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SUMMARY 
 

In recent years, there are increasing interests in emotion-measurement technologies 

with the widespread hope that they will be invaluable in the safety, medical and 

criminal investigation. In the literature, various efforts have been put in the emotion 

measurement methods, including facial recognition, voice recognition, and 

electrophysiological based measurements. Among them, Electroencephalogram (EEG) 

might be one of the most predictive and reliable physiological indicators of emotion. 

However, most previously published research findings on EEG changes in 

relationship to emotion have found varying, even conflicting results, which could be 

due to methodological limitation. It needs further research before we can eventually 

come out with an EEG-based emotion monitor. 

 
For detection of anxiety emotion by EEG measurement, an Independent Component 

Analysis (ICA) based energy spectrum feature is presented. In this study, EEG 

measurements on human subjects with and without anxiety emotion were conducted, 

the measured data was decomposed using ICA into a number of independent 

components, and all the independent components were loaded on an energy mapping 

system that shows the locations of the independent components on the scalp. By 

counting the number of independent components fall into both sides of the anterior 

temporal, clear correlation between the number of independent components on both 

sides of the anterior temporal and the status of anxiety emotion was observed. The 

results from all the subjects tested showed that in both sides of the anterior temporal, 
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the number of independent components for anxiety status was 50% to 100% higher 

than that of emotion void status. The ability of this ICA-based method was verified 

by SVM prediction accuracy. Prediction accuracy shows that there is a high 

probability to develop subject-specific negative emotion monitoring system. 
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1. INTRODUCTION 
 

1.1. Background 

 

Emotion is a common phenomenon in our daily life. One common definition of 

emotion in medicine is that emotion is the “mental state, periodic or dispositional, 

associated with certain physiological conditions, and brought about by thoughts and 

happenings perceived as desirable or undesirable.” (O’Shaughnessy 1992) An 

example of a periodic emotional state is the academic’s joy at solving a tricky 

intellectual conundrum; an example of an emotional dispositional state is the 

sympathy that disposes people to help others. All emotional states are characterized 

by bodily effects on pulse rate, blood pressure, adrenal secretion, blushing, trembling, 

crying, fainting, and so on.

 

Many psychologists adopt the ABC model, which defines emotions in terms of three 

fundamental attributes: A. physiological arousal, B. behavioral expression (e.g. facial 

expressions), and C. conscious experience, the subjective feeling of an emotion. 

(Myers 2004) All three attributes are necessary for a full fledged emotional event, 

though the intensity of each may vary greatly. There are three major theories to 

expound the relationship among these three components, which are James-Lange 

Theory (James 1890), Cannon-Bard Theory (Cannon 1927) and Schacter’s 

Two-factor Theory (Schachter 1971). 
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James-Lange Theory, which was proposed by William James & Carl Lange, is one of 

the earliest theories about emotion. In this theory, the experience of emotion is 

awareness of physiological responses to emotion-arousing stimuli. The emotion- 

triggering stimulus notifies the sympathetic branch of the autonomic nervous system 

(cause body’s arousal), and then the signal will transfer from the sympathetic branch 

to the brain’s cortex, lead to subjective awareness. (Figure 1.1) 

 

 

Figure 1.1 James-Lange Theory 

However, evidence for James-Lange’s theory seemed improbable because the 

evidence suggested that our physiological responses are not distinct enough to evoke 

different emotions. For example, does the racing heart signal mean the fear, anger, 

love or excited? Also, many physiological changes happen slowly, too slowly to 

trigger sudden emotional changes. So Walter Cannon & Philip Bard proposed 

Cannon-Bard Theory, which is that physiological arousal and our emotional 

experience occur simultaneously. The emotion-triggering stimulus notifies both the 

brain’s cortex (subjective awareness) and the sympathetic branch of the autonomic 

nervous system (causes body’s arousal). (Figure 1.2) 

 

 

 

Figure 1.2  Cannon-Bard Theory 
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However, Cannon-Bard Theory didn’t explain the relationship between the emotion 

and thoughts. Most psychologists today believe that our cognitions, such as our 

perceptions, memories, and interpretations, are essential ingredient of emotions. 

Stanley Schachter proposed his famous two-factor theory in which emotions have two 

ingredients: interaction between physical arousal and cognition (“label”), which 

means to experience emotion one must be both physically aroused and cognitively 

label the arousal. And the physical arousal can intensify most emotions. (Figure 1.3) 

 

 

 

                                       

 

Figure 1.3  Schachter’s two-factor Theory 

 
 
 
 
1.2. Problem Statements 

 

Emotional intelligence consists of the ability to recognize, express, and have 

emotions, coupled with the ability to regulate these emotions, harness them for 

constructive purposes, and skillfully handle the emotions of others. The skills of 

emotional intelligence have been argued to be a better predictor than IQ for 

measuring aspects of success in life (D.Goleman 1995). Scientists have amassed 

evidence that emotional skills are a basic component of intelligence, especially for 

learning preferences and adapting to what is important (Mayer 1990; Salovey 1990; 
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J.LeDoux 1996).  

 

With increasing deployment of adaptive computer systems, the ability to sense and 

respond appropriately to user emotion feedback is of growing importance. A failure to 

include the emotional component in human-computer interaction is comparable to 

trimming the potential bandwidth of the communication channel. Frustrating 

interaction with a computer system can often leave a user feeling negatively disposed 

to the system and its makers. Since humans are predisposed to respond socially to 

computers, such negative experiences could alter perceptions of trust, cooperation and 

good faith on the part of the user. On the other hand, enabling computers to recognize 

and adapt to the user's emotion state can, in theory, improve the quality of interaction 

(Preece 1994; Klein 2002; Bickmore 2004; Mishra 2004).  

 

Due to the infinite extension of emotional phenomena, it is impossible to make a full 

description of all the emotions that we can experience. So emotion is divided into two 

groups: positive emotions (such as: I feel well, happy, healthy, strong, and so on) & 

negative emotions (such as: I feel uncomfortable, unfortunate, sick, sad, lonely, 

anxiety, and so on).  

 

It is fair to say that not all computers need to be aware of the user's emotions because 

most machines are only rigid tools. However, there is a range of areas in HCI where 

computers need to adapt to their users’ emotions (Bloom 1984). Literatures on 

emotion theory points out:  
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Firstly, positive emotion is much harder to elicit in the laboratory in compared with 

negative emotion. This phenomenon refers to the general tendency of organisms to 

react more strongly to negative compared with positive stimuli, perhaps as a 

consequence of evolutionary pressures to avoid harm. 

 

Secondly, with increased levels of adrenaline and other neuron-chemicals coursing 

through the body, a person engulfed by negative emotions has diminished abilities 

with respect to attention, memory retention, learning, creative thinking and polite 

social interaction. For example: Stress, anxiety and frustration experienced by a 

learner in the educational context can degrade learning outcomes (Kahneman 1973; 

Isen 1987; Lewis 1989). 

 

Furthermore, for the safety, security and many other reasons of some careers, such as 

the pilots, it is important to monitor or detect the operators’ emotion states. If the 

pilots are in the state of negative emotions for a long period of time, it is more likely 

for him or her to make the mistakes, which will cause tremendous loss. Thus, it is 

important and useful to detect negative emotions. 

 

1.3. Research Objectives 

 

The main objective of this research is to propose and develop a new physical quantity, 

which is named ICA-based EEG Energy Spectrum, for the features in identifying 

subtle changes in the EEG signal in relationship to negative emotions. Under this 
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primary objective, the detailed sub-objectives are the following: 

1) To establish the analysis of this physical quantity; 

2) To establish the experiments for verifying the effectiveness of this physical 

quantity, which includes the protocol design, experimental design and the 

critical electrodes placement design for the negative emotion detection by 

using EEG; 

3) To analyze the experiment results for the effectiveness of this physical 

quantity; 

4) To verify the results for this physical quantity by using Support Vector 

Machine (SVM). 
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2. LITERATURE REVIEW 
 

2.1 Traditional Technologies in emotion detection  

 

Traditional technologies in emotion detection and prediction mainly focus on the 

facial expression recognition, verbal signal and other physiological signals detection, 

such as heart rate, respiration rate, and so on. The different emotion detection 

technologies will be summarized and the specific technologies will be discussed.  

 

2.1.1 Facial Analysis technologies  

 

People’s facial expressions are thought to be very reliable signs of their emotional 

reaction to various stimuli. The principle of this method is that different emotion has 

different combination of the contractions of facial muscles. So a camera is used to 

monitor several dots in the user’s face (Figure 2.1a), and each dot position represent 

one special muscle contraction state (Figure 2.1b). (Ekman 1972) When the user 

expresses different emotion, the relation dot position will be changed, and according 

to these relation position changes, the computer will analyze and determine what 

emotion state the user is now in. The well known Facial Action Coding System 

(FACS) was developed by Paul Ekman and W.V. Friesen in the 1970s (Ekman 1972).  

 

 



2. Literature Review 

 8

 

 

 

 

 

 
(a) Facial action coding point         (b) Facial muscles 

Figure 2.1  Facial emotion analyses  
 

However, several important problems(Enns 1991; He 1992; Wang 1994; Suzuki 1995; 

Smilek 2000), such as the face is not in the focus of the attention, the face orientation 

changing, face surface changing and the global representation of a face, can affect the 

emotion detection results by this method. 

