
EXPLORATION OF A FRAMEWORK FOR

BEHAVIOR-BASED MALWARE DETECTION AND

CLASSIFICATION

TING MENG YEAN

NATIONAL UNIVERSITY OF

SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48631064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EXPLORATION OF A FRAMEWORK FOR

BEHAVIOR-BASED MALWARE DETECTION AND

CLASSIFICATION

TING MENG YEAN
B.CS (Hons.), Melbourne

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF

SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2006

Acknowledgements

I would like to thank A/P Chi Chi-Hung for his mentorship, the effort he

put into our discussions and all his help in revising the thesis. I would also

like to acknowledge Dr Ken Sung for all his support. Finally, I would like

to thank my parents for supporting me and having faith in my work.

I

Contents

Summary VII

List of Tables X

List of Figures XII

1 Introduction 1

1.1 Background . 1

1.2 Malware Introduction . 2

1.3 Current Defense . 3

1.4 Behavioral Approach . 5

1.5 Objectives and Contributions 5

1.6 Structure of Thesis . 7

2 Behavioral Approach Overview 9

2.1 Basic Concept . 9

2.2 Risk Factor . 10

2.3 Justification of Approach . 11

2.4 Advantages of Approach . 12

2.4.1 Value of Malwares 12

2.4.2 Limited Malware Actions 12

2.4.3 Advantage against Obfuscated Threats 14

2.5 Limitations of Approach . 15

2.5.1 Weakness of Dynamic System 15

II

III

2.5.2 Truly Novel Behaviors 15

2.5.3 False Positive Rates 16

2.6 Motivation . 16

2.7 Potential . 17

3 Related Works 18

3.1 Anomaly-based IDS using System Calls 18

3.2 Behavior Specific Research 20

3.2.1 Windows Registry Accesses 20

3.2.2 File System Accesses 20

3.2.3 Code Injection Attacks 20

3.2.4 Code Replication . 21

3.2.5 Email Propagation Behaviors 21

3.2.6 Network Traffic Monitoring 21

3.3 Behavior-based Research . 22

3.3.1 Deductive Reasoning 22

3.3.2 Static Analysis for Vicious Executable 22

3.3.3 Malware Behavior Detection Systems 22

3.3.4 Gatekeeper . 23

3.3.5 Behavioral Classification 23

4 Malware Behaviors 25

4.1 Malware Propagation Share and Trends 25

4.2 Malware Sample Choices . 27

4.3 Malware Behavior Survey 29

4.3.1 Choice of Information Source 29

4.3.2 Text Description Conversion to Behavioral Functions 30

4.4 Behavior Functions . 31

4.4.1 File and Directory 32

4.4.2 Service . 36

IV

4.4.3 Process . 37

4.4.4 Graphical User Interface 38

4.4.5 Email . 39

4.4.6 System Information 39

4.4.7 Network . 40

4.4.8 Windows Network File Sharing 41

4.4.9 Registry . 42

4.4.10 Suspicious Activity or Condition 44

4.4.11 Attack Vector . 45

4.5 Risk Differentiation . 46

4.6 Compilation of All Behavior Functions 47

4.7 Prevalent Behaviors . 47

4.8 Combinations of Independent Behaviors 49

4.9 Complex or Correlated Behaviors 51

4.9.1 Survive System Reboot 51

4.9.2 Find Email Addresses 52

4.9.3 Malware Local Replication 54

4.10 Study of Cross Family Behaviors 55

4.10.1 Malware Naming and Classification Convention . . . 55

4.10.2 Malware Similarity Matrix 57

4.10.3 Analyzing the Similarity Matrix 59

5 Experimental Methodology 62

5.1 Choice of Sensor . 62

5.1.1 Experimental Objectives 62

5.1.2 Static Analysis versus Dynamic Monitoring 62

5.1.3 Sensor Level . 64

5.2 Windows Internal Architecture 66

5.3 Choice of API Level Monitoring 67

5.3.1 Advantages of Native API 68

V

5.3.2 Limitations of Native API 68

5.4 Chosen Implementation . 69

5.5 Experimental Environment 70

5.5.1 Virtualization versus Emulation 70

5.5.2 Platform Operating System 71

5.5.3 Network Configuration 71

5.5.4 Honeytokens: Email Addresses and Files 73

5.6 Experimental Progress . 74

5.6.1 Traces of Common or Commercial Applications . . . 74

5.6.2 Traces of Malwares 75

6 Behavior Modeling 77

6.1 Recap of Anomaly-based Systems using System Calls 78

6.2 Behavioral Blocks . 78

6.2.1 Delimiters . 79

6.2.2 Block Property . 80

6.3 Identification of Block Behavior 83

6.3.1 Detection . 86

6.3.2 Identification . 86

6.4 Matching Blocks with Finite State Automata 90

6.4.1 Block FSA . 90

6.4.2 Generalized Block FSA 92

6.5 Behavioral Macros . 94

6.5.1 Interleaving Blocks 94

6.5.2 Intersecting Blocks 95

6.5.3 Super Blocks . 95

6.6 Mapping of Behaviors to Blocks 96

6.7 Correlation of Behavior Blocks or Macros 99

VI

7 Malware Behavioral Analysis 100

7.1 Accuracy of Technical Descriptions from Anti-virus Companies100

7.1.1 Recap of Behavioral Functions Used 101

7.1.2 Discussion of Description Accuracy 103

7.2 Detection Capability . 104

7.3 Generalization of Behaviors 107

7.4 Discussions About Behaviors 108

7.4.1 Importance of Behavior Functions 108

7.4.2 New Behavior: Repeated Functions 109

7.4.3 Consideration About Processes 110

7.4.4 New Local Infection Trend 111

7.5 Early Detection versus Identification Accuracy 112

7.5.1 Blocks . 112

7.5.2 Macros . 112

7.6 Speed of Behavior Identification or Detection 113

7.6.1 Unit of Measurement: Delta Time 114

7.6.2 Example: Identification of survive system reboot Be-

havior . 114

7.6.3 Importance of Detection Speed 115

8 Conclusions and Further Works 117

8.1 Conclusions . 117

8.2 Further Works . 118

8.2.1 Modifiers . 118

8.2.2 Behavior-based System Implementation 119

Bibliography i

A Variants Within Malware Families vii

B Behavior Functions Compilation viii

VII

C Complex or Correlated Behaviors xi

C.1 Survive System Reboot . xi

C.2 Find Email Addresses . xii

C.3 Malware Local Replication xii

D Behavior Analysis xiii

D.1 Malware Detected Behaviors xiii

D.2 Malware Detected Behaviors in Normal Application xiv

D.3 Detected Correlated survive system reboot Behaviors xv

D.4 Detected Correlated find email addresses Behaviors xvi

D.5 Detection Speed of survive system reboot Basic Behavior . . xvi

E Kaspersky Lab Email-Worm.Win32.Bagle.ai Description xvii

F Examples of Converted Malware Descriptions xx

F.1 Email-Worm.Win32.Bagle.at xx

F.2 Email-Worm.Win32.Sober.g xxiv

Summary

One of the greatest security threats that we face today is malwares like

worms and viruses. But as current defenses against malwares are fast ap-

proaching their limits, we propose a new behavioral approach to combat

this threat.

This thesis attempts to study the feasibility of detecting malwares based on

behaviors and forms the basis of a new behavior-based detection system.

While the final aim of our research is to study the behaviors of malware,

the scope of this thesis is limit to malware detection. The reason for this

approach is that we believe all malwares share some common behaviors,

and malwares within the same families display more similar behaviors.

We will explore a framework that allows the modeling of high-level be-

haviors from Windows native API system calls. But rather than simply

using sequences of API calls to build behavior signatures like many other

researches, we built semantically rich behavioral signatures based on con-

text provided the system call and reverse engineering based on descriptions

provided by anti-virus companies.

In our analysis, we were successfully in identifying some behaviors common

to all or most of our malware samples, but not to the set of normal applica-

tions used as baseline; thus showing the capability of our system to detect

VIII

IX

for the presence of known malwares and newer malware variants. We were

also able to observe some interesting features of the malwares by studying

the behavioral information provided by the framework.

List of Tables

2.1 Malware Packages and Examples of Functions 13

4.1 Captured Traffic Share of Top 20 Malwares 26
4.2 Captured Traffic Share of Top 13 Malware Families 26
4.3 First Malware From Each Sample Family 28
4.4 Newer Malware Variants From Some Sample Families 28
4.5 Behavior Pairs That Cover 100% of Malwares 50
4.7 Malware Similarity Matrix 58

5.1 Versions of Microsoft Windows 71
5.2 Examples of Email Patterns Avoided by Malwares 73
5.3 Examples of File Extensions Searched by Malwares 74
5.4 Normal Applications Studied 75
5.5 Trace Capture Status of Malwares Studied 76

6.1 Examples of Begin Delimiter System Calls 80
6.5 dir search2 Blocks from Sober.f Sample Trace 99

7.1 Blocks That Form the file create Behavior 107
7.2 Frequency of registry add Functions in Bagle.ai 109
7.3 Frequency of registry add Functions in Bagle.at 109

A.1 Variants of Top 13 Malware Families vii

B.1 Behavior Function Compilation x

C.1 Correlated Survive System Reboot Behavior xi
C.2 Correlated Find Email Addresses Behaviors xii
C.3 Correlated Local Replication Behaviors xii

D.1 Malware Detected Behaviors xiii
D.2 Detected Malware Behaviors in Normal Application xiv
D.3 Detected Correlated survive system reboot Behaviors xv
D.4 Detected find email addresses Behaviors xvi
D.5 survive system reboot Detection in Delta Time xvi

X

List of Figures

4.1 Extract of Kaspersky Lab Email-Worm.Win32.Bagle.at De-
scription . 30

4.2 Description of Email-Worm.Win32.Bagle.at File Copy and
Registry Creation Behaviors 31

4.3 Fake Dialog Box displayed by Sober.a 38
4.4 Most Prevalent Malware Behaviors 48
4.5 Coverage of Malware Behavior Pairs 49
4.6 Coverage of Malware Behavior Triplets 50
4.7 Correlated survive system reboot Behavior 52
4.8 Correlated find email addresses Behavior 53
4.9 Correlated local replication Behavior 54
4.10 Top Three Most Similar Malwares To LovGate Family Variants 59
4.11 Top Three Most Similar Malwares To Sober Family Variants 59
4.12 Top Three Most Similar Malwares To Bagle Family Variants 60
4.13 Top Three Most Similar Malwares To Klez Family Variants . 60

5.1 Windows API Call . 67
5.2 Experiment Virtual Network Diagram 72

6.1 API System Call Event Sequence with Sliding Window of 5 . 78
6.2 Extract of Bagle.ai Sample Trace 81
6.3 NtWriteFile System Call Event from Bagle.ai Sample Trace . 81
6.4 NtCreateFile System Call Event from Bagle.ai Sample Trace 82
6.5 Extract of Lovelorn.a Sample Trace 83
6.6 NtWriteFile System Call Event from Lovelorn.a Sample Trace 84
6.7 NtQueryVolumeInformationFile System Call Event from Lovelorn.a

Sample Trace . 84
6.8 NtCreateFile System Call Event from Lovelorn.a Sample Trace 85
6.9 System Call Events and Arguments Representing file write9 89
6.10 file write9 Block FSA . 91
6.11 Generalized file write9 Block FSA 93
6.12 Generalized file read5 Block FSA 93
6.13 Bagle.at File Copy Macro Behavior 94
6.14 Extract of Email-Worm.Win32.Bagle.at Sample Trace 95
6.15 Extract of Sample Trace from Bagle.ai 96
6.16 code injection Extract of Sample LovGate.a Trace 98

7.1 Percentage of Correctly Detected Malware Behaviors 104
7.2 Percentage of Detected Malware Behaviors in Normal Ap-

plication . 105

XI

XII

7.3 Percentage of Detected Correlated survive system reboot Be-
haviors . 105

7.4 Percentage of Detected Correlated find email addresses Be-
haviors . 106

7.5 Percentage of Malwares Sharing file write Blocks 108
7.6 Simplified file write9 Block FSA 112
7.7 Bagle.at search all dir recursive Macro Behavior 113
7.8 survive system reboot Detection Speed in Delta Time 115

Chapter 1

Introduction

1.1 Background

Computers today face an onslaught of security threats, from distributed

denial-of-service attacks by botnets, to losing passwords and credit card

information to keystroke loggers. While it seems that a myriad of security

techniques are required to combat these threats, they do have a common

cause: malwares.

Malwares are considered a high priority in the information security sector.

We believe that any improvement in stopping malwares can be very helpful

in slowing down the spread of malwares, thus significantly alleviating the

security threats faced today.

As the current malware detection technology like the anti-virus systems

are fast approaching their limits, we propose a new behavioral approach to

combat this threat.

Rather than to attempt the herculean task of stopping malwares, we just

seek to slow down the propagation. This can be accomplished just by being

1

2

able to detect some classes of novel malwares on certain operating systems.

We hope that by understanding malwares based on their behavior, we can

provide another angle of looking at malware threats that can complement

current detection technology.

1.2 Malware Introduction

Malware, or malicious software, is a broad category of software designed

to cause computers to act in a way not authorized by their owners. Two

common classes of malwares will be explored in this thesis based on what

they do and how they spread: viruses and worms.

Viruses and worms have the ability to self-replicate: that is, they can spread

copies of themselves within the infected host, or propagate themselves to

other hosts. The main difference between viruses and worms is that worms

have the ability to spread by themselves. Worms are usually self-contained

and carry the propagation mechanism in addition to the exploits and pay-

loads.

Viruses on the other hand, depend on the hosts to spread themselves. The

most common propagation strategy is for the virus to embed itself in e-mail

as attachment, depending on the recipient to open the viral attachment.

The rate of propagation for these mobile malwares is extremely fast. For ex-

ample, the “Code-Red version 2” worms infected more than 359,000 hosts

in less than 14 hours on July 19, 2001 [8]. It is not inconceivable for a

hacker to be able to form a botnet of hundreds of thousands of infected

hosts within a short period of time.

3

The greatest advantage of malwares is their automated, fire-and-forget vec-

tor of attack. That is, the hackers do not need to manually monitor the

malwares they launched. Worms and viruses will spread by themselves;

or be embedded into web pages or trojaned applications, just waiting for

unsuspecting users to download and activate them. Malwares are widely

believed to be the most pressing security concern for most of the Internet

population.

To understand some of the problems caused by malwares, let us take the

example of when a flash worm spreads: the process could take up a large

amount of the network traffic. This could not only affect servers and hosts

so much that legitimate users will experience some degree of denial-of-

service, the wastage of the Internet or network bandwidth is also very

expensive to Internet service providers.

1.3 Current Defense

Currently, the most common form of detection strategy against malwares is

the misuse-signature based approach. This approach presumes any behav-

ior in the knowledge base to be malicious, while any behavior not found in

that knowledge base are presumed to be normal. We have countless anti-

virus systems, spyware hunters, intrusion detection systems and intelligent

firewalls utilizing this pattern-matching defense.

Misuse-signature based systems basically does pattern matching: anti-virus

systems scans files and memory, and network-based intrusion detection sys-

tems scans network packets, for patterns matching known malicious bina-

ries or protocol in its database.

4

While anti-virus systems have evolved to include heuristics to detect novel

viruses, and sandboxing to extract the execution behavior of polymorphic

malwares, their basic premise still depends upon a known database of ex-

ploit signatures.

Anomaly-statistical based approach, takes the opposite stance. It presumes

any behavior in the knowledge base to be normal, but the knowledge base

contains trend of past behaviors, as oppose to exact signatures. Any de-

viation from the behaviors in the knowledge base is classified based on

heuristics or probability/statistics, to be abnormal, or possibly malicious.

The greatest strength of misuse-signature based approach is its high prob-

ability of correct threat identification. Compared to anomaly-based sys-

tems, it has a very low rate of false positives. For exact protocol or binary

matches, the intrusion or malware detection is definite, rather than based

on some confidence level.

While some might contend that searching through a large database of sig-

nature is not practical, hashing algorithms enables the matching of events

or binaries to a large number of signatures to be done very efficiently.

The main disadvantage of the misuse-signature system is its inability to

detect unknown threats. It is reactive as any new malwares or exploits

must be captured before signatures can be created for them. The time lag

between getting the malware sample and deployment of created signatures

creates a time window for the new malware to spread. In addition, the

process of signature creation is very labor and knowledge intensive.

5

1.4 Behavioral Approach

Our behavior-based approach utilizes high-level behaviors for malware de-

tection. The basic assumptions that we made are that all malware have

shared behaviors, and must perform some actions. We will show that it is

possible to detect for the presence of malwares using known behaviors.

Another assumption that we made is that malwares within the same family

share more similarity than with malwares in other family. If this is true,

we will be able to generalize the detection behavior functions to detect

novel variants of a malware family. Our framework will allow for the ver-

ification of this assumption in future work. This is important because if

this assumption does not hold, we will have to explore another malware

classification paradigm based on behavioral similarity to help our system

detect newer malware variants.

While the final aim of our research is to study the behaviors of malware,

the scope of this thesis is limit to malware detection.

1.5 Objectives and Contributions

The objective of this thesis is to show the feasibility of detecting malwares

based on their high-level behaviors. We will explore a framework that can

be used to help us study malware behaviors. In addition, we will show

that the sample malwares shared a number of behaviors, thus showing the

ability of this approach to detect unknown malwares based on behaviors

collected from known malwares. The data collected is semantically rich

enough to allow the identification of known malwares and classification of

malwares based the similarity of their behaviors, as will as flexible enough

to allow statistical analysis on the detected behaviors.

6

As this is a proof-of-concept work to explore the framework that can get

quantitative proof, we would like to state the following limitations. We

will explore the potential of this framework with a limited set of sample

malwares and behaviors. The implementation of this work is not in real

time, but via offline analysis.

We will show how we solved a series of problems for this research.

• What malware behaviors to use?

We profiled the behaviors of the more prevalent of malware families

from technical descriptions provided by anti-virus companies.

• What kind of sensor data to use?

We explored various options to get behavioral information from the

system, and finally settled on tracing native level system calls. We

also explored various experimental issues to allow the malwares to

exhibit as many behaviors as possible.

• How to get behaviors from system calls?

We introduce a pattern matching approach to model behaviors from

the system calls, based on the internal workings of Windows and

information gained by studying the system call traces.

• Can behaviors be used to detect known malwares?

We showed that malwares could be detected using certain behavioral

functions. These behaviors appear in the majority of the malwares,

but do not appear in any of the normal applications tested.

• Can behaviors be used to detect novel malwares?

We showed that malware behaviors are composed of basic behavior

blocks that are shared mainly between malware variants of the same

family, and among a small number of malwares in other families. This

7

means that it is possible to detect a newer malware variant based on

generalized behaviors.

For this research, we built a database of behavioral signatures collected

from the sample malwares. While some malwares do share the same be-

havioral signatures, this database is growing as more malwares are added

to the experiment. These behavioral signatures combine to form complex

behaviors, or new behaviors not mentioned in the technical descriptions

provided by anti-virus companies. We will introduce these descriptions in

Chapter 4. We believe that a large collection of these behavioral signatures

is vital to help us detect newer malwares.

1.6 Structure of Thesis

This thesis is structured into nine chapters, with the current chapter serv-

ing to introduce the current malware threat and some relevant background

information.

Chapter 2 provides an overview of our behavioral approach, together with

the justifications, advantages and disadvantages. The motivation for the

approach is discussed, followed by the objectives and potential of this work.

Chapter 3 looks at some other research utilizing various kinds of behaviors

for intrusion or malware detection.

In Chapter 4, we first look at the malware behaviors we extracted from

technical descriptions provided by the anti-virus companies. We then per-

form some initial analysis on these behaviors to show that it is feasible to

use behaviors to detect newer malwares.

8

Chapter 5 discusses all the experimental issues, from the choice of sensor

to the network configuration.

Chapter 6 explores the methods we use to model high-level behaviors from

system calls.

In Chapter 7, we analyze the behaviors captured from the malware samples.

We showed that it is possible to detect the presence of malwares based on

a small number of complex behaviors, and discuss more about the results.

Finally, Chapter 8 summarizes the whole thesis into a short conclusion and

suggests areas in which future research may be performed to extend and

improve the framework.

Chapter 2

Behavioral Approach Overview

2.1 Basic Concept

The term behavior has a number of different definitions in the area of in-

trusion detection research. For host-based signature-based research like

anti-virus systems, behavior usually means patterns or sequences of in-

structions executed by a binary.

For anomaly-based research, behavior usually means the trend of the sys-

tem’s past profile. But as this area of research is very broad, profile could

mean a different number of things. For example, the behavior of a network-

based intrusion detection system could be the trend of frequency of certain

types of network packets. The behavior of an anomaly-based host IDS

could be the trend of the system’s CPU and memory performance.

Behavior-based detection is significantly different from the general form of

signature-based detection. Most signature-based approach looks for fixed

patterns or regular expressions in payloads, but our behavioral approach

attempts to detect patterns at a much higher level of abstraction.

9

10

A few examples of behaviors in the Windows environment will be given to

illustrate our definition.

• Adding to registry key to start certain program at boot time;

• Copying files;

• Searching directories;

• Listening at certain network ports;

• Connecting to network shares;

• Initiating network connections to multiple hosts.

2.2 Risk Factor

In addition to the behaviors exhibited by malwares, we are also interested

in the risk to normal operations posed by these behaviors. Every action

taken contains an element of risk, as do the existence of any objects like

files or registry keys. To better understand the behaviors of malwares, it

is necessary to quantify the level of risk of each behavior.

Malwares have no risk until activation, thus file execution is riskier than file

creation. Even the location of the file affects the risk factor, as it is more

suspicious to access files in the Windows root directory than the Temporary

directory. Then we have the file names: file names with double extensions

like “See Britney naked.jpg.scr”, or with white spaces between exten-

sions like “Anna Kournikova nude.jpgt t t t t t t t t t tt.exe” are

commonly used by malwares to trick users into activating them.

We also have the risk of information leakage, where the malware contacts

its author to reveal information found within the host. Thus outbound

emails or network connections from new processes are risky; as is searching

for or enumerating information from the local host.

11

As all these threats have different levels of risks, we would also need a

management system to classify and respond to such threats.

2.3 Justification of Approach

If we look at malwares from a software engineering point of view, we can

see that the malware execution process can be decomposed into subgroups

of basic processes, each with simpler objections and behaviors. They can

be viewed as functions to the main program.

Even though the computer is a deterministic machine and has a limited

set of possible behaviors; interaction between programs, other hosts and

users results in a very large set of behaviors. This makes quantifying the

complete set of malware behavior or function very difficult.

While malwares may have large numbers of attack vectors and exploits,

we believe that a lot of the resulting behaviors will be similar. That is,

we believe that a lot of the malwares functions will overlap, even though

current taxonomy places them into different family groups. Therefore, we

believe that functional behaviors of malwares can be used to identify the

presence of malwares in a system. If some of these behavioral functions are

common to a lot group of malwares, they can even be generalized to detect

malwares not seen before.

For example, if we find that most malwares share ten common functions

that does not appear in normal applications, the probability of malware

infection of any programs displaying these ten behavioral characteristics

are very high. As we decrease the number of functions required to signal

infection, the odds of catching a novel infection increases at the expense of

12

an increase in false positives.

Unlike anomaly-based systems, we do not claim to be able to detect all

novel attacks.

2.4 Advantages of Approach

2.4.1 Value of Malwares

Hackers are motivated to write malwares for some kind of reward, either

for fun or profit. Therefore, a malware without any purpose has no value.

Malwares, like all other software programs, have very specific purposes.

Viruses and worms are meant to replicate and spread, so the originator

can control more hosts. Hosts that are taken over can be used as launch

pads to attack other machines; or to form part of a botnet, used to launch

distributed denial-of-service attacks from.

Spywares are meant to collect user information, so that the malware author

can profit from these information. This type of information leakage could

contribute to credit card fraud or identity theft.

