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Summary 

 

            Falls and activities of daily living (ADL) detection in humans require an objective 

and reliable technique to be used under free-living conditions. The emphasis of this study 

is to develop a wearable fall and ADL detection system that can detect a broad range of 

ADL using relatively fewer sensors, in comparison to other researchers’ systems, for the 

comfort of the user in long term application. The system can also raise fall notifications 

without user intervention to get a shortened interval before the arrival of assistance.   

           To provide long term comfort for the wearer, we use a garment as a wearable 

platform. A triaxial accelerometer measuring in lateral, antero-posterior and vertical 

directions is attached at the shoulder position of the garment. ADL detected in our studies 

are vital daily activities such as sitting, standing, lying down, lying to sitting, level 

walking, ascending stairs and descending stairs. However, in sitting, standing, and lying 

down detection, instead of detecting static postures, we detect stand-sit/sit-stand, and lie-

sit/sit-lie posture transition activities.  

          In fall detection, we have developed a fall notification system that can summon 

medical assistances via SMS (Short Messaging Service). This is the detection system as 

perfect in its kinds as that which can detect fall with no detection range limitation and can 

raise fall alarm (fall SMS) on its own to individuals and health care unit to shorten the 

interval of the arrival of assistance. A new method of time-frequency based ADL 

detection using two acceleration signals, vertical acceleration signal and antero-posterior 

acceleration signal, from the accelerometer attached onto the shoulder part of a garment 

is proposed. Real-time wearable falls and ADL detection system is implemented and 
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normal healthy three male and three female subjects involved in approximately five-hour-

long experiment. Overall sensitivity (defined as the ability of the system that can 

correctly detect the activities) 94.98 per cent and specificity (defined as the ability of the 

system that generates no false detection) 98.83 per cent were achieved. 

           We have also explored the possibility of pre-impact fall detection that is 

distinguishing sideways and backward falls, which can cause hip fractures among the 

elderly, from ADL using angular rate sensors (gyroscopes). The purpose of this study is 

to investigate a method for the automatic detection of fall, which can cause hip fractures, 

during its descending phase before the subject hits the floor so that this favorable method 

can be used to develop a fall injury minimization system for the elderly. 

           In conclusion, our experimental results show that a new wearable detection system 

by securing a miniature triaxial accelerometer on a garment allows detection of falls and 

a broad range of ADL, in comparison to other researchers’ systems, in high accuracy. 

Moreover, the method of fall pre-impact detection can also be used to complement an 

injury minimization system such as an inflatable hip protection device to be activated 

upon imminent fall.   
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                                   Chapter 1 

Introduction 

 

1.1 Background 

           Singapore has one of the fastest aging populations in the world, with an 

anticipated increase in the proportion of older persons above 65 years of age from 7.3 per 

cent in 1999 to 18.9 per cent in the year 2030 [1]. Alongside the rapid graying of the 

population, the economic burden of managing multiple chronic conditions commonly 

encountered in the elderly is likely to put a strain on the healthcare system, as has been 

demonstrated in other developed countries [2]. Falls constitute a major healthcare 

concern in older persons and can affect 30% of community dwelling older persons each 

year [3].  Apart from causing physical injury, falls can result in psychological trauma and 

lead to an increased risk of admission to nursing homes [4]. Studies examining injuries in 

community-dwelling elderly indicate that falls are the leading cause of traumatic brain 

injury (TBI) followed by motor vehicle crashes [5, 6]. Another serious major fall-related 

injury is hip fracture. Twenty six percent of the elderly with hip fractures died within a 

year [7]. Moreover, the consequences of falls may lead to institutionalization, restricted 

activity, other minor injuries, fear of falling, or death. Therefore, prevention and 

detection of falls have been an important research area since two decades ago [8-18]. In 

this context, the ability to monitor different movements and postures involved in the daily 

routine of older persons who are living alone may help to pave the way for identifying 

persons who have fallen or are at risk of falling. Such an ability may also allow a better 
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assessment of activities of daily living (ADL) and the effects of numerous medical 

conditions and treatments [19], thus paving the way for planning interventions aimed at 

maintaining independence and enhancing safety of the elderly people. This surveillance 

can also be the detection of long periods of inactivity in older persons who will be 

spending significant portions of their daily routines alone. Moreover, the assessment or 

detection of ADL is an essential issue in ambulatory monitoring because physiological 

responses, such as changes in heart rate or blood pressure, may result from changes in 

body position and physical activity. Besides, it is a key determinant in evaluation of the 

quality of life of subjects with limited mobility, such as elderly persons [19]. 

           Even though extensive research has been done in fall and activities of daily living 

(ADL) detections, some limitations are still observed and are listed below. 

(1) There is no consideration for the comfort of the wearer in fall and ADL detection 

for long term application.  

(2) All fall detection systems developed over the past two decades are with detection 

range limitation. 

(3) There is no implementation of wearable real-time ADL detection system that can 

be used to detect abnormal activities in real time, for example, extended walking 

of an elderly, which could mean that the subject is in a state of trance, or 

wandering of subjects suffering from dementia.   

(4) Fall detection and fall risk assessment, assessment of physical and mental 

conditions of the elderly or environmental condition that can lead to fall incident, 

have been mostly focused in elderly fall safety research and no investigation of 

pre-impact fall detection is conducted using wearable sensors in distinguishing 
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fall activities from normal ADL in the earlier stage of fall before the person 

touches the ground. The advantage of the investigation is that a fall injury 

minimization system can be developed, for example, by incorporating the pre-

impact fall detection system with an inflatable hip protection device. 

 

1.2 Objectives 

             In this thesis, a novel approach of falls and activities of daily living (ADL) 

detection based on a normal garment (vest) is described.  The objectives of this study are 

listed below: 

(1) Develop a wearable system that can detect a broad range of ADL using relatively 

fewer sensors, in comparison to other researchers’ systems, for the comfort of the 

user in long term application.                                                               

(2) Design a novel fall detection system (post impact detection) with no detection 

range limitation and the system can raise fall notifications, without user 

intervention, to individuals and health care unit at the same time to get a 

shortened interval before the arrival of assistance.                                                                                                             

(3) Implement a real-time fall and ADL detection system using the methods 

developed by objectives number 1 and number 2.                                              

(4) Investigate a method of pre-impact fall detection that can distinguish fall 

activities from normal activities at the earlier stage of fall process before the 

subject touches the ground. 
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1.3 Outline of the thesis 

            This dissertation is organized into seven chapters. In Chapter 1, the background 

information and objectives of the research are explained, and then previous applications 

falls and ADL detection systems are reviewed in Chapter 2. Chapter 3 illustrates the three 

basic blocks of wavelet time-frequency analysis: continuous wavelet transform, discrete 

wavelet transform and multiresolution analysis. A brief description of discrete dyadic 

wavelet transform is also discussed. Chapter 4 describes the detection procedure of ADL 

in time frequency domain. Fall detection (post impact detection) including 

implementation of fall notification system and pre-impact fall detection using angular 

rate sensors are discussed in Chapter 5. Chapter 6 then presents the implementation of 

real-time fall (post impact detection) and ADL detection system using the methods 

developed in Chapter 4 and Chapter 5. Finally, the summary of achievements and the 

recommendations are presented in Chapter 7.  
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Chapter 2 

Literature review 

 

2.1 Studies on previous activities of daily living (ADL) detection methods 

             ADL detection research works can be separated into two groups, home-based 

detection and body-worn devices. Yamaguchi et al. [20] and Noury et al. [21] have 

developed indoor monitoring systems using infrared position sensors and magnetic 

sensors. The sensors are located at designated locations such as furniture, doors and 

corridors to monitor behaviors during daily life. Daily life behaviors and activities such 

as how many hours the subject stays in bathroom, living room, and kitchen and on bed in 

his/her daily life are studied. In addition to sensors mentioned above, Ogawa et al. [22] 

added carbon dioxide sensor to improve the measurement accuracy of the presence of the 

subject in the room. In these home-based detection methods, the sensors are fixed at 

designated locations. If the subject were to venture beyond the designed sensor range, as 

in the case of wandering of subjects suffering from dementia, the effectiveness of the 

sensors would be compromised. It is thus more viable for the sensors to be directly 

located on the subject for applications in free-living condition.   

           ADL detection requires an objective and reliable technique to be used under free-

living conditions. From a physiological point of view, daily activity, regarded as any 

movement or posture that is produced by skeletal muscles, results in energy expenditure 

[23]. The energy expenditure due to physical activity is widely accepted as the standard 

reference for physical activity assessment [24], but measurement of this variable under 
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conditions of daily living is impractical and not feasible for population studies. Therefore, 

interests for estimates of energy expenditure based on observations, questionnaires, heart 

rate recordings, or movement registration are growing. At present, movement registration 

with body-worn motion sensors offers the best alternative for ADL detection. Various 

motion sensors have been designed for this purpose, ranging from mechanical 

pedometers [25] and actometers [26] to accelerometers [27-29]. Accelerometers respond 

to both frequency and intensity of movement, and in this way accelerometers are superior 

to pedometers and actometers, which are attenuated by impact or tilt and only count body 

movement if a certain threshold is passed. Due to the current state of art in integrated 

circuit technology there is also good opportunity to build very small and lightweight 

accelerometer systems that can be worn for days or even weeks. Moreover, 

accelerometers have been used for several decades to study human motions and other 

movements [30-33] and also for the measurement of tremor and motor activity in 

neurological patients [34-36]. However, precise detection of ADL using accelerometer 

requires classification of activities such as walking, ascending stairs, descending stairs 

and lying down, etc.  

          In human motion activities (level walking, ascending stairs, and descending stairs) 

detection, Najafi et al. [19], Bouten et al. [32], Veltink et al. [33], Foerster et al. [34], 

Aminian et al. [37], Mantyjarvi et al. [38], Sekine et al. [39, 40], and Coley et al. [41] 

used uniaxial or triaxial accelerometers in their detections. Najafi et al. [19] detected 

ADL using a kinematic sensor, which is composed of one miniature gyroscope measuring 

in sagittal plane and two miniature accelerometers measuring vertical and frontal 

accelerations of the subject. The sensor was located on the subject’s chest, but no detail 
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expression is provided on how the sensor was placed on it. Level walking activity was 

simply detected using a fixed threshold, no threshold value was reported, and successive 

peaks with intervals of 0.25-2.25 seconds were chosen as walking steps. The detection 

method is very simple and it cannot distinguish among level walking, ascending stairs 

and descending stairs.  Bouten et al. [32] described the development of a triaxial 

accelerometer (TA) for the assessment of ADL. The TA is composed of three 

orthogonally mounted uniaxial piezoresistive accelerometers and is attached to the low 

back of the subjects at the level of the second lumbar vertebra by using an elastic belt 

around the waist. The main objective of the research is to evaluate the relationship 

between energy expenditure due to physical activity and body acceleration, the sum of 

the integrals of the absolute value of accelerometer output from all three measurement 

directions (IAAtot), during different types of ADL. Energy expenditure was measured 

from indirect calorimetry, and sleeping metabolic rate (SMR) [32]. In this method, 

IAAtot can be effectively used to evaluate the relationship between energy expenditure 

and physical activities, but it cannot classify types of activities. Veltink et al. [33] 

attempted to classify static activities such as sitting, standing, and lying and dynamic 

activities such as cycling, level walking, ascending stairs and descending stairs, using 

three uniaxial accelerometers mounted tangentially (forward) and radially (vertical) on 

the mid-sternum and tangentially (perpendicular to the front thigh surface) on the upper 

half of the thigh using double-sided tape. It is recommended that the tangential thigh 

accelerometer can be used to distinguish among the three subgroups of dynamic 

activities, (1) level walking, (2) ascending stairs and descending stairs, and (3) cycling. 

The mean values of individual cycles of motion activities (walking on level ground and 
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stairs) of the thigh tangential accelerometer signals were used to distinguish level walking 

from ascending stairs and descending stairs and the finding was statistically significant 

among five able-bodied subjects between 23 and 42 years of age (248 times walking 

through a building (distance was not shown in the paper), 40 ascending stairs and 35 

descending stairs activities, sign test, � < 0.05). However, this method cannot be used to 

differentiate between ascending stairs and descending stairs. Maximum correlation 

coefficients between individual cycles of walking on stairs activities and reference 

templates were used to distinguish between ascending stairs and descending stairs, but 

the technique still resulted in poor classification rate, 17% error for ascending stairs and 

20% error for descending stairs for 40 ascending stairs and 35 descending stairs activities. 

Foerster et al. [34] detected ADL using four uniaxial accelerometers located at sternum, 

wrist, thigh, and lower leg. The sensors were fastened with Velcro bands and the 

sensitivity axis of the sensors was roughly perpendicular to the surface, i.e., to the frontal 

aspect of the sternum, dorsum of the lower arm segment, frontal aspect of thigh, and 

lower leg segment [34]. Twenty four male subjects, 21 to 34 years of age, were recruited 

to perform standard protocols consisting of seven types of activities, sitting, standing, 

lying supine, level walking, ascending stairs, descending stairs, and cycling. The recorded 

acceleration signals were manually separated in length of 20 seconds time-interval for 

each activity and similarity was determined by the so called L1 distances by referring to 

the standard protocol variable profiles [34]. In motion activities (walking on level ground 

and stairs) classification, 107 out of 121 level walking activities, 80 out of 108 

descending stairs activities and only 20 out of 49 ascending stairs activities were 

correctly detected. Aminian et al. [37] presented the estimation of the incline and speed 
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of walking using neural networks. Then, Mantyjarvi et al. [38] classified level walking, 

ascending stairs, and descending stairs using two triaxial accelerometers. Sensors were 

located at the left and right sides of the hip with belt. Six channels of acceleration signals 

were processed with PCA (principal component analysis) or ICA (independent 

component analysis) and then DWT (discrete wavelet transform) was applied. Powers of 

wavelet coefficients of levels 5 to 8 were used as features in classification using three 

multilayer perception neural networks. It is proved that applications of ICA or PCA with 

wavelet transformation to six channels of acceleration signals can give better 

classification rate than the original data by using three multilayer perception neural 

networks. The best classification results were 83 % (ascending stairs), 84 % (descending 

stairs), and 90 % (level walking) and their method gives poor classification rate for three 

channels of acceleration signals. Moreover, application of neural networks needs a large 

number of training patterns to reduce the error. Sekine et al. [39] studied distinguishing 

walking on level ground from walking on a stairway using a triaxial accelerometer 

located at waist level. Walking patterns (level walking, and walking of stairs) were 

classified in two stages. In the first stage, walking patterns were separated using low-

frequency components of antero-posterior acceleration signal and vertical acceleration 

signal. Low-frequency components were taken out from the original signals using MRA 

(multiresolution analysis). In detection of pattern changes in separation of ascending 

stairs activity from level walking activity, they manually set an individual threshold level 

for each subject at the low frequency component of antero-posterior acceleration signal. 

Times of pattern changes between ascending stairs and level walking were obtained from 

crossing points of the threshold level and the low frequency component of the signal. 
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Then, descending stairs activity was separated from level walking activity by detecting 

peak points, synchronous with changes between level walking activity and descending 

stairs activity, at the low frequency component of vertical acceleration signal. In the 

second stage, the three types of walking patterns were classified by comparing powers of 

wavelet coefficients computed from the separated activities. Twenty male subjects were 

involved in the experiments. Even though, high classification rates, p-values<0.01 for 

discriminating descending stairs from other activities and p-values<0.01 for classification 

between level walking and ascending stairs, were achieved, manual thresholding for each 

subject in activity separation is not practical for a large number of subjects. Again, Sekine 

et al. [40] used wavelet-based fractal analysis method in human motion activities 

classification. The fractal dimensions were computed from triaxial accelerometers located 

to the subject's back in the lumbosacral region of the vertebral column by attaching with 

an elastic waist belt. Even though the fractal dimensions from three dimensional 

acceleration signals were different (p-values <0.01) among the three walking types (level 

walking, ascending stairs and descending stairs), this significant result was achieved by 

setting individual threshold value for each individual subject. Finally, Coley et al. [41] 

presented the detection of ascending stairs using miniature gyroscope attached to the 

shank of the subject. Ascending stairs was classified from level walking and descending 

stairs by measuring the time intervals between toe-off and heel-strike and between heel-

strike and foot-flat. High sensitivity, >94 %, in identifying 50 ascending stairs activities 

from level walking and descending stairs activities was obtained using only one sensor at 

the shank, but this method could not identify stairs descent from level walking.   
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             In static activities (sitting, standing and lying) detection, Najafi et al. [19], 

Veltink et al. [33], Foerster et al. [34], Mathie et al. [42], and Lyons et al. [43] used 

gyroscope and accelerometer or accelerometers in their detection methods. Najafi et al. 

[19] detected sit-stand/stand-sit transitions activities instead of detecting sitting/standing 

static postures. The gyroscope measuring in sagittal plane was used to detect the locations 

of the transition activities and then sit-stand/stand-sit transitions were classified using the 

vertical displacement by double integrating the vertical acceleration signal. The method 

resulted in about 90% accuracy in classification for both sit-stand and stand-sit transition 

activities, but the most important limitation, in practice, of the above method is the 

integration error due to dc (steady state) component present in the vertical acceleration 

signal. Even though a simple kinematic sensor was used in detection, the sensor is 

protruding out of the body because of the gyroscope measuring the sagittal plane 

information and may cause injury when the subject faces severe incident such as fall.  In 

lying static posture detection, the vertical acceleration signal was low-passed filtered 

(0~0.16Hz) to remove other activities, and the mean value of filtered signal, < 0.4 g 

(threshold), was used in detection. Veltink et al. [33] used dc (steady state) responses of 

accelerometers from the radial (vertical) accelerometer on the sternum and tangential 

(perpendicular to the front thigh surface) accelerometer on the thigh in detecting sitting, 

standing, and lying static activities. The dc response of the radial sternum accelerometer 

was used to distinguish sitting/standing posture from lying posture and that of the 

tangential thigh accelerometer was used to differentiate between sitting and standing 

postures. Mathie et al. [42] also detected sit-stand/stand-sit transition activities instead of 

detecting sitting/standing static postures. The transitions were detected in two steps using 
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a triaxial accelerometer located on the waist belt. First, the presence or absence of 

transition activity was determined by comparing the signal magnitude areas calculated 

from low-passed and high-passed filtered three acceleration signals with a preset 

threshold value. The signal magnitude area is equal to the sum of the areas under the 

modulus of the integral from three acceleration signals [42]. The comparison was done 

for each non-overlapping one second moving window. Secondly, the classification 

between sit-stand and stand-sit transitions was done by pattern matching with a reference 

pattern. Ninty-three- point-five percent (93.5%) sensitivity was achieved in classification 

of total 183 sit-stand/stand-sit transition activities from 26 subjects using this detection 

method. Finally, Lyons et al. [43] detected lying, sitting and standing static postures 

using two uniaxial accelerometers located at sternum (vertical) and on thigh (parallel to 

the front thigh surface). Static postures were classified by detecting the orientation in 

degree of the sensors through mathematical relation between accelerometer dc (steady 

state) response and sensor orientation [43]. The study is more specific to distinguishing 

between static and dynamic activities [43].  

 

2.2 Falls among the elderly and previous elderly fall detection methods 

             A fall can be described as “an event which results in a person coming to rest 

inadvertently on the ground or other lower level as a consequence of the following: 

sustaining a violent blow; loss of consciousness; sudden onset of paralysis as in a stroke; 

or an epileptic seizure” [44]. Falls is one of the many other conditions such as dementia, 

incontinence, osteoporosism and immobility that are common and serious problems for 

the aged. It can cause pain, fractures, disability, immobility, hospitalization, and is the 
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fifth leading cause of death in persons over ages of 65 [45]; resulting huge costs for the 

medical care system [46].  

Statistics on falls  

             Each year, between 25% and 50% of adults over the age 65 years experience a 

fall depending upon age and number of risk factors [3,47-50]. A study by Cummings et 

al. [51] showed that during a 12-month period, the aged who live at home are said to fall 

approximately once, those in hospitals 1.5 times, and nursing home residents at a rate that 

exceeds 2.0 falls per person [12]. At least half of those who fall seem to do so repeatedly 

[3] and some may experience innumerable episodes. Among the elderly, most injuries 

(87% of fractures) result from falls [52,53]. Fall-related injuries and their sequelae tend to 

become more serious with advancing age, i.e., among older adults falls are seven times 

more likely to be fatal than for those younger than 65 years [54] and 60% of fatal falls 

occur in older adults [52]. The frequency of falling seems to be higher among women 

than men, at least until age 75 [55], after which the rates become approximately equal.  

Economic impacts of falls 

             The total direct and indirect costs of fall-related injuries have been projected to 

reach $85 billion by the year 2020 (in 1994 dollars) [56,57]. Slips, trips and falls 

accounted for 24% of the total costs of worker’s compensation insurance claims between 

1989 and 1990 [58]. Not only direct medical costs were high for fall-related injuries in 

those over the age of 65 years ($7.7 billion), total costs were also high in those between 

the ages of 25 and 44 years because of higher morbidity costs ($8.3 billion) associated 

with restricted activity levels and lost productivity [59]. These costs indicate that fall-

related injuries are a problem that is not limited to the elderly population.   
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Complications of falling 

          The expensive complication from falling is the loss of independence due to injuries 

that may necessitate institutionalization or at least a need for family or paid caregivers. 

Other complications include osteoporosis, joint contractures, and even psychological 

impairment, such as fear of falling and not being able to stand up leading to the “walk 

avoiding syndrome” [52,60,61]. 