 

2.1.2 Speech Recognition technologies 

 

A lot of researchers work on extracting emotional content from human voice as 

another technique for affective input. Speech recognition is a difficult problem in 

itself. There are problems with surrounding and disturbing sounds, problems with 

dialects and personality in the human voice. And if all that is solved there are also 

problems with understanding the actual meaning of what is being said. The same 

word can mean so many different things depending on its context and how it is being 

said. Researchers have come so far that they can work with a defined set of words in a 

relatively quiet environment. The emotional value of what is said and how it is said is 

yet another problem to researchers. There are not yet any fully developed prototypes 
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using this method for affective input. Before that happens, researchers will have to 

work on the problem of defining the characteristics of emotional states expressed in 

speech. Cowie and colleagues point out the importance of working with naturally 

expressed emotions and not acted data which is the most common approach (Fotinea 

2003). They have noted several characteristics not previously defined such as 

impaired communication and articulation. Acted data is most often based on 

monologue whereas spoken emotional reactions are more common when interacting 

with another part. Breakdowns and disarticulation are two examples that may not 

occur in acted data. Also the patterns in pitch, volume and timing are also other 

problems in the emotion detection via speech recognition. 

 

2.1.3 Tradition methods disadvantages 

 

There are some other methodologies based on other physiological signals to detect 

emotion, such as heart beat, respiration rate, and so on. All these methods are 

immature and have many problems such as low accuracy and low efficiency, and so 

on. From biological basis, these physiological are all controlled by the human brain. 

So EEG, which is noninvasive to directly monitor the brain signal, becomes one of 

prominent alternatives to detect emotions. 

 

2.2 EEG-Based Emotion Measurement 

 

A large number of researches have been conducted on the emotion measurement. 
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Since Dr. Hans Berger, a German neuron-psychiatrist, published his first EEG 

recording in 1929 (Berger 1929), EEG has been acclaimed as one of the most 

promising tools, sensed via an array of small electrodes affixed to the scalp, and 

examining alpha, beta and theta brain waves to investigate the brain function. 

Particularly, with the development of computer technology, EEG plays a significant 

role nowadays in the EEG-based clinical diagnosis and studies of brain function (Van 

1950; Jongh 2001; Lehnertz 2001; Benar 2003; Thakor 2004). In addition, there are 

various research findings showing that different mental activities, either normal or 

pathological, produce different patterns of EEG signals (Miles 1996). EEG was used 

to detect emotion since 1970s. And from the experiment design aspect, there are 

mainly two type approaches to use EEG to detect emotion: Event-Related Potentials 

(ERPs) and Cerebral Electricity Asymmetry. 

 

2.2.1 Event-Related Potentials (ERPs) 

 

The hypothesis of this method is that event-related potentials vary with the judged 

emotionality of picture stimuli. Specifically, a widely distributed, late positive 

potential (LPP) is enhanced for stimuli evaluated as distant from an established 

affective context. 

 

To test this hypothesis, Cacioppo and colleagues (Cacioppo 1993; Cacioppo 1994; 

Cacioppo 1994; Cacioppo 1996) measured ERPs in response to positive and negative 

pictures that were rated as equally extreme in valence and arousal. They put rare 
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emotional pictures (positive or negative) into a series of frequent neutral pictures and 

showed the pictures one picture per second to the participants. At the same time, the 

EEG signal was recorded from F3, Fz, F4, C3, C4, P3, Pz, P4, A1, and A2 of 

international 10-20 EEG standard electrode positions (Figure 2.2). After that, 

participants were instructed to evaluate the pictures and to report their evaluations 

after the picture disappeared. The result was that a pleasant target stimulus presented 

within a series of unpleasant pictures elicits a larger LPP than does the same pleasant 

target, presented among other pleasant stimuli. (Figure 2.3) 

 

 

 

 

 

 

Figure 2.2  International 10-20 EEG standard electrode positions 

 

Similar results are found for unpleasant targets (in a pleasant series) for this affective 

oddball paradigm. Furthermore, the greater the affective distance of a target (the 

greater its valence difference from the series) the larger the late potential. These 

findings appear to parallel results obtained with conventional, non-affective oddball 

tasks, in which a rare stimulus event (e.g. a high tone preceded by a series of low 

tones) elicits larger late positivity (P300) than a stimulus consistent with the context 

(Donchin 1988). The LPP in the affective oddball paradigm differs somewhat from 

the traditional, non-affective P300 in that it usually occurs later, and appears to be 
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partially lateralized-with larger LPP amplitudes over the right than the left parietal 

hemisphere (Cacioppo 1994). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  Using ERPs to differentiate negative/positive emotions 

 

However, positive and negative pictures do not produce qualitatively different 

responses, such as there is no different direction of ERPs, and there are no different 

ERPs in different locations, and so on. Hence, ERPs can at best represent the arousal 

dimension of emotion, but not the valence dimension. Moreover, a similar positive 

activation is found for any rare stimuli in a series of frequent stimuli (e.g., a high tone 

in a series of low tones). Hence, the ERPs may reflect surprise, but not emotional 

responses to the content of the pictures. Thus, it is not suitable to use ERPs to detect 

or measure the negative emotions. 
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2.2.2 Cerebral Electricity Asymmetry 

 

The other main approach is based on the cerebral electricity asymmetry for emotional 

processes. Since 1970s, scientists have found that there is cerebral lateralization for 

emotional processes which have two main formulations. The results of some studies  

(Carmon 1973; Gardner 1975; Davidson 1976; A 1977) seemed to suggest that the 

right hemisphere was more involved than the left in subserving emotional processes. 

Other studies (Gainotti 1972; Dimond 1977; Ahern 1979; L 1985), however, have 

suggested the existence of a differential lateralization for positive and negative 

emotion, in which the left hemisphere is more involved in the mediation of positive 

emotion and the right hemisphere is more involved in the mediation of negative 

emotion.  

 

More and more researchers (Masaoka 2000; Davidson 2001; Hariri 2003; Davidson 

2004; Hare 2005) supported the second hypothesis. Using a variety of methods to 

make inferences about regionally specific patterns of activation, many investigators 

have now reported systematic asymmetries in patterns of activation in specific brain 

regions in response to certain types of positive and negative emotional challenges. 

 

For example, Schmidt et al (Schmidt 2002) measured EEG asymmetries while 

participants were listening to positive (happy) and negative (fear/sad) musical 

excerpts. The EEG signal was collected from F3, F4, Cz, P3 and P4 and two more 

electrodes were used to detect EOG. All the collected EEG data were visually scored 
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for artifact due to eye blinks, eye movements, and other motor movements and all 

artifact-free EEG data were analyzed using a discrete Fourier transform (DFT), with a 

Hanning window of 1s width and 50% overlap. Power (micro-volts-squared) was 

derived from the DFT output in the alpha band (8-13 Hz); a natural log (ln) 

transformation was performed on the EEG data to reduce skewness. As expected, 

happy music increased left-right asymmetries, whereas sad and fearful music 

decreased left-right activity. (Figure 2.4) 

 

 

 

 

 

 

 

 

 

Figure 2.4  Emotion detection using brain asymmetry 

 

As we know that alpha power is inversely related to activity, thus lower power 

reflects more activity. So for negative emotions (fear and sad), the left hemisphere 

frontal alpha power is larger than the right hemisphere frontal alpha power, which 

means left hemisphere frontal activity is less than the right hemisphere frontal activity 

in negative emotions. So in positive emotions (joy and happy) the left hemisphere 

frontal activity is larger than the right hemisphere frontal activity. 
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Despite the complexities associated with aggregating studies with vastly different 

experimental designs, a recent meta-analytic review has also supported the notion that 

certain forms of positive and negative emotion exhibit different patterns of functional 

brain asymmetry, particularly in prefrontal cortical territories. 

 

Based on a large body of both human and animal experiment studies, Davidson and 

his colleagues (Davidson 2003) have proposed that greater left-sided dorsolateral 

activity may be associated with approach-related, goal-directed action planning, 

whereas on a lesser level of consensus, from the neuron-imaging studies of spatial 

working memory, they suggested that activation of right lateral prefrontal cortex 

during withdrawal-related emotion may be associated with threat-related vigilance. 

Davidson also reported that positive and negative emotion states shift the asymmetry 

in prefrontal brain electrical activity in lawful ways. For example, film-induced 

negative emotion i.e. fear/anxiety increases relative right-sided prefrontal cortex 

activation, whereas induced positive emotion elicits an opposite pattern of 

asymmetric activation (Davidson 2003). 

 

Furthermore, Heller and colleagues have proposed that asymmetries in parietal cortex 

may be associated with arousal such that greater right-sided posterior activation is 

associated with higher arousal emotion. And subjects exhibit stable differences in 

asymmetric patterns of activation in prefrontal brain regions that predict various 

features of affective reactivity. However, there are several issues regarding the 

“asymmetry” works.  
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Firstly, all previous emotion detection by using EEG is based on electrical asymmetry 

by measuring alpha band power. However, as we know, there are several factors 

which can affect the alpha band power, such as attention shifting, fatigue level 

changing, and so on. Furthermore, Mueller (1999) has reported that right frontal sites 

exhibited a significant increase in power for positive and negative valence relative to 

neutral stimuli for γ-40 power compared to the neutral condition, and also no 

statistically significant effect was found for alpha activity in anxiety state, indicating 

no sensitivity of alpha de-synchronization. All these arguments weaken the possibility 

of negative emotion detection by electrical asymmetry. 

 

Secondly, all the researchers collected the EEG signal from the prefrontal and parietal 

surface (such as Fz, Pz, and Cz). For the prefrontal, the main function of prefrontal 

cortex (PFC) is the executive function, which means PFC has more complex signal 

that mix the signals related to emotion with other signals non-related to emotion. For 

the parietal, the primary sensory cortex and primary motor cortex lies there, which 

means parietal also has more complex signal. So it is not practical to get the emotion 

EEG data from prefrontal cortex or parietal part. 

