22 (d) 

Films per 
tube 

[as shown in 
Figure 

7.22(b)] 
 

n  
 

iθ  [first 
tube] 
[deg.] 

oθ [first tube] or 
iθ [second tube 

onwards] 
[deg.] 

Participating area 
for the single-film-

tube  
nA = 

o
oi rπθθ

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−
180

1  

Total 
participating 

area 

∑
=

=

4

1

n

n
nA  

Configuration-1 
 

A 10 10 0.89 otrπ  
B 10 10 0.89 otrπ  
C 10 10 0.89 otrπ  
D 10 10 0.89 otrπ  

3.55 orπ  

Configuration-2 

A 10 15 0.86 otrπ  
B 15 15 0.83 otrπ  
C 15 15 0.83 otrπ  
D 15 15 0.83 otrπ  

3.36 orπ  

Configuration-3 

A 10 20 0.83 otrπ  
B 20 20 0.78 otrπ  
C 20 20 0.78 otrπ  
D 20 20 0.78 otrπ  

3.16 orπ  

 

The total participating area of the SFT assembly decreases further if the film leaving 

angle oθ of the tubes is increased as shown for the configuration 2, 3 of Table 7.5. 

However, if more tubes are added in a column of TFT arrangement shown in Figure 

7.22(a) and SFT arrangement shown in Figure 7.22(b), for the same number of tubes, 

percent difference of the total participating areas by the two designs decreases even if 

the angular positions remain same as those shown in Figure 7.22(c) and 7.22(d). It is the 

top tube of a TFT column whose participating area is more compared to the other tubes 
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( orπ3.1 ). The contribution of the participating area of the top tube of the TFT 

arrangement in the total summation of tube-wise participating areas decreases if the 

number of tubes increases in a column. 

Furthermore, even though the films A,B,C,D of the SFT assembly shown in Figure 7.22 

(b) could be longer than those of TFT assembly because of the different entry and 

leaving angles, additional films like E, F, G and H of the TFT design shown in Figure 

7.22 (a) will provide additional area for vapour absorption. As a result of more 

participating area of absorption, the absorption performance of the TFT design is more 

than that of SFT design as described in the following section. 

 
7.5.2.1 Numerical simulation: TFT and SFT CEBFIA designs 

The absorption performance of both TFT and SFT assembly of the tube columns shown 

in Figures 7.22(a) and 7.22(b) are tested under similar operating conditions. The 

operating conditions are stated in Table 7.2. For the sake of comparison, the total mass 

flow rate of solution sim  at the top of the two designs remains same. However, in the 

TFT assembly, the mass flow rate sim  is divided into half flowing along each side of the 

top tube as shown in Figure 7.22(a). In the SFT assembly, on the other hand, solution 

flows at the rate of sim  along one side of the top tube as shown in Figure 7.22(b). The 

numerical solution of the film flow over the four tubes in a single column of both TFT 

and SFT designs is obtained in a manner similar to the solution of CEBFIA in section 

7.4. In the TFT assembly, the total heat transfer from one side of a tube is multiplied by 

two assuming similar conditions to prevail on both sides of a tube. In order to calculate 

the vapour absorption rate by the TFT assembly of the absorber tubes, the change in 

LiBr concentration and the associated change in solution flow rate for film flow over 

each tube are taken into consideration. The rate of absorption by the four tubes is then 

compared to similar result obtained from SFT assembly with the same number of tubes.  
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Figure 7.23 Variation of  (i) vapour mass flux [kg.m-2.s-1] (ii) Bulk concentration 
[%LiBr/100] (iii) Bulk temperature in the first two tubes of TFT and SFT assembly 

shown in Figure 7.22(a) and 7.22(b); operating conditions: set 4 in Table 7.2; angular 
positions are given in Table 7.4 for TFT and configuration 1 in Table 7.5 for SFT. 
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The variations of mass flux, bulk concentration and temperature along the film flow 

direction in the first two tubes of the two designs are plotted in Figures 7.23(i)-(iii). It is 

clearer from the results plotted in the figures that the SFT film length along each side of 

a tube is longer compared to the TFT film length along each side of a tube. However, the 

tubes with TFT assembly are participating into absorption from both sides which causes 

higher rate of vapour absorption in both the tubes as shown in Figure 7.23(i). In both the 

designs, the absorption rate is much higher at the entrance region of a tube which 

gradually decreases in the rest of the tube. The drop in bulk concentration of LiBr along 

the flow direction is plotted in Figure 7.23(ii) for both TFT and SFT configurations. The 

drop in bulk concentration is much higher in the TFT design especially in the second 

tube. The larger drop in bulk concentration indicates higher absorption rate which occurs 

due to the thinner film of the TFT design. Since the mass flow rate along one side of a 

tube with TFT configuration is half of the mass flow rate along the side of a tube with 

SFT configuration, the film thickness along each side of a tube with TFT configuration 

is nearly half as well. As a result, vapour absorption rate and so as the drop in bulk 

concentration is higher for a film with lower thickness.  

 
 

 

 

 

 

 

 

 

Figure 7.24 Tube-wise variation of coolant temperature of TFT and SFT arrangements 
shown in Figure 7.22(a) and 7.22(b); operating conditions: set 4 in Table 7.2; angular 

positions are given in Table 7.4 for TFT and configuration 1 in Table 7.5 for SFT. 
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The variation of bulk temperature is plotted in Figure 7.23(iii) for both the TFT and SFT 

designs. The bulk temperature of the film flowing along the side of a tube with TFT 

configuration is seen higher than that of a tube with SFT configuration especially in the 

first tube. Because of the larger concentration drop of a thinner film in the TFT design, 

the rise in temperature is higher in this case. 

It also interesting to observe that, for the SFT design, the relatively longer film along a 

side of a tube is not helping to get better absorption performance. The absorption process 

mainly dominates the entrance region of a tube as shown in Figure 7.23(i). After the 

initial sharp rise, the absorption rate falls drastically and displays a steady decrease in 

the rest of the tube. The longer film can only provide little additional contribution to 

absorption rate. Similarly for the concentration change shown in Figure 7.23(ii) by the 

SFT design, the slope of the concentration profile gradually decreases in the later part of 

the tube. The bulk temperature also achieves a flat profile after the initial sharp rise and 

shows very little change at the end of the tube with SFT assembly. Hence, the 

contribution of the thinner and shorter film of the TFT design is found to be more than 

the contribution of the thicker and longer film of the SFT design in the absorption 

performance. The tube-wise variations of the average coolant temperature of the two 

designs are plotted in Figure 7.24.  Since the tubes with TFT configuration are 

participating in absorption from both sides, more heat is transferred to the coolant in this 

case. As a result, the rise in coolant temperature is more in the TFT than the SFT design.    

Furthermore, the rate of vapour absorption by the four tubes with both TFT and SFT 

configurations are separately calculated. The absorption data are summarized in Table 

7.6 for three values of the film entering and leaving angles of the SFT assembly given in 

Table 7.5. These angles remain unchanged for the TFT assembly given in Table 7.4. 
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        Table 7.6 Comparison absorption performances of TFT and SFT assembly 
 

No of  
tubes 

oi θθ ,  
[TFT] 

oi θθ ,  
[SFT] 

Total 
area, 
TFT 
[ TA ] 

Total 
area, 
SFT 
[ SA ] 

Percent 
difference of 

area 

⎥
⎦

⎤
⎢
⎣

⎡
×

− 100
S

ST

A
AA  

Percent difference 
of absorption 

rate

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×

−
100

,

,,

Sv

SvTv

m
mm  

10,50 10,10 3.97 orπ  3.55 orπ  11 23 

10,50 10,15 3.97 orπ  3.36 orπ  15 26 

 

4 

 10,50 10,20 3.97 orπ  3.16 orπ  20 29 

 
 
The results in the first row of Table 7.6 show that the TFT assembly could increase the 

absorption rate by about 23 percent compared to the absorption rate by the SFT 

assembly. The main reason for this performance improvement by the TFT arrangement 

is the presence of more participating films and consequently more participating area for 

vapour absorption. As stated before, the number of participating films flowing over the 

TFT arrangement shown in Figure 7.22(a) is double the number of such films in the SFT 

arrangement shown in Figure 7.22(b). Moreover, in the TFT arrangement, along each 

side of a tube, mass flow rate is half compared to the mass flow rate along each side of a 

tube of the SFT arrangement. As a result, film is much thinner in the case of flow along 

one side of a tube of the TFT design which also causes more vapour absorption as 

discussed before. If the angular positions at which the film enters and leaves the tubes of 

the SFT design increase, the total participating area decreases more which in turn causes 

a reduction in absorption rate. Hence, the percent difference of the absorption rate 

between the TFT and the SFT designs increase from 23 to 29 percents as shown in the 

last column of Table 7.6 if the film entering and leaving angles to the tubes of the TFT 

design remain unchanged. However, with an increase of tube separation angle in the 

TFT design, the absorption rate will decrease as in the case of the SFT design. It is seen 
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that the tube entering and leaving angles that determine the effective length of the film is 

an important design parameter for both the SFT and TFT configurations.  

 

 
 
 

 

 

 

 

 

 

 

 

 
 
 

            Figure 7.25 Photograph of the test set up with modified test section. 
 

 
7.5.3 Hydrodynamics of the TFT film-inverting absorber 

An experimental program was undertaken to establish the feasibility of the TFT 

arrangement of the film-inverting absorber. The main purpose of this experiment is to 

observe the film flow hydrodynamics similar to the CEBFI hydrodynamics presented in 

section 7.3.1.2. The experimental set-up described in section 7.3.1 is used for this 

purpose with suitable modification of the test section. A photograph of the test set-up is 

presented in Figure 7.25. Seven tubes of outer diameter 22 mm and length 240 mm are 

assembled together to obtain the TFT configuration. The design variables like the 

separation angle sθ , tube gap x,δ are determined by trial and error using exploratory 

experiments. 

Tube arrangement 
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 (c) Flow merging-view 1.                               (d) Flow merging- view 2.             
 
 
 

 

 

 

 

         
           
           (e) Flow merging-view 3.                                       (f) Flow merging-view 4.             