          The most obvious and serious consequences of falling are injuries. Common 

injuries due to receiving the main impact include fractures involving the hand, hip and 

spine, head and brain injuries with/without intra-cranial hemorrhage, and soft tissue 

trauma [62]. Among the injuries, hip fracture is a serious condition as it usually requires 

surgical fixation and leads to reduced mobility in the elderly. About one-third of fall-

related hip-fractured patients become wheelchair or bed bound, another one third need 

aids for walking and only 28 % are able to walk without aids [7]. A better understanding 

of why hip fractures occur in fall incidents and how treatment of these injuries can 

maximally restore function and prevent further injuries, in face of the rising hip fracture 

incidences [63-65], is the major challenge in elderly healthcare applications [66]. 

Fall directions and fractures 

          Moreover, fall direction and impact site are important factors affecting injury risk 

and type. Smeesters et al. [67] examined the fall direction and impact location resulting 

from four disturbances (fainting, slip, step down, trip) at three gait speeds (fast, normal, 

slow) using a four-camera, 3D motion measurement system. From the experiment, it is 

found that slip in normal gait speed and fainting resulted in backward or sideways falls 

with impact on the hip. Trips and steps down usually resulted in forward falls with frontal 
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impacts regardless of gait speed. At fast gait speed, slips and faints also usually resulted 

in forward falls with frontal impacts. As gait speed decreased, slips usually resulted in 

sideways and backwards falls with impacts on the hip or buttocks, and faints resulted in a 

greater number of sideways falls. Sideways falls, backwards falls and impact at the hip 

are associated with hip injury; forward falls, trips and impact with the hands are 

associated with upper-extremity injury [14,68-71]. Studies have shown that falling to the 

sides, compared to other fall directions, increases hip fracture risk between three-fold to 

five-fold [70-74]. Moreover, impacting on or near the hip, compared to other impact 

locations, increases hip fracture risk by 21 to 49 fold [70,71,74].   

Falls in the elderly: Prevention and Detection 

           As presented earlier, falls and its associated complications lead to decrease in the 

quality of life. It is therefore in the interest of the community to recognize individuals at 

risk of falling and provide necessary interventions to minimize the chances of falling. 

Components of these intervention programs can be separated into prevention and 

detection. Preventive intervention includes two or more fall-risk factors into the 

multifactorial risk-based prevention programme and the efficacy is examined through 

long-term observation [72-85]. Myers et al. [12] have summarized potential factors, 

considered in several studies [72-85], which are effective in reducing the incidence of 

falls in community-dwelling geriatric patients. These risk-factors can be divided into nine 

categories: general physical functioning; gait, balance and physical performance; 

musculoskeletal and neuromuscular measures; demographic factors; sensory 

impairments; medical conditions; indicators for general health; medication use; and 

psychological , behavioral, social, and environmental factors. 
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           Besides prevention, detection is also an important factor among the elderly, 

particularly for those living alone. An undetected fall in an older person can result in a 

person lying conscious and uncomfortable for hours before being saved. This scenario 

commonly known as a “long lie” (prolonged recumbency) can lead to rhabdomyolysis 

with renal failure, dehydration, pressure injury and psychological trauma consequent to 

the event. It is therefore crucial to detect the event of a fall as early as possible, so that the 

elderly can receive timely medical aid. There are two basic approaches for the detection 

of a fall, activity detector [20,86,87] and fall sensors [21,42,88,89]. Activity detector is 

the detection of abnormal activity such as long time spending in the bathroom [20]. In 

such case, an alarm can be sent to a person living closely to check the status of the 

subject. Nait-Charif and McKenna [86] detected unusual inactivity such as a long lie 

using a vision system operating in a home environment. The person’s position in the 

image along with a coarse representation of his/her shape and orientation in the image 

were tracked using an ellipse. The ellipse centre and the other parameters such as 

orientation, scale and eccentricity are used to support recognition of relevant actions and 

events such as falling, lying down, sitting and standing. The method has gone some way 

to providing useful cues for fall detection. Sixsmith et al. [87] developed a considerably 

more intelligent fall and abnormal activity detector (SIMBAD- Smart Inactivity Monitor 

using Array-Based Detectors) using wall mounted IRISYS (infrared integrated systems) 

thermal imaging sensors. The IRISYS sensor’s low-element-count infrared array 

technology can locate and track the subject in the sensor’s field of view by providing 

size, location, and velocity information [87]. The system considers two distinct 

characteristics of observed behavior. Firstly, it analyzes target’s (subject’s) motion, i.e., 
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vertical velocity estimation, to detect falls’ dynamic characteristics. Secondly, it detects 

target’s inactivity and compares it with a map of acceptable periods of inactivity in 

different locations. In fall detection, the system employs a neural network to classify falls 

from other normal movement using real-time data from IRISYS. The system 

communicates with a host computer, installed with a GSM (Global System for Mobile 

Communications) modem, to report fall alarms. Noury et al. [21] developed a fall sensing 

system, “actimeter”, composed of a “fusion” of vertical axis acceleration using a 

piezoelectric accelerometer, body orientation using a position tilt switch and mechanical 

vibration of the body surface using a vibration sensor. A Boolean data is generated for the 

position, orientation and vibration and sent to a PC (computer). The communication with 

the PC is performed with a half-duplex radio transceiver. The RF link enables non-line-

of-sight communication and suits an indoor mobile task. Then, these Boolean information 

are sent to the health care center through the network using TCP-IP packets. Mathie et al. 

[42] detected falls using a triaxial accelerometer located at the waist. Pattern matching 

between the recorded accelerations signal and the reference patterns were used in fall 

detection and resulted in 80.5 % sensitivity in detecting eight fall activities from two 

subjects. Pattern matching is not a suitable method in fall detection as fall patterns are not 

repeatable in different fall incidents. The study emphasized only on classification among 

falls and ADL and fall notification was not discussed in that paper. Then, Hwang et al 

[88] developed a real-time fall detection system for elderly people. The system is 

comprised of accelerometer, tilt sensor and gyroscope. Accelerometer measures kinetic 

force and, tilt sensor and gyroscope estimate body posture. A threshold value for tilt 

signal in posture detection and another threshold value for acceleration signal level 
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difference in fall impact detection are used to detect fall. Gyroscope signal is used to 

distinguish fall activities from normal activities. Ninety-six point seven percent of 123 

fall trials could be detected successfully. Even though fall could be detected with high 

accuracy, fall notification was not considered in their development. Again, Williams et al. 

[89] used a piezoelectric shock sensor to detect the impact in fall detection. 

Communications to the community alarm system or a telecare system are via a license-

exempt radio telemetry module using half-duplex transmitting at 418 MHz (UK) or 433 

MHz (Europe). The detector is intended to be used in an under-developed integrated 

telecare system for the elderly. Generally, it can be observed that all fall detection 

systems discussed above were designed for limited detection range applications. 

Therefore, the effectiveness of the sensors would be compromised if the subject were to 

venture beyond the designed sensor range. 

          Another key concern in preventing or reducing the severity of fractures in the 

elderly is to detect falls before the person hits the ground, i.e., fall pre-impact detection. If 

fall incidence is detected in its early stage, an alarm system or fall injury minimization 

system can be activated to break the fall before he/she hits the ground or to minimize the 

injuries such as hip injuries. Wu has studied fall pre-impact detection through camera-

based motion measurement system [90]. Velocity profiles during normal and abnormal 

(i.e., fall) activities are used to make the automatic detection of fall in its descending 

phase. Falls are detected 300-400 msec before end of the fall. As a complement of the fall 

pre-impact detection, Kroonenberg et al [91] studied kinematics and dynamics data of 

falls in developing new intervention strategies of hip fractures such as airbag to be 

activated upon detection of the initial stage of fall. Each fall was videotaped at 60 frames 
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per second in the experiment. Hip impact velocities, ranges of body configuration at 

impact and protective reflexes such as muscle activation or the use of an outstretched 

hand influence fall kinematics were studied.  

 

2.3 Review of previous falls and ADL detection research works   

             According to the literature review, accelerometers are located at different body 

segments such as foot, thigh, waist, and sternum using belt, elastic belt, double-sided tape 

or VelcroTM in ADL detection (Table 2.1). Falls and ADL detection using considerable 

number of sensors located at different parts of the body may not be suitable for long-term 

use. Moreover, tightness of fixing materials in long term use is also a necessary 

consideration in applying elastic belt, belt, double-sided tape or VelcroTM in securing the 

sensors on the body. 

             Even though fall and activities of daily living (ADL) detection are studied 

extensively, some weaknesses are still observed. Investigation of pre-impact fall 

detection using wearable sensors is not conducted in distinguishing fall activities from 

normal ADL in the earlier stage of fall before the person touches the ground. The 

advantage of the investigation is that a fall injury minimization system can be developed, 

for example, by incorporating the pre-impact fall detection system with an inflatable hip 

protection device. In addition, no previous research works have considered for the 

comfort of the wearer in falls and ADL detection for long term application. Fall detection 

systems have been developed, but all of them are designed for limited-range applications. 

Moreover, all ADL detection methods developed are used in off-line  analysis  and  it  is  

useful  that  if  we  can  detect the human activities real-time as the system can help detect  
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Table 2.1 Literature review of previous researchers' work in falls and ADL detection 
Researchers' 
name 

Year Types of activities Types of sensors Locations of 
sensors  

Sensor 
attachment 

Najafi B [19] 2003 ST,SI,LY,GU,L Two 1-axis aces, 
one gyroscope 

Sternum With belt 

Yamaguchi A 
[20] 

1998 Monitoring daily 
behaviors at home, F 

Infrared position 
sensors, magnetic 
switches 

At furniture, doors, 
in the bath room 

 

Noury N [21] 2000 Fall, human behaviors Infrared position 
sensors, magnetic 
switches,  
smart sensor 
(accelerometer, tilt 
sensor, vibration 
sensor) 

Home security 
equipments,  
 
On the body 
 

With belt 

Ogawa M [22] 2000 Monitoring daily 
behaviors at home 

Infrared position 
sensors, magnetic 
switches, carbon 
dioxide sensor 

In the kitchen, 
dining room, doors 

 

Bouten CVC[32] 1997 ST,SI,LY,L,U,D,CL Three 1-axis aces Lower part of the 
back 

With elastic 
belt 

Veltink PH [33] 1996 ST,SI,LY,L,U,D,C Three 1-axis aces, 
membrane switches 

Sternum, thigh, 
under the heels 

With 
double-sided 
tape 

Foerster F [34] 1999 ST,SI,LY,L,U,D,C Four 1-axis aces Sternum, wrist, 
thigh, lower leg 

With Velcro 
Bands  

Aminian K [37] 1995 Incline and speed of 
walking 

One 3-axis and  
one 1-axis aces 

Back of the waist, 
the top of the right 
heel 

With belt 

Mantyjarvi J [38] 2001 L,U,D Two 3-axis aces Left and right sides 
of waist 

With belt 

Sekine M [39] 2000 L,U,D One 3-axis ace Back of the waist With belt 
Sekine M [40] 2002 L,U,D One 3-axis ace Back of the waist With belt 
Coley B [41] 2004 U One gyroscope Shank With elastic 

belt 
Mathie MJ [42] 2003 ST,SI,LY,GU,L,F One 3-axis ace Waist With belt 
Lyons GM [43] 2004 Static (ST,SI,LY) and 

dynamic activities 
Two 1-axis aces Trunk, thigh With elastic 

belt 
Nait-Charif and 
McKenna [86] 

2004 Unusual inactivity  detection 
(Long lie after Fall)  

Camera-based 
detection system 

In a designated 
space 

 

Sixsmith A [87] 2004 F Array of infrared 
detectors 

In a designated 
space 

 

Hwang [88] 2004 F Accelerometer, tilt 
sensor, and 
gyroscope 

At sternum With elastic 
belt 

Williams G [89] 1998 F Piezoelectric shock 
sensor 

  

Nyan (My work) 2006 ST,SI,LY,GU,L,U,D,F One 3-axis ace Shoulder Attached 
onto the 
normal daily 
clothing 

L= Level walking, U= Ascending stairs, D= Descending stairs, ST= Standing, SI= 
Sitting, LY= lying, GU= Lying to sitting, C= Cycling, F= Fall, CL=Cleaning, ace= 
accelerometer 
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and send alarm for the patient’s abnormal behavior such as patient is attempting to get 

out of the bed at night time, another fall prevention scenario as this attempt can lead to 

fall incident, or wandering of a patient suffering from dementia. Considering all these 

factors, we have developed a system that can detect falls and ADL real-time using a 

garment (vest) as a platform for the comfort of the wearer in long term application. 

Relatively fewer sensors, in comparison to other researchers’ systems (Table 2.1), are 

used  in  detection  for  the  comfort  of  the  wearer. Moreover, the system can send SMS 

(Short Messaging Service) to alarm fall incidents through the mobile phone together with 

the wearer. The advantage is that there is no limitation on the effective detection range in 

fall detection. All discussions of previous falls and ADL detection systems closely related 

to my study are summarized in Table 2.1.  

   

2.4 Activities of daily living detection and time-frequency analysis  

             In activity detection using accelerometers, these sensors respond to both 

frequency and intensity of movements and the sensor outputs are nonstationary signals 

[19]. In signal analysis methods, traditional spectral analysis such as the Fourier 

transform tell us about frequency components contained in a signal. However, it does not 

provide the time at which those frequency components occurred [92,93]. This 

information is important in analyzing nonstationary signals, where frequency content 

changes over time. In contrast to the Fourier analysis, wavelet transform (time-frequency 

domain transformation) provides good frequency resolution at both low and high 

frequencies with time information. Moreover, it is an optimal technique for describing the 

local regularity of signals [94,95]. A clear example of nonstationary signals in daily 
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activity movements are the acceleration patterns during level walking, ascending stairs, 

descending stairs, sit-stand/stand-sit transitions and lie-sit/sit-lie transitions (Figure 2.1). 

In these activities, the information of interest is a combination of features that are well 

localized in time and frequency domains. Since wavelet transform is capable of providing 

the time and frequency information simultaneously, it is a suitable technique in 

investigation  of  the  acceleration  signals  related  to  ADL. In Chapter 3, time-frequency  

analysis methods such as wavelet decomposition, wavelet reconstruction, multiresolution 

analysis (MRA), and discrete dyadic wavelet decomposition will be discussed.   

 

                  

                 Figure 2.1. Acceleration signals during level walking, sit-stand/stand-sit           
                                   transitions and lie-sit/sit-lie transitions. 
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Chapter 3 

Multiresolution analysis and wavelets 

 

           In wavelet (time-frequency) analysis, multiresolution analysis (MRA) was 

formulated based on the study of orthonormal, compactly supported wavelet bases [96]. It 

was initiated by Mallat [93] and Meyer [96]. MRA is based on the existence of the 

sequence of successive approximation spaces� . The concept is analyzing a signal at 

different levels of resolution, i.e., if it is not necessary to observe the signal in great 

detail; a coarse approximation (S) is sufficient or if we are looking for a particular section 

of the signal; we can zoom into that particular portion in great detail (D). It is therefore 

useful to analyze the signal in coarse-to-fine strategy, widely used in pattern recognition 

algorithms. Before MRA is discussed, some fundamentals regarding the wavelet 

transformation (continuous and discrete) will be presented. 

 

3.1 Wavelet transform: Continuous and discrete 

3.1.1 Continuous wavelet transform (CWT) 

          A real or complex-value continuous-time function )(tψ  which satisfies the two 

properties:(1) the function integrates to zero �
∞

∞−
= 0)( dttψ  and (2) the function is square 

integrable or, equivalently, has finite energy: ∞<�
∞

∞−
dtt 2)(ψ  and the admissibility 

condition  
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can be called a mother wavelet or wavelet. In equation (3.1), ( )ωΨ  is the Fourier 

transform of )(tψ . The mother wavelet is orthogonal to all functions which are obtained 

by dilating (stretching) the mother by a factor of 2 j  (2 to the jth power) and shifting or 

translating the mother right or left by an integer amount by multiples of 2 j  units, 

where  (  is the set of  integer values)j ∈ Z Z . The collection of shifted and dilated wavelet 

functions is called a wavelet basis and the doubly-indexed family of wavelets is written 

as 

                                                       �
�

�
�
�

� −=
a

bt

a
tba ψψ 1
)(, ,                                          3.2 

where a and b are dilation and scaling parameters or location and translation parameters, 

R∈ba, (R is the set of real values) and .0>a  These functions are scaled so that their 

( )2L R (space of square-integrable functions) norms are independent of a, i.e., for all a 

and b, ψψ =ba,  with assuming .1=ψ  The continuous wavelet transformation of 

any square integrable function ( ) ( )2f t L∈ R is defined as 

                                                ( , ) ( ) ( ) ,,W a b f t t dtf a bψ
∞

= �
−∞

                                          3.3 

or 

                                                ( , ) ( ), ( ) ,,W a b f t tf a bψ=                                              3.4 
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where )(, tbaψ  denotes complex conjugation of )(, tbaψ . Since the inner product of the 

two finite energy signals, denoted by )(),( tytx , is defined as  

                                              �
∞

∞−
= dttytxtytx )()()(),( ,                                                  3.5 

the CWT is essentially a collection of inner products of a signal )(tf and the translated 

and dilated wavelet )(, tbaψ for all a and b (Equation (3.4)). 

 

3.1.2 Discrete wavelet transform (DWT) 

            We saw in the previous section that the CWT maps a one-dimensional function 

)(tf to a function ( , )W a bf of two continuous real variables a and b, which are the 

wavelet dilation and translation respectively. The region of support of ( , )W a bf is 

defined as the set of ordered pairs (a, b) for which ( , ) 0.W a bf ≠  In principle, the region 

of support of a CWT is unbounded; i.e., it can be the entire plane defined by 2R , the set 

of all ordered real pairs. In empirical application, the CWT suffers from two drawbacks: 

redundancy and impracticality. The first is obvious from the nature of the wavelet 

transform and the second from the fact that both transform parameters are continuous. 

The discrete wavelets or wavelet series are merely the discrete representation of CWT. 

This discretization allows the wavelet transform to be numerically computed as a series 

of discrete convolutions in time at discrete intervals of scales. 

         In discretization, the integer (positive or negative) powers of one fixed dilation 

parameter 10a > , i.e., 0
ja a= , is chosen for a . As discussed in the previous section that 
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different values of j correspond to wavelets of different widths. It follows that the 

discretization of the translation parameter b should depend on j: narrow (high frequency) 

wavelets are translated by small steps in order to cover the entire time range, while wider 

(lower frequency) wavelets are translated by larger steps. Therefore, to discretize b, we 

choose ,0 0
jb nb a= where ,j n∈ Z , for some fixed .00 >b  In this way, the time-

frequency plane is discretized as  

                                                    0
ja a= , and 0 0

jb na b= ,                                         3.6 

where ,j n∈ Z , 10 >a and .00 >b  The corresponding discretely labeled wavelets are 

therefore 

                                                   / 2( ) ( ), 0 0 0
j jt a a t nbj nψ ψ− −= − ,                          3.7 

where fixed 10 >a and 00 >b . Although equation (3.7) is called a discrete wavelet, it is a 

piecewise continuous function normally. Consequently, the effect of discretizing the 

wavelet is sampling of the time-frequency plane at discrete intervals. Commonly, choices 

for discrete wavelet parameters 0a and 0b are 2 and 1 respectively. This type of scaling 

in the dilation and translation steps is known as the dyadic grid arrangement. The dyadic 

grid is perhaps the simplest and most efficient discretization for practical purposes and 

lends itself to the construction of an orthonormal wavelet basis. Substituting 20 =a  and 

10 =b  into equation (3.7), we see that the dyadic grid wavelet can be written as 

                                              / 2( ) 2 (2 ),
j jt t nj nψ ψ− −= − .                                           3.8 

Now the wavelet transformation using discrete wavelets is given by 
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                                / 2( , ) ( ) ( ) ,0 0 0
j jW j n a f t a t nb dtf ψ− −= −�  where (j,n)∈ Z�             3.9 

Equation (3.9) implies that the transformation of a continuous signal using the discrete 

wavelets results in a series of wavelet coefficients. Generally, the transform that uses the 

dyadic values of a and b as in equation (3.9) was called the discrete wavelet transform.  

 

3.2 Multiresolution approximations of closed subspaces 

            The multiresolution analysis (MRA) is an approximation of functions in a 

sequence of nested linear vector spaces. In addition to the nesting property, the vector 

spaces need to satisfy certain other properties [97-99]. The properties of the MRA are as 

follows:  

(1) an MRA consists of the nested linear vector spaces 

      ..... .........1 0 1⊂ ⊂ ⊂ ⊂−� � � .; 

(2) the union of these subspaces is dense in the space of square integrable functions 

( )2L R ; 

(3) the intersection of these subspaces is a singleton set containing the all-zero 

function or zero vector; 

(4) ( ) (2 ) 0
jf t f tj∈ ↔ ∈� �  ; 

(5) ( ) ( )0 0f t f t n∈ → − ∈� � for all n∈ Z, and 

(6) there exists a function (called a scaling function) ( )tφ  such that 

( ) ( )0, t t nnφ φ= − constitutes an orthonormal basis for 0� . 
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The beauty of the multiresolution approach is that whenever a ladder of spaces 

m� satisfies the six properties above, then there exists ( )tψ  so that 

, , ,f f fj -1 j j n j nn Z
ψ ψ= + �

∈
V V holds, where jV is the orthogonal projection to j� . 

Therefore, ( )tψ and ( )tφ are complements in the MRA.     

