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Summary

The work in this dissertation is motivated by the application of Brain Computer

Interface (BCI). Recent advances in computer hardware and signal processing have

made it feasible to use human EEG signals or ”brain waves” to communicate with a

computer. Locked-in patients now have a means to communicate with the outside

world. Even with modern advances, such systems still suffer from the lack of

reliable feature extraction algorithm and the ignorance of temporal structures of

brain signals. This is specially true for asynchronous brain computer interfaces

where no onset signal is given. We have concentrated our research on the analysis

of continuous brain signals which is critical for the realization of asynchronous brain

computer interface, with emphasis on the applications to motor imagery BCI.

Having considered that the learning algorithms in Hidden Markov Model (HMM)

does not adequately address the arbitrary distribution in brain EEG signal, while

Support Vector Machine (SVM) does not capture temporary structures, we have

proposed a unified framework for temporal signal classification based on graphi-

cal models, which is referred to as Kernel-based Hidden Markov Model (KHMM).

A hidden Markov model was presented to model interactions between the states

of signals and a maximum margin principle was used to learn the model. We

vi



Summary vii

presented a formulation for the structured maximum margin learning, taking ad-

vantage of the Markov random field representation of the conditional distribution.

As a nonparametric learning algorithm, our dynamic model has hence no need of

prior knowledge of signal distribution.

The computation bottleneck of the learning of models was solved by an effi-

cient two-step learning algorithm which alternatively estimates the parameters of

the designed model and the most possible state sequences, until convergence. The

proof of convergence of this algorithm was given in this thesis. Furthermore, a set

of the compact formulations equivalent to the dual problem of our proposed frame-

work which dramatically reduces the exponentially large optimization problem to

polynomial size was derived, and an efficient algorithm based on these compact

formulations was developed.

We then applied the kernel based hidden Markov model to the application

of continuous motor imagery BCI system. An optimal temporal filter was used

to remove irrelevant signal and noise. To adapt the position variation, we subse-

quently extract key features from spatial patterns of EEG signal. In our framework

a mathematical process to combine Common Spatial Pattern (CSP) feature ex-

traction method with Principal Component Analysis (PCA) method is developed.

The extracted features are then used to train the SVMs, HMMs and our proposed

KHMM framework. We have showed that our models significantly outperform

other approaches.

As a generic time series signal analysis tool, KHMM can be applied to other

applications.
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Chapter 1
Introduction

With the significant enhancement of machine computation power in recent years,

in machine learning community there is a rapid growing interest in modeling and

analysis of the brain activities through capturing the salient properties of the brain

signals, as for example eletroencephalography (EEG). The techniques are not only

useful in a wide spectrum of brain signal related application areas including epilepsy

detection, sleep monitoring, biofeedback and brain computer interfaces, but also

in other application with complex time varying signals.

The work in this dissertation is motivated by the challenges we encountered in

the Brain Computer Interface (BCI). One of such challenges is the lack of analysis

algorithm which effectively address the temporal structures and complex distri-

bution of brain signals. This is specially true for asynchronous brain computer

interfaces where no onset signal is given. We have concentrated our research on

the analysis of continuous brain signals which is critical for the realization of asyn-

chronous brain computer interface, with emphasis on the applications to motor

imagery BCI.

1
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Having considered that the learning algorithms in Hidden Markov Model (HMM)

does not adequately address the arbitrary distribution in brain EEG signal, while

Support Vector Machine (SVM) does not capture temporary structures, we have

proposed a unified framework for temporal signal classification based on graphi-

cal models, which is referred to as Kernel-based Hidden Markov Model (KHMM).

A hidden Markov model was presented to model interactions between the states

of signals and a maximum margin principle was used to learn the model. We

presented a formulation for the structured maximum margin learning, taking ad-

vantage of the Markov random field representation of the conditional distribution.

As a nonparametric learning algorithm, our dynamic model has hence no need of

prior knowledge of signal distribution.

