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Summary 

 

With the explosive amount of music data available on the internet in recent years, 

there has been a compelling need for the end user to search and retrieve effectively in 

increasingly large digital music collection. In order to manage the real-world digital 

music database, some applications are needed to help people manipulate the large 

digital music database. 

 In this work, three issues in real world digital music database management were 

tackled. These issues include music summarization, music genre classification and 

music retrieval by human humming, as these three applications satisfy the basic 

requirement of an operational real world music database management system. Among 

these three applications, music genre classification and music summarization perform 

music analysis and find the structure information both for the individual songs in 

database and the whole music database, which can speed up the searching process, 

while music retrieval is an interactive application. In this thesis, these issues were 

addressed using machine learning approaches, complementary to digital signal 

processing method. To be specific, the digital signal processing helps extract compact, 

task dependent information-bearing representation from raw acoustic signals, i.e., 

music summarization and classification employ timber features and rhythm features to 

characterize the music content, while music retrieval by humming requires the melody 

features to characterize the music content. Machine learning includes segmentation, 

classification, clustering and similarity measuring, etc., and it pertains to computer 

understanding of the music contents. We proposed an adaptive clustering approach for 
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structuring the music content in music summarization, extended the current music 

genre classification by a supervised hierarchical classification approach and an 

unsupervised classification approach, and in query by humming, in order to separate 

the vocal content from the polyphonic music, we proposed a statistical learning based 

method to solve the permutation inconsistency problem for Frequency-Domain 

Independent Component Analysis. In most cases, the proposed algorithms for these 

three applications have been evaluated by conducting user studies, and the 

experimental results indicated the proposed algorithms were effective in helping 

realize users’ expectations in manipulating the music database. 

 In general, since the semantic gap exists between low level representation of 

music signals and different level applications in music database management, 

machine learning is indispensable to bridge such gap. Furthermore, machine learning 

approach can also be incorporated into signal processing to solve difficult problems. 
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1. Introduction                 

 

 

 

The rapid development of affordable technologies for multimedia content capture, 

data storage, high bandwidth/speed transmission and for multimedia compression, 

have resulted in a rapid increase of the size of digital multimedia data collections and 

greatly increased the availability of multimedia content for the general users. 

However, how to manage and interact with the ever increasing multimedia database 

has become an increasingly important issue for these users. One of the most practical 

ways to solve this problem relies on multimedia database management which aims to 

search and retrieve user required parts of multimedia information stored in the 

database. 

Music is one of the most important media types intimately related to our lives. 

The penetration of music technology has progressed to the point that today 

comparatively few households are without digital music in the form of compact discs, 

mini-discs or MP3 players. The ubiquity of digital music is further evidenced by the 

multimedia capabilities of the modern personal computer and by the high speed 

transmission of Internet. 10,000 new albums are released and 10,000 works registered 

1 
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for copyright in 1999 [1], and for US alone, 420 million recorded music (e.g. CDs, 

cassettes, music videos and so forth), were downloaded and recorded company 

revenues an estimated US$ 1.1 Billion in 2005 [2]. Therefore, there is a compelling 

need for the end user to search and retrieve effectively in increasing large digital 

music collections. Most existing music searching tools build upon the success of text 

search engines (i.e. www.google.com , www.1sou.com, etc.), which operate only on 

the annotated text metadata. However, they become non-functional when meaningful 

text descriptions are not available. Furthermore, they do not provide any means to 

search on the music content. 

A truly content based music information retrieval system should have the ability 

to manage music information based on their content [3], other than the text metadata. 

Traditional techniques used in text searching do not easily carry over to the music 

domain, and new technology needs to be developed. Before developing the new 

technology for music information systems, at first we should take a look at 

background of current technology for music library management systems. 

1.1 Background  

For comparison purposes, we would like to link the concept of music library 

management with the concept in the traditional management of book library. In 

Figure 1-1, the left figure shows the paradigm in the traditional management of book 

library and the right figure shows the paradigm of music library management. In the 

management of book library, the on-shelf books are first classified into different 
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categories to facilitate the retrieval process. For each particular book, the table of 

contents serves as an index to different sections of the book and the abstract serves as 

the overview of the whole book. The table of contents and abstract of the book also 

aim to help users efficiently access just the required parts of information. 

Library Music database

Book Category 
Classification

Music genre 
Classification

Pop RockJazz… …Philosophy ScienceLaw… …
Particular Book Particular Music

Table of 
Content Abstract Music

structure Summary

Book 
Retrieval

Humming

Music clip
Music 

Retrieval

 
Figure 1-1: The concept paradigm of music database management and 

traditional management of book library 

Similarly, an analogous concept can be used for music library management, as the 

figure shows in the right side. The music genre classification module takes the role of 

book classification in the traditional book library management and categorizes each 

music piece according to its inherent genre identification. As for each music piece, to 

efficiently access just the required parts of music content, we can index the music 

content by music structure analysis, and we can also give the users the main theme of 

the music work by showing them a shorter music summary condensed from the 

original music. After the music database has been structured, searching and retrieving 

in the music library management will be easy and efficient, as long as the 
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functionality of all the modules in the book library management can be realized in the 

music library management. However, in book library management, the database side 

and query side are all text-based and almost all text information retrieval methods 

which rely on identifying approximate units of semantics, that is, words, can be 

applicable. In music library management, locating such units in the database side is 

extremely difficult, perhaps impossible, since the database side is raw music signal. A 

natural and direct solution for music library management is to index the music content 

using textual descriptions. But this has the problem of subjectivity, as it is hard to 

have a “generic” way to first describe and then retrieve music content that is 

universally acceptable. This is inevitable as users interpret semantics associated with 

the music content in so many different ways, depending on the users, the purpose of 

use, and the task that needs to be performed. The problem gets even murkier, as the 

purpose for retrieval is often completely different from the purpose for which the 

content was created, annotated and stored in the database. For example, the query side 

usually may not have the same representation as that in the database side (i.e. 

humming-based query, text-based query). The heterogeneity of two entities in 

database side and query side has been proven to be the source of the most intractable 

problems in music information retrieval [4].  

Alternatively, another solution to music database management is to index the 

music database by the content itself, which has received a lot of attention in recent 

years [5][6][7][8]. Content refers to any information about music signal and its 

structure. Some examples of content information are: knowing a specific section of a 
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song corresponding to the verse or chorus, identifying the genre information of a 

specific music piece, etc. The content based music information retrieval start with 

techniques that could automatically index the music content based on some inherent 

features, such kind of features could be extracted from music content itself. For 

example, features such as rhythms, tonality, timbres, etc., can be easily extracted from 

raw music signals using current techniques of digital signal processing. As a result, 

the content based music library management can partially avoid the problems caused 

by textual labeling based music library management; however, such features have 

proven to be inconsistent with human perception of the music work [9]. Especially in 

the retrieval process, as the query is generated from the view point of human 

perception, which is more abstract and subjective than what the low level features can 

express.  

Therefore, in content based music library management, the low level features 

cannot provide sufficient information for retrieval. Between low-level features and the 

applications in music database management, there is a semantic gap which 

corresponds to human understanding of the music content. In order to retrieve music 

information more effectively, we need to go deeper into the music content and exploit 

the semantics from the viewpoints of human perception of music, where the focus has 

been in understanding inherent digital signal characteristics that could offer insights 

into semantics situated within the music content. The major work in this thesis is to 

show that machine learning plays a fundamental role for the applications of different 

levels in the music database management, complementary to digital signal processing.  
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1.2 Main Problem Statement 

The main problem that our work tries to address is the use of digital signal processing 

methods, combined with machine learning approach, for several applications in real 

world digital music database management. To be specific, these applications include 

music summarization, music genre classification and music retrieval by humming. 

Among them, two are middle level applications and one is the high level interactive 

application. The interactive application refers to music retrieval by humming, and two 

middle level applications include music genre classification and music 

summarization. 

Low level 
Representation

Middle-level 
Analysis

High -level 
Interaction

Hierarchical
Layers

User Query

Features of Music Signal

Se
m

an
tic

 G
ap

Semantic 
Extraction
Problem

Semantic 
Interpretation

Problem

 

Figure 1-2: The hierarchical structure for music database management system 

The relationship between three applications can be illustrated in Figure 1-2. Music 

genre classification and music summarization correspond to the music analysis stage 

in hierarchical structure of music database management. These two applications 
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perform music analysis and find the structure information both for the individual 

songs in database and the whole music database, which can speed up the searching 

process, while music retrieval is a high level interactive application, corresponding to 

interaction stage in Figure 1-2.  

As the Figure1-2 shows, from the bottom up manner, low level feature 

representation of the music signal lies at the bottom of the hierarchical structure in 

music database management system. One single feature objectively reflects one or 

some perceptually relevant aspects of the music content. For example, the rhythm 

features carry the tempo information of the music content, while the timbre features 

carry the texture information of the music content. Once the features have been 

correctly extracted from the raw music signals, they can be considered as physical 

parameters measuring one or some aspects of the raw music signals. A drawback, 

however, is that these low-level features are often too restricted to describe the music 

content on a conceptual or semantic level. As the stage of music database 

management hierarchical system goes up, the music content needs to be interpreted 

more subjectively. In analysis stage, music database management should have the 

self-organized ability according to the semantic understanding of the low level 

features. For example, to organize the music database efficiently, we need classify 

each song into different genre according to the genre information it carries. However, 

the perceptual criteria of music genre is not only related to the low level features such 

as melody, tempo, texture, instrumentation and rhythmic structure, but also an 

intuitive concept determined by people’s understanding of the particular songs. In the 
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interaction stage; the user generates the query from the view point of human 

perception. Take the query by humming as an example: the users are most likely to 

hum a few memorable bars which are usually the most salient part of the music. If we 

can locate such salient part in each music piece, not only the searching space will be 

reduced, but also the retrieval accuracy will be improved. However, the low level 

feature cannot directly provide such kind of conceptual information. Therefore, from 

the bottom up manner in hierarchical structure, there is a problem so-called semantic 

extraction problem. In top-down manner, the query generated from human being is 

subjective and arbitrary, i.e. a humming contains variation and inaccuracy, and how to 

interpret such kind of query to objective low level representation is not trivial. This is 

the so-called semantic interpretation problem. Therefore, between low level features 

and high level interactive applications, there is a semantic gap which corresponds to 

human understanding of the music contents. It is our opinion that ignoring the 

existence of the semantic gap was the cause of many disappointments in the 

performance of early music database management.  

To summarize, digital signal processing play the important role in real world 

music database management, since various low level features should be accurately 

extracted from the raw music signals using digital signal processing methods. 

Complementary to digital signal processing, machine learning plays a fundamental 

role in real world music database management. Without music semantic 

understanding, middle level and top level applications in music database management 

will be very difficult to handle, or even impossible to handle. The machine learning 
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approaches, by providing semantic understanding for music database, can bridge the 

gap between low level features and different level applications in music database 

management. 

One of the conceptual architectures for content based music database management 

is shown in Figure 1-3. In this illustration, the rectangle represents the 

procedure/method that needs to be designed and developed, and the rectangle with 

rounded corners represents the out entity or result from the system. 

Music 
Database

Features
Library

Feature
Extraction

Music
Summarization

Music Genre
Classification

Queries
Text based

      Audio Clip Based
   Humming based

Music Retrieval

Query Results

Structured 
Database

Music Structure 
Analysis 

 

Figure 1-3: The architecture of content based music database management 

Firstly, the feature extraction procedure is applied on the music database which 

contains various types of real world audio files, such as .wav format. After feature 

extraction, we gather these features to build the feature library. This procedure 

corresponds to the audio representation stage in Figure 1-2.  

Once the features have been extracted, music structure information both for music 
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database and for each music piece in the database side should be obtained by various 

machine learning approaches. It actually partitions the music in database in two 

orientations: “vertical” orientation and “horizontal” orientation. In “vertical” 

orientation, music genre classification partitions the music pieces in database 

according to their inherent genre identification. In the context of large musical 

databases, genre is therefore a crucial metadata for the description of music content. 

While in “horizontal” orientation, music summarization structures the individual 

music piece in database according to its intrinsic repeating patterns and the role which 

these segments play in the whole music. The aim of music summarization is to choose 

the most representative segment (or segments) to represent the whole music, using the 

music structure information. It can provide the entry for the most repeated parts of the 

music. These repeating patterns and structure of the individual music piece are very 

helpful in music database management, since such kind of representative segments 

contain most memorable information for human beings and in the retrieval process, 

giving the high priority to these segments will significantly reduce the searching space. 

As a result, interaction with large music database can be made simpler and more 

efficient. 

 Finally, a polyphonic music retrieval mechanism can be built based on the 

archiving scheme describe above. Search queries might be constructed using a variety 

of input method. These may include: manual editing within a graphical or textual 

dialog; the music clips; or even whistling, humming into a microphone. We focus our 

research on query by humming since humming is most natural way to formulate 
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music queries for people who are not trained or educated with music theory .The 

music retrieval procedure corresponds to the audio interaction stage in Figure 1-2. 

The conceptual architecture of content based music database management 

described above has a hierarchical and modular structure in which the physical and 

perceptual natures of different types of music are well organized. It is flexible in the 

sense that each layer/module may be developed individually and has its own 

application domain. It should be noted that conceptual architecture described is just a 

general architecture for content based music database management. Under this 

architecture, a lot of work can be combined into this framework both on database and 

query. We try to address three main applications in this architecture, which include 

music genre classification, music summarization and music retrieval via 

query-by-humming on real world music database, using digital signal processing 

methods, combined with machine learning approaches. In addition, we choose the 

polyphonic music representation in the database side since it constitutes the bulk of 

the real world audio files. Polyphonic music is much more prevalent in the real world 

than the monophonic music representation.  

1.3 Concept Linkage between Three Applications 

It also should be noted that the music genre classification, music summarization 

and music retrieval are not isolated, and the success of one aspect will contribute to 

the others.  

Firstly, the results of music summarization and music genre classification will be 
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helpful to each other. On one hand, music structure information can be utilized in 

music genre classification. For example, some music genres have a fairly rigid format, 

others are more flexible. Therefore, using the music structure information, we can 

roughly classify the music genre at a coarse-level. On the other hand, the aim of 

music summarization is to choose the most representative segment (or segments) to 

represent the whole music, using the music structure information. Since different 

music genres have a different music structure and the most representative part for 

each genre relies on its own intrinsic distinctive portion, it is essential to classify a 

music piece into a certain genre category before employing a genre-specific 

summarization schemes. For example, the most distinguished portion of Pop music is 

the chorus, which repeats itself several times in the whole music structure, while for 

Hip-Hop music, there is no such repetition, and the music summarization approach for 

Hip-Hop music would be different from the one for Pop music. 

Secondly, music genre classification would be helpful for music retrieval. With 

the aid of music genre classification, the music retrieval process would be more 

efficient and effective. For example, for the user query, if we can recognize the music 

genre information of the humming query, which is provided by music genre 

classification model, and then the search space of the target melody can be limited to 

the music titles of the certain genre in the database. As a result, the search space for 

the retrieval will be significantly reduced. In addition, musical content features that 

are good for genre classification can be used in other types of analyses such as 

similarity retrieval, because they do carry a certain amount of genre-identifying 
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information and therefore are a useful tool in content–based music analysis. 

Thirdly, music summarization would constitute a valuable addition to music 

retrieval. One could, for instance, hum a few memorable bars to formulate music 

queries. This query melody can begin at any instant of a song. To find the target 

melody, we need to search the each song thoroughly in the huge music database, 

which is time consuming and not practical, or even impossible, for real world 

applications. However, with the aid of music summarization result, the retrieval 

process will be simpler and more efficient. This is because a music layman is most 

likely to hum a few memorable bars which fall in the most repeated part of a song. In 

this way, the database side of the retrieval system can be focused on the music 

summary, instead of the original song. Thus, it can serve as a filtering mechanism. On 

the other hand, from the human computer interaction viewpoint, music summarization 

is important for music retrieval especially for the presentation of the returned ranked 

list since it allows users to quickly hear the results of their query and make their 

selection.  

Finally, to make MIR in real sound recording more practical, information from 

different sections such as instrumental setup, rhythm, melody contours, key changes 

and multi source vocal information in the song needs to be extracted. Organizing such 

information is challenging but possible with structural analysis provided by music 

summarization and classification.  
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1.4 Main Contributions 

In this section, the main contributions in this thesis are briefly reviewed. More details 

and explanation of the terms will be provided in the succeeding chapters. 

 Extension of current prescriptive approach and emergent approach for music 

genre classification 

A hierarchical classifier based on SVM was proposed to discriminate musical 

genres, which extend the current prescriptive approach for music genre 

classification not only reducing the complexity of each single task, but also 

improving the global classification accuracy.  

For emergent approach, Hidden Markov Models (HMMs) were employed to 

model the relationship between features over time from the raw songs. As a result, 

the similarity of each song in music collections can be measured using the 

distance provided by the HMMs. Based on the song similarities, an un-supervised 

clustering method can be used to emerge the music genres. 

 Adaptive clustering algorithm in music summarization  

We propose adjusting of the overlapping rate of the music signal segmentation 

window, which aims to optimally group the music frames to get the good 

summarization results. 

 Audio-visual alignment algorithm for music video summarization 

Based on summary for music track, we propose the structuring of the visual 

content, followed with visual and audio alignment to generate an audio/video 

summary for music videos which maximizes the coverage of important audio 
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segments along with important video segments. 

 Statistical learning approach to solve the permutation inconsistency problem 

in Frequency Domain Independent Component Analysis(FD-ICA) 

Considering the vocal singing voice and background music as two heterogeneous 

signals, we present a predominant vocal content separation method for two 

-channel polyphonic music by employing a statistical learning based method to 

solve the permutation inconsistency problem in FD-ICA. 

1.5 Thesis Overview 

This thesis is organized as follows: 

Chapter 1 (which you are currently reading) provides an overview of the whole 

thesis, including the introduction to the background of the music database 

management, main problem this thesis tries to address, and main contributions our 

work has achieved. 

In Chapter 2, we present two approaches for automatically classifying music 

genres, one is based on supervised learning and the other is based on unsupervised 

learning.  

In Chapter 3, we have proposed a summarization approach which extracted the 

most salient part of music based on adaptive clustering, with the help of music 

structure analysis. In addition, we also extended our proposed music summarization to 

the music video summarization scheme.  
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In Chapter 4, we present a practical query by humming music retrieval system for 

real world music database. As an extension of query by humming music retrieval 

system for monophonic music database, the most difficulty in query by humming 

music retrieval system for real world music database is how to separate one 

monophonic representation from the polyphonic music. In this chapter, we present a 

predominant vocal content separation method for two-channel polyphonic music by 

employing a statistical learning based method, combined with the signal processing 

approach.  

The experimental results of our proposed music database structuring and retrieval 

algorithms are described and discussed in Chapter 5. The thesis ends with Chapter 6 

which summarizes the whole thesis and gives directions for future research. 
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2. Music Genre Classification 
 

 

 

Music genre classification is a middle level application for music database 

management. It partitions the music pieces in database according to their inherent 

genre identification. In the context of large musical databases, genre is therefore a 

crucial metadata for the description of music content. The ever increasing wealth of 

digitized music on the Internet, music content in digital libraries and peer to peer 

systems call for an automated organization of music materials, as it is not only useful 

for music indexing and content-based music retrieval, but also can be used for other 

middle level music analysis applications such as music summarization. Although to 

make computers understand and classify music genre is a challenging task, with the 

help of machine learning approaches, there are still perceptual criteria related to the 

melody, tempo, texture, instrumentation and rhythmic structure that can be used to 

characterize and discriminate different music genres. 

2.1 Related Work 

A music genre is characterized by common features related to instruments, texture, 

2 
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dynamics, rhythmic characteristics, melodic gestures and harmonic content. The first 

challenge of genre classification is to determine the relevant features and find a way 

to extract them.  

2.1.1 Feature Extraction 

Since the low level audio samples contain low ‘density’ of the information, they 

cannot be directly used by an automatic analysis system. Therefore, the first step of 

analysis systems is to extract some features from the audio data to manipulate more 

compact information from raw audio signal. In the case of the music genre 

classification, features may be related to the main dimensions of music genres 

including timbre, harmony, and rhythm. 

A. Timbre Features: 

Timbre is defined in literature as the perceptual feature that makes two sounds 

different with the same pitch and loudness [10]. Features characterizing timbre 

analyze the spectral distribution of the signal though some of them are computed in 

the time domain. These features are global in the sense that integrates the information 

of all sources and instruments at the same time. 

An exhaustive list of features used to characterize timbre of the music can be 

found in [11]. Here, we summarize the main timbre features used in genre 

characterization: 

 Temporal features: features i.e., zero-crossing rate [12], linear prediction 

coefficients [12], etc. 
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 Spectrum shape features: features describing the shape of the power 

spectrum of a signal frame. i.e., Spectral centroid[13], spectral rolloff[14], 

spectral flux[14], octave-based spectral contrast feature[15], MFCCs[12], etc. 

 Energy features: features referring to the energy content of the signal. i.e., 

Root Mean Square energy of the signal frames, energy of the harmonic 

component of the power spectrum, etc. 

Transformations of features such as first and second-order derivatives are also 

commonly used to create new features for the purpose of modeling the dynamic 

property of the music signals. 

B. Melody features 

Melody is a succession of pitch events perceived as a single entity. Pitch is a 

perceptual term which can be approximated by fundamental frequency. The pitch 

content features describe the melody and harmony information about music signals 

and pitch content feature set is extracted based on various multi-pitch detection 

techniques. A good overview of melody description and extraction in the context of 

audio content processing can be found in [16]. At the current stage it is only possible 

to determine the real pitch of every note of monophonic signals, but not from 

polyphonic complex music. Therefore, the pitch related features usually only estimate 

the distribution of peaks in the frequency spectrum by determining them directly by 

autocorrelation. For example, the multi-pitch detection algorithm described in [17] 

can be used to estimate the pitch. In this algorithm, the signal is decomposed into two 

frequency bands and an amplitude envelope is extracted for each frequency band. The 
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envelopes are summed and an enhanced autocorrelation function is computed so that 

the effect of integer multiples of the peak frequencies on multiple pitch detection is 

reduced. The prominent peaks of this summary enhanced autocorrelation function 

correspond to the main pitches for that short segment of sound and are accumulated 

into pitch histograms. Then, the pitch content features can be extracted from the pitch 

histograms. 

C. Rhythm features 

Rhythmic features characterize the movement of music signals over time and 

contain information such as the regularity of the rhythm, beat, tempo, and time 

signature. A review of automatic rhythm description systems may be found in 

[18].These automatic systems may be oriented towards different applications: tempo 

induction, beat tracking, meter induction, or quantization of performed rhythm. 

However, the current rhythm description systems still have a number of weaknesses, 

so that they do not give reliable information for machine learning algorithm. In light 

of this, a descriptor measuring the importance of periodicities in the range of 

perceivable tempo (typically 30-200 Mälzel’s Metronome) should be obtained in a 

statistical manner. Such descriptor for representing rhythm structure is usually 

extracted from the beat histogram. Tzanetakis [19] used a beat histogram built from 

the autocorrelation function of the signal to extract rhythmic content features. The 

time-domain amplitude envelopes of each band are extracted by decomposing the 

music signal into a number of octave frequency bands. Then, the envelopes of each 

band are summed together followed by autocorrelation of resulting sum envelopes. 
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The dominant peaks of the autocorrelation function, corresponding to the various 

periodicities of signal’s envelopes, are accumulated over the whole music source into 

a beat histogram where each bin corresponds to the peak lag. 

