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SUMMARY 

The surface and interfacial interactions involving inorganic and organic 

semiconductors, such as GaAs, ZnO, Si and a conjugated photoluminescent 

copolymer containing europium complexes, were studied in the present work.  

 

First of all, GaAs-poly(methyl methacrylate) (GaAs-PMMA) hybrids were 

successfully synthesized via (i) self-assembled of monolayers (SAMs) of 6-mercapto-

1-hexanol on the fresh HCl-etched GaAs surfaces, (ii) immobilization of atom transfer 

radical polymerization (ATRP) initiators, and (iii) surface-initiated ATRP of MMA 

from the GaAs surfaces. The mercaptohexanol coupling agent passivated the GaAs 

surface by the formation of the Ga-S and As-S bonds, leading to the covalently 

bonded ATRP initiators on the GaAs surface. Well-defined PMMA brushes layers of 

controllable thickness were tethered on the GaAs surface. The chemical states of the 

passivated GaAs surface were not significantly affected by the ATRP process. 

 

Zinc oxide (ZnO)-PMMA core-shell hybrid nanoparticles were prepared via surface-

initiated ATRP of MMA from ATRP initiators immobilized on ZnO nanoparticles by 

acid-base interaction. The ZnO-PMMA hybrid nanoparticles so-prepared could be 

well-dispersed in THF. Significant enhancements were observed in UV-visible and 

fluorescence spectroscopies. 

 

A self-assembled monolayer of ZnO colloidal quantum dots (QDs) on the 3-

mercaptopropyltrimethoxysilane (MPTMS)-passivated GaAs surface was 
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demonstrated. Not only does MPTMS act as a coupling agent for the ZnO QDs, but 

also passivates the GaAs surface through the formation of covalent As-S and Ga-S 

bonds. Thus, the present study provides a simple approach to the self-assembley of 

semiconductor ZnO colloidal QDs on an oriented single crystal GaAs substrate with 

simultaneous passivation. The strategy based on the mercaptosilane coupling agent 

can be readily extended to the fabrication of micropatterned SAMs of colloidal QDs 

on GaAs substrates, for example, by microcontact printing. 

 

To investigate interfaces of fluoropolymer/hydrogen terminated silicon (H-Si) and 

fluoropolymer/oxidized silicon (ox-Si), ultra-thin fluoropolymer films were plasma-

deposited on the H-Si surfaces and ox-Si surfaces, using four fluoro-monomers, 

pentafluorostyrene (PFS), hexafluorobenzene (HFB), 1H,1H,2H-heptadecafluoro-1-

decene (HDFD), and perfluoroheptane (PFH). The investigation revealed that the 

fluorine concentration, including the fluorine concentration at the interface (fluorine 

bonded to Si atoms) and the fluorine concentration of fluoropolymer films (fluorine 

bonded to C atoms), on the H-Si surfaces were significantly higher than those on the 

ox-Si surfaces for all fluoro-monomers. This difference was probably due to the 

reactive dangling bonds created by the homo-cleavage of the H-Si bonds on the H-Si 

surface via plasma-induced UV radiation. The X-ray photoelectron spectroscopy (XPS) 

results indicated the formation of the F-Si bonds and possible Si-C bonds on the H-Si 

surface. These bonds were probably formed though the interaction of the fluoro-

monomer fragments or radicals with the dangling bonds during the plasma 

polymerization process, resulting in strong adhesion of the fluoropolymer films with 
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the H-Si surfaces. In addition, time-of-flight secondary ion mass spectrometry (ToF-

SIMS) results suggested selective polymerization of the PFS monomer through the 

vinyl group.  

 

Moreover, the chemical states and electronic properties of the interface between 

thermally evaporated aluminium and a photoluminescent conjugated copolymer 

containing 9,9’-dihexylfluorene and europium complex-chelated benzoate units in the 

main chain (PF6-Eu(dbm)2phen) were studied in situ by XPS and ultraviolet 

photoelectron spectroscopy (UPS). The changes in C 1s, Eu 3d, N 1s, and Al 2p core-

level lineshapes with progressive deposition of aluminium atoms were carefully 

monitored. Aluminium was found to interact with the conjugated backbone of the 

copolymer to form Al carbide, Al-O-C complex, and Al(III)-N chelate at the interface. 

In addition, the europium ions were reduced to the metallic state by the deposited 

aluminium atoms, which were oxidized and chelated by the 1,10-phenanthroline 

ligands (phen). The changes in chemical states at the interface suggest that the 

intramolecular energy transfer process in this copolymer had been affected. Moreover, 

aluminium also interacted with the bulk-adsorbed oxygen, which migrates to the 

surface in response to the deposition of aluminium atoms, to form a layer of metal 

oxides. On the other hand, the evolution of the UPS spectra suggested that the π-states 

of the conjugated system were affected and an unfavorable dipole layer was induced 

by the deposited aluminium atoms. 
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The surface and interface of semiconductors have been of interest to scientists for 

years and have played an important role in optoelectronics, electronics, sensors, 

energy conversion, and heterogeneous catalysis. Most of works on the surface and 

interface of semiconductors have been focused on inorganic semiconductors, since the 

hetero-junctions between inorganic semiconductors are very important to modern 

semiconductor devices, as well as to the growth and processing of semiconductors. 

Recently, the surface and interface involving inorganic semiconductors and organic 

materials have become attractive due to the fundamental interest and potential 

application of organic electronics. The semiconductor-organic hybrids have unique 

surface and interfacial properties and are promising materials for microelectronics, 

biotechnology and sensor technology. 

  

Table 1.1 Some important inorganic and organic semiconductors 

Group IV Si and Ge  

Group III-V GaAs, GaP, GaN, AlAs, AlP, InP, InAs,  Inorganic 
Semiconductor

Group II-VI ZnO, ZnS, ZnSe, CdS, CdSe, CdTe, CdS  

Organic 
Semiconductor

aluminum tris(8-hydroxyquinoline) (Alq3), pentacene, poly(1,4-
phenylene vinylene) (PPV) and derivatives, polythiophene (PT) 
and derivatives, poly(fluorene) and derivatives 

 

 

 

Some important inorganic semiconductors, and organic semiconductors are listed in 

Table 1.1. Although most research have been based on single crystal silicon (Si), other 

semiconductor-organic hybrids have been of increasing interest. Beside Si, gallium 

arsenide (GaAs), gallium nitrate (GaN), zinc oxide (ZnO), cadmium selenide (CdSe), 
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as well as organic semiconductors, are also technically important to the semiconductor 

industry and are strong candidates for fundamental research.  

 

In this thesis, a series of surface and interfacial interactions and reactions involving 

inorganic and organic semiconductors will be investigated from physical and chemical 

points of view. The semiconductors studied have included GaAs, ZnO, Si and a 

photoluminescent conjugated copolymer containing rare earth complexes.  

 

In Chapter 2, the synthesis of semiconductor-organic hybrids and interfacial properties 

between organic semiconductor and metals were comprehensively reviewed. 

 

In Chapter 3, a semiconductor in Group III-V, GaAs (flat GaAs substrates), was used 

to prepare GaAs-polymer hybrids. The surface of GaAs was passivated by self-

assembly of monolayers of an organic sulfur compound containing hydroxyl group in 

the end. The hydroxyl groups on the GaAs surface were further functionalized via 

immobilization of atom transfer radical polymerization (ATRP) initiators. 

Subsequently, surface-initiated atom transfer radical polymerization of methyl 

methacrylate (MMA) was conducted from the GaAs surface to prepare the GaAs-

PMMA hybrid. The compositions of the GaAs surface, GaAs-PMMA hybrid surface, 

and GaAs-PMMA hybrid interface were investigated by XPS. The surface 

morphology was characterized by atom force microscopy (AFM).  
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Inorganic semiconductor nanoparticles have also attracted many interests due to their 

size-dependent electrical, optical, and magnetic properties (van, Dijken, 1998; Jun, 

2000; Gangopadhyay, 1992). In Chapter 4, a semiconductor in Group II-VI, ZnO 

(nanoparticles), was used in this study. ZnO-polymer core-shell hybrid nanoparticles, 

with well-defined polymer shell or polymer brushes of about the same chain length in 

the shell, were prepared via surface-initiated ATRP of MMA from ATRP initiators 

immobilized on ZnO nanoparticles. The hybrid nanoparticles were well-dispersed and 

gave rise to enhanced UV-visible absorption and fluorescence. The chemical 

composition of the hybrid nanoparticles was investigated by XPS. The morphology 

and structure of the nanoparticles were determined by field emission scanning electron 

microscopy (FE-SEM) and transmission electron microscopy (TEM). 

 

The integration of GaAs substrate and ZnO nanoparticles (ZnO quantum dots (QD)) 

was also attempted in this study. In Chapter 5, a self-assembled monolayer of ZnO 

colloidal QDs on the 3-mercaptopropyltrimethoxysilane (MPTMS)-passivated GaAs 

surface was demonstrated. Not only does MPTMS act as a coupling agent for the ZnO 

QDs, but also passivates the GaAs surface through the formation of covalent As-S and 

Ga-S bonds. Thus, the present study provides a simple approach to the self-assembley 

of semiconductor ZnO colloidal QDs on an oriented single crystal GaAs substrate 

with simultaneous passivation of the latter.  

 

Most of Si-based semiconductor-organic hybrids were developed from the native 

oxide surface on the silicon substrate, such as the plasma polymerization and 
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deposition of polymer on the silicon wafer with native oxide layer on the top. In this 

study, another form of silicon surface viz., the hydrogen-terminated Si(100) (H-

Si(100)) surface, was used to develop silicon-based semiconductor-polymer hybrids. 

In Chapter 6, ultra-thin fluoropolymer films (≤ 2 nm) were deposited directly on the 

hydrogen-terminated Si(100) (H-Si) and native oxides-covered Si(100) (ox-Si) 

surfaces by radio-frequency (rf) plasma polymerization of pentafluorostyrene (PFS), 

and hexafluorobenzene (HFB), 1H,1H,2H-heptadecafluoro-1-decene (HDFD), and 

perfluoroheptane (PFH). The chemical states at the fluoropolymer/Si interfaces were 

studied by XPS. In addition, thick fluoropolymer films (150-350 nm) were also 

deposited on the hydrogen-terminated surfaces by plasma polymerization of PFS, 

HFB, HDFD, and PFH. The chemical composition and structure of the fluoropolymer 

films were studied by XPS, time-of-flight secondary mass spectroscopy (ToF-SIMS), 

and Fourier transform infrared (FTIR) spectroscopy. The hydrophobicity of the 

fluoropolymer films was studies by water contact angle measurements. The surface 

topography of the films was also studies by AFM.  

 
Organic semiconductors have attracted considerable interest due to their potential for 

low-cost and wide applications for semiconductor devices, as well as their 

compatibility with flexible electronics. The interfacial properties in organic 

semiconductors also play important roles in the device performance. In Chapter 7, the 

interface properties between a photoluminescent conjugated copolymer containing 

rare earth complexes and a metal were investigated. XPS and ultraviolet photoelectron 

spectroscopy (UPS) are used to study in situ the chemical states and electronic 

properties of the interface formed between aluminium, a widely used cathodic metal in 
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organic light-emitting diodes (OLEDs) due to its low work function, and the 

conjugated copolymer containing 9,9’-dihexylfluorene and europium complex-

chelated benzoate units in the main chain (PF6-Eu(dbm)2phen). The copolymer 

complex is a novel pure red-light emitter. Understanding the interface formation 

between a low work function electrode, such as aluminium, and PF6-Eu(dbm)2phen 

will have direct relevance to the fabrication of high performance polymer light-

emitting diodes (PLEDs).  
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2.1 Passivation of GaAs surface 

Contrast to the Si-based devices, GaAs is one of the most important compound 

semiconductors having advantages in radiation resistance and power dissipation (Shur, 

1990). However, high density states at surfaces result in pinned Fermi level at GaAs 

surface. These states lead to various adverse effects, such as high surface 

recombination velocity, in electronic properties and limit the performances for GaAs-

based electronic and optoelectronic devices. Unlike the exceptional favorable 

properties of the Si/SiO2 interface in the Si-based semiconductor technique, the 

chemistry between GaAs and its native oxide do not give rise to a chemically stable 

and defect free interface (Wieder, 1985). The native oxide formation at the GaAs 

surface is a common source of the large density of surface states leading to strong 

Fermi level pinning around the midgap. Moreover, both Ga2O3 and As2O3 are 

somewhat soluble in water depending on pH value.  

 

In 1987, Sandroff et al. (Sandroff et al., 1987) reported a passivating scheme for 

compound semiconductor surfaces via a simple chemical treatment. Very efficient 

passivation of nonradiative recombination centers was achieved by the deposition of 

Na2S · 9H2O films onto the semiconductor surfaces. It showed that the chemical 

treatment of GaAs/AlGaAs heterostructure bipolar transistor (HBT) resulted in a 

significant improvement in the current gain of the device. In the photoluminescence 

(PL) experiments, a 250-fold increase in PL intensity was observed relative to the 

untreated GaAs surface at room temperature, indicating a decrease in electron-hole 

recombination. Because the presence of surface states is known to quench PL, PL 
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intensity enhancement is widely used to characterize the extent of passivation 

following treatment. PL enhancement is expected to occur as the result of both band 

unbending and reduction of surface trap density, and thereby reduction in the rate of 

surface nonradiative recombination (Chmiel et al., 1990; Kauffman et al, 1992). 

 

Passivations of GaAs surface by sulfur-containing compound have attracted much 

attention. In addition to Na2S · 9H2O, other inorganic ligands employed include 

(NH4)2S (Carpenter et al., 1988; Kang et al., 2002), (NH4)2Sx (Sa et al., 1998; Szuber 

et al., 2002), and S2Cl2 (Li et al., 1994). PL intensity was enhanced by a reduction in 

the surface recombination velocity. Chemical studies of the sulfur-passivated GaAs 

surface revealed that the formations of Ga-S and As-S bonds at surface play an 

important role in the reduction in the surface recombination velocity. Sandroff et al. 

initially reported a decrease in band bending for Na2S and (NH4)2S using Raman 

Technique, (Sandroff, 1989). However, through many studies using other direct 

techniques, such as surface conductivity technique and XPS, it became a general 

agreement that the sulfide-treated GaAs surface do not lead to unpinned Fermi level or 

increased band bending (Besser et al., 1988; Spindt et al., 1989). XPS studies have 

shown that only Ga-S bonds remained at the surface, after the annealing of sulfide-

treated GaAs surface (at or above 360 ˚C) (Paget et al., 1996; Arens et al., 1996). 

 

Although the passivation of GaAs surface via inorganic sulfide treatment is simple 

and effective method, the modified GaAs surfaces remain relatively stable with 

electronics benefits in air only for several days. XPS investigation showed the 
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passivating phases decomposed in the presence of oxygen and light, producing a 

surface composition, primarily of As2O3 (Sandroff et al., 1989). The GaAs/AsxSy 

interface evenly degraded, accompanied by the reemergence of a highly density of 

surface states. Oshima et al. (1993) investigated the initial oxidation features of 

(NH4)Sx-treated GaAs,  correlating the PL degradation caused by oxidation with band 

bending and surface chemical bonding changes. Direct correlation between PL 

degradation and the Ga oxide formation resulting in dramatic upward band bending 

was observed. 

 

The above mentioned problem of the GaAs surface has prevented the development of 

a simple and robust surface passivation scheme for this surface. Green and Spicer 

(Green et al., 1993) argued that the simple process used to passivate Si is the 

exception rather than the rule in semiconductor surface passivation, and suggested that 

a more elaborate scheme may be required for the passivation of GaAs surface with 

following functions: 

(1) prevent reactions between the atmosphere and GaAs for the lifetime of the 

device (chemical passivation), 

(2) eliminate and prevent interfacial state formation in the band gap (electronic 

passivation). 

(3) and possess a sufficient barrier such that electron will not be lost from the 

GaAs to the passivating layer. 
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Sheen et al. (1992) discovered of self-assembled monolayers (SAMs) of a class of 

alkanethiols directly onto the bare GaAs(100) surface for potential applications in 

molecular electronics. The monolayers of alkanethiols on GaAs(100) surface 

consisted of a stable, highly organized assembled of tilted, ordered alkyl chains, 

chemically bonded directly to the GaAs surface via metal-sulfur bonds. Combined 

with nanotransfer printing technique, SAMs of thiols was successfully used to 

fabricate molecular devices, Au/1,8-octanedithiol/GaAs junctions (Loo et al., 2003). 

The electrical transport in the devices occuring through the 1,8-octanedithiol 

molecules was investigated.  

 

To overcome the poor oxidative of the Na2S- and (NH4)S-treated GaAs surface, which 

lead to rapid degradation of electrical properties, scientists has prompted interest in 

passivation of GaAs surface by organic sulfides (Adlkofer et al., 2003), especially 

long-chain thiols (Adlkofer et al., 2001). The hydrophobic alkyl chains are expected to 

act as a barrier, preventing oxygen and water from reaching and reacting with the 

GaAs surface. The duration of stability was improved to be a few weeks and months, 

when GaAs surface was passivated with organic sulfide (Hou et al., 1997; Dorsten et 

al., 1995). 

 

Lunt et al. (1991) studied a broad range of organic thiols on GaAs surface. 

Systematically, these organic sulfide treatments resulted in increase in PL intensity. It 

was also observed that the efficacy of the organic sulfide treatment parallels trends in 

binding constants of sulfide ligands toward lewis acidic transition metal centers, 
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which suggest that specific coordination interactions at the surface are important. 

From time-resolved PL studies at high excitation intensities, organic sulfides were 

found to retard a substantial surface recombination velocity.   

 

Rao et al. (1989) reported the passivation of GaAs surface by a thin film via plasma-

deposition with thiophene. With this technique, uniform and thin films were deposited 

on GaAs surface using a pure and dry plasma-polymerization. It was found that the 

surface barrier of GaAs was lowered and the surface recombination velocity was 

reduced by the deposited polymers film via plasma polymerized of thiophene. It was 

believed that the covalent bonds between the plasma-deposited polymer film and 

GaAs surface play an important role.  

 

Recently, Yang et al. (2003) reported an surface passivation of GaAs surface via 

plasma deposition of an S-containing polymer film from a linear and saturated S-

containing monomer, bis(methylthio)methane (BMTH). The chemical states of the 

interface between the polymer film and GaAs surface were systematically studied by 

XPS and ToF-SIMS. The investigation showed that the sulfur atoms from the plasma 

polymerized BMTH film was covalently bonded to both Ga and As atoms of GaAs 

surface. A two-fold increase in PL intensity of the passivated GaAs surface was 

observed. Systematic studies the oxidation of the interface in a long term indicated the 

passivation of GaAs was stable for months under the atmospheric conditions.  
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2.2 Polymer brushes via surface-initiated polymerization 

Modification of inorganic semiconductor surface by an organic film has attracted 

much attention in recent years. Modification of a surface of solid inorganic 

semiconductor material with an organic layer, especially a polymer layer, is often used 

to improve surface and interfacial properties, such as in biocompatibility (Niemeyer, 

2001), wetting (Ingall et al., 1999), adhesion (Ejaz et al., 1998), or friction (Weck et 

al., 1999). Recently, surfaces at a molecular level attracted much interest, since this 

engineering technology gives rise to well-defined surface with improved surface and 

interfacial properties. In surface engineering, the generation of specific nanopatterns 

of chemical groups on a semiconductor substrate offers the ability to direct important 

interfacial phenomena, such as fluid flow (Kataoka et al., 1999) and adhesion (Fujihira 

et al, 2001). The nanopatterns may also detect molecular recognition events (Lahiri et 

al., 1999), carry out signal transduction (Kricka et al., 2001), and direct chemical 

transformations (Krishnan et al., 2001).  

 

There are generally two strategies to grow an organic film on inorganic semiconductor 

substrates. One is “graft to” or “top-down” strategy (Bridger et al., 1980), which 

includes self-assembly of monolayer of organic molecules, spin coating, and 

absorption of preformed polymer chains on the semiconductor substrate. Another 

strategy is “graft from” or “bottom-up” (Huang et al., 1999; Buchmeiser et al., 2000; 

Shah et al., 2000; Jordan et al., 1999; de Boer et al., 2000). It is often performed by 

surface-initiated polymerization including the modification of inorganic solid surface 

with covalently bonded initiator groups and subsequent polymerization. 
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There are some inherent limitations in the “graft to” strategy. (a) It often yields 

nonuniform thin films and poor surface coverage due to the steric hindrance at the 

surface. (b) The interaction between the polymer and surface is usually not so strong 

because it is caused only by van der waals force or hydrogen bonding. Therefore, 

desorption can occur upon exposure to a good solvent or the polymer can be replaced 

by other polymers or species present in the ambient, which compete for absorption 

sites at the surface.  

 

With the “graft from” strategy, polymer layers are covalently bonded to inorganic 

semiconductor surface, leading to more stable interfacial and surface properties. This 

approach is expected to result in considerably higher final grafting densities. The 

grafting densities are not limited by a steric hinderance imposed by the already bonded 

chains, since the smaller monomer can readily access the initiator site or the 

propagating chain end, resulting in a uniform, steady increase in layer film. The 

molecular weight of the polymer brushes may linearly increase with time, giving rise 

to a steady growth of a uniform polymer layer on the surface. Block copolymer can be 

synthesized by reinitiating the polymerization in a different monomer solution. The 

process is compatible with a wide variety of monomers, such as acrylate, styrenes, 

acrylonitrile, and their derivatives. Due to their confinement, polymer brushes respond 

to an environmental stimulus such as solvent quality, ion strength, temperature, 

pressure, etc., along with a change of the surface properties. The preparation and 

sample handling in these processes are easy, which allow characterizing surfaces 

between two subsequent polymerizations. In order to realize the “graft from” strategy, 
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different living polymerization have been utilized to grow polymer layers onto the 

semiconductor surface. 

 

To grow the polymer brushes from the surface of inorganic semiconductor substrates, 

different living polymerization, including radical (de Boer, 2000), cationic (Jordan et 

al., 1998; Zhao et al., 1999), anionic (Jordan et al., 1999), ring-opening (Husemann et 

al., 1999), nitroxide-mediated (Mansky et al., 1997; Buchmeiser et al., 2000), and 

atomic transfer radical polymerizations (Huang et al., 1999; Matyjaszewski et al., 

1999; Shah et al., 2000; Ejaz et al., 1998), have been utilized in the research work. In 

the following, pioneering research works are shown in details.  

