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Summary 

Increasing adoption of dynamic pricing for perishable products is witnessed in retail 

and manufacturing industries. In these industries, the integration of pricing and ordering 

decisions significantly increases the total profit by better matching demand and supply. 

Hence, this study focuses on joint pricing and ordering decisions for perishable products. 

A periodic review inventory problem with dynamic pricing for perishable products is 

first studied. In any given period, the inventory consists of products of different ages, 

purchased by different demand classes. Demands for products of different ages are 

assumed to be dependent on the price of itself and independent to each other. A discrete 

time dynamic programming model is developed to determine the optimal order quantity 

for a new product (product of age 1) and the optimal prices for products of different ages 

which maximize the total profit over a multiple period horizon. Furthermore, it is proven 

that the expected profit from dynamic pricing is never worse than the expected profit from 

static pricing.  

The study is further extended to consider substitution among products of different 

ages and the corresponding demand transfers between demand classes. Demands for 

products of different ages are assumed to be dependent on not only the price of itself but 

also the prices of substitutable products, i.e., products of “neighboring ages”. The products 

of neighboring ages are defined by the products that are a period older or younger than the 

target products. For a product with a two period lifetime, the optimal order quantity and 

the optimal price for the new product (product of age 1) and the optimal discounted price 
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for the old product (product of age 2) are obtained. The computational results show that 

the total profit significantly increases when demand transfers between new and old 

products are considered. For a product with the lifetime longer than two periods, a 

heuristic based on the optimal solution for a single period problem is proposed for a 

multiple period problem.  

Finally, this study considers a problem where the product of only one age is sold at 

each period and the price of the product will increase as the time at which it perishes 

approaches to. Such problems can be encountered in the airline industry. To maximize the 

expected revenue, a discrete time dynamic programming model is developed to obtain the 

optimal prices and the optimal inventory allocations for the product with a two period 

lifetime. Three heuristics are then proposed when the lifetime is longer than two periods. 

The computational results show that the expected revenues from the proposed heuristics 

are very close to the maximum expected revenue from the dynamic programming model. 

An upper bound for the maximum expected revenue is computed and the difference 

between the upper bound and the maximum expected revenue decreases as the initial 

inventory increases. Furthermore, the study is extended to consider two other cases where 

the price for the product first increases and later decreases and where the price for the 

product always decreases and obtains the pricing and inventory allocation decisions. 
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Chapter 1   Introduction 

 

1.1 Background 

Inventory is spread throughout the supply chain from raw materials to semi-finished 

and final products that suppliers, manufacturers, distributors and retailers hold (Chopra 

and Meindl, 2004). The scale of all these inventory related operations is immense: In 2004, 

the total value of inventories in the United States exceeds 1.4 trillion dollars (Wilson, 

2004).  

Implementation of a good inventory management policy is highly effective in 

reducing the inventory costs. For example, inventory carrying cost as a percentage of 

Gross Domestic Product (GDP) declined by 50 percent over the last twenty years, since 

the United States Business logistics system became proficient in inventory management 

(Wilson, 2004). In next section, a brief introduction to inventory management is presented, 

including its history and its new trend. 

1.1.1 Inventory management 

Inventory theory began with the derivation of the Economic Order Quantity (EOQ) 

formula by Harris (1913). However, it was probably that the works of Arrow et al. (1951) 
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and Dvoretsky et al. (1952a,b) laid the foundation for later development in the 

mathematical inventory models.  

During the 1950s, a large number of researchers turned their attention to 

mathematical inventory models. Bellman et al. (1955) showed how the methods of 

dynamic programming could be used to obtain structural properties for a stochastic 

inventory problem. Wagner and Whitin (1958) solved the dynamic lot sizing problem 

under time varying demand. A collection of highly sophisticated mathematical inventory 

models was found in the book edited by Arrow et al. (1958).  

Most of the researchers during the 1950s considered a single storable product. That is, 

a product once in stock remains unchanged and fully usable for satisfying future demand.  

However, certain products may perish in storage so that they may become partially or 

entirely unfit for consumption. For example, fresh produce, meats and other stuffs become 

unusable after a certain time has elapsed. These products are perishable products, which 

have a limited useful lifetime.  

Since 1960s, several researchers considered the stochastic inventory problem for 

perishable products. When the lifetime of perishable product is exactly one period, the 

ordering decisions in successive periods are independent and the problem reduces to a 

sequence of newsvendor problems. The newsvendor model is a crucial building block of 

stochastic inventory theory, where the decision maker facing stochastic demand for the 

perishable product that expires at the end of a single period, must decide how many units 

of the product to order with the objective of maximizing the expected profit.  
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When the product lifetime exceeds one period, determining the optimal ordering 

policies is quite complex, due to the overwhelming number of states which include all the 

inventory levels of each possible age stocks. The first analysis of the optimal ordering 

policy for perishable products was due to Van Zyl (1964). He considered the case where 

the product lifetime is two periods. Independently, Nahmias (1975) and Fries (1975) 

studied stochastic inventory problems when the lifetime of a perishable product is longer 

than two periods. Since the optimal ordering policy cannot be expressed in a simple form, 

the bulk of efforts have been spent in the development of efficient heuristics. For example, 

the fixed critical number order policy was proposed by Chazan and Gal (1977), Cohen 

(1976) and Nahmias (1976) under different assumptions. More studies about inventory 

management for perishable products can be found in the literature reviews provided by 

Nahmias (1982) and Raafat (1991). 

Nowadays, inventory management for perishable products has been significantly 

improved with the help of advances in information technology and e-commence. For 

example, programs such as CPFR (collaborative planning forecasting and replenishment), 

QR (quick response) and VMI (vendor managed inventory) enable information sharing 

and collaboration among supply chain partners, which leads to lower inventory costs and 

higher service levels. However, despite significant efforts made in reducing supply chain 

costs via improved inventory management, a large portion of retailers still lose millions of 

dollars annually due to lost sales and excess inventory (Elmaghraby and Keskinocak, 

2003). Therefore, many are now willing to coordinate inventory management with 

dynamic pricing in order to maximize the overall profit. 
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1.1.2 Dynamic pricing  

Dynamic pricing is that the companies change prices dynamically over the time 

period. Determining the “right” price to charge a customer for a product is a complex task, 

requiring that a company have a wealth of information about its customer base and be able 

to set and adjust prices at minimal cost. However, in the past, companies had limited 

ability to track information about their customers’ tastes, and faced high costs in changing 

prices. Hence, companies always fixed the price of a product over a relatively long time 

period, i.e., the prices are usually static. 

Nowadays, the rapid development of information technologies and the corresponding 

growth of Internet have opened the door for the adoption of dynamic pricing in practice.  

New technologies and Internet allow retailers to collect information not only about the 

sales, but also about demographic data and customer preferences. Due to the ease of 

making price changes on the Internet, dynamic pricing strategies are now frequently used 

in e-commerce environments. Although price changes are still costly in traditional retail 

stores, this may soon change with the introduction of new technologies such as Electronic 

Shelf Labeling System (Southwell, 2002).  

Early applications of dynamic pricing have been mainly in industries characterized 

by perishability of the product, fixed capacity and possibility to segment customers 

(Weatherford and Bodily, 1992).  For example, in the airline industry, there is usually a 

fixed capacity (seats on a flight) and these seats will perish when the flight leaves the gate. 

Airlines charge different prices for identical seats on the same flight. In airline reservation 

systems, limits are placed on the number of seats available of each fare class. Effective 
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application of fare class booking limits allows airlines to generate incremental revenues. 

The term yield management (YM), or more appropriately revenue management (RM), has 

typically been employed to refer to the airlines’ practice of enhancing revenues through 

the efficient control of seat inventories. Both American and United airlines reported that 

YM adds several hundred million dollars to the bottom line each year. (Weatherford, 

1991). Since YM has been used successfully in the airline industry, the application of YM 

has been extended to other industries such as hotels and telecommunication (Bitran and 

Mondschein, 1995 and Nair and Bapna, 2001).  

In recent years, we have witnessed an increased adoption of dynamic pricing for 

perishable products in retail and manufacturing industries. For example, in food industry, 

perishable products such as bread or fresh produces (vegetables, dairy products) have very 

short shelf life times. When these products come in fresh, they are usually priced at the 

retail price. However, when the products left are close to their expiry dates, the retailer 

sells them at discounted prices, therefore attracting customers who are more price 

sensitive, with the aim of generating more revenue through higher sales. This practice is 

widely employed in the electronics industry as well. For instance, prices of CPUs drop 

several times throughout their short life times whenever new CPUs are introduced to the 

market. In these industries, the profits of the retailer may be significantly increased by 

dynamic pricing and/or coordinating inventory and pricing decisions. 

1.2 Motivation of the study  

Initially, many researchers focus on pricing alone as a tool to improve the total profit. 

However, the integration of pricing with inventory (ordering) decisions optimizes the 
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system rather than individual elements and thus significantly improves the profit of the 

company. This integration is still in its early stages in many retail and manufacturing 

companies, but it has the potential to radically improve supply chain efficiencies in much 

the same way as RM has changed airline, hotel and car rental companies (Chan et al., 

2004).  

Most researchers such as Zabel (1972), Thowsen (1975) and Federgruen and Heching 

(1999) focus on the joint pricing and ordering decisions for a single storable product. 

However, due to rapid developments of new technologies, product value quickly 

diminishes and more products can be considered as perishable products. In contrast with a 

single storable product, a single perishable product can be differentiated with respect to its 

ages. Products of different ages may capture different market segments. By differentiating 

prices for products of different ages, additional revenue and profit can be obtained. Thus, 

there is a great need to investigate the coordination of pricing and ordering decisions for 

perishable products, which may add a lot of money to the bottom line. 

When prices for products of different ages are differentiated, substitution among 

products of different ages is observed among customers. If the prices for new and old 

products are sufficiently close, the customers may decide which products to purchase 

based on the prices of new (target) and old (substitute) products, rather than the price of 

the target products only. For example, a customer intending to purchase a newer version 

product and finding it too expensive may purchase an attractively priced older version 

product, instead. Such demand transfers between new and old products make the pricing 
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and ordering decision problem more complicated. The solution to this problem will be of 

great value to the company. 

Traditional RM problems have assumed that prices are fixed and solved for the 

optimal inventory allocation for each fare class (Littlewood, 1972; Belobaba, 1987, 1989; 

etc). The revenue is protected by adjusting the inventory allocation for each fare class. 

However, among various techniques to maximize the revenue, both price and inventory 

allocation are major control tools. The prices charged for different fare customers would 

influence demand and should be considered as decision variables, not fixed quantities. The 

integration of price and inventory allocation decisions should receive more attention that it 

deserves (Mcgill and van Ryzin, 1999). 

1.3 Scope and objectives of the study 

In this study, we focus on the joint pricing and ordering decisions for perishable 

products. The aim of this research is shown as follows:  

(1) To study the integration of dynamic pricing and ordering decisions for a 

perishable product with a limited period lifetime. In any given period, the 

inventory contains products of different ages. At the beginning of each period, 

two decisions are made: what are the optimal prices charged for products of 

different ages and how many quantities are ordered for a new product. The 

objective is to maximize the total profit over multiple periods.  
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(2) To compare the expected profit from dynamic pricing with that from static 

pricing and identify when dynamic pricing provides a significant increase in the 

total profit compared to static pricing. 

(3) To consider the substitution among products of different ages. The optimal 

prices for products of different ages and the optimal order quantity for a new 

product at each period are determined with the objective of maximizing the total 

profit over the multiple periods. In addition, the effect of substitution on the 

expected profit increase is measured.  

(4) To incorporate the pricing decision into a typical RM problem. At the beginning 

of each period, the price and the inventory allocation for the period are jointly 

determined.  

The insights obtained from this thesis may help to make pricing and ordering (or 

production capacity) decisions for perishable products and mass customized products 

(products with short life cycles) effectively and efficiently, to significantly increase the 

total profit. 

Some researchers consider the competition among different retailers and apply game 

theory to decide the equilibrium prices of each retailer. However, this thesis does not 

consider such competition, since this condition will make our problem intractable. Instead, 

we assume that a retailer operates in a market with imperfect competition. This 

assumption can be justified by assuming that the retailer may be a monopolist or the 

product he sells may be new and innovative. 
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1.4 Organization 

This dissertation contains 6 chapters. In Chapter 2, literatures related to this study 

will be reviewed. The topics covered in the literature review include: joint pricing and 

inventory decisions, substitution and RM. 

Chapter 3 focuses on the integration of dynamic pricing and ordering decisions for 

perishable products. The product with a two period lifetime is first considered and a 

periodic review policy is used. Hence, in any given period the inventory consists of 

products with two different ages. The new product (product of age 1) is sold at the retail 

price while the old product (product of age 2) is sold at a discounted price. Demands for 

products of two ages come from two independent demand classes. At the beginning of 

each period, the optimal order quantity for new products is determined, and the optimal 

discounted price for old products is determined given the remaining inventory level of old 

products. The results are then extended to a product with the lifetime of longer than two 

periods, and hence with more than two demand classes.  

Chapter 4 extends the work in Chapter 3 by considering the substitution among 

products of different ages. Demands for products of different ages are assumed to be 

dependent on not only the price of itself but also the prices of substitutable products, i.e., 

products of “neighboring ages”. The products of neighboring ages are defined by the 

products that are a period older or younger than the target products. A periodic review 

policy is used. The objective is to find the optimal prices for products of different ages and 

the optimal order quantity for a new product with the objective of maximizing the total 

profit over the multiple periods.  
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Chapter 5 jointly determines the price and the inventory allocation for a perishable 

product. The price of the product is assumed to increase as the time at which it perishes 

approaches to, as in the airline industry. Demand for the product is price sensitive. To 

maximize the expected revenue, a discrete time dynamic programming model is 

developed to obtain the optimal prices and the optimal inventory allocations for the 

product with a two period lifetime. Three heuristics are then proposed when the lifetime is 

longer than two periods. These results are extended to (i) the case in which the price for 

the product always decreases; and (ii) the case in which the price for the product first 

increases and later decreases. 

Chapter 6 summarizes the studies covered in this dissertation and gives some 

directions for future works. 
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Chapter 2   Literature Review 

Chapter 2 reviews the previous studies relevant to joint pricing and inventory 

decisions, substitution and RM. Section 2.1 presents a classification table with the 

objective of intelligibly describing the literatures. The studies on integration of pricing and 

inventory decisions for a single product will be reviewed in Section 2.2. Section 2.3 

introduces the studies on multiple products substitution problems. Finally, the studies on 

RM will be elaborated in Section 2.4. 

2.1 Classification  

There are voluminous research works in the area of pricing and inventory control. 

Hence, it is useful to provide a classification table which is used to describe the papers 

that will be reviewed in the following sections. 

Table 2.1  Legend for classification system 
 
Elements Descriptions 
Length of horizon Single period / Multiple periods / Infinite horizon 
Pricing strategy Static pricing / Dynamic pricing 
Demand type Deterministic demand / Stochastic demand 
Demand input parameters Price, Time, Inventory, Reserved price 
Review policy Periodic review / Continuous review 
Sales Backlogging / Lost sales 
Replenishment Yes / No 
Capacity limits Yes / No 
Set-up cost Yes / No 

Products 
Single product (a single storable product, a single 
perishable product) 
Multiple substitutable products  
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2.2 Joint pricing and inventory decisions for a single product 

Pricing and inventory control strategies have traditionally been determined by 

entirely separate units of a company’s organization, without proper mechanisms to 

coordinate these two planning areas (Federgruen and Heching, 1999). Such dichotomy has 

also been observed in the academic literature. More specifically, single product inventory 

models assume that the price is known, and hence the demand distribution at each period 

is exogenously specified. Since expected revenues are constant under this assumption, 

these models focus on minimizing the expected costs. (Lee and Nahmias,1993 and Porteus, 

2003). On the other hand, the literature on dynamic pricing assumes that with the 

exception of an initial procurement at the beginning of the planning horizon, no 

subsequent orders are allowed. (Gallego and van Ryzin, 1994, Bitran and Mondschein, 

1997, etc).  

The need to integrate inventory control and pricing was first studied by Whitin (1955) 

who addressed a single period problem. More research works on a single period problem 

are reviewed in Section 2.2.1. 

2.2.1 The newsvendor model with pricing 

The original newsvendor problem assumes that pricing is an exogenous decision. In 

contrast, Whitin (1955) added the pricing decision to the newsvendor problem, where the 

selling price and the order quantity are determined simultaneously. Under the assumption 

of deterministic demand, the optimal price and the optimal order quantity are obtained 

with the objective for maximizing the expected profit.  
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Mills (1959) considered the similar problem under stochastic demand. The additive 

demand εε += )(),( pypD  was used, where )( py  is a decreasing function of price p 

and ε is a random variable defined within some range. The study showed that the optimal 

price under stochastic demand is always no greater than the optimal price under 

deterministic demand, the riskless price. Both Lau and Lau (1988) and Polatoglu (1991) 

studied linear additive demand where apbpy −=)(  under different assumptions. 

On the other hand, Karlin and Carr (1962) used the multiplicative 

demand εε )(),( pypD = . They showed that the optimal price under stochastic demand is 

always no smaller than the riskless price, which is the opposite of the corresponding 

relationship obtained by Mills (1959) for the additive demand case. 

Petruzzi and Dada (1999) provided a unified framework to reconcile this apparent 

contradiction by introducing the notion of a base price and demonstrating that the optimal 

price can be interpreted as the base price plus a premium. In addition, they presented a 

comprehensive review that synthesized existing results for the single period problem. 

The papers reviewed above focus on a single period problem. A natural extension of 

this problem is a problem involving multiple periods, where the remaining inventories 

from one period are carried forward to meet demand in subsequent periods. The relevant 

literature will be reviewed in next section. 
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2.2.2 Multiple period inventory models with pricing 

2.2.2.1 Dynamic pricing 

Deterministic demand 

Rajan et al. (1997) focused on price changes that occurred within an order cycle 

when the seller sold a single perishable product. The seller ordered the new product every 

T periods, which was delivered instantaneously. Deterministic demand for the product 

was a decreasing function of the age of the product as well as price. Given the assumption 

of deterministic demand and zero lead times, the seller depleted her entire inventory 

within each order cycle (i.e., no lost sales and backlogging are incurred). The optimal 

price within an order cycle *
tp , the optimal cycle length T, and the optimal order quantity 

Q were obtained which maximized the average profit over time.   

This thesis determines the optimal price and the optimal order quantity under 

stochastic demand, which is significantly different from the previous studies under 

deterministic demand. 

Stochastic demand 

The following three papers consider a single storable product. Demand in 

consecutive periods is independent, but their distributions depend on the product’s price 

following a specified stochastic demand function. A periodic review policy is used. At the 

beginning of each period, before demand is realized, the seller must decide how many 

inventories to order and the price charged for these inventories. 
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Zabel (1972) was one of the earliest researchers who studied this multiple period 

problem under stochastic demand. Under the assumption of lost sales, Zabel considered 

both multiplicative and additive demand with a stochastic component, and found that the 

latter had properties that made the problem easier to solve. For additive demand, the 

author showed that a unique solution was obtained under certain conditions.  

Similarly, Thowsen (1975) considered the problem of determining the price and the 

order quantity under additive demand. He extended Zabel’s analysis to the case where 

backlogging was allowed. A base stock list price (BSLP) policy is proved to be optimal 

under certain conditions.  

A BSLP policy is defined as follows: (i) if the inventory at the beginning of period t , 

tx , is less than some base stock level *
ty , place an order and bring the inventory level up 

to *
ty , and charge *

tp ; (ii) if *
tt yx > , order nothing and offer the product at a discounted 

price of )(*
tt xp , where )(*

tt xp  is decreasing in tx . 

Recently, Federgruen and Heching (1999) addressed both finite and infinite horizon 

models for a similar problem under a non-stationary demand function 

)(*)( tttttt ppD δεγ += . Excess demand was assumed to be fully backlogged. 

Federgruen and Heching showed that the expected profit was concave and the optimal 

price was a non-increasing function of the inventory level. The authors provided an 

efficient algorithm to compute the optimal price. Using a numerical study, they showed 

that dynamic pricing provided 2% increase in expected profit over static pricing.  
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While the papers above focus on a single storable product, this study considers a 

single perishable product which can be differentiated with respect to its ages. At any 

period, the inventory consists of products of different ages. The optimal prices for 

products of different ages and the optimal order quantity for the new product (product of 

age 1) are simultaneously determined at the beginning of each period. 

2.2.2.2 Static pricing 

Although most previous studies focused on dynamic pricing, some researchers have 

also considered the problem of choosing a static or constant price over the lifetime of a 

product.  

The earliest known example of integrating a static price decision with inventory 

decisions was that of Kunreuter and Schrage (1973). They considered a problem with 

deterministic demand, a linear function of price, and varying over a season. Their model 

did not assume lost sales or backlogging, since demand was exactly predicted by the price 

and time. The objective was to determine price, production per period, and production 

quantities so as to maximize profit. A “hill-climbing” algorithm was provided to compute 

the upper and the lower bounds for the price decision. 

Gillbert (1999) focused on a similar problem but assumed that demand was a 

multiplicative function of seasonality, i.e., )()( pDpd tt β= . Gillbert also assumed that 

holding costs and production set-up costs was invariant over time and the total revenue 

was concave. He developed a solution approach that guaranteed the optimality for this 

problem, employing a Wagner-Whitin time approach for determining production periods. 
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Even though less attractive in e-commerce environments, static pricing is particularly 

easy to implement in the traditional businesses where price changes are still costly. It 

would be valuable to identify when dynamic pricing provides a significant increase in 

total profit compared to static pricing. This comparison will help the companies to decide 

whether it is worth the extra efforts to employ dynamic pricing. 

2.3 Multiple products with substitution  

The literatures reviewed in Section 2.2 focus on a single product. Affected by shorter 

product lifetimes and even quickening technological developments, more and more new 

products are frequently introduced to the markets. Hence, the problems which allow for 

substitution between new products and existing products have attracted the attention of the 

researchers. The studies considering multiple product substitution problems will be 

reviewed in this section. 

2.3.1 Multiple product inventory models with substitution  

The earliest work on obtaining the optimal inventory policies for multiple 

substitutable products was due to Veinott (1965). This study was generalized by Ignall and 

Veinott (1969) and extended to perishable inventories by Deuermeyer (1980).  