These general behaviors give us a starting point for our behavior-based

approach to detect some specific types of malwares.

2.4.2 Limited Malware Actions

We believe that malwares are inherently simple programs, with a limited

set of behaviors. If we look at malwares from a software designer point

of view, we see that malwares can decomposed into the following packages

that provide basic functions as shown below in Table 2.1.

13

Packages Function Examples

Entry Buffer Overflow,
Weak passwords,
Error in network service configuration,

Infection Install rootkits,
Replicate to local files,
Enable malware during startup,
Hide from system,
Sabotage anti-virus defenses,

Propagation Search hosts in local subnet,
Send exploit to other external hosts,
Search files,
Email malware to addresses found,
Copy malware to open network shares,

Payload Install server allowing remote access,
Keystroke Logging,
Learn system information,
Leak system information,
Denial-of-service attacks,

Table 2.1: Malware Packages and Examples of Functions

The bulk of anti-virus research concentrates on preventing the malwares

from entering the system; or if the malware succeeds in entering the sys-

tem, prevents the executable from being executed or loaded. The prob-

lem with stopping attack vectors is that there are just too many different

kinds. Even if we just look at buffer overflows, there are almost countless

possibilities as any network-based applications or services; from the Inter-

net Explorer to the LSASS (Local Security Authority Subsystem Service)

could harbor potential vulnerabilities.

In addition, we notice from the initial study of prevalent viruses and worms

in Chapter 4 that a large number of attack vectors depend on the careless-

ness of the user. A number of malwares depend on the users clicking on

unknown attachments from emails, internet relay chats (IRC) or instant

messengers. In fact, users are so careless that a number of newer malwares

expects them to run unknown files from peer-2-peer or network file shares.

14

Weak password and executable rights on network shares is also another vec-

tor. These are all attack vectors that most research cannot guard against.

Our behavioral approach concentrates on dynamically looking for behav-

iors that indicate malwares had successfully entered our systems. That

means we are effectively bypassing the detection of the entry mechanism,

which have a large and constantly growing number of attack vectors and

innovative exploits. We take advantage of the fact that while malwares

can have many attack vectors, they have a limited number of actions that

enables them to successfully replicate and perform their nefarious deeds.

2.4.3 Advantage against Obfuscated Threats

Recent malwares have attempted to use obfuscation techniques like poly-

morphism or metamorphism to hide from signature-based systems. For

polymorphic malware, the exploit payload is either encrypted or encoded.

For metamorphic malwares, parts of the instruction codes of the exploit are

replaced with equivalent but different instruction codes. These obfuscated

payloads will not match any previous pattern-based signatures because

they will be different every time.

These threats cannot hide from our behavior-based system because exploits

must be decrypted or decoded before activation. While binaries of meta-

morphic exploits can be changed to render previous signatures useless, the

actions taken by the exploits are still the same. Unless the malware refrains

from any known destructive or suspicious behaviors, we would still be able

to detect them.

Thus, evading a behavioral signature requires a change in the fundamental

behaviors, not just its binary code. Modifying malwares to escape behav-

15

ioral detection may be more difficult than just simple code transformation.

2.5 Limitations of Approach

2.5.1 Weakness of Dynamic System

Our behavioral approach, based on dynamic analysis of process behaviors

within a system, aims to complement current signature-based techniques.

It cannot replace static analysis because not all malware functions can be

detected dynamically as certain conditions need to be met for some func-

tions to occur.

For example, a number of malwares we studied attempts to terminate cer-

tain anti-virus systems or firewalls. If such software were not installed, we

would not be able to study how the malwares kill these processes.

2.5.2 Truly Novel Behaviors

As our approach to detect newer malwares depends on the assumption that

most malwares share some behavioral characteristics, it is unlikely that our

behavior-based system will be able to detect malwares with truly novel be-

haviors.

If a new malware has behavioral characteristics so new or novel that no one

has seen before, our system will not realize that it is under attack without

any description of the new attack vector or characteristics.

It is also possible that some new malware could have functions that when

seen individually are benign, but harmful when executed in some particular

order. It is extremely difficult to detect this type of malware if we never

encountered one before.

16

2.5.3 False Positive Rates

While the signature-based systems can detect malwares with very high level

of confidence, our approach might generate a higher rate of false positives

as our detection strategy depends on generalized behaviors that might be

shared by normal applications.

Whether our approach can be refined to a satisfactory trade-off between

false positive and detection rates is a question that we hope to answer in

our future research.

2.6 Motivation

The study of malware behaviors has always been the domain of the anti-

virus companies and a handful of malware researchers in various informa-

tion security firms. Commercial tools like the Norman Sandbox [10] that

can extract high-level behaviors from executable files arose from such re-

searches. The problem is that these companies do not reveal any important

details or quantitative data to the academic world. Even the information

released cannot be readily verified because of the lack of implementation

details or because propriety tools were used.

We want to study the behavioral approach to address the malware problems

because it provides another angle of looking at these threats. We believe

that understanding threats based on their behaviors provides a holistic

view, and it is a promising model to start with. Furthermore, we believe

that it can complement current technology.

We would like to provide a flexible framework that can be used to study

malware behaviors. We hope to use this framework in future research to

17

provide quantitative data about the behaviors of malwares. This research

raises a lot of questions and considerations that are very helpful to malware

researchers because there are no current quantitative studies on malware

behaviors. We also hope that further research will lead to a better malware

classification scheme than the current ad hoc scheme that we will discuss

in Section 4.10.1.

At this point, some of the interesting questions we would like to answer

with our research are:

• Can behaviors by reliably extract from the operating system?

• Can behaviors be used to detect known malwares?

• Can behaviors be used to detect unknown malwares?

• Are malware behaviors similar to normal application behaviors?

In further research, we would also like to find out if malware behaviors are

more similar among malwares within the same family, as opposed to across

different families based on the current classification scheme.

2.7 Potential

While this research is only in the initial stage, we believe that further re-

search can provide quantitative data that is useful to many information

security researchers and practitioners. For example, the data can be used

to help commercial behavior blockers to be more specific when guarding

against malware actions. This research also has the potential to allow mal-

ware family classification using another paradigm. Finally, the information

learned from future research in this area will help virus researchers and

reverse engineers understand newer malwares better.

Chapter 3

Related Works

In a nutshell, my research aims to study the high level behaviors of mal-

wares, for the purpose of detection and classification, using the Windows

native API system calls. We will discuss the various degrees of overlaps

between my work and other research works in this chapter.

3.1 Anomaly-based IDS using System Calls

There are a very large number of intrusion detection researches that looks

at using system calls as a proxy for host’s behavior, mostly in the Linux and

UNIX environment. The number of such research working in the Windows

environment is very small (see Section 5.1.3 for details). In many of these

researches, the emphasis is on using techniques from various fields like data

mining or text categorization to model normal or abnormal behavior based

on sequences of system calls.

Using such techniques require a fixed format dataset of “transactions”.

The API system calls themselves do not have homogeneous format, with

different number of parameters, parameters data types and return status

codes. And since operating system behaviors like files, memory, network,

etc all work differently, it is very hard to use all the system call information.

18

19

Many researches only use certain system call information, like the system

call name alone, or with return value; but this means a lot of information

is lost.

As our approach uses pattern matching to model behaviors, we have the

option to use as many parameters as we need because we do not have the

restriction of fixed data format.

The most common method to get the sequences of system call is by using

sliding windows to extract a certain number of system call events from the

entire system, or from just one process. Such solution is not very accurate

because it loses context as a system call may rely on information provided

by a previous system call event not within the current window. It also

suffers from too much noise as system calls from unrelated behaviors like

GUI or Windows synchronization will be mixed in.

This is not a big problem for anomaly-based systems as all the errors should

be reduced with a large enough training data set, but it will be disastrous

for our approach of detecting specific behaviors. We will introduce a new

method to extract sequences of related system calls later.

The fixed or variable sliding windows of system call events are then as-

signed values representing normalcy or abnormality using various tech-

niques. These values are then used to compute numerical results, whereby

a value over a predefined threshold represents the probability of a normal

behavior or an intrusion.

There are many such related IDS works that should be cited, but as we

have limited space in our thesis, we will only cite some of the more relevant

20

works [14, 20, 35, 43, 44] for brevity.

3.2 Behavior Specific Research

In this section, we will introduce some research that concentrates on one

or two behaviors.

3.2.1 Windows Registry Accesses

Stolfo, et al. [46, 1, 17] proposed to monitor Windows registry accesses.

They used an anomaly-based approach: by considering the conditional

probabilities between registry access datasets, they use this information to

score registry records within processes to see if the process is anomalous.

The dataset uses five features: name of process, type of query, actual key,

return code and value of the key.

3.2.2 File System Accesses

Hershkop, et al. [19, 18] proposed to monitor file system accesses. They

use seven features for each file access dataset: UID, user working directory,

command line, parent directory of file, file name, PRE-FILE (concatenation

of last 3 files) and frequency of file access (discretized: never, few, some,

often). They use an anomaly-based detection algorithm similar to the

previous work.

3.2.3 Code Injection Attacks

Chung and Mok [11] proposed to target code injection attacks as an im-

provement to system-call-based anomaly detection systems: trapping in-

trusion by catching code executing in data space. The claim is that it

works like a specification-based intrusion detection system with only one

21

specified rule. It is also like a behavior-based system detecting only one

behavior.

3.2.4 Code Replication

Summerville, et al. [47, 41, 40] proposed to detect the self-replication of

codes, both local and network. Their implementation uses native Windows

API, and the way they model behaviors from the system calls seems to be

very similar to ours. But as the details of their implementation are vague,

we cannot tell exactly how similar our implementations are.

3.2.5 Email Propagation Behaviors

Hu and Mok [22] proposed to monitor file searches and emails sent, to detect

mass mailer viruses. This approach works because they use honeytoken

files and email addresses, which are faked and not supposed to be accessed.

Any access will be suspicious. Honeytokens are also used in our work.

The behaviors are captured using API calls, and anomaly-based detection

techniques are used to determine legal or illegal behaviors.

3.2.6 Network Traffic Monitoring

Williamson, et al. from Hewlett-Packard Labs proposed [57, 58, 50] a virus

throttling strategy to slow down propagation of certain classes of worms

and viruses based on normal network behavior. It is observed that a com-

puter normally make fairly little attempts to connect to new machines,

which is the opposite behavior of a rapidly spreading worm.

If a computer starts to make many connections to new machines, the sus-

picious traffic will be rate-limited, and can be stopped. They only look out

for one behavior: the outgoing traffic rate. This system can be classified

as network-anomaly based.

22

3.3 Behavior-based Research

In this section, other behavior-based research will be explored.

3.3.1 Deductive Reasoning

Hollebeek and Waltzman [21] from Teknowledge Corp proposed using com-

puter forensics techniques to manually create general rules describing sus-

picious events, and using directed acyclic graph for deductive reasoning of

intrusion. The sensor used is the SafeFamily wrapper [3, 2], which inter-

cepts shared library calls.

The basic idea behind both our approaches is very similar, but we create

behavioral signatures from previously seen malware behaviors instead.

3.3.2 Static Analysis for Vicious Executable

Xu, et al. from New Mexico Tech [59] proposed an anti-virus system SAVE

(Static Analyzer for Vicious Executable) that analyzes the API calling

sequence of the binary, instead of the binary code itself. The signatures

used are API calling sequence of known malware. Detection is based on

the similarity between their database of signatures and the target’s calling

sequence.

3.3.3 Malware Behavior Detection Systems

Norman Anti-virus has a product Norman SandBox [10] that can study

the actions taken by an executable file. The Sandbox captures behaviors

like file, registry, memory and network accesses. Because it is a commercial

product, we have no knowledge of its implementation.

Willems attempts to replicate and improve upon the Norman SandBox,

23

and implemented the CWSandbox [54, 55, 56]. But rather than to mon-

itor the operating system, CWSandbox works by injecting API hooking

code into the malware application. Thus any API call by the malware is

directed to CWSandbox, instead of to Windows. The behaviors provided

by CWSandbox are only as descriptive as the system call allows.

Bayer’s TTAnalyze [6] is another such system. The implementation is by

means of emulating the Windows environment. Like CWSandbox, system

calls can only provide low-level behavioral information.

3.3.4 Gatekeeper

Wagner’s [52] work uses Florida Institute of Technology’s Gatekeeper sys-

tem to identify malwares.

The initial portion of both our research have very much in common, both

our research surveys malware descriptions from anti-virus companies to find

out what kind of behaviors to look for. Gatekeeper monitors the Win32

API system call, which is at a higher level than our native level API. While

Win32 API system calls are more descriptive than the native level, mal-

wares may utilize other high level APIs thus bypassing Gatekeeper.

As the aim of Gatekeeper is to detect malwares to undo their damages,

whereas our aim is to detect and classify, the focus of our analysis are very

different.

3.3.5 Behavioral Classification

Lee and Mody’s work [26] attempt to classify malwares based on the be-

haviors. Like our work, they use sequences of native API system calls.

But from the examples given, it appears that they capture native APIs

24

system calls at the kernel mode. This is significant because our work, like

many other security products, can only captures the system call at the user

mode. Our hypothesis is that because the authors belong to Microsoft’s

anti-malware team, they have special access to the Windows kernel.

They extract sequences of system calls to form Event Objects. As the

article is vague on details, we do not know the algorithm for this extrac-

tion. Similarities between objects are then calculated based on string edit

distance. The results are then clustered using what the authors call a

k-medoid partitioning algorithm, which is a modified K-means algorithm

using medoids rather than centroids. Classification of malwares is based

on their edit distance from the nearest medoid.

Chapter 4

Malware Behaviors

In this chapter, we will make use of publicly available information from the

anti-virus companies. We will first identify some of the malware behav-

iors worth looking into, and do a preliminary study on the level of shared

behaviors within the same family and across different families.

4.1 Malware Propagation Share and Trends

In any behavioral studies, it is important to have a large sample popula-

tion. But as the number of available malwares is too large for this study,

we decided to limit the actual test samples based on their prevalence and

importance.

Proof-of-concept malwares are written specifically to test some new vulner-

abilities or attack vectors, and do not cause much harm. While this class of

malwares is interesting, they do not provide much behavioral information.

Therefore we do not bother about this class of malwares.

On the other hand, in-the-wild malwares are actually spreading through-

out the Internet. A number of anti-virus companies provide lists of the top

most prevalent malwares captured, and Kaspersky Lab has a comprehen-

25

26

sive archive of their past “Top Twenty viruses” of the month. Kaspersky’s

Top Twenty [24] virus list begins from 2001, and we compiled 48 months

worth of viruses that appeared on the lists, from November 2001 to Jan-

uary 2006. (Except November 2002, December 2002 and July 2003)

Malware Share
(%)

Email-Worm.Win32.Klez.a 16.3452
Email-Worm.Win32.NetSky.b 5.6447
Email-Worm.Win32.NetSky.q 5.2725
Email-Worm.Win32.BadtransII 4.8027
Email-Worm.Win32.Zafi.b 4.7541
Net-Worm.Win32.Mytob.c 4.1483
Email-Worm.Win32.Lentin.a 3.7791
Email-Worm.Win32.Zafi.d 3.6954
Email-Worm.Win32.Swen 3.5662
Email-Worm.Win32.NetSky.aa 3.5481
Email-Worm.Win32.Sobig.a 3.4893
Email-Worm.Win32.Mydoom.a 3.4562
Email-Worm.Win32.LovGate.w 1.7710
Email-Worm.Win32.Tanatos.a 1.5202
Email-Worm.Win32.Mimail.c 1.3779
Email-Worm.Win32.NetSky.d 0.9293
Email-Worm.Win32.NetSky.t 0.8166
Email-Worm.Win32.Bagle.z 0.7585
Email-Worm.Win32.Mydoom.m 0.7143
Email-Worm.Win32.Bagle.at 0.6743

71.0639

Table 4.1: Captured Traffic
Share of Top 20 Malwares

Family Share
(%)

NetSky 17.4816
Klez 16.5031
Zafi 8.4495
Mytob 8.1370
Mydoom 5.4995
BadtransII 4.8027
Lentin 3.9622
Sobig 3.5816
Swen 3.5662
Bagle 2.4568
Mimail 2.4558
LovGate 1.9050
Tanatos 1.6125

80.4135

Table 4.2: Captured Traf-
fic Share of Top 13 Malware
Families

A total of 274 unique malwares from 168 families were identified. We can

see from Table 4.1 that the top twenty malwares represents 71.0639% of

the total captured malware traffic population. The 20 most prevalent mal-

wares belong in 13 families and the top 13 families represents 80.4135%

of the total population as seen from Table 4.2. Details about the variants

within the malware families can be seem from Appendix A.

27

The malware share information from both Table 4.1 and 4.2 was simply

computed from the percentage of the malware traffic shares over 48 months.

We know that older results should be less important, and a factor should

be included to give shares from recent months more importance. But we

believe that this simple result is sufficient for the initial study, and a reward

factor biased towards more recent malwares will be included in our future

work.

This information provides confidence that a small set of prevalent malwares

is a good enough starting point for our research.

4.2 Malware Sample Choices

Anti-virus companies spend enormous effort to study malwares using static

and dynamic analysis. As a service to their customers and for public re-

lations purposes, technical characteristics of malwares detected by their

products are openly available, albeit lacking in details.

As a starting point in our research and to boost confidence that malwares

do exhibit similar behaviors, we decided to first study the descriptions of

a small sample of malwares.

From the initial study of the malware descriptions from anti-virus compa-

nies, one observation made was that a significant number of malwares from

the same family have almost identical technical descriptions, differing only

in the keywords or file names used. Even if the newer malware have more

complicated actions than its predecessors, the basic infection functions are

the same.

28

Email-Worm.Win32.Bagle.a
Email-Worm.Win32.Ganda
Email-Worm.Win32.Gibe.a
Email-Worm.Win32.Klez.a
Email-Worm.Win32.Lentin.a
Email-Worm.Win32.LovGate.a
Email-Worm.Win32.Lovelorn.a
Worm.Win32.Lovesan.a
Email-Worm.Win32.Mimail.a
Email-Worm.Win32.Mydoom.a
Email-Worm.Win32.Sober.a
Email-Worm.Win32.Sobig.a
P2P-Worm.Win32.SpyBot.a
Net-Worm.Win32.Welchia.a
Email-Worm.Win32.Zafi.a

Table 4.3: First Malware From
Each Sample Family

Email-Worm.Win32.Bagle.z
Email-Worm.Win32.Bagle.ai
Email-Worm.Win32.Bagle.at
Email-Worm.Win32.LovGate.b
Email-Worm.Win32.LovGate.ad
Email-Worm.Win32.Klez.e
Email-Worm.Win32.Klez.h
Email-Worm.Win32.Sober.f
Email-Worm.Win32.Sober.g

Table 4.4: Newer Malware
Variants From Some Sample
Families

We decided to concentrate on the earliest discovered virus of each family.

The bulk of the initial behavioral study from the descriptions was from

the first malware from each of the more prevalent families, as shown in

Table 4.3. We included several newer malware variants from some of the

sample families in the study, shown in Table 4.4, to compare the difference

between ancestor and descendant behavioral functions.

The reader might notice that the sample malwares were not all drawn from

the most prevalent families shown in Table 4.2. The reason is because

as this research is based on the dynamic behavior of the malware, we are

constraint to include only malwares that we can find the executables for.

Therefore, the total number of malwares we will be using in this initial

study is twenty-four.

29

4.3 Malware Behavior Survey

4.3.1 Choice of Information Source

The samples of malwares that we chose are identified by Kaspersky Lab’s

naming conventions because we used Kaspersky Lab’s Top Twenty Virus

ranking information. The problem of using just Kaspersky Lab’s malware

descriptions is that it does not provide very detailed technical descriptions

for all the malwares, and there are some ambiguities because English is a

not a precise language. After exploring the databases of different anti-virus

companies, I’ve decided to add information from Computer Associates and

Trend Micro because the union of the information from these different anti-

virus companies’ description database provides a good level of accuracy.

An extract of the technical description of Email-Worm.Win32.Bagle.ai from

Kaspersky Lab is as follows. The full technical description is available in

Appendix E.

30

Figure 4.1: Extract of Kaspersky Lab Email-Worm.Win32.Bagle.at De-
scription

4.3.2 Text Description Conversion to Behavioral Func-

tions

To improve the confidence of our assumption that malwares share similar

behaviors, we have to quantify the similarities of malware behaviors. The

problem is that descriptions written in normal English cannot be used to

generate quantifying statistics. We would need to create a grammar to

describe behaviors based on logic.

In an ideal situation, we should decide on what behaviors to detect, and

then decide on the sensors needed to collect the necessary information.

But in reality, we are doing both at same time to find out our limitations

and constraints. As we chose to monitor the native API system calls, we

understand that there are certain behaviors that cannot be detected: for

example, program logic like “if else” decisions; or manipulation of data

based on regular expressions (used for ignoring certain type of email ad-

dresses).

31

As there are many unknown variables and the descriptions are highly com-

plex, the conversion matrix is incomplete at this time and are constantly

redesigned to fit new scenarios. The basic criteria we imposed on the con-

version process are that the descriptive functions must be:

• Expressive enough to replace the language descriptions.

• Simple enough to be parsed by scripting languages using regular ex-
pressions.

• Possible to be detected using native API system calls.

We decided to represent the behavior functions using a pseudo language

based on the Perl language and UNIX shell commands. Two converted

examples are shown in Appendix F.

4.4 Behavior Functions

We will introduce the functions seen in the malware descriptions and their

parameters in this section. As we are introducing sixty-nine behaviors, we

will only demonstrate a couple of examples of the conversion process.

Figure 4.2: Description of Email-Worm.Win32.Bagle.at File Copy and Reg-
istry Creation Behaviors

From Figure 4.2, we know that the malware copy itself to three files:

file copy $SELF C:\Windows\System32\wingo.exe ;

file copy $SELF C:\Windows\System32\wingo.exeopen ;

file copy $SELF C:\Windows\System32\wingo.exeopenopen ;

32

where $SELF is the original malware binary file that was started.

Then we have an addition to the registry:

registry add

"HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”
"wingo = %System%\wingo.exe" ;

where %System% is the variable name for C:\Windows\System32 under

certain versions of Windows. We will elaborate on this later. Thus, we

captured two behavioral functions.

4.4.1 File and Directory

In most of the write-based file functions below, the parameter that is

most important for providing information to differentiate malwares is the

path. The paths that we are most concern about are the Windows direc-

tory (%Windows%) and the Windows System directory (%System%). The

%System% folder is usually C:\Windows\System on Windows 95, 98 and

ME, C:\WINNT\System32 on Windows NT and 2000, and C:\Windows\

System32 on Windows XP. The %Windows% folder is usually C:\Windows

or C:\WINNT. These paths are noteworthy because most legitimate pro-

grams do not create or write to files within these folders.

FUNCTION: file copy

SYNOPSIS: file copy $SOURCE $TARGET

DESCRIPTION: -

SPECIAL: Many older malwares copy themselves into the Windows

or System directories. It is a calculated move because Mi-

crosoft discourages most users from changing or viewing

anything in the Windows root directory.

33

FUNCTION: file create

SYNOPSIS: file create $PATH\$FILE

DESCRIPTION: create a new file.

SPECIAL: Many newer malwares do not just copy themselves into

the host. The new versions of themselves are modified

slightly to thwart anti-virus systems.

AMBIGUITY: Due to ambiguities in the descriptions, file create could

also include the file copy function.

FUNCTION: file append

SYNOPSIS: file append $PATH\$FILE

DESCRIPTION: write data to file in streams.

FUNCTION: file attrib

SYNOPSIS: file attrib [+-]$ATTRIBUTES $PATH\$FILE

DESCRIPTION: change the attribute or permission of the file. The

attributes arguments are hidden, system, read-only or

archive; and they can be set (+) or unset (-)

FUNCTION: file modify

SYNOPSIS: file modify $PATH\$FILE

DESCRIPTION: write data to file.