 

The third disadvantage is the signal processing methodology. Human eyes were used 

to recognize and grade those obvious noises, such as eye blinking, muscle movement. 

However, the traditional signal processing method can not work for the artifacts 

which have the same amplitude with the emotion-related EEG data. Also, frequency 

domain analysis was the main method used to analyze the results; however, there are 
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no consistent results from different researcher, which may because of this 

ineffectiveness of this signal processing method. 

 

Thus, considered the complexity of EEG signals, Independent Component Analysis 

(ICA) has been investigated as well as the biological basis of emotion and brain 

structure, a novel ICA-based EEG Energy Spectrum was proposed and used to 

evaluate some negative emotions, such as anxiety. 
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3. ICA-based EEG Energy Spectrum 
 

This chapter describes the biological basis of ICA-based EEG Energy Spectrum, as 

well as the principle of ICA-based EEG Energy Spectrum, which includes 

Independent Component Analysis, Scalp EEG mapping, and ICA-based EEG Energy 

Spectrum calculation. 

 

3.1 Biological Basis  

 

As we know, different kinds of brain activities are the result of some neuron groups 

firing in the certain time sequence and certain intensity. The neuron groups’ firing 

implies the neurons activation, which will cause peak electrical potentials to appear at 

specific locations on the scalp. Figure 3.1 shows some brain activities with different 

neurons firing pattern. 

 

 

 

 

 

 

 

Figure 3.1  Some Brain Activities 
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For simplification, each of this activated neuron group can be viewed as one electrical 

source and all the electrical sources are independent on each other. Thus, by 

summarizing the peak electrical potentials appearing in the specific locations on the 

scalp in the certain time slot, the intensity of neuron groups’ activation related to 

some brain activity can be determined. Here the intensity of neuron groups’ firing 

represents the neurons activation energy.  

 

Therefore, the specific brain activity can be monitored or measured by the number of 

the “peak” electrical potentials appearing in the specific locations on the scalp, and 

this forms the basis of ICA-based EEG Energy Spectrum. Under this principle, the 

calculation of ICA-based EEG Energy Spectrum consists of four steps: Independent 

Component Analysis, Scalp EEG Mapping, Brain Activity Classification and 

Statistical Analysis. 

 

 
3.2 Independent Component Analysis (ICA) 

 

Independent component analysis (ICA) is a computational method for separating a 

multivariate signal into additive subcomponents supposing the mutual statistical 

independence of the non-Gaussian source signals. This method is mainly for the blind 

source separation (Herault 1991; Common 1994), in which case the original 

independent sources are assumed to be unknown, and yet to be separated from their 
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weighted mixtures. Furthermore, modeling of noise or artifacts is not required in ICA. 

Figure 3.2 is the illustration of Independent Component Analysis. 

 

 

 

 

 

 

 

 

 

Figure 3.2  Illustration of Independent Component Analysis 

 
 
3.2.1 ICA  Algorithm 
 
 

The basic data model used in defining (linear) ICA assumes that the observed 

n-dimensional data vector at time instant t, x(t) = [x1(t),…, xn(t)]T is given by   

1
( ) ( ) ( )

m

i i
i

t t t
=

= =∑X a s As                    (3.1) 

where s(t) = [s1(t), … , sm(t)]T are m independent source signals with zero mean, 

which can be guaranteed by explicitly extracting the mean of each xi(t) without loss 

of generality, and A = [a1, … , am] is a constant mixing matrix which is a function of 

the location of the sources, the positioning in an EEG recording, the shape and the 

conductivity distribution of the brain as a volume conductor (Vigario 1997). As in the 

general blind signal separation problem, A is assumed to be an n×m matrix of full 

rank (there are at least as many mixtures as the number of independent sources, i.e. n 
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> m). In addition, although A is unknown, we assume it to be constant, or 

semi-constant (preserving local constancy) in order to perform ICA. 

 

If W denotes the inverse or pseudo-inverse of A, the problem can be redefined 

equivalently as to find the separating matrix W that satisfies 

         ( ) ( )t t=s Wx                      (3.2) 

It has been documented that the preprocessing the input data (mixtures) by whitening 

can significantly ease the separation of the source signals (Karhunen 1997). Therefore, 

in the first step, we implement standard principal component analysis (PCA) for 

whitening x. It can be shown in the compact form (noting that we have now dropped 

the time index t): 

                          =v Vx                             (3.3) 

where E{vvT} = I with I denotes the unit matrix. The whitening matrix V is given by 

                          1/ 2 T−=V D E                         (3.4) 

where D = diag[λ1, … , λm] is a diagonal matrix with the eigenvalues of covariance 

matrix E{xixi
T} as its diagonal elements, and E is a matrix with the corresponding 

eigenvectors as its columns. 

 

The key to estimating the independent components from their mixtures by using ICA 

is non-Gaussianity. Intuitively speaking, maximizing the norm of this kurtosis leads 

to the separation of one non-Gaussian source from the observed mixtures. In our 

algorithm, non-Gaussianity is measured by the classical fourth-order cumulant or 

kurtosis. Consider y = wTv, with ||w|| = 1, kurtosis is calculated by 
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where operator E denotes the mathematical expectation.  

 

Then the FastICA fixed-point algorithm based on gradient descent searching 

(Hyvarinen 1999; Hyvarinen 2000) is used to search the expectation maximization. 

As a result, rows of the separating matrix W and corresponding independent sources 

are identified one by one, up to a maximum of m. The basic steps of this efficient 

algorithm are as follows:  

1) Choose initial vector w0 randomly (iteration step l=0). 

2) Let wl = E{v(wl-1
Tv)3}-3wl-1. 

3) Let wl=wl/||wl||. 

If the stop criterion has not been satisfied, the program will go back to step 2. Due to 

the cubic convergence of the algorithm, the solution is typically found in less than 15 

iterations. Figure 3.3 shows an example of independent component analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) twelve seconds of anxiety emotion state EEG raw data 
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(b) ICs of the 12 seconds of anxiety emotion state EEG raw data 

Figure 3.3  Independent Component Analysis 

 
 
3.3 Scalp EEG Mapping 
 
 

After independent component analysis, the artifacts and noises can be easily 

identified, such as in Figure 3.3 (b), the heartbeat (C1) and the environment noise (C3) 

can be removed directly. For other components, such as C4, C5 and C6, it is very 

difficult to identify the brain activity from them. In order to classify all these 

components, Scalp EEG mapping is introduced to visualize all the components. There 

are four steps in the EEG mapping: grid generation, interpolation, equivalence 

contour calculation and color bar scaling. 

 

 



                                       3. ICA-based EEG Energy Spectrum  

 24

3.3.1 Grid generation 

 

In order to represent the power distribution on a coordinator system independent of 

the electrode position systems, a grid of spherical coordinator system (Figure 3.4) is 

used. Select proper m and n, all electrodes of international 10-20 system will coincide 

with grid points; it will help to improve the accuracy of interpolation. And the power 

distribution is represented by the power values at the grid points. The power value at 

each grid is determined from the power values of neighboring electrodes by 

interpolation. 

 

 

 

 

 

 

(a) Spherical Coordinator system 

 

 

 

 

 

 

(b) Generated grid 

Figure 3.4  Grid generation 
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3.3.2 Interpolation 

 

Generally, linear interpolation is adopted to calculate the grid value. Each grid value 

is determined by the neighboring electrodes. Figure 3.5 shows the example of linear 

interpolation. 

 

 

 

 

 

 

Figure 3.5  Illustration of linear interpolation 

 

3.3.3 Equivalent contour calculation 

 

After interpolation, the value of every grid in the spherical coordinator system has 

been calculated and compared. Thus, equivalent contour can be drawn. (Figure 3.6) 

 

 

 

 

 

Figure 3.6  Illustration of equivalent contour 
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3.3.4 Color bar scaling 

 

Self-scale method has been adopted to determine the color value of the equivalent 

contour. In this method, every independent component’s coefficient values in all the 

electrode position are compared and the color value is determined according to the 

scaling algorism. (Figure 3.7) After color scaling, the equivalent contour become 

colored. Figure 3.8 is one example of scalp EEG map, which indicates a special 

activation pattern in left anterior temporal region. 

 

 

 

 

 

 

Figure 3.7  Color scaling algorism 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8  Example of Scalp EEG map 
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3.4 ICA-based EEG Energy Spectrum 
 
 

For Scalp EEG maps of ICA result, it can be both 2D scalp EEG map and 3D scalp 

EEG map. (Figure 3.9) So after ICA and scalp EEG mapping, all the independent 

components can be compared with each other according to their activation pattern.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.9  Scalp EEG mapping for the ICA results 

 

 

Furthermore, in order to investigate the brain activation pattern in detailed, 3D scalp 

EEG mapping for one independent component was computed in four directions: 

top-frontal, top-behind, top-left and top-right. (Figure 3.10) 
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Figure 3.10  Four direction view of 3D scalp EEG mapping for the ICA result 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 classification of 3D scalp EEG mapping for the ICA results 
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After EEG scalp EEG mapping for all the independent components, we can define 

several activation pattern labels, such as Left Prefrontal Cortex Activation, Right 

Prefrontal Cortex Activation, and so on. And all the independent components will be 

classified into these labels. (Figure 3.11 shows the example of classification of 3D 

scalp EEG mapping for the ICA results)  

 

After classification, the peak activation points in each independent component in 

specific scalp region can be summarized according to the classification. This 

summarized point is the Energy Spectrum. Let’s take the example of Left Prefrontal 

Energy Spectrum. From the brain structure and international 10-20 system, the left 

prefrontal region covers Fp1 and F7. So the definition of Left Prefrontal Energy 

Spectrum is the following: 

 

Left Prefrontal Energy Spectrum (LPES) is the total number of activation points in all 

independent components which have peak activation in Fp1 or F7. In order words, 

independent components with peak activations at Fp1 or F7 would be considered to 

have left prefrontal cortex activation. In such cases, for every independent component 

which has activation in Fp1 or F7, the data tally for Left Prefrontal Energy Spectrum 

for that participant would be increased by one if only Fp1 or F7 has the peak 

activation and would be increased by two if both Fp1 and F7 have the peak activation. 