  

      Figure 7.26 Images to explain mechanism of TFT film inversion. 
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Figure 7.27 Experimental verification of the TFT film-inverting concept 
 

 

 

 

 

 

 

     

 

Figure 7.28 Final TFT configurations [flow rate: 0.0163 kg.s-1]. 

 
7.5.3.1 Experimental results 

The tubes are assembled carefully in the test section in order to perform the flow 

separation and merging accurately. At each step, the film flow over the tubes is recorded  

on video. The first step is to position the topmost tube in such way that it is wetted on 

both sides by the flow from the distributor. The next step is to position the two tubes 

below the first tube and carefully obtain the liquid stream from both sides of the top tube 

to flow in opposite directions due to the Coanda Effect. Vertical guide bars are necessary 

to maintain the proper orientation of the tubes as shown in Figure 7.26 (a) and (b). 

(c)Schematic of flow 
separation at second 
stage 

(b)Flow separation at 
second stage-view 2 

(a)Flow separation at 
second stage-view 1 

(c)Schematic of flow 
merging at second 
stage 

(b)Flow separation at 
second stage-view 2 

(a)Flow separation at 
second stage-view 1 
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Figure 7.26 (a) shows the flow separation due to the two lower tubes. From the picture 

taken from below, the uniform distribution of film flow after the separation is clearly 

visible in Figure 7.26 (b). The figure also displays the non-wetted surface at the bottom 

of the top tube. The flow separation is performed varying the separation angle sθ  from 

60 degree to less than 180 degree. The tubes cannot be brought too close because that 

may not separate the flow at all, instead, it may let the liquid stream to flow in one-

direction on the tube below. Moreover, care has to be taken to ensure that two tubes are 

placed at equal distances from the first tube. Figure 7.26(b) shows the flow separation at 

slightly wider separation angle than the flow separation of Figure 7.26(a). The separation 

angle cannot be too wide because that may increase the non-participating surface area of 

the tubes.  

In this experiment, separation angle is set at 100 degree. The angle is calculated from the 

measurements taken for the radial tube gapδ and horizontal tube gap x as shown in 

Figure 7.20 (a)-(b). The tube gaps are measured with digital calipers to calculate the 

separation angle using Eq. (7.6). Third step is to place the fourth tube below the two 

lower tubes so that the two fluid streams are guided to flow along the two sides of this 

new tube using the Coanda Effect. This operation is termed as merging of the flow 

streams which is shown in Figure 7.26 (c)-(f) using different viewing positions. In the 

next step, flow separation is performed again with two more tubes below. Figures 7.27 

(a)-(b) show the six tube assembly with flow separation by the two bottommost tubes.  

Finally, the seventh tube is brought into place between the fifth and sixth tubes to 

perform the merging of the two separated liquid streams after flowing along the two 

sides of this tube. The angular views of the seven-tube assembly shown in Figures 7.28 

(a)-(b) display the alternate working surfaces with uniform distribution of film over the 

tubes. When the film flow over the tube assembly is satisfactory in terms of uniform 
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distribution and surface wetting, the tubes are tightened finally to maintain the stability 

of the structure.  

 

 

 

 

 

 

 

     a) Right hand side view.          b) Left hand side view.      

               
Figure 7.29 Final TFT configuration [flow rate: 0.008 kg.s-1].  

 
The above experimental procedure is normally undertaken at a moderately high flow rate 

initially. After achieving the satisfactory flow condition, the flow rate is varied within 

practical limits. If the tube gap remains unchanged, increase of flow rate may increase 

the film surface waviness. Furthermore, the flow rate cannot be increased too much 

because it may cause flow blockage through the small tube gaps. The decrease of flow 

rate on the other hand minimizes the surface waviness and smoothes out the film. 

Figures 7.28 (a)-(b) and 7.29 (a)-(b) show the film flow over the TFT assembly at two 

different flow rates for the same tubular configuration. It was observed that the tube gap 

did not require adjustment even at very low solution flow rate. But, too low a flow rate 

could cause poor surface wetting and flow distribution. The workable limit of solution 

flow rate is therefore found by trial-and-error for this particular tubular configuration. 

The limit of flow rate is found to be within the actual operating condition of practical 

falling film absorber.  
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7.5.4 Practical design aspects of TFT CEBFIA 

The above experimental study of TFT CEBFIA flow hydrodynamics demonstrated its 

feasibility for practical application. The main advantages of this proposed design are (a) 

the film inversion without the use of any guide vanes/fins and (b) availability of more 

participating films for a given number of tubes. The TFT design offers more vapour 

absorption capability mainly because of the availability of more participating films. The 

advantages of TFT absorber over the conventional tubular absorber are also very 

significant. Not only does it help to provide a large performance improvement due to 

film-inversion, but also the problem of absorber drying out is greatly reduced. In the 

conventional tubular absorber the liquid film becomes narrow as it flows down over the 

tubes towards the bottom of the absorber, thus creating dry patches. When film-inversion 

is used, the wetting of the absorber tubes is greatly improved either with the fins used by 

Islam et al. [45] or with no fins as in the case of present TFT design of CEBFIA. But the 

additional advantageous feature of the new TFT design is the reduction of the absorber 

length. The same number of absorber tubes as used in the case of conventional design is 

re-arranged as multiple columns in the TFT absorber. Numerical simulation results 

suggest that adding more tubes in new columns create more absorption than adding more 

tubes in new rows of same column. But TFT absorber requires a careful design of the 

flow distributor and the collector as in the case of any staggered-tube heat exchanger.  

Besides this, other design issues that may arise during the operation of the new absorber 

are described below. 

The radial gap between the tubes of the TFT absorber is nearly equal to the average 

liquid film thickness. Maintaining such a narrow gap between the tubes may present 

practical problems during fabrication of this proposed design. However, in the present 

experimental study, the tubes are assembled in such way that the tube gaps are 

adjustable in both horizontal and vertical directions even during the experiment run. The 
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tubes are also assembled step by step in order to avoid any flow blockage during the 

start-up. When satisfactory film flow is achieved at each step, the tubes are tightened in 

position. Once a satisfactory and stable tube configuration is achieved, the flow rate can 

vary within a practical range without causing much disturbance to the film flow. The 

present experimental study has demonstrated the feasibility of the film-inversion process 

using the Coanda Effect with its many advantages. However, a prototype absorber using 

the design concept has to be tested over a range of operating conditions before the 

design can be adopted in practical vapour absorption cooling systems. 

 
7.6 Summary 

In this chapter, a new film-inverting tubular absorber was proposed which used the 

Coanda Effect to achieve film-inversion. The film-inverting mechanism was analyzed in 

detail with the help of the absorption model of the new film-inverting absorber. The 

experimental investigation of the film-inverting hydrodynamics was also performed to 

verify the practical feasibility. In order to increase the vapour absorption rate, a two-

film-tube (TFT) film-inverting absorber design was proposed. The performance of the 

TFT film-inverting absorber was simulated numerically and compared with the single-

film-tube (SFT) film-inverting absorber. The TFT film-inverting absorber increased the 

absorption rate over the SFT design. The practical feasibility of the new design concept 

was verified by performing experimental investigations of the film-flow hydrodynamics 

of the TFT absorber. The experimental results demonstrated the feasibility of this novel 

design.  



Chapter 8                                                                                                                         Conclusions  

 
207

CHAPTER 8 

CONCLUSIONS AND  

RECOMMENDATIONS 

8.1 Conclusions 

A realistic numerical model of a horizontal-tube-bank absorber that included the detailed 

geometry and the heat and mass transfer processes was developed. The single round tube 

model was extended to simulate the bank of horizontal tubes in the practical absorber 

considering both the film-flow over the tubes as well as the inter-tube flow phenomena 

between the tubes. The numerical solution for the single round tube was dependent on 

the film entering and leaving angles to the tube mainly because of the fact that the film is 

thicker near the entrance and exit regions of a tube. The values of these angles were 

chosen from a sensitivity analysis. The predictions of the model were compared with the 

experimental results for a horizontal tube-bundle absorber from published sources. Good 

agreement was found when inter-tube absorption was incorporated to the model. Partial 

wetting of the absorber tubes by the solution flow had a significant effect on the 

predictions. Numerical simulation models were also developed for the equivalent 

vertical-flat-plate-absorber and the segmented-flat-plate-absorber which have been 

previously used to simplify the geometry of horizontal tube-bundle absorber. In order to 

determine the effect of making such geometrical simplifications, the predictions of the 

models were considered in similar fashion for the simulation of bank of tubes absorber. 

The use of the equivalent vertical flat plate model resulted in significant deviations in the 

predictions of the performance of a horizontal tube-bundle absorber. However, the 

simulation results of the detailed round tube and the segmented flat plate models agreed 

well. The comparison showed that the present detailed round tube model was capable of 

providing more realistic information about the changes of different parameters regarding 

the film flow over the tubes. Hence the detailed numerical model of the round tubes 
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could be used as the base line to obtain the local and averaged heat and mass transfer 

coefficients of the horizontal-tube-bank absorber. Moreover, the model could be used to 

simulate the performance of a film-inverting tubular absorber. 

The detailed numerical model discussed above required much computational effort when 

it was applied for a bank of horizontal tubes of the absorber. Thus, it may not be suitable 

for routine design application and for the analysis of experimental data. Therefore, a 

simplified design model was developed for the bank of tubes absorber by taking into 

consideration the detailed geometry of the tubes and the serpentine flow of coolant. The 

transfer coefficients required as an input to the simplified design model were determined 

from the previously developed detailed numerical model. The inter-tube flow and 

absorption was also incorporated in the model in the form of drop, jet/sheet flow. The 

simulation results obtained from the detailed numerical model and the simplified round 

tube model with inter-tube flow were compared with experimental results available in 

the published literature. There was reasonable trend-wise agreement between the 

predictions of the two models and the experimental data which had considerable scatter.  