FUNCTION: file property

SYNOPSIS: file property $PROPERTY $PATH\$FILE

DESCRIPTION: change the property of the file.

There are many possible arguments for property.

Time information alone includes CreationTime, LastAc-

cessTime, LastWriteTime and ChangeTime.

FUNCTION: file rename

SYNOPSIS: file rename $SOURCE $TARGET

DESCRIPTION: -

34

FUNCTION: file delete

SYNOPSIS: file delete $PATH\$FILE

DESCRIPTION: -

FUNCTION: file execute

SYNOPSIS: file execute $PATH\$FILE [$PARAMETERS]

DESCRIPTION: execute file, with optional command line parameters

FUNCTION: file read

SYNOPSIS: file read $PATH\$FILE

DESCRIPTION: read data directly from file.

FUNCTION: file load

SYNOPSIS: file load $PATH\$FILE

DESCRIPTION: load file data into memory.

SPECIAL: There are a number of ways to accomplish this function;

the most common using shared Library APIs. The man-

ual way to do this is by executing the “rundll32.exe”

system file: C:> rundll32.exe $DLL_FILE

FUNCTION: file access

SYNOPSIS: file access $PATH\$FILE

DESCRIPTION: a non-write operation to the file.

AMBIGUITY: Used when the description is unclear, could represent the

file read, file load or file execute function.

FUNCTION: ini modify

SYNOPSIS: ini modify $INI FILE

DESCRIPTION: modify system initialization files like win.ini or sys-

tem.ini.

FUNCTION: create autorun

SYNOPSIS: create autorun $PATH\Autorun.inf

DESCRIPTION: create new Autorun.inf files that define the application

to run when disk is inserted or mounted.

35

FUNCTION: dir create

SYNOPSIS: dir create $PATH

DESCRIPTION: create new directory.

FUNCTION: find dir

SYNOPSIS: find dir $EXPRESSION

DESCRIPTION: search for directories with names matching the expression

within the current directory.

FUNCTION: find data files

SYNOPSIS: find data files

DESCRIPTION: search for certain types of data files within the current

directory. Examples of these files include files with the

following extensions: adb, asp, dbx, htm, php, pl, sht,

tbb, wab.

FUNCTION: find bin files

SYNOPSIS: find bin files

DESCRIPTION: search for certain types of executable files within the cur-

rent directory. Examples of these files include files with

the following extensions: com, exe, pif, scr.

FUNCTION: search all dir recursive

SYNOPSIS: search all dir recursive

DESCRIPTION: enter all the directories and sub-directories, recursively,

starting from the root directory of a system (usually

“C:”).

FUNCTION: search specific dir recursive

SYNOPSIS: search specific dir recursive $PATH

DESCRIPTION: enter all the directories and sub-directories, recursively,

starting from the path in the argument.

36

4.4.2 Service

A Windows service is a background application that starts when Windows

is booted, conceptually similar to a Unix daemon. Microsoft uses the term

“service” loosely because a number of other different concepts are named

service as well. Windows provides a Service Control Manager (SCM) in-

terface that manages creating, deleting, starting and stopping of services.

FUNCTION: service create

SYNOPSIS: service create $SERVICENAME $FILE

DESCRIPTION: create a new service, either though the SCM, or by adding

new key to the registry.

service create

FUNCTION: service disable

SYNOPSIS: service disable $SERVICENAME

DESCRIPTION: remove a service, either though the SCM, or by modifying

registry key.

FUNCTION: service start

SYNOPSIS: service create $SERVICENAME

DESCRIPTION: start a service, either though the SCM, or by executing

the “net.exe” system file:

C:> net.exe start $SERVICENAME

FUNCTION: service stop

SYNOPSIS: service stop $SERVICENAME

DESCRIPTION: stop a service, either though the SCM, or by executing

the “net.exe” system file:

C:> net.exe stop $SERVICENAME

37

4.4.3 Process

FUNCTION: process monitor

SYNOPSIS: process monitor

DESCRIPTION: enumerate all running processes.

FUNCTION: process status

SYNOPSIS: process status $PROCESS

DESCRIPTION: Report process status.

FUNCTION: kill process

SYNOPSIS: kill process $EXPRESSION

DESCRIPTION: terminate any running process started by any file or pro-

cess, with any identifier matching the given expression.

FUNCTION: mutex create

SYNOPSIS: mutex create $MUTEXNAME

DESCRIPTION: create a new mutex (mutual exclusion) object for syn-

chronization purposes.

FUNCTION: mutex check

SYNOPSIS: mutex check $MUTEXNAME

DESCRIPTION: check for the existence of a mutex object.

FUNCTION: event create

SYNOPSIS: event create $EVENTNAME

DESCRIPTION: create a named event object for synchronization pur-

poses.

38

4.4.4 Graphical User Interface

The GUI (Graphical User Interface) objects that we are interested in are

the dialog boxes, which are special windows used to display information to

the user, or to get a response if needed.

FUNCTION: hidden msgbox

SYNOPSIS: hidden msgbox

DESCRIPTION: create a Windows dialog box in the background, unseen

by the user.

SPECIAL: This is a technique to prevent the user from killing its

original application process.

FUNCTION: window box monitor

SYNOPSIS: window box monitor $EXPRESSION

DESCRIPTION: enumerate and monitor all the dialog boxes for any in-

formation matching the expression.

Figure 4.3: Fake Dialog Box displayed by Sober.a

FUNCTION: msgbox

SYNOPSIS: msgbox $BUTTONTYPE $TITLE $MESSAGE

DESCRIPTION: create a Windows dialog box. As an example, Figure 4.3

is represented by

msgbox OKOnly, "Error", "File not complete!" ;

The common button types of the dialog box are

‘OKOnly’, ‘OKCancel’, ‘AbortRetryIgnore’ and ‘YesNo-

Cancel’.

39

4.4.5 Email

FUNCTION: harvest emails

SYNOPSIS: harvest emails $FILE

DESCRIPTION: search for email addresses within file.

FUNCTION: sendmail with attachment

SYNOPSIS: sendmail with attachment $EMAIL

DESCRIPTION: send email with an attachment.

FUNCTION: sendmail

SYNOPSIS: sendmail $EMAIL

DESCRIPTION: send email without any attachments.

FUNCTION: reply inbox/Outlook MAPI

SYNOPSIS: reply inbox

DESCRIPTION: reply to emails inside the INBOX of the user’s Outlook

program. This is usually accomplished using Outlook’s

Messaging Application Programming Interface (MAPI)

API.

4.4.6 System Information

FUNCTION: check system date

SYNOPSIS: check system date

DESCRIPTION: -

FUNCTION: check system information

SYNOPSIS: check system information

DESCRIPTION: check system information such as the regional locale set-

tings, or which version and service pack of Windows is

running.

40

4.4.7 Network

FUNCTION: network connect

SYNOPSIS: network connect $HOST $PROTOCOL $PORT

DESCRIPTION: any outbound TCP or UDP traffic to remote host.

AMBIGUITY: Due to ambiguities in the descriptions, network connect

could also include any of the function below with out-

bound traffic.

FUNCTION: scan network

SYNOPSIS: scan network

DESCRIPTION: high rate of traffic to existing or non-existent hosts within

a subnet.

FUNCTION: dns resolve

SYNOPSIS: dns resolve $DNSSERVER $DOMAIN

DESCRIPTION: perform network domain name resolution on a domain

name to get its IP address. The DNS server used is usu-

ally predefined in the Windows network configuration.

FUNCTION: http connect

SYNOPSIS: http connect $URL

DESCRIPTION: outbound HTTP traffic, usually to port 80 of remote

host.

FUNCTION: ntpdate

SYNOPSIS: ntpdate $NTPSERVER

DESCRIPTION: outbound NTP traffic, usually to port 123 of remote host.

Used to determine the current time and date by synchro-

nizing with the NTP server.

FUNCTION: irc connect

SYNOPSIS: irc connect $HOST

DESCRIPTION: outbound IRC traffic to remote host.

41

FUNCTION: netbios connect

SYNOPSIS: netbios connect $HOST

DESCRIPTION: outbound NetBIOS traffic, usually to port 135 of remote

host.

FUNCTION: ping

SYNOPSIS: ping $HOST

DESCRIPTION: outbound ICMP ECHO request to remote host.

FUNCTION: download inet

SYNOPSIS: download inet $URL

DESCRIPTION: download file using HTTP or FTP protocol.

FUNCTION: listen port

SYNOPSIS: listen port $PROTOCOL $PORT

DESCRIPTION: open a network port listening for either TCP or UDP

protocol traffic.

4.4.8 Windows Network File Sharing

FUNCTION: share enum

SYNOPSIS: share enum

DESCRIPTION: enumerate or find all Windows network shares within the

host’s subnet.

FUNCTION: remote share mount

SYNOPSIS: remote share mount $SHARENAME

DESCRIPTION: mount Windows network share with either no password,

or using predefined usernames and weak passwords.

FUNCTION: remote share activity

SYNOPSIS: remote share activity

DESCRIPTION: any actions performed on, or to a mounted Windows net-

work share.

42

4.4.9 Registry

The Windows registry is a database that stores the operating system set-

tings and options for Microsoft Windows 95 and later. It contains infor-

mation and settings for all the hardware, software, users, preferences of

the PC and so on. The Registry was introduced to replace most of the

text-based .ini files used in Windows 3.x and MS-DOS configuration files,

such as the Autoexec.bat and Config.sys.

In most of the write-based registry functions below, the parameter that is

most important for providing information to differentiate malwares is the

key. Examples of the keys that we are most concern about are those that

allow programs to run during or after boot time.

• $RESTART

– HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
– HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Runonce
– HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\Run
– HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
– HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Runonce
– HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\Run

• $SERVICE

– HKLM\System\CurrentControlSet\Services
– HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices

• $SHELL

– HKCR\txtfile\shell\open\command
– HKLM\SOFTWARE\CLASSES\txtfile\shell\open\command
– HKLM\SOFTWARE\Classes\exefile\shell\open\command

• $DLL COM

– HKCR\CLSID\{16-byte ID}\InProcServer32

this key holds the full path to a DLL file if the “COM” object
is implemented as a library. In a nutshell, the DLL file will be
launched as a procedure linked to “Explorer.exe” if the 16-byte
ID is “E6FB5E20-DE35-11CF-9C87-00AA005127ED”.

These keys are noteworthy because most legitimate programs do not create

or write to them during normal operations.

43

FUNCTION: registry modify

SYNOPSIS: registry modify $KEY $VALUE

DESCRIPTION: modify the value of an existing registry key.

FUNCTION: registry add

SYNOPSIS: registry add $KEY $SUBKEY $VALUE

DESCRIPTION: add new registry subkey with value data to an existing

registry key.

FUNCTION: registry delete

SYNOPSIS: registry delete $KEY $SUBKEY

DESCRIPTION: delete registry subkey.

FUNCTION: registry enum

SYNOPSIS: registry enum $KEY

DESCRIPTION: enumerate all the subkeys of the registry key.

FUNCTION: registry query

SYNOPSIS: registry query $KEY

DESCRIPTION: query the value contained within the registry key.

In the registry query function, the parameter that is most important for

providing information to differentiate malwares is the value data within the

key. Examples of these keys are:

$NAMESERVER: IP address of the default DNS Server or Resolver
HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\

Parameters\Interfaces\{16-byte ID}\NameServer

$SMTPSERVER: IP address of the default SMTP Mail Server
HKLM\SOFTWARE\Microsoft\Internet Account Manager\

Accounts\00000001\SMTP Server

$WAB: Location of user’s INBOX file
HKCU\SOFTWARE\Microsoft\WAB\WAB4\Wab File Name

$SHELL FOLDER: Location of user’s personal folder
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\

Explorer\Shell Folders

44

4.4.10 Suspicious Activity or Condition

FUNCTION: zombie

SYNOPSIS: zombie

DESCRIPTION: any actions requiring remote activation.

FUNCTION: code injection

SYNOPSIS: code injection $PROCESS $FILE

DESCRIPTION: injection of instruction code from file into process not

started by the malware.

FUNCTION: keylogger

SYNOPSIS: keylogger

DESCRIPTION: captures the user’s keystrokes either by hooking to the

API I/O library, or kernel’s keyboard driver.

FUNCTION: date activated

SYNOPSIS: date activated $DATE

DESCRIPTION: start or terminate malware actions based on time or date.

FUNCTION: date activated payload

SYNOPSIS: date activated payload $DATE

DESCRIPTION: start external payload actions based on time or date.

FUNCTION: suspicious file

SYNOPSIS: suspicious file $FILE

DESCRIPTION: any actions involving files with suspicious file names.

Examples of these names are:

• names with double extensions like “See Britney naked.jpg.scr”

• names with white spaces between extensions like“Anna Kournikova nude.jpgtt
t t t t t t t t tt.exe”

FUNCTION: suspicious email attachment

SYNOPSIS: suspicious email attachment $ATTACHMENT

DESCRIPTION: any actions involving email attachments with suspicious

file names.

45

4.4.11 Attack Vector

These are all the other ways that a malware can start within the host with-

out relying on explicit user intervention.

FUNCTION: start from internet explorer

SYNOPSIS: start from internet explorer

DESCRIPTION: malware started because of Internet Explorer vulnerabil-

ity.

FUNCTION: start from outlook

SYNOPSIS: start from outlook

DESCRIPTION: malware started because of Outlook or Outlook Express

vulnerability.

FUNCTION: start from windows exploits

SYNOPSIS: start from windows exploits

DESCRIPTION: malware started because of Windows network service vul-

nerability.

FUNCTION: start from network share

SYNOPSIS: start from network share

DESCRIPTION: malware started remotely through network share.

46

4.5 Risk Differentiation

In our study of the behavior functions based on the technical description,

we learned that just looking at the behavior alone will result in the lost of

important information.

We need to include differences in the risk factor based on some of the pa-

rameters. For example, there are different levels of risk for file copy,

just based on the target directory of the copied file. The risk for a file

to be copied into systems directories like the Windows root “C:\WINNT”

or system “C:\WINNT\System32” directory is much higher than any other

directories.

Another example is for file execute. As malwares that are not activate

carries little risk, the risk for activating a newly created file is higher than

an existing system file. In addition, malwares sometimes start applications

like the Windows notepad or internet explorer as a form of misdirection,

so these behaviors can be used to identify the malwares.

In our current analysis, while we do differentiate certain behaviors based

on risk, we do not impose any risk weightage as we do not have enough

information to derive the risk modifier for the behaviors and we do not

want to do it in an ad hoc way. For example, while irc connect and ping

are subset of network connect, we treat them as different behaviors. This

will affect any analysis of the similar between malwares.

In further work, we would like to study the appropriate modifier or weigh-

tage between behaviors, so that two malwares that have the irc connect

and ping behaviors respectively have a certain similarity factor, instead of

none currently.

47

4.6 Compilation of All Behavior Functions

We compiled a matrix of malwares versus behavior functions based on all

the behaviors discussed in the sample malware descriptions in Section 4.4.

We will analyze the information from this matrix to support the feasibility

of the behavior-based systems and our assumptions. The matrix can be

found in Appendix B.

The entries in the matrix are not only categorized by behavior functions,

the parameters that introduce different level of risks as discussed in Sec-

tion 4.5 are also used. Each of the behavior function entries has three

possible states: FALSE (0), TRUE (1), MAYBE (2). From the anti-virus

descriptions, we notice that some behaviors are certain, while some are

optional based on certain conditions. For example, while the behavior of

activation of destructive payload by the hacker is very interesting, we are

unable to reproduce this. As we aim to take care of all behaviors, we

added a MAYBE state to optional behaviors. But compulsory behaviors

take precedence in all our analysis.

4.7 Prevalent Behaviors

We believe that malwares from across different families share common be-

havioral functions. To show this, we compiled the frequency of behavior

appearance based on the first malware variant from each of the 15 sample

families.

From Figure 4.4, we can see that the most common behaviors are registry

add, file copy, find data files, file create and harvest emails. These

functions are related to two complex behaviors: surviving system reboot

and finding email addresses. This is not much of a surprise as most of the

48

0 20 40 60 80 100

registry_add
file_copy

find_data_files
file_create

harvest_emails
file_append
file_execute

sendmail_with_attachment
registry_query

search_all_directories_recursively
sendmail

file_access
search_specific_directories_recursively

check_system_date
listen_port

kill_process
mutex_create

zombie
start_from_outlook

date_activated
file_attrib
file_read
msgbox

share_enum
dns_resolve

download_inet
start_from_internet_explorer

start_from_network_share
file_modify

file_rename
file_delete
dir_create

process_status
check_system_information

code_injection
scan_network
http_connect

netbios_connect
network_connect

registry_modify
start_from_windows_exploits

date_activated_payload
ini_file_modify

find_directories
find_binary_files

service_create
service_start
mutex_check
event_create

hidden_msgbox
window_box_monitor

reply_inbox_email/Outlook_MAPI
keylogger

remote_share_mount
remote_share_activity

irc_connect
ping

registry_delete
registry_enum

suspicious_email_attachment

Percentage

Figure 4.4: Most Prevalent Malware Behaviors

sample malwares are mass mailer viruses. We will use this information in

our analysis later.

49

4.8 Combinations of Independent Behaviors

We can see from Figure 4.4 that no one behavior can identify all the mal-

wares. Thus we will first look at the different combinations of independent

or uncorrelated behavioral functions.

21

183

264

242

174

117

135

139

119

76

72

69

70

77

12

0 50 100 150 200 250 300

6.67

13.33

20

26.67

33.33

40

46.67

53.33

60

66.67

73.33

80

86.67

93.33

100

M
al

w
ar

e
C

ov
er

ag
e

(%
)

Number of Function Pairs (2-tuple)

Figure 4.5: Coverage of Malware Behavior Pairs

When we use two behaviors, we can detect all the sample malwares. From

Figure 4.5, 12 out of 1770 behavior pairs covers 100% of the detection of

malwares. If we use three behaviors, we can see from Figure 4.6 that 849

out of 34,220 behavior triplets offer 100% coverage.

For the behavior pairs that offer 100% coverage, the prevalent behavior is

the registry add function. From Table 4.5, we see that registry add ac-

counts for 83.33%, or 10 out of 12 of the behavior pairs. For combinations

of three behaviors, registry add accounts for 63.02% or 535 out of 849 of

the behavior triplets that offers 100% coverage.

50

15

399

1641

2925

3456

3197

2906

2992

3199

2806

2452

2365

2295

2723

849

0 500 1000 1500 2000 2500 3000 3500 4000

6.67

13.33

20

26.67

33.33

40

46.67

53.33

60

66.67

73.33

80

86.67

93.33

100

M
al

w
ar

e
C

ov
er

ag
e

(%
)

Number of Function Triplets (3-tuple)

Figure 4.6: Coverage of Malware Behavior Triplets

registry add, file copy
registry add, find data files
registry add, file create
registry add, file append
registry add, registry query
registry add, file access
registry add, search specific directories recursively
registry add, file attrib
registry add, msgbox
registry add, registry modify
file copy, file execute
find data files, listen port

Table 4.5: Behavior Pairs That Cover 100% of Malwares

The first conclusion that we can draw from this analysis is that we do not

need to monitor for all of the behaviors to detect malwares. Even a small

subset of behavioral functions can do a good job.

The second conclusion is that in both single and combinations of behav-

iors, some behaviors are more important. We can see from Table 4.5 that

registry add is the most important function in behavior pairs. Even when

we use three behaviors, this function still carries the most weight.

51

The third conclusion is that we have choices in the choosing of behav-

iors to monitor if we just want to detect malwares. For example, while

registry add is the dominating function in the behavior triplets as it ac-

counts for 63.02% of the behavior triplets that offers 100% malware cover-

age, we can also use file copy. The function accounts for 24.15%, or 205

out of 849 of the behavior triplets.

This is important for two reasons: the first is that some behaviors might

be very difficult to obtain. The second reason is that it is entirely possible

for a malware author to forgo a dominating behavior in order to thwart

our behavior-based system. This conclusion tells us that we can use other

combinations of behaviors as a competent replacement for any dominating

behaviors.

4.9 Complex or Correlated Behaviors

Complex behaviors are formed by correlation of simple behaviors based on

certain information. We will provide a few examples in this section.

4.9.1 Survive System Reboot

The most common behavior among all the malwares is the ability to start

itself after a system reboot. The most common way to do this is by the

combination of two functions: copy itself to the host or create a new file,

and add a registry key to run the said file at startup. We can see a sam-

ple of this in the example provided in Section 4.4. In Figure 4.7, we see

that twenty-two out of twenty-four malwares exhibit this complex behavior.

Adding the file to a startup program key is not the only way. The malware

52

100

16.67

29.17

91.67

0 10 20 30 40 50 60 70 80 90 100

survive_system_reboot
(Generalized)

survive_system_reboot3
(registry_modify shell +

file_copy/file_create)

survive_system_reboot2
(registry_add service +
file_copy/file_create)

survive_system_reboot1
(registry_add startup +
file_copy/file_create)

Percentage

Figure 4.7: Correlated survive system reboot Behavior

can also add a new service that runs the file at boot time (registry add

service), or modify the registry to run the file whenever files of certain ex-

tensions are started (registry modify shell).

If any of the three correlated behaviors in Figure 4.7 is true, we take it that

the survive system reboot behavior is true as well. We can see from the

figure that 100% of the sample malwares exhibits this behavior.

Details about the distribution between malwares and behaviors that formed

Figure 4.7 can be seem in Appendix C.1.

4.9.2 Find Email Addresses

The next most common behavior is for the malware to find email addresses

in the local host for propagation purposes. The way to do this is by the

combination of three functions: search directories recursively, look for data

53

files like html or text within those directories, and parse the found files for

email addresses.

83.33

29.17

66.67

0 10 20 30 40 50 60 70 80 90 100

find_email_addresses
(Generalized)

find_email_addresses2
(search_specific_dir_recursive

+ find_data_files +
harvest_emails)

find_email_addresses1
(search_all_dir_recursive +

find_data_files +
harvest_emails)

Percentage

Figure 4.8: Correlated find email addresses Behavior

From the descriptions, we know that the malware either search certain di-

rectories or all directories starting from the root “C:\”. If any of the two

correlated behaviors in Figure 4.8 is true, we take it that the find email

addresses behavior is true as well. We can see from the figure that only

twenty or 83.33% of the malwares exhibits this behavior.

Details about the distribution between malwares and behaviors that formed

Figure 4.8 can be seem in Appendix C.2.

Of the malwares that do not exhibit this behavior, Lovesan.a and Welchia.a

are network worms and SpyBot.a is a P-2-P worm. Klez.a only harvest

email addresses from the default Windows Address Book and do not search

for other files.

54

4.9.3 Malware Local Replication

20.83

20.83

4.17

0 10 20 30 40 50 60 70 80 90 100

local_replication (Generalized)

local_replication2
(search_all_dir_recursive +
find_bin_files + file_modify)

local_replication1
(search_specific_dir_recursive
+ find_bin_files + file_modify)

Percentage

Figure 4.9: Correlated local replication Behavior

One very interesting observation is that the behavior of local replication

does not occur very frequently. From Figure 4.9, only 20.83% of the mal-

wares exhibits this behavior. This behavior is achieved by the combination

of three functions: search directories recursively, look for binary files with

extensions like exe or com within those directories, and modify the located

files.

Details about the distribution between malwares and behaviors that formed

Figure 4.9 can be seem in Appendix C.3.

This is strange because local replication is the hallmark of most viruses.

One possible reason why local replication to executable files is not popular

could be due to the system restore feature in Windows 2000 and above. We

noticed in our analysis of several malwares that Windows performed cryp-

tographic checksum verifications on the system files that were changed. If

55

the checksum of the file was incorrect, the changed file would be overwritten

by the original version of the file.

4.10 Study of Cross Family Behaviors

4.10.1 Malware Naming and Classification Conven-

tion

As we want to study the behavioral similarity between malwares within a

family, and across different families, we will provide a short background

on the current naming and classification convention used by the anti-virus

companies.