For the example showed in Figure 3.10, the LPES is 1 because only F7 is the peak 

activation. 
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To sum up, Scalp EEG relates to the energy of neuronal activation in the brain. ICA 

gives independent components which are associated with specific neuronal activation 

sources. From the scalp EEG mapping of each independent component, the peak 

electrical activation in the specific area indicates that the neurons in that region are 

activated. Thus, the summarized peak electrical points in a specific scalp region from 

all the independent components will indicate the energy of the neuron group’s 

activation nearby that region.  
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4 EXPERIMENTAL DESIGN 
 

The overall objective of this research is to propose and develop a new physical 

quantity for the features in identifying subtle changes in the EEG signal in 

relationship to negative emotions. In last chapter, the basis and principle of this 

quantity has been discussed. Thus, this chapter will describe the experimental design 

for negative emotion detection by using this quantity. Figure 4.1 shows the overall 

flowchart of the experiment. 

 

 

Figure 4.1  Flowchart of the whole project 

 

In this chapter, the biological basis of emotion for the experiments, experiment 

protocol design, the experiment materials, signal processing method and results 

verification method used for this research will be discussed. 

 

4.1  Biological Basis of Emotion 

 

From biological aspect, the structures in the human brain involved in emotion, 

motivation, and emotional association with memory belong to the limbic system, 

which influences the formation of memory by integrating emotional states with stored 

memories of physical sensations. 
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The French physician Paul Broca first called this part of the brain "le grand lobe 

limbique" in 1878, but its putative role in emotion was not largely developed until 

1937, when the American physician James Papez first described his anatomical model 

of emotion, which is still referred to as the Papez circuit. Papez's ideas were, in turn, 

later expanded on by Paul D. MacLean to include additional structures in a more 

dispersed "limbic system," more on the lines of the system described above. The 

concept of the limbic system has since been further expanded and developed by 

Nauta, Heimer and others. 

 

4.1.1 Emotion Loop 
 

In 1937, the neuroanatomist James Papez (Papez 1937) would demonstrate that 

emotion is not a function of any specific brain center but of a circuit that involves 

four basic structures, interconnected through several nervous bundles: the 

hypothalamus with its mamillary bodies, the anterior thalamic nucleus, the cingulate 

gyrus and the hippocampus. Papez believed that the experience of emotion was 

primarily determined by the cingulate cortex and, secondly, by other cortical areas. 

Emotional expression was thought to be governed by the hypothalamus. The 

cingulate gyrus projects to the hippocampus and the hippocampus projects to the 

hypothalamus by way of the bundle of axons called fornix. Hypothalamic impulses 

reach the cortex via relay in the anterior thalamic nuclei. This circuit (Papez circuit), 

acting in a harmonic fashion, is responsible for the central functions of emotion 

(affect), as well as for its peripheral expressions (symptoms). In 1949, Paul McLean 
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completed and corrected Papez’s ideas, and called the larger complex the limbic 

system, which is what we call it today (Maclean 1952). It included the hypothalamus, 

the hippocampus, and the amygdala, and is tightly connected with the cingulate gyrus, 

the ventral tegmental area of the brain stem, the septum, and the prefrontal gyrus. 

Figure 4.2 shows the basic structure of limbic system. 

 

 

 

 

 

 

Figure 4.2  Limbic system 

 
 
4.1.2 Function of limbic system 
 
 

By influencing the endocrine system and the autonomic nervous system, the limbic 

system is highly interconnected with a structure known as the nucleus accumbens, 

commonly called the brain's pleasure center. The nucleus accumbens plays a role in 

sexual arousal and the "high" derived from certain recreational drugs. These 

responses are heavily modulated by dopaminergic projections from the limbic system. 

In 1954, Olds and Milner found that rats with metal electrodes implanted into their 

nucleus accumbens would repeatedly press a lever activating this region, and would 

do so in preference to eating and drinking, eventually dying of exhaustion (Olds 

1954). 
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The limbic system is also tightly connected to the prefrontal cortex. Some scientists 

contend that this connection is related to the pleasure obtained from solving problems. 

To cure severe emotional disorders, this connection was sometimes surgically severed, 

a procedure of psychosurgery, called a prefrontal lobotomy (this is actually a 

misnomer). Patients who underwent this procedure often became passive and lacked 

all motivations. 

 

There is circumstantial evidence that the limbic system also provides a custodial 

function for the maintenance of a healthy conscious state of mind. For each 

component in limbic system, the detailed functions are listed in Table 4.1. (Lautin 

2001) 

Table 4.1  Function of components of limbic system 
 

Structure Function 
Amygdala Involved in aggression, jealousy, and fear 

Cingulate gyrus Autonomic functions regulating heart rate and blood 
pressure as well as cognitive and attention processing 

Fornicate gyrus Region encompassing the cingulate , hippocampus , and 
parahippocampal gyrus 

Hippocampus Required for the formation of long-term memories 

Hypothalamus 

Regulates the autonomic nervous system via hormone 
production and release. Affects and regulates blood 
pressure, heart rate, hunger, thirst, sexual arousal, and the 
sleep/wake cycle 

Mammillary body Important for the formation of memory 
Nucleus accumbens Involved in reward, pleasure, and addiction 
Orbitofrontal cortex Required for decision making 

Parahippocampal gyrus Plays a role in the formation of spatial memory 
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4.1.3 Key components of limbic system 
 

With recent advances in functional brain imaging (fMRI and PET), the circuitry 

underlying emotion in the human brain can now be studied with unprecedented 

precision. Two basic systems (approach system and withdrawal system) mediating 

different forms of motivation and emotion has been proposed (Lang 1990; Gray 1994; 

Davidson 1995). Although the descriptors chosen by different investigators vary and 

the specifics of the proposed anatomical circuitry are presented in varying levels of 

detail, the essential characteristics of each system are similar across 

conceptualizations. The approach system facilitates appetitive behavior and generates 

certain types of positive affect that are approach-related, for example, enthusiasm, 

pride, etc. This form of positive emotion is usually generated in the context of moving 

toward a desired goal. There appears to be a second system concerned with the neural 

implementation of withdrawal. This system facilitates the withdrawal of an individual 

from sources of aversive stimulation and generates certain forms of negative emotion 

that are withdrawal-related. For example, both fear and disgust are associated with 

increasing the distance between the organism and a source of aversive stimulation. A 

variety of evidence drawn from multiple sources suggests the view that the systems 

that support these forms of positive and negative emotion are implemented in 

partially separable neural circuits. Recent studies have shown that amygdale and 

prefrontal cortex (PFC) are key structures in the circuit that govern positive and 

negative affect (Davidson 1992; Coleman-Mesches K 1995; Zald DH 1997; Zald DH 

1998).    
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A large corpus of data at both the animal and human levels implicates various sectors 

of the PFC in emotion. The PFC is the anterior part of the frontal lobes of the brain, 

and is lying in front of the motor and premotor areas. Cytoarchitectonically, it is 

defined by the presence of an internal granular layer IV (in contrast to the agranular 

premotor cortex). This brain region has been implicated in Executive Function, which 

includes planning complex cognitive behaviors, personality expression, moderating 

correct social behavior, and the abilities to differentiate between conflicting thoughts, 

determine good and bad, better and best, same and different, future consequences of 

current activities, working toward a defined goal, prediction of outcomes, expectation 

based on actions, and so on. 

 

The amygdale is a brain structure that is essential for decoding emotions, and in 

particular stimuli that are threatening to the organism. When the brain receives a 

sensory stimulus indicating a danger, it is routed first to the sensory thalamus. From 

there, the information is sent out over two parallel pathways: the thalamo-amygdala 

pathway (the “short route”), which is fast, but involuntary and imprecise route, and 

the thalamo-cortico-amygdala pathway (the “long route”), which is slow, but 

voluntary and precise route.(Kandel E. R. 2000; Maren 2001)  

 

The short route conveys a fast, rough impression of the situation, because it is a 

sub-cortical pathway in which no cognition is involved. This pathway activates the 

amygdala which, through its central nucleus, generates emotional responses before 

any perceptual integration has even occurred and before the mind can form a 
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complete representation of the stimulus. This route is important because it lets us start 

preparing for a potential danger before we even know exactly what it is. In some 

situations, these precious fractions of a second can mean the difference between life 

and death. 

 

The long route conveys the information from the sensory thalamus to the cortex. First, 

the various modalities of the perceived object are processed by the primary sensory 

cortex. Then the unimodal associative cortex provides the amygdala with a 

representation of the object. At an even higher level of analysis, the polymodal 

associative cortex conceptualizes the object and also informs the amygdala about it. 

This elaborate representation of the object is then compared with the contents of 

explicit memory by means of the hippocampus, which also communicates closely 

with the amygdala. After processing, the information will reach amygdale again and 

tell the amygdale whether or not the stimulus represents a real threat. (Figure 4.3) 

 

The imminent presence of a danger then performs the task of activating the amygdala, 

whose discharge patterns in turn activate the efferent structures responsible for 

physical manifestations of fear, such as increased heart rate and blood pressure, 

sweaty hands, dry mouth, and tense muscles. 