The predictions of the simplified round tube model were also compared with those of the 

detailed numerical model under the known operating conditions. The agreement between 

the predictions by the two models was good, particularly, when spatially varying heat 

and mass transfer coefficients were used in the simplified model. When spatially 

averaged transfer coefficients were used, the predicted exit conditions showed good 

agreement, but there was some deviation between the predicted spatial distributions of 

the solution temperature and concentration. Furthermore, the simplified model was used 

to extract heat and mass transfer coefficients from published experimental data. The 

numerically computed overall heat transfer coefficients using the detailed numerical 

model agreed with the extracted values from the simplified design model within about 
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20 percent while the computed mass transfer coefficients were up to 30 percent higher 

than the corresponding extracted values. The effect of liquid film thickness variations 

over the absorber tubes was also examined by taking into account both the linear and 

non-linear form of the simplified model. The differences in the predicted changes in 

concentration and temperature at the bottom of the tube by the non-linear and the linear 

forms of the simplified model are less than 0.1 percent.  The approximate expressions 

for the exponents in the simplified model, which show explicitly the contribution of 

transfer units for heat and mass transfer, agreed well with exact analysis. 

The inter-tube absorption models were developed for the three possible modes of inter-

tube flow, viz. droplet, jet and sheet flow modes. The semi-empirical models of inter-

tube droplet and steady jet/sheet flow were developed based on the known transfer 

coefficients for the inter-tube absorption. However, the exact values of the inter-tube 

transfer coefficients were unknown. Hence, the transfer coefficients in the inter-tube 

flow regime were assumed to remain the same as those in the falling film regime. In the 

falling film regime, the transfer coefficients were extracted from the detailed numerical 

model. In a recent paper, Killion and Garimella [54] have presented the development of 

an experimental set-up to measure these transfer coefficients. The present inter-tube 

absorption models would be useful in the analysis of their experiments.  

The numerical solution of the inter-tube absorption models required the information on 

the hydrodynamics of drop development and steady jet flow. Therefore, the detailed 

experiments on inter-tube flow hydrodynamics were performed for a range of operating 

conditions including the varying flow rate and the tube spacing. The qualitative 

descriptions of the inter-tube flow events were made by analyzing the sequential video 

images. The qualitative behavior formed the basis for the inter-tube flow hypothesis 

which was used in developing the inter-tube absorption models described above. The 
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sequential video images were analyzed with the help of an image analysis program to 

obtain the transient characteristics of inter-tube flow. The experimental data were 

incorporated in the relevant absorption models to simulate the absorption performances 

at various operating conditions. The actual contribution of the inter-tube absorption was 

obtained comparing to the total of falling film and inter-tube absorption rates of a tubular 

absorber. The percent contribution of inter-tube absorption was found 30 to 36 percents 

of total absorption with assumed transfer coefficients. A sensitivity analysis showed 

significant dependence of the simulation results predicted by the models on the varying 

transfer coefficients.  Even though the data presented for the percent contribution of the 

inter-tube absorption compared to the total absorption was integrated with some 

limitations of the transfer coefficients, the methodology shown in the present analysis 

could become a valuable tool for future study. 

Film-inverting absorber was considered to be the potentially viable alternative for the 

performance improvement of horizontal-tube-bank absorber. As an attempt to the 

improvement of the previous design of Islam et al. [45], a novel film inverting absorber 

was proposed which did not require the flow guiding fins to cause the film inversion in a 

horizontal-tube-bank. In the present study, an alternative design was explored which 

used the Coanda-Effect of fluid flow over curved surfaces to cause the alternate film 

inversion in a tubular absorber. The experimental investigation of the Coanda-Effect 

based film-inverting hydrodynamics was performed to verify the practical feasibility of 

the proposed design. The film-inverting mechanisms were analyzed in details with the 

help of the developed absorption model of the Coanda-Effect based film-inverting 

design. The previously developed detailed numerical model was used for this purpose. 

Though the model predictions depended on the film entering and leaving angles to the 

tubes, the film-inverting absorber provided significant performance improvement 
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compared to the conventional design without any film-inversion. The actual reasons of 

this performance improvement due to film-inversion were explored. 

 In order to increase the absorption performance more by increasing the participating 

area of absorption, a Two-Film-Tube film-inverting absorber was proposed by the help 

of alternate flow separation and flow merging due to Coanda-Effect in multiple columns 

of tubes. The performance evaluation of the Two-Film-Tube film-inverting absorber was 

numerically obtained and compared with the Single-Film-Tube film-inverting absorber. 

It was found that the Two-Film-Tube film-inverting absorber could increase the 

absorption rate by 23-29 percents more than the Single-Film-Tube design mainly 

because of the availability of more participating films in the Two-Film-Tube design. 

However, the vapour absorption performances of both the Two-Film-Tube and the 

Single-Film-Tube designs were influenced by the film entering and leaving angles to the 

tubes. The practical feasibility of the new design concept was verified by performing the 

experimental investigation of the film-flow hydrodynamics of the Two-Film-Tube 

assembly. The experimental results demonstrated the technical feasibility of the 

proposed design using the Coanda-Effect with its desirable features such as compactness 

and increased absorption.  

 8.2 Recommendations 

Following recommendations are made for future extension of the work. 

• In the present study, a procedure was shown in order to predict the actual 

contribution of inter-tube absorption in a tubular absorber which most of the 

previous researchers thought to be insignificant. However, the model predictions 

were based on the assumed values of the heat and mass transfer coefficients 

during the inter-tube absorption in the different flow modes. If the values of the 

transfer coefficients during drop formation or the steady jet flow are determined 
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experimentally, the procedure shown here could become more useful in actually 

predicting the inter-tube absorption. The next phase of the present study could be 

the development of an experimental program to measure the inter-tube 

absorption. Such experimental work would be a challenging undertaking suitable 

for advanced graduate studies.   

• The digital video camera used in the present study has the frame speed limit of 

30 per second. The accuracy of the transient droplet volume and surface area 

profiles presented in chapter 5 may improve if a high speed video camera was 

used. Due to the frame speed limit of the camera, the exact moments for the 

completion of development stage of a droplet or the break up of a liquid bridge 

could not be captured on the video in most of the droplet cycles. As a result, an 

accurate measurement of the droplet evolution cycle was found to be difficult. A 

high speed video camera with higher pixel resolution may ensure better image 

quality to improve the image analysis process and so as the accuracy of the 

capturing of the inter-tube flow events.  

• The falling film over a tubular absorber is actually very thin, thickness being 

hardly a mm. The visualization of such a thin film during the experimental 

verification of Coanda-Effect Based Film Inverting (CEBFI) process was found 

to be difficult to show in the digital images. Though the visualization was not a 

problem in the laboratory for eye-observations of the events. The same problem 

persisted during pictorially documenting the occurrence of flow separation and 

merging due to Coanda-Effect in a Two-Film-Tube CEBFI arrangement.  The 

improvement of the flow visualization of the film-inverting process is much 

required for the proposed design.  
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APPENDIX A 

NUMERICAL MODEL OF TUBULAR ABSORBERS 

 

A.1 Numerical solution of the governing equations for the round tube  

The governing equations given in section 3.1.2 are discretized using the finite difference 

method. The co-ordinate transformation and the discretization process using non-

uniform mesh are described in this section. The transformation of co-ordinates is slightly 

different for the round tube and the flat plate models and hence described separately in 

the following sections. 

 

 

 

 

 

 

 

 

Figure A.1 Transformation of co-ordinates 

 

In order to transform the irregular physical domain into a rectangular domain, following 

transformation relations are used as also been used by Chowdhury et al. [19]. 

yη
δ

=   , θξ
π

=                            (A.1) 

Where η  is the non-dimensionalized distance along the direction y  and ξ  is the non-

dimensionalized distance along the direction x  as shown in Figure A.1.  

Corresponding differential relations are:  

x  

y

1=η  

1=ξ  

( )xδ  



                                                                                                                                         Appendix-A 

 
222

 
0=

∂
∂

=

=
∂
∂

=

η

π
ξ

η

ξ

xx

rxx o

     
δ

η

ξ
δη

ξ

η

ξ

=
∂
∂

=

∂
∂

=
∂
∂

=

yy

yy
                                        (A.2) 

Divergence relation is:  
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Substituting the above sets of transformation relations Eqs. (A.1)- (A.2), into Eq. (A.3), 

Eqs. (3.12)- (3.13), (3.1)-(3.3) can be transformed to the following forms respectively: 

( )
3
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g
                                  (A.4) 

Differentiating Eq. (A.4) with respect toξ , the rate of change of film thickness is as 

follows:  

( ) ( )πξπξρ
ν

ξ
δ

tansin

1
9 3

1

3
1

or
S

gd
d

⎥
⎦

⎤
⎢
⎣

⎡ Γ
=                                            (A.5) 

where the length of flowing film, orS π=   

From Eq. (3.13),  
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Continuity equation becomes; 
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Energy equation becomes; 
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Species concentration equation becomes 
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Differentiating Eq. (A.6) with respect to η  and ξ  and substituting in Eq. (A.7) following 

expression is obtained: 

( )
2 2

2 2sin 2 sin cos
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v g d g d
d S S d
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After the integration of Eq. (A.10) with respect to ηd , expression for v-velocity is 

obtained: 
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Boundary conditions, Eqs. (3.4)-(3.8) are transformed into the following forms: 
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                   ( )ifif wpfT ,=                                             (A.16) 

 
A.2 Numerical solution of the governing equations for the flat plate 

As stated in Figure 3.2(a), only variable film thickness has to be accommodated into the 

computational field when a flat plate model is used. Therefore following transformation 

relations are chosen. 
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( )x
y

δ
η =   , 
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where LP  is circumferential length of the flowing film.      

Corresponding differential relations are:  
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Substituting above sets of transformation relations, Eqs. (A.17)- (A.18), into Eq. (A.3), 

Eqs. (3.12)- (3.13), (3.1)-(3.3) can be transformed in the following forms respectively: 
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Differentiating Eq. (A.19) with respect to ξ , the rate of change of film thickness is as 

follows: 
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From Eq. (3.13),   
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Continuity equation becomes; 
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Energy equation becomes; 
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Species concentration equation becomes; 
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Boundary conditions are remained same as described in Eqs. (A.12)-(A.16). 