After decades of virus research, there is still no standard way to name a

malware [53]. While there are attempts to standardize the naming con-

vention like the Common Malware Enumeration (CME) Project [13], most

researchers still continue the decade old tradition of ad hoc naming due to

the commercial pressure to be the first to detect more new malwares.

At best, we have guidelines [36, 23] on how not to name a malware, and

the CARO (Computer Anti-Virus Research Organization) Malware Nam-

ing Scheme [7, 9] to categorize the malware into different types.

The general format of a full CARO malware name is

[〈type〉://][〈platform〉/]〈family〉[.〈group〉][.〈length〉].〈variant〉

[〈modifiers〉][!〈comment〉]

where the items in square brackets are optional. Most anti-virus companies

use a variation of this format, and we will take Kaspersky Lab’s naming of

“Email-Worm.Win32.Bagle.at” as an example:

56

modifiers - type . platform . family . variant

Email - Worm . Win32 . Bagle . at

Malware Family

The malware family name is basically the initial name given to a malware

that is significantly different from the anti-virus companies’ specification

of all the other known malwares. We will provide a few example of how

malwares were named to give the reader an idea how ad hoc the process

actually is.

We have the totally random ones like: the Code Red worm [27] named af-

ter a cola, and the Melissa worm [30] named after a lap dancer in Florida.

Then, we have those named from keywords within the malware source code:

the Klez virus [16], and MyDoom [5], whose source code included “mydom”

(short for “my domain”).

The Nyxem [15] virus was named because it was the first virus to launch a

DDoS attack against the “New York Mercantile Exchange” website (www.

nymex.com), and the Sasser virus was named because it targets the Lo-

cal Security Authority Subsystem Service (LSASS) [32] of the Windows

operating system.

Malware Variant

The naming tradition affects how the anti-virus companies classify mal-

wares into the different existing families as variants. There is no fixed clas-

sification scheme, and could be based on attributes like the malwares source

code, keywords found within the malware, exploits used or actions taken

by the malware. As the actual classification process varies between the

57

different anti-virus companies according to the malware researcher’s bias,

a malware could be classified into different families by different researchers.

For example, the same worm was named W32/Mydoom@MM, Novarg and

Mimail.r respectively by Network Associates, Symantec Corp and Trend

Micro [29].

In spite of this problem, we believe it is likely that malware variants within a

family are similar because of their shared attributes. It would be interesting

to see if the similarity extends to our behavior-based approach.

4.10.2 Malware Similarity Matrix

Our assumption is that malwares within the same family have more be-

havioral functions in common, as opposed to malwares from other families.

If this is true, then it should be possible to detect previously unseen mal-

wares based on their similar set of functions. To confirm this, we formed

a similarity matrix (Table 4.7) from behaviors of all twenty-four malwares

introduced earlier.

SimilarityIndexa,b =
Cardinality(BehaviorSeta

⋂
BehaviorSetb)

Cardinality(BehaviorSeta
⋃

BehaviorSetb)
× 100 (%)

where
SimilarityIndexa,b is the similarity factor between Malwarea and Malwareb.
BehaviorSetall is the set of all behavior functions studied.
BehaviorSeta = {m: m is function in BehaviorSetall that exist in Malwarea}
BehaviorSetb = {n: n is function in BehaviorSetall that exist in Malwareb}

The Similarity Index between malwares is based on existence of behaviors

alone. The more behavioral functions the two malwares have in common,

the higher the score. Currently, only functions that are compulsory were

used. Functions that only activate in conditions that we cannot replicate

are not used. In further work, we would like to add in these optional

58

functions with a modifier so that they are less important than compulsory

function. We would also like to add in weightage for the different levels of

risks between certain behaviors as discussed in Section 4.5 in future works.

K
le

z.
a

K
le

z.
e

K
le

z.
h

Z
a
fi
.a

B
a
g
le

.a

B
a
g
le

.z

B
a
g
le

.a
i

B
a
g
le

.a
t

G
a
n
d
a

G
ib

e.
a

L
en

ti
n
.a

L
o
v
G

a
te

.a

L
o
v
G

a
te

.a
d

L
o
v
G

a
te

.b

L
o
v
el

o
rn

.a

L
o
v
es

a
n
.a

M
im

a
il
.a

M
y
d
o
o
m

.a

S
o
b
er

.a

S
o
b
er

.f

S
o
b
er

.g

S
o
b
ig

.a

S
p
y
B

o
t.

a

W
el

ch
ia

.a

Klez.a 52 33 29 17 25 21 19 24 11 13 20 22 21 30 10 19 18 17 14 18 19 20 6
Klez.e 52 43 43 25 33 32 26 31 14 9 17 30 21 26 10 23 35 21 23 22 14 16 6
Klez.h 33 43 33 24 29 28 22 39 12 15 19 27 24 35 3 26 20 25 27 21 12 14 6
Zafi.a 29 43 33 41 38 37 34 30 19 15 19 24 24 30 7 21 40 25 33 32 12 23 10
Bagle.a 17 25 24 41 48 45 36 19 28 4 18 21 28 20 9 26 28 25 28 26 15 17 12
Bagle.z 25 33 29 38 48 68 56 23 23 7 19 22 24 30 11 21 35 30 27 32 12 23 10
Bagle.ai 21 32 28 37 45 68 74 26 27 3 22 27 26 29 19 17 34 24 26 30 16 22 13
Bagle.at 19 26 22 34 36 56 74 24 25 6 21 26 25 27 18 19 32 22 24 28 19 21 12
Ganda 24 31 39 30 19 23 26 24 19 19 24 21 29 27 6 41 23 16 17 16 17 8 5
Gibe.a 11 14 12 19 28 23 27 25 19 28 25 21 26 16 11 35 23 15 12 20 32 18 6
Lentin.a 13 9 15 15 4 7 3 6 19 28 15 13 9 11 0 21 12 9 5 9 15 4 4
LovGate.a 20 17 19 19 18 19 22 21 24 25 15 36 72 19 9 24 22 19 16 19 20 14 5
LovGate.ad 22 30 27 24 21 22 27 26 21 21 13 36 35 20 14 15 22 16 14 17 14 16 18
LovGate.b 21 21 24 24 28 24 26 25 29 26 9 72 35 24 6 29 30 24 26 21 21 19 5
Lovelorn.a 30 26 35 30 20 30 29 27 27 16 11 19 20 24 4 32 17 32 42 33 17 19 3
Lovesan.a 10 10 3 7 9 11 19 18 6 11 0 9 14 6 4 8 16 9 5 21 10 8 42
Mimail.a 19 23 26 21 26 21 17 19 41 35 21 24 15 29 32 8 18 22 24 29 30 7 3
Mydoom.a 18 35 20 40 28 35 34 32 23 23 12 22 22 30 17 16 18 20 26 17 10 23 15
Sober.a 17 21 25 25 25 30 24 22 16 15 9 19 16 24 32 9 22 20 47 53 16 13 0
Sober.f 14 23 27 33 28 27 26 24 17 12 5 16 14 26 42 5 24 26 47 50 18 14 0
Sober.g 18 22 21 32 26 32 30 28 16 20 9 19 17 21 33 21 29 17 53 50 24 14 4
Sobig.a 19 14 12 12 15 12 16 19 17 32 15 20 14 21 17 10 30 10 16 18 24 4 0
SpyBot.a 20 16 14 23 17 23 22 21 8 18 4 14 16 19 19 8 7 23 13 14 14 4 7
Welchia.a 6 6 6 10 12 10 13 12 5 6 4 5 18 5 3 42 3 15 0 0 4 0 7

Table 4.7: Malware Similarity Matrix

59

4.10.3 Analyzing the Similarity Matrix

It is very hard to analyze the large similarity matrix, so we extracted some

of the more interesting information here.

In most cases, malwares are more similar to later variants of the same fam-

ily than to the earlier variants. This gives us more confidence that we can

use behaviors from an earlier malware variant to detect a newer one.

LovGate.a
72%

36%
25%

LovGate.b LovGate.ad Gibe.a

LovGate.b
72%

35% 30%

LovGate.a LovGate.ad Klez.e

LovGate.ad

36% 35% 30%

LovGate.a LovGate.b Mydoom.a

Figure 4.10: Top Three Most
Similar Malwares To LovGate
Family Variants

Sober.a

53% 47%
32%

Sober.g Sober.f Lovelorn.a

Sober.f

50% 47% 42%

Sober.g Sober.a Lovelorn.a

Sober.g

53% 50%

33%

Sober.a Sober.f Lovelorn.a

Figure 4.11: Top Three Most
Similar Malwares To Sober
Family Variants

We can see from Figure 4.10 and 4.11 that in the LovGate and Sober fam-

ilies, the variants within the same family have higher similarity index than

from other families. This fits our assumption that malwares have a higher

60

inter-family similarity.

Bagle.a

48% 45% 41% 36%

Bagle.z Bagle.ai Zafi.a Bagle.at

Bagle.z
68%

56%
48%

38%

Bagle.ai Bagle.at Bagle.a Zafi.a

Bagle.ai
74% 68%

45%
37%

Bagle.at Bagle.z Bagle.a Zafi.a

Bagle.at
74%

56%

36% 34%

Bagle.ai Bagle.z Bagle.a Zafi.a

Figure 4.12: Top Three Most
Similar Malwares To Bagle
Family Variants

Klez.a

52%

33% 30%

Klez.e Klez.h Lovelorn.a

Klez.e

52%
43% 43%

Klez.a Klez.h Zafi.a

Klez.h

43% 39% 33%

Klez.e Ganda Klez.a

Figure 4.13: Top Three Most
Similar Malwares To Klez Fam-
ily Variants

But in the Bagle family, Bagle.a is more similar to Zafi.a than Bagle.at. In

the Klez family, Klez.h is more similar to Ganda than Klez.a, and Klez.e

has the same similarity index for both Klez.h and Zafi.a. In these anoma-

lies, the similarity indexes for these intra-family malwares are higher than

61

the average.

We believe that there are two main possibilities for this anomaly. The first

and most likely possibility is that the Similarity Index we used was too

simple to study the intricate behavioral relationships between malwares.

Modifying the Similarity Index equation based on the previously proposed

suggestions in Section 4.10.2 will result in a more accurate score, and may

correct this problem.

The second possibility is that the current classification scheme is unsuitable

for our behavior-based approach, and a new paradigm is required. This can

be the focus of our future work.

Chapter 5

Experimental Methodology

5.1 Choice of Sensor

5.1.1 Experimental Objectives

The aim of our experiment is to get the list of behaviors described in

Section 4.4 that we are interested in. The choice of the sensor is very

important as it directly affects how we analyze the malware behaviors. We

imposed the following criteria for our choice:

• Must be able to capture information on most of the behaviors

• Data output must be semantically rich enough to reveal higher level
behaviors

• Data output must be in format flexible enough to allow statistical
analysis

• Must not impact system performance too much

• Must not adversely affect “normal” malware operations

5.1.2 Static Analysis versus Dynamic Monitoring

The first decision that we have to make is to choose to either perform static

analysis on the malware binary without executing it, or actually execute

the binary and observe its interaction with the operating system environ-

ment.

62

63

Static Analysis

Static analysis of a malware binary let us find out exactly how a malware

work, the resources that it uses, and the objects it carries within its pay-

load (files, scripts, HTML, GUI, passwords, commands, control channels,

and so on). The API system calls used by the malware can also be reverse

engineered from the binary, for example using SAVE [59] (Static Analyzer

for Vicious Executable). Most anti-virus solutions use this approach.

The problem with static analysis is that it is not very effective against

polymorphic or metamorphic malwares. While it is possible to recover the

code portions that polymorphic malwares attempts to hide via encryption

or encoding by studying the API system calls used by the binary, there is no

quantitative study to show its effectiveness. Also, the general consensus on

the effectiveness of this approach against metamorphic malwares is dismay.

Metamorphic malwares constantly mutates its payload by using different

registers, inserting junk code like no operations (NOP’s), and jumping over

(JMP) or rearranging code segments.

Dynamic Monitoring

Dynamic monitoring does not have the same problem with polymorphic or

metamorphic malwares. No matter how much the binary code changes, the

actions of the malware do not change. Since we look at behaviors, the few

ways for the malware to escape detection are by not performing any known

malicious actions, performing only novel actions, or taking out the sensor

system before its own detection. (Protection of the detection system is not

covered within the scope of this thesis)

The weakness of dynamic monitoring is that it might not capture all the

behaviors of the malware. Some behaviors might require certain conditions

64

to be met before activation. For example, a malware might only perform

destructive actions on the hard drive or engage in a DOS attack only on

certain dates. A multi-vector malware might need certain software to be

installed in order to propagate in a different way; for example, a mass

mailer virus that can also be spread via the Kazaa distributed peer-to-peer

file sharing service.

We choose to use dynamic monitoring because it relates well to our behavior-

based approach and we hope to implement a real-time behavior-based de-

tection system in the future. Despite its weakness, we believe that it is

a good guide to malware behaviors and it can complement static analysis

well. Finally, it is our assumption that we do not need to catch all the

malware behaviors for detection or classification.

5.1.3 Sensor Level

The next question that we have to ask is where do we monitor, and how

much sensor details do we want. Let us look at the following three levels:

• Instruction set level

• System call level

• Application level

Instruction Set Level

The trade-off is that at the lower instruction set level, we have higher

coverage but lower semantic information. That means, it will be harder for

malwares to hide from the sensor, but it will also mean that it is harder to

get high-level behavioral information from the large stream of instruction

codes that will be generated from the monitoring.

65

Application Level

At the higher application level, we have lower coverage but higher seman-

tic information. Windows itself provides Windows Event, Security and

Application logs, and performance counters that provides a good source of

information. Unfortunately, the lack of details and flexibility of these tools

makes them a bad sensor choice.

There are also a number of tools that we can use to look for specific be-

haviors. For example, Sysinternals offers a great range of tools that can

study a lot of different Windows behaviors in real-time; like Filemon [48]

that monitors all file system activities, or Regmon [49] that monitors all

registry activities. These tools can offer very specific and detailed behav-

ioral information with just a small amount of generated data.

The downside of using these tools is that every new behavior that we want

to cover requires additional tools. We lose flexibility, as we must know

exactly what behaviors we want before our experiments. Furthermore, it

is very hard to correlate information from different tools accurately.

System Call Level

The middle ground between the instruction set and application level is the

system call level. At this level, we look at information that passes from the

process to the kernel: system call names, arguments, and result values. In

many cases, system calls happen at a relatively low frequency compared to

machine instructions.

Another reason to choose the system call level is because of our assumption

that malware writers want portability, like most Win32 developers. Most

of the malwares discussed in Section 4.1 are written in C or Visual Basic,

66

which are highly dependent on shared libraries or APIs that are common

over different versions of Windows. It is likely that similar system calls will

be used by these common APIs.

Many intrusion detection research on Unix based systems uses API system

calls for their sensor. That is because Unix has a small set of API system

calls that is open and well documented. These system calls combine to form

complex actions. On the other hand, Windows provides a large set of APIs

and system calls where the same function can be accomplished via several

different ways using different system calls. To ensure back-compatibility,

the number of Windows APIs and the system calls within these APIs are

increasing at every upgrade.

While we acknowledge that it is difficult to extract behaviors from Windows

system calls, this level provides the best trade-off in terms of capabilities

and coverage.

5.2 Windows Internal Architecture

The details of the internal workings of Windows, especially NT’s architec-

ture, are beyond the scope of this thesis. We will discuss some relevant

details under the assumption that the reader has some familiarity with

Windows. We refer the interested reader to Russinovich’s books [39, 42]

for more details.

The Windows NT’s architecture consists of two main layers: user and ker-

nel. The mode of a process depends on which layer it is working in. Pro-

cesses in the user mode have limited rights to system resources, while the

kernel mode has unrestricted access to the system memory and external

67

devices. While NT’s kernel is structured like a microkernel, it is in essence

a monolithic kernel.

Application

KERNEL.DLL

NTDLL.DLL

GDI.DLL

APPLICATION
LEVEL

SUBSYSTEM
LEVEL

NATIVE API
LEVEL

KiSystemService
(System Call Interface)

NT KERNEL

ReadFile()

WIN32 API ReadFile()

NtReadFile()

USER MODE
KERNEL MODE

Figure 5.1: Windows API Call

To provide access from the user to kernel mode, Microsoft provides several

user subsystems. The most common one is the Win32 API, while others

include the OS/2 and POSIX API. But there is a hidden API that NT uses

internally, the Native API. This API is obfuscated from most programmers,

with hardly any documentation provided by Microsoft. The Windows NT

Native API is used to call operating system services located in kernel mode

from the user mode by higher level APIs such as the Win32, OS/2, POSIX,

Winsock or .NET APIs. An example of an application level API call is

shown in Figure 5.1. The technical details of the Native API are beyond

the scope of this paper, and we refer the reader to [38] for more detailed

information.

5.3 Choice of API Level Monitoring

The next problem we face is choosing the API to monitor. From the dis-

cussion in Section 5.2, we can roughly separate the APIs into two groups:

the higher level shared library APIs, and the lower level native API.

68

• subsystem (Win32, OS/2, POSIX) and application (Winsock, .NET)

• native

Our choice is to either monitor only the native API, or all the APIs.

5.3.1 Advantages of Native API

Higher level shared library APIs (Win32, OS/2, POSIX) must interface to

kernel via the lower level native API, thus the coverage is very wide for

the native API. In fact, hooks in the native API can provide global control

over the system.

As even assembly-based programs trigger native API system calls when

performing functions such as accessing files, it is very hard for most mal-

wares to hide from such a low level sensor. While it is possible to write

malwares that do not use standard API calls [4], doing so is very difficult

and will break any compatibility between Windows versions.

Finally, the performance hit to the system for monitoring all the APIs is

very high. When we first experimented with Rohitab’s API Monitor [37] to

capture system calls from all APIs, the system slowed down until it crashes

when we ran the Welchia worm. Since we hope to implement a real-time

detection system in the future, we cannot afford to monitor all the APIs.

5.3.2 Limitations of Native API

The main disadvantage of monitoring native API is that we can only see

what the malware ask the operating system to do. The decision-making

process, or logic, of the malware cannot be inferred from the system calls.

In addition, system calls from other higher-level APIs such as Winsock are

not monitored, so we cannot get detailed information about the network

69

traffic. But the native API does provide clues that indicate network activ-

ities. For example, in a number of traces, any successful NtCreateFile call

to the “\Device\RasAcd” device is indicative of SMTP activity.

Finally, the native API is not as descriptive as the higher level APIs. For

example, the single CopyFile() Win32 API need to be represented by a

sequence of native API system calls.

5.4 Chosen Implementation

We would like to extract host behaviors from Native API system calls alone.

The tool we have chosen to implement is based on BindView’s strace for

NT [12], as the source code of strace is available under Open Source license.

While our ultimate aim is to modify strace to serve as a real-time defense

module, we will capture all the data to disk so that we can work off-line

for now.

To show the reader the output format of strace, we quote the following

from strace’s readme file:

1 133 139 NtOpenKey (0x80000000, {24, 0, 0x40, 0, 0, "\Registry\Machine [...]
2 133 139 NtCreateEvent (0x100003, 0x0, 1, 0, ... 8,) == 0x0
3 133 139 NtAllocateVirtualMemory (-1, 1243984, 0, 1244028, 8192, 4, ...) == 0x0
4 133 139 NtAllocateVirtualMemory (-1, 1243980, 0, 1244032, 4096, 4, ...) == 0x0
5 133 139 NtAllocateVirtualMemory (-1, 1243584, 0, 1243644, 4096, 4, ...) == 0x0
6 133 139 NtOpenDirectoryObject (0x3, {24, 0, 0x40, 0, 0, "\KnownDlls"}, ... 12,)
== 0x0
7 133 139 NtOpenSymbolicLinkObject (0x1, {24, 12, 0x40, 0, 0, "KnownDllPath"}, ...
16,) == 0x0
8 133 139 NtQuerySymbolicLinkObject (16, ... "C:\WINNT\system32", 0x0,) == 0x0
9 133 139 NtClose (16, ...) == 0x0
...

The first column is an identity, which lets you match up calls

that don’t complete immediately (and are broken onto two lines).

The second and third columns are the process and thread ids of

70

the thread making the call. Next is the name of the system call,

the input parameters, three dots (...), then output parameters,

and the return code.

5.5 Experimental Environment

5.5.1 Virtualization versus Emulation

There are advantages and disadvantages to both virtualization and emula-

tion of the platform.

Emulation, or sandboxing, allows us better control because the malware

binary is not executed in a real environment, but within a “jail” operating

system emulated by software. Thus, it is possible to monitor both native

and application system calls. It is also more convenient when we want

to capture the system call traces from a large batch of malwares. Unfor-

tunately, emulated environments are extremely restrictive: adding in new

programs or implementing complex network services that interact with the

sandbox can be very troublesome.

Virtualization, on the other hand, emulates a PC and the operating system

is installed within a virtual machine. From the operating system’s point

of view, everything from the hardware to the network environment is real.

This means we can install whatever software we want, and the network

configuration is decoupled from the virtual machine.

We acknowledge that some malwares might change their behaviors or do

not activate, if they detect the virtual environment. This is to prevent

attempts at reverse engineering the malwares. The most common way to

detect virtualization is by checking the hardware configurations as most

71

virtualization software uses fixed names for the virtual hardware. There

are no solutions at this time, but vendors such as VMWare are working to

rectify this flaw in their products.

5.5.2 Platform Operating System

As we decided to study Windows malwares, we have to decide which ver-

sion to run the malwares on. The possible versions of Windows that we

could use are shown in Table 5.1.

The research platform we chose for the victim is the Windows 2000. The

first reason is because next to Windows XP, Windows 2000 is the second

most deployed version in both the home user and corporate market. The

second reason is because this operating system was targeted by a large

number of malwares in the past, and is still targeted in newer attacks in

addition to Windows XP. A number of older malwares may not exhibit all

their behaviors in XP. The large amount of available malwares is important

in the study of behaviors.

Year 199319941995 1996 1997 199819992000 2003 2005
Home User - - - 95 95 98 98 ME, XP -
Market OSR2 OSR2.1, SE XP (MC)

OSR2.5
Enterprise NT NT NT NT - - - 2000 2003 2003
Market 3.1 3.5 3.51 4.0 R2

Table 5.1: Versions of Microsoft Windows

5.5.3 Network Configuration

To prevent any accidental release of malwares during experiment, virtual

machines are used within a single host PC to simulate an isolated network

environment. VMWare Workstation [51] is the virtualization software used

to provide a victim guest running Windows 2000 Professional and a Gate-

72

way providing faked network services running Fedora Core 4 Linux.

Windows 2000 VM Guest
Victim

192.168.1.33

Fedora Core Linux VM Guest
Gateway/Honeypot

192.168.1.14

Virtual Machine Host

Subnet 192.168.0.0

Fedora Core Linux
192.168.1.1

Figure 5.2: Experiment Virtual Network Diagram

The services provided by the Gateway are:

• DNS Server resolving all URL to a single address

• Sendmail mail server

• dovecot IMAP server

• samba file server providing Windows Network Share

In addition, the Gateway also runs honeyd [34], a low interaction honey-

pot that responds to any IP addresses simulating Windows 2000 with the

following services:

• NetBIOS service

• MS Exchange POP3 service

• MS Exchange NNTP service

• MS Exchange IMAP service

• MS Exchange SMTP service

• LDAP service

• IIS Web server

73

• MS ftp service

• VNC service

In future work, we plan to add in a dummy Windows 2000 VMWare guest

that had a previous file share relation with the victim because none of the

malwares attacked the samba file server. We also plan to include fake IRC

and P2P servers.

5.5.4 Honeytokens: Email Addresses and Files

To coax the full set of email behaviors from malwares, we can use the con-

cept of honeytokens. Honeytoken [45] is a system resource whose value lies

in unauthorized or illicit use of that resource. In this case, we can create

fake email addresses that the malwares can find and propagate to.

To make sure the generated fake addresses are used by as many malwares

as possible, we can make use of the descriptions from the anti-virus com-

panies that include patterns that malwares avoid. See Table 5.2 for some

examples.