 

To modify the surface properties of Si wafer, de Boer et al. (2000) used “living” free 

radical polymerization to tether a polymer layer on the Si wafer. The polymerization 

was initiated from a surface-grafted monolayer of an iniferter initiator. The surface 

properties became hydrophilicity or hydrophobicity depending on the species of 

monomers used. The linear increase of the thickness of the polymer layer with time 

was observed. Another representative surface modification is reported by Sidorenko, 

et al. (1999), they grafted a brushlike polymer coating layer composed of two different 

polymers, polystyrene and poly(vinylpydine) on Si(100) crystals by radical 

polymerization of styrene and vinylprydine. The yielding polymer coating turned out 

to be sensitive to the composition and environment.  
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In 1998, Jordan et al. (1998) reported the first living cationic ring-opening 

polymerization of 2-ethyl-2-oxazoline initiated from a self-assembled monolayer on a 

gold substrate. An anphiphilic brush-type layer was formed by functionalizing the 

polymer chain end with an alkyl moiety by means of termination reaction. The authors 

proposed application to the broad variety of 2-oxazoline monomers to form 

corresponding homopolymers, as well as block copolymer and supremolecular 

structure on solid substrates. Another pioneer work done by Zhao et al. (1999) is that a 

tether block copolymer of polystyrene-block-PMMA was synthesized on a silicate 

substrate by sequential carbocationic polymerization of styrene followed by atom-

transfer radical polymerization of MMA.  

 

Beside the cationic polymerization, Jordan et al. (1999) also used surface-initiated 

anionic polymerization to grow polymer brush from gold substrate. In this report, a 

monolayer of biphenylithium moieties was self-assembled on the gold substrate to 

initiate the anionic polymerization of styrene. The result suggested that this technique 

could give rise to a smooth and homogeneous polymer surface throughout the entire 

substrate on the macroscopic and microscopic scale, indicated by a low index of 

surface roughness.   

 

In 1999, IBM demonstrated a novel strategy to develop micro-scale patterns in 

microelectronics (Husemann et al., 1999). In this strategy, patterned polymer brushes 

were prepared by surface-initiated ring-opening polymerization of caprolactone from 

the functionalized area of the patterned SAM. This approach formed patterned 
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polymeric thin films without using expensive photolithography tools, and used SAMs 

technique in a way that was tolerant to the imperfections within the original 

monolayer structure. 

 

In addition, they also utilized nitroxide-mediated polymerization to develop nano-

scale patterns (Hermann et al., 1996). The work demonstrated a combination of a top-

down contact-molding process and a bottom-up surface-initiated grafting strategy to 

form three-dimensional patterns, in which the chemistry and size of nano-scale 

patterns could be accurately tuned. The nitroxide-mediated polymerizations could be 

initiated from the patterned surface to yield the formation of well-defined polymer 

brushes consisting of polystyrene, MMA, or HEMA. 

 

The nitroxide-mediated polymerization was also used to graft random copolymer 

brushes from Si wafer to control the polymer-surface interactions (Mansky et al., 

1997). In their report, interfacial energies of the polymers at a solid surface can be 

manipulated by end-grafting statistical random copolymers on the surface, where the 

chemical composition of a copolymer can be controlled. 

 

The above polymerization approaches have allowed us to modify the surfaces of 

inorganic substrates by growing polymer layers with a variety of functions, which 

may give rise to interesting surface and interfacial properties. However, the 

experimental conditions to carry out these polymerizations are stringent and high 

temperature is usually needed to facilitate the polymerization. Therefore, these 
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polymerization approaches may not be used to grow polymer layers from the surface 

of a compound semiconductor, such as, GaAs, because the atoms on the surface may 

be easily oxidized and lead to reduced performance in the device. 

 

Recently, a new “living” radical polymerization, atom-transfer radical polymerization 

(ATRP), was developed and utilized to grow polymer chains on various inorganic 

solid surfaces, including silicate, carbon, gold, et al., as well as other organic 

substrates (Pyun et al., 2003). An attractive feature of ATRP is the ability to grow 

chains from multifunctional cores, or surface simultaneously. ATRP systems could 

facilely functionalize target substrates using commercially available α-haloesters, or 

benzyl halides. ATRP initiator groups have been successfully coated onto both 

organic and inorganic materials, with either flat or curved surfaces. From this 

approach, polymer brushes of varying compositions and dimensions have been 

prepared by surface-initiated growth from macroscopic wafers or particles, micro-

sized colloids, and polymer backbones. In addition, ATRP may be carried out at room 

temperature with the careful selection of a polymerization system.  

 

The main challenge in ATRP from flat substrates with very low concentrations of 

initiating groups stems from the fact that the concentration of persistent radical 

(deactivator) may be too low to reversibly trap the propagating radicals after halogen 

atoms transfer to the transition metal catalyst, leading to uncontrolled chain growth. 

This challenge could be effectively addressed through the addition of a persistent 
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radical (deactivator), or “sacrificial initiators”, at the beginning of the polymerization 

(Pyun et al., 2003).  

 

As predicted from the persistent radical effect (Fischer, 2002; Yoshikawa, 2002), the 

addition of radical-deactivating complexes (Cu(II) halides or Fe(III) halides) at the 

beginning of the polymerization facilitates exchange reactions between active radicals 

and dormant halides. The ATRP of styrene and methyl acrylate in the presence of 

Cu(II) complexes resulted in a progressive increase in the brush film thickness with 

time (Matyjaszewski et al., 1999). In these polymerizations, only surface-bound alkyl 

halides were employed as initiators and linear polymers were not formed in the 

solution. Identical surface-initiated ATRP conducted without the addition of 

deactivators resulted in the rapid polymerization and termination of tethered 

polymeric chains, where film thickness did not increase for the prolonged reaction 

time. 

 

The addition of sacrificial initiators to ATRP mixtures with functional flat substrates 

serves a number of beneficial purposes in both synthesis and characterization of 

polymer brushes (Ejaz et al., 1998; Husseman et al., 1999). In system with added free 

initiator, sufficient concentrations of persistent radical (deactivator) are generated by 

the termination of radical formed in solution. Furthermore, the final degree of 

polymerization (DP) of the tethered chains on the surface can be dictated by the 

concentration of sacrificial initiators added at the initial stages of the polymerization. 

The determination of both monomer conversion and molar mass of polymers in the 
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system is also greatly facilitate as the analysis of free polymers formed in the solution 

can be conducted by standard characterization technique, such as 1H NMR 

spectroscopy, SEC, and GPC. It was suggested that the tethered polymer brushes on 

the surfaces possess similar molar masses and polydispersity to polymers formed from 

sacrificial initiators.   

 

 

2.3 Fluoropolymer films deposited by plasma polymerization of fluoro-monomers 

Poly(tetrafluoroethylene) (PTFE) and some of its derivatives have exhibited the 

lowest dielectric constants ranging between 1.9 and 2.1, suggesting promising 

potential for polymer materials having low dielectric constant for microelectronics. It 

is well known that fluoropolymers have low dielectric constant due to the small dipole 

and the low polarizability of the C-F bonds, as well as the large free volume of 

trifluoromethyl groups. However, it is difficult to allow the deposition of thin layer of 

PTFE materials due to their insolubility and infusible nature. As successful 

alternatives, plasma enhanced chemical vapor deposition (PECVD) and plasma 

polymerization techniques have been used to deposited fluoropolymer films.   

 

The overall mechanisms of plasma polymerization can be represented by eqs. (2.1)-

(2.4) (Yasuda et al., 1977): 

Initiation:                                                                                                 (2.1) *
ii MM →

                                                                                                                (2.2) *
kk MM →

Propagation:                                                                                (2.3) kiki MMM +→+ **
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                                                                                                     (2.4) **
kiki MMM +→+

Where i  and k  are numbers of repeating units (i.e., 1== ki for the monomer), and 

*M  is a reactive species which can be ions of charge, an excited molecules, or a free 

radical. 

 

To deposit low dielectric constant, high thermal stability films, Han et al. (Han et al, 

1998 and 2000) had deposited fluoropolymer films on Cu substrate via plasma 

polymerization and deposition from aromatic fluoro-monomers, perfluoroallyl 

benzene and Pentafluorostyrene. Monomer selection was based on the perfluorination 

and aromatic ring content of the monomers. The fluorination aspect provides low 

polarizability, thus resulting in low dielectric constants. An aromatic ring was selected 

to enhance the thermal stability of the resulting fluoropolymer films. In addition, the 

presence of the carbon-carbon double bonds (C=C) provides a free-radical attack point 

for facile plasma polymerization. With sequential change in the duty cycle of the 

pulsed discharge, progressive changes in the composition of the plasma-deposited 

fluoropolymer films were characterized by XPS and FTIR. In particular, an increased 

retention of the aromatic ring of the starting monomer in the resulting fluoropolymer 

films is obtained with decreasing plasma duty cycles during film formation, which 

could decreases the extent of the decomposition or fragmentation of the fluoro-

monomers. Dielectric constant below 2.0 could be obtained in the fluoropolymer films 

from perfluoroallyl benzene monomers. Following thermal annealing at 350-400 ˚C 

under N2, dramatic improvement in the thermal stability from 300 ˚C to 420 ˚C was 
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observed with only minor increase in the dielectric constants and minor decrease of 

stability in chemical compositions of the films. 

 

Fluoropolymer films, plasma-polymerized with hexafluorobenzene (HFB) monomer 

have been also studied (Clark et al., 1982; Munro et al., 1993; Mackie et al., 1998; Yi 

et al., 2000; Yang et al., 2002). HFB monomer contains double bonds which can be 

easily dissociated in the plasma and result in a high deposition rate. The 

fluoropolymer films exhibit a dielectric constant as low as 2.0 and have high 

transparency in the visible range. XPS studies revealed that the chemical compositions 

in the fluoropolymer films mainly consist of the neutral carbon, C-CF, CF, CF-CF, 

CF2, and CF3 species. In addition, the fluoropolymer films retained some of the 

original aromatic structure, as evidenced by the π-π* shake-up satellite feature in the C 

1s core-level spectra. The ToF-SIMS analysis also suggested the aromatic rings were 

preserved to a large extent during the plasma polymerization process. Besides the 

aromatic rings, the fluoropolymer films were also composed of some cyclohexadiene 

and naphthalene, linked by short perfluoroalkene or perfluoroaliphatic chains, or 

directly bonded to one another. 

 

Zhang et al. (2002) systematically investigated the effects of the carrier gas on the 

fluoropolymer films plasma-deposited from allypertafluorobenzene monomer. It was 

found that the surface hydrophobicity of the plasma-deposited films increased the 

order of O2 < N2 < H2 < Ar, with the good agreement of the fact that the decrease of 

defluorination effect on the fluoropolymer film was also in the same order. XPS and 
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ToF-SIMS studies revealed that the fluorinated aromatic ring could be retained to a 

large extent under proper glow discharge conditions, such low input RF power and the 

use of non-reactive argon as the carrier gas. It also suggested that the preservation of 

the fluorinated species in the fluoropolymer films and the substantial increase in 

surface roughness could lead to an ultra-hydrophobic surface with large water contact 

angle. 

 

Recently, Fu et al. (2004) reported a novel approach (shown in Figure 2.1) to fabricate 

nanostructure fluoropolymer composite films that have ultra-low dielectric constant 

value below 2.0. Initially, a dense uniform poly(tetrafluoroethylene) (PTFE) was 

deposited on H-Si surface by RF magnetron sputtering of a PTFE target. A 

nanoporous layer consisting of fluoropolymer nanospheres was then deposited in 

multiple steps by RF plasma polymerization of allypentafluorobenzene (APFB) at 

high RF power. A top PTFE layer was subsequently deposited by sputtering once 

again to complete the sandwiched structure. The featuring high nanoporous structure 

was resulted from the agglomeration of the nanospheres in the pp-APFB layer, 

introducing the air gaps and resulting in ultra-low dielectric constant. The 

fluoropolymeric nanospheres were also demonstrated by Teare et al. (2002) by plasma 

polymerization and deposition of a linear fluoro-monomer, perfluorooctyl arylate. It 

was argued that large RF power creates high concentration of radicals, ions, and other 

reactive species, and decreases mean free paths of reactive species within the plasma, 

thus leading to the gas-phase reactions among the reactive species and rapid 

nucleation. With combination of chemical nature of the resulting fluoropolymer films  
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(CF2 and CF3 are main chemical components), the high surface roughness gave rise to 

ultra-hydrophobic surfaces. The depositions of ultra-hydrophobic films by plasma 

polymerization have been also reported for heptafluorobutyl acrylate (Chen et al., 

1999), hexafluoroisopropyl acrylate, pentafluoropropyl arylate, and ethyl 

heptafluorobutyrate (Coulson et al., 2000). 

 

 

 

Figure 2.1 Schematic illustration of the process for the preparation of multilayer 
nanoporous fluoropolymer film (Fu et al., 2004). 

 

 

 

2.4 Organic-metal interfaces in organic electroluminescence 

In organic electroluminescence devices, both operating voltage and luminescence 

efficiency of the devices strongly depend on effective charge injection from the 

electrodes to the organic medium and charge transport in the organic materials (Baldo 

et al., 2001; Salneck et al., 2001; Hung et al., 2002; Fahlman et al., 2002). To achieve 
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the lowest possible voltage, it is necessary to have Ohmic interface between the 

organic layers and the charge-injecting contacts, and to maximize the drift mobility of 

both types of carriers. Furthermore, charge injection and charge transport also play an 

important role in optimizing the device efficiency. An unbalanced injection results in 

an excess of one carrier type that does not contribute to light emission and an 

enhanced non-radiative recombination because of the interactions of excitons with the 

charge carriers. 

 

Injection of charge from most electrode materials requires overcoming a barrier at the 

organic-electrode interface. The nature of the interface is of paramount importance in 

determining device performance. Photoelectron spectroscopy has been extensively 

employed to study the electronic structure and chemistry at the organic-metal 

interfaces. Dipoles, chemical reactions, and atomic diffusion are commonly observed 

in the near interface region. As a consequence, the determination of the carrier 

injection barrier is not a simple matter if calculating the difference between the metal 

work function and the energy levels of the organic solid owing to the presence of 

interfacial dipole and chemical reactions. 

 

At organic-metal interfaces, the hole and electron barriers (Φh and Φe) depend on the 

position the highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) of the organic film with respect to the metal Fermi level 

(EF). When assuming vacuum level (VL) alignment, Φh would be the difference 

between the ionization potential (IP) of the organic film and metal work function (ΦM), 

 25



and Φe would be the difference between ΦM and the electron affinity (EA) of the 

organic film. The value of IP and EF can be separately determined for the metal and 

organic film by ultraviolet photoelectron spectroscopy (UPS), and value of EA is 

usually estimated from the value of IP and the HOMO/LUOMO gap obtained from 

optical measurements (Hung et al., 2002). 
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Figure 2.2 Schematic of an organic-metal interface energy diagram (a) without and (b) 
with an interface dipole and (c) UPS spectra of metal and organic (Ishii et 
al., 1999; Hung et al., 2002) 

 

 

For almost all the organic-metal interfaces formed under ultrahigh vacuum conditions, 

a dipole layer is formed at the organic-metal interface, owing to various origins such 

as charge transfer across the interface, redistribution of electron cloud, interfacial 

chemical reaction, and other types of rearrangement of electronic charge (Ishii et al., 

1999; Shen et al., 2000). With such interfacial dipole formation, there will be an 
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abrupt shift of the electrical potential across the dipole layer, giving rise to a shift Δ of 

the actual VL at the organic-metal interface. The value of Δ is determined by the 

magnitude of the dipole.  

 

The schematic of an organic-metal energy diagram with and without interface dipole 

is illustrated in Figure 2.2. The electronic structure shown in figure 2.2(a) corresponds 

to the alignment of VL across the interface (Δ = 0) and gives Φh = IP – ΦM and Φe = 

ΦM – EA. In the finite case of Figure 2.2(b), Φh and Φe are given by IP – ΦM + Δ and 

ΦM – EA – Δ, respectively. This modification of energy level is of critical importance 

for carrier injection in organic electroluminescence devices. The energy level 

alignment in Figure 2.2(b) corresponds to a positive charge on the organic side and a 

negative charge on the metal side at the organic-metal interface. 

 

The interface dipole scenario was originally proposed by Ishii et al. (Ishii et al., 1997 

and 1999) and has received extensive support from other research groups (Lee et al., 

1998; Shen et al., 2001; Yan et al., 2001; Crispin et al., 2002). The energy level at 

organic-metal interfaces is determined in ultrahigh vacuum by UPS. The metals of 

interest are evaporated on silicon, and then the organic-metal interfaces are formed by 

incremental molecular beam evaporation of organics. Figure 2.2 (c) represents the 

UPS spectra of the metal and organic. For metals, the right-hand cutoff shows the 

Fermi edge and left-hand cutoff corresponds to the VL. By depositing increasing 

amount of organic materials, the emission from the metal becomes suppressed and the 

spectrum is changed to that of the organic materials. The right-hand cutoff now 
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corresponds to the HOMO of the organic materials. The shift from the Fermi edge of 

the metal gives the relative position of the HOMO from the Fermi level of the metal 

(EF,HOMO in Figure 2.2 (b)). The shift of the left-hand cutoff corresponds to the 

lowering VL by the deposition of the ultra-thin organic film. Experiments by a 

number of research groups indicate that dipoles are found at all organic-metal 

interfaces, while the dependence of the interface dipole magnitude on the metal work 

function varies from organic to organic (Hill et al., 1998; Hung et al., 2002; Crispin et 

al., 2002). 

 

The use of a low-work function metal (K, Na, Li, Mg and Ca) cathode is highly 

desirable for forming an effective electron-injecting contact. However, these metals 

are poorly suited because of their high chemical reactivity. The study of such an 

interface between these metals and the organic film Alq3 revealed strong interactions 

(Choong et al., 1998; Johansson et al., 1999; Gao et al., 1999). Mason et al. (2001) 

compiled data generated in different research groups and made a comparison and 

interpretation. According to the measurement by UPS for five metals (K, Na, Li, Mg 

and Ca) on Alq3 under ultrahigh vacuum, the original HOMO level of Alq3 is shifted 

to higher binding energy, and a new gap state is formed in the forbidden gap at an 

energy of ~1.6 eV above the shifted HOMO level. Combined with theoretical 

calculation, the results indicate the reaction of the metals with Alq3 to form Alq3
− 

anions, also resulting in the splitting of the N 1s spectra.  
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The results indicate that the alkali and alkaline earth metals are too reactive for use in 

device fabrication. From the standpoint of commercial device fabrication, there would 

be significant advantage to utilize a pure Al cathode. In addition, UPS studies of Alq3 

deposited on Al show a very small barrier to electron injection. However, Al makes a 

fairly poor cathode in Alq3-based devices when compared to the commonly used 

MgAg cathode. In an effort to understand the relatively poor electron injection in 

Al/tris-(8-hydroxyquinoline) aluminum (Alq3)-based devices, Le et al. (2000) have 

studied the interface formation produced from Al deposition onto Alq3. All core levels 

of oxygen, nitrogen and carbon in XPS analysis showed significant broadening and 

shifting to higher binding energy with increasing aluminum deposition. A detailed 

analysis suggested that aluminum reacts preferentially with the quinolate oxygen, and 

then with nitrogen. The experimental results are consistent with their quantum 

chemical calculation using density-functional theory (DFT). In UPS analysis, 

deposition of an aluminum layer as thin as 0.02 nm induced a significant change in the 

valence spectrum of Alq3 and formed new states, which extended into the energy gap. 

The features of the Alq3 structure have virtually vanished after deposition of 0.07 nm 

aluminum. Both the XPS and UPS are consistent with a destructive reaction between 

Al and Alq3, which is expected to cause poor device performance. 

  

Deep Al penetration into Alq3 has also been revealed by Rutherford backscattering 

(RBS) measurements on a sample consisting of a graphite substrate, an Al 

intermediate layer (3 nm), and an Alq3 surface layer (35 nm) (Huang et al., 1998). 

RBS profiling revealed Al atoms in the surface region with an amount of ~1.6×1015 
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per cm2 (or ~0.25 nm). Photoluminescence measurements indicated that the Al 

penetration had a strong correlation with Alq3 photoluminescence quenching. 

 

For the aluminum on poly(p-phenylene vinylene) (PPV) interface (Salaneck et al., 

1996), XPS studies revealed that the aluminum forms covalent bonds primarily with 

the vinyl groups, disrupting the conjugation and making the polymer insulating. Since 

the aluminum atoms diffuse roughly 3 nm into the film, the ‘real' interface is a 3 nm 

insulating aluminum-PPV layer sandwiched between the metallic aluminum and the 

conducting polymer film, which explains the poor electron injection. In order to 

improve electron injection, different cathode materials were used. Photoelectron 

spectroscopy combined with quantum chemical theory provided some of the 

guidelines. Low work function metals such as alkali metals should reduce the barrier 

for electron injection and hence improve device performance. Unfortunately, 

photoelectron spectroscopy studies on PPV showed that alkali metals such as sodium 

and rubidium dope the polymer and diffuse into the bulk of the film, causing the 

formation of polarons or bipolarons (Fahlman et al., 1993; Iucci et al., 1995). It was 

surprising that Ca-based devises showed improvement in device efficiency as 

compared to Al-based devices (Braun et al., 1991), because XPS studies of in-situ 

deposited calcium on a PPV-derivative resulted in doping of the polymer film, which 

is similar to that for alkali metals (Salaneck et al., 1996), should not give rise to good 

device performance. However, the interfacial chemistry is highly dependent on the 

presence of water or oxygen. When calcium was deposited onto oxidized PPV 

surfaces, a thin metal-oxide layer would be formed between the metallic Ca and PPV 
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surface and prevented the diffusion of Ca into the film and doped the polymer chains, 

leading to a Schottky-barrier type contact at the PPV-Ca interface (Ettedgui et al., 

1996).  
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Chapter 3 

GaAs-Polymer Hybrids via Surface-Initiated  

Atom Transfer Radical Polymerization of Methyl Methacrylate 
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3.1 Introduction 

Semiconductor-polymer hybrids prepared by incorporating polymer brushes on 

semiconductor substrates have attracted considerable attention in recent years. The 

hybrids have unique surface and interface properties (Mansky et al., 1997; Ejaz, et al., 

1998; Husseman et al., 1999; Zhao et. al., 1999), and allow the fabrication of 

nanopatterns (Husemann, et al., 2000). Popular strategies for incorporating polymer 

brushes on substrates include (i) the “top-down” or “grafting-to” approach, in which 

macromolecules are tethered directly onto the surface of a substrate, and (ii) the 

“bottom-up” or “grafting-from” approach that attempts to grow polymer brushes from 

initiators anchored on a substrate surface. The latter approach can result in more 

densely packed polymer brushes. Ionic (anionic (Jordan et al., 1999), and cationic 

(Zhao et al., 1999),), ring-opening (Husemann et al., 2000), radical (de Boer et al., 

2000), nitroxide-mediated radical (Mansky et al., 1997), and atom transfer radical 

(Ejaz et al., 1998; Huang et al., 1999) polymerizations have been used for surface 

graft polymerizations. Among these techniques, atom transfer radical polymerization 

(ATRP) allows the preparation of well-defined polymers and polymer architecture, 

and exhibits good tolerance for functional groups and impurities (Zhao et al., 1999). 

 

Semiconductor-polymer hybrids prepared via surface-initiated polymerization on 

silicon substrates, carbon nanotube, and germanium nanoparticals have been reported. 

