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Summary

Increasing adoption of dynamic pricing for perishable products is witnessed in retail
and manufacturing industries. In these industries, the integration of pricing and ordering
decisions significantly increases the total profit by better matching demand and supply.

Hence, this study focuses on joint pricing and ordering decisions for perishable products.

A periodic review inventory problem with dynamic pricing for perishable products is
first studied. In any given period, the inventory consists of products of different ages,
purchased by different demand classes. Demands for products of different ages are
assumed to be dependent on the price of itself and independent to each other. A discrete
time dynamic programming model is developed to determine the optimal order quantity
for a new product (product of age 1) and the optimal prices for products of different ages
which maximize the total profit over a multiple period horizon. Furthermore, it is proven
that the expected profit from dynamic pricing is never worse than the expected profit from

static pricing.

The study is further extended to consider substitution among products of different
ages and the corresponding demand transfers between demand classes. Demands for
products of different ages are assumed to be dependent on not only the price of itself but
also the prices of substitutable products, i.e., products of “neighboring ages”. The products
of neighboring ages are defined by the products that are a period older or younger than the
target products. For a product with a two period lifetime, the optimal order quantity and

the optimal price for the new product (product of age 1) and the optimal discounted price



for the old product (product of age 2) are obtained. The computational results show that
the total profit significantly increases when demand transfers between new and old
products are considered. For a product with the lifetime longer than two periods, a
heuristic based on the optimal solution for a single period problem is proposed for a

multiple period problem.

Finally, this study considers a problem where the product of only one age is sold at
each period and the price of the product will increase as the time at which it perishes
approaches to. Such problems can be encountered in the airline industry. To maximize the
expected revenue, a discrete time dynamic programming model is developed to obtain the
optimal prices and the optimal inventory allocations for the product with a two period
lifetime. Three heuristics are then proposed when the lifetime is longer than two periods.
The computational results show that the expected revenues from the proposed heuristics
are very close to the maximum expected revenue from the dynamic programming model.
An upper bound for the maximum expected revenue is computed and the difference
between the upper bound and the maximum expected revenue decreases as the initial
inventory increases. Furthermore, the study is extended to consider two other cases where
the price for the product first increases and later decreases and where the price for the

product always decreases and obtains the pricing and inventory allocation decisions.

Vi
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Chapter 1  Introduction

1.1 Background

Inventory is spread throughout the supply chain from raw materials to semi-finished
and final products that suppliers, manufacturers, distributors and retailers hold (Chopra
and Meindl, 2004). The scale of all these inventory related operations is immense: In 2004,
the total value of inventories in the United States exceeds 1.4 trillion dollars (Wilson,

2004).

Implementation of a good inventory management policy is highly effective in
reducing the inventory costs. For example, inventory carrying cost as a percentage of
Gross Domestic Product (GDP) declined by 50 percent over the last twenty years, since
the United States Business logistics system became proficient in inventory management
(Wilson, 2004). In next section, a brief introduction to inventory management is presented,

including its history and its new trend.

1.1.1 Inventory management

Inventory theory began with the derivation of the Economic Order Quantity (EOQ)

formula by Harris (1913). However, it was probably that the works of Arrow et al. (1951)
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and Dvoretsky et al. (1952a,b) laid the foundation for later development in the

mathematical inventory models.

During the 1950s, a large number of researchers turned their attention to
mathematical inventory models. Bellman et al. (1955) showed how the methods of
dynamic programming could be used to obtain structural properties for a stochastic
inventory problem. Wagner and Whitin (1958) solved the dynamic lot sizing problem
under time varying demand. A collection of highly sophisticated mathematical inventory

models was found in the book edited by Arrow et al. (1958).

Most of the researchers during the 1950s considered a single storable product. That is,
a product once in stock remains unchanged and fully usable for satisfying future demand.
However, certain products may perish in storage so that they may become partially or
entirely unfit for consumption. For example, fresh produce, meats and other stuffs become
unusable after a certain time has elapsed. These products are perishable products, which

have a limited useful lifetime.

Since 1960s, several researchers considered the stochastic inventory problem for
perishable products. When the lifetime of perishable product is exactly one period, the
ordering decisions in successive periods are independent and the problem reduces to a
sequence of newsvendor problems. The newsvendor model is a crucial building block of
stochastic inventory theory, where the decision maker facing stochastic demand for the
perishable product that expires at the end of a single period, must decide how many units

of the product to order with the objective of maximizing the expected profit.
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When the product lifetime exceeds one period, determining the optimal ordering
policies is quite complex, due to the overwhelming number of states which include all the
inventory levels of each possible age stocks. The first analysis of the optimal ordering
policy for perishable products was due to Van Zyl (1964). He considered the case where
the product lifetime is two periods. Independently, Nahmias (1975) and Fries (1975)
studied stochastic inventory problems when the lifetime of a perishable product is longer
than two periods. Since the optimal ordering policy cannot be expressed in a simple form,
the bulk of efforts have been spent in the development of efficient heuristics. For example,
the fixed critical number order policy was proposed by Chazan and Gal (1977), Cohen
(1976) and Nahmias (1976) under different assumptions. More studies about inventory
management for perishable products can be found in the literature reviews provided by

Nahmias (1982) and Raafat (1991).

Nowadays, inventory management for perishable products has been significantly
improved with the help of advances in information technology and e-commence. For
example, programs such as CPFR (collaborative planning forecasting and replenishment),
QR (quick response) and VMI (vendor managed inventory) enable information sharing
and collaboration among supply chain partners, which leads to lower inventory costs and
higher service levels. However, despite significant efforts made in reducing supply chain
costs via improved inventory management, a large portion of retailers still lose millions of
dollars annually due to lost sales and excess inventory (Elmaghraby and Keskinocak,
2003). Therefore, many are now willing to coordinate inventory management with

dynamic pricing in order to maximize the overall profit.
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1.1.2 Dynamic pricing

Dynamic pricing is that the companies change prices dynamically over the time
period. Determining the “right” price to charge a customer for a product is a complex task,
requiring that a company have a wealth of information about its customer base and be able
to set and adjust prices at minimal cost. However, in the past, companies had limited
ability to track information about their customers’ tastes, and faced high costs in changing
prices. Hence, companies always fixed the price of a product over a relatively long time

period, i.e., the prices are usually static.

Nowadays, the rapid development of information technologies and the corresponding
growth of Internet have opened the door for the adoption of dynamic pricing in practice.
New technologies and Internet allow retailers to collect information not only about the
sales, but also about demographic data and customer preferences. Due to the ease of
making price changes on the Internet, dynamic pricing strategies are now frequently used
in e-commerce environments. Although price changes are still costly in traditional retail
stores, this may soon change with the introduction of new technologies such as Electronic

Shelf Labeling System (Southwell, 2002).

Early applications of dynamic pricing have been mainly in industries characterized
by perishability of the product, fixed capacity and possibility to segment customers
(Weatherford and Bodily, 1992). For example, in the airline industry, there is usually a
fixed capacity (seats on a flight) and these seats will perish when the flight leaves the gate.
Airlines charge different prices for identical seats on the same flight. In airline reservation

systems, limits are placed on the number of seats available of each fare class. Effective
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application of fare class booking limits allows airlines to generate incremental revenues.
The term yield management (YM), or more appropriately revenue management (RM), has
typically been employed to refer to the airlines’ practice of enhancing revenues through
the efficient control of seat inventories. Both American and United airlines reported that
YM adds several hundred million dollars to the bottom line each year. (Weatherford,
1991). Since YM has been used successfully in the airline industry, the application of YM
has been extended to other industries such as hotels and telecommunication (Bitran and

Mondschein, 1995 and Nair and Bapna, 2001).

In recent years, we have witnessed an increased adoption of dynamic pricing for
perishable products in retail and manufacturing industries. For example, in food industry,
perishable products such as bread or fresh produces (vegetables, dairy products) have very
short shelf life times. When these products come in fresh, they are usually priced at the
retail price. However, when the products left are close to their expiry dates, the retailer
sells them at discounted prices, therefore attracting customers who are more price
sensitive, with the aim of generating more revenue through higher sales. This practice is
widely employed in the electronics industry as well. For instance, prices of CPUs drop
several times throughout their short life times whenever new CPUs are introduced to the
market. In these industries, the profits of the retailer may be significantly increased by

dynamic pricing and/or coordinating inventory and pricing decisions.

1.2 Motivation of the study

Initially, many researchers focus on pricing alone as a tool to improve the total profit.

However, the integration of pricing with inventory (ordering) decisions optimizes the

-4 -
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system rather than individual elements and thus significantly improves the profit of the
company. This integration is still in its early stages in many retail and manufacturing
companies, but it has the potential to radically improve supply chain efficiencies in much
the same way as RM has changed airline, hotel and car rental companies (Chan et al.,

2004).

Most researchers such as Zabel (1972), Thowsen (1975) and Federgruen and Heching
(1999) focus on the joint pricing and ordering decisions for a single storable product.
However, due to rapid developments of new technologies, product value quickly
diminishes and more products can be considered as perishable products. In contrast with a
single storable product, a single perishable product can be differentiated with respect to its
ages. Products of different ages may capture different market segments. By differentiating
prices for products of different ages, additional revenue and profit can be obtained. Thus,
there is a great need to investigate the coordination of pricing and ordering decisions for

perishable products, which may add a lot of money to the bottom line.

When prices for products of different ages are differentiated, substitution among
products of different ages is observed among customers. If the prices for new and old
products are sufficiently close, the customers may decide which products to purchase
based on the prices of new (target) and old (substitute) products, rather than the price of
the target products only. For example, a customer intending to purchase a newer version
product and finding it too expensive may purchase an attractively priced older version

product, instead. Such demand transfers between new and old products make the pricing
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and ordering decision problem more complicated. The solution to this problem will be of

great value to the company.

Traditional RM problems have assumed that prices are fixed and solved for the
optimal inventory allocation for each fare class (Littlewood, 1972; Belobaba, 1987, 1989;
etc). The revenue is protected by adjusting the inventory allocation for each fare class.
However, among various techniques to maximize the revenue, both price and inventory
allocation are major control tools. The prices charged for different fare customers would
influence demand and should be considered as decision variables, not fixed quantities. The
integration of price and inventory allocation decisions should receive more attention that it

deserves (Mcgill and van Ryzin, 1999).

1.3 Scope and objectives of the study

In this study, we focus on the joint pricing and ordering decisions for perishable

products. The aim of this research is shown as follows:

(1) To study the integration of dynamic pricing and ordering decisions for a
perishable product with a limited period lifetime. In any given period, the
inventory contains products of different ages. At the beginning of each period,
two decisions are made: what are the optimal prices charged for products of
different ages and how many quantities are ordered for a new product. The

objective is to maximize the total profit over multiple periods.
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(2) To compare the expected profit from dynamic pricing with that from static
pricing and identify when dynamic pricing provides a significant increase in the

total profit compared to static pricing.

(3) To consider the substitution among products of different ages. The optimal
prices for products of different ages and the optimal order quantity for a new
product at each period are determined with the objective of maximizing the total
profit over the multiple periods. In addition, the effect of substitution on the

expected profit increase is measured.

(4) To incorporate the pricing decision into a typical RM problem. At the beginning
of each period, the price and the inventory allocation for the period are jointly

determined.

The insights obtained from this thesis may help to make pricing and ordering (or
production capacity) decisions for perishable products and mass customized products
(products with short life cycles) effectively and efficiently, to significantly increase the

total profit.

Some researchers consider the competition among different retailers and apply game
theory to decide the equilibrium prices of each retailer. However, this thesis does not
consider such competition, since this condition will make our problem intractable. Instead,
we assume that a retailer operates in a market with imperfect competition. This
assumption can be justified by assuming that the retailer may be a monopolist or the

product he sells may be new and innovative.



Chapter 1 Introduction

1.4 Organization

This dissertation contains 6 chapters. In Chapter 2, literatures related to this study
will be reviewed. The topics covered in the literature review include: joint pricing and

inventory decisions, substitution and RM.

Chapter 3 focuses on the integration of dynamic pricing and ordering decisions for
perishable products. The product with a two period lifetime is first considered and a
periodic review policy is used. Hence, in any given period the inventory consists of
products with two different ages. The new product (product of age 1) is sold at the retail
price while the old product (product of age 2) is sold at a discounted price. Demands for
products of two ages come from two independent demand classes. At the beginning of
each period, the optimal order quantity for new products is determined, and the optimal
discounted price for old products is determined given the remaining inventory level of old
products. The results are then extended to a product with the lifetime of longer than two

periods, and hence with more than two demand classes.

Chapter 4 extends the work in Chapter 3 by considering the substitution among
products of different ages. Demands for products of different ages are assumed to be
dependent on not only the price of itself but also the prices of substitutable products, i.e.,
products of “neighboring ages”. The products of neighboring ages are defined by the
products that are a period older or younger than the target products. A periodic review
policy is used. The objective is to find the optimal prices for products of different ages and
the optimal order quantity for a new product with the objective of maximizing the total

profit over the multiple periods.
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Chapter 5 jointly determines the price and the inventory allocation for a perishable
product. The price of the product is assumed to increase as the time at which it perishes
approaches to, as in the airline industry. Demand for the product is price sensitive. To
maximize the expected revenue, a discrete time dynamic programming model is
developed to obtain the optimal prices and the optimal inventory allocations for the
product with a two period lifetime. Three heuristics are then proposed when the lifetime is
longer than two periods. These results are extended to (i) the case in which the price for
the product always decreases; and (ii) the case in which the price for the product first

increases and later decreases.

Chapter 6 summarizes the studies covered in this dissertation and gives some

directions for future works.



Chapter 2 Literature Review

Chapter 2 reviews the previous studies relevant to joint pricing and inventory
decisions, substitution and RM. Section 2.1 presents a classification table with the
objective of intelligibly describing the literatures. The studies on integration of pricing and
inventory decisions for a single product will be reviewed in Section 2.2. Section 2.3
introduces the studies on multiple products substitution problems. Finally, the studies on

RM will be elaborated in Section 2.4.

2.1 Classification

There are voluminous research works in the area of pricing and inventory control.
Hence, it is useful to provide a classification table which is used to describe the papers

that will be reviewed in the following sections.

Table 2.1 Legend for classification system

Elements Descriptions
Length of horizon Single period / Multiple periods / Infinite horizon
Pricing strategy Static pricing / Dynamic pricing
Demand type Deterministic demand / Stochastic demand
Demand input parameters Price, Time, Inventory, Reserved price
Review policy Periodic review / Continuous review
Sales Backlogging / Lost sales
Replenishment Yes/ No
Capacity limits Yes/ No
Set-up cost Yes/ No
Single product (a single storable product, a single
Products perishable product)

Multiple substitutable products

-10 -
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2.2 Joint pricing and inventory decisions for a single product

Pricing and inventory control strategies have traditionally been determined by
entirely separate units of a company’s organization, without proper mechanisms to
coordinate these two planning areas (Federgruen and Heching, 1999). Such dichotomy has
also been observed in the academic literature. More specifically, single product inventory
models assume that the price is known, and hence the demand distribution at each period
is exogenously specified. Since expected revenues are constant under this assumption,
these models focus on minimizing the expected costs. (Lee and Nahmias,1993 and Porteus,
2003). On the other hand, the literature on dynamic pricing assumes that with the
exception of an initial procurement at the beginning of the planning horizon, no
subsequent orders are allowed. (Gallego and van Ryzin, 1994, Bitran and Mondschein,

1997, etc).

The need to integrate inventory control and pricing was first studied by Whitin (1955)
who addressed a single period problem. More research works on a single period problem

are reviewed in Section 2.2.1.

2.2.1 The newsvendor model with pricing

The original newsvendor problem assumes that pricing is an exogenous decision. In
contrast, Whitin (1955) added the pricing decision to the newsvendor problem, where the
selling price and the order quantity are determined simultaneously. Under the assumption
of deterministic demand, the optimal price and the optimal order quantity are obtained

with the objective for maximizing the expected profit.
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Mills (1959) considered the similar problem under stochastic demand. The additive

demand D(p,&)=y(p)+e& was used, where y(p) is a decreasing function of price p

and ¢ is a random variable defined within some range. The study showed that the optimal
price under stochastic demand is always no greater than the optimal price under
deterministic demand, the riskless price. Both Lau and Lau (1988) and Polatoglu (1991)

studied linear additive demand where y(p) =b—ap under different assumptions.

On the other hand, Karlin and Carr (1962) used the multiplicative

demand D(p, ¢) = y(p)e . They showed that the optimal price under stochastic demand is

always no smaller than the riskless price, which is the opposite of the corresponding

relationship obtained by Mills (1959) for the additive demand case.

Petruzzi and Dada (1999) provided a unified framework to reconcile this apparent
contradiction by introducing the notion of a base price and demonstrating that the optimal
price can be interpreted as the base price plus a premium. In addition, they presented a

comprehensive review that synthesized existing results for the single period problem.

The papers reviewed above focus on a single period problem. A natural extension of
this problem is a problem involving multiple periods, where the remaining inventories
from one period are carried forward to meet demand in subsequent periods. The relevant

literature will be reviewed in next section.
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2.2.2 Multiple period inventory models with pricing

2.2.2.1 Dynamic pricing

Deterministic demand

Rajan et al. (1997) focused on price changes that occurred within an order cycle
when the seller sold a single perishable product. The seller ordered the new product every
T periods, which was delivered instantaneously. Deterministic demand for the product
was a decreasing function of the age of the product as well as price. Given the assumption
of deterministic demand and zero lead times, the seller depleted her entire inventory

within each order cycle (i.e., no lost sales and backlogging are incurred). The optimal
price within an order cycle p,, the optimal cycle length T, and the optimal order quantity

Q were obtained which maximized the average profit over time.

This thesis determines the optimal price and the optimal order quantity under
stochastic demand, which is significantly different from the previous studies under

deterministic demand.

Stochastic demand

The following three papers consider a single storable product. Demand in
consecutive periods is independent, but their distributions depend on the product’s price
following a specified stochastic demand function. A periodic review policy is used. At the
beginning of each period, before demand is realized, the seller must decide how many

inventories to order and the price charged for these inventories.
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Zabel (1972) was one of the earliest researchers who studied this multiple period
problem under stochastic demand. Under the assumption of lost sales, Zabel considered
both multiplicative and additive demand with a stochastic component, and found that the
latter had properties that made the problem easier to solve. For additive demand, the

author showed that a unique solution was obtained under certain conditions.

Similarly, Thowsen (1975) considered the problem of determining the price and the
order quantity under additive demand. He extended Zabel’s analysis to the case where
backlogging was allowed. A base stock list price (BSLP) policy is proved to be optimal

under certain conditions.

A BSLP policy is defined as follows: (i) if the inventory at the beginning of period t,

X,, is less than some base stock level y;, place an order and bring the inventory level up
toy,, and charge p;; (ii) if x, >y, , order nothing and offer the product at a discounted

price of p; (x,),where p,(x,) isdecreasingin X,.

Recently, Federgruen and Heching (1999) addressed both finite and infinite horizon
models for a similar problem under a non-stationary demand function
D, =y7.(p,)*& +5,(p,) . Excess demand was assumed to be fully backlogged.
Federgruen and Heching showed that the expected profit was concave and the optimal
price was a non-increasing function of the inventory level. The authors provided an
efficient algorithm to compute the optimal price. Using a numerical study, they showed

that dynamic pricing provided 2% increase in expected profit over static pricing.
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While the papers above focus on a single storable product, this study considers a
single perishable product which can be differentiated with respect to its ages. At any
period, the inventory consists of products of different ages. The optimal prices for
products of different ages and the optimal order quantity for the new product (product of

age 1) are simultaneously determined at the beginning of each period.

2.2.2.2 Static pricing

Although most previous studies focused on dynamic pricing, some researchers have
also considered the problem of choosing a static or constant price over the lifetime of a

product.

The earliest known example of integrating a static price decision with inventory
decisions was that of Kunreuter and Schrage (1973). They considered a problem with
deterministic demand, a linear function of price, and varying over a season. Their model
did not assume lost sales or backlogging, since demand was exactly predicted by the price
and time. The objective was to determine price, production per period, and production
guantities so as to maximize profit. A “hill-climbing” algorithm was provided to compute

the upper and the lower bounds for the price decision.

Gillbert (1999) focused on a similar problem but assumed that demand was a
multiplicative function of seasonality, i.e.,d,(p) = £,D(p). Gillbert also assumed that
holding costs and production set-up costs was invariant over time and the total revenue

was concave. He developed a solution approach that guaranteed the optimality for this

problem, employing a Wagner-Whitin time approach for determining production periods.
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Even though less attractive in e-commerce environments, static pricing is particularly
easy to implement in the traditional businesses where price changes are still costly. It
would be valuable to identify when dynamic pricing provides a significant increase in
total profit compared to static pricing. This comparison will help the companies to decide

whether it is worth the extra efforts to employ dynamic pricing.

2.3 Multiple products with substitution

The literatures reviewed in Section 2.2 focus on a single product. Affected by shorter
product lifetimes and even quickening technological developments, more and more new
products are frequently introduced to the markets. Hence, the problems which allow for
substitution between new products and existing products have attracted the attention of the
researchers. The studies considering multiple product substitution problems will be

reviewed in this section.

2.3.1 Multiple product inventory models with substitution

The earliest work on obtaining the optimal inventory policies for multiple
substitutable products was due to Veinott (1965). This study was generalized by Ignall and

Veinott (1969) and extended to perishable inventories by Deuermeyer (1980).

Analysis of single period two product substitution problems appeared in Mcgillivray
and Silver (1978), Parlar and Goyal (1984), Pasternack and Drezner (1991), and Gerchak

et al. (1996). In particular, Gerchak et al. presented several different models of a two
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product substitution problem with random yield and focused on identifying structural

properties of the optimal policy.

Bitran and Dasu (1992) considered planning problems with multiple products,
stochastic yields, and substitutable demands. Drawing on insights from the two period
problem, a class of heuristics was provided for solving the multiple period problem with

no capacity constraint.

Bitran and Leong (1992) also examined multiple period, multiple product planning
problems with stochastic yields and substitutable demands. They formulated the problem
under service constraints and provided near optimal solution to an approximate problem
with fixed planning horizon. They also proposed simple heuristics for the problem, solved
with rolling horizons. Common to these two papers is the approach of approximating the

stochastic problem with a deterministic one.

Recently, Bassok et al. (1999) studied a single period multiple product inventory
problem with substitution. They considered N products and N demand classes with
downward substitution, i.e., excess demand for class i can be satisfied using product j for i
> j. The problem was modeled as a two-stage stochastic program. A greedy allocation
policy was shown to be optimal. Additional properties of the profit function and several

interesting properties for the optimal solutions were obtained.

Hsu and Bassok (1999) considered a similar substitution problem of Bassok et al.
(1999). However, their model had one raw material as the production input and produced

N different products as outputs. By efficiently solving a two-stage stochastic problem, the
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optimal production input and allocation of units to lower functionality demands were

obtained.

While the literatures above consider the “pure” inventory policy for multiple products,
this study determines not only the optimal order quantity for a new product but also the

optimal prices for multiple existing products.