            The multiresolution analysis (MRA) of ( )2L R is defined as a sequence of closed 

subspaces j� of ( )2L R  with the properties presented above. The space j� can be viewed 

as the set of all possible approximations of functions at the resolution 2 j− . MRA is then 

obtained by computing the approximation of signals at various resolutions with 

orthogonal projections onto different spaces{ }j j ∈ Z� . In order to calculate the 

approximation, the orthogonal basis of each space j� is generated by dilating and 

translating a single function φ  called scaling function,                                              

/ 2( ) 2 (2 ),
j jt t nj nφ φ− −= − , n ∈ Z . If we denote jV is the orthogonal projection 

operator onto j� , then ( )2Ljj
=

∈
� R

Z
� (property 2) ensures that 

lim f fj j =→ −∞ V for all ( )2f L∈ R . Moreover, { }jj
=

∈
0� �

Z
 (property 3) implies 

that if the resolution 2 j− goes to zero, all details of f will be lost, i.e., lim fjj → +∞
V =0. 

Additional requirement needed in MRA is that all the spaces are scaled versions of the 

central space 0� , stated as 
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                                                    (2 ) 0
jf fj∈ ⇔ ∗ ∈� � ,                                         3.10 

and in which { ; }0, nnφ ∈ Z is orthonormal basis in 0� .  Moreover, another feature that we 

require from MRA analysis is invariance of 0�  under integer translation, i.e., 

                                                  ( )0 0f f n∈ 	 ∗ − ∈� � for all n ∈ Z .                            3.11 

The conditions 0 1φ ∈ ⊂ −� � , and 1, nφ− is an orthonormal basis in 1−�  imply 

1,gn nn
φ φ= � − and it can be written as  

                                                     ( ) 2 (2 )t g t nnn
φ φ= −�                                              3.12 

or 

                                                    (2 ) ( ) ( )Gω ω ωΦ = Φ ,                                           3.13 

where G is a 2π periodic function defined by  

                                                 
1

( ) ( )
2

jnG g n e
n

ωω
∞ −= �

= −∞
                                     3.14 

and ( )ωΦ is the Fourier transformation of ( ).tφ  With the Poison's summation formula 

[100], we can express the orthogonality of the family (( ( ))t n nφ − ∈ Z as  

                                                    2( 2 ) 1n
n

ω π
∞

Φ + =�
= −∞

.                                    3.15 

Since (2 ) ( ) ( )Gω ω ωΦ = Φ , the summation can be rewritten as 
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                                              2 2( ) ( ) 1.G n n
n

ω π ω π
∞

+ Φ + =�
= −∞

                         3.16  

The function ( )G ω is 2π -periodic. We regroup the terms for 2n ∈ Z and 2 1n ∈ +Z  and 

inserting into equation (3.14) yields 

                                                        2 2( ) ( ) 1G Gω ω π+ + = .                                       3.17 

Moreover, it can be proved that (0) 1G = , yielding (0) 1Φ = [63]. Now, we can see that 

( )G ω is a low pass filter with the conditions (0) 1G = , 2 2( ) ( ) 1G Gω ω π+ + =  and 

( ) 0G ω ≠  on[ ]/ 2, / 2π π− . 

 

3.3 Orthogonal wavelet functions and detail spaces 

            By considering a space j� to be the orthogonal complement of j� in 1j −� , we 

can construct wavelets from MRA. The space j� satisfies 

                                                             1j j j= ⊕−� � � ,                                               3.18  

where the symbol ⊕  stands for direct sum. Because 1j j⊂ −� � , the orthogonal 

projection of f on 1j −� can be decomposed as  

                                                            1 f f fj j j= +−V V W ,                                       3.19 

where jW denotes the orthogonal projection operator onto j� . The space j�  contains 

the “detail” information of f that is needed to go from a coarser approximation at 

resolution 2 j−  to a finer approximation at resolution 12 j− − . 
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Since ( )1 1j j j⊂ ⊥− −� � � , it follows that j� is also orthogonal to 1j −� . It is 

therefore immediate that all the subspaces j� are mutually orthogonal unlike the 

subspaces j� . Consequently, it implies that we can decompose 

                                                                  ( )2L jj
= ⊕�R .                                       3.20 

Similar to the definition of scaling function φ , if a collection of closed subspaces 

satisfies the properties presented in section 3.2, there exist a wavelet function ψ  such that 

{ ( )}t n nψ − ∈ Z is an orthonormal basis of 0� . For all scales, the entire collection 

/ 2{ } , ( ) 2 (2 ), ( , ) ,
j jt t nj n j n j nψ ψ ψ− −= −∈ Z is then an orthonormal basis of ( )2L R . 

Since 0, 0 1nψ ∈ ⊂ −� � , a sequence [ ] ( )2h n l∈ Z  ( ( )2l Z  is the space of square-

summable sequences) exists such that 

                                                     ( ) 2 [ ] (2 ).t h n t n
n

ψ φ= −�                                     3.21 

The Fourier transform of equation (3.21) is given by 

                                                     (2 ) ( ) ( ),Hω ω ωΨ = Φ                                            3.22 

where ( )H ω  is a periodic function, i.e., 

                                               
1

( ) [ ]
2

jnH h n e
n

ωω
∞ −= �

= −∞
.                                       3.23                                    

 If the sequence h[n] and g[n] are conjugate mirror filters, the sequence [ ]h n  can be 

directly obtained from [ ]g n using the relation 

                                                       ( 1) 1
lh gl L l= − − −                                                   3.24                                      
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where { , : 0,....., 1}g h l Ll l = − is the nonzero impulse responses of the scaling filters G and 

H, and L is the length of the filter. The sufficient conditions for an orthogonal MRA and 

for an orthogonal wavelet, i.e., ( ), ( ) 0t t nψ φ − = and ( ), ( )t t n nψ ψ δ− = , are equivalent 

to                                         

                                                 ( 2 ) ( 2 ) 0,n n
n Z

ω π ω πΨ + Φ + =�
∈

                                3.25 

and 

                                                             2( 2 ) 1,n
n Z

ω πΨ + =�
∈

                              3.26 

respectively. From these conditions, the necessary and sufficient condition on ( )H ω for 

designing an orthogonal wavelet is given as 

                                                       
2 2

( ) ( ) 1H Hω ω π+ + = .                                        3.27 

Then, according to equation (3.18), the Fourier transform of any function f can be 

decomposed as 

                                  ( ) ( ) ( ) ( ) (2 ) ( ) (2 ),F A B Cω ω ω ω ω ω ω= Φ = Φ + Ψ                3.28 

where ( )A ω  is a 2π -periodic and a member of ([0, ])2L π and ( )B ω , and ( )C ω are both 

π − periodic and members of ([0, ])2L π . By inserting equation (3.13) and equation (3.22) 

into equation (3.28), it follows that 

                                                  ( ) ( ) ( ) ( ) ( )F B G C Hω ω ω ω ω= + .                            3.29 

The orthogonality of the decomposition is equivalent to  

                                        
2 2 2 2( ) ( ) ( )
0 0 0

A d B d C d
π π π

ω ω ω ω ω ω= +� � � .                       3.30  
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It is satisfied for any ( )A ω  if and only if 

                                                 
2 2

( ) ( ) 1

( ) ( ) ( ) ( ) 0.

H G

H G H G

ω ω
ω ω ω π ω π


 + =�
�

+ + + =�
                  3.31 

Equation (3.31) is also another necessary and sufficient conditions on ( )H ω to 

build ( )tψ and imply that, if the scaling filter resembles a low-pass filter, the wavelet filter 

should resemble a high-pass filter.  

 

3.4 Practical implementations of discrete wavelet transform and multiresolution 

analysis   

            In discrete wavelet transformation (DWT), a signal ( )f n , discrete time sampled 

signal where 0,.., ,n N=  passes through two complementary filters, low-pass filter g and 

high-pass filter h, and is split into an approximation signal 1V and a detail signal 

1W (Figure 3.1) [93]. The approximation is the high-scale, low-frequency component and 

the detail is the low-scale, high-frequency component of the signal. The approximation 

signal is then split into a second level approximation signal 2V and a detail signal 2W . 

This decomposition is continued up to the desired maximum decomposition level J.  

            In wavelet multiresolution analysis, the signal can be reconstructed from the 

approximation and the detail signals. This is the extraction of a signal component in a 

certain frequency range [93]. The Jth detail JD is obtained by taking the inverse 

transformation of ,......, ,1 1J J−0 0 W and J0 . It is computed by successively applying the 
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inverse transformation for , 1,.....,1J J − starting with JW  and J0 in the inversion process. 

At the end of the J iterations, the desired JD  signal is obtained (Figure 3.2(a)). 

                                            

                                     Figure 3.1. Discrete wavelet transform.  

 

          Similarly, the approximation signal JS can be obtained by applying the inverse 

transformation to , ,......, , and1 2 J J0 0 0 V  (Figure 3.2(b)). In this way, only the desired 

frequency band of the original signal is reconstructed and the other frequency 

components are rejected. 

            After exploring the DWT decomposition and reconstruction process, we still need 

to understand the nature of the frequency bandwidth of decomposed and reconstructed 

signals. Table 3.1 shows the frequency bandwidths of decomposed and reconstructed 

( )f n  

1V  1W  

2V  2W  

JW  JV  

�2 �2 

�2 �2 

�2 = down sampled by 2 

�2 �2 
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signals at different levels of decomposition. The relation between scales and decomposed 

levels are also presented in Table 3.1.  

 

              

           Figure 3.2. Wavelet reconstruction (a) detail signal (b) approximation signal. 

 

3.5 Discrete dyadic wavelet decomposition  

          There are two types of decomposition in wavelet transformation, decimated and 

undecimated. In the first type of decomposition, the decomposed coefficients are down 

sampled for each level of decomposition. Therefore, the number of coefficients becomes 

fewer and fewer as the decomposed level is increased. The approximation signal and 

detail signals for required frequency bands are reconstructed from these coefficients. 

        
 
 

JS  

1
''V  10  

J -1
''V  20  

J0  JV  

�2 �2 

�2 �2 

�2 �2 

�2 = up sampled by 2 

JD  

1
'V  10  

J -1
'V  20  

JW  J0  

�2 �2 

�2 �2 

�2 �2 

�2 = up sampled by 2 
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Table 3.1 The frequency bandwidths of decomposed and reconstructed signals at 
different scales of decomposition (an example of decomposition of a signal with 256 Hz 
sampling rate for J=7 (scale 8) is shown, where only Nyquist-frequency, 0~128Hz, is 
necessary to include in decomposition [97]) 
 

High frequency components Low frequency components Decomposed 
level 
(j) 

Scale Decomp- 
osed 

signal 

Reconst- 
ructed 
signal 

Frequency 
 bandwith 

Decomp- 
osed 

 signal 

Reconst- 
ructed 
signal 

Frequency 
 bandwith 

1 1 1
W  

1
D  1/ 4 1/ 2f≤ ≤  

(64~128Hz) 
   

2 2 2
W  

2
D  1/ 8 1/ 4f≤ ≤  

(32~64Hz) 1
V  

1
S  0 1/ 4f≤ ≤  

(0~64Hz) 

3 3 3
W  

3
D  1/16 1/8f≤ ≤  

(16~32Hz) 2
V  

2
S  0 1/ 8f≤ ≤  

(0~32Hz) 
. 
. 
. 

 
. 
. 
. 

. 

. 

. 

. 

. 

. 
3

V  
3

S  0 1/16f≤ ≤  

(0~16Hz) 

J J J
W  

J
D  

11/ 2 1/ 2J Jf+ ≤ ≤
(1~2Hz) for J=7 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 J+1    J
V  

J
S  

10 1/ 2Jf +≤ ≤  

(0~1Hz) 
 

          In undecimated decomposition (discrete dyadic wavelet decomposition), the 

coefficients are not down sampled at each level of decomposition. However, the filter is 

up sampled as the decomposed level is increased (Figure 3.3). The number of coefficients 

in each decomposed level is the same as that of the original discrete signal for all levels 

of decomposition. Undecimated wavelet decomposition is mostly used in computer 

vision in order to detect the contours of small structures as well as the boundaries of 

larger objects [94].    
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Figure 3.3. Discrete dyadic wavelet decomposition. 

 
 

3.6 Discussion on application of wavelet analysis 

             This section will highlight on the advantages of different analysis methods—

DWT, MRA and discrete dyadic wavelet decomposition—in different applications, 

choice of maximum decomposed level (J) and choice of filter types in wavelet 

decomposition. 

            Detail and approximation coefficients after applying DWT with J=4 maximum 

decomposition level to an acceleration signal sampled at 256 Hz sampling rate are shown 

in Figure 3.4, where only Nyquist-frequency, 0~128Hz, is necessary to include in 

decomposition [97]. W and V are decomposed coefficients of different frequency 

bandwidth and numbers of coefficients (samples) are down sampled by 2 in each 

decomposed level as discussed in section 3.4.  Even though the numbers of samples of 

the approximation signal 4V are much lower than those of the original signal, it still 

carries the pattern of the original signal. Actually, the transformation of a signal to a 

H j  

G j  

jV  

1j +V  

1j +W  

2↑  

2↑  

H j  

G j  1G j +  

1H j +  

At j=0, 0V =f(n).  
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shorter length of signal carrying important information of the original signal is called 

feature extraction in pattern classification. Therefore, DWT is very useful in some pattern 

classification applications and used in sit-stand/stand-sit transition pattern classification. 

          As discussed in section 3.4, multiresolution analysis (MRA) uses the DWT to 

decompose a signal in a cascade from the low-scale components (high-frequency 

components) to the high-scale components (low-frequency components). The main 

advantage of MRA is that the original signal can be decomposed to get a signal 

component of the required frequency bandwidth with no significant phase shift [97,101], 

so that the locations of the events are not shifted significantly after decomposition (Figure 

3.5). Using FIR (finite impulse response) digital filter can result in liner phase shift, but it 

reduces the data processing speed in real-time processing as this type of filtration requires  

 

                    Figure 3.4. Detail and approximation signals of DWT decomposition.     
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large number of coefficients to closely imitate the frequency response of MRA. 

Moreover, filtering the input signal forward and reverse directions in achieving zero-

phase distorted filtered response causes processing speed to be worse. Therefore, MRA is 

very useful in extraction of a signal component of the required frequency bandwidth from 

one signal with minimum phase shift (Figure 3.5) and is used in lie-sit/sit-lie and sit-

stand/stand-sit transition segments extraction.    

           It is presented in our earlier section (section 3.5) that there are two types of 

wavelet decomposition, decimated (DWT) and undecimated (discrete dyadic wavelet  

decomposition).  In  decimated  decomposition,  the  numbers  of  coefficients  are down  

                  

            Figure 3.5. Original signal and its extracted signal component using MRA. 
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sampled, but it is not performed in undecimated decomposition. Therefore, the numbers 

of coefficients in each decomposed level are equal in undecimated decomposition. The 

main applications of undecimated wavelet decomposition are denoising and edge 

detection in image processing [95,102,103]. Rationale is that if wavelet coefficients 

across decomposed levels are generated from the signal, the coefficients are highly 

correlated across the decomposed levels (j). Otherwise, the amplitudes of coefficients 

will die out swiftly across the levels if they are produced from noise. The direct spatial 

correlation or direct multiplication of wavelet coefficients over adjacent levels sharpens 

and enhances major signal while suppressing noise. Therefore, direct correlation or direct 

multiplication of adjacent low frequency (high scale) levels similar to the first step in 

Table 4.3 of Chapter 4 is required to suppress noise [103]. Decimated wavelet 

decomposition is not appropriate in multiplication as the numbers of coefficients are not 

equal across decomposed levels. The equal length of coefficients across decomposed 

levels is one of the advantages of undecimated wavelet decomposition in denoising 

application. Since level walking, ascending stairs and descending stairs segments 

separation is based on the denoising method, discrete dyadic wavelet decomposition is 

useful in segments separation algorithm. 

            Relations between the frequency bandwidth and wavelet analysis (DWT or MRA) 

is shown in Table 3.1 and an example of decomposition of a signal at 256 Hz sampling 

rate for J=7 (scale 8) is included in the table. In MRA, choice of maximum 

decomposition level (J) can only be conducted empirically by observing that which level 

can carry important information more of a given signal for a designated application. For 

example, in figure 3.5, maximum decomposition level, J=7, is appropriate to get a signal 
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in which amplitude of unwanted signal in 4 seconds to 10 seconds interval of the original 

signal are reduced while still preserving the patterns of required events in 2 seconds to 4 

seconds interval and 10 seconds to 12 seconds interval. In choosing filter for MRA, filter 

length and phase shift at the filtered signal are considered for our application. If longer 

filter length is used, processing time will be long in real-time application. If shorter filter 

length is used, filtered signal is not smooth enough. The choice of filter types, 

Daubechies, Coiflet, Symlet, etc. is not critical in our application and hence, the filter 

with minimum phase shift at the filtered signal can be used (Figure 3.5). Therefore, 

“Daubechies order 5” mother wavelet with 10 filter coefficients was chosen considering 

these two factors for our application. However, in discrete dyadic wavelet decomposition, 

nonorthogonal wavelets, first introduced by Mallet et al., were used. Nonorthogonal 

wavelets, linearly dependent and redundant frames opposed to orthogonal wavelets, e.g., 

Daubechies wavelets, are well suited for applications where correlations between 

decomposed levels, one of the steps applied in motion activities separation in Chapter 4, 

are used [94]. The points presented above are important concepts of wavelet analysis 

methods and applied in subsequent chapters.    
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Chapter 4 

Wavelet analysis for Activities of Daily Living 
(ADL) detection 

 

   
            This chapter will focus on the wavelet analysis of activity classification. The 

activities included in our detection process are ADL such as level walking, ascending and 

descending stairs, and posture transition activities such as stand-sit, sit-stand, sit-lie and 

lie-sit transition activities as these are the common ADL among the elderly [19,42]. This 

chapter is organized as starting with the experimental setup used in ADL detection, 

followed by the validation of accelerometer data used in the experiment. Finally, 

detection of ADL in time-frequency domain (wavelet analysis) is presented.  

                                 

4.1 Development of wearable Micro-Electro-Mechanical system (MEMSWear)   

             MEMSWear, as we call it, involves the attachment of MEMS sensors to a 

garment that is worn by a person to monitor his/her movements, and to detect fall 

incidents. MEMSWear was developed in view of the need for comfort in long term use 

(Figure 4.1). In our experiment, MEMSWear was fitted with MMA1220D (Motorola, 

±8g, 250 mV/g) low g micromachined out-of-plane accelerometer and two ADXL105 

(Analog Devices, ±5g, 250 mV/g) accelerometers at the shoulder position. For 

accelerometers, sensitivity (mV/g) and measurement range (±g) are inversely 

proportional. Therefore, we compromised between these two factors as measurement 

range can cover all types of activities including falls and sensitivity is also high enough to 

measure ADL, so that the system can measure falls and ADL without loss of any 
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information. In previous applications, Najafi et al. [19] used the accelerometer with 

specifications ±2g and 300 mV/g for ADL detection and Mathie et al. [42] used the 

sensor with ±10g measurement range for fall detection. Therefore, the specifications of 

our sensors chosen are between those of these two previous applications. Shoulder 

position is chosen under three considerations. Firstly, the sensor on the body will be least 

interfered by the subject's activities. Secondly, the sensor will cause minimal discomfort 

to the subject and finally, the sensor will not injure the wearer during the severe incidents 

such as falls. 

 

                               

               Accelerometers are arranged to measure three directional movements, lateral, 

vertical and antero-posterior, of the body. BluetoothTM facilitated wireless 

communications from the vest to a NotebookTM was used for signal transmission. The 

 

Sensors 

Receiver 
Transmitter is inside the 
pocket 

Figure 4.1. Experimental setup. 
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transmitter (90mm x 50mm x 20mm) and the DC power supply were placed inside the 

pocket of the vest (MEMSWear). The receiver was connected to the serial port of a 

NotebookTM and accelerometer data were captured with 256Hz sampling rate. In our 

prototype, ten-meter data transmission range BluetoothTM chips were used for less power 

consumption. The experimental setup is shown in Figure 4.1.  

 

4.2 Validation of acceleration signals using motion analysis system (ViconTM ) 

            In motion analysis, the ViconTM system is being used as the 'gold standard' to 

validate systems/models developed using the other movement detection methods [19]. 

ViconTM system captures the positions of markers on the subject’s body with image 

capture rate of 50 Hz (Figure 4.2).   

 

 

 

 

 

 

 

 
 

 
 
 
                         (a)                                                                  (b) 
                        Figure 4.2. Front and rear views of markers on the subjects  
 

 

right shoulder position (RSHO)  

RSHO  
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                           Figure 4.3. Schematic Layout of the Laboratory (Top View)  
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Sensitivity axis of Accelerometer 

X axis of Vicon system 

Rigid Rod  Marker 
Accelerometer 

Direction of Movement 

         Then it gives the 3-D co-ordinates (X,Y,Z) of the marker throughout the motion 

(Figure 4.3). After which, the absolute velocity and acceleration are being computed as 

follows. 

                            Velocity = change in displacement (S)/change in time (T) 

                                                         = (S2 – S1) / (T2 – T1),                                              4.1 

and 

                             acceleration = change in velocity (V)/change in time(T) 

                                                 = (V2 – V1) / (T2 – T1),                                                     4.2 

where 1 refers to position 1 and 2 refers to position 2. The rate of change of 

displacement/velocity is calculated as displacement/velocity difference between position 

1 and position 2 divided by change in time. Change in time is simply the length of time it 

took to move from position 1 to position 2. The motivation of this work is to validate the 

accelerometer signals with a reference system (ViconTM system).   

 

 

 

 

 

Figure 4.4. Movement direction of the Rigid Rod and the axis of the ViconTM system 
(Top View)  
 
 
4.2.1 Experimental procedure for validation of accelerometers 

            Two different experiments were conducted to validate the accelerometer readings 

with ViconTM system readings. One experiment was done on a rigid rod and the other was 
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done on a human subject. The experimental setup using the ViconTM system is shown 

(Figure 4.3). The following sections describe the procedures for the two experiments. 