D. Wavelet features 

The Wavelet Transform (WT) is a technique for analyzing signals. It was 

developed as an alternative to Short Time Fourier Transform (STFT) to overcome the 

problem related to its frequency and time resolution problem. In [20] [21], 

wavelet-based feature extraction technique to extract music features. 

2.1.2 Machine Learning Approach 

Once the features have been extracted, it is then necessary to find an appropriate 

pattern recognition method for classification. Fortunately, there are a variety of 

existing machine learning and heuristic-based techniques that can be adapted to this 

task.  

Based on the statistical pattern recognition classifiers employed in the music genre 

classification, automatic genre classification can be categorized into two categories: 

prescriptive approaches and emergent approaches [13]. We propose two novel 

classification approaches for automatic genre classification in this thesis, one belongs 

to prescriptive approach (will be described in section 2.2) and the other belongs to 

emergent approach (will be described in section 2.3). 

Prescriptive Approach 

Aucouturier and Pachet [13] defined the prescriptive approach as an automatic 
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process that involves a two-step process: frame-based feature extraction followed by 

supervised machine learning method. 

Tzanetakis [19] cited a study indicating that humans are able to classify genre 

after hearing only 250 ms of a signal. The authors concluded from this that it should 

be possible to make classification systems that do not consider music form or 

structure. This implied that real-time analysis of genre could be easier to implement 

than thought.  

The ideas were further developed in [14], where a fully functional system was 

described in details. The authors proposed to use features related to timbral texture, 

rhythmic content and pitch content to classify pieces, and the statistical values (such 

as the mean and the variance) of these features were then computed. Several types of 

statistical pattern recognition (SPR) classifiers are used to identify genre based on 

feature data. SPR classifiers attempt to estimate the probability density function for 

the feature vectors of each genre. The Gaussian Mixture Model (GMM) classifier and 

K-Nearest Neighbor (KNN) classifier were respectively trained to distinguish 

between twenty music genres and three speech genres by feeding them with feature 

sets of a number of representative samples of each genre. 

Pye [22] used MFCCs as the feature vector. Two statistical classifiers, GMM and 

Tree-based Vector Quantization scheme, are used separately to classify music into six 

types of Blues, Easy Listening, Classical, Opera, Dance and Rock. 

Grimaldi [23] built a system using a discrete wavelet transform to extract time and 
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frequency features, for a total of sixty-four time features and seventy-nine frequency 

features. This is a greater number of features than Tzanetakis and Cook [14] used, 

although few details were given about the specifics of these features. This work used 

an ensemble of binary classifiers to perform the classification operation with each 

trained on a pair of genres. The final classification is obtained through a vote of the 

classifiers. Tzanetakis, in contrast, used single classifiers that processed all features 

for all genres.  

In [24], Pamalk et. al. employed a K-NN classifier, combined with some 

clustering algorithm to group the similar music frames, to perform classification on 

four music collections. 

It is impossible to give an exhaustive comparison of these approaches as these 

approaches use different target taxonomies and different training sets. However, we 

can still get some interesting observations. 

Tzanetakis [19] achieved 61% accuracy using 50 songs belonging to 10 genres. 

Pye [22] reported 90% on a total set of 175 songs over 5 genres. 

Grimaldi[23] achieved a success rate of 82%, although only four categories are 

used. 

Several remarks can be made from the above statement. A common remark is that 

features selection is very important for the music genre classification. Indeed, once 

significant features are extracted, any classification scheme may be used and is 

powerful enough to distinguish one or some music genres from others. Another 
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remark is that some types of music have proven to be more difficult to classify than 

others. For example, ‘Classical’ and ‘Techno’ are easy to classify, while ‘Rock’ and 

‘Pop’ are not. A possible explanation for this is that the global frequency distribution 

of ‘Classical’ and ‘Techno’ is very different from other music types, whereas many 

‘Pop’ and ‘Rock’ music use the same instrumentation. In other word, there are some 

relationships between different music genres. However, all the current prescriptive 

methods treated each music genre individually and equally and tried to use one 

classifier and unified features to classify music into different genres at one time. Little 

has been done to exploit the relationships among the music genres. The limitation of 

current prescriptive genre classification method exists in the fact that, the use of the 

unified feature set and classifier to classify the entire music genre database will not 

optimize the classification results. We will address this problem in our proposed 

hierarchical music genre classification. 

Emergent Approach 

In contrast to prescriptive approach, which assumes that genre taxonomy is given 

a priori, emergent approach, as its name indicates, tries to emerge a classification 

from the music database, by clustering songs according to a given measure of 

similarity. As we mentioned previously, there are two challenges in the prescriptive 

method: how to determine features to characterize the music and how to find an 

appropriate pattern recognition method to perform classifications. The more 

fundamental problem, however, is to determine the structure of the taxonomy in 

which music pieces will be classified. Unfortunately, this is not a trivial problem. 
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Different people may classify the same piece differently. They may also select genres 

from entirely different domains or emphasize different features. There is often an 

overlap between different genres, and the boundaries of each genre are not clearly 

defined. In [27], the authors perform genre classification experiment on manual 

labeling by human listeners, and from the human classification results, they got a 

conclusion that genre classification is inherently subjective and assumption that the 

consistent music taxonomy is given a priori is very weak. Therefore, the lack of 

universally agreed upon definitions of genres and relationships between them makes it 

difficult to find appropriate taxonomies for automatic classification systems, which 

prevents the perfect classification results to be expected from supervised learning 

methods. 

In [25], Pachet and Cazaly attempted to solve this problem. They observed that 

the taxonomies currently used by the music industry were inconsistent and therefore 

inappropriate for the purpose of developing a global music database. They suggested 

building an entirely new classification system. They emphasized the goals of 

producing a taxonomy that was objective, consistent, and independent from other 

Metadata descriptors and that supported searches by similarity. They suggested a 

tree-based system organized based on genealogical relationships as an implementation, 

where only leaves would contain music examples. Each node would contain its parent 

genre and the differences between its own genre and that of its parent. Although 

merits exist, the proposed solution has problems of its own. To begin with, defining an 

objective classification system is easy, and getting everyone to agree on a 



 26

standardized system would be a far from easy task, especially when it is considered 

that new genres are constantly emerging. Furthermore, this system did not solve the 

problem of fuzzy boundaries between genres, nor did it deal with the problem of 

multiple parents that could compromise the tree structure. 

Since there exist no good solutions for the ambiguity problem and due to 

inconsistencies in music genre definition, Pachet [26] presented the emergent 

approach as the best approach towards automatic genre classification. Rather than 

using existing taxonomies as in prescriptive systems, emergent systems attempted to 

emerge classifications according to certain measure of similarity. The authors 

suggested some similarity measurements based on audio signals as well as on cultural 

similarity gleaned from the application of data mining techniques to text documents. 

They proposed the use of both collaborative filtering to search for similarities in the 

text profiles of different individuals and co-occurrence analysis on the play lists of 

different radio programs and track listings CD compilation albums. Although this 

emergent system has not been successfully applied to raw music signals, the idea of 

automatically exploiting text documents to generate genre profiles is an interesting 

one.  

So far, all the current music genre classification methods are supervised. The 

disadvantage is obvious: They are constrained by a fixed taxonomy, which suffer from 

ambiguities and inconsistencies as it has been described previously. In addition, to 

classify music genres, generally a large number of training examples for each genre 

must be collected and labeled. This is a labor-intensive and error-prone process which 
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is only feasible for a limited set of genres. Therefore, unsupervised music genre 

classification method needs to be investigated. 

In the following two sections, we will present two contributions that we made to 

the area of the music genre classification, both in the machine learning stage. To be 

specific, in section 2.2, we propose a mutli-layer classifier based on SVM to 

discriminate music genres, which belongs to prescriptive approach. In this approach, 

the music classification problem can be solved by multi-layer classification scheme, 

in which the classifiers in different layer perform just two-class classifier and features 

used in each classifier are level dependent and genre specific features. The advantage 

of this method is that each classifier in hierarchical classification deals with an easier 

separable problem and we can use an independently optimized feature set at each step. 

In section 2.3, we propose an unsupervised music genre classification method, to 

avoid the ambiguities and inconsistencies caused by contrived taxonomy given a 

priori. Our proposed unsupervised classification approach takes the advantage of the 

similarity measure to organize the music collection with clusters of similar songs. 

2.2 Hierarchical Music Genre Classification  

To achieve good classification accuracy, we propose a multi-layer classifier based on 

SVM to discriminate musical genres. In the first layer, music is classified into 

Pop/Classical and Rock/Jazz music according to the features of beat spectrum and 

LPC-derived Cepstrum coefficients (LPCCs). In the second layer, Pop/Classical 

music is further classified into Pop and Classical music according to the features of 
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LPCCs and MFCCs, and Rock/Jazz music is further classified into Rock and Jazz 

music according to the features of zero crossing rates and MFCCs. SVM is used in all 

layers and each layer has different parameters and support vectors. The system 

diagram of hierarchical musical genre classification is illustrated in Figure 2-1. 

Music

Pop/Classical

SVM 1

Rock/Jazz

SVM 2 SVM 3

Pop Classical Rock Jazz

Beat Spectrum and LPCCs

LPCCs, and MFCCs
Zero Crossing Rates and 
MFCCs

 
Figure 2-1: Music genre classification diagram 

2.2.1 Feature Selection 

Feature selection is important for music content analysis. The selected features should 

reflect the significant characteristics of different kinds of music signals. In order to 

better discriminate different genres of music, we consider the features that are related 

to temporal, spectral and rhythm aspects. The selected features here are Beat 

Spectrum, LPCCs, Zero Crossing Rate, and MFCCs. 

Beat Spectrum 

Beat spectrum [28] is a measure to automatically characterize the rhythm and 

tempo of the music. The beat spectrum can be defined as a measure of self-similarity 

as a function of the lag. Highly structured or repetitive music will have strong beat 

spectrum peaks at the repetition times. This reveals both tempo and the relative 

strength of particular beats, and therefore can distinguish between different kinds of 

rhythms. The calculation of beat spectrum can be found in Appendix A [A.1]. 
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Figure 2-2: Beat spectrum for Classical, Pop, Rock and Jazz 

Figure 2-2 illustrates the beat spectrum of Pop, Classical, Rock and Jazz music. The 

horizontal axis represents the time lag and the vertical axis represents the similarity 

magnitude. From the figure, we can see the different behavior of beat spectrum from 

four music genres. 

LPC-derived Cepstrum coefficients (LPCCs) 

 
Figure 2-3: LPCCs for Classical, Pop, Jazz and Rock 

The definition of LPCCs can be found in Appendix [A.2]. Figure 2-3 is an 
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example of LPCCs for the four music genres. The difference between the four music 

genres can be easily seen. 

Zero Crossing Rates 

The zero crossing is a useful feature in music analysis and the short-time zero 

crossing rate can be used to characterize music signal. The calculation of zero 

crossing rates can be found in appendix A [Appendix A.4].Figure 2-4 is an example of 

zero crossing rates for Rock and Jazz music. From the figure, we can see the 

characteristics of the zero crossing rates for Rock and Jazz are different. 

 

Figure 2-4: Zero crossing rates for Rock and Jazz music 

Mel Frequency Cepstral Coefficients (MFCCs) 

The mel-cepstral features can be illustrated by the Mel-Frequency Cepstral 

Coefficients (MFCCs) [Appendix A.5].Figure 2-5 is an example of 3rd MFCCs for 

Pop and Classical music. It can be seen that the variance is very high for the Pop 

music while it is considerably low for the Classical music. 
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Figure 2-5: MFCCs for Pop and Classical music 

2.2.2 Support Vector Machine (SVM) Learning 

Support vector machine (SVM) learning is a useful statistical machine learning 

technique that has been successfully applied in the pattern recognition area [29][30]. 

We use non-linear support vector classifier to discriminate different musical genres. 

Therefore, classification parameters should be derived using support vector machine 

learning. The training process analyses musical training sample data to find an 

optimal way to classify musical frames into relevant genres. The derived classification 

parameters are used to discriminate different musical genres. Since we use three SVM 

classifiers and use different features to train these classifiers, the parameters 

corresponding to three classifiers are different. 

The proposed hierarchical music genre classification approach has several merits. 

First, it solves the classification problem by using a number of SVM classifiers to 
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decompose it into a series of sub-problems, which enables the use of a 

divide-and-conquer approach and thus result in higher efficiency and accuracy. 

Second, it reduces the complexity of each single task. Third, it also improves the 

global accuracy by combining the results of the different SVM classifiers. Of course, 

the number needed classifiers is increased, yet, by having each of them handle a 

simpler problem, the overall required computational power is reduce. The 

experimental results show that the proposed hierarchical approach can get 92% 

classification accuracy. More results and details about the proposed hierarchical music 

genre classification can be referred to Chapter 5.  

The main problem of our proposed hierarchical music genre classification 

approach is that the taxonomy and the classifier need to be maintained manually, 

which is a very expensive task, since the process requires domain experts to evaluate 

the relevance of music genres and find the optimal feature set for each classifier. In 

our proposed approach, we have to manually derive the music taxonomy and select 

the most suitable feature set for each classifier. The first level music taxonomy (music 

is classified into Pop/Classical and Rock/Jazz music) was obtained by comparison of 

the different classification result for the different combination of music genres with 

different feature set and choosing the best scheme. The features in the second level 

music taxonomy can be obtained by looking into the intrinsic relationship between the 

two music genres in the same categories and choosing the most discriminating 

features. Of course, manually building the music taxonomy in this manner is an 

expensive task. To solve this problem, Li and Ogihara [31] proposed an approach to 
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automatically infer genre relations from the confusion matrix generated from some 

efficient classifier, employing the linear discriminant projection. Another approach to 

address this problem is to automatically allow the emergence of a classification from 

the music database, by clustering songs according to a given measure of similarity of 

the songs in the database, which is described in the next section. 

2.3 Unsupervised Music Genre Classification 

To avoid the ambiguities and inconsistencies caused by fixed taxonomy given in the 

prescriptive classification approach, we also proposed an unsupervised music genre 

classification method which takes advantage of the similarity measure to organize the 

music collection without the taxonomy given a priori. Pachet [26] suggested using 

similarity measures based on cultural similarity to organize the music collections. 

This method differed with previous prescriptive method in emerging classifications 

according to some similarity measure. However, it works only for title and artist name 

appearing in the music sources, which is not always available in the music collections. 

To the best of our knowledge, so far there is no unsupervised music genre 

classification method proposed based on low level music content, due to difficulty of 

measuring the similarity between the songs in the music database. To be specific, after 

the segmentation and feature extraction, each song is represented by a series of 

temporal vectors. How to measure the similarity of these time series from different 

songs is a problem. In our proposed approach, we address this problem by employing 

a Hidden Markov Model to model the relation between features over time. 
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Our proposed approach contains two steps. In the first step, as Figure 2-6 shows, 

every individual music piece is segmented into clips, and each clip is further 

segmented according to its intrinsic rhythmic structure. Features are extracted based 

on these segments. Considering the fact that, unlike most classical pattern recognition 

problems, the data we classified here are time series data. Therefore, we train a 

Hidden Markov Models (HMMs) to model the relationship between features over 

time. One good property of HMMs is that they provide a proper distance metric so 

that once each piece is characterized by its own HMM, and as a result, the distance 

between any pieces of the database can be computed. In the second step, we embed 

the distance between every pair of music pieces (HMMs) into a distance matrix and 

perform clustering to generate desired clusters. 

Cut to Clips

Music 

Segmentation Segmentation

Feature 
extraction

Feature 
extraction

Hidden Markov Model

Clip Clip

 
Figure 2-6: HMM training for individual music piece 
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2.3.1 Feature Selection 

In order to better discriminate the different genres of music, we consider segmenting 

the music clip according to its intrinsic rhythmic structure. There are two reasons for 

using this segmentation scheme. Firstly, compared with the fixed length segmentation 

for music clips, segmenting music clips according to its intrinsic rhythm captures the 

natural structure of music genres better. Secondly, rhythmic structure characterizes the 

movement of music piece over time and contains such information as the regularity of 

the rhythm, beat, tempo, and time signature. These salient periodicities contain 

obvious time-sequential information which can be readily modeled by the HMMs. 

The different rhythmic structures for different genres are illustrated in Figure 2-7. The 

horizontal axis represents the sample index and the vertical axis represents the onset 

energy after autocorrelation. It can be seen that Pop, Rock and Jazz are highly 

structured music, and the inter-beat-interval, which is defined as the temporal 

difference between two successive beats, is almost a constant for a particular piece of 

music. However, the rhythmic structure varies for these three genres. As for Classical 

music, it is not a so highly structured music and the inter-beat-interval varies from 

time to time, which distinguishes it from other three genres.  
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(a)          (b) 

  

(c)          (d) 

Figure 2-7: Rhythmic structures for different genres 

After the music clips have been segmented according to inter-beat-interval [32], three 

types of the features are extracted for each segment. 

Mel-frequency cepstral coefficients (MFCCs) 

The MFCCs feature was selected since it has been proven [14][22] to be efficient 

in music genre classification. 

Linear prediction derived cepstrum coefficients (LPCCs) 

The principal advantage of LPCCs is that they are generally decorrelated and this 

allows diagonal co-variances to be used in the HMMs. 
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Delta and acceleration 

Delta Values [∆ (Vi)] and acceleration values [acc (Vi)] can be appended to any 

feature vector Vi. They are computed as ∆(Vi)= Vi -Vi-1 and acc(Vi)= ∆(Vi) - ∆(Vi-1), 

where Vi is a feature vector of either MFCCs or LPCCs. 

Delta and acceleration values are very important improvements in feature 

extraction for HMMs because they effectively increase the state definition to include 

first and second order memory of past states. 

2.3.2 Clustering by Hidden Markov Models 

Our task is to classify observed low-level audio features into different music 

categories. Unlike most classic pattern classification problems, the data to be 

classified here are time series data, that is, a series of feature vectors. To handle this 

problem, Hidden Markov Models (HMMs) [33] is used. It can be completely defined 

by the number of hidden states, a static state transition probability distribution A, the 

observation symbol probability distribution B and the initial state distribution π. We 

can define one HMM model as λ= {A, B, π}. 

Once the model topology and observation (training) vectors are determined, 

parameter estimation for the HMM is done using Baum-Welch algorithm [34]. 

As for clustering, an important issue is how to measure the similarity of music 

titles. HMMs provide a proper distance metric for sample comparison. The distance 

between two samples is defined as: 
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where O(1) =(
121 Nooo ⋅⋅⋅ ) is a sequence of observations generated by HMM model λ1 

and O(2) is generated by HMM model λ2 . N1 and N2 are the length of O(1)  and O(2) 

separately. The detail interpretations of Eq.(2-1) can be found in [Appendix B.2]. 

In our experiment, initially, we build a HMM model for each music piece. 

Considering the fact that a HMM model cannot be trained with only one sample (in 

our experiment, we found that the parameters of HMM model does not converge with 

one training sample.), we split one song into several clips, and each clip lasts for 30 

second. These clips belonging to one music piece are used to train a HMM model. 

Assume there are N pieces of music in the database, then the distance between two 

music pieces can be calculated by Eq.(2-1) and the distance matrix D is N×N 

dimension. Given a distance matrix D, many clustering methods can be used. 

K-means clustering [35] is probably the simplest and most popular clustering 

algorithm. It allows portioning a set of vectors into K disjoint subsets. One of its 

weaknesse is that is requires the number of clusters (K) to be known in advance. 

However, in many real-world situations, the number of clusters is not known a priori. 

Therefore, we select single-linkage hierarchical clustering [35] algorithm as this 

method does bottom-up clustering. It starts with N singleton clusters and forms a 

sequence of clusters by successive merging. Of course, we can also use 

complex-linkage hierarchical clustering [35] to perform the clustering as these two 

hierarchical clustering methods do not make too much difference for well-separated 
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clusters. Here for the sake of simplicity, we only use single-linkage hierarchical 

clustering. 

The experimental results show proposed music genre classification scheme is 

promising. The 5-hidden state HMM can achieve 89% average accuracy, which is 

comparable with the supervised genre classification proposed in section 2.2. More 

results and details about the proposed unsupervised music genre classification can be 

found in Chapter 5. 

2.4 Summary 

In this chapter, two novel music genre classification approaches were presented. At 

first, we proposed a hierarchy-based approach to discriminate music genres, which 

can be considered as an extension of current prescriptive approach for music genre 

classification. Then, in order to avoid the ambiguities and inconsistencies caused by 

fixed taxonomy given in the prescriptive classification approach, we also proposed an 

unsupervised classification approach to automatically emerge music genres from the 

database. 

The main contributions include: 

 A hierarchical classifier based on SVM was proposed to discriminate musical 

genres, which extend the current prescriptive approach for music genre 

classification not only reducing the complexity of each single task, but also 

improving the global classification accuracy. 

 A segmentation scheme of the music signals based on music intrinsic 
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rhythmic structure analysis was proposed, which can better characterizes the 

movement of music piece over time and will be helpful in the process of 

subsequential HMM modeling. 

 HMMs were employed to model the relationship between features over time 

from the raw songs. As a result, the similarity of each songs in music 

collections can be measured using the distance provided by the HMMs.
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3. Music/Music Video 
Summarization 

 

 

 

The aim of music summarization is to analyze the underlying structure of the 

individual songs in the database and finds the most salient part to represent the whole 

song. Music summarization is one of the two middle level applications developed in 

this thesis to structure the music database. It is important for music information 

retrieval especially for the presentation of the returned ranked list since it allows users 

to quickly hear the results of their query and make their selection. In automatic music 

summarization, machine learning is indispensable because not only finding the salient 

theme of a song needs semantic understanding by the computer, but also analyzing the 

underlying structure needs exploring the semantic regions with machine 

understanding. In this chapter, we present an approach to automatically summarize the 

song by first distinguishing the pure instrumental music and vocal music based on a 

machine learning approach, followed by an adaptive clustering algorithm on the 

selected vocal music segments to find the music structure. In addition, as an extension 

3 
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of the music summarization problem, music video summarization will also be 

described in this chapter. 

3.1 Related Work 

Music summarization, as its name indicates, tries to analyze the underlying structure 

of individual music piece and finds the most salient part to represent the whole music. 

There are a number of techniques being proposed and developed to automatically 

generate summaries from text [36], speech [37]. Similar to text, speech summarization, 

music summarization refers to determining the most common and salient themes of a 

given music piece that may be used to represent the music and is readily recognizable 

by a listener. Automatic music summarization can be applied to music indexing, 

content-based music retrieval and web-based music distribution. 

A summarization system for MIDI data has been developed [38]. However, MIDI 

format is not sampled audio data (i.e., actual audio sounds), instead, contains 

synthesizer instructions, or MIDI notes, to reproduce audio. Compared with actual 

audio sounds, MIDI data cannot provide a real playback experience and an unlimited 

sound palette for both instruments and sound effects. In this section, we focus on the 

music summarization for sound recording from real world. 