GaAs-polymer hybrids with well-ordered polymer brushes have potential applications 

in advanced GaAs-based semiconductor devices (Sze, 1981), chemical sensors (Seker 

et al., 2000), and biomaterials (Sackmann et al. and Tanaka et al., 2000). Recent 
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developments in the preparation of Au-polymer hybrids via surface-initiated ATRP 

and GaAs-organic hybrids from self-assembly of monolayers (SAMs) of alkane thiol 

on GaAs (Sheen et al., 1992) have inspired us to synthesize GaAs-polymer hybrids via 

ATRP. It is also hope that a dense, well-defined and covalently bonded polymer 

nanofilm will also help to stabilize the surface states associated with this compound 

semiconductor.  

 

In this chapter, the surface of GaAs was passivated by self-assembly of monolayers of 

organic sulfur containing hydroxyl groups. The hydroxyl groups on the GaAs surface 

were further functionalized via immobilization of ATRP initiators. Subsequently, 

surface-initiated atom transfer radical polymerization of methyl methacrylate (MMA) 

was conducted from the GaAs surface to prepare GaAs-PMMA hybrid. The surface 

compositions of GaAs surface, GaAs-PMMA hybrid surface, and GaAs-PMMA 

hybrid interface were analyzed by X-ray photoelectron spectroscopy (XPS). The 

surface morphology was characterized by atom force microscopy (AFM).  
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3.2 Experimental 

Materials. (100)-oriented GaAs single-crystal wafer, having a thickness of about 500 

μm and a diameter of about 50 mm, were obtained from Wafer World Inc., Ft. 

Lauderdale, FL. The as-received wafers were polished on one side and doped with Si 

to a resistivity level of 0.09-0.026 ohm·cm. The GaAs were sliced into strips of 3 cm × 

1 cm in area.   

 

All the organic chemical regents were obtained from Aldrich Chemical Co. of 

Milwaukee, WI. Methyl methacrylate (MMA) was distilled under reduced pressure 

and stored in an argon atmosphere at -10 ºC. Copper(I) bromide (CuBr) was stirred in 

glacial acid for 5 h, filtered, and washed with ethanol under argon atmosphere. The 

treated CuBr was dried under vacuum at 60ºC overnight. Tetrahydrofuran (THF, 

Aldrich, 99%) was distilled after drying with sodium. Triethylamine was distilled after 

drying with calcium hydride. 

 

Tris(2-(dimethylamino)ethyl)amine (Me6tren) was prepared according to the method 

described in the literature (Queffelec et al., 2000). A mixture of formaldehyde and 

formic acid was stirred at 0ºC for one hour. A solution of tris-(2-aminiethyl)amine and 

deionized water was added dropwise. The mixture was gently refluxed overnight at 

100ºC. After cooling down to room temperature, the volatile frations were removed by 

rotary evaporation. The brown residue was treated with 10% sodium hydroxide. An 

oily layer formed was extracted into methylene chloride. The methylene chloride 
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extract was dried over potassium hydroxide overnight and evaporated to produce 

yellow oil (Me6tren).  
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Figure 3.1 Schematic illustration of surface passivation, covalent immobilization of 
ATRP initiators on the GaAs surface, and surface-initiate ATRP to form 
the GaAs-PMMA hybrids. 
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The processes for fabricating GaAs-polymer hybrids with well-defined and covalently 

tethered polymer brushes, include passivation of GaAs surface with thiol, 

immobilization of initiators, and consequent surface-initiated atom transfer radical 

polymerization (ATRP) of methyl methacrylate (MMA) as shown in Scheme 3.1. 

 

Passivation of GaAs(100) surface with self-assembled monolayers of 6-mercapto-

1-hexanol. To remove the organic residues from the surface, the GaAs substrate was 

sonicated in acetone for 10 min, rinsed with ethanol, and then blow-dried with argon. 

The GaAs substrate was subsequently immersed into concentrated HCl (37 vol %) for 

two min to remove the native oxide layer on the surface (Adlkofer, 2001). To deposit 

the self-assembled monolayers (SAMs) of 6-mercapto-1-hexanol on the GaAs surface, 

the fresh HCl-etched GaAs substrate was immersed into 5 mM ethanol solution of 6-

mercapto-1-hexanol, which had been subjected to 3 freeze-pump-thaw cycles to 

remove the dissolved oxygen, for 24 h at room temperature under an argon 

atmosphere. The resulting surface with terminated hydroxyl groups was referred to 

GaAs-R1OH surface. 

 

Immobilization of the ATRP initiators on GaAs(100) surface. To achieve near-

quantitative initiator immobilization, the resulting GaAs-R1OH substrate was 

immersed into 0.1 M THF solution of 2-bromoisobutyryl bromide, containing 0.1 M 

triethylamine, for 2 min under argon. Since 2-bromoisobutyryl bromide are moisture 

sensitive and a thiol SAMs could be unstable on the GaAs(100) surface in the 

presence of hydrobromic acid (HBr), the GaAs-R1OH substrate was immersed into the 
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reaction medium in the presence of an organic base (triethylamine) for only 2 min. 

After the reaction, the so-modified substrate was rinse with ethanol. The resulting 

surface was referred to GaAs-R2Br surface.  

 

Surface-initiated ATRP of MMA. For the preparation of poly(methyl methacrylate) 

(PMMA) brushes on the GaAs-R2Br surface, CuBr (14.3 mg, 0.1 mmol) and CuBr2 

(2.2 mg, 0.01 mmol) were added to 5.3 ml of MMA. The solution was subsequently 

subjected to three freeze-pump-thaw cycles to remove the dissolved oxygen. GaAs-

R2Br substrate and Me6tren (26 μl, 0.11 mmol) were then added to the solution. The 

reaction flask was sealed under an argon atmosphere for a predetermined period time. 

After the reaction, the GaAs substrate with surface-grafted MMA polymer (PMMA) 

(the GaAs-PMMA hybrid) was washed/extracted continuously for 8 h with an excess 

volume of THF (a good solvent for PMMA), to remove the physically adsorbed 

PMMA and other reactant residues. 

 

Materials and Surface Characterization. The chemical composition of the GaAs 

surface and GaAs-PMMA hybrids interface was determined by X-ray photoelectron 

spectroscopy (XPS). To prepare the HCl-etched GaAs samples for XPS measurement, 

the fresh HCl-etched GaAs sample was cleaned and transferred into XPS chamber 

under nitrogen. The XPS measurements were performed on a Kratos AXIS HSi 

spectrometer using a monochromatic Al Kα X-ray source (1486.6 eV photons) at a 

constant dwell time of 100 ms and a pass energy of 40 eV. The samples were mounted 

on the standard sample studs by means of double-sided adhesive tapes. The core-level 
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signals were obtained at a photoelectron take-off angle (α, measured with respect to 

the sample surface) of 90°. The X-ray source was run at a reduced power of 150 W 

(15 kV with an emission current of 10 mA) to minimize possible damagse to the 

organic films. The pressure in the analysis chamber was maintained at 10-9 Torr or 

lower during each measurement. All binding energies (BE’s) were referenced to the C 

1s hydrocarbon peak at 284.6 eV. Surface elemental stoichiometries were determined 

from the spectral area ratios, after correcting with the experimentally determined 

sensitivity factors, and were reliable to within ±10%. The elemental sensitivity factors 

were calibrated using stable binary compounds of well-established stoichiometries. 

 

The topography of the HCl-etched and graft-polymerized GaAs surfaces was studied 

by atomic force microscopy (AFM), using a Nanoscope IIIa AFM from the Digital 

Instrument Inc. In each case, an area of 1 × 1 μm square was scanned using the 

tapping mode. The drive frequency was 330 ± 50 kHz, and the voltage was between 3 

and 4.0 V. The drive amplitude was about 300 mV, and the scan rate was 0.5 - 1.0 Hz. 

An arithmetic mean of the surface roughness (Ra) was calculated from the roughness 

profile determined by AFM. 

 

Gel permeation chromatography (GPC) measurements were carried out using an HP 

1100 HPLC equipped with a PLgel 5 μm MIXED-C column and a HP 1047A 

refractive index detector. THF was used as the mobile phase for PMMA.  
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The thickness of the polymer films grafted on the GaAs substrates was determined by 

ellipsometry. The measurements were carried out on a variable angle spectroscopic 

ellipsometer (model VASE, J. A. Woollam Inc., Lincoln, NE) at incident angles of 

70° and 75° in the wavelength range 250-1000 nm. The refractive index of the dried 

films at all wavelengths was assumed to be 1.5. All measurements were conducted in 

the dry air at room temperature. For each sample, thickness measurements were made 

on at least three different surface locations.  

 

Static water contact angles of the PMMA films grafted on the GaAs surfaces were 

measured by the sessile drop method at 25˚C and 65% relative humidity using a 

contact angle goniometer (Model 100-00-(230)), manufactured by Rame-Hart, Inc., 

Mountain Lake, NJ, USA. The telescope with a magnification power of 23× was 

equipped with a protractor of 1˚ graduation. For each contact angle report, five 

readings from different parts of the PMMA film surface were averaged. 
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3.3 Results and Discussion.  
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Figure 3.2 XPS Ga 3d and As 3d core-level spectra of the pristine GaAs(100) surface. 

  

The pristine (as-received) GaAs(100) substrate surface is usually covered with an 

native oxide layer. Figure 3.2 show the Ga 3d and As 3d core-level spectra of pristine 

GaAs(100) surface. The Ga 3d core-level spectrum of pristine GaAs(100) surface 

consists of two peak components, having binding energies (BEs) at about 19.0 eV for 

the GaAs species and at about 20.4 eV for the Ga2O3 species (Sandroff et al., 1989). 

The As 3d core-level spectrum of the pristine GaAs(100) surface shows three spin-
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obit-doublets, having BEs at about 40.7 eV (3d5/2) and 41.4 eV (3d3/2) for the GaAs 

species, at bout 44.0 eV and 44.7 eV (3d3/2) for the As2O3 species, and at about 45.3 

eV (3d5/2) and 46.0 eV (3d3/2) for the As2O5 species (Lunt et al., 1991 and Moulder et 

al., 1992). The concentration of the Ga oxide species on the GaAs surface is defined 

as the [Ga2O3]/[Ga] ratio and is derived from the ratio of the sum of the Ga2O3 

spectral component area to the Ga 3d spectral area. Similarly, the concentration of the 

As oxide species, including the As2O3 and As2O5 species, is defined as the 

[AsxOy]/[As]. The Ga oxides and As oxides with concentrations as high as 0.56 and 

0.43, respectively, is attributable to the native oxides on the pristine GaAs(100) 

surface. The XPS results indicate that the native oxide layer on the pristine GaAs(100) 

surface mainly consists of Ga2O3, As2O3, and As2O5. However, the native oxides on 

GaAs is not chemical stable. Both Ga oxides and As oxides on the surface are 

somewhat soluble in water, and their solubilities are dependent on pH. In addition, the 

oxide layers on the GaAs surface led to a large density of extrinsic surface states, 

which result in Fermi level pinning around midgap and high electron-hole 

recombination velocity to reduce the GaAs-based device performance. 

 

To remove the native oxide layers on the GaAs surface, various wet chemical etching 

processes had been applied to the GaAs surface (Seker et al., 2000). In this work, 

concentrated HCl (37%) was used to etch the native oxide layer, because this etch 

process is simple and may lead to a nearly stoichiometrically pure GaAs surface. The 

compositions of GaAs surfaces after each chemical treatment were characterized 

(XPS). Figure 3.3 shows the Ga 3d and As 3d core-level spectra of the GaAs surface 
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Figure 3.3 XPS Ga 3d and As 3d core-level spectra the HCl-etched GaAs(100) surface. 
 

 
 

after concentrated HCl (37%) etching. The Ga 3d core-level spectra had a peak 

component at the binding energy of about 19 eV, which is associated with the GaAs 

species. The As 3d core-level spectrum consisted of a spin-orbit-spit doublet, with 

binding energy at about 40.7 eV for As 3d5/2 component and 41.4 eV for As 3d3/2 

component, which are attributable to the GaAs species. The As and Ga oxide species 

were absent in both spectra. The quantitative analysis by XPS reveals that the atomic 
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concentration ratio of [As]/[Ga] is about 1.05: 1. The XPS results indicate that the As 

oxides and Ga oxides have been completely removed by the treatment of concentrated 

HCl and suggest the reactive sites (dangling bonds associated with Ga and As on the 

GaAs(100) surface) have been created on the GaAs surface. The dangling bonds on 

the GaAs surface have the cation and anion dangling bond states, which might be 

associated with the Fermi level pinning on the GaAs semiconductor (Sankey et al., 

1985). 

 

Since the report (Sandroff et al., 1987) that a simple nonhydrate sodium sulfide 

(Na2S·9H2O) treatment of GaAs(100) surfaces led to a large increase in 

photoluminescence, indicating a decrease in indirect electron-hole recombination, 

there have been many reports on the sulfur passivation of GaAs surface. So far, there 

are mainly three sulfur passivation methods, via inorganic sulfur treatment, 

passivation by plasma deposition of s-containing polymer on GaAs surfaces (Rao et al, 

1989; Yang et al., 2003), and self-assembled monolayers (SAMs) of thiol on GaAs 

surfaces (Sheen et al., 1992). It has been shown that the formation of As2S3 and Ga2S3 

is the key factor in reducing the surface electron-hole recombination velocity 

(Sandroff et al., 1989). Among these methods, SAMs of thiol on GaAs surface lead to 

efficient passivation of GaAs surfaces and well-defined structure of organic 

monolayers on the GaAs surfaces. In the present work, 6-mercapto-1-hexanol 

containing HS and OH groups at both ends was used to passivate the GaAs(100) 

surface. After passivation, the OH group on the passivated GaAs surface could be 

further functionalization.  
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Figure 3.4 XPS Ga 3d and As 3d core-level spectra of the GaAs-R1OH surface. 

 

Figure 3.4 shows the Ga 3d and As 3d core-level spectra of the GaAs-R1OH surface, 

which was created by immersing the HCl-etching GaAs substrate in a 5mM ethanol 

solution of 6-mercapto-1-hexanol for 24 h at room temperature. It was found that a 

new spin-orbit-split doublet at the BEs of about 42.0 eV (3d5/2) and 42.7 eV (3d3/2), 

attributable to the As-S species, and a new peak component at the binding energy of 
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about 19.7 eV, attributable to the Ga-S species, appeared in the As 3d and Ga 3d core-

level spectra of the GaAs-R1OH surface. The relative concentrations of the Ga sulfide 

species and As sulfide species, [Ga-S]/[Ga] and [As-S]/[As], have about the same 

value of 0.06. In addition, Figure 3.5 shows the curve-fitted spectrum in the BE region 

of S 2p. The peak components at the BE’s of about 159.6 eV and 156.6 eV can be 

attributed to the Ga 3s core-level spectrum for the GaAs species and As plasmon loss, 

respectively. The spin-orbit splitting doublets in S 2p core-level spectrum, having 

BE’s at about 162.0 eV (2p3/2) and 163.2 eV (2p1/2), can be assigned to the sulfide 

species at the interface (Moulder et al., 1992). These XPS results suggest that self-

assembled monolayers of 6-mercapto-1-hexanol have been deposited on freshly HCl-

etched GaAs surface via covalent As-S and Ga-S bonds. 
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Fig. 3.5 XPS core-level spectra of the GaAs-R1OH surface in the region of S 2p. 
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The immobilization of ATRP initiators was conducted by treating the GaAs-R1OH 

substrate with a solution of 2-bromoisobutyryl bromide in the presence of 

triethylamine. The role of the initiator in the metal-catalyzed surface-initiated ATRP is 

to form an initiating radical species via hemolytic cleavage of its labile bonds, such as 

C-halogen by the metal catalysts. In most cases, the dissociated halogen or its 

equivalent is subsequently reattached to the propagating radical chain end to give a 

dormant species.  
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Figure 3.6 XPS Br 3d core-level and wide scan spectra of GaAs-R2Br surface. 
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A variety of initiators, typical alky halides, haloalkanes, haloketones, haloamides, 

halonitriles, sulfonyl halides, and haloesters, have been used successfully in ATRP. 

Among these initiators, haloesters can be versatile for various monomers, including 

styrenes, methacrylates, acrylates, etc. by careful design of the structures (Kamigaito 

et al., 2001; Matyjaszewski et al., 2001). 

 

Figure 3.6 shows the wide scan and Br 3d core-level spectra of the GaAs-R2Br surface. 

The successful immobilization of the bromoester initiators on the GaAs surface is 

verified by the appearance of a Br 3d spin-orbit splitting doublet at the BE’s of about 

70 eV (3d5/2) and 71 eV (3d3/2) (Moulder et al., 1992). The BE assignments for the 

various elemental species and chemical states are provided in Table 3.1.  The resulting 

GaAs-R2Br substrate has a uniform film thickness of bout 0.7 nm, as measured by 

ellipsometry at five different locations on the surface of a 3 cm2 GaAs substrate. The 

surface roughness (Ra) of the GaAs-R2Br substrate, as determined from the atomic 

force microscopy (AFM) image, remain practically unchanged from that of HCl-

etched GaAs surface (Table 3.2).  The density of the coupling agent-initiator species 

was estimated from the linear contribution of that of ethyl-2-bromo-2-

methylpropionate (1.33 g/ml) and that of 1-butanethiol (0.84 g/ml). Thus, from the 

density (~1.1 g/ml) and the molecular weight (282 g/mol) of the coupling agent-

initiator species, the surface graft density of the coupling agent-initiator is estimated to 

be about 1.6 units/nm2, which is comparable to that of the SAMs of alkane thiol on 

GaAs surfaces reported previously (Sheen et al., 1992). 
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Table 3.1 XPS analysis of the As 3d, Ga 3d, S 2s, and C 1s core-level spectra.*

 Binding Rnergy (eV) Assignment FWHM (eV)  
 

As 3d 40.7 (3d5/2), 41.4 (3d3/2) GaAs 0.86  
 42.0 (3d5/2), 42.7 (3d3/2) As-S 0.86  

44.0 (3d5/2), 44.7 (3d3/2) As2O3 1.12  45.3 (3d5/2), 46.0 (3d3/2) As2O5 1.03 
 

    

Ga 3d 19 GaAs 0.93  
 19.7 Ga-S 0.93  
 20.4 Ga2O3 1.02 
    

 
S 2p 162(2p3/2), 163.2(2p1/2) Sulfide 1.31 

    

 
C 1s 284.6 C-H 1.29  

 285.3 C-COO 1.29  
 286.4 C-O 1.29  
 288.6 O=C-O 1.00  

 
The assignments were made with reference to Refs. (Moulder, 1992; Sandroff, 1989; 
Lunt, 1991; and Beamson, 1992). 

 
 

 
 
Table 3.2 Thickness and surface roughness of the PMMA films grafted on the 

GaAs(100) substrates.a
 

Sample Reaction Time 
(h) 

Thicknessb 
(nm) DPc Surface Roughnessd

Ra (nm) 
 

HCl-etched 
GaAs ― ― ― 0.56 

GaAs-R2Br ― 0.7 ― 0.52 

 

GaAs-PMMA1 4 9 120 0.43  
GaAs-PMMA2 8 20 270 0.58  
GaAs-PMMA3 12 24 320 0.53  
GaAs-PMMA4 21 29 390 0.63  

 

a Reaction conditions for fabricating GaAs-PMMA hybrids: 
[MMA]:[CuBr]:[Cu(Br)2]:[Me6TREN] = 500:1:0.1:1.1, room temperature and under 
an argon atmosphere. 

b The film thickness was measured by ellipsometry. 
c Average degree of polymerization (DP) was estimated based on the surface initiator 

density of about 1.6 units/nm2, PMMA density of 1.1 g/cm3, MMA molecular 
weight of 100 g/mol, and the corresponding PMMA film thickness. 

d Ra was the arithmetic mean of surface roughness calculated from the roughness 
profile of the AFM image. 
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Surface-initiated ATRP of MMA from the GaAs-R2Br surface was conducted in a 

continuously stirred MMA, containing CuBr, CuBr2 and Me6tren. The resulting GaAs-

PMMA hybrid with a PMMA film thickness of about 29 nm, as measured by 

ellipsometry, has a water contact angle of about 69˚ (GaAs-PMMA4, Table 3.2). The 

contact angle is comparable to that of the PMMA homopolymer (~ 71º) (Eaton et al., 

2000). As shown in the Table 3.2, the thickness of the grafted PMMA film in the 

resulting GaAs-PMMA hybrids increases with the increase in polymerization time, 

suggesting that the growth of the PMMA chains is consistent with a controlled process. 

The result was further supported by an approximately linear increase in the average 

degree of polymerization (DP) of PMMA homopolymer with the MMA monomer 

conversion (Figure 3.6) for concurrent polymerizations with the free initiator (ethyl-2-

bromo-2-methylpropionate) in solution. Since the average cross-sectional area of 

PMMA chain prepared by surface-initiated ATRP is 1.8 – 2.0 nm2 (Shah, 2000 and 

Kim, 2000) and the surface initiator density is about 1.6 unit/nm2, the surface initiator 

efficiency of the present system is estimated to be about 30%. Together with a PMMA 

thickness of 29 nm (Sample GaAs-PMMA4, Table 1), PMMA density of 1.1 g/cm3 

(Shah, 2000), and MMA molecular weight of 100 g/mol, the average DP of PMMA 

graft chain is estimated to be about 390. This value is also comparable to those 

obtained from homopolymerizations in solution (Figure 3.7).   
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Figure 3.7 The relationship between the average degree of polymerization (DP) and 
the conversion of MMA monomer. Reaction condition: 
[MMA]:[CuBr]:[Cu(Br)2]:[Me6tren]:[ethyl-2-bromo-2-methylpropionate] 
= 500:1:0.1:1.1:1, room temperature and under an argon atmosphere.  
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Figure 3.8 Structure of tris(2-(dimethylamino)ethyl)amine (Me6tren). 
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The Cu/Me6tren catalyst system was used for the surface-initiated ATRP process. In 

ATRP, the catalyst reactivity can be adjusted by changing the ligand, counterion, or 

transition metal. Of all the transition metals investigated, copper appears to be most 

promising in term of price, reactivity, and versatility. The counterions used for ATRP 

can be acetates (Matyjaszewski et al., 1998), hexafluorophosphate (Daviset et al., 

1999), triflate (Woodworth et al., 1998), atomic oxygen (Percec et al., 1998), or 

halogen. Among the catalyst systems for ATRP, copper halides are among the most 

frequently utilized.  To fine-tune the catalyst system based on copper halides, a variety 

of ligands, 2,2’-bipyridyne, linear aliphatic amines and branched aliphatic amines 

ligands, have been developed to enhance either the solubility of the catalyst, adjust the 

redox potential of the copper for appropriate reactivity of the catalyst, or both.  