 

4.2.1.1 Experiment done on a rigid rod 

       With reference to Figure 4.3 and Figure 4.4, the procedure was:  

(1) The BluetoothTM receiver was placed at location 1 in the laboratory (Figure 4.3). 

(2) Then, one of the accelerometers on the vest together with a marker was attached to a 

rigid rod.  

(3) The rod was moved back and forth for a few times along the X axis of the ViconTM 

system (Figure 4.4). The acceleration of the marker along that axis was calculated using 

equation (4.1) and equation (4.2). Then, the sensor acceleration was validated with the 

acceleration of the marker as shown in Figure 4.5. 

          

Figure 4.5. Graph of Acceleration (m/s2) Vs Time (s) for the comparison done on a 
rigid rod.  
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            Then procedure was repeated for all the remaining accelerometers on the vest. 

The experimental results are shown in Figure 4.5. The observation showed that all 

accelerometer readings from the sensors on MEMSWear coincided with the ViconTM 

system readings. After the accelerometers have been validated by ViconTM without the 

involvement of subjects, the experiment has moved on to another phase whereby the 

human subject is used to perform the activities to check if the accelerations from the two 

systems agree. 

 

4.2.1.2 Experiment done on the human subject 

           A series of selected ADL were performed by one healthy male subject (aged 25, 

weight 60kg) in the ViconTM laboratory. A retro-reflective marker was placed near the 

accelerometers located on the shoulder of the subject (Figure 4.2). Movements in ADL 

are more significant in vertical and antero-posterior directions than in lateral direction, 

i.e., vertical and antero-posterior acceleration signals carry more important information of 

ADL movements than lateral acceleration does and hence, only these two acceleration 

signals are used in ADL detection. Therefore, the comparison was done only for the 

accelerometer signals in these two directions. The figures comparing accelerometer 

readings and ViconTM system readings for accelerometers and the marker at right 

shoulder position (RSHO) are shown in Figure 4.6. There are three major issues 

regarding the signal pattern inconsistency of readings from two systems (MEMSWear 

and ViconTM system). These are noises caused by differentiation in ViconTM system 

readings, the variation of DC component, i.e., acceleration-related gravity, in 



 65 

accelerometer readings (Appendix A) and the artifacts due to the movements of clothes 

during the activities (Figure 4.6(a)). 

                       
                                                                             (a) 
  

                      
                                                                             (b)  
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                                 (c)  
Figure 4.6. Comparison of accelerometer readings and ViconTM system readings for 
accelerometers and a marker at right shoulder position (a) level walking, (b) sit-
stand/stand-sit transition activities, and (c) sit-lie/lie-sit transition activities  
 
 
            The distinct noise spikes because of differentiation can be seen in Figure 4.6(c). 

The signal pattern inconsistency caused by DC component is because of the variation of 

sensor's DC component level due to the changes in orientation of the sensor. During 

posture transition, there is a tilt in the trunk. The tilt of the trunk will cause the DC 

component of the accelerometer reading to change from one value to another (Figure 

A.1). Therefore, the combination of DC and AC (acceleration along the sensitivity axis of 

the accelerometer- Appendix A) components make the accelerometer’s readings much 

larger than ViconTM ’s acceleration patterns (Figure 4.6(b) and Figure 4.6(c)). 

           With reference to Figure 4.6(a), there is a phase difference between the 

accelerometer and ViconTM system readings. The ViconTM system readings are faster than 
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the accelerometer readings. The cause of the time lagging in accelerometer readings 

might be the location of the BluetoothTM receiver. Since our validation was only for 

signal patterns between the two systems, we did not perform thorough investigation for 

time lagging. 

 

4.3 ADL detection in time-frequency domain 

             In this section, activity detection is separated into three different parts, namely, 

lie-sit/sit-lie transition detection, stand-sit/sit-stand transition detection, and human 

motion activities (level walking, ascending stairs and descending stairs) detection.  

 

4.3.1 Lie-sit/sit-lie transition detection 

          The lie-sit/sit-lie posture transition is detected by considering the orientation of the 

accelerometer with respect to the gravitational axis (Appendix A). In the lying posture, 

the vertical accelerometer measures almost 0 g, while in sitting and standing posture the 

accelerometer measures approximately 1 g. Therefore, detection of transition between 0 g 

and 1 g can be used to detect lie-sit/sit-lie transition. In detection, the DWT was applied 

to vertical acceleration signal with decomposition into level J=7 by “Daubechies order 5 

(db5)” mother wavelet [97]. The reconstructed vertical acceleration signal (<1Hz, 7S ) 

was applied to cancel additional peaks with different frequency components (Figure 4.7). 

A Daubechies mother wavelet (db5) was used in decomposition and reconstruction [97]. 

The corresponding low pass and high pass filters are finite impulse response (FIR) filters 

with lengths of ten. After reconstruction, sit-lie/lie-sit transitions were detected using a 

predefined  threshold  value  (0.8g) (Figure 4.7).  In Figure 4.8, the reconstructed vertical  
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Figure 4.7. Vertical acceleration signal and its reconstructed signal used in lie-sit/sit-lie  
transition detection. 
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Figure 4.8. Vertical acceleration signals and their reconstructed signals (<1Hz) for falls    
and ADL.  

acceleration signals of level walking, walking on stairs, fall, and sit/stand-stand-sit 

activities are within ±0.2 g range except the reconstructed signal with lie-sit/sit-lie 

transition. Therefore, threshold value 0.8g can be used in lie-sit/sit-lie transition 

detection.     

 

4.3.2 Sit-stand/stand-sit transitions detection 

            In this study, we conducted an investigation of the detection of stand-sit, and sit-

stand posture transition activities using two dimensional acceleration signals located in 

antero-posterior and vertical directions on the shoulder part of a garment. There are two 

steps in the detection process, extraction of the transition segment from the continuous 

acceleration signal and classification. In segment extraction using wavelet 
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decomposition/reconstruction algorithm, wavelet-reconstructed antero-posterior 

acceleration signal (the frequency band corresponds to less than 1Hz, 7S ) was used to 

detect the locations and start/end points of transition segments. Using these start/end 

points, the stand-sit/sit-stand transition segments from the vertical acceleration signal 

were extracted and used in classification. Stand-sit and sit-stand transition segments were 

classified using the features from time-frequency domain. 

Table 4.1 Type of activities performed by each subject  
Test number Type of activity 

 
Equipment used in the 
experiment 

1 sit-stand+ stand-sit+ sit-stand+ 
stand-sit+ sit-stand+ stand-sit 

Chair without armrest 
(height: 46cm) 

2 sit-stand+ level walk (about 2) + 
stand-sit 

Chair without armrest 
(height: 46cm) 

3 lying+ lie-sit + sit-stand+ level 
walk+ stand-sit+ sit-lie 

Bed(height:38cm) 
 

4 level walk + stairs up+ level walk 
+ stairs down+ level walk  

The stairway is half-turn stair, 
which changes its direction at a 
landing by 180 degree and 
consisted of 30 steps. The landing 
is at 15th step and there are 
fourteen steps between two 
landings. The slope of the flight 
is 30°. 

 

4.3.2.1 Subjects and experimental procedure  

            The experiments were performed on five male and four female subjects (age 

ranged between 25 and 46 years, height between 1.5m and 1.74m, and weight between 

48kg and 60kg). The experiment was carried out as shown in Table 4.1. The activities 

done in the experiment were assumed as the basic required ADL for the elderly 

[19,104,105]. Activities were executed without any proper instructions from the 

investigator. All subjects repeated their activities for test number 2 and test number 3. For 

each trial, the camera and the sensor data capture system in the NotebookTM were 

activated simultaneously by the investigator. All subjects signed a consent form that was 
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approved by the Tan Tock Seng Hospital Medical Research Ethics Committee. 

MEMSWear (Figure 4.1) was used in our experiment. During the experiment, the 

NotebookTM was always in the transmission range (10-meter) of the transmitter on the 

subject. Signals were digitized at 256-Hz sampling rate and recorded into a NotebookTM.    

 

4.3.2.2 Detection methodology  

Transition segments extraction from the continuous acceleration signals 

          Figure 4.9 shows the normalized antero-posterior and vertical acceleration signals 

for test number 3 (Table 4.1). There are two steps in segment extraction, detection of the 

location  of  transition segments (point P) and  detection of  start/end  points of transition  

      

                    Figure 4.9. Activities related to test number 3 shown in Table 4.1. 
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                  Figure 4.10. Antero-posterior and its reconstructed acceleration signal. 
 

segments (points S and E) (Figure 4.10). In order to detect the locations of transition 

segments, the DWT was applied to antero-posterior acceleration signal with 

decomposition into level J=7 by “Daubechies order 5 (db5)” mother wavelet [97]. The 

approximation signal corresponding to level J=7 was reconstructed in which the 

amplitudes of other signals (level walking in Figure 4.10) having higher frequency than 

the transition segments were reduced. The reconstructed approximation signal ( 7S ) 

corresponds to a frequency band less than 1 Hz.  In location detection, threshold value 

was defined as half of the global minimum (threshold value gth =global minimum/2). 
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The global minimum value ( gm ) should be less than or equal to -0.3g. All minimum 

points lower than the threshold level were considered as the locations of sit-stand and 

stand-sit transitions (Figure 4.10).   

           After tracing the locations of sit-stand/stand-sit transition segments, start and end 

points of transition segments were detected. There are two phases in sit-stand/stand-sit 

transitions, a leaning forward phase followed by a leaning backward phase (Figure 4.10) 

[105]. The transition segment was determined by an interval from the beginning of the 

leaning forward phase (point S) of the transition to the end of the leaning backward phase 

(point E) (Figure 4.10). These two points were detected using gradient thresholding 

approach. The intervals (between S and E) greater than 0.7sec were chosen as transition 

segments. The intervals of transition segments were found to be between 0.7 seconds and 

2 seconds, which is also consistent with previous researcher's statement [104]. Moreover, 

the transition segments were confirmed by rest states with 1-second time duration in 4-

second time interval before or after the posture transition point (P) or both (Figure 4.10 

and Figure 4.11). The rest state is the rest period during which the variance of the 

acceleration signal was less than a predefined value (<0.002g). Therefore, the segment of 

time duration between 0.7-2 seconds with 1-second long rest state before or after the 

segment was taken as a true transition segment. Using these start point (S) and end point 

(E), the segments related to transition activities from the vertical acceleration signal were 

extracted and used in classification. The reason why the signals from the vertical 

acceleration were used in the classification is that they have more significant feature 

compared to antero-posterior acceleration signal, i.e., a positive peak followed by a 
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negative peak in sit-stand transition activity and a negative peak followed by a positive 

peak in stand-sit transition activity. 

                
                                                                  (a) 

               
                                                                  (b) 
Figure 4.11. Vertical acceleration signals, antero-posterior acceleration signals and 
reconstructed antero-posterior acceleration signals for (a) test number 1 and (b) test 
number 2, test number are shown in Table 4.1. 
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Sit-stand and stand-sit classification using features from time-frequency domain 

            After extracting the transition segments from vertical acceleration signals, 

classification was implemented using DWT coefficients (the coefficients of V and W). In 

practice, the data sampling gives a finite number of samples: ( )f n , which is the starting 

point of decomposition. ( )f n  was decomposed as , , ,....,1 2 3 JW W W W and a coarse 

approximation of JV . In feature extraction, the extracted segment was decomposed to 

level J=3 by “Daubechies order 5 (db5)” mother wavelet [97] and coefficients were 

arranged as , , ,3 3 2 1V W W W . Level J=3 corresponds to the frequency band less than 16 Hz 

and that is the satisfactory frequency band in revealing the important feature, a positive 

peak followed by a negative peak for a sit-stand transition while the reverse occurs during 

a stand-sit transition, to be used in classification. The first fifty wavelet coefficients were 

used as features. In order to reduce the number of wavelet coefficients to be used as 

features representing each segment, every ten successive components were averaged. 

Therefore, the feature vector size was reduced to 50/10=5 components for every sit-stand 

or stand-sit transition signal.  

            

4.3.2.3 Results  

          The vertical acceleration signals, antero-posterior acceleration signals and 

reconstructed antero-posterior acceleration signals of test number 1 and test number 2 are 

presented in Figure 4.11. Figure 4.12 shows a set of extracted sit-stand/stand-sit transition 

segments from vertical acceleration signal. For the assurance of our threshold level, we 

checked the global minimum values of the reconstructed antero-posterior approximation 

signals  for  test  number 4 (Figure 4.13). The global minimum values of nine subjects for  
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              Figure 4.12. Extracted vertical acceleration signals for sit-stand and stand-sit           
              transition activities. 

       
                  Figure 4.13. Vertical, antero-posterior and reconstructed antero-posterior  
                  acceleration signals for test number 4. 
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test number 4 were -0.257, -0.20315, -0.2244, -0.1801, -0.2043, -0.2529, -0.186, -0.172, -

0.164. They are still above the value gm (-0.3g).  

           To estimate the performance of the segment extraction methods, absolute error, 

percentage error, sensitivity, and specificity were estimated as follows: 

•Absolute error = |time interval of an extracted segment –actual time interval of that 

segment |. 

•Percentage error = (absolute error/actual time interval of that segment)*100%. 

•Sensitivity = (true positives/(true positives + false negatives))*100%. 

•Specificity= (true negatives/(true negatives + false positives))* 100%. 

           The recorded video clips were observed using “VirtualDub 1.5.10” media player 

to get the actual time intervals of transition segments. The digit in the second decimal 

place is 3 in this player. The investigator noted the duration of each transition activity and 

actual time intervals of the activities were taken from the time when the subject's trunk 

was vertically straight during the initial phase of transition to the time when his/her trunk 

became vertically straight again after the transition. In sensitivity/specificity estimation, 

true positives were equal to the time intervals of transition activities that were correctly 

extracted and false negatives were equal to the intervals of remained unextracted portions 

of the activities. True negatives were equal to time intervals that were not transition 

activities and not extracted using the extraction method and false positive was equal to 

time intervals that were not transition activities and wrongly extracted by the extraction 

method. Start/end time of segments observed in the video clips and that of segments 

extracted by the method were compared in Table 4.2. Overall absolute error, percentage 

error, sensitivity  and specificity for 9 subjects were also presented (Table 4.2). Fifty-nine  
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Table 4.2 Error, sensitivity, specificity of separated segments and comparison of start/end 
time of segments observed in the video clips and extracted by the algorithm. 

                           Sit-stand transition activity                               Stand-sit transition activity 

Subject 
/ test 

number 
Video records Extraction 

algorithm 
Sensit- 
ivity 

Specif- 
icity Video records Extraction 

algorithm 
Sensit- 
ivity 

Specif- 
icity 

*T  

Start End Start End Start (%) Start End  
Seconds 

(%) (%) 
Seconds 

(%) (%) Seconds 

1/1 3.633 4.966 3.366 4.833 90.02 99.25 7.93 9.133 7.924 9.189 100 99.83 36.8 
 13.066 13.866 12.981 13.879 100 99.73 18.366 19.2 18.302 19.3 100 99.54 36.8 
 24.233 25.033 24.057 25.023 98.75 99.51 29.166 30.2 29.113 30.245 100 99.73 36.8 

1/2 1.867 2.9 1.95 3.049 91.97 97.38 4.7 5.6 4.584 5.528 92 98.00 6.634 
 1.433 2.3 1.413 2.796 100 91.12 4.033 5.033 4.111 5.404 92.2 93.55 6.675 

1/3 2.4 3.533 2.222 3.513 98.23 98.75 9.2 10.267 9.272 10.498 93.25 98.39 15.313 
 2.267 3.067 2.2 3.151 100 98.82 8.2 9 8.151 9.581 100 95.09 13.638 

2/1 5.833 7.2 5.785 7.26 100 99.73 11.033 12.566 10.916 12.638 100 99.52 41.2 
 17.233 18.3 17.113 18.457 100 99.31 23.966 25.266 23.943 25.543 100 99.25 41.2 
 29.4 30.4 29.272 30.46 100 99.53 35.5 36.6 35.404 36.649 100 99.64 41.2 

2/2 1.033 2.166 0.972 2.292 100 97.61 4.866 6.033 4.832 6.047 100 99.38 8.955 
 1.7 2.8 1.717 2.845 98.45 99.31 5.066 6.4 5.087 6.336 93.63 100.00 7.577 

2/3 2.2 3.333 2.132 3.317 98.59 99.49 8.5 9.633 8.433 9.766 100 98.49 14.411 
 1.866 3.033 1.845 3.072 100 99.50 8.1 9.133 8.034 9.185 100 99.02 13.068 

3/1 5.833 7.2 5.849 7.136 94.15 100.00 11.433 12.567 11.373 12.656 100 99.60 38.6 
 19.033 20.033 18.943 20.102 100 99.58 23.333 24.267 23.253 24.37 100 99.51 38.6 
 29.767 30.633 29.698 30.811 100 99.35 34.9 35.933 34.789 36.041 100 99.42 38.6 

3/2 1.233 2.233 1.192 2.234 100 99.48 5.5 6.467 5.517 6.77 98.24 96.27 9.072 
 1.633 2.7 1.543 2.668 97 98.94 6.2 7.167 6.075 7.389 100 95.94 9.521 

3/3 2.8 4.1 2.743 3.992 91.69 99.66 11.2 12.433 11.01 12.668 100 97.43 17.8 
 1.9 2.9 1.935 3.075 96.5 98.87 10.133 11.067 10.07 11.362 100 97.69 16.411 

4/1 3.333 4.267 3.411 4.351 91.65 99.83 7.367 8.567 7.46 8.506 87.17 100.00 51.36 
 13.867 15.1 14.177 15.275 74.86 99.65 19.467 20.6 19.608 20.751 87.56 99.70 51.36 
 25.9 26.867 26.132 27.06 76 99.62 31.167 32.333 31.302 32.479 88.42 99.71 51.36 

4/2 1.1 2.3 1.045 2.351 100 99.41 4.267 5.367 4.23 5.464 100 99.25 19.03 
 1.6 2.933 1.694 3.015 92.95 98.96 5.3 6.7 5.419 6.789 91.5 98.87 9.147 

4/3 2.3 3.367 2.283 3.487 100 99.21 8.367 9.3 8.2 9.436 100 98.27 18.464 
 1.8 2.7 1.819 2.955 97.89 98.06 7.667 8.567 7.479 8.763 100 97.07 13.996 

5/1 0.2 1.333 0 0 0 100.00 1.366 2.966 0 0 0 100.00 15.23 
 3.1 4.566 0 0 0 100.00 4.666 6.166 0 0 0 100.00 15.23 
 6.266 7.733 0 0 0 100.00 7.933 9.267 7.83 9.275 100 99.94 15.23 

5/2 1.367 2.3 1.2 2.343 100 96.89 4.807 5.733 4.808 5.89 99.89 97.68 7.694 
 1.215 2.115 1.115 2.19 100 97.25 4.482 5.415 4.386 5.56 100 96.19 7.26 

5/3 1.567 2.4 1.491 2.558 100 98.34 9.233 10.267 9.313 10.433 92.26 98.81 14.936 
 1.533 2.433 1.543 2.57 98.89 98.94 8.533 9.6 8.502 10.033 100 96.36 13.823 

6/1 2.667 3.633 2.709 3.677 95.65 99.77 3.667 5 0 0 0 100.00 20.33 
 5.067 6.267 5.026 6.517 100 98.48 8.733 9.9 8.826 10.208 92.03 98.40 20.33 
 10.033 11.133 0 0 0 100 11.2 12.267 11.309 12.434 89.78 99.14 20.33 

6/2 1.467 2.4 1.313 2.453 100 97.82 5.1 6.333 5.181 6.366 93.43 99.64 10.43 
 1.167 2.467 1.11 2.546 100 99.18 5.4 6.733 5.483 6.71 92.05 100.00 17.89 

6/3 1.8 2.933 1.709 3.083 100 98.35 9.6 10.933 9.713 11.313 91.52 97.38 15.709 
 1.743 3.1 1.683 3.238 100 98.77 9.933 11.1 9.77 11.177 100 98.53 17.479 

7/1 4.621 5.633 4.634 5.653 98.71 99.96 9.233 10.366 9.279 10.317 91.62 100.00 47.25 
 15.133 16.133 15 16.287 100 99.38 19.766 21.1 19.785 21.174 98.58 99.84 47.25 
 26.1 26.933 26.026 26.906 96.76 99.84 34.8 35.833 34.728 35.838 100 99.83 47.25 

7/2 1.467 2.2 1.509 2.23 94.27 99.52 4.067 4.9 3.962 5.015 100 96.42 6.974 
 1.866 3.066 1.945 3.172 93.42 98.44 5.266 6.366 5.247 6.409 100 99.09 7.902 

7/3 2.1 3 2.124 3.102 97.33 99.14 8.033 8.9 7.966 9.11 100 97.67 12.77 
 2.033 2.966 2.072 2.981 94.3 99.88 7.8 9.166 7.819 9.132 96.12 100.00 13.332 

8/1 2.833 4.166 2.819 4.189 100 99.93 7.633 9.066 7.59 9.092 100 99.86 51.45 
 14.966 16.033 14.977 16.019 97.66 100.00 20.366 21.4 20.328 21.46 100 99.81 51.45 
 24.8 25.633 24.755 25.641 100 99.90 31.9 32.866 31.902 32.913 99.79 99.91 51.45 

8/2 1.533 2.367 1.438 2.468 100 97.65 6.1 7 6.041 7.155 100 100.00 9.181 
 1.567 2.767 1.581 2.732 95.92 100.00 5.567 6.7 5.34 6.875 100 95.21 9.525 

8/3 2.3 3.6 2.253 3.721 100 98.91 10.367 11.4 10.468 11.838 90.22 97.23 16.717 
 2.267 3.2 2.09 3.309 100 97.84 8.2 9.167 8.071 9.277 100 98.19 14.147 
    9/1 1.767 2.833 1.683 2.875 100 99.64 5.03 6.067 5.32 6.381 72.03 99.12 36.55 
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                           Sit-stand transition activity                               Stand-sit transition activity 

Subject 
/ test 

number 
Video records Extraction 

algorithm 
Sensit- 
ivity 

Specif- 
icity Video records Extraction 

algorithm 
Sensit- 
ivity 

Specif- 
icity 

*T  

 Start End Start End (%) (%) Start (%) Start End (%) (%) Seconds 
 19.9 20.7 19.973 21.015 90.87 99.12 23.467 24.433 23.778 24.769 67.81 99.06 36.55 
    9/2 1.267 2.2 1.211 2.238 100 98.63 4.767 5.6 4.774 5.709 99.16 98.44 7.804 
 1.5 2.7 1.491 2.887 100 98.62 5.5 6.833 5.577 6.973 94.22 99.01 15.39 
    9/3 1.967 2.8 1.875 2.928 100 98.44 9.467 10.5 9.392 10.852 100 96.92 14.902 
 2.6 3.567 2.566 3.668 100 99.19 9.833 10.867 9.842 11.211 98.84 97.94 17.725 

Aavera
ge  

 
90.852 

 

 
98.98 

 
 

 
91.367 

 

 
98.55 

 
 

Absolute error (Sec) 0.21 Absolute error (Sec) 0.26 
Percentage error (%) 19.16 Percentage error (%) 22.99 

*T =total time interval of each test number 

 

out of 63 sit-stand transition segments and 60 out of 63 stand-sit transition segments were 

extracted successfully.  