 

Based on the above discussion, there are several locations for emotion measurement 

by EEG, where to collect the emotion related EEG signal will be discussed in the 

following section. 
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Figure 4.3  Two routes of emotion 

 
 
 
4.2  EEG Electrode Placements 

 
In this research, the EEG electrode placement is based on international 10-20 system. 

However, the brain structure which is involved in the limbic system (Figure 4.4) has 

two suitable locations, one of which is the temporal pole which belongs to paralimbic 

system and also connects to Amygdala and hippocampus group. The other location is 

the prefrontal lobe.  

 

Based on the brain bone and muscle structure (Figure 4.5) and the conductivity (S/m) 

of body tissues below 100 Hz at body temperature (Table 4.2), the prefrontal lobe can 

not be a suitable location to detect emotion by using EEG because of two reasons. 
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One is that the prefrontal bone is thicker than other head bones and also the bone has 

the lowest conductance. The other reason is that the prefrontal region has more 

complex higher function, thus it is difficulty to differentiate emotion related EEG 

signal from other type of EEG signal.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4  Limbic System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5  Brain Bone and Muscle Structure 

 
 
So the temporal pole will be considered in this study. Moreover there are some fMRI 

evidences to support that when the subjects are in the negative emotion states, such as 
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anxiety, there are neurons activation in the anterior temporal region or temporal pole. 

(Figure 4.6) So four electrodes, X1, X2, X3 and X4, are adopted to collect EEG 

signal from the temporal pole (Figure 4.7) 

 

Table 4.2  The conductivity (S/m) of tissues below 100 Hz at body temperature 

Tissue Human body Tissue Human body 
Bone -Marrow 0.05 Cerebellum 0.1 

Cartilage 0.18 Colon 0.1 
Fat 0.04 White Matter 0.06 

Muscle 0.35 Grey Matter 0.1 
Blood 0.7 Bone -Cortical 0.02 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6  fMRI result of anterior temporal region 
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Figure 4.7  Electrode Placement 

 
(a) Right side view of the electrode placement. (b) Top view of the electrode 
placement. X1, X2, X3 and X4 are four additional electrodes which are the sites on 
the scalp close to the anterior temporal region and are not covered by the international 
10-20 electrode placement system. X1 and X3 are on the left hemisphere and X2 and 
X4 are on the right side of the head. X2 is attached to the elongating line of T6 and 
T4, and the distance between T6 and T4 is the same as the distance between T4 and 
X2. X4 is attached just above the zygomatic process, posterior to the temples by 
approximately 2/3 of the total length from the temple to the ear. 
 
 
4.3  Experimental Protocol 

 
How to induce the participants to produce the emotion naturally in the laboratory 

environment is a key factor for emotion detection. There are several different 

methods to induce emotions in the laboratory setting. Some research group uses free 

recall e.g. to ask the participant to relive a situation where they felt anger (Frijda 1989; 

Mauro 1992). Other stimulus includes videos or computer games like X-quest (van 

Reekum 2004) and GAME (Kaiser 1996). In this research, several different types of 

stimulus, such as International Affective Picture System (IAPS), electrical shocks, 

have been used to induce the participants to produce different type emotions. 
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4.3.1 International Affective Picture System (IAPS) 

IAPS is one of the most widely used emotion stimulus, which consists of over 940 

standardized static pictures (Lang 1988; Lang 2005). They are classified with two 

main rating categories – Valence and Arousal. Valence rating measures the degree of 

pleasantness and arousal rating measures the intensity of activation. Valence and 

activation are two separate and orthogonal characteristics of emotion. These ratings 

are highly correlated between the participants and are verified several times. The 

rating ranges from 1 (low) – 9 (high). For example, picture of a baby or a couple 

hugging is of high valence i.e. pleasant pictures; picture of mushroom or stool is of 

neutral valence i.e. neutral pictures and low valence or unpleasant pictures are 

pictures of violence or burnt victims. 

 

Large literature has shown that IAPS is reliable in inducing emotions. (Müller 1999) 

IAPS are also used in research for self reported emotion (Davis 1995), effects on 

corrugator muscle activity, skin conductance responses and heart rate (Bradley 2001) 

as well as effects of the IAPS on the rating of affective words (Lang 1998) 

 

In this experiment, the slideshows will present each IAPS picture for 6 seconds with 

the exception of the emotion control stage with a 5 seconds starting slide. This is a 

general common procedure for the use of IAPS in research. The slideshow didn’t 

have any indication of the emotion they will induce, this is to avoid demand 

characteristics and minimize anticipation of the pictures. Also, erotic images were left 
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out of the slides as there could be complications of different emotion induced among 

males and females (Bradley 2001). 

 

4.3.2 Electrical shocks 

 

Another stimulus used in this experiment was the electric shock device. The 

mechanism in the lighter which produce a small spark was used to produce a harmless 

stimulus to the participants (Figure 4.8). It is imperative that the shock device can 

produce a sharp and painful shock as it acts as a punishment for them to induce 

anxiety. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.8  Mild electric shock device taken from a lighter 

 
 
4.3.3 Overview Protocol 
 
 

The whole experiment involves 4 main stages -  

I) Positive/pleasant Emotions (PE) 

II) Neutral Emotions (NE) 
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START 5 minutes break
2 minutes of BL
5 minutes of PE

2 minutes of BL
5 minutes of NE

5 minutes break
2 minutes of BL
5 minutes of UE

5 minutes break
5 trails of

2  m inutes of N E +
2 m inutes of A X

END

III) Negative/unpleasant emotion (UE)  

IV) Anxiety (AX) 

 

The sequence of the experiment is designed to stimulate positive emotions before 

negative emotions as it is believed that physiological activities due to negative 

emotions persist longer than positive emotions (Thayerb 2003). The experiment 

sequence and the approximated time taken for each stage are summarized in Figure 

4.9. 

 

 

 

 

 

 
 
 
 

Figure 4.9  Experiment sequence 

 
 
One experiment lasts approximately 2 hours including the setup time of the EEG 

system. Each stage is conducted one after another with 5 minutes break in between. 

This break is necessary for the participant to rest and recover from the stimulus in the 

previous stage. The experiment is recorded using a video camera to help to 

synchronize the extraction of the EEG data. Segments of raw EEG data are extracted 

by checking the facial expression and the body language of the participant in the 

video. 
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For the first 3 stages, the stimuli used are series of IAPS pictures. These pictures are 

shown, with the lights switched off, using a 17 inch color monitor placed 

approximately 0.5m away from the participant. The participant is isolated to one 

corner of the room with the experimenter standing behind to minimize any form of 

contact. This will help the participant to concentrate on performing the experiment. 

He/she is reminded to pay attention to the slideshows and keep their eyes open during 

each of stage. At the start of each stage, 2 minutes of baseline (BL) data is taken for 

comparison. The first two stages, PE and NE, are the two controls for the experiment. 

The pictures chosen will induce positive emotions and neutral emotions respectively. 

The third stage, UE, subjects the participant to unpleasant emotions. In the final stage, 

the participants are required to mentally calculate mathematical for 2 minutes when 

Neutral Emotion State EEG data will be colleted. After that, the participant will be 

told that the electrical shocks will be randomly delivered on the left or right hand 

sometimes. At the same time, the Anxiety related EEG signal will be collected. 

 

4.3.4 Detailed Protocol 

 
Stage I – Positive Emotion (PE) 
 

In this stage, 2 minutes of baseline (BL) are first recorded. The participant will be 

asked to look at the blank screen. After which, the slideshow will be played and 

participant will be asked to view the slideshow. 
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The slideshow consists of pictures are selected from IAPS. They are of high valence 

rating (Mval  ≅ 7.5) and moderate-high arousal rating (Maro ≅ 5.3). The slideshow is 5 

minutes long and has 50 pictures. Each picture is shown continuously for 6 seconds. 

After the slideshow ended, participant will be told to rest for 5minutes 

 

Stage II –Neutral Emotion (NE) 
 

Similar to Stage I, 2 minutes of baseline (BL) are first recorded. The participant will 

be asked to look at the blank screen. After which, the slideshow will be played and 

participant will be asked to view the slideshow. 

 

The slideshow consists of pictures are selected from IAPS. They are of moderate 

valence rating (Mval  ≅ 5.2) and low arousal rating (Maro ≅ 2.8). The slideshow is 5 

minutes long and has 50 pictures. Each picture is shown continuously for 6 seconds. 

After the slideshow ended, participant will be told to rest for 5minutes 

 

Stage III –Unpleasant Emotion (UE) 
 
 

Similar to Stage I and II, 2 minutes of baseline (BL) are first recorded. The 

participant will be asked to look at the blank screen. After which, the slideshow will 

be played and participant will be asked to view the slideshow. 

 

Pictures are selected from IAPS. They are of low valence rating (M valence  ≅ 1.9) and 

moderate to high arousal rating (M arousal ≅ 6.2). The slideshow is 5 minutes long and 
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has 50 pictures. Each picture is shown continuously for 6 seconds. After the 

slideshow ended, participant will be told to rest for 5minutes 

 

Stage IV – Anxiety (AX) 
 
 

In this stage, the participant starts to mentally multiply numbers for two minutes. 