The computation bottleneck of the learning of models was solved by an effi-

cient two-step learning algorithm which alternatively estimates the parameters of

the designed model and the most possible state sequences, until convergence. The

proof of convergence of this algorithm was given in this thesis. Furthermore, a set

of the compact formulations equivalent to the dual problem of our proposed frame-

work which dramatically reduces the exponentially large optimization problem to

polynomial size was derived, and an efficient algorithm based on these compact

formulations was developed.

We then applied the kernel based hidden Markov model to the application of

continuous motor imagery BCI system. An optimal temporal filter was used to re-

move irrelevant signal and noise. To adapt the position variation, we subsequently

extract key features from spatial patterns of EEG signal. In our framework a math-

ematical process to combine Common Spatial Pattern (CSP) feature extraction
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method with Principal Component Analysis (PCA) method is developed. The ex-

tracted features are then used to train the SVMs, HMMs and our proposed KHMM

framework. We have showed that our models significantly outperform other ap-

proaches. As a generic time series signal analysis tool, KHMM can be applied to

other applications.

Because our work addresses the issues of time varying signal analysis in the

brain computer interface, the following sections, we will start with concepts and

research issues of brain computer interface, then come to the problem statement,

and finally arrive at our contributions.

1.1 Brain Computer Interface

A brain-computer interface (BCI) is a communication system that does not depend

on the brain’s normal output pathways of peripheral nerves and muscles[RBH+00].

Over the past fifteen years, the volume and pace of BCI research have grown

rapidly. Encouraged by growing recognition of the needs and potentials of people

with disabilities, new understanding of brain function, and the advent of powerful,

low-cost computers, researchers have concentrated on developing new communica-

tion and control technology for people with severe motor disorders, such as amy-

otrophic lateral sclerosis (ALS), brainstem stroke, cerebral palsy, and spinal cord

injury[Vau03].

The channels in the BCIs may be eletroencephalography (EEG), magnetroen-

cephalography (MEG), positron emission tomography (PET), and functional mag-

netic resonance imaging (fMRI), which are available to monitor brain function.

However, PET, fMRI and MEG are technically demanding and expensive. At
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present, only EEG and related methods, which have relatively short time constants,

can function in most environments, and require relatively simple and inexpensive

equipment, offer the possibility of a new non-muscular communication and control

channel, a practical BCI[WBM+02].

Since first described by Hans Berger in 1929, the EEG has been used mainly

to evaluate neurological disorders in the clinic and to investigate brain function in

the laboratory. Over that time, people have speculated that it might be used for

communication and control, that it might allow the brain to act on the environment

without the normal intermediaries of peripheral nerves and muscles. However, this

idea attracted little serious research activities but some popular scientific fiction

authors until recently, for at least 3 reasons[WBM+02].

1. The resolution and reliability of the information detectable in the sponta-

neous EEG is limited by the vast number of electrically active neuronal el-

ements, the complex electrical and spatial geometry of the brain and head,

and the disconcerting trial-to-trial variability of brain function.

2. EEG-based communication requires the capacity to analyze the EEG in real-

time, and until recently the requisite technology either did not exist or was

extremely expensive.

3. There was in the past little interest in the limited communication capacity

that a first–generation EEG-based BCI was likely to offer.

Like any communication or control system, a BCI has input (e.g. electrophysi-

ological activity from the user), output (e.g. device commands), components that

translate input into output, and a protocol that determines the onset, offset, and
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Figure 1.1: Signals from the brain are acquired by electrodes on the scalp or
in the head and processed to extract specific signal features that reflect the user’s
intent. These features are translated into commands that operate a device. Success
depends on the interaction of two adaptive controllers, user and system.

timing of operation (Figure 1.1). The key components in a BCI system are signal

acquisition, feature extraction and translation algorithm, which decide the perfor-

mance of the system measured by speed and accuracy.