Recently, a new branched aliphatic amine, tris(2-(dimethylamino)ethyl)amine 

(Me6tren, structure shown in Figure 3.8), have been used as ligand to improve the 

catalyst system for the ATRP of acrylates (Xia et al., 1998). This catalyst system 

allows well-controlled polymerization of acrylates at ambient temperature with very 

fast polymerization rates. For some polymerizations, termination might be enhanced at 

elevated temperature because of rapid initiation of polymerization. Thus, an ambient 

temperature could be an optimal condition for the surface-initiated ATRP process, in 

which the concentration of the initiators is rather low (Matyjaszewkski et al., 1999), 

and can give rise to the larger thickness of the polymer brushes grafted from the 

substrate. Recently, a surface-initiated ATRP on gold substrate using the Cu/Me6tren 

catalyst system at ambient temperature has been demonstrated (Kim et al., 2000).    
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Figure 3.9 XPS spectra of C 1s and wide scan of the GaAs-PMMA hybrids (Sample 
PMMA1, Table 3.2) surface. 

 

XPS was again used to characterize the PMMA polymer brushes grafted on the GaAs 

surface. Figure 3.9 shows the high-resolution C 1s core-level and wide scan spectra of 

the GaAs-PMMA1 (Table 1) sample surface. The C 1s core-level line shape is 

dominated by that of PMMA. The spectrum consists of four peak components with 

BE’s at 284.6 eV for the aliphatic hydrocarbons (C-C and C-H species), 285.3 eV for 

the C-COO species, 286.4 eV for the C-O species, and 288.6 eV for the O=C-O 

species. The [C-H/C-C]:[C-COO]:[C-O]:[O=C-O] molar ratio, as determined from the 
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C 1s spectral component area ratio, is 2.8:1.2:1.1:1. This ratio deviates somewhat 

from the theoretical ratio of 2:1:1:1 for PMMA. The deviation from the ideal PMMA 

composition probably has resulted from the contribution of the underlying initiator 

and thiol coupling agent to the aliphatic hydrocarbon species, as the PMMA film 

thickness (~ 9 nm) is comparable to the sampling depth of the XPS technique (see 

below). With the increase in PMMA film thickness, the surface composition 

approaches that of the pure PMMA. The inset in Figure 3.9 shows the Br 3d core-level 

spectrum of the GaAs-PMMA1 (Table 3.2) sample surface. The persistence of the Br 

signal is consistent with the fact that the PMMA chain growth from the surface was a 

surface-initiated polymerization process with a living characteristic. 

 

The chemical states of the GaAs-PMMA hybrid interface with a PMMA film 

thickness of about 9 nm (Sample GaAs-PMMA1, Table 3.2) were also investigated by 

XPS. Since the probing depth of the XPS technique for hydrocarbon polymers is ≤ 10 

nm, the As 3d and Ga 3d signals of the hybrid should have originated mainly from the 

top-most surface of the GaAs substrate after the grafting of about 9 nm of PMMA.  

Only a trace amount of As oxide and no Ga oxide species were observed in the XPS 

spectra of the GaAs-PMMA interface (Figure 3.10), suggesting that the surface-

initiated ATRP has minimal effect on the chemical states of GaAs surface and the 

surface-coupled 6-mercapto-1-hexanol has also served as a passivation layer for the 

GaAs surface.  
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Figure 3.10 XPS Ga 3d and As 3d core-level spectra of the GaAs-PMMA hybrids 
interface (Sample PMMA1, Table 3.2) . 

 

 

The concentrations of the gallium sulfide species, [Ga-S]/[Ga] for the GaAs-PMMA 

surface have increase to 0.17 from the 0.06 for the GaAs-R1OH surface in Figure 3.3, 

due to the fact that only the Ga 3d XPS signal originated from the top-most layer of 

the GaAs substrate is discernible after a PMMA film of 9 nm in thickness has been 

grafted from the substrate. However, the concentration of arsenic sulfide species, [As-

S]/[As], is only about 0.06, which is significantly lower than the concentration of the 
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gallium sulfide species of the GaAs-PMMA hybrid (Sample PMMA1, Table 3.2). the 

result suggests that the As-S bonds on the GaAs surface are somewhat unstable. This 

phenomenon is also consistent with those reported in the literature that Ga-S bonds on 

GaAs surface are thermodynamically more stable than the As-S bonds, as well as the 

fact that the Ga-S bonds dominate on the GaAs surface after the substrate has been 

annealed at temperatures above 400 ºC (Seker et al., 2000).  

 

 

 
Figure 3.11 AFM images of (a) the HCl-etched GaAs surface and (b) the GaAs-

PMMA hybrid (Sample GaAs-PMMA4, Table 3.2) surface.  
 
 
 
The surface morphology of the GaAs-PMMA hybrid and the HCl-etched GaAs was 

studied by AFM. Figures 3.11(a) and 3.11(b) show the respective AFM images of the 

HCl-etched GaAs and the GaAs-PMMA hybrid (Sample GaAs-PMMA4, Table 1) 

surfaces. The surface roughness (Ra ~ 0.63 nm) of the GaAs-PMMA hybrid remains 

comparable to that of the original HCl-etched GaAs surface (Ra ~ 0.56 nm). The 
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nanoscopic uniformity of the GaAs-PMMA hybrid surface can be attributed to the 

well-defined PMMA brushes prepared from the surface-initiated ATRP. 

 

The process of surface-initiated ATRP of MMA on GaAs-R2Br surface was also 

verified by two parallel experiments.  The experiments involved the immersion of (i) 

the GaAs-R1OH substrate into the continuously stirred MMA monomer solution of 

CuBr (14.3 mg, 0.1 mmol), CuBr2 (2.2 mg, 0.01 mmol), and Me6TREN (26 µl, 0.11 

mmol), and (ii) the GaAs-R2Br substrate in the continuously stirred MMA monomer 

without CuBr, CuBr2, and Me6TREN for 12 h at room temperature. No change in 

thickness of the organic layer was detected by ellipsometry for samples from both 

experiments, consistent with the fact that surface-initiated ATRP of MMA occurred 

only in the presence of both the surface initiator and the Cu catalyst. 
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3.4 Conclusions 

Surface-initiated ATRP on the functionalized GaAs single crystal surface has allowed 

the successful preparation of GaAs-PMMA hybrids at room temperature. The surface 

states of the GaAs substrate were not significantly affected by the ATRP process. Not 

only did the mercaptohexanol coupling agent give rise to the covalently bonded ATRP 

initiator, it also passivated the GaAs surface via the formation of the Ga-S and As-S 

covalent bonds. Thus, the present study provides a simple approach to the preparation 

of the GaAs-polymer hybrids with well-defined polymer brushes and preserved 

interfacial states. 
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Chapter 4 

ZnO-PMMA Core-Shell Hybrid Nanoparticles via  

Surface-Initiated Atom Transfer Radical Polymerization  

and Their Enhanced Optical Properties  
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4.1 Introduction 

Inorganic nanoparticles have attracted much interest due to their size-dependent 

electrical, optical, and magnetic properties (van, Dijken, 1998; Jun, 2000; 

Gangopadhyay, 1992). In order to take advantage of these properties on the 

macroscopic scale, the particles were usually incorporated into a matrix with specific 

processing properties, such as an organic polymer matrix, to form an inorganic-

organic hybrid. Not only can this method allow a better dispersion of the particles in 

the matrix, it also protects the particles against the influence of the environment. 

Popular strategies for preparing inorganic-organic core-shell hybrid include “graft to” 

approach, in which the polymer chains were grafted onto the surface of the inorganic 

nanoparticles by chemisorption of the polymers with reactive groups (Benouada, 1988; 

Chhabra, 1995). The “graft from” approach attempts to grow polymer chains from 

initiators anchored on the surface of the inorganic particles. The latter approach, 

especially with the surface-initiated atom transfer radical polymerization (ATRP) 

technique, offers a versatile method for controlling the thickness and composition of 

the polymer shell in an inorganic-organic core-shell hybrid. Well-defined polymer 

shells grafted from silica (von Werne, 1999 and 2001; Pyun, 2001), Au (Nuss, 2001), 

Fe2O3 (Wang, 2003; Li, 2004), and MnFe2O4 (Vestal 2002) nanoparticles via surface-

initiated ATRP have been reported recently.  

 

As a wide band gap (3.37 eV) semiconductor with large exciton binding energy (60 

meV), ZnO is one of the most promising materials for optoelectronic applications. 

ZnO has intrigued much research interest and various nanostructures of ZnO have 
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been successfully synthesized (Meulenkamp, 1998; Huang, 2001; Guo, 2002; Lao, 

2003; Wang, 2004). Inorganic-organic hybrids based on ZnO nanoparticles have 

potential applications in hybrid solar cell (Beek, 2004), transparent UV-protection (Li, 

2002), emission and display technology (Ghis, 1991), and as pharmaceutical and 

biomedical materials (Niemeyer, 2001). Recent developments in the preparation of 

inorganic-polymer hybrids from other inorganic nanoparticles have inspired us to 

synthesize ZnO-polymer core-shell hybrid nanoparticles via surface-initiated ATRP.  

 

In this Chapter, ZnO-polymer core-shell hybrid nanoparticles, with well-defined 

polymer shell or polymer brushes of about the same chain length in the shell, were 

prepared via surface-initiated ATRP of methyl methacrylate (MMA) from ATRP 

initiators immobilized on ZnO nanoparticles. The hybrid nanoparticles were well-

dispersed and gave rise to enhanced UV-visible absorption and fluorescence. The 

chemical composition of the hybrid nanoparticles was investigated by XPS. The 

morphology and structure of the nanoparticles were determined by field emission 

scanning electron microscopy (FE-SEM) and transmission electron microscopy 

(TEM). 
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4.2 Experimental 

4.2.1 Materials 

ZnO nanoparticles (mean particle size of 60 ± 10 nm and a surface area of 15-25 m2/g), 

2-bromo-2-methylpropionic acid, methyl methacrylate (MMA), N,N,N',N'',N''-

pentamethyldiethyltriamine (PMDETA), and copper(I) bromide (CuBr) were obtained 

from Aldrich Chemical Company, Milwaukee, WI.   The MMA monomer was 

distilled under reduced pressure and stored in an argon atmosphere at -10 °C. For 

purification, CuBr was stirred in glacial acetic acid overnight, washed with ethanol, 

and dried under reduced pressure at 60 ˚C.    

 

4.2.2 Immobilization of ATRP Initiator on ZnO Nanoparticle Surface 

About 200 mg of ZnO nanoparticles were stirred overnight in 3 mM aqueous solution 

of 2-bromo-2-methylpropionic acid (R1Br) initiator. The nanoparticles were collected 

by centrifugation and washed several times to remove the excess initiator. The 

surface-functionalized nanoparticles (ZnO-R1Br nanoparticles) were dried under 

reduced pressure. 

 

4.2.3 Surface-Initiated Atom Transfer Radical Polymerization from ZnO-R1Br 

Nanoparticles   

The ZnO-R1Br nanoparticles were added into 5 ml MMA solution (MMA: 2.5 ml; 

acetonitrile: 1.25 ml; THF: 1.25 ml). After the mixture was purged with argon for 20 

min, CuBr (16.7 mg, 0.117 mmol) and PMDETA (25 µl, 0.117 mmol) were added to 

the mixture. The final mixture was stirred and kept at 60˚C for a pre-determined 
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period of time under an argon atmosphere. After the reaction, the mixture was washed 

with methanol to remove the Cu(I) catalyst. The surface-graft polymerized ZnO 

nanoparticles were collected by centrifugation and washed repeatedly with THF.   

 

4.2.4 Characterization 

(1) XPS Measurements. The chemical composition of the pristine and the 

functionalized ZnO nanoparticles was investigated by X-ray photoelectron 

spectroscopy (XPS). The XPS measurements were performed on a Krato AXIS HSi 

spectrometer using a monochromatic Al Kα X-ray source (1486.71 eV photons). The 

samples were prepared by placing several drops of THF-nanoparticle mixture on 0.5 × 

0.5 cm2 Si(100) wafers. After the removal of the solvent, the Si wafers were mounted 

on the sample stubs by doubled-side adhesive tapes.  

(2) FE-SEM and TEM Measurements. The morphology and structure of the pristine 

and the functionalized ZnO nanoparticles was determined by field emission scanning 

electron microscopy (FE-SEM) and transmission electron microscopy (TEM). FE-

SEM measurements were made on a JEOL JSM-6700F SEM with an electron kinetic 

energy of 15 kV. The samples were prepared by placing a drop of THF-nanoparticle 

mixture on a 0.5 × 0.5 cm2 Si(100) wafer. Investigation by transmission electron 

microscopy (TEM) was carried out on a JEOL JEM-2010 TEM with an electron 

kinetic energy of 200 kV. The samples for TEM measurement were prepared by 

placing a drop of THF-nanoparticle mixture on a carbon-coated 200-mesh copper grid.   

(3) UV-visible and Fluorescence Measurements. The optical properties of the 

pristine and the functionalized ZnO nanoparticles were investigated by UV-visible and 
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fluorescence spectroscopies. UV-visible absorption spectroscopy measurements were 

carried out on a Shimadzu UV-3101 PC scanning spectrophotometer using THF as 

reference. The fluorescence spectra were obtained on a Shimadzu RF 5301PC 

luminescence spectrophotometer.  
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4.3 Results and Discussion 

4.3.1 Synthesis and Characterization of ZnO-PMMA Hybrids 
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Figure 4.1 Schematic illustration of immobilization of ATRP initiators on the surface 

of ZnO nanoparticles and the surface-initiated ATRP to give rise to the 
ZnO-PMMA core-shell hybrids nanoparticles. 

 

The strategy for preparing ZnO-PMMA hybrid nanoparticles via surface-initiated 

ATRP is shown in Figure 4.1. It consists of immobilization the ATRP initiators (2-

bromo-2-methylpropionic acid) on ZnO nanoparticles to form the ZnO-R1Br 

nanoparticles, and subsequent surface-initiated ATRP of MMA from the ZnO-R1Br 

nanoparticle surface. Figure 4.2(a) shows the wide scan, Zn 2p core-level, and Zn 

Auger LMM spectra of the pristine ZnO nanoparticles.  The Zn 2p core-level 

spectrum shows a spin-orbit-split doublet with binding energies (BE’s) at about 

1021.5 eV (2p3/2) and 1044.5 eV (2p1/2). In addition, the Zn (LMM) Auger has a 

kinetic energy of about 988.8 eV.  These combined XPS results confirm the chemical 

state of ZnO (Moulder et al., 1992).  

 

The ATRP initiator, 2-bromo-2-methylpropionic acid, was immobilized on the ZnO 

nanoparticle surface via acid-base interaction (Noguera, 1996). The immobilization of 
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Figure 4.2   XPS core-level and wide scan spectra of (a) pristine ZnO nanoparticles, (b) 
the ZnO-R1Br nanoparticle, and (c) the ZnO-PMMA hybrid nanoparticles 
with ATRP time of 5 h. the insert in the (a) the Auger LMM spectra of 
pristine of ZnO nanoparticles 
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ATRP initiator, 3-chloropropionic acid, on the MnFeO4 nanoparticles via acid-base 

interaction has been reported (Vestal et al., 2002). Under normal conditions of 

application, a metal oxide surface in contact with ambient atmosphere will give rise to 

the hydroxyl groups, which are strongly bonded to the surface (Noguera, 1996). Since 

ZnO (with the hydroxyl groups bonded to the surface) has a strong surface basicity 

(Parks, 1965), it will facilitate the coupling of 2-bromo-2-methylpropionic acid to a 

ZnO nanoparticle surface via acid-base interaction. However, a high concentration of 

2-bromo-methylpropionic acid in an aqueous solution having a low pH value may 

destroy the ZnO nanoparticle. Thus, a 3 mM aqueous solution of 2-bromo-2-

methylpropionic acid (pH value of 5-6) was used for the immobilization of the ATRP 

initiator on the ZnO nanoparticle surface. The successful immobilization of the ATRP 

initiators on the ZnO nanoparticle surface was confirmed by the appearance of a Br 3d 

spin-orbit-split doublet at the BE’s of about 70 eV (3d5/2) and 71 eV (3d3/2) for the 

ZnO-R1Br surface (the inset in Figure 4.1(b)). In addition, the C 1s core-level 

spectrum of the ZnO-R1Br surface in Figure 4.2 (b) consists of three peak components 

with BEs at about 284.6 eV for the C-H species, 286.1 eV for the C-Br species, and 

288.8 eV for the O=C-C species (Beamson, et al., 1993). The [C-H]:[C-Br]:[O=C-O] 

molar ratio, as determined from the C 1s spectral peak component area ratio, is 

2.6:1:0.9. This ratio deviates somewhat from the theoretical ratio of 2:1:1 for 2-

bromo-2-methylpropionic acid. The deviation is probably due to hydrocarbon 

contamination, as the [C-Br]:[O=C-O] molar ratio remains very close to the 

theoretical ratio. 
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The resulting ZnO-R1Br nanoparticles were dispersed in 5 ml of MMA solution 

(MMA: 2.5 ml; acetonitrile: 1.25 ml; THF: 1.25 ml), containing CuBr and PMDETA, 

for the surface-initiated ATRP at 60ºC. After the ATRP process, the ZnO 

nanoparticles with surface-grafted MMA polymer (PMMA shell), or the ZnO-PMMA 

hybrid nanoparticles, were dispersed in the THF. It was found that the time required 

for the ZnO-PMMA hybrid nanoparticles to precipitate increased with the ATRP time. 

This phenomenon is consistent with the presence of a thicker PMMA shell grafted on 

the ZnO nanoparticle surface with increasing ATRP time. After the surface-initiated 

ATRP of MMA on the ZnO-R1Br nanoparticle surface for 5 h at 60˚C, the resulting 

ZnO-PMMA hybrid nanoparticles, were recovered and analyzed by XPS.  Figure 

4.2(c) shows the wide scan and high-resolution C 1s core-level spectra of the ZnO-

PMMA hybrid nanoparticles surface. A reduced Zn 2p signal and an enhanced C 1s 

signal are observed for the ZnO-PMMA hybrid nanoparticles. The Zn 2p signal 

became undetectable for the ZnO-PMMA hybrid nanoparticles from an ATRP time of 

16 h (the inset in Figure 4.2(c)). Since XPS is a surface sensitive technique having a 

probing depth less than 10 nm for organic compounds (Briggs, 1998), the decrease in 

Zn 2p signal with increase in ATRP time is consistent with the presence of a thicker 

PMMA shell grafted from the ZnO nanoparticle surface. The C 1s core-level line 

shape of the ZnO-PMMA hybrid nanoparticles in Figure 4.2(c) is characteristic of that 

of PMMA (Beamson, et al., 1993). The spectrum consists of four peak components 

with BE’s at 284.6 eV for the aliphatic hydrocarbons (C-C and C-H species), 285.4 

eV for the C-COO species, 286.4 eV for the C-O species, and 288.6 eV for the O=C-
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O species. The [C-H/C-C]:[C-COO]:[C-O]:[O=C-O] molar ratio is 2.3:1:1:0.8, which 

is comparable to the theoretical ratio of 2:1:1:1 for PMMA.  

 

4.3.2 Morphology and Structure of the Hybrid Nanoparticles 

Much work has been done to control the aggregation of inorganic particles. One 

promising way to avoid the aggregation of nanoparticles is to surround them with an 

appropriate coating layer, consisting of organic molecules and polymers. Surface-

initiated ATRP, by which polymer chains grow from the metal oxide surface, allows 

the control over molecular weight and gives a low polydispersity index (von Werne, 

1999 and 2001; Pyun, 2001). Thus, the process may give rise to uniform shell 

thickness around the metal oxide core and result in a well-defined inorganic-organic 

core-shell structure. In order to investigate the aggregation states, the morphology and 

structure of the ZnO-PMMA hybrid nanoparticles were characterized by FE-SEM and 

TEM. Figures 3.3(a) and 3.3(b) show the representative FE-SEM images of the 

pristine ZnO nanoparticles and the ZnO-PMMA hybrid nanoparticles from an ATRP 

time of 5 h, respectively. As shown in Figure 3.3(a) the as-received pristine ZnO 

nanoparticles are prone to aggregation, whereas, the ZnO-PMMA hybrid nanoparticles 

can remain well-dispersed (Figure 3.3(b)). The few aggregates probably have resulted 

from the entanglement of PMMA chains during solvent evaporation, which may 

bridge the space between the ZnO nanoparticles (von Werne, 1999). This kind of 

aggregation became more prominent with higher concentration ZnO-PMMA 

suspension in THF used to prepare the FE-SEM samples. Figure 4.4 shows the 

representative TEM images of individual ZnO-PMMA core-shell hybrid nanoparticles  
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Figure 4.3  Representative FE-SEM images of (a) the pristine ZnO nanoparticles and 

(b) the ZnO-PMMA hybrid nanoparticles after ATRP for 5 h 
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Figure 4.4 Representative TEM images of the ZnO-PMMA hybrid nanoparticles after 
ATRP for (a) 5 h and (b) 16 h 

 

after ATRP for 5 h (part (a)) and 16 h (part (b)). The core-shell nanoparticle 

morphology in both images can be readily observed. The light contrast shell 

presumably is associated with PMMA, while the dark contrast core to ZnO. The 

PMMA shell around the ZnO nanoparticles probably has prevented the interaction 

among the ZnO nanoparticles, resulting in well-separated ZnO-PMMA hybrid 
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nanoparticles, as shown in Figure 4.3(b). As shown in the Figure 4.4(b), the interface 

between the PMMA shell and ZnO nanoparticle is not discernible for the hybrid 

nanoparticle obtained from the longer ATRP time of 16h. The phenomenon is 

probably due to the presence of a thicker polymer shell. The thicker PMMA shell 

observed for the hybrid nanoparticle with an ATRP time of 16 h is also consistent 

with the XPS result shown in the inset of Figure 4.2(c).      

    

To obtain the highly dispersed ZnO nanoparticles, organic capping ligand 

(triotylphosphine oxide or TOPO) and poly(vinylpyrrolidone) (PVP) have been used 

to synthesize ZnO nanoparticle (Kim, 2003; Guo, 2000). It was believed that TOPO 

and PVP stabilized the surface of the ZnO nanoparticle and gave rise to highly 

dispersed nanoparticles. Commercial ZnO nanoparticles are most commonly prepared 

by a high temperature processes. The ZnO nanoparticles aggregate inevitably due to 

interactions among the nanoparticles. Not only can the present surface-initiated ATRP 

process gives rise to the well-dispersed ZnO-PMMA hybrid nanoparticles by shielding 

the interactions among the ZnO nanoparticles, the thickness of the PMMA shell on the 

ZnO-PMMA hybrid nanoparticles is well-defined and adjustable.     