 
A.3  Discretization of governing equations 

The governing equations Eqs. (A.8) – (A.9) or Eqs. (A.23)- (A.24) are discretized using 

the finite difference method and solved numerically using a 2nd order scheme. Due to the 

presence of strong convection along the flow direction, three-point backward difference 

scheme is used in this direction. Central difference scheme is used along the cross flow 

direction.  

 

A.3.1  Non-uniform grid generation 

Applying non-uniform grid generation techniques in both ηξ −  directions, the 

computational domain was represented by Figure 3.5. Grid size gradually increases in 

geometric progression manner in both the direction of co-ordinates. For non-uniform 

mesh size, finite difference scheme is developed by using Taylor series expansion. For 

second order backward difference and central difference schemes, following relations 

are developed. 

 
A.3.1.1 Backward difference scheme 

In Figure A.2, the solid lines represent the grid lines whereas the dotted lines are the cell 

boundary lines. The first two grid sizes in the figure are expressed as follows if the cell 

size increases with geometric progression rule.  

( ) ηβη dad += 1
2
1              (A.3.1) 

( ) ηββη dbd 2

2
1

+=             (A.3.2) 

The functional value at the two neighboring grid points (N-2) and (N-1) are expanded as, 
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Above two equations are used to obtain following first order derivative of the function f 

with second order accuracy at the grid point N,  
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Figure A.2 Taylor series representation for non-uniform grid; backward difference 
scheme. 

 

For uniform grid, Eq. (A.3.5) is transformed into the following expression by putting  

a = b. 

ηη d
fff

d
df NNN

N 2
34 12 +−

= −−        (A.3.6) 

Eqs. (A.3.3) and (A.3.4) are also used to obtain second order derivative of function f 

with second order accuracy at the grid point N as follows,  
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For uniform grid 
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A.3.1.2 Central difference scheme 

 

 

 

 

 

 

 

 

 

     

Figure A.3 Taylor series representation for non-uniform grid; central difference scheme. 

 

For the representation shown in Figure A.3, the functional values at grid point (N-1) and 

(N-2) are  
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By using above two equations, second order central difference formula for the first order 

derivative of function f is; 
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For uniform grid, above expression becomes,  
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Expanding Eqs. (A.3.9) and (A.3.10) until 4th order error terms and rearranging resulting 

equations, second order central difference formula for the second order derivative of 

function f  is,  

( ) ( )
( ) 2

11
2

2 222
ηη dbaab

bffbafa
d

fd NNN

N +

++−
= +−        (A.3.13) 

For uniform grid, the expression becomes, 

2
11

2

2 2
ηη d

fff
d

fd NNN

N

+− +−
=          (A.3.14) 

Eqs. (A.3.5), (A.3.7), (A.3.11), (A.3.13) are used at any nodal point within the flow field 

in both the co-ordinate directions. But Eqs. (A.3.11) and (A.3.13) are not applicable to 

the boundary nodes. On the boundary nodes, backward difference scheme is applied. 

 

 

 

 

 

 

 

 

 

 

 

 

                                               Figure A.4 Non-uniform grid along η direction. 

 
Grid size variations along the co-ordinate directions 

In Figure A.4, following definitions are used; 

N= total number of cells 

M1=number of non-uniform cells 

i = current grid point at the cell centre 

i=N N-1 N-2 

S

N-M1+2N-M1+1

ηad  ηbd  

ηd  ηβd  ηβ d2  ηβ dM 21−  ηβ dM 11−  

N-M1

ηβ dM 11−  
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S= length of non-uniform grid zone 

(1-S)= length of uniform grid zone 

Since non-uniform grid increases with geometric progression rule, the length of non-

uniform grid zone, S is  

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
1
11

β
βη

M

dS            (A.3.15) 

For known values of M1 and S, ηd  is calculable from Eq. (A.3.15). Total number of 

cells or grid points N is calculated from following expression. 

1
1 M
d

SIntN +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

η
           (A.3.16) 

Where Int( ) indicates integer value of the bracketed term. 

Two corresponding grid sizes in Figure A.4 are therefore expressed as follows, 

In the non-uniform grid zone, 
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 where ( )21 +−→= MNNi       A.3.17) 

At the interface of non-uniform and uniform grid zone, 
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In the uniform grid zone, 
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  where ( ) 11 →−= MNi         (A.1.19) 

Above formulas can be used in any direction of co-ordinate. The values of SMN ,,, 1β  are 

arbitrarily selected, until grid independent results are obtained. 
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A.3.2  Discretization of energy equation  

Applying central difference scheme along the η -direction and three-point backward 

difference scheme along the ξ -direction, discretized form of Eq. (A.8) at node point (j,i) 

shown in Figure A.5 becomes, 

 

 

 
 

 
                                  Figure A.5 Nodal distribution 
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Where ξξ d=Δ  and ηη d=Δ  

The values of η  in Eq. (A.3.20) are determined from following expressions in the 

regions shown in Figure A.4. 

[ ] ( ) ( )

[ ] ( )

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

Δ=

Δ−=

→+−=
⎭
⎬
⎫Δ+=

+−→−=
⎭
⎬
⎫+Δ+=

−

−
−

−−−
−

ηβη

ηη

βηηη

ββηηη

1
0

11

1
1

1

1

1

2
1

2
11

11
2
1

11
2
1

M

N

MN
ii

iNiN
ii

MNi

MNNi

             (A.3.21) 

Summing up the coefficients of ( )ijT ,  from Eq. (A.3.20): 
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Coefficients of ( )1, −ijT : 
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Coefficients of ( )1, +ijT : 
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The constants are: 
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Using the above expressions, discretized form of Eq. (A.3.20) around the node (j, i) 

becomes,  

( ) ( ) ( ) )(1,)(,)(1,)( iFijTiCijTiAijTiB =+++−             (A.3.26) 

Eqs. (A.3.22)-(A.3.25) are used only in the non-uniform grid zone i.e. when 

11 +−≤〈 MNiN  along η  direction.  

The temperature coefficients of Eq. (A.3.26) are expressed within the uniform grid zone 

simply stating ba =    or dc =   wherever applicable. 

In the uniform grid zone along the direction of η  i.e. when ( )11 MNi −→= , the 

coefficients of Eq. (A.3.26) become,  
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A.3.2.1 Near wall treatment at 1=i  

Figure A.6 shows that the region of 1=i  is within the uniform grid zone. Putting a grid 

point on the last cell boundary at 0=i , following expressions are developed, 

 
 

 
Figure A.6 Control volume near the wall  
 

For constant wall, 

( ) WALLTjT =0,  

Discretization of Eq. (A.8) at 1=i  and using of above relation provides, 
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A.3.2.2 Near interface treatment 

Interface region is within the non-uniform grid zone. Therefore, following developments 

are based on the grid representation shown in Figure A.4.  
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 The discretization of Eq. (A.8) at the node ( )1−= Ni  shown in Figure A.4 and 

application of boundary condition Eq. (A.16) produces the following results: 
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Combining all the expressions above, following Tri-Diagonal matrix is formed: 
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Above equations are developed at any j-th position along ξ  co-ordinate. As shown in 

Figure A.5, the two corresponding back rows along the direction j, are non-uniformly 

spaced. The values of c and d are calculated similar to the procedure of a and b 

calculation stated by Eqs. (A.3.17)-(A.3.19). In the uniform grid zone, same formulae 

are used along the ξ  co-ordinate by putting c = d in the respective equations.    
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A.3.3 Discretization of species concentration equation 

In the non-uniform grid zone, i.e. when 11 +−≤〈 MNiN  as shown in Figure A.4, 

applying similar discretization techniques described in section A.3.2 for Eq. (A.9), 

following expression is obtained, 
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Summing up the coefficients, following relations are obtained, 
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Therefore discretized form of Eq. (A.9) becomes 
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 In the uniform grid zone i.e. when ( )11 MNi −→=  
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A.3.3.1 Near wall Treatment  

Applying boundary condition Eq. (A.13) at 1=i shown in Figure A.6, following relation 

is obtained 

( ) ( )1,0, jwjw =  

Discretization of Eq. (A.9) at the 2nd node 1=i  shown in Figure A.6 and using of above 

relation provides 
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A.3.3.2 Near interface region  

Applying boundary condition Eq. (A.15) at ( )1−= Ni  shown in Figure A.4, following 

expression is achieved 
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Therefore, by using above relation, the coefficients of discretized form of Eq. (A.9) at 

( )1−= Ni  are 
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Therefore the following Tri-Diagonal matrix is formed: 
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A.4 Sensitivity analysis of entering and leaving angle to a tube 

From the discussions made in section 3.1.4.3, the computational domain for the film 

flow over a single tube has to start with sufficient distance away from the top and bottom 

dead centre of a tube. As demonstrated in Figure 3.6, the values of the film entering and 

leaving angle to a tube are chosen based on a sensitivity analysis. The procedure of this 

sensitivity analysis is as follows. At first, a baseline value for the film entering and 

leaving angle to the tube oi θθ , are taken arbitrarily. For simplicity, the values are kept 

equal for these two angles, oi θθ , . Afterwards, a total of %70±  variations are allowed 

with respect to the base values of oi θθ , . The model predictions for the tube-wise 

variations of mass flux, bulk temperature and concentration are obtained for each of the 

selected angular values within the prescribed range. The results are plotted graphically in 

Figures A.7-A.9. The percent difference between the mass flux, temperature and 

concentration predictions obtained using the base line value and those obtained using the 

new value of the angles oi θθ ,  are observed. The percent differences of the results 

indicate the degree of sensitivity.  

 

 

 

 

 

 

 

 

Figure A.7 Sensitivity of mass flux [kg.m-2s-1] at different angular values: operating 
conditions of Islam [43]. 
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Figure A.8 Sensitivity of bulk concentration [%LiBr/100] at different angular values: 
operating conditions of Islam [43]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.9 Sensitivity of bulk temperature [K] at different angular values: operating 
conditions of Islam [43]. 