Analysis of single period two product substitution problems appeared in Mcgillivray 

and Silver (1978), Parlar and Goyal (1984), Pasternack and Drezner (1991), and Gerchak 

et al. (1996). In particular, Gerchak et al. presented several different models of a two 
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product substitution problem with random yield and focused on identifying structural 

properties of the optimal policy. 

Bitran and Dasu (1992) considered planning problems with multiple products, 

stochastic yields, and substitutable demands. Drawing on insights from the two period 

problem, a class of heuristics was provided for solving the multiple period problem with 

no capacity constraint.  

Bitran and Leong (1992) also examined multiple period, multiple product planning 

problems with stochastic yields and substitutable demands. They formulated the problem 

under service constraints and provided near optimal solution to an approximate problem 

with fixed planning horizon. They also proposed simple heuristics for the problem, solved 

with rolling horizons. Common to these two papers is the approach of approximating the 

stochastic problem with a deterministic one. 

Recently, Bassok et al. (1999) studied a single period multiple product inventory 

problem with substitution. They considered N products and N demand classes with 

downward substitution, i.e., excess demand for class i can be satisfied using product j for i 

> j. The problem was modeled as a two-stage stochastic program. A greedy allocation 

policy was shown to be optimal. Additional properties of the profit function and several 

interesting properties for the optimal solutions were obtained.  

Hsu and Bassok (1999) considered a similar substitution problem of Bassok et al. 

(1999). However, their model had one raw material as the production input and produced 

N different products as outputs. By efficiently solving a two-stage stochastic problem, the 
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optimal production input and allocation of units to lower functionality demands were 

obtained.  

While the literatures above consider the “pure” inventory policy for multiple products, 

this study determines not only the optimal order quantity for a new product but also the 

optimal prices for multiple existing products. 

2.3.2 Pricing decisions for multiple products 

Gallego and van Ryzin (1997) considered a multiple period pricing problem with 

multiple products sharing common resources. Demand for each product was a stochastic 

function of time and the product prices. An upper bound for the expected revenue was 

obtained by analyzing this problem under the assumption of deterministic demand. The 

solution for deterministic demand was employed for two heuristics for a stochastic 

problem that were shown to be asymptotically optimal as the expected sales volume goes 

to infinity.  

Instead of approximating the stochastic problem with a deterministic one, the 

stochastic problem needs to be further optimized. In addition, the ordering quantities for 

multiple products should also be determined, rather than the prices alone.  

2.3.3 Joint pricing and ordering decisions for two substitutable 

products 

The first paper that combined the pricing and capacity decisions was Birge et al. 

(1998), who addressed a single period problem. By assuming demand to be uniformly 
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distributed, they obtained the optimal pricing and capacity decisions for two substitutable 

products. In addition, they presented numerical results to show that pricing and capacity 

decisions were affected significantly by the experimental parameters.  

Similarly, Karakul and Chan (2003) formulated a single period problem of two 

products which the new product can be a substitute in case the existing product runs out. 

The objective is to find the optimal price of the new product and inventory levels for both 

new and existing products in order to maximize the single period expected profit. The 

authors showed that the problem could be transformed to a finite number of single 

variable optimization problem. The single variable functions to be optimized have only 

two possible roots under certain demand distributions for the new product. They also 

showed that besides the expected profit, both the price and production quantity of new 

products were higher when it was offered as a substitute. 

The papers reviewed above analyze a single period, two products problem. In 

contrast, this study first considers a multiple period, two products problem under general 

demand distributions. The study is further extended to consider a multiple period, multiple 

products problem with substitutable demands.  

2.4 Revenue management 

From a historical perspective, the interest in revenue management practices started 

with the pioneering research of Littlewood (1972) on airline. However, it was probably 

after the work of Belobaba (1987, 1989) and the American Airline success that the field 

really took off. The publication of a survey paper by Weatherford and Bodily (1992), 
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where a taxonomy of the field and an agenda for future work were proposed, was another 

symptom of this revival. At this stage, however, much of the work was done on capacity 

management and overbooking with little discussion of dynamic pricing policy. Prices in 

these original models are assumed to be fixed and managers were in charge of opening 

and closing different fare classes as demand evolved. During the 90’s, the increasing 

interest in RM became evident in the different applications that were considered. Models 

became industry specific (e.g. airlines, hotels, or retail stores) with a higher degree of 

complexity (e.g. multi-class and multi-period stochastic formulations). Furthermore, it 

was in the last decade that pricing policies really became an active component of the RM 

literature. Today, dynamic pricing in a RM context is an active field of research that has 

reached a certain level of maturity.  

2.4.1 Single-leg seat inventory control 

The problem of seat inventory control across multiple fare classes has been studied 

by many researchers since 1972. There has been significant progress from Littlewood’s 

rule for two fare classes, to the expected marginal seat revenue (EMSR) rule for multiple 

fare classes, to optimal booking limits for single-leg flight. 

Littlewood (1972) studied a stochastic two-price, single-leg airline RM model and 

proposed a marginal seat revenue principle. The principle suggested that booking requests 

for the lower fare class can be declined if the seat could be sold later to the higher fare 

class. Bhatia and Parekh (1973), and Richter (1982) used the marginal seat revenue 

principle to develop simple decision rules which were employed to determine optimal 

booking limits in a nested fare inventory system.  
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Belobaba (1989) extended Littlewood’s rule to multiple-fare classes and proposed an 

EMSR rule. The EMSR method did not produce optimal booking limits except in the two 

fare class, however, it was particularly easy to implement. Methods for obtaining optimal 

booking limits for single-leg seat inventory control were provided in Curry (1990), 

Wollmer (1992), Brumelle and McGill (1993), and Robinson (1994). These studies also 

showed that the Belobaba’s heuristics was sub-optimal. 

A comprehensive overview for perishable assets RM was founded in Weatherford 

and Bodily (1992). Subramanian et al. (1999) formulated the airline seat allocation 

problem on a single-leg flight into a discrete-time Markov decision process. The model 

allowed cancellation, no-shows, and overbooking. They showed that an optimal booking 

policy was characterized by seat and time dependent booking limits for each fare class. 

Because of fare-dependent cancellation refunds, the optimal booking limits may not be 

nested. Independently, Liang (1999), and Feng and Xiao (2001) studied a continuous-time, 

dynamic seat inventory control problem. Both of them proved that a threshold control 

policy was optimal. Zhao and Zheng (2001) considered a more general airline seat 

allocation problem that allows diversion/upgrade and no-shows and showed that a similar 

threshold control policy was optimal. Other studies on airline RM problems can be found 

in Rothstein (1971), Hersh and Ladany (1978), Pfeifer (1989), Brumelle et al. (1990), 

Ladany and Arbel (1991), Smith et al. (1992), Lee and Hersh (1993), Bassok and Ernst 

(1995), Weatherford (1997), Talluri and van Ryzin (1999), and Chatwin (1999). 

The papers reviewed in this section assume that prices are predetermined and never 

allowed to decrease. Under this assumption, the optimal booking limit for each fare class 
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is obtained. In contrast, this study determines not only the optimal booking limit but also 

the optimal price for each fare class. Furthermore, the study considers two more cases, (i) 

the case where the price first increases and later decreases and (ii) the case where the price 

always decrease, and obtains the price and inventory decisions, simultaneously. 

2.4.2 Dynamic pricing 

The following papers focus on market environments where there is no opportunity 

for inventory replenishment over the selling horizon. These markets arise when the seller 

faces a shorter selling horizon, e.g., when the product itself is a short life cycle product, 

such as fashion apparel or holiday products, or is at the end of its life cycle (e.g. clearance 

items). In these markets, production/delivery lead times prevent replenishment of 

inventory and hence, the seller has a fixed inventory on hand and must determine how to 

price the product over the remaining selling horizon. 

The first researchers to study dynamic product pricing were Kincaid and Darling 

(1963). They investigated two continuous time models, where demand followed a Poisson 

process with fixed intensity λ . An arriving customer at time t had a reservation price tr  

for the product, i.e., the maximum price the customer was willing to pay. The reservation 

price tr  was a random variable with distribution )( trF . In the first model, the seller did 

not post prices but receives offers from potential buyers, which he/she either accepted or 

rejected. In the second model, the seller announced a price tp  and arriving customers 

purchased the product only if tt pr ≥ . The demand process in this situation was Poisson 
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with intensity ))(1( tpF−λ .Optimality conditions for the maximum revenue and the 

optimal price were derived for both cases.   

Gallego and van Ryzin (1994) modeled the demand as a homogenous Poisson 

process with intensity )( pλ , where )( pλ  was non-increasing function of p . For a 

“regular” demand function, they derived optimality conditions and showed that  

(i) at a given point of time, the optimal price is a non-increasing function of the 

inventory level  

(ii) for a given inventory level, the optimal price is a non-decreasing function of 

the duration of the selling horizon.  

The optimal price path that Gallego and van Ryzin obtained was that the price 

jumped up after each sale, then decayed slowly until the next sale, and jumped up again.  

Bitran and Mondschein (1997) and Zhao and Zheng (2000) generalized the model of 

Gallego and van Ryzin (1994) by assuming the demand as a non-homogenous Poisson 

process with intensity ))(1(),( pFtp tt −= λλ . They showed that the property (i) held under 

this more general assumption; however, the property (ii) may not hold when (.)tF  

changed over time. Zhao and Zheng (2000) showed a necessary condition for the property 

(ii) to hold, namely that the probability that a customer was willing to pay a premium 

decreased over time.  
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Bitran and Mondschein (1997) considered a periodic pricing review policy where the 

prices were revised only at a finite set of times and were never allowed to rise. This policy 

can be applied for pricing seasonal products in the retailing industry. Demand distribution 

was assumed to be Poisson. The authors used empirical analysis to develop conjectures as 

to the structure of the optimal policy and the optimal revenue but no theoretical results 

were presented. 

The optimal pricing policy in Gallego and van Ryzin (1994) required continuous 

updating of prices over time, which is not practical. Therefore, Gallego and van Ryzin 

presented the fixed price heuristics. These simple heuristics are proved to be 

asymptotically optimal as the volume of expected sales and the number of selling periods 

go to infinity. 

Another focus on the continuous time problem is the case where prices have to be 

chosen from a discrete set of allowable prices },...,,{ 21 kppp . In addition to continuous 

price paths and fixed price heuristics, Gallego and van Ryzin (1994) discussed this issue 

and showed that the policies with at most one price change were asymptotically optimal as 

the initial capacity and/or the time to sell increased. 

Inspired by the proposed pricing policy that allow at most one price change, Feng 

and Gallego (1995) focused on a very specific question: what was the optimal time to 

switch between two pre-determined prices in a fixed selling season. They considered both 

the typical retail situation of switching from an initial high price to a lower price as well as 

the case more common in the airlines of switching from an initial low price to a higher 
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one later in the season. By assuming that demand was a Poisson process which was a 

function of price, Feng and Gallego showed that the optimal policy for this problem was a 

threshold policy, whereby a price was changed (decreased or increased) when the time left 

in the horizon passed a threshold (below or above) that depends on the unsold inventory. 

For the problem where the direction of price change was not specified, they showed a dual 

policy, with two sequences of monotone time thresholds. Although they did not explicitly 

consider the choice of the two starting prices for the problem, a company could use the 

policy they developed to determine the expected revenue for each pair of prices and chose 

the pair that maximizes the expected revenue. Feng and Gallego (2000) discussed 

Markovian demand and Feng and Xiao (1999) generalized the two price model to consider 

risk preference. 

Feng and Xiao (2000a) further extended their previous model by considering 

multiple predetermined prices. Similar to Feng and Gallego (1995), they assumed that 

price changes were either decreasing or increasing, i.e., monotone and non-reversible. The 

initial inventory was fixed and demand was a Poisson process with constant intensity rate. 

Under these assumptions, the authors developed an exact solution for this continuous time 

model and showed that the objective function of maximizing the revenue was piecewise 

concave with respect to time and inventory. 

Independently, Chatwin (2000) and Feng and Xiao (2000b) provided a systematic 

analysis of the pricing policy and the expected revenue for the problem within a finite set 

of prices. In these two papers, it is shown that the maximum expected revenue is concave 

on both the remaining inventory and duration of the selling horizon. For a given inventory 



Chapter 2                                                   Literature review           

 - 26 -

level, the optimal price is a non-increasing function of the remaining time. At any given 

time, the optimal price is a non-increasing function of the remaining inventory. An upper 

bound on the maximum numbers of price changes is also reported. In addition, Feng and 

Xiao (2000b) showed that there was a maximum subset },...,{ 10 kppP ⊆  such that the 

revenue rate was increasing and concave within 0P  and the optimal price at any time 

belonged necessarily to 0P . This observation was particularly useful since it narrowed 

down the set of potential optimal prices making the computation of the optimal prices 

much easier. 

The papers reviewed in this section require continuous changing of prices over time, 

which may not be practical. In contrast, this study focuses on periodically updating the 

prices and determines the optimal prices and the optimal order quantity for perishable 

products simultaneously. 
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Chapter 3  Dynamic pricing and ordering   decision 

for perishable products with multiple 

demand classes 

 

Chapter 3 focuses on the integration of dynamic pricing and ordering decisions for 

perishable products. In Section 3.2, a dynamic programming model is developed for the 

product with a two period lifetime. The optimal order quantity for the newer product and 

the optimal price for the older product are obtained. Furthermore, we prove that the 

expected profit obtained from dynamic pricing is always higher than the expected profit 

from static pricing. Numerical results for the product with a two period lifetime are 

presented in Section 3.3. The study is further extended to consider a more general problem 

where the lifetime of the product is longer than two periods, as shown in Section 3.4. 

 

3.1 Introduction 

Advances in information technology and e-commerce have played an important role 

in improving the inventory management of perishable products. With advanced tools such 

as CPFR (collaborative planning forecasting and replenishment), QR (quick response) and 

VMI (vendor managed inventory), supply chain partners can share the information and 

collaborate with each other, which leads to lower inventory costs and increased service 
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levels.  However, despite significant efforts made in reducing supply chain costs, a large 

portion of retailers still lose millions of dollars annually due to lost sales and excess 

inventory (Elmaghraby and Keskinocak, 2003). Therefore, many are now willing to 

re-examine their pricing policies and explore dynamic pricing for the maximization of 

their profit. 

This chapter focuses on the integration of dynamic pricing and ordering decisions for 

perishable products under stochastic demand. The product is first assumed to have a two 

period lifetime and a periodic review policy is used. Hence, in any given period the 

inventory consists of products with two different ages. The new product (product of age 1) 

is sold at the retail price while the old product (product of age 2) is sold at a discounted 

price. We assume demands for two different ages of products come from two independent 

demand classes. Moreover, demand for the old product is dependent on the discounted 

price. At the beginning of each period, the optimal order quantity for new products is 

determined, and the optimal discounted price for old products is determined given the 

remaining inventory level of old products. The approach of offering a promotional 

discount for old products helps the retailer to increase sales, reduce the inventory level, 

and thus obtain higher profits. We also extend the results to a product with the lifetime of 

longer than two periods, and hence with more than two demand classes.  

The proposed model makes an assumption that could be controversial, which is 

independence of different demand classes. Examples of such independence can be easily 

found in practice, such as in electronics industry. Due to fast developments in 

technologies, new products are significantly improved compared with existing products in 
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terms of performance, design, etc. Thus, the customers who are interested in the new 

product are more performance oriented and thus, are not affected by the price of old 

existing products. Similarly, the customers who are more price sensitive cannot afford to 

purchase the new product and focus on the availability and price of old products.   

3.2 Pricing and ordering decisions for a product with a two 

period lifetime 

In this section, we formulate and analyze a multiple period problem for a perishable 

product with a two period lifetime. 

3.2.1 Assumptions and notations 

We consider a perishable product with a two period lifetime, represented by M = 2. A 

periodic review policy is used. Hence, in any given period, the inventory consists of 

products with two different ages. Let index i = 1, 2 denotes the ages of the product, where 

i = 1 (2) represents that the product is new (old). In each period, two independent demand 

classes, denoted by Type i customers, purchase the product of age i. Type 1 customers 

purchase the new product regardless of the price and availability of old products and Type 

2 customers purchase old products regardless of the price and availability of the new 

product.  

Demands of Type 1 customers 1t  at each period are nonnegative, independent and 

identically distributed (i.i.d.) with a known probability distribution )( 11 tg . Demands of 
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Type 2 customers are dependent on the discounted price 2p , represented by a given linear 

stochastic demand function:  

               )( 2222 εμ += pt                                    (3.1)             

)( 22 pμ  is mean demand of Type 2 customers and 22222 )( pabp −=μ , where 

02 >a . 2ε  is an i.i.d. random variable with a known probability density function 

)( 22 εf  and is bounded in ],[ max
2

min
2 εε . In addition, 0)( 2 =εE , where min

22 ε−>b .  

2p  is confined to a finite interval ],[ max
2

min
2 pp , where 

2

min
22max

2 a
bp ε+

< . The upper 

bound of max
2p  prevents negative demands of Type 2 customers. The salvage value of 

any unsold items after their lifetimes is zero. In case it  exceeds the available inventory 

of age i (i = 1, 2), the excessive demand is lost.  

The following notation is employed as follows: 

y = order quantity for a new product 

xi = inventory level for a product of age i , i = 1,2  

p1 = retail price of a new product  

pi = discounted price for a product of age i, i = 2 where p2 < p1 

πi = penalty cost for a product of age i, i = 1, 2 where π2 < π1 

h = holding cost per period (regardless of ages) 

c = purchasing cost for a new product 
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α = discounted factor per period 

The index k is defined to represent the period, for Nk ,...,1= , where N is the number 

of studying periods. Denote yk as the quantity ordered at Period k and x2k as the remaining 

quantity carried forward from Period 1−k  to Period k after the realization of demand of 

Type 1 customers during Period 1−k . 

Observation 3.1: The order quantity yk is only dependent on demand of Type 1 customers 

at Period k and the price sensitive demand of Type 2 customers at Period 1+k .    

Proof: During Period k, the order quantity yk
 is demanded only by Type 1 customers. The 

remaining quantity of yk carried forward to Period 1+k , x2,k+1, can only be used to satisfy 

Type 2 customers since the quantity x2k is disposed of at the end of Period k, and the new 

order that arrives at Period 1+k , yk+1, can only be used to satisfy Type 1 customers. 

Furthermore, any x2,k+1 unsold at the end of the period 1+k  must be disposed of. 

Therefore, the influence of the order quantity yk lasts for two periods only and yk 

determines x2,k+1.                                                                     

From Observation 3.1, an N period problem can be reduced to a two period problem 

as follows: At the beginning of Period 1, the retailer determines the order quantity for the 

new product. After the realization of demand for Period 1, the remaining products which 

become old are carried to Period 2. Given the inventory level for old products, the price is 

determined at the beginning of Period 2. No replenishment is allowed during the planning 

horizon of two periods.  
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3.2.2 Dynamic programming model   

The dynamic programming model is developed to compute the expected profit over 

two periods for a given y . The maximum expected profit is computed recursively 

backward in time, starting from Period 2 to Period 1.  

)];([)( 22222
2

pxMaxxV
p

ϕ=  is the maximum expected profit during Period 2 for a 

given inventory level 2x . 

);( 222 pxϕ  is the expected profit from Type 2 customers incurred at Period 2, 

including the expected revenue, holding cost for excess inventory and penalty cost for 

unsatisfied demand );( 222 pxL .   

),()],[min();( 222222222 pxLtxEppx −=ϕ  

where ++ −+−= ][][);( 22222222 xtEtxhEpxL π  and 22222 ε+−= pabt . 

The maximum expected total profit over two periods 1V  is computed as follows: 

)](()([ 2211 xVEyMaxV
y

αϕ +=                                        (3.2) 

where +−= ][ 12 tyx  represents the recursive function for the inventory level. 
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)(1 yϕ  is the expected profit from Type 1 customers incurred at Period 1, including 

the expected revenue, holding cost for excess inventory and penalty cost for unsatisfied 

demand )(1 yL  and the purchasing cost.   

cyyLtyEpy −−= )()],[min()( 1111ϕ  

where ++ −+−= ][][)( 1111 ytEtyhEyL π . 

We denote )(1 yJ  as the expected profit over two periods when the initial inventory 

level at Period 1 is y .  

)]([)()( 2211 xVEyyJ αϕ +=                                         (3.3)           

3.2.2.1 Optimal discounted price 

The optimal discounted price is obtained by maximizing the expected profit of Type 

2 customers, );( 222 pxϕ , and satisfies the following properties:       

Lemma 3.1: );( 222 pxϕ  is concave with respect to 2p  for a given 2x . 

Proof: );( 222 pxϕ  is expanded as follows: 

22222222222

2222222222222

222222

22222222222222
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Taking the first order and second order partial derivatives of (3.4) with respect 

to 2p , we have 
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and 
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respectively. 

Since the second order derivative is always less than zero, );( 222 pxϕ  is concave 

with respect to 2p  for a given 2x .                                                      

Lemma 3.2: Let 2p̂  denote the value of 2p  satisfying the stationary condition of (3.5).  

2p̂  is also bounded in ],[ max
2

min
2 pp . Hence, the optimal discounted price, *

2p , is 

determined as follows:  

⎪
⎩

⎪
⎨

⎧

≤

<<

≥

=
min
22

min
2

max
22

min
22

max
22

max
2

*
2

ˆ                         

ˆ                ˆ

ˆ                         

ppp

pppp

ppp

p  



Chapter 3             Dynamic pricing and ordering decisions for perishable products             

 - 35 -

Lemma 3.2 is directly obtained from Lemma 3.1. Some optimal properties of *y  are 

provided in the following section, when the noise variable 2ε  follows an IFR distribution, 

such as the Uniform, Exponential, Erlang, Normal or Truncated Normal distributions 

(Porteus, 2003). IFR distributions are widely used in modeling demand distributions 

because of their robustness. 

3.2.2.2 Optimality properties of *y  when 2ε  follows IFR distributions    

Under the assumption that the noise variable 2ε  follows an IFR distribution, where 

the hazard rate )( 22 ελ is defined by
)(1

)(

22

22

ε
ε

F
f

−
, the optimal discounted price *

2p  satisfies 

the following optimality properties:                               

Lemma 3.3: *
2p is a non-increasing function of 2x  when the hazard rate 

)(
1)(

2
min
22

22 π
ελ

++
≥

hpa
. 