Based on the methods employed to detect the repeating patterns, these approaches 

can be classified into two main categories: 

Machine Learning Approaches  

Machine learning approaches attempt to categorize each frame of a song into a 
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certain cluster based on the similarity distance between this frame and other frames in 

the same song. Then the number of frames in each cluster is used to measure the 

occurrence frequency. The final summary is generated based on the cluster that 

contains the largest number of frames. Since the music structure can be determined 

without prior knowledge, unsupervised learning is the natural choice. Clustering is the 

most widely used approach in this category, and several researchers have proposed 

various music structure analysis methods based on clustering. 

 The first real music summarization system was proposed by Logan & Chu [39]. 

They used clustering techniques to find the most salient part of a song, which is called 

the key phrase, in selections of popular music. They proposed a cross-entropy or 

Kullback Leibler (K-L) distance (See Appendix C.4 for detail description) to measure 

the similarity between different frames. Although merits exist, the proposed method 

had problems of its own. To begin with, K-L distance has the well-known 

disadvantages of slow convergence behavior and high computational cost. 

Furthermore, this system did not consider the music phrase boundaries problem, 

which will result in incomplete music phrases contained in the final summary. From 

the view point of listeners, these incomplete music phrases are not acceptable when 

they listen to the summary. 

The ideas were further developed in [40] where a fully functional system was 

described in detail. The authors employed the Mahalanobis distance for similarity 

measure rather than the K-L distance when they clustered the frames, since 

Mahalanobis distance converges faster than K-L distance and has low computational 
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cost. However, the music phrase boundary problem was still not considered in this 

method. In addition, the fixed overlap ratio of music segmentation scheme will 

prevent the algorithm from optimally grouping the music frames. 

Lu & Zhang [41] proposed to use two-pass approach to generate the music 

summary. In the first pass, they used a clustering method to group the frames. In the 

second pass, they used estimated phrase length and phrase boundary confidence of 

each frame to detect the phrase boundary. In this way, the final music summary would 

not include the broken music phrases. However, when performing summarization, this 

approach did not consider the different roles played by pure instrumental music and 

vocal singing in a song, (i.e. the most distinctive or representative music themes 

should repetitively occur in the vocal part of an entire music work). As a result, the 

final summary may contain some undesired pure instrumental music portions. 

Pattern Matching Approaches 

The pattern matching approach aims at matching the underlying excerpt with the 

whole song in order to find the most salient part. The best matching excerpt can be the 

one that is most similar to the whole song or the one that is repeated most often in the 

whole song. 

Foote and Cooper [42][43] first introduced pattern matching approach to music 

summarization. They proposed a representation called similarity matrix for 

visualizing and analyzing the structure of music. One attempt of this representation 

was to locate points of significant change in music, which they called audio novelty. 

The audio novelty score is based on the similarity matrix, which compares frames of 
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music signals based on features extracted from the audio. The summary was one 

consecutive excerpt which was selected to maximize quantitative measures of the 

similarity between candidate excerpts and the source audio as a whole. Bartsch and 

Wakefield [44] used the similar pattern matching approach while they use different 

features, the chroma-based features, to represent the music content. However, the 

drawback of such kind of pattern matching approach is that the distance function used 

to measure similarity between different frames may fail to capture the similarity of the 

dynamic characteristic of the consecutive music frames. As a result, some ‘false 

matching” excerpt would be selected while the optimal excerpt would not be selected 

as the summary. 

Chai & Vercoe [45] proposed a dynamic programming method to detect the 

repetition of a fixed length excerpt in a song one by one. First, they segmented the 

music into frames, and grouped the fixed number of frames into excerpts. Then, they 

employed a dynamic programming method to measure the repetitive property of each 

excerpt in the song. The consecutive excerpts that had the same repetitive property 

were merged into sections and each section was labeled according to the repetitive 

relation ( i.e., each section was given a symbol such as “A”,”B”, etc). The final 

summary was generated based on the most frequently repeated music section. 

Although this method can identify the most repeated segments from a music piece, it 

still did not consider distinguishing between pure instrumental music and vocal music 

when generating the music summary. 

The current methods for music summarization mostly focus on finding the most 
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salient part of a music piece. However, they all fail to consider distinguishing the pure 

instrumental music and vocal music during the process of music summary generation. 

As a result, a summarized segment may contain the undesired pure instrumental 

music portions. This is definitely not desirable for the purpose of understanding music 

content, since according to music theory, the most distinctive or representative music 

themes should repetitively occur in the vocal part of a music work. 

As an extension of music, Music Video (MV) is one video genre popular among 

music fans today. Nowadays, most MV summaries are manually produced. In contrast 

to other video genres, automatic video summarization has been applied to sports video 

[46][47], news video [48][49], home video [50][51] and movies [52]. Although recent 

work of video summarization techniques on music video has been reported [53][54], 

this work used high-level information such as titles, artists and closed captions other 

than low-level audio/visual features to generate the music video summary. However, 

such high-level metadata are not easily obtained directly from the music video content. 

Therefore, assumption of availability of such metadata makes the problem easier and 

is not feasible for automatic summarization based on music video content only. Our 

approach proposed in this thesis is to generate music video summary based on 

low-level audio/visual features which can be directly obtained from the music video 

content. To the best of our knowledge, there is no summarization technique available 

for music videos using low-level audio/visual features. 

In our proposed music summarization approach, after the feature extraction, we 

first distinguish the pure instrumental music and vocal music based on a machine 
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learning approach, and then propose an adaptive clustering algorithm on the selected 

vocal music segments to find the main theme of a song. 

3.2 The Proposed Music Summarization 

In our proposed music summarization scheme, music structure analysis is important. 

We found that normally a music song (“Top of the world” by Carpenter) is composed 

of three parts: Intro, Principal and Outro, as shown in Figure 3-1. The vertical axis 

represents the normalized frequency and the horizontal axis represents the sample 

index. In Figure 3-1, ‘V’ represents the ‘pure singing voice’ and ‘I’ represents the 

‘pure instrumental music’. The combination, ‘I+V’, refers to ‘vocal music’ which is 

defined as the music containing both singing voice and instrumental music. The Intro 

and Outro parts usually contain pure instrumental music without vocal components 

while the principal part contains a mixture of the vocal and instrumental music as well 

as some pure music portions. The ‘pure music’ here is defined as the music that 

contains only instrumental music lasting for at least 3 seconds. This is because pure 

music used to bridge different parts is normally of more than 3 seconds duration, 

while the music between the music phrases within the verse or chorus is of less than 3 

seconds. Thus, it cannot be treated as the pure music. Because these three parts play 

different roles in conveying music information to listeners, we treat them separately 

when creating the music summary (See Section 3.2.2 for a detailed description). 



 48

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

I I+V I I+V I 

Intro Outro Principal Part

Time ×106

I: Instrumental Music
I+V:Vocal and Instrumental Music  

Figure 3-1: Typical music structure embedded in the spectrogram 

For each part of the music, the content is segmented into fixed-length and 

overlapping frames. Feature extraction is performed in each frame. Based on the 

calculated features, an adaptive clustering algorithm is applied to group these frames 

to obtain the structure of the music content. Finally, the music summary is created 

based on the clustered results and music domain knowledge. 

3.2.1 Feature Extraction 

Feature extraction is very important for music content analysis. The extracted features 

should reflect the significant characteristics of the music content. Commonly 

extracted features include Linear Prediction Coefficient derived Cepstrum coefficients 

(LPCCs), Zero-Crossing Rates (ZCR) and Mel Frequency Cepstral Coefficients 

(MFCCs). 

Linear Prediction Coefficients (LPCs) and LPC derived Cepstrum coefficients 

(LPCCs)  

Linear prediction and linear prediction derived cepstrum are two linear prediction 
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analysis methods [12] and they are highly correlated to each other. The basic idea 

behind the linear predictive analysis is that a music sample can be approximated as a 

linear combination of past music samples. By minimizing the sum of the squared 

differences (over a finite interval) between the actual music samples and the linear 

predictive ones, a unique set of predictor coefficients can be determined. The 

calculation of LPCs and LPCCs can be found in appendix [Appendix A.2 and A.3]. 

Experiment shows that LPCCs is much better than LPCs in identifying the vocal 

music [55].  

Generally speaking, the performance of LPCs and LPCCs can be improved by 

(20~25) % by filtering the full band music signal (0 ~ 22.05 kHz with 44.1 kHz 

sampling rate) into sub-frequency bands and then down-sampling the sub-bands 

before calculating the coefficients.  

 

Audio 
Music

 

Digital filter bank - 1 

Digital filter bank - n 

Digital filter bank - 2 

Segmentation of the signal 

 

LPC &LPCC coefficients

 
LPC &LPCC coefficients

 

Segmentation of the signal 

Segmentation of the signal LPC &LPCC coefficients

 

Figure 3-2: Block diagram for calculating LPCs & LPCCs 

The sub-bands are defined according to the lower, middle and higher music scales 

[56], as shown in Figure 3-2. Frequency ranges for the designed filter banks are 

[0-220.5], [220.5-441], [441-661.5], [661.5-882], [882-1103], [1103-2205], 

[2205-4410], [4410-8820], [8810-17640], and [17640-22050] Hz. Therefore 

calculating LPCs for different frequency bands can represent the dynamic behavior of 

the spectrums of the selective frequency bands (i.e. different octave of the music). 
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Zero-crossing rates (ZCR) 

In the context of discrete-time signals, a zero-crossing refers to two successive 

samples having different algebraic signs. The rate at which zero-crossings occur is a 

simple measure of the frequency content of a signal. This average zero-crossing rate 

gives a reasonable way to estimate the frequency content of a signal. While ZCR 

values of instrumental music are normally within a relatively small range, the vocal 

music is often indicated by high amplitude ZCR peaks resulted from pronunciations 

of consonants [57]. Therefore, ZCR values are useful for distinguishing vocal and 

pure music. 

Figure 3-3 is an example of zero-crossing rates for the vocal music and pure music. 

It can be seen that the vocal music has higher zero-crossing rates than pure music. 

This feature is also quite sensitive to vocals and percussion instruments. Mean values 

are 188.247 and 47.023 for vocal music and pure music respectively. 
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Figure 3-3: Zero-crossing rates (0-276 second is vocal music and 276-592 
second is pure music) 

Mel-Frequency Cepstral Coefficients (MFCCs) 

The mel-cepstral features have proven to be highly effective in automatic speech 
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recognition and in modeling the subjective pitch and frequency content of the audio 

signals.  

MFCCs are good features for analyzing the music because of the significant 

spectral differences between human vocalization and musical instruments [58]. Figure 

3-4 is an example of MFCCs for vocal music and instrumental music. It can be seen 

that the mean value is 1.3704 for the vocal music and 0.9288 for pure instrumental 

music. The variance is very high for the vocal music while it is considerably low for 

the pure music. 

 

Figure 3-4: The 3rd MFCCs (0-276s is vocal music and 276-573s is pure 
music) 

3.2.2 Music Classification 

The purpose of music classification is to analyze a given music sequence to identify 

the pure music and the vocal music segments. According to the music theory, the most 

distinctive or representative music themes should repetitively occur in the vocal part 

of an entire music work [59] and the summary should focus on the mixture portion 

(The instrumental-only music is not considered in this thesis). Therefore the pure 
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music in the principal part is not the key component of a song (mostly the pure music 

in the principal part is the bridge between the chorus and verse) and can be discarded. 

But for the pure music in the Intro and Outro, it contains information indicating the 

beginning and the end of the music work and cannot be ignored. Therefore, if the pure 

music segment is detected at the beginning and the end of the music sequence, it will 

be identified as the Intro and Outro part, separately. We will retain these two parts in 

the music summary. For the pure music in the principal part, we discard it and create 

only a summary of mixed music in principal part.  

Based on calculated features (LPCCs, ZCR and MFCCs) of each frame, we 

employ a non-linear support vector classifier to discriminate the vocal and pure music. 

The Support Vector Machine (SVM) technique is a useful statistical machine learning 

technique that has been successfully applied in the pattern recognition area [29][30]. 

Figure 3-5 illustrates a conceptual block diagram of the training process to produce 

classification parameters of the classifier.  

The training process analyses music training data to find an optimal way to 

classify music frames into pure or vocal class. The training data are segmented into 

fixed-length and overlapping frames (in our experiment we used 20ms frames with a 

50% overlapping). Features such as LPCCs, ZCR and MFCCs are calculated from 

each frame. The SVM methodology is applied to produce the classification 

parameters according to the calculated features. The training process needs to be 

performed only once. The derived classification parameters are used to classify 

frames as pure and vocal music. 
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Figure 3-5: Diagram of the SVM training process 

After training, the derived classification parameters are used to identify the pure 

music and vocal music. For a given music track: 

1) Segment it into fixed-length frames; 

2) For every frame, extract features such as LPCCs, ZCR and MFCCs to 

construct the feature vector; 

3) Input each feature vector to a trained SVM and the SVM will label the 

corresponding frame as the pure music or vocal music; 

4) For those “pure music” frames labeled, if the continuous frames last for 

more than 3 seconds, identify them as a pure music portion. 

For the pure music portion located at the head and tail of a music piece, we retain 

them for the next processing step, while the other pure music portions are discarded. 

3.2.3 Clustering 

All methods mentioned above use the fixed overlap rate segmentation scheme to 

segment the music frames. However, in the initial stage, it is difficult to exactly 

determine the proper length of the overlap. As a result, the fixed overlapping rate 
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segmentation cannot guarantee ideal results of the frame grouping. In our proposed 

method, based on the calculated features of each frame, we use an adaptive clustering 

method to group the music frames and obtain the structure of the music. Two of the 

issues associated with the music segmentation are the length and the degree of overlap 

of the segmentation window. An inappropriate choice of these two will affect the final 

clustering result. For speech signals, a typical segmentation window size is 20ms, as 

the speech signal is generally treated as being stationary over such time intervals. 

Considering popular music, the tempo of a Pop song is constrained between 30-150 

M.M (Mälzel’s Metronome: the number of quarter notes per minute) and is almost 

constant [60], and the signals between two notes can be thought as being stationary. 

Therefore, the time interval between two quarter notes can range from 400ms to 

2000ms (The time interval for Quaver and Semiquaver are multiple of the time 

interval of quarter notes). We choose the smaller one as our segmentation window 

size. As we mentioned, the overlapping length of adjacent frames is another issue 

associated with the music segmentation. If the overlapping length is too long, the 

redundancy of two adjacent frames will be high, and on the other hand, if the 

overlapping length is too short, the time resolution of the signals will be low. In the 

initial stage, it is difficult to exactly determine the proper length of the overlapping. 

But we can adaptively adjust the overlapping length if the clustering result is not ideal 

for frame grouping. This is the key point in our algorithm which differs from the 

non-adaptive clustering algorithm proposed in [39].  

The clustering algorithm is described as follows. 
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1) Segment the music signal (vocal or pure music) into w fixed-length (w is 

400ms in this case) and λp% overlapping frames and label each frame 

with a number i (i=1, ···, n), where overlapping rate λp =10*p, (p =1, 2, 3, 

4, 5, 6). Here we vary λp at a step of 10 (empirically derived) because a 

smaller step (i.e. 1 or 2) will make our algorithm computationally 

expensive. 

2)  For each frame, calculate the music features to form a feature vector: 

niMFCCZCRLPCCV iiii  ,,2,1    ),,( K
r

==    (3-1) 

3) Calculate the distances between every pair of the music frames i and j 

using the Mahalanobis distance [61]:  

jiVVRVVVVD jijijiM ≠−−= −         ][][),( 1 vvvvvv
    (3-2) 

where R is the covariance matrix of the feature vector. The reason we 

use Mahalanobis distance is that it is very sensitive to inter-variable 

changes in all dimensions of the data. 

Since R-1 is symmetric, it is a semi or positive matrix. It can be 

diagonalized as R-1=PTΛP, where Λ is a diagonal matrix and P is an 

orthogonal matrix. Thus Equation (3-2) can be simplified in terms of 

Euclidean distance as follows: 

),(),( jiEjiM VPVPDVVD
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ΛΛ=     (3-3) 

Since Λ and P can be computed directly from R-1, the computational 

complexity of the vector distance can be reduced from O (n2) to O (n). 

4) Embed the calculated distances into a two-dimensional matrix Ψ which 
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contains the similarity metric calculated for all frame combinations, 

hence frame indexes i and j such that the (i, j)th element of Ψ is D(i, j). 

5) Normalize matrix Ψ according to the highest distance between frames. 

i.e. 0 ≤ D(i, j) ≤ 1. 

6) For a given overlapping rate λp, calculate the sum total of distances 

between all frames, denoted as Sd , which is defined as follows: 
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7) Repeat steps 1) – 6) by varying the overlapping rate λp, an optimal λ* 
p  

can be found which can give the maximum value for Sd. In our 

experiments, we found that about 80% of songs have the optimal λ* 
p

=30, about 18% of songs have the optimal λ* 
p =20 and 40, and less than 

2% of the songs have the optimal λ* 
p  taking the other values, i.e. 10, 

50, 60. 

8) Do Agglomerative Hierarchical Clustering [35]. 

Here we consider putting n music frames into C* clusters. At initial stage, we start 

with n singleton clusters and form C* clusters by successive merging using a 

bottom-up manner. Here, C* is the optimal desired number of clusters which can be 

defined as follows: 
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where Lsum is the time length of the music summary (in seconds) and Tc
* is the 

minimum time length of the sub-summary generated in a cluster (for sub-summary 
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generation, see Section 3.2.4 for details). Factor k is a scaling constant selected in the 

experiment and it is better to select the number of clusters k times more than the 

required number of clusters to guarantee enough clusters to be selected in the 

summary. Our human study experiment has shown that the ideal time length of a 

sub-summary is between 3 and 5 seconds. A playback time which is shorter than 3 

seconds will result in a non-smooth and has non-acceptable music quality, while a 

playback time which is longer than 5 seconds will result in a lengthy and slow-paced 

one. Thus, Tc
* = 3 has been selected for our experiment. 

The detailed procedure for Agglomerative Hierarchical Clustering can be 

described as follows: 

Procedure 

1) Let C =n, V
 →

i ∈Hi , i =1,…,n, where C is the initial number of clusters and 

Hi denotes the ith cluster. Initially, one cluster contains one frame. 

2) If C=C*, stop. C* is the desired number of clusters. 

3) Find the “nearest” pair of distinct clusters, Hi and Hj, where i and j are 

cluster indexes.   

4) Merge Hi and Hj, delete Hj, and C←C-1. 

5) Go to step 2). 

At any level, the distance between the nearest clusters can be used as dissimilarity 

values for that level. Dissimilarity measures can be calculated by 

jijimean mmHHd −=),(       (3-6) 

where mi and mj are mean values of all vectors belonging to the cluster Hi and Hj. 
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3.2.4 Summary Generation 

After clustering, the structure of the music content can be obtained. Each cluster 

contains frames with similar features. The summary can be generated in terms of this 

structure and domain-specific music knowledge. 

According to music theory, the most distinctive or representative music themes 

should repetitively occur over the duration of the entire piece [59]. Based on this fact 

and clustering results, the summary of a music piece can be generated as follows: 

Assume the summary length is 1000·Lsum microsecond (ms); the 

number of clusters is C*; the music frame length is w ms. 

1) The total number of music frames in the summary can be calculated as: 

w
wL

n
p
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⋅−⋅
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%1000

λ
λ

      (3-7) 

where λp is the overlapping rate defined in Section 3.2.3. The equation 

can be derived from the fact that the final summary (with the length of 

1000·Lsum ms) is padded by ntotal overlapped music frames with w ms 

frame length and λp % overlapping rate. 

2) According to the cluster mean distance matrix, we arrange the distance 

between cluster pairs in descending order and the higher distance 

clusters are selected for generating the summary for the purpose of 

maximizing the coverage of music contents in the final summary. 

3) Sub-summaries are generated within the cluster. Selected frames in the 

cluster must be as continuous as possible and the length of the 
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combined frames within the cluster should be 3s~5s or the number of 

frames should be between ns frames and ne frames, where:  
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Assume Fi and Fj are the first frame and last frame in the time domain 

of a selected cluster such that (j > i) and nc = (j-i) > 1. 

From music theory and our user study experiment, a piece of music with 

discontinuous frames is not acceptable to human ears. Based on this, we should 

generate the continuous sub-summaries. If frames are discontinuous between 

frame Fi and frame Fj, we first add frames between Fi and Fj, make the frames in 

this cluster continuous, and at same time delete these added frames from other 

clusters; we then follow the condition (1), (2), or (3) to adjust the sub-summary 

length within the cluster to meet the sub-summary length requirement defined in 

Equation (3-8) and Equation (3-9). 

Condition (1): nc < ns , as Figure 3-6(a) shows, we add frames before the head (Fi) 

and after the tail (Fj) until the sub-summary length is equal to ns .  

Assume x represents the required number of added frames before Fi (head frame), 

and y represents the required number of the added frames after Fj ( tail frame). 

Initially, x should be close to y, which means the added frames before Fi  and 

after Fj are distributed in a balanced manner. Therefore, x and y can be calculated 
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as: 

x = ⎣(ns-nc)/2⎦       (3-10) 

y = ns-x        (3-11) 

However, if added frames exceed the first frame or the last frame of the original 

music, exceeding frames will be added to the tail or the head, respectively. After 

adjusting, the actual number of the added frames before Fi and after Fj , denoted as 

x’ and y’  respectively, can be calculated as following: 

( )xxyyix ′−+=′−=′ ;1     (3-12) 

( ) ( )yyxxjny ′−+=′+−=′ ;1   (3-13) 

where n is the total number of frames in the music.  

Equation (3-12) calculates the actual number of the added frames before Fi 

and after Fj , when the required number of added frames before head frame Fi 

exceeds the first frame of the original music. The actual number of the added 

frames before Fi is (i-1) and the rest frames of x will be added to the tail. 

Therefore, the actual number of the added frames after Fj is y + (x-x’). A similar 

analysis can also be applied to Equation (3-13), which calculates the actual 

number of the added frames before Fi and after Fj , when the required number of 

added frames after the tail frame Fj exceeds the last frame of the original music. 



 61

 c) nc> nssl ,deleting frames including both head frame and tail frame until nssl=ne

 a) nc < ns ，adding frames to head  and tail until nssl=ns

nssl---Sub Summary Length
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Figure 3-6: Sub-summaries generation 

Condition (2): ns ≤ nc ≤ ne, as Figure 3-6(b) shows, no change is made in the 

sub-summary length and it is equal to nc. 

Condition (3): (nc > ne ), as Figure 3-6(c) shows, we delete frames both from the 

head frame and the tail frame until the sub-summary length is equal to ne. 

4) Repeat step 3) to generate individual sub-summaries for another 

selected cluster and stop the process when the summation of the 

sub-summary length is equal to or slightly greater than the required 

summary length.  

5) If the summation of the sub-summary length exceeds required summary 

length, we find the last sub-summary added to the music summary and 

adjust its length to fit the final summary length. 