                 Fifty-nine segments of sit-stand activities and 60 segments of stand-sit 

activities from 9 subjects were classified (Figure 4.14). These are the segments 

successfully extracted by the extraction procedure (Table 4.2). The classification rate 

(segments that are extracted and classified correctly/total number of segments) of sit-

stand and stand-sit activities are 93.65% and 95.24% respectively. In classification, 

Euclidean distance between a vector to be identified and the standard data set was used. 

Euclidean distance is computed according to the following equation. 

                          Euclidean distance = ( 2( )
1

n
u xk ikk

−�
=

)                                           4.3 

    where     u= sit-stand or stand-sit transition segment from one subject is taken as a  

                        standard data set, 

                   n= total number of components in a vector (n=5) and  

                    i= index of vectors to be identified (i=1,…,59 for sit-stand and 1,…,60    

                         stand-sit transition activities). 



 80 

             
 
            Figure 4.14. Feature vectors used in sit-stand and stand-sit transition activity   
            classification. 

 

4.3.2.4 Discussion   

         We detected sit-stand/stand-sit transition activities using features from time-                              

frequency domain. In time domain, the significant features of these transition activities in 

vertical acceleration signal are a positive peak followed by a negative peak for sit-stand 

transition activity and a negative peak followed by a positive peak for stand-sit transition 

activity. The comparison of the peak values allows identification between the two 

activities. However, additional peaks, unrelated to the transition activities, can be present 

in the acceleration signal and can cause error in decision process. 

          Seven types of ADL, level walking, ascending stairs, descending stairs, sit-

stand/stand-sit transitions, lie-sit/sit-lie transition were done in the experiment and these 

are common daily activities for the elderlys' daily living practices [19,104,105]. In 
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rejecting the activities those are not desired transition activities, four factors were used, 

namely global minimum value ( gm ), threshold level, data length (0.7-2seconds) and rest 

state. We assume that if the extracted segment is true transition activities, there should be 

a rest state before or after, or both. When the data from all 9 subjects was analyzed, the 

data for test number 2 and test number 3 is in line with our assumption. However, for test 

number 1, subjects 5 and 6 did sit-stand and stand-sit transitions closely and rest states 

were not found (Figure 4.15).  Nevertheless, we still keep our assumption since we 

assume that this situation in which 5 transitions are close to each other will be rarely seen 

in common daily activities, especially among the elderly. This assumption is also 

consistent with previous researchers' reports [19,104]. Bolded numbers in Table 4.2 

indicates the segments that were not extracted by the extraction procedure. 

       

 

       Figure 4.15. Antero-posterior acceleration signal and its reconstructed signal for test      
       number 1. 
      
          We attempted to design digital filters that imitated the frequency response obtained 

by using wavelet reconstruction method in transition segment extraction. Using digital 
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filter reduces the data processing speed as these filters require large number of 

coefficients to closely imitate the frequency response (0-1Hz) of wavelet reconstruction 

method. Moreover, filtering the input data forward and reverse directions in achieving 

zero-phase distorted filtered response causes processing speed to be worse. Therefore, we 

chose wavelet reconstruction method in extracting low frequency component (0-1Hz) of 

the antero-posterior acceleration signal in segment extraction process.  

          Investigations using a similar detection approach, i.e., locating the sensors on the 

trunk, were published by Mathie et al., 2004 [104] and Najafi et al., 2002 [105]. Najafi et 

al. measured sit-stand/stand-sit transitions using a gyroscope, parallel to the sagittal plane 

and an accelerometer, vertical to trunk. The sensors are located on the sternum. The 

attachment is directly pasted onto the skin, seemed using a sticky material in the figure 

and no detail expression is provided on how it is attached. Even though this is a simple 

kinematic sensor, it is protruding out of the body and may cause injury when the subject 

faces severe incident such as fall. The way of attaching the sensor onto the body may not 

be appropriate for long term application. Furthermore, the gyroscope, measuring the 

sagittal plane information, is difficult to be located onto the garment as not to be 

interfered by arm movements and not to protrude out of the body significantly. If the 

sensor is embedded on the garment under arm position for the purpose of avoiding 

protruding out of the body, motion artifact because of the arm movement is a concern in 

sensor performance. Therefore, applying one of 3-axis accelerometer’s outputs, instead of 

using additional sensor for the same performance, in transition segment extraction is a 

great advantage in activity detection as using only single 3-axis accelerometer can detect 

broad range of daily activities such as level walking, ascending stairs, descending stairs, 
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lying to sitting transition, sitting to lying transition, sitting to standing transition and 

standing to sitting transition and severe incidents such as falls [106-108]. In 

classification, their approach was using the vertical displacement calculated from double 

integrating the vertical acceleration signal and it resulted in about 90% accuracy in 

classification for both sit-stand and stand-sit transitions. The important limitation of the 

above method is the integration error due to dc component present in the acceleration 

signal and the requirement of initial conditions in integration. The initial conditions, 

initial trunk tilt angle and initial trunk velocity before the transition segment, are 

evaluated at the location where 1-sec period of antero-posterior acceleration signal is 

computed with variance around zero. Sometimes, the period is difficult to find in our 

experimental records, especially in activities such as performing walking and sitting 

continuously (Figure 4.10). Mathie et al. detected sit-stand/stand-sit transitions in two 

steps using a triaxial accelerometer located on the waist belt. First, the presence or 

absence of activities was determined by comparing the signal magnitude areas calculated 

from three low-pass and high-pass filtered acceleration signals with a preset threshold 

value. The comparison was done for each non-overlapping one second moving window. 

Secondly, the classification between sit-stand and stand-sit transitions was done by 

pattern matching. 93.5% sensitivity was achieved in sit-stand/stand-sit transition activity 

detection by using that approach. Even though the method can produce high classification 

rate, it may not be suitable for real-time detection because of its long processing steps. By 

way of comparison, our detection method, locating the sensor on the shoulder part of a 

garment, can make a comparable result in sit-stand/stand-sit transition detection. 

Therefore, our new wavelet-based approach is a remarkable innovation in wearable 
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activity detection system where garment is applied as a platform for the sake of comfort 

of the wearer. 

             In conclusion, we showed that a new wearable detection system by securing a 

miniature 3-axis accelerometer on a garment allows for non-intrusive monitoring of daily 

activities. We applied wavelet-based approach in detection and it gave the accuracy of 

93.65% and 95.24%, respectively.  

 

4.3.3 Human motion activities detection 

          Two dimensional, vertical and antero-posterior, acceleration signals were used in 

our detection process. Human motion patterns (level walking, ascending stairs and 

descending stairs) in continuous accelerometer records were classified in two steps. In the 

first step, direct spatial correlation of discrete dyadic wavelet coefficients was applied to 

separate the segments of human motion patterns in the continuous accelerometer records. 

In the second step, power of extracted coefficients of separated segments from the square 

of vertical acceleration signal (PcoefsY) and that of separated segments from antero-

posterior acceleration signal (PcoefsZ) were used in classification. Our results proved a 

reliable technique of measuring human motion patterns in ADL detection. 

 

4.3.3.1 Subjects and experimental procedure                                            

              MEMSWear was used in our experiment. During the experiment, the 

NotebookTM was always in the transmission range (10-meter) of the transmitter on the 

subject. Signals were digitized at 256-Hz sampling rate and recorded into a NotebookTM. 

The experiments were performed on 12 male and 10 female subjects (age ranged between 
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20 and 45 years, height between 1.67m and 1.94m, and weight between 45kg and 93kg). 

The subjects walked along a corridor, up a stair way and walked along another corridor, 

and then down the stairway, wearing their own shoes, with no instructions. The length of 

each corridor was 10m. The stairway is half-turn stair, which changes its direction at a 

landing by 180 degree and consisted of 30 steps. The landing is at 15th step and there are 

fourteen steps between two landings. The slope of the flight is 30°. All experiments were 

captured by a video camera. For each trial, the camera and the sensor data capture system 

in NotebookTM were activated simultaneously by the observer by switching the two 

systems on at the same time. All subjects signed a consent form that was approved by the 

Tan Tock Seng Hospital Medical Research Ethics Committee. 

 

4.3.3.2 Detection methodology  

Separation of human motion segments in continuous accelerometer record  

          The application of direct spatial correlation (direct multiplication) of the wavelet 

coefficients to separate the segments of human motion patterns is based on the spatially 

selective filtration technique for de-noising which uses the properties of the signal and 

noise modulus maxima of wavelet coefficients across scales [106,107]. The first step of 

the technique is decomposing the signal to be denoised into different frequency levels 

(from high frequency, smaller scale values, to low frequency, larger scale values) using 

discrete dyadic wavelet decomposition (Figure 4.16). As most noise power is confined to 

higher frequency levels (levels with smaller scales) and wavelet coefficients of noise are 

not well correlated across the decomposed levels, the direct spatial correlation or direct 

multiplication  of  wavelet  coefficients  over  adjacent  low frequency decomposed levels  
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Figure 4.16(a). The square of vertical acceleration signal is decomposed into six scales 
through the dyadic wavelet transform. (b) The antero-posterior acceleration signal is 
decomposed into eight scales through the dyadic wavelet transform. (Relations between 
scales and frequency bandwidth can be seen in Table 3.1) 
 

(b) 

(a) 



 87 

(levels with larger scales) sharpens and enhances major signal while suppressing noise. 

Therefore, in the spatial selective filtration technique, the signal is passed where the 

coefficients are highly correlated across scale and suppressed elsewhere [106] and this is 

the rationale that the technique can be used in the separation of the segments of human 

motion patterns in my application. In this decomposition, nonorthogonal wavelets, first 

introduced by Mallet et al.[94], were used because nonorthogonal wavelets are well 

suited for applications where correlations between decomposed levels are used [94,109].   

          In segment separation among level walking, ascending stairs and descending stairs 

in an accelerometer record, the filtration was applied to both vertical and antero-posterior 

acceleration signals. However, instead of using vertical acceleration signal directly, 

square of vertical acceleration signal was used to obtain larger amplitude difference 

between two successive segments. Vertical acceleration signal, square of vertical 

acceleration signal, antero-posterior acceleration signals and their discrete dyadic wavelet 

transform at multiple scales were presented in Figure 4.16.  

         The algorithm used in human motion patterns separation suppressed the low 

absolute amplitude portion such as level walking, around 0.1g in square of vertical 

acceleration signal, and enhanced the high absolute amplitude portion such as descending 

stairs portion, around 0.5g in square of vertical acceleration signal. This enhancement and 

suppression effect can be seen clearly after rescaling process (the power of the correlated 

data is rescaled to that of the decomposed signal with scale J+1) (Figure 4.17). That 

means that the descending stairs portion was treated as major signal because coefficients 

were well correlated across the decomposed levels, and level walking portion was treated 

as noise. This is the main rationale that the spatially selective filtration technique for 
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denoising can be applied in segment separation of human motion signals. In this 

algorithm, direct spatial correlation was done only between the two largest scales. For 

this, we define a scale correlation variable as                                      

                                            ( )( , ) ( , ) ( , )Corr J n W J n V J n= × ,                                          4.4 

where J is the maximum level in decomposition and n=1,2,3,..,N. ( , )V J n  and ( , )W J n  

represents the wavelet coefficients’ nth value at scale J and J+1.  

 

Figure 4.17. Decomposed signals of square of vertical acceleration signal and their 
correlated signal after rescaling process.  
 

         The power of the correlated data was rescaled to that of { ( , )V J n }. Power rescaling 

method is as follows: 
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and rescaling as 
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After rescaling, we compared the rescaled version of ),(' nJCorr with ( , )V J n . If 

'( , ) ( , )Corr J n V J n> at a certain point (J, n), the coefficient of ( , )V J n  at that point was 

extracted and retained in a new vector ( , )newV J n . Zero was replaced in ),(' nJCorr and 

( , )V J n  at that point. We then rescaled the power of the zero filled version of 

),(' nJCorr to the zero filled version of ( , )V J n , compared their absolute values and 

Table 4.3 
Segments of human motion activities separation algorithm 

Direct spatial correlation over the two largest scales 

( )( , ) ( , ) ( , )Corr J n W J n V J n= ×  

Loop for the iteration m/*m is predefined iteration number*/ 
{ 

    
pcorr

ps
nJCorrnJCorr ),(),(' =  

 
    Loop for coefficient n 
      { 
         
         if | ),(' nJCorr | > | ( , )V J n  |  
          { 
               ( , ) ( , );newV J n V J n=  

               ),(' nJCorr =0; 
               ( , )V J n =0; 
             } end if 
     } end loop n 
} end loop m 
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extracted the coefficient of ( , )V J n  again. These procedures of power rescaling, absolute 

value comparison and coefficient extraction were iterated according to the predefined 

iteration number. The algorithm is summarized in Table 4.3. Descending stairs portion is 

separated from other activities by applying the algorithm to the square of vertical 

acceleration signal and ascending stairs portion is separated from other activities by 

applying the algorithm to the antero-posterior acceleration signal. In the discrete dyadic 

wavelet decomposition, maximum iteration number (m=3), the maximum decomposition 

scale of the antero-posterior acceleration signal and that of the square of vertical 

acceleration signal were determined empirically. In this segment separation process, the 

entire positive coefficients of extracted data from the antero-posterior acceleration signal 

were discarded. At last, energy transition from zero to a value in the energy profile of 

extracted coefficients was used to obtain the start point and end point of a segment. The 

segments which are less than two second time interval were eliminated. If the interval of 

the separated segments from vertical acceleration signal and antero-posterior acceleration 

signal were overlapping, the longer segment was selected. 

 

Human motion patterns classification 

        In the classification of human motion patterns, coefficients of discrete wavelet 

transform were applied [97]. In the transformation, coefficients are decimated for each 

scale of decomposition. Two second time duration of separated segments of vertical and 

antero-posterior acceleration signals was decomposed into five scales by “Daubechies 

mother wavelet with order five”. Two second time duration corresponds 

to ]1,1[ stst mm +− , where mt is the centre of a segment. The power of wavelet coefficients  
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at scales four and five was used as features in classification (Equation (4.8)). Scales 4 and 

5 correspond to 0~16Hz cover the required information of human motion patterns [40]. 

                                                       Pa or v

2

2

5

4
�

=
=

j
jx                                               4.8                                     

where xj is the wavelet coefficients of scales 4 and 5. Pa represents the power of wavelet 

coefficients of the antero-posterior acceleration signal and Pv represents that of the 

Antero-posterior 
acceleration signal 

Vertical 
acceleration signal 

Spatial correlation 
and segment separation 
 (discrete dyadic wavelet 
decomposition) 

Spatial correlation 
and segment separation 
(discrete dyadic wavelet 
decomposition) 

Separated segments of 
gait patterns 

(Pv> threshold)? 

Pa and Pv from separated segments 
      (discrete wavelet transform) 

(Pa>threshold)? 

Descending stairs 

Ascending stairs Level walking 

Separation of segments in 
accelerometer record 

yes 
no 

yes 
no 

Classification of  
gait patterns 

                    Figure 4.18. Human motion patterns classification flow chart (i). 

Square of vertical 
acceleration signal 
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vertical acceleration signal. In classification, both Pa and Pv were calculated from a 

separated segment. If Pv was greater than the predetermined threshold value (Pvt = 43), 

the segment was classified as descending stairs segment. If Pv was smaller than the 

threshold value, Pa was used to classify between ascending stairs and level walking. If Pa 

was greater than the threshold value (Pat = 9.78), the segment was classified as ascending 

stairs and else it was classified as level walking. The predetermined threshold values are 

values determined from the experimental data used in the development stage of the 

algorithm before the experiment to validate the algorithm was done at the hospital.  The 

motion activities classification procedure is illustrated in Figure 4.18.   

 

4.3.3.3 Experimental results  

            The original acceleration signals, extracted coefficients of vertical acceleration 

signal square and antero-posterior acceleration signal and separated segments are shown 

in Figure 4.19. The algorithm (Table 4.3) separates the descending stairs segments from 

vertical acceleration signals and the ascending stairs segments from antero-posterior 

acceleration signals. These segments are normally more than two seconds in the 

experimental data. Therefore, the time intervals of extracted coefficients which are 

shorter than two seconds intervals were eliminated (Figure 4.19(d)).  If extracted 

segments from vertical acceleration signal and antero-posterior acceleration signals were 

overlapping, the shorter segment was eliminated (Figure 4.19(g)). 

            To estimate the performance of the segment separation algorithm, absolute error, 

percentage error, sensitivity, and specificity for ascending stairs and descending stairs 

were estimated as follow:  
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Figure 4.19. The acceleration signals, extracted coefficients and separated segments of 
human motion patterns in the acceleration signals. 
 

 •Absolute error = | time interval of a segment of extracted coefficients-actual                                          

time interval of a segment |. 

•Percentage error = (absolute error/actual time interval of segment)*100%. 

•Sensitivity = (true positives/(true positives + false negatives))*100%. 

•Specificity= (true negatives/(true negatives + false positives))* 100%. 

          The recorded video clips were observed using “VirtualDub 1.5.10” media player to 

get the actual time intervals of descending and ascending stairs segments. The digit in the 

second decimal place is 3 in this player. The investigator noted the duration of each 

descending/ascending stairs activity and actual time intervals of ascending/descending 
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stairs segments were taken from the time when the subject’s foot landed onto the first 

step of the stairs for descending or ascending to the time when he/she stepped onto the 

landing. In sensitivity/specificity estimation, true positives were equal to the number of 

cycles of ascending/descending stairs activities those were correctly extracted by the 

algorithm and false negatives were equal to the number of unextracted cycles of 

ascending/descending stairs activities. True negatives were equal to the number of cycles 

not included in the separated segment of ascending/descending activities and false 

positives were equal to the number of cycles wrongly extracted in the separated segment 

of ascending/descending activities. For sensitivity and specificity estimation, total 

numbers of steps encountered by each subject were counted by the investigator. From one 

negative peak to next negative peak of vertical acceleration signal was considered as one 

cycle human motion activity (Figure 4.19). Numbers of steps (cycles) for 

ascending/descending stairs were taken as fifteen. Start/end time of segments observed in 

the video clips and that of segments separated by the separation algorithm for stairs 

activities were compared in Table 4.4. Overall absolute error, percentage error, sensitivity 

and specificity for 22 subjects were also presented (Table 4.4).           