Proof: From (3.5), 2p̂  satisfies  
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From (3.6), 2p̂  is a function of 2x , denoted by )(ˆ 22 xp . By taking the first order 

derivative of (3.6) with respect to 2x , we obtain 
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Rearranging the terms,                                    
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(3.7) 

Given that 
)(

1
))(ˆ(1

))(ˆ(
))(ˆ(

2
min
22222222

222222
222222 π

λ
++

≥
+−−

+−
=+−

hpaxpabxF
xpabxf

xpabx , 

min
222 )(ˆ pxp ≥  and the denominator of (3.7) is positive, hence 0

)(ˆ 22
2 ≤

dx
xpd

a . Therefore, 

it follows that *
2p  is a non-increasing function of 2x .                            

Lemma 3.3 provides the optimal pricing policy. Since *
2p  is a non-increasing 

function of 2x , there exist two threshold values, mx2  and nx2 , which satisfy nm xx 22 ≤ ,  

max
222 )(ˆ pxp m =  and min

222 )(ˆ pxp n = . If nxx 22 ≥ , the optimal discounted price *
2p  equals to 

min
2p . If mxx 22 ≤ , the optimal discounted price *

2p  equals to max
2p .  

Lemma 3.4: The maximum expected profit of Type 2 customers, )( 22 xV , is concave with 

respect to 2x . 

Proof: Define )( 22 xV  as 
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where the thresholds mx2 , nx2  are calculated by setting (3.5) to be zero under the 

condition that max
22 pp =  and min

22 pp = , i.e., 
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Consider the following three cases: 

Case (1) nxx 22 ≥  
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   (3.8)       

Since 2x  is independent of min
2p , the first and second order derivatives of (3.8) with 

respect to 2x  are 
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respectively. Thus, )( 21,2 xV is a concave function of 2x  when nxx 22 ≥ . 

Case (2) nm xxx 222 <<  
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The first order derivative of )( 22,2 xV  with respect to 2x  is  
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Note that the sum of the 3rd and 4th terms in (3.10) is zero because of the optimality 

condition given in (3.5) when 22 p̂p = . Then (3.10) is reduced to  
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The second order derivative of )( 22,2 xV  is shown as follows. 
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In order to prove 0
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As stated in the assumption, 02 ≥a . From Lemma 3.3, 0)(ˆ
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Also from (3.7), we can easily prove that  
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The right hand side of (3.11) is larger than zero since 0)(ˆ

2

22 ≤
dx

xpd . Therefore, it 

follows that 0)
)(ˆ

(1
2

22
2 ≥+

dx
xpd

a . In conclusion, )( 22,2 xV  is concave with respect to 2x  

when nm xxx 222 << . 

Case (3) mxx 22 ≤  
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Since 2x  is independent of max
2p , the first and second order derivatives of (3.12) 

with respect to 2x  are given as follows:  
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Thus, the profit )( 23,2 xV  is a concave function of 2x  when mxx 22 ≤ . 

Finally, we focus on the boundary conditions at the threshold values of mx2  and nx2  

in order to show the overall concavity. At the thresholds mx2  and nx2 , )( 22 xV  is 

continuous, which can be seen from (3.8), (3.9) and (3.12). Furthermore, it can easily be 

obtained that 
−+ ==

=
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nn xxxx dx
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dx
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 and 

−+ ==
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2222

)()(
mm xxxx dx

xdV
dx
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. 

Therefore, we draw conclusion that the continuous profit function )( 22 xV  is concave 

with respect to 2x .                                                          

Let )( 2
'

2 xV  and )( 2
''

2 xV  denote the first and second order derivatives of )( 22 xV  

with respect to 2x . The following theorem computes the expected profit )(1 yJ .  
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Theorem 3.1: The expected profit from Type 1 and Type 2 customers, )(1 yJ , is concave 

with respect to y. 

Proof: From Equation (3.3), 

)]([)()( 2211 xVEyyJ αϕ +=                                        (3.14) 

where +−= ][ 12 tyx .  

From the proof of Lemma 3.4, )( 22 xV  is represented as follows. 
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Expanding (3.14), we have 
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By taking the derivatives of )(1 yJ  with respect to y, we obtain 
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    (3.15)             

The first two terms of (3.15) are always negative due to the assumptions that 

max
21 pp >  and 21 ππ > . The last three terms are also always negative from Lemma 3.4. 

Therefore, the expected profit )(1 yJ  is concave with respect to y.                   

From Theorem 3.1, the unique order quantity y* exists and the concavity of )(1 yJ  

with respect to y enables efficient algorithms such as gradient search to be employed to 

obtain y*.   
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3.2.2.3 Bounds for y* under general demand distributions 

For other demand distributions that do not satisfy the conditions given in Lemma 3.3, 

)( 2
*
2 xp  may not be a non-increasing function of 2x . Therefore, we provide bounds for 

the optimal order quantity y*. 

Denote y1
* as the optimal order quantity obtained by solving the newsvendor problem 

only for Type 1 customers’ demands with the associated revenue and cost parameters. 

Similarly, let )( 2
*
2 py  stand for the optimal order quantity computed by solving the 

newsvendor problem only for Type 2 customers’ demands when the discounted price is 

2p . 

Proposition 3.1: An upper bound of y* is equivalent to )]([ 2
*

2
*
1

2

pyMaxyy
p

+= . 

The upper bound is obtained by dedicating different orders to fulfill Type 1 and Type 

2 customers. This means orders placed for Type 2 customers cannot be consumed by Type 

1 customers and vice versa. The overall problem is then reduced to two independent 

newsvendor problems, and it is obvious that the sum of these two optimal quantities will 

be an upper bound of y*. Similarly, a lower bound of y* is obtained as provided in 

Proposition 3.2.   

Proposition 3.2: A lower bound of y* is equivalent to *
1yy = . 
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3.2.2.4 Comparison of the expected profit from dynamic pricing and static pricing 

In this section, we compute the expected profit from dynamic pricing with that from 

static pricing, where a constant discounted price is applied for the old product regardless 

of its inventory level. 

Theorem 3.2: Given the same order quantity y, the expected profit from dynamic 

pricing, )(1 yJ , is never worse than )(1 yJ ST , the expected profit from static pricing. 

Proof: Given the same order quantity y, the expected profit for Type 1 customers in static 

pricing is equivalent to )(1 yϕ  in dynamic pricing. Thus, the difference between )(1 yJ  

and )(1 yJ ST  is due to the difference in the maximum expected profit from Type 2 

customers. Hence, it suffices to compare the maximum expected profit from Type 2 

customers under two different pricing strategies.  

Recall that +−= ][ 12 tyx  is the remaining stock available for Type 2 customers. 

Suppose that  2
Sp  is the optimal discounted price for static pricing and obtained at the 

beginning of Period 1 by solving a dynamic programming model developed for static 

pricing. Then the maximum expected profit from Type 2 customers, denoted by )( 22 xV ST , 

is computed as follows: 

);();()( 22222222
SSST pxLpxxV −= ϕ                                      

For the same inventory level 2x , the following equation computes the maximum 

expected profit from Type 2 customers under dynamic pricing.  
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)();();()};();({)( 2222222222222222
2

xVpxLpxpxLpxMaxxV STSS

p
=−≥−= ϕϕ        (3.16) 

From (3.16), we prove that )( 22 xV  is never worse than )( 22 xV ST .               

3.3 Numerical study for a product with a two period lifetime  

In this section, we investigate how dynamic pricing performs under various 

parameters and this will lead us to identify when dynamic pricing provides a significant 

increase in the expected profit compared to static pricing. Moreover, the quality of the 

upper and the lower bounds for the optimal order quantity y*, provided in Propositions 3.1 

and 3.2, is examined. 

3.3.1 Experimental design 

In this numerical study, demand of Type 1 customers is assumed to follow a Normal 

distribution with mean μ1 and variance σ1
2. Demand of Type 2 customers is 

price-sensitive and has an additive stochastic demand function, i.e., 2222 )( εμ += pt , 

where 22222 )( pabp −=μ  is assumed to be a linear function of the discounted price p2 

and the noise variable 2ε  follows a truncated Normal distribution which is bounded by 

2
min
2 3σε −=  and 2

max
2 3σε = , where σ2 is the standard deviation of the Normal 

distribution. 

We are particularly interested in the effects of demand variability on the profit 

increase from dynamic pricing compared to static pricing. Thus, σ1 and σ2 are set to 

different levels, referring to different levels of demand variability. Different price 
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sensitivities of Type 2 customers are also considered by changing the slope value a2 of 

22222 )( pabp −=μ . Two different values for the purchasing cost c are considered, as 

provided in Table 3.1.  

The holding cost h is a constant value in each period as well as the retail price of 

products p1. The values of the penalty costs π1 and π2 are provided in Table 3.2, while the 

feasibility condition 21 ππ >  is satisfied. As stated in the assumptions, the lifetime of the 

product, M, is two periods. 

Table 3.1 provides seven constants and their respective values. Table 3.2 summarizes 

the experimental variables and their respective values used in this study.  

Table 3.1  Constants in the numerical study 
 

Parameters Values 
p1 25 

μ1 50 
b2 100 
h 1 

π1 12 

π2 5 
M 2 

 
 

Table 3.2  Variables in the numerical study 
 

Parameters  Values  
σ1 10 20 30 
σ2 10 20 30 
a2 4 5 6 
c - 10 15 
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3.3.2 Profit increase from dynamic pricing  

As shown in Theorem 3.2, dynamic pricing provides a higher profit than static 

pricing in all cases. The profit increase varies from 1% to 50%.  
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Figure 3.1  Profit increase from dynamic pricing under different σ1 
(when σ2 = 10 and c = 15) 

Given a fixed c and σ2, we observe that the difference in total profit between 

dynamic pricing and static pricing increases as σ1 increases. This trend is observed for all 

choices of σ2 and c. The particular scenario satisfying σ2  = 10 and c = 15 is shown in 

Figure 3.1. When σ1 increases, the inventory level x2 greatly fluctuates, and a more 

flexible pricing strategy is necessary to control demand of Type 2 customers so that 

excessive stockouts or stock expirations can be avoided. Dynamic pricing provides such 

flexibility. 

  σ1 

a2 = 4 
a2 = 5 
a2 = 6
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Figure 3.2  Profit increase from dynamic pricing under different σ2 
(when σ1 = 10 and c = 15) 

 

As σ2 increases, we observe that the expected profit from both dynamic pricing and 

static pricing decrease, and the difference in total profit between the two pricing strategies 

diminishes. This is because the process of adjusting p2 for demand of Type 2 customers 

becomes more difficult as σ2 increases. Dynamic pricing, even though effectively controls 

demand of Type 2 customers, may still cause costly stockouts or stock expirations due to 

this high uncertainty. The particular scenario satisfying σ1 = 10 and c = 15 is shown in 

Figure 3.2. The same trend is also observed for all choices of σ1 and c. 

  σ2 

a2 = 4 
a2 = 5 
a2 = 6
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Figure 3.3  Profit increase from dynamic pricing under different σ1 and c 
(when a2 = 4 and σ2 = 10) 

 
Given a fixed a2 and σ2, we observe that the difference in total profit between 

dynamic pricing and static pricing increases as the purchasing cost c increases. This trend 

is observed for all choices of σ2 and a2. The particular scenario satisfying σ2 = 10 and a2 = 

4 is shown in Figure 3.3. Implementing dynamic pricing, stock expirations as well as 

stockouts may be greatly reduced. This reduction in product wastage incurs higher cost 

savings when c is higher.  

3.3.3 The upper and the lower bounds for y* 

From Proposition 3.1, an upper bound for y* is equivalent to )]([ 2
*

2
*
1

2

pyMaxyy
p

+= , 

where 2p  is confined to the finite interval ],[ max
2

min
2 pp . Hence, a closed form for this 

upper bound is )( min
2

*
2

*
1 pyyy += .  

  σ1 
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Given a fixed c and several cost constants shown in Table 3.2, the upper and the 

lower bounds for the optimal order quantity y* are obtained under different values of price 

sensitivity a2, as shown in Figure 3.4. 

We observe that the upper bound decreases as the price sensitivity a2 increases, 

which reduces the searching space for y* and thus improves the computing speed. 
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Figure 3.4  Comparisons of the bounds for y* (when c = 10) 
 

3.4 Pricing and ordering decisions for a product with an M ≥ 3 

period lifetime 

In this section, we extend the previous results to a more general case where the 

lifetime of a perishable product is longer than two periods. This extension has strong 

practical implications. Under the proposed model in Section 3.2, there is only one chance 

where the decision maker could adjust the price for a markdown. However, in practice, 

  a2 
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retailers often employ successive markdowns to sell old products. The optimal prices for 

multiple markdowns are determined in this section. Furthermore, the optimal retail price 

and the optimal order quantity for the new product when it is first introduced to the market 

are determined as well. 

3.4.1 Model assumptions 

The lifetime of a perishable product is assumed to be longer than two periods, 

represented by M ≥ 3. Hence for any given period, the inventory consists of stocks with M 

different ages, purchased by M independent demand classes. Type i customers purchase 

the products of age i in each period, for Mi ,...,1= , while the age of new stock 

replenished is one.  

The index k is defined to represent the period, for Nk ,...,1= , where N is the number 

of studying periods. Let pik denote the discounted price for the product of age i at Period k. 

The corresponding demand is assumed to be dependent on pik, represented by a given 

linear stochastic demand function: 

    min  ,0                ikiiikikiiik bapabt εε −≥>+−=  Mi ,...,1=  and Nk ,...,1=      

where ikε  is an i.i.d. random variable across different periods, which implies that 

demands of different types of customers at Period k are independent. The variable ikε  is 

bounded in ],[ maxmin
ikik εε . 
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Using the ideas of Observation 3.1, an N period problem can be reduced to an M 

period problem as follows: At Period i ( Mi ,...,1= ), only the products of age i are sold 

and purchased by Type i customers. The retailer only replenishes at the beginning of 

Period 1, deciding the optimal order quantity x1. At the beginning of Period i ( Mi ,...,1= ), 

the optimal price for the remaining products of age i is determined.  

Hence, demand of Type i customers and the discounted price for the product of age i 

can be simplified as ti and pi respectively. Similarly, ikε  can be written as iε . The 

simplified linear stochastic demand function is shown as follows: 

iiiii pabt ε+−=  

The discounted price pi is confined to ],[ maxmin
ii pp , where 

i

ii
i a

b
p

min
max ε+

<  

prevents negative demand ti. We also assume that maxmin
1 ii pp ≥− , implying no overlap of 

the price intervals. The variable iε  has a known probability density function )( iif ε  and 

is bounded in ],[ maxmin
ii εε  satisfied with 0)( =iE ε . 

In case ti exceeds the available inventory of age i, the excessive demand is lost.  

Without loss of generality, we assume that 1+> ii ππ . 

Apart from lost sales, we also assume that the stockouts can be satisfied by an 

“alternative” source (Lee et al., 2000 and Chew et al., 2006a). Under this assumption, if 

there is not enough stock to satisfy the demand, the retailer will meet the stockouts by 
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obtaining some units from an “alternative” source with additional costs, representing the 

penalty cost to this stockouts. 

This “alternative” source may be B2B marketplaces or third party manufacturers. 

With the advances of Electronic Data Interchange and rapid cargo transportation, 

“alternative” sources are easily identified and the leadtimes from the sources are often 

neglectable. Thus, compared with the long lead time for manufacturing (e.g., 

semi-conductor), we assume that the lead time from the “alternative” source is zero. 

3.4.2 Pricing and ordering decisions under lost sales 

3.4.2.1 Dynamic programming model 

The dynamic programming model is developed to compute the expected profit given 

the inventory level for the product of age i, where Mi ,...,1= . 

)( i
L

i xV , the maximum expected profit for the remaining periods when starting at 

Period i and with initial inventory xi, is computed as follows: 

))](();([)( 11 +++= i
L

iii
L
ipi

L
i xVEpxMaxxV

i

αϕ   for Mi ,...,1=                 (3.17)  

);( ii
L
i pxϕ  represents the expected profit incurred at Period i, including the expected 

revenue, holding cost for excess inventory and penalty cost for unsatisfied demand 

);( iii pxL . 

);()],[min();( iiiiiiii
L
i pxLtxEppx −=ϕ   
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where ++ −+−= ][][);( iiiiiiii xtEtxhEpxL π                          

The recursive function for the inventory level is +
+ −= ][1 iii txx .                             

We denote );( ii
L
i pxJ  as the expected profit over the final i periods. 

))(();();( 11 +++= i
L

iii
L
iii

L
i xVEpxpxJ αϕ                                 (3.18) 

ix  and )( i
L

i xV are computed recursively backward in time, starting at Period M and 

ending at Period 1. The boundary condition )];([)( MM
L
MpM

L
M pxMaxxV

M

ϕ=  is the 

maximum expected profit during Period M given the initial inventory level xM. Conversely, 

the value of 12211111 ))](();([)(
1

cxxVEpxMaxxV LL

p

L −+= αϕ  is the maximum expected 

profit over M periods when the initial inventory at Period 1 is x1. 

3.4.2.2 Optimal order quantity and optimal prices  

In order to solve the dynamic programming model developed in Section 3.4.2.1 

efficiently, );( ii
L
i pxJ  must be shown to be concave with respect to ip  for a given ix . 

In addition, )( i
L

i xV  must be concave with respect to ix , for Mi ,...,1= . We show the 

concavity starting from the last period and employ the backward recursive induction. 

i) i = M (last period) 
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The optimal price *
Mp  maximizes the expected profit for the last period, 

);( MM
L
M pxJ . The unsold products at the end of the last period have no salvage value. 

Lemma 3.5:   

(i) The expected profit );( MM
L
M pxJ  is concave with respect to Mp for a given 

Mx . 

(ii) The optimal discounted price *
Mp  is a non-increasing function of Mx  when the 

hazard rate 
)(

1)( min
MMM

MM hpa π
ελ

++
≥ . 

(iii) The maximum expected profit )( M
L

M xV is concave with respect to Mx . 

Proof: (i) At Period M, );( MM
L
M pxJ  is shown as follows: 

);()],([);();( MMMMMMMM
L
MMM

L
M txLtxMinEppxpxJ −== ϕ                   

The first and second partial derivatives of );( MM
L
M pxJ  with respect to pM are 

shown as follows.  

)](1)[(            

)()2(
min

MMMMMMMM

MMMM

pabx

MMMMMM
M

L
M

pabxFax

pabxfhapab
p
J MMMM

M

+−−++

+−−+−=
∂
∂

∫
+−

π

ε
ε                 (3.19)            
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)()()(2 2
2

2

MMMMMMMMMMMMMM
M

L
M pabxfhpapabxFa

p
J

+−++−+−−=
∂

∂
π       

Given an inventory level xM, );( MM
L
M pxJ is concave with respect to pM since 

02

2

≤
∂

∂

M

L
M

p
J . 

(ii) Let Mp̂  denote the value of price pM which satisfies 0=
∂
∂

M

L
M

p
J  for a given xM.  

0)(][                   

)(]2[

max

min

 

ˆ 

ˆ 

 
ˆ

=++

−+−=
∂
∂

∫

∫

+−

+−

=

M

MMMM

MMMM

M
MM

pabx MMMMMM

pabx

MMMMMMMM
ppM

L
M

dfax

dfhapab
p
J

ε

ε

εεπ

εεε
               (3.20)            

Note that (3.20) expresses the stationary point Mp̂  as a function of xM, denoted as 

)(ˆ MM xp . Since Mp̂  is bounded in ],[ maxmin
MM pp , the optimal discounted price *

Mp  at 

Period M is determined as follows. 

  
ˆ                                         

ˆ                                 ˆ

ˆ                                          

maxmax

maxmin

minmin

*

⎪
⎩

⎪
⎨

⎧

≥

<<

≤

=

MMM

MMMM

MMM

M

ppp

pppp

ppp

p  

Taking the first order derivative of )(ˆ MM xp  with respect to xM based on (3.20) and 

rearranging the terms, we obtain 

)](ˆ[))(ˆ()](ˆ[2
)](ˆ[))(ˆ()](ˆ[1)(ˆ

MMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMM

M

MM
M xpabxfxphaxpabxF

xpabxfxphaxpabxF
dx

xpd
a

+−++++−
+−++−+−−

=
π
π

                                                       (3.21)             
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Given that 
)(

1
)ˆ(1

)ˆ()ˆ( min
MMMMMMMM

MMMMM
MMMMM hpapabxF

pabxfpabx
π

λ
++

≥
+−−

+−
=+− , 

minˆ MM pp ≥  and the denominator of (3.21) is non-positive, hence 0)(ˆ
1 ≤≤−

M

MM
M dx

xpda . 

Therefore, it follows that *
Mp  is a non-increasing function of the inventory level xM. 

(iii) Finally, we prove that )( M
L

M xV  is concave with respect to xM.  

Let )( M
L

M xV  be defined as follows.  

  

                                        when obtained )(

                                 ˆ when obtained )(

                                         when obtained )(

)(
max*

3,

*
2,

min*
1,

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤=

<<=

≥=

=
m
MMMMMM

n
MM

m
MMMMM

n
MMMMMM

M
L

M

xxppxV

xxxppxV

xxppxV

xV  

where the thresholds n
Mx  and m

Mx  are calculated by setting (3.19) to be zero under the 

conditions min
MM pp =  and max

MM pp = . 

Consider the following three cases: 

Case (1) n
MM xx ≥  

MMMMMMMM
pabx

MMM

MM

pabx

MMMMMMMMMMMM

dfxpabxp

dfpabxhpabpxV

M

MMMM

MMMM

M

M

εεεπ

εεεε

ε

ε

)()]([               

)()]()([)(

minmin

minminmin
1,

max

min

min

min

−+−−+

−+−−+−=

∫

∫

+−

+−

  

                                                                   (3.22)             
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The first and second order derivatives of (3.22) with respect to xM are shown as 

follows: 

MM
pabx

MMMM

pabx

MM
M

M dfpdhf
dx

dV M

MMMM

MMMM

M

εεπεε
ε

ε

)()()(
max

min

min

min

min1, ∫∫
+−

+−

++−=                  (3.23) 

0)()( minmin
2

1,
2

≤+−++−= MMMMMMM
M

M pabxfhp
dx
Vd

π                         

Thus, )(1, MM xV  is concave with respect to xM when n
MM xx ≥ .  