6) Merge those sub-summaries according to their positions in the original 

music to generate the final summary. 
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3.3 Music Video Summarization 

After the music track has been summarized, the generated music summary can be 

used as the basis of the music video summary. In some sense, music video 

summarization can be considered as an extension of music summarization. Nowadays, 

many music companies are putting the music videos on websites, and customers can 

purchase them via the Internet. However, from the customer point of view, they would 

prefer to watch the highlights before making their purchases. On the other hand, from 

the music company point of view, they would be glad to provoke the buying interests 

of the music fans by showing the highlight of a music video rather than showing 

everything, as there are no profits for company if they allow the music fans download 

the whole music video freely.  

Music Video

Audio 
Track

Video 
Track

Shot 
detection

Shot 
clustering

Music 
Summarization

Audio-video alignment

Music Video Summary  

Figure 3-7: Block diagram of proposed summarization system 
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Music video summaries are available on some music websites, but they are 

generated manually, which is very labor intensive and time-consuming. Therefore, it 

is crucial to come up with an automatic summarization approach for music videos. 

Figure 3-7 is the block diagram of the proposed approach. As figure shows, the music 

video is separated into the music track and the video track. For the music track, a 

music summary is created by employing the music summarization scheme described 

previously. For the video track, shots are detected and clustered using visual content 

analysis. Finally, the music video summary is created by specially aligning the music 

summary and clustered visual shots. 

3.3.1 Music Video Structure 

Video programs such as movies, dramas, talk shows, etc, have a strong 

synchronization between their audio and visual contents. Usually what we hear from 

the audio track directly explains what we see on the screen, and vice versa. For this 

type of video program, since synchronization between audio and image is critical, the 

summarization strategy has to be either audio-centric or image-centric. The 

audio-centric summarization can be accomplished by first selecting important audio 

segments of the original video based on certain criteria and then concatenating them 

together to compose an audio summary. To enforce the synchronization, the visual 

summary has to be generated by selecting the image segments corresponding to those 

audio segments in the audio summary.  

Similarly, an image-centric summary can be created by selecting representative 
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image segments from the original video to generate a visual summary, and then taking 

the corresponding audio segments to generate the associated audio summary. For both 

summarization approaches, either audio or visual content of the original video will be 

sacrificed in the summaries. 

However, the music video is a special type of video. The visual and audio content 

combination in the music video can be divided into two categories: the polyphonic 

structure and homophonic structure [62]. In a polyphonic structure, the visual content 

does not in any way parallel the lyrics of the music. The visual content seems to tell 

its own story and is relatively independent of the meaning of the lyrics. For example, 

while the music proclaims the tender love, the pictures may show surprisingly violent 

scenes. For these music videos, due to their weak synchronization between the visual 

and audio content, summarizing the visual and audio track separately and then 

sticking them together appears to be satisfactory.  

In a homophonic structure, the lyrics of the music, or at least its major literal 

themes, are in step with the visual event with similar meanings. According to [62], the 

picture and sound in these videos are organized as an aesthetic whole using some 

matching criteria such as historical matching, geographical matching, thematic 

matching and structure matching, etc. For the music videos in this category, on the 

one hand, we can summarize them using the same method as audio-centric and 

image-centric summarization, which enforces the synchronization but has to sacrifice 

either audio or visual content of the original video. On the other hand, we can also use 

the same summarization approach as the polyphonic structure music video, which 



 65

enforces the maximum coverage both for video and audio content but has to sacrifice 

synchronization thereof. In other words, we have to trade off between the maximum 

coverage and synchronization.  

Considering the human perception, there is an asymmetrical effect of audio-visual 

temporal asynchrony on the auditory attention and visual attention [63]. The auditory 

attention is sensitive to audio-visual asynchrony while the visual attention is 

insensitive to the audio-visual asynchrony. Therefore, the minor deviation for the 

visual content from the music is allowed in the range of human perceptual acceptance. 

Based on above analysis, we use the same summarization approach for the music 

video in homophonic structure as the one used in polyphonic structure, which can 

maximize the coverage for both audio and visual contents without having to sacrifice 

either one of them, at the cost of some potential asynchrony between the audio and 

video track.  

However, we have realized that the ideal summarization scheme for music video 

in homophonic structure should have the maximum coverage and strict 

synchronization for the visual and auditory content. This can be achieved by semantic 

structure analysis both for the visual and music content and will be addressed in the 

future work. 

3.3.2 Shot Detection and Clustering 

To summarize the visual content of the music video, we need to turn the raw video 

sequence into a structured data set W (named as clustered shot set here), where 
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boundaries of all camera shots are identified and visually similar shots are grouped 

together. 

In the clustered shot set W, any pair of the clusters in W must be visually different, 

and all the shots belonging to the same cluster must be visually similar. The total 

number of clusters varies depending on the internal structure of the original video.  

It has been shown [50] that video programs with more than one shot cluster where 

each has an equal time length will have the minimum redundancy. It has been also 

mentioned that for the purpose of reviewing the visual content, the ideal playback 

length for each shot cluster is between 1.5 to 2.0 seconds [50]. A playback time which 

is shorter than 1.5 seconds will result in a non-smooth and choppy video, while a 

playback time which is longer than 2.0 seconds will yield a lengthy and slow-paced 

one. Therefore, when given a clustered shot set W, the video sequence with the 

minimum redundancy measure is the one in which all the shot clusters have a uniform 

occurrence probability and an equal time length of 1.5 seconds.  

Based on these criteria, our video summarization method creates video summaries 

using the following steps: 

1) Segment the video into individual camera shots using the method in [50]. 

The output of this step is a shot set S={s1, s2, …si, … ,sn}, where si  

represents the ith shot detected and n is the total number of shots 

detected. 

2) Group the camera shots into a clustered shot set W based on their 

visual similarities.  
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The similarity between two detected shot can be represented by their key frames. 

For each shot si ∈S, we choose a key frame fi as the representative frame of that shot. 

We choose the middle frame of a shot as the key frame, other than at the two ends of a 

shot, because the shot boundaries commonly contain transition frames. When 

comparing the visual similarities of two different shots, we calculate the difference 

between two key frames related to these two shots using color histograms: 

∑
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where he 
i , he 

j  are the histograms of the key frame i and j, respectively. 

The main difficulty here is that the optimal number of the clusters needs to be 

determined automatically. To solve this problem, we use the adaptive shot clustering 

method described in [50]. After this step, the original video sequence can be described 

by the clustered shot set W = {w1,w2, … ,wk}. 

3) For each cluster, find the shot with the longest length, and use it as the 

representative shot for the cluster. 

4) Discard the clusters whose representative shots are shorter than 1.5 

seconds. For those clusters whose representative shots are longer than 

1.5 seconds, we curtail those shot to 1.5 seconds by truncating the first 

1.5 second visual content from those shots. 

5) Sort the representative shots of all the clusters by the time code.  

Now, we have the representative shot set U={u1, u2,…, um}, where m≤n, and n is 

the total number of the shots in set S. 
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3.3.3 Music/Video Alignment 

The final task to create a music video summary is to align the image segments in the 

video summary with the associated music segments in the music summary. According 

to [62], the visual and audio content combination in the music video can be divided 

into two categories: the polyphonic structure and homophonic structure. Based on the 

analysis in Section 3.3.1, we currently use the same alignment scheme for these two 

music video structures. As mentioned in Section 3.3.1, the goal of alignment is to 

make the summary smooth and natural, and generate a summary which maximizes the 

coverage for both music and visual content of the original music video without 

sacrificing music or visual part. 

Assume that the whole time span Lsum of the video summary is divided by the 

alignment into P partitions (required clusters), and the time length of partition i is Ti . 

Because each image segment in the video summary must be at least Lmin second long 

(a time slot equals to one Lmin duration), partition i will provide Ni time slots, as 

shown in Figure 3-8: 

⎡ ⎤min/LTN ii =       (3-15) 

and hence the total number of the available time slot becomes : 

∑= P
itotal N N 1       (3-16) 

41 2 3 1 2 3

Audio

Image

T1 TP

Partition 1 Partition P

Lmin Lmin Lmin Lmin Lmin Lmin

T2 TP-1Ti

 
Figure 3-8: Alignment operations on image and music 
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Recall that for each partition, the time length of the music sub-summary lasts for 3~5 

seconds, and the time length of a shot is 1.5 seconds. The situation that the sum of the 

visual shots exceeds the sub-summary of the music in the partition will appear. We 

handle this situation by constraining the last shot of that partition to fit the 

sub-summaries of the music. As shown in Figure 3-8, TP is the time length of partition 

P and lasts for 5 seconds. Four shots are found to fill in this partition, each of which 

lasts for 1.5 seconds. The total length of the video sub-summary is 6 seconds, which is 

longer than the music sub-summary. Thus, we curtail the last shot ④ to fit the video 

sub-summary to the music sub-summary. 

Therefore, the alignment problem can be formally described as: 

Given: 

1. An ordered set of representative shots U={u1, u2,…, um}, where m≤n, and n is the 

total number of shots in the shot set S. 

2. P partitions and Ntotal time slots. 

To extract: 

P sets of output shots subset , R ={R1, R2,…,RP} which best match between the shot 

set U and Ntotal time slots.  

where: 

P=Number of partitions  

Ri={ri1,...,rij ,...,riNi} ⊆ U, i=1, 2, …, P; Ni= ⎡Ti /Lmin⎤. 

Shots ri1,...,rij ,...,riNi are optimal shots selected from the shot set U for the i-th 

partition. 
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The constraints:  

1) At the first time slot of each partition, the root shot filled in that time slot will be 

the shot corresponding to that time slot in time domain  

2) Within each output shots subset Ri, shots should have the highest similarity in terms 

of temporal and visual features to ensure the summary smooth and natural. 

By a proper reformulation, this problem can be converted into a Minimum 

Spanning Tree (MST) problem [64]. Let G = (V,E) represent an undirected graph 

with a weighted edge set V and a finite set of vertices E. The MST of a graph defines 

the lowest-weight subset of edges that spans the graph in one connected component. 

To apply the MST to our alignment problem, we use each vertex to represent a 

representative shot ui, and an edge eij=(ui , uj)  to represent the similarity between the 

shot ui  and uj . The similarity here is defined as the combination of time similarity 

and visual similarity. The similarity function is defined as follows: 

),(),()1( jiDjiTeij αα +−=      (3-17) 

where α is a weight coefficient, which is set in advance according to the priority given 

to the visual similarity and the time similarity. The lower α is, the lower priority for 

visual similarity and the higher priority for time similarity, and vice verse. In our 

experiment, since the time similarity which indicates time synchronization 

information is much more important than the visual similarity, we give the time 

similarity a higher priority. We set α =0.2 for all testing samples. 

D(i,j) and T(i,j) in Equation (3-17) represent the normalized visual similarity and time 

similarity, respectively.  
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D(i,j) is defined as follows: 

  /max),( (i,j))(D(i,j)DjiD vv=     (3-18) 

where Dv(i,j) is the visual similarity calculated from Equation (3-14). After 

normalized, D(i,j) has a value range from 0 to 1. 

T(i,j) is defined as follows: 

{
otherwise

FL)L/(F
T(i,j) jiij <−

=
0

1
    (3-19) 

where Li  is the index of the last frame in the ith shot, and Fj is the index of the first 

frame in the jth shot. Using this equation, the closer two shots are in the time domain, 

the higher time similarity value they have. Value T(i,j) varies from 0 to 1, and the 

biggest value of T(i,j) achieves when shot j just follows shot i and there is no other 

frames between these two shots. Thus, we can create similarity matrix Φ for all shots 

in the representative shots set U, and the i,jth element of Φ is eij. 

For every partition Ri, we generate a MST based on the similarity matrix Φ. 

To create content rich audio-visual summary, we propose the following alignment 

operations: 

1) Summarize the music track of the music video using the method 

described in Section 3.2. The music summary consists of several 

partitions, each of which lasts for 3 to 5 seconds. The total duration of 

the summary is about 30 seconds. We can get the music summary by 

adjusting the parameters of the algorithm described in the previous 

section. 
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2) Divide each music partition into several time slots, each of which lasts 

for 1.5 seconds.  

3) For each music partition, we find the corresponding image segment as 

follows: In the first time slot of the partition, find the corresponding 

image segment in the time domain. If it exists in the representative shot 

set U, assign it to the first slot and delete it from the shot set U; if not, 

identify it in the shot set S, and find the most similar shot in shot set U 

using similarity measure defined in Equation (3-14). We then take this 

shot as the root, apply the MST algorithm to it, find other shots in the 

shot set U, and fill them in the subsequent time slots in this partition. 

Figure 3-9 illustrates the alignment process, where A(ti ,τi) and I(ti ,τi) denote audio 

and visual segments that start at time instant ti and last for τi seconds, respectively. 

The length of the original video program is 40 seconds. Assume that the music 

summarization has selected three partitions A(0,3), A(13,5) and A(23,4), and the shot 

clustering process has generated twelve shot clusters shown in Figure 3-9. As the 

music summary is generated by A(0,3), A(13,5) and A(23,4), we divide this 

twelve-second summary into nine time slots. For each slot, we assign a corresponding 

shot. For the first partition, we assign shot ① to time slot a and shot ② to time slot 

b, respectively. When we assign a shot to the time slot c, there is no corresponding 

image segment in the time domain. According to our alignment algorithm, we choose 

shot ④ which is a most similar shot in line with the time index in the shot set S. Then, 

based on shot ④, we apply the MST algorithm to find other shots for the second 
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partition. For the third partition, in the first time slot g, because the corresponding 

visual segment ⑦ has been used by other slots, we have to find a most similar shot to 

shot ⑦ in the shot cluster set U. Based on the algorithm described above, we find shot 

⑧. We then apply the MST algorithm to find other two shots from this partition. 

40 seconds
Audio Track

    A(0,3) A(23,4)

12 sec Audio summary

12 sec Video summary

① ② ③ ④

⑤ ⑥

I(0,1.5) I(2,1.5) I(5,1.5) I(13.5,1.5)

I(16,1.5) I(17.5,1.5) I(23.5,1.5)⑦ ⑧I(26,1.5)

a b c d e f

Shot Clusters
Set U

    A(13,5)

① ② ⑥⑤ ⑦

g h i

I(27.5,1.5) I(30,1.5)⑨ 10 11

⑧ ⑨

I(33.5,1.5)

10④

12 I(33.5,1.5)  
Figure 3-9: An example of the audio-visual alignment 

In this way, our proposed summarization scheme can maximize the coverage for both 

music and visual content of the original music video without sacrificing either of them. 

In the created summary, the visual content may not be strictly synchronized with the 

music. As we mentioned before, the experiment on human perception shows that the 

visual attention is not sensitive to the audio-visual asynchrony [63]. Therefore, within 

the range of human perception acceptance, the minor deviation for the visual content 

from the music is allowed. In our method, by giving the time similarity between the 

shots a high priority (adjust weight α), we can control the visual deviation from the 

music in the range of human perception acceptance. 
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Some experimental results for our proposed music summarization method can be 

found in section 5.2, and the music video summarization examples can be viewed at 

http://www.comp.nus.edu.sg/~shaoxi/Vsum/vsum1.htm 

3.4 Summary 

In this chapter, a novel music summarization scheme was presented. In addition, as an 

extension of the music summarization, the music video summarization scheme was 

also proposed based on the music summarization. The main contribution includes: 

 An adaptive clustering algorithm was proposed to adjust the overlapping rate 

of the music signal segmentation window, which aims to optimally group the 

music frames to get the good summarization results. 

 Considering the different roles pure instrumental music and vocal music play 

in the song, we propose a machine learning approach to identify vocal music 

vs. pure music segments and use this to select audio segments for summaries. 

 Based on summary for music track, we proposed an algorithm to align the 

structured visual shots with the generated music track summary to generate a 

video summary for music video. The proposed alignment algorithm 

maximizes the coverage of important audio segments along with important 

video segments. 

Music summarization aims to structure the individual music piece in database 

according to its intrinsic repeating patterns, and therefore is very helpful in music 

database management applications such as genre classification and retrieval. On 
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one hand, music structure information obtained in the music summarization can 

be utilized in music genre classification. For example, some music genres have a 

fairly rigid format, others are more flexible. Therefore, using the music structure 

information, we can roughly classify music genre at a coarse-level. On the other 

hand, the representative segments obtained by music summarization contain most 

memorable information for human beings. In the retrieval process, giving the 

high priority to these segments will significantly reduce the search space. As a 

result, interaction with large music databases can be made simpler and more 

efficient. 
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4. Real World Music    
Retrieval by Humming 

 

 

 

After the music database has been structured, it should be easily accessed by users. 

Music Information Retrieval (MIR) is primarily concerned with efficient 

content-based searching and retrieval of music information from music database. 

Currently, the music information retrieval systems can be divided into different 

categories as shown in the Table 4-1 [65], based on the different representations of the 

query side and the database side. As the table shows, in the category marked 

“Solvable”, both the query and database side are symbolic format, such as MIDI. 

Then the music retrieval problem can be converted into text-based retrieval problem, 

which can be solved by methods derived from text searching techniques. As for 

retrieving from monophonic1 acoustic database with monophonic or symbolic queries, 

such music retrieval systems are of little practical value, since there is not much 

monophonic audio data available. 

 

                                                        
1 The definition of monophonic music and polyphonic music can be found in [4]. 

4 
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Table 4-1.Classification of music information retrieval system 

Acoustic  
Query 

Database 
Symbolic

Monophonic Polyphonic 

Symbolic Solved QBH1 ? 

Monophonic Solvable, but may not be 
interested in practice ? 

A
co

us
tic

 

Polyphonic ? QBH2 QBE 

We select query by humming as the query approach since humming is the most 

natural way to formulate music queries for people who are not trained or educated 

with music theory [66]. However, the natural music format for most of the music 

database is not symbolic music, but raw polyphonic audio. Therefore, from the 

usability point of view, the investigation for query by humming based on polyphonic 

raw music database is becoming important and necessary. In order to distinguish from 

the QBH for Symbolic database system (denoted as QBH1), we denote QBH for 

polyphonic database system as QBH2, to which the issue that we try to solve in this 

thesis belongs.  

In the category mark with QBE in the Table 4-1, namely Query By Example, such 

MIR system retrieve from a polyphonic audio database in response to a similar audio 

query. The most relevant dissertation to this work is [65]. The category marks with 

question marks remain open problems. Due to the lack of general-purpose polyphonic 

transcription algorithm, we cannot expect to solve these problems by reducing them to 

monophonic or symbolic cases. 

In this chapter, we first provide an overview of current state for query by 
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humming based on MIDI database and the state of the art for problem of separating 

mixtures in the real world environment, which can be modeled as convolutive 

mixtures. Considering that the vocal content separation is important for our specific 

problem, we put emphasis on it in this chapter: In section 4.2, we provide background 

theory for the independent source separation for separating mixtures in the real world 

environment, and then in section 4.3 ,based on the fact that the vocal singing voice 

and background music are two heterogeneous signals, we propose a statistical 

learning based method to solve the permutation inconsistency problem in Frequency 

Domain Independent Component Analysis (FD-ICA), which is an unsolved problem 

in convolutive mixture separation. Based on the separated vocal content, some 

refinements to convert it to the standard music representation (sequence of notes) can 

be found in section 4.4. Finally, we summarize this chapter with section 4.5. 

4.1 Related Work 

Several methods to solve QBH1 have been proposed in the past years. Ghias [67] 

reported surprisingly effective retrieval using query melodies that have been 

quantized to three levels, depending on whether each note was higher, lower, or 

similar as the previous one. Besides simplifying the pitch extraction, this allowed for 

less-than-expert singing ability on the part of the user. MaNab [68] used flexible 

string-matching algorithm to locate similar melodies located anywhere in a piece and 

provides detailed design information with a prototype system encompassing all the 

aspects of a music retrieval facility. The system transcribed acoustic input, typically 
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sung or hummed by the user, and retrieved music, ranked by how closely it matched 

the input. In order to take into account human inaccuracies of recall and of 

performance, the errors that people make in remembering melodies and in singing 

were modeled. The flexible retrieval mechanisms that were tailored to the errors 

actually encountered in practice were devised. However, it was not applicable to a 

very large database, since searching the whole database for each query will lead to 

more and more expensive computations with the database growing. In [69], music 

melody was represented by 4 types of segments according to the shape of the melody 

contour, the associated segment duration and segment pitch. Song retrieval was 

conducted by matching segments of melody contour. The basic idea for above 

methods is similar. Pitch contour of the hummed query is detected and pitch changes 

are converted into strings according to the direction and/or magnitude of the pitch 

change. Similarly, the melody contour of MIDI is also converted into strings. String 

matching algorithms are employed to do similarity retrieval. The string matching 

approach requires precise detection of individual notes (onset and offset) out of the 

hummed query. However, it is not uncommon for people to substitute a long note with 

several short notes with same pitch value while humming a tune. When there are tied 

notes in the melody, it is likely that incomplete notes will be detected. The string 

matching result would suffer drastically when the error in note detection is not minor. 

To deal with above-mentioned issue, Zhu [70] proposed a new slope-based 

query-by-humming approach, in which the retrieval is robust to the inaccuracy in 

query and the use of the metronome is eliminated. A pitch tracking method was used 
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to construct the melody curve from a user’s humming. Curve features like melody 

slope pitch range, time duration, and note changes in the slopes were extracted from 

melody curves. A melody slope matching algorithm was applied to conduct retrieval. 

When rhythm and pitch interval is considered, more complex similarity measure and 

matching algorithm should be used. In [71] the author employed two-dimensional 

augmented suffix tree to search the desired song, and in [72], a new distance metrics 

between query and songs is proposed. 

All the approaches for the music retrieval mentioned above are based on MIDI 

files database, which are easy to be represented by a symbolic sequence. To make 

content-based music retrieval more applicable, the retrieval task should be extended to 

the music files of real world digital audio recordings.  

One direction to solve this problem is to detect the vocal melody contour directly 

from the polyphonic music. Most current pitch detection methods for polyphonic 

music are limited to pitch detection in modest noise [73] [74] [75]. Recently, some 

algorithms for predominant fundamental frequency tracking have been investigated. 

Goto [76] employs a Maximum A Posterior Probability (MAP) estimation to estimate 

the relative dominance of every fundamental frequency and the shape of harmonic 

structure tone models, but the performance on tracking predominant vocal pitch 

mixed with significant broadband noise interference is not clear. In [77], to avoid the 

problem of extracting exact pitch information from polyphonic raw audio in signal 

level, the author instead proposed to represent the melody information in a statistic 

way, which of course cannot guarantee the retrieval accuracy. 
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The other intuitive solution to this extension is to develop some algorithms to 

extract a certain representation from the polyphonic music in the database, and then 

all the current technology of query by humming based on monophonic representation 

can be used. If we can, for example, separate the vocal content from the background 

music, then the QBH2 problem can be converted to QBH1 problem. However, the 

design of such an algorithm is difficult, since the background music interferes with 

vocal content both in time domain and frequency domain. Traditional Independent 

Component Analysis (ICA) [78] algorithm is not applicable as it assumes the 

independent sources are mixed instantaneously, while common polyphonic music has 

two channels (mixtures) which generally are convolutions of the two sources (singing 

voice and background music). In [79] [80], time domain algorithms for convolved 

mixture separation were proposed using the maximum entropy cost function. These 

time domain algorithms work well for small length mixing filters, but when it comes 

to real time implementations with realistically long filters, they will be unrealizable 

because of lack of computational efficiency. In addition, updating one coefficient for a 

particular filter will account for the already updated preceding filter coefficients, 

which prevents the convergence to the optimal filter coefficients. Therefore, it is 

intuitive to move from the time domain solution to the frequency domain as the 

convolution in the time domain is multiplication in the frequency domain and apply 

ICA methods for instantaneous mixtures in each frequency bin. In this way, the 

unmixing matrix in each frequency bin is independent and will not interfere with each 

other. However, since we obtain the unmixing matrix in each frequency bin 
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independently, arbitrary permutation of unmixing matrix in certain frequency bin will 

lead to the same value for maximum entropy cost function. This seems to be a serious 

problem as only consistent permutations for every frequency bins will correctly 

reconstruct the sources. This problem is called permutation inconsistency problem [81] 

in FD-ICA. Some channel-based frequency coupling methods [82] were proposed to 

solve this problem by placing smoothness constraints across the frequency bin. 