• Signal acquisition

While implanted EEG electrodes can be used to monitor the brain activities
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that drive a cursor on a computer monitor [KBM+00], the non-invasive meth-

ods is providing to be viable and is obviously preferable. These approaches

can be broadly categorized as visual evocation [Sut92, MMCJ00], P300 evo-

cation [DSW00], operant conditioning[BGH+99] and cognitive tasks[PN01].

The former two approaches rely on the visual evoked potentials or the P300

evoked potentials, which are generated by some visual stimuli. They usually

require a structured environment and mostly just provide the user with the

ability to choose from a set of options.

Like the previous two, the operant conditioning rely on biofeedback to allow

the subject to acquire the automatic skill of controlling EEG signals in order

to move the cursor or make a selection. But it requires initial user train-

ing. Over many training sessions the subject acquires the skill of controlling

the movement of the cursor without being consciously aware of how this is

achieved. This approach may be compared to the skill of riding a bicycle or

playing tennis, where employment of the skill is voluntary but automatic.

The BCI systems with cognitive or mental tasks can be deemed the second–

generation of BCI. Unlike with operant conditioning, the subjects perform

specific thinking tasks. Cognitive tasks are asynchronous and do not need

any biofeedback procedure, which suggests that it could be good communi-

cation channels of the BCI systems.

So far, the cognitive task most commonly used in BCI studies is motor im-

agery, as it produces changes in EEG that occur naturally in movement plan-

ning and are relatively straightforward to detect. With appropriate feature

extraction algorithm and classifier, the maximum information transfer rate
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is possible reached up to 24 bits/min[PN01]. However, motor imagery tasks

may be inappropriate for certain groups of subjects who have been paralyzed

for many years, or indeed from birth.

• Feature extraction

The performance of a BCI, like that of other communication systems, de-

pends on its signal-to-noise ratio (SNR). The goal is to recognize and execute

the user’s intent, and the signals are those aspects of the recorded electro-

physiological activity that correlate with and thereby reveal that intent. This

correlation can be maximized by employing feature extraction methods which

are to greatly affect SNR, without consideration of the impact of the user. To

achieve this goal, consideration of the major sources of noise is essential. No

good performance can be reached without enhancing the signal and reducing

the noise from:

– Nonneural sources. These include other human’s activity (e.g. muscle

activation and eye movements) and interference (e.g. 60-Hz line noise).

– Neural sources. These are the EEG features that come from central

nervous system (CNS) other than those used for communication.

Noise resulting from interference can, to a certain degree, be prevented by

conducting the data acquisition in a controlled environment, e.g. keeping

the human subject and recording apparatus as remote as possible from the

electrical supply and electrically powered equipment, shielding from electro-

static interference, and avoiding magnetic induction by disallowing loops of

significant area in current-carrying leads. In addition to this, some noise the
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radio frequency interference can be filtered out at the inputs of recording

amplifiers since the signals of interest exist in a narrow low frequency band.

Noise detection and discrimination problems are greatest when the charac-

teristics of the noise are similar in frequency, time or amplitude to those of

the desired signal. For example, eye movements are of greater concern than

EMG when a slow cortical potential is the BCI input feature because EOG

and SCP have overlapping frequency ranges. For the same reason, EMG is

of greater concern than EOG when a β rhythm is the input feature. There-

fore, how to design the feature extraction algorithm strongly depends on the

specific signal used in the BCI system.

A variety of options for improving BCI signal-to-noise ratios are under study.

These including spatial and temporal filtering techniques, signal averaging,

and single-trial recognition methods. Much work up to now has focused on

showing by offline data analyses that a given method will work. Although

strong in minimizing or removing non-CNS artifacts, these methods might

be inappropriate to CNS activities. This is because:

– The concurrency of brain activities is little of concern. These methods

thought that all the signals for offline analysis or online translation come

from the same underline brain function so that they bring many uncor-

related signals or noise to the classifier and make the wrong decision.