Case (2) m
MM

n
M xxx <<  

MMMMMMMM
pabx

MMM

MM

pabx

MMMMMMMMMMMMM

dfxpabxp

dfpabxhpabpxV

M

MMMM

MMMM

M

εεεπ

εεεε

ε

ε

)()]ˆ(ˆ[                   

)()]ˆ()ˆ(ˆ[)(

max

min

ˆ

ˆ

2,

−+−−+

−+−−+−=

∫

∫

+−

+−

  (3.24)            

The first and second order derivatives of (3.24) with respect to xM are given as 

follows: 

MM
pabx

MMMM

pabx

MM
M

M dfpdhf
dx

dV M

MMMM

MMMM

M

εεπεε
ε

ε

)(]ˆ[)(
max

min ˆ

ˆ
2, ∫∫

+−

+−

++−=                   (3.25) 

))(ˆ())(ˆ]()(ˆ
1[                

))](ˆ(1[
)(ˆ

 2
2,

2

MMMMMMMMM
M

MM
M

MMMMMM
M

MM

M

M

xpabxfhxp
dx

xpda

xpabxF
dx

xpd
dx
Vd

+−+++−

+−−=

π
     (3.26) 
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Since 0)(ˆ
1 ≤≤−

M

MM
M dx

xpda , (3.26) is negative. Therefore, )(2, MM xV  is concave 

with respect to xM when m
MM

n
M xxx << .  

Case (3) m
MM xx ≤  

MMMMMMMM
pabx

MMM

MM

pabx

MMMMMMMMMMMM

dfxpabxp

dfpabxhpabpxV

M

MMMM

MMMM

M

M

εεεπ

εεεε

ε

ε

)()]([             

)()]()([)(

maxmax

maxmaxmax
3,

max

max

max

min

−+−−+

−+−−+−=

∫

∫

+−

+−

 

(3.27) 

Since xM is independent of max
Mp , the first and second order derivatives of (3.27) with 

respect to xM are shown as follows: 

MM
pabx

MMMM

pabx

MM
M

M dfpdhf
dx

dV M

MMMM

MMMM

M

εεπεε
ε

ε

)()()(
max

max

max

min

max3, ∫∫
+−

+−

++−=                 (3.28) 

0)()( maxmax
2

3,
2

≤+−++−= MMMMMMM
M

M pabxfhp
dx
Vd

π                        

Thus, )(3, MM xV  is concave with respect to xM when m
MM xx ≤ . 

Finally, we focus on the boundary conditions at the threshold values m
M

n
M xx  and  in 

order to show overall concavity. At the thresholds m
M

n
M xx  and , )( M

L
M xV  is continuous, 

which can be obtained from (3.22), (3.24) and (3.27). Furthermore, we can easily show 
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that the gradients at n
Mx  for cases (1) and (2) are the same. The same is true for the 

gradients at m
Mx  for cases (2) and (3). Hence )( M

L
M xV  is concave with respect to xM.             

                                                        

ii) i = 1,…, M -1 

In order to complete the proof, Theorem 3.3 is shown in the followings:  

Theorem 3.3: Assuming that )( 11 ++ i
L

i xV  is a continuous function and concave with 

respect to xi+1 ,   

(i) The expected profit );( ii
L
i pxJ is concave with respect to pi for a given xi. 

(ii) The optimal discounted price *
ip  is a non-increasing function of xi when the 

hazard rate 
)(

1)(
1

max
1

min
++ −++−

≥
iiiii

ii hppa αππα
ελ .  

(iii) The maximum expected profit )( i
L

i xV  is concave with respect to xi. 

Proof:  For the given assumption that )( 11 ++ i
L

i xV  is a continuous function and concave 

with respect to xi+1 , )( 11 ++ i
L

i xV  is represented as follows: 
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.  and  ][  where
                      

                                      when obtained )0(

                         when obtained )(

               ˆ  when obtained )(

                               when obtained )(
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(i) It suffices to show that 0),(
2

2

≤
∂

∂

i

ii
L
i
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pxJ .  
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    (3.29)             
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Note that 1
max

1
0

3,1'
3,1

)(
)0( ++

=

+
+ +== ii

xi

ii
i p

dx
xdV

V
i

π  which is obtained by 

substituting xi = 0 in (3.28). 
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Since 1+≥ ii ππ  and max
1+≥ ii pp , the sum of the 1st, 2nd and 6th terms is negative. 

Furthermore, the 3rd, 4th and 5th terms are less than zero, based on the assumption that 

)( 11 ++ i
L

i xV  is concave with respect to 1+ix . Therefore, );( ii
L
i pxJ is concave with 

respect to pi. 

(ii) Let ip̂  denote the value of price pi that satisfies the stationary condition 0=
∂
∂

i

L
i

p
J .  

 

0])()ˆ(                   

)()ˆ(                   

)()ˆ([                   

)]ˆ(1)[( )(]ˆ2[

ˆ

ˆ

'
3,1

ˆ

ˆ

'
2,1

ˆ
'

1,1

ˆ

ˆ

1

1

1

1

min

min

=−+−+

−+−+

−+−+

+−−++−+−=
∂
∂

∫

∫

∫

∫

+−

+−−
+

+−−

+−−
+

+−−

+

+−

=

+

+

+

+

iiiiiiii

pabx

pabxx
i

iiiiiiii

pabxx

pabxx
i

iiiiiiii

pabxx

ii

iiiiiiiiii

pabx

iiiiii
ppi

L
i

dfpabxV

dfpabxV

dfpabxVa

pabxFaxdfhapab
p
J

iiii

iii
m
ii

iii
m
ii

iii
n
ii

iii
n
ii

i

iiii

iii

εεε

εεε

εεεα

πεεε

ε

ε

  (3.30) 

Note that (3.30) expresses the stationary point ip̂  as a function of xi, denoted by 

)(ˆ ii xp . Since ip̂  is bounded in ],[ maxmin
ii pp , we can determine the optimal discounted 

price at Period i, *
ip , as follows. 
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Taking the first order derivative of )(ˆ ii xp  with respect to xi based on (3.30) and 

rearranging the terms, we obtain  
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Given that the hazard rate 

)(
1

))(ˆ(1
))(ˆ(

))(ˆ(
1

max
1

min
++ −++−

≥
+−−

+−
=+−

iiiiiiiiiii

iiiiii
iiiiii hppaxpabxF

xpabxf
xpabx

αππα
λ ,  

min)(ˆ iii pxp ≥  and the denominator is non-positive, hence 0))(ˆ
(1 ≤≤−

i

ii
i dx

xpda .  



Chapter 3             Dynamic pricing and ordering decisions for perishable products             

 - 64 -

Therefore, )(ˆ ii xp is a non-increasing function of the inventory level xi. It follows that 

*
ip  is also a non-increasing function of the inventory level xi . 

(iii) Finally we prove that )( i
L

i xV  is concave with respect to xi.  

)( i
L

i xV  is shown as follows.  

  

                              when obtained )(

                                 ˆ when obtained )(

                              when obtained )(

)(
max*

3,

*
2,

min*
1,

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤=

<<=

≥=

=
m
iiiiii

n
ii

m
iiiii

n
iiiiii

i
L

i

xxppxV

xxxppxV

xxppxV

xV  

where the thresholds m
ix and n

ix are calculated by satisfying 0=
∂
∂

i

L
i

p
J  under the 

conditions that min
ii pp =  and max

ii pp = . 

Finally, we focus on the boundary conditions at the threshold values m
ix and n

ix  in 

order to show overall concavity. At the thresholds m
ix and n

ix , )( i
L

i xV  is continuous, 

because )()( and )()( 3,2,2,1,
m
ii

m
ii

n
ii

n
ii xVxVxVxV == .  

Furthermore, it can easily be proved that 
−+ ==

=
)(

2,

)(

1, )()(
n
ii

n
ii xxi

ii

xxi

ii

dx
xdV

dx
xdV

 and 

−+ ==

=
)(

3,

)(

2, )()(
m
ii

m
ii xxi

ii

xxi

ii

dx
xdV

dx
xdV

. Therefore, we draw conclusion that the continuous 

profit function )( i
L

i xV  is concave with respect to xi.                              
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From (ii) in Theorem 3.3, we obtain the optimal pricing policy. The optimal 

discounted price at each period is determined based on the inventory level xi. Since *
ip  is a 

non-increasing function of xi, there must exist two thresholds m
ix and n

ix , satisfying the 

following conditions n
i

m
i xx ≤ , max)(ˆ i

m
ii pxp =  and min)(ˆ i

n
ii pxp = . If n

ii xx ≥ , the optimal 

price *
ip  equals to min

ip . If m
ii xx ≤ , the optimal price *

ip  is equivalent to max
ip . 

From (iii) in Theorem 3.3, the unique optimal order quantity *
1

* xy =  exists and the 

concavity of )( i
L

i xV  with respect to xi enables efficient searching algorithms to be 

employed. 

3.4.3 Pricing and ordering decisions under “alternative” source 

3.4.3.1 Dynamic programming model 

The dynamic programming model is developed to compute the expected profit given 

the inventory level for the product of age i, where Mi ,...,1= . 

)( i
A

i xV , the maximum expected profit for the remaining periods when starting at 

Period i and with initial inventory xi, is computed as follows: 

))](();([)( 11 +++= i
A

iii
A
ipi

A
i xVEpxMaxxV

i

αϕ   for Mi ,...,1=                 (3.31)  



Chapter 3             Dynamic pricing and ordering decisions for perishable products             

 - 66 -

);( ii
A
i pxϕ  represents the expected profit incurred at Period i, including the expected 

revenue, holding cost for excess inventory and penalty cost for unsatisfied demand 

);( iii pxL . 

);()();( iiiiiii
A
i pxLtEppx −=ϕ   

where ++ −+−= ][][);( iiiiiiii xtEtxhEpxL π                          

The recursive function for the inventory level is +
+ −= ][1 iii txx .                             

We denote );( ii
A

i pxJ  as the expected profit over the final i periods. 

))(();();( 11 +++= i
A

iii
A
iii

A
i xVEpxpxJ αϕ                                 (3.32) 

ix  and )( i
A

i xV  are computed recursively backward in time, starting at Period M 

and ending at Period 1. The boundary condition )];([)( MM
A
MpM

A
M pxMaxxV

M

ϕ=  is the 

maximum expected profit during Period M given the initial inventory level xM. Conversely, 

the value of 12211111 ))](();([)(
1

cxxVEpxMaxxV AA

p

A −+= αϕ  is the maximum expected total 

profit over M periods when the initial inventory at Period 1 is x1. 

3.4.3.2 Optimality properties  

In order to solve the dynamic programming model developed in Section 3.4.3.1 

efficiently, );( ii
A

i pxJ  must be shown to be concave with respect to ip  for a given ix . 
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In addition, )( i
A

i xV  must be concave with respect to ix , for Mi ,...,1=  . We show the 

concavity starting from the last period and employ the backward recursive induction. 

i) i = M (last period) 

The optimal price *
Mp  maximizes the expected profit for the last period, 

);( MM
A
M pxJ . The unsold products at the end of the period are of no salvage value. 

Lemma 3.6:   

(i) The expected profit );( MM
A
M pxJ  is concave with respect to Mp for a 

given Mx . 

(ii) The optimal discounted price *
Mp  is a non-increasing function of Mx . 

(iii) The maximum expected profit )( M
A

M xV is concave with respect to Mx . 

Proof:  (i) At Period M, the expected profit );( MM
A
M pxJ  is shown as follows: 

);()();();( MMMMMMM
A
MMM

A
M txLtEppxpxJ −== ϕ                   

The first and second partial derivatives of ),( MM
A
M pxJ  with respect to pM are 

shown as follows.  
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)](1[)(2 MMMMMMMMMMMMMMMM
M

A
M pabxFapabxhFapab

p
J

+−−++−−−=
∂
∂

π                

(3.33) 

)()(2 2
2

2

MMMMMMMM
M

A
M pabxfhaa

p
J

+−+−−=
∂

∂
π       

Given the inventory level xM, ),( MM
A
M pxJ is concave with respect to pM since 

02

2

≤
∂

∂

M

A
M

p
J . 

(ii) Let Mp̂  denote the value of price pM which satisfies 0=
∂
∂

M

A
M

p
J  for a given xM.  

)]ˆ(1[                     

)ˆ(ˆ2
ˆ

MMMMMMM

MMMMMMMMM
ppM

A
M

pabxFa

pabxhFapab
p
J

MM

+−−+

+−−−=
∂
∂

=

π

                      (3.34)             

Note that (3.34) expresses the stationary point Mp̂  as a function of xM , denoted as 

)(ˆ MM xp . Since Mp̂  is bounded in ],[ maxmin
MM pp , the optimal discounted price *

Mp  at 

Period M is determined as follows. 

  
ˆ                                         

ˆ                                 ˆ

ˆ                                          

maxmax

maxmin

minmin

*

⎪
⎩

⎪
⎨

⎧

≥

<<

≤

=

MMM

MMMM

MMM

M

ppp

pppp

ppp

p  

Taking the first order derivative of )(ˆ MM xp  with respect to xM based on (3.34) and 

rearranging the terms, we obtain 
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)](ˆ[)(2
)](ˆ[)()(ˆ

MMMMMMMM

MMMMMMMM

M

MM
M xpabxfha

xpabxfha
dx

xpd
a

+−++
+−+−

=
π

π  

It is straightforward that 0
)(ˆ

1 ≤≤−
M

MMM

dx
xpda . Thus, )(ˆ MM xp  is a non-increasing 

function of xM. It follows that *
Mp  is also a non-increasing function of xM. 

(iii) Next, we prove that )( M
A

M xV is concave with respect to xM.  

Let )( M
A

M xV  be defined as follows.  

  

                              when obtained )(

                               ˆ when obtained )(

                              when obtained )(

)(
max*

3,

*
2,

min*
1,

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤=

<<=

≥=

=
m
MMMMMM

n
MM

m
MMMMM

n
MMMMMM

M
A

M

xxppxV

xxxppxV

xxppxV

xV  

where the thresholds n
Mx  and m

Mx  are calculated by setting (3.33) to be zero under the 

conditions min
MM pp =  and max

MM pp = . 

Consider the following three cases: 

Case (1) n
MM xx ≥  

MMMMMMMM
pabx
M

MM

pabx

MMMMMMMMMMMM

dfxpab

dfpabxhpabpxV

M

MMMM

MMMM

M

εεεπ

εεε

ε

ε

)()(                    

)()()()(

min

minminmin
1,

max

min

min

min

−+−−

−+−−−=

∫

∫

+−

+−

    (3.35) 
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The first and second order derivatives of (3.35) with respect to xM are shown as 

follows: 

MM
pabx

MMM

pabx

MM
M

M dfdhf
dx

dV M

MMMM

MMMM

M

εεπεε
ε

ε

)()(
max

min

min

min

1, ∫∫
+−

+−

+−=                         (3.36) 

0)()( min
2

1,
2

≤+−+−= MMMMMM
M

M pabxfh
dx
Vd

π                                

Thus, the profit )(1, MM xV  is concave with respect to xM when n
MM xx ≥ .  

Case (2) m
MM

n
M xxx <<  

MMMMMMMM
pabx

M

MM

pabx

MMMMMMMMMMMM

dfxpab

dfpabxhpabpxV

M

MMMM

MMMM

M

εεεπ

εεε

ε

ε

)()ˆ(                   

)()ˆ()ˆ(ˆ)(

max

min

ˆ

ˆ

2,

−+−−

−+−−−=

∫

∫

+−

+−

      (3.37) 

The first and second order derivatives of (3.37) with respect to xM are given as 

follows: 

MM
pabx

MMM

pabx

MM
M

M dfdhf
dx

dV M

MMMM

MMMM

M

εεπεε
ε

ε

)()(
max

min ˆ

ˆ
2, ∫∫

+−

+−

+−=                         (3.38) 

)ˆ()]()(ˆ
1[  2

2,
2

MMMMMM
M

MM
M

M

M pabxfh
dx

xpda
dx
Vd

+−++−= π                  (3.39) 
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Since 0)(ˆ
1 ≤≤−

M

MM
M dx

xpda , (3.39) is negative. Therefore, the profit )(2, MM xV  is 

concave with respect to xM when m
MM

n
M xxx << .  

Case (3) m
MM xx ≤  

MMMMMMMM
pabx
M

MM

pabx

MMMMMMMMMMMM

dfxpab

dfpabxhpabpxV

M

MMMM

MMMM

M

εεεπ

εεε

ε

ε

)()(             

)()()()(

max

maxmaxmax
3,

max

max

max

min

−+−−

−+−−−=

∫

∫

+−

+−

   (3.40) 

Since xM is independent of max
Mp , the first and second order derivatives of (3.40) with 

respect to xM are shown in (3.41) and (3.42). 

MM
pabx

MMM

pabx

MM
M

M dfdhf
dx

dV M

MMMM

MMMM

M

εεπεε
ε

ε

)()(
max

max

max

min

3, ∫∫
+−

+−

+−=                        (3.41) 

0)()( max
2

3,
2

≤+−+−= MMMMMM
M

M pabxfh
dx
Vd

π                              (3.42) 

Thus, the profit )(3, MM xV  is concave with respect to xM when m
MM xx ≤ . 

Finally, we focus on the boundary conditions at the threshold values m
M

n
M xx  and  in 

order to show overall concavity. At the thresholds m
M

n
M xx  and , )( M

A
M xV  is continuous, 

which can be obtained from (3.35), (3.37) and (3.40). Furthermore, we can easily show 
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that the gradients at n
Mx  for cases (1) and (2) are the same. The same is true for the 

gradients at m
Mx  for cases (2) and (3). Hence )( M

A
M xV  is concave with respect to xM.              

 

ii) i = 1,…, M - 1 

In order to complete the proof, Theorem 3.4 is shown in the followings:  

Theorem 3.4: Assuming that )( 11 ++ i
A

i xV  is a continuous function and concave with 

respect to xi+1 , 

(i) The expected profit );( ii
A

i pxJ is concave with respect to pi for a given xi. 

(ii) The optimal discounted price *
ip  is a non-increasing function of xi .  

(iii) The maximum expected profit )( i
A

i xV  is concave with respect to xi. 

Proof:  For the given assumption that )( 11 ++ i
A

i xV  is a continuous function and concave 

with respect to xi+1 , )( 11 ++ i
A

i xV  is represented as follows: 

.  and  ][  where
                      

                                     when obtained )0(

                        when obtained )(

             ˆ  when obtained )(

                             when obtained )(
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⎪
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⎩

⎪
⎪
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+<<+=−
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+
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(i) It suffices to show that 0),(
2

2

≤
∂

∂

i

ii
A

i

p
pxJ .  

])()0()()(                   

)()(                   

)()([),(),(
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1
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i
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i
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A
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    (3.43)             
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+

εεε

εεε

εεεα

π

ε

   

Note that 1
0

3,1'
3,1

)(
)0( +

=

+
+ == i

xi

ii
i

i
dx

xdV
V π  which is obtained by substituting 

0=ix  in (3.41). 

Since 1+≥ ii ππ  and max
1+≥ ii pp , the sum of the 1st, 2nd and 6th terms is negative. 

Furthermore, the 3rd, 4th and 5th terms are less than zero, based on the assumption that 

)( 11 ++ i
A

i xV  is concave with respect to 1+ix . Therefore, );( ii
A
i pxJ is concave with 

respect to pi. 
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(ii) Let ip̂  denote the value of price pi that satisfies the stationary condition 0=
∂
∂

i

A
i

p
J .  
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εεεα

π

ε
        (3.44) 

Note that (3.44) expresses the stationary point ip̂  as a function of xi, denoted by 

)(ˆ ii xp . Since ip̂  is bounded in ],[ maxmin
ii pp , we can determine the optimal discounted 

price at Period i, *
ip , as follows. 

  
ˆ                             

ˆ                                 ˆ

ˆ                             

maxmax

maxmin

minmin

*

⎪
⎩

⎪
⎨
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≥

<<

≤

=

iii

iiii

iii

i

ppp

pppp

ppp

p  

Taking the first order derivative of (3.44) with respect to xi and rearranging the terms, 

we obtain  

A

A

i

ii
i D

N
dx

xpd
a =

)(ˆ
 

where  
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It is obvious that 0
)(ˆ

1 ≤≤−
i

ii
i dx

xpd
a . Therefore, )(ˆ ii xp  is a non-increasing 

function of xi. It follows that *
ip  is also a non-increasing function of xi . 

(iii) Next we prove that )( i
A

i xV  is concave with respect to xi.  

)( i
A

i xV  is shown as follows.  

  

                              when obtained )(

                                 ˆ when obtained )(

                              when obtained )(
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where the thresholds m
ix and n

ix are calculated by satisfying 0=
∂
∂

i

A
i

p
J

 under the 

conditions that min
ii pp =  and max

ii pp = . 
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Finally, we focus on the boundary conditions at the threshold values m
ix and n

ix  in 

order to show overall concavity. At the thresholds m
ix and n

ix , )( i
A

i xV  is continuous, 

because )()( and )()( 3,2,2,1,
m
ii

m
ii

n
ii

n
ii xVxVxVxV == .  

Furthermore, it can easily be proved that 
−+ ==

=
)(
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)(

1, )()(
n
ii

n
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ii
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ii

dx
xdV

dx
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 and 

−+ ==

=
)(

3,

)(

2, )()(
m
ii

m
ii xxi

ii

xxi

ii

dx
xdV

dx
xdV

. Therefore, we draw conclusion that the continuous 

profit function )( i
A

i xV  is concave with respect to xi.                             

From (ii) in Theorem 3.4, we obtain the optimal pricing policy. The optimal 

discounted price at each period is determined based on the inventory level xi. Since *
ip  is a 

non-increasing function of xi, there must exist two thresholds m
ix  and n

ix , satisfying the 

following conditions n
i

m
i xx ≤ , max)(ˆ i

m
ii pxp =  and min)(ˆ i

n
ii pxp = . If n

ii xx ≥ , the optimal 

price *
ip equals min

ip . If m
ii xx ≤ , the optimal price *

ip  is equivalent to max
ip . 

From (iii) in Theorem 3.4, the unique optimal order quantity *
1

* xy =  exists and the 

concavity of )( i
A

i xV  with respect to xi enables efficient searching algorithms to be 

employed. 
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3.4.4 Comparison of the maximum expected profit under “alternative” 

source and lost sales 

In this section, we compute the maximum expected profit from the dynamic 

programming model under the assumptions of “alternative” source and lost sales, where 

A
iπ ( L

iπ ) represents the penalty cost under the assumption of alternative source (lost 

sales). 