 
 
As shown in Figure A.7, the tube-wise variation of mass flux decreases as the values of 

the angles increase. The possible reason for this behaviour is the decrease of 

participating surface area of the film flow over the tube with larger values of the angles 

of the film entering and leaving a tube which causes corresponding decrease of mass 

0.573

0.578

0.583

0.588

0.593

0.598

0 2 4 6 8 10 12 14 16 18 20 22 24

No of tubes

C
on

ce
nt

ar
tio

n

2.7
4.5
9.0
12.6
18
27

[ ]reeoi degθθ =  

09== oi θθ  

307

309

311

313

315

317

319

321

0 2 4 6 8 10 12 14 16 18 20 22 24

No of tubes

Te
m

pe
ra

tu
re

2.7
4.5
9.0
12.6
18
27

[ ]reeoi degθθ =  

09== oi θθ  

2.7 
4.5 

27 
12.6 

18 

2.7 
4.5 

27 

12.6 

18 



                                                                                                                                         Appendix-A 

 
239

flux. Similar results for the tube-wise variation of bulk concentration and temperature of 

LiBr solution are plotted for several values of the film entering and leaving angles to the 

tubes as shown in Figure A.8 and A.9 respectively. All these results indicate that among 

the three parameters i.e. the mass flux, concentration and temperature, mass flux are 

most sensitive to the angular values of oi θθ , . A scrutiny of the sensitivity data reveals 

that for 70% increase of oi θθ ,  (15.30) from the base line value (90), the mass flux 

calculated at the absorber outlet is 4% lower than the calculated mass flux using the base 

line angular value. Whereas for 70% decrease of oi θθ ,  (2.70) from the base line value 

(90), the mass flux calculated at the absorber outlet is 4.7% higher than the calculated 

mass flux using the base line angular value. The difference between the temperature and 

concentration results for the angular values of 15.30 and 2.70 compared to the results 

obtained using baseline value of 90 is 0.08% and 0.49 % respectively for temperature 

and 0.48 % and 0.29 % respectively for concentration. After getting the sensitivity 

results, the base line value 90 is taken as the value of film entering and leaving angle to 

the tubes to obtain the simulation results presented in chapter 3.  
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                                                              APPENDIX B 
 

UNCERTAINTY OF IMAGE ANALYSIS  

The image analysis program that has been undertaken to analyze the frame by frame 

video images is based on the edge detection process. The purpose of the edge detection 

process is to regenerate the droplet profiles. As discussed previously in section 4.6, the 

droplet profiles are generated selecting co-ordinate points along the edge of the droplets 

in the images. Hence the procedure is known as manual edge detection process. The 

edge detection may improve if higher quality images are achieved or an automated edge 

detection process can be found. The effects of automated edge detection instead of the 

manual edge detection process are discussed in this section. In addition, application of 

the manual edge detection to an improved quality image is also described.  

 
B.1 Manual edge detection process 

In section 4.6, the methodology of image analysis program had been discussed. The first 

step was to read the droplet or jet profiles from the sequential video images within a 

fixed time period. The profiles of the droplet or jet were generated by the help of the 

manual edge detection process. Image analysis software Matrox Inspector was used for 

this purpose which had the option to choose as many points as possible along the 

boundary of a droplet. A sample image is shown in Figure B.1 with the ‘cross’ signs 

along the droplet boundary. The profile of the droplet was thus generated accumulating 

the co-ordinate points. Droplet volume and surface area were computed afterwards by 

applying solid revolution theorem to the axi-symmetric droplet/jet.   

The manual edge detection process may not be very accurate because it involves 

numerous mouse clicks along the boundary of the droplet. Even if the higher image 

quality is achieved, all it needs to maneuver along the droplet profile onto the computer 

screen. Also this process becomes tedious when time dependent profiles are in concern. 

The transient droplet volume and surface area profiles which had been illustrated in 
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section 5.1-5.3 required huge effort in the application of the manual edge detection for 

each and every droplet. Less effort is required if an automated edge detection process 

can be deployed which may increase the accuracy of measurement as well.  

   

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure B.1 Manual edge detection process using Matrox Inspector 

 
 

B.2 Semi automated edge detection process 

In order to compare the accuracy of manual edge detection process deployed for current 

research, a semi-automated edge detection process is analyzed too. In this case, 

commercial software MATLAB is used to auto generate the droplet profile based on the 

known colour intensity value along the droplet boundary. The process is named by semi-

automated edge detection because the intensity value along the droplet boundary is to 

manually examine writing a computer code in MATLAB. From the MATLAB graphics 

window, the colour intensity is read for any point on the image where the mouse pointer 

is placed.  

Co-ordinate point 
selected by the 
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Figure B.2 Comparison of the two edge detection processes for a sample jet at 6 mm 
tube gap situation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.3 Comparison of the two edge detection processes for a sample jet at 10 
mm tube gap situation. 

 

The procedure is to examine the droplet boundary intensity value first which however 

remains constant along the entire boundary profile. Next, a separate computer code 

written in MATLAB is used to read and store the X-Y co-ordinates of the grid points 

whose intensity match with the known intensity value which indicate the grid points are 

along the droplet boundary profile.  Traversing along the given distances along the X 

and Y co-ordinates, all the boundary co-ordinate points thus can be stored with expense 

-0.005

-0.005

-0.004

-0.004

-0.003

-0.003

-0.002

-0.002

-0.001

-0.001

0.000
0 0.002 0.004 0.006 0.008 0.01

Along Y-axis

A
lo

ng
 X

-a
xi

s

Manual edge detection process

Semi-automated edge detection 
process

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 0.001 0.002 0.003 0.004 0.005
Along Y-axis

A
lo

ng
 X

-a
xi

s Manual edge detection process

Semi-automated edge detection process

Axis of symmetry, Y 

X 

Axis of symmetry, Y 

X 



                                                                                                                           Appendix-B 

 
243

of few seconds. Those co-ordinate points are then used to plot the regenerated droplet 

profile.  

The main advantage of the semi-automated edge detection process is that it can save a 

lot of effort involved in manual edge detection process. But the accuracy of this process 

depends highly on the resolution of the image. The images are required to be very sharp 

and free from noises. The images taken with the video camera used for this current 

research were found ineffective to deploy the semi-automated edge detection process 

mainly because of the lower resolution. For our interest, a digital still camera [NIKON 

D100] was used to take some pictures of the inter-tube jet-flow mode because of the 

time-independent nature. The jet profiles were regenerated using the semi-automated 

edge detection process described above. The results are discussed in the following 

section. 

 
B.3 Comparison of the two edge detection processes 

The accuracy of both manual and semi-automated edge detection processes is examined 

by selecting a few high quality images taken by digital camera [NIKON D100].  In 

Figure B.2, the jet profiles generated by the two processes are shown for the jet image at 

6 mm tube gap situation. Along one side of the axis of symmetry, the generated profiles 

by the two processes agree very well. Similar profiles for a jet formed at 10 mm tube gap 

situation are plotted in Figure B.3. This figure also indicates well agreement between the 

profiles generated by the two processes. Therefore, the accuracy of the manual edge 

detection process may not be too different from the accuracy of the semi automated 

process when a high quality image is concerned. However, to deal with a lower 

resolution image, both the edge detection processes may encounter some inaccuracies. 
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              Table B.1 Error analysis of the edge detection processes. 

Method 
Tube gap 

situation 

Volume 

of each 

jet 3,mV   

Area of 

each jet 
2,mA  

Absorption  in 

the gap by 

single jet  
11. −− smkg  

% Difference 

in the 

absorption rate 

by the two 

methods  

Semi-

auto 

 
2.62E-07 

 

 
1.79E-04 

 

 
3.25E-04 

 

Manual 

5 mm 
 

2.70E-07 
 

 
1.83E-04 

 

 
3.42E-04 

 

5.33 

Semi-

auto 

 
2.46E-07 

 

 
1.71E-04 

 

 
2.84E-04 

 

Manual 

9 mm 
 

2.55E-07 
 

 
1.79E-04 

 

 
2.93E-04 

 

3.26 

     

 
The effect of the use of different edge detection processes is also examined for the 

prediction of absorption rate by the inter-tube absorption model. Both the manual and 

semi-automated edge detection processes are used separately to obtain the jet profile 

from the image shown in Figure B.1 taken with digital still camera [NIKON D100]. The 

axi-symmetric jet volume and surface area are computed applying the solid revolution 

theorem to the jet profile generated by the two processes. The inter-tube jet mode 

absorption model described in section 3.2.2.3 is then used to compute the rate of 

absorption by the jets from the two processes. The results are tabulated in Table B.1 for 

the two tube gap situations. The computed volume, surface area and rate of absorption 

by the jets differ within reasonable limit. The percent differences between the results are 
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given too. The rate of absorption computed using the manual process differs by 3.2-5.3 

percents from the rate of absorption computed using the semi-automated process.    

 

 

 

 

 

 

 

 

 

 

 

 
B.4 Image quality and the manual edge detection process 

 The video camera [CANON MVX35i] used in the present experimental program 

provides images with 0.12 Mega pixels. Manual edge detection would become much 

more accurate if a better resolution of the images is found. As described previously in 

section B.2, a digital still camera with 6.0 Mega pixels was used to take a few still 

images of the inter-tube events under similar experimental conditions. The same edge 

detection process was undertaken to read the droplet profile from the images and was 

found more accurate. Figure B.4 shows a sample image when the images were taken 

with the video camera. Figure B.5 shows a sample image when the images were taken 

with the still camera. The cameras were operated at the same time during the recording 

of the inter-tube flow events at a particular operating condition. It is clear from the 

figures that the image taken by the digital still camera is much better than that of digital 

video camera. The interest is now to obtain the jet profile from the two images using the 

manual edge detection process. After that both the generated profiles are used to 

compute the volume and surface area of the respective jets. Finally, the information is 

Figure B.4 Sample images taken by 
video camera (400x300 pixels). 

Figure B.5 Sample images taken by 
still camera (3008x2000 pixels). 
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used to predict the absorption rate by the two jets using jet-mode absorption model 

discussed in section 3.2.2.3.   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.6 Application of manual edge detection on image taken by video camera 

[CANON MVX 35i]. 