Bagle.a @hotmail.com, @msn.com, @microsoft, @avp, .r1
Bagle.z abuse, admin, anyone@, @avp., bsd, bugs@, ...
LovGate.ad .gov, .mil, accoun, acketst, admin, arin., ...
Mydoom.a @*.gov, @*.mil, @*acketst*, ... , *accoun*@, *anyone*@, ...
Sober.f @arin, @foo., @iana, @ikarus., @kaspers, @messagelab, ...

Table 5.2: Examples of Email Patterns Avoided by Malwares

In addition to putting these fake addresses in the Outlook or Windows Ad-

dress Books, we can also embed them in files that the malwares can find.

Rather than to randomly place and name these files, we can refine the

location and file names using the anti-virus company descriptions as well.

Table 5.3 shows some examples of file extensions searched by the malwares.

74

As these files are honeytokens and should not be accessed by any legal pro-

grams, any file read or load is highly suspicious and can provide another

behavioral function that we can use.

Bagle.a wab, txt, htm, html
Bagle.z adb, asp, cfg, cgi, dbx, dhtm, eml, htm, jsp, mbx, mdx, ...
Ganda eml, *htm*, dbx
Gibe.a bmp, cpp, doc, htm, html, jpg, mpeg, mpg, txt, xls
Klez.a asp, htm, html, php
Klez.h asp, bak, c, cpp, doc, htm, html, jpg, mp3, mpeg, mpg, ...
Lentin.a htm*
LovGate.a ht*
LovGate.ad adb, asp, dbx, htm, php, pl, sht, tbb, TXT, wab
Lovelorn.a EML, dbx, htm, *ITEM, *BOX
Mydoom.a adb, asp, dbx, htm, php, pl, sht, tbb, txt, wab
Sober.a abc, ade, adp, asp, cfg, doc, dsp, dsw, eml, fdb, htm, ...
Sober.f abc, abd, abx, adb, ade, adp, adr, asp, bas, cfg, cgi, ...
Sobig.a dbx, eml, htm, html, txt, wab

Table 5.3: Examples of File Extensions Searched by Malwares

5.6 Experimental Progress

To test the feasibility of using the behaviors to detect malwares, we look

at some of the most common malwares and normal applications to date.

For each malware, we traced its live activity for fifteen minutes, more than

enough time for any recurrent behaviors to surface. While we do not claim

any of the traces to be representative of normal activities, these traces have

been gathered in environments as deterministic as possible. We believe

that they can help us detect malware behaviors by providing a baseline of

activities.

5.6.1 Traces of Common or Commercial Applications

To have a baseline to compare malware against, traces of the following ap-

plications common to most home users and office workers were captured

75

and analyzed. This baseline comparison is very important in the study of

false positives rates for our approach.

For the normal applications, we used the host as any normal user would

have, and traced its execution using various lengths of time depending on

the action we are trying to capture, from five to fifteen minutes. For some

actions like the browsing the Internet, the target system is connected to

a live network. Other actions that do not require Internet access are re-

stricted to our isolated network. The applications used and actions taken

are shown in Table 5.4.

Programs Actions
Adobe Acrobat Reader 6 Open file in Explorer.
Ghostgum GhostScript Viewer 4.7 Open file in Explorer.
Internet Explorer 5.0.2920.0 Normal browsing.
ICQ Messenger 2001b Build 3659 Connect to server.
MSN Messenger 5.0 Connect to server.
Windows Media Player 6.4.9.1109 Open file in Explorer and from URL.
Nullsoft Winamp Audio Player 5.094 Open file in Explorer.
Microsoft Access 2000 9.0.0.2719 Open file in Explorer, Save file.
Microsoft Excel 2000 9.0.0.2719 Open file in Explorer, Save file.
Microsoft Outlook 2000 9.0.0.2416 Receive/send mail with IMAP.
Microsoft Powerpoint 2000 9.0.0.2716 Open file in Explorer, Save file.
Microsoft Word 2000 9.0.0.2717 Open file in Explorer, Save file.
Microsoft FrontPage 2000 4.0.2.2717 Open file in Explorer, Save file.
WinZip 7.0 Open file in Explorer, Uncompress file.
WinRAR 3.3 Open file in Explorer, Uncompress file.

Table 5.4: Normal Applications Studied

5.6.2 Traces of Malwares

We attempted to capture the traces of all twenty-four malwares discussed in

Section 4.2. We encountered some problems in trying to capture the traces

of certain malwares. These problems include: malware samples unable to

execute on our virtual machine (possibly because of damaged binaries), in-

compatibility with the strace monitoring program (malware process dies if

76

being monitored), and failure of the malware to launch its payload.

Because of these problems, we only managed to successfully obtain traces

of eleven malwares as shown in Table 5.5.

Malwares Status Comments
Email-Worm.Win32.Bagle.a FAIL fail to replicate.
Email-Worm.Win32.Bagle.z FAIL fail to activate.
Email-Worm.Win32.Bagle.ai SUCCESS
Email-Worm.Win32.Bagle.at SUCCESS
Email-Worm.Win32.Ganda SUCCESS
Email-Worm.Win32.Gibe.a FAIL fail to replicate.
Email-Worm.Win32.Klez.a FAIL clash with sensor.
Email-Worm.Win32.Klez.e FAIL fail to activate.
Email-Worm.Win32.Klez.h FAIL fail to activate.
Email-Worm.Win32.Lentin.a FAIL fail to activate.
Email-Worm.Win32.Lovelorn.a SUCCESS
Email-Worm.Win32.LovGate.a SUCCESS
Email-Worm.Win32.LovGate.b SUCCESS
Email-Worm.Win32.LovGate.ad FAIL fail to replicate.
Email-Worm.Win32.Mimail.a SUCCESS
Email-Worm.Win32.Mydoom.a FAIL fail to replicate.
Email-Worm.Win32.Sober.a SUCCESS
Email-Worm.Win32.Sober.f SUCCESS
Email-Worm.Win32.Sober.g SUCCESS
Email-Worm.Win32.Sobig.a FAIL fail to replicate.
Email-Worm.Win32.Zafi.a FAIL fail to activate.
Net-Worm.Win32.Welchia.a SUCCESS
P2P-Worm.Win32.SpyBot.a FAIL fail to activate.
Worm.Win32.Lovesan.a FAIL fail to replicate.

Table 5.5: Trace Capture Status of Malwares Studied

Chapter 6

Behavior Modeling

One difficulty faced by our behavioral approach is how to extract mean-

ingful behaviors from system call traces. A single software behavior can be

called using different combinations of API system calls, so one behavioral

function could be represented by many different API sequences.

The problem is that if we only look at a limited set of sequences to represent

a behavioral function, we would not be able to recognize all the different

sequences of equivalent behavior. And as the collection of sequences to

represent one behavior may be very large, we require a better method of

behavior detection than looking for frequent patterns within the system

call traces.

In this chapter, we will attempt to show how to model behaviors from se-

quences of system calls.

77

78

6.1 Recap of Anomaly-based Systems using

System Calls

From what we had seen in Section 3.1, a large number of intrusion de-

tection system research use system calls as proxy for the host’s behavior.

Typically, fixed or variable sliding windows of system call event sequences

are used as the basic unit, and are assigned values representing normalcy

or abnormality, using various data mining techniques.

S101 S102 S103 S104 S105 S106 S107S100S99S98 S108

S101 S102 S103 S104 S105 S106 S107S100S99S98 S108

time = t

time = t + 1

Figure 6.1: API System Call Event Sequence with Sliding Window of 5

These values are then used to compute numerical results, whereby a value

over a predefined threshold represents the probability of normal behavior

or intrusion.

6.2 Behavioral Blocks

From the analysis of the raw system call traces, we observed that some

individual API system calls could be used to infer certain behaviors, while

other behaviors require an entire sequence. For example, the checking of

date or time can be accomplished with a single NtQuerySystemTime call.

In this thesis, we will refer to the sequence of system calls that infer be-

haviors as a block.

79

Because of the multi-tasking and multi-threading nature of the Windows

operating system, the system call events generated by different processes

are interleaved together. Application or system programs spawn processes

and different tasks of the process are assigned to different threads within

the process. As threads do the actual work, the sequence of system call

events in each thread are in sequential order. By looking at the system call

traces at the thread level, it allows us a more manageable way to look for

behaviors.

Sall = {A1,1[1], A1,2[2], A1,3[3], A2,1[4], A3,1[5], A2,2[6], ..., AP,T [D]}

S1,1 = {A1,1[1], A1,1[2], A1,1[3], A1,1[4], A1,1[5], A1,1[6], ...}
...

S3,1 = {A3,1[1], A3,1[2], A3,1[3], A3,1[4], A3,1[5], A3,1[6], ...}

where

S - sequence of API system call events,

AP,T [D] - system call event of process P and thread T , at delta time D.

6.2.1 Delimiters

We will use delimiters provided by the format structure of Windows’ Na-

tive API to construct a block, instead of using a sliding window.

The delimiter to end a block is always the NtClose system call, while

the delimiter to begin the block depends on the object being manipu-

lated. For example, File blocks begin with the system call NtCreateFile

or NtOpenFile; Registry blocks with NtCreateKey or NtOpenKey; and so

on. Please refer to Table 6.1 for more examples. The sequence of system

calls within the block are linked by their Object Handles.

80

Object Begin Delimiter Object Handles
File NtCreateFile, NtOpenFile FileHandle
Registry NtCreateKey, NtOpenKey KeyHandle
Memory NtCreateSection, NtOpenSection SectionHandle
Mutex NtCreateMutant, NtOpenMutant MutantHandle
Process NtCreateProcess, NtOpenProcess ProcessHandle
Event NtCreateEvent, NtOpenEvent EventHandle
Thread NtCreateThread, NtOpenThread ThreadHandle

Table 6.1: Examples of Begin Delimiter System Calls

As Windows treats resources like file, memory or network points as objects,

the block can be used to model behaviors manipulating different types of

resources in a similar fashion.

6.2.2 Block Property

A system call event consists of: an unique identifier or counter, process ID

(PID), thread ID (TID), input and/or output arguments and return sta-

tus. Within a block, a system call is able to access all the input and output

information of its preceding system call events, and manipulate the objects

initialized by those system calls according to the access rights granted. We

will show this property with an example.

In Figure 6.2, we see that five system calls are linked by the same Object

Handle 752. Therefore, these five system calls form a block.

Blockunknown = {NtCreateF ile, NtSetInformationF ile, NtWriteF ile,

NtSetInformationF ile, NtClose}

From Figure 6.4, the NtCreateFile event creates a new file

“C:\Program Files\Common Files\Microsoft Shared\Ahead Nero 7.exe”.

This information can be seen from the input arguments CreateDisposition

(FILE CREATE) and ObjectName. This file is initialized as a file object with

write permission, and is referenced by the File Handle 752.

81

140117 772 720 NtCreateFile (0x40110080, {24, 0, 0x40, 0, 1242692,
"\??\C:\ProgramFiles\CommonFiles\MicrosoftShared\
AheadNero7.exe"}, 0x0, 128, 0, 2, 100, 0, 0, ... 752 ,
{status=0x0, info=2},) == 0x0

140118 772 720 NtSetInformationFile (752 , 1242728, 8, EndOfFile, ...
{status=0x0, info=0},) == 0x0

140119 772 720 NtCreateSection (0xf001f, 0x0, 0x0, 2, 134217728, 768, ...
756,) == 0x0

140120 772 720 NtMapViewOfSection (756, -1, (0x0), 0, 0, {0, 0}, 0, 1, 0,
2, ... (0x2040000), 0, 0, 24576,) == 0x0

140121 772 720 NtClose (756, ...) == 0x0

140122 772 720 NtWriteFile (752 , 0, 0, 0, "MZ\0\0\1〈DELETED〉", 21358,
0x0, 0, ... {status=0x0, info=21358},) == 0x0

140123 772 720 NtUnmapViewOfSection (-1, 0x2040000, ...) == 0x0

140124 772 720 NtSetInformationFile (752 , 1243632, 40, Basic, ...
{status=0x0, info=0},) == 0x0

140125 772 720 NtClose (768, ...) == 0x0

140126 772 720 NtClose (752 , ...) == 0x0

Figure 6.2: Extract of Bagle.ai Sample Trace

System Call: NtWriteFile
Counter: 140122
Process ID: 772
Thread ID: 720
Input FileHandle: 752
Arguments: Event: 0

ApcRoutine: 0
ApcContext: 0
Buffer: "MZ\0\0\1〈DELETED〉"
Length: 21358
ByteOffset 0x0
Key: 0

Output IoStatus status: 0x0
Arguments: Block: info: 21358
ReturnStatus: 0x0

SUCCESS

Figure 6.3: NtWriteFile System Call Event from Bagle.ai Sample Trace

82

System Call: NtCreateFile
Counter: 140117
Process ID: 772
Thread ID: 720
Input DesiredAccess: 0x40110080
Arguments: FILE READ ATTRIBUTES,

DELETE,SYNCHRONIZE,

GENERIC WRITE

Object Length: 24
Attributes: RootDirectory: 0

Attributes: 0x40
OBJ CASE INSENSITIVE

Security 0
Descriptor:
Security 1242692
Quality
Of Service:
ObjectName: "\??\C:\ProgramFiles\

CommonFiles\
MicrosoftShared\
AheadNero7.exe"

AllocationSize: 0x0
FileAttributes: 128

FILE ATTRIBUTE NORMAL

ShareAccess: 0
NONE

CreateDisposition: 2
FILE CREATE

CreateOptions: 100
FILE SEQUENTIAL ONLY,FILE

SYNCHRONOUS IO NONALERT,

FILE NON DIRECTORY FILE

EaBuffer: 0
EaLength: 0

Output FileHandle: 752
Arguments: IoStatus status: 0x0

Block: info: 2
FILE CREATE

ReturnStatus: 0x0
SUCCESS

Figure 6.4: NtCreateFile System Call Event from Bagle.ai Sample Trace

83

When we look into the details of the NtWriteFile system call event from

Figure 6.3, we see that it successfully wrote data into the file referenced by

File Handle 752. It was able to access the all the information of the file

object created by the preceding NtCreateFile event.

6.3 Identification of Block Behavior

Without any advanced knowledge, it might seem that we would need a so-

phisticated learning algorithm to learn the behavior of a block; but by un-

derstanding the workings of Windows [42] and the native system call API,

it makes behavior identification easier. In most cases, the blocks them-

selves provide enough information to identify the functions they serve. By

studying the system calls used [31, 33], and the source code from the Win-

dows Driver Development Kit [28], we were able to identify a large number

of behavioral blocks. We will demonstrate the process with an example of

how we identify a file write behavior from the trace in Figure 6.5.

2098 816 764 NtCreateFile (0xc0100080, {24, 0, 0x42, 0, 1240460, "\??\C:
\WINNT\System32\netdll.dll"}, 0x0, 32, 3, 1, 96, 0, 0, ...
92, {status=0x0, info=1},) == 0x0

2099 816 764 NtQueryVolumeInformationFile (92, 1240556, 8, Device, ...
{status=0x0, info=8},) == 0x0

2100 816 764 NtWriteFile (92, 0, 0, 0, "MZP\0\2\0\0\0\4\0\17\0\
377\377\0\0\270\0\4\0\0\0\0@\0\32\0", 28, 0x0, 0, ...
{status=0x0, info=28},) == 0x0

2101 816 764 NtClose (92, ...
2101 816 764 NtClose ...) == 0x0

Figure 6.5: Extract of Lovelorn.a Sample Trace

84

System Call: NtWriteFile
Counter: 2100
Process ID: 816
Thread ID: 764
Input FileHandle: 92
Arguments: Event: 0

ApcRoutine: 0
ApcContext: 0
Buffer: "MZP\0\2\0〈DELETED〉"
Length: 28
ByteOffset 0x0
Key: 0

Output IoStatus status: 0x0
Arguments: Block: info: 28
ReturnStatus: 0x0

SUCCESS

Figure 6.6: NtWriteFile System Call Event from Lovelorn.a Sample Trace

System Call: NtQueryVolumeInformationFile
Counter: 2099
Process ID: 816
Thread ID: 764
Input FileHandle: 92
Arguments: FileSystemInformation: 1240556

Length: 8
FileSystemInformationClass: Device

Output IoStatus status: 0x0
Arguments: Block: info: 8
ReturnStatus: 0x0

SUCCESS

Figure 6.7: NtQueryVolumeInformationFile System Call Event from
Lovelorn.a Sample Trace

85

System Call: NtCreateFile
Counter: 2098
Process ID: 816
Thread ID: 764
Input DesiredAccess: 0xc0100080
Arguments: FILE READ ATTRIBUTES,

SYNCHRONIZE,GENERIC

WRITE,GENERIC READ

Object Length: 24
Attributes: RootDirectory: 0

Attributes: 0x42
OBJ INHERIT,OBJ CASE

INSENSITIVE

Security 0
Descriptor:
Security 1240460
Quality
Of Service:
ObjectName: "\??\C:\WINNT\System32\

netdll.dll"

AllocationSize: 0x0
FileAttributes: 32

FILE ATTRIBUTE ARCHIVE

ShareAccess: 3
FILE SHARE READ,

FILE SHARE WRITE

CreateDisposition: 1
FILE OPEN

CreateOptions: 96
FILE SYNCHRONOUS IO

NONALERT,FILE NON

DIRECTORY FILE

EaBuffer: 0
EaLength: 0

Output FileHandle: 92
Arguments: IoStatus status: 0x0

Block: info: 1
FILE OPEN

ReturnStatus: 0x0
SUCCESS

Figure 6.8: NtCreateFile System Call Event from Lovelorn.a Sample Trace

86

6.3.1 Detection

For certain behaviors, we noticed that we do not need to study every sys-

tem call that appears within a block. Depending on the behavior required,

some system call types can be ignored.

The trace and system call information presented previously in Section 6.3

shows the behavior of writing to a file.

Blockfile write = {NtCreateF ile, NtQueryV olumeInformationF ile,

NtWriteF ile,NtClose}

We know that if we see an NtWriteFile event in the block, a write opera-

tion was performed on the file ObjectName. Since the NtCreateFile event

input argument CreateDisposition is FILE OPEN, we know that an existing

file was written to, instead of creating a new file. The NtQueryVolumeInformationFile

event provides no useful information as we are convinced that the block per-

forms a file write.

Other examples in File operations include an NtSetInformationFile event

with input argument FileInformationClass of Disposition indicating a

file delete behavior.

We are trying to show that there is no need to study all the system call

events in a block. If we are looking for specific behaviors, certain system

call types can give us enough information.

6.3.2 Identification

Compared to simple detection, the criteria for identification are more strin-

gent. This is because the identified block behavior is used for classifying

87

malwares. While the behaviors detected may be the same for some mal-

wares, how these behaviors were accomplished might be entirely different.

Identification is more complex because we have to look at all the system

calls and their parameters. Not only are the parameters of different system

calls are used differently, some parameters are more important than others.

We will demonstrate how we chose the parameters.

Let us take a look at the NtQueryVolumeInformationFile event from Fig-

ure 6.7, it has three input arguments excluding the FileHandle: FileSys-

temInformation, Length and FileSystemInformationClass. The two out-

put arguments, status and info, do not matter because they reflect the

values from Length and ReturnStatus respectively. The input argument

FileSystemInformationClass is Device, which tells us that it tried to get

information about the volume device containing “netdll.dll”. FileSystem-

Information is a buffer, and Length is the size of the buffer, so these two

arguments do not provide us with much information and can be discounted.

From Figure 6.6, the NtWriteFile event has seven input arguments ex-

cluding the FileHandle: Event, ApcRoutine, ApcContext, Buffer, Length,

ByteOffset and Key. The two output arguments, status and info, do not

matter because they also reflect the values from Length and ReturnStatus

respectively. Of all the input arguments, only Buffer and Length are not

optional arguments that can be discounted. The Buffer argument shows

part of the binary data to be written, and Length is the size of Buffer.

These two arguments do not provide us with more information and can be

discounted too.

Finally, let us take a look at Figure 6.8 showing the NtCreateFile event. It

88

has nine input arguments: DesiredAccess, ObjectAttributes, AllocationSize

FileAttributes, ShareAccess, CreateDisposition, CreateOptions, EaBuffer,

EaLength. The two output arguments, status and info, do not matter

because they reflect the values from CreateDisposition and the ReturnSta-

tus respectively. AllocationSize and EaBuffer are optional arguments and

can be discounted. As EaLength is the size of EaBuffer, we can disregard

this argument too. ObjectAttributes is a buffer, containing the following

arguments: Length, RootDirectory, Attributes, SecurityDescriptor, Secu-

rityQualityOfService and ObjectName. We only need RootDirectory and

ObjectName to know what Object we are accessing, but these are not re-

quired to determine behaviors.

Of the remaining five input arguments, we can disregard DesiredAccess and

ShareAccess, which provides the access rights to the file because NtWriteFile

must be successful for this block to be true. We also disregard FileAt-

tributes because knowing the changed file attribute information does not

contribute more data in this case. We are interested in CreateDisposition,

which tells us the file we are accessing is an existing file, and CreateOptions

that tells us the file object is not a directory.

As this is the ninth file write block we had encountered, we will name it

file write9. The system call events and arguments needed to represent

file write9 are shown in Figure 6.9.

As the sequence of system call events gets longer and more varied, the

more complex the behaviors become. As this is a new area of research, the

choosing of parameters to identify a block is done by a human expert. At

this time, we have not found any algorithmic method to accomplish this as

we are still in the infancy of our work.

89

NtCreateFile

FileAttributes: FILE ATTRIBUTE ARCHIVE

CreateDisposition: FILE OPEN

CreateOptions: FILE SYNCHRONOUS IO NONALERT

FILE NON DIRECTORY FILE

ReturnStatus: SUCCESS

NtQueryVolumeInformationFile

FileSystem Device
InformationClass:

ReturnStatus: SUCCESS

NtWriteFile

ReturnStatus: SUCCESS

Figure 6.9: System Call Events and Arguments Representing file write9

We would like to reiterate the importance of choosing the right combina-

tions of parameters. If we use too few parameters, we would likely lose

some context about the behavior. For example in this section, we chose

not to use the FileAttributes argument in the file write9 block. This

means we lose the information that the file access rights was changed, but

as we are identifying write behavior, this information is not important.

On the other hand, if we use too many parameters, we lose the ability to

generalize. If we encounter another similar block with minor difference in

parameters like the desired access rights, we would have to create another

identification signature with minor differences.

90

6.4 Matching Blocks with Finite State Au-

tomata

6.4.1 Block FSA

We use finite state automata to model block information because they en-

able efficient behavior function identification. Using FSAs to perform pat-

tern matching on blocks allows us flexibility in the software implementation

as FSA can be implemented using regular expressions, which is supported

in many programming languages.

In our implementation, the three different transitions are the System Call

name (SYSCALL), the arguments (ARG), and the return status (RET) of

the event. We will use the file write9 block from the previous section for

illustration. The information from the block of system call events in the

previous Figure 6.9 is represented in Figure 6.10.

91

Figure 6.10: file write9 Block FSA

92

6.4.2 Generalized Block FSA

In longer block patterns, we notice that there are a lot of repetitions within

the blocks. By finding frequent patterns within the blocks, we can gener-

alize one FSA to model similar blocks.

We will look at the simplified representation of Blockfile write9 below. This

block can be modeled with the FSA shown in Figure 6.10. The differ-

ence between Blockfile write9 and Blockfile write89 is the repetition of the

NtWriteFile event.

Blockfile write9 = {NtCreateF ile, NtQueryV olumeInformationF ile,

NtWriteF ile,NtClose}

Blockfile write89 = {NtCreateF ile, NtQueryV olumeInformationF ile,

NtWriteF ile,NtWriteF ile, NtWriteF ile,NtWriteF ile,

NtWriteF ile,NtWriteF ile, NtWriteF ile,NtWriteF ile,

NtWriteF ile,NtWriteF ile, NtWriteF ile,NtWriteF ile,

NtWriteF ile,NtClose}

By slightly modifying the FSA to include an additional transition from the

return status state of NtWriteFile back to itself, as shown in Figure 6.11,

this FSA can be used to model both Blockfile write9 and Blockfile write89.