         Forty-four pairs of Pa and Pv for ascending stairs and descending stairs and 66 pairs 

of Pa and Pv for level walking from 22 subjects were classified (Figure 4.20). The 

classification rate (pairs that are classified correctly/total number of pairs) of descending 

stairs, ascending stairs and level walking are 97.72%, 93.18%, and 93.93% respectively.  
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Table 4.4 Error, sensitivity, specificity of separated stairs segments and comparison of 
start/end time of segments observed in the video clips and extracted by the algorithm 

Ascending stairs Descending stairs 
Subje-

ct Video records Separation 
algorithm 

Sensit- 
ivity 

Specif- 
icity Video records  Separation 

algorithm 
Sensit- 
ivity 

Specif- 
icity 

Start End Start End Start End Start End  
Seconds 

(%) (%) 
Seconds 

(%) (%) 

1 7.559 14.598 7.504 14.688 100 100 39.727 44.383 39.063 44.336 100 98 
 16.090 23.543 15.094 23.105 93 98 46.027 50.789 46.039 50.730 100 100 

2 6.895 14.176 6.531 14.363 100 99 47.676 53.836 47.332 53.848 100 99 
 16.031 23.207 15.488 23.754 100 98 55.086 61.137 55.027 61.473 100 99 

3 7.176 15.301 7.273 15.742 100 99 46.082 53.387 45.746 53.563 100 99 
 17.020 24.828 16.789 25.410 100 99 54.613 61.496 54.809 61.875 97 99 

4 6.465 12.137 6.523 12.805 100 99 43.531 49.590 43.410 48.863 87 100 
 13.672 20.043 12.949 20.027 100 99 50.785 57.008 50.730 57.164 100 100 

5 6.773 14.672 7.004 14.941 97 99 46.945 53.988 46.641 53.965 100 100 
 16.988 25.094 17.148 25.469 100 99 55.430 62.578 55.250 62.719 100 100 

6 6.078 12.859 6.410 12.934 93 100 45.688 51.688 45.355 52.777 100 98 
 14.438 21.250 14.262 21.441 100 100 54.266 60.309 53.941 60.141 100 100 

7 8.477 15.383 8.555 15.762 100 99 39.855 45.848 40.055 45.824 97 100 
 16.523 24.148 16.590 24.543 100 100 46.879 51.566 47.063 51.551 97 100 

8 7.074 15.043 7.363 15.148 93 100 50.813 57.277 51.027 57.551 100 100 
 18.234 26.238 18.000 26.426 100 100 58.871 65.121 58.930 64.922 100 100 

9 8.746 14.910 8.652 15.445 100 99 46.328 51.336 46.387 51.480 100 100 
 16.473 22.543 16.395 22.449 100 100 53.313 58.449 53.258 58.469 100 100 

10 7.645 15.129 7.770 14.844 93 100 43.113 49.563 42.797 49.922 100 100 
 16.512 24.375 16.680 24.504 97 100 50.531 57.156 50.711 57.016 100 100 

11 10.805 18.297 10.980 17.773 93 100 52.031 59.230 51.605 59.422 100 100 
 19.641 27.504 19.789 27.551 100 100 60.473 67.695 60.070 67.547 100 99 

12 7.785 14.805 7.633 15.297 100 100 47.340 53.652 47.027 53.641 100 99 
 16.301 23.660 15.734 24.141 100 100 55.316 62.234 55.320 62.250 100 99 

13 9.594 18.039 9.563 18.395 100 99 55.906 63.051 55.613 62.434 100 100 
 19.172 27.625 18.840 27.891 100 99 64.871 71.723 64.711 71.613 100 100 

14 7.176 12.184 6.875 12.230 93 99 36.180 40.414 36.141 40.691 100 99 
 13.727 19.176 13.785 19.703 100 100 41.223 45.457 40.980 45.605 100 100 

15 8.902 14.527 8.828 14.336 93 100 45.883 51.516 45.508 51.469 100 100 
 15.906 22.426 15.816 22.352 100 100 52.242 57.699 55.737 57.742 37 100 

16 7.789 14.813 8.207 15.324 100 100 44.063 48.781 43.980 49.121 100 100 
 16.457 23.434 16.508 23.473 100 99 50.379 55.195 49.980 55.066 93 100 

17 8.965 16.590 8.945 17.012 100 100 49.473 55.641 49.066 56.012 100 99 
 18.102 25.309 17.816 25.621 100 100 57.324 64.023 56.895 64.012 100 100 

18 7.574 12.621 7.367 12.770 100 100 33.539 38.016 33.426 37.996 100 100 
 13.578 19.102 13.660 19.352 100 100 39.027 43.758 39.047 43.926 100 100 

19 7.746 14.082 7.602 14.098 100 100 42.844 47.648 42.660 47.383 93 100 
 15.203 21.883 14.766 22.191 100 100 48.750 53.902 49.203 53.930 100 100 

20 9.352 17.844 9.078 17.711 100 100 52.816 59.852 52.715 59.762 100 99 
 19.594 27.426 19.516 28.500 100 100 61.539 68.535 61.527 68.273 100 100 

21 9.578 17.539 9.699 17.637 100 99 50.395 57.871 50.094 58.137 100 100 
 18.828 26.813 18.738 27.000 100 99 59.293 66.414 59.000 66.578 97 100 

22 8.941 14.742 8.523 14.715 100 99 43.855 49.250 43.711 49.594 100 99 
 15.945 21.613 15.938 21.605 100 100 50.840 56.156 50.684 56.078 87 100 

Aaver
age  98.788 99.524  97.349 99.622 

Absolute error (Sec) 0.387 Absolute error (Sec) 0.404 
Percentage error (%) 5.536 Percentage error (%) 6.929 
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Figure 4.20. 44 pairs of Pa and Pv for ascending and descending stairs and 66 pairs of Pa 
and Pv for level walking from 22 subjects and their relationship in classification.  
    

4.3.3.4 Discussion  

           Unlike the algorithm of spatially selective filtration technique for de-noising [106, 

107], the spatial correlation was applied only between the two largest scales (scale J and 

scale J+1) in our segment separation algorithm. Moreover, rescaling of the power 

coefficients of correlated signal and comparison were executed to the decomposed signal 

of largest scale ( ( , )V J n ). According to our empirical results, the coefficients were denser 

for the same extracted length if these processes were implemented to ( , )V J n  and lower 

densities of the extracted coefficients caused inaccurate results in the start point and end 

point detection. Some of the parameters for optimization are now discussed. 
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        Iteration times: In each iteration process, the coefficients of ( , )V J n  at the position 

where the absolute amplitude of rescaled signal ( ),(' nJCorr ) is greater than that of 

( , )V J n  are retained. Therefore, if the iteration time is small, for example m=1, the 

extracted coefficients do not convey the actual length of the required segment. If the 

iteration time is large, processing time is a necessary factor to consider for long data 

length. For our experimental data, m=3 is the appropriate iteration time to extract the 

required segment. 

           Maximum decomposition scale: Our optimization of maximum decomposition 

scale is based on the ratio of desired signal (descending stairs or ascending stairs) to be 

extracted and undesired signal (level walking) to be rejected after rescaling process. 

Maximum decomposition scale was varied from 4 to 9 for both vertical and antero-

posterior acceleration signals. For each maximum decomposition scale, ratios of the 

averaged value of one second time intervals of descending stairs portions and level 

walking portions (RDLN, where 4�N�9) and those of ascending stairs portions and level 

walking portions (RALN, where 4�N�9) from the signals after rescaling process (Figure 

4.17) were computed. One second time intervals were chosen randomly. Maximum ratios 

were obtained at scale 6 (RDL6) for square of vertical acceleration signal and at scale 8 

(RAL8) for antero-posterior acceleration signal. 

           We compare our classification method with previous attempts. Mantyjarvi et al. 

proved that applications of ICA or PCA with wavelet transformation to six channels of 

acceleration signals from the waist level give better classification rate than the original 

data by using three multilayer perception neural networks [38]. Using six channels of 

acceleration signals is superfluous in human motion pattern classification. Even though 
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the best classification results for recognition were 83-90% for six channels, their method 

gives poor classification rate for three channels of acceleration signals. Moreover, 

application of neural networks needs a large number of training patterns to reduce the 

error. Since the low frequency component includes posture information and information 

about changes in motion, Sekine et al. studied the detection of walking pattern changes 

by using the low-frequency component of antero-posterior and vertical acceleration 

signals from the accelerometers at the waist level [39]. In the detection of pattern changes 

in ascending stairs from the antero-posterior acceleration signal, they manually set the 

individual’s threshold level at the low frequency component of the signal and the times of 

walking pattern changes were obtained from the crossings of the threshold level and the 

low frequency component of the signal. In this method, manual thresholding is not 

practical for a large number of subjects. Again, Sekine et al. used wavelet-based fractal 

analysis method in human motion activity classification [40]. The fractal dimensions 

were computed from triaxial accelerometers located to the subject's back in the 

lumbosacral region of the vertebral column using an elastic waist belt. Even though the 

combination of the fractal dimensions from three dimensional acceleration signals were 

different (p<0.01) among the three walking types, this significant result was achieved for 

each individual subject and did not represent the whole population of subjects involved in 

the experiment. Finally, Coley et al. presented the detection of walking upstairs using 

miniature gyroscope attached to the shank of the subject [41]. High accuracy 

(sensitivity~98%) in identifying walking upstairs from other two walking types was 

obtained using only one sensor at the shank, but this method could not identify stairs 

descent. In pattern classification, the data length of the signal used in feature extraction 
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was fixed to two second duration in our method (Equation (4.8)). In compare to the 

equations that Sekine et al. applied with high classification rate (98%), we can reduce 

some processing steps at a slightly lower classification rate than their method [39].  

 

 4.3.3.5 Accuracy improvement using new features in human motion patterns 

classification  

            Some modifications were made for the accuracy improvement in human motion 

pattern  classification  (Figure 4.21).  For  the  improvement,  the  power  of  extracted    

 

coefficients of separated segments from square of vertical acceleration signal (PcoefsY) 

and that of separated segments from antero-posterior acceleration signal (PcoefsZ) were 

used. PcoefsY and PcoefsZ were calculated as  
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     Figure 4.21. Human motion patterns classification flow chart (ii) 
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where N is the number of samples and dv and dz represent extracted coefficients of square 

of vertical and antero-posterior acceleration signal. After elimination process, there were 

no negative coefficients for descending stairs segment and no positive coefficients for 

ascending stairs segment and resulted in no misclassification between descending stairs 

and ascending stairs (Figure 4.19). Therefore, PcoefsY was used to classify between 

descending stairs and level walking and PcoefsZ was used to classify between ascending 

stairs and level walking. In classification, PcoefsY were calculated from coefficients of 

separated segments of square of vertical acceleration signal and PcoefsZ were calculated 

from coefficients of separated segments of antero-posterior acceleration signal. If 

PcoefsY was greater than the predetermined threshold value (PtY = 0.0018), 

predetermined threshold values are values determined from the experimental data used in 

the development stage of the algorithm, the segment was classified as descending stairs 

segment. If PcoefsZ was greater than the predetermined threshold value (PtZ =0.002), the 

segment was classified as ascending stairs segment. Finally, the rest portion of the 

acceleration signal was classified as level walking. This procedure is illustrated in Figure 

4.21.  

Table 4.5 Number of separated segments for level walking, ascending stairs and 
descending stairs 
 Level walking Ascending stairs Descending stairs 
Experiment using stairs 5 segments x 22 

subjects=110 
(5 segments are 
shown in Figure 
4.19(h) 

2 segments x 22 
subjects=44 
(2 segments are shown in 
Figure 4.19(h) 

2 segments x 22 
subjects=44 
(2 segments are shown in 
Figure 4.19(h) 

Level walking experiment  105 segments were 
separated from 16 
subjects 

  

Total segments 215 44 44 
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4.3.3.6 Experimental results  

          The number of separated segments of human motion patterns by scale space 

filtering that were used in classification are shown in Table 4.5. This corresponds to 

100% accuracy in segmentation of the signals for the experiment using stairs [106]. 

Sixteen out of twenty-two subjects were also conducted level walking for 15m distance in 

their self-selected speed. This experiment was conducted to assess the performance of the 

human motion segments separation algorithm and features (PcoefsY and PcoefsZ) with 

the acceleration signals of only level walking activity. Vertical and antero-posterior 

acceleration signals of level walking activity and their separated segments are shown in 

Figure 4.22. When the separation algorithm is applied to the acceleration signals of only 

level walking activity, the extracted coefficients are mostly from the square of vertical 

acceleration signal and those of antero-posterior acceleration signal are mostly zero after 

elimination process as discussed in section 4.3.3.2. For the level walking experiment, the 

number of separated segments was not constant for each individual subject. Altogether 

105 segments were separated for all sixteen subjects.  

Table 4.6 Number of segments with positive, negative and no extracted coefficients after 
applying the separation algorithm 

 Number of segments with 
no extracted coefficients 

Number of segments with 
positive extracted 
coefficients 

Number of segments with 
negative extracted 
coefficients 

Level walking 134 64 17 

Ascending stairs 0 0 44 

Descending stairs 0 44 0 

 

          Table 4.6 shows the number of segments with positive, negative and no extracted 

coefficients  for  each  human  motion activity conducted in the experiment after applying  
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                     Figure 4.22. Level walking activity and its separated segments 

 

the separation algorithm. PcoefsY and PcoefsZ for separated segments of level walking, 

ascending stairs and descending stairs activities are shown in Figure 4.23. In level 

walking, both PcoefsY and PcoefsZ were zero for 134 segments. Therefore, most 

(PcoefsY, PcoefsZ) points of level walking segments were accumulated near the origin of 

PcoefsY PcoefsZ-coordinate plane (Figure 4.23, and Figure 4.24). Figure 4.24 is the 

magnified plot showing the relationships between PcoefsY and PcoefsZ of level walking 

segments from Figure 4.23(a). The classification rate (segments that can be classified 

correctly/total number of segments for each walking type) of descending stairs, ascending 

stairs and level walking were 97.67%, 100%, and 100%, respectively.  
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Figure 4.23. PcoefsY and PcoefsZ of level walking, ascending stairs and descending stairs 
activities.  
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Figure 4.24. Magnified plot showing relationships between PcoefsY and PcoefsZ for level 
walking segments of Figure 4.22(a) (134 out of 215 points of (PcoefsY , PcoefsZ) are zero 
and subplots are magnified version for the interval 0-0.001 of PcoefsY axis).  

         
 
Figure 4.25. During ascending stairs, the body posture is forward tilting and prone 
position. Because of the changes in accelerometer response due to gravity, the low 
frequency component represents negative g values in ascending stairs portion of antero-
posterior acceleration signal. 
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4.3.3.7 Discussion  

            In dyadic wavelet decomposition of the filtration algorithm, the low frequency 

component (0-1 Hz) of antero-posterior acceleration signal reveals the body posture 

changes of human motion patterns (Figure 4.25). During ascending stairs, the body 

posture is forward tilting caused by the changes in accelerometer response due to gravity 

[110]. Therefore, the low frequency component represents negative g values in ascending 

stairs portion of antero-posterior acceleration signal and results in negative extracted 

coefficients after filtration [106]. Consequently, this is the crucial feature of ascending 

stairs portion to be discriminated from descending stairs segment since the extracted 

coefficients for descending stairs are always positive because of the exploitation of 

square of vertical acceleration signal [106].  

         We compare the new classification method with our earlier classification approach. 

In our earlier approach [106], three types of walking patterns were segmented applying 

scale space filtering technique. Then a pair of features (Pa, Pv), Pa, Pv – power of wavelet 

coefficients from two-second time duration of antero-posterior and vertical acceleration 

signals, was computed for each separated segment from vertical and antero-posterior 

acceleration signals and two-step decision process for classification: first, separation of 

stairs down from stairs up and level walking using Pv and secondly, classification 

between stairs up and level walking using Pa, was carried out. Since all three categories 

(stairs down, up and level walking) involve in the first step of classification, potential for 

misclassification among three types of walking patterns is higher than the new approach.  

In our new approach, power of  coefficients of separated segments were used as features 

in classification and there was no negative coefficients for descending stairs segment 
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(Figure 4.19(d)) and no positive coefficients for ascending stairs segment (Figure 

4.19(g)). Therefore, classification was between stairs down and level walking and 

between stairs up and level walking and resulted in no misclassification between stairs 

down and stairs up activities. This is the first point that can enhance the classification 

rate. Moreover, most of the extracted coefficients of level walking signals were zero and 

positive (Figure 4.19 and Figure 4.22) and it can reduce the misclassification between 

level walking activity and ascending stairs activity (Figure 4.20). This is the second 

factor in improving the classification rate. In addition, some signal processing steps used 

in our previous classification method such as wavelet decomposition for power of 

wavelet coefficients are reduced. Therefore, our new method brings superior effects such 

as higher classification rate and lesser processing steps compared to our earlier effort. 

           In conclusion, we have developed a new detection method by securing miniature 

accelerometers on a garment that allows non-intrusive monitoring of human motion 

activities. We have applied scale space filtering method in the classification of human 

motion patterns into level walking (97.67%), ascending stairs (100%) and descending 

stairs (100%) with high classification rate.  
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Chapter 5 

Detection of falls: post impact and pre-impact 

 

            Wearable fall detection system was developed. The system can summon medical 

assistances via SMS (Short Messaging Services) when the wearer encounters fall 

incident. Fall notification can be sent to individuals and health care unit at the same time 

to get a shortened interval before the arrival of the assistance. The ability to detect a fall 

in an older person who is alone, with the resultant activation of a response/help system is 

of immense benefit as this will lead to a shortened interval before the arrival of assistance 

and reduce both the physical as well as the psychological trauma of the event. Moreover, 

pre-impact fall detection was investigated using gyroscope sensors. The advantage of the 

investigation is that a fall injury minimization system can be developed by incorporating 

with an inflatable hip protection device.  

 

5.1 Fall detection and fall incident notification  

5.1.1 Methodology 

             Figure 5.1 shows the diagram of fall detection (post impact detection) system. 

The vest facilitated with a BluetoothTM transmitter sends acceleration signals to a 

Personal Computer (PC) for data processing. Single axis accelerometers are arranged in 

medio-lateral, vertical and antero-posterior directions on the shoulder part of the vest. 

Using BluetoothTM transmitter/receiver, signals sampled at 256Hz sampling rate are 

transmitted to a PC and processed in the PC for fall-detections. Upon detection of falls, 
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SMSs (Short Messaging Services) are sent by GSM (Global System for Mobile 

Communication) network supported by a local telecommunication service provider and 

emails are sent through internet. The primary advantage of our detection system in 

compared to other researchers’ systems is that fall notification can be sent to individuals 

and medical health care unit simultaneously to lead to a shortened interval of the arrival 

of assistance. 

 
                                      Figure 5.1. Fall detection system. 

 

Fall detection (post impact detection) 

       In the PC, each dimension of three dimensional raw acceleration signals was 

segmented to 500 samples for one iteration of data processing. Data set was segmented to 

500 samples for one iteration of data processing. Data set was normalized and absolute 

peak value from each dimension was calculated. Summation of absolute peak values 

greater than a threshold value (1.2 V, 4.8g) was determined as a fall event. 
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               Table 5.1 Types of activities performed by each subject 
Test 
number 

Types of activities 
 

Equipment used in the 
experiment 

1 Sit-stand+ walk+ stand-sit Chair without armrest 
(Seat height: 43cm) 

2 Level walking, 
ascending stairs and 
descending stairs 

40 feet long corridor for level 
walking. 
Half-turn stairs  
 

3 Slippery falls (Forward and 
backward) 
Faint falls (Forward, left side 
and right side) 
 

Piston-powered fall simulator for 
slippery falls ( Figure 5.2) 
Soft mattress (6”x6’x4’) 

4 Sit-lie + lie-sit Bed 
(Bed height:38cm) 

 

 

Sending SMS and emails 

          When the fall event was detected, SMS and emails were sent as shown in Figure 

5.1. Web Server is a centralized control between the clients and SMS server. The PHP 

code responsible for sending text messages and emails is located in the Web Server. SMS 

Gateway server is installed with SMS application to listen to a command for sending 

SMS and emails from the Web Server. This SMS server is connected to a GSM modem 

via the USB. SMSs are sent through GSM network supported by a local 

telecommunication service provider and emails are sent through internet. 

  

5.1.2 Subjects and experimental procedure 

           To set a predefined threshold value in fall detection, the experiment was 

performed on 5 male and 5 female subjects (age ranged between 22 and 30 years, height 

between 1.694 and 1.92m, and weight between 47 and 75kg) in a research laboratory 

environment. All subjects gave consent for participation in the testing. Generally, the 

activities accepted as fundamental for daily routines include the following: sitting to 
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lying, lying to sitting, sit-stand, stand-sit, walking, ascending stairs and descending stairs. 

Therefore, measurement was performed according to test numbers (Table 5.1). To 

simulate the slippery falls, we used a piston-powered fall simulator (Figure 5.2). A 

movable platform translation is 30 cm and air pressure was set to 5 bars during the 

experiment. A soft mattress (6”x6’x4’) was placed on the stationary platform. The 

subject, standing on the movable platform and facing to the stationary side, will fall down 

to his forward direction (slippery forward fall) when the simulator is activated. Slippery 

backward fall will occur when the person is facing to the other direction.  Subjects 

performed only once for each test number. 

 

 5.1.3 Discussion  

 How threshold value was defined according to the experimental results  

         Figure 5.3(a) shows three dimensional acceleration signals for test number 1 to 

illustrate  absolute  peak  value  for each direction.  The  summation of  absolute of peak  

     
 
 

                              
 
 
 

Stationary platform 

Compressor 

Movable platform 

                                           Figure 5.2. Fall simulator 
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 values for test number 1 is 1.2856g. Figure 5.3(b) shows the acceleration signals of 

descending stairs for test number 2 and summation of peak values is 2.03g. Descending 

stairs has higher summation of absolute peak value than ascending stairs and level 

walking. Therefore, we included only descending stairs in our discussion. Figure 5.3(c) 

shows acceleration signals for test number 4 and summation value is 2.2032g. In sit to lie 

posture transition, the output voltage of the accelerometer measuring vertical acceleration 

changes from 2.75 V (vertically upward in sitting posture) to 2.5 V (horizontal in lying 

posture) (Appendix A). The difference 0.25 V can be converted to acceleration unit, g, as 

0.25V *(1g/0.25V) = 1g for the sensor with 250mV/g sensitivity. Therefore, normalized 

vertical acceleration output changes from 0.5g to -0.5g, not exactly at ±0.5g as the sensor 

Figure 5.3. Three dimensional acceleration signals for (a) test number 1, (b) test 
number 2, and (c) test number 4, shown in Table 5.1. 
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is not exactly in vertical and horizontal orientation, in sit to lie transition and reverse 

transition occurs for the sensor measuring antero-posterior acceleration. However, lateral 

acceleration does not change much as the sensor is in the same orientation in both lying 

and sitting postures. Figure 5.4 shows the distribution of summation values of normal 

activities (test number 1, test number 2 and test number 4) and fall activities (test number 

3) for 10 subjects. Complete separation of the two distributions shows perfect 

classification of normal activities and fall activities by using summation of peak values 

from acceleration signals. According to the experimental results, 1.2V or 4.8g was 

defined as a threshold value as shown in Figure 5.4. 