– The underline brain function or neural activity is litter of concern. These

methods consider the brain that generates the interested signal as the

blackbox
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• Classification

As mentioned before, a BCI system is not designed to understand all the

mind users is thinking, but to train the users to provide some defined brain

signals and decide what the signals are. From pattern recognition view, this

system is to provide a decision rule which decides which category the signal

belongs to. To reach this goal well, the approach employed in BCI systems

have to match the critical features of brain signals.

So far, we do not have a clear understanding of the brain and how the brain

makes brain signals. This situation is much worse when the brain signals

correspond to the activities in populations of neurons. Therefore, knowledge-

driven classification approaches are not appropriate to the non-invasive BCI

systems. On the contrary they incline to use data-driven methods. Com-

pared to knowledge-drive approaches, these methods do not need or need

less prior knowledge while directly learn the decision rules (knowledge) from

the labeled/unlabeled samples.

The discriminant approaches, as an important class of data-driven meth-

ods, are heavily used in conventional BCI system. They attempt to classify

samples by constructing hyperplanes, which are estimated from the train-

ing samples. These samples are assumed have a underlying class conditioned

set of probabilities and/or probabilities density functions. Interestingly, these

methods have discrimination capability between classes and thus can promise

better performance.

Previous analyses of EEG signals attested that only the EEG signals within

a short length, usually less than 1s, can be deemed to be stationary signals.
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In the case of asynchronous BCI, the input brain signals would be the con-

tinuous signals so that the temporal structures of the EEG signals can not be

ignored. Therefore, it violates the assumption of the discriminant approaches

and may degrade the performance of the BCI systems using the discriminant

approaches.

In short, numerous concurrent brain activities and interfering noises make the BCI

problem much more intricate. Achievements in technologies of BCI have little

effort to make the brain computer interface applications go out of the lab. It may

due to a lack of reliable feature extraction algorithm and the ignorance of temporal

structures of brain signals. In this thesis we shall address these BCI issues and

propose possible solutions.

1.2 Problem statement

The challenging issue that we are addressing is asynchronous brain computer inter-

faces where no onset signal is given. We concentrate our research on the analysis of

continuous brain signals which is critical for the realization of asynchronous brain

computer interface, with emphasis on the applications to motor imagery BCI. We

do not address the classification problems of other types of temporal signals. How-

ever, some of our research results are actually applicable to those real temporal

signals, for example speech signals.

We further state the issues as follows:

• Propose a dynamic model for the brain signal classification. Modeling the
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temporal structure is inevitable if the onset timing is unknown in the asyn-

chronous BCI systems. Furthermore, the emphasis on dynamics help us

enhance a brain signal corrupted by noise and transmission distortion and

realize the practical BCI systems in a very efficient manner. In summary,

dynamic model is one of major building blocks for building high performance

BCI systems.

• design the reliable feature extraction methods to maximize the correlation

between the user’s intent and the recorded brain signal. In our research, the

brain signal is recorded on a multitude of channels placed in a dense grid

covering large parts of the brain. Given that a brain activity originate from

very localized areas in the cortex, we expect that not all signals recorded from

different sites contribute the same amount of information to the classification,

and some may only contribute noise. Furthermore, appropriate temporal

filtering can also enhance signal-to-noise ratios. Usually, only specific narrow

spectral bands of the brain signal are relevant to the user’s intend we want to

decipher. Designing of the reliable feature extraction methods is hence vital

to build an high performance brain computer interfaces.