However, such constraints reduce the available degrees of freedom to reconstruct the 

sources. On the other hand, alternative approaches called sources based frequency 

coupling were proposed in [83] [84]. They tried to solve the problem by exploiting the 

relationship between the reconstructed sources at a frequency bin and the original 

sources in the time domain. However, the basic assumption that one source is louder 

at certain time slot may be valid for convolutive mixtures of speech signals, but may 

not always valid for the mixtures of singing voice and background music.  

In this thesis, we present an approach to practical QBH2 music retrieval system 

for two channel polyphonic music. 

4.2 Background Theory for Blind Source Separation 

We all know the problem: we are in a party, people are talking and it is quite hard to 

understand each other because of all the interference. You can imagine, it is even 

harder for a machine to separate individual speeches. This is the well known problem 

often referred to as the “Cocktail Party Problem” [85]. 

The solution to these kinds of problems is called “Blind Source Separation” (BSS) 
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[86]. Blind source separation attempts, as the name states, to separate a mixture of 

signals into their different sources. The word “blind” is used because we have no prior 

knowledge about the statistics of the source in general. 

Sources
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Figure 4-1: The illustration of Cocktail Party Problem and BSS 

Figure 4-1 illustrates the cocktail party problem and the Blind Sources Separation 

to it. As the figure shows, we assume that we have n sources, Si,, which transmit 

signals that after propagation in an arbitrary medium are measured by m sensors , and 

the signals that are measured by these sensors will be called Xi . The mapping from Si 

to Xi is an unknown linear function fi so that: 

),,,( 21 nii SSSfX L=        (4-1) 

Using linear algebra notation, we can rewrite the above equation at the sensor side 

in a more elegant form as: 

)()( tt SAX ⋅=         (4-2) 

Where X(t)=[X1(t),…,Xm(t)]T , S(t)=[S1(t),…,Sn(t)]T, and nm×ℜ∈A is an unknown 

invertible matrix which we will can the mixing matrix. The task of Blind Sources 

Separation is to find a separation matrix W, which is expected to be the inverse (or 
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pseudo-inverse) of the mixing matrix A, to recover the original sources. The 

unmixing equation can be defined as:  

)()( tt XWU ⋅=         (4-3) 

The output U(t)=[U1(t), … ,Un(t)]T. Once 1−≈ AW , and then we would have 

)()( tt SU ≈ .The notation used here will be adopted for the remaining of the chapter. 

4.2.1 Different Approaches for BSS 

 Independent Component Analysis method 

Blind source separation by Independent Component Analysis (ICA) has received 

attention because of its potential applications in signal processing. It is an information 

theoretic approach, and used to find a linear non-orthogonal co-ordinate system in any 

multivariate data. The directions of the axes of this coordinate system are determined 

by both the second and higher order statistics of the original data. The goal is to 

perform a linear transformation which makes the resulting variables as statistically 

independent from each other as possible. A good introduction to ICA can be found in 

[87] [88]. 

 Bayesian Approach  

It provides a probabilistic approach to estimation and inference. It is based on the 

assumption that the quantities of interest are governed by probability distributions, 

and that optimal decisions can be made by reasoning about these probabilities 

together with the data. Bayesian approaches[89][90] provide a framework for learning 

algorithm that manipulate probabilities directly as well as for learning algorithms that 
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do not explicitly manipulate probabilities. For example, in [89], the author provides a 

Bayesian approach to source separation. The basic idea of this method: forming a 

model that describes a particular source separation problem that can be described by a 

simple linear model consisting of a mixing matrix A and the source signal time 

sequence S(t). The observation data can be described as X(t). 

),(
),(),|(),|(

IdataP
ImodelPImodeldataPIdatamodelP =    (4-4) 

With data = X(t); model = A, S(t); I = any priori knowledge. 

The maximum likelihood estimation algorithm can be used to find the parameters 

that maximize the P (model | data, I) in the above equation. 

This approach, however, provides a framework for learning algorithm, other than 

the learning algorithm itself. Therefore, it is more suitable to model selection problem 

than providing solution to the model [91]. 

 TDSS(Temporal Decorrelation Source Separation) 

It uses the temporal structure of signals in order to compute the time-delayed 2nd 

order correlation for the source separation [92][93][94]. The best results are achieved 

if the autocorrelations are as different as possible. The main point of TDSS is to 

diagonalize the covariance matrix >−⋅=< Ttt )()(0 τXXC  for 0=τ  (no delay) 

and at the same time diagonalize the covariance matrix for a given delay 

>−⋅=< Ttt )()( ττ XXC .This leads to an eigenvalue problem as described in[92]: 

)()  ( 1
0

-1
0

−= ττ ΛΛAACC       (4-5) 

where Λ  is the diagonal matrix with elements that are the eigenvalues of the 
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corresponding covariance matrix. The TDSS algorithm can be extended to a matrix of 

filters [95]. The advantage of TDSS over the traditional Independent Component 

Analysis is that it computationally fairly inexpensive. However, the disadvantage is 

that this approach assumes the minimum-phase mixing filters, which limit it 

usefulness to the mixtures in the real world environment [88].  

 Blind Separation of Disjoint Orthogonal signal 

It uses only 2 mixtures of N sources, but the sources have to be pair-wise 

disjointly orthogonal in time frequency representation [96] [97] [98] [99]. The 

algorithms are based on the Short Time Fourier Transform. The major problem for 

this approach is that it is based a rather strong assumption, which considers that the 

time-frequency representation of different sources do not overlap. This assumption 

may hold for the speech mixtures, but is not true the music and vocal singing mixture. 

 Principle Component Analysis (PCA) 

It uses second order methods in order to reconstruct the signal in the mean square 

error sense. The results are independent of the second order statistics. In some areas, 

this is called KL-transform [100]. The basic idea in PCA is to find the components 

S1(t),…, Sn(t) so that they explain the maximum amount of variance possible by n 

linearly transformed component. As mentioned in [87], the purpose of PCA is to find 

a faithful representation of the data. This is in contrast to most high order methods 

such as ICA which try to find a meaningful representation. A good comparison for 

ICA and PCA can be found in [88]. 

The ICA method is adopted in this thesis since it approximates the way how the 
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human brain solves the problem. It has been hypothesized that the brain is a 

ultimately a sophisticated statistical engine, where thought is modeled by statistical 

inference rather than logic and learning results from accumulation of massive date 

from interactions with the world. So a statistical method that claims to model 

information decomposition and encoding in the brain is certainly worthy of 

examination.  

4.2.2 Traditional ICA to Solve Instantaneous Mixtures 

Independent Component Analysis (ICA) is a statistical method to separate complex 

datasets into independent sub-parts. ICA exploits the non-gaussianity of source 

signals and assumes statistical independence of the separated signals to perform 

separation. Similar ICA learning rules for separating instantaneous mixtures have 

been developed from a number of different view points: Informax [78] , Minimizing 

Kullback-Leibler (KL) divergence [101]. In this section, we will describe these 

approaches briefly, since separating instantaneous mixtures is tightly related to our 

specific problem, and acts as the basis of real world mixtures separation. 

 Informax approach: 

In [78], Bell etc. proposed a simple learning algorithm for a feed forward neural 

network that blindly separates linear instantaneous mixture X of independent sources 

using information maximization. The structure they proposed in 2 by 2 case has been 

show in Figure 4-2. They show that maximizing the joint entropy H(Y) of the output 

of the neural processor can approximately minimize the mutual information among the 
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output components )( iii UgY = , where )( ii Ug  is an invertible monotonic 

nonlinearity function (so-called activation function), and U=WX.  
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Figure 4-2: Separation network for instantaneous mixtures 

The joint entropy (Appendix C.2) at the output of neural network is: 

),()()(),( 212121 YYIYHYHYYH −+=      (4-6) 

where )( iYH  are the marginal entropies (Appendix C.1) of the outputs and ),( 21 YYI  

is their mutual information (Appendix C.5). Maximizing the ),( 21 YYH consists of 

maximizing the marginal entropies and minimizing the mutual information. The 

output TYY ),( 21=Y are amplitude-bounded random variables and therefore the 

marginal entropies are maximum for a uniform distribution of Yi. As author pointed 

out in the paper, maximizing the joint entropy will also minimizing the mutual 

information ),( 21 YYI , on the condition that Probability Density Function (PDF) of 

the independent sources are super-gaussian, to which the most real world acoustic 

signals belong. When ),( 21 YYI =0, the joint entropy is the sum of marginal entropies: 

)()(),( 2121 YHYHYYH +=      (4-7) 

Therefore, the maximal value for ),( 21 YYH  is achieved when the mutual information 

among the bounded random variable Y1, Y2 is zero and their marginal distribution is 
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uniform. There are two sets of parameters that determine the maximum joint entropy: 

The nonlinearity )( iii UgY =  and the synaptic efficacies W. Bell et. al. choose the 

nonlinearity to be a fixed logistic function, which is equivalent to assuming a prior 

distribution of the sources: A super-gaussian distribution2 with heavy tails and a peak 

centered at the mean. The only remaining parameters to adopt are the synaptic 

weights and they can be obtained by the following learning rule (Full derivation can 

be found in Appendix D.1): 

TT XUWW ⋅⋅−∝∆ − )tanh(2][ 1      (4-8) 

Where tanh(⋅) is the hyperbolic tangent function. Bell used this algorithm successfully 

for separating instantaneous mixtures of up to 10 sources. 

 Minimizing Kullback-Leibler (K-L) divergence Approach 

 Amari et. al.[101] used the Kullback-Leibler (K-L) (measure of PDF similarity 

for different statistical variables, see detail information in Appendix C.4) as the start 

point, and derived the similar learning rule as Bell’s. The basic idea behind this 

approach is to choose the mutual information ),( ji UUI between the random variable 

Ui, Uj constituting any two components of the output vector U. When in the ideal case, 

),( ji UUI  is zero, the component Ui, Uj are statistically independent. This would 

therefore suggest minimizing the mutual information between every pair the random 

variables constituting the output vector U. This objective is equivalent to minimizing 

the K-L divergence between following two distributions: 

                                                        
2 For a random variable X, it’s fourth-order cumulant, called Kurtosis, which can be expressed as 

Kurt(x)=E{x4}-3(E{x2})2 
Kurtosis can be considered as a measure of the non-gaussianity of X. For a gaussian variable, Kurtosis is zero. 
Distributions of positive (negative) Kurtosis are called super-gaussian (sub-gaussian). Super-gaussian distribution 
typically has heavy tails and a peak centered at the mean while sub-gaussian distribution has flatter density with 
lighter tails. 
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1) The PDF ),( WUUf  parameterized by W 

2) The corresponding factorial distribution ),( WUUf  which is defined as: 

),()(
1

WWU,U i

n

i
U Uff

i∏
=

=      (4-9) 

Where ),( WiU Uf
i

is the marginal PDF of random variable Ui . 

Using the K-L divergence as the cost function, synaptic weights can be obtained by 

the following learning rule (see Appendix D.2) 

TT XUWW ⋅−∝∆ − )(][ 1 ϕ      (4-10) 

where ϕ(x) is the activation function and 357911

4
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4
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4
3)( xxxxxx +−−+=ϕ . 

The activation function is not unique and other activation function such as tanh can 

also be used depending on the distributions of the sources. It should be noted that by 

replacing Amari’s activation function with the hyperbolic tangent we get more stable 

learning since ϕ(x) is not bounded and large learning rates result in numerical 

overflows. 

 As proposed by Amari et. al., a much more efficient way to maximize the joint 

entropy is to follow the ‘natural’ gradient. The natural gradient rescales the normal 

gradient space by right multiplying WWT  in the both sides of equation 4-11, which 

gives the following: 

WUUIW ⋅⋅−∝∆ ])([ Tϕ       (4-11) 

By performing the descent using natural gradient, convergence is significantly faster 

and more stable. In addition to good convergence behavior, there is also increased 

efficiency since the learning rule does not include a matrix inversion operation. 

 Unfortunately, the instantaneous mixture is rather incomplete in the real world 
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situation, due to the extensive filtering imposed between sources and the sensors. 

Instead, we consider the convolutive mixture separation problem. 

4.2.3 Convolutive Mixture Separation Problem 

According to [102], the music companies produce their music products in basically 

two stages. First, sound from each individual instrument is recorded in an acoustically 

inert studio on a single track of a multi-track tape recorder. Then, the signals from 

each track are manipulated by the sound engineer to add special audio effects and are 

combined in a mix-down system to finally generate the stereo recording on a 

two-track recorder. The audio effects are artificially generated using digital signal 

processing techniques and these digital signal processing techniques can be 

considered as direct filter and cross filter placed between the sources and output 

channels. Therefore, the generation of song clips can be modeled as the Figure 4-3(a) 

and the mixture process can be modeled by following equation: 

)()()()()( 2211111 nSnAnSnAnX ∗+∗=     (4-12-a) 

)()()()()( 2221122 nSnAnSnAnX ∗+∗=     (4-12-b) 

where x1 (n) and x2(n) represent two channels of the polyphonic music respectively, 

s1(n) and s2(n) represent two sources respectively. A11 and A22 denote the P points 

direct filter between sources and channels, and A12, A21 denote the P points cross filter 

between sources and channels, respectively. Then the basic problem can be described 

as follows: 

Given the observed channels X1 (n) and X2(n), we expect to find a filter matrix H 
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to separate the independent sources S1(n) and S2(n) from the observed mixtures X1 (n) 

and X2(n). The unmixing process can be modeled by following equation: 

)()()()()( 2211111 nXnHnXnHnU ∗+∗=    (4-13-a) 

)()()()()( 2221122 nXnHnXnHnU ∗+∗=    (4-13-b) 

Our goal is to obtain the separated sources )(1 nU  and )(2 nU  to approximate the 

original sources S1(n) and S2(n) as closely as possible. The unmixing process can be 

illustrated in Figure 4-3(b). 
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(a) Mixing process                                 (b) unmixing process  

Figure 4-3: The convolutive source separation problem 

In [79][103], time domain algorithms for convolved mixture separation were 

proposed using the maximum entropy cost function. These time domain algorithms 

work well for small length mixing filters, but when it comes to real time 

implementations with realistically long filters, they will be unrealizable because of 

lack of computational efficiency. In addition, updating one coefficient for a particular 

filter will account for the already updated preceding filter coefficients, which prevents 

the convergence to the optimal filter coefficients[81]. In [104], the author employ 

another time domain architecture so called feed back architecture, to perform the 

convolved mixture separation, but the computational inefficiency problem is still 
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unsolved. Therefore, it is intuitive to move from time domain solution to the 

frequency domain, since the time-domain convolutive mixture can be transformed to 

an instantaneous mixture in the frequency domain by computing its Q-points 

Short-Time Fourier Transform (STFT): 

Qftfftf ss  ,1,2,),()(),( …=⋅= SAX     (4-14) 

where ts is the block index,  X(f,ts)=(X1(f,ts) , X2(f,ts))T represents the Short-Time 

Fourier Transform of two observed channels and S(f,ts)=(S1(f,ts) , S2(f,ts))T denotes the 

STFT of two independent sources. A(f) denotes a 2×2 instantaneous complex matrix 

at the frequency f. Then the problem can be defined as the estimation of an unmixing 

matrix )(1 ff
−≈ AH  for each frequency bin. This unmixing matrix Hf can be 

obtained by extending the real value blind source separation approach for 

instantaneous mixture [78] to the complex domain. The estimation process can be 

considered as to obtain a Maximum Likelihood solution separately for each frequency 

bin by maximizing the following criteria function [78]: 

))log(det())}(( log{)),((log ff f,tpEtfp HUHX +=   (4-15) 

where U(f,t) represents the separated sources, and E(·) represents the expectation. 

According to [78][81], to optimize the criteria function, the learning function for 

unmixing matrix fH  derived from Eq.(4-15) can be expressed as: 

f
Herm

f tftf HUUIH )),()),((( ⋅−∝∆ ϕ    (4-16) 

where (·)Herm denotes the Hermitian transposition and )(⋅ϕ  is the activation function 

proposed in [81]: 
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)tanh()tanh()( IR zizz ⋅+=ϕ      (4-17) 

where zR  is the real part of z and zI is its imaginary part.. 

Figure 4-4 illustrates the blind source separation process in the frequency domain.  
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Figure 4-4: Frequency domain blind source separation 

We obtained the unmixing matrix independently in each frequency bin and the 

arbitrary permutation of any particular unmixing matrix in certain frequency bin will 

not change the value of the criteria function. As a result, the algorithm produces 

different permutations of separated sources along the frequency axis and the sources 

still remain mixed. This problem is called permutation inconsistency problem [81] in 

FD-ICA. Some channel-based frequency coupling methods [81] [82] [105] were 

proposed to solve this problem by placing smoothness constraints across the 

frequency bin. However, such constraints reduce the available degrees of freedom to 

reconstruct the sources. On the other hand, alternative approaches called sources 

based frequency coupling were proposed in [83] [84] [106] [107]. They tried to solve 

the problem by exploiting the relationship between the reconstructed sources at a 

frequency bin and the original sources in the time domain. However, the basic 

assumption that one source is louder at certain time slot may be valid for convolutive 

mixtures of speech signals, but may not always valid for the mixtures of singing voice 
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and background music. 

4.3 Our Proposed Permutation Inconsistency Solution   

To solve the permutation inconsistency problem, we propose to use a statistical 

learning based approach to classify the output sources in each frequency bin and keep 

the output sources consistent along the frequency axis. The basic idea behind this 

approach is that the background music and vocal singing are two heterogeneous 

signals and the time series data of these two signals have different characteristics for 

each frequency bin. Figure 4-5 illustrates our approach to solve the permutation 

inconsistency problem.  

As Figure 4-5 shows, for each frequency bin f, we have two T points complex 

time series output, denoted as )},(,),,(,),1,({)( TfUtfUfUf isiii LL=U , i=1,2, ts 

denotes the time index and f is the frequency index. 
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Figure 4-5: Statistical learning approach to solve the permutation inconsistency 

problem 

Figure 4-6 depicts the magnitude of the time series of two different source signals 

in the same frequency bin. The horizontal axis represents the time index and vertical 

axis represents the magnitude. As the figure shows, the curve of the singing voice has 

different behavior from that of the background music. The singing voice shows some 
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tempo continuity, which the background music does not have. It is probably because 

the vocal singing is produced by vocal organ, which always stays stable for a period 

of time once being activated in certain frequency, while the background music 

consists of many music instruments and the music instruments show less stable nature 

than singing voice in a particular frequency bin. 

 
Figure 4-6: Two different output signals for a certain frequency 

We first employ 13-dimentional linear prediction coefficients (LPCs) to 

characterize two output time series of each frequency bin with the fixed-length (i.e., 

1000 time points), and followed by a Support Vector Machine (SVM) classifier to 

classify these two output time series of that particular frequency. SVM classifier is 

employed here since it is a useful statistical machine learning technique that has been 

successfully applied in the pattern recognition area [1]. By mapping the low 

dimensional feature space to the high dimensional feature space, the two-class 

classification problem can be made easier and more efficient. The SVM algorithm can 
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construct a variety of learning machines by use of different kernel functions 

[Appendix B.1]. We employ the radial basic function (RBF) with Gaussian kernel as 

the kernel function in SVM training since it is commonly used in two class 

classification.. 

After classification, the results can be denoted as 

)},(,),,(,),1,({)( TfUtfUfUf P
is

P
i

P
i

P
i LL=U , i=1,2. Along the frequency bin, 

)(1 fPU  always belongs to one particular source and )(2 fPU  always belongs to 

other source. In this way, the permutation inconsistency problem can be solved. The 

Figure 4-7 illustrates the results before and after the classification. Each bar represents 

the T-points time series of particular source in each frequency bin and the color 

represents the source.  

As Figure 4-7(a) shows, before the classification, the time series belonging to the 

different sources alternatively appears in the same output entry (upper or lower of the 

frequency axles in the figure) along the frequency axles, due to the permutation 

inconsistency. In Figure 4-7(b), after the classification, the time series belonging to 

the same sources consistently appears in the same output entry. Therefore, to 

reconstruct the spectrum of one separated source for the particular time index, we can 

collect the value corresponding to that time index in all the time series which belong 

to that particular source. 
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Figure 4-7: The illustration of the classification method for solving the 

frequency inconsistency 

4.4 Query by Humming for Real World Music Database 

After the vocal content has been separated from the background music, it still need to 

be further refined before it can be ready for the query as the monophonic 

representation. The major difference is that the basic unit of monophonic 

representation (such as MIDI) is note while the vocal content extracted from the 
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polyphonic music is still acoustic signal. Therefore, we need to handle the following 

two issues to make the QBH2 practical: 

 A robust pitch detection algorithm for the separated vocal spectrum which 

contains interference noise and errors introduced from the separation step. 

 A good note segmentation and quantization scheme for pitch contour. 

Figure 4-8 illustrates the work flow of a practical QBH2 system after the vocal 

content has been separated.  
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Figure 4-8: Workflow of query by humming for polyphonic music database 

4.4.1 Predominant Vocal Pitch Detection 

The separated vocal singing spectrum contains interference noise and errors 

introduced from the separation step. Among them, some of it is caused by imperfect 

separation, and some is caused by background music time series misclassified as 

singing voice time series. To correctly extract the singing pitch from the separated 

vocal spectrum, we have to handle these noise and errors. In our proposed approach, a 

smoothing function was employed to correct the misclassification errors, followed by 
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an algorithm to robustly locate the pitch in the vocal spectrum. 

Figure 4-9(a) shows the spectrum of the vocal singing in a particular time index 

after the separation process. The horizontal axis represents the frequency and the 

vertical axis represents the magnitude. The circles denote the errors introduced by 

misclassification. Since the misclassification occurs only occasionally, the 

misclassification errors are characterized as isolated, short-term discontinuous points, 

which can be corrected by a smoothing function. We employ a 5-points median 

smoothing function followed by a 5-points Hann window linear smoothing function to 

correct these isolated errors. The 5 point Hann window can be defined as: 

)2(25.0)1(75.0)()1(75.0)2(25.0)( +⋅++⋅++−⋅+−⋅= nxnxnxnxnxnw  (4-18) 

where w(n) represents the smoothed and x(n) represents the unsmoothed contour. 