 

Figure B.6 illustrates the manual edge detection onto the image of Figure B.4 using 

Matrox Inspector.  Because of the lower resolution of the image, the relative size of the 

‘cross’, indicated in the Figure B.6(a) becomes larger which slightly impedes the edges 

to be seen clearly. The regenerated jet profile is superimposed to the original image 

 

(a) Matrox Inspector 
      graphic window 

(b) Superimposing of  
      generated profile  
      on the original image 

‘cross’ used to 
read co-ordinate 
points 
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which is shown in Figure B.6 (b). The accuracy of the edge detection increases if same 

process is undertaken onto the image of Figure B.5. The illustration was shown in Figure 

B.1. For such higher resolution image, not only the edges are seen much more clearly 

but also the relative size of the ‘cross’ is much smaller. Due to these advantages, the 

accuracy of the manual edge detection greatly improves. However, the actual impact of 

this measuring inaccuracy on the prediction of absorption rate is determined. The results 

of the absorption rate predicted by the two images of Figure B.4 and B.5 are presented 

below. 

 
Table B.2 Error analysis of different images. 

Image 
Tube gap 

situation 

Volume 

of each 

jet 3,mV   

Area of 

each jet 
2,mA  

Flow rate  
1. −skg  

Absorption  in 

the gap by 

using jet image 
11. −− smkg  

% 

Difference 

in the 

results by 

the two 

images  

Present 

expt. 
3.09E-07 1.72E-04 3.16E-04 

Still 

image 

6 mm 

3.05E-07 1.95E-04 

0.0227 

3.27E-04 

3.47 

Present 

expt. 
2.24E-07 1.75E-04 3.17E-04 

Still 

image 

10 mm 

2.47E-07 1.92E-04 

0.018 

3.31E-04 

4.6 

 

The aim of this current research was to obtain time dependent profiles of the inter-tube 

flow modes for which the still camera might not work. However for the jet mode inter-

tube flow, the images can be taken with still camera because of the time independent 
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nature of the jets. Performing this, the percent difference of the jet mode absorption rate 

by the jet profiles obtained from two different images is calculated. Table B.2 shows the 

rate of absorption by the single jets for two different flow rate and tube spacing cases. If 

the rate of absorption predicted by the jet image with higher resolution, similar to the 

image shown in Figure B.5, is considered the base value for each case, the percent of 

error in the absorption rate predicted by the image with lower resolution or the present 

experimental case is presented in the table. The error in the results varies within 3.4-4.6 

percents.  
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APPENDIX C 
 

SENSITIVITY ANALYSIS 
 
 
C.1 Sensitivity analysis with varying transfer coefficients 
 
The contribution of inter-tube absorption to the total absorption was expressed by mass 

flux ratio in chapter 6 which was defined as follows 

vfmvim
vimJ
+

=        (C.1) 

where vim  is the mass flux in the inter-tube flow regime and vfm  is the mass flux in the 

falling-film regime.  

The simulation data for the mass flux ratio presented in Table 6.3 and 6.4 were based 

upon the extracted average values of falling film heat and mass transfer coefficients 

from the detailed numerical model described in section 3.1.1. In this section, the main 

purpose is to check the sensitivity of the developed absorption models described in 

section 3.2.2.1 and 3.2.2.3 using varying transfer coefficients because the exact values of 

these transfer coefficients in the inter-tube flow regimes are unknown. A detailed 

sensitivity testing program is undertaken to show the sensitivity of the developed inter-

tube absorption models in terms of calculated mass flux ratio with varying mass transfer 

and heat transfer coefficients. The sensitivity test procedure is as follows. First, the base 

line values of these transfer coefficients are selected from the detailed numerical model 

applied to the falling film regime. Next each of the two transfer coefficients is allowed to 

vary within ±40% of the base value. Within the range, selected values for the transfer 

coefficients are taken to be used into the inter-tube absorption models. For each input of 

the transfer coefficients, the other input variables like the inlet solution temperature and 

concentration, coolant flow rate and coolant inlet temperature are kept constant. The 

hydrodynamic data for the inter-tube flow modes are kept constant throughout the test 

procedure. Moreover, the spatial distributions of the inter-tube droplets and jets along 
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the absorber tube are neglected. The solution flow rate is then varied within the 

experimental range covered in chapter 4. At different flow rate, the relevant inter-tube 

absorption models from section 3.2.2.1, 3.2.2.3 and the single round tube model 

discussed in section 3.1.1 are used to calculate the value of mass flux ratio, J. It is 

important to know that at a time one transfer coefficient is varied. For example, when 

mass transfer coefficient is varied, heat transfer coefficient is kept constant with the base 

line value and vice versa. The data are presented in graphical form in Figures C.1-C.4 

for the two different tube gap situations.   

 

 
 
 
       

      
      
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure C.1 Sensitivity of mass flux ratio with varying mass transfer coeff. mk [tube 

gap: 10 mm]. 
 
In Figure C.1, the sensitivity of varying mass transfer coefficient applied to the inter-

tube absorption models are presented for 10 mm tube gap situation. The range of flow 

rate is kept within the operating experimental range given in chapter 4. The base line 

mass transfer coefficient is chosen to be 8.0E-05 m.s-1 for which the mass flux ratio 

varies with the solution flow rate. The heat transfer coefficient is remained constant at 
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the baseline value of 4730 12. −− KmW . For other input values of the mass transfer 

coefficient, the mass flux ratio also varies with the solution flow rate in similar fashion. 

The sensitivity charts thus created are observed to follow similar trend lines.  When the 

mass transfer coefficient is higher than the baseline value, the mass flux ratio increases 

at all flow rates. Similarly, lower mass transfer coefficient than the baseline mass 

transfer coefficient decreases the mass flux ratio significantly. The interesting point to 

notice here is that the mass flux ratio is more sensitive to the lower values of mass 

transfer coefficient as the data points are more sparsely distributed in the lower side of 

the baseline chart. Similar sensitivity charts are generated for 6 mm tube gap situation as 

plotted in Figure C.2. Keeping the same baseline mass transfer coefficient, the variations 

of mass flux ratio are depicted at various solution flow rate. The mass flux ratio charts 

are also following similar trend lines at different input of the mass transfer coefficient 

and are found more sensitive to the lower mass transfer coefficients. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
Figure C.2 Sensitivity of mass flux ratio with varying mass transfer coeff. mk [tube gap: 

6 mm] 
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In Figure C.3 and C.4, the sensitivity data of the heat transfer coefficient are presented 

for 10 mm and 6 mm tube gap situation respectively. In this case, the mass transfer 

coefficient is kept constant with the baseline value of 8.0E-05 m.s-1 whereas the heat 

transfer coefficient is varied within a wide range deviating ±40% from the baseline value 

of 4730 12. −− KmW . The sensitivity charts for the variation of mass flux ratio with the 

solution flow rate at different input of the heat transfer coefficient exhibit similar trend 

lines. When the heat transfer coefficient is higher than the baseline heat transfer 

coefficient, mass flux ratio is higher as well at all data points compared to the 

corresponding points on the baseline chart.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
Figure C.3 Sensitivity of mass flux ratio with varying heat transfer coeff. oh [tube 

gap;10 mm] 
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transfer coefficient sensitivity charts, the models are more sensitive to the lower values 

of heat transfer coefficient compared to the higher values of heat transfer coefficient.  

 
 

 

 

 

 

 

 

 

 

 

 

 

     Figure C.4 Sensitivity of mass flux ratio with varying heat transfer coeff. oh [tube 
gap: 6 mm] 

 
 
 
C.2 Sensitivity analysis with varying inlet temperature and concentration 
 
The sensitivity of the inter-tube absorption models with varying inlet solution 

temperature and concentration are presented in this section. The purpose is to examine 

the use of hydrodynamics data at such inlet solution temperature and concentration that 
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experiments on inter-tube hydrodynamics were performed at the operating conditions 

described in Table 4.1. The extracted hydrodynamic data presented in section 5.1-5.3 
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conditions stated in section 6.2. The simulation data were presented in Table 6.3-6.4. In 

Droplet model Droplet and jet model Jet model

Baseline chart 



                                                                                                                           Appendix-C 

 
254

this section, both the inlet temperature and concentration are varied at a time deviating   

-40% to +20% from the base value temperature while -10% to +10% from the base value 

concentration.  The base values of both temperature and concentration are the absorber 

operating condition [ 6.0, =insw , cT o
ins 8.39, = ] described in section 6.2.   

           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.5 Sensitivity of inter-tube mass flux with varying inlet concentration of LiBr 
solution [%LiBr/100] for a tube gap of 10 mm. 
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different operating flow rate situations. On the other hand if the inlet solution 

concentration decreases the absorber inlet condition becomes less favorable to vapour 

absorption so the inter tube vapour mass flux decreases significantly. A -10% decrease 

of inlet concentration from the base value (0.54) causes maximum 51 % decrease of 

mass flux compared to the base line chart among the different operating flow rate 

situations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Figure C.6 Sensitivity of inter-tube mass flux with varying inlet temperature LiBr 
solution [0C] for a tube gap of 10 mm. 

 
 
The sensitivity data for varying inlet temperature is presented in Figure C.6 in terms of 

inter-tube mass flux with change in solution flow rate. Sensitivity results reveal that if 

the inlet solution temperature decreases keeping the base value of inlet concentration 

unchanged, the absorber inlet condition becomes more favorable to vapour absorption 

indicating much increase of vapour mass flux vim . A -40% decrease of inlet temperature 

from the base value (22.50 C) causes maximum 45 % increase of mass flux compared to 

the base line chart among the different operating flow rate situations. On the other hand 
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if the inlet solution temperature increases the absorber inlet condition becomes less 

favorable to vapour absorption so the inter tube vapour mass flux decreases 

significantly. A +20% increase of inlet temperature from the base value (46.60 C) causes 

maximum 46 % decrease of mass flux compared to the base line chart among the 

different operating flow rate situations.  