• Develop an integrated BCI system framework which provides ready solutions

to applications to help lock-in people freely communicate with outsides. It

includes system modeling, the individual brain activities connecting strategy,

and the reject mechanism for undesired brain activities, etc.
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1.3 Contribution of the thesis

This thesis addresses the problem of efficient learning of high-accuracy models for

human-computer communication problems. Having studied the whole BCI system,

including the brain signal’s creation, processing, and translation in this system, we

have designed a system framework with respect to the technical aspect of brain

computer interfaces. Three key issues have been identified and novel methods have

been developed as solutions to the three issues:

1. A kernel based hidden Markov model for temporal signal prediction prob-

lem. We have proposed a unified framework for temporal signal classification

based on graphical models. A hidden Markov model is presented to model

interactions between the states of signals. An alternative to likelihood-based

methods, this framework builds upon the large margin estimation principle.

Intuitively, we find parameters such that inference in the model (dynamic

programming, combinatorial optimization) predicts the correct answers on

the training data with maximum confidence. We develop general conditions

under which exact large margin estimation is tractable and present a for-

mulation for the structured maximum margin learning, taking advantage of

the Markov random field representation of the conditional distribution. As a

nonparametric learning algorithm, our dynamic model has hence no need of

prior knowledge of signal distribution while providing a strong generalization

mechanism.

2. A two-step learning algorithm for solving the training problem of the kernel
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based hidden Markov model. We have developed an efficient two-step learn-

ing algorithm for solving the training problem of the kernel based hidden

Markov model. Due to a complete absence of the labels of states in most

of cases of temporal signal classification, we have to face the chief computa-

tional bottleneck in learning the parameters of models. The two-step learning

algorithm solved this problem by alternatively estimating the parameters of

the designed model and the most possible state sequences, until convergence.

The proof of convergence of this algorithm was given in this thesis. Further-

more, a set of the compact formulations equivalent to the dual problem of

our proposed framework which dramatically reduces the exponentially large

optimization problem to polynomial size is derived, and an efficient algorithm

based on these compact formulations was developed.

3. A motor imagery BCI framework based on the KHMM We have developed a

continuous BCI system which just requires the user imagining his/her hand

movement. Our framework was built on the basis of our proposed kernel

based hidden Markov model which has a good generalization property and

gives a minimum empirical risk. Specifically, an optimal temporal filter was

employed to remove irrelevant signal and subsequently extract key features

from spatial patterns of EEG signal which transforms the original EEG sig-

nal into a spatial pattern and applies the RBF feature selection method to

generate robust feature. All the extracted features were then classified by

the left and right hand imagine models trained using the two-step learning

algorithm. Our experimental results have shown significant improvement in

classification accuracy over SVMs and HMMs.
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1.4 Overview of the thesis

We discuss related works on BCI system architectures in Chapter 2. In Chapter

3, we proposed the kernel based hidden Markov model for temporal signal classifi-

cation problem, followed by an efficient learning algorithm in chapter 4. Chapter

5 discusses a continuous motor imagery BCI system based on kernel based hidden

Markov framework. The thesis is concluded in Chapter 6.



Chapter 2
Background

Can these observable electrical brain signals be put to work as carriers

of information in man-computer communication or for the purpose of

controlling such external apparatus as prosthetic devices or spaceships?

Even on the sole basis of the present states of the art of computer science

and neurophysiology, one may suggest that such a feat is potentially

around the corner. - Vidal [Vid73]

In 1973, Jacques Vidal published an article on the first BCI. In the 23-page

paper, most of the space was devoted to describing EEG signal acquisition hard-

ware/software and the signal processing of the obtained EEG signals. Real-time ac-

quisition is imperative for a BCI system and the existing computer equipment was

not up to the task. Still, many of the concepts used today in BCIs were discussed in

Vidal’s paper. After describing the future possibilities for BCIs, Vidal talked about

neurophysical considerations. What brain signals should be used for a BCI and

what were the properties of these signals? Vidal mentioned alpha rhythms, evoked

potentials, and even event-related synchronization/desynchronization (ERS/ERD)

15
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of the EEG, all of which are used in BCIs today. The idea for advanced processing

of single trial evoked potentials using principal component analysis appeared in

Vidal’s paper as well as the more common spectral analysis of EEG signals. The

goal of the paper was to indicate the necessary components for a working BCI and

this was done very well. Even with its forward thinking, Vidal could not have

foreseen some of the more modern issues associated with getting a BCI to work

well. These BCI system issues include designing the user application while taking

human factors into consideration as well as the overall BCI system architecture.