Neutral Emotion EEG data 1 (termed as NE1) is collected. Then the participants will 

be told that an electric pulse will be delivered on the left or right hand sometime over 

the next 2 minutes. Electric shock from a small spark emitter is delivered after 2 

minutes. Anxiety Present EEG Data 1 (termed as AX1) is collected. Inform 

participant that 2 minutes are up and let participant rest for 1 minute and collect the 

NE2 in another 1 minute when the subject is mentally multiplying numbers. Repeated 

the above processes, and AX2, NE3, AX3, NE4, AX4, NE5, AX5 are collected. 

 

4.4 Experimental Materials 

 

4.4.1 Experiment Participants 

 

Eight right-handed healthy young adults (age range 19-23) were recruited from the 

National University of Singapore for the experiment. Prior to this, five pilot 

experiments with different participants have been used to verify the experimental 

procedures. Using the Edinburgh Handedness Inventory (Oldfield 1971), they are 

checked to ensure that they are right hand dominant. Experimental exclusion of left 
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hand dominant participants is due to the different hemispheric specialization of the 

brain Though it is easier to induce emotions, more particularly negative emotions, in 

females participants, the experiment will extend this research to males as well. Hence, 

among the participants, four subjects are males and the rest are females. To qualify 

for the study, subjects had to have no medical contraindications such as severe 

concomitant disease, alcoholism, drug abuse, and psychological or intellectual 

problems likely to limit compliance. Before the experiment, the participants are 

briefed of the general protocol and they are asked to sign the informed consent. 

Throughout the session, they are constantly reminded to minimize body movement 

and remain silent to reduce any noise in the EEG data. Each participant will perform 

the whole experiment in a single session. This is to minimize any variables, such as 

the impedance values of the electrodes, if each stage is conducted in separate sessions. 

After the whole experiment, they will be asked to fill in a subjective rating form. 

 

4.4.2 EEG Machine 

 

The commercial EEG machines “PL-EEG Wavepoint system” (Medtronic, Inc. 

Denmark) (Figure 4.10) with reusable cup electrodes was used to conduct these 

experiments. Electrodes were placed using ELEFIX EEG paste and SKINPURE skin 

preparation gel, both products of NIHON KOHDEN. The EEG machine has a 

frequency band of 0.1-30Hz, 167 sampling frequency and 30 channel input. During 

all EEG testing, electrical impedances at all electrode sites were less than 13 KΩ. 
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Figure 4.10  PL-EEG wavepoint system 

 
 
 
4.5  Signal Processing Methods 

 
For each participant, 5 sets of Negative emotion state EEG data (anxiety emotion and 

unpleasant emotion) and 5 sets of Control Emotion state EEG data (Neutral Emotion) 

have been collected for the analyzing. The participants are observed carefully for 

signs of significant distress or hints of anxiety, upon which the time is noted down. 

 

In each of these five sets, twelve seconds of mixed EEG data at which the participant 

seems to experience the most anxiety or unpleasant, is extracted. It was determined 

arbitrarily to use twelve seconds for each sampled data because twelve seconds is 

deemed enough time for a distinct anxiety characteristic to be accentuated, yet not too 

long a period such that other artifacts becomes apparent.  

 

The fast fixed-point algorithm for independent component analysis (FastICA) in 

Matlab was invoked to conduct Independent Component Analysis. FastICA is an 
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efficient and popular algorithm for independent component analysis invented by 

Aapo Hyvärinen at Helsinki University of Technology. The algorithm is based on a 

fixed-point iteration scheme maximizing non-gaussianity as a measure of statistical 

independence. It can be also derived as an approximate Newton iteration. FastICA 

separates the mixed signals into distinct, characteristic components independent of 

one another.  

 

EEGLab was invoked to create 3D maps of brain activity for every component. 

Figure 4.11 shows 3D scalp EEG map for one of the 23 independent components’ 

scalp EEG maps for anxiety related EEG signal of Participant 3 (P3). 

 

 

 

 

 

 

 

 

 

Figure 4.11  3D scalp EEG mapping for independent component of anxiety state 
related data 

 

Then, ICA-based EEG Energy Spectrum will be used to analyze the experiment 

results. According to brain structure, biological basis of negative emotion and 
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electrode placement, three types of EEG Energy Spectrum, which are Left Prefrontal 

Energy Spectrum, Right Prefrontal Energy Spectrum and Anterior Temporal Energy 

Spectrum, were defined to investigate the possible features of negative emotion 

measurement by using EEG. The definitions are the following:  

 

Left Prefrontal Energy Spectrum (LPES) is the total number of activation points in all 

the independent components which have peak activation in Fp1 or F7. In order words, 

independent components with peak activations at Fp1 or F7 would be considered to 

have Left Prefrontal cortex activation. In such cases, for every independent 

component which has activation in Fp1 or F7, the data tally for Left Prefrontal 

Energy Spectrum for that participant would be increased by one if only Fp1 or F7 has 

the peak activation and would be increased by two if both Fp1 and F7 have the peak 

activation. 

 

Right Prefrontal Energy Spectrum (RPES) is the total number of activation points in 

all the independent components which have peak activation in Fp2 or F8. In order 

words, independent components with peak activations at Fp2 or F8 would be 

considered to have Right Prefrontal cortex activation. In such cases, for every 

independent component which has activation in Fp2 or F8, the data tally for Right 

Prefrontal Energy Spectrum for that participant would be increased by one if only 

Fp2 or F8 has the peak activation and would be increased by two if both Fp2 and F8 

have the peak activation. 
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Anterior Temporal Energy Spectrum (ATES) is the total number of activation points 

in all the independent components which have peak activation in the scalp sites X1, 

X2, X3, X4, T3 and T4 or any combination of those six sites. In order words, 

independent components with peak activations at X1, X2, X3, X4, T3 and T4 would 

be considered to have temporal pole activation. In such cases, for every independent 

component which has activation in X1, X2, X3, X4, T3 and T4, the data tally for 

Anterior Temporal Energy Spectrum for that participant would be increased by the 

number of activation point in these six points. 

 

Because one independent component represent one independent source in the brain in 

the aspect of EEG and the peak activation area represent the source energy, so the 

LPES will indicate the left prefrontal cortex activation and the RPES will indicate the 

right prefrontal cortex activation. Also, the ATES will indicate the temporal pole 

activation. These three types of ICA-based EEG Energy Spectrum were used to 

evaluate the negative emotion states, such as anxiety emotion, and the neutral 

emotion state. 

 

4.6 Support Vector Machine (SVM) Verification 

 

Support Vector Machine (SVM) was used to verify the classable of EEG data 

between anxiety state and neutral emotion state. 
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4.6.1 SVM basic algorism 

 

The best word to describe the EEG signal is complex. The EEG complexity originates 

in the intricate neural system, which is almost a black-box to us. The complexity of 

EEG signals requires some advanced signal processing methodology prior to any 

brain activity identification. Therefore, to evaluate the EEG patterns related to 

different emotion states, a standard artificial learning, two-class Support Vector 

Machine was used. This machine learning method is widely used for classification 

(pattern recognition) and regression models, and has been generally believed the best 

statistical tool for classification and regression.   

 

SVM are learning machines that can perform binary classification (pattern 

recognition) and real valued function approximation (regression estimation) tasks 

(Haykin 1999). SVM are generally competitive to (if not better than) Neural 

Networks or other statistical pattern recognition techniques for solving pattern 

recognition problems. It is also handy for solving regression problem, which is 

convenient for continuous tracking fatigue. More importantly, SVM are showing high 

performance in practical applications in recent studies. Therefore, SVM is chosen to 

be used in this study. Figure 4.12, 4.13 and 4.14 show the good performance of SVM 

as a binary classifier. 

 

Consider two classes’ training vectors xi∈Rn, i=1, … , l, and the corresponding target 

vector y∈{-1, 1}, SVM solves the following primal problem:  
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The decision function is 
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Figure 4.12  Plot of two-class dataset 
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Figure 4.13  Train-set plot and test-set plot 

 
 
 

 

 

 

 

 

 

 

Figure 4.14  Resulting decision boundary of SVM and train-set or test-set data plot 

 

The intuitive way to solve the multi-class classification is “one-against-one” approach. 

In total of k(k-1)/2 classifiers are actually constructed and each one is trained using 

data from two different classes. For training data from the ith and the jth classes, the 

primal problem is: 
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w = vector of the separating hyperplane which is parameterized by (w,b) 

x = position vectors of training data points 

φ = function that maps input space to a high dimensional feature space 

ξ = quadratic slack variable added as a measure of error. 

C = parameter of trade off between fitting and error tolerance i.e. penalization of the 

slack variable, ξ. 

 

Since our objective is continuously monitoring emotion, the system’s output should 

be able to track the subtle change of emotion in individuals. Therefore, the pattern 

recognition should go for regression after essential features in relationship to emotion 

are validated by means of multi-class classification. Given a set of available samples, 

{(x1, z1), … , (xl, zl)}, such that zi∈R1 is a target value of input xi∈Rn, the standard 

form of SVM for regression is: 

 

*

*

, , , 1 1

*

*

1min
2

subject to ( ) ,  

( ) ,

, 0, 1, 2,..., .

l l
T

i i
b i i

T
i i

T
i i

i i

C C

b z

z b

t l

ξ ξ

φ ε ξ

φ ε ξ

ξ ξ

= =

⋅ + +

⋅ + − ≤ −

− ⋅ − ≤ +

≥ =

∑ ∑
w ξ ξ

i

i

w w

w x

w x
 (4.7) 

The corresponding dual problem is: 
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where Qij=K(xi, xj)=φT(xi) φ(xj). 

The resulting approximate function is:  
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4.6.2 Data Labeling 

 

Each subjects EEG data were labeled accordingly to the emotion states. In the 

standard artificial learning, dual-class SVM was used to evaluate EEG patterns 

related to the two different classes: Anxiety (AX) and Neutral Emotion (NE) States.  