 

4.3.3 UV-visible Absorption and Photoluminescence Spectra of the ZnO-PMMA 

Hybrid Nanoparticles 

Figure 4.5 shows the UV-visible absorption spectra of the PMMA, pristine ZnO, and 

ZnO-PMMA hybrid nanoparticles (with ATRP durations of 5 h and 16 h) in THF at 

room temperature. Significantly enhanced exciton absorption band at 375 nm, 
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corresponding to the electron transition from the top of the valence band to the exciton 

levels of ZnO, were observed for the organic-functionalized ZnO nanoparticles (Li, 

2004). The improved excitonic absorption for the ZnO-PMMA hybrid nanoparticles is 

probably originate from the improved separation or dispersion of pristine ZnO 

nanoparticles by the capping PMMA layer on the surface, resulting in larger surface 

area of the pristine ZnO nanoparticle exposed to the incident light. The improved 

excitonic absorption property due to the improved separation of pristine ZnO 

nanoparticles is also consistent with the slight red shift of the excitonic absorption 

peak of ZnO nanoparticle aggregates (377 nm) (Sakohara, 1998). As PMMA have 

insignificant absorbance in this spectral region, no significant difference in the exciton 
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Figure 4.5 UV-Visible absorption spectra of PMMA, pristine ZnO, ZnO-PMMA 
hybrid nanoparticle. Surface-initiated ATRP was performed for 5 h and 16 
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absorption spectra is discernible for the ZnO-PMMA hybrid nanoparticles with 

different thickness of the PMMA shell.  These results suggest that ZnO-PMMA 

hybrid nanoparticles can improve the UV absorption of the pristine ZnO nanoparticles. 
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Figure 4.6 Fluorescence spectra of the pristine ZnO and ZnO-PMMA hybrid 
nanoparticles after surface-initiated ATRP for 5 h and 16 h. (λex = 375 nm) 

 

Figure 4.6 shows the fluorescence spectra of the pristine ZnO and ZnO-PMMA hybrid 

nanoparticles excited at the wavelength of 375 nm from a Xe lamp. The fluorescence 

spectra are dominated by the emission band at about 500 nm, which is attributed to the 

singly ionized oxygen vacancy on the surface of ZnO nanoparticles and resulted from 
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the radiative recombination of the electrons in the singly occupied oxygen vacancy 

with the photogenerated holes in the valence bands (Vanheusden, 1996). The deviation 

in the emission band compared to those in other reports (Guo, 2000; Vanheusden, 

1996) is probably due to the difference ZnO particle size.  The intensity of the 

emission band at about 500 nm for the ZnO-PMMA hybrid nanoparticles after 

surface-initiated ATRP for 5 h and 16 h are significantly stronger than that of the 

pristine ZnO nanoparticles. This result is probably attributable again to the well-

dispersed nature of the organic functionalized ZnO nanoparticles in THF, in which 

holes in the valence band could be more effetely photogenerated. This result is also 

consistent with that observed in the UV-visible absorption spectra. Pristine ZnO and 

ZnO-PMMA nanopartcles were also dispersed in other organic solvent 

(dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)) for optical 

characterizations. Similar optical properties of improved UV absorption and Enhanced 

PL intensity was also observed for ZnO-PMMA nanoparticles, suggesting well-

dispersion of ZnO-PMMA nanoparticles in DMF and DMSO.  

 

Poly(vinylpyrrolidone) (PVP)-modified and highly dispersed ZnO nanoparticles have 

been synthesized and their optical propertied have been investigated (Guo et al., 2000). 

It was found that the intensity of the green emission band at about 530 nm decreased 

due to surface modification of the ZnO nanoparticles by PVP. It was suggested that 

the elimination of the surface states of ZnO nanoparticles by PVP chelation during the 

preparation of PVP-modified ZnO nanoparticles have given rise to the decrease in the 

green emission intensity. In the present work, the pristine ZnO nanoparticles were 
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immobilized with ATRP initiators via acid-base interactions between the hydroxyl 

groups on the pristine ZnO nanoparticles and carboxyl groups of the ATRP initiators. 

The surface-initiated ATRP from the ATRP initiators was subsequently carried out to 

synthesize the ZnO-PMMA core-shell hybrid nanoparticles. Thus, the pristine surface 

states of ZnO nanoparticles were preserved to some extend and the intensity of the 

visible emission at about 500 nm was subsequently enhanced due to the well-

dispersed nature of the ZnO nanoparticle functionalized by the present approaches.    
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4.4 Conclusions 

ZnO-PMMA core-shell hybrid nanoparticles were successfully prepared via surface-

initiated ATRP of methyl methacrylate (MMA) from ATRP initiators immobilized on 

ZnO nanoparticles by acid-base interaction. The chemical compositions of the 

nanoparticles were investigated by X-ray photoelectron spectroscopy (XPS). The 

morphology and structure of the nanoparticles were determined by field emission 

scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). 

In addition, the optical properties of the nanoparticles were also studied by UV-visible 

and photoluminescence spectroscopies. The ZnO-PMMA hybrid nanoparticles so-

prepared could be well-dispersed in THF. Significant enhancements in UV-visible 

absorption and fluorescence intensities were observed.  
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Chapter 5 

Self-Assembled Monolayers of ZnO Colloidal Quantum Dots (QDs)  

on 3-Mercaptopropyltrimethoxysilane-Passivated GaAs(100) 

Surfaces 
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5.1 Introduction 

Semiconductor quantum dots (QDs), exhibiting unique properties arising from three-

dimensional (3D) quantum confinement, have emerged as potential materials for the 

fabrication of novel semiconductor devices and for biotechnology (Bimgerg et al., 

1999; Niemeyer, 2001; Katz and Willner, 2004). There are tow widely investigated 

semiconductor QDs, one of them is the self-assembled semiconductor QDs from 

heteroepitaxial growth (Mo et al., 1990; Guha et al., 1990; Leonard et al., 1993; 

Carlsson et al., 1994; Moison et al., 1994; Heinrichsdorff et al., 1996; He et al., 2004; 

Rastelli et al., 2004) and the other is nanocrystal semiconductor QDs synthesized via 

wet-chemistry (Alivisatos, 1996; Peng et al., 1998; Rogach et al., 2002; Joo et al., 

2003). For the heteroepitaxially-grown semiconductor QDs, their formation is driven 

by the strain energy from lattice mismatch (Stranski-Krastanow (SK) growth). The 

size and size distribution of the SK-grown semiconductor QDs are dictated by the 

strain parameters. The colloidal semiconductor QDs, on the other hand, are 

synthesized typically in organic solvents via colloidal chemistry. The size can be 

varied during synthesis to result in a wide range of tunable electronic energy levels.  

 

Recently, the successful integration of colloidal semiconductor QDs into epitaxial 

nanostructures were demonstrated via a combination of wet-chemistry and molecular 

beam epitaxial (MBE) growth (Madhukar et al., 2005 and Woggon et al., 2005). The 

integrated colloidal semiconductor QDs have no epitaxial relationship to the substrate 

and thus do not rely on the strain induced by lattice-mismatch. In principle, these 

additional degrees of freedom in choosing the composition and size of colloidal 
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semiconductor QDs provide more options for the nanostructures of the semiconductor 

quantum devices. For the technical application of hybrid nanostructures, the 

organization of spatially and dimensionally well-ordered colloidal semiconductor QDs 

on substrates will be crucial.  

 

In this Chapter, an alternative approach to the preparation of self-assembled 

monolayers (SAMs) of ZnO colloidal semiconductor QDs, which have potential 

applications in optoelectronics (Ohta et al., 2003 and 2004) and spintronics (Dietl, 

2002 and Norton et al., 2004), on the technically important GaAs(100) single-crystal 

substrate was demonstrated.  
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5.2 Experimental  

The oxide layer on GaAs(100) wafers were removed by treatment with concentrated 

HCl solution for two min. The GaAs substrates (1 cm × 3 cm) were subsequently 

passivated and functionalized by immersion in 5 mM degassed heptane solution of 3-

mercaptopropyltrimethoxysilane (MPTMS) for 12 h at room temperature. The 

resulting substrates were washed with heptane and immersed into the diluted colloidal 

solutions of ZnO QDs for 3 h. The ZnO colloidal QDs were synthesized following the 

procedures described in the literature (Meulenkamp, 1998). The colloidal ZnO QDs 

were stabilized by pyridine, hexylamine, and octadecylamine, respectively. The 

colloidal solution of ZnO QDs was purified by several cycles of precipitating and 

redispersing. The pyridine-stabilized ZnO (ZnO-PD) QDs were dispersed in ethanol 

and the hexylamine- and octadecylamine-stabilized ZnO (ZnO-HA and ZnO-ODA) 

QDs were dispersed in heptane. One mL of purified colloidal solution, containing ~ 2 

mg of the ZnO QDs, was diluted with 200 mL ethanol or heptane to produce a stable 

colloidal solution of ZnO QDs with little aggregation. The resulting colloidal solutions 

were aged for 24 h. The ZnO QDs were self-assembled on the functionalized GaAs 

substrates in the aged ZnO QDs solution for 3 h. The GaAs substrates functionlized 

with ZnO QDs were washed with ethanol and heptane, and dried under reduced 

pressure.   

 

Characterization by transmission electron spectroscopy (TEM) was carried out by 

Philips CM300 TEM operating at 300 kV. The X-ray diffraction (XRD) pattern was 

recorded on a Bruker GADDS XRD with Cu Kα radiation. UV-visible absorption 
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spectroscopy measurements were carried out on a Shimadzu UV-3101 PC scanning 

spectrophotometer. X-ray photoelectron spectroscopy (XPS) measurements were 

performed on a Krato AXIS HSi spectrometer using a monochromatized Al Kα X-ray 

source. Fluorescence spectra were obtained on a Shimadzu RF 5301PC luminescence 

spectrophotometer. Atomic force microscopy (AFM) images were obtained on a 

Digital Instrument Nanoscope IIIa apparatus, using the tapping mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 82



5.3 Results and discussion 

The strategy is illustrated in Figure 5.1. The procedures consist of: (i) removal of the 

oxide layer on the GaAs substrate by concentrated HCl, (ii) simultaneous 

functionalization and passivation of the less stable GaAs surface by SAMs of 3-

mercaptopropyltrimethoxysilane (MPTMS), and (iii) self-assembly of the as-

synthesized ZnO colloidal QDs on the MPTMS-passivated GaAs surface via the well-

established coupling reaction of the silane groups and ZnO QDs (Hung et al., 2005). 

The bifunctional ligand, MPTMS, is the key to successful self-assembly of ZnO 

colloidal QDs on the passivated GaAs substrates. 
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Figure 5.1 Schematic illustration of the self-assembled monolayers of ZnO colloidal 
QDs on a MPTMS-passivated GaAs(100) substrate. 

 

ZnO colloidal QDs were synthesized following the procedure described in the 

literature (Meulenkamp, 1998) and were stabilized by pyridine (ZnO-PD), hexylamine 

(ZnO-HA), and octadecylamine (ZnO-ODA), respectively. Figure 5.2(a) shows a 
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high-resolution transmission electron microscopy (TEM) image of the as-synthesized 

ZnO-PD colloidal QDs. The QDs are quite uniform in both shape and size. The 

average size was about 3.2 nm. The inset in Figure 5.2(a) shows the high-resolution 

TEM image of the ZnO-PD colloidal QDs. Well defined lattice fringes from the QDs 

are discernible.  

 

The X-ray diffraction (XRD) pattern of the colloidal QDs in Figure 5.2(b) shows an 

exact match to that of the hexagonal ZnO. The broadening of the diffraction peaks is 

due to the very small crystallite size. The average size of the ZnO colloidal QDs can 

also be estimated from Scherrer’s equation (Koch et al., 1985). By calculating the 

broadening of the XRD diffraction peak at (110), the average crystallite size of the 

ZnO colloidal QDs was about 3.1 nm, which is very close to the average size of 3.2 

nm estimated from the TEM image of the colloidal QDs in Figure 5.2(a).  

 

The UV-visible absorption spectrum of the as-synthesized ZnO-PD colloidal QDs 

dispersed in ethanol is shown in Figure 5.2(c). The band-gap of the QDs can be 

determined by locating the wavelength at which the absorption is 50% of that at the 

excitonic peak, termed λ1/2 (Meulenkamp, 1998). As shown, λ1/2 is located at about 

341 nm, corresponding to a band-gap of 3.63 eV. The band-gap is significantly wider 

than that (3.37 eV) of the bulk ZnO crystals, which is consistent with the quantum size 

effect of the ZnO colloidal QDs (Koch et al 1985 and Bahnemann et al., 1987). Figure 

5.2(d) shows the excitation and emission spectra of the ZnO-PD colloidal QDs  
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Figure 5.2 (a) TEM image of the as-synthesized ZnO colloidal QDs. The inset is the 

high-resolution TEM image showing the lattice fringes of single ZnO 
colloidal QDs. (b) Powder X-Ray diffraction spectrum of the as-
synthesized ZnO colloidal QDs. (c) UV-visible absorption spectrum of the 
ZnO colloidal QDs dispersed in ethanol (λ1/2 locates at 341 nm, 
corresponding to a band-gap of 3.63 eV; band-gap of bulk ZnO crystals is 
3.37 eV). (d) Excitation (dash line) and emission (solid line) spectra of 
ZnO colloidal QDs dispersed in ethanol. 
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dispersed in ethanol. The excitation spectrum has a peak at about 331 nm, which is 

comparable to that of the excitonic peak. The emission spectrum is dominated by the 

emission band at about 519 nm (Hung et al., 2005).  

 

Prior to self-assembly of the ZnO colloidal QDs on the GaAs(100) substrate, the 

GaAs(100) surface was functionalized by the silane end group of the passivating 

MPTMS. Figures 5.3(a-c) show the respective X-ray photoelectron spectroscopy 

(XPS) wide scan, As 3d, and Ga 3d spectra of the MPTMS-passivated GaAs surface. 

The As 3d core-level spectrum consists of two spin-orbit-spit doublets. The major 

doublet has binding energies (BEs) at about 40.7 eV (3d5/2) and 41.4 eV (3d3/2), 

attributed to the GaAs species (Moulder et al., 1992). The minor doublet with BEs at 

about 42.0 eV (3d5/2) and 42.7 eV (3d3/2) is attributable to the As-S species on the 

GaAs surface (Spindt et al., 1989; Hou et al., 1997; Shaporenko et al., 2003; Cai et al., 

2005). The Ga 3d core-level spectrum consists of two peak components at the BEs of 

19.0 eV and 19.7 eV, attributable to the GaAs species and Ga-S species (Spindt et al., 

1989; Hou et al., 1997; Shaporenko et al., 2003; Cai et al., 2005), respectively. The 

inset in Figure 5.3(a) shows the XPS spectrum in the Si 2p BE region. In spite of the 

partial overlap with the Ga 2p spin-orbit-split doublet, the Si 2p peak with a BE of 

about 101.9 eV and associated with the silane species (Moulder et al., 1992), is 

discernible. The O 1s peak at about 532.0 eV in the wide scan spectrum is associated 

predominantly with the methoxysilane of MPTMS, as no As oxides (BE > 44 eV) and 

Ga oxide (BE ~ 20.4 eV) (Moulder et al., 1992) species are discernible in the As 3d 

and Ga 3d core-level spectra of the passivated GaAs surface. The XPS results thus 
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indicate that the GaAs(100) surface has been passivated by MPTMS through covalent 

As-S and Ga-S bonds, while functionalized simultaneous by its silane group. 
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Figure 5.3 XPS (a) wide scan, (b) As 3d core-level, and (c) Ga 3d core-level spectra of 
the MPTMS-passivated GaAs surface, and XPS (d) wide scan spectrum, (e) 
Zn 2p core-level spectrum, and (f) Zn (LMM) Auger line of ZnO colloidal 
QDs self-assembled on the MPTMS-passivated GaAs surface. The inset in 
(a) is the XPS spectrum in the BE region of Si 2p. 

 

Figures 5.3(d-f) show the respective wide scan, Zn 2p, and Zn(LMM) Auger spectra 

of the MPTMS-passivated GaAs surface with the SAMs of ZnO QDs. In comparison 

with the XPS wide scan spectrum in Figure 5.3(a), the XPS wide scan spectrum in 

Figure 5.3(d) reveals the appearance of distinct Zn 2p core-level and Zn(LMM) Auger 

signals. The Zn 2p core-level spectrum shows a spin-orbit-split doublet with BEs at 

about 1021.5 eV (2p3/2) and 1044.5 eV (2p1/2). In addition, the Zn (LMM) Auger line 
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has a BE of about 498.2 eV, with the corresponding kinetic energy of about 988.5 eV.  

These XPS results indicate that the chemical state of the colloidal QDs is ZnO 

(Moulder et al., 1992) and self-assembly of the QDs on the MPTMS-passivated GaAs 

surface has been achieved. Since the XPS probing depth for ZnO is less than 5 nm 

(Seah et al., 1979), the persistence of distinct Ga and As signals in Figure 5.3(d), 

together with the fact that the size of the ZnO QDs is about 3.2 nm, suggests that the 

self-assembled ZnO QDs on the GaAs(100) substrate probably exist as a monolayer.  

 

Table 5.1 Surface morphology of the GaAs substrates 

Surface Ra (nm) Rq (nm) Rz (nm)  

HCl-etched GaAs(100) 0.44 0.56 4.56  

MPTMS-passivated GaAs 0.19 0.26 3.38  

ZnO-PD colloidal QDs on MPTMS-Passivated GaAs 0.59 0.79 8.69  

ZnO-HA colloidal QDs on MPTMS-Passivated GaAs 2.40 3.06 25.22  
 

ZnO-ODA colloidal QDs on MPTMS-Passivated GaAs 5.34 6.77 45.60  

 

Ra: Mean roughness; Rq: Root mean square roughness; Rz: Ten-point mean roughness. 

 

The key role of MPTMS as a coupling agent for the ZnO QDs was verified by two 

parallel experiments. HCl-etched GaAs substrate and dodecanethiol-passivated GaAs 

substrates were dipped into the respective heptane solutions of ZnO-PD, ZnO-HA, 

and ZnO-ODA colloidal QDs for 3 h. No Zn 2p signal was detectable on both 

substrates. The result is consistent with the fact that the ZnO colloidal QDs self-
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assembled on the MPTMS-passivated GaAs surface via coupling reaction with the 

silane end groups of MPTMS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0  0.25  0.50  0.75 1.00 μm 
0  

0.25 

0.50 

0.75 

1.00 

0.0 
nm  

7.5 

 15.0 

0  0.25  0.50  0.75 1.00 μm 
0  

0.25 

0.50 

0.75 

1.00 

0.0
nm 

7.5

 15.0

0  0.25  0.50  0.75 1.00 μm 
0  

0.25 

0.50 

0.75 

1.00 

0.0
nm 

7.5

 15.0

0  0.25  0.50  0.75 1.00 μm 
0  

0.25 

0.50 

0.75 

1.00 

0.0 
nm  

7.5 

 15.0 
(c) 

(a) (b) 

(d) 

 
Figure5.4 AFM images of MPTMS-passivated GaAs surface (a) before and after self-

assembly of (b) ZnO-PD, (c) ZnO-HA, and (d) ZnO-ODA colloidal QDs. 
 

The morphology of self-assembled ZnO-PD, ZnO-HA, and ZnO-ODA QDs on the 

MPTMS-passivated GaAs surface were investigated by atomic force microscopy 
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(AFM). The MPTMS-passivated GaAs surface (Figure 5.4(a)) appears to be very flat 

and homogenous, with surface roughness values less than those of the starting HCl-

etched GaAs surface (Table 5.1). After the self-assembly of ZnO colloidal QDs, the 

surface roughness have increased substantially (Table 5.1).  As shown in Figures 

5.4(b-d), the bright spots were due to immobilization of ZnO QDs on GaAs surface 

(also could be referred as QDs). It was clear shown that, the bright spots are uniform 

on GaAs surface in the order of ZnO-PD > ZnO-HA > ZnO ODA, indicating the 

coverage of ZnO QDs on GaAs is in the order of ZnO-PD > ZnO-HA > ZnO-ODA. 

The alkyl chain length of the stabilizing liagnds is in the order of ODA > HA > PD. 

Thus, the coverage of QDs on the MPTMS-passivated GaAs decreases with increasing 

alkyl chain length of the stabilizing ligands for the ZnO QDs. During the 

immobilization process for the QDs, the methoxysilane groups on the MPTMS-

passivated GaAs surface will replace the weakly-bound stabilizing ligands on the 

surface of ZnO QDs. The coupling efficiency decreases as the molecular lengths of 

the ligands (hexylamine and octadecylamine) become longer than that of MPTMS. In 

addition, aggregation of QDs stabilized by long alkyl chains has occurred to a 

significant extent, as indicated by the substantial increase in QD size in Figure 5.4(c) 

and Figure 5.4(d). The AFM smearing problem on surfaces covered with particles 

(Schmitt et al., 1999), arising from the cone-shaped nature of the AFM tip, probably 

has also caused a slightly increase in the apparent lateral dimension of the 

nanoparticles.   
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5.4 Conclusions 

In conclusion, a self-assembled monolayer of ZnO colloidal QDs on the MPTMS-

passivated GaAs surface was demonstrated. Not only does MPTMS act as a coupling 

agent for the ZnO QDs, but also passivate the GaAs surface through the formation of 

covalent As-S and Ga-S bonds. Thus, the present study provides a simple approach to 

the self-assembley of semiconductor ZnO colloidal QDs on an oriented single crystal 

GaAs substrate with simultaneous passivation of the latter. The strategy developed in 

this work based on the mercaptosilane coupling agent can be readily extended to the 

fabrication of micropatterned SAMs of colloidal QDs on GaAs substrates, for example, 

by microcontact printing (Xia et al., 1998 and Husemann et al., 1999).  
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Chapter 6  

Plasma Polymerization and Deposition of  

Fluoropolymers on Hydrogen-Terminated Si(100) Surfaces  
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6.1 Introduction 

In microelectronics, the signal delay caused by the interconnects becomes more 

important than that induced by the intrinsic gate-to-gate delay as the feature size of the 

integrated circuits decreases to below 0.18 μm (Maier, 2001). One method of lowing 

the interconnect delay is through the use of highly conductive metals and low 

capacitance dielectrics. Replacement of aluminium by copper gives rise to about 37% 

improvement in electrical conductivity. Silver exhibits higher electrical conductivity 

than copper. However, the difference is only 5% (Lide, 1999). Therefore, further 

advancement cannot be expected from metals. An alternative is to switch to insulating 

materials with dielectric constants lower than that of SiO2. Fluoropolymers are 

promising materials for interlayer dielectrics because of their low dielectric constants 

(low κ’s), low dissipation factors, and high thermal stability (Sacher, 1994). 

Unfortunately, most of the fluoropolymers suffer from limited processability (Endo et 

al, 1999). To overcome the processability problem, plasma enhanced chemical vapor 

deposition (PECVD) and plasma polymerization techniques have been used to prepare 

and deposit fluoropolymer films in the absence of a solvent [Clark et al., 1982; 

Coulson et al., 2000]. It is also a rapid, simple and low temperature process.  

 

On the other hand, hydrogen-terminated single crystal silicon surface is a kinetically 

stable surface (Houston et al., 1995) that has been shown to react with terminal olefins 

and acetylenes to form densely packed and covalently attached monolayers through 

Si-C bonds. The surface reaction can be initiated by radical initiators (Linford et al., 

1993 and 1995), thermal activation (Sung et al., 1997), or UV irradiation (Cicero et al., 
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2000). Through the scission of the H-Si bonds, surface dangling bonds, which are 

reactive towards olefins and unsaturated organic species, are created on the silicon 

surface. 