A more complicated FSA is shown in Figure 6.12. At this time, the process

of sequence reduction using frequent patterns is done manually. We hope

to study various algorithms for this process in future works.

93

Figure 6.11: Generalized
file write9 Block FSA

Figure 6.12: Generalized
file read5 Block FSA

94

6.5 Behavioral Macros

The basic unit to represent behaviors is the individual system call events.

A structured sequence of system call events is a block. When blocks are

combined to form more complex behaviors, we call them macros.

We will introduce three main types of block relationship within a macro:

interleave, intersect and super.

6.5.1 Interleaving Blocks

Interleave is the simplest relationship. The two blocks or macros share no

direct relationship or information, other than the fact that the sequences

of both are sequentially interleaving.

We refer to Figure 6.13, which is a representation of the traces from Fig-

ure 6.14. The macro file copy is formed from the file write block and

file load macro. We can see from Figure 6.14 that they share no common

information.

file_open (block1)

file_write (block2)

2877 2886 29012892

map_to_memory (block3)

Behavior
Macro

Identity

file_copy

file_load

Figure 6.13: Bagle.at File Copy Macro Behavior

95

Block Trace
1 2877 764 740 NtCreateFile (0x80100080, {24, 0, 0x40, 0, 1242960, ”\?

?\C:\Email-Worm.Win32.Bagle.at.exe”}, 0x0, 0, 1, 1,
2097252, 0, 0, ... 448, status=0x0, info=1,) == 0x0

...
1 2885 764 740 NtQueryInformationFile (448, 1242864, 4, Ea, ...

{status=0x0, info=4},) == 0x0
2 2886 764 740 NtCreateFile (0x40110080, {24, 0, 0x40, 0, 1242852, ”\?

?\C:\WINNT\System32\wingo.exe”}, 0x0, 33, 0, 5, 100,
0, 0, ... 444, {status=0x0, info=2},) == 0x0

2 2889 764 740 NtSetInformationFile (444, 1242888, 8, EndOfFile, ...
{status=0x0, info=0},) == 0x0

1,3 2892 764 740 NtCreateSection (0xf001f, 0x0, 0x0, 2, 134217728, 448,
... 452,) == 0x0

3 2893 764 740 NtMapViewOfSection (452, -1, (0x0), 0, 0, {0, 0}, 0, 1,
0, 2, ... (0xcf0000), {0, 0}, 20480,) == 0x0

3 2894 764 740 NtClose (452, ...) == 0x0
2 2895 764 740 NtWriteFile (444, 0, 0, 0, ”BINARY DATA”, 19069, 0x0,

0, ... {status=0x0, info=19069},) == 0x0
2896 764 740 NtUnmapViewOfSection (-1, 0xcf0000, ...) == 0x0

2 2897 764 740 NtSetInformationFile (444, 1243792, 40, Basic, ...
{status=0x0, info=0},) == 0x0

1 2900 764 740 NtClose (448, ...) == 0x0
2 2901 764 740 NtClose (444, ...) == 0x0

Figure 6.14: Extract of Email-Worm.Win32.Bagle.at Sample Trace

6.5.2 Intersecting Blocks

Intersecting blocks has the closest relationship. The two blocks or macros

share common system call events, in addition to the sequences of both se-

quentially interleaving.

From Figure 6.13, the macro file load is formed from the file open and

map to memory blocks. We can see from Figure 6.14 that they share the

NtCreateSection system call event.

6.5.3 Super Blocks

Super relationship is when one block or macro inherits objects or parameter

information from another, in addition to the sequences of both sequentially

96

interleaving.

The traces from Figure 6.15 shows two blocks, where Block1 is the su-

per block of Block2. In Block1, the NtOpenKey event initialized a reg-

istry object “\REGISTRY\USER\S-1-5-21-515967899-299502267-839522115-

1000”, which is a registry path, referenced by the KeyHandle 76. In Block2,

the NtCreateKey event inherits the object via the handle 76. The path

of the previous object is combined with current ObjectName “SOFTWARE\

Microsoft\Windows\CurrentVersion\Run” to initialize the current object

“\REGISTRY\USER\S-1-5-21-515967899-299502267-839522115-1000SOFTWARE\

Microsoft\Windows\CurrentVersion\Run”.

Block Trace
1 4603 772 720 NtOpenKey (0x2000000, 24, 0,

0x40, 0, 0, ”\REGISTRY\USER\
S-1-5-21-515967899-299502267-839522115-1000”,
... 76 ,) == 0x0

...

2 6052 772 720 NtCreateKey (0x2000000, 24, 76 , 0x40, 0, 0, ”SOFTWARE\
Microsoft\Windows\CurrentVersion\Run”, 0, 0x0, 0, ...
448, 2,) == 0x0

2 6053 772 720 NtSetValueKey (448, ”key”, 0, 1, ”C\0:\0\\0W\0I\0N\0N\
0T\0\\0S\0y\0s\0t\0e\0m\03\02\0\\0w\0i\0n\0x\0p\
0.\0e\0x\0e\0\0\0”, 56, ...) == 0x0

2 6054 772 720 NtClose (448, ...) == 0x0
...

1 328060 772 720NtClose (76, ...) == 0x0

Figure 6.15: Extract of Sample Trace from Bagle.ai

6.6 Mapping of Behaviors to Blocks

We have seen in Section 6.3.2 how we can identify simple blocks based on

the system call information. But identifying complex behaviors will require

more effort.

97

While it is very hard to find behaviors from a system trace, it is much easier

to extract sequences from system trace if the behavior is known (for exam-

ple, if we know in advance a malware creates an identifier in the memory

to indicate it’s presence, we can analyze the system calls related to that

identifier to form a behavioral function).

Therefore, our approach is to find obscure blocks of system calls that in-

dicate the behaviors of the malwares based on the technical descriptions

from anti-virus companies we discussed in Section 4.3 and footprints left

behind from the actions taken by the malwares.

This approach is inspired by criminal profiling and medical differential di-

agnosis. An medical analogy we can use is that if a doctor suspects that

his patient have a very tiny tumor that cannot be seen by a MRI scan, he

can check the patient’s blood for certain antibodies that might indicate the

presence of a tumor.

Any actions taken by a process in a host leaves traces. In some cases,

preparations taken to undertake an action leave traces. For example, using

native API alone cannot accurately identify behaviors like network connec-

tions, we would need to monitor the Winsock API to get details. But by

looking for blocks involving network device objects or network DLLs, we

can get hints about network activities.

We will demonstrate this with the process of how we identified a code in-

jection macro. Code injection is a technique whereby we inject executable

code into an existing process. While it might seem like a bad idea for non-

malicious programs, it is used quite frequently.

98

Block Trace
1 9114 220 824 NtOpenFile (0x100020, {24, 0, 0x40, 0, 0, "\??\C:

\WINNT\system32\1.dll"}, 5, 96, ... 336, {status=0x0,
info=1},) == 0x0

1,2 9115 220 824 NtCreateSection (0xf, 0x0, 0x0, 16, 16777216, 336, ...
2 9115 220 824 NtCreateSection ... 560,) == 0x0
1 9121 220 824 NtClose (336, ...) == 0x0
2 9122 220 824 NtMapViewOfSection (560, -1, (0x0), 0, 0, 0x0,

0, 1, 0, 4, ... (0x1110000), 0x0, 86016,) ==
STATUS IMAGE NOT AT BASE

I1 9123 220 824 NtProtectVirtualMemory (-1, (0x1111000), 45056, 4, ...
(0x1111000), 45056, 32,) == 0x0

I2 9124 220 824 NtProtectVirtualMemory (-1, (0x111c000), 12288, 4, ...
(0x111c000), 12288, 2,) == 0x0

I3 9125 220 824 NtProtectVirtualMemory (-1, (0x1123000), 8192, 4, ...
(0x1123000), 8192, 2,) == 0x0

2 9126 220 824 NtMapViewOfSection (560, -1, (0x1110000),
0, 0, 0x0, 86016, 1, 0, 4, ...) ==
STATUS CONFLICTING ADDRESSES

I4 9127 220 824 NtProtectVirtualMemory (-1, (0x1111000), 45056, 16, ...
(0x1111000), 45056, 4,) == 0x0

I5 9128 220 824 NtProtectVirtualMemory (-1, (0x111c000), 12288, 2, ...
(0x111c000), 12288, 4,) == 0x0

I6 9129 220 824 NtProtectVirtualMemory (-1, (0x1123000), 8192, 2, ...
(0x1123000), 8192, 8,) == 0x0

I7 9130 220 824 NtFlushInstructionCache (-1, 0, 0, ...) == 0x0
2 9131 220 824 NtClose (560, ...) == 0x0

Figure 6.16: code injection Extract of Sample LovGate.a Trace

From the technical description of Email-Worm.Win32.LovGate.a, we learn

that the malware does a code injection using the dynamic link library file

“1.dll”. By searching for the file in the trace, we found the macro as

shown in Figure 6.16. Block 2, interleaved with seven individual system

call events, shows sign of a code injection. The return status from the

two NtMapViewOfSection events, STATUS IMAGE NOT AT BASE and STATUS

CONFLICTING ADDRESSES, are the main indicators. We double-checked this

with Email-Worm.Win32.LovGate.b, and security applications like Spybot

- Search & Destroy and ClamWin Anti Virus, which are also known to use

code injections.

99

6.7 Correlation of Behavior Blocks or Macros

We can gather more behavioral information when we look at the correla-

tions of blocks or macros. We will demonstrate with one example whereby

we get the behavior for searching all the directories on the local drive:

search all dir recursive.

The block behavior,

dir search2 "*" "\??\C:\"

represents the searching of all files in the "C:" root directory. From Ta-

ble 6.5, we can see that the search starts from "C:", and continues depth-

first from "C:\WINNT" all the way to "C:\Recycled", the last directory

on the drive. Thus, these behavioral function blocks are used to model

search all dir recursive.

Block Block Behavior Functions
Start End

5636 5651 dir search2 "*" "\??\C:\"
5680 5712 dir search2 "*" "\??\C:\WINNT\"
5723 6233 dir search2 "*" "\??\C:\WINNT\system32\"
6242 6252 dir search2 "*" "\??\C:\WINNT\system32\config\"
6452 6489 dir search2 "*" "\??\C:\WINNT\system32\drivers\"
6498 6502 dir search2 "*" "\??\C:\WINNT\system32\drivers\

etc\"
...

376585 376593 dir search2 "*" "\??\C:\ProgramFiles\WinZip\"
378849 378855 dir search2 "*" "\??\C:\Recycled\"

Table 6.5: dir search2 Blocks from Sober.f Sample Trace

Chapter 7

Malware Behavioral Analysis

In this chapter, we first demonstrate the detection capability of our system

using the most prevalent behaviors as discussed in Section 4.7. We also

introduce the generalization of behavioral functions by showing reuse of

basic behavioral blocks among malwares. In the rest of the chapter, we

will explore various issues important to our behavior-based approach.

7.1 Accuracy of Technical Descriptions from

Anti-virus Companies

One interesting piece of information that may interest many researchers is

the accuracy of the malware descriptions provided by anti-virus companies.

We will study the accuracy of the descriptions by looking for a small set of

described behaviors in the captured behavioral traces of a sample number

of malwares.

The more prevalent behaviors are the sample choices, and they are also

the behaviors that form the survive system reboot and find email

addresses complex behaviors. The sample malware choices are limited

to those we managed to capture successfully, as discussed in Section 5.6.2.

100

101

They are Bagle.ai, Bagle.at, Ganda, LovGate.a, LovGate.b, Lovelorn.a,

Mimail.a, Sober.a, Sober.f, Sober.g and Welchia.a .

7.1.1 Recap of Behavioral Functions Used

The behavioral functions that we will use in our analysis were discussed

in the previous chapters, but we will provide a brief summary to help the

reader recall the details.

The complex functions of survive system reboot and find email addresses

are formed by combinations of the following behavioral functions with pa-

rameters offering risk differentiation:

• file copy others

• file copy System

• file copy Windows

• file create others

• file create System

• file create Windows

• registry modify shell

• registry add startup

• registry add service

• find data files

• search all dir recursive

• search specific dir recursive

• harvest emails

We will show the possible complex behaviors combinations using Boolean

notations.

For survive system reboot function:

• registry add startup AND (file copy OR file create)

• registry add service AND (file copy OR file create)

• registry modify shell AND (file copy OR file create)

For find email addresses function:

102

• search all dir recursive AND find data files

AND harvest emails

• search specific dir recursive AND find data files

AND harvest emails

The function file create is a basic behavior that creates a new file, while

file copy duplicates a file, to a certain directory. The parameters shown

are the target directories, where Windows is the “C:\Windows” folder, and

System is the “C:\Windows\System32” folder, of a Windows 2000 system.

Any other target directories are represented by others.

As a behavior-based system, the filenames of the created files are not di-

rectly used, but the filenames are used to show correlation to the registry-

based functions. Thus a survive system reboot function can only be con-

firmed if the file-based and registry-based functions operate on the same

files.

The function registry add adds data like file names and locations to

the registry, where the parameters are the locations of the target reg-

istry keys. The parameter startup is the location of the key that stores

information about the programs that should run during a Windows start

up cycle, and service stores information about the programs that should

run as services during boot time. Adding file information to these keys

will result in new programs activating when Windows starts up. The func-

tion registry modify modifies existing registry data. The parameter shell

stores information about which programs to run when files of certain exten-

sions are activated. For example, the default “txt” shell of a Windows 2000

system points to the notepad application. Changing the txtshell key data

will result in another program being called when text files are activated.

103

The function search all dir recursive traverse through the entire filesys-

tem starting from the root directory “C:\”, whereas

search specific dir recursive starts from a specific directory.

The find data files function is used to represent the search of text,

html or other application data files. In the Windows environment, the

different file types are usually indicated by their extensions. This func-

tion must occur within the lifetime of a search all dir recursive or

search specific dir recursive function to be used to form the complex

find email addresses function.

The function harvest emails indicates the parsing of files for patterns

matching email addresses. This behavior can be achieve by many different

methods. For example, the Email-Worm.Win32.Sobig.a worm searches for

patterns within files using the regular expression:

[A-Za-z0-9]+[A-Za-z0-9 .-]+@(([A-Za-z0-9\-])+[.])+[A-Za-z]+

As there are many possible ways for the harvest emails function to occur,

we will exclude this function from the analysis presented in this section.

7.1.2 Discussion of Description Accuracy

By looking for the behaviors that form the survive system reboot and

find email addresses complex behaviors, we formed a behavioral func-

tions versus malwares matrix in Appendix D.1. From the matrix, we de-

rived Figure 7.1 which shows the percentage of correct versus wrong iden-

tification of behavioral functions among the malwares.

Based on the description from the anti-virus companies, we expected to

detect the twelve basic behaviors that form survive system reboot and

104

0 10 20 30 40 50 60 70 80 90 100

file_copy others

file_copy System

file_copy Windows

file_create others

file_create System

file_create Windows

find_data_files

search_all_dir_recursive

search_specific_dir_recursive

registry_modify shell

registry_add startup

registry_add service

Percentage

Correctly Identified Wrongly Identified

Figure 7.1: Percentage of Correctly Detected Malware Behaviors

find email addresses 63 times from the traces of the eleven sample mal-

wares. The number of correctly detected behaviors is 53, and 10 expected

behaviors were not detected at all. We did not detect any additional be-

haviors. At this point, the accuracy is only about 84%.

As the numbers of malwares and behaviors used are statistically insignifi-

cant, we will not draw any conclusions.

7.2 Detection Capability

We would like to see how effective is the system in detecting the presence

of malwares. First, we look for malware behaviors in normal applications.

Using the functions in Section 7.1, we formed a behavioral functions versus

normal applications matrix in Appendix D.2. A summary of this matrix

can be seem in Figure 7.2, which shows that most normal applications

do not display behaviors similar to malwares. For example, only the ICQ

application attempts to restart itself at the next reboot by modifying the

105

registry (registry_add startup), out of all these sample applications.

0 10 20 30 40 50 60 70 80 90 100

file_copy others

file_copy System

file_copy Windows

file_create others

file_create System

file_create Windows

find_data_files

find_bin_files

search_all_dir_recursive

search_specific_dir_recursive

registry_modify shell

registry_add startup

registry_add service

registry_add dll component

Percentage

Figure 7.2: Percentage of Detected Malware Behaviors in Normal Applica-
tion

0

0

0

0

100

90.9

18.18

27.27

0 10 20 30 40 50 60 70 80 90 100

survive_system_reboot
(Generalized)

survive_system_reboot3
(registry_modify shell +

file_copy/file_create)

survive_system_reboot2
(registry_add service +
file_copy/file_create)

survive_system_reboot1
(registry_add startup +
file_copy/file_create)

Percentage

Malwares Applications

Figure 7.3: Percentage of Detected Correlated survive system reboot Be-
haviors

Looking at Figure 7.3, we see that 100% of the malwares perform behav-

iors that allow themselves to be started at the next reboot while none of the

106

applications do that. This shows that the survive system reboot func-

tion is indicative of malware presence. The details of distribution between

malwares and behaviors can be found in Appendix D.3.

0

0

0

81.82

27.27

63.64

0 10 20 30 40 50 60 70 80 90 100

find_email_addresses
(Generalized)

find_email_addresses2
(search_specific_dir_recursive

+ find_data_files +
file_open/file_read)

find_email_addresses1
(search_all_dir_recursive +

find_data_files +
file_open/file_read)

Percentage

Malwares Applications

Figure 7.4: Percentage of Detected Correlated find email addresses Behav-
iors

In Figure 7.4, we weakened the requirement for detecting the behavior of

harvesting email addresses from data files found on the host. Instead of

requiring the detection of the parsing process, we will accept the behavior

as detected if data files are opened or read while the process is searching

for files. This is represented by the file open and file read functions.

0% of the applications display this behavior, while 9 out of 11 malwares

do. The details can be found in Appendix D.4. The two malwares that do

not display this behavior are Mimail.a and Welchia.a. As Welchia.a is a

network worm, we did not expect it to exhibit any email propagation ac-

tivities anyway, but we did expect Mimail.a to display this behavior. From

further investigation of the traces, we find that Mimail.a only harvest the

email addresses from the Windows Address Book of the current user. This

107

behavior will be added to refine our detection of find email addresses

behavior.

Therefore, we can use survive system reboot and find email addresses

as the main behavioral functions indicating the presence of malwares.

7.3 Generalization of Behaviors

To be able to stop newer malwares based on the behaviors of older mal-

wares, we must be able to generalize the detected behaviors. The gener-

alization depends in the reuse of basic blocks. If our assumption is wrong

and malware behaviors cannot be generalized, the basic behavior blocks

used should be unique to each malware. But if the basic blocks are shared

among malwares, then it provides confidence in our approach.

We will take a look at the blocks that form the file create behavior.

From Table 7.1, the file create behavior is formed by the file write9

block in all the three Sober variants. This can be generalized to detect the

file create behavior in Lovelorn.a, which also uses file write9. In an-

other example, the two LovGate variant uses the same file write6 block

for file create.

Malware Block

Sober.a file write9 "C:\WINNT\System32\similare.exe"
Sober.f file write9 "C:\WINNT\System32\winrundiag.exe"
Sober.g file write9 "C:\WINNT\System32\crypt32sys.exe"
Lovelorn.a file write9 "C:\NQHLL.exe"
LovGate.a file write6 "C:\WINNT\System32\WinRpcsrv.exe"
LovGate.b file write6 "C:\WINNT\System32\WinRpcsrv.exe"

Table 7.1: Blocks That Form the file create Behavior

In addition, we can also see from Figure 7.5 that the different file write

108

blocks are shared among the eleven malwares.

0 10 20 30 40 50 60 70 80 90 100

file_write1

file_write2

file_write3

file_write4

file_write5

file_write6

file_write7

file_write9

file_write10

file_write11

Percentage

Figure 7.5: Percentage of Malwares Sharing file write Blocks

7.4 Discussions About Behaviors

7.4.1 Importance of Behavior Functions

We noticed that some functions do not provide much information in our

behavior-based system, or poses some problems.

One example is the mutex create function. While unique mutex (mutual

exclusion) names like "MuXxXxTENYKSDesignedAsTheFollowerOfSkynet-D"

is a good identifier in a misuse-signature based system, the action of cre-

ating a mutex is not a good behavioral signature because most processes

create mutexes with various names.

We face another problem with detecting the behavior of malwares killing

anti-virus processes. From the sample traces we have, the malwares all

109

enumerate the processes first, instead of wildly killing non-existent pro-

grams. The decision to kill the processes is in the program logic, which is

not visible from the API system call. That means we will not be able to

detect the kill process behavior unless the correct anti-virus or firewall

programs are running in the system.

7.4.2 New Behavior: Repeated Functions

From a simple system call sequence trace, we cannot see repeating API se-

quences easily. But when formed into blocks, we can see a lot of repeating

behavior blocks like the registry add functions in the two Bagle malwares

shown in Table 7.2 and 7.3.

Freq PID TID Function

1 744 268 registry add
key="\REGISTRY\USER\S-1-5-21-515967899-299502267-
839522115-1000\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\key"
data="C:\WINNT\System32\winxp.exe"

8233 772 720 registry add
key="\REGISTRY\USER\S-1-5-21-515967899-299502267-
839522115-1000\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\key"
data="C:\WINNT\System32\winxp.exe"

Table 7.2: Frequency of registry add Functions in Bagle.ai

Freq PID TID Function

1 764 740 registry add
key="\REGISTRY\USER\S-1-5-21-515967899-299502267-
839522115-1000\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\wingo"
data="C:\WINNT\System32\wingo.exe"

9287 672 760 registry add
key="\REGISTRY\USER\S-1-5-21-515967899-299502267-
839522115-1000\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\wingo"
data="C:\WINNT\System32\wingo.exe"

Table 7.3: Frequency of registry add Functions in Bagle.at

110

In other systems studying malware behaviors, they only care about the first

behavior function that succeeds. But this provides us with the opportunity

to study a new behavior.

Why does Bagle.ai need to repeat that one particular behavior 8,234 times

within fifteen minutes? The first time is at identity 6,053, and the rest is

from 142,746 to 264,331, at almost random intervals. Other than Bagle.ai,

this behavior is only seen in Bagle.at among all the malware sample traces.

Our preliminary hypothesis is that it is a crude attempt to ensure that the

registry key to allow the malware itself to be started at the next boot time

is not changed by other malwares or anti-virus systems.

We can use this pattern of repeating functions as a new behavioral function.

It will be interesting to see if we can see even more repeating behaviors after

we combine correlated blocks into macros.

7.4.3 Consideration About Processes

In most older research systems using system calls as the sensor, they do not

care about the inter-process and inter-thread relationships. This is because

most older virus actions are contained within a single process spawned from

the original infection. But it is crucial to understand the inter-process and

inter-thread relationships of the newer malwares as they are no longer re-

stricted to just one process. The malwares that we had analyzed create

other processes to do different work. We think that it is to prevent detec-

tion, as a single process performing multiple virus-like behavioral functions

is more likely to arouse suspicion.

To monitor inter-process communications, we first have to look at the two

“correct” ways. In most cases, the original process will create a sub-process

111

to do its work by means of process creation (NtCreateProcess and NtCre-

ateThread). The other way is by means of LPC (Local/Lightweight Proce-

dure Call), which is an inter-process communication mechanism provided

by Windows. These two ways of monitoring are relatively straightforward.

The problem is code injection. Detecting code injection is hard, and it is

difficult to find out which process was affected. In the past, it is only nec-

essary to monitor related processes for malware behaviors. But with code

injection, we would need to correlate information from seemingly unrelated

processes too.

We now face the additional problem of deciding the weightage for the re-

lationship of behavioral functions in different processes.