 

4.6.3 Feature Extraction 

 

A fast Fourier transform (FFT) and Power Spectra Density (PSD) were performed on 

the EEG data. Four features used were extracted from the power spectrum of the EEG 

data. The frequency range was separated into four frequency bands, namely Delta 

(1.5Hz~3.5Hz), Theta (3.5Hz~7.5Hz), Alpha (7.5Hz~12.5Hz) and Beta 

(12.5Hz~25.0Hz). The four features were intended to characterize the power spectral 

density of EEG data (Hao 1997). Their detailed definitions were as following:  
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Feature 1: Dominant frequency 

 

Every peak in the power spectrum corresponded to a peak frequency. The peak here 

was defined as formed by two points. One of them was within the rising slope and the 

other was within the falling slope, and they corresponded to amplitudes equal to half 

the amplitude of the peak. These two frequencies formed a frequency band. This band 

was called full width half maximum band of the peak. Among all the peaks in a 

spectrum, the peak with the largest average power in its full width half maximum 

band was called the dominant peak. The peak frequency corresponded to this 

dominant peak was defined as dominant frequency. This feature was applied to each 

frequency band. 

 

Feature 2: Average power on the dominant peak 

 

This was defined as the average power on the full width half maximum band of the 

dominant peak. 

 

Feature 3: Center of gravity frequencies 

 

This parameter was defined as the frequencies that the power spectrum in the given 

frequency range concentrate. In other words, we can consider this parameter as given 

the normalized power spectrum as the probability, the mean of frequency. It was 
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described by the following formula: 
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where P(fi) is the power at frequency fi. 

 

Feature 4: Frequency variability 

 

This feature was defined as the standard deviation of frequency given the power 

spectrum as the probability distribution. It was given in the following formula: 
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The window used in estimating the power spectrum was 500 samples with the 

sampling frequency 167 Hz, which was in total 3 seconds. Windows overlapped by 

the time increment of 5 sample points. The dimension of the feature vector was 4 

characteristics×4 frequency bands ×(19+4) channels = 368.  

 

4.6.4 Training and testing SVM model 

 

All the EEG datasets for different subjects and different emotion states were 

separated equally into two parts, one was for training the SVM model (training data), 
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and the other one was for testing the model (testing data). To achieve less bias, we 

randomized the datasets for these two parts. The labeled training EEG data were fed 

into SVM; an optimal C value as shown in Equation (4.6) was achieved. Therefore, a 

dual-class SVM model was set up. Afterwards using the testing data to verify the 

model, test accuracy was given as the output.
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5 Results and Discussions  
 
 

5.1  Effectiveness of ICA-based EEG Energy Spectrum 

5.1.1 Anterior Temporal Energy Spectrum in negative emotion states vs. neutral 
emotion state 

 

Firstly, pain-induced anxiety state related EEG data was calculated by the Anterior 

Temporal Energy Spectrum and compared with the ATES in neutral emotion state. 

Figure 5.1 shows the ATES comparison between anxiety state and neutral emotion 

state 1, in which the neutral emotion is induced by mentally mathematical calculation 

and the anxiety emotion is induced by the electrical shocks. The results showed that 

the averaged ATES in pain induced Anxiety state is 23.6 while it is 18.8 in Neutral 

Emotion state 1, which means the averaged ATES in Anxiety State is increased by 

25.5 percent in compared with the ATES in Neutral Emotion state 1. 

 

Secondly, International Affective Picture System induced Unpleasant emotion related 

EEG data was calculated by the Anterior Temporal Energy Spectrum and compared 

with the ATES in neutral emotion state 2. 

 

Figure 5.2 shows the ATES comparison between unpleasant emotion state and neutral 

emotion state 2, in which the unpleasant emotion was induced by international 

affective picture system and the neutral emotion state 2 was the baseline. The results 

showed that the averaged ATES in IAPS induced negative emotion state is 18.2 while 
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it is 15.2 in neutral emotion state 2, which means the averaged ATES in IAPS 

induced negative emotion state is increased by 19.7 percent in compared with the 

ATES in neutral emotion state. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5.1  ATES comparison between anxiety state and neutral emotion state 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2  ATES comparison between unpleasant emotion state and neutral emotion 
state 2 
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However, there is no significant different between the ATES of positive emotion and 

the ATES of neutral emotion in this research. This may because of the low arousal of 

positive emotions by the International Affective Picture System or the failure of 

inducing the positive emotions by the IAPS. This has been confirmed by the 

questionnaire submitted by the participants after the experiment. 

 

Our results showed that there is an obvious difference in ATES between anxiety state 

or negative emotion state and neutral emotion state. Reiman et al. reported in a PET 

study significant blood flow increases in the bilateral temporal poles during the 

production of anticipatory anxiety (Reiman 1989). Other evidences showed that 

patients with temporal pole epilepsy experience fear and anxiety, and the temporal 

pole is associated with panic. Moreover, Yuri Masaoka also confirmed that the 

temporal pole and Amygdala are associated with human anxiety, which means the 

neuron groups in the temporal pole and Amygdala will be activated when the subject 

is in anxiety state. (Masaoka 2000) Thus, negative emotions, such as anxiety, can be 

considered as the result of sub-neuron groups’ activation of temporal pole and 

Amygdala, which will appear in peak electrical potentials at specific locations on the 

scalp. By counting the number of these peak electrical potentials, the intensity of 

neuron activation of temporal pole and Amygdala can be determined. This forms the 

principle of the anterior temporal Energy Spectrum of anxiety. 

 

From the brain anatomy, the anterior temporal region is the one which covers the 

temporal pole and Amygdala. So the ATES was calculated and the result is consistent 



5. Results and Discussions 

 64

with all literatures results, indicates that negative emotions, especially anxiety, causes 

discernible differences in EEG data and these differences are detectable using EEG. 

 

Furthermore, the ATES in the pain-induced anxiety is larger than ATES in the 

IAPS-induced negative emotion, for which one of the possible reasons is the low 

arousal of emotions by the static pictures system.  

 
 

5.1.2 Asymmetry of Prefrontal Energy Spectrum in negative emotion states vs. 
control emotion state  

 
 
The asymmetry of frontal power spectrum is illustrated by the comparison between 

the averaged Left and Right Prefrontal Energy Spectrum. Figure 5.3 shows the 

averaged LFPS in anxiety state is 10.6, in compared with 9.6 in neutral emotion state, 

while averaged RFPS is 12.6 in anxiety state, in compared with only 8.6 in neutral 

emotion state, which means the ratio of LFPS and RFPS decrease a lot in anxiety 

state in compared with in neutral state. 

 

Then, IAPS induced negative emotion related EEG data and neutral emotion related 

EEG data were analyzed and compared by the Left Prefrontal Energy Spectrum and 

Right Prefrontal Energy Spectrum.  

 

Figure 5.4 shows the averaged LFPS in unpleasant state is 14.6, in compared with 

10.8 in neutral emotion state, while averaged RFPS is 18 in anxiety state, in 

compared with only 13 in neutral emotion state, which means the ratio of LFPS and 
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RFPS decrease a lot in unpleasant emotion state in compared with in neutral emotion 

state. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3  Prefrontal Energy Spectrum in anxiety state and neutral state 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4  Prefrontal Energy Spectrum in negative emotion state and neutral 
emotion state 

 
 

Using EEG to study brain asymmetry in humans, researchers have recently made 

many discoveries suggesting that individual differences in electrical activity between 

the two brain hemispheres can be used to predict emotional responses to various 

stimuli. On the basis of a large body of both human and animal studies, Davidson and 
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his colleagues (Davidson 2003) have proposed that greater left-sided dorsolateral 

activity may be associated with approach-related, goal-directed action planning, 

whereas on a lesser level of consensus, based on neuron-imaging studies of spatial 

working memory, they suggested that activation of right lateral prefrontal cortex 

during withdrawal-related emotion may be associated with threat-related vigilance.  

 

Davidson also reported that positive and negative affective states shift the asymmetry 

in prefrontal brain electrical activity in lawful ways. For example, film-induced 

negative affect i.e fear/anxiety increases relative right-sided prefrontal cortex 

activation, whereas induced positive affect elicits an opposite pattern of asymmetric 

activation. The results from Figure 5.3 are mostly consistent with Davidson’s findings; 

with the exception that positive affect was not induced for the current study. For all 

participants, the percentage of right prefrontal cortex activations in AX averaged 

18.8% higher than that of left prefrontal cortex activation, implying that under anxiety 

states; right prefrontal cortex activity is invariably heightened when compared to the 

control (NE).  

 

Recent neuron-imaging findings have demonstrated inverse relationships between 

activity in the Amygdala and regions of prefrontal cortex. One particular study using 

PET indicated that in normal subjects, glucose metabolism in left medial and lateral 

PFC is inversely associated with glucose metabolic rate in the Amygdala. It follows 

that subjects with greater relative right-sided prefrontal metabolism have higher 

metabolic activity in their Amygdala. Superimposed with findings from the current 
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study it can be inferred that lower ratio of LPES and RPES in AX compared to NE is 

explained by the positive correlation of right PFC activity with Amygdala activity. 

Therefore, electrical activity in the right PFC is found to be an indirect measure of the 

level of activity at the Amygdala. One possible neuron-physiological explanation for 

this is that the prefrontal cortex has extensive anatomical connections with the limbic 

structures like the Amygdala. It implies that the Amygdala is indirectly implicated 

with the prefrontal cortex in this complex neural circuitry of negative affect. 