 

Reliability issue for the Bluetooth TM wireless data transmission                                                        

              BluetoothTM is a commonly used wireless communication technology, especially 

for short range, low bandwidth and, non-deterministic network infrastructure. There are 

some reliability issues in BluetoothTM applications. These are BluetoothTM link breaking 

Distribution of summation of 
absolute peak values 

0
0.1
0.2
0.3

0 5 10 15 20

Summation values(g)

Test number1, test number 2 and
test number 4
Test number 3

 

Figure 5.4. Distribution of summation of absolute peak values for normal activities 
and fall activities for 10subjects. 
 

Threshold value (4.8g) 
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or being interrupted by walls, metallic objects, etc., and the delay incurred for re-

establishing the link.  

 

5.1.4 A smart device that can call for help after a fall 

           Because of the reliability issue in BluetoothTM wireless data transmission, we did 

some modifications in detection system (Figure 5.5). The modified system consists of a 

wearable module, and a Series 60 Platform mobile phone. The wearable module consists 

of MSP430F1611 Mixed Signal Microcontroller (48KB+256B Flash Memory, 10KB 

RAM, 16 bit, and 8MHz), BluetoothTM transmitter and 3-Axis accelerometer 

(MMA7260Q, ±1.5g-6g) (Figure 5.6). Acceleration signals are sampled at 100Hz 

sampling rate. The firmware on the wearable system, upon power up, initializes the 

BluetoothTM transceiver and it establishes a data link with the BluetoothTM receiver at the 

mobile phone. Having established the link, it starts to collect and analyze data from the 3-

axis accelerometer to detect fall. When a fall is detected, it sends a pre-defined code to 

the mobile phone. Apart from the fall, the user can generate ‘Emergency Help’ event by 

pressing a button on the wearable node. 

         Upon receiving a ‘fall code’ or ‘emergency help code’ from the wearable module, 

the Python SMS script inside the phone sends SMSs to a predefined group of mobile 

numbers. For the script, the Python interpreter natively interacts with the Symbian 

operating system of the phone. The script is implemented as a background process with 

no interference in the normal application of the mobile phone.  

         The key advantage of the modified detection system is that the BluetoothTM 

transmitter and receiver can always be kept within their data transmission range (10 
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meters). Therefore, there is no limitation in effective detection range in fall detection. 

This is the detection system as perfect in its kind as that which can raise alarm on its own 

to individuals and health care unit at the same time to get a shortened interval of the 

arrival of assistance.  

 
                 Figure 5.5. Modified fall detection system. 
 
 

              

 

 

Figure 5.6. Real-time fall notification system  
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5.2 Pre-impact fall detection 

5.2.1 Distinguishing fall activities from normal activities by angular rate charact- 

eristics and high speed camera characterization 

            Distinguishing sideways and backward falls from ADL using angular rate sensors 

(gyroscopes) was explored in this section. Gyroscopes were secured on MEMSWear at 

the positions of sternum (S), front of the waist (FW) and right underarm (RU) to measure 

angular rate in lateral and sagittal planes of the body during falls and normal activities. 

Moreover, the motions of the fall incidents were captured by a high-speed camera at a 

frame rate of 250 frames per second (fps) to study the body configuration during fall. The 

high-speed camera and the sensor data capture system were activated simultaneously by 

an observer by switching the systems on at the same time to synchronize the picture 

frame of high-speed camera and the sensor data. The threshold level for each sensor was 

set to distinguish fall activities from normal activities. Lead time of fall activities (time 

after threshold value is surpassed to the time when the hip hits the ground), and relative 

angle of body configuration (angle � between the vertical line and the line from the center 

point of the foot or the center point between the two legs to that of the waist (Figure 5.7)) 

at the threshold level were studied. This is the first study that investigates fall dynamics 

in detection of fall before the person hits the ground using angular rate sensors 

(gyroscopes). In this study we addressed the following parameters: (1) positive and 

negative peak values of angular rate of fall activities and normal activities to establish a 

threshold value between these two types of activities, (2) lead times of fall activities (time 

after threshold value is surpassed to the time when the hip hits the ground), and (3) 
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relative angle of body configuration at the threshold level via high speed visual 

inspection of fall incidents. 

                                         

                        Figure 5.7. Angle of body configuration at the threshold level 

 

5.2.2 Materials and methods 

           Volunteers were recruited via advertisements on notice boards on local university 

campus. They were selected according to age (between 20 to 30 years old), gender and 

scheduling availability. Ten volunteers participated, 5 males and 5 females. The average 

ages were 28 and 26.4 years old, respectively, with a range of 25 to 30 for males and 24 

to 27 for females. The mean height and mass ± standard deviation of the males were 

167.1 ± 5.2 cm and 67 ± 2.7 kg, respectively. For the female volunteers, the mean height 

± standard deviation is 155.9 ± 4.3 cm, and for mass it is 49.6 ± 4.5kg. Informed consent 

was obtained from each of the subjects. 
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Before activation                             After activation 

Figure 5.8. Experimental set-up of pneumatically-actuated fall simulator for back slip.  
 

          The experimental setup consisted of a pneumatically-actuated fall simulator 

(Figure 5.8). The subject stood on a movable platform (35cm by 35cm) actuated by 

compressed air of 5bar. When activated, the platform dashed away from the cushioning 

mattresses (two single-size foam mattresses 6in thick) at a speed of approximately 

30cm/sec and caused the fall backward thereby simulating a slipping incident.  

        In the case of fainting incidents for sideways falls, the simulator was not used. The 

subjects were told to stand on the mattress and simply relaxed themselves and fall to the 

sides. The subjects did the fainting incidents on 6 inches thick soft foam mattresses. 

When doing the falls, the subjects were fitted with protective gear at the wrist, elbow and 

knee areas to prevent injury.  

          For this study, the vest was fitted with gyroscopes (ADXRS150, ±150°/sec, 

temperature drift=5mV(delta from 25�C)) at the sternum (S), front of the waist (FW) and 

right underarm (RU) positions to measure angular rate in lateral and sagittal planes 

during fall incidents and normal activities. Sensors at positions S and FW were used to 

measure the body movement in lateral plane (e.g., sideways fall) and sensor at position 

RU was used to measure in sagittal plane (e.g., backward fall). The two sensors 

measuring the body movement in the same plane were located at two positions (FW and 



 119 

S) to investigate the effect of sensor location difference on the trunk. The amplifier gain 

of the gyroscopes was set to a sensitivity of 4.5mV/deg/sec. All gyroscope sensors were 

attached to the inner surface of the shirt. 

                                                                                           

                                          (a)                   (b) 

Figure 5.9. Orientation of the gyroscopes incorporated (a) and the vest with real-time data 
acquisition (b). 
            

             Figure 5.9(a) shows the orientation of the gyroscopes. Figure 5.9(b) shows the 

smart shirt, from which the data was gathered and transmitted to a base station (PC) via a 

BluetoothTM wireless communication system. In this way, the sensor data was sampled at 

230 Hz sampling rate and stored into the PC. Bluetooth chips with 10 meter effective data 

transmission range were used in the experiment. The transmitter was powered by a 9V 

DC power supply and was located inside the pocket of the smart shirt. The receiver was 

connected to the serial port of the PC and powered by the PC’s USB port.   

              Each of the volunteers was first instructed to carry out a series of normal 

activities, which were chosen as representative of what an elderly individual might 

 
Receiver Transmitter inside the 

pocket 
 

Gyroscopes incorporated within the garment           
 

Orientation of  
the gyroscope at  
positions FW and S  
 

Orientation of  
the gyroscope at position RU  
 



 120 

encounter during activities of daily living. The order of activities were predetermined as: 

(1) standing up from a chair without arms (height, 46cm), (2) walking straight (5 sec), (3) 

bending down to pick up a pen on the floor, (4) walking straight (8 sec), (5) sitting down 

onto a bed (height : 27cm), (6) lying down on the bed, (7) posture transition from lying to 

sitting on the bed, (8) standing up, (9) walking straight (8 sec), and (10) sitting down onto 

the chair again (height , 46 cm) (Figure 5.10). After the volunteers had completed the 

normal activities, they were asked to carry out fall activities. For each activity, subjects 

were asked to repeat two times at a self-selected speed and strategy. The motion of the 

fall incidents was captured by a high-speed camera (Fastcam 10k) at a frame rate of 

250fps. The high-speed camera and the sensor data capture system in PC were 

simultaneously activated by the observer by switching the two systems on at the same 

time. The purpose of this is to synchronize the picture frames from high-speed camera 

and the data from MEMSWear so that the signals from the sensors are in correspondence 

with the picture frames (e.g., 100th sample of sensor data = �
�

�
�
�

� ×
230
250

100 = 109th picture 

frame).  To simulate slipping, the volunteer was asked to stand on the simulator platform 

and the simulator was activated upon command of the investigator. For fainting to sides, 

the volunteers were instructed to suddenly relax all muscles and fall flaccidly at the 

command of the investigator. The whole duration of each fall incident (~2.1s) was 

captured by the high-speed camera, which produced a total of 546 sequential pictures 

with a time interval of 4ms. Since we were particularly interested in hip injuries, we 

defined the end of a fall as the point when the volunteer’s hip first comes in contact with 

the mattress. This point was determined in the picture frames of high speed camera. 

Segmentation of the sensor data related to normal activities was provided by the 
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investigator according to the preobserved data segment of normal activities and 

predetermined order of activities (Figure 5.10). Positive and negative peak values of 

normal activities were taken from each segment of the activities (Figure 5.10). 

 
 
Figure 5.10.Normal activities from the sensor at position RU (a=standing up, b= walking  
straight, c= bending down to pick up a pen on the floor, d=sitting down onto a bed, e= 
lying down on the bed, and f= posture transition from lying to sitting on the bed). 
 

        To familiarize the volunteers with the experimental setup and protocol, they were 

permitted to fall freely onto the mattress before the experiments. The volunteers were told 

not to anticipate the command of the investigator but to concentrate on falling naturally 

with their muscles relaxed all the way to the mattress. 

 

5.2.3 Results  

          Figure 5.11 shows the mean and one-sided standard deviation of fall activities and 

normal activities of positive peak and negative peak angular rates of gyroscope sensors at 

different positions (FW, S, and RU). ANOVA analysis indicated that positive and 
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negative peak angular rates of fall activities were significantly higher (p<0.0001) than 

those in the normal activities (Figure 5.11). For the sensor at position FW, peak values  
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Figure 5.11. The mean and one side standard deviation of positive peak and negative 
peak angular rates of gyroscope sensors at position FW, S and RU. Both positive and 
negative peak angular rates of fall activities are significantly higher than those of the 
normal activities (p < 0.0001). 
 
 
were limited within ±100 deg/sec (Figure 5.11(a) and 5.11(b)) and this value was set as 

the threshold level for that sensor in distinguishing fall activities (sideways falls) from 

normal activities.  However, ±130 deg/sec was chosen as a threshold level for the sensor 

at position S and +170 deg/sec was chosen for the sensor at position RU. Positive and 

negative peak values of normal activities were limited within their respective ranges 

(Figure 5.11(c), 5.11(d), and 5.11(e)).  Walking was perhaps one of the activities that had 

the least amount of angular rate for both positive and negative peaks of all three sensors. 

Lying down had the largest amount of angular rate for the sensor at position FW, while 

picking up a pen on the floor had the largest amount for sensors at positions S and RU. 

The angular rate of upper trunk was higher than that of the waist for activities especially 
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for bending over at waist to pick up a pen on the floor. Therefore, the threshold level of 

the sensor at position S was higher than that of the sensor at position FW. Moreover, the 

highest threshold level was set for the sensor at position RU because motion related to 

normal activities was faster in sagittal direction than in the lateral direction.  

                 
Figure 5.12. The mean and one side standard deviation of lead time for fall activities (20 
trials for each fall activity) (1 = left hand side fall (FW), 2 = left hand side fall (S), 3 = 
right hand side fall (FW), 4 = right hand side fall (S), and 5 = backward fall (RU)). 
 
          Figure 5.12 shows the lead times of all fall activities. Definition of lead time, time 

after threshold value is surpassed to the time when the hip hits the ground, in fall 

activities is shown in Figure 5.13. For sideways falls, the lead time of the sensor at 

position FW (±100 deg/sec threshold levels) was about 200-220 msec and that of the 

sensor at position S (±130 deg/sec threshold levels) was about 135-182 msec. Simulated 

slippery backward fall had shorter lead time when compared to sideways falls and the 

lead time was about 98 msec for the sensor at position RU. The body configuration at 

threshold  level for  sideways fall and backward fall, expressed by � (between the vertical  
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           Figure 5.13. Sensor signals showing the lead times for sideways falls (left hand     
           side and right hand side) and backward fall. 
 

line and the line from the center point of the foot or the center point between the two legs 

to that of the waist, (Figure 5.14)), were about 40-43 deg for the sensor at position FW, 

about 43-52 deg for the sensor at position S and about 54 deg for the sensor at position 

RU, respectively (Figure 5.15). In the comparison of two sensors at positions FW and S, 

the sensor at position FW had longer lead time and lower � angle. In this study, all fall 

activities were correctly detected. To estimate the performance of fall detection using 

angular rate sensors, sensitivity, specificity, negative predictive value and positive 

predictive value were estimated as follow: 

• Sensitivity = (true positives/(true positives + false negatives))*100%. 

• Specificity= (true negatives/(true negatives + false positives))* 100%. 
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• Negative predictive value (NPV)= (true negatives/(true negatives + false 

negatives))* 100%. 

 
                                             
Figure 5.14. Typical body configuration at threshold level for backward fall and sideways 
fall. 

             
 
Figure 5.15. The mean and one-sided standard deviation of the body configuration at 
threshold level (20 trials for each fall activity) (1 = left hand side fall (FW), 2 = left hand 
side fall (S), 3 = right hand side fall (FW), 4 = right hand side fall (S), and 5 = backward 
fall (RU)). 
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• Positive predictive value (PPV)= (true positives/(true positives + false 

positives))* 100%. 

In estimation, true positives were equal to the number of falls those were detected and 

false negatives were equal to the number of undetected falls. True negatives were equal 

to the number of daily activities those were not detected as falls and false positives were 

equal to the number of daily activities detected as falls. The estimations are presented in 

Table 5.2.    

Table 5.2 Estimation the performance of fall detection using angular rate sensors 
Sensors Sensitivity Specificity NPV PPV 
FW (60/(60+0))*100=100% (185/(185+15))*100=92.5% (185/(185+0))*100=100% (60/(60+15))*100=80% 
S (60/(60+0))*100=100% (188/(188+12))*100=94% (188/(188+0))*100=100% (60/(60+12))*100=83.3% 
RU (60/(60+0))*100=100% (195/(195+5))*100=97.5% (195/(195+0))*100=100% (60/(60+5))*100=92.3% 

 
Total number of normal activities=200 (Table 5.2). 
Total number of falls= (number of left hand side falls+ number of right hand side   
                                     falls+ backward falls)*number of subjects, 
                                  = (2+2+2)*10=60. 
          
 

5.2.4 Discussion  

            The purpose of this study was to explore the automatic detection of fall, which 

can cause hip injuries, during its descending phase using body-worn devices. Since most 

of the fall-related injuries in the elderly occur after the body hits the ground [90,111], 

detection before the person’s hip hits the ground offers some possibilities in reducing the 

severity of hip injuries [90]. To date, no work has been done on the characteristics of fall 

movement that diverge from normal activities using angular rate sensors. Compared to 

the camera-based system (eg. ViconTM system), the system based on body-worn devices 

(small and lightweight sensors) is more appropriate for free-living conditions as there is 

no limited effective space in surveillance.      
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      Figure 5.16. The angular rate of right hand side fall from the sensor at position FW  
      and position S           

          The results in this study suggest that angular rate characteristics at various 

locations of the body are different for different types of activities. For the sensors 

measuring the lateral movements of the trunk, the amplitude of the sensor output from the 

upper trunk is larger than that of the sensor at the lower trunk for the activities like 

bending over at the waist. However, for fall activities, there are no significant differences 

between the sensor signals at these two positions, i.e., the amplitude of the sensor output 

from the upper trunk (position S) is not always larger than that of the sensor output from 

the lower trunk (position FW) (Figure 5.16). The consequence is that the sensor at upper 

trunk (position S) has higher threshold value, shorter lead time and larger � angle at the 

threshold value. According to the experimental results, the sensor at the waist level 

(position FW) gives around 200 msec lead time and about 40 deg � angle for sideways 

falls. However, for the sensor measuring in the sagittal direction, the experimental results 



 130 

for slippery backward fall (about 98 msec lead time and about 54 deg � angle) are shorter 

in lead time and larger in � angle compared with those of the sensors in lateral direction 

detecting sideways falls. To reduce the severity of the hip fractures in sideways falls, we 

can activate the prevention system within this limited time duration. The prevention 

system could be employed in conjunction with existing injury prevention methods or any 

system to regain the consciousness of the faller.  

        Obviously, if the threshold value is increased, false alarms will be reduced. The 

consequence is that lead time will be decreased and angle � will be increased. For the 

threshold values set in the experiment, we can see the false alarm table for normal 

activities (Table 5.3). The sensor at position FW has more false alarms than the sensor at 

position S by setting lower threshold level ±100 deg/sec. The angular rate of upper trunk 

is higher than that of the waist for activities especially for bending over at waist to pick 

up a pen on the floor and hence, the sensors at upper trunk (position S and RU) have 

more false alarms for that activity than the sensor at position FW. In ADL, downward 

movements such as sitting down and lying down move faster (i.e., higher angular 

velocity) than upward movements such as standing up and lying to sitting posture 

transition. Therefore, majority of the false alarms happen in sitting down and lying down 

activities as shown in Table 5.3. 

            We considered increasing the frame rate of the camera up to 1000 fps. Pictures 

presenting the fall process were very redundant for 1000 fps. Moreover, the camera 

system did not allow saving all the pictures of the whole fall process for frame rate more 

than 250 fps. Therefore, we decided to choose 250 fps. In this study, the picture 
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corresponding to the subject’s hip first comes in contact with the mattress was taken as 

the end of the fall process (Figure 5.17). Actually, most of the hip fractures in the elderly 

Table 5.3 False alarm table for normal activities (Number of false alarms)      
Sensor position FW FW S S RU 
Threshold level +100 deg/sec -100 deg/sec +130 deg/sec -130 deg/sec +170 deg/sec 

Standing up 
(10 subjects x 2 times x 2 

segments=40 trials) 

 
1 
 

0 0 0 
 

1 
 

Walking 
(10 subjects x 2 times x 3 

segments=60 trials) 
0 0 0 0 0 

Bending down 
(10 subjects x 2 times x 1 

segment=20 trials) 
0 0 

 
2 
 

 
3 
 

 
4 
 

Sitting down 
(10 subjects x 2 times x 2 

segments=40 trials) 

 
4 
 

 
3 
 

 
1 
 

 
1 
 

0 

Lying down 
(10 subjects x 2 times x 1 

segment=20 trials) 

 
4 
 

1 2 3 0 

Posture transition from lying 
to sitting 

(10 subjects x 2 times x 1 
segment=20 trials) 

1 1 0 0 0 

 

 

 
                                                                  
           Figure 5.17. Picture frames related to knee hit and hip hit (end of the fall). 
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occur after their hips hit the ground [111]. Therefore, our lead time duration is well 

within the time duration necessary for hip fracture. In this study, we focused on sideways 

and backward falls since such a fall has the highest risk of hip fractures [70,71,112,113]. 

Our data on lead time and angle � at threshold level can be used in design consideration 

of hip fracture prevention mechanism. To our knowledge, this is the first study that 

investigates fall dynamics using human subjects wearing angular rate sensors 

(gyroscopes) in detection of fall before the person hits the ground. Even though there are 

some false alarms in this study, we can pave the way for protecting hip fracture for the 

elderly in a free living environment. It should be pointed out that all the activities tested 

in the experiment were performed by healthy individuals below the age of 30 years. The 

movement of this group of people will not be exactly the same as the movement of the 

elderly in fall activities. All the experimental results presented above are from simulated 

falls and there may be some discrepancy between the responses to the simulated falls and 

the responses to the real faintings and slippery backward falls. Moreover, we found that 

some subjects hit the mattress with their knees first followed by the hips (Figure 5.17). 

Although our subjects appeared to comply with the instruction of not attempting to 

recover before their hips hit the ground, we cannot guarantee that subtle attempts at 

recovery were not made. Since our concern is mainly on the lead time and body 

configuration at the threshold level, this knee hit does not result in any deviation in our 

experimental results. From this study we presented the characteristics of fall activities to 

distinguish fall activities from normal activities using gyroscope sensors. Lead times, 

about 200-220 msec and 135-182 msec, were observed by locating the sensors at 
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positions, FW and S, and about 98 msec lead time was achieved by locating the sensor at 

position RU (Figure 5.12). The angle � between the vertical line and the line from the 

center point of the foot or the center point between the two legs to that of the waist were 

about 40-43 deg for the sensor at position FW, about 43-52 deg for the sensor at position 

S and about 54 deg for the sensor at position RU, respectively (Figure 5.15). However, 

further exploration of how to reduce the false alarm and further tests on the older 

population in real-life situations are still needed. Moreover, suitable temperature 

compensation strategy needs to be considered in long term application because the 

temperature drift may affect the performance of the sensor in distinguishing fall activities 

from normal activities. 
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Chapter 6 

   Real-time detection of falls and ADL using 
   wearable computing platform 

 
 

           Real-time detection of ADL and falls (post impact detection) using methods 

discussed in Chapter 4 and Chapter 5 based on a wearable data processing system is 

discussed in this chapter. The system consists of MCF5282 ColdFire® Microcontroller 

(32 bit, 80MHz, 512KB Internal Flash, 64KB Internal SRAM and 16MB external 

SDRAM), BluetoothTM transmitter, SD (Secure Digital) card and 7.6V battery power 

supply (Figure 6.1). MMA7260Q (±1.5g - 6g Triaxial Low-g Micromachined 

Accelerometer, 300mV/g) accelerometer was used in the system. The accelerometer was 

located at the shoulder location of the garment.  In real-time detection, the sampling rate 

is reduced from offline sampling rate, 256 samples/second (chapter 4), to 50 

samples/second to save processing time. However, the new sampling rate is still in line 

with other researchers’ applications and it is high enough to detect ADL and falls [19,42].    