 

In this Chapter, ultra-thin fluoropolymer films (≤ 2 nm) were deposited directly on the 

hydrogen-terminated Si(100) (H-Si) and native oxides-covered Si(100) (ox-Si) 

surfaces by radio-frequency (rf) plasma polymerization of pentafluorostyrene (PFS), 

and hexafluorobenzene (HFB), 1H,1H,2H-heptadecafluoro-1-decene (HDFD), and 

perfluoroheptane (PFH),. The chemical states at the fluoropolymer/Si interfaces were 

studied by XPS. In addition, thick fluoropolymer films (150-350 nm) were also 

deposited on the hydrogen-terminated surfaces by plasma polymerization of PFS, 

HFB, HDFD, and PFH. The chemical composition and structure of the fluoropolymer 

films were studied by XPS, time-of-flight secondary mass spectroscopy (ToF-SIMS), 

and Fourier transform infrared (FTIR) spectroscopy. The hydrophobicity of the 

fluoropolymer films was studied by water contact angle measurements. The surface 

topography of the films, on the other hand, was studied by AFM.  
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6.2 Experimental 

6.2.1 Materials (100)-oriented single-crystal silicon, or Si(100) wafers, having a 

thickness of about 0.7 mm and a diameter of 150 mm, were obtained from Unisil Co. 

of Santa Clara, CA. The as-received wafers were polished on one side and doped as n-

type. The silicon wafers were sliced into rectangular strips of about 10 mm×20 mm. 

To remove the organic residues on the silicon substrate surface, the silicon strips were 

washed with the “piranha” solution, a mixture of 98 wt% concentrated sulfuric acid 

(70 vol%) and hydrogen peroxide (30 vol%) (wade et al, 1997) at 100˚C for 30 min, 

followed by rinsing with copious amounts of doubly distill water. After the Si(100) 

strips were blown dry with argon atmosphere, they were further dried at 80˚C in a 

vacuum oven for 1 h. The silicon substrates so-prepared were still covered with a layer 

of native oxides (ox-Si substrates). The clean ox-Si strips were subsequently 

immersed in 10 vol% hydrofluoric acid for 5 min to remove the oxide film. Prior to 

the immersion of the silicon strip, the hydrofluoric acid was sparged with argon 

atmosphere for 30 min through a Teflon® tube inserted into the solution. The 

hydrogen-terminated silicon (H-Si) surface was hydrophobic and thus emerged dry 

from hydrofluoric acid into air. The H-Si surface was not rinsed with any solvent to 

avoid oxidation or contamination by organics. 

 

The four fluoro-monomers, pentafluorostyrene (PFS), hexafluorobenzene (HFB), 

1H,1H,2H-heptadecafluoro-1-decene (HDFD), and perfluoroheptane (PFH), used for 

plasma polymerization were obtained from the Aldrich Chemical Co. of Milwaukee, 

WI. The monomers were subjected to several freeze-pump-thaw cycles to remove 
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trapped atmospheric gases prior to plasma polymerization. The chemical structures of 

the four fluoro-monomers are shown below. 
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6.2.2 Plasma Polymerization and Deposition 

Plasma polymerization and deposition were carried out on the Plasmalab 80 Plus 

PECVD system manufactured by Oxford Instruments Plasma Technology of Yatton, 

UK. The RF generator was operated at a frequency of 13.56 MHz. The plasma 

deposition process was performed between two circular parallel plate electrodes of 24 

cm in diameter and 6 cm in separation. The H-Si and ox-Si substrates were placed on 

FF

F
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the ground electrode. The monomer was introduced into the glow discharge chamber 

by an argon-carrier gas. The gas mixture was allowed to flow evenly into the reactor 

from a distributor embedded in the upper electrode. In each case, the carrier gas 

stream was assumed to be saturated with the monomer, as dictated by the partial 

pressure of the monomer. To better preserve the molecular structure, the rf power for 

plasma polymerization under a predetermined system pressure was kept as lower as 

possible. For PFS and HDFD having the vinyl group, the glow discharge was ignited 

at an RF power of 15 W, a system pressure of 200 mTorr, and a gas flow rate of 30 

standard cubic centimeter per min (sccm). For HFB and PFS, the glow discharge was 

ignited at the RF power of 50 W, a system pressure of 200 mTorr, and a gas flow rate 

of 30 sccm. With the controlled plasma power and duration time and system pressure, 

ultra-thin films were successfully deposited. The thicknesses of the films were 

measured by ellipsometry. The measurements were carried out on a variable angle 

spectroscopic ellipsometer (Model VASE, J. A. Woollam Inc., Lincoln, NE) at an 

incident angle of 65˚, 70˚, and 75˚. Data were recorded and processed using the 

WVASE32 software package. All measurements were conducted in dry air at room 

temperature. Thickness values from at least 3 different surface locations of each 

sample were averaged. Fluoropolymer films were also deposited on KBr pellets for 

FTIR measurements. 

 

6.2.3 Surface and Interface Characterization  

X-ray photoelectron spectroscopy (XPS) was used to determine the chemical 

composition of the plasma-polymerized fluoropolymer/Si (pp-fluoropolymer/Si) 
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interfaces. The XPS measurements were carried out on the Kratos AXIS HSi 

spectrometer (Kratos Analytical Ltd., Manchester, England) with a monochromatic Al 

Kα X-ray source (1486.6 eV photons) at a constant dwell time of 100 ms and a pass 

energy of 40 eV. The anode voltage and current were set at 15 kV and 10 mA, 

respectively. The samples were mounted on the sample stubs by double-sided 

adhesive tapes. A low-energy electron gun was used for charge neutralization on all 

the samples. The core-level signals were obtained at a photoelectron take-off angle 

(with respect to sample surface) of 90˚. All binding energies (BE’s) were referenced to 

the neutral hydrocarbon peak component at 284.6 eV. In curve fitting, the line width 

(full width at half-maximum or FWHM) for the Gaussian peaks was maintained 

constant for all components in a particular spectrum. Surface elemental 

stoichiometries were determined from peak-area ratios after correcting with the 

experimentally determined sensitivity factors, and were reliable to ±10%. The 

elemental sensitivity factors were determined using stable binary compounds of well-

established stoichiometries. 

 

The topography of the plasma-polymerized fluoropolymer films on the H-Si substrates 

were characterized using a Nanoscope IIIa atomic force microscope (AFM) from the 

Digital Instrument Inc. In each case, an area of 1×1 μm square was scanned using the 

tapping mode. The drive frequency was 330±50 kHz, and the voltage was between 3 

and 4 V. The drive amplitude was about 300 mV, and the scan rate was 1 Hz. A root 

mean square of the surface roughness (Ra) was calculated from the roughness profile 

determined by AFM. 
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The time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses were 

carried out on an ION-ToF SIMS IV instrument (ION-ToF, GmbH, Münster, 

Germany). The primary ion beam (10 keV Ar+) with a spot size of ~50 μm was 

adjusted on an area of 500 μm × 500 μm while keeping the total dose under 1013 

ions/cm2. The pressure in the analysis chamber was maintained at 1 × 10-9 Torr or 

lower during each measurement. To reduce the surface charging effect, an electron 

flood gun was used for the charge neutralization. The calibration of the mass spectra 

was based on the built-in mass library. 

 

6.2.4 FTIR Measurements  

The Fourier transform infrared (FTIR) spectra were recorded on a Bio-Rad FTIR, 

Model 400, spectrophotometer. Each spectrum was collected by cumulating 30 scans 

at a resolution of 8 wavenumbers. 

 

6.2.5 Water Contact Angle Measurements 

Static water contact angles of the ultra-thin and thick fluoropolymer films deposited 

on the H-Si surfaces were measured by the sessile drop method at 25˚C and 65% 

relative humidity, using a contact angle goniometer (Model 100-00-(230), 

manufactured by Rame-Hart, Inc., Mountain Lake, NJ, USA). The telescope with a 

magnification power of 23× was equipped with a protractor of 1˚ graduation. Five 

readings from different locations on the fluoropolymer film surface were averaged. 
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6.3 Results and Discussion 

6.3.1 Surface and Interfacial Characterization of Plasma-deposited Fluoro-

polymers on Silicon Surface by XPS 
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Figure 6.1 XPS Si 2p core-level spectra of (a) the pristine ox-Si surface, (b) HF-etched 
(Si)100 surface, and (c) F 1s core-level spectrum of the HF-etched Si(100) 
surface. 

 100



The chemical compositions of the ox-Si and H-Si surfaces before and after plasma 

deposition of the fluoropolymer films were determined by XPS. The plasma 

polymerized and deposited PFS, HFB, HDFD, and PFD films are referred as the pp-

PFS, pp-HFB, pp-HDFD, and pp-PFH films, respectively. As shown in Figure 6.1(a), 

two peak component with binding energies (BE’s) at about 99.3 and 103.3 eV, 

attributed to the Si-Si and SiOx species, respectively (Moulder et al., 1992), are 

observed in the Si 2p core-level spectrum of the ox-Si surface. Etching of the ox-Si 

surface with dilute HF removes the native oxides layer and yields the H-Si surface 

(Higashi, 1990). The disappearance of the SiOx species at the BE of 103.3 eV is 

consistent with the presence of a predominately hydrogen-terminated silicon surface 

after the HF etching (Figure 6.1(b)). In addition, etching of oxides-capped Si(100) 

wafers with dilute HF leaves behind a small amount of fluorine atoms bonded to 

silicon (Weinberger et al., 1986; Takahagi et al., 1988). Figure 6.1(c) shows the faint 

F 1s core-level signal of the H-Si surface. Two peak components, with BE’s at 685.4 

eV for the Si-F species (Little et al., 2000; Cao et al., 2002) and 686.6 eV for the Si-F2 

species (Weinberger et al., 1986; Takahagi et al., 1988; Mitsuya et al., 1999) are 

discernable. The relative surface concentration of the fluorine atoms on the H-Si 

surface, defined as the [F]/[Si] ratio, is about 0.01.  

 

After the HF etching, the freshly etched Si(100) (H-Si surface) and the clean ox-Si 

substrate were sent into the plasma chamber for plasma polymerization and deposition 

of fluoropolymers. Figure 6.2 shows the respective wide scan and F 1s core-level 

spectra of the interfaces between the ultra-thin pp-PFS films and Si(100) surfaces 
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(both H-Si and ox-Si surfaces).  For the F 1s core-level spectrum of the pp-PFS/H-Si 

interface shown in Figure 6.2(a), four peak components with BE’s at about 685.4 eV 

for the Si-F species, at bout 686.6 eV for  the Si-F2 species, at about 687.6 eV for the 

CFx-C species, and at about 688.8 eV for the CFx-CFy species (beamson et al., 1993) 

are discernable. The [F]/[Si] ratio for the pp-PFS/H-Si interface is about 0.18. In 

addition, the surface concentration of the fluorine atoms which is bonded to the Si 

atoms (([Si-F] +[Si-F2])/[Si]) is about 0.03, which is higher than that of the starting H-

Si surface. These results suggest that fluorine ions, from defluorination of PFS 

monomer during the plasma polymerization, are bonded to Si atoms on the H-Si 

surface (Yang et al., 2002). 

 

For the F 1s core-level spectrum of pp-PFS/ox-Si interface shown in Figure 6.2(b), on 

the other hand, the two peak components with BE’s at about 687.7 and 686.6 eV are 

attributable to the CFx-C species (Beamson et al, 1993) and the F-Si-O species ([F-Si-

O]/[Si] = 0.01) (Ermolieff et al., 1991). The presence of the F-Si-O species suggests 

that the ox-Si surface was etched slightly by the F- ions, created through 

defluorination of PFS during the plasma process (Ermolieff et al., 1991; Wright et al., 

1989). However, the [F]/[Si] ratio is only about 0.02, significantly lower than that of 

the pp-PFS/H-Si interface. 

 

As shown in Figure 6.2(a), the XPS signal originated from Si (Si 2p and Si 2s), C, and 

F (F 1s and F KLL Auger line) are discernible in the wide scan spectrum of pp-

PFS/H-Si interface. However, the wide scan spectrum of pp-PFS/ox-Si interface 
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shows strong O signal (O 1s and O KLL Auger line) and the C 1s and F 1s signals are 

not discernible.  These results are consistent with the fact that the [F]/[Si] ratio of pp-

PFS/H-Si interface is significantly higher than that of pp-PFS/ox-Si interface. 
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Figure 6.2 XPS wide scan and F 1s core-level spectra of (a) the ultra-thin pp-PFS/H-Si 
interface and the (b) ultra-thin pp-PFS/ox-Si interface. 

 

Another aromatic fluoro-monomer, HFB, were also plasma polymerized and deposited 

on H-Si and ox-Si surfaces for further investigation of the interfaces between the 

fluoropolymer and Si surface. Compared to PFS, HFB does not have a vinyl group. 

Figure 6.3 shows the wide scan and F 1s core-level spectra of the interfaces of the pp-
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HFB/H-Si (Figure 6.3(a)) and pp-HFB/ox-Si (Figure 6.3(b)). The XPS wide scan 

spectrum of pp-HFB/H-Si interface shows prominently the Si 2p, Si 2s, C 1s, and F 1s 

peaks. The F 1s core-level spectrum can be curve-fitted with four peak components 

with BE’s at about 685.4 eV for the Si-F species, at 686.6 eV for the Si-F2 species, at 

687.6 eV for the CFx-C species, and at 688.8 eV for the CFxCFy. The [F]/[Si] and ([Si-

F]+[Si-F2])/[Si] ratios are about 0.34 and 0.07, respectively. The results suggest that 

the defluoronation process has also occurred during the plasma polymerization and 

deposition of pp-HFB. 
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Figure 6.3 XPS wide scan and F 1s core-level spectra of (a) the ultra-thin pp-HFB/H-
Si interface and the (b) ultra-thin pp-HFB/ox-Si interface. 
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However, a very weak F 1s signal was observed for the pp-HFB/ox-Si interface. The F 

1s core-level spectrum was curve-fitted by two peak components attributable to the F-

Si-O species and the CFx-C species. The corresponding [F]/[Si] ratio was only 0.01. 

 

In addition to the aromatic fluoro-monomers, linear fluoro-monomers, including 

HDFD and PFH, were also plasma polymerized and deposited on the H-Si and ox-Si 

surface for systematic investigation of the interfaces between the plasma-deposited 

fluoropolymers and Si surfaces (both H-Si and ox-Si surface). Figure 6.4 shows the 

XPS wide scan and F 1s core-level spectra of interfaces between the ultra-thin pp-

HDFD fluoropolymer films and the Si surfaces (H-Si surface in Figure 6.4(a) and ox-

Si surface in Figure 6.4(b)). Prominent Si 2p, Si 2s, C 1s, and F 1s signals were 

observed in the wide scan spectrum of the pp-HDFD/H-Si interface. The 

corresponding F 1s core-level spectrum obtained by narrow-scan consists of three 

peak components, with BE’s at about 685.4 eV for the Si-F species, at about 686.6 eV 

for the Si-F2 species, and 688.5 eV for the CFx-CFy species. The [F]/[Si] ratio is about 

0.8, and ([Si-F]+[Si-F])/[Si] ratio is about 0.11.  

 

Whereas, the F 1s core-level spectrum of pp-HDFD/ox-Si interface can be curve-fitted 

with two peak components, with BE’s at about 686.6 eV for the F-Si-O species and 

688.5 eV for the CFx-CFy species. The [F]/[Si] and [F-Si-O]/[Si] ratios are 0.3 and 

0.06, respectively. Both ratios are also lower than those of the pp-HDFD/H-Si 

interface.  
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Figure 6.4 XPS wide scan and F 1s core-level spectra of (a) the ultra-thin pp-
HDFD/H-Si interface and the (b) ultra-thin pp-HDFD/ox-Si interface. 

 

Another linear and saturated fluoro-monomer, PFH, was also plasma polymerized and 

deposited on the Si surface. Figure 6.5 shows the wide scan and F 1s core-level 

spectra of the pp-PFH/H-Si (Figure 6.5(a)) and pp-PFH/ox-Si (Figure 6.5(b)) 

interfaces. As revealed by the curve-fitted F 1s core-level spectra, the chemical 

species involving fluorine atoms at the pp-PFH/H-Si interface are the same as those 

discerned for the pp-HDFD/H-Si interface, and the chemical species involving 

fluorine atoms at the pp-PFH/ox-Si interface are also the same as those for the pp-
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HDFD/ox-Si interface. The [F]/[Si] and ([F-Si]+[Si-F2])/[Si] ratios for the pp-PFH/H-

Si interface are 0.13 and 0.03, respectively. Whereas, [Si]/[Si] and [F-Si-O]/[Si] ratios 

for the pp-PFH/ox-Si interface are only 0.04 and 0.01, respectively. 
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Figure 6.5 XPS wide scan and F 1s core-level spectra of (a) the ultra-thin pp-PFH/H-
Si interface and the (b) ultra-thin pp-PFH/ox-Si interface. 

 

As shown in Figure 6.2(a) and Figure 6.3(a), the F 1s core-level spectra of the pp-

PFS/H-Si and pp-HFB/H-Si interfaces can be curve-fitted with four peak component 

and are dominated by the peak component with BE at about 687.7 eV for the CFx-C 
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species. However, the F 1s core-level spectra of the pp-HDFD/H-Si and pp-PFH/H-Si 

interfaces shown in Figure 6.4(a) and 6.5(a), respectively, can only be cure-fitted with 

three peak components and are dominated by the peak component with BE at about 

688.6 eV for the CFx-CFy species. It is notable that PFS and HFB are aromatic fluoro-

monomers, whereas, HDFD and PFH are linear fluoro-monomers. Thus, the peak 

component at about 687.7 eV for CFx-C species at the pp-PFS/H-Si and pp-HFB/H-Si 

interfaces is probably associated with the aromatic rings of the PFS and HFB, since 

the π electron cloud of the aromatic ring may shift to fluorine atoms and lead to the 

relatively lower BE, compared to the BE of the CFx-CFy species formed by plasma 

polymerization and deposition of linear fluoro-monomer, HDFD and PFH, on the H-

Si surface. The results also suggest that the aromatic ring of the PFS and HFB 

monomers could be preserved to a large extent during the plasma polymerization and 

deposition on H-Si surfaces presented here. 

 

Figure 6.6 shows the Si 2p core-level spectra of the interfaces between the ultra-thin 

plasma-polymerized fluoropolymers and H-Si surfaces. The inset in Figure 6.6 shows 

the Si 2p core-level spectrum of the H-Si surface, which was curve-fitted with a spin-

obit-doublet with BEs at about 99.3 eV (2p3/2) and 100 eV (2p1/2) for the Si-Si species. 

After each ultra-thin fluoropolymer was plasma-deposited on the H-Si surface, an 

additional spin-obit-doublet was observed at BEs of about 100 eV (2p3/2) and 100.7 

eV (2p1/2) for the Si-C species (Flores et al., 2005 and Choi et al., 2005) (Figure 6.6(a-

d)). The results suggest that Si-C bonds are formed at the interfaces between H-Si and 

ultra-thin films of pp-PFS, pp-HFB, pp-HDFD, and pp-PFH. Compared to the XPS Si 
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2p core-level spectrum of the ox-Si surface, However, no significant change of XPS Si 

2p lineshape was observed for interfaces between the ox-Si surface and ultra-thin 

films of pp-PFS, pp-HFB, pp-HDFD, and pp-PFH (Figure 6.7(a-e)) after the plasma-

deposition. 
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Figure 6.6 XPS Si 2p core-level spectra of (a) ultra-thin pp-PFS/H-Si interface, (b) 
ultra-thin pp-HFB/H-Si interface, (c) ultra-thin pp-HDFD/H-Si interface, 
and (d) ultra-thin pp-PFH/H-Si interface. The inset is the XPS Si 2p core-
level of H-Si surface. 
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Figure 6.7 XPS Si 2p core-level spectra of (a) pristine ox-Si surface, (b) ultra-thin pp-
PFS/ox-Si interface, (c) ultra-thin pp-HFB/ox-Si interface, (d) ultra-thin 
pp-HDFD/ox-Si interface, and (e) ultra-thin pp-PFH/ox-Si interface.  

 

 

Etching of Si wafer by dilute aqueous HF solution generates a practically uniform H-

Si surface (Higashi et al., 1990). However, these H-Si bonds on the Si surface are 

unstable to UV irradiation. Excitation of the H-Si bonds on the Si surface by UV light, 

such as that at 157 nm (Pusel et al., 1998; Vondrak et al., 1999), leads to the cleavage 
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of atomic hydrogen and formation the reactive sites (dangling bonds) on the surface. 

The photo-reactivity of the H-Si on the Si surface has been applied to covalently tether 

a monolayer layer of hydrocarbons through Si-C bonds on the Si surface by photo-

induced reactions of unsaturated hydrocarbons with H-Si surface (Effenberger et al., 

1998; Cicero et al., 2000).  

 

In the present study, radicals were produced from fluoro-monomer during the plasma 

deposition process. In addition, H-Si bonds on the H-Si surfaces could be dissociated 

to generate the reactive sites (dangling bonds) on the Si surfaces by plasma-induced 

UV irradiation. Combined with the XPS results shown above, it was suggested that 

the radicals have higher reactivity on the original H-Si surface than that on the ox-Si 

surface during the plasma deposition, although ox-Si could be activated by electron 

and ion bombardment. The formation of the Si-C bonds at the interfaces between H-Si 

surface and plasma-polymerized fluoropolymer thin film could be attributed to the 

reaction between the reactive sites (dangling bonds) produced on the original H-Si 

surface by plasma-induced UV irradiation and radicals generated during the plasma 

deposition. 

 

6.3.2 Chemical Structure of the Plasma-Deposited Fluoropolymer Films 

The chemical structures of the fluoropolymer films deposited by plasma 

polymerization of the PFS, HFB, HDFD, and PFH monomers are investigated by 

FTIR spectroscopy and ToF-SIMS. The FTIR spectrum of the pp-PFS film is shown 

in Figure 6.8(a). The spectrum is dominated by the sharp and strong absorption bands 
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at 1500 and 971 cm-1, associated with the fluorinated aromatic ring vibration and the 

CF phenyl ring stretching, respectively (Han et al., 1998). Thus, the presence of the 

fluorinated aromatic ring in the pp-PFS film is ascertained. In addition, the absorption 

band at 1650 cm-1, assigned to the vinyl group, and the band in the region of 1100-

1400 cm-1, associated with the CFx (х = 1-3) stretching mode (Yang et al, 2002) are 

also observed.  
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Figure 6.8 FTIR spectra of (a) the pp-PFS film and (b) the pp-HFB film 

 

Figure 6.8(b) shows the FTIR spectrum of the pp-HFB film. The broad and strong 

band in the region of 1100-1400 cm-1 region is associated with the CFx (х = 1-3) 

stretching, suggesting that extensive fragmentation has occurred during the plasma 

polymerization of HFB monomer. The presence of the absorption bands at 1507 and 
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998 cm-1, arising from the fluorinated aromatic ring vibration and CF phenyl ring 

stretching, respectively, indicates the retention of a large proportion of the aromatic 

ring in the deposited film. Moreover, the bands at 1654 and 1730 cm-1, corresponding 

to the C=C group and CF=CF stretching (Golub et al., 1998), are also observed. 
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Figure 6.9 FTIR spectra of (a) the pp-HDFD film and (b) the pp-PFH film 

 

The FTIR spectra of the pp-HDFD film and pp-PFH film are shown in Figure 6.9(a) 

and Figure 6.9(b), respectively. The pp-HDFD films shows characteristic absorption 

band of the CF2 group at 658 cm-1 (CF2 rocking), at 1149 cm-1 (asymmetric CF 

stretching) and at 1208 cm-1 (symmetric CF stretching).(Starkweather et al., 1985) A 

weak absorption band at about 740 cm-1 is assigned to CF3 stretching deformation. 
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The spectra of pp-PFH film are dominated by the broad and strong CF2 asymmetric 

stretching absorption band at 1226 cm-1. The weak absorption bands at 737 and 983 

cm-1, associated with CF2 and CF3 groups, respectively, are also observed. 