2.3.2 Pricing decisions for multiple products

Gallego and van Ryzin (1997) considered a multiple period pricing problem with
multiple products sharing common resources. Demand for each product was a stochastic
function of time and the product prices. An upper bound for the expected revenue was
obtained by analyzing this problem under the assumption of deterministic demand. The
solution for deterministic demand was employed for two heuristics for a stochastic
problem that were shown to be asymptotically optimal as the expected sales volume goes

to infinity.

Instead of approximating the stochastic problem with a deterministic one, the
stochastic problem needs to be further optimized. In addition, the ordering quantities for

multiple products should also be determined, rather than the prices alone.
2.3.3 Joint pricing and ordering decisions for two substitutable
products

The first paper that combined the pricing and capacity decisions was Birge et al.

(1998), who addressed a single period problem. By assuming demand to be uniformly
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distributed, they obtained the optimal pricing and capacity decisions for two substitutable
products. In addition, they presented numerical results to show that pricing and capacity

decisions were affected significantly by the experimental parameters.

Similarly, Karakul and Chan (2003) formulated a single period problem of two
products which the new product can be a substitute in case the existing product runs out.
The objective is to find the optimal price of the new product and inventory levels for both
new and existing products in order to maximize the single period expected profit. The
authors showed that the problem could be transformed to a finite number of single
variable optimization problem. The single variable functions to be optimized have only
two possible roots under certain demand distributions for the new product. They also
showed that besides the expected profit, both the price and production quantity of new

products were higher when it was offered as a substitute.

The papers reviewed above analyze a single period, two products problem. In
contrast, this study first considers a multiple period, two products problem under general
demand distributions. The study is further extended to consider a multiple period, multiple

products problem with substitutable demands.

2.4 Revenue management

From a historical perspective, the interest in revenue management practices started
with the pioneering research of Littlewood (1972) on airline. However, it was probably
after the work of Belobaba (1987, 1989) and the American Airline success that the field

really took off. The publication of a survey paper by Weatherford and Bodily (1992),
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where a taxonomy of the field and an agenda for future work were proposed, was another
symptom of this revival. At this stage, however, much of the work was done on capacity
management and overbooking with little discussion of dynamic pricing policy. Prices in
these original models are assumed to be fixed and managers were in charge of opening
and closing different fare classes as demand evolved. During the 90’s, the increasing
interest in RM became evident in the different applications that were considered. Models
became industry specific (e.g. airlines, hotels, or retail stores) with a higher degree of
complexity (e.g. multi-class and multi-period stochastic formulations). Furthermore, it
was in the last decade that pricing policies really became an active component of the RM
literature. Today, dynamic pricing in a RM context is an active field of research that has

reached a certain level of maturity.

2.4.1 Single-leg seat inventory control

The problem of seat inventory control across multiple fare classes has been studied
by many researchers since 1972. There has been significant progress from Littlewood’s
rule for two fare classes, to the expected marginal seat revenue (EMSR) rule for multiple

fare classes, to optimal booking limits for single-leg flight.

Littlewood (1972) studied a stochastic two-price, single-leg airline RM model and
proposed a marginal seat revenue principle. The principle suggested that booking requests
for the lower fare class can be declined if the seat could be sold later to the higher fare
class. Bhatia and Parekh (1973), and Richter (1982) used the marginal seat revenue
principle to develop simple decision rules which were employed to determine optimal

booking limits in a nested fare inventory system.
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Belobaba (1989) extended Littlewood’s rule to multiple-fare classes and proposed an
EMSR rule. The EMSR method did not produce optimal booking limits except in the two
fare class, however, it was particularly easy to implement. Methods for obtaining optimal
booking limits for single-leg seat inventory control were provided in Curry (1990),
Wollmer (1992), Brumelle and McGill (1993), and Robinson (1994). These studies also

showed that the Belobaba’s heuristics was sub-optimal.

A comprehensive overview for perishable assets RM was founded in Weatherford
and Bodily (1992). Subramanian et al. (1999) formulated the airline seat allocation
problem on a single-leg flight into a discrete-time Markov decision process. The model
allowed cancellation, no-shows, and overbooking. They showed that an optimal booking
policy was characterized by seat and time dependent booking limits for each fare class.
Because of fare-dependent cancellation refunds, the optimal booking limits may not be
nested. Independently, Liang (1999), and Feng and Xiao (2001) studied a continuous-time,
dynamic seat inventory control problem. Both of them proved that a threshold control
policy was optimal. Zhao and Zheng (2001) considered a more general airline seat
allocation problem that allows diversion/upgrade and no-shows and showed that a similar
threshold control policy was optimal. Other studies on airline RM problems can be found
in Rothstein (1971), Hersh and Ladany (1978), Pfeifer (1989), Brumelle et al. (1990),
Ladany and Arbel (1991), Smith et al. (1992), Lee and Hersh (1993), Bassok and Ernst

(1995), Weatherford (1997), Talluri and van Ryzin (1999), and Chatwin (1999).

The papers reviewed in this section assume that prices are predetermined and never

allowed to decrease. Under this assumption, the optimal booking limit for each fare class
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is obtained. In contrast, this study determines not only the optimal booking limit but also
the optimal price for each fare class. Furthermore, the study considers two more cases, (i)
the case where the price first increases and later decreases and (ii) the case where the price

always decrease, and obtains the price and inventory decisions, simultaneously.

2.4.2 Dynamic pricing

The following papers focus on market environments where there is no opportunity
for inventory replenishment over the selling horizon. These markets arise when the seller
faces a shorter selling horizon, e.g., when the product itself is a short life cycle product,
such as fashion apparel or holiday products, or is at the end of its life cycle (e.g. clearance
items). In these markets, production/delivery lead times prevent replenishment of
inventory and hence, the seller has a fixed inventory on hand and must determine how to

price the product over the remaining selling horizon.

The first researchers to study dynamic product pricing were Kincaid and Darling
(1963). They investigated two continuous time models, where demand followed a Poisson

process with fixed intensity 4. An arriving customer at time t had a reservation price r,

for the product, i.e., the maximum price the customer was willing to pay. The reservation

price r, was a random variable with distribution F(r,). In the first model, the seller did

not post prices but receives offers from potential buyers, which he/she either accepted or

rejected. In the second model, the seller announced a price p, and arriving customers

purchased the product only if r, > p,. The demand process in this situation was Poisson
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with intensity A(1—-F(p,)) .Optimality conditions for the maximum revenue and the

optimal price were derived for both cases.

Gallego and van Ryzin (1994) modeled the demand as a homogenous Poisson

process with intensity A(p), where A(p) was non-increasing function of p. For a

“regular” demand function, they derived optimality conditions and showed that

() ata given point of time, the optimal price is a non-increasing function of the

inventory level

(i) for a given inventory level, the optimal price is a non-decreasing function of

the duration of the selling horizon.

The optimal price path that Gallego and van Ryzin obtained was that the price

jumped up after each sale, then decayed slowly until the next sale, and jumped up again.

Bitran and Mondschein (1997) and Zhao and Zheng (2000) generalized the model of
Gallego and van Ryzin (1994) by assuming the demand as a non-homogenous Poisson
process with intensity A(p,t) = A, (1— F,(p)) . They showed that the property (i) held under

this more general assumption; however, the property (ii) may not hold when F(.)

changed over time. Zhao and Zheng (2000) showed a necessary condition for the property
(i) to hold, namely that the probability that a customer was willing to pay a premium

decreased over time.
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Bitran and Mondschein (1997) considered a periodic pricing review policy where the
prices were revised only at a finite set of times and were never allowed to rise. This policy
can be applied for pricing seasonal products in the retailing industry. Demand distribution
was assumed to be Poisson. The authors used empirical analysis to develop conjectures as
to the structure of the optimal policy and the optimal revenue but no theoretical results

were presented.

The optimal pricing policy in Gallego and van Ryzin (1994) required continuous
updating of prices over time, which is not practical. Therefore, Gallego and van Ryzin
presented the fixed price heuristics. These simple heuristics are proved to be
asymptotically optimal as the volume of expected sales and the number of selling periods

go to infinity.

Another focus on the continuous time problem is the case where prices have to be

chosen from a discrete set of allowable prices{p,, p,,..., p,}. In addition to continuous

price paths and fixed price heuristics, Gallego and van Ryzin (1994) discussed this issue
and showed that the policies with at most one price change were asymptotically optimal as

the initial capacity and/or the time to sell increased.

Inspired by the proposed pricing policy that allow at most one price change, Feng
and Gallego (1995) focused on a very specific question: what was the optimal time to
switch between two pre-determined prices in a fixed selling season. They considered both
the typical retail situation of switching from an initial high price to a lower price as well as

the case more common in the airlines of switching from an initial low price to a higher
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one later in the season. By assuming that demand was a Poisson process which was a
function of price, Feng and Gallego showed that the optimal policy for this problem was a
threshold policy, whereby a price was changed (decreased or increased) when the time left
in the horizon passed a threshold (below or above) that depends on the unsold inventory.
For the problem where the direction of price change was not specified, they showed a dual
policy, with two sequences of monotone time thresholds. Although they did not explicitly
consider the choice of the two starting prices for the problem, a company could use the
policy they developed to determine the expected revenue for each pair of prices and chose
the pair that maximizes the expected revenue. Feng and Gallego (2000) discussed
Markovian demand and Feng and Xiao (1999) generalized the two price model to consider

risk preference.

Feng and Xiao (2000a) further extended their previous model by considering
multiple predetermined prices. Similar to Feng and Gallego (1995), they assumed that
price changes were either decreasing or increasing, i.e., monotone and non-reversible. The
initial inventory was fixed and demand was a Poisson process with constant intensity rate.
Under these assumptions, the authors developed an exact solution for this continuous time
model and showed that the objective function of maximizing the revenue was piecewise

concave with respect to time and inventory.

Independently, Chatwin (2000) and Feng and Xiao (2000b) provided a systematic
analysis of the pricing policy and the expected revenue for the problem within a finite set
of prices. In these two papers, it is shown that the maximum expected revenue is concave

on both the remaining inventory and duration of the selling horizon. For a given inventory
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level, the optimal price is a non-increasing function of the remaining time. At any given
time, the optimal price is a non-increasing function of the remaining inventory. An upper
bound on the maximum numbers of price changes is also reported. In addition, Feng and

Xiao (2000b) showed that there was a maximum subset P, < {p,,..., p,} such that the
revenue rate was increasing and concave within P, and the optimal price at any time
belonged necessarily toP,. This observation was particularly useful since it narrowed

down the set of potential optimal prices making the computation of the optimal prices

much easier.

The papers reviewed in this section require continuous changing of prices over time,
which may not be practical. In contrast, this study focuses on periodically updating the
prices and determines the optimal prices and the optimal order quantity for perishable

products simultaneously.
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for perishable products with multiple

demand classes

Chapter 3 focuses on the integration of dynamic pricing and ordering decisions for
perishable products. In Section 3.2, a dynamic programming model is developed for the
product with a two period lifetime. The optimal order quantity for the newer product and
the optimal price for the older product are obtained. Furthermore, we prove that the
expected profit obtained from dynamic pricing is always higher than the expected profit
from static pricing. Numerical results for the product with a two period lifetime are
presented in Section 3.3. The study is further extended to consider a more general problem

where the lifetime of the product is longer than two periods, as shown in Section 3.4.

3.1 Introduction

Advances in information technology and e-commerce have played an important role
in improving the inventory management of perishable products. With advanced tools such
as CPFR (collaborative planning forecasting and replenishment), QR (quick response) and
VMI (vendor managed inventory), supply chain partners can share the information and

collaborate with each other, which leads to lower inventory costs and increased service
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levels. However, despite significant efforts made in reducing supply chain costs, a large
portion of retailers still lose millions of dollars annually due to lost sales and excess
inventory (Elmaghraby and Keskinocak, 2003). Therefore, many are now willing to
re-examine their pricing policies and explore dynamic pricing for the maximization of

their profit.

This chapter focuses on the integration of dynamic pricing and ordering decisions for
perishable products under stochastic demand. The product is first assumed to have a two
period lifetime and a periodic review policy is used. Hence, in any given period the
inventory consists of products with two different ages. The new product (product of age 1)
is sold at the retail price while the old product (product of age 2) is sold at a discounted
price. We assume demands for two different ages of products come from two independent
demand classes. Moreover, demand for the old product is dependent on the discounted
price. At the beginning of each period, the optimal order quantity for new products is
determined, and the optimal discounted price for old products is determined given the
remaining inventory level of old products. The approach of offering a promotional
discount for old products helps the retailer to increase sales, reduce the inventory level,
and thus obtain higher profits. We also extend the results to a product with the lifetime of

longer than two periods, and hence with more than two demand classes.

The proposed model makes an assumption that could be controversial, which is
independence of different demand classes. Examples of such independence can be easily
found in practice, such as in electronics industry. Due to fast developments in

technologies, new products are significantly improved compared with existing products in
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terms of performance, design, etc. Thus, the customers who are interested in the new
product are more performance oriented and thus, are not affected by the price of old
existing products. Similarly, the customers who are more price sensitive cannot afford to

purchase the new product and focus on the availability and price of old products.

3.2 Pricing and ordering decisions for a product with a two

period lifetime

In this section, we formulate and analyze a multiple period problem for a perishable

product with a two period lifetime.

3.2.1 Assumptions and notations

We consider a perishable product with a two period lifetime, represented by M = 2. A
periodic review policy is used. Hence, in any given period, the inventory consists of
products with two different ages. Let index i = 1, 2 denotes the ages of the product, where
i =1 (2) represents that the product is new (old). In each period, two independent demand
classes, denoted by Type i customers, purchase the product of age i. Type 1 customers
purchase the new product regardless of the price and availability of old products and Type
2 customers purchase old products regardless of the price and availability of the new

product.

Demands of Type 1 customers t, at each period are nonnegative, independent and

identically distributed (i.i.d.) with a known probability distribution g,(t,). Demands of
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Type 2 customers are dependent on the discounted price p,, represented by a given linear

stochastic demand function:

t,=u,(p,) +¢, (3.1)

U,(p,) is mean demand of Type 2 customers and u,(p,)=b,—a,p,, where
a,>0. ¢, is an i.i.d. random variable with a known probability density function

f,(¢,) andisboundedin [£)"™, & ™]. In addition, E(g,) =0, where b, > —&™.

by +&" . The upper
a

2

p, is confined to a finite interval [p)™, p7™], where py™ <

max

bound of p,™ prevents negative demands of Type 2 customers. The salvage value of
any unsold items after their lifetimes is zero. In case t; exceeds the available inventory

of age i (i = 1, 2), the excessive demand is lost.

The following notation is employed as follows:

y = order quantity for a new product

X; = inventory level for a product of age i,i=1,2

p1 = retail price of a new product

pi = discounted price for a product of age i, i =2 where p; < p;
7 = penalty cost for a product of age i, i =1, 2 where ;< m
h = holding cost per period (regardless of ages)

¢ = purchasing cost for a new product
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o = discounted factor per period

The index k is defined to represent the period, for k =1,...,N, where N is the number
of studying periods. Denote yy as the quantity ordered at Period k and X« as the remaining
quantity carried forward from Period k —1 to Period k after the realization of demand of

Type 1 customers during Period k —1.

Observation 3.1: The order quantity yy is only dependent on demand of Type 1 customers

at Period k and the price sensitive demand of Type 2 customers at Period k +1.

Proof: During Period Kk, the order quantity yxis demanded only by Type 1 customers. The
remaining quantity of yy carried forward to Period k +1, X k+1, can only be used to satisfy
Type 2 customers since the quantity Xo is disposed of at the end of Period k, and the new
order that arrives at Period k +1, yx+1, can only be used to satisfy Type 1 customers.
Furthermore, any xpk+1 unsold at the end of the period k+1 must be disposed of.
Therefore, the influence of the order quantity yy lasts for two periods only and yy

determines X +1. O

From Observation 3.1, an N period problem can be reduced to a two period problem
as follows: At the beginning of Period 1, the retailer determines the order quantity for the
new product. After the realization of demand for Period 1, the remaining products which
become old are carried to Period 2. Given the inventory level for old products, the price is
determined at the beginning of Period 2. No replenishment is allowed during the planning

horizon of two periods.
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3.2.2 Dynamic programming model

The dynamic programming model is developed to compute the expected profit over

two periods for a given y. The maximum expected profit is computed recursively

backward in time, starting from Period 2 to Period 1.

V,(X,) = Max[e,(X,; p,)] is the maximum expected profit during Period 2 for a
P2

given inventory level x, .

®,(X,; p,) is the expected profit from Type 2 customers incurred at Period 2,

including the expected revenue, holding cost for excess inventory and penalty cost for

unsatisfied demand L,(X,;p,) -
9, (%55 P2) = P, E[Min(x,,t,)]- L, (X;, P,)
where L,(x,;p,) =hE[x, -t,]" + 7,E[t, = x,]" and t, =b, —a,p, +¢,.
The maximum expected total profit over two periods V, is computed as follows:

Vi =Max[g,(y) + ak(V,(x, )] (3.2)

where x, =[y—t,]" represents the recursive function for the inventory level.
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@ (y) is the expected profit from Type 1 customers incurred at Period 1, including

the expected revenue, holding cost for excess inventory and penalty cost for unsatisfied

demand L,(y) and the purchasing cost.

@, (y) = p,E[min(y,t,)] - L, (y) —cy

where L,(y)=hE[y-t]" + = E[t, - y]".

We denote J,(y) as the expected profit over two periods when the initial inventory

level at Period 1is y.

J1(¥) = ¢ (y) + E[V, (X,)] (3.3)

3.2.2.1 Optimal discounted price

The optimal discounted price is obtained by maximizing the expected profit of Type

2 customers, @, (X,; p,), and satisfies the following properties:

Lemma 3.1: ¢,(x,; p,) Isconcave with respectto p, foragiven x,.

Proof: ¢,(x,; p,) isexpanded as follows:

@, (X, p,) = p,E[Min(x,,b, —a, p, +&,)]-hE[x, —b, +a,p, —&,]"
~7,E[b, —a,p, +&, - X,1

Xp—by+a, Py
= J.ezmi" i [p,(b, —a,p, +&,)—h(x, —b, +a,p, —&,)]f,(&,)de, (3.4)
+ X:_bzﬂ,ﬂzpz[pzxz —7,(b, —a,p, + &, —X,)If,(¢&,)de,
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Taking the first order and second order partial derivatives of (3.4) with respect

to p,,we have

8(02 X, —b,+a, p,
&, )

min [b, —2a,p, +¢, —a,h]f,(s,)de,
2 (3.5)

max

&2
i (o +2,m5) £ (5)de,

and

82 Xp—by+a, Py
| 2, f,(e,)de, —aZ(p, +h+7,)T,(x, ~b, +a,p,)

op;
respectively.

Since the second order derivative is always less than zero, ¢,(X,; p,) isconcave

with respectto p, foragiven Xx,. O

Lemma 3.2: Let p, denote the value of p, satisfying the stationary condition of (3.5).

p, is also bounded in [py™, py™]. Hence, the optimal discounted price, p,, is

determined as follows:

max max

P> P, 2 p,
p;: f)z pg]m<ﬁ2<p£nax
Py b, < py"
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Lemma 3.2 is directly obtained from Lemma 3.1. Some optimal properties of y~ are
provided in the following section, when the noise variable &, follows an IFR distribution,

such as the Uniform, Exponential, Erlang, Normal or Truncated Normal distributions
(Porteus, 2003). IFR distributions are widely used in modeling demand distributions

because of their robustness.

3.2.2.2 Optimality properties of y~ when ¢, follows IFR distributions

Under the assumption that the noise variable ¢, follows an IFR distribution, where

f,(s;)

the hazard rate A is defined b
2(52) yl— Fz(gz)

, the optimal discounted price p, satisfies

the following optimality properties:

Lemma 3.3: p,is a non-increasing function of x, when the hazard rate

A,(&,) 2

1
a,(p;" +h+7,)

Proof: From (3.5), p, satisfies

3 X —b,+a, B, A
D :J-gzmi" [b, —2a,p, +¢&, —a,h]f,(s,)de,

P2 [;,-5, (3.6)

max

&2
+ J.XZ_bZJrazﬁz [Xz + azﬁz] f2 (82)d82 =0

From (3.6), p, is a function of x,, denoted by p,(x,). By taking the first order

derivative of (3.6) with respect to x,, we obtain
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dp, (X,)

2
dp, (X,)
Xz

1- Fz[xz _bz +a, ﬁz(xz)]_zaz( )Fz[xz _bz +a, ﬁz(xz)]

—a,(m, + ﬁz(xz)"' h)[1+a,(

)] fz[xz _bz +a, ﬁz(xz)] =0

Rearranging the terms,

a, dﬁz(xz) _ 1- Fz[Xz _bz +a2 ﬁz(xz)]_az(ﬂz + ﬁz(xz)"‘ h) f?_[X?_ _bz +a2 ﬁz(xz)]
dx, 2F,[x, —b, +a, 0, (X)) +a, (7, + P, (X,) +h) f,[x, —=b, +a,p,(x,)]

(3.7)

fz(xz _bz +a, ﬁz (Xz)) > 1

Giventhat A,(x, —b, +a,p,(x,)) = > _ ,
2 (X =b; +2; P (x,)) 1-F,(x, b, +a,p,(x,))  a,(pM™ +h+7x,)

p,(x,) > py™ and the denominator of (3.7) is positive, hence a, w <0. Therefore,
X

it follows that p, is a non-increasing function of x,. O

Lemma 3.3 provides the optimal pricing policy. Since p, is a non-increasing
function of x,, there exist two threshold values, x;' and x;, which satisfy x;' <x;,
max

P, (X)) = pi™ and p,(x])=pi. If x,>x], the optimal discounted price p, equals to

p™ . If x, <xJ', the optimal discounted price p, equalsto py™.

Lemma 3.4: The maximum expected profit of Type 2 customers,V,(X,), is concave with

respectto x,.

Proof: Define V,(x,) as
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min

V,,(x,) obtained when p, = p; X, > X)
V,(X,) =14V, ,(x,) obtained when p, = p, Xy < X, < Xj
V, ;(x,) obtained when p;, = p;™ X, < XJ

where the thresholds x;', x; are calculated by setting (3.5) to be zero under the

min

and p,=p,",Ie,

max

condition that p, = p,

a(pz X3 b, +a, pir™
o, - Lmin [b, —2a,p,™ + ¢, —a,h]f,(&,)de,
2
P> P2=p7"
g;nax m
+ J:(;nszJrazpzmax [XZ + a‘27z-2] f2 (gz)dgz = 0

8(02 X3 —by +a, p3™" min
[ 22 p e i)

2 [ py=pg™ ’

max

[0 [} +a,7,1f,(s,)de, =0

n min
X3 —b, +a, p;

Consider the following three cases:
Case (1) x, =X,

Xp~by+az pz™" min min min
VZ,l(XZ):I i [p2 (bz_azp2 "“92)_h(xz_bz"'azp2 —&,))1f,(g,)de,

gémn

(3.8)

.max

+I:2 min[pminXZ —7,(b, — &, pznin +¢&, —x,)]f,(&,)de,

2—by+a, P} 2

min

Since x, isindependentof p,", the first and second order derivatives of (3.8) with

respectto x, are
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4V, (6) __ prser
o 2 == hfy(e)de, +[ " [P3" +m]f, (e;)de,
and
d?V, . (x . _
dZ,lz( 2) :_(p;ﬂn +h+7Z'2)f2(X2 —b2 +a2p;mn)so
X2

respectively. Thus, V,,(x,)is aconcave function of x, whenx, >x;.