It is to be remembered that absorption process is driven by the water-vapour pressure at 

the solution vapour interface which is a function of both solution temperature and 

concentration. The same vapour pressure can be developed by many combinations of 

temperature and concentration of solution as explained by the temperature-pressure-

concentration diagram for LiBr-water solutions.  Therefore, not a single variable like the 

temperature or concentration is allowed to vary in such way that the equilibrium 

condition is overruled. The ranges selected for present sensitivity analysis are within the 

equilibrium conditions at each particular temperature-concentration and pressure. 
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APPENDIX D 
 

CALIBRATION OF FLOW METER  
 

AND FABRICATION DETAILS 
 
 

 
D.1 Flow meter calibration       

   
The flow meter is calibrated using 54% wt. concentration of LiBr solution. The volume 

flow meter reading is converted to the mass flow rate of solution for sets of operating 

flow rates. The mass flow rate of solution is measured by collecting the amount of liquid 

in a measuring flask within a specific time period using a stop watch. For each flow rate, 

several measurements are recorded for which the average mass flow rate is calculated. 

The mass flow rate thus obtained is then plotted against the flow meter reading at each 

condition. The calibration chart is exhibited in Figure D.1. 

            

 

 

 

 

 

 

 

 

 

 
                  Figure D.1 Flow meter calibration chart for 54% wt. concentration of LiBr.
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D.2 Detailed drawing of test tubes  
 

 
         

(a) Assembly of test tube with press fitted solid aluminum pieces. 
  
 
 
 
 
 
 
 
 
 
 
     (b) Test tube  
 
 

                                  
(c) Solid aluminum with threaded centre hole 

 
 

Figure D.2 Detailed drawings of the test tube [dimension unit: mm]. 
 
 
The test tubes are made of copper. In order to support the test tubes from both sides into 

the test section guide bars as shown in Figure 4.3 of chapter 4, solid aluminum pieces 

with threaded centre hole in each are press fitted inside the hollow copper tube from 

both sides. The dimensions of the test tube and specially designed solid aluminum piece 

are provided in Figure D.2.  
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D.3 Detailed drawing of distributor     
           
           
           
           
           
           
           
           
           
           
            
   

(a) Assembly drawing of the distributor. 
 
 

 
 

(b) Inner tube of the distributor 
 

 
 

(c) Outer tube of the distributor 
 
 
           Figure D.3 Detailed drawings of the distributor [dimension unit: mm]. 

 
 

The flow distributor, the design of which is similar to that used by Killion and Garimella 

[52], consists of two concentric tubes. The solution enters the inner tube and flows into 

the annular space through holes in the inner tube wall. Evenly spaced holes at the bottom 

of the outer tube wall discharge the solution as a series of jets onto the first tube of the 

absorber. The detailed design of different parts of the distributor is provided in Figure 

Nut 
‘O’ ring groove 
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D.3. The two concentric tubes are held by the help of two specially designed nuts from 

both sides as shown in Figure D.3 (a). The inner threads of the nut match with the outer 

threads of the inner tube to seal off the liquid flow. The nuts holding the inner tube from 

both sides are gently pushed inside the outer tube by the help of ‘O’ rings fitted to the 

grooves around the nuts as indicated in Figure D.3 (a). Thus, the liquid flow to the 

annular space is completely sealed off except flowing through the holes underneath the 

outer tube wall. For convenience the inner tube is made of Perspex with threaded 

external parts as shown in Figure D.3 (b) so that two other external nuts can be used to 

fix the inner tube with the test section guide bars for better stability. The outer tube is 

made of copper. The nuts which are pressed inside the tubes shown in Figure D.3 (a) are 

made of brass. The external nuts are made of Perspex.   
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APPENDIX E 

INTER-TUBE FLOW HYPOTHESIS 

 
E.1 Mass continuity of the flow between the tubes 
 

 

 

 

 

 

 

 

 

 
The summation of the quantities in Eqs. (5.2) and (5.3) described in section 5.2.2  is the 

actual amount flows between two tubes for each droplet cycle. If total summation is 

taken for each droplet cycle at each location within τ  sec of time, newly calculated flow 

rate is as follows; 
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                                                                     (E.1) 

The newly calculated mass flow rate from Eq. (E.1) is compared with the actual mass 

flow rate of solution. The percentage of error is shown at the end of Tables E.1-E.3 for 

three different flow rate situations. For each droplet cycle at each generating location 

within the period of τ  sec, the quantities in the RHS of Eq. (E.1) are calculated and 

presented in the Tables E.1-E.3. The newly calculated mass flow rate named as adjusted 

flow rate is shown in a separate row at the end of each table. The actual flow rate per 

unit length of tube is multiplied with the tube length in each image to show the measured 

flow rate is also presented at the end of each table. In Table E.1, The actual or measured 

Figure E.1 Typical droplet cycle; (a) development stage, (b) bridge 
form stage, (c) pull back stage.

Volume 

maxV  

(a) 

 ft   bt  

(b) 

Time

bV  
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flow rate is 33 percent higher than the adjusted or calculated flow rate for present 

operating condition. For two other flow rate cases, calculated flow rate is 27 and 37 

percent higher than actual flow rates.  It is comprehensible that the percent errors not 

only occur due to the uncertainty of the image analysis program, measurement 

difficulties of bVV ,max  from the video images, but also due to the assumed hypothesis of 

inter-tube flow which had been discussed in section 5.2.2. The inter-tube droplet flow 

hypothesis presented in section 5.2.2 was developed for the purpose of interconnecting 

the droplet formation model and steady jet model for each droplet cycle. Present error 

estimations indicate that the developed hypothesis could only be suggested as an 

approximation of actual event. These error values may be presented as an error 

estimation of implementing the inter-tube droplet flow hypothesis under the assumption 

that the mass flow rate during bridge formation stage remains equal to the average filling 

rate of the developing stage. 
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Time period 1.2 sec
Droplet station 1

Cycle tf t1 t2 tb=t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)tb me [kg.s-1]

1 0.15 0.15 0.21 0.06 1.74E+02 3.65E+01 1.37E-07 1.16E-06 2.19E-04 1.11E-04 1.85E-03

2 0.24 0.48 0.57 0.09 1.88E+02 4.64E+01 1.42E-07 7.84E-07 2.27E-04 1.13E-04 1.25E-03

3 0.12 0.72 0.78 0.06 1.78E+02 5.48E+01 1.23E-07 1.48E-06 1.97E-04 1.43E-04 2.38E-03

4 0.18 0.99 1.08 0.09 1.62E+02 2.67E+01 1.35E-07 9.00E-07 2.17E-04 1.30E-04 1.44E-03

Droplet station 2

Cycle tf t1 t2 tb=t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)tb me [kg.s-1]

1 0.24 0.3 0.42 0.12 1.62E+02 3.84E+01 1.24E-07 6.75E-07 1.98E-04 1.30E-04 1.08E-03

2 0.15 0.6 0.66 0.06 2.01E+02 2.36E+01 1.78E-07 1.34E-06 2.84E-04 1.29E-04 2.15E-03

3 0.21 0.93 0.99 0.06 2.12E+02 3.35E+01 1.78E-07 1.01E-06 2.85E-04 9.67E-05 1.61E-03

Droplet station 3

Cycle tf t1 t2 tb=t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)tb me [kg.s-1]

1 0.18 0.18 0.27 0.09 2.19E+02 3.59E+01 1.83E-07 1.22E-06 2.94E-04 1.75E-04 1.95E-03

2 0.15 0.45 0.54 0.09 2.04E+02 3.69E+01 1.67E-07 1.36E-06 2.67E-04 1.95E-04 2.17E-03

3 0.24 0.81 0.9 0.09 2.05E+02 2.18E+01 1.84E-07 8.55E-07 2.94E-04 1.23E-04 1.37E-03

Droplet station 4

Cycle tf t1 t2 tb=t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)tb me [kg.s-1]

1 0.12 0.12 0.21 0.09 1.87E+02 3.65E+01 1.50E-07 1.55E-06 2.40E-04 2.24E-04 2.49E-03

2 0.09 0.33 0.42 0.09 2.08E+02 3.90E+01 1.69E-07 2.31E-06 2.71E-04 3.33E-04 3.70E-03

3 0.18 0.63 0.72 0.09 1.94E+02 1.70E+01 1.77E-07 1.08E-06 2.84E-04 1.55E-04 1.73E-03

4 0.21 0.96 1.02 0.06 1.90E+02 5.26E+01 1.38E-07 9.05E-07 2.20E-04 8.69E-05 1.45E-03

Droplet station 5

Cycle tf t1 t2 tb=t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)tb me [kg.s-1]

1 0.18 0.18 0.27 0.09 2.17E+02 2.66E+01 1.90E-07 1.20E-06 3.04E-04 1.73E-04 1.93E-03

2 0.09 0.39 0.48 0.09 2.10E+02 2.17E+01 1.89E-07 2.34E-06 3.02E-04 3.36E-04 3.74E-03

3 0.09 0.6 0.69 0.09 1.67E+02 2.59E+01 1.41E-07 1.86E-06 2.26E-04 2.67E-04 2.97E-03

4 0.12 0.84 0.9 0.06 1.93E+02 3.36E+01 1.59E-07 1.61E-06 2.54E-04 1.54E-04 2.57E-03

5 0.21 1.14 1.17 0.03 2.17E+02 9.81E+01 1.19E-07 1.03E-06 1.90E-04 4.96E-05 1.65E-03

Droplet station 6

Cycle tf t1 t2 tb=t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)tb me [kg.s-1]

1 0.15 0.27 0.36 0.09 2.01E+02 2.49E+01 1.76E-07 1.34E-06 2.82E-04 1.93E-04 2.15E-03

2 0.15 0.54 0.63 0.09 1.90E+02 3.51E+01 1.54E-07 1.26E-06 2.47E-04 1.82E-04 2.02E-03

3 0.12 0.78 0.87 0.09 2.04E+02 3.45E+01 1.70E-07 1.70E-06 2.71E-04 2.45E-04 2.72E-03

Table E.1 Error estimation at flow rate 0.0079 kg.s-1; tube gap 10 mm. 