Theorem 3.5: When L
ii

A
i p ππ +≤ min , the maximum expected profit from the dynamic 

programming model under “alternative” source, )( i
A

i xV , is greater than or equals to 

)( i
L

i xV , the maximum expected profit from the dynamic programming model under lost 

sales for a given inventory level xi. 

Proof: We prove that )()( i
L

ii
A

i xVxV ≥  for i = 1,…,M by induction. 

At Period M, given the inventory level xM, the difference between )( M
A

M xV  and 

)( M
L

M xV  is computed as follows: 
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L
MMM

A
M

xtEptxLtEp
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                                                                   (3.45) 

Given that L
MM

A
M p ππ +≤ min , Equation (3.45) is larger or equivalent to zero. 

From (3.45), )()],([)],([)( M
L

MMM
L
MpMM

A
MpM

A
M xVpxJMaxpxJMaxxV

MM

=≥= . 
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In order to complete the proof, we must show that )()( i
L

ii
A

i xVxV ≥ , assuming that 

)()( 1111 ++++ ≥ i
L

ii
A

i xVxV . 

For Period i (i = M – 1,…,1), given the inventory level xi, the difference between 

)( i
A

i xV and )( i
L

i xV  is: 

                                                                  
0])()((),()([                                        

)((),()(),(),(

11
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iiii
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iiiiii

i
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L
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A
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xtEpxVEtxLtEp

xVEtxLtEppxJpxJ
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  (3.46) 

From (3.46), we obtain that )()],([)],([)( i
L

iii
L
ipii

A
ipi

A
i xVpxJMaxpxJMaxxV

ii

=≥= .  

Thus, Theorem 3.5 is proven.                                            

Theorem 3.5 provides an upper bound for the maximum expected profit under the 

lost sales assumption. From (iii) in Theorem 3.4, this upper bound can be efficiently 

computed. 

3.5 Numerical study for a product with an M ≥ 3 period 

lifetime 

In this section, we investigate how the upper bound obtained in Section 3.4.4 

performs under different levels of demand variability. In addition, the optimal order 

quantity is computed under two different assumptions, “alternative” source and lost sales. 

Furthermore, we compute the maximized expected profit from both dynamic pricing and 

static pricing under the assumption of “alternative” source.   
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3.5.1 Experimental design 

In this numerical study, we consider a product with lifetime of three periods. Demand 

of Type i (i = 1, 2 ,3) customers is price-sensitive and has an additive stochastic demand 

function, i.e., iiii pt εμ += )( , where iiiii pabp −=)(μ  is assumed to be a linear 

function of the price pi and the noise variable εi follows a truncated Normal distribution 

which is bounded by ii σε 3min −=  and ii σε 3max =  , where σi is the standard deviation of 

the Normal distribution.  

We are particularly interested in the effects of demand variability on the performance 

of this upper bound. Thus, σ1, σ2 and σ3 are set to different values, referring to different 

levels of demand variability. 

Table 3.3 summarizes the experimental variables and their respective values used in 

this numerical study. Several constants and their respective values are also provided in 

Table 3.4. 

Table 3.3  Variables in the numerical study 
 

Parameters  Values  
σ1 0.1*b1 0.2*b1 0.3*b1 
σ2 0.1*b2 0.2*b2 0.3*b2 
σ3 0.1*b3 0.2*b3 0.3*b3 
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Table 3.4  Constants in the numerical study 
 

Parameters Values Parameters Values 
b1 72 a1 6 
b2 40 a2 5 
b3 24 a3 4 
π1 11.5 h 0.2 
π2 7.5 c 2 
π3 5.5 M 3 

 

3.5.2 Comparison of the maximum profit under “alterative” source and 

lost sales 

As shown in Theorem 3.5, the maximum expected profit obtained under “alternative” 

source is never worse than that obtained under lost sales. The ratio of the maximum 

expected profit under lost sales, to the maximum expected profit under “alternative” 

source is between 91% and 97% under different levels of demand variability. 

The ratio decreases as the demand variabilities σ1, σ2 and σ3 increase. For example, 

when σ1 increases, the inventory level x2 greatly fluctuates. Dynamic pricing under lost 

sales obtains less expected revenue compared to dynamic pricing under “alternative” 

source. Due to this uncertainty, the ratio decreases. The particular scenario satisfying σ2 = 

0.1*b2 and σ3 = 0.1*b3 is shown in Figure 3.5.  
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Figure 3.5  Ratio under different σ1 (when σ2 = 0.1*b2 and σ3 = 0.1*b3) 
 

The optimal order quantity obtained from the dynamic programming model under 

lost sales is greater than that from the dynamic programming model under “alternative” 

source. This phenomenon should be explained as follows. For the assumption of lost sales, 

more products are ordered to avoid the excessive demand. However, “alternative” source 

has a second chance to purchase the products, there is no need to build high inventory to 

buffer the unexpected demand. This trend is observed for all combinations of σ1, σ2 and σ3. 

The particular scenario satisfying σ2 = 0.1*b2 and σ3 = 0.1*b3 is shown in Figure 3.6. 

  σ1 
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Figure 3.6  Optimal order quantity under different σ1  
        (when σ2 = 0.1*b2 and σ3 = 0.1*b3) 

 

3.5.3 Profit increase from dynamic pricing under “alternative” source 

Our numerical results show that the expected profit from dynamic pricing is never 

worse than that from static pricing under the “alternative” source assumption. The profit 

increase from dynamic pricing becomes more significant as the demand variability σ1 

becomes higher. The particular scenario satisfying σ2 = 0.1*b2 and σ3 = 0.1*b3 is shown in 

Figure 3.7. The same trend is also observed for all choices of σ2 and σ3. When σ1 

increases, the inventory level x2 greatly fluctuates, and a more flexible pricing strategy is 

necessary to control demand of Type 2 customers so that excessive stockouts or stock 

expirations can be avoided. Dynamic pricing provides such flexibility. 

  σ1 
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Figure 3.7  Profit increase from dynamic pricing under different σ1 

(when σ2 = 0.1*b2 and σ3 = 0.1*b3) 
 

As σ2 increases, the difference in the expected profit between dynamic pricing and 

static pricing may become greater or smaller. When σ2  increases, the inventory level x3 

greatly fluctuates. Dynamic pricing could flexibly control demand of Type 3 customers so 

that excessive stockouts or stock expirations can be avoided. However, at the same time, 

the process of adjusting p2 for demand of Type 2 customers becomes more difficult, which 

may cause more stockouts or stock expirations. Hence, it is hard to identify whether the 

difference in the expected profit under two different pricing strategies will increase or 

decrease, as σ2 increases.  

As σ3 increases, we observe that the expected profit from both dynamic pricing and 

static pricing decrease, and the difference in the expected profit between these two pricing 

strategies diminishes. This is because the process of adjusting p3 for demand of Type 3 

customers becomes more difficult as σ3 increases. Since σ3 is large, dynamic pricing, even 

  σ1 
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though controls demand of Type 3 customers, may still cause costly stockouts or stock 

expirations due to this high uncertainty. The particular scenario satisfying σ1 = 0.1*b1 and 

σ2 = 0.1*b2 is shown in Figure 3.8. The same trend is also observed for all choices of σ1 

and σ2. 
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Figure 3.8  Profit increase from dynamic pricing under different σ3 

(when σ1 = 0.1*b2 and σ2 = 0.1*b2) 
 

3.6 Summary 

In this study, we first develop a discrete time dynamic programming model for a 

perishable product with a two period lifetime. Under certain conditions, the optimal 

discounted price for the old product is a non-increasing function of the inventory level. 

From this property, we prove that the expected profit is a concave function with respect to 

the order quantity for the new product. This concavity enables efficient algorithms to be 

employed to obtain the optimal order quantity for the new product. Even when this 

  σ3 
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property does not hold, still an upper and a lower bound for the optimal order quantity are 

provided. We also prove that the expected profit from dynamic pricing is never worse than 

the expected profit from static pricing. The computational results show that the profit 

increase from dynamic pricing becomes more significant as the demand uncertainty of 

Type 1 customers and the purchasing cost become higher.  

We further consider a more general problem, where the lifetime of the product is 

longer than two periods. The problem is analyzed under two different assumptions, lost 

sales and “alternative” source. For each case, a dynamic programming model is developed 

with the objective of maximizing the total profit over the finite number of periods. The 

optimal prices for products of different ages and the optimal order quantity for the new 

product are obtained. Moreover, we prove that the maximum expected profit under 

“alternative” source is never worse than the one under lost sales under certain conditions. 

Our numerical results show that the ratio of the maximum expected profit from lost sales, 

to the maximum expected profit from “alternative” source is between 91% and 97% under 

different levels of demand variability. In addition, the optimal order quantity obtained 

from the dynamic programming model under lost sales is greater than the one from the 

dynamic programming model under “alternative” source. 



                                                                                    

 - 86 -

 

Chapter 4  Optimal dynamic pricing and ordering       

decisions for perishable products 

Chapter 4 extends the work of Chapter 3 by considering substitution among products 

of different ages and the corresponding demand transfers between demand classes. In 

Section 4.2, the assumptions and notation are provided. A product with the lifetime of two 

or more periods is considered and the dynamic programming model for a multiple period 

profit maximization problem is developed. In Section 4.3, the model for the product with 

the lifetime of two periods is analyzed. The computational results for the product with the 

lifetime of two periods are presented in Section 4.4. For a product with the lifetime of 

longer than two periods, a heuristic based on the optimal solution for a single period 

problem is proposed in Section 4.5.

4.1 Introduction 

Companies today are facing the increasingly volatile business environments, 

characterized by shorter product life cycles and ever quickening technological 

developments. In order to achieve competitive edges, new (versions of) products must 

frequently be introduced to the market. When new versions of products enter the market, 

old (versions of) products may be offered at discounted prices. This discount enables a 

quick reduction of the inventory and is easily found in practice, such as in electronics and 
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automobile industries. The retail price of new products as well as the discounted prices of 

old products must carefully be determined. If the prices for new and old products are 

sufficiently close, the customers may decide which products to purchase based on the 

prices of both products, rather than the price of the target products only. For example, a 

customer intending to purchase a newer version product and finding it too expensive may 

purchase an attractively priced older version product, instead. Thus, in order to maximize 

the profit, the price of a new product and the discounted prices of old products must 

simultaneously be determined, considering such demand transfers between new and old 

products. 

This chapter considers a finite horizon problem for a perishable product with a 

limited period lifetime, where substitution among products of different ages is allowed. 

Demands for products of different ages are assumed to be dependent on the prices of itself 

and substitutable products, i.e., products of “neighboring ages”. The products of 

neighboring ages are defined by the products that are a period older or younger than the 

target products. A periodic review policy is used. The objective is to find the optimal 

prices for products of different ages and the optimal order quantity for a new product with 

the objective of maximizing the total profit over the multiple periods.  

4.2 Problem formulation 

In this section, we consider a perishable product with an M period lifetime. Let index 

i = 1,…,M denotes the ages of the products, where i = 1 represents that the product is new. 

Hence in any period, there exist products of M different ages. The following notation is 

employed in this chapter: 
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y = order quantity for a new product 

xi = inventory level for a product of age i , i = 1,…,M 

p1 = retail price of a new product  

pi = discounted price for a product of age i, i = 2,…,M 

πi = penalty cost for a product of age i, i = 1,…,M 

h = holding cost per period (regardless of ages) 

c = purchasing cost for a new product 

α = discounted factor per period 

We assume that each aged product is purchased by a distinctive demand class. For 

products of age i, the price that the customers from a respective demand class, demand 

class i, are willing to pay is assumed to be confined in an interval ],[ maxmin
ii pp . Moreover, 

price intervals of demand classes are non-overlapping with >ip 1+ip . Even though 

demand classes are categorized by these price intervals, we allow the customers of each 

class to move up or down to neighboring demand classes, depending on the differential 

pricing. In particular, demand for class i is dependent on 1−ip , ip , 1+ip  and is represented 

by a given linear stochastic demand function   

iiiiiiiiii

iiiiii

plplpab
pppt

ε
εμ

+++−=
+=

−−++

+−

1,11,1

11

    
),,( 

                      (4.1) 

where 01,,10110 ==== ++ MMMM llll  
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),,( 11 +− iiii pppμ  is mean demand for class i, 1,11,1 −−++ ++− iiiiiiiii plplpab , and 

satisfied with 0,, ,1,1 ≥−+ iliii lla . iε  is an i.i.d. random variable with a known probability 

density function )( iif ε  and is bounded in ],[ maxmin
ii εε . In addition, 0)( =iE ε , where 

min
iib ε−> . 

Note that li,i+1 is the transfer rate (demand transfer per unit price increase) of demand 

class i to demand class i+1 with respect to the price differences between the respective 

demand classes, and ai represents the loss rate (demand loss per unit price increase) of 

demand class i with respect to pi.  

In our proposed demand function, we allow demand transfers, i.e., the demand class i 

customers may purchase products of ages i-1 and i+1 instead, which transfers demand of 

class i to demands of classes i-1 and i+1. Thus, the products of different ages considered 

in our model can be treated as different products. These products can be substituted by 

each other to a certain extent, depending on the attractiveness of the degree in the pricing 

differences. Without loss of generality, we assume that iπ > 1+iπ . 

From the demand function given in (4.1), we note that the substitutability among 

different products is caused by price differences, not by shortages in one product. The 

shortage in one product is assumed to be satisfied by an “alternative” source (Lee et al., 

2000). Under this assumption, if there is not enough stock to satisfy the demand, the 

retailer will meet the stockouts by obtaining some units from an “alternative” source with 

additional costs, representing the penalty cost to these stockouts.  
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The dynamic programming model is developed to compute the expected profit given 

the inventory levels for products of M different ages. The index k is defined to represent 

the period, for k = 1 ,…, N, where N is the number of studying periods. 

),...,( 2 Mkkk xxV , the maximum expected profit for the remaining periods, starting at 

Period k and with the inventory levels ),...,( 2 Mkk xx , is computed as follows: 

)]],...,([),...,,;,...,([),...,( 112112,...,,2
1

++++= MkkkMkkkMkkkppyMkkk xxVEppyxxMaxxxV
Mkkk

αϕ   (4.2) 

where the recursive function for the inventory level is +
+ −= ][ 112 kkk tyx  and 

+
++ −= ][1,1 ikikki txx  for i = 2 ,…, M – 1.          

),...,,;,...,( 12 MkkkMkkk ppyxxϕ  represents the expected profit for products of M 

different ages in Period k. The expected profit is obtained by computing the expected 

revenue ),...,( 1 Mkkk ppR , the expected cost ),...,,;,...,( 12 MkkkMkkk ppyxxC  and the 

purchasing cost for the new product. ),( ikikik txL  represents the expected cost for a 

product of age i at Period k.   

                                                   
),...,,;,...,(),...,(),...,,;,...,( 12112 kMkkkMkkkMkkkMkkkMkkk cyppyxxCppRppyxx −−=ϕ       

(4.3) 

where   ),...,( 1 Mkkk ppR  = ∑
=

M

i
ikik tEp

1

)(   

),...,,;,...,( 12 MkkkMkkk ppyxxC  = ∑
=

+
M

i
ikikikkkk txLtyL

2
11 ),(),(        
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),( ikikik txL  = ++ −+− ][][ ikikikikik xtEtxhE π  for  i = 1,…,M 

We denote ),...,,;...,( 1,2 MkkkMkkk ppyxxJ  as the expected profit over the last k 

periods. 

)],...,([                                                    
),...,,;,...,(),...,,;,...,(

112

1212

+++
=

Mkk

MkkkMkkkMkkkMkkk

xxVE
ppyxxppyxxJ

α
ϕ

              (4.4) 

These optimality functions are computed recursively backward in time, starting at 

Period N and ending at Period 1. The boundary condition 

)],...,,;,...,([),...,( 12
,...,,

2
1

MNNNMNNN
ppy

MNNN ppyxxMaxxxV
MNNN

ϕ=  is the maximum expected 

profit for Period N (the last period), given the inventory level ),...,( 2 MNN xx . Conversely, 

the value of ),...,( 1211 MxxV  is the maximum expected profit over N periods when the 

initial inventory at Period 1 is ),...,( 121 Mxx . 

4.3 Pricing and ordering decisions for a product with a two 

period lifetime 

In this section, a multiple period problem for a product with a two period lifetime (M 

= 2) is considered, where demands for both new and old products are dependent on the 

retail price of the new product (product of age 1) as well as the discounted price of the old 

product (product of age 2).  
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4.3.1 Additional assumption 

For the product with lifetime of M = 2, we assume 1,22,121 , llaa ≥≥ . The assumption 

of  2,11 la ≥  ( 1,22 la ≥ ) ensures that the demand transfer from class 1 (2) to classes 2 (1) 

is less than or equal to demand loss of class 1 (2). 1,22,1 ll ≥  holds because the customers 

may want to purchase an attractively priced old product, instead of a new product. 

However, the customers who intend to purchase an old product seldom purchase an 

expensive new product, instead.  

4.3.2 Multiple period problem 

In order to solve the dynamic programming model developed in Section 2 (when M = 

2) efficiently, ),,;( 212 kkkkk ppyxJ  must be shown to be jointly concave with respect to 

ky , kp1  and kp2 , given an inventory level kx2 . In addition, )( 2kk xV  must be concave 

with respect to kx2  for k = 1 ,…, N. We show the concavity starting from the last period 

and by backward recursive induction. 

i ) k = N (Last Period) 

The optimal solution *
Ny , *

1Np  and *
2Np  maximizes the expected profit for the last 

Period, ),,;( 212 NNNNN ppyxϕ . The unsold products at the end of the period have no 

salvage value. 
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Theorem 4.1: ),,;( 212 NNNNN ppyxϕ  is jointly concave with respect to Ny , Np1  and 

Np2 , given an inventory level Nx2 .  

Proof: HN represents the Hessian Matrix of ),,;( 212 NNNNN ppyxϕ  and its determinant is 

as follows: 
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Let A represents )()( 1121,2111 NNNNN paplbyfh ++−+− π and B refers to 

)()( 12,1222222 NNNNN plpabxfh −+−+− π . It is obvious that both A and B are negative. 

The 1st leading principal minor is proven to be negative. 

02            

)()(               

)()(2

2
2

2
1,22

12,1222222
2
2

21,211112
2

1,222
2

2

2

≤++−=

−+−+−

−+−+−−=
∂
∂

BaAla

plpabxfha

plpabyfhla
p

NNNNN

NNNNN
N

N

π

π
ϕ

     

The 2nd leading principal minor is proven to be positive. 
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The 3rd leading principal minor is shown to be negative. 
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Since the value of the jth leading principal is either zero or has the sign of (-1)j for all 

j (j = 3), the symmetric matrix HN is negative semi-definite.  

Thus, ),,;( 212 NNNNN ppyxϕ  is concave with respect to Ny , Np1  and Np2 , given 

an inventory level Nx2  at the last period k = N.                                                     

From Theorem 4.1, the unique optimal solution *
Ny , *

1Np  and *
2Np  exists and from 

the joint concavity, efficient algorithms such as the steepest ascent method can be 

employed to obtain the optimal solution.  

Lemma 4.1: when k = N 

(i) )( 2
*
2 NN xp is a non-increasing function of Nx2 . 

(ii) )( 2
*
1 NN xp  is a non-decreasing function of Nx2 . 

(iii) )( 2
*

NN xy  is a non-increasing function of Nx2 . 
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Proof: The optimal )( 2
*

NN xy , )( 2
*
1 NN xp and )( 2

*
2 NN xp can be obtained by the following 

KKT conditions. 
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*
1

=−−+−−+

−+−−=
∂
∂

cplpabyF

plpabyhF
y

NNNNN

NNNN
N

N

π

ϕ
                      (4.7) 

0)( max
1

*
1

*
1 =− NNN ppλ                                                    (4.8) 

0)( *
1

min
1

*
2 =− NNN ppλ                                                    (4.9) 

0)( max
2

*
2

*
3 =− NNN ppλ                                                   (4.10) 
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0)( *
2

min
2

*
4 =− NNN ppλ                                                   (4.11) 

0,,, *
4

*
3

*
2

*
1 ≥NNNN λλλλ                                                   (4.12) 

max
11

min
1 NNN ppp ≤≤                                                     (4.13) 

max
22

min
2 NNN ppp ≤≤                                                     (4.14)            

Incorporating (4.7) with (4.5) and (4.6), we obtain  

 0)](1[

)()(2
*
2

*
11

*
12,1

*
2222222,1

*
12,1

*
222222,12,11,2

*
2

*
111

=+−+−+−−−

−+−+++−

NNNNNNN

NNNNNN

caplpabxFl

plpabxhFlllppab

λλπ
             (4.15) 

0)](1[

)( (2
*
4

*
31,2

*
12,1

*
2222222

*
12,1

*
2222222,11,2

*
1

*
222

=+−−−+−−+

−+−−++−

NNNNNNN

NNNNNN

clplpabxFa

plpabxhFa)llppab

λλπ
              (4.16) 

a2 * (4.15) + l1,2 * (4.16) 

0
)()2(

2,11,22122,112

*
42,1

*
32,1

*
22

*
12

*
21,22,12

*
1

2
2,12,11,221

=+−−−

+−+−−+−−

cllcaablba
llaapllaplllaa NNNN λλλλ

       (4.17) 

Taking the first derivative of (4.17) with respect to Nx2 , we obtain  

0

)()2(

2

*
4

2,1
2

*
3

2,1
2

*
2

2
2

*
1

2

2

*
2

1,22,12
2

*
12

2,12,11,221

=−+−+

−+−−

N

N

N

N

N

N

N

N

N

N

N

N

dx
d

l
dx
d

l
dx
d

a
dx
d

a

dx
dp

lla
dx
dp

lllaa

λλλλ
                              (4.18)            
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a2 * (4.15) - l1,2 * (4.16) 

0)](1[2

)(2

 )2()3(

2,11,221
*
12,1

*
2222222,12

*
42,1

*
32,1

*
22

*
12

*
12,1

*
222222,12

*
1

2
2,12,11,221

*
21,222,121222,1

=−−−+−−+

+−−+−+−−

++++−−

cllcaaplpabxFla

llaaplpabxhFla

plllaaplalababl

NNNNN

NNNNNNNN

NN

π

λλλλ        (4.19) 

Taking the first derivative of (4.19) with respect to Nx2 ,  

]1)[()(2

)3()2(

2

*
1

2,1
2

*
2

2
*
12

*
22222222

2

*
4

2,1
2

*
3

2,1
2

*
2

2
2

*
1

2
2

*
2

1,22,12
2

*
12

12121

N

N

N

N
NNNNN

N

N

N

N

N

N

N

N

N

N

N

N

dx
dp

l
dx
dp

aplpabxfhla

dx
d

l
dx
d

l
dx
d

a
dx
d

a
dx
dp

lla
dx
dp

lllaa

−+−+−+=

+−−++−++

π

λλλλ

     

(4.20) 

For (i) and (ii) in Lemma 4.1, it is necessary and sufficient to prove that 0
2

*
2 ≤

N

N

dx
dp  

and 0
2

*
1 ≥

N

N

dx
dp

. We consider nine cases. 