Case (2) X, <X, <X,

Xo=by+a5, (%) _ A n .
V2,2(X2) = J;‘gwin [pZ(Xz)(bz -a,p, (XZ) + 82) - h(x2 - b2 +a, pz(xz) _ 82)] fz(gz)dgz
+ j:_bz+azﬁz<x>[ P, (X,)x, —7,(b, —a,P,(X,) + &, — X,)]f,(&,)de,
(3.9)
The first order derivative of V,,(x,) withrespectto x, is
—dv (X ) e A X, —b,+a, P (X)
Z;Z = sz*bz+azﬁz(x) ( P (Xz) * 7[2) f2 (gz)dgz B J-s;"i" hf2 (EZ)ng
dﬁz (XZ) Xo=by+8, P, (%;) ~
R (b, — 28, P, (X,) + &, —a,h) f, (&,)de, (3.10)
2
dp, (x,) ¢
i (;Xz 2 J.Xz—bz’fazﬁz(x) (XZ + azﬂ—z) f2 (82)d82

Note that the sum of the 3" and 4™ terms in (3.10) is zero because of the optimality

condition given in (3.5) when p, = p,. Then (3.10) is reduced to
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dV (X ) e ~ Xo=by+85 P, (X;)
| [B, (x,) + 7,1, (e, )de, — [ 7

dx, Xp=by +2,B (X)

hf, (¢;)de,

L'me

The second order derivative of V,,(x,) is shown as follows.

42V, (%) _ dp,(x,)

dX22 dX2 [l_ Fz (Xz - bz +a, ﬁz (Xz))]

dp, (x,)

2

][ﬁz(xz)+ h+r,]1f,(x, b, +a, f’z(xz))

-[1+a,

d?v,, (x B
In order to prove # <0, it suffices to prove that —1<a, P2 (%) _
X 2
As stated in the assumption, a, >0. From Lemma 3.3, P, (%) <0.

dx,

Also from (3.7), we can easily prove that

. dp, (x .
A 1—F2[x2—b2+a2p2(x2)]—2a2 pZ( 2) Fz[xz_bz"'azpz(xz)]
dp,(x,) _ Xa (3.11)
dx, a, (7, + P, (x,) + ) f,[x, —b, +a,P,(x,)]

The right hand side of (3.11) is larger than zero since Wso. Therefore, it
X2

dp, (x : . :
follows that 1+a, (M) >0. In conclusion,V, ,(x,) is concave with respect to x,
dx, ‘

when x;' <X, <Xj.

Case (3) X, <Xy
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max
Xy —by+a, Py

Vaa(6) = . [p™ (b, —a,p™ +&,) —h(x, b, +8,p"™ —&,)]f, (&,)de,

o=

+ [pmaxxz_ﬂz(bz_azp:nax+52_X2)]f2(52)d52

max
Xp—by+a; P} 2

(3.12)

Since x, is independent of p,*, the first and second order derivatives of (3.12)

with respect to x, are given as follows:

ggnax

dv (X ) X =by+a, p7™ max
Zj( 2 2 =—L£nm hf, (¢,)de, +sz_bz+azp?ax[p2 + 1,11, (¢,)de, (3.13)
d?V, ,(x
%z _(p;ﬂax + h+7Z'2) fz(Xz _b+ap£naX) <0
X2

Thus, the profit V,,(x,) isa concave function of x, when x, <x;'.

Finally, we focus on the boundary conditions at the threshold values of x;' and x;,
in order to show the overall concavity. At the thresholds x; and x;, V,(x,) is
continuous, which can be seen from (3.8), (3.9) and (3.12). Furthermore, it can easily be

dVZ,l (XZ )
X2

— dV2,2 (XZ)
dx,

dV2,2 (X2)
dx,

— dV2,3 (XZ)

and
dx,

obtained that

X=0x3)" %=(x3)" X=(x3')" %=(x')"

Therefore, we draw conclusion that the continuous profit function V,(x,) is concave

with respectto x,. O

Let V,(x,) and V,(x,) denote the first and second order derivatives of V,(x,)

with respect to X,. The following theorem computes the expected profit J,(y).
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Theorem 3.1: The expected profit from Type 1 and Type 2 customers, J,(Yy), is concave

with respect to y.

Proof: From Equation (3.3),

J.(y) = o (y) + aE[V,(X,)] (3.14)

where x, =[y-t]".

From the proof of Lemma 3.4, V,(X,) is represented as follows.

V,,(y-t,) obtained when p, = p;" y—t, >x]
V() = V,,(y—t,) obtained when p; = p, XM <y—t, <X}

V,,(y—t,) obtained when p, = p;™ 0<y-t,<xJ

V,,(0) obtained when p, = p;™ 0<y<t,

Expanding (3.14), we have

Jl(y) = pljoytlgl(tl)dtl + le‘:D ygl(tl)dtl - hj.oy(y _tl)gl(tl)dtl - 7[1_[;0 (tl - y)gl(tl)dtl
+ a[J‘OY—Xz V2,l(y - tl)gl (tl)dtl + _[yy:x);z V2,2 (y - tl)gl (tl)dtl + J.yyfxgn V2,3 (y - tl)gl (tl)dtl

+ j;ovz,a (0)g, (t,)dt,]—cy

By taking the derivatives of J,(y) with respect toy, we obtain

dJ,

S b 0,0~ () + mL- G+ alf, Vo, (y-ta. ),
y y

+ Iyijzz V2I,2 (y o tl)g1(t1)dt1 + J.yyfxzm Vé,a (y o tl)gl(tl)dtl] -C
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2

J XD -X3' .
dyzl =—p9,(Y) = (h+7,)9,(y) + a[_[oy Vo, (y —1,)9,(t)dt, + J.yy_xg Vo (y—1)0,(t)dt,

[ Vi (=18, (L)t +V,, 009, ()]

Substituting x, =0 into (3.13) and recalling p,™ <b2+i
a2
, dv (X ) 0-by +a,p™ e max
V;5(0) :T =—f  h(e)de, + [0 [P+ (e)de,
=P, + 7,

Consequently,

dZJ max - )
; -+ =—(p, —ap; )gl(y)—(h+7zl—057[2)91(y)+0![J‘0y Vi (y —1,)9, (t)dt,
y (3.15)

+ Jyy__xxn V2",2 (y - tl)gl(tl)dtl + Jyy_xm V2",3 (y - tl)gl(tl)dtl]

The first two terms of (3.15) are always negative due to the assumptions that

max

p, > P, and =z, >x,. The last three terms are also always negative from Lemma 3.4.
Therefore, the expected profit J,(y) is concave with respecttoy. 0

From Theorem 3.1, the unique order quantity y~ exists and the concavity of J.(y)

with respect to y enables efficient algorithms such as gradient search to be employed to

obtain y’.
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3.2.2.3 Bounds for y~ under general demand distributions

For other demand distributions that do not satisfy the conditions given in Lemma 3.3,
p,(X,) may not be a non-increasing function of x,. Therefore, we provide bounds for

the optimal order quantity y .

Denote y; as the optimal order quantity obtained by solving the newsvendor problem

only for Type 1 customers’ demands with the associated revenue and cost parameters.
Similarly, let y,(p,) stand for the optimal order quantity computed by solving the
newsvendor problem only for Type 2 customers’ demands when the discounted price is

P,

Proposition 3.1: An upper bound of y” is equivalentto y =y, + Max[y, (p,)].
P2

The upper bound is obtained by dedicating different orders to fulfill Type 1 and Type
2 customers. This means orders placed for Type 2 customers cannot be consumed by Type
1 customers and vice versa. The overall problem is then reduced to two independent
newsvendor problems, and it is obvious that the sum of these two optimal quantities will
be an upper bound of y". Similarly, a lower bound of y is obtained as provided in

Proposition 3.2.

Proposition 3.2: A lower bound of y" is equivalent toy= y,.
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3.2.2.4 Comparison of the expected profit from dynamic pricing and static pricing

In this section, we compute the expected profit from dynamic pricing with that from
static pricing, where a constant discounted price is applied for the old product regardless

of its inventory level.

Theorem 3.2: Given the same order quantity y, the expected profit from dynamic

pricing, J,(y), is never worse than J.’7 (y), the expected profit from static pricing.

Proof: Given the same order quantity y, the expected profit for Type 1 customers in static
pricing is equivalent to ¢,(y) in dynamic pricing. Thus, the difference between J, (y)
and J"(y) is due to the difference in the maximum expected profit from Type 2

customers. Hence, it suffices to compare the maximum expected profit from Type 2

customers under two different pricing strategies.

Recall that x, =[y—t]" is the remaining stock available for Type 2 customers.
Suppose that p; is the optimal discounted price for static pricing and obtained at the
beginning of Period 1 by solving a dynamic programming model developed for static
pricing. Then the maximum expected profit from Type 2 customers, denoted byV,”" (x,),

is computed as follows:

VZST (Xz) = §02(X2; p23) - Lz(xz; p28)

For the same inventory level x,, the following equation computes the maximum

expected profit from Type 2 customers under dynamic pricing.
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V2 (Xz) = Man{(DZ (Xz; pz) - L2 (Xz; pz)} 2 2 (Xz; p28) - I—z (Xz; p23) :VZST (Xz) (3-16)
From (3.16), we prove that V,(x,) is never worse than V" (x,) . 0

3.3 Numerical study for a product with a two period lifetime

In this section, we investigate how dynamic pricing performs under various
parameters and this will lead us to identify when dynamic pricing provides a significant
increase in the expected profit compared to static pricing. Moreover, the quality of the
upper and the lower bounds for the optimal order quantity y*, provided in Propositions 3.1

and 3.2, is examined.

3.3.1 Experimental design

In this numerical study, demand of Type 1 customers is assumed to follow a Normal

distribution with mean 14 and variance oy

. Demand of Type 2 customers is
price-sensitive and has an additive stochastic demand function, i.e.,t, = &, (p,) +¢&,,

where ,(p,)=Db, —a,p, is assumed to be a linear function of the discounted price p

and the noise variable &, follows a truncated Normal distribution which is bounded by

min max

g, =-30, and g, =30, , where o, is the standard deviation of the Normal

distribution.

We are particularly interested in the effects of demand variability on the profit
increase from dynamic pricing compared to static pricing. Thus, o1 and o, are set to

different levels, referring to different levels of demand variability. Different price
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sensitivities of Type 2 customers are also considered by changing the slope value a, of
u,(p,)=b, —a,p,. Two different values for the purchasing cost c are considered, as

provided in Table 3.1.

The holding cost h is a constant value in each period as well as the retail price of
products p;. The values of the penalty costs z; and = are provided in Table 3.2, while the
feasibility condition =z, > 7, is satisfied. As stated in the assumptions, the lifetime of the

product, M, is two periods.

Table 3.1 provides seven constants and their respective values. Table 3.2 summarizes

the experimental variables and their respective values used in this study.

Table 3.1 Constants in the numerical study

Parameters Values

p1 25
y7 50
b, 100
h 1

m 12
Vz)

M

Table 3.2 Variables in the numerical study

Parameters Values
o1 10 20 30
o> 10 20 30
ax 4 5 6
c - 10 15
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3.3.2 Profit increase from dynamic pricing

As shown in Theorem 3.2, dynamic pricing provides a higher profit than static

pricing in all cases. The profit increase varies from 1% to 50%.

% increase in profit

45. 00%

30. 00%

15. 00%

0. 00%

10 20 30

o1

Figure 3.1 Profit increase from dynamic pricing under different o1

(when o= 10 and ¢ = 15)

Given a fixed ¢ and o, we observe that the difference in total profit between

dynamic pricing and static pricing increases as oy increases. This trend is observed for all

choices of oy and c. The particular scenario satisfying o = 10 and ¢ = 15 is shown in

Figure 3.1. When o1 increases, the inventory level x, greatly fluctuates, and a more

flexible pricing strategy is necessary to control demand of Type 2 customers so that

excessive stockouts or stock expirations can be avoided. Dynamic pricing provides such

flexibility.
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8.00% r

4.00%

% increase in profit

0.00%

(o}
Figure 3.2  Profit increase from dynamic pricing under different o
(when o1 =10 and ¢ = 15)

As oyincreases, we observe that the expected profit from both dynamic pricing and
static pricing decrease, and the difference in total profit between the two pricing strategies
diminishes. This is because the process of adjusting p, for demand of Type 2 customers
becomes more difficult as o, increases. Dynamic pricing, even though effectively controls
demand of Type 2 customers, may still cause costly stockouts or stock expirations due to
this high uncertainty. The particular scenario satisfying o1 = 10 and ¢ = 15 is shown in

Figure 3.2. The same trend is also observed for all choices of o1 and c.
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B c=10

30.00% 97.38% B c=15

20.00%

14. 41%

10,008 | oo egewn
6. 73%| ] :

% increase in profit

5. 05%
2. TT%}

0. 00%
10 20 30

o1

Figure 3.3 Profit increase from dynamic pricing under different o and ¢
(when az =4 and o, = 10)

Given a fixed a; and o, we observe that the difference in total profit between
dynamic pricing and static pricing increases as the purchasing cost ¢ increases. This trend
is observed for all choices of o, and a,. The particular scenario satisfying o= 10 and a, =
4 is shown in Figure 3.3. Implementing dynamic pricing, stock expirations as well as
stockouts may be greatly reduced. This reduction in product wastage incurs higher cost

savings when c is higher.

3.3.3 The upper and the lower bounds for y

From Proposition 3.1, an upper bound for y is equivalent to ? =y, + Max[yz*(pz)],
P2

min max

where p, is confined to the finite interval [p,", p," ]. Hence, a closed form for this
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Given a fixed ¢ and several cost constants shown in Table 3.2, the upper and the
lower bounds for the optimal order quantity y" are obtained under different values of price

sensitivity ap, as shown in Figure 3.4.

We observe that the upper bound decreases as the price sensitivity a, increases,

which reduces the searching space for y" and thus improves the computing speed.

100 1 O Lower Bound
Optimal y*
B Upper Bound

Order quantities

4 5 6
a

Figure 3.4 Comparisons of the bounds for y~ (when ¢ = 10)

3.4 Pricing and ordering decisions for a product withan M > 3

period lifetime

In this section, we extend the previous results to a more general case where the
lifetime of a perishable product is longer than two periods. This extension has strong
practical implications. Under the proposed model in Section 3.2, there is only one chance

where the decision maker could adjust the price for a markdown. However, in practice,

-50 -



Chapter 3 Dynamic pricing and ordering decisions for perishable products

retailers often employ successive markdowns to sell old products. The optimal prices for
multiple markdowns are determined in this section. Furthermore, the optimal retail price
and the optimal order quantity for the new product when it is first introduced to the market

are determined as well.

3.4.1 Model assumptions

The lifetime of a perishable product is assumed to be longer than two periods,
represented by M > 3. Hence for any given period, the inventory consists of stocks with M
different ages, purchased by M independent demand classes. Type i customers purchase

the products of age i in each period, for i=1...,M , while the age of new stock

replenished is one.

The index k is defined to represent the period, for k =1,...,N, where N is the number

of studying periods. Let pix denote the discounted price for the product of age i at Period k.
The corresponding demand is assumed to be dependent on pi, represented by a given

linear stochastic demand function:

t, =b —ap, +& a,>0,b>-¢" i=1.,M and k=1..,N

where &, is an i.i.d. random variable across different periods, which implies that

demands of different types of customers at Period k are independent. The variable &, is

min max

bounded in [&,", &}
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Using the ideas of Observation 3.1, an N period problem can be reduced to an M

period problem as follows: At Period i (i =1,...,M ), only the products of age i are sold

and purchased by Type i customers. The retailer only replenishes at the beginning of
Period 1, deciding the optimal order quantity x;. At the beginning of Period i (i =1,...,M ),

the optimal price for the remaining products of age i is determined.

Hence, demand of Type i customers and the discounted price for the product of age i

can be simplified as ti and p; respectively. Similarly, ¢, can be written as ¢;. The

simplified linear stochastic demand function is shown as follows:

t=b —ap +¢

min
b, + &
a.

min

The discounted price p; is confined to [p™,p™], where p™ <

min

prevents negative demand t;. We also assume that p.")' > p™*, implying no overlap of

the price intervals. The variable &, has a known probability density function f,(s;) and

is bounded in [¢™",&™] satisfied with E(g,)=0.

In case tjexceeds the available inventory of age i, the excessive demand is lost.

Without loss of generality, we assume that 7, > 7, ,.

Apart from lost sales, we also assume that the stockouts can be satisfied by an
“alternative” source (Lee et al., 2000 and Chew et al., 2006a). Under this assumption, if

there is not enough stock to satisfy the demand, the retailer will meet the stockouts by
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obtaining some units from an “alternative” source with additional costs, representing the

penalty cost to this stockouts.

This “alternative” source may be B2B marketplaces or third party manufacturers.
With the advances of Electronic Data Interchange and rapid cargo transportation,
“alternative” sources are easily identified and the leadtimes from the sources are often
neglectable. Thus, compared with the long lead time for manufacturing (e.g.,

semi-conductor), we assume that the lead time from the “alternative” source is zero.

3.4.2 Pricing and ordering decisions under lost sales

3.4.2.1 Dynamic programming model

The dynamic programming model is developed to compute the expected profit given

the inventory level for the product of age i, where i=1,...,M .

V.5 (x,), the maximum expected profit for the remaining periods when starting at

Period i and with initial inventory x;, is computed as follows:

Vit (%) = Mpax[(PiL(Xi; p)+aEVi(x,))] for i=1..,M (3.17)

@ (X p,) represents the expected profit incurred at Period i, including the expected

revenue, holding cost for excess inventory and penalty cost for unsatisfied demand

L (X5 pi) -

(DiL(Xi; p;) = P E[min(x;, )] - L (x5 p;)
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where L, (x;; p;) =hE[X, —t,]" + 7,E[t, — %1
The recursive function for the inventory level is x;,, =[x, —t,]".

We denote J"(x.; p;) as the expected profit over the final i periods.

‘JiL (X py) = (/’iL (X3 pi) + aE(ViJl:l(Xm)) (3.18)

x. and V,"(x,)are computed recursively backward in time, starting at Period M and

ending at Period 1. The boundary condition V,:(x,)=Max[gy (X,;p,)] is the
Pwm

maximum expected profit during Period M given the initial inventory level xy. Conversely,

the value of V,"(x,)=Max[e (x;p,)+aEN, (X,))]-cx, is the maximum expected
Py

profit over M periods when the initial inventory at Period 1 is ;.

3.4.2.2 Optimal order quantity and optimal prices

In order to solve the dynamic programming model developed in Section 3.4.2.1

efficiently, J"(x.;p,) must be shown to be concave with respect to p, for a given x..

In addition, V,"(x,) must be concave with respect to x., for i=1...,M . We show the

concavity starting from the last period and employ the backward recursive induction.

i) i = M (last period)
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The optimal price p, maximizes the expected profit for the last period,

Ju (Xys Py ) - The unsold products at the end of the last period have no salvage value.

Lemma 3.5:

Q) The expected profit Jy; (x,; P, ) is concave with respect to p,, for agiven

Xy -

(ii)  The optimal discounted price p,, is a non-increasing function of x,, when the

1

hazard rate A, (&,,) 2
ay (pw +h+7y)

(iii)  The maximum expected profit V,; (x,,) is concave with respect to x,, .

Proof: (i) AtPeriod M, J, (X, ;Py) isshown as follows:

‘]l\l;l (Xw3 Pu) =(Pr\|;| (Xws Pw) = Py EIMIn(Xy , ty )] = Ly (Xy 5ty )

The first and second partial derivatives of J,; (X, ; p,) With respect to py are

shown as follows.

8J L Xm —by +ay Pm
o Oy =23 py ey ay R f (x <by +ay py) (3.19)

&M

+(Xy +aymy )L-Fy, (xXy —by +ay, py)]
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0°Jy
apzM =-2ay Fy (xy —by +ay py)—ay (Py +h+7z,) fy (X —by +2, py)
M

Given an inventory level xu, Jy (X,; P, )is concave with respect to pu since

0%y,
Py

<0.

i _
=0 foragiven xy.
Pwm

(if) Let p,, denote the value of price pw which satisfies

v —by +ay P
Wl + e —auh]f (6 )des
§ (3.20)

[ Dy +aymy Iy (6 )dey, =0

Xm —by +ay Pm

Note that (3.20) expresses the stationary point p,, as a function of xy, denoted as

Py (x,). Since p,, is bounded in [pZ™, pr™1, the optimal discounted price p,, at

Period M is determined as follows.

min

min ~

Pwm Pu =< Py
* ~ min a max
Pv =93 Pm Pm < Pu <Py
max A max

Pwm Py = Pu

Taking the first order derivative of p,, (x,,) Wwith respect to xu based on (3.20) and

rearranging the terms, we obtain

dﬁM(XM)zl_FM[XM _bM +arv| ﬁM(XM)]_aM(h-'_ ﬁM (XM)"'”M)fM[XM _bM +aM ﬁM(XM)]

dXM 2F|v| [XM _bM +a|v| E)M (XM )]+aM (h+ ﬁM (XM)+7Z-M)fM[XM _bM +aM ﬁM (XM )]
(3.21)

M
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fu (X —bw +ay Pu) S _ 1

1-Fy (Xy —by +2y By) — ay (P +h+ﬂ-M),

Giventhat A, (x,, —by +ay Py) =

dﬁM (XM) SO

P, > pu" and the denominator of (3.21) is non-positive, hence —1<a,,
XM

M

Therefore, it follows that p,, is a non-increasing function of the inventory level xy.
(iii) Finally, we prove that V,; (x,,) is concave with respect to Xy.

Let V,; (X, ) be defined as follows.

Vy, (X, ) obtained when p,, = pg" Xy = XD
Vi (Xy ) =1V, , (X, ) obtained when p,, = p,, X < Xy < Xy
V,, (X, ) obtained when p,, = p* Xy < X

where the thresholds x;, and x;, are calculated by setting (3.19) to be zero under the

max

and py = py

min

conditions p,, = Py
Consider the following three cases:
Case (1) x,, =Xy

X~y +ay P
Viua(Xy) = J‘_[p:/}m (by —ay PT" +é&y)—h(xy —by, +a, py" —&eu)lfy (ey)dey

max

+ f[pﬂi”XM — 7y Oy —ay pﬂi” +&y — X )y (ey)dey

min
Xp —Dy +ay Py

(3.22)
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The first and second order derivatives of (3.22) with respect to xy are shown as

follows:
dV Xn —by +ay Py em )
S [hheandey = (eR" 4 ) f (e )dey (3.23)
M o Xy ~by +ay pi7"
d2v . .
7= =—(pw" +h+my) fy (X —by +a, py") <0
dxy,

Thus, V,,,(x,) isconcave with respect to xy when x,, > xy, .