In Figure 4-9(b), we can easily see that the misclassification errors have been 

corrected after smoothing process. 

After we correct the misclassification errors in the spectrum, the pitch value can 

be determined by the position of peaks in the spectrum. Considering the effect from 

local jitters and ripples introduced from separation, we propose to employ the 

following algorithm to robustly locate the pitch in each frame of vocal singing 

spectrum: 

1)  Identify the first 10 peaks in the spectrum with the highest magnitude, and 

substitute each of them with a single point in frequency, and the magnitude 

of each point is the height of the corresponding peak. We employ 10 peaks 

because in most cases, the first 10 peaks contain more than 95% of total 
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energy of the spectrum and are enough for pitch detection. 

2)  Since pitch can be measured as the greatest common divisor of the 

harmonics, we can estimate the pitch by compressing the 10 peak 

spectrums along the frequency axis with the compression factors of 2, 3, 4, 

etc., subsequent adding of the original and compressed spectrums, and 

picking up the distinct maximum. To avoid the effect of vocal formants 

(formants created by vocal tract of human beings often predominates the 

spectrum), these 10 peaks are all normalized into the unit value before 

spectrum compression. 

3)  The extracted pitch of the current frame cannot be too distant from that of 

adjacent frames, since the correct pitch should be stable for a period of 

time while the incorrect pitch does not have tempo continuity. 
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Figure 4-9: Misclassification errors correction 

4.4.2 Note Segmentation and Quantization 

To perform the similarity measure between the original singing voice and the varied 

speed of the humming voice, both note segmentation and quantization for pitch 

contour detection in query side and database side are necessary as the notes can be 
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thought as the basic units in the comparison. The note segmentation process groups 

contiguous pitch values which seem to be within a same note, while the note 

quantization process divides the pitch value of each note into discrete steps. Since the 

frequency transient based onset detection approach itself cannot detect the onset of 

gliding notes which are defined as several different music notes sung or hummed 

continuously without any break, we propose a note segmentation scheme based on the 

frequency transient onset detection, followed by a sliding window algorithm to 

segment the gliding notes. The segmented notes are then quantized into pitch bin 

according to the music scale which is logarithmic for the purpose of simulating 

human perception.  

4.4.2.1 Note Segmentation  

Once the continuous pitch values have been identified, the time locations at which a 

note starts (the onset time) and ends (the offset time) should be estimated. To date, no 

algorithm has been developed that can reliably detect the wide range of possible note 

onsets from different singing styles. In our specific problem (singing voice and 

humming), notes onset can be defined as vowel onsets. Consequently, the singing and 

humming are assumed to consist of short, relatively isolated syllables. Therefore, note 

onsets from human voice are then characterized by an abrupt rise in energy over a 

broad frequency spectrum and the sustained note has a relatively steady spectral shape 

representing the formants of the vowel used. While for note offset, although it can be 

identified to some extent by the fall of energy especially in higher frequency, they are 
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less clearly defined because the exponential decay of the amplitude of a note makes a 

note inaudible while it is still physically present. In light of this, we just detect the 

note onset as the indication of the start of a note, and we assume the note stops at the 

onset of the next note to avoid detecting the note offset. 

The basic idea of our note onset detection scheme is that there are noticeable 

differences in the frequency content at note changes and we can detect the note onset 

by detecting the fast change transient in frequency spectrum. The proposed note onset 

detection scheme is shown in Figure 4-10. First, to improve the reliability of the onset 

detection, we divide the spectrum of input vocal signal into 2 subbands, which range 

from 0 Hz to 4K Hz (subband01:0~1000 Hz, subband02:1000~4000 Hz). The 

frequency range of subband01 is approximately corresponding to the range of the first 

vowel formant and the frequency range of subband02 is approximately corresponding 

to the range of the second and the third vowel formants. We measure the frequency 

transients in terms of progressive distances between the spectra in sub-band 01 to 02 

using the similar method to that in [108]. After frequency transients have been 

detected in these two subbands, we combine them using a weighting function defined 

as: 

)()()( 21 tSBtSBtOnset ⋅+⋅= βα      (4-19) 

where Onset(t) is the sum of onsets detected in two sub-bands and SB1(t) and SB2(t) 

denotes frequency transients detected in subband01 and subband02 respectively. Since 

the first vocal formant normally has the larger energy than other formants, to avoid 
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the frequency transients from subband01 dominating the output of Eq. (4-19), we set 

α (0.25) < β (0.75).  
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Figure 4-10: Frequency transient based onset detection scheme 

After the frequency transient based note onset detection, the onsets of the isolated 

or individual notes (we denoted them as explicit onsets) can be successfully detected. 

However, for the onsets of some gliding notes (we denote them as implicit onsets), the 

frequency transients based onset detection algorithm cannot always correctly detect 

them. For gliding notes, the changes between two consecutive notes are continuous 

and gradual. As a result, sometimes no frequency transients can be detected in two 

subbands. Therefore, we propose a sliding window algorithm to address this problem 

and segment the individual notes from the gliding notes. The window is sliding along 

the original pitch contour between two explicit onsets detected previously and tries to 

find the implicit onsets. The detailed algorithm can be described as following: 

1) At the beginning of each explicit onset detected, we initialize the window 

with the first 6 pitch values after the onset. We divide these 6 pitches into 

two consecutive areas, called reservation area and the exploration area, 

each of which contains 3 values. The reservation area maintains the pitch 
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of current note while the exploration area contains the incoming pitch 

values and always keeps fixed size (here we always keep it 3 elements). 

2) The median of the pitch for each area is calculated.  

If the difference of two means is smaller than a semitone (12 

semitones per octave), the reservation area grows one element and the 

exploration area slides one element (the first elements in exploration area 

is included in the reservation area and the next pitch value in time line is 

read into the window, acting as the last element of exploration area).  

If the difference of two means is larger than a semitone, the position 

of current boundary of two areas indicates that a new implicit onset begins. 

We record this position and take the median of the reservation area as the 

pitch value of all elements in the reservation area. At the same time, the 

new reservation area is the old exploration area, and the new exploration 

area is constructed by reading the next 3 pitch values in the time line.  

Step (2) is repeated until the exploration area exceeds the next explicit onset. 

It should be noted that the size of the sliding window is fixed (in our experiment 

it equals to 18) but the sliding window is cyclic if the exploration area exceeds the end 

of the sliding window. 

Figure 4-11 shows the note segmentation results. The horizontal axes in all three 

figures represent the time index, the vertical axes in (a) and (c) represent the pitch 

value and the vertical axis in (b) represents the onset strength. Figure 4-11(a) is the 

original pitch contour detected from the polyphonic music signal after separation. 
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While the solid lines in Figure 4-11(b) are explicit onsets detected using the onset 

detection scheme. It is easy to see that the implicit onsets (appears approximately in 

time index 100, 300, 370 and 420) are not detected. The dot lines in Figure 4-11(b), 

however, indicate the implicit note onsets detected by our sliding window algorithm. 

An interesting point here is that an undetected explicit note onset using onset 

detection scheme (appears approximately in time index 220), is successfully detected 

using sliding window. Therefore, in some sense, the sliding window algorithm can be 

used to detecting the onset missed by the original frequency transient based onset 

detection scheme. 

 
Figure 4-11: Note segmentation results 

(a) Original pitch contour; (b) The onsets detected (The solid line represents the 
onsets detected using onset detection scheme and the dot line represents the onsets 
detected from gliding notes); (c) Pitch contour after sliding window algorithm.  
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4.4.2.2 Note Quantization 

Once the notes have been segmented, we need to quantize pitch value of each note, 

which divides the pitch value of each note into discrete steps. This procedure is 

essential to measure how much the pitch of current note has changed compared with 

the previous and subsequent notes and is necessary for our similarity matching. 

Considering the fact that human perception of pitch difference is logarithmic to the 

frequency difference, we quantize the pitch value according to equally tempered 

musical scale. To give a proper pitch resolution, the quantization step is set to 1/10 

semitone, which means one octave can be divided into 120 integers. For the pitch 

value of each note, it can be quantized as the following equation: 

⎣ ⎦5.0)/)((log*120)( min2 += ptptq     (4-19) 

where pmin  is the minimum pitch value in the whole melody contour, excluding the 

zero value in it. In this way, the actual pitch value of each note is converted to the 

relative pitch value which shows relative pitch intervals among the notes. The concept 

of relative pitch is helpful in the following similarity matching process as absolute 

pitch value for each note does not make any sense due to the variety of utterances of 

the people with different music skills. However, the melody contour, maintained by 

the relative pitches, is always kept reasonably correct with the original one, for 

different people. 

After note segmentation and quantization, the whole melody can be represented as 

a series of notes and the i-th note in the melody can be denoted as Notei ={NSi , NDi , 
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NPi },where NSi , NDi and NPi represents the starting point (Onset time), duration and 

quantized pitch value for note i, respectively. For the purpose of the similarity 

measure, the zero pitch values between two consecutive individual notes are replaced 

with the pitch value of previous note. 

4.4.3 Similarity Measure 

The aim of similarity measure is to find approximate similarities between input query 

melody and all the possible target melodies obtained in the database side and to select 

a certain number of the most similar ones in terms of similarity score. Considering the 

large music database, the direct comparison in note level between the query melody 

and the melodies in database side using traditional methods, such as Dynamic Time 

Warping (DTW), is computationally intensive. Therefore, the comparison between the 

query melody and the melodies in database side should be performed in an efficient 

way. In addition, considering that the tempo of human humming is different from 

original songs, which can be thought as a uniform stretching of the time axis, 

therefore, the similarity comparison should be invariant under shifting and time 

scaling. We propose to address the first concern by performing melody shape 

matching [109] to roughly filter out the most unlikely candidates in the database. 

Then, considering the second concern, we perform further similarity matching using 

Uniform Time Warping, as proposed in [110](The detailed description can be found in 

Appendix E), to stretch the query and all the possible candidates in a normal form to 

facilitate the matching process, followed by the similarity measure using Proportional 
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Transportation Distance (PTD) [111] (The detailed description can be found in 

Appendix F). 

4.5 Summary 

In this chapter, we propose a solution to the query by humming system for polyphonic 

music. The main contribution includes: 

 Considering the vocal singing voice and background music as two 

heterogeneous signals, we present a predominant vocal content separation 

method for two-channel polyphonic music by employing a statistical learning 

based method to solve the permutation inconsistency problem in FD-ICA. 

 A noise insensitive pitch detection method is specifically designed to robustly 

detect the vocal pitch from the noise background introduced from vocal 

content separation. 

 To segment the discrete note in humming and singing voice, we propose a 

note segmentation scheme based on the frequency transient onset detection, 

followed by a sliding window algorithm to segment the glissando notes. 
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5. Experimental Results      
and Discussion 

 

 

 

In this chapter, a series of experiments concerning the evaluation of the proposed 

music database structuring and retrieval algorithms are described, and the 

experimental results are also discussed.  

5.1 Music Genre Classification Evaluation 

To illustrate and evaluate our proposed musical genre classification approach, 

experiments are conducted for various genres of music samples. 

The music dataset used in musical genre classification experiment contains 100 

music samples. They are collected from music CDs and Internet, covering different 

genres such as Classical, Jazz, Pop and Rock. All data are sampled with 44.1 kHz 

sampling rate, stereo channels and 16 bits per sample. 

5.1.1 Classification Results for Hierarchical Classifiers 

We select 60 music samples as training data including 15 Pop songs, 15 Classical 

5 
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songs, 15 Rock songs and 15 Jazz songs. Each sample is segmented into 2000 frames 

and the length of each frame is 20 ms. Therefore, the total number of training data is 

120,000 frames. For the SVM1 which is used to classify music into Classical/Jazz and 

Pop/Rock, 60,000 frames including 15,000 frames of each genre are used for training. 

For the SVM2 which is used to classify Classical/Jazz into Classical and Jazz, 40,000 

frames are used for training. Among these training frames, 10,000 frames are from 

SVM1 training set with 5,000 frames of Classical and Jazz respectively; the other 

30,000 frames are from new training frames with 15,000 frames of Classical and Jazz 

respectively. For SVM3 which is used for classify Pop/Rock into Pop and Rock, 

40,000 frames are used for training. The training frames selected for SVM3 is similar 

to those for SVM2. 10,000 frames are from SVM1 training set and 30,000 frames 

from new training frame. The rest 40 samples are used as a test set. 

Radial basis function with c=1 is used for SVM1 and c=2 for SVM2 and SVM3 as 

the kernel function in SVM training and classification. After training the SVMs, we 

use them as the classifiers to separate Classical, Jazz, Pop and Rock frames on the test 

set. The test set contains 10 Classical music samples (20,000 frames), 10 Jazz music 

samples (20,000 frames), 10 Pop music samples (20,000 frames) and 10 Rock music 

samples (20,000 frames).  Table 5-1 shows the number of training and test data, 

support vectors obtained, and test error for SVM1, SVM2 and SVM3 respectively. It 

can be seen that our proposed approach can achieve an average accuracy as high as 

93.14% in frame based musical genre classification. 
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Table 5-1: SVM training and test results 

 SVM1 SVM2 SVM3 
Training Set 60,000 30,000 30,000 
Support Vectors 4325 8327 7684 
Test Set 40,000 20,000 20,000 
Error Rate 6.36% 7.42% 6.79% 

As the humans recognize the music genre based on the whole music pieces, we 

also conducted an experiment based on the music title. The whole song can be cut into 

several clips, and each clip lasts 30 second. Each clip will be segmented using 20ms, 

50% overlapping window, and the mean feature vectors (LPCCs, Zero Crossing Rate, 

and MFCCs) will be calculated over the whole clip. The music genre of that music 

clip will be determined by these characteristic mean feature vectors. The music genre 

of the whole music title can be voted by the majority classes of its component clips.  

Table 5-2 shows the classification results based on music pieces. The column titles 

represent actual genre, while the row titles represent classification assigned by the 

system.  

Table 5-2: Classification results based on music pieces  

 Pop Rock Jazz Classical
Pop 90% 0% 10% 0% 
Rock 0% 100% 0% 0% 
Jazz 10% 20% 70% 0% 
Classical 0% 0% 0% 100% 

From the table, we can see that Jazz music has the worst classification accuracy 

and is easily confused with other genres, probably due to its broad nature. Classical 

music seems to be easiest to classify. This makes intuitive sense because Classical 

music is most different from the other genres. 

To further illustrate the advantage of proposed approach, we compare the 
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performance of proposed method and other methods including nearest neighbor (NN), 

and Gaussian Mixture Model (GMM). The same training set and test set are used for 

these methods.  Table 5-3 shows the comparison result of these methods. It can be 

seen that our proposed method achieves a higher accuracy rate than other methods. 

Table 5-3: Comparison result with other classification methods 

 SVM NN GMM
Error Rate 6.86% 20.57% 12.31%

5.1.2 Classification Results for Unsupervised Classifier 

As mentioned in section 2.3, each music piece is split into 30 second clips. Using 

these clips as training data, a continuous-input HMM template is created for each 

music piece with random initial parameters. Each state’s observation distribution is 

modeled by a single Gaussian with 36 dimensional mean and 36 by 36 diagonal 

variance for MFCCs(6) and LPCCs(6) features supplemented by delta and 

acceleration values. Hidden state number is varied between 3, 4, 5 states. In our 

experiment, we found that the number of hidden states did not have dramatic impact 

on the system in terms of classification accuracy.  

Table 5-4: 5-state HMM classification results 

 Pop Rock Jazz Classical
Pop 88% 0% 12% 0% 
Rock 0% 92% 8% 0% 
Jazz 20% 4% 76% 0% 
Classical 0% 0% 0% 100% 

Table 5-4 illustrates the classification results using proposed method with 5-state 

HMMs. The column titles represent actual genre, while the row titles represent 

classification assigned by the system. 
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It can be seen that some types of music have proven to be more difficult to 

classify than others. In particular, Jazz has proven to be difficult to distinguish from 

Pop music. It probably results from the fact that jazz music usually comprises the 

improvisation of the musicians, producing variations in most of the parts, which 

makes it similar to Pop music. Classical music has proven to be the easiest to classify. 

This makes intuitive sense because Classical is most different from the other genres. 

For comparison, we use a fixed-length segmentation scheme with 20 ms time 

window and 50% overlapping to segment the music clips. As Table 5-5 shows, the 

average classification accuracy is 75% using the same datasets and HMM topology, 

which is far below that of our proposed segmentation scheme. 

We also compare the performance of proposed method with other supervised 

learning classification method such as SVM classifier, as described in the previous 

sections. It was adopted because it yielded the best classification results among all 

supervised learning classifier. On the same dataset, as Table 5-5 shows, our proposed 

method is comparable to the SVM classifier. However, for SVM classifier, two 

problems make it inapplicable to real world applications. Firstly, from the music data 

point of view, SVM classifier is based on contrived taxonomies. It is not applicable to 

very large databases due to the ambiguities and inconsistencies in the chosen 

taxonomies. Secondly, from the classifier point of view, addition of new genre 

necessitates retraining all SVM classifiers. It is time-consuming work due to the slow 

training speed of SVM, especially when the genre hierarchy grows large. 
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Table 5-5: Comparison result 

 Proposed
Method 

Fix-length 
Segmentation

SVM 
Classifier 

Average Accuracy 89% 75% 90% 

5.2 Music/ Music Video Summarization Evaluation 

5.2.1 Objective Evaluation 

Our aim for the music video summarization is to maximize the coverage for both 

music and visual content without having to sacrifice either of them. For this purpose, 

in the music track, we need to extract the most common and salient themes of a given 

music. Ideally, a music summary lasting for a longer duration should fully contain a 

shorter music summary.  

Table 5-6 shows the music content of our test music video “Top of the world” (by 

Carpenter). As the table shows, section 1 and 7 (pure music section) are the Intro and 

Outro of the whole music track respectively, while section 2-6 belong to the principal 

parts of the music track. Among the principal parts, Section 2 and 5 are verses by the 

female singer, section 3 and 6 are chorus by male and female singers, and section 4 is 

the bridge portion. In this example, sections 5 and 6 are the refrains of sections 2 and 

3. Music summaries extracted with respect to the changes of summary length are 

shown in Figure 5-1. The vertical axis represents the summary length and the 

horizontal axis represents the frame number (time). The bar in the figure corresponds 

to the frames extracted from the original music. The boundaries of each section in 

Table 5-6 are also labeled with the dashed line in the figure.  
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Table 5-6: The content of the music-“Top of the world” 

Section Range(Frame Number) Content 

1 0-20 Instrumental music as Intro 

2 21-176 Verse by the female singer 

3 177-227 Chorus by male and female singer 

4 228-248 Instrumental music as bridge 

5 249-450 Verse by the female singer 

6 451-504 Chorus by male and female singer 

7 505-513 Instrumental music as Outro 

 
Frame Number 

Figure 5-1: Experiment result on music video “Top of the world” 

From the figure, we can see our music summarization method successfully filters the 

pure music portions out and performs the music summarization on the vocal music 

parts in section 2, 3, 5 and 6. This suggests that our proposed music classification 

method is efficient in separating the vocal music and pure music. The result also 

shows the extracted music summaries are always located at the beginning of the first 

verse of the music and the later parts of the two chorus portions. These excerpts were 

selected probably because the most salient themes of the music occurred most 

frequently in the memorable introductory theme and the later part of chorus. In 

addition, as the figure shows, a longer time length summary always completely 
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includes the shorter time length summaries from the same song. This indicates that 

our proposed method essentially captures the main theme of the music content, since 

to satisfy the length requirement, the shorter summary always keeps the most 

important part in the longer summary, and discards the less important parts. In other 

words, whatever the length of the summaries is, the most salient parts of the song are 

always included in the summaries. Another interesting observation from the figure is 

that all of the summaries includes two choruses in the song while for the two verses in 

the song, the generated summaries contains only one verse. This verifies the 

efficiency of our clustering algorithm as it can capture the most repeated part of the 

song (chorus) without missing anyone of them. 

5.2.2 Subjective Evaluation 

Since there is no absolute measure available to evaluate the quality of the music 

summary / music video summary, we employed a subjective user study to evaluate the 

performance of our music summarization method /music video summarization 

method, which is borrowed from the idea of the Questionnaire for User Interaction 

Satisfaction (QUIS) formulated by the Department of Psychology of University of 

Maryland [112]. We use following attributes to evaluate the music summary/music 

video summary: 

a. Clarity: This pertains to the clearness and comprehensibility of the music video 

summary; 
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b. Conciseness: This pertains to the terseness of the music summary/ music video 

summary and how much of the music summary/music video summary captures 

the essence of the music/ music video; 

c. Coherence: This pertains to the consistency and natural drift of the segments in 

the music summary/ music video summary. 

d. Overall Quality: This pertains to the general perception or reaction of the users to 

the music summaries/music video summaries. 

For the dataset, four genres of the music video are used in the test. They are Pop, 

Classical, Rock and Jazz. Each genre contains five music video samples. The aim of 

providing different music videos of different genres is to determine the effectiveness 

of the proposed method in creating summaries of different genres. The length of 

music video testing samples ranges from 2m52s to 3m33s. The length of the summary 

for each sample is 30s. 

In this experiment, there are 20 participants with music experience, 12 males and 

8 females with most of the participants being graduate students. Their ages range from 

18 to 30 years old. Before the tests, the participants were asked to spend at least half 

an hour watching each testing sample for as many times as needed till they grasped 

the theme of this sample.  

5.2.2.1 Subjective Evaluation of Music Summaries 

We first asked the participants to evaluate our proposed music summarization scheme. 

We extracted the sound track of each music video and made music summary using our 
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proposed summarization method, which is described in section 3.2. The participants 

listened to the music summary one by one and rated the summary in three categories 

(Conciseness, Coherence, and Overall Quality) on a scale of 1-5, corresponding from 

the worst to best respectively. The average grade of the summaries in each genre from 

all subjects is the final grade of this genre. In order to make comparison and highlight 

the advantage of our adaptive clustering method, we also asked the participants to rate 

the summaries using a non-adaptive clustering method [39] in terms of same rules.  

Table 5-7: Results of user evaluation of music summary 

Genre Conciseness  Coherence Overall Quality 
 I II I II I II 

Pop 4.6(0.143) 3.7(0.212) 4.3(0.185) 3.6(0.283) 4.5(0.156) 3.4(0.325)
Classical 4.2(0.187) 3.0(0.243) 4.0(0.214) 3.3(0.406) 4.1(0.235) 3.1(0.386)

Rock 4.5(0.158) 3.4(0.207) 4.1(0.176) 3.5(0.277) 4.7(0.137) 3.3(0.283)
Jazz 4.3(0.202) 3.1(0.251) 4.2(0.239) 3.1(0.381) 4.2(0.279) 2.9(0.412)
I: Our proposed method 
II: Non-adaptive clustering method 

Table 5-7 shows the results of listening evaluation of music summaries generated by 

different methods. In addition, standard deviation is reported in the parentheses. From 

the results, we can see that our proposed method performs superior to the 

non-adaptive clustering method for all genres of the music testing samples in all 

categories in terms of high scores and low standard deviation.  