Case 1:  0*
4

*
3

*
2

*
1 ==== NNNN λλλλ  

Substituting 0*
4

*
3

*
2

*
1 ==== NNNN λλλλ  in (4.17) and (4.19), we obtain new (4.18) 

and (4.20). After solving them, 0
2

*
2 ≤

N

N

dx
dp  and 0

2

*
1 ≥

N

N

dx
dp

 are obtained, respectively.              

Case 2: 0*
1 >Nλ  and 0*

4
*
3

*
2 === NNN λλλ  
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From (4.8), we obtain that 0max
1

*
1 =− NN pp  when 0*

1 >Nλ . 

Taking the first derivative of (4.8) with respect to Nx2 , 

0)(
2

*
1*

1
2

*
1*

1
max
1

*
1

2

*
1 ==+−

N

N
N

N

N
NNN

N

N

dx
dp

dx
dp

pp
dx
d

λλ
λ

                              (4.21) 

After substituting 0*
1 >Nλ  and 0*

4
*
3

*
2 === NNN λλλ  in (4.17) and (4.19), we solve 

the new (4.18) and (4.20) and obtain 0
2

*
2 ≤

N

N

dx
dp .  In addition, 0

2

*
1 =

N

N

dx
dp  is directly 

obtained from (4.21), when 0*
1 >Nλ .  Hence, we obtain 0

2

*
2 ≤

N

N

dx
dp  and 0

2

*
1 =

N

N

dx
dp , 

when 0max
1

*
1 =− NN pp . 

Case 3: 0*
2 >Nλ  and 0*

4
*
3

*
1 === NNN λλλ  

Similarly, we obtain that 0
2

*
2 ≤

N

N

dx
dp  and 0

2

*
1 =

N

N

dx
dp , when 0min

1
*
1 =− NN pp . 

Case 4: 0*
3 >Nλ  and 0*

4
*
2

*
1 === NNN λλλ  

Similarly, we obtain that 0
2

*
1 ≥

N

N

dx
dp

 and 0
2

*
2 =

N

N

dx
dp , when 0max

2
*
2 =− NN pp . 

Case 5: 0*
4 >Nλ  and 0*

3
*
2

*
1 === NNN λλλ  



Chapter 4              Optimal pricing and ordering decisions for perishable products             

 - 100 -

Similarly, we obtain that 0
2

*
1 ≥

N

N

dx
dp

 and 0
2

*
2 =

N

N

dx
dp , when 0min

2
*
2 =− NN pp . 

Case 6: 0*
1 >Nλ , 0*

3 >Nλ  and 0*
4

*
2 == NN λλ  

From 0*
1 >Nλ  and 0*

3 >Nλ , we obtain that 0max
1

*
1 =− NN pp  from (4.8) and 

0max
2

*
2 =− NN pp  from (4.10). 

Taking the first derivatives of (4.8) and (4.10) with respect to Nx2 , we obtain  

0)(
2

*
1*

1
2

*
1*

1
max
1

*
1

2

*
1 ==+−

N

N
N

N

N
NNN

N

N

dx
dp

dx
dp

pp
dx
d

λλ
λ

                              (4.22) 

and 

0)(
2

*
2*

3
2

*
2*

3
max
2

*
2

2

*
3 ==+−

N

N
N

N

N
NNN

N

N

dx
dp

dx
dp

pp
dx
d

λλ
λ

                             (4.23) 

Hence, we obtain that 0
2

*
1 =

N

N

dx
dp  and 0

2

*
2 =

N

N

dx
dp  when 0max

1
*
1 =− NN pp  and  

0max
2

*
2 =− NN pp .  

Case 7: 0*
1 >Nλ , 0*

4 >Nλ  and 0*
3

*
2 == NN λλ  

Case 8: 0*
2 >Nλ , 0*

3 >Nλ  and 0*
4

*
1 == NN λλ  
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Case 9: 0*
2 >Nλ , 0*

4 >Nλ  and 0*
3

*
1 == NN λλ  

The condition that 0
2

*
1 =

N

N

dx
dp  and 0

2

*
2 =

N

N

dx
dp  also holds for Cases 7 to 9.  

Thus, we prove that )( 2
*
2 NN xp is a non-increasing function of Nx2  and )( 2

*
1 NN xp  

is a non-decreasing function of Nx2 , respectively.  

As for (iii) in Lemma 4.1, we take the first derivative of (4.7) with respect to Nx2 , 

which is 0)()( *
21,2

*
111

*
1

2

*
2

1,2
2

*
1

1
2

*

=−+−−+ NNNN
N

N

N

N

N

N plpabyf
dx
dp

l
dx
dp

a
dx
dy

, and then 

subsequently obtain 0
2

*

≤
N

N

dx
dy

.  

The property (iv) in Lemma 4.1 is directly obtained from (4.7).                   

As the inventory level of the old product increases, the optimal price of the old 

product must be reduced to increase demand for the old product (as in (i) of Lemma 4.1). 

This in turn reduces demand for the new product. The optimal order quantity for the new 

product must be reduced accordingly (as in (iii) of Lemma 4.1). Reduction in the order 

quantity for the new product increases the optimal price for the new product due to our 

assumption of 1,22,1 ll ≥  (as in (ii) of Lemma 4.1). A closed form for the optimal order 

quantity )( 2
*

NN xy  is obtained from ),( *
2

*
1

*
1 NNN ppμ  (as in (iv) of Lemma 4.1). 

Lemma 4.2:  
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(i) 0)()(
2

*
2*

4
*
3

2

*
1*

2
*
1 =−+−

N

N
NN

N

N
NN dx

dp
dx
dp

λλλλ  

(ii) 0]1[
2

*
1

2,1
2

*
2

2 ≥−+
N

N

N

N

dx
dp

l
dx
dp

a  

Proof: The above two equations follow Lemma 4.1, which can be easily obtained by 

solving (4.18) and (4.20) under each case.                                        

Lemma 4.2 provides the necessary conditions for Theorem 4.2.                              

Theorem 4.2: The maximum expected profit at Period N, )( 2NN xV , is concave with 

respect to Nx2 . 

Proof: Taking the first derivative of ),,;()( *
2

*
1

*
22 NNNNNNN ppyxxV ϕ=  with respect to 

Nx2 , we obtain  

N

N
NNNN

N

N

N

N
N

NNNN
N

N

N

N

NNNN
N

N

N

N

N

N
N
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N
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N

N
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N
N
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N
N

N

N
N

N

N
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N
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N
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dx
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l
dx
dp
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plpabyF
dx
dp

l
dx
dp

a
dx
dy

plpabyF
dx
dp

l
dx
dp

a
dx
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dx
dp

p
dx
dp

pl
dx
dp

pab

dx
dp

p
dx
dp

pl
dx
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x

dV
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*
*
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*
22222
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*
1
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2

*
2
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*
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*
22222
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*
1

2,1
2

*
2

2

*
21,2

*
111

*
2

2

*
2

1,2
2

*
1

1
2

*

1

*
21,2

*
111

*
1

2

*
2

1,2
2

*
1

1
2

*
2

*
1*

2
2

*
2*

12,1
2

*
2*

222

2

*
1*

2
2

*
2*

11,2
2

*
1*

111
2

)](1][1[           

)(]1[           

)](1][[            

)(][            

)()2(            

)()2(

−−+−−−++

+−+−−+−

−+−−−++

−+−−+−

++−+

++−=
∂

π

π

  (4.24) 
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By substituting (4.5)-(4.7) in the above equation, Equation (4.24) is reduced to 

               

 )](1[)(

2

*
2*

4
*
3

2

*
1*

2
*
1

*
12,1

*
222222

*
12,1

*
22222

2

    
dx
dp) (

dx
dp) ( 

plpabxFplpabxhF
x

dV

N

N
NN

N

N
NN

NNNNNNNNN
N

N

λλλλ

π

−−−−

−+−−+−+−−=
∂

   (4.25) 

Using (i) in Lemma 4.2, Equation (4.25) is further simplified as follows: 

 )](1[)( *
12,1

*
222222

*
12,1

*
22222

2
NNNNNNNNN

N

N plpabxFplpabxhF
x

dV
−+−−+−+−−=

∂
π   

N

NNNNNNN
xN

N plpabFplpabhF
x

dV

N

2

*
12,1

*
22222

*
12,1

*
2222

02

)]0(1[)0(
2

π

π

≤

−+−−+−+−−=
∂

=                 

Taking the second derivative of ),,;()( *
2

*
1

*
22 NNNNNNN ppyxxV ϕ=  with respect to 

Nx2 , we obtain                                                         

)(]1)[( *
12,1

*
22222

2

1
2,1

2

*
2

22
2

2

NNNN
N

*
N

N

N
N

N

N plpabxf
dx
dp

l
dx
dp

ah
dx

Vd
−+−−++−= π  

The sign of 2
2

2

N

N

dx
Vd

 is negative, because ]1[
2

1
2,1

2

*
2

2
N

*
N

N

N

dx
dp

l
dx
dp

a −+  is positive from 

(ii) in Lemma 4.2.                                                          

ii ) k = 1, …, N - 1   

In order to complete the proof, Theorems 4.3 and 4.4 are shown in the followings:  
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Theorem 4.3: Assuming that )( 1,21 ++ kk xV is concave with respect to 1,2 +kx  and 

1,2
'

1 )0( ++ ≤ kkV π , ),,;( 212 kkkkk ppyxJ  is jointly concave with respect to ky , kp1 and kp2  

given an inventory level kx2 . 

Proof: For Period k, ),,;( 212 kkkkk ppyxJ  is developed as follows: 

∫∫
−+−

+

−+−

+ +−+

=
max
1

21,2111

21,2111

min
1

111111111

212212

)()0()()(                                  

),,;(),,;(
k

kkk

kkk

k plpaby
kkkk

plpaby

kkkkkk

kkkkkkkkkk

dfVdftyV

ppyxppyxJ
ε

ε

εεαεεα

ϕ

 

where kkk plpabt 21,21111 +−= . 

Hk represents the Hessian Matrix of ),,;( 212 kkkkk ppyxJ  and its determinant is as 

follows: 

2
1

2

2
1

2
12

2

1

2

21

2

2

2

2

2

2

2
2

2

2

   

   

)det(

k

k

kk

k

kk

k

kk

k

kk

k

k

k

kk

k

kk

k

k

k

k

p
J

py
J

pp
J

yp
J

pp
J

y
J

py
J

yp
J

p
J

H

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂
∂

=  

Let Ak represents )()( 1121,2111 kkkkk paplbyfh ++−+− π and Bk refers to 

)()( 12,1222222 kkkkk plpabxfh −+−+− π . 

Let Ck represents 
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)()0()()( 21,21111
'

1111
''

1

21,2111

min
1

kkkkk

plpaby

kkkkk plpabyfVdftyV
kkk

k

−+−+− +

−+−

+∫ αεεα
ε

,  

where kkk plpabt 21,21111 +−= . 

The determinant of Hk is simplified as follows: 

    
    

)(2        )(    )(
       

)(                  )(                                        )(

)(     )(         )(2

)det(

2
2,1

2
1112,121,212,11,2

11,2

2,121,212,11,21,2
2
2

2
1,22

kkkkkkkk

kkkkkk

kkkkkkkk

k

BlCAaaCAaBlaCAlall

CAaCACAl

BlaCAlallCAlBaCAla

H

+++−+−+−+

+++−

−+−++−+++−

=

 

It is obvious that both Ak and Bk are negative. In addition, (Ak + Ck) is negative from 

the assumption that )( 1,21 ++ kk xV  is concave with respect to 1,2 +kx  and 1,2
'

1 )0( ++ ≤ kkV π . 

Hence,  

The 1st leading principle minor,  )(2 2
2

2
1,22 kkk BaCAla +++− , is negative. 

The 2nd leading principle minor,  )()(2 2
22 kkkkk CABaCAa +++− , is positive. 

The 3rd leading principle minor, )](2)(4[*)( 2,11,2212
2

2,11,221 llaaBallaaCA kkk −−+−+ , 

is negative from the assumption 0, 1,22,121 ≥≥≥ llaa .  
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Since the value of the jth leading principal is either zero or has the sign of (-1)j for all 

j (j = 3), the symmetric matrix Hk is negative semi-definite.  

Thus,  ),,;( 212 kkkkk ppyxJ  is jointly concave with respect to ky , kp1  and kp2  

given an inventory level kx2 .                                                           

Lemma 4.3: when k = 1,…,N - 1 

(i) )( 2
*
2 kk xp is a non-increasing function of kx2 . 

(ii) )( 2
*
1 kk xp  is a non-decreasing function of kx2 . 

(iii) )( 2
*

kk xy  is a non-increasing function of kx2 . 

(iv) 0)()(
2

*
2*

4
*
3

2

*
1*

2
*
1 =−+−

k

k
kk

k

k
kk dx

dp
dx
dp

λλλλ  

(v) 0]1[
2

*
1

2,1
2

*
2

2 ≥−+
k

k

k

k

dx
dp

l
dx
dp

a  

Proof: The optimal )( 2
*

kk xy , )( 2
*
1 kk xp and )( 2

*
2 kk xp  can be obtained by the following 

KKT conditions. 
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                    0)()(          
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 (4.26) 
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  (4.27) 
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             (4.28)             

0)( max
1

*
1

*
1 =− kkk ppλ                                                    (4.29) 

0)( *
1

min
1

*
2 =− kkk ppλ                                                    (4.30) 

0)( max
2

*
2

*
3 =− kkk ppλ                                                    (4.31) 

0)( *
2

min
2

*
4 =− kkk ppλ                                                    (4.32) 

0,,, *
4

*
3

*
2

*
1 ≥kkkk λλλλ                                                    (4.33) 
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max
11

min
1 kkk ppp ≤≤                                                     (4.34) 

max
22

min
2 kkk ppp ≤≤                                                     (4.35) 

Incorporating (4.28) with (4.26) and (4.27), we obtain (4.15) and (4.16). 

Using the proofs of Lemma 4.1, five properties of Lemma 4.3 can be proved.      

Theorem 4.4: The maximum expected profit, )( 2kk xV , is concave with respect to kx2 . 

Proof: The equation (4.2) is developed as follows: 

∫

∫

−+−
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−+−

+

+
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Taking the first derivative of )( 2kk xV  with respect to kx2 , we obtain 
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(4.36) 

By substituting (4.15)-(4.17) in the equation, Equation (4.36) is simplified as follows: 
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Taking the second derivative of )( 2kk xV  with respect to x2k, we obtain 
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Lemma 4.3.                                                              

Hence, the joint concavity of ),,;( 212 kkkkk ppyxJ  with respect to ky , kp1 and 

kp2 given an inventory level kx2  is shown. In addition, )( 2kk xV  is proved to be concave 

with respect to kx2 . 

4.3.3 Special cases 

In this section, we discuss several special cases, where the optimal solution can be 

easily obtained. 

i ) l2,1 = l1,2 = 0  
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The condition l1,2 = 0 implies no downward substitution. From the assumption l1,2 ≥ 

l2,1, l2,1 = l1,2 = 0. Under this condition, the optimal prices and the optimal order quantity 

can be obtained by the Chew et al. (2005a) algorithm.  

Examples of l2,1 = l1,2 = 0 can be found in practice. Due to fast developments in 

technologies, new products are significantly improved, compared with existing products in 

terms of performance, design, etc. Thus, the customers who are interested in new products 

are more performance oriented and thus, are not affected by the pricing of existing 

products. Similarly, the customers who are more price sensitive cannot afford to purchase 

new products and focus on old products only.  

ii ) l2,1 = 0 

The condition l2,1 = 0 implies no upward substitution: only the customers who 

initially plan to purchase the new product may purchase the old product, instead. The 

optimal prices and the optimal order quantity are obtained by the proposed solution 

procedure with l2,1 = 0.  

iii ) l2,1 = l1,2 

The condition l2,1 = l1,2  shows that the rate of the upward substitution equals to that 

of the downward substitution. This is a special case in a full substitution problem, which 

includes both the upward and the downward substitution.  
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Under this condition, a closed form for *
1kp  is obtained from (4.17) under Case 

1,
)22( 2

1,221

2
1,22121,212*

1 laa
clcaablba

p k −

−++
= . Given the closed form for *

1kp , the optimal solution 

can be obtained efficiently. Note that the optimal *
1kp  is independent of kx2 . This is due 

to the balance between the upward and the downward substitution. 

4.4 Numerical study for a product with a two period lifetime 

This study successfully considers demand transfers between new and old products. 

Previous research determines the prices and the order quantity by assuming l1,2 = l2,1 = 0 

(Chew et al., 2005a). In this numerical study, we first compute the total expected profit 

increase by employing the proposed method, compared with the conventional method 

(Chew et al., 2005a). Furthermore, we investigate the effects of the parameter changes on 

the profit obtained from the substitution effect. Finally, we investigate whether the initial 

inventory (the initial state) significantly affects the average profit per period as the number 

of periods increases. 

4.4.1 Experimental design 

In this numerical study, demands for products of age i (i = 1, 2) at Period k are price 

sensitive and have an additive stochastic demand function, ikkkikik ppt εμ += ),( 21 , where 

),( 21 kkik ppμ  is a linear function of the regular price kp1  and the discounted price kp2 . 

The noise variable ikε  follows a truncated normal distribution which is bounded by 
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ikik σε 3min −=  and ikik σε 3max = , where ikσ is the standard deviation of the normal 

distribution.  

We are particularly interested in the effects of transfer rates on the profit increase 

obtained from the proposed method. Thus, l2,1 and l1,2 are set to two different levels, as 

provided in Table 4.1, while the condition 1,22,1 ll ≥  is satisfied. 

Table 4.1  Variables in the numerical study 
 

Parameters Low Level (-) High Level (+) 
l1,2 2 3 
l2,1 1 2 

The holding cost h is a constant value in each period as well as the purchasing cost c. 

The values of the penalty cost π1 and π2 are also provided in Table 4.2, while the condition 

21 ππ ≥  is satisfied.  

The price sensitivity parameters, a1 and a2, are provided in Table 4.2, where the 

condition 0, 1,22,121 ≥≥≥ llaa  is always satisfied.      

Table 4.2 Constants in the numerical study 
 

Parameters Values Parameters Values 
b1 200 b2 100 
a1 5 a2 5 
σ1 20 σ2 20 
π1 20 π2 15 
h 1 c 10 
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4.4.2 Profit increase from the substitution effect 

The effects of demand transfers between new and old products are studied by 

comparing the expected profit obtained under l1,2 ≥ l2,1 > 0 with l1,2 = l2,1 = 0.  

As shown in Table 4.3, the expected profit obtained under l1,2 ≥ l2,1 > 0 is always 

higher. As the transfer rates, l1,2 and/or l2,1, increase, the profit increase becomes greater. 

Hence, the effects of demand transfers between new and old products should be seriously 

considered. 

Table 4.3  Percentage profit increase by the substitution effect with x2k = 80 
 

(l1,2 , l2,1) l1,2 l2,1 % increase in profit* 
(3,2) + + 51.37% 
(3,1) + - 30.65% 
(2,2) - + 26.45% 
(2,1) - - 10.08% 

 
(profit when l1,2 ≥ l2,1 > 0– profit when l1,2 = l2,1 = 0) * % increase in profit = Profit when l1,2 = l2,1 = 0 * 100% 

 

4.4.3 Sensitivity analysis of the optimal prices 

The changes in the parameters of a1, a2, l1,2 and l2,1 have different effects on the 

optimal prices *
1p  and *

2p . As a1 or a2 increases by one unit given the other parameters 

unchanged, the optimal prices of both new and old products decrease, compared with the 

base scenario, as shown in Table 4.4. Increases in a1 (a2) imply that demand for the new 

(old) product becomes more sensitive to the price of the new (old) product and this will 

reduce the price of the new (old) product. Consequently, demand for the old (new) product 
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decreases and in order to compensate for this reduction in demand for the old (new) 

product, the price of the old (new) product must also be reduced. As a result, both *
1p  

and *
2p  decrease. In contrast, if l1,2 or l2,1 increases by one unit, given the other 

parameters unchanged, both *
1p  and *

2p  consistently increase.  

Table 4.4  Optimal solutions under different price sensitivity parameters with x2k = 80 
 
Legend a1 a2 l1,2 l2,1 *

1p  *
2p  Profit 

Base 5 5 3 2 38 29 3668.5 

a1 6 ↑ unchanged unchanged unchanged 31 ↓ 25 ↓ -23.36% ↓ 
a2 unchanged 6 ↑ unchanged unchanged 35 ↓ 23 ↓ -15.85% ↓ 
l1,2 unchanged unchanged 4 ↑ unchanged 45 ↑ 39 ↑ +31.84% ↑ 
l2,1 unchanged unchanged unchanged 3 ↑ 45 ↑ 34 ↑ +27.75% ↑ 

 

It is important to obtain accurate estimates of the parameters a1, a2, l1,2 and l2,1, which 

represent the customer behaviors. Table 4.4 also shows that the total profit is sensitive to 

these parameter values, and thus, even a slight misestimation of the parameters will result 

in a highly erroneous profit estimate. 

As shown in Figure 4.1, the difference in the prices ( *
1p  - *

2p ) increases as the 

inventory level of the old product increases. As the inventory level of the old product 

increases, the optimal price for the old product decreases. Consequently, demand for the 

old product increases and demand for the new product decreases due to demand transfers. 