Case (2) Xy <Xy < Xy

X —by +ay Pu
Vi (Xy) = .[[ﬁM (by —ay Py +&y)—h(xy by +ay py —&y)lfy (Ey)dey

gmln

(3.24)

max

+ j[ﬁMXM — 7y Oy —ay Py +&y — Xy )Ty (ey)dey,

X~y +ay Py

The first and second order derivatives of (3.24) with respect to xy are given as

follows:

dV XM _bM +aM ﬁM SArzax R

== [fu(aday +  [IBy + 7]y (e )day (3.25)
M e Xy by +ay Py

d 2VM,2 _ dpy (Xu)
dx? dx,,

[1_ FM (XM - bM +ay fJM (XM ))]
(3.26)

dp,, (x . .
-[1+a, %](pM (Xw)+h+7z, ), (X —by +ay Py (Xu))
M
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Since -1<a,, MSO, (3.26) is negative. Therefore, V,,,(x,,) is concave
M

with respect to xy when x;, < X, < Xy, .

Case (3) Xy < Xy

max
Xp —bm +aym Py

VM,3(XM)= I[Pﬁax(bm —ay p;qax +&y)—h(xy =by +a, py™ —&y)lfy ey )dey,

+ _f[pﬂaXXM — 7y Oy —ay Py +ey — X1y (ey)dey,

max
Xp —by +ay Py

(3.27)

Since xu is independent of py™, the first and second order derivatives of (3.27) with

respect to xy are shown as follows:

dV Xy —by +ay Py e .

dXNL3 == _[th (gm)dgm + J(pM +7[M)fM (gM)dgM (3-28)
M £ Xy —by +am P

AV,

2 (pr\n;ax"'h"'ﬂm)fm(xm —by +ay, Pﬂ”)ﬁo
dxy,

Thus, V,, (X, ) is concave with respect to xywhen x,, < xy .

Finally, we focus on the boundary conditions at the threshold values xy, and xy, in

order to show overall concavity. At the thresholds x;, and x{1 , Vs (X,,) is continuous,

which can be obtained from (3.22), (3.24) and (3.27). Furthermore, we can easily show
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that the gradients at x;, for cases (1) and (2) are the same. The same is true for the

gradients at x;, for cases (2) and (3). Hence V,;(X,,) is concave with respect to xy. [

i)i=1,.., M-1

In order to complete the proof, Theorem 3.3 is shown in the followings:

Theorem 3.3: Assuming that V. (x,,) is a continuous function and concave with

respect to Xj+1,

Q) The expected profit J.“(x;; p,) is concave with respect to p; for a given x;.

(i) The optimal discounted price p; is a non-increasing function of x; when the

1
+h+rz —ar,,)’

hazard rate A (&) >

min max

a; (pi™ —apiy

(iii)  The maximum expected profit V,"(x.) is concave with respect to xi.

Proof: For the given assumption that V.5 (x.,,) is a continuous function and concave

i+1

with respect to X1, V.5 (x;,,) is represented as follows:
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V..., (X, —t;) obtained when p;,, = py’ X >t +x",
. Vi1, (X —t;) obtained when Py = Doy t+xT <X <t +X,
Vi+l(Xi+1) =
.13 (X, —t,) obtained when p;, = p/ t <X <t +X
|+13 i+1 = Mi+l i+1
|+13 (O) Obtalned When p|+l p|+l Xi < ti

where x,,=[x, —t,]" and t, =b, —a,p, +¢&;.

2 L
(1) It suffices to show that % <0.

Xi—Xis1—bi+a py
‘]iL (X, i) = (”iL (X, i) +af IVHl,l(Xi —b, +a;p; — &) fi(&)de;
X;—X{31—b; +a; pj
+ Ivi+1,2(xi —b +a;p; — &) fi(&)de (3.29)

X, —X{\1—b; +a; p;

X; —b; +a; p;
+ Vias(x =b +a,p, &) i (5)ds, + jV.+13<0)f (¢,)de ]
X —X{hq—b; +a; p; Xi—bj+a; p;

02J}
op;

ZaF(X bi+a‘ipi)_ai2(pi+h+”i)fi(xi_bi+aipi)

X=Xy b +a; p;
vaall VL0 —b+ap —&)f(e)de
X —X{11 =i +a; p;
+ J‘Vill,z(xi —b +a;p; — &) fi(&)de;
X=Xy b +ay p;
Xi—bi+a;p;
+ J‘Vijrl,?;(xi —b; +a;p; — &) fi(&)de; +Vi+'1,3 0) f,(x; —=b; +a;p;)]

m
X —Xi41 —bj +a; p;

dVi+1,3 (Xi)
dx

max

Note that Vi, ,(0)= =p/+x,, Which is obtained by

i X; =0

substituting x; = 0 in (3.28).
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Since 7z, >, and p,>p™, the sum of the 1%, 2" and 6" terms is negative.

i+1
Furthermore, the 3, 4™ and 5™ terms are less than zero, based on the assumption that
V.5 (x,,) is concave with respect tox., Therefore, J‘(x;;p,)is concave with

respect to p;.

L
(i) Let p, denote the value of price p; that satisfies the stationary condition%i =0.

aJiL = " IJTEBJ: -2a;p; + & —ah]f(s)de; + (X +a7))[L1-F(x;, —b, +ap;)]

min
I

=D &
Xi —X{%1—b; +a; By
+aoa[ Ivi;l,l(xi —b; +a;p, — &) fi(g)de,
(3.30)

Xi—X{11-bj+a; p;
+ J‘Vi;l,z(xi —b, +a;p; — &) fi(&;)de;
Xi —Xi%1—b; +a; By
X —b;+a; by
+ J‘Vi;l,3(xi —b; +a;p; — &) fi(&)de]=0

m .
X =Xi4g —bj +a; by

Note that (3.30) expresses the stationary point p, as a function of x;, denoted by
p.(x). Since P, is bounded in [p™, p™*], we can determine the optimal discounted

price at Period i, p; , as follows.

pimin ﬁi < pimin
pi* =10 pimin <p <p™
pimax ﬁi > pimax
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Taking the first order derivative of p,(x,) with respect to x; based on (3.30) and

rearranging the terms, we obtain

dp (x) N

a.
'odx. D*-

where

NF=1- F(x —b +q ﬁi)_ai(ﬁi —aply +h+7m —ar,)fi(x b +a ﬁ.)
X;—bj+a; B

ta J-Vijrl(xi —b, +a;p; +&) fi(¢)de,

D" =2F (x; —b; + 3 ﬁi)+ai(ﬁi —apily +h+m —ar,)fi(x b +& ﬁ.)
X;—bj+a; p;

—a V06 —b +a P +&)fi(s)de,

and
X —by+a; by Xi—Xiy1—b; +a; By
.[Vi:-l(xi -b +q bi &) fi(g)de = J.Vi:rl,l(xi -b, +q f’i —-&)fi(g)de

Xi =X{y1—bi+a; p;
+ J.Viil(xi —b, +a;p; —&) fi(&)de,
Xi —X{y1-D; +a; P
X —b; +a; b;
+ VL =b +ah -5 fi(s)ds

m o
X —Xis1 =i +a; P

Given that the hazard rate

fi(xi _bi T4 f)i (Xi)) > 1
1-F(x —b +a,p(x)  a(p™ —ap +h+m —ar,)’

i+1

/1i (Xi _bi +4; I'ji (Xi )) =

min

p.(x)> p™ and the denominator is non-positive, hence —1<a (%) <0.
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Therefore, p,(x;)is a non-increasing function of the inventory level x;. It follows that

p, isalso a non-increasing function of the inventory level x;.

(iii) Finally we prove that V."(x,) is concave with respect to x;.

V" (%) is shown as follows.

V,,(x) obtained when p; = p™" X > X"
ViL(Xi) = Vi,Z(Xi) obtained when pi* =P, X" <X <X
V,,(x;) obtained when p; = p™ X < X"

L
where the thresholds x" and x are calculated by satisfying 2‘:)' =0 under the

conditions that p, = p™ and p, = p"™*.

Finally, we focus on the boundary conditions at the threshold values x"and x' in
order to show overall concavity. At the thresholds x™and x", V."(x) is continuous,

because Vi,l(xin) =Vi, (x') and Vi (x") :Vi,s(xim) .

_ dVi,z(Xi)
- dx,

dVi 1 (XI ) and

Furthermore, it can easily be proved that v
X

! xi=(x')" xi=(x")"

dv. ., (x. dV, . (x; . .
Vi (%) _ Vi (%) . Therefore, we draw conclusion that the continuous
ax, | e dx; | -
Xi=(Xi") X =(x")
profit function V,"(x,) is concave with respect to x;. O
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From (ii) in Theorem 3.3, we obtain the optimal pricing policy. The optimal
discounted price at each period is determined based on the inventory level x; Since p; is a
non-increasing function of x;, there must exist two thresholds x"and x;, satisfying the

X

following conditions x" < x", p.(x™) = p™* and p,(x") = p™. Ifx > x", the optimal

price p; equalsto p™.If x <x™,the optimal price p, is equivalent to p™.

From (iii) in Theorem 3.3, the unique optimal order quantity y™ = x, exists and the
concavity of V,“(x) with respect to x; enables efficient searching algorithms to be

employed.

3.4.3 Pricing and ordering decisions under “alternative” source

3.4.3.1 Dynamic programming model

The dynamic programming model is developed to compute the expected profit given

the inventory level for the product of age i, where i=1..,M .

VA(x,), the maximum expected profit for the remaining periods when starting at

Period i and with initial inventory X;, is computed as follows:

VA(x) = Mp_ax[(DiA(Xi; p)+eEMV A (%, )] for i=1..,M (3.31)
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o (x.; p;) represents the expected profit incurred at Period i, including the expected

revenue, holding cost for excess inventory and penalty cost for unsatisfied demand

L (% py) -
o (% p;) = BE) - L(x:p)
where Li (Xi; pi) = hE[Xi _ti]+ + ”iE[ti - Xi]+

The recursive function for the inventory level is x;,, =[x,

41",
We denote J*(x;; p;) as the expected profit over the final i periods.

‘]iA(Xi; p)= ¢iA(Xi; p;) + aE(ViéL(XiJrl)) (3.32)

x. and V,*(x,) are computed recursively backward in time, starting at Period M

and ending at Period 1. The boundary condition V,;(x, )= Max[e) (X, ; Py)] is the
Pm

maximum expected profit during Period M given the initial inventory level xy. Conversely,

the value of V,*(x,) = Max[e;" (x,; p,) + aE(V,*(X,))]—cx, is the maximum expected total
Py

profit over M periods when the initial inventory at Period 1 is x;.

3.4.3.2 Optimality properties

In order to solve the dynamic programming model developed in Section 3.4.3.1

efficiently, J”(x;;p,) must be shown to be concave with respect to p, for a given x;.
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In addition, V,"(x,) must be concave with respect to x,, for i=1..,M . We show the

concavity starting from the last period and employ the backward recursive induction.

i) i = M (last period)

The optimal price p,, maximizes the expected profit for the last period,

J& (Xy: Py ) - The unsold products at the end of the period are of no salvage value.

Lemma 3.6:

Q) The expected profit J; (X,;p,) is concave with respect to p,, for a

givenx,, .

(ii)  The optimal discounted price p,, is a non-increasing function of x,, .

(iii)  The maximum expected profit V,; (x,, ) is concave with respect to x,, .

Proof: (i) At Period M, the expected profit J/; (X, ; P, ) is shown as follows:

JQ(XM;pM):(oG(XM;pM): pME(tM)_LM(XM;tM)

The first and second partial derivatives of J}(x,,p, ) With respect to py are

shown as follows.
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N
8pM =b,, —2a, py —ayhF, (x,, —by, +a,, py)+ay,zy,[1-Fy Xy —by +ay py)]
M
(3.33)
2 1A
0 JZM :_ZaM _af/l (h+7z‘M)fM (XM _bM +aM pM)
Py

Given the inventory level xyw, J) (X, ,P,)is concave with respect to pu since

073

<0.
Py

A

(if) Let p,, denote the value of price pu which satisfies 2 M =0 foragiven xu.
Pwm

232
apM P =Pwm

=b,, —2a, p,, —ayhFy, (xy, by +a, P
m ~ 28y Py —ayhFy (Xy —by +ay Py ) (3.34)
+ay 7y [L= Fy (Xy —by +ay Py )l
Note that (3.34) expresses the stationary point p,, as a function of xy , denoted as

Py (x, ). Since p,, is bounded in [p2™, pr™1, the optimal discounted price p,, at

Period M is determined as follows.

P Pw < Pu
p;:A = ﬁM pl\Tn < ﬁM < pr'\;llax
P Pu = Py

Taking the first order derivative of p,, (x,,) Wwith respect to xu based on (3.34) and

rearranging the terms, we obtain
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dﬁM (XM) _ —ay (h+7Z'M)fM[XM _bM +ay ﬁM (XM)]
dXy 2+ay (h+7my) fy[xy _bM+aMﬁM(XM)]

M

It is straightforward that —1< M <0.Thus, p, (x,) Isanon-increasing
XM

function of xy. It follows that p;, is also a non-increasing function of xy.
(iii) Next, we prove that V,, (X, ) is concave with respect to xy.

Let V,2(x,) be defined as follows.

Vy 1 (x,, ) obtained when p,, = py" Xy > XP)
Vi (Xy ) =13V, ,(X,, ) obtained when p,, = p,, Xy < Xy < Xy,
Vy, 3(X,, ) obtained when p,, = pj™ Xy < Xy

where the thresholds x,, and x,, are calculated by setting (3.33) to be zero under the

min max

conditions p,, =py and p, =py .
Consider the following three cases:

Case (1) Xy = Xy

Xy by +ay pﬂi”
Vii () = PR by —ay pR™) = [h(xy —by, +a, pi" —&y) fy (6 )dzy,

é,mm

(3.35)

enx
= [ma oy —ay PR + &y = X) T (6 )de
Xm by +ay D&”i"
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The first and second order derivatives of (3.35) with respect to xy are shown as

follows:
dV Xy —by +ay pﬂi” e
— ML= by (e)dey + [z T (en)dey, (3.36)
dXM e Xy —by +ay pan
d2v |
3 =—(+7,)f (xy —by +a, py") <0
dx,,

Thus, the profit V,, ,(x,,) is concave with respect to xy when x,, > Xy, .

Case (2) Xy <Xy < Xy

Xy ~by +ay Py

VM,z(Xm): ﬁM (bM _aM ﬁm)_ '[h(XM _bM +aM ﬁM —gM)fM (gM )dgM

(3.37)

g’\rzax

= 7 b —ay By + 2w —xu) iy (6n)da,,

Xy by +ay Py

The first and second order derivatives of (3.37) with respect to xy are given as

follows:
dVM 2 Xy —by +ay Py b
=M= [hfy (eu)dey + [y By (6n)day, (3.38)
dXM gmin X —by +ay Pw
d?v P o
2/|,2 _ _[1+3-M dpM (XM )](h + 7, ) fM (XM _bM +a,, pM) (3.39)
dxy dxy,
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Since -1<a,, wg 0, (3.39) is negative. Therefore, the profit V,, ,(x,) is
X :

M

concave with respect to xy when Xy, < X,, < Xy -

Case (3) Xy < Xy

max
Xm —by +ay Py

ViaO) = P by —ay i) = [h(xy —by +a, P =2y ) fy (64 )dzy,

gmln

(3.40)

= [ oy —ay PR + ey =Xy ) fy ()dey,

max
Xp —by +ay Py

Since xu is independent of py™, the first and second order derivatives of (3.40) with

respect to xy are shown in (3.41) and (3.42).

max

dV Xm —by +ay Py e
M3 _ _ .[th (&, )de,, + j;rM fu(eyw)dey (3.41)
dXM em X —by +ay P
d2v
d QA’S =—(h+m,)fy (xy by +a,py*) <0 (3.42)
Xy

Thus, the profit V,, ;(x,,) is concave with respect to xy when x,, < xy .

Finally, we focus on the boundary conditions at the threshold values xy, and xy in
order to show overall concavity. At the thresholds x;, and x;, , V,; (X, ) is continuous,

which can be obtained from (3.35), (3.37) and (3.40). Furthermore, we can easily show
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that the gradients at x;, for cases (1) and (2) are the same. The same is true for the

gradients at x;, for cases (2) and (3). Hence V,;(x,,) isconcave with respect to xu. [

i)i=1,.., M-1

In order to complete the proof, Theorem 3.4 is shown in the followings:

Theorem 3.4: Assuming that V.%(x.,) is a continuous function and concave with

respect to Xj+1,

Q) The expected profit J*(x.; p;) is concave with respect to p; for a given x;.

(ii)  The optimal discounted price p; is a non-increasing function of x; .

(iii)  The maximum expected profit V,*(x,) is concave with respect to ;.

Proof: For the given assumption that V.”,(x.,) is a continuous function and concave

with respect to X1, V,%(x,,) is represented as follows:

V.11 (X; —t;) obtained when pi*+l = pin:iln X, >t + Xy

m n
i+1 i

V..., (X —t;) obtained when p;,, = P, to+x" <X <t +x",

Vifl (Xi+1) =

max

V,,1,(X; —t;) obtained when p;, = pT;

m
i+1

ti <XiSti+X

V, ., (0) obtained when p;,, = p™* X, <t,

where x,,=[x, —t,]" and t; =b, —a,p, +¢;.
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27A
(i) It suffices to show that % <0.

Xi—X{41 - +a; pj
INXL ) =0l (X, p) +al '[Vi+l,1(xi —-b +a;p; —&)fi(&)de,
X —X{11—b; +a p;
+ J.Vi+l,2(xi —b, +a;p; —&)fi(g)dg (3.43)

n
X=Xy —bi+a; p;

X; —bj +a; p; g
+ J.Vi+l,3(xi —-b; +a;p; — &) fi(g)de; + J‘Vi+1,3(0) fi(&)de]
X —X{11—b; +a p; X —b; +a; p;i

0*J}

op?

= —23, _aiz(hJF”'i)fi(Xi —b, +a;p;)

Xi —Xiy1 =0+ p;
+cal[ JAVilm(Xi —b; +a;p, — &) fi(&)de,
X —X{h b +a; p;
+ J.Vi:l,z(xi —-b; +a;p; — &) fi(¢)de,
X —Xiy1—bi +8; Py
X —bj+a; p;
+ Jviilﬁ (% =b; +a;p; — &) i (¢)dg, +Vi+I1,3 0) f(x; —=b; +a;p;)]

m
Xi—Xiy1 —0; +a; pj

! _ dVi+l,3 (Xi) _ H H H H H
Note that V”“(O)_T = m;,, Which is obtained by substituting

! x;=0

X; =0 in (3.41).

max

Since 7z, >, and p,>p™, the sum of the 1%, 2" and 6" terms is negative.
Furthermore, the 3, 4™ and 5™ terms are less than zero, based on the assumption that
VA (x,,) is concave with respect tox,,. Therefore, J/(x;p,)is concave with

respect to pi.
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A
A _g.

(ii) Let p, denote the value of price p; that satisfies the stationary condition

i =b, —2a;p, —a;hF (x; —b; +a,p;) + a7, [1-F (x, —b; +a,; p;)]

N A
X =X by +8; By

vaal Vi (x =b+ap —&)fi(e)de
(3.44)

Xi —Xi41—0i +8; By
+ J.Vi;rl,z(xi —b; +a;p; — &) fi(&)de;
Xi=X{y1=b; +3; By
X; —b; +8; b
+ Ivi;rl,S(Xi ~b; +a;p, — &) fi(g)de]1=0

m R
X —Xiy1~bi+a; B

Note that (3.44) expresses the stationary point p, as a function of x;, denoted by

p.(x). Since P, is bounded in [p™, p™*], we can determine the optimal discounted

price at Period i, p; , as follows.

pimin ﬁi < pimin
pi* =1D, pimin <P <p™
pimax ﬁi 2 pimax

Taking the first order derivative of (3.44) with respect to x; and rearranging the terms,

we obtain

where
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Xi =i +a; B
N =—a[(h+7 —ar ;) fi(x —b +ap)—a [Vii(x-b+ap +&)f(s)ds]
i:*bﬁaiﬁi
D*=2+a[(h+7 —ar,)fi(x -b +ap)-a .[Vijrl(xi -b +ap; +&)fi(g)de]

gimln

and
X —b;+2; i X —X{41 b +a; p;
[Via0G=bi+a b —&) fi(e)ds, = [V (6 b, +a,p, — &) fi(s)de,

X=X —b+a; By
+ Vi b b - ) fi(6)ds
X=X =b;+a; by
Xi =i +a; by
+ J‘Viil(xi —b, +a,p, — &) fi(&)de,

m N
X =Xi41 b +a; ;

It is obvious that —1<a,

dpoil(xi) <0. Therefore, p,(x;) is a non-increasing

function of x;. It follows that p; is also a non-increasing function of x;.

(iii) Next we prove that V,*(x;) is concave with respect to Xi.

V,A(x;) is shown as follows.

V,,(x;) obtained when p; = p™ X > X/
VA(x) =1V, (x;) obtained when p; = p, X" < X, < X"
V, 5(x;) obtained when p; = p™ X, < X"

where the thresholds x™ and x'are calculated by satisfying ani =0 under the

min
i

max
i

conditions that p, = p™ and p,=p
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Finally, we focus on the boundary conditions at the threshold values x"and x' in
order to show overall concavity. At the thresholds x"and x", V,(x;) is continuous,
because Vi,l(xin) =Vi, (x") and Vi,Z(Xim) :Vi,s(xim) .

dVi,l(Xi)
X

_ dVi,z(Xi)
C o dx,

Furthermore, it can easily be proved that and

T =) xi=(x)”

dVv. . (x: dVv. .(x . .
Wir (%) _ Vis(x) . Therefore, we draw conclusion that the continuous
dx; s dx; ny-
! Xi=(x") ! X =(x")
profit function V,*(x;) is concave with respect to x;. O

From (ii) in Theorem 3.4, we obtain the optimal pricing policy. The optimal
discounted price at each period is determined based on the inventory level x; Since p; is a

non-increasing function of x;, there must exist two thresholds x™ and x;, satisfying the

min
i

max
i

following conditions x" < x', p; (x") = p/™ and p,(x')=p™. Ifx, > x", the optimal

price p; equals p™" . If x, < x™, the optimal price p; is equivalent to p™

From (iii) in Theorem 3.4, the unique optimal order quantity y~ = x, exists and the
concavity of V.*(x,) with respect to x; enables efficient searching algorithms to be

employed.
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3.4.4 Comparison of the maximum expected profit under “alternative”

source and lost sales

In this section, we compute the maximum expected profit from the dynamic

programming model under the assumptions of “alternative” source and lost sales, where
M (x") represents the penalty cost under the assumption of alternative source (lost

sales).

Theorem 3.5: When 7z < p™ + 7", the maximum expected profit from the dynamic
programming model under “alternative” source, V,*(x.), is greater than or equals to

V."(x;), the maximum expected profit from the dynamic programming model under lost

sales for a given inventory level x;.

Proof: We prove that V.*(x,) >V,"(x,) fori=1,...,M by induction.