 

Actual flow rate, 2Г[ kg.m-1s-1] Tube length in each image [m] Adjusted flow rate [kg.s-1] Measured flow rate[kg.s-1] %diff

0.039 0.14 0.0056 0.00749 33.62  
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Table E.2 Error estimation at flow rate  0.0118 kg.s-1: tube gap 10 mm. 
Time period 1.32 sec
Droplet station 1

Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)*(t2-t1) ms,new [kg.s-1]
1 0.09 0.24 0.33 0.09 182.154323 28.372377 1.53782E-07 2.0239E-06 0.000246051 0.000291447 0.003238299
2 0.12 0.48 0.57 0.09 153.603526 35.687613 1.17916E-07 1.28E-06 0.000188665 0.000184324 0.002048047
3 0.09 0.69 0.78 0.09 210.086521 47.231114 1.62855E-07 2.3343E-06 0.000260569 0.000336138 0.003734871
4 0.15 0.99 1.08 0.09 157.055461 26.698102 1.30357E-07 1.047E-06 0.000208572 0.000150773 0.001675258

Droplet station 2
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)*(t2-t1) ms,new [kg.s-1]

1 0.18 0.18 0.24 0.06 212.96127 63.806504 1.49155E-07 1.1831E-06 0.000238648 0.000113579 0.001892989
2 0.12 0.39 0.48 0.09 174.10491 56.470859 1.17634E-07 1.4509E-06 0.000188214 0.000208926 0.002321399
3 0.12 0.63 0.75 0.12 183.353525 48.859802 1.34494E-07 1.5279E-06 0.00021519 0.000293366 0.002444714
4 0.15 0.93 0.99 0.06 216.532255 37.318572 1.79214E-07 1.4435E-06 0.000286742 0.000138581 0.002309677
5 0.15 1.17 1.26 0.09 196.015239 41.480342 1.54535E-07 1.3068E-06 0.000247256 0.000188175 0.002090829

Droplet station 3
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)*(t2-t1) ms,new [kg.s-1]

1 0.15 0.15 0.24 0.09 196.184304 38.477965 1.57706E-07 1.3079E-06 0.00025233 0.000188337 0.002092633
2 0.15 0.42 0.48 0.06 166.060477 38.083269 1.27977E-07 1.1071E-06 0.000204764 0.000106279 0.001771312
3 0.15 0.66 0.72 0.06 209.314016 52.906831 1.56407E-07 1.3954E-06 0.000250251 0.000133961 0.002232683
4 0.12 0.84 0.93 0.09 172.793982 11.663973 1.6113E-07 1.4399E-06 0.000257808 0.000207353 0.00230392
5 0.15 1.11 1.2 0.09 153.064724 28.136539 1.24928E-07 1.0204E-06 0.000199885 0.000146942 0.00163269

Droplet station 4
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)*(t2-t1) ms,new [kg.s-1]

1 0.15 0.27 0.36 0.09 206.874075 22.792721 1.84081E-07 1.3792E-06 0.00029453 0.000198599 0.002206657
2 0.15 0.54 0.6 0.06 183.31248 20.921459 1.62391E-07 1.2221E-06 0.000259826 0.00011732 0.001955333
3 0.15 0.78 0.9 0.12 173.24889 50.111037 1.23138E-07 1.155E-06 0.000197021 0.000221759 0.001847988
4 0.12 1.05 1.14 0.09 183.641155 35.785908 1.47855E-07 1.5303E-06 0.000236568 0.000220369 0.002448549

Droplet station 5
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)*(t2-t1) ms,new [kg.s-1]

1 0.12 0.21 0.3 0.09 188.861255 20.921459 1.6794E-07 1.5738E-06 0.000268704 0.000226634 0.00251815
2 0.09 0.42 0.51 0.09 202.128256 53.457754 1.48671E-07 2.2459E-06 0.000237873 0.000323405 0.003593391
3 0.09 0.63 0.72 0.09 208.285669 45.004324 1.63281E-07 2.3143E-06 0.00026125 0.000333257 0.003702856
4 0.06 0.81 0.96 0.15 202.477218 39.462286 1.63015E-07 3.3746E-06 0.000260824 0.000809909 0.005399392
5 0.12 1.11 1.2 0.09 160.401249 42.800747 1.17601E-07 1.3367E-06 0.000188161 0.000192481 0.002138683

Droplet station 6
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)*(t2-t1) ms,new [kg.s-1]

1 0.12 0.24 0.27 0.03 133.56092 78.966053 5.45949E-08 1.113E-06 8.73518E-05 5.34244E-05 0.001780812
2 0.12 0.42 0.51 0.09 197.241559 62.03923 1.35202E-07 1.6437E-06 0.000216324 0.00023669 0.002629887
3 0.12 0.66 0.84 0.18 184.360283 47.939456 1.36421E-07 1.5363E-06 0.000218273 0.000442465 0.002458137
4 0.06 0.93 1.02 0.09 197.241559 30.582938 1.66659E-07 3.2874E-06 0.000266654 0.00047338 0.005259775

Droplet station 7
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb) Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)*(t2-t1) ms,new [kg.s-1]

1 0.09 0.3 0.45 0.15 170.102603 36.008622 1.34094E-07 1.89E-06 0.00021455 0.000453607 0.003024046
2 0.18 0.66 0.72 0.06 171.417067 50.870192 1.20547E-07 9.5232E-07 0.000192875 9.14224E-05 0.001523707
3 0.18 0.93 1.02 0.09 168.935176 61.857084 1.07078E-07 9.3853E-07 0.000171325 0.000135148 0.001501646
4 0.12 1.17 1.29 0.12 202.530348 34.896045 1.67634E-07 1.6878E-06 0.000268215 0.000324049 0.002700405  

Actual flow rate, 2Г[ kg.m-1s-1] Tube length in each image [m] Adjusted flow rate [kg.s-1] Measured flow rate[kg.s-1] %diff
0.059 0.147 0.00871 0.01108 27.164741  
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Table E.3 Error estimation at flow rate  at 0.0145 kg.s-1: tube gap 10 mm. 
Time period 1.08 sec
Droplet station 1

Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb)[m3] Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)(t2-t1) ms,new [kg.s-1]
1 0.06 0.27 0.36 0.09 218.831691 36.898116 1.81934E-07 3.64719E-06 0.00029109 0.000525196 0.005835512
2 0.06 0.45 0.57 0.12 134.954493 54.523436 8.04311E-08 2.24924E-06 0.00012869 0.000431854 0.003598786
3 0.03 0.6 0.72 0.12 129.587764 42.148175 8.74396E-08 4.31959E-06 0.0001399 0.000829362 0.006911347
4 0.06 0.99 1.08 0.09 218.831691 36.898116 1.81934E-07 3.64719E-06 0.00029109 0.000525196 0.005835512

Droplet station 2
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb)[m3] Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)(t2-t1) ms,new [kg.s-1]

1 0.09 0.15 0.3 0.15 150.422711 42.518234 1.07904E-07 1.67136E-06 0.00017265 0.000401127 0.002674182
2 0.09 0.42 0.54 0.12 192.289423 38.076259 1.54213E-07 2.13655E-06 0.00024674 0.000410217 0.003418479
3 0.09 0.66 0.78 0.12 168.30028 27.289674 1.41011E-07 1.87E-06 0.00022562 0.000359041 0.002992005
4 0.09 0.9 1.05 0.15 150.422711 42.518234 1.07904E-07 1.67136E-06 0.00017265 0.000401127 0.002674182

Droplet station 3
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb)[m3] Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)(t2-t1) ms,new [kg.s-1]

1 0.06 0.06 0.15 0.09 144.05321 21.113822 1.22939E-07 2.40089E-06 0.0001967 0.000345728 0.003841419
2 0.09 0.3 0.45 0.15 164.656034 17.877958 1.46778E-07 1.82951E-06 0.00023484 0.000439083 0.002927218
3 0.21 0.69 0.78 0.09 212.407407 82.871104 1.29536E-07 1.01146E-06 0.00020726 0.000145651 0.001618342
4 0.03 0.81 0.87 0.06 165.847209 21.113822 1.44733E-07 5.52824E-06 0.00023157 0.000530711 0.008845184

Droplet station 4
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb)[m3] Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)(t2-t1) ms,new [kg.s-1]

1 0.12 0.24 0.3 0.06 149.049795 47.368567 1.01681E-07 1.24208E-06 0.00016269 0.00011924 0.001987331
2 0.12 0.45 0.51 0.06 209.344451 4.7360748 2.04608E-07 1.74454E-06 0.00032737 0.000167476 0.002791259
3 0.15 0.66 0.78 0.12 179.499646 44.53954 1.3496E-07 1.19666E-06 0.00021594 0.00022976 0.001914663
4 0.12 0.96 1.02 0.06 147.707964 47.368567 1.00339E-07 1.2309E-06 0.00016054 0.000118166 0.00196944

Droplet station 5
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb)[m3] Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)(t2-t1) ms,new [kg.s-1]

1 0.09 0.42 0.57 0.15 179.711003 14.624043 1.65087E-07 1.99679E-06 0.00026414 0.000479229 0.003194862
2 0.18 0.78 1.02 0.24 204.01537 47.661127 1.56354E-07 1.13342E-06 0.00025017 0.000435233 0.00181347

Droplet station 6
Cycle tf t1 t2 t2-t1 Vmax[mm3] Vb[mm3] (Vmax-Vb)[m3] Vmax/tf (Vmax-Vb)ρ p(Vmax/tf)(t2-t1) ms,new [kg.s-1]

1 0.09 0.18 0.39 0.21 145.445915 27.948474 1.17497E-07 1.61607E-06 0.000188 0.000542998 0.002585705
2 0.15 0.57 0.78 0.21 203.753894 14.447845 1.89306E-07 1.35836E-06 0.00030289 0.000456409 0.002173375
3 0.09 0.9 1.08 0.18 166.297075 87.244724 7.90524E-08 1.84775E-06 0.00012648 0.000532151 0.002956392  

Actual flow rate, 2Г[ kg.m-1s-1] Tube length in each image [m] Adjusted flow rate [kg.s-1] Measured flow rate[kg.s-1] %diff
0.0726 0.12 0.0087 0.012 37.43  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