5.2.2.2 Subjective Evaluation of Music Video Summaries 

To evaluate our proposed music video summarization scheme, the participants were 

also asked to watch music video summaries generated from the testing sample using 

our proposed method. The participants watched the music video summary one by one 
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and rated the video summaries in the same manner as they rated the music summaries, 

except for that the video summaries were rated in the four categories (Clarity, 

Conciseness, Coherence, and Overall Quality) instead of three categories for music 

summaries. In order to make comparison, we compare the results of our proposed 

method with the results of music or video alone for summarization and manual 

summarization. On the one hand, we asked participants to rate the summaries 

generated automatically using music summarization only [40] and video 

summarization only [50], as these two methods are the most similar approaches which 

we can find to our proposed music summarization scheme and visual content 

summarization scheme, respectively. On the other hand, we also asked participants to 

rate the summaries manually created by the expert from EMI Singapore. In order to 

avoid the potential biased evaluation results, we presented the music video summaries 

created by different methods in a random order, and the participants did not know 

which technique had been used to generate each summary before they rated the 

summaries. Table 5-8 shows the average scores of the users’ evaluation for Pop, 

Classical, Rock and Jazz music video summaries for various methods. In addition, 

standard deviation is reported in the parentheses. 

From the test results, it can be seen that the summaries using the proposed method 

performed quite well with the score over 4 in all categories and with a low standard 

deviation. It also can be seen that proposed method is comparable to the manual 

summarization method for all genres of music video testing samples. This indicates 

that the proposed method is effective in realizing users’ expectations.  



 121

Table 5-8 also shows that, for music video summaries generated by our proposed 

method, the average scores for Pop music video were generally higher than the other 

three genres, while the average scores for Jazz music video were generally lower than 

the other genres. This may be explained by the fact that usually each repetition of the 

main melody comes with a small variation, also depending on the genres. In most of 

today’s Pop music, the main melody part repeats typically in the same way without 

major variations. In Jazz music, it usually contains the improvisation of the musicians, 

with variations in most of the parts. Such variations may create problems in 

determining the main melody part. This is consistent with earlier findings [42] 

suggesting that Jazz music is more difficult for clustering methods to capture the main 

theme of this genre compared with other music genres. It is interesting to see that our 

proposed method perform better than the manual method in 3 out of 4 testing genres 

in terms of the overall attribute. This is probably because the music expert sometimes 

may cut one video clip containing one of the choruses from the original video and 

take this clip as the music video summary, which may not give the participants a good 

overview of the original music video, while our proposed method maximized the 

coverage of the generated summaries both for music and visual contents of the 

original music video and is preferred by most of participants. 

The music video summarization examples can be viewed at 

http://www.comp.nus.edu.sg/~shaoxi/Vsum/vsum1.htm 
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Table 5-8: Results of user evaluation of music video summary 

Genre Clarity Conciseness 
 Proposed 

Method
Manual 

Summary 
Music Video 

Proposed 
Method

Manual
Summary

Music Video 

Pop 4.5(0.145) 4.7(0.122) 3.2(0.334) 2.9(0.125) 4.8(0.173) 4.7(0.155) 2.5(0.270) 2.3(0.234)

Classical 4.2(0.132) 4.5(0.117) 3.0(0.209) 3.0(0.268) 4.6(0.158) 4.9(0.178) 2.4(0.335) 2.8(0.189)

Rock 4.3(0.153) 4.6(0.145) 3.1(0.418) 3.2(0.189) 4.5(0.113) 4.8(0.213) 2.7(0.423) 3.0(0.282)

Jazz 4.1(0.167) 4.4(0.177) 3.0(0.264) 2.8(0.223) 4.4(0.202) 4.7(0.198) 2.9(0.372) 2.7(0.302)

 
Genre Coherence Overall Quality 
 Proposed 

Method
Manual 

Summary 
Music Video 

Proposed 
Method

Manual
Summary

Music Video 

Pop 4.4(0.175) 4.6(0.123) 3.1(0.152) 3.3(0.133) 4.5(0.113) 4.4(0.224) 2.7(0.327) 2.6(0.433)

Classical 4.0(0.108) 4.3(0.116) 3.3(0.221) 3.4(0.126) 4.6(0.150) 4.3(0.248) 2.6(0.425) 3.5(0.282)

Rock 4.2(0.134) 4.4(0.102) 3.7(0.112) 3.6(0.172) 4.3(0.182) 4.0(0.174) 2.9(0.289) 3.3(0.407)

Jazz 4.3(0.122) 4.7(0.115) 3.2(0.171) 3.5(0.163) 4.1(0.133) 4.5(0.189) 3.0(0.376) 2.4(0.269)

5.3 Query by Humming for Real World Music Database 

Our experiments on query by humming for real world music database are divided into 

five parts. Firstly, we evaluate the performance of the SVM classifier for the 

alignment of frequency inconsistency. Secondly, we evaluate the performance of our 

proposed separation approach to the convolutive mixtures. In the third experiment, we 

compare the vocal pitch detected from the polyphonic recording using our proposed 

method with the pitch detected from the corresponding pure singing voice version. 

Then we test the performance of the note onset detection accuracy as our fourth 

experiment. Finally we evaluate the performance of our retrieval system on the 

polyphonic music database, by different users’ inputs. 



 123

5.3.1 Performance of the Classifier 

In order to evaluate the performance of SVM classifier for vocal/instrumental music 

classification, we conduct the following experiment. The training set contains 20 pure 

instrumental/vocal songs collected from the Internet and CDs, 10 are pure 

instrumental music and 10 are pure vocal singing (5 from female voice and 5 from 

male voice). The test dataset contains the 20 songs also collected from the Internet 

and CDs, 10 are pure instrumental song and 10 are pure vocal singing. All are Pop 

music sampled at 16K Hz. The training data and testing data are segmented into 

fixed-length and overlapping window frames (in our experiment we used 1024 

samples with 50% overlapping) and the number of STFT is 2048 points after zero 

padding to each segmentation window. 1000 consecutive window frames are grouped 

as one super block and after STFT, there is one 1000-points complex time series (one 

time frame) in each frequency bin corresponding to one super block. Considering the 

frequency range of the vocal singing, which ranges from 0 to 4K Hz, we only collect 

the complex time frames from the frequency index 1 to 512 (512 corresponds to 4K 

Hz in our experiment setup), and exclude the silent time frames which can be defined 

as the time frames whose energy 1  is less than the predefined threshold (we 

experimentally set this threshold 100).  

Totally 40000 time frames (half are pure vocal time frames and half are pure 

instrumental time frames) in the training set are collected and LPCs are calculated for 

                                                        
1 The energy of the time frame x, x={x(1),x(2),…,x(512)}, can be defined as: 

∑ =
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each time frame to train the classifier. 

After training the SVM, we test it using the time frames in testing set. The 

classification result on the pre-labeled test set is 95.3%. The classification result is 

quite good as the most of time frames can be correctly classified, and the sporadic 

errors can be corrected by the smoothing function introduced in section 4.4.1. 

5.3.2 Vocal Content Separation Results 

The success of the subsequent pitch detection for the vocal singing is dependent on 

the performance of the proposed vocal separation approach. In our experiment, we 

have to use artificial mixtures other than real world recordings because the ground 

truth of source signals used to create corresponding polyphonic recordings is not 

available (i.e. the singing version of the polyphonic music collected from Internet may 

not be sung by the same singer). We created 10 synthetic convolutive mixtures of one 

singing voice source and one corresponding background music source, each lasting 30 

seconds. The sources are selected from 20 pure music/vocal songs in training set of 

the experiment of section 5.3.1 and four mixing filters A11, A22, A12, A21 used in each 

mixing process are filters learnt in the polyphonic recordings. The separation results 

can be measured by Signal-to-Noise Ratio (SNR), which can be defined as: 
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where S(f,t) denotes the discrete spectrum representation of pure singing voice, and 

S’(f,t) denotes the vocal content spectrum obtained using our proposed method. To 

make comparison, we also employ the method proposed in [81] and [83] using the 
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same dataset. The average SNR for each method to separate the vocal content from 

these 10 mixed songs is reported in Table 5-9. In addition, the standard deviation for 

each method is also included in the table. As the table shows, the high SNR and low 

standard deviation represents the effective of our proposed separation scheme. In 

order to highlight the contribution of SVM classifier, we also compare with the 

performance of FD-ICA algorithm without employing SVM classifier to align the 

permutation inconsistency. From the result of experiment, we can see that, without 

any permutation alignment, the average SNR is only 2.51 dB and is much worse than 

any methods with permutation alignment. 

Table 5-9: Vocal separation performance of different approaches 

 Average SNR(dB) Standard Deviation 
Proposed method 10.57 1.4896 

Smaragdis’s method 7.96 1.6153 
Mitianoudis’s method 8.74 1.8332 
FD-ICA without SVM 2.51 3.6358 

5.3.3 Pitch Detection Experiment Results 

In this experiment, the test dataset contains 40 polyphonic music excerpts extracted 

from 20 polyphonic songs from Internet and CDs. All are Pop songs and sampled at 

16 kHz. We also collected the pure singing version of corresponding music excerpt 

from the Internet as the ground truth, due to the fact that although the polyphonic 

version and pure singing version are sung by different singers, the melody contours of 

singing in these two versions are similar. 

In order to measure the similarity of these two pitch contours, we first convert the 

pitch value into music cents according to its frequency value, and the fact that the 
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smallest interval in western music is 100 cents (one semitone) is used to group a 

sequence of samples into one note. The two note contours are aligned in time 

manually and we denote a character “U” at the current note if the note is higher than 

previous one and a “D” if the note is lower than previous one. The matching accuracy 

can be defined as the number of matching notes divided by total number of notes in 

comparison. 

In our experiments, for the 40 music excerpts, after vocal content separation 

process, the average matching accuracy of our proposed pitch detection approach is 

81.4%. To make a comparison, we also employ an audio tool called Praat (which is 

available at http://www.fon.hum.uva.nl/praat/) to detect vocal pitch after separation. 

The average matching accuracy of that method is 74.1%, which is relatively lower 

than our proposed method. It is probably due to the fact that the pitch detection 

algorithm provided by Praat doesn’t deal with the misclassification error in vocal 

content separation process before it detects the pitch values. To verify this, we also 

use Praat to detect the pitch after misclassification error correction introduced in 

section 4.4.1.This time, the average matching accuracy is 80.7%, and is comparable to 

our proposed approach. Although our proposed pitch detection approach can not 

correctly detect the relative pitch at all points, our proposed pitch detection approach 

is still quite good since pitch contour can be represented properly with such average 

accuracy, and for the retrieval task, the individual pitch is less important than the pitch 

contour. 
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5.3.4 Note Onset Detection Accuracy 

The proposed note onset detection method can be tested on singing voice segregated 

from polyphonic music and humming of human voice. The test set here are 10 pieces 

of pure singing voice (from 10 pure vocal songs in training set in section 5.3.1) and 10 

pieces of humming collected from 3 males and 2 females, and each lasting for about 

20 seconds. For each singing or humming clip, the onset points were manually labeled 

beforehand with the aid of corresponding music scores, which help accurately locate 

the onset in the singing or humming voices. 

An onset is considered accurately detected if it falls within 100ms window of 

pre-labeled onset position, and an onset is undetected if there is no onset detected 

using our algorithm within 100ms window around pre-labeled onset position. An 

onset is considered falsely detected if it falls outside 100 ms window around 

pre-labeled onset position. Table 5-10 shows the onset detection results both for the 

singing and humming (Using ‘La’) from different human voices using our proposed 

approach and the frequency transient approach similar to the one proposed in [108]. 

As Table 5-10 shows, the accuracy of proposed onset detection (92.95% for singing 

and 91.69% for humming) is much higher than the previous frequency transient based 

approach (80.22% for singing and 62.46% for humming), as most of the implicit 

onsets of glissando notes in singing voice and humming are successfully detected in 

our approach. It can also be seen that the performance on humming voice increases 

more significantly than on singing after using our proposed method. This is probably 

due to the fact that people are prone to humming more glissando notes than when they 



 128

are singing. 

Table 5-10: Onset detection results 

Frequency Transient Method Our Method 
 Total 

Correct False Alarm Correct False Alarm 

Singing 369 296 17 343 25 

Humming 325 203 21 298 32 

5.3.5 Performance of the Retrieval System 

In query by humming system, people are used to humming a tune belonging to the 

music sections containing singing voice such as chorus and verse due to the fact that 

the vocal content section of a song is easier to remember than the non-vocal sections 

for the human beings. Therefore, music semantic region detection is important to filter 

out some non-vocal sections in a song such as Introduction (Intro), Bridge, 

Instrumental and Ending (Outro), and we only need to compare the input query with 

the music sections containing singing voices such as chorus and verse. Here, we 

employ the music semantic region detection algorithm proposed in [32] to 

automatically detect the chorus and verse. 

To evaluate the performance of our proposed retrieval system in real world sound 

recordings in the database side, we collected 100 polyphonic songs extracted from 

CDs. All are English Pop songs. After semantic region detection as proposed in [32], 

we totally have 771 vocal instrumental mixture segments (303 verses and 468 

choruses). As for the query side, we ask 10 people, 5 females and 5 males, to hum for 

the system. Each person hummed the melodies of 4 different songs through 
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microphone (2 melodies belong to the chorus parts of two different songs and 2 

melodies belong to the verse parts of another two different songs). The retrieval 

results is returned to the users as a ranked list ordered from high to low in terms of 

similarity measure with the input query. The retrieval accuracy can be defined as the 

number of target songs falls in top-n list divided by the number of total queries. For 

example, in our experiment the total number of queries is 40. For these 40 queries, the 

retrieval system will return 40 rank lists as the retrieval results, and among these rank 

lists, suppose the number of target songs appearing as the first item of the list is 10, 

and then the retrieval accuracy for top-1 list is 25%. Table 5-11 shows the average 

retrieval accuracy of our proposed retrieval system with different rank list numbers.  

As Table 5-11 shows, the accuracy of target songs appearing in the top 1 rank list 

is low, compared with the accuracy obtained on the MIDI database (usually above 

50% for top 1 rank) [109], but our proposed method performs on the real world 

polyphonic music signals. Unlike MIDI files, we cannot perfectly obtain the melody 

information from polyphonic music signals. As the ranked list size increases, the 

retrieval accuracy of our retrieval system is more and more close to that of retrieval 

system on MIDI database. This is because although our proposed algorithm cannot 

perfectly obtain the melody information from polyphonic music signals, it still can 

reasonably approximate the correct melody. Therefore, when we relax the restriction 

by increasing the rank list number, the target songs can then be found. This point is a 

good characteristic for the application of our proposed system, as the people in the 

query side normally have end facilities such as hand phone or PDA, high accuracy for 
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top 10 rank and low accuracy for 1 or 2 rank is still acceptable since they can select 

the desired song in the screen which can easily display the titles of 10 songs. 

Table 5-11: Retrieval accuracy for our proposed method 

Rank list Number No. of Target Songs Falling in Accuracy 

1 15 37.5% 
2 22 55.0% 
5 29 72.5% 

10 34 85.0% 

In addition, among the 6 target songs which are not included in the top 10 list, we 

also found some of them had been filtered out by the previous melody matching 

algorithm due to the incorrect music semantic region detection, i.e. the semantic 

region detection algorithm segments the incomplete choruses or verses, while the 

people accidentally hum the tunes on these incomplete choruses or verses part. Since 

the corresponding melody is missed in the target chorus or verse, the target chorus or 

verse will be rejected by our current melody shape matching. To remove the effect of 

automatic music semantic region detection to the retrieval accuracy, we also 

conducted the experiment on the manually labeled music semantic region database. 

Table 5-12 shows the retrieval accuracy on this experiment. From the table, we can 

find that with manually labeled music semantic region, the retrieval accuracy increase 

slightly for all rank list number except the rank list number 1, as the incorrectly 

filtered out target semantic region in automatic approach can be avoid. Although the 

music semantic region segmentation and melody shape matching slightly decrease the 

accuracy of the system, these two steps are still indispensable because these two steps 

significantly reduce the searching space and the retrieval process will be very 
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complex or even impossible without these two steps. 

Table 5-12: Retrieval accuracy for manually labeled music semantic region 

Rank list Number No. Of  Target Songs Falling in Accuracy 

1 15 37.5% 
2 23 57.5% 
5 31 77.5% 

10 36 90.0% 

 

Our current music retrieval system will work well for songs which have only two 

kind of heterogeneous signals mixed together. However, it will not work well if more 

than one singer are singing simultaneously in the song, which may happen in the 

chorus. Under this circumstance, our separation approach may fail as the separated 

vocal contents are still mixed. Another limitation for our system is that it cannot be 

applicable to the songs containing heavy metal instrumental music, because such kind 

of music will destroy the assumption that background music has super-Gaussian 

distribution. 

5.4 Summary 

In this chapter, a series of experimental results concerning the evaluation of the 

proposed music database structuring and retrieval algorithms have been described. 

For the music genre classification, the result of our proposed multi-layer SVM 

classifier achieves a higher accuracy rate than other prescriptive approaches, and the 

result of our proposed unsupervised learning approach for music genre classification 

also achieves a promising accuracy. For music/music video summarization, objective 

evaluation and subjective evaluation indicates that music or music video summaries 
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generated using the proposed method is effective in helping realize users’ expectations. 

In addition, several experiments related to humming based music information 

retrieval for the real world music database were described in this chapter. It was 

shown that the humming based music information retrieval for the real world music 

database can still achieve relatively high retrieval accuracy using digital signal 

processing method, when combined with the machine learning approach. 
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6. Conclusions  
 

 

 

In this thesis, several issues in real world digital music database management were 

tackled. These issues include music summarization, music genre classification and 

music retrieval by human humming. We have shown that these problems can be 

solved by digital signal processing method, combined with the various machine 

learning approaches. Music summarization and music genre classification are 

categorized as the middle level music understanding applications, while music 

retrieval is categorized as the high level music interactive application. In the context 

of music perception architecture, the two middle level music understanding 

applications provide the structure information of music database and individual songs 

respectively and address the issues of how to organize the music database. In this way, 

interaction with the music database can be made effective and efficient.  

6.1 Summary of the Contributions 

For music genre classification, we presented two approaches for automatically 

classifying music genres, one is based on supervised learning and the other is based 

6 



 134

on unsupervised learning. Both approaches extract the genre information from the 

music content itself rather than the metadata annotation. For the supervised learning 

approach, we propose a multi-layer SVM classifier to hierarchically distinguish music 

genres. In this approach, the music classification problem can be solved by 

multi-layer classification scheme, in which the classifiers in different layer perform 

binary classification and use level-dependent and genre-specific features. The 

advantage of this method is that each classifier deals with an easier separable problem 

and we can use an independently optimized feature set at each step. The experimental 

results demonstrate superior performance compared to the existing supervised 

learning approach. The disadvantage of this approach is also obvious. First, the 

hierarchical system is difficult to expand both in width (new root genres) and depth 

(new subgenres), since adding new music genres is equivalent to adding a new 

classification tree or new leaves to an existing tree, and the optimized feature set of 

the related level would have to be re-selected. Secondly, as already mentioned, the 

supervised approach depends on the contrived taxonomy, which currently is 

ambiguous and inconsistent. To avoid the ambiguities and inconsistencies caused by 

contrived taxonomy given a priori, we proposed an unsupervised music genre 

classification method, which takes the advantage of the similarity measure to organize 

the music collection with clusters of similar songs. In this way, the ambiguities and 

inconsistencies in built-in taxonomy for supervised approach can be partially avoided. 

The experimental results show that the accuracy of this unsupervised approach is 

comparable to that of the previous supervised approaches in a small taxonomy. 
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However, the major drawback of our unsupervised method maybe that the obtained 

clusters are not labeled. To recognize the genre information of songs in the cluster, 

human intervention is still necessary. 

For music summarization, we have proposed an approach which extracts the most 

salient part of music based on adaptive clustering, with the help of music structure 

analysis. Prior research has addressed the problem of finding the most salient frames 

or the segments of a song. However, they all fail to distinguish between the pure 

instrumental music and vocal music during the process of music summary generation. 

As a result, a summarized segment may contain unwanted pure instrumental music 

portions. This is definitely not desirable for the purpose of understanding music 

content, since according to music theory, the most distinctive or representative music 

themes should repetitively occur in the vocal part of a music work. The contributions 

of our approach are multifold. First, we summarize a song by differentiating the roles 

of the different parts in the song. Secondly, we employ an adaptive clustering 

approach to find the main theme of the music. Another contribution of this research 

has been the development of the performance measurement method for evaluating 

music summaries. Since there is no ground truth to evaluate whether the extracted 

highlight is able to represent the most interesting and salient parts of a given music 

content, we have employed an evaluation system which employs different attributes 

related to the users’ perception of the music summaries, borrowing the idea from the 

Questionnaire for User Interaction Satisfaction (QUIS) study formulated by the 

Department of Psychology of University of Maryland. The subjective evaluation 
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results show that our proposed method performs better performance than the previous 

methods [39][40][41].  

As an extension of music summarization, a music video summarization scheme is 

also proposed in this thesis. In our proposed music video summarization approach, we 

first generated the summary for the music track and the visual track separately, and 

then a visual and audio alignment algorithm was proposed to generate the final 

summary for music videos. The proposed alignment algorithm maximizes the 

coverage of important audio segments along with important video segments. 

Query by humming for real world music database (QBH2) is an interactive 

application, which belongs to the top level in the human music perception architecture. 

There did exist lot of work on query by humming for monophonic music database, 

which is relatively simpler than QBH2, since the standard music presentation 

(sequence of the notes) can be easily obtained from monophonic than from 

polyphonic music database. In QBH2 system, such kind of basic representation for 

music is difficult to obtain due to two difficulties. First, separating one monophonic 

representation from the polyphonic music is difficult, as the individual monophonic 

representations in polyphonic music interfere with each other both in time domain and 

frequency domain. Second, after the monophonic representation has been extracted 

out, it still needs some efforts to convert such monophonic representation to the 

standard format of the music representation, as the extracted monophonic 

representation is still acoustic signal, not note sequences. In our proposed QBH2 

system, we tacked the first difficulty using FD-ICA approach, as the instantaneous 
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mixture separation approach is not capable of finding the correct solution to the real 

world convolutive mixtures. The most notable unsolved problem in FD-ICA approach 

is permutation inconsistency problem, which significantly degrades the separation 

performance. In our proposed approach, we exploit the heterogeneous properties of 

the vocal singing and background music signals, and solve the permutation 

inconsistency problem by employing a statistical learning based approach. The 

comparison studies show our proposed separation scheme achieves high SNR and low 

standard deviation, compared to previous approaches in FD-ICA. To tackle the second 

difficulty in the QBH2 system, we propose a note segmentation scheme based on the 

frequency transient onset detection, followed by a sliding window algorithm to 

segment the explicit and implicit notes from the monophonic representation. After 

these two steps, the QBH2 problem can be converted to QBH1 problem, and all the 

current similarity measuring approaches in QBH1 can be applied to match the input 

query with the melody contour in the music database side.  

6.2 Future Work 

Content based music management in the real world database is still a new area that 

has not been well explored, and a lot of interesting directions need to be investigated 

in the future. Some of these directions are obvious extensions of our work in this 

thesis and others appear unrelated.  