 

On the other hand, ToF-SIMS is also useful for the determination of the molecular 

structure of the polymers, such as the repeat units, the end groups and the oligomeric 

segments (Hanton et al., 2001; Briggs, 1998). Figure 6.10 shows the positive ion ToF-

SIMS spectra of the pp-PFS film deposited on the H-Si surface. The assignments of 

the major mass fragments present in the spectra are given in Table 6.1. The peak of 

the highest intensity at m/z = 195 (C4) indicates the dominance of the repeat unit of 

PFS in the pp-PFS film. The peak at m/z = 361 (C8) suggests selective plasma 

polymerization through the vinyl groups. In addition, the presence of defluorination 

during the plasma polymerization, as suggested by the XPS results, is also indicated 

by the mass fragment at m/z = 149 (C1) and m/z = 161 (C2). Moreover, the peaks at 

m/z = 205 (C5) and m/z = 317 (C7) originated form the rearrangement and 

combination of fluorinated aromatic rings. The ToF-SIMS spectra of the pp-PFS film 

surface thus suggest that the fluorinated aromatic rings were preserved to a large 

extent and polymerization proceeded selectively through the vinyl groups. The 

positive ion ToF-SIMS spectrum of the pp-HFB film has been reported earlier (Yang, 

et al. 2002; Mackie et al., 1998). The TOF-SIMS results suggested that the aromatic 

rings were preserved to a large extent in the pp-HFB film during the plasma 

polymerization. 
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Figure 6.10 Positive ion ToF-SIMS spectra of the pp-PFS film on the H-Si surface 
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Table 6.1 Strutural assignments of the mass fragments in the ToF-SIMS spectra of the 
pp-PFS film. 
 

Peak 
(m/z) assignment Peak(m/z) Assignment  
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The positive ion ToF-SIMS spectra of pp-HDFD and the assignments of some typical 

mass fragments are shown in Figure 6.11. The peaks at m/z of 853 and 871 in high 

mass region of the spectra are assigned to the mass fragments of CF3(CF2)-CH=C+-

(CF2)CF3 and CF3(CF2)-CF=C+-(CF2)CF3, respectively. These fragments suggest the 

selective polymerization through vinyl groups and fluorinations of the vinyl groups 

during the plasma polymerization. The ToF-SIMS spectra of pp-HDFD film surface 

also readily indicated the preservation of the HDFD repeat units in the pp-HDFD film.  
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Figure 6.11 Positive ion ToF-SIMS spectra of the pp-HDFD film on the H-Si surface 

800                      850                       900                       950                     1000 

400                      450                       500                       550                      600 

200                      250                       300                       350                      400 

0                          50                        100                      150                       200

m/z

2250 

350 

5.5 

8.5 

C
ou

nt
 (×

10
) 

(CF2)7CF2CH2 C
H

3 + 

CF3(CF2)7

CF3(CF2)7
CH

C
+

CF3(CF2)7

CF3(CF2)7
CF

C
+

(CF2) CF4

pp-HDFD 

 117



The peaks with mass fragments at m/z of 445 and 427 are assigned to the CH2=C+-

(CF2)7CF3 segments and CH2=CH-(CF2)7CF2
+, respectively. Other results of ToF-

SIMS spectra of the pp-HDFD film, in addition to the positive ion ToF-SIMS spectra 

of pp-HFB and pp-PFH films, are same as the previous results (Yang et al., 2002; 

Zhang et al., 2002).  

 

6.3.3 Surface Topography and Water Contact Angles of the Plasma-Deposited 

Fluoropolymer Films 

Surface topography is of great importance to the application as dielectric materials. A 

uniform and defect-free surface is preferable in the planarization process. Figure 6.12 

shows a typical AFM image of the H-Si surface. The H-Si surface is rather smooth 

and has a surface roughness (Ra) of bout 0.21 m. 
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Figure 6.12 Typical AFM image of H-Si(100) surface 
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Figure 6.13 AFM images of the pp-PFS/H-Si surfaces with film thicknesses of (a) 2 

nm and (b) 260 nm, and the pp-HFB/H-Si surfaces with film thicknesses of 
(c) 2 nm and (d) 530 nm. 

 

 

Figure 6.13 shows the AFM images of the fluoropolymer films deposited on H-Si 

surfaces through plasma polymerization of the PFS and HFB monomers. After the 

deposition of the pp-PFS films (thickness ~ 2 nm in Figure 6.13(a) and ~ 260 nm 

Figure 6.13(b)) on H-Si surfaces, Ra values increase only marginally to 0.29 nm and 
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0.23 nm, indicating that the atomically smooth surface of H-Si is preserved after the 

deposition of the pp-PFS films. However, the surface of the thick pp-HFB film (~ 330 

nm) shown in Figure 6.13(d) has an increased Ra value of 1.29 nm, despite of the fact 

that a rather smooth surface (Ra = 0.19 nm) is obtained for the pp-HFB film with a 

thickness of 2 nm (Figure 6.13(c)). These phenomena are probably associated with the 

higher rf power of 50 W applied to deposit the pp-HFB films. With the increase in rf 

power, the plasma polymerization transforms from an energy-deficient state to a more 

energetic state, leading to more excited species in the gas phase. As a result, 

polymerization occurs predominantly in the gas phase, yielding a deposited film with 

a rougher surface upon increasing the polymerization time (Teare et al., 2002; Inagaki 

et al., 1996). 

 

Figure 6.14 shows the AFM images of ultra-thin and thick fluoropolymer film 

surfaces plasma deposited on H-Si surface from linear fluoro-monomers, HDFD and 

PFH. As shown by the surface roughness, all the surfaces are smooth and uniform in 

the nano-scale. The ultra-thin and thick pp-HDFD films deposited on H-Si surface 

have Ra values of 0.43 nm and 0.45 nm, respectively. The surface roughness only 

increase marginally, compared to original H-Si surface. In addition, AFM results 

suggest that the surface roughness of pp-HDFD films would not increase significantly 

as the film thickness of pp-HDFD increases. The ultra-thin and thick pp-PFH films 

plasma-deposited on the H-Si surfaces are also uniform in the nano-scale and have Ra 

values of 0.22 nm and 0.46 nm, respectively.  
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Figure 6.14 AFM images of the pp-HDFD/H-Si surfaces with film thicknesses of (a) 

3.5 nm and (b) 460 nm, and pp-PFH/H-Si surfaces with film thicknesses of 
(c) 1.6nm and (d) 350 nm. 

 

AFM analysis clearly shows that the plasma-deposited fluoropolymer films on H-Si 

surfaces are pinhole free and smooth in the nano-scale, except for the thick pp-HFB 

film on the H-Si surface which has an larger surface roughness (Ra = 1.29 nm) than all 

the other fluoropolymer films. The smoothness of the present polymer films is a 

remarkable contrast to the rough surface observed for the other high-power plasma-

deposited fluoropolymer films (Yang et al., 2002; Zhang et al., 2002; Mackie et al., 
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1998).  A high plasma energy density will lead to the creation of a high concentration 

of condensable radicals, ion, and other species, as well as lowering the diffusion path 

lengths of these reactive species existing within the plasma (Yasuda, 1985). Under 

these conditions, gas-phase reactions between radical and other species are favored 

and rapid agglomeration is triggered, resulting in culmination of powder deposition 

onto the substrate surface. A low rf power was used for the plasma deposition of 

fluoropolymers on H-Si surfaces in the present work. The diffusion path length of 

radical and other species should be longer, lowering the probability for the reaction 

between radical and other species in the gas-phase. Under these conditions, direct 

deposition of radicals and other species on the Si surface would be favored and lead to 

the smooth fluoropolymer films on the H-Si surfaces. 

 

Table 6.2 Thicknesses, water contact angles, and composition of the plasma-deposited 
fluoropolymers on H-Si(100) surfaces. 
 
 

Sample Thickness 
(nm) 

Contact 
angle, θ 
(degree) 

[F]/[Si] 
Ratioc)

[F]/[C] 
Ratioc)

 
 

~ 2 ~ 98 0.18 0.42 pp-PFSa)
~ 260 ~ 105 ― 0.62 
~ 2 ~ 86 0.34 0.62 pp-HFBb)

~ 330 ~ 95 ― 1.07 

 
 

~ 3.5 ~ 99 0.80 1.25 pp-HDFDa)
~ 460 ~ 116 ― 1.75 
~ 1.6 ~ 95 0.13 0.30 pp-PFHb)
~ 350 ~ 120 ― 2.09 

 
 

 
 
a) Plasma polymerizarion and deposition of PFS on H-Si surfaces (15 W, 200 mTorr, 

30 sccm) 
b) Plasma polymerization and deposition of HFB on H-Si surfaces (50 W, 200 m Torr, 

30 sccm) 
c) [F]/[Si] and [F]/[C] are atomic concentration ratios from XPS 
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The static water contact angles are listed in Table 6.2. For ultra-thin pp-PFS and pp-

HFB films, the water contact angles are 98˚ and 86˚, respectively. With the increase in 

thickness, (260 nm for the pp-PFS and 330 nm for the pp-HFB films), the water 

contact angle increase to 105˚ and 98˚. At the same time, the corresponding [F]/[C] 

ratios of the pp-PFS and pp-HFB films also increase from 0.42 and 0.63 to 0.62 and 

1.07, respectively. The increases in the [F]/[C] ratios and the surface roughness (for 

the pp-HFB film) probably have given rise to the increased water contact angles. In 

addition, the water contact angles of the thick pp-HDFD and pp-PFH films are higher 

than those of the thick pp-PFS and pp-HFB films. The phenomenon is probably due to 

the higher [F]/[C] ratios in the thick pp-HDFD and pp-PFH films. 

 

6.3.4 Adhesion Characteristics of the Plasma-Deposited Fluoropolymer Films 

with the H-Si Surface. 

The adhesive characteristic of the plasma-deposited fluoropolymer films with the H-Si 

surface were evaluated by the 180˚-peel adhesion test. Copper foil adhesive tapes were 

applied to the thick pp-PFS (~ 260 nm), pp-HFB (~ 330 nm), pp-HDFD (~ 460 nm), 

and pp-PFH (~ 350nm) films deposited on the H-Si substrates, and subsequently 

peeled off on a tensile tester. Both the delaminated fluoropolymer surfaces and copper 

tape surfaces were analyzed by XPS. The copper tape/fluoropolymer laminates have 

180˚-peel adhesion strength of about 3.0-3.2 N/cm. The respective wide scan spectra 

of the delaminated fluoropolymer film and copper tape surfaces are shown in Figure 

6.15. No Si 2p signal was discernable for the fluoropolymer films deposited on the 

delaminated H-Si surfaces. In addition, the F 1s signal is also absent in the wide scan  
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Figure 6.15 XPS wide scan spectra of (a) the delaminated pp-PFS/H-Si(100) surface, 

(b) the delaminated Cu tape surface from the Cu tape/pp-PFS/H-Si(100) 
assembly, (c) the delaminated pp-HFB/H-Si(100) surface, (d) the 
delaminated Cu tape surface from the Cu tape/pp-HFB/H-Si(100) assembly, 
(e) the delaminated pp-HDFD/H-Si(100) surface, (f) the delaminated Cu 
tape surface from the Cu tape/pp-HDFD/H-Si(100) assembly, and (g) the 
delaminated pp-PFH/H-Si(100) surface, (h) the delaminated Cu tape 
surface from the Cu tape/pp-PFH/H-Si(100) assembly 
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spectra of the copper tape surfaces delaminated from the different fluoropolymer 

surfaces. These observations readily suggest that all the copper tape/fluoropolymer 

film assemblies have delaminated by adhesion failure at the interfaces between the 

copper adhesive tape and the fluoropolymer film deposited on the H-Si surface. Thus, 

all the plasma-deposited fluoropolymer films are strongly bonded to the H-Si surfaces. 

Through UV cleavage of the H-Si bonds on the H-Si surface, dangling bonds were 

formed and reacted readily with the monomer fragments or radical during the plasma 

polymerization and deposition process. In addition, low rf power has been used for the 

plasma polymerization. The probable long diffusion path length also facilitates the 

radicals and other species to deposit directly on the Si surface and to covalently bond 

with the dangling bonds on the Si surface. All these factors have contributed to the 

strong adhesion between the plasma-deposited fluoropolymer and Si substrate.  
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6.4 Conclusions 

Fluoropolymer films were deposited on the hydrogen-terminated (H-Si) and native 

oxide-covered silicon (ox-Si) surface by plasma polymerizations of pentafluorostyrene 

(PFS), hexafluorobenzene (HFB), heptadecafluoro-1-decene (HDFD), and 

perfluoroheptane (PFH). The chemical states at the fluoropolymer/H-Si and 

fluoropolymer/ox-Si interfaces were investigated by XPS. The XPS results revealed 

the formation of F-Si bonds and Si-C bonds at the interface, which were formed 

though the interaction of the activated molecular fragments or radicals with the 

dangling bonds on the silicon surfaces during the plasma polymerization process. 

Consequently, the plasma-deposited fluoropolymer films were strongly bonded to the 

H-Si surfaces. The preservation of the fluorinated aromatic rings in the pp-PFS and 

pp-HFB films were suggested by FTIR results. In addition, ToF-SIMS results 

suggested selective polymerization of the PFS monomer through the vinyl group. The 

plasma-deposited fluoropolymer films exhibited hydrophobic surfaces. 
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Chapter 7 

Chemical States and Electronic Properties of the Interface Between 

Aluminium and a Photoluminescent Conjugated Copolymer 

Containing Europium Complex 
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7.1 Introduction 

Conjugated polymers are promising materials for photonic applications due to their 

high fluorescence efficiencies, a wide range of emitting wavelengths, and 

mechanically flexibility (Hide et al., 1997). Since the fabrication of polymer light-

emitting diodes (PLEDs) in 1990 (Burroughes et al., 1990), there has been extensive 

research on PLEDs and significant progress has been made (Brown et al., 1992; Cao 

et al., 1999). Although many conjugated polymers have high photoluminescence (PL) 

efficiencies (>50%), the electroluminescence (EL) efficiencies of the devices based on 

these polymers are usually low (<5%). This low EL efficiency is associated with the 

formation of triplet excitons in PLEDs. Theoretically, only 25% of the excitons in 

conjugated molecules have the singlet character. Thus, the quantum efficiency of a 

conjugated polymer can not exceed 25% (Baldo et al., 2000). In addition, obtaining 

pure color emission from conjugated polymers or small organic molecules is difficult 

because their emission spectra typically have a full width at half maximum (FWHM) 

of 50-200 nm (Hide et al., 1997), arising from the inhomogeneous broadening and the 

presence of vibronic progression. Recent study of EL from organic triplet excitons has 

opened the way to very high efficiency organic light emitting diodes (OLEDs) (Baldo 

et al., 1998; Kido et al., 2002). In addition to the well known porphyrin platinum and 

2-phenypyridine derivatives of the iridium complexes (Baldo et al., 1998 and 1999), 

the rare earth complexes are expected to have high emission efficiency, along with a 

narrow emission spectrum. Nevertheless, most of the light emitting diodes (LEDs) 

based on rare earth complexes exhibit unfavorably high turn-on voltages (>20 V) 

(Kido et al, 2002). One factor influencing the turn-on voltage in organic LEDs is 
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associated with the carrier injection barrier at the interfaces (Baldo et al., 2001). Thus, 

elucidation of the chemical states and electronic properties of the metal/rare earth 

complex interface is important for understanding and improving the performance of 

organic LEDs. 

 

ITO-organic and metal-organic interfaces still attract considerable attention because of 

the important role of the organic LEDs and thin film transistor. The performance of 

these devices is directly related to the energy barrier for carrier injection. The energy 

barrier is defined as the energy difference between the Fermi level of the metal and the 

highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular 

orbital (LUMO) of the organic materials. For example, experimental and theoretical 

investigations of the interfaces between Alq3 film and low work function metals (Mg, 

Al, Li, K and Ca) have revealed strong metal-molecule interactions, which affect the 

carrier injection process. 

 

In this Chapter, XPS and ultraviolet photoelectron spectroscopy (UPS) are used to 

study in situ the chemical states and electronic properties of the interface between 

aluminium, a widely used cathodic metal in organic LEDs due to its low work 

function, and the conjugated copolymer (PF6-Eu(dbm)2phen) containing 9,9’-

dihexylfluorene and europium complex-chelated benzoate units in the main chain. The 

copolymer complex is a novel pure red-light emitter. Understanding the interface 

between a low work function electrode, such as aluminium, and conjugated copolymer 
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PF6-Eu(dbm)2phen will have direct relevance to the fabrication of high performance 

PLEDs.  
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7.2 Experimental  

7.2.1 Sample preparation 

The synthetic route for the conjugated copolymer containing 9,9’-diethylhexylfluorene 

(PF6) and europium complex-chelated benzoate units in the main chain involved three 

steps: 1) a copolymer of 2,7-bis(trimethylene boronate)-9,9-diethylhexylfluorene and 

methyl 3,5-dibromobenzoate was synthesized through using palladium catalyst 

(Suzuki coupling reaction) (Miyaura et al., 1995), 2) the copolymer was then 

hydrolyzed to provide the active carboxylic ligands in the main chain (Kaeriyama et 

al., 1995), and 3) the polymeric ligands, together with dibenzoylmethane (dbm) and 

1,10-phenanthroline (phen), chelated the highly reactive europium triisoproxide 

(Sinha, 1960) to form the desirable copolymer complex. The resulting copolymer 

complex, PF6-Eu(dbm)2phen, is ready soluble in toluene, chloroform and THF, and 

can be cast into transparent films with high mechanical flexibility. The europium 

triisoproxide (Sinha, 1960), palladium catalyst (Coulson et al., 1972), and other 

monomer were prepared according to procedures described in the literature (Zhan et 

al., 2001).  

 

The copolymer had a number average molecular weight (Mn) of 41,100, with a 

polydispersity (Mw/Mn) of 2.58.  The chemical structure and properties of the 

copolymer were characterized by FT-IR, 1H NMR, 13C NMR, TGA, DSC and ToF-

SIMS (Ling et al., 2003). The chemical structure of PF6-Eu(dbm)2phen is shown in 

Figure 7.1. PF6-Eu(dbm)2phen films of about 100 nm in thickness were spin-casted  
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Figure 7.1 Chemical Structure PF6-Eu(dbm)2phen and the emission spectrum of the 
PF6-Eu(dbm)2phen film 

 

from the toluene solution (10 mg/ml) on glass substrates. The solvent was removed by 

pumping under reduced pressure at room temperature for 48 h. Figure 7.1 also shows 

the photoluminescent spectrum of the copolymer film. Using an excition wavelength 

of 350 nm, nearly monochromatic red emission spectrum, with a line width (full width 

at half maximum or FWHM) of 4 nm, was obtained. Effective intramolecular energy 

transfer from the fluorene to the Eu complex has given rise to the nearly 

monochromatic red emission in this soluble conjugated copolymer. 
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7.2.2 Metal evaporation 

                       

 

 

 

 

 

The thermal deposition of aluminium was performed using an evaporator installed 

inside the XPS preparation chamber, which was connected to the XPS analysis 

chamber via a gate valve. The evaporator filament was made of tantalum wire (99.9% 

purity, 0.25 mm in diameter), obtained from Goodfellow Inc., Cambridge, UK. High-

purity Al wire segments (diameter = 0.25 mm, purity = 99.9%, also from Goodfellow 

Inc.), were attached to the filament for evaporation. Under the high-vacuum condition, 

the aluminium vapor was deposited in situ onto the surface of the PF6-Eu(dbm)2phen 

film in the XPS preparation chamber in a stepwise manner, permitting the analysis 

without exposure to the atmosphere. The rate of deposition was controlled by the 

electrical current supply to the filament. Prior to evaporation, the aluminium and the 

filament were continuously outgassed by heating at 2.2 A. The evaporation of 

aluminium was then carried out at a current of 5.0 A. The amount of the metal 

deposited was controlled by the evaporation time. Each round of evaporation was 

carefully controlled in order to avoid over-exposure. The sample was transferred into 

the XPS analysis chamber for surface and interface analysis after every round of 

evaporation. 

XPS preparation chamber 

Sample

Al wire 
Ta wire 

Voltage 
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7.2.3 Surface and interface characterization 

The XPS and UPS measurements were performed on a Kratos AXIS HSI spectrometer, 

using the monochromatized Al Kα X-ray source (1486.7 eV) and the He I (21.2 eV) 

radiation, respectively. The X-ray source was run at a reduced power of 150 W (15 kV 

with an emission current of 10 mA) to minimize possible damage to the polymer films. 

The operating pressure in the analysis chamber was maintained at 8.0× 10-9 Torr or 

lower during every measurement. The spectra at photoelectron take-off angles (α) of 

20˚ and 90˚ were recorded after each round of evaporation. In peak synthesis, the 

linewidth of the Gaussian peaks were kept constant for all components in a particular 

spectrum. To compensate for surface charging effect, all binding energies (BE’s) were 

referred to the neutral hydrocarbon C 1s peak at 284.6 eV. Surface elemental 

stoichiometries were determined from peak-area ratios after correcting with the 

experimentally determined sensitivity factors, and were reliable to within ±10%. The 

sensitivity factors were calibrated using stable binary compounds of well-defined 

stoichiometries. 
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7.3 Results and Discussion 

7.3.1 Evolution of the C 1s core-level spectra upon Al deposition 

The evolution of the C 1s core-level spectra of the copolymer upon Al deposition, 

obtained at the photoelectron take-off angle (α) of 90˚, is shown in Figure 7.2. For the 

pristine PF6-Eu(dbm)2phen surface (Figure 7.2a), the C 1s spectrum consists of a 

main peak component at the binding energy (BE) of 284.6 eV and two minor ones at 

the BE’s of 285.8 eV and 286.6 eV. The main C 1s peak component is assigned to the 

C-C and C-H species (including both the aliphatic carbon atoms of the side chain and 

the aromatic carbon atoms not bonded to the heteroatoms in the conjugated system) 

(Nguyen, 1993 and 1995). The peak component at 285.8 eV is assigned to carbon 

atoms bonded to the heteratoms (O and N) in the conjugated system (Figure 7.1) 

(Beamson et al., 1992). The peak component at 286.6 eV, on the other hand, is 

assigned to the carbon atoms of the carboxylic group bonded to the europium ion. 