 

6.1 Methodology  

            Figure 6.2 shows the data collection and data processing of real-time fall and 

ADL detection algorithm. In the algorithm (Figure 6.3), fall detection, sit-stand/stand-sit 

transition detection, lie-sit/sit-lie transition detection, and level walking detection are 

done for all 350-sample segments. Three hundred and fifty sample data is segmented with 

40% overlapping. If fall incident happens, daily activities are not detected for that 
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segment and next 350-sample segment is proceeded. In sit-stand/stand-sit detection, 

extracted sit-stand/stand-sit segments are confirmed using rest-state (variance of one-sec 

long data<0.002g in time duration [tP-4sec,tP+4sec], where tP is time of posture transition 

point P (Figure 4.10)  and data length (>0.7sec). Then, sit-stand/stand-sit and lie-sit/sit-lie  

             

  

 

 

The sensor is attached at 
the inner side of the shirt 
using VelcroTM 

The computing system is 
located inside the pocket. 

 

BluetoothTM 
transmitter 

ColdFire®  
microcontroller 

 Figure 6.1. Wearable real-time falls and activities detection system 
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transition activities data in both 350-sample segment and 2660-sample segment of 

vertical and antero-posterior acceleration signals are replaced with zeros if they are 

detected. Level walking, ascending stairs and descending stairs were classified as 

discussed in section 4.3.3.   

 
   
              Figure 6.2. The process of data collection and data processing for falls and  
              ADL detection 
        

          The time duration of the experimental data for the continuous activities, sit-stand + 

level walking + stand-sit, is about 7 sec (Figure 4.11). Therefore, 350 samples (50 

samples/sec * 7 sec=350 samples) data length is chosen for sit-stand, stand-sit, sit-lie and 

lie-sit activities detection. The data length for level walking and walking on two flights of 

stairs (one flight with 15 steps) is about 70 sec long (Figure 4.16). Hence, 50 sec data 

length (2660 samples) is chosen for the detection of level walking and walking on two 

flights of stairs (one flight with 6 steps) for the experimental setting shown in Figure 6.4. 

Since data lengths of lie-sit/sit-lie and stand-sit/sit-stand activities are about 2 sec long 

(Figure 4.7 and Figure 4.12), forty percent (0.4*7 sec=2.8 sec) overlapping is chosen not 

to miss the activity in segmentation. Therefore, (350-(350*0.4))*11+350=2660 samples 

data length is used in the detection algorithm (Figure 6.2 and 6.3). Maximum 

decomposition levels J are different from previous discussions, section 4.3.1, 4.3.2 and 

First 2660 samples 
collection 

2660 samples 
collection(x1,y1,z1)
) 

Data processing 
for signal detection 
(x,y,z)(26 seconds) 

Bluetooth 
transmitter 

If 2660 samples are 
ready for processing 
(data_ready =1) 
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4.3.3, because of using different sampling rates between the real-time detection (50Hz) 

and offline detection (256Hz).  The relations between the decomposition levels (scales) 

and frequency bandwidths were discussed in Table 3.1. 
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* - variance of one-sec long data<0.002g in time duration [tP-4sec,tP+4sec], where tP is time of posture 
transition point 
J=4 for lie-sit/sit-lie detection, sit-stand/stand-sit posture transition detection 
J=1 for sit-stand/stand-sit classification 
J=3 for SWTDecomposition (vertical) 
J=4 for SWTDecomposition (antero-posterior) 
 
                          Figure 6.3. ADL and falls detection algorithm flow chart.  
 

6.2 Subjects and experimental procedure 

             The experiments were performed on 3 male and 3 female subjects (age between 

30 and 49 years, height between 152.5cm and 172.7cm, and weight between 49kg and 

75kg). Two different experimental settings (Figure 6.4) were used for two different 

groups, i.e., group1 at setting-a (Figure 6.4(a)) includes subject 1, subject 4, subject 5, 

and subject 6 and group 2 setting-b (Figure 6.4(b)) includes subject 2 and subject 3. Each 
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subject did approximately five-hour-long experiment. During the experiment, all subjects 

did the predefined ADL of sit-stand/stand-sit transition, lie-sit/sit-lie transition, level 

walking, stairs up, and stairs down. However, the sequence of the activities was not 

restricted. The activities done in the experiment are common ADL among the elderly 

[19,104,105]. All six subjects conducted altogether 1495 activities in that approximately 

five-hour-long experiment. All the activities detected by the system were sent to 

NotebookTM through BluetoothTM transmitter/receiver together with the time information 

of the activity. An observer was together with the subject during the experiment and 

recorded when the error occurred. Informed consent was obtained from each of the 

subjects. 

  

                   
                                                             
              
                                Figure 6.4. Two different experimental setups 
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Table 6.1 The sensitivity and specificity of activities in approximately five-hour long 
experiment 

 1 2 3 4 5 6 
       Age 32 49 45 30 29 30 

Sex Male Female Female Male Female Male 
Height 165.1 157cm 152.5cm 172.7cm 160cm 172.7cm 
Weight 65kg 50kg 49kg 51kg 50kg 75kg 

Duration of 
monitoring 300.4min 303.05min 302.18min 303.1min 286.7min 279.62min 

Total 
number of 
activities 

 
131 

 
84 

 
204 

 
586 

 
263 

 
227 

 N Se 
% 

Sp 
% N Se 

% 
Sp 
% N Se 

% 
Sp 
% N Se 

% 
Sp 
% N Se 

% 
Sp 
% N Se 

% 
Sp 
% 

Level 
walking 32 100 100 22 100 100 39 100 100 114 100 100 57 100 100 57 100 100 

Sit-stand 42 92.9 100 28 92.9 98.2 76 93.4 100 215 95.3 99.4 95 92.63 98.8 76 93.4 98.7 
Stand-sit 41 95.1 100 28 92.9 100 73 94.5 98.5 215 87.9 98.9 95 95.8 98.2 78 93.6 99.3 
Lie-sit 6 100 100 3 100 100 8 100 100 19 100 100 7 100 100 5 100 100 
Sit-lie 6 100 100 3 100 100 8 100 100 19 100 100 7 100 100 7 100 100 

Stairs up 2 100 100       2 100 100 1 100 100 2 100 100 
Stairs 
down 2 100 100       2 100 100 1 100 100 2 100 100 

Overall sensitivity for 1495 activities 1420/1495=94.98% 
Overall specificity for 1495 activities 1437/(1437+17)=98.83% 

N=number of activities; Se=sensitivity; Sp=specificity 
Overall sensitivity=Number of activities correctly detected by the system/total number of activities 
Overall specificity=Total number of detected activities/(Total of detected activities+wrongly detected 
activities) 
 

6.3 Results  

          The sensitivity and specificity of each subject is presented in Table 6.1. 

Sensitivities (defined as the ability of the system to correctly identify the true activities) 

and specificities (defined as the ability of the system not to generate false detection) were 

calculated as sensitivity = (true positives/( true positives+ false negatives)) and specificity 

= (true negatives/( true negatives+ false positives)). True positives, false negatives, true 

negatives and false positives of one type of activities, e.g., sit-stand transition, were 

estimated as follows:   

• True positives were equal to the number of true sit-stand transitions, correctly 

detected by the system. 



 141 

• False negatives were equal to the number of sit-stand transitions, not detected by 

the system.  

• True negatives were equal to the number of other types of activities detected by 

the system, which were not true sit-stand transitions. 

• False positives were equal to the number of other types of activities wrongly 

detected as sit-stand transitions. 

 

6.4 Discussion  

            The results show that the system, based on only one triaxial accelerometer 

attached onto the shoulder part of the garment, performs well in detecting ADL. Even 

though the system can detect fall, according to the experimental results presented in 

section 5.1, it was not included in real-time detection experiment because the subjects 

were not willing to do during the experiment. 

             The real-time detection of ADL is useful in several applications such as detecting 

the attempts of elderly patients to get out of bed or to rise from a chair, another fall 

prevention scenario as these activities can lead to fall events, [114] or detection of the 

abnormal behaviors of the patients suffering dementia. Moreover, real-time fall incidence 

detection is one of the major health care issues in the elderly because an undetected fall in 

an older person, especially for the elderly in solitary lives, can result in a person lying 

conscious and uncomfortable for hours before being saved, and the resultant activation of 

a response/help system is of immense benefit leading to a shortened interval before the 

arrival of assistance.  
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          Several falls and ADL detection algorithms have been proposed in the past [19,32-

51]. Although much work has been done in fall and ADL detection, more studies need to 

be conducted in view of the need for comfort in assessment for long-term use. In our 

case, the sensors are fixed onto the garment unlike the other researchers who attached the 

sensors onto the body. Investigations using similar off-line detection approaches, i.e., 

locating the sensors on the trunk, were published by Najafi et al., [19] and Mathie et al., 

[42]. Najafi et al. detected ADL using a kinematic sensor attached to the chest. The 

kinematic sensor includes a biaxial accelerometer and a gyroscope. The gyroscope 

measures the sagittal plane information of the body movement. The sensor is protruding 

out of the chest and no detail description is provided on how the sensor is attached on the 

chest. The placement of the sensor may not be comfortable for the subject for long term 

application. The sensitivity (>90%) was achieved in time-frequency based activity 

detection. Mathie et al. detected falls and ADL using a framework structured around a 

binary tree in which movements were divided into classes and subclasses at different 

hierarchical levels. A triaxial accelerometer mounted at the waist level was used in his 

detection. Fixed threshold, pattern matching, and expert system methods were applied to 

detect falls and activities. Pattern matching is not the appropriate method in fall detection 

(sensitivity 80.5%) because the patterns of 3-axis accelerometer related to fall activities 

are very arbitrary. The overall sensitivity 97.7% and specificity 98.7% over a data set of 

1309 movements were achieved. However, this high sensitivity and specificity were 

accomplished performing the predefined set of sequence of activities. Even though we 

put the sensor on the garment, our detection procedure can produce comparable results, 

sensitivity 94.98% and specificity 98.83% for altogether 1495 activities, to their 
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implementations in which sensors are directly attached onto the body using belt or other 

elastic materials.  

            The place of the attachment of sensors on the human body is an important issue. 

Waist level on the vest is not appropriate for the sensor to be located because normally 

the lower parts of the vest around waist level would fold during sitting posture and it is 

the most interfered location by hand movements on the vest such as touching the sensor 

very often in normal movements. Therefore, the locations that sensors can be attached at 

the vest are on the chest and on the shoulder. From the methodological point of view, all 

of the features used in the detection methods presented in chapter 4 are based on 

fundamental facts that every body follows in their ADL movements. The features that 

accelerometer outputs carry by locating the sensors on the shoulder will not be changed if 

the sensor location is moved to the chest. Therefore, from the methodological point of 

view, the system performance is not different because of the different locations between 

the chest and the shoulder. However if we consider other factors such as (1) the sensor to 

be least interfered by the subject's activities, (2) the sensor will cause minimal discomfort 

to the subject and (3) the sensor will not injure the wearer during the severe incidents 

such as falls, the shoulder location is the optimum choice for the wearable application. In 

activity detections, the sensors are mostly attached to the body directly using adhesive 

tape or elastic straps in avoiding the artifacts due to the movements of clothes (Bouten et 

al. [32]). According to our experimental results (Figure 4.7, Figure 4.8, Figure 4.10, 

Figure 4.11 and Figure 4.13), even the signals from human motion activities did not 

interfere with the detection of sit-stand/stand-sit and sit-lie/lie-sit transitions. Therefore, 

there is no significant effect of the vest on the acceleration data that can decline the 
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performance of the algorithm and the artifacts caused by the clothes are not a serious 

issue in our detection method.  

           There are some points to be mentioned in this study. Firstly we used limited 

number of subjects and these results should still be confirmed with larger population. 

Secondly these subjects were volunteers and not representative of people at different 

ages. However, 37 subjects altogether, including the subjects volunteered in the previous 

analysis (section 4.3.2 and section 4.3.3), where 9 subjects for experiment of sit-

stand/stand-sit transition detection, 22 subjects for experiment of gait patterns 

classification and 6 subjects for approximately five-hour-long experiment, show reliable 

results using our detection method. Despite these limitations, we believe this system has 

the potential for extended clinical research applications. Particularly, our wearable system 

will be useful in long term in-home health care implementations.  
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Chapter 7 

Conclusions and recommendations 

  

               In this thesis, a novel approach of fall and activities of daily living (ADL) 

detection based on a normal garment (vest) that can detect a broad range of ADL using 

relatively fewer sensors, in comparison to other researchers’ systems, for the comfort of 

the user in long term application was developed. The system can detect falls and send fall 

notifications to individuals and the health care unit at the same time without user 

intervention. A triaxial accelerometer measuring lateral, antero-posterior and vertical 

directions is attached at the shoulder position of the garment. ADL detected in our studies 

are vital daily activities such as sit-stand/stand-sit transitions, sit-lie/lie-sit transitions, 

level walking, ascending stairs and descending stairs. Conclusions and contributions of 

the research work undertaken are summarized as follows. 

             ADL were detected in the time-frequency domain. In the detection of motion 

activities (level walking, and walking on stairs), segments related to different types of 

activities were separated using an algorithm based on the spatially selective filtration 

technique. The filter algorithm (Table 4.3) enhances and extracts the portion if wavelet 

coefficients are well correlated across the decomposed levels. In this way, ascending 

stairs/descending stairs segments with well correlated wavelet coefficients across 

decomposed levels were separated from level walking segments.  After segment 

separation process, power of extracted coefficients of vertical acceleration signal, 

PcoefsY, was used to classify between level walking and descending stairs and that of 
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antero-posterior acceleration signal, PcoefsZ, was used to classify between level walking 

and descending stairs. There were no negative coefficients for descending stairs segment 

and no positive coefficients for ascending stairs segment and resulted in no 

misclassification between descending stairs and ascending stairs. Moreover, most of the 

extracted coefficients of level walking signals were zero and positive and it can reduce 

the misclassification between level walking activity and ascending stairs activity. 

Therefore, our gait activities detection algorithm is as perfect in its kind as it can detect 

all three types of activities in high accuracy (>97.67%), and the detection parameters 

(e.g., threshold levels used in detection) are not varied with individuals in compared to 

other detection methods [39, 40]. 

            In the detection of sit-stand/stand-sit posture transition activities, wavelet 

reconstructed antero-posterior acceleration signal was used in transition segment 

extraction and wavelet coefficients of extracted vertical acceleration signal were used as 

features in classification. First fifty wavelet coefficients carried the important 

characteristics of transition segments such as a positive peak followed by a negative peak 

for sit-stand transition and a negative peak followed by a positive peak for stand-sit 

transition. Applying wavelet coefficients from vertical acceleration signal offers the 

reduction of the complexity of detection procedures using minimum number of features 

in classification. The classification rates 93.65% and 95.24% for sit-stand and stand-sit 

activities are better than other similar detection methods in which 93.5% for sit-

stand/stand-sit activities (Mathie et al.) and 93% for sit-stand activities and 90.2% for 

stand-sit activities (Najafi et al.) were achieved [19,42].  
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         Lie-sit/sit-lie posture transition is detected by considering the orientation of the 

accelerometer with respect to the gravitational axis. In detection, the reconstructed 

vertical acceleration signal (<1Hz) was applied to cancel additional peaks with different 

frequency components. Then, we have developed a real-time fall and ADL detection 

system using a garment as a wearable platform. We did five-hour long experiment using 

six male and female subjects. Overall sensitivity of 94.98% is achieved for detection of 

altogether 1495 different activities.  

           In contribution, we have developed new wavelet based ADL detection methods 

that can provide high accuracy in ADL detection. Using these methods, we have proved 

that a broad range of ADL can be detected using single triaxial accelerometer located on 

the garment (vest) for the comfort of the wearer in long term application. In previous 

activity detection research, accelerometers are located at different body segments such as 

foot, thigh, waist, and sternum using belt, elastic belt, double-sided tape or VelcroTM. 

Using considerable number of sensors, located at different parts of the body, may not be 

suitable for long-term use. Moreover, tightness of fixing materials in long term use is also 

a necessary consideration in applying elastic belt, belt, double-sided tape or VelcroTM in 

securing the sensors on the body. In comparison to other researchers’ works (Table 2.1), 

we could detect a broad range of ADL using single triaxial accelerometer located at only 

one location, shoulder, with high classification rate. Bouten et al. [32] also used only one 

sensor set of three uniaxial accelerometers in broad range of ADL assessment 

application. The sensor set is located at the low back of the subjects at the level of the 

second lumbar vertebra by using an elastic belt. The application is more specific to the 

study of relations between ADL and energy expenditure due to ADL and their developed 
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method cannot classify activities. Our implementation of real-time detection of ADL is 

useful in several applications such as the system can help detect and send alarm for the 

patient’s abnormal behavior such as patient is attempting to get out of the bed at night 

time, another fall prevention scenario as this attempt can lead to fall incident, or 

wandering of a patient suffering from dementia. 

            Our new detection approach interferes minimally with the activities of the subject. 

The sensor, placed in a casing (20mmx30mmx10mm), is light weight and attached to the 

vest using VelcroTM at the inner side of it. The casing (50mmx80mmx25mm) for the 

processing unit (a processor, rechargeable flat Lithium-ion battery, and BluetoothTM  

transmitter) is inside the pocket of the vest. The cable connecting the sensor and the 

processing unit is between the two layers of cloths, near the zipper, of the vest. Then, the 

two layers are fastened using VelcroTM. For washing the shirt, the cable, sensor casing, 

and processing unit casing, can be easily dismantled from the shirt. Moreover, the weight 

of the detection system (sensor casing and processing unit casing), nearly 150 g, will not 

bother the wearer in applying the system. Therefore, monitoring falls and ADL in free 

living environment with minimal interference and maximum comfort of the wearer is 

possible using the system we developed. 

            In fall detection, the system can summon medical assistances via SMS. This is the 

best detection system in its kinds as that which can raise fall alarm (fall SMS) on its own 

to individuals to get a shortened interval of the arrival of assistance with no detection 

range limitation. Moreover, we have studied pre-impact fall detection using angular rate 

sensors (gyroscopes). This is the first study to investigate the automatic detection of fall, 

which can cause hip injuries, during its descending phase using body-worn devices. The 
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advantage is that a fall injury minimization system can be developed by incorporating 

with an inflatable hip protection device. 

             Based upon the ADL and fall detection capabilities of this research, development 

of the smart wear by incorporating detection of abnormal vital physiological signs, such 

as blood pressure, heart rate, body temperature, and SpO2 (arterial oxygen situation) is 

recommended. The smart wear facilitated with wireless Body Area Network will be more 

practical for the comfort of the wearer. The system applying wireless communication and 

networking infrastructures can help caregivers with in time information of vital sign 

changes together with the wearer’s abnormal behaviors, e.g., excessive walking, the 

subject is in lying posture for a long time, etc., so that necessary actions can be taken 

before serious incidents happen to the wearer. Moreover, another useful application of the 

smart ware is the fall prediction, especially for faint fall, by detecting abnormal vital 

physiological signs before faint and the onset of faint fall using motion sensors. These 

predictive measurements may further complement the injury minimization system such as 

an inflatable hip protection device which would be activated upon imminent fall. These 

systems have the potential to allow elderly with some cognitive and/or physical deficits 

to remain in their home for a longer time, i.e., the system can help the elderly postpone or 

prevent institutionalization. Moreover, it can help increase autonomy or independence of 

the elderly.  
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Appendix A: Theory of Operation of the  
                       Accelerometer 

 

           The accelerometer is a complete acceleration measurement system on a single 

monolithic IC. It is a surface micromachined polysilicon structure built on top of the 

silicon wafer. Polysilicon springs suspend the structure over the surface of the wafer and 

provide a resistance against acceleration induced forces. Deflection of the structure is 

measured with a differential capacitor structure that consists of 2 independent fixed plates 

and a central plate attached to the moving mass. A 180° out of phase square wave drives 

the fixed plates. An acceleration causing the beam to deflect will unbalance the 

differential capacitor and thus results in an output square wave whose amplitude is 

proportional to acceleration. Phase sensitive demodulation techniques are then used to 

rectify the signal and determine the direction of the acceleration. The accelerometer is 

capable of measuring both positive and negative acceleration to a certain level of +g. The 

signals from the accelerometers consist of DC and AC components. The DC component 

(static acceleration) allows the assessment of the change in position in relation to the 

gravitational axis and thus the accelerometer can be used as a tilt sensor. The variation of 

DC component due to the difference in sensor orientation is shown in Fig A.1. The AC 

component represents the acceleration along the sensitive axis of the accelerometer.  

            An uncommitted amplifier is supplied for setting the output scale factor, filtering 

and other analog signal processing. A ratiometric voltage output temperature sensor 

measures the exact die temperature and can be used for proportional calibration of the 

accelerometer over temperature [115].  
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            Fig.A.1. The Schematic Layout of the Accelerometer at Different Orientations with the    
            corresponding DC component values 