In this thesis, our unsupervised method for music genre classification considered 

only classifying music into broad and significantly different categories, and it cannot 
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classify the music genres that have minor differences. On the other hand, the 

supervised learning classification system can distinguish such trivial differences 

between genres better than the unsupervised one, but it assumes a pre-existing 

taxonomy that the system can learn. Therefore, one obvious future direction is to 

scale-up the unsupervised classification, combined with the supervised approach, to 

real world large scale database. For example, our proposed unsupervised method 

could be employed to do broad initial classification with significantly different 

categories, and the supervised approach could then be employed to classify the fine 

subcategories. Some efforts are still needed to further explore the possibility of 

combining unsupervised and supervised approach, to utilize the strengths of both. Of 

course, the success of large scale music genre classification is greatly dependent on 

the new genre taxonomy in which consistency is maintained. In addition, such new 

taxonomy should support evolvability, i.e. be able to cope with new emerging genres. 

However, to define a new taxonomy is easy, and to make everyone agree on such a 

standardized system would be very difficult. 

For music summarization, our proposed method worked well only for music 

genres that have constrained music repetition patterns. Therefore, further work will be 

needed to improve the accuracy of the summarization result for other music genres 

that have a free music style. To achieve this goal, more music features that can be 

used to characterize music content are needed to be further explored. For example, 

accurate rhythm features will be significantly helpful in the music summarization, 

since rhythm information can help identify the boundaries of music phrases. Existing 
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beat-tracking systems are useful in acquiring rhythmic features. As a result, the 

incomplete music phrases will not be included in the music summary. However, many 

existing beat-tracking systems provide only an estimate of the main beat and the 

strength of the main beat, and cannot accurately describe the rhythmic contents of the 

music. In addition, more domain-related music knowledge should also be taken into 

consideration when generating music summary. 

In music video summarization, our proposed approach works well only for music 

video in polyphonic structure with weak synchronization of the audio and visual 

content. For a music video in homophonic structure with strong synchronization of 

the audio and visual content, this approach may sacrifice the synchronization when 

generating the summary. In future work, we will explore effective methods to create 

the summary for music videos having homophonic structure. One possibility is to 

detect the chorus of the music, shot boundaries and the most repeated lyrics from 

low-level audio/visual features and align the boundaries of the chorus, shots and lyrics 

based on music knowledge. We believe that the combination of complementary 

strengths of low-level features and high-level music knowledge is necessary to 

analyze and summarize the music video content. 

In query by humming for real world music database system, the most difficult 

problem is to separate one individual source from the polyphonic music. We employ 

the FD-ICA approach as this approach is probably the most practical approach for 

separating the real world convolutive mixtures. We proposed to solve the permutation 

inconsistency problem in FD-ICA by a machine learning approach. This is based on 
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the assumption that there are only two kind of heterogeneous signals mixed together. 

However, this assumption may not hold as the more than one singer is singing at the 

same time in the song, which may happen in the chorus. Under this circumstance, our 

separation approach may fail as the separated vocal contents are still mixed. One of 

the direct future directions is to investigate on this problem. In addition, our proposed 

approach works for two channel polyphonic music, and there are still lots of mono 

channel polyphonic music. The query by humming system built on the mono channel 

will be a challenging future direction. Some work has reported on tackling this 

issue[113][114], but it make many assumptions and require information about the 

source signals, which makes it more difficult to apply to a real world problem than the 

conventional Blind Source Separation techniques. Furthermore, another interesting 

direction for the future work is to introduce some users’ relevance feedback to 

improve the retrieval accuracy of our system, as the relevance feedback mechanism 

has been proven to be an efficient solution for improving the retrieval accuracy in 

content based image retrieval [115][116]. 

Generally speaking, music management in the real world database is far from 

mature, and there is a gap between the high level applications and low level 

representation of the music. Large parts of more interesting tasks, such as generic 

features, automatic polyphonic transcription and instrumental tracking, fall into this 

gap. To fill the gap with completely automatic systems, on the one hand, it might be 

necessary to find digital signal processing algorithms for accurately and faithfully 

representing music content. On the other hand, machine learning approaches for better 
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understanding the music content are also indispensable. With the maturation of 

techniques in music representation, understanding and interactions, it is possible to 

bring fundamental changes to the way people access and manage the ever increasing 

music databases. 
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Appendix A. Music Features 
 

 

 

A.1 Beat Spectrum 

The beat spectrum can be calculated from the music using three principal steps [28].  

First, the music is parameterized using a spectrum or other representation. This 

results in a sequence of feature vectors V1, V2, …, Vi,…, Vn.  

Second, a distance measure is used to calculate the similarity between all 

pair-wise combinations of feature vectors. The obtained similarity is embedded into a 

two dimensional representation called similarity matrix S. The similarity between 

vectors Vi and Vj can be defined as: 
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Finally, the beat spectrum can be obtained from finding periodicities in the 

similarity matrix, using diagonal sums or auto-correlation. Both the periodicity and 

relative strength of rhythmic structure can be derived from the similarity matrix S. We 

call a measure of self-similarity as a function of the lag the beat spectrum B(l).Peaks 

in the beat spectrum correspond to repetitions in the audio. A simple estimate of the 
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beat spectrum can be found by summing S along the diagonal as follows: 
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B(0) is simply the sum along the main diagonal over some continuous rang R, B(1) 

is the sum along the first superdiagonal,and so forth. 

A.2 Linear Prediction Coefficients(LPCs) 

The basic idea behind linear predictive analysis is that a specific time series sample at 

the current time can be approximated as a linear combination of past samples. 

Through minimizing the sum of squared differences (over a finite interval) between 

the past samples and linear predicted values, a unique set of parameters or predictor 

coefficients can be determined. These coefficients form the basis for linear predictive 

analysis of real valued time series. For a time series s(k),k=1,…,N, a linear predictor 

with prediction coefficients, ak is defined as a system whose output is: 
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Where p is number of samples used in estimation. 

The prediction error in the time index n, e(n) can be defined as: 
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The criteria is to make the average prediction error minimum.The average prediction 

error can be defined as: 

∑
=

=
N

m
nn meE

1

2 )(       (A-5) 



 144

A.3 LPC derived Cepstral coefficients (LPCCs) 

An alternative feature for LPC coefficients is LPC derived Cepstral coefficients, 

which can be computed simply as: 
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where ai (i=1,…,n) is the LPC coefficients.  

A.4 Zero Crossing Rates 

In the context of discrete-time signals, a zero-crossing refers to two successive 

samples having different algebraic signs. The N-length short time zero crossing rates 

are defined as: 
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Where w(m) is a rectangle window which has N samples. 

A.5 Mel-Frequency Cepstral Coefficients (MFCCs) 

Mel-Frequency Cepstral Coefficients (MFCCs) [12] are a common feature frond-end 

that is used in many speech recognition systems and they are employed to model the 

human perception to the audio signals. More specifically, MFCCs can be calculated as 

following:  

1. The short-time slice of audio data to be processed is segmented with a hamming 

window  

2. The magnitude of the Discrete Fourier Transform is computed using the FFT 
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algorithm. 

3. The FFT power coefficients are filtered by a triangular band-pass filter bank. The 

filter bank consists of K=19 triangular filters. Denoting the output of k-th filter 

bank by Sk (k=1,2,…K), the MFCCs can be calculated as: 
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where L is the number of cepstral coefficients. 
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Appendix B. Machine Learning 
 

 

 

B.1 Support Vector Machine 

Support vector machine (SVM) learning is a useful statistic machine learning 

technique that has been successfully applied in the pattern recognition area [1][117]. 

Suppose we are given a set of training data (x1,x2,…,xn) and their class labels ( y1, 

y2,… yn) , where xi ∈Rn  and  yi ∈{+1,−1}. and we want to separate the training data 

into two classes. If the data are linearly non-separable but nonlinearly separable, the 

non-linear SVM classifier will be applied. 

The basic idea is to transform input vectors into a high dimensional feature space 

using non-linear transformation Φ , and then to do a linear separation in feature 

space. 

To construct a non-linear SVM classifier, inner product <x,y> is replaced by a 

kernel function K(x,y). 
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The SVM algorithm can construct a variety of learning machines by use of different 

kernel functions. Three kinds of kernel functions are usually used. They are: 

1) Polynomial kernel of degree d 
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2) Radial basis function with Gaussian kernel of width C >0 
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3) Neural networks with tanh activation function 
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Where the parameters k and µ are the gain and shift. 

B.2 Comparison of Two Hiddem Markov Models 

In this section, we will describe the similarity measurement of two Hidden Markov 

Models. 

A Hidden Markov Model has several components. It can be completely defined 

by the number of hidden states, a static state transition probability distribution A, the 

observation symbol probability distribution B and the initial state distribution π. We 

can define one HMM model as λ= {A, B, π}.  

The training process is to use algorithms such as the Baum-Welch algorithm [34] 

to learn the parameters of HMM from the training samples, typically a sequence of 

observations. By Baum-Welch algorithm, it is possible to train the HMM by adjusting 

the weights of the transitions, the initial state distribution and the observation symbol 

probability in each state, to better model the relationship of the actual training 

samples.  

 Considering the case of two models, λ1= {A1, B1, π1}, λ2= {A2, B2, π2},  

We can generalize the concept of model distance by defining a distance measure 

),( 21 λλD , between two Markov models, λ1 and λ2, as: 
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Where O(2)=(o1o2o3…oT) is a sequence of observations generated by model λ2. 

Basically, the Eq.(B-5) is a measure of how well model λ1 matches observations 

generated by model λ2, relatively to how well model λ2 matches observations 

generated by itself. 

 One of the problems with the distance measure of Eq.(B-5) is that it is 

nonsymmetrical. Hence a natural expression of this measure is the summarized 

version: 
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Appendix C .Information Theory 
 

 

 

Information is closely related to randomness or suprisal of an outcome.In this 

appendix, we will present part of information related to our thesis.Interested readers 

can refer to [117] for a complete intruction. 

C.1 The Definition of the Entropy  

The entropy of one discrete random variable can be defined as: 
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Where X is the random variable, P(x) is the probility of random variable X takes the 

certain value in a alphbet set, and ℵ is the alphbet set that X belongs to. 

For the continous case, the entropy of continous random variable is called 

differential entropy,which can be defined as: 
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Where fX(x) is the PDF of continous random variable x. 

The entropy is the fundamental measure of information theroy. It is a very broad 

concept and it is used to measure the uncertainty of a random variable. 
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C.2 The Definition of the Joint Entropy 

The joint entroy of two random variables X and Y is defined as: 
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Where P(x,y) is the joint probility of random variable X and Y. 

 For the continous case, 
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The joint entropy is a measure of overall incertainty of a set of variables. 

C.3 The Definition of the Conditional Entropy  

The conditional entroy of two random variables X and Y is defined as: 
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For the countinous case: 
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The conditional entroy is a measure of uncetainty of X given certainty of Y. 

C.4 Kullback-Leibler (K-L) Divergence 

The Kullback-Leibler (K-L) divergence is also-called relative entropy. It measures the 

difference between two probability distribution P(x) and Q(x). The definitions are: 
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For the continuous case: 
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Where f(⋅) and g(⋅) are the two PDFs of a continuous random variables, respectively. 

C.5 Mutual Information 

The mutual information I(X, Y) is a special form of the relative entropy, and the 

mutual information between two random variables X and Y from set ℵ  and ℑ  is 

given by: 

∑∑
ℵ∈ ℑ∈

=≡
x y

yPxPyxP yPxP
yxpyxPDYXI

)()(
),(log),(),( )()()||,(   (C-9) 

For the continuous case: 

dxdy
yfxf
yxf

yxfYXI YX
YX∫ ∫

∞+

∞−

∞+

∞−
≡

)()(
),(

log),(),( ,
,     (C-10) 

The relationship between the marginal entropy H(X) and H(Y), joint entropy H(X,Y), 

conditional entropy H(X|Y) ,H(Y|X) and mutual information I(X,Y) can be shown in 

the Figure C-1. 

I(X,Y)

H(X) H(Y)

H(X,Y)

H(X|Y)
H(Y|X)

 

Figure C-1: The relationship between marginal entropy joint entropy, 
conditional entropy and mutual information 
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C.6 Maximum Entropy Theory 

Under certain constrains, it is possible to find a random variable whose PDF has the 

maximal entropy. Here, the maximum entropy of a distribution is derived for an 

amplitude bounded random variable. 

Theorem C-1(Maximum entropy of an amplitude bounded random variable): 

The entropy of an amplitude bounded random variable X is ||log)( XNXH ≤ , where 

NX denotes the number of elements in the range of X, with equality if and only if X has 

a uniform distribution over NX. 

Proof C-1: Let 
||

1)(
XN

xq =  be the uniform PDF over NX and let p(x) be the PDF of 

X, then: 

∑ ∑∑ −==
)(

1log)(||log)(
)(
)(log)(|| xp

xpNxp
xq
xpxpD Xqp  

     )(||log XHN X −=  

Since the relative entropy is non-negative, it follows that: 

)(||log)||(0 XHNqpD X −=≤  

And therefore,  

||log)( XNXH ≤  

Hence, the uniform distribution has the highest entropy when X is of given amplitude 

range. 
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Appendix D. Derivation of ICA 
for Instantaneous Mixtures 

 

 

 

This appendix is divided in to two parts. The first part shows the derivation that 

Informax approach to ICA learning rule, and the second part shows the derivation that 

Minimizing Kullback-Leibler divergence approach to ICA learning rule. The 

unmixing structure that was used here is the one in Figure 4-2. 

D.1 Informax Approach 

Bell [78] starts by making an output entropy maximization learning rule for a 1 input 

by 1 output problem, and then generalizing the learning rule for the 2 by 2 case later. 

Assume an input random variable X, and an output )( XwgY ⋅= , where w is an 

arbitrary weight variable, and g(⋅) is a non-linear function. Our goal is to find the 

value of w which maximizes the entropy of Y. 

The entropy of Y can be defined as: 

dyyfyfYH YY )(log)()( ⋅−= ∫
+∞

∞−

      (D-1) 
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Where fY(Y) is the PDF of random variable Y, which can be computed given the PDF 

of X from:[118] 

X
Y

xfyf X
Y

∂
∂

=
)()(         (D-2) 

Substitute the (D-2) into (D-1), we have: 

dyxfyfdy
X
YyfYH XYY )(log)(||log)()( ∫∫

+∞

∞−

+∞

∞−

−
∂
∂

⋅=   (D-3) 

The second term on the right may be considered to be unaffected by alterations in a 

parameter w determining g(x). Therefore, in order to maximize the entropy of Y by 

changing w, we need only concentrate on maximizing the first term. A stochastic 

gradient learning rule for  

)()(|)|(log 1

X
Y

wX
Y

X
Y

ww
Hw

∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

=
∂
∂

∝∆ −    (D-4) 

For the hyperbolic tangent function as the g(x), we get: 

)21(1 YX
w

w −+∝∆       (D-5) 

Similarly, for 2 by 2 case, we can derive the following rule: 

XYWW ⋅⋅−∝∆ − 2][ 1T       (D-6) 

Where X={X1, X2} is the input vector, Y= {Y1, Y2} is the output vector, and W is 2 by 

2 the matrix, so that )( XWY ⋅= g . 

D.2 Minimizing Kullback-Leibler (KL) divergence 

Amari [101] started the derivation from the Kullback-Leibler(K-L) divergence. The 

cost function that was used is the K-L divergence between the joint distribution of the 

output ( ),( 21, 21
uuf UU ) and the distribution of product of the individual output 
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( )()( 21 21
ufuf UU ⋅ ). If the distance is zero, it means 

that )()(),( 2121, 2121
ufufuuf UUUU ⋅= , which is the definition of statistical 

independence for the elements of Ui. The K-L distance can be described as: 

21
21

21,
21,)()(||),( )()(

),(
log),()(

21

21

212211212,1
dudu

ufuf
uuf

uufD
UU

UU
UUufufuuf UUUU ∫ ⋅

=⋅ W   (D-7) 

The above equation can be substituted using the entropy definition: 

)()()(
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1
)()()||,( 2211212,1

UW HUHD
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iufufuuf UUUU
−= ∑

=
⋅     (D-8) 

Where H(U) is the joint entropy of output U, and H(Ui) is the marginal entropy of the 

i-th output. 

Using a Gram-Charlier cumulant expansion [119], the marginal entropy of the right 

hand side of the above equation can be approximated as: 

32
22
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⋅
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where )(aiκ  is the a-th order moment of the i-th output. Using Equation (D-9) and 

|)det(|log)()( WXU += HH , we have: 
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Equation (D-10) will serve as the cost function. In order to find its gradient we need 

perform
W

W

∂

∂ ⋅ )()()()||,( 2211212,1 ufufuuf UUUU
D

, and finally we can get the learning rule as: 

TT UUWW ⋅−∝∆ − )(][ 1 ϕ       (D-11) 

Where 357911

4
29

4
47

3
14

4
25

4
3)( xxxxxx +−−+=ϕ . It is easy to see that the learning 

rule is almost same rule as the (D-6). The only difference is the activation function. 
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After obtaining the usual gradient (D-11), Amari proposed to use the natural gradient 

which performs the steepest descent. The natural gradient rescales the normal gradient 

space by right multiplying WWT  in the both sides of equation (D-11), which gives 

the following: 

WUUIW ⋅⋅−∝∆ ])([ Tϕ       (D-12) 

By performing the descent using natural gradient, convergence is significantly faster 

and more stable. In addition to good convergence behavior, there is also increased 

efficiency since the learning rule does not include a matrix inversion operation.  
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Appendix E. Dynamic Time 
Warping & Uniform Time 
Warping  

 

 

 

E.1 Dynamic Time Warping 

The standard definition Dynamic Time Warping distance can be found [120][121].The 

definition of Dynamic Time Warping distance between two vectors X and Y is: 

⎪
⎩

⎪
⎨

⎧
+=

))(stRe),(st(Re
)),(st(Re

))(stRe,(
min),(),( 11

YX
YX

YX
YX

DTW

DTW

DTW

DTW

D
D
D

YXDD    (E-1) 

where X1 and Y1 are the first element of vectors X and Y, respectively, and Rest(⋅) 

refers to rest elements without the first element. 

The process of computing the DTW distance can be visualized as Figure E-1. 

We construct a n×m matrix to align the vector X and Y. The ceil(i,j) corresponds to 

the alignment of the element Xi and Yj. A warping path, P, from cell (1,1) to (n,m) 

corresponds to a particular alignment, element by element, between X and Y. 
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1),max(),(,),(),(,, 221121 −+≤≤== mnLmnpppppppppP y
L

x
L

yxyx
L LL  (E-2) 

The distance between X and Y on the warping path is the distance between x
tp

x  and 

y
tp

y , t=1,2,⋅⋅⋅,L. 

 

Figure E-1: Dynamic time warping for vector X and Y  

The number of possible warping paths grows exponentially with the length of the 

vectors. The distance that is minimized over all paths is the Dynamic Time Warping 

distance. It can be computed using Dynamic Programming in O(m⋅n)[120]. 

E.2 Uniform Time Warping 

Uniform Time Warping(UTW) is a special case of Dynamic Time Warping. The 

constraint imposed by UTW is that the warping path must be diagonal. 

The definition of Uniform Time Warping distance between two vectors X and Y is: 

⎣ ⎦ ⎣ ⎦

mn
YX

YXD
mn

i nimi
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∑ −

=
−

=
1

1
2

// )(
),(     (E-3) 

This equals to stretch both time axis of X and Y to be m×n, and the comparison of two 
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different length vectors can be made on the normalized from. In this way, the two 

melodies have the different length can be compared. 
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Appendix F. Proportional 
Transportation Distance  

 

 

 

Proportional Transportation Distance (PTD) was first proposed in [122] and has been 

proven efficient to measure the melodic similarity [111]. PTD is tightly related to the 

Earth Mover Distance (EMD).Therefore, in this appendix, we first introduce EMD, 

followed with PTD. 

F.1 Earth Mover Distance 

The Earth Mover Distance between two weighted point set measures the minimum 

amount of work needed to transform one into the other by moving weight. Intuitively 

speaking, a weighted point can be seen as an amount of earth or mass; alternatively it 

can be taken as an empty hole with a certain capacity. We can arbitrarily assign the 

role of the supplier to one set and that of the receiver/demander to the other one, 

setting, in that way, the direction of weight movement. The EMD then measures the 

minimum amount of work needed to fill the holes with earth (measured in weight 
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units multiplied with the covered ground distance). See Cohen’s Ph.D. thesis (1999) 

for a more detailed description of the EMD. 

Let A={a1,a2,⋅⋅⋅,am} be a weighted point set such that ai={(xi,wi)}, i=1,2,…,m, 

where xi is vertex and wi being its corresponding weight. Let ∑ =
=

n

i iwW
1

 be the 

total weight of set A. (when used in melody similarity measuring , the xi  can be 

considered as dual (onset time of the i-th note, its pitch) , while wi represents the 

duration of the i-th note.) 

The EMD can be formulated as a linear programming problem. Given two 

weighted point sets A, B and Eucildean distance d, we denote as fij the elementary 

flow of weight from xi to yj over the distance dij. If W,U are the total weights of A, B 

respectively, the set of all possible flows ][ ijf=ξ  is defined by the following 

constraints: 

a) fij≥0,i=1,…,m, j=1,…,n 

b) miwf i
n

j ij ,,1,
1

L=≤∑ =
 

c) njuf i
m

i ij ,,1,
1

L=≤∑ =
 

d) ),min(
1 1

UWfm

i

n

j ij =∑ ∑= =
 

These constraints say that each particular flow is non-negative; no point from the 

“supplier” set emits more weight than it has, and no point from the “receiver” receives 

more weight than it needs. Finally, the total transported weight is the minimum of the 

total weights of the two sets. 

The flow of weight fij over a distance dij is penalized by its product with this 

distance. The sum of all these individual products is the total cost for transforming A 
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into B. The EMD(A, B) is defined as the minimum total cost over ξ  , normalized by 

the weight of the lighter set; a unit of cost or work corresponds to transporting one 

unit of weight over one unit of ground distance. That is: 

),min(

min
),( 1 1

UW

df
EMD

m

i

n

j ijijF ∑ ∑= =∈
=

ξ
BA     (F-1) 

F.2 Proportional Transportation Distance 

The EMD doesnot obey the triagular inequality[123] , which is a common property 

that similarity measure should have. Therefore, in [122], the author propose the PTD 

which is a modified EMD and is more relaible than EMD since triagular inquality still 

holds. 

The PTD is defined as follows: 

Let A, B be tow weighted point sets, W,U the total weight of A and B, and d a 

Eucildean distance. The set of all feasible flows ][ ijf=ξ  from A to B is defined by 

the following constraints: 

a) fij≥0,i=1,…,m, j=1,…,n 

b) miwf i
n

j ij ,,1,
1

L==∑ =
 

c) ∑ =
==
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j
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The PTD(A,B) is given by: 

W

df
PTD

m

i

n

j ijijF ∑ ∑= =∈
= 1 1

min
),(

ξ
BA      (F-2) 

Constraints 2 and 4 force all of A’s weight to move to the positions of points in B. 
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Constraint 3 ensures that this is done in a way that preserves the old percentages of 

weight in B. 
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