At Period M, given the inventory level xy, the difference betweenV,;(x,,) and

V(%) is computed as follows:

‘]l\/;l\(XprM)_‘]rxl;l(XM!pM)z pME(tM)_LM (XM’tM)
—[pwE(ty) =Ly Xy ty) — Py Ety =%y ) 1=0
(3.45)

Giventhat =, < pi" +z , Equation (3.45) is larger or equivalent to zero.

From (3-45): VN?(XM ) = l\/[!aX[J,G (XM » P )]2 I;/Iax[Jb, (XM 1 P )] :VI\LI_ (XM ) .
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In order to complete the proof, we must show thatV,"(x.) >V."(x;), assuming that

Vi+A1 (Xi+l) 2 Vikl (Xi+l) '

For Period i (i = M - 1,...,1), given the inventory level x;, the difference between

VA(x)and V" (x,) is:

‘]iA(Xi1 pi)_‘]iL(Xi' pi) = piE(ti)_ Li (Xi7ti)+aE(Vi+Al(Xi+l)
—-[pE() - Li(x 7ti)+aE(Vil+_1(Xi+1) - PpE({t; —x)"1>20 (3.46)

From (3.46), we obtain that V.*(x,) = Mpax[JiA(xi, p.)]= I\F{Iax[JiL(xi, p)1=V," (%) .

Thus, Theorem 3.5 is proven. 0

Theorem 3.5 provides an upper bound for the maximum expected profit under the
lost sales assumption. From (iii) in Theorem 3.4, this upper bound can be efficiently

computed.

3.5 Numerical study for a product with an M > 3 period

lifetime

In this section, we investigate how the upper bound obtained in Section 3.4.4
performs under different levels of demand variability. In addition, the optimal order
quantity is computed under two different assumptions, “alternative” source and lost sales.
Furthermore, we compute the maximized expected profit from both dynamic pricing and

static pricing under the assumption of “alternative” source.
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3.5.1 Experimental design

In this numerical study, we consider a product with lifetime of three periods. Demand
of Type i (i = 1, 2 ,3) customers is price-sensitive and has an additive stochastic demand
function, i.e., t =g (p,)+¢ , where 4 (p,)=Db, —ap, is assumed to be a linear
function of the price p; and the noise variable & follows a truncated Normal distribution

which is bounded by &™ =-30, and &™ =30, , where ; is the standard deviation of

the Normal distribution.

We are particularly interested in the effects of demand variability on the performance
of this upper bound. Thus, o1, o and oz are set to different values, referring to different

levels of demand variability.

Table 3.3 summarizes the experimental variables and their respective values used in
this numerical study. Several constants and their respective values are also provided in

Table 3.4.

Table 3.3 Variables in the numerical study

Parameters Values
o1 0.1*b; 0.2*b; 0.3*b;
o> 0.1*b, 0.2*b, 0.3*b,
o3 0.1*bs 0.2*bs 0.3*bs
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Table 3.4 Constants in the numerical study

Parameters Values Parameters Values
b1 72 dj 6
b, 40 dy 5
b3 24 ds 4
m 11.5 h 0.2
V/4) 7.5 C 2
P 5.5 M 3

3.5.2 Comparison of the maximum profit under “alterative” source and

lost sales

As shown in Theorem 3.5, the maximum expected profit obtained under “alternative”
source is never worse than that obtained under lost sales. The ratio of the maximum
expected profit under lost sales, to the maximum expected profit under “alternative”

source is between 91% and 97% under different levels of demand variability.

The ratio decreases as the demand variabilities o1, o, and o3 increase. For example,
when oy increases, the inventory level x, greatly fluctuates. Dynamic pricing under lost
sales obtains less expected revenue compared to dynamic pricing under “alternative”
source. Due to this uncertainty, the ratio decreases. The particular scenario satisfying o, =

0.1*b, and o3 = 0.1*b3 is shown in Figure 3.5.
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Figure 3.5 Ratio under different o1 (when o, = 0.1*b, and o3 = 0.1*b3)

The optimal order quantity obtained from the dynamic programming model under
lost sales is greater than that from the dynamic programming model under “alternative”
source. This phenomenon should be explained as follows. For the assumption of lost sales,
more products are ordered to avoid the excessive demand. However, “alternative” source
has a second chance to purchase the products, there is no need to build high inventory to

buffer the unexpected demand. This trend is observed for all combinations of &1, o and o.

The particular scenario satisfying o, = 0.1*b, and o3 = 0.1*bs is shown in Figure 3.6.
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Figure 3.6 Optimal order quantity under different o1
(when o= 0.1*b, and o3 = 0.1*b3)

3.5.3 Profit increase from dynamic pricing under “alternative” source

Our numerical results show that the expected profit from dynamic pricing is never
worse than that from static pricing under the “alternative” source assumption. The profit
increase from dynamic pricing becomes more significant as the demand variability o1
becomes higher. The particular scenario satisfying o> = 0.1*b,and oz = 0.1*bs is shown in
Figure 3.7. The same trend is also observed for all choices of o and o3. When o1
increases, the inventory level x, greatly fluctuates, and a more flexible pricing strategy is
necessary to control demand of Type 2 customers so that excessive stockouts or stock

expirations can be avoided. Dynamic pricing provides such flexibility.
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Figure 3.7 Profit increase from dynamic pricing under different oy
(When o= 0.1*b2 and o3 = 01*b3)

As o increases, the difference in the expected profit between dynamic pricing and
static pricing may become greater or smaller. When o, increases, the inventory level xs
greatly fluctuates. Dynamic pricing could flexibly control demand of Type 3 customers so
that excessive stockouts or stock expirations can be avoided. However, at the same time,
the process of adjusting p, for demand of Type 2 customers becomes more difficult, which
may cause more stockouts or stock expirations. Hence, it is hard to identify whether the
difference in the expected profit under two different pricing strategies will increase or

decrease, as oy increases.

As osincreases, we observe that the expected profit from both dynamic pricing and
static pricing decrease, and the difference in the expected profit between these two pricing
strategies diminishes. This is because the process of adjusting ps for demand of Type 3

customers becomes more difficult as o3 increases. Since o3 is large, dynamic pricing, even
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though controls demand of Type 3 customers, may still cause costly stockouts or stock
expirations due to this high uncertainty. The particular scenario satisfying o1 = 0.1*b; and
o> = 0.1*byis shown in Figure 3.8. The same trend is also observed for all choices of oy

and oo.
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Figure 3.8 Profit increase from dynamic pricing under different o3
(When o= 0.1*b2 and oy = 0.1*b2)

3.6 Summary

In this study, we first develop a discrete time dynamic programming model for a
perishable product with a two period lifetime. Under certain conditions, the optimal
discounted price for the old product is a non-increasing function of the inventory level.
From this property, we prove that the expected profit is a concave function with respect to
the order quantity for the new product. This concavity enables efficient algorithms to be

employed to obtain the optimal order quantity for the new product. Even when this
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property does not hold, still an upper and a lower bound for the optimal order quantity are
provided. We also prove that the expected profit from dynamic pricing is never worse than
the expected profit from static pricing. The computational results show that the profit
increase from dynamic pricing becomes more significant as the demand uncertainty of

Type 1 customers and the purchasing cost become higher.

We further consider a more general problem, where the lifetime of the product is
longer than two periods. The problem is analyzed under two different assumptions, lost
sales and “alternative” source. For each case, a dynamic programming model is developed
with the objective of maximizing the total profit over the finite number of periods. The
optimal prices for products of different ages and the optimal order quantity for the new
product are obtained. Moreover, we prove that the maximum expected profit under
“alternative” source is never worse than the one under lost sales under certain conditions.
Our numerical results show that the ratio of the maximum expected profit from lost sales,
to the maximum expected profit from “alternative” source is between 91% and 97% under
different levels of demand variability. In addition, the optimal order quantity obtained
from the dynamic programming model under lost sales is greater than the one from the

dynamic programming model under “alternative” source.
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decisions for perishable products

Chapter 4 extends the work of Chapter 3 by considering substitution among products
of different ages and the corresponding demand transfers between demand classes. In
Section 4.2, the assumptions and notation are provided. A product with the lifetime of two
or more periods is considered and the dynamic programming model for a multiple period
profit maximization problem is developed. In Section 4.3, the model for the product with
the lifetime of two periods is analyzed. The computational results for the product with the
lifetime of two periods are presented in Section 4.4. For a product with the lifetime of
longer than two periods, a heuristic based on the optimal solution for a single period

problem is proposed in Section 4.5.

4.1 Introduction

Companies today are facing the increasingly volatile business environments,
characterized by shorter product life cycles and ever quickening technological
developments. In order to achieve competitive edges, new (versions of) products must
frequently be introduced to the market. When new versions of products enter the market,
old (versions of) products may be offered at discounted prices. This discount enables a

quick reduction of the inventory and is easily found in practice, such as in electronics and
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automobile industries. The retail price of new products as well as the discounted prices of
old products must carefully be determined. If the prices for new and old products are
sufficiently close, the customers may decide which products to purchase based on the
prices of both products, rather than the price of the target products only. For example, a
customer intending to purchase a newer version product and finding it too expensive may
purchase an attractively priced older version product, instead. Thus, in order to maximize
the profit, the price of a new product and the discounted prices of old products must
simultaneously be determined, considering such demand transfers between new and old

products.

This chapter considers a finite horizon problem for a perishable product with a
limited period lifetime, where substitution among products of different ages is allowed.
Demands for products of different ages are assumed to be dependent on the prices of itself
and substitutable products, i.e., products of “neighboring ages”. The products of
neighboring ages are defined by the products that are a period older or younger than the
target products. A periodic review policy is used. The objective is to find the optimal
prices for products of different ages and the optimal order quantity for a new product with

the objective of maximizing the total profit over the multiple periods.

4.2 Problem formulation

In this section, we consider a perishable product with an M period lifetime. Let index
i =1,...,M denotes the ages of the products, where i = 1 represents that the product is new.
Hence in any period, there exist products of M different ages. The following notation is

employed in this chapter:

-87-



Chapter 4 Optimal pricing and ordering decisions for perishable products

y = order quantity for a new product

Xi = inventory level for a product of agei,i1=1,...,.M
p1 = retail price of a new product

pi = discounted price for a product of age i, i = 2,...,M
7 = penalty cost for a product of age i,1=1,...,.M

h = holding cost per period (regardless of ages)

¢ = purchasing cost for a new product

o = discounted factor per period

We assume that each aged product is purchased by a distinctive demand class. For

products of age i, the price that the customers from a respective demand class, demand
class i, are willing to pay is assumed to be confined in an interval [p™", p"*]. Moreover,

price intervals of demand classes are non-overlapping with p, > p,,,. Even though

demand classes are categorized by these price intervals, we allow the customers of each
class to move up or down to neighboring demand classes, depending on the differential

pricing. In particular, demand for class i is dependent on p,_,, p;, p;,; and is represented

by a given linear stochastic demand function

t = (Piy, Piy Pig) + &

4.1
=b —ayp; + 1,y P+l Py + & *.1)

where |10 = I01 = IM+1,M = IM,M+l =0
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4:(piy, Py Pi.y) 1S mean demand for class i, b,

—a;P; + Ii+l,i Pia + Ii—l,i Pi_1 and

satisfied with a;,l;,,;,1,,; 20. & is an i.i.d. random variable with a known probability

i iy

density function f,(s,) and is bounded in [¢™,&™]. In addition, E(s,)=0, where

Note that I;;+1 is the transfer rate (demand transfer per unit price increase) of demand
class i to demand class i+1 with respect to the price differences between the respective
demand classes, and a; represents the loss rate (demand loss per unit price increase) of

demand class i with respect to p;.

In our proposed demand function, we allow demand transfers, i.e., the demand class i
customers may purchase products of ages i-1 and i+1 instead, which transfers demand of
class i to demands of classes i-1 and i+1. Thus, the products of different ages considered
in our model can be treated as different products. These products can be substituted by
each other to a certain extent, depending on the attractiveness of the degree in the pricing

differences. Without loss of generality, we assume that z,>r,,,.

From the demand function given in (4.1), we note that the substitutability among
different products is caused by price differences, not by shortages in one product. The
shortage in one product is assumed to be satisfied by an “alternative” source (Lee et al.,
2000). Under this assumption, if there is not enough stock to satisfy the demand, the
retailer will meet the stockouts by obtaining some units from an *“alternative” source with

additional costs, representing the penalty cost to these stockouts.
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The dynamic programming model is developed to compute the expected profit given
the inventory levels for products of M different ages. The index k is defined to represent

the period, fork =1,..., N, where N is the number of studying periods.

V, (X5 Xy ) » the maximum expected profit for the remaining periods, starting at

Period k and with the inventory levels (X, ,..., X,y ) » IS computed as follows:

Vi Xaree X ) = Max [0 (Xgie s Xpnes Yier Prgcreees Ponc) + CEINV, o (Kgpiqvees X)) (4.2)

Y+ Pik s P

where the recursive function for the inventory level is x,., =[y, -t,]" and

X =Xy —t 17 fori=2,..., M-1.

O (KXo s Xpies Yier P P ) TEPresents the expected profit for products of M

different ages in Period k. The expected profit is obtained by computing the expected

revenue R, (P, Pux) » the expected cost C, (X, Xps Yir Pocser Pu)  @nd the
purchasing cost for the new product. L, (x,.t,) represents the expected cost for a

product of age i at Period k.

(Dk(XZk""’XMk;yk! plk""' pMk) = Rk(plk""’ pMk)_Ck (XZk""'XMk;ykv plk"'" pMk)_Cyk

(4.3)

M
where R (Puseos Puk) = ZpikE(tik)

i=1

M
Cy (Kai v Xes Yies Pacreos Pac) = le(yk'tlk)+z|—ik(xik'tik)
=)
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L (% ty) = hEDG =t 1" + 7 E[ty — X, 1" for i=1,...M

We denote J, (Xp, .o Xyues Yier Pycrees Py) @S the expected profit over the last k

periods.

J (K reer X s Yier Prcrees Pae) = @ (Ko seees Xpies Yier Pricreees P

+ B[V (X i1+ Xoi1)] 449

These optimality functions are computed recursively backward in time, starting at
Period N and ending at Period 1. The boundary  condition

Vi Kop s X ) = Max[ @ (Xon s X s Y s Pan oo Pun )] 1S the maximum  expected

YN PIN o Pun

profit for Period N (the last period), given the inventory level (X, ,..., X,y ) - CONnversely,
the value of V,(X,,...,X,;) IS the maximum expected profit over N periods when the

initial inventory at Period 1 iS(Xy,..., Xy1) -

4.3 Pricing and ordering decisions for a product with a two

period lifetime

In this section, a multiple period problem for a product with a two period lifetime (M
= 2) is considered, where demands for both new and old products are dependent on the
retail price of the new product (product of age 1) as well as the discounted price of the old

product (product of age 2).
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4.3.1 Additional assumption

For the product with lifetime of M = 2, we assume a,,a, >1,, >1,,. The assumption
of a =1, (a,=1,,) ensures that the demand transfer from class 1 (2) to classes 2 (1)
is less than or equal to demand loss of class 1 (2). 1., >1,, holds because the customers

may want to purchase an attractively priced old product, instead of a new product.
However, the customers who intend to purchase an old product seldom purchase an

expensive new product, instead.

4.3.2 Multiple period problem

In order to solve the dynamic programming model developed in Section 2 (when M =

2) efficiently, J, (X,; Y« Pu P2) must be shown to be jointly concave with respect to
Y., Py and p,,, given an inventory level x,, . In addition, V,(x, ) must be concave
with respect to x,, fork=1,..., N. We show the concavity starting from the last period

and by backward recursive induction.

i ) k=N (Last Period)

The optimal solution y,, p;, and p,, maximizes the expected profit for the last
Period, ¢, (X,n:Yns Pivs Poy) - The unsold products at the end of the period have no

salvage value.
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Theorem 4.1: @, (X, Y Pins Poy) 1S Jointly concave with respectto y,, p,y and

P,y » given an inventory level x,, .

Proof: Hy represents the Hessian Matrix of ¢, (X, Yn» Pins Poy) @nd its determinant is

as follows:

3’y 3’y 0’y
0% Py PonOYn 0P OPin

det(H ) = Oy ngpzN gy
0Y\ 0P,y Yy Oy \ OPyy

Oy Oy Oy

OpuOP 0Py O Py

Let A represents —(h+7z,)f,(yy—b +1,,p,y +2,p,) and B refers to

—(h+7,) fon (X —b, +@, P,y =1, Py ). Itis Obvious that both A and B are negative.

The 1% leading principal minor is proven to be negative.

=-2a, - |22,1(h + 7o) fin (Y =0y +a py — |2,1 Pon)

_a22 (h+ 7y ) fon (Ko =0, +2, P,y — I1,2 plN)
=-2a, +1;,A+a;B<0

The 2" leading principal minor is proven to be positive.

aZ(DN _ aZ(DN
OYnOP,y 0Py Oy

= |2,1(h + Ty ) le (yN - bl + |2,1 Pon + a‘l plN) = _|2,1A
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62
(Dl;l — —(h+7[1N)f1N (yN _bl+|2,1p2N +a‘lplN)=A

N

Hence

az(DN 62(0N
OPon Pon Y| _|~28, +1,A+aB =-2a,A+a’AB>0
62¢N 62¢N _IZ,lA A

Y0Py Oy

The 3" leading principal minor is shown to be negative.

az(DN _ asz
POy OYnOPyy

=—a,(h+7my) fiy(yy —b + |2,1 Py +&4 plN) =a,A

62(PN
OP1n 0Py
+ azll,z (h+ 7,y ) Ton (Xon — b, + I1,2 Pin + 8 Piy)
= |2,1 + |1,2 - allz,lA_ azll,zB

=l +1, +aly (h+ ) fiy (Y = by + 150 Poy +2,Piy)

=—2a, _alz(h"‘”zN)le (Yn —by +a,py _Iz,lpzN)

- |12,2 (h + 7oy ) sz (XZN - bz + az pZN - |1,2 plN)

=-2a, +a’A+I,B
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—2a, +1;,A+aiB —L,, A (I, +1,—-al,,A-a,l,,B)
det(H,) =|-1,,A A a,A
(I, +1, —al,,A-a,l,,B) aA —2a, +a’A+17,B

= A*[43-13'2 - (|2,1 + Il,z)2 - 2azB(a1a2 - |2,1I1,2)] <0

Since the value of the j™ leading principal is either zero or has the sign of (-1)! for all

J (j = 3), the symmetric matrix Hy is negative semi-definite.

Thus, @ (X,n; Yy Pins Poy) 1S CONCave with respectto vy, , p,, and p,,, given

an inventory level x,, atthe last period k = N. 0

From Theorem 4.1, the unique optimal solution y,, p;, and p,, existsand from

the joint concavity, efficient algorithms such as the steepest ascent method can be

employed to obtain the optimal solution.

Lemma4.1: when k=N

(i) p,y (X, ) is a non-increasing function of x,, .

(i) p;y (X, ) is anon-decreasing function of x,, .

(i) yy, (X, ) is a non-increasing function of x,,.
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- * _ T _C * * *
(iv) yy(X;y)=F 1(#)+ﬂm (Pins Pon) -
N

Proof: The optimal y (X,y), Py (X,y)and p,y (X, ) can be obtained by the following

KKT conditions.

0 . . . . .
a;DN = bl - 2"-'11 Pin T Pon (|2,1 + I1,2) - athlN (yN _bl +a, Py — I2,1 pzN)
1N
+ 7Ty al[l_ FlN (y:l - bl +a; pIN - I2,1 p;N )] + |1,2hF2N (XZN - bz +a, p;N - |1,2 pl*N )
- |1,27T2N [1_ FZN (XZN - bz +a, p;N - |1,2 pIN )]_ﬁ”IN + )“;N =0
(4.5)
0 N N « . «
G;DN = bz - 2a2 Pon + Pin (Iz,l + Il,2) + I2,thlN (yN _bl +a, Py — |2,1 pzN)
2N
_7[1N|2,1[1_ FlN (y; _bl +a, p;N - |2,1 p;N )]_ aZhFZN (XN _bz +a, p;N - |1,2 pIN)
+a,7,y [1_ F2N (XN _bz +a, p;N - I1,2 pIN )] _/I;N +/1;.N =0
(4.6)
oy " . "
—=—-hF, (yy —b, +a,p;y —1,1Psn)
. IN\YN 1 1 MIN 21 M2N (4.7)
+ 7y [1- Fyy (y*N —b, +a, pIN - |2,1 p;N )JJ-c=0
Aoy (Pry = Pix) =0 (4.8)
;{’;N (plnrllin - pIN) =0 (4-9)
Zan (Poy = Pon) =0 (4.10)
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/ilN (pg]r\iln - p;N) =0
Zan o s Aan Agy 20
P < Py < PV
min max

p2N S p2N S pZN

Incorporating (4.7) with (4.5) and (4.6), we obtain

b, —2a, p:N + p;N (10 +1,) +1,hF, (X —b, + &, p;N =1, pIN )

- |1,27[2N [1_ FZN (XZN - bz +a, p;N - |1,2 p;N )] +a,C— X;N + I;N =0

bz - 2a2 p;N + pIN (|2,1 + |1,2)_ aZhFZN (XZN - bz +a, p;N - I1,z pIN)

+ a7, [1-F (X —b, + 2, p;N - |1,2 p:N )= |2,1C_12N +/11N =0

az«(4.15) + I, « (4.16)

2 * * * * * *
(2a1a2 - I2,1|1,2 - |1,2) pl + az (Il,z - |2,1) pz - azj'lN + aZJ‘ZN - Il,Zﬂ’SN + I1,2’14N
—-a,b, —1,,b, —aa,c+1,,1,,c=0

Taking the first derivative of (4.17) with respect to x,,, , we obtain

dp;, dp,
(Zalaz - |2,1|1,2 - |12,2)ﬂ+ a, (Il,z - |2,1) deN
2N 2N
+a2 dﬂ'lN _a2 dﬂ“ZN +|12 d2’3N _|12 dﬂ“4N _0
dXZN dsz Y dsz dsz

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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g * (415) - |1,2* (416)

I1,2b2 - aZbl - (3a2|1,2 + a2|2,1) p;N + (2a1a2 + |2,1|1,2 + |12,2) p1*N
- 2a2|1,2hF2N (XZN - bz + az p;N - |1,2 p:N ) + azﬂ’IN - az/f;N - I1,2/1;N + Il,Z;{:lN (4-19)

+ 2a2|1,27Z2N [1_ FZN (XzN - bz +a,Py — |1,2 Pin )] —q,a,C— |2,1|1,2C =0

Taking the first derivative of (4.19) with respect to x,,, ,

(2a1a2 +|1|2 +|12) dplN _az(3|12 +|21) deN +a, dﬂiN —a, diZN _|12 d/13N +I12 dﬂw
dx,, ’ mTdx,, dX,y dX,y " dX,y X,y
. . dp, dp;,
= Zazlz(h +7Z2N)f2N (XzN _bz +a, Py — I2 plN)[1+ a, Pan _|1,2 Pon ]
dx,y dx,
(4.20)

For (i) and (ii) in Lemma 4.1, it is necessary and sufficient to prove that LY <0
X2N

dp,, ) .
and dpﬁ > 0. We consider nine cases.
XZN

Casel: A=Ay =Agy =44y =0

Substituting A;, = A4, = Az = A4y =0 in (4.17) and (4.19), we obtain new (4.18)

and (4.20). After solving them, L2 <0 and APy >0 are obtained, respectively.
Xon Xan

Case2: A, >0 and A4, =4, =4, =0
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From (4.8), we obtain that p,, — pjv* =0 when A, >0.