Thus, the optimal order quantity for the new product must be reduced and the optimal 

price for the new product increases due to our assumption of 1,22,1 ll ≥ . Since *
1p  

increases and *
2p  decreases, the difference in the prices becomes greater. 
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Figure 4.1 *

1p  - *
2p  under different inventory levels 

 
 

4.4.4 Effect of initial inventory 

Figure 4.2 shows that the effect of the initial inventory level on the average profit fast 

decreases as the number of periods increases. The average profit is not greatly affected by 

the initial inventory level as the number of periods exceeds 3. 

Due to this fast convergence of the average profit, the profit for a finite horizon 

problem with a large number of periods can be approximated by the profit for an infinite 

horizon problem. For the infinite horizon problem, the average profit is computed by the 

value iteration method, regardless of the initial inventory level.  
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Figure 4.2 Average profit under different N, given l1,2 = 2 and l2,1 = 2 

 

4.5 Pricing and ordering decisions for a product with an M ≥ 3 

period lifetime 

In this section, we consider a general problem, where the lifetime of a perishable 

product is M Periods (M ≥ 3).  

A single period problem is first considered. The optimal order quantity *y  and the 

optimal prices for products of different ages *
ip  (i = 1,…,M) are determined for the 

objective of maximizing the expected profit, ),...,,;,...,( 12 MM ppyxxϕ .  

Lemma 4.4: The expected revenue ),...,( 1 MppR  is concave with respect to 

Mppp ,...,, 21  under the condition 1,1,,1,1 −+−+ +++≥ iiiiiiiii lllla . 

Proof: Lemma 4.4 is proven by the definition of concavity: 
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Since 1,1,,1,1 −+−+ +++≥ iiiiiiiii lllla , we obtain  
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Hence, the expected revenue ),...,( 1 MppR  is concave with respect to Mppp ,...,, 21 .   

                                                       

The assumption 1,1,,1,1 −+−+ +++≥ iiiiiiiii lllla  implies the following: Equation (4.1) 

can be rewritten from the point of the price differences, which determine demand transfers 

from classes i-1 and i+1 to class i. 

iiiiiiiiiiiii pplpplpsbt ε+−+−+−= −−++ )()( 1,11,1  

where iliiii llsa ,1,1 −+ ++= , for i = 1,…, M 

Since iliiii llsa ,1,1 −+ ++= , the condition 1,1, +− +≥ iiiii lls  holds to ensure 

1,1,,1,1 −+−+ +++≥ iiiiiiiii lllla . Even if such conditions are not satisfied, Lemma 4.4 still 

holds under the condition iiii ll ,11, ++ = , for i = 1,…, M. 
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Lemma 4.5: The expected cost ),...,,;,...,( 12 MM ppyxxC  is jointly convex with respect 

to y and ip  for i = 1,…, M. 

Proof: The joint convexity ),...,,;,...,( 12 MM ppyxxC  with respect to y and ip  is 

obtained by the convexity of );( iii txL  and the linearity of the demand functions, as 

follows: 

∑
=

=
M

i
iiiMM txLppyxxC

1
12 );(),...,,;,...,(  

0),...,,;,...,()1(),...,,;,...,(

))1(,...,)1(,)1(;,...,(
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Theorem 4.5: The expected profit ),...,,;,...,( 12 MM ppyxxϕ  is jointly concave with 

respect to Mppp ,...,, 21  and y. 

Proof: The expected revenue ),...,( 1 MppR  is concave with respect to Mppp ,...,, 21 , 

while the expected cost ),...,,;,...,( 12 MM ppyxxC  is jointly convex with respect to y and 

ip  by Lemma 4.5. The purchasing cost is concave with respect to y. Thus, the expected 

profit ),...,,;,...,( 12 MM ppyxxϕ  is jointly concave with respect to Mppp ,...,, 21  and y.            

Thus, the optimal solution **
2

*
1 ,...,, Mppp  and y* for a singe period problem can be 

obtained by an efficient searching algorithm.  

A multiple period problem for products of M different ages is formulated as a 

stochastic dynamic programming model. However, the optimal solution for this problem 
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is hard to obtain due to the overwhelming number of states xik. Hence, a heuristic based on 

the optimal single period solution is applied to determine the prices for products of M 

different ages and the order quantity for the new product. One possible implementation of 

this heuristic is as follows: At the beginning of the period, given the inventory levels of 

the old products, the optimal order quantity for the new product and the optimal prices for 

both new and old products are computed for this period. After the realization of actual 

demand for this period, the remaining inventories are carried over to the next period where 

all of them will age by one period. We carry out this procedure repeatedly at the beginning 

of every period to compute the order quantity for the new product and the product prices. 

4.6 Summary 

In this study, we determine the optimal prices for products of different ages and the 

optimal order quantity for the new product, with the objective of maximizing the total 

profits over the finite number of periods. The problem for a product with lifetime of two 

periods is first analyzed. Given the inventory level of the old product, the expected profit 

is jointly concave with respect to the order quantity for the new product and the product 

prices (the price of the new product and the discounted price of the old product). This 

concavity enables an efficient algorithm to be employed to obtain the optimal solution. 

Furthermore, several optimality properties are obtained. The computational results show 

that the total profit significantly increases when demand transfers between products of 

different ages are considered. As the loss rates increase, the optimal prices for both new 

and old products decrease. In addition, the optimal prices increase with increase of the 

transfer rates. For the product with lifetime of longer than two periods, the optimal prices 
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for products of different ages and the optimal order quantity for the new product are 

obtained for a single period problem. Based on the optimal single period solution, we 

propose a heuristic for a multiple period problem. 
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Chapter 5  Joint pricing and inventory allocation 

decisions for perishable products 

Chapter 5 jointly determines the price and the inventory allocation for a perishable 

product with a limited useful lifetime. We assume that the price of the product will 

increase as the time at which it perishes approaches to, as in the airline industry. To 

maximize the expected revenue, a discrete time dynamic programming model is 

developed to obtain the optimal prices and the optimal inventory allocations for the 

product with a two period lifetime. Three heuristics are then proposed when the lifetime is 

longer than two periods. The computational results show that the expected revenues from 

the proposed heuristics are very close to that from the optimal solution. These results are 

extended to (i) the case in which the price for the product always decreases; and (ii) the 

case in which the price for the product first increases and later decreases.

5.1 Introduction 

There has been very little published research on joint capacity allocation and pricing 

decisions in the RM literature. Traditional approaches have assumed that prices are fixed 

and solved for the optimal allocation quantities. For example, airlines charge different 

prices for identical seats on the same flight. Given the fixed prices, the booking limit for 

each fare class is determined and implemented in the airline reservation systems. Effective 
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application of fare class booking limits allows airlines to generate incremental revenues 

(Belobaba, 1989). However, the prices charged for different fare classes would influence 

demand and should be considered as decision variables, not fixed quantities. The 

integration of price and inventory decisions should receive more attention than it deserves 

(Mcgill and van Ryzin, 1999). 

In this chapter, we formulate a discrete time dynamic programming model to 

determine the price and the capacity allocation for a perishable product within a fixed 

capacity. A periodic review policy is used. The price for the product is assumed to 

increase as the time at which the product will perish approaches. Demand for the product 

is a linear function of the price. At the beginning of each period, given the inventory level 

of the product, the optimal price and the optimal inventory allocation are determined for 

the objective of maximizing the expected revenue.  

The proposed model makes an assumption that the prices will increase as the time 

approaches, as in the airline industry. Similar assumptions apply to rooms at hotels, cabins 

on cruise liners and cars at rental agencies (Weatherford, 1992 and Mcgill and van Ryzin, 

1999). In order to make our problem more general, this assumption will be relaxed in 

Section 5.5. 

We place the problem formulation of this chapter in the context of the taxonomy of 

RM problems developed by Weatherford and Bodily (1992). Our problem formulation is 

described as an A1-B1-C3-D1-En-F3-G1-H1-I1-J1-K1-L1-M2-N3 PRAM problem.  In 

other words, it has discrete resource, fixed capacity, prices that are set jointly with the 

allocation decision, buildup willingness to pay (relaxed in the extension), as many 
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discount price classes as there are prices, random and independent reservation demand, 

certain show-up of discount and full-price reservations, lost turned-down reservation, no 

group reservation and no diversion or displacement, no bumping procedure (there is no 

overbooking), effectively nested asset control, and a dynamic decision rule. 

The rest of this chapter is organized as follows: In Section 5.2, the assumptions and 

notation are provided. A discrete time dynamic programming model is developed for a 

perishable product with lifetime of two or more periods. In Section 5.3, a product with a 

two period lifetime is first considered. The optimal prices and the optimal inventory 

allocations are obtained. For the product with the lifetime longer than two periods, three 

heuristics are proposed to determine the prices and the inventory allocations. The 

computational results are presented in Section 5.4. Two different extensions are discussed 

in Section 5.5.  

5.2 Problem formulation 

We consider a perishable product with an M period lifetime, where 2≥M . Let 

index i = 1,…, M denotes the ages of the products. A periodic review policy is assumed. 

The initial inventory level Q, ( e.g. seat capacity in an airplane), is given at the beginning 

of Period 1. No replenishment is allowed throughout the lifetime. At Period i (i = 1,…,M), 

only the product of age i is sold. The price for the product at Period i is represented by ip . 

Demand for the product at Period i is denoted by it , following a stochastic additive 

demand function iii pt εμ += )( , for i = 1,…, M. 
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)( ipμ  is mean demand at Period i and iiii pabp −=)(μ , where 0, ≥ii ba . iε  is 

an i.i.d. random variable with a known probability density function )( iif ε  and is 

bounded in ],[ maxmin
ii εε . In addition, 0)( =iE ε , where  min

iib ε−> .  

 

The additional notation employed in this chapter is as follows: 

Si  =  inventory assigned at Period i 

xi  =  inventory level at the beginning of Period i, Qx =1  

α  =  discounted factor per period 

ip  is confined to the finite interval ],[ maxmin
ii pp  where 

i

ii
i a

b
p

min
max ε+

< . The 

upper bound max
ip  prevents negative demands. Moreover, price intervals at different 

periods are non overlapping with Mpp << ...1 .  

If ii St > , the excessive demand is lost.  

The dynamic programming model is developed to compute the expected revenue 

over M periods.  

)( ii xV , the maximum expected revenue for the remaining periods when starting at 

Period i and with the inventory ix , is computed as follows: 

)]((),;([)( 11, +++= iiiiiiSpii xVESpxMaxxV
ii

αϕ                                
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where ),;( iiii Spxϕ  represents the expected revenue at Period i, )],[min( iii StEp . 

   ])([1
+

+ −+−= iiiii tSSxx is the recursive function for the inventory level.                  

ix  and )( ii xV  are computed recursively backward in time, starting from Period M 

to Period 1. The boundary condition )];([)( MMMpMM pxMaxxV
M

ϕ=  is the maximum 

expected revenue at Period M for a given Mx , where MM xS = . Conversely, 

)][(),;([)( 221111,11
11

xEVSpxMaxxV
Sp

αϕ +=  is the maximum expected revenue over M 

periods when the initial inventory at Period 1 is Q, i.e., Qx =1 .                              

5.3 Joint pricing and inventory allocation decisions  

In this section, we first consider a product with a two period lifetime. The optimal 

prices and the optimal inventory allocations are obtained. After that, we consider a more 

general problem, where the lifetime of the product is longer than two periods.  

5.3.1 When the lifetime of the product is two periods 

The optimal prices and the optimal inventory allocation are obtained by solving the 

dynamic programming model developed in Section 5.2 when M = 2. We start from the last 

period and employ the backward recursive induction. 

At Period 2, the noise variable 2ε  is assumed to follow an IFR distribution (has an 

increasing hazard rate), where the hazard rate )( 22 ελ  is defined by 
)(1

)(

22

22

ε
ε

F
f

−
 . The 
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unsold products at the end of the last period have no salvage value. The optimal price *
2p   

satisfies the following optimality properties:  

Lemma 5.1: At Period 2, 

(i) The expected revenue );( 222 pxJ  is concave with respect to 2p  for a given 

2x . 

(ii) The optimal price *
2p  is a non-increasing function of 2x  under the condition 

that min
22

22
1)(
pa

≥ελ . 

(iii) The maximum expected revenue )( 22 xV  is concave with respect to 2x . 

(iv) The maximum expected revenue )( 22 xV  monotone increases with respect to 

2x . 

Proof: See the Appendix.                                                   

The concavity of );( 222 pxJ  with respect to 2p  for a given 2x  enables efficient 

algorithms such as gradient search to be employed to obtain *
2p .   

Let )( 2
'

2 xV  denote the first order derivative of )( 22 xV  with respect to 2x  and 

),;( 1111 SpxJ  stands for the expected revenue over two periods. Once *
2p  and )( 22 xV  

are obtained, the following theorem computes the optimal inventory allocation *
1S  to 
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maximize ),;( 1111 SpxJ .  

Theorem 5.1: For a given 1p , there exists a unique *
1S  that maximizes the expected 

revenue ),;( 1111 SpxJ .                                                        

Proof: ),;( 1111 SpxJ  is expanded as follows: 
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The first order derivative of ),;( 1111 SpxJ  with respect to 1S  is obtained as 

follows. 

1111
1

21
1

1 )()]([
max

1111

εε
ε

dfSQVp
S
J

pabS∫ +−
−−=

∂
∂                                                      

From Lemma 5.1, )( 22 xV  is monotone increasing with respect to 2x . In addition, 

0)0(2 =V  can be obtained from (A12). Hence there exists a unique *
1S  that satisfies 

0)( *
1

'
21 =−− SQVp  , given a particular 1p .                                               

From Theorem 5.1, the optimal allocation *
1S  is unique for a given 1p . We assume 

that only a finite set of prices is applicable (in practice, prices usually take discrete values 

in a bounded interval). A procedure to compute the optimal *
1p  and *

1S  is provided as 
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follows: 

(1) Compute *
1S  that maximizes ),;( 1111 SpxJ  for every 1p  in ],[ max

1
min
1 pp . 

(2) Select *
1p   and *

1S  with the maximum ),;( *
1

*
111 SpxJ .                                

5.3.2 Proposed heuristics for a product with the lifetime longer than two 

periods 

When the lifetime of the product is longer than two periods, it is hard to efficiently 

obtain the optimal prices and the optimal inventory allocation from the dynamic 

programming model. As the concavity of ),;( 1111 SpxJ  with respect to 1S  does not 

always hold, the optimal solutions have to be computed through extensive enumerations. 

Thus, the solution time may be too long to be of practical interest. To overcome this 

problem, three heuristics are proposed to compute the prices and the inventory allocations.  

5.3.2.1 Heuristic 1 (H1) 

In order to develop a simple heuristics, we first assume that the inventory allocated to 

a period is not used or carried forward to the next period even if there are excess of 

inventory. Under the assumption, the revenue at each period is solely determined by the 

amount of inventory allocation to the period and its prices. Thus, the problem is to 

determine how much inventory to be allocated to each period and how to price it. The 

optimal inventory allocation and the optimal price at each period can be obtained from 
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Lemma 5.1. Denote )(*
kk xR  as the optimal revenue for a given inventory level kx  at 

Period k. The solution approach is as follows:  

(1)     Compute )(*
kk xR  for each kx  = 1,…,Q and k = 1,…,M. 

(2)     Solve ∑
=

M

k
kkxx

xRMax
M 1

*

,...,
)(

1

 subject to∑
=

=
M

k
k Qx

1
 and the solution *

kx  (k = 1,…,M) 

is the inventory allocation kS  for the corresponding period.  

(3)  Compute the optimal price *
kp  (k = 1,…,M) for the given inventory allocation 

kS  from Lemma 5.1.  

To get a better solution, we can implement this heuristics on a rolling horizon basis; 

after the end of each period when demand has been realized, given the known remaining 

inventory level, the above mathematical programming is solved again to obtain the 

updated decisions of the price and the inventory allocation for the remaining periods. 

5.3.2.2 Heuristic 2 (H2) 

Drawing on insights from a two period problem analyzed in Section 5.3.1, a simple 

heuristics is provided to determine the allocation and the price at each period. The 

algorithm starts from the last period, because the customers in the last period will pay 

higher price and these demands should be satisfied with higher priority. The inventory 

allocation and the price for Period M, MS  and Mp , are first computed by solving a two 

period problem for Periods M–1 and M. With the remaining capacity MSQ − , the 

inventory allocation and the price for Period M–1 are then determined again by solving a 
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two period problem for Periods M–2 and M–1. Similarly, Sk and pk for Period k, k = 

M–2,…,3 are computed by solving a two period problem for Periods k–1 and k. Finally, S1, 

S2, p1 and p2 are simultaneously determined.  

5.3.2.3 Heuristic 3 (H3) 

We propose a heuristics to determine the inventory allocation for Period i (i = 1, …, 

M). Denote j
iB  as the optimal protection level for Period j from Period i and (.)iG  as 

the cumulative density function for it , where iiii pt εμ += )(  and iε  has a known 

probability density function )( iif ε .  

At the beginning of Period i (i = 1,…, M), we first obtain the prices for the remaining 

M – i + 1 periods from H2, where ip  < … < Mp . For the given prices ip  ,…, Mp , the 

inventory allocation at Period i is computed as follows:   

(1) Start from Mj =  

Compute j
iB  that satisfies ]1[1

j

i
j

j
i p

p
GB −= −  for all ji < .  

Similarly, for 1,...,1 +−= iMj , compute j
iB  for all ji < . 

(2) From j
iB  obtained in (1), the inventory allocation for Period i is obtained 

by ∑
+=

−=
M

ij

j
ii BQMaxS

1
),0( . 
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After the end of each period when demand has been realized, given the known 

remaining inventory, the above procedure is repeated to determine the price and the 

inventory allocation for the next period.  

The proposed methodology is motivated by the EMSR method (Belobaba, 1989). 

However, in the EMSR method, the price at each period is assumed to be known, but in 

our heuristics, the price is dynamically obtained from H2 at the beginning of each period.  

All of the three proposed heuristics take account actual demands and dynamically 

update the pricing and inventory decision over the lifetime of the product. This may 

improve the company’s revenue significantly.  

5.4 Performance analysis of proposed heuristics 

In this section, we compute the expected revenue from the proposed heuristics and 

the maximum expected revenue from the dynamic programming model. The comparison 

on the expected revenue is provided to study the performance of the proposed heuristics. 

However, the computation time of the dynamic programming model increases 

significantly with an increase of the product’s lifetime M, since enumerations are required 

for obtaining the maximum expected revenue when M ≥ 3. In order to examine (measure) 

the performance of the proposed heuristics for a large M, an upper bound for )(1 QV  is 

also computed in Section 5.4.3 and compared with the maximum expected revenue.  



Chapter 5       Joint pricing and inventory allocation decisions for perishable products             

 - 132 -

5.4.1 Experimental design 

In this numerical study, demand at Period i is price-sensitive and has an additive 

stochastic demand function, i.e., iii pt εμ += )( , where iiii pabp −=)(μ  is assumed to 

be a linear function of the discounted price pi and the noise variable εi follows a truncated 

Normal distribution which is bounded by ii σε 3min −= and ii σε 3max = , where σi is the 

standard deviation of the Normal distribution. 

We are particularly interested in the effects of demand variability on the revenue 

increase. Thus, σi is set to different levels, referring to different levels of demand 

variability.  

Table 5.1 summarizes the experimental variables and their respective values used in 

this study. Seven constants and their respective values are also provided in Table 5.2. 

Table 5.1  Variables in the numerical study 
 

Parameters Low level (-) High Level (+) 
σ1 0.1* b1 0.2* b1 
σ2 0.1* b2 0.2* b2 
σ3 0.1* b3 0.2* b3 
Q 20 30 

 
 

Table 5.2  Constants in the numerical study 
 

Parameters Values Parameters Values 
b1 20 a1 4 
b2 20 a2 2 
b3 20 a3 1 
M 3   
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For each scenario, the numerical experiments are replicated 100 times and the 

expected revenues under the three proposed heuristics are computed. The Common 

Random Number technique is employed to synchronize the results. 

5.4.2 Expected revenue from dynamic programming and proposed 

heuristics 

The performance of the proposed heuristics is measured by comparing the expected 

revenue obtained from the proposed heuristics with that from the dynamic programming 

model.  

As shown in Table 5.3, the expected revenues from the proposed heuristics are close 

to that from the dynamic programming model. The difference in the expected revenue 

between the heuristics and the dynamic programming model is within 4% except for the 

high level of σ3. A statistical analysis is performed and no significant difference among 

the performance of the heuristics is observed. 

Table 5.3  Expected revenue from dynamic programming and proposed heuristics 
when Q = 30 

 

(σ1, σ2, σ3) 

Maximum revenue from

dynamic programming 

Revenue from

H1 

Revenue from 

H2 

Revenue from 

H3 

(-, -, -) 171.36 170.14 170.62 170.8 

(-, -, +) 167.34 157.37 158.37 158.33 

(-,+, -) 167.95 162.5 164.23 164.25 

(-,+,+) 162.85 152.27 151.85 149.74 

(+,-,-) 168.22 164.34 163.62 165.94 

(+,-,+) 162.83 157.3 157.96 157.41 

(+,+,-) 163.49 159.13 160.44 160.44 

(+,+,+) 157.34 151.77 150.44 149.71 
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5.4.3 Upper bound for the maximum expected revenue 

An upper bound VUP for the maximum expected revenue )(1 QV  is computed as 

follows:  

(1)     Compute )(*
ii xR  for each ix  = 1 ,…, maxmin

iiii pab ε+−  and i = 1,…, M. 

(2)     The optimal inventory level *
ix  for Period i (i = 1,…, M) is obtained by 

)]([ *

 all 
ii

xfor
xRMax

i

. 

(3)   )]}([{ *

1
ii

M

i x

UP xRMaxV
i

∑
=

= . 

In the above, an M period problem is reduced to M independent newsvendor 

problems and it is obvious that VUP, the sum of the maximum expected revenues among M 

periods, is strictly greater than )(1 QV  and ∑
=

M

i
ix

1

*  is never worse than Q.  