7.4.4 New Local Infection Trend

One of the interesting trends that we learned from studying the malware

behaviors is that out of the twelve sample malwares, only one search for

and infects executable files.

One possibly explanation could be because Windows 2000 and later ver-

sions will restore system files that were changed, but do not pass the cryp-

tographic checksum. We see this system restore behavior in Ganda, when

it targets specific Windows system files like welcome.exe (Getting Started

Screen) or osk.exe (On-Screen Keyboard).

We believe that the more current trend is to created files with names sim-

ilar to the real system files at strategic locations, rather than infecting

executable files at random.

112

7.5 Early Detection versus Identification Ac-

curacy

When we extract behaviors from the malware traces, we face the problem

of early detection versus accuracy. When matching behavior functions from

blocks or macros, early detection is important for online detection while

accuracy is important for offline identification. It is important for us to

consider the reasonable trade-off. We will explore some issues that affect

the consideration.

7.5.1 Blocks

For blocks, we can only accurately identify the block signature when we

encounter the NtClose system call, as seen in Figure 7.6. But for detection

of a generalized file write function, we only need to match until state

4 because the behavior of the whole block is decided by the NtWriteFile

event, the most important system call for this function.

Figure 7.6: Simplified file write9 Block FSA

7.5.2 Macros

For macros, some of the blocks may not terminate until a lot later. We

will use the search all dir recursive macro function in Bagle.at for il-

lustration.

In Figure 7.7, the first block starts at identity 6807 and ends at 33,783:

that means that we have to wait for 26,976 system calls to pass before we

113

can be absolutely certain that it is a recursive directory search. (Identity

is the number of system calls captured since monitoring started)

dir_search2 "C:\"

dir_search2 "C:\WINNT\system32\"

6807
6811

303346816

dir_search2 "C:\WINNT\"

Behavior
Block

Identity
3378331937

6820
6825

6827
6846

dir_search2 "C:\WINNT\system32\config\"

dir_search2 "C:\WINNT\system32\drivers\"

Figure 7.7: Bagle.at search all dir recursive Macro Behavior

But for detection, we want to know as soon as possible. We can set thresh-

old for a certain depth of directory recursion as a reduced criterion. By

choosing an ad hoc depth of 3, we can reasonable say that it is a recur-

sive directory search by the time the dir search block reaches the path

“C:\WINNT\system32\config” at identity 6825.

For some behaviors, a certain amount of expert knowledge is required to

determine the reasonable trade-offs for identifying the macro behaviors.

7.6 Speed of Behavior Identification or De-

tection

One interesting piece of information we would like to find out is how fast

can we detect a malware behavior, or what is the time delay. Analysis on

this kind of information can provide more insight into malwares.

114

7.6.1 Unit of Measurement: Delta Time

The first problem that we face is the unit of time measurement. By modify-

ing strace, each system call requires one API call like the NtQuerySystem-

Time to get the system time which is a 64-bit value representing the number

of 100-nanosecond intervals since January 1, 1601 (UTC). We need at least

another API call to translate the system time into a human-readable time

format. To use real time as our unit of measurement would mean each

system call captured will require at least one additional system call, which

may impact the performance severely.

As a trade-off, we use the identity counter as our unit of time measurement.

The identity is a unique number accompanying each system call event that

shows the position of the system call within the strace output sequence.

Rather than to start counting from the monitoring process, we start count-

ing from the moment the malware is activated; we call this the delta time.

7.6.2 Example: Identification of survive system reboot

Behavior

Let us take the survive system reboot behavior for our example. This

complex behavior is modeled by correlating file copy or file create,

with registry_add startup or registry_add service. The time taken

to identify the slower basic behavior is used as the identification time of

survive system reboot. The details of the speed of behavior detection

among malwares can be found in Appendix D.5.

From Figure 7.8, which summarizes the details, we can see that the Lov-

Gate family display the survive system reboot behavior fastest, at just

115

806
1706 1747 2014 2234 2304 2722

5046

27389

601 605
0

5000

10000

15000

20000

25000

30000

Lo
vG

ate
.b

Lo
vG

ate
.a

W
elc

hia
.a

Sob
er.

g

Sob
er.

f

Gan
da

Mim
ail

.a

Bag
le.

ai

Bag
le.

at

Sob
er.

a

Lo
ve

lor
n.a

D
el

ta
 T

im
e

Figure 7.8: survive system reboot Detection Speed in Delta Time

above delta time 600, while Lovelorn.a only show that behavior at over

delta time 26,000. The most frequent detection times are between delta

time 2000 and 3000.

While 2000 delta time might seem like a lot, we must remember that it is

the number of system calls, which can occur within seconds in real time.

We can also see that the range of detection speed among malwares is quite

large, which tells us that although these malwares share common behaviors,

the order in which these behaviors occur varies between malwares.

7.6.3 Importance of Detection Speed

It is important to study how fast our system can detect malware behav-

iors as it directly impacts the effectiveness of our future real-time system

implementation. We would like to know how urgent it is to stop certain

actions.

Based on the study of malware descriptions in Chapter 4, we find that the

116

malware trend has changed significantly over the years. In the past, viruses

tend to display destructive properties, thus it is imperative to be able to

detect early. But currently, the trend is for the malwares to allow the hack-

ers to control the infected hosts as zombies, so we have to change our focus.

We acknowledge that because our behavioral approach needs the malwares

to display certain behaviors before they can be accurately detected, the

accuracy of the detection is proportional to the time delay between the

start and detection of the malware. In other words, the more accurate our

detection is, the more time we have to wait. This means that the draw-

back of our approach is that it is slower than the misuse-signature based

approach, and it cannot respond to infections as fast.

Our argument is that because of the changes in the malware behavioral

trend, we can afford to be a little slower in detecting the malwares these

days. And while our behavioral approach is inferior to the misuse-signature

based approach when it comes to detecting known malwares as the signa-

ture approach is preventive, our approach is not that bad either.

Chapter 8

Conclusions and Further

Works

8.1 Conclusions

This research attempts to study the feasibility of detecting malwares based

on behaviors and forms the basis of a new behavior-based detection system.

The reason for this approach is that we believe all malwares share some

common behaviors, and malwares within the same families display more

similar behaviors.

We attempt to infer high-level behaviors from the native API system call

traces. But rather than simply using sequences of API calls to build be-

havior signatures like many others, we built semantically rich behavioral

signatures based on context provided the system call and reverse engineer-

ing based on descriptions provided by anti-virus companies. By correlating

related behavioral signatures, we were able to detect more complex behav-

ioral functions. In our behavioral analysis, we were successful in identifying

some behaviors common to all or most of our malware samples, but not to

the set of normal applications used as baseline. We were also able to ob-

117

118

serve some interesting features of the malwares by studying the behavioral

information provided by the framework. The results we got bode well for

the feasibility of our behavior-based approach.

8.2 Further Works

While the framework has shown to be capable of detecting high level mal-

ware behaviors, there is still a lot of work to be done to improve its capa-

bilities. In fact, this research has made us aware of many other questions

that we would like to answer. We will discuss a couple of research items

that we would like to work on in the future.

8.2.1 Modifiers

Throughout the thesis, we have emphasized that we use each malware be-

havior without weightage in both detection and malware similarity analysis.

To improve the framework, we need to consider adding modifiers to the fol-

lowing items:

Risk of Behaviors : different behaviors pose different levels of risks. For ex-

ample, opening and listening a network is riskier than querying a registry

key. Modifiers should be added to the behaviors to let riskier behaviors

have more weightage.

Risk of Parameters : the different parameters of the behaviors also have

risks. For example, adding a registry key to registry paths that allow

computer programs to run at boot time is riskier than any other paths.

Modifiers should be added to reflect this information.

Similarity between Related Behaviors : when studying the similarity of mal-

119

wares, related behaviors should contribute to the similarity index. For ex-

ample, if two malwares have the irc connect and http connect behaviors

respectively, these two related network-based behaviors should contribute

to the similarity index even though they are not identical.

Weightage of Correlated Behaviors in Different Processes : we need to con-

sider the situation where correlated behaviors occur in two different pro-

cesses. The processes could be related (sub-processes or LPC), or unre-

lated (code injection). Should correlated behaviors in related processes

have higher weightage than those in unrelated processes, or vice versa?

In other work involving malware behaviors [26, 52], the authors assigned

different weights to behaviors, or between behaviors, in a seemingly ad hoc

manner. We believe that we need to study the behaviors of a larger number

of malwares before we can derive the required weightages or modifiers.

8.2.2 Behavior-based System Implementation

As our current work is proof-of-concept, detection and analysis of malware

behaviors are all done off-line. We hope that the knowledge gained from

this area of research will be helpful in developing a real-time behavior-based

intrusion prevention system in the future. The current work has shown the

basic requirements for such systems, and the difficulties that will be en-

countered.

In addition, because our system monitors all system resources like files and

registry, it is possible to adapt the implementation to backtrack [25] to the

source of an unknown infection. This means the system has the potential

to recover from an intrusion and undo some damages.

Bibliography

[1] Frank Apap, Andrew Honig, Shlomo Hershkop, Eleazar Eskin, and
Salvatore J. Stolfo. Detecting Malicious Software by Monitoring
Anomalous Windows Registry Accesses. In Proceedings of the 5th
International Symposium on Recent Advances in Intrusion Detection
(RAID 2002), Zurich, Switzerland, October 2003. http://www1.cs.

columbia.edu/∼sh553/papers/drafts/rad-dist02.pdf.

[2] Robert M. Balzer and Neil M. Goldman. Mediating Connectors. In
Proceedings of the ICDCS Workshop on Electronic Commerce and
Web-Based Applications 1999, page 0073, 1999.

[3] Robert M. Balzer and Neil M. Goldman. Mediating Connectors: A
Non-By Passable Process Wrapping Technology. In Proceedings of
the 1st DARPA Information Survivability Conference and Exposition
(DISCEX 2000), volume 2, page 1361, 2000.

[4] Piotr Bania. Windows Syscall Shellcode. SecurityFocus, 4 August
2005. Retrieved on 26 June 2006 from http://www.securityfocus.

com/infocus/1844.

[5] Jennifer Barrett. Are There More MyDoom Attacks to Come?
Newsweek Technology, 3 February 2004. http://msnbc.msn.com/id/
4154289/.

[6] Ulrich Bayer. TTAnalyze: A Tool for Analyzing Malware. Mas-
ter’s thesis, Technical University of Vienna, Information Systems In-
stitute and Institute of Computer Aided Automation, 12 December
2005. http://www.seclab.tuwien.ac.at/people/ulli/TTAnalyze
A Tool for Analyzing Malware.pdf.

[7] Vesselin Bontchev. Current Status of the CARO Malware Naming
Scheme. In Proceedings of The 15th International Virus Bulletin
Conference (VB2005), Dublin, Ireland, October 2005. http://www.

people.frisk-software.com/∼bontchev/papers/naming.html.

[8] CAIDA. CAIDA Analysis of Code-Red, 21 June 2005. Retrieved
on 12 June 2005 from http://www.caida.org/analysis/security/

code-red/.

[9] F-Secure Computer Virus Info Center. F-Secure Computer Virus Nam-
ing. http://www.f-secure.com/v-descs/info/name.shtml.

i

ii

[10] Norman SandBox Information Center. Norman SandBox Live. Online
Software Behavioral Analysis Demo. http://sandbox.norman.no/

live 4.html.

[11] Simon P. Chung and Aloysius K. Mok. On Random-Inspection-Based
Intrusion Detection. In Proceedings of the 8th International Sympo-
sium on Recent Advances in Intrusion Detection (RAID 2005), volume
3858 of LNCS, pages 165–184, Seattle, WA, USA, 7-9 September 2005.

[12] BindView Corporation. Strace for NT. Windows Process
Monitor. http://www.bindview.com/Services/RAZOR/Utilities/

Windows/strace readme.cfm.

[13] MITRE Corporation. Common Malware Enumeration (CME) Project.
http://cme.mitre.org.

[14] Stephanie Forrest, Steven Hofmeyr, Anil Somayaji, and Thomas
Longstaff. A Sense of Self for Unix Processes. In Proceedings of
the IEEE Symposium on Computer Security and Privacy 1996, Oak-
land, California, 6-8 May 1996. http://www.cs.rpi.edu/∼brancj/

publications/ieee-sp-96-unix.pdf.

[15] Nick Gibson. Blackworm/Nyxem.E - Damaging but Not Catastrophic.
Channel News, 3 February 2006. http://www.thechannelshow.com/
ChannelNews/irep199.htm.

[16] Lea Goldman. Attack of the Clones. Forbes, 6 October 2002. http:

//www.cs.virginia.edu/∼evans/press/forbes20020610.html.

[17] Katherine A. Heller, Krysta M. Svore, Angelos D. Keromytis, and
Salvatore J. Stolfo. One Class Support Vector Machines for De-
tecting Anomalous Windows Registry Accesses. In Proceedings of
the IEEE ICDM Workshop on Data Mining for Computer Secu-
rity (DMSEC’03), pages 2–9, Melbourne, Florida, November 2003.
http://www.cs.fit.edu/∼pkc/dmsec03/dmsec03notes.pdf.

[18] Shlomo Hershkop, Linh H. Bui, Ryan Ferster, and Salvatore J. Stolfo.
Host-based Anomaly Detection by Wrapping File Systems. Techni-
cal report, Department of Computer Science, Columbia University,
April 2004. http://www1.cs.columbia.edu/ids/publications/

hershkop bui ferster stolfo 04 1.pdf.

[19] Shlomo Hershkop, Ryan Ferster, Linh H. Bui, Ke Wang, and Sal-
vatore J. Stolfo. Host-based Anomaly Detection by Wrapping File
System Accesses. Technical report, Department of Computer Science,
Columbia University, April 2003. http://www1.cs.columbia.edu/
∼kewang/paper/fwraps-final.pdf.

[20] Steven A. Hofmeyr, Anil Somayaji, and Stephanie Forrest. Intru-
sion Detection using Sequences of System Calls. Journal of Com-
puter Security, 6:151–180, 1998. http://www.cs.unm.edu/∼steveah/
jcs-accepted.pdf.

iii

[21] Timothy Hollebeek and Rand Waltzman. The Role of Suspicion in
Model-based Intrusion Detection. In Proceedings of the 2004 Workshop
on New Security Paradigms, pages 87–94, Nova Scotia, Canada, 2004.

[22] Ruiqi Hu and Aloysius K. Mok. Detecting Unknown Massive Mailing
Viruses Using Proactive Methods. In Proceedings of the 7th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID
2004), volume 3224 of LNCS, pages 82–101, Sophia Antipolis, France,
15-17 September 2004.

[23] Edward Hurley. The virus name game. SearchSecurity.com,
20 December 2002. http://searchsecurity.techtarget.com/

originalContent/0,289142,sid14 gci870539,00.html.

[24] Kaspersky Lab. http://www.viruslist.com.

[25] Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM
Transactions on Computer Systems (TOCS), 23(1):51–76, February
2005.

[26] Tony Lee and Jigar J. Mody. Behavioral Classification. In
Proceedings of the 15th EICAR Annual Conference 2006, Ham-
burg, Germany, 29 April 2006. http://download.microsoft.

com/download/9/0/7/907b6f32-dd84-46d9-8458-8dfdea61e6f3/

Behavioral Classification.doc.

[27] Jay Lyman. Name That Worm - How Computer Viruses Get Their
Names. NewsFactor, 8 January 2002. http://www.newsfactor.com/
perl/story/15662.html.

[28] Microsoft. Windows 98 DDK, Windows 2000 Driver Development Kit
- October 2000 Edition, Windows XP Service Pack 1 Driver Develop-
ment Kit. CDROM 1009.1 from MSDN Academic Alliance, February
2003.

[29] Mike Musgrove. Who names computer viruses? Everybody. Wash-
ington Post, 26 February 2004. http://www.msnbc.msn.com/id/

4376005/.

[30] Ryan Naraine. From Melissa to Zotob: 10 Years of Windows Worms.
eWEEK.com, 24 August 2005. http://www.eweek.com/article2/0,
1895,1851792,00.asp.

[31] Gary Nebbett. Windows NT/2000 - Native API References. SAMS,
1 edition, 1999.

[32] CBC News. Sasser virus hits internet users, 3 May 2004. http://

www.cbc.ca/stories/2004/05/03/sci-tech/sass040503.

[33] Tomasz Nowak. Undocumented Functions Microsoft Windows NT-
2000. NTinterlnals, 2000. http://undocumented.ntinternals.net.

iv

[34] Niels Provos. Honeyd. Virtual Honeypot Daemon. Available from
http://www.citi.umich.edu/u/provos/honeyd.

[35] Niels Provos. Improving Host Security with System Call Policies. In
Proceedings of the 12th USENIX Security Symposium 2003, pages 257–
272, Washington, DC, USA, August 2003. http://www.citi.umich.
edu/u/provos/papers/systrace.pdf.

[36] Costin Riau. A Virus by Any Other Name: Virus Naming Prac-
tices. SecurityFocus, 3 June 2002. http://www.securityfocus.com/
infocus/1587.

[37] Rohitab. API Monitor. Registry activity monitoring tool. http:

//www.rohitab.com/apimonitor/.

[38] Mark Russinovich. Inside the Native API, 23 November 2004. http:

//www.sysinternals.com/Information/NativeApi.html.

[39] Mark E. Russinovich and David A. Solomon. Microsoft Windows In-
ternals: Microsoft Windows Server 2003, Windows XP, and Windows
2000. Microsoft Press, 8 edition, December 2004.

[40] Victor Skormin, Alexander Volynkin, Douglas Summerville, and
James Moronski. In The Search of the Gene of Self-Replication In
Malicious Codes. Presentation at 6th IEEE Information Assurance
Workshop, 15-17 June 2005. http://www.itoc.usma.edu/Workshop/
2005/Papers/Follow%20ups/TheGene.pdf.

[41] Victor A. Skormin, Douglas H. Summerville, and James S. Moron-
ski. Detecting Malicious Codes by the Presence of Their Gene of
Self-replication. In Proceedings of the 2nd International Workshop on
Mathematical Methods, Models and Architectures for Computer Net-
work Security (MMM-ACNS 2003), volume 2776 of LNCS, pages 206–
216, St. Petersburg, Russia, 21-23 September 2003.

[42] David A. Solomon and Mark E. Russinovich. Inside Microsoft Win-
dows 2000. Microsoft Press, 3 edition, August 2000.

[43] Anil Somayaji and Stephanie Forrest. Automated Response Using
System-Call Delays. In Proceedings of the 9th USENIX Security Sym-
posium 2000, Denver, CO, August 2000. http://www.cs.unm.edu/

%7Eimmsec/publications/uss-2000.pdf.

[44] Anil Buntwal Somayaji. Operating System Stability and Secu-
rity through Process Homeostasis. PhD thesis, Columbia Uni-
versity, Department of Computer Science, 2002. Retrieved
on 13 Feb 2006 from http://www1.cs.columbia.edu/∼locasto/

projects/candidacy/papers/somayaji2002thesis.pdf.

[45] Lance Spitzner. Honeytokens: The Other Honeypot. SecurityFo-
cus, 17 July 2003. Retrieved on 18 June 2004 from http://www.

securityfocus.com/infocus/1713.

v

[46] Salvatore J. Stolfo, Frank Apap, Eleazar Eskin, Katherine Heller,
Shlomo Hershkop, Andrew Honig, and Krysta Svore. A Com-
parative Evaluation of Two Algorithms for Windows Registry
Anomaly Detection. Journal of Computer Security, 13(4):659–
693, 2005. http://www1.cs.columbia.edu/ids/publications/A%

20comparative%20Evaluation%20of%20Two%20Algorithms%20for%

20Windows%20Registry%20Anomaly%20Detection.pdf.

[47] Douglas Summerville, Victor Skormin, Alexander Volynkin, and
James Moronski. Prevention of Information Attacks by Run-Time De-
tection of Self-replication in Computer Codes. In Proceedings of the 3rd
International Workshop on Mathematical Methods, Models and Archi-
tectures for Computer Network Security (MMM-ACNS 2005), volume
3685 of LNCS, page 54, St. Petersburg, Russia, 24-28 September 2005.

[48] Sysinternals. Filemon. File system activity monitoring tool.
http://www.microsoft.com/technet/sysinternals/Utilities/

Filemon.mspx.

[49] Sysinternals. Regmon. Registry activity monitoring
tool. http://www.microsoft.com/technet/sysinternals/

SystemInformation/Regmon.mspx.

[50] Jamie Twycross and Matthew M. Williamson. Implementing and Test-
ing a Virus Throttle. In Proceedings of the 12th USENIX Security
Symposium 2003, pages 285–294, Washington, DC, USA, August 2003.
http://www.hpl.hp.com/techreports/2003/HPL-2003-103.pdf.

[51] VMware. VMware Workstation. Virtualization Software. http://

www.vmware.com.

[52] Matthew Evan Wagner. Behavior Oriented Detection of Malicious
Code at Run-Time. Master’s thesis, College of Engineering at Florida
Institute of Technology, 2002. http://www.se.fit.edu/Gatekeeper/
papers/bodmalcode.pdf.

[53] Joe Wells. How Scientific Naming Works. WildList Organization
International. http://www.wildlist.org/naming.htm.

[54] Carsten Willems. CWSandbox Live Demo. Online Software Behavioral
Analysis Demo, 2006. http://www.cwsandbox.org/.

[55] Carsten Willems. Description of the CWSandbox. Work in progress
at RWTH Aachen, 15 March 2006. http://www.consolo.de/paper/
CWSandbox Description.pdf.

[56] Carsten Willems. Usage of the CWSandbox. Work in progress at
RWTH Aachen, 14 March 2006. http://www.consolo.de/paper/

CWSandbox Usage.pdf.

vi

[57] Matthew Williamson. Throttling Viruses: Restricting Propagation
to Defeat Malicious Mobile Code. In Proceedings of the 18th Annual
Computer Security Applications Conference, Las Vegas, Nevada, De-
cember 2002. http://www.acsac.org/2002/papers/97.pdf.

[58] Matthew M. Williamson, Jamie Twycross, Jonathan Griffin, and Andy
Norman. Virus Throttling. Virus Bulletin, March 2003. http://www.
hpl.hp.com/techreports/2003/HPL-2003-69.pdf.

[59] J.-Y. Xu, A. H. Sung, P. Chavez, and S. Mukkamala. Polymorphic
Malicious Executable Scanner by API Sequence Analysis. In Proceed-
ings of the 4th International Conference on Hybrid Intelligent Systems
(HIS 2004), pages 378–383, 05-08 Dec 2004.

Appendix A

Variants Within Malware
Families

Family Variants Variant Names

Mytob 21 a, ar, au, ba, bd, be, bf, bi, bk, bt, bw,
c, h, q, r, t, u, v, w, x, y

Bagle 19 a, ah, ai, as, at, au, ay, b, ba, c, dx,
e, g, gen, i, j, s, y, z

NetSky 13 aa, af, b, c, d, m, o, q, r, t, x, y, z
Mydoom 11 a, ab, b, e, g, l, m, q, r, t, u
Mimail 8 a, c, e, f, g, h, j, q
Lentin 6 a, g, j, m, o, v
LovGate 4 a, ad, ae, w
Zafi 2 b, d
Tanatos 2 a, b
Sobig 2 a, f
Klez 2 a, h
Swen 1
BadtransII 1

Table A.1: Variants of Top 13 Malware Families

vii

Appendix B

Behavior Functions
Compilation

Legend:
0 - behavior not seen,
1 - behavior always seen,
2 - behavior seen only under certain conditions.