 

Other findings have supported that the prefrontal cortex is part of a neural mechanism 

that regulates emotional responses mediated by the Amygdala through conscious 

evaluation and appraisal. In the pain-induced anxiety stage, participants of the 

experiment were blindfolded and were unintentionally forced to rely on other cues 

such as sound and subtle changes in airflow near the skin, to predict when the electric 

shock would occur. When a cue emerges, the participant may feel a sudden wave of 

anxiety temporarily. However, the feeling of anxiety dies down upon recognizing that 

it was a false alarm i.e. the shock did not strike then. The state of anxiety does not 

persist because there is a cognitive, conscious evaluation of the situation that involves 

the prefrontal cortex in the neural modulation of negative emotion. Negative emotion 

regulation is implied only in states of anxiety and not in emotionless or positive 

affective states because the participant is not experiencing anything negative in the 

first place. Thus, the results are explained even further by the role in which the 

prefrontal cortex plays in regulating negative emotional responses from the Amygdala 

through indirect inhibitory connections.  
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Collectively, the findings regarding decreased ratio of LPES and RPES in AX 

compared to NE indicates that EEG can detect anxiety through prefrontal power 

spectrum. This further substantiates the point that negative emotions, especially 

anxiety, causes discernible differences in EEG data and these differences are 

detectable using EEG. 

 
 

5.1.3 Validation of Experiment design 
 
 
In our results, the positive emotions induced by IAPS can not be differentiated from 

baseline or neutral emotions induced by IAPS. This is because of the difficult in 

inducing positive emotion in the laboratory condition, which has been pointed out in 

the literatures. And also this has been confirmed by the questionnaire from the 

participants after the experiments. In the questionnaire, the subjects pointed out that 

they were experiencing much more in the negative emotion inducing process than in 

the positive emotion inducing process.  

 

Furthermore, using IAPS to induce negative emotion has been verified by many other 

researchers, and their results have shown that IAPS has more effect in inducing 

negative emotions than in inducing positive emotions, which is consistent with our 

results. 
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For the pain-induced anxiety, it could be beyond the comprehension of some as to 

why this study had performed experiments using induced anxiety with pain. Also, 

some skeptics may argue that the stimulus of this study i.e. anticipating an electrical 

shock; may not be sufficient to induce a state of anxiety in the study participant.   

 

In a study on anxiety related respiratory potentials, the temporal poles and the 

Amygdala showed increased levels of oxygen consumption activity when the 

participants in the experiment were subjected to anxiety inducing stimuli. (Masaoka 

2000) The stimulus used in this experiment was an electric pulse that stung the 

forefinger of each experiment participant. Anxiety was self-reported after the 

experiment was completed and said to occur during periods where the participants 

anticipated the electric stimulus (Masaoka 2000). Since both experimental results and 

self report implicated a state of anxiety, it is with a high degree of certainty that this 

experimental method was effective for Masaoka’s study. As the anxiety inducing 

methods used in both studies are similar, the experimental data acquired is safely 

assumed to contain states of anxiety. 

 

Since each participant has five trails to be induced anxiety, the relationship between 

the induced anxiety and the experiment runs has been investigated. Figure 5.5 shows 

the trend of the averaged asymmetry of frontal energy spectrum changing with the 

experiment trails in anxiety state and neutral emotion state. 
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In Figure 5.5, the ratio of the LPES and RPES in anxiety state increased with the 

experiment runs. Moreover, the ratio of the LPES and RPES in neutral emotion state 

is lower than that in anxiety emotion in the first 4 trails, but in the fifth trail, the result 

is just the opposite. The possible reason is that the participant may become more and 

more getting used to these electrical shocks, thus the induced effect will be decrease, 

even there is no anxiety in the fifth trail. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.5  Validation of experiment design 
The horizontal axis is the experiment trails and the vertical axis is the ratio of LPES 
and RPES, which indicates the asymmetry of frontal energy spectrum. In this figure, 
the dotted line represented the asymmetry of frontal energy spectrum in the neutral 
emotion state, while the real line stood for the asymmetry of frontal energy spectrum 
in the anxiety state.  
 
 
For the neutral emotion state, the participant was requested to do the mental 

mathematical calculation according to the experiment protocol; therefore, the long 

time mental mathematical calculation could lead the participant to produce some 

other negative affect, such as slightly dysphoria, slightly depression. All these have 

been confirmed by the questionnaire for all participants after the experiments. So the 

experiment should not be repeated too many times on the same participant in one time 

slot. 
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5.1.4 SVM Verification of the EEG data 
 
 
The level of accuracy is calculated to be 86.4% by using default C value of 1.0. As 

we know, C is a parameter of the trade off between fitting and error tolerance. 

However, the default value is not the best value to be used during SVM prediction of 

the two classed (AX and NE). An iterative train and test method that is analogous to 

“tuning” may be used such that the C parameter is optimized. To achieve this, each 

raw EEG data set used to train the SVM is trained and tested against the other data 

sets which are also involved in the SVM training. An optimal C value is obtained 

through this training, which will result in a heightened accuracy rate when the SVM 

tests and predicts EEG data as AX or NE. Figure 5.6 shows the results from the 

optimization of C parameter when testing and training hand-picked values from 2-4 to 

23. The C value with the highest accuracy rate is the optimal C value. 

 

 

 

 

 

 

 

 

Figure 5.6  Relationship between Training Accuracy Rate and C value of SVM 
during optimization 
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The optimal C is found to be C=4.0. Using this new optimal C parameter in the 

SVM’s prediction of EEG data, the results are shown in Table 5.1: 

Table 5.1  SVM prediction result with optimal C 

Parameter Value 
Accuracy rate 86.9429%

Mean squared error 0.130571 
Squared correlation coefficient 0.545955 

 
Therefore, instead of the accuracy rate of 86.4% procured by the default C parameter 

of 1.0, the optimal C parameter of 4.0 found the accuracy rate to be 86.9%. 

 

The SVM prediction accuracy results show that there are obvious differences between 

negative emotion state and neutral emotion state in the aspect of EEG data, which 

have been confirmed by our experiment results. 



6. Conclusions 

 73

6 Conclusions 
 

6.1  Conclusions 

This study is mainly to develop the novel signal processing methodology and pattern 

recognition system, which can be used to detect and identify subtle changes in the 

EEG signal in relationship to negative emotions of individuals through some 

measurable characteristics.   

6.1.1 ICA-based EEG Energy Spectrum has been proposed 
 
 

 The ICA based EEG energy spectrum at a particular location is defined by 

the number of ICA components with the peak potential at the location, in which 

each ICA component corresponds to a specific neuronal activation in the brain. 

 

 The energy spectrum has been applied to the negative emotions, such as 

anxiety, measurement by counting the energy spectrum at the prefrontal and 

anterior temporal regions.  

 

 The experimental results showed that the anterior temporal energy spectrum 

increased significantly and the ratio of right prefrontal energy spectrum to left 

prefrontal energy spectrum increases significantly from Neutral Emotion mode 

to Negative Emotion mode. 
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6.1.2 Negative emotions, especially anxiety, causes discernible differences in EEG 
data in compared with neutral emotion and these differences are detectable 
using EEG 

 
 

 A series experiments have been designed for the negative emotion detection 

and experiment results have been analyzed by ICA based EEG Energy 

Spectrum and verified by SVM. The results have shown that the experimental 

protocol is useful for the negative emotion measurement or detection. 

 

 Negative emotions and neutral emotion have shown significant differences 

by using ICA based EEG Energy Spectrum analysis, including the anterior 

temporal energy spectrum and asymmetry of prefrontal energy spectrum. 

 

 The dual-class SVM prediction has achieved very high accuracy, which  

substantiate that there are obvious differences between negative emotion state 

and neutral emotion state in the aspect of EEG data  

 

 Our results have shown that one type of specific emotion stimulus should not 

be put on the subjects for the long time; otherwise, the same stimulus will 

produce the opposite effect. For example, mental mathematical calculation was 

designed to induce the neutral emotion, but the long time of mental 

mathematical calculation would induce the negative emotions, such as 

abhorring. Also, the fear of pain was designed to induce the negative emotions, 

such as anxiety, however, the long term of the pain will let the subject get used 

to this feeling and the induced negative emotion would be weakened. 
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6.2 Recommendations for Future Work 

Although the proposed method has achieved the primary objective of negative 

emotion measurement using EEG and SVM, improvements can be made to make this 

method more accurate and reliable. Directions in which this work could be further 

explored and enhanced are as follows:  

 

1. Further consider and improve the experiment design. Our limitation of this study 

lies in the emotion stimulus. The positive emotion induced by IAPS was unsuccessful 

in the experiments. So other types of stimulus for positive emotion should be 

considered. Also, the stimulus for negative emotion should also be standardized. Such 

as, the electrical pulse should be exerted by the clinical nerve conduction tester 

capable of generating mild electrical shock, by which the pain induced anxiety degree 

can be controllable. 

 

2. Recruit a larger population samples and include wider range. Not all subjects 

demonstrated the same set of physiological characteristics because of individual 

differences such as age, gender, or the different ability to control emotion. And the 

detection and prediction accuracy could be increase when a larger sample of testing 

data was used. Hence future experimentations should increase the sample size and 

include a wider range such as age and races. 
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3. New EEG machine should be used in the future experiments. The new EEG 

machine should be stable and have large frequency bandwidth. Especially, this new 

EEG system should have enough input channels for the possible appended electrodes. 

 

4. In this study, only the dual SVM prediction has been conducted, thus in future 

experiments, the multi emotion states should be considered together and the 

multi-SVM prediction should be considered. 
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