As the demand variability increases, the difference between the maximum expected 

revenue from the dynamic programming model and the upper bound increases, as shown 

in Table 5.4. We also observe that this difference decreases as Q increases. In practice (as 

in the airline seat allocation), reasonably large values for Q are experienced. For such 

higher values of Q, the upper bound obtained in this study is reasonably close to the 

maximum expected revenue from the dynamic programming model. Hence, this upper 

bound can be effectively applied to analyze the performance of heuristics solutions. 
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Table 5.4  Comparisons between )(1 QV  and VUP 
 

Q = 30 Q = 20 
(σ1, σ2, σ3) 

)(1 QV  VUP 
% difference in 

revenue* )(1 QV  VUP 
% difference in 

revenue* 

(-, -, -) 171.36 174.95 2.1% 150.75 174.95 13.8% 

(-, -, +) 167.34 175.02 4.4% 140.2 175.02 19.9% 

(-,+, -) 167.95 174.93 4.0% 142.3 174.93 18.7% 

(-,+,+) 162.85 175 6.9% 135.6 175 22.5% 

(+,-,-) 168.22 174.97 3.9% 150.08 174.97 14.2% 

(+,-,+) 162.83 175.03 7.0% 140.68 175.03 19.6% 

(+,+,-) 163.49 174.95 6.6% 140.81 174.95 19.5% 

(+,+,+) 157.34 175.01 10.1% 132.62 175.01 24.2% 

%100*
boundupper  the

 revenue) maximum  the- boundupper  (therevenuein  difference * =  

5.5 Extensions 

The model developed in Section 5.3 can be applied to the airline industry, where 

prices for tickets typically rise as the flight time approaches to. However, this clearly does 

not apply in all circumstances of price changes, e.g., (i) monotone markdown prices for 

fashion apparel, which perishes when the appropriate season is passed; (ii) price for the 

product first increases and later decreases, which following an increase-decrease pattern. 

For example, a food product for a special holiday; a fraction of the customers will be 

willing to pay a higher price closer to the holiday. This behavior disappears immediately 

after the target day. 
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5.5.1 Markdown prices 

In the fashion industry, consumers are unwilling to pay high prices toward the end of 

the season because they will enjoy the product for a short period of time. Hence, the   

companies often employ successive markdowns to sell fashion apparel which perishes 

when the appropriate season is passed. The similar examples can be found in the 

electronic industry. 

Bitran and Mondschein (1997) considered a periodic pricing review policy where the 

prices were revised only at a finite set of times and were never allowed to rise. This policy 

can be applied for seasonal products in the retailing industry, which are successively 

discounted during the season. The demand distribution was assumed to be Poisson. The 

authors used empirical analysis to develop conjecture as to the structure of the optimal 

policy and the optimal revenue but no theoretical results are presented.  

Recently, Chew et al. (2005a) developed a discrete time dynamic programming 

model for perishable products. Under the assumption of “alternative” source, the optimal 

expected profit is concave with respect to the inventory level. From this property, they 

compute the optimal expected profit efficiently and employ this value as an upper bound 

for the optimal expected profit under lost sales. The computational results of Chew et al. 

(2005a) show that the ratio of the optimal expected profit under lost sales to the one under 

“alternative” source, is between 91% and 97% under different levels of demand 

variability. 
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5.5.2 Price follows an increase-decrease pattern 

In this section, we formulate a discrete programming model to determine the price 

and the inventory allocation for a perishable product. A periodic review policy is used. 

The price for the product is assumed to first increase and later decrease, following an 

increase-decrease pattern. Demand for the product is price sensitive. At the beginning of 

each period, given the inventory of the product, the optimal price and the optimal 

allocation are determined for the objective of maximizing the total revenue.  

The proposed model stems from many real problems in industries. For example, 

prices of a product for a specified holiday will follow an increase-decrease pattern. 

Because customers are willing to pay a higher price closer to the holiday, continuing 

lower prices may hurt potential revenues. Thus, retailer will employ higher prices. After 

the holiday, the retailer employs the discounted prices to attract the customers and then 

reduce the inventory. Consequently, markup and markdown prices are mixed in the selling 

periods. This price pattern can also be seen in the airline industry, which implies a cheaper 

fare at the last period. 

Customers will hardly be willing to buy a product whose price oscillates, from their 

point of view, randomly over the season (Bitran and Mondschein, 1997). Thus, we assume 

that only one switch is employed in the selling periods. 

Having one switch among the prices makes the proposed model more practical. 

Compared with the previous models which allows to move the price in one direction only 

(either markup or markdown), the proposed model permits price to move in both 
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directions. This gives management flexibility to obtain the higher revenues. If only 

markdown policy is allowed, once a higher price is dumped, it will no longer be offered 

even if the product is being sold successfully. 

This pricing pattern has also been considered for new products introduction (Dolan 

and Jeuland 1981; Jeuland and Dolan 1982; and Kalish 1983). Kalish and Sen’s (1986) 

intuitive explanation for such pricing pattern is that if early adopters  have a strong 

positive effect on late adopters, a low introductory price should encourage them to adopt 

this product. Once a product is established, the rises in price are attributed to strong sales. 

Subsequently, when demand saturates and begins to decrease, the price is also decreased 

in order to increase the sales and reduce the remaining inventories. Hence, the prices for 

the new product first increase and later decrease over the lifetime of the product.  

Under the above mentioned pattern, it is more profitable to reserve enough 

inventories of the new product for future customers (late adopters) who will pay higher 

price. Thus, the price and the capacity allocation for the products at each period must be 

simultaneously determined in order to maximize the total revenue over the selling periods.  

5.5.2.1 Dynamic programming model 

We consider a perishable product with an M period lifetime. Let i = 1,…,M denote 

the ages of the product. At Period i (i = 1,…,M), only the product of age i is sold. The 

price for the product increases during the first R periods and then decreases in the 

remaining M - R periods. Hence, for the first R –1 periods, some capacities have to be 

reserved for the future customers who will pay higher price. During the remaining M – R+ 
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1 periods, older products will be offered at discounted prices and the capacities will not be 

reserved, which implies that ii xS =  when i = R,…,M.  

ip  is confined to the finite interval ],[ maxmin
ii pp  where 

i

ii
i a

b
p

min
max ε+

< . The 

upper bound max
ip prevents negative demands. We also assume that min

1
max

+< jj pp  for 

1,...,1 −= Rj  and min
1

max
+< jj pp  for 1,..., −= MRj . 

If ii St >  , the excessive demand is lost.  

The dynamic programming model is developed to compute the expected revenue 

over M periods. 

)( ii xV , the maximum expected revenue for the remaining periods when starting at 

Period i and with the inventory ix , is computed as follows: 

)]((),;([)( 11, +++= iiiiiiSpii xVESpxMaxxV
ii

αϕ     

where ),;( iiii Spxϕ  represents the expected revenue at Period i. 

⎩
⎨
⎧

+≥
≤

=
1)],[min(

)],[min(
),;(

MixtEp
MiStEp

Spx
iii

iii
iiiiϕ  

The recursive function for the inventory level ix  is shown as follows: 
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⎪⎩

⎪
⎨
⎧

+≥−

≤−+−
=

+

+

+ 1                                 ][

                ])([
1 Mitx

MitSSx
x

ii

iiii
i  

We denote ),;( iiii SpxJ  as the expected revenue over the last i periods. 

)][(),;(),;( 11 +++= iiiiiiiiii xEVSpxSpxJ αϕ     

Note that ii xS =  when i = R,…,M. Hence,  ),;( iiii Spxϕ  and ),;( iiii SpxJ  can 

be simplified and written as );( iii pxϕ  and );( iii pxJ  respectively, for i = R,…,M.   

 

ix  and )( ii xV  are computed recursively backward in time, starting from Period M 

to Period 1. The boundary condition )];([)( MMMpMM pxMaxxV
M

ϕ=  is the maximum 

expected revenue at Period M for a given Mx , where MM xS = . Conversely, 

))]((),;([)( 221111,11
11

xVESpxMaxxV
Sp

αϕ +=  is the maximum expected revenue over M 

periods when the initial inventory at Period 1 is Q, i.e., Qx =1 .            

5.5.2.2 Joint pricing and inventory allocation decisions 

In this section, we determine the inventory allocation and the price for a perishable 

product with an M period lifetime where the price for the product increases during the first 

R periods and then decreases in the remaining M – R periods. Initially, a special case of R 

= 2 is considered, followed by more general cases of R ≥ 3. 

i) R = 2 
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In order to solve the dynamic programming model developed in Section 5.5.2.1, 

);( iii pxJ  must be shown to be concave with respect to ip  for a given ix . In addition, 

)( ii xV  must be concave with respect to ix  and monotone increases with respect to ix , 

for i = 2,…, M.  

We start from the last period (Period M) and employ the backward recursive function 

to show the properties hold. At Period M, ),( MMM pxJ  is concave with respect to Mp  

for a given Mx  and )( MM xV  is concave with respect to Mx , as shown in Lemma 5.1. 

For Period i = M -1,…, 2, the optimality properties are proven by Lemma 5.2. 

Lemma 5.2: when i = M -1,…, 2 

(i) The expected revenue );( iii pxJ  is concave with respect to ip  for a given 

ix . 

(ii) The optimal price *
ip  is a non-increasing function of ix  under the condition 

that 
)(

1)( max
1

min
+−

≥
iii

ii ppa α
ελ . 

(iii) The maximum expected revenue )( ii xV  is concave with respect to ix . 

(iv) The maximum expected revenue )( ii xV  monotone increases with respect to 

ix . 

The optimal prices *
ip  at Period i (i = M,…, 2) exists and the concavity of 

);( iii pxJ  with respect to ip  for a given ix  enables efficient algorithms such as 
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gradient search to be employed to obtain *
ip . Furthermore, the optimal price *

1p  and the 

optimal inventory allocation *
1S  at Period 1 can be computed following the procedures 

provided in Section 5.3.1. 

ii) R ≥ 3 

The computation time of dynamic programming significantly increases when R ≥ 3, 

since enumerations are required to obtain the optimal prices and the optimal inventory 

allocations. Hence, a heuristics is applied to determine the prices and the inventory 

allocations. One possible implementation of this heuristics is as follows: For the first R 

periods, one of the three heuristics proposed in Section 5.3.2 is employed to determine the 

inventory allocation and the price at each period. For the remaining M – R periods, the 

optimal discounted prices can be efficiently computed from Lemma 5.2.  

5.6 Summary 

In this study, we first develope a discrete time dynamic programming model to 

determine the optimal inventory allocations and the optimal prices for a perishable product 

with a two period lifetime. The price for the product is first assumed to increase as the 

time at which it perishes approaches to and this assumption is relaxed in the extension. 

Several optimality properties are obtained. Since such properties do not hold when the 

lifetime of the product is longer than two periods, three heuristics are proposed to obtain 

the inventory allocations and the prices. The computational results show that the expected 

revenues from the proposed heuristics are very close to the maximum expected revenue 

from the dynamic programming model. An upper bound for the maximum expected 
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revenue is computed. Our numerical study shows that the difference between the upper 

bound and the maximum expected revenue decreases when the initial inventory level 

increases.  

Finally, we consider two different extensions. In the first extension, the price for the 

product is assumed to decrease during the product’s lifetime. The optimal markdown 

prices can be obtained from Chew et al. (2005a). In the second extension, we assume that 

the price for the product first increases and later decreases. The optimal inventory 

allocation and the optimal price at each period are obtained when the price increases 

during the first two periods and then decreases. For more general cases, a heuristics is 

proposed to determine the inventory allocations and the prices. 
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Chapter 6   Conclusions and future work 

The main purpose of this thesis is to develop a mathematical model to determine the 

optimal prices for products of different ages and the optimal order quantity for the new 

product (product of age 1) so as to maximize the multiple periods profit. This chapter 

concludes the study by presenting a summary of research findings and discussing the 

implications and limitations of this research, as well as suggesting several directions for 

future research.

6.1 Main findings 

In the first part of this thesis (Chapter 3), we first develop a dynamic programming 

model for a perishable product with a two period lifetime. Under certain conditions, the 

optimal discounted price for the old product is a non-increasing function of the inventory 

level. From this property, we obtain the optimal pricing policy and prove that the expected 

profit is a concave function with respect to the order quantity for the new product. This 

concavity enables efficient algorithms to be employed to obtain the optimal order quantity 

for the new product. Even when this property does not hold, still an upper and a lower 

bound for the optimal order quantity are provided. We also prove that the expected profit 

from dynamic pricing is never worse than the expected profit from static pricing. Our 

numerical study shows that the profit increase from dynamic pricing becomes more 
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significant as the demand uncertainty of Type 1 customers and the purchasing cost 

become higher.  

We further extend our results to a more general case, where the lifetime of the 

product is longer than two periods. This problem is analyzed under two different 

assumptions, lost sales and “alternative” source. For each case, a dynamic programming 

model is developed with the objective of maximizing the total profit over the finite 

number of periods. The optimal discounted prices for products of different ages and the 

optimal order quantity for the new product are obtained. Moreover, we prove that the 

maximum expected profit under “alternative” source is never worse than the one under 

lost sales under certain conditions. Our numerical study shows that the ratio of the optimal 

profit from lost sales, to the optimal profit from “alternative” source is between 91% and 

97% under different levels of demand variability. In addition, the optimal order quantity 

obtained from the dynamic programming model under lost sales is greater than that under 

“alternative” source. 

In the second part of this thesis (Chapter 4), we determine the optimal prices for 

products of different ages and the optimal order quantity for the new product, for the 

objective of maximizing the total profits over the finite number of periods. The problem 

for a product with lifetime of two periods is first analyzed. Given the inventory level of 

the old product, the expected profit is jointly concave with respect to the order quantity for 

the new product and the product prices (the price of the new product and the discounted 

price of the old product). This concavity enables an efficient algorithm to be employed to 

obtain the optimal solution. Furthermore, several optimality properties are obtained. For 
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the product with the lifetime of longer than two periods, the optimal prices for products of 

different ages and the optimal order quantity for the new product are obtained for a single 

period problem. Based on the optimal single period solution, we propose a heuristic for a 

multiple period problem. 

The computational results for a product with a two period lifetime show that the total 

profit significantly increases when demand transfers between products of different ages 

are considered. As the loss rates increase, the optimal prices for both new and old products 

decrease. In addition, the optimal prices increase with increase of the transfer rates. These 

findings show that demand transfers between products of different ages should be 

seriously considered in practice when the retailers make their pricing and ordering 

decisions. 

In the third part of this thesis (Chapter 5), we first develop a discrete time dynamic 

programming model to determine the optimal inventory allocations and the optimal prices 

for a perishable product with a two period lifetime. The price for the product is first 

assumed to increase as the time at which it perishes approaches to. Several optimality 

properties are obtained. Since such properties do not always hold when the lifetime of the 

product is longer than two periods, three heuristics are proposed to obtain the inventory 

allocations and the prices. The computational results show that the expected revenues 

from the proposed heuristics are very close to the maximum expected revenue from the 

dynamic programming model. An upper bound for the maximum expected revenue is 

computed and the difference between the upper bound and the maximum expected 

revenue decreases when the initial inventory level increases.  
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Finally, we consider two different extensions. In the first extension, the price for the 

product is assumed to decrease during the product’s lifetime. The optimal markdown 

prices can be obtained from Chew et al. (2005a). In the second extension, we assume that 

the price for the product first increases and later decreases. The optimal inventory 

allocation and the optimal price at each period are obtained when the price increases 

during the first two periods and then decreases. For more general cases, a heuristics is 

proposed to determine the inventory allocations and the prices. 

In this study, we assume that the demand function follows an additive form. The 

additive demand function has its limitations because it assumes that the expected demand 

is a linear function of prices. However, this demand function is commonly employed in 

literature relating to pricing and inventory problems (Thowsen 1975, Lau and Lau 1988, 

Polatoglu 1991 and Abad 1996). Though most actual demand functions may not behave in 

this way, the model should still be able to provide useful insights on the general trend 

when the parameters change.  

6.2 Suggestions for future work 

General Demand Functions 

Instead of an additive demand function used in this study, it would be interesting that 

a general demand function )()( ppD βεμ +=  is considered. (The cases of 

0)( and 1)( == pp βμ  are often referred to as the additive and multiplicative function, 

respectively.) An updated dynamic programming model is obtained by substituting the 

general demand function in the model. The total profit can be computed by enumerations. 
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The comparison between the total profit obtained from a general demand function and that 

from an additive demand function is desirable. Smaller difference in the total profit 

suggests that the approach of approximating the problem under a general demand function 

with the problem under an additive demand function is possible. Hence, a heuristic based 

on the optimal solutions of this study can be proposed for this more complicated problem 

under the general demand function.  

Demand Learning 

Most of the existing works including this thesis assume that a firm has knowledge 

about the parameters of demand distribution. However, in real life, there are many 

situations where a firm does not have full knowledge of the parameters of the demand 

distribution, when new products are introduced for example, or the demand distribution 

may be changing in ways that are not predictable.  

Although some research has been done in the area of demand learning, relatively 

little work is available on combining demand learning with pricing and ordering decisions. 

The key problem in demand learning is how to update the demand distribution including 

unknown parameters. In order to solving this problem, Bayesian approach is the best 

choice. The current demand distribution is updated by using probability and statistics 

knowledge. For example, let )/( wdg  represent the demand density function of an 

unknown parameter w . Let )(wf  be the known prior density function of w. Given 

sufficient statistic data S , the posterior density function of unknown parameter is 
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obtained and denoted as )/( Swf . Then, the new demand distribution is updated using 

)/( wdg  and )/( Swf . 

Incorporated the updated demand distribution into the dynamic programming model 

developed in this thesis, our problem is extended to a more general problem considering 

demand learning. This extension is valuable, since demand learning will help retailer 

effectively identify the changes of current demand and efficiently adjust their pricing and 

order decisions.  

Strategic Customers 

Most existing works on dynamic pricing assume myopic customers. A myopic 

customer is one who makes a purchase immediately if the price is below his valuation 

(reserved price), without considering future prices. By assuming myopic customers, the 

retailer can ignore the effects of future markdowns on current customer purchases, and 

only focuses on determining the current price. In contrast, dynamic pricing decisions for a 

retailer facing strategic customers are more complex, since a strategic customers will take 

into account the future path of prices when making purchasing decisions. In this case, the 

retailer has to consider the effects of future as well as current prices on customers’ 

purchasing decisions. Hence, an interesting but challenging research direction would be to 

incorporate the customers’ strategic purchasing behaviors into the pricing decisions.  
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Appendix 

Proof of Lemma 5.1:  

(i)  The expected profit at Period 2 is  

)],([),();( 222222222 txMinEppxpxJ == ϕ                               (A1) 

The first and second partial derivatives of );( 222 pxJ  with respect to 2p  are 

shown as follows: 
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Hence, );( 222 pxJ  is concave with respect to 2p  for a given inventory level 2x . 

(ii) Let 2p̂  denote the value of price 2p  which satisfies 0
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Note that (A4) expresses the stationary point  2p̂  as a function of 2x , denoted as 

)(ˆ 22 xp . Since 2p̂  is bounded in ],[ max
2

min
2 pp , the optimal price *

2p  at Period 2 is 

determined as follows. 
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Taking the first order derivative of )(ˆ 22 xp  with respect to 2x  based on (A4) and 

rearranging the terms, we obtain 
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Therefore, it follows that *
2p  is a non-increasing function of the inventory level 2x . 

(iii) Finally, we prove that )( 22 xV  is concave with respect to 2x . 

Let )( 22 xV  be defined as follows.  
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where the thresholds nx2  and mx2  are calculated by setting (A2) to be zero under the 

conditions min
22 pp =  and max

22 pp = . 

Consider the following three cases: 
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The first and second order derivatives with respect to 2x  are shown as follows: 
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Thus, )( 21,2 xV  is concave with respect to 2x  when nxx 22 ≥ .  
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The first and second order derivatives with respect to 2x  are given as follows: 
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Since 0)(ˆ
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respect to 2x  when mn xxx 222 << .  
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Since 2x  is independent of max
2p , the first and second order derivatives with respect 

to 2x  are given as follows: 
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Thus, )( 23,2 xV  is concave with respect to 2x  when mxx 22 ≤ . 

Finally, we focus on the boundary conditions at the threshold values nx2  and mx2   

in order to show overall concavity. At the thresholds nx2  and mx2 , )( 22 xV  is continuous, 

which can be obtained from (A7), (A9) and (A12). Furthermore, we can easily show that 

the gradients at n
Nx  for cases (1) and (2) are the same. The same is true for the gradients 

at m
Nx  for cases (2) and (3). Hence )( 22 xV  is concave with respect to 2x . Property (iv) 

is directly obtained from (A8), (A10) and (A13).                                            
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Proof of Lemma 5.2: 

We show by induction that );( iii pxJ  is concave with respect to ip  and then prove 

that )( ii xV  is concave with respect to ix . 

First we assume that )( 11 ++ ii xV  is a continuous function and concave with respect to 

1+ix . The first derivative of )( 11 ++ ii xV  with respect to 1+ix  is assumed to be positive. 

)( 11 ++ ii xV  is represented as follows. 
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Since max
1+≥ ii pp , the sum of the 1st, 2nd and 6th terms is negative. Furthermore, the 3rd, 

4th and 5th terms are less than zero, based on the assumption that )( 11 ++ ii xV  is concave 

with respect to 1+ix . Therefore, );( iii pxJ  is concave with respect to ip . 
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Note that (A16) express the stationary point ip̂  as a function of ix , denoted by 

)(ˆ ii xp . Since ip̂  is bounded in ],[ maxmin
ii pp , we can determine the optimal discounted 

price at Period i, *
ip , as follows. 
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Taking the first order derivative of )(ˆ ii xp  with respect to ix  based on (A16) and 
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Given that the hazard rate  
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the denominator is non-positive, hence 0))(ˆ
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i dx

xpda . Therefore, )(ˆ ii xp  is a 

non-increasing function of the inventory level ix . It follows that *
ip  is also a 

non-increasing function of the inventory level ix . 

(3) Next we prove that )( ii xV  monotone increases and is concave with respect to ix .  

)( ii xV  is shown as follows.  
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where the thresholds m
ix  and n

ix  are calculated by satisfying 0=
∂
∂

i

i

p
J  under the 

conditions that min
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Finally, we focus on the boundary conditions at the threshold values m
ix  and n

ix  in 

order to show overall concavity. At the thresholds m
ix  and n

ix , )( ii xV  is continuous, 
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. Therefore, we draw conclusion that the continuous 

profit function )( ii xV  not only monotonically increases with respect to ix  but also is 

concave with respect to ix .                                                            
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