Functions K
le

z.
a

K
le

z.
e

K
le

z.
h

Z
afi

.a
B

ag
le

.a
B

ag
le

.z
B

ag
le

.a
i

B
ag

le
.a

t
G

an
d
a

G
ib

e.
a

L
en

ti
n
.a

L
ov

G
at

e.
a

L
ov

G
at

e.
ad

L
ov

G
at

e.
b

L
ov

el
or

n
.a

L
ov

es
an

.a
M

im
ai

l.
a

M
y
d
o
om

.a
S
ob

er
.a

S
ob

er
.f

S
ob

er
.g

S
ob

ig
.a

S
p
y
B

ot
.a

W
el

ch
ia

.a

file copy others 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1
file copy System 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0
file copy Windows 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
file copy share 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
file copy remote 2 2 2 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 1 0 0
file create others 0 0 1 0 0 0 0 0 0 0 0 2 0 1 1 2 2 1 1 1 0 0 0 0
file create System 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0
file create Windows 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
file append others 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
file append System 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0
file append Windows 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0
file attrib others 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
file attrib System 1 1 0 1 0
file modify 2 2 2 0 0 0 2 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
file property TIME 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
file rename 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
file delete 0 2 2 0 0 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 1 0
file execute others 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2
file execute System 1 0 0 0 0 0 2 2 0 0 0 1 1 0 0 1 0 0 1 0 1 0 2 0
file execute Windows 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
file execute notepad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0
file execute calc 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
file execute IEXPLORE 0 0 0 1 0

viii

ix

file read others 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
file read System 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0
file read Windows 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
file access others 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
file access System 0 0 0 1 0
file access Windows 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0
file access OAB 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
file access WAB 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
file load System 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
ini modify win.ini 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
ini modify system.ini 0 2 0
create autorun 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
dir create local 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
dir create remote 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
find dir 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
find data files 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0
find bin files 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
search all dir recursive 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0
search specific dir recursive 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 2
mutex check 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
event create 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
hidden msgbox 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
window box monitor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
msgbox 0 0 0 2 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0
harvest emails 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0
sendmail with attachment 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0
sendmail 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0
reply inbox email 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
/Outlook MAPI
check system date 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1
check system information 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 2
zombie 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0
code injection 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0
keylogger 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0
share enum 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0
remote share mount 1 1 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0
remote share activity 1 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0
scan network 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
dns resolve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 1 0 0 1
http connect 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
download inet 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 2
ntpdate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
irc connect 0 1 0
netbios connect 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
network connect 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
ping 0 1

x

listen port 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1
registry modify shell 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
registry add others 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0
registry add startup 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
registry add service 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
registry add dll component 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
registry delete restart 0 2 2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
registry delete service 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
registry enum restart 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
registry enum services 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
registry query others 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1
registry query restart 0 1 1 0
registry query NameServer 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
registry query SHELL 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0
registry query SMTP 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
registry query WAB 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
start from internet explorer 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
start from outlook 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
start from network share 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0
start from windows exploits 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
date activated 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
date activated payload 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
suspicious file 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
suspicious email attachment 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

Table B.1: Behavior Function Compilation

Appendix C

Complex or Correlated
Behaviors

C.1 Survive System Reboot

Functions K
le

z.
a

K
le

z.
e

K
le

z.
h

Z
afi

.a
B

ag
le

.a
B

ag
le

.z
B

ag
le

.a
i

B
ag

le
.a

t
G

an
d
a

G
ib

e.
a

L
en

ti
n
.a

L
ov

G
at

e.
a

L
ov

G
at

e.
ad

L
ov

G
at

e.
b

L
ov

el
or

n
.a

L
ov

es
an

.a
M

im
ai

l.
a

M
y
d
o
om

.a
S
ob

er
.a

S
ob

er
.f

S
ob

er
.g

S
ob

ig
.a

S
p
y
B

ot
.a

W
el

ch
ia

.a

Total

registry add startup 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 22
+ file copy/file create
registry add service 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 7
/service create
+ file copy/file create
registry modify shell 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
+ file copy/file create

survive system reboot 1 24

Table C.1: Correlated Survive System Reboot Behavior

xi

xii

C.2 Find Email Addresses

Functions K
le

z.
a

K
le

z.
e

K
le

z.
h

Z
afi

.a
B

ag
le

.a
B

ag
le

.z
B

ag
le

.a
i

B
ag

le
.a

t
G

an
d
a

G
ib

e.
a

L
en

ti
n
.a

L
ov

G
at

e.
a

L
ov

G
at

e.
ad

L
ov

G
at

e.
b

L
ov

el
or

n
.a

L
ov

es
an

.a
M

im
ai

l.
a

M
y
d
o
om

.a
S
ob

er
.a

S
ob

er
.f

S
ob

er
.g

S
ob

ig
.a

S
p
y
B

ot
.a

W
el

ch
ia

.a

Total

search all dir recursive 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 16
+ find data files
+ harvest emails
search specific dir recursive 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 7
+ find data files
+ harvest emails

find email addresses 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 20

Table C.2: Correlated Find Email Addresses Behaviors

C.3 Malware Local Replication

Functions K
le

z.
a

K
le

z.
e

K
le

z.
h

Z
afi

.a
B

ag
le

.a
B

ag
le

.z
B

ag
le

.a
i

B
ag

le
.a

t
G

an
d
a

G
ib

e.
a

L
en

ti
n
.a

L
ov

G
at

e.
a

L
ov

G
at

e.
ad

L
ov

G
at

e.
b

L
ov

el
or

n
.a

L
ov

es
an

.a
M

im
ai

l.
a

M
y
d
o
om

.a
S
ob

er
.a

S
ob

er
.f

S
ob

er
.g

S
ob

ig
.a

S
p
y
B

ot
.a

W
el

ch
ia

.a

Total

search specific dir recursive 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
+ find bin files
+ file modify
search all dir recursive 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5
+ find bin files
+ file modify

local replication 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5

Table C.3: Correlated Local Replication Behaviors

Appendix D

Behavior Analysis

D.1 Malware Detected Behaviors

Legend:
0 - behavior not seen,
y - behavior seen from both descriptions and trace,
n - behavior seen from in descriptions but not in trace.

Functions B
ag

le
.a

i
B

ag
le

.a
t

G
an

d
a

L
ov

G
at

e.
a

L
ov

G
at

e.
b

L
ov

el
or

n
.a

M
im

ai
l.
a

S
ob

er
.a

S
ob

er
.f

S
ob

er
.g

W
el

ch
ia

.a
file copy others 0 0 0 0 0 n 0 0 0 0 y
file copy System y y 0 y y 0 0 0 0 0 0
file copy Windows 0 n y 0 0 0 y 0 0 0 0
file create others 0 0 0 n n n 0 y y 0 0
file create System y y 0 y y y 0 y y y 0
file create Windows 0 0 0 0 0 0 y 0 0 0 0
find data files y y y y y y n y y y 0
search all dir recursive y y y 0 n y n y y y 0
search specific dir recursive 0 0 y y y 0 n 0 0 0 y
registry modify shell 0 0 0 y y 0 0 0 0 0 0
registry add startup y y y y y y y y y y 0
registry add service 0 0 n y y 0 0 0 0 0 y

Table D.1: Malware Detected Behaviors

xiii

xiv

D.2 Malware Detected Behaviors in Normal

Application

Legend:
0 - behavior not seen,
1 - detected behavior.

Functions A
cr

ob
at

R
ea

d
er

G
h
os

tv
ie

w
In

te
rn

et
E

x
p
lo

re
r

IC
Q

M
S
N

W
in

d
ow

s
M

ed
ia

P
la

ye
r

W
in

A
m

p
A

cc
es

s
E

x
ce

l
O

u
tl
o
ok

P
ow

er
P
oi

n
t

W
or

d
F
ro

n
tP

ag
e

W
in

Z
ip

W
in

R
A

R

file copy others 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
file copy System 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
file copy Windows 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
file create others 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
file create System 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
file create Windows 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
find data files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
find bin files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
search all dir recursive 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
search specific dir recursive 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0
registry modify shell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
registry add startup 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
registry add service 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
registry add dll component 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table D.2: Detected Malware Behaviors in Normal Ap-
plication

xv

D.3 Detected Correlated survive system reboot

Behaviors

Legend:
0 - behavior not seen,
1 - detected behavior.

Functions B
ag

le
.a

i
B

ag
le

.a
t

G
an

d
a

L
ov

G
at

e.
a

L
ov

G
at

e.
b

L
ov

el
or

n
.a

M
im

ai
l.
a

S
ob

er
.a

S
ob

er
.f

S
ob

er
.g

W
el

ch
ia

.a
A

cr
ob

at
R

ea
d
er

G
h
os

tv
ie

w
In

te
rn

et
E

x
p
lo

re
r

IC
Q

M
S
N

W
in

d
ow

s
M

ed
ia

P
la

ye
r

W
in

A
m

p
A

cc
es

s
E

x
ce

l
O

u
tl
o
ok

P
ow

er
P
oi

n
t

W
or

d
F
ro

n
tP

ag
e

W
in

Z
ip

W
in

R
A

R

survive system reboot1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(registry add startup
+ file copy/file create)
survive system reboot2 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(registry add service
+ file copy/file create)
survive system reboot3 0 0 0 1 1 0
(registry modify shell
+ file copy/file create)
survive system reboot4 0
(registry add dll component
+ file copy/file create)

survive system reboot 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(Generalized)

Table D.3: Detected Correlated survive system reboot
Behaviors

xvi

D.4 Detected Correlated find email addresses

Behaviors

Legend:
0 - behavior not seen,
1 - detected behavior.

Functions B
ag

le
.a

i
B

ag
le

.a
t

G
an

d
a

L
ov

G
at

e.
a

L
ov

G
at

e.
b

L
ov

el
or

n
.a

M
im

ai
l.
a

S
ob

er
.a

S
ob

er
.f

S
ob

er
.g

W
el

ch
ia

.a
A

cr
ob

at
R

ea
d
er

G
h
os

tv
ie

w
In

te
rn

et
E

x
p
lo

re
r

IC
Q

M
S
N

W
in

d
ow

s
M

ed
ia

P
la

ye
r

W
in

A
m

p
A

cc
es

s
E

x
ce

l
O

u
tl
o
ok

P
ow

er
P
oi

n
t

W
or

d
F
ro

n
tP

ag
e

W
in

Z
ip

W
in

R
A

R

find email addresses1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(search all dir recursive
+ find data files
+ file open/file read)
find email addresses2 0 0 1 1 1 0
(search specific dir recursive
+ find data files
+ file open/file read)

find email addresses 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(Generalized)

Table D.4: Detected find email addresses Behaviors

D.5 Detection Speed of survive system reboot

Basic Behavior

Basic Blocks B
ag

le
.a

i

B
ag

le
.a

t

G
an

d
a

L
ov

G
at

e.
a

L
ov

G
at

e.
b

L
ov

el
or

n
.a

M
im

ai
l.
a

S
ob

er
.a

S
ob

er
.f

S
ob

er
.g

W
el

ch
ia

.a

file copy / 230427221986530526268102232186617471706769
file create
registry add startup / 227226902014605601273892234504617351692806
registry add service

Table D.5: survive system reboot Detection in Delta
Time

Appendix E

Kaspersky Lab
Email-Worm.Win32.Bagle.ai
Description

xvii

xviii

xix

Appendix F

Examples of Converted
Malware Descriptions

The converted malware descriptions are in a pseudo language that was cre-
ated based on the Perl language and UNIX shell scripting conventions. The
argument types are $scalar variable, @list and &stream. Any text behind
’#’ are comments. Underscored arguments like $ or $ variable represent
unknown arguments streamed from the preceding function. The symbol ‘|’
is the OR operator.

As there are some descriptions that are really unclear or ambiguous, we
use a dummy function “unknown process” as a stub first.

F.1 Email-Worm.Win32.Bagle.at

Kaspersky: Email-Worm.Win32.Bagle.at;

http://www.viruslist.com/en/viruses/encyclopedia?virusid=64658;

CA: Win32.Bagle.AR;

http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?ID=40602;

Trend: WORM_BAGLE.AU;

http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_BAGLE.AU&VSect=T;

DATE: 2004-10-29;

TYPE: Win32 PE EXE;

COMPRESSION: PeX;

#+++

creates several mutexes to prevent WORM_NETSKY variants from running

mutex_create "MuXxXxTENYKSDesignedAsTheFollowerOfSkynet-D" ;

mutex_create "’D’r’o’p’p’e’d’S’k’y’N’e’t’" ;

mutex_create "_-oOaxX|-+S+-+k+-+y+-+N+-+e+-+t+-|XxKOo-_" ;

mutex_create "[SkyNet.cz]SystemsMutex" ;

mutex_create "AdmSkynetJklS003" ;

mutex_create "____--->>>>U<<<<--____" ;

mutex_create "_-oO]xX|-S-k-y-N-e-t-|Xx[Oo-_" ;

also creates unnamed mutexes for own thread synchronization purposes

mutex_create $UNKNOWN_MUTEX ;

#+++

system_query %System% ;

#+++

When executed

file_copy $SELF, %System%\wingo.exe ;

xx

xxi

registry_add "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run",

wingo = %System%\wingo.exe ;

file_copy $SELF, %Windows%\cjector.exe ;

#+++

scans the local fixed drives for files with the following extensions

search_loc @LOCAL_DIRS ;

find_data_files

*.adb | *.asp | *.cfg | *.cgi | *.dbx | *.dhtm | *.eml | *.htm | *.jsp

| *.mbx | *.mdx | *.mht | *.mmf | *.msg | *.nch | *.ods | *.oft | *.php

| *.pl | *.sht | *.shtm | *.stm | *.tbb | *.txt | *.uin | *.wab | *.wsh

| *.xls | *.xml ;

searches for email in files with above extensions

grep $EMAIL_PATTERN @_ ;

#+++

skips email that contain

grepv @avp | @foo | @hotmail | @iana | @messagelab | @microsoft | @msn

| abuse | admin | anyone@ | bsd | bugs@ | cafee | certific | contract@

| f-secur | feste | free-av | gold-certs@ | google | help@ | icrosoft

| info@ | kasp | linux | listserv | local | news | nobody@ | noone@

| noreply | ntivi | panda | pgp | postmaster@ | rating@ | root@

| samples | sopho | spam | support | unix | update | winrar | winzip ;

#+++

may be four extra files created in process of generating attachments

file_create %System%\wingo.exeopen ;

file_create %System%\wingo.exeopenopen ;

file_create %System%\wingo.exeopenopenopen ;

file_create %System%\wingo.exeopenopenopenopen ;

#+++

If cannot find DNS server used by the local system

it tries to use the one at 217.5.97.137

registry_query "HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\

Interfaces*\NameServer" ; ;

if $_REG_QUERY_STATUS == FAIL ; then

unknown_process "217.5.97.137" ;

fi

sends copies of itself to any email addresses it finds

sends e-mail using its own SMTP engine

*sendmail @_COLLECTED_EMAILS, ATTACHMENT;

#+++

enables spread through peer-to-peer file sharing networks, such as Kazaa

NFILE1 = "ACDSee 9.exe"

| "Adobe Photoshop 9 full.exe"

| "Ahead Nero 7.exe"

| "Kaspersky Antivirus 5.0"

| "KAV 5.0"

| "Matrix 3 Revolution English Subtitles.exe"

| "Microsoft Office 2003 Crack, Working!.exe"

| "Microsoft Office XP working Crack, Keygen.exe"

| "Microsoft Windows XP, WinXP Crack, working Keygen.exe"

| "Opera 8 New!.exe"

| "Porno pics arhive, xxx.exe"

| "Porno Screensaver.scr"

| "Porno, sex, oral, anal cool, awesome!!.exe"

| "Serials.txt.exe"

| "WinAmp 5 Pro Keygen Crack Update.exe"

xxii

| "WinAmp 6 New!.exe"

| "Windown Longhorn Beta Leak.exe"

| "Windows Sourcecode update.doc.exe"

| "XXX hardcore images.exe" ;

While searching for files with e-mail, also

searches for folders containing "shar"

find_dir *shar* ;

drops copies of itself in folders

file_copy "%System%\wingo.exe", @_DIR\$NFILE1 ;

#+++

opens a backdoor on TCP port 81

listen_port TCP, 81;

installs a proxy server that can be controlled via this port

allowing remote access to the machine

zombie ;

#+++

contains a list of 146 URLs

for URL in @URL_LIST; do

download_inet http://${URL}/g.jpg ;

file_rename g.jpg %System%\re_file.exe ;

file_execute %System%\re_file.exe ;

done

#+++

check_system_date ;

if $DATE == "2006-04-25"; then

stop functioning on April 25, 2006

date_activated ;

exit ;

fi

#+++

terminates the following antivirus and security-related programs

@AV_PROG1 = "alogserv.exe | APVXDWIN.EXE | ATUPDATER.EXE | AUPDATE.EXE

| AUTODOWN.EXE | AUTOTRACE.EXE | AUTOUPDATE.EXE | Avconsol.exe

| AVENGINE.EXE | AVPUPD.EXE | Avsynmgr.exe | AVWUPD32.EXE | AVXQUAR.EXE

| bawindo.exe | blackd.exe | ccApp.exe | ccEvtMgr.exe | ccProxy.exe

| ccPxySvc.exe | CFIAUDIT.EXE | DefWatch.exe | DRWEBUPW.EXE

| ESCANH95.EXE | ESCANHNT.EXE | FIREWALL.EXE | FrameworkService.exe

| ICSSUPPNT.EXE | ICSUPP95.EXE | LUALL.EXE | LUCOMS~1.EXE | mcagent.exe

| mcshield.exe | MCUPDATE.EXE | mcvsescn.exe | mcvsrte.exe

| mcvsshld.exe | navapsvc.exe | navapw32.exe | NISUM.EXE | nopdb.exe

| NPROTECT.EXE | NUPGRADE.EXE | OUTPOST.EXE | PavFires.exe

| pavProxy.exe | pavsrv50.exe | Rtvscan.exe | RuLaunch.exe

| SAVScan.exe | SHSTAT.EXE | SNDSrvc.exe | symlcsvc.exe | UPDATE.EXE

| UpdaterUI.exe | Vshwin32.exe | VsStat.exe | VsTskMgr.exe" ;

kill_process @AV_PROG1 ;

stop and disable Internet Connection Firewall (ICF)

service_stop "Internet Connection Firewall" ;

service_disable "Internet Connection Firewall" ;

Internet Connection Sharing (ICS) service (the "SharedAccess" service)

service_stop "Internet Connection Sharing" ;

service_disable "Internet Connection Sharing" ;

Security Center service ("wscsvc" - introduced in XP SP2)

service_stop "Security Center" ;

service_disable "Security Center" ;

#+++

xxiii

deletes several registry entries associated with WORM_NETSKY variants

@AV_LIST1 = "9XHtProtect | Antivirus | EasyAV | FirewallSvr | HtProtect

| ICQ Net | ICQNet | Jammer2nd | KasperskyAVEng | MsInfo

| My AV | NetDy | Norton Antivirus AV | PandaAVEngine

| service | SkynetsRevenge | Special Firewall Service

| SysMonXP | Tiny AV | Zone Labs Client Ex" ;

registry_delete "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run",

@AV_LIST1 ;

registry_delete "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run",

@AV_LIST1 ;

#+++

xxiv

F.2 Email-Worm.Win32.Sober.g

Kaspersky: Email-Worm.Win32.Sober.g;

http://www.viruslist.com/en/viruses/encyclopedia?virusid=50433;

CA: Win32.Sober.G;

http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?id=39112;

Trend: WORM_SOBER.G;

http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_SOBER.G&VSect=T;

DATE: 2004-06-03;

SOURCE: Visual Basic;

COMPRESSION: UPX;

#+++

system_query %System% ;

#+++

Once launched

msgbox YesNo, "File not found",

"Special-UnZip Data-Module\n\nis missing\n\nOpen with Notepad?" ;

if msgbox.response == YES ; then

diversionary trick.

process_status %SELF% ;

FILE2 = "Converted_${_FILENAME}" ;

file_create %System%\$FILE2 ;

file_read %System%\$FILE2 ;

contains nonsense text

file_execute "notepad.exe %System%\$FILE2" ;

fi

#+++

creates a copy of itself under a name chosen at random from list below

For example, winrun.exe, sysrunsmss32.exe, cryptsys.exe, discwinlog, dirspool

STRING = "32 | crypt | data | diag | dir | disc | expolrer | host | log | run

| service | smss32 | spool | sys | win" ;

unknown_process $STRING ;

VKEY1 = $_ ;

VFILE1 = $_ ;

file_create %System%\$VFILE1 ;

registered in the system registry auto-run key

registry_add "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run",

$VKEY1 = %System%\$VFILE1 ;

registry_add "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run",

$VKEY1 = %System%\$VFILE1 ;

registry_add "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce",

$VKEY1 = "%System%\$VFILE1 %1" ;

creates several other files used for its own purposes

file_create %System%\bcegfds.lll ;

file_create %System%\cvqaikxt.apk ;

file_create %System%\datsobex.wwr ;

file_create %System%\wincheck32.dats ;

contains list of email gather from the infected machine

xxv

file_create %System%\winexpoder.dats ;

contains a list of corresponding recipient names to the email gathered

file_create %System%\winzweier.dats ;

contains a list of randomly generated email addresses

file_create %System%\xdatxzap.zxp ;

file_create %System%\zhcarxxi.vvx ;

file_create %System%\NoSpam.readme ;

#+++

searches local disks for files with ext

search_loc @LOCAL_DIRS ;

find_data_files

*.abc | *.abd | *.abx | *.adb | *.ade | *.adp | *.adr | *.asp | *.bak

| *.bas | *.cfg | *.cgi | *.cls | *.cms | *.csv | *.ctl | *.db | *.dbx

| *.dhtm | *.doc | *.dsp | *.dsw | *.eml | *.fdb | *.frm | *.hlp

| *.imb | *.imh | *.imh | *.imm | *.inbox | *.ini | *.jsp | *.ldb

| *.ldif | *.log | *.mbx | *.mda | *.mdb | *.mde | *.mdw | *.mdx

| *.mht | *.mmf | *.msg | *.nab | *.nch | *.nfo | *.nsf | *.nws

| *.ods | *.oft | *.php | *.pl | *.pmr | *.pp | *.ppt | *.pst | *.rtf

| *.shtml | *.slk | *.sln | *.stm | *.tbb | *.txt | *.uin | *.vap

| *.vbs | *.vcf | *.wab | *.wsh | *.xhtml | *.xls | *.xml ;

#+++

discards any e-mail that contains

grepv -dav | .dial. | .kundenserver. | .ppp. | .qmail@ | .sul.t- | @arin

| @avp | @ca. | @example. | @foo. | @from. | @gmetref | @iana

| @ikarus. | @kaspers | @messagelab | @msn | @nai. | @panda | @smtp.

| @sophos | @spiegel. | @www | abuse | announce | antivir | anyone

| anywhere | bellcore. | bitdefender | clicks. | clock | detection

| domain. | emsisoft | ewido. | free-av | freeav | ftp. | gold-certs

| google | host. | icrosoft. | ipt.aol | law2 | linux | mailer-daemon

| me@ | members. | mozilla | msdn. | mustermann@ | nlpmail01. | nothing

| office | password | postmas | reciver@ | redaktion | refer. | secure

| service | smtp- | somebody | someone | spybot | sql. | subscribe

| support | t-dialin | t-ipconnect | time | track. | user@ | variabel

| verizon. | viren | virus | whatever@ | whoever@ | winrar | winzip

| www. | you@ | yourname ;

#+++

gathers email addresses from files

grep $EMAIL_PATTERN @_ ;

stores gathered email

file_append &_, %System%\Wincheck32.dats ;

#+++

connects directly to the SMTP server to send messages

sendmail @_EMAILS ;

#+++

downloads a copy of itself and saves in system directory

URL = "home.arcor.de

| people.freenet.de

| home.pages.at

| scifi.pages.at

| free.pages.at" ;

download_inet http://${URL}/DOERKGGG.EXE ;

file_create %System%\DOERKGGG.EXE ;

#and launch files

file_execute %System%\DOERKGGG.EXE ;

#+++

xxvi

tests live connection by resolve the following URLs

dns_resolve microsoft.com ;

dns_resolve bigfoot.com ;

dns_resolve yahoo.com ;

dns_resolve t-online.de ;

#+++