Compared to the BE of 289.2 eV for the carboxyl carbon atoms of poly(acrylic acid) 

(Zhan et al., 2001), the BE of 286.6 eV observed for the copolymer suggests electron 

transfer from Eu to oxygen atoms, leading to a lower electron withdrawing effect of 

the oxygen atoms on the carbon atom of the carboxylic group in the Eu-complex. The 

C 1s peak components for the pristine polymer surface have a FWHM of 1.1 eV.  

 

The C 1s spectral lineshape of the PF6-Eu(dbm)2phen surface changes progressingly 

upon Al deposition. A tail appeared on the lower BE side of the main peak component. 

Upon further examination of the changes by peak synthesis, a new C 1s peak 

component at the BE of 283.4 eV is discernible (Figure 7.2(b)-7.2(d)). This low-BE  
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Figure 7.2 (a-d) Evolution of the C 1s core-level spectra as a function of Al coverage   
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peak component corresponds to the formation of aluminium carbide species at the 

interface, as a consequence of the interaction of aluminium atoms with the carbon 

atoms. The formation of aluminium carbides, arising from electron transfer from 

aluminium to carbon atoms, have been widely observed in other Al/polymer interfaces 

(Kang et al., 1997; Dannetun et al., 1993). For the Al/α-sexithiophene interface, a low-

BE shoulder, attributable to the metal carbide species, appeared in the C 1s core-level 

spectrum immediately after Al was deposited on α-sexithiophene. However, for the 

Al/poly-3-octylthiophene and Al/polyethylene interfaces, the C 1s core-level spectra 

of the polymers were not affected, suggesting that only weak interactions exist 

between the Al atoms and the carbon atoms of the polymers. It was concluded that Al 

atoms tend to interact more strongly with carbon atoms in the conjugated system than 

with the aliphatic carbon atoms (Dannetun et al., 1993). Therefore, the aluminium 

atoms probably have reacted preferentially with the conjugated carbon atoms, over the 

aliphatic carbon atoms, in the present PF6-Eu(dbm)2phen copolymer complex. In 

addition, the intensity of the low-BE C 1s peak component became stronger with 

progressive aluminium deposition. This phenomenon is consistent with the fact that 

the subsequent electron transfer is not to the same carbon atom in the conjugated 

system, because transfer of this nature will cause a further negative shift in BE rather 

than an increase in proportion of the same low-BE species. This observation also 

suggests that the aluminium atoms have been uniformly deposited on the surface of 

the polymer film. In devices fabrication, the electron transfer from aluminium atoms 

to polymer at the surface could increase the electron injection barrier, and a higher 

turn-on voltage could be expected. Moreover, the electroluminescent character of the 
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polymer probably will also be affected by the formation of Al complexes at the 

interface.  

 

It is well established that photoelectrons of 1200 eV in energy, such as the C 1s 

photoelectrons collected using the Al Kα X-ray source, have an inelastic mean free 

path of ~29 Å in an organic layer (Briggs, 1998). Thus, 95% of the C1s photoelectron 

intensity originates form the top ~87Å layer of the sample. For the submonolayer, or 

the first few monolayers, of aluminium atoms deposited at the surface, the C 1s signal 

is contributed predominately by the underlying polymer. Therefore, the thicknesses of 

aluminium after each deposition process can be estimated by assuming that the 

attenuation of the C 1s photoelectron signal obeys the Beer-Lambert Law. The 

estimated thickness of aluminium after each deposition process is also included in 

Figure 7.4. 

 

7.3.2 Interaction of Al with the heteratoms of PF6-Eu(dbm)2phen 

The Eu 3d core-level spectra, obtained at α = 90˚, for the pristine PF6-Eu(dbm)2phen 

film and the Al/PF6-Eu(dbm)2phen interface after each aluminium deposition are 

shown in Figure 7.3. For the pristine PF6-Eu(dbm)2phen surface, the doublet with the 

Eu 3d3/2 and Eu 3d5/2 peak components at the BE’s of 1165.4 eV and 1135.4 eV, 

respectively, (Figure 7.3(a)) is assigned to the Eu(III) species (Uwamino et al., 1984). 

By taking into account of the carbon species associated with the two high BE C 1s 

peak components at 285.8 eV and 286.6 eV, the Eu 3d core-level spectrum of the 

pristine film confirms the interaction of the Eu atom with the oxygen atoms of dbm 
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Figure 7.3 Evolution of the Eu 3d core-level spectra as a function of Al coverage (α = 
90˚).  

 

 139



and carboxyl ligand of the copolymer. After the first aluminium deposition process 

([Al]/[C] = 0.006, 0.3 Å), a new doublet with the BE’s for the Eu 3d3/2 and Eu3 d5/2 

peak components at 1155.4 eV and 1125.4 eV, respectively, attributable to the neutral 

europium atoms (Thole et al., 1985), has appeared (Figure 7.3(b)). The XPS result 

suggests that some of the europium ions have been reduced to the elemental form by 

the incoming aluminium atoms. With increasing aluminium loading ([Al]/[C] = 0.023, 

1.3 Å, and 0.048, 2.7 Å), the doublet associated with the neutral europium species 

dominates the Eu 3d spectra (Figure 7.3(c) and Figure 7.3(d)). However, the Eu 3d 

doublet of the europium ions persists. Since the kinetic energy of the Eu 3d 

photoelectrons is in the order of 300–360 eV, the inelastic mean free path of the Eu 3d 

photoelectrons is several times smaller than that of the C 1s photoelectrons (Briggs, 

1998). Thus, the aluminium atoms probably have only interacted with the europium 

ions at the outmost surface of the film, and the europium ions in the sub-surface 

region are not affected. 

 

The Al 2p core-level spectra, obtained at α = 90˚, of the Al/PF6-Eu(dbm)2phen 

interfaces at various stages of the metal deposition are shown in Figure 7.4(a-d). After 

the first aluminium deposition ([Al]/[C] = 0.006, 0.3 Å), the Al 2p spectrum consists 

of one broad peak component at the BE of 74.8 eV and with a FWHM of 1.9 eV 

(Figure 7.4(a)), characteristic of that reported for the aluminium oxides (Seung et al., 

2000). Taking into account of the changes in chemical state of the europium ions 

induced by the deposited aluminium atoms, the Al 2p spectral line- shape and BE are  
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Figure 7.4 Evolution of the Al 2p core-level spectra as a function of Al coverage (α = 
90˚). 
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associated with the formations of the Al-O-C species and the AlxOy species, induced, 

respectively, by the interaction of aluminium with oxygen atoms of the copolymer and 

physically adsorbed oxygen in the film (see below). With further increase in 

aluminium deposition, the FWHM of the Al 2p peak component associated with the 

oxidized aluminium species increases gradually (FWHM = 2.43 eV when [Al]/[C] = 

0.1, 4.3 Å), suggesting the formation of other oxidized aluminium species, such as 

aluminium carbide and Al(III)-N chelate (see below). At [Al]/[C] = 0.048 and an Al 

thickness of 2.7 Å, a low BE peak component at 72.9 eV (FWHM = 1.0 eV), 

attributable to metallic aluminium, appears in the Al 2p spectrum. This low BE 

component become more intense when the aluminium concentration is further 

increased to [Al]/[C] =0.1.  
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Figure 7.5 Surface concentration of Al, expressed as the [Al]/[C] ratios, measured at 
take-off angles of α = 20˚ and 90˚, at different stages of the Al deposition. 
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The surface concentrations of aluminium on the PF6-Eu(dbm)2phen film, measured at 

the α’s of 20˚ and 90˚, are shown in Figure 7.5. At each stage of the aluminium 

deposition process, the concentration of aluminium at the more surface glancing angle 

of α = 20˚ was higher than that at α = 90˚, suggesting that the aluminium atoms did 

not diffuse extensively into the bulk of the polymer film (Atreya et al., 1999), 

consistent with the phenomena observed during the evolution of the C 1s and Eu 3d 

core-level spectra.  

 

Figures 7.6(a-d) show the evolution of the N 1s core-level spectra, obtained at α = 90º, 

as a function of aluminium coverage on the PF6-Eu(dbm)2phen film. For the pristine 

film, the N 1s spectrum consists of a peak component at the BE of 398.8 eV, with a 

FWHM of 1.0 eV. After the deposition of aluminium, the N 1s spectrum is broadened. 

Peak synthesis reveals that two new peak components, one at the higher BE of 399.8 

eV and another at the lower BE of 397.7 eV, are discernible in the N 1s core-level 

spectra of the Al/copolymer interface. With increasing aluminium coverage on the 

polymer film, the lower BE peak component at 397.7 eV becomes more prominent. 

 

Chelated metal ion complexes containing phenanthroline or their derivatives have 

been synthesized and investigated in organometallic chemistry (Bron et al., 2002; 

Milani et al., 2002). In these complexes, the nitrogen atoms of the phen ligand and the 

metal ions act as electron donors and electron acceptors, respectively, because of the 

higher electron affinity of the metal ions. Taking into account of the fact that the 

electron affinity of Al(III) ion is higher than that of Eu(III) ion (the third ionization  
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Figure 7.6 Evolution of the N 1s core-level spectra as a function of Al coverage (α = 
90˚) 
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potential of Al atom (~28.4 eV) is higher than that of the europium atom (~24.9 eV) 

(David, 1999) ), the aluminium atoms deposited on the surface probably interact with 

the oxygen atoms of the copolymer and physically adsorbed oxygen at the surface, 

giving rise to Al(III) ions on the surface . In this process, the europium ions are 

reduced to the metallic state and Al(III) ions are chelated or partially chelated by the 

phen ligands. This chelation will contribute to the lowering of the electron density of 

the N atom. Thus, the appearance of the high N 1s peak component at the BE of 399.8 

eV can be attributed to the formation the Al(III)-N chelate complex. On the other hand, 

the N 1s peak component at the lower BE of 397.7 eV, attributable to the imine (=N–) 

species of the phen ligand (Lim et al., 1998), also appears after the first deposition 

process ([Al]/[N] = 0.21), and becomes more prominent at [Al]/[N] = 2.09. This 

phenomenon suggests that more and more phen ligands, which chelate the Eu(III) ions, 

are decomplexed from the Eu(III) ions with progressive aluminium deposition at the 

interface.  

 

With respect to the ideal intramolecular energy transfer in this copolymer, the dbm 

and phen ligands absorbs the energy transferred from PF6 (Figure 7.1), and undergoes 

an intersystem crossing into the triple state before the energy is transferred to the 

Eu(III) ions. However, the formation of Al carbide species suggests that the energy 

absorption of PF6 and energy transfer to dbm and phen ligans will be interrupted due 

to conjugated system was affected. The decomplexation of phen ligands and formation 

of Al-O-C and Al(III)-N species will interrupt the energy pathway from PF6 to Eu(III). 

Moreover, the reduction of Eu(III) will directly influence the light emission, thus, the 
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appearance of new interfacial states suggests that the intramolecular energy transfer in 

the copolymer will be affected to some extent. Thus, the expected decrease in turn-on 

voltage and improvement in performance of the LEDs based on rare earth complexes 

probably will be limited in the absence of a thin interfacial barrier. Light emitting 

devices based on Eu-complexes have been fabricated (McGehee et al, 1999; Kido et 

al., 2002). The performance of the devices has been shown to improve significantly in 

the presence of a thin insulating layer of LiF (1.5 nm) interposed between the cathode 

and the organic layer (Jabbour et al., 1999). The presence of a thin LiF layer at the 

Al/LiF/poly(9,9-dioctyl-fluorene) interface has been shown to protect the light-

emitting polymer during aluminium deposition (Greczynski et al., 2000). It also 

stabilizes the interface and prevents the diffusion of metal atoms from the cathode into 

the organic layer.  

 

7.3.3 Evolution of the O 1s core-level spectra and migration of oxygen from the 

bulk to the intersurface   

The evolution of the O 1s core-level spectra upon aluminium deposition is shown in 

Figure 7.7. The O 1s core-level spectrum of the pristine PF6-Eu(dbm)2phen film 

consists of a main peak component at the BE of about 532.2 eV and a low BE 

shoulder. The relative intensity of the main peak component at 532.2 eV decrease with 

the increase in coverage of the deposited aluminium from [Al]/[C] = 0 to [Al]/[C] = 

0.1. The changes in the O 1s lineshape, arising from the increase in the relative 

intensity of the low BE component, indicate the presence of electrons transfer from 

aluminium atoms to the oxygen atoms at the interface.  
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Figure 7.7 Evolution of the O 1s spectra at the Al/PF6-Eu(dbm)2phen interface with 
increasing Al coverage. 
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Given the reactive nature of the conjugated polymer chains, the polymer film can 

serve as a reservoir for physically adsorbed oxygen (Uwamino et al., 1984). In order 

to study the behavior of the adsorbed oxygen, the oxygen concentration on the surface 

and in the near surface region of the conjugated polymer film was determined by 

angle-resolved XPS. Figure 7.8 shows the changes in [O]/[C] ratio of the surface as a 

function of aluminium coverage at the photoelectron take-off angles of 20˚ and 90˚. 

For the pristine polymer surface, the concentration of oxygen ([O]/[C] = 0.28) 

measured at α = 20˚ is much higher than that ([O]/[C] = 0.11) measured at α = 90˚. 

This angular-dependent result suggests that the physically absorbed oxygen is mostly 

concentrated in the outermost-surface region of the polymer film. Upon deposition of 

the aluminium atoms, the [O]/[C] ratio at α = 90˚ increases continuously, indicating 

that the bulk-adsorbed oxygen has migrated to the sub-surface region of the polymer 

film in response to the incoming aluminium atoms. This migration behavior can be 

attributed to the high reactivity of the aluminium atoms, which exhibit a high affinity 

for the physically adsorbed oxygen. On the other hand, however, the [O]/[C] ratio in 

the outermost-surface region (α = 20˚) decreases slightly, and levels off at about 0.25 

with increasing aluminium loading. Taking into account of the evolution of the C 1s, 

Eu 3d, N 1s and Al 2p core-level spectra, the changes in the [O]/[C] ratios measured at 

α = 90˚ and α = 20˚ suggest that not only do the deposited aluminium atoms reduce 

the europium ions and form the Al-O-C complexes at the outermost surface, they also 

react with the physically adsorbed oxygen atoms to form aluminium oxides (AlxOy) 

layer. This aluminium oxides layer probably has prevented the diffusion of the 
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aluminium into the bulk, as well as the accumulation of the physically adsorbed 

oxygen atoms at the interface.  
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Figure 7.8 Changes in surface concentration of oxygen as a function of Al coverage. 

 

For device fabrication, a 1.2 nm thick Al2O3 buffer layer interposed between Alq3 and 

Al cathode was reported to improve the electron injection and electroluminescent 

efficiency (Li et al., 1997; Tang et al., 1997). Since Al2O3 is chemical stable, the 

improvement in the device performance is attributed to electron tunneling and removal 

of the exciton-quenching gap states that are intrinsic to the Al/organic interfaces. In 

addition to the prevention of diffusion of aluminium atoms into the organic layer, it is 

reasonable to expect that the performance of devices based on conjugated polymers 

containing rare earth complexes can be improved in the presence of a thin buffer layer 

of Al2O3 at the cathode/polymer interface.  
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Figure 7.9 The evolution of UPS spectra as a function of Al coverage: (a) the pristine 
polymer, (b) [Al]/[C] = 0.006, 0.3Å, (c) [Al]/[C] = 0.023, 1.3Å, (d) [Al]/[C] 
= 0.048, 2.7Å, and (e) [Al]/[C] = 0.1, 4.3Å 
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7.3.4 Evolution of the UPS spectra upon Al deposition 

The evolution of UPS spectra of the copolymer film surface as a function of 

aluminium coverage is shown in Figure 7.9. For the pristine copolymer (Figure 7.9(a)), 

a shoulder exists at the BE ~4 eV. However, it was no longer discernible after 

aluminium deposition. Further analysis of the UPS spectra of the Al/polymer interface 

is based on the valence state density of the polymer. From the theoretical and 

experimental studies (Dannetun et al., 1993), it is concluded that the σ-state due to the 

alkyl chain predominate in the high BE region, whereas the low BE region contains π-

state contribution from the conjugated system. The disappearance of the observed 

shoulder (BE ~4 eV) after aluminium deposition suggests that the π-states of the 

conjugated system at the interface is interrupted by the deposited aluminium atoms. 

This result is consistent with the interactions between the conjugated system of the 

copolymer and the deposited aluminium atoms, as revealed by the in situ XPS analysis.  

 

In addition, a gradual chemical shift towards lower BE’s was also observed with 

increasing Al deposition. A shift of about 1.3 eV was observed at [Al]/[C] = 0.1, 4.3 Å 

(Figure 7.9(e)). Since the spectral lineshape in this region is not significantly affected 

by Al deposition, the spectrum in this region is characteristic of the σ-states of the 

polymer system. Consistent with the XPS results discussed above, the chemical states 

of carbon atoms of the alkyl chain are not affected by the deposited aluminium atoms. 

The shift of the σ-states to lower BE’s can probably be attributed to the electron 

transfer from aluminium atoms to the polymer and physically adsorbed oxygen at the 

interface. This phenomenon suggests that an unfavorable dipole layer, which can give 
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rise to a higher barrier for the electron injection in PLEDs, is formed at the interface 

(Hung et al., 2002). Theoritically, this dipole layer will contribute to an increase in 

turn-on voltage for the PLEDs.  
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7.4 Conclusions 

The chemical states and electronic properties of the Al/PF6-Eu(dbm)2phen interface 

were studied in situ by XPS and UPS. It was found that the deposited aluminium 

atoms interacted extensively with the polymer surface. In addition to the reaction with 

bulk adsorbed oxygen to form aluminium oxides, the deposited aluminium atoms also 

interacted with copolymer to cause the reduction of the Eu(III) ions and the formation 

of the Al carbide, Al-O-C complex, and Al(III)-N chelated complex at the interface. 

The interaction of aluminium with the conjugated system of the copolymer was also 

observed in the UPS spectra. A chemical shift (Δ ~1.3 eV) of the UPS spectra to a low 

BE indicated the formation of an unfavorable dipole layer for electron injection at the 

interface. The observed changes at the interface suggest that the ideal intramolecular 

energy transfer in the copolymer required for electroluminescence will be affected by 

the newly formed interfacial states, albeit the formed interfacial aluminium oxide 

layer may serve as a beneficial barrier.  
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The surface and interfacial interactions and reactions involving inorganic and organic 

semiconductors, such as GaAs, Si and a conjugated photoluminescent copolymer 

containing europium complexes (PF6-Eu(dbm)2phen) were studied in this work. 

Firstly, GaAs-poly(methyl methacrylate) (GaAs-PMMA) hybrids with covalent 

bonded PMMA on the GaAs surface were successfully fabricated. A bifunctional 

molecule, 6-mercapto-1-hexanol, was used to passivate the fresh etched GaAs surface 

via the self-assembled of monolayers (SAMs) of 6-mercapto-1-hexanol on the GaAs 

surface. The Ga-S and As-S bonds formed on the GaAs surface were verified by XPS. 

After the immobilization of ATRP initiator on the GaAs surface by further 

functionalizing the OH groups (of 6-mercapto-1-hexanol) on the GaAs surface, the 

GaAs-PMMA hybrids were prepared via surface-initiated by ATRP of methyl 

methacrylate (MMA) at room temperature. The chemical states of the passivated 

GaAs surfaces were not significantly affected by the ATRP process. The preparation 

of GaAs-PMMA hybrid presented here provides a simple approach to the preparation 

of GaAs-polymer hybrids with well-defined polymer brushes and preserved interfacial 

states. 

 

In addition, ZnO-PMMA core-shell hybrid nanoparticles were also successfully 

prepared via surface-initiated ATRP of MMA from ATRP initiators immobilized on 

ZnO nanoparticles by acid-base interaction. The chemical compositions of the 

nanoparticles were investigated by XPS. The morphology and structure of the 

nanoparticles were determined by FE-SEM and TEM. The optical properties of the 

nanoparticles were also studied by UV and photoluminescence measurement. The 
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polymer-functionalized ZnO nanoparticles could become well-dispersed with 

significant enhancement of UV-visible absorption and fluorescence intensities. 

 

Self-assembled monolayers of ZnO colloidal QDs on the MPTMS-passivated GaAs 

surface were demonstrated. Not only does MPTMS act as a coupling agent for the 

ZnO QDs, it also passivates the GaAs surface through the formation of covalent As-S 

and Ga-S bonds. Thus, the present study provides a simple approach to the self-

assembley of semiconductor ZnO colloidal QDs on an oriented single crystal GaAs 

substrate with simultaneous passivation of the latter. The strategy developed in this 

work based on the mercaptosilane coupling agent can be readily extended to the 

fabrication of micropatterned SAMs of colloidal QDs on GaAs substrates, for example, 

by microcontact printing 

 

On the other hand, the different effects of the hydrogen-terminated silicon surfaces 

(H-Si surfaces) and oxide silicon surfaces (ox-Si surfaces) on the plasma-polymerized 

and -deposited fluoropolymer films were investigated. Ultra-thin fluoropolymer films 

were deposited on H-Si and ox-Si surfaces via plasma polymerization and deposition 

of four fluoro-monomers, PFS, HFB, HDFD, and PFH. XPS results revealed the 

formation of the F-Si bonds and Si-C bonds on the original H-Si surface, which were 

probably formed though the interaction of the monomer or oligomer fragments or 

radicals with the dangling bonds on the silicon surfaces during the plasma 

polymerization. Consequently, the plasma-deposited fluoropolymer films were 

strongly bonded to the H-Si surfaces. The preservation of the fluorinated aromatic 
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rings in the pp-PFS and pp-HFB films were suggested by FTIR results. In addition, 

ToF-SIMS results suggested selective polymerization of the PFS monomer through 

the vinyl group of PFS.  

 

The chemical states and electronic properties of the interface between aluminium and 

a novel conjugated copolymer of hexylflurene and benzoate containing chelated Eu 

complexes (PF6-Eu(dbm)2phen) were studied in situ by XPS and UPS. The deposited 

Al atoms was found to interact with the copolymer, resulting in reduction of the Eu(III) 

ions, formation of the Al carbide and Al-O-C complex, and formation of Al(III)-N 

chelate complex at the interface. In addition, the conjugated system of the copolymer 

was affected by the deposited aluminium atoms, as suggested by the UPS spectra. A 

chemical shift (Δ ~1.3 eV) of the UPS spectra to a low BE indicated the formation of 

an unfavorable dipole layer for electron injection at the interface. The deposited 

aluminium atoms also reacted with adsorbed oxygen in copolymer thin film to form 

aluminium oxides, which might have prevented aluminium diffusion into the 

copolymer film. The observed changes at the interface suggest that the ideal 

intramolecular energy transfer leading to monochromatic red emission in the 

copolymer would be affected by the newly formed interfacial states and chemical 

species, albeit the formed interfacial aluminium oxide layer may serve as a beneficial 

barrier.  
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