Taking the first derivative of (4.8) with respect to x,,,

dﬂ;N * max * dp;N * deN
_ . _ ~0 4.21
ax,, (P = Piy’ ) + Ay ax,, Ay ax,, (4.21)

After substituting A4, >0 and A, =4, =4, =0 in (4.17) and (4.19), we solve

the new (4.18) and (4.20) and obtain leﬂgo. In addition, dpﬂ:o is directly

X2N X2N

obtained from (4.21), when A, >0. Hence, we obtain dpAsO and OIIOﬁzo,
X2N X2N

when p,, — p;j* =0.

Case3: A, >0 and A, =4, =4,, =0

Similarly, we obtain that Pz <0 and AP _ 0, when p;, —pp" =0.
dx,, dx,,

Case 4: A, >0 and A, =4, =4, =0
. : dp;y dpoy _ < mex _
Similarly, we obtain that >0 and =0, when p,, —p,n =0.

XZN X2N

Case5: A,, >0 and A, =4, =45, =0
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Similarly, we obtain that % >0 and Pz =0,when p,, —pi' =0.
XZN dXZN

Case6: A, >0, A, >0 and A, =4,, =0

From A, >0 and A,, >0, we obtain that p,, —p;* =0 from (4.8) and

P,y — P =0 from (4.10).

Taking the first derivatives of (4.8) and (4.10) with respect to x,,, , we obtain

dﬂ;N * max * dp;N * deN

_ + = =0 4.22
ax,, (Piy = Py ) + Aoy ax,, A ax,, (4.22)
and
d/lgN * max * dp;N * dp;N

_ A =1 =0 4.23
dx,, (Pan = Pon ) + sy dx, . 3N dx, . ( )

Hence, we obtain that M:O and dpi:o when p;, —p* =0 and
X2N X2N

Poy — P =0.
Case7: A, >0, A,, >0 and A, =4, =0

Case8: 1,, >0, A,y >0 and A, =4,, =0
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Case9: 1,, >0, 4,, >0 and A, =4, =0

The condition that dpy =0 and dpay

X2N X2N

=0 also holds for Cases 7 to 9.

Thus, we prove that p,, (X, ) is @ non-increasing function of x,, and p;, (X,y)

is a non-decreasing function of X, , respectively.

As for (iii) in Lemma 4.1, we take the first derivative of (4.7) with respect to x,,,

dy; +a dp;N —I dp;N)f
21

which is ( . ]
dx,y dX, dx,y

wyn =b +apy —1,,ps)=0 , and then

*

subsequently obtain L <0.
X2N

The property (iv) in Lemma 4.1 is directly obtained from (4.7). 0

As the inventory level of the old product increases, the optimal price of the old
product must be reduced to increase demand for the old product (as in (i) of Lemma 4.1).
This in turn reduces demand for the new product. The optimal order quantity for the new
product must be reduced accordingly (as in (iii) of Lemma 4.1). Reduction in the order
quantity for the new product increases the optimal price for the new product due to our

assumption of I, >1,, (as in (ii) of Lemma 4.1). A closed form for the optimal order

quantity y, (X,,) isobtained from s, (py. P,y) (asin (iv) of Lemma 4.1).

Lemma4.2:
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. * . d * . N d *
(l) (/11,\, _ﬂZN)dp&—‘_(ﬂ’SN _ﬂ”AN) p2N -0

2N d 2N

(i) [+a, Pav ) Py
dX, “dx,,

Proof: The above two equations follow Lemma 4.1, which can be easily obtained by

solving (4.18) and (4.20) under each case. 0

Lemma 4.2 provides the necessary conditions for Theorem 4.2.

Theorem 4.2: The maximum expected profit at Period N,V, (X,,), IS concave with

respect to X, .

Proof: Taking the first derivative of V (X,y) =@y (XoniYns Pan» Poy) With respect to

X,y » We obtain

dv, « \ dpay < dpoy -« dpy
= (b, —2a, py )~ +1 2Ny
5X2N (1 lplN)dXZN 2,1(p1N dXZN Pon dXZN)
. .dp, . dp, . dp,,
+(b, —2a 2N 4 —2 1N
( 2 ZpZN)dsz l,Z(plN dXZN 2N dX2N)
dy dp;, dp, . . «
_h[d))(/N +a, dslN _|2,1 dsm ]FlN (YN _bl +a, Pry _|2,1 pZN)
2N 2N 2N (4_24)
dy, dp;, dp, . . .
+ 7Ty [dle\rlu +a, dXi: _|2,1 dxzz ][1_ FZN(yN _bl +a, Py _|2,1 pZN)]
dp, dp;, . .
_h[1+az Pan _Il,2 Paw ]FzN (XZN _bz +a,; P,y _|1,2 plN)+
dXZN 2N
dp, dp,, . . dy,
+ 7oy [1+a2 dsz _|1,2 dxi: ][1_ FZN (XZN _bz +a,P,y _|1,2 Pin )]_Cdxzr\,:
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By substituting (4.5)-(4.7) in the above equation, Equation (4.24) is reduced to

dv,
X,y

= _hFZN (XZN _bz +a, p;N _I1,2 pIN)"'”zN[l_ F2N (XZN _bz +a, p;N _I1,2 pIN )]

. . (4.25)

g P _r dp,y.
(in =2 ) g = Vo =2 )

d 2N 2N

Using (i) in Lemma 4.2, Equation (4.25) is further simplified as follows:

dv . . * *

OX = _hFZN (XZN - bz +a; Py — |1,2 Pin )+ 7aN [1- Fon (XZN - bz Ta; Py — I1,2 Pin )]
2N

dv » - ; .

OX ) =-hF, (0-Db, +a,py =L, Pin) + 7oL = Fo (0—b, +@, Py =1, Piy)]
2N Xon =0

ST,y

Taking the second derivative of V (X,y) =@y (Xon ;Y Pons Py ) With respect to

X, » We obtain

2 * *
IV mra, P, P

(XzN _bz +a, p;N - I12 pIN )
dx2,, dx,, Xy o '

) . .
The sign of d \2/N is negative, because [1+ a, P _ 1, apyy ] is positive from
2N 2N X2N
(i) in Lemma 4.2. 0
ii)k=1,..,N-1

In order to complete the proof, Theorems 4.3 and 4.4 are shown in the followings:
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Theorem 4.3: Assuming that V,,(X,,,,) is concave with respect to x,,, and

Vk'+1(0) < 7o ien s Ik (X s Yier Pyer P ) 1S jointly concave with respect toy,, p,and p,,

given an inventory level x,, .

Proof: For Period k, J, (X, ; Yk, Pus P, ) 1S developed as follows:

J (X3 Yier Prcr Pa) = @ (X3 Yier P Pay)

Vi =0y +ay Py —12 1 Pak e
ta J.Vk+l(yk -ty ) fi (e )dey + J-Vk+1 (0) fy (e )dey,
Sﬂ?" Y —by+ag Py —l,1 P2k

where t, =b, —a,p, +1,, Py

Hy represents the Hessian Matrix of J, (X,; Y., Py, Po) and its determinant is as

follows:

0%J, 023, 9%,
O°Py 0P 0y, 0P 0Py
0°J, 03, 9%,
Py O 0¥, 0Py

0%J, 023, 9%J,
0Py 0Py OPy Y, O° Pry

det(H,) =

Let Aq represents — (h+ 7, ) f, (y, —b, +1,,p, +2,py) and Byrefers to

—(h+7,,) 5 (X5 —b, +a, Py _Il,z Py ) -

Let Cy represents
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Yic—by+34 Py 13 1 Pak

a J‘.Vk"+l(yk —t,) fy (g4 )de + avk‘+1 ©0) fy (y, —b, +a,py — |2,1 P )

where t, =b, —a,p, +1,, Py

The determinant of Hy is simplified as follows:

_232 +|22,1(Ak +Ck)+a22 Bk _|2,1(A1< +Ck) |2,1 +|1,2 _alIZ,l(Ak +Ck)_a2|l,ZBk
det(H,) =|-1,,(A +C,) (A +Cy) a, (A +Cy)
|2,1 + |1,2 _alIZ,l(Ak +Ck)_a2|1,ZBk al(Ak +Ck) _2a1 +a12 (Ak +Ck)+ Ilz,ZBk

It is obvious that both Axand By are negative. In addition, (Ax+ Cy) is negative from

the assumption that V,, (X,,,,) is concave with respect tox,,,, and V,,,(0) < 7,,.,.
Hence,

The 1° leading principle minor, - 2a, +17, (A, +C,) +a2B, , is negative.

The 2™ leading principle minor,—2a, (A, +C,)+a’B, (A +C,) , is positive.

The 3 leading principle minor, (A +C,)*[4a,a, —(l,, +1,,)* - 2a,B, (a,a, —1,,1,,)],

is negative from the assumption a,,a, >1,, >1,, >0.
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Since the value of the j™ leading principal is either zero or has the sign of (-1)! for all

J (j = 3), the symmetric matrix Hy is negative semi-definite.

Thus, J, (X,; Yis Pucs Py ) 1S jointly concave with respect toy,, p, and p,,

given an inventory level x,, .

Lemma4.3: whenk=1,...N-1

(i) P, (X, )is anon-increasing function of x,, .

(i) p; (X,,) isanon-decreasing function of x,, .

(i) y, (X, ) is a non-increasing function of x,, .

e dpy . . dp,
iv 1)/ (A, — A 2K
( ) (ﬂ'lk 2k ) dX2k ( 3k 4k ) dXZk

=0

W) [l+a, jpzk ~1,, BPug» g
XZk dXZk

[]

Proof: The optimal y, (X, ), Py (X, )and p,. (X,) can be obtained by the following

KKT conditions.
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0 . . . . .
a:)ok =b, —2a,py + Py (I; +1,) —ahF, (y, —b, +a,py — 1,5 P5)
1k
+ e y[1-Fy (y: —-b, +a pl*k — 1, p;k N+ 1,0y (X, —b, +a, p;k -1, p:k) (4.26)
- I1,27T2k [1_ sz (sz - bz +4a, p;k - |1,2 pIk )] - /ffk + /fgk .
Y: —by +ay p;k *|‘2,1 P;k
+oa, Ivk+1(yk b, +a,py — |2,1 Py — &) F ey )de=0
0P _b, 28, + P (s + 1) + 1Ny (]~ by +2,p5, — 1,
o =b, —=2a,p, + Py (15, +1y,) + 1, hF, (Y, — b +a,py =155 P5)
2%
- ﬂlk|2,l[1_ Flk (YE - bl +a p;k - |2,1 p;k )] - athZk (sz - bz +a, p;k - |1,2 p;k)
. . . . 4.27
+a, 7y [1_ sz (sz - bz +a, Py — Il,2 Pk )] - /13k + /14k ( )
y;—bﬁalpl*k—'?,lpzk
- alz,l jvk+1(yk —b, +a,py - |2,1 Py — &y ) ey )de=0
0 . . .
P —hFy, (Y, =0, +a,py =15, Pz)
k
+ 7y [L= Py (Y =By +a,p5 — 1,5 p5)]-¢ (4.28)
)’;*bﬁalpfr"z,lpzk
+a .[Vk+1(yk —b, +a, py _|2,1 Py — &y ) f ey )de=0
ﬂ;k(p;k - pr)=0 (4.29)
Aoy (PR = Py ) =0 (4.30)
ﬂ';k (p;k - p;:(ax) =0 (431)
A (P3" = Py ) =0 (4.32)
akr Ao A r A 2 0 (4.33)
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IN

P < Py < PR (4.39)

min

P < Py < Pac (4.35)
Incorporating (4.28) with (4.26) and (4.27), we obtain (4.15) and (4.16).
Using the proofs of Lemma 4.1, five properties of Lemma 4.3 can be proved. O
Theorem 4.4: The maximum expected profit, V, (X,,), is concave with respect to x,, .

Proof: The equation (4.2) is developed as follows:

Vi (X)) = @, (X5 y:’ p;k’ p;k) _Cy:

y:—bﬁalpfk—'z,m;k
to ij+1(y: —-b, +a, p;k - |2,1 p;k — &) fy (e )dey,
o
o
ta J-Vk+l (0) fy (g4 )dey,

N N N
Y —by+ay Prk =21 Pak

Taking the first derivative of V, (x,, ) with respectto x,,,we obtain

dv, (x) _ do; __dy;
dx,, dx,, dx,,

. N .V —btan—l o (4.36)
dyk dplk dp2k Vi —bi+apy ||2,1p2 . . .

[dX +a; dx - |2,1 dx 1 J.Vk+l(yk —b, +a,p, - I2,1 P, —&y) Fiy (& )dey,
2k 2k 2k min

€1k

+a

By substituting (4.15)-(4.17) in the equation, Equation (4.36) is simplified as follows:
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dv * * y .
OX - = _hFZk (sz - bz T8, Py — |1,2 plk) + o [1_ sz (sz - bz T8, Py — |1,2 P )]
2k

av,

=-hF, (0-b, +a, p;k =1, p;k) + 7 [l-Fy (0-b, +a, p;k =1, pIk )]

OX gy o0

STy,

Taking the second derivative of V, (X,,) with respect to X, we obtain

d?v dp, dp; . .
dX—zzkk == (h + Ty )[1+ a, dx:: - |1,2 dxii ] f2k (sz - bz +a, Py — |1,2 plk)
_ a2, . _ dp, dpy+ . ..
The sign of Zk Is negative, because [1+a, P _ l,, Pa ] is positive from
dX 2k 2k
Lemma 4.3.

Hence, the joint concavity of J, (X,.; VY., Py, P,) With respect toy,, p, and

P, given an inventory level x,, is shown. In addition, V, (X,,) is proved to be concave

with respect to x,, .

4.3.3 Special cases

In this section, we discuss several special cases, where the optimal solution can be

easily obtained.

i ) |2,1: |1'2: 0
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The condition 1;,= 0 implies no downward substitution. From the assumption 1, ,>
I21, I22=1l12= 0. Under this condition, the optimal prices and the optimal order quantity

can be obtained by the Chew et al. (2005a) algorithm.

Examples of l,; = l;,= 0 can be found in practice. Due to fast developments in
technologies, new products are significantly improved, compared with existing products in
terms of performance, design, etc. Thus, the customers who are interested in new products
are more performance oriented and thus, are not affected by the pricing of existing
products. Similarly, the customers who are more price sensitive cannot afford to purchase

new products and focus on old products only.

i ) |2,1: 0

The condition 1,3 = 0 implies no upward substitution: only the customers who
initially plan to purchase the new product may purchase the old product, instead. The
optimal prices and the optimal order quantity are obtained by the proposed solution

procedure with I,; = 0.

||| ) |2,1: |1,2

The condition I,; = l;, shows that the rate of the upward substitution equals to that
of the downward substitution. This is a special case in a full substitution problem, which

includes both the upward and the downward substitution.
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Under this condition, a closed form for p, is obtained from (4.17) under Case

. a,b +1,b, +aa,c-15.c

1,p, = . . Given the closed form for p,,, the optimal solution
(2a1a2 - 2'2,1)

can be obtained efficiently. Note that the optimal p;, is independent of x,, . This is due

to the balance between the upward and the downward substitution.

4.4 Numerical study for a product with a two period lifetime

This study successfully considers demand transfers between new and old products.
Previous research determines the prices and the order quantity by assuming l;,=1,1=0
(Chew et al., 2005a). In this numerical study, we first compute the total expected profit
increase by employing the proposed method, compared with the conventional method
(Chew et al., 2005a). Furthermore, we investigate the effects of the parameter changes on
the profit obtained from the substitution effect. Finally, we investigate whether the initial
inventory (the initial state) significantly affects the average profit per period as the number

of periods increases.

4.4.1 Experimental design

In this numerical study, demands for products of age i (i = 1, 2) at Period k are price

sensitive and have an additive stochastic demand function, t;, = s, (Py, Poy ) + & » Where
i (Py, P, ) is a linear function of the regular price p,, and the discounted price p,, .

The noise variable ¢, follows a truncated normal distribution which is bounded by
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min max

ey =-30, and &~ =30, , where o, is the standard deviation of the normal

distribution.

We are particularly interested in the effects of transfer rates on the profit increase
obtained from the proposed method. Thus, I,; and I, are set to two different levels, as

provided in Table 4.1, while the condition |, >1,, is satisfied.

Table 4.1 Variables in the numerical study

Parameters Low Level (-) High Level (+)
l12 2 3
21 1 2

The holding cost h is a constant value in each period as well as the purchasing cost c.
The values of the penalty cost 7z and 7, are also provided in Table 4.2, while the condition

7, > 7, Is satisfied.

The price sensitivity parameters, a; and ap, are provided in Table 4.2, where the

condition a;,a, >1,, >1,, >0 isalways satisfied.

Table 4.2  Constants in the numerical study

Parameters Values Parameters Values
b, 200 b, 100
ai 5 a 5
o1 20 o> 20
m 20 b 15
h 1 c 10
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4.4.2 Profit increase from the substitution effect

The effects of demand transfers between new and old products are studied by

comparing the expected profit obtained under 12> 1,1 >0 with l3,=1,,=0.

As shown in Table 4.3, the expected profit obtained under 132> 1,5 > 0 is always
higher. As the transfer rates, I, ,and/or |, 1, increase, the profit increase becomes greater.
Hence, the effects of demand transfers between new and old products should be seriously

considered.

Table 4.3 Percentage profit increase by the substitution effect with xy= 80

(I12, lp1) l1o l,; % increase in profit
3.2) ; n 51.37%
(3.1) N ; 30.65%
2.2) i " 26.45%
@2.1) i i 10.08%

(profit when I ,> |5, > 0— profit when |, , = l,,=0)
Profit when |1’2 = |2'1 =0

* 0% increase in profit = *100%

4.4.3 Sensitivity analysis of the optimal prices

The changes in the parameters of aj, ay, l1» and l,; have different effects on the
optimal prices p; and p,. As a; or a;increases by one unit given the other parameters

unchanged, the optimal prices of both new and old products decrease, compared with the
base scenario, as shown in Table 4.4. Increases in a; (az) imply that demand for the new
(old) product becomes more sensitive to the price of the new (old) product and this will

reduce the price of the new (old) product. Consequently, demand for the old (hew) product
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decreases and in order to compensate for this reduction in demand for the old (new)

product, the price of the old (new) product must also be reduced. As a result, both p;
and p, decrease. In contrast, if I;, or Ip; increases by one unit, given the other

parameters unchanged, both p; and p, consistently increase.

Table 4.4 Optimal solutions under different price sensitivity parameters with Xz = 80

Legend a1 a, l1o 21 p, P, Profit
Base 5 5 3 2 38 29 3668.5
a1 671 unchanged unchanged unchanged 311 251 -23.36%

a;  unchanged 671 unchanged unchanged 350 23] -15.85%
li,  unchanged unchanged 47 unchanged 457 3971 +31.84% 7
l,;  unchanged unchanged unchanged 37 451 341 +27.75% 1

It is important to obtain accurate estimates of the parameters a;, a,, 112 and I, 1, which
represent the customer behaviors. Table 4.4 also shows that the total profit is sensitive to
these parameter values, and thus, even a slight misestimation of the parameters will result

in a highly erroneous profit estimate.

As shown in Figure 4.1, the difference in the prices (p, - p,) increases as the

inventory level of the old product increases. As the inventory level of the old product
increases, the optimal price for the old product decreases. Consequently, demand for the
old product increases and demand for the new product decreases due to demand transfers.

Thus, the optimal order quantity for the new product must be reduced and the optimal

price for the new product increases due to our assumption of 1, >1,,. Since p;

increases and p, decreases, the difference in the prices becomes greater.
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16 - —&— Base

pl* — p2%

20 40 60 80 100 120

Inventory level

Figure 4.1 p, - p, under different inventory levels

4.4.4 Effect of initial inventory

Figure 4.2 shows that the effect of the initial inventory level on the average profit fast
decreases as the number of periods increases. The average profit is not greatly affected by

the initial inventory level as the number of periods exceeds 3.

Due to this fast convergence of the average profit, the profit for a finite horizon
problem with a large number of periods can be approximated by the profit for an infinite
horizon problem. For the infinite horizon problem, the average profit is computed by the

value iteration method, regardless of the initial inventory level.
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2800. 00

Average profit per period

1800. 00
10 40 70 100 130

Initial inventory level

Figure 4.2  Average profit under different N, given l;,=2and ;=2

4.5 Pricing and ordering decisions for a product withan M > 3

period lifetime

In this section, we consider a general problem, where the lifetime of a perishable

product is M Periods (M > 3).

A single period problem is first considered. The optimal order quantity y~ and the

optimal prices for products of different ages p, (i = 1,...,M) are determined for the

objective of maximizing the expected profit, @(X,,..., Xy Y, Pyseeer Py ) -

Lemma 4.4: The expected revenue R(p,,.,p,) IS concave with respect to

P., Pyyeey Py UNder the condition a; > 1, + 1+, + 1.

i+1,i

Proof: Lemma 4.4 is proven by the definition of concavity:

-116 -



Chapter 4 Optimal pricing and ordering decisions for perishable products

Sincea; > I;,,; +1; +1;;,, +1;;,, we obtain

i+1,i ii+

RIAP,, + (L= A) Pyyseees APy + L= A) Py 1= AR[ Py ss Pr ] = @ = A)RIPyy 1oes Py ]

= Z[ﬂ’pm + (l_ 2’) piy]*[ﬂ'/uix + (1_ ﬂ’)/’hy] - /IZ pix/uix - (l_ ﬂ')ﬂ'z piy/uiy

i=1

= A~ /1)2[ Pix (/uiy — i)+ Piy (tty — Hiy )]
= ﬁ(l—/l)Z[( Pix — piy)*(,uiy — Hi)]
= l(l_i)Z(pix = Piy) *[a (Pix = Piy) + s (Piasy = Pian) +liai (Picsiy = Picai)]

ML+ L
2 A=A (B, = py) = (Pras = Prs, )T

>0

Hence, the expected revenue R(p,,..., Py, ) IS concave with respectto p,, p,,..., Py - [

The assumption a, > 1|

i+1,i

+1,_y; + 1, + 1, implies the following: Equation (4.1)

can be rewritten from the point of the price differences, which determine demand transfers

from classes i-1 and i+1 to class i.
ti=b =P + 1 (P — P+ 1y (P — Pi) + &

where a; =s; +1,,,; +1,_;,fori=1,..., M

i+1,i

Since a; =s; +1,,,; +I,4; , the condition s >, ,+1I;, holds to ensure

a >l +I

i i+1i i-Li

+1;,., +1;;,. Even if such conditions are not satisfied, Lemma 4.4 still

ii+l i,

i+1,i !

holds under the condition I.

i+l

fori=1,..., M.
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Lemma 4.5: The expected cost C(X,,....Xy Y, Py, Py ) 1S jOintly convex with respect

toyand p, fori=1,..., M.

Proof: The joint convexity C(X,,...Xy;Y, Py Py) With respect to y and p; is
obtained by the convexity of L,(x;;t;) and the linearity of the demand functions, as
follows:

C Xy Xt Y5 Proeess P ) = 20 L (X5)

i=1

C(sz"’ Xy ;ﬂ'ylx + (1_ﬂ)y1yvﬁp1x + (1_1) ply""'ﬂ“pr + (1_/1)pMy)
= AC(Xg ey Xy 5 Yas Prgreees Pan) = Q= A)C(Xy 00 Xy 3 Yay s Pryseees Poyy ) <0

Theorem 4.5: The expected profit ¢(X,,..., Xy Y, Py,-» Py ) 1S jointly concave with

respectto p,, p,,..., py andy.

Proof: The expected revenue R(p,,..., p,) IS concave with respect t0 p,, P,y Py »
while the expected cost C(X,,..., Xy Y, Pyye-s Py ) 1S jOintly convex with respect to y and

p, by Lemma 4.5. The purchasing cost is concave with respect to y. Thus, the expected

profit @(X,,..., Xy ;Y Pyse-s Py ) 1S jOintly concave with respectto p,, p,,..., py andy. (]

Thus, the optimal solution p;, p,.,..., p,, andy for a singe period problem can be

obtained by an efficient searching algorithm.

A multiple period problem for products of M different ages is formulated as a

stochastic dynamic programming model. However, the optimal solution for this problem
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is hard to obtain due to the overwhelming number of states xij. Hence, a heuristic based on
the optimal single period solution is applied to determine the prices for products of M
different ages and the order quantity for the new product. One possible implementation of
this heuristic is as follows: At the beginning of the period, given the inventory levels of
the old products, the optimal order quantity for the new product and the optimal prices for
both new and old products are computed for this period. After the realization of actual
demand for this period, the remaining inventories are carried over to the next period where
all of them will age by one period. We carry out this procedure repeatedly at the beginning

of every period to compute the order quantity for the new product and the product prices.

4.6 Summary

In this study, we determine the optimal prices for products of different ages and the
optimal order quantity for the new product, with the objective of maximizing the total
profits over the finite number of periods. The problem for a product with lifetime of two
periods is first analyzed. Given the inventory level of the old product, the expected profit
is jointly concave with respect to the order quantity for the new product and the product
prices (the price of the new product and the discounted price of the old product). This
concavity enables an efficient algorithm to be employed to obtain the optimal solution.
Furthermore, several optimality properties are obtained. The computational results show
that the total profit significantly increases when demand transfers between products of
different ages are considered. As the loss rates increase, the optimal prices for both new
and old products decrease. In addition, the optimal prices increase with increase of the

transfer rates. For the product with lifetime of longer than two periods, the optimal prices
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for products of different ages and the optimal order quantity for the new product are
obtained for a single period problem. Based on the optimal single period solution, we

propose a heuristic for a multiple period problem.
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decisions for perishable products

Chapter 5 jointly determines the price and the inventory allocation for a perishable
product with a limited useful lifetime. We assume that the price of the product will
increase as the time at which it perishes approaches to, as in the airline industry. To
maximize the expected revenue, a discrete time dynamic programming model is
developed to obtain the optimal prices and the optimal inventory allocations for the
product with a two period lifetime. Three heuristics are then proposed when the lifetime is
longer than two periods. The computational results show that the expected revenues from
the proposed heuristics are very close to that from the optimal solution. These results are
extended to (i) the case in which the price for the product always decreases; and (ii) the

case in which the price for the product first increases and later decreases.

5.1 Introduction

There has been very little published research on joint capacity allocation and pricing
decisions in the RM literature. Traditional approaches have assumed that prices are fixed
and solved for the optimal allocation quantities. For example, airlines charge different
prices for identical seats on the same flight. Given the fixed prices, the booking limit for

each fare class is determined and implemented in the airline reservation systems. Effective
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application of fare class booking limits allows airlines to generate incremental revenues
(Belobaba, 1989). However, the prices charged for different fare classes would influence
demand and should be considered as decision variables, not fixed quantities. The
integration of price and inventory decisions should receive more attention than it deserves

(Mcgill and van Ryzin, 1999).

In this chapter, we formulate a discrete time dynamic programming model to
determine the price and the capacity allocation for a perishable product within a fixed
capacity. A periodic review policy is used. The price for the product is assumed to
increase as the time at which the product will perish approaches. Demand for the product
is a linear function of the price. At the beginning of each period, given the inventory level
of the product, the optimal price and the optimal inventory allocation are determined for

the objective of maximizing the expected revenue.

The proposed model makes an assumption that the prices will increase as the time
approaches, as in the airline industry. Similar assumptions apply to rooms at hotels, cabins
on cruise liners and cars at rental agencies (Weatherford, 1992 and Mcgill and van Ryzin,
1999). In order to make our problem more general, this assumption will be relaxed in

Section 5.5.

We place the problem formulation of this chapter in the context of the taxonomy of
RM problems developed by Weatherford and Bodily (1992). Our problem formulation is
described as an A1-B1-C3-D1-En-F3-G1-H1-11-J1-K1-L1-M2-N3 PRAM problem. In
other words, it has discrete resource, fixed capacity, prices that are set jointly with the

allocation decision, buildup willingness to pay (relaxed in the extension), as many
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discount price classes as there are prices, random and independent reservation demand,
certain show-up of discount and full-price reservations, lost turned-down reservation, no
group reservation and no diversion or displacement, no bumping procedure (there is no

overbooking), effectively nested asset control, and a dynamic decision rule.

The rest of this chapter is organized as follows: In Section 5.2, the assumptions and
notation are provided. A discrete time dynamic programming model is developed for a
perishable product with lifetime of two or more periods. In Section 5.3, a product with a
two period lifetime is first considered. The optimal prices and the optimal inventory
allocations are obtained. For the product with the lifetime longer than two periods, three
heuristics are proposed to determine the prices and the inventory allocations. The
computational results are presented in Section 5.4. Two different extensions are discussed

in Section 5.5.

5.2 Problem formulation

We consider a perishable product with an M period lifetime, where M >2. Let
index i = 1,..., M denotes the ages of the products. A periodic review policy is assumed.
The initial inventory level Q, ( e.g. seat capacity in an airplane), is given at the beginning
of Period 1. No replenishment is allowed throughout the lifetime. At Period i (i = 1,...,M),

only the product of age i is sold. The price for the product at Period i is represented by p; .
Demand for the product at Period i is denoted by t;, following a stochastic additive

demand function t; = u(p;,)+¢;, fori=1,..., M.
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4(p;) is mean demand at Period i and u(p;)=b, —a,p,, where a,,b,>0. & Iis
an i.i.d. random variable with a known probability density function f,(g;) and is

bounded in [¢™,&™]. In addition, E(s;) =0, where b, >—-&™ .

The additional notation employed in this chapter is as follows:

Si = inventory assigned at Period i
Xi = inventory level at the beginning of Period i, x, =Q
a = discounted factor per period
H H H H min max max bi +gimin
p, is confined to the finite interval [p,™", p;""] where p™ < " . The

upper bound p™ prevents negative demands. Moreover, price intervals at different

periods are non overlapping with p, <...< py,.
If t, >S,, the excessive demand is lost.

The dynamic programming model is developed to compute the expected revenue

over M periods.

V. (x;), the maximum expected revenue for the remaining periods when starting at

Period i and with the inventory X;, is computed as follows:

Vi(x) = '\’{l%X[Q (X5 Pir S;) + aE(Vy,, (Xi,0)]
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where ¢, (x;; p;,S;) represents the expected revenue at Period i, p,E[min(t;,S;)].

Xi =[X —S; +(S; —t;)"] is the recursive function for the inventory level.

X; and V,(x;) are computed recursively backward in time, starting from Period M

to Period 1. The boundary conditionV,, (x,,) = Max[e,, (Xy:Py)] is the maximum
Pm

expected revenue at Period M for a given x, , where S,, =x, . Conversely,

Vl(xl)zMaslx[qol(xl;pl,Sl)+aEV2[(x2)] is the maximum expected revenue over M
P1o1

periods when the initial inventory at Period 1 is Q, i.e.,x, =Q.

5.3 Joint pricing and inventory allocation decisions

In this section, we first consider a product with a two period lifetime. The optimal
prices and the optimal inventory allocations are obtained. After that, we consider a more

general problem, where the lifetime of the product is longer than two periods.

5.3.1 When the lifetime of the product is two periods

The optimal prices and the optimal inventory allocation are obtained by solving the
dynamic programming model developed in Section 5.2 when M = 2. We start from the last

period and employ the backward recursive induction.

At Period 2, the noise variable &, is assumed to follow an IFR distribution (has an

increasing hazard rate), where the hazard rate A,(e,) is defined by _fa(z) . The
o 1-F,(&,)
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unsold products at the end of the last period have no salvage value. The optimal price p,

satisfies the following optimality properties:

Lemma 5.1: At Period 2,

0] The expected revenue J,(X,; p,) Is concave with respect to p, for a given

X, .

(ii) ~ The optimal price p, is a non-increasing function of x, under the condition

1
that 4,(s,) 2 —.
aZ 2

(i) The maximum expected revenue V,(X,) isconcave with respectto X,.

(iv)  The maximum expected revenue V,(x,) monotone increases with respect to
X, .
Proof: See the Appendix. O

The concavity of J,(x,;p,) with respect to p, for a given x, enables efficient

algorithms such as gradient search to be employed to obtain p,.

Let V,(x,) denote the first order derivative of V,(x,) with respect to x, and
J,(x;p,,S;) stands for the expected revenue over two periods. Once p, and V,(x,)

are obtained, the following theorem computes the optimal inventory allocation S; to
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maximize J,(X;; p;,S,).

Theorem 5.1: For a given p,, there exists a unique S; that maximizes the expected
revenue J,(X;; p;,S;)-

Proof: J,(X;; p;,S;) isexpanded as follows:

31045 P, Sy) = (X5 Py, Sy) + @BV, (%,)]

=pEM) - [ —ap +5-S)fi(a)ds

Sy—by+aypy
S, b +a;py Emax
+ol  [V,@Q-b+ap-g)fi(a)da+  [V,(Q-S)fi(s)ds]
Emin Sp—by+aypy

The first order derivative of J,(x,;p,,S;) with respect to S, is obtained as

follows.

o, ™

6_31 = 51—b1+a1r11[ P, =V, (Q-S)If,(&)de,

From Lemma 5.1, V,(X,) is monotone increasing with respect to Xx,. In addition,
V,(0)=0 can be obtained from (A12). Hence there exists a unique S, that satisfies

p, -V,(Q—-S,)=0 , given a particular p,. O

From Theorem 5.1, the optimal allocation S, is unique for a given p,. We assume
that only a finite set of prices is applicable (in practice, prices usually take discrete values

in a bounded interval). A procedure to compute the optimal p, and S; is provided as
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follows:

min maX]

(1) Compute S; that maximizes J,(x,;p,,S,) forevery p, in [p™,p;

(2) Select p, and S, with the maximum J,(x,;;p;,S;)-

5.3.2 Proposed heuristics for a product with the lifetime longer than two

periods

When the lifetime of the product is longer than two periods, it is hard to efficiently
obtain the optimal prices and the optimal inventory allocation from the dynamic

programming model. As the concavity of J,(X;;p,,S;) with respect to S, does not

always hold, the optimal solutions have to be computed through extensive enumerations.
Thus, the solution time may be too long to be of practical interest. To overcome this

problem, three heuristics are proposed to compute the prices and the inventory allocations.

5.3.2.1 Heuristic 1 (H1)

In order to develop a simple heuristics, we first assume that the inventory allocated to
a period is not used or carried forward to the next period even if there are excess of
inventory. Under the assumption, the revenue at each period is solely determined by the
amount of inventory allocation to the period and its prices. Thus, the problem is to
determine how much inventory to be allocated to each period and how to price it. The

optimal inventory allocation and the optimal price at each period can be obtained from
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Lemma 5.1. Denote R, (x,) as the optimal revenue for a given inventory level x, at

Period k. The solution approach is as follows:

(1) Compute R,(x,) foreach x, =1,...Qandk=1,...,M.

M M
(2) Solve Max D R,(x,) subjectto) x, =Q and the solution x, (k=1,...,M)

L] k=1

is the inventory allocation S, for the corresponding period.

(3) Compute the optimal price p, (k = 1,...,M) for the given inventory allocation

S, from Lemma5.1.

To get a better solution, we can implement this heuristics on a rolling horizon basis;
after the end of each period when demand has been realized, given the known remaining
inventory level, the above mathematical programming is solved again to obtain the

updated decisions of the price and the inventory allocation for the remaining periods.

5.3.2.2 Heuristic 2 (H2)

Drawing on insights from a two period problem analyzed in Section 5.3.1, a simple
heuristics is provided to determine the allocation and the price at each period. The
algorithm starts from the last period, because the customers in the last period will pay
higher price and these demands should be satisfied with higher priority. The inventory
allocation and the price for Period M, S,, and p,,, are first computed by solving a two

period problem for Periods M-1 and M. With the remaining capacity Q-S,,, the

inventory allocation and the price for Period M-1 are then determined again by solving a
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two period problem for Periods M-2 and M-1. Similarly, Sy and pg for Period k, k =
M-2,...,3 are computed by solving a two period problem for Periods k-1 and k. Finally, S;,

Sy, p1 and p; are simultaneously determined.

5.3.2.3 Heuristic 3 (H3)

We propose a heuristics to determine the inventory allocation for Period i (i =1, ...,

M). Denote B/ as the optimal protection level for Period j from Period i and G,(.) as
the cumulative density function for t,, where t, =4, (p;)+¢&, and & has a known

probability density function f,(¢;).

At the beginning of Period i (i = 1,..., M), we first obtain the prices for the remaining

M —i + 1 periods from H2, where p, <...< p,,.Forthe given pricesp; ,..., p,,,the

inventory allocation at Period i is computed as follows:

1) Start from j=M

Compute B/ that satisfies B/ :G;l[l—&] forall i< j.

J
Similarly, for j=M —1,...,i+1, compute B/ forall i< j.
2 From B/ obtained in (1), the inventory allocation for Period i is obtained

by S, =Max(0,Q - isii).

j=i+l
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After the end of each period when demand has been realized, given the known
remaining inventory, the above procedure is repeated to determine the price and the

inventory allocation for the next period.

The proposed methodology is motivated by the EMSR method (Belobaba, 1989).
However, in the EMSR method, the price at each period is assumed to be known, but in

our heuristics, the price is dynamically obtained from H2 at the beginning of each period.

All of the three proposed heuristics take account actual demands and dynamically
update the pricing and inventory decision over the lifetime of the product. This may

improve the company’s revenue significantly.

5.4 Performance analysis of proposed heuristics

In this section, we compute the expected revenue from the proposed heuristics and
the maximum expected revenue from the dynamic programming model. The comparison
on the expected revenue is provided to study the performance of the proposed heuristics.
However, the computation time of the dynamic programming model increases
significantly with an increase of the product’s lifetime M, since enumerations are required
for obtaining the maximum expected revenue when M > 3. In order to examine (measure)

the performance of the proposed heuristics for a large M, an upper bound for V,(Q) is

also computed in Section 5.4.3 and compared with the maximum expected revenue.
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5.4.1 Experimental design

In this numerical study, demand at Period i is price-sensitive and has an additive
stochastic demand function, i.e.,t, = u(p,) +¢;, where u(p,)=b, —a,p, is assumed to

be a linear function of the discounted price p; and the noise variable & follows a truncated

max

Normal distribution which is bounded by &™ =-3c,and&™ =30,, where o;is the

standard deviation of the Normal distribution.

We are particularly interested in the effects of demand variability on the revenue
increase. Thus, o; is set to different levels, referring to different levels of demand

variability.

Table 5.1 summarizes the experimental variables and their respective values used in

this study. Seven constants and their respective values are also provided in Table 5.2.

Table 5.1 Variables in the numerical study

Parameters Low level (-)  High Level (+)
o1 0.1* by 0.2* by
b7 0.1* b, 0.2* b,
03 0.1* b3 0.2* b3
Q 20 30

Table 5.2 Constants in the numerical study

Parameters Values Parameters Values
ba 20 a1 4
b, 20 a 2
b3 20 as 1
M 3
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For each scenario, the numerical experiments are replicated 100 times and the
expected revenues under the three proposed heuristics are computed. The Common

Random Number technique is employed to synchronize the results.

5.4.2 Expected revenue from dynamic programming and proposed

heuristics

The performance of the proposed heuristics is measured by comparing the expected
revenue obtained from the proposed heuristics with that from the dynamic programming

model.

As shown in Table 5.3, the expected revenues from the proposed heuristics are close
to that from the dynamic programming model. The difference in the expected revenue
between the heuristics and the dynamic programming model is within 4% except for the
high level of o3. A statistical analysis is performed and no significant difference among

the performance of the heuristics is observed.

Table 5.3 Expected revenue from dynamic programming and proposed heuristics
when Q =30

Maximum revenue from Revenue from Revenue from Revenue from

(o1, 02, 03)  dynamic programming H1 H2 H3
(- - -) 171.36 170.14 170.62 170.8
(-~ %) 167.34 157.37 158.37 158.33
-+, -) 167.95 162.5 164.23 164.25
(-,+,%) 162.85 152.27 151.85 149.74
(+,--) 168.22 164.34 163.62 165.94
(+,-,1) 162.83 157.3 157.96 157.41
(+,+,7) 163.49 159.13 160.44 160.44
(+,+,4) 157.34 151.77 150.44 149.71
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5.4.3 Upper bound for the maximum expected revenue

An upper bound V' for the maximum expected revenue V,(Q) is computed as

follows:

(1) Compute R'(x,) foreach x, =1,..., b,—a,p™ +&™ andi=1,..., M.

(2)  The optimal inventory level x; for Period i (i = 1,..., M) is obtained by

Max{ R; (x,)].

for all x;

@ V=D AMadR; (X))

In the above, an M period problem is reduced to M independent newsvendor

problems and it is obvious that V"7, the sum of the maximum expected revenues among M

periods, is strictly greater than V,(Q) and ix, is never worse than Q.
i=1

As the demand variability increases, the difference between the maximum expected
revenue from the dynamic programming model and the upper bound increases, as shown
in Table 5.4. We also observe that this difference decreases as Q increases. In practice (as
in the airline seat allocation), reasonably large values for Q are experienced. For such
higher values of Q, the upper bound obtained in this study is reasonably close to the
maximum expected revenue from the dynamic programming model. Hence, this upper

bound can be effectively applied to analyze the performance of heuristics solutions.
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Table 5.4 Comparisons between V,(Q) and V"

Q=30 Q=20
(01, 02, %) % difference in % difference in
Vi(Q) VP revenue” vi@Q)  vvP revenue”

(-,--) 171.36 174.95 2.1% 150.75 174.95 13.8%
(-, - +) 167.34 175.02 4.4% 140.2 175.02 19.9%
-+, ) 167.95 174.93 4.0% 142.3 174.93 18.7%
(-,+,+) 162.85 175 6.9% 135.6 175 22.5%
(+,-,-) 168.22 174.97 3.9% 150.08 174.97 14.2%
(+,-,%) 162.83 175.03 7.0% 140.68 175.03 19.6%
(+,+,-) 163.49 174.95 6.6% 140.81 174.95 19.5%
(+,+,%) 157.34 175.01 10.1% 132.62 175.01 24.2%

(the upper bound - the maximum revenue)
the upper bound

*100%

*differencein revenue =

5.5 Extensions

The model developed in Section 5.3 can be applied to the airline industry, where
prices for tickets typically rise as the flight time approaches to. However, this clearly does
not apply in all circumstances of price changes, e.g., (i) monotone markdown prices for
fashion apparel, which perishes when the appropriate season is passed; (ii) price for the
product first increases and later decreases, which following an increase-decrease pattern.
For example, a food product for a special holiday; a fraction of the customers will be
willing to pay a higher price closer to the holiday. This behavior disappears immediately

after the target day.
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5.5.1 Markdown prices

In the fashion industry, consumers are unwilling to pay high prices toward the end of
the season because they will enjoy the product for a short period of time. Hence, the
companies often employ successive markdowns to sell fashion apparel which perishes
when the appropriate season is passed. The similar examples can be found in the

electronic industry.

Bitran and Mondschein (1997) considered a periodic pricing review policy where the
prices were revised only at a finite set of times and were never allowed to rise. This policy
can be applied for seasonal products in the retailing industry, which are successively
discounted during the season. The demand distribution was assumed to be Poisson. The
authors used empirical analysis to develop conjecture as to the structure of the optimal

policy and the optimal revenue but no theoretical results are presented.

Recently, Chew et al. (2005a) developed a discrete time dynamic programming
model for perishable products. Under the assumption of “alternative” source, the optimal
expected profit is concave with respect to the inventory level. From this property, they
compute the optimal expected profit efficiently and employ this value as an upper bound
for the optimal expected profit under lost sales. The computational results of Chew et al.
(2005a) show that the ratio of the optimal expected profit under lost sales to the one under
“alternative” source, is between 91% and 97% under different levels of demand

variability.
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5.5.2 Price follows an increase-decrease pattern

In this section, we formulate a discrete programming model to determine the price
and the inventory allocation for a perishable product. A periodic review policy is used.
The price for the product is assumed to first increase and later decrease, following an
increase-decrease pattern. Demand for the product is price sensitive. At the beginning of
each period, given the inventory of the product, the optimal price and the optimal

allocation are determined for the objective of maximizing the total revenue.

The proposed model stems from many real problems in industries. For example,
prices of a product for a specified holiday will follow an increase-decrease pattern.
Because customers are willing to pay a higher price closer to the holiday, continuing
lower prices may hurt potential revenues. Thus, retailer will employ higher prices. After
the holiday, the retailer employs the discounted prices to attract the customers and then
reduce the inventory. Consequently, markup and markdown prices are mixed in the selling
periods. This price pattern can also be seen in the airline industry, which implies a cheaper

fare at the last period.

Customers will hardly be willing to buy a product whose price oscillates, from their
point of view, randomly over the season (Bitran and Mondschein, 1997). Thus, we assume

that only one switch is employed in the selling periods.

Having one switch among the prices makes the proposed model more practical.
Compared with the previous models which allows to move the price in one direction only

(either markup or markdown), the proposed model permits price to move in both
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directions. This gives management flexibility to obtain the higher revenues. If only
markdown policy is allowed, once a higher price is dumped, it will no longer be offered

even if the product is being sold successfully.

This pricing pattern has also been considered for new products introduction (Dolan
and Jeuland 1981; Jeuland and Dolan 1982; and Kalish 1983). Kalish and Sen’s (1986)
intuitive explanation for such pricing pattern is that if early adopters have a strong
positive effect on late adopters, a low introductory price should encourage them to adopt
this product. Once a product is established, the rises in price are attributed to strong sales.
Subsequently, when demand saturates and begins to decrease, the price is also decreased
in order to increase the sales and reduce the remaining inventories. Hence, the prices for

the new product first increase and later decrease over the lifetime of the product.

Under the above mentioned pattern, it is more profitable to reserve enough
inventories of the new product for future customers (late adopters) who will pay higher
price. Thus, the price and the capacity allocation for the products at each period must be

simultaneously determined in order to maximize the total revenue over the selling periods.

5.5.2.1 Dynamic programming model

We consider a perishable product with an M period lifetime. Let i = 1,...,M denote
the ages of the product. At Period i (i = 1,...,M), only the product of age i is sold. The
price for the product increases during the first R periods and then decreases in the
remaining M - R periods. Hence, for the first R —1 periods, some capacities have to be

reserved for the future customers who will pay higher price. During the remaining M — R+
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1 periods, older products will be offered at discounted prices and the capacities will not be

reserved, which implies that S, =x, wheni=R,...,M.

b, + eimi”
a.

p, is confined to the finite interval [p/™, p™] where p™ <

. The

upper bound p™ prevents negative demands. We also assume that p{™ < p7y for

j=L..,R-1and pi™ <pj; for j=R,..,M-1.
If t >S, ,the excessive demand is lost.

The dynamic programming model is developed to compute the expected revenue

over M periods.

V,(x;), the maximum expected revenue for the remaining periods when starting at

Period i and with the inventory x, is computed as follows:
Vi(x) = M%X[Wi (Xi5 P;is S;) + aE (V1 (%i.0)]
where ¢, (x;; p;,S;) represents the expected revenue at Period i.

p;, E[min(t;, S;)] i<M
p; E[min(t;, x;)] i2M +1

(Di(xi;pivsi):{

The recursive function for the inventory level x; is shown as follows:
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w - [Xi =S +(S; -t)"] <M
" Ix -t ] i>M +1

We denote J;(X;; p;,S;) asthe expected revenue over the last i periods.
Ji (%3 i, S) = o, (X5 pi, Si) + BV, [(Xi,0)]

Note that S, =x; when i =R,...,M. Hence, ¢,(x;;p;,S;) and J;(x;;p;,S;) can

be simplified and written as ¢.(x;; p,) and J,(x;; p;) respectively, fori=R,...,M.

X; and V,(x;) are computed recursively backward in time, starting from Period M

to Period 1. The boundary condition V,, (X, )= Max[e,, (X,,; Py )] is the maximum
Pwm

expected revenue at Period M for a given x,, , where S, =X, . Conversely,

Vl(xl)zMaslx[gol(xl;pl,Sl)+aE(\/2(x2))] is the maximum expected revenue over M
P19t

periods when the initial inventory at Period 1is Q, i.e., X, =Q.

5.5.2.2 Joint pricing and inventory allocation decisions

In this section, we determine the inventory allocation and the price for a perishable
product with an M period lifetime where the price for the product increases during the first
R periods and then decreases in the remaining M — R periods. Initially, a special case of R

= 2 is considered, followed by more general cases of R > 3.

)R=2
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In order to solve the dynamic programming model developed in Section 5.5.2.1,

J;(X;; p;) must be shown to be concave with respect to p, for a given X;. In addition,
V. (x;) must be concave with respect to x, and monotone increases with respect to x,

fori=2,..., M.

We start from the last period (Period M) and employ the backward recursive function

to show the properties hold. At Period M, J,, (X,,, Py ) IS concave with respect to p,,
for a given x,, and V,,(x,) is concave with respect to x,,, as shown in Lemma 5.1,

For Period i = M -1,..., 2, the optimality properties are proven by Lemma 5.2.

Lemmab5.2: wheni=M-1,..., 2

(i) The expected revenue J,(x;;p,) is concave with respect to p, for a given

(ii)  The optimal price p; is a non-increasing function of x, under the condition

1

min maxy *

a,(p™ —opily

that 4 (s)=

(ilf) ~ The maximum expected revenue V,(x;) is concave with respect tox; .

(iv)  The maximum expected revenue V,(x;) monotone increases with respect to

The optimal prices p; at Period i (i = M,..., 2) exists and the concavity of

J;(X;;p;) with respect to p, for a given x; enables efficient algorithms such as
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gradient search to be employed to obtain p; . Furthermore, the optimal price p, and the

optimal inventory allocation S; at Period 1 can be computed following the procedures

provided in Section 5.3.1.

ii)R>3

The computation time of dynamic programming significantly increases when R > 3,
since enumerations are required to obtain the optimal prices and the optimal inventory
allocations. Hence, a heuristics is applied to determine the prices and the inventory
allocations. One possible implementation of this heuristics is as follows: For the first R
periods, one of the three heuristics proposed in Section 5.3.2 is employed to determine the
inventory allocation and the price at each period. For the remaining M — R periods, the

optimal discounted prices can be efficiently computed from Lemma 5.2.

5.6 Summary

In this study, we first develope a discrete time dynamic programming model to
determine the optimal inventory allocations and the optimal prices for a perishable product
with a two period lifetime. The price for the product is first assumed to increase as the
time at which it perishes approaches to and this assumption is relaxed in the extension.
Several optimality properties are obtained. Since such properties do not hold when the
lifetime of the product is longer than two periods, three heuristics are proposed to obtain
the inventory allocations and the prices. The computational results show that the expected
revenues from the proposed heuristics are very close to the maximum expected revenue

from the dynamic programming model. An upper bound for the maximum expected
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revenue is computed. Our numerical study shows that the difference between the upper
bound and the maximum expected revenue decreases when the initial inventory level

increases.

Finally, we consider two different extensions. In the first extension, the price for the
product is assumed to decrease during the product’s lifetime. The optimal markdown
prices can be obtained from Chew et al. (2005a). In the second extension, we assume that
the price for the product first increases and later decreases. The optimal inventory
allocation and the optimal price at each period are obtained when the price increases
during the first two periods and then decreases. For more general cases, a heuristics is

proposed to determine the inventory allocations and the prices.
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The main purpose of this thesis is to develop a mathematical model to determine the
optimal prices for products of different ages and the optimal order quantity for the new
product (product of age 1) so as to maximize the multiple periods profit. This chapter
concludes the study by presenting a summary of research findings and discussing the
implications and limitations of this research, as well as suggesting several directions for

future research.
6.1 Main findings

In the first part of this thesis (Chapter 3), we first develop a dynamic programming
model for a perishable product with a two period lifetime. Under certain conditions, the
optimal discounted price for the old product is a non-increasing function of the inventory
level. From this property, we obtain the optimal pricing policy and prove that the expected
profit is a concave function with respect to the order quantity for the new product. This
concavity enables efficient algorithms to be employed to obtain the optimal order quantity
for the new product. Even when this property does not hold, still an upper and a lower
bound for the optimal order quantity are provided. We also prove that the expected profit
from dynamic pricing is never worse than the expected profit from static pricing. Our

numerical study shows that the profit increase from dynamic pricing becomes more
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significant as the demand uncertainty of Type 1 customers and the purchasing cost

become higher.

We further extend our results to a more general case, where the lifetime of the
product is longer than two periods. This problem is analyzed under two different
assumptions, lost sales and “alternative” source. For each case, a dynamic programming
model is developed with the objective of maximizing the total profit over the finite
number of periods. The optimal discounted prices for products of different ages and the
optimal order quantity for the new product are obtained. Moreover, we prove that the
maximum expected profit under “alternative” source is never worse than the one under
lost sales under certain conditions. Our numerical study shows that the ratio of the optimal
profit from lost sales, to the optimal profit from “alternative” source is between 91% and
97% under different levels of demand variability. In addition, the optimal order quantity
obtained from the dynamic programming model under lost sales is greater than that under

“alternative” source.

In the second part of this thesis (Chapter 4), we determine the optimal prices for
products of different ages and the optimal order quantity for the new product, for the
objective of maximizing the total profits over the finite number of periods. The problem
for a product with lifetime of two periods is first analyzed. Given the inventory level of
the old product, the expected profit is jointly concave with respect to the order quantity for
the new product and the product prices (the price of the new product and the discounted
price of the old product). This concavity enables an efficient algorithm to be employed to

obtain the optimal solution. Furthermore, several optimality properties are obtained. For
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the product with the lifetime of longer than two periods, the optimal prices for products of
different ages and the optimal order quantity for the new product are obtained for a single
period problem. Based on the optimal single period solution, we propose a heuristic for a

multiple period problem.

The computational results for a product with a two period lifetime show that the total
profit significantly increases when demand transfers between products of different ages
are considered. As the loss rates increase, the optimal prices for both new and old products
decrease. In addition, the optimal prices increase with increase of the transfer rates. These
findings show that demand transfers between products of different ages should be
seriously considered in practice when the retailers make their pricing and ordering

decisions.

In the third part of this thesis (Chapter 5), we first develop a discrete time dynamic
programming model to determine the optimal inventory allocations and the optimal prices
for a perishable product with a two period lifetime. The price for the product is first
assumed to increase as the time at which it perishes approaches to. Several optimality
properties are obtained. Since such properties do not always hold when the lifetime of the
product is longer than two periods, three heuristics are proposed to obtain the inventory
allocations and the prices. The computational results show that the expected revenues
from the proposed heuristics are very close to the maximum expected revenue from the
dynamic programming model. An upper bound for the maximum expected revenue is
computed and the difference between the upper bound and the maximum expected

revenue decreases when the initial inventory level increases.
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Finally, we consider two different extensions. In the first extension, the price for the
product is assumed to decrease during the product’s lifetime. The optimal markdown
prices can be obtained from Chew et al. (2005a). In the second extension, we assume that
the price for the product first increases and later decreases. The optimal inventory
allocation and the optimal price at each period are obtained when the price increases
during the first two periods and then decreases. For more general cases, a heuristics is

proposed to determine the inventory allocations and the prices.

In this study, we assume that the demand function follows an additive form. The
additive demand function has its limitations because it assumes that the expected demand
is a linear function of prices. However, this demand function is commonly employed in
literature relating to pricing and inventory problems (Thowsen 1975, Lau and Lau 1988,
Polatoglu 1991 and Abad 1996). Though most actual demand functions may not behave in
this way, the model should still be able to provide useful insights on the general trend

when the parameters change.

6.2 Suggestions for future work

General Demand Functions

Instead of an additive demand function used in this study, it would be interesting that

a general demand function D = u(p)e+ F(p) is considered. (The cases of
u(p)=21and B(p) =0 are often referred to as the additive and multiplicative function,

respectively.) An updated dynamic programming model is obtained by substituting the

general demand function in the model. The total profit can be computed by enumerations.
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The comparison between the total profit obtained from a general demand function and that
from an additive demand function is desirable. Smaller difference in the total profit
suggests that the approach of approximating the problem under a general demand function
with the problem under an additive demand function is possible. Hence, a heuristic based
on the optimal solutions of this study can be proposed for this more complicated problem

under the general demand function.

Demand Learning

Most of the existing works including this thesis assume that a firm has knowledge
about the parameters of demand distribution. However, in real life, there are many
situations where a firm does not have full knowledge of the parameters of the demand
distribution, when new products are introduced for example, or the demand distribution

may be changing in ways that are not predictable.

Although some research has been done in the area of demand learning, relatively
little work is available on combining demand learning with pricing and ordering decisions.
The key problem in demand learning is how to update the demand distribution including
unknown parameters. In order to solving this problem, Bayesian approach is the best
choice. The current demand distribution is updated by using probability and statistics

knowledge. For example, let g(d/w) represent the demand density function of an
unknown parameter w. Let f(w) be the known prior density function of w. Given

sufficient statistic data S, the posterior density function of unknown parameter is
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obtained and denoted as f(w/S). Then, the new demand distribution is updated using

g(d/w) and f(w/S).

Incorporated the updated demand distribution into the dynamic programming model
developed in this thesis, our problem is extended to a more general problem considering
demand learning. This extension is valuable, since demand learning will help retailer
effectively identify the changes of current demand and efficiently adjust their pricing and

order decisions.

Strategic Customers

Most existing works on dynamic pricing assume myopic customers. A myopic
customer is one who makes a purchase immediately if the price is below his valuation
(reserved price), without considering future prices. By assuming myopic customers, the
retailer can ignore the effects of future markdowns on current customer purchases, and
only focuses on determining the current price. In contrast, dynamic pricing decisions for a
retailer facing strategic customers are more complex, since a strategic customers will take
into account the future path of prices when making purchasing decisions. In this case, the
retailer has to consider the effects of future as well as current prices on customers’
purchasing decisions. Hence, an interesting but challenging research direction would be to

incorporate the customers’ strategic purchasing behaviors into the pricing decisions.
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Appendix
Proof of Lemma 5.1:
(i) The expected profit at Period 2 is
35 (%25 P2) = @,(X,, P,) = P,E[Min(x,,1,)] (A1)

The first and second partial derivatives of J,(x,; p,) withrespectto p, are

shown as follows:

8\] X —by+8, Py
2

5: J'(bz—2a2p2+52)f2(x2—b2+a2p2)+x2[1—F2(x2—b2+a2p2)] (A2)
2 géﬂin
0%J, 2
- =—23,F, (X, b, +a,p,)—a; p, f, (X, =0, +a,p,) (A3)

2

Hence, J,(X,;p,) Iisconcave with respectto p, fora given inventory level x,.

(if) Let p, denote the value of price p, which satisfies % =0 foragiven x,.
P,

0J Xa—by+a, P, N &g
e | b, ~28,B, +&,1f,(2)de, + [ %, Fy(e)de, =0 (A9)

ggnm

Note that (A4) expresses the stationary point p, as a function of x,, denoted as

p,(x,). Since p, is bounded in [pJ™, pi™], the optimal price p, at Period 2 is

determined as follows.
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min

py" P, <p;
p; = ﬁz pgﬂn < [32 < pgnax (A5)
py™ b, > "

Taking the first order derivative of p,(x,) with respect to x, based on (A4) and

rearranging the terms, we obtain

df’z(xz)) _ 1- Fz[xz _bz +a, ﬁz(xz)]_az ﬁz(xz) fz[xz _bz +a, f’z (Xz)] (A6)
dx, 2F,[x, =, +a,p,(x,)]+a, P, (x,) f,[x, —b, +a,p,(x,)]

a, (

fz(xz_bz"'azﬁz(xz)) > 1 _

Giventhat 4,(x, —b, +a,p,(x,) = >
2( ? ? ZpZ( 2) 1_F2(X2_b2+azﬁz(xz)) a,p,

dﬁZ(XZ) S O.

p, > p,™ and the denominator of (A6) is non-positive, hence —1<a,
X2

Therefore, it follows that p, is a non-increasing function of the inventory level x,.
(ii1) Finally, we prove that V,(x,) is concave with respectto x, .

Let V,(x,) be defined as follows.

V,,(x,) obtained when p, = p;™ X, > X}
V,(X,) =1V, ,(X,) obtained when p; = p, Xy <X, < Xy
V,,(X,) obtained when p, = p;™ X, < XJ'

where the thresholds x; and x;' are calculated by setting (A2) to be zero under the

conditions p, = p;™ and p, = p;*.

Consider the following three cases:
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1) x, >x;

min max
Xa—by—a,p;

Vor0Q) = [pI" (b, —a,pf" + &) Fo(e)de, + [T x, F(s,)de, (A7)

min min
& X;—by—a, p;

The first and second order derivatives with respectto x, are shown as follows:

dVZl min min

d — =P, [1_ Fz(xz_bz_azpz )]20 (A8)
X,

d2v . .

d 22’1 ==p;" f(x, —b, —a,p;"") <0
X,

Thus, V,,(x,) isconcave with respectto x, when x, >Xx;.

(2) x5 <X, <Xy

max

X =by =8, P, (X;) &2
Var(6) = [Bo06)(0, 3,0, 060) + &) Fo(e)de, + [ B,06)%F,(5,)ds,  (A9)
e Xo by —a P, (Xp)

The first and second order derivatives with respectto x, are given as follows:

&g

= [ B.(%,)f(s,)de, 20 (A10)

X, =0, —a, P, (%;)

av,,
dx,

d?v P
22 _ dp, (x,) [1-F,(x,—b, —a,p,(x,))]

2
dx; dx, .00 (A1)
X A ~
p2 2 ]pz(xz) fz(xz _bz —a, pz(xz))

2

-[L+a,
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Since —1<a, w <0, (Al11) is negative. Therefore, V,,(X,) is concave with
X, '

respectto x, when x; <X, <X, .

() X, <Xy

max _max
Xy —by—a,p; &

Vas() = [ pI™ (b, —a,pf™ +&,) Fo(e,)de, + [ pI¥x, f,(s,)de, (A12)

min max
&2 Xo—bp—ay 7

Since x, isindependent of p,™, the first and second order derivatives with respect

to x, are given as follows:

dVZ 3 max max
T: P, [1—F2(x2—b2—a2p2 )]20 (A13)
XZ
d 2V2,3 max max
;- =P, fo(x, b, —a,p;") <0 (A14)
dx;

Thus, V,,(x,) isconcave with respectto x, whenx, <x;'.

Finally, we focus on the boundary conditions at the threshold values x; and x;

in order to show overall concavity. At the thresholds x; and x;', V,(x,) is continuous,
which can be obtained from (A7), (A9) and (A12). Furthermore, we can easily show that

the gradients at xy for cases (1) and (2) are the same. The same is true for the gradients
at xy for cases (2) and (3). Hence V,(x,) is concave with respect to x,. Property (iv)

is directly obtained from (A8), (A10) and (A13). O
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Proof of Lemma 5.2:

We show by induction that J,(x;; p;) is concave with respectto p, and then prove

that V,(x.) isconcave with respectto x;.

First we assume that V,,,(x;,;) is a continuous function and concave with respect to

X;,,. The first derivative of V, ,(x;,,) withrespectto X, isassumed to be positive.

V.., (X,,,) is represented as follows.

V.11 (X, —t;) obtained when p;,, = p/Ty X >t + X,

V..., (X —t;) obtained when p;,; = p,., o+ X5 <X <t + Xy

VialKia) = V,..5(X, —t;) obtained when p;,, = p/* to<x <t +x",
V.15 (0) obtained when p;,, = p* X; <t

where x,,=[x, —t,]" and t; =b, —a,p, +¢;

2 .
(1) It suffices to show that WS
Pi

Xi—X{y1—b; +a; py
Ji(xii p) =@ (%5 ;) + el '[Vi+l,1(xi —b +a;p; - &) fi(s)ds
X —X{11=bi+a; p;
+ '[Vi+l,2 (X —b; +a;p; — &) fi(&)dg, (AL5)
Xi—X{\1—0; +a; p;

X —bj +a; p; &

b Vil b+ ap —e)fi(e)de + Vs )1, (e)de ]

Xi—X{11—b; +a; p; Xi—bj+a; p;
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023,

02 =-2a;F; (x; - b +aipi)_ai2pifi(xi —-b; +a;p;)
P;

Xi = Xi1 —bi +a; p;
+aall [V —b +ap - &) (g)de,
Xi—X{t1—bi +a; p;
+ J‘Vi‘;rl,z(xi b, +a;p; —&)fi(g)deg
Xi = X{'1 —b; +a; p;
X —bj +a; p;
+ J‘Vi:rl,s(xi —b; +a;p; — &) fi(e)de]

m
X;—Xit1—bj+a; p;

+ aaizvn'l’s ) f,(x; =b; +a;p;)

dVi+l,3(Xi)

Note that V. ,,(0) = ]
' X

_amax
- pi+1 .

i X; =0

Since p, > p™™, the sum of the 1%, 2" and 6" terms is negative. Furthermore, the 3",

4™ and 5™ terms are less than zero, based on the assumption that V., (x,,) is concave

with respectto x.,, Therefore, J.(x;;p;) isconcave with respectto p;.

i+1-

(2) Let p, denote the value of price p, that satisfies the stationary condition % =0.

% =b; +a; b
% = I(bi_zaiﬁi+gi)fi(8i)dgi+xi[l_|:i(xi_bi+aif)i)]
pi pi =P glmin

Xi —X{\1—b; +a P
+oa;[ Ivi;l,l(xi —b +a;p; — &) fi(e)de,
am (A16)

Xi —X{11—b; +a; pi
+ J-Vil+1,2(xi —b; +a;p; — &) fi(&)de,

Xi —X{\1—b; +a; pi

X; —b; +a; P

+ J-Vi;-l,S(Xi ~b; +a,p; — &) f (5)dg1=0

m N
X; —Xiy1—0; +2; ;
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Note that (A16) express the stationary point p, as a function of x., denoted by

B,(x).Since P, isboundedin [p™, p"™], we can determine the optimal discounted

price at Period i, p;, as follows.

pimin ﬁi < pimin
pi* =1 B pimin <P <p™
pimaax f)i > pimax

Taking the first order derivative of p,(x;) with respect to x. based on (A16) and

rearranging the terms, we obtain

where

N=1- Fi(xi _bi +a, ﬁi)_ai(ﬁi _apiTiX)fi(Xi —bi + a, ﬁ|)
X; —b; +a; B
ta JVill(Xi —b, +a;p; — &) fi()de,

&"

D =2F (x; —b, +a;p) +a,(p; —apT) fi(x, —b; +&,p;)

X;—b; +a; p;

—a J.Vijrl(xi —b +a;p; — &) fi()de

and
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X;—bj +a; P X, —X{\1=b; +a; P;
J.VilJlrl(Xi —b; +a,p; — &) fi(¢)de; = _[Viil,l(xi —b, +a,p; — &) fi(g)de
Xi —Xih, —b; +a; B
+ Vi =bi+ap —5) fi(5)de; .
X; —X{\1—b; +a; p;
X;—by +a; by
+ J-Vi':rl(xi —b +a;p, —&) fi(5)de;

m R
X —Xis1—bj +a; Py

Given that the hazard rate

fi (Xi - bi +q; ﬁi (Xi )) > 1 ﬁ (X) > p_min and

/1i (Xi _bi + 4 ﬁi (Xi )) - 1- Fi (Xi —bi +q ﬁi (Xi)) - ai(pimin ~ Win

the denominator is non-positive, hence —-1< ai(%)so. Therefore, p,(x) is a

non-increasing function of the inventory level x . It follows that p; is also a

non-increasing function of the inventory level x..
(3) Next we prove that V,(x;) monotone increases and is concave with respect to x; .

V. (x;) isshown as follows.

min

V,,(x;) obtained when p; = p| X > X
V, (%) =1V, ,(x;) obtained when p; = f, X" <X < X!
V, ;(x;) obtained when p; = p™ X < X"

where the thresholds x" and x' are calculated by satisfying %:0 under the

conditions that p, = p™ and p, = p™.

-170 -



Appendix

Finally, we focus on the boundary conditions at the threshold values x" and x' in
order to show overall concavity. At the thresholds x" and x{', V.(x;) is continuous,
because Vi,l(xin) =Vi, (x") and Vi,Z(Xim) :Vi,s(xim) .

dVi,l(Xi)
X.

— dVi,Z(Xi)

>0 and
dx;

X =(x')”

Furthermore, it can easily be proved that

X =(x")"

dV; ,(x)
dx;

_ dV; (%)

4 > 0. Therefore, we draw conclusion that the continuous
X;

X=0")" x=(")"

profit function V,(x,) not only monotonically increases with respect to x, but also is

concave with respectto x; . 0
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