2.1 The Nature of the EEG and Some Unan-

swered Questions

Much is known and much remains a mystery about the nature of EEG signals.

Knowledge about EEG signals may help the BCI researcher in two ways. First,

knowledge may help the researcher choose what signal conveys the most informa-

tion for control and second, it may aid in developing signal processing algorithms

for detecting the relevant signal. Lack of knowledge hinders the BCI researcher.

When the true nature of the signal is unknown, it is difficult to choose the most

appropriate signal processing routine for recognition.

Traditionally, electroencephalogram (EEG) is a display of brain voltage poten-

tials written onto paper over time. A modern system for EEG acquisition digitizes

these potentials for computer storage, although systems that output directly onto

paper remain in use. Electrodes passively conduct voltage potentials from columns

of neurons in the brain and must pick up microvolt level signals. The signal to
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noise ratio must be kept as high as possible and electrodes are constructed from

such materials as gold and silver chloride in order to aid in this. Various conductive

gels or pastes are used between an individual’s skin and the electrode in order to

reduce the impedance between the electrode and the scalp as much as possible.

Configurations of electrodes usually follow the International 10-20 system of

placement [Jas58], although larger electrode arrays may follow the Modified Ex-

panded 10-20 system as proposed by the American EEG Society (see Figure 2.1).

The introduction of the Modified Expanded 10-20 system indicates an increase in

the normal application of an expanded number of electrodes. Not surprisingly,

more electrodes means increased spatial resolution of the signal over the head and

arrays with as many as 256 electrodes have been used successfully in research

applications.

The availability of large numbers of electrodes introduces the problem of how to

connect them to the recording device. A plethora of different configurations exist,

but two main classes of configurations or montages arise from the possibilities:

referential and bipolar montages.

The distinguishing feature of referential montages is that all electrode potentials

are calculated with respect to a reference electrode placed in an electrically quiet

area. The main advantage of such a recording method is that referential recording

can give an undistorted display of the shape of potential changes and is especially

useful for the recording of potentials with a wide distribution. Since differential

amplifiers are used, referential montages also make it simple to mathematically

calculate other kinds of montages after recording.

Unfortunately, it is essentially impossible to find a reference electrode that is
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Figure 2.1: The extended 10-20 system for electrode placement. Even numbers

indicate electrodes located on the right side of the head while odd numbers indicate

electrodes on the left side. The letter before the number indicates the general area

of the cortex the electrode is located above. A stands for auricular, C for central,

Fp for prefrontal, F for frontal, P for parietal, O for Occipital, and T for temporal.

In addition, electrodes for recording vertical and horizontal electro-oculographic

(EOG) movements are also place. Vertical EOG electrodes are placed above and

below an eye and horizontal EOG electrodes are placed on the side of both eyes

away from the nose.
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entirely inactive. Reference electrodes located everywhere from the ear to the big

toe have failed in the attempt to find a truly quiet reference. In order to help

overcome this problem, average reference electrodes (where two electrode sites

contribute equally to the reference electrode) may be used. The most common

average reference electrode configuration is known as the linked ears configuration

due to the equal contribution of A1 and A2 to the reference electrode. A1 and

A2 may also be attached to the mastoids instead of the ears, in which case the

reference is known as a linked mastoid configuration. In order to remove the

influence of the reference location from the recording, techniques such as the Hjorth

transform [Hjo75] may be used.

Bipolar montages connect pairs of electrodes to the inputs of amplifiers. As an

example, the longitudinal bipolar montage connects Fp1-F3, F3-C3, C3-P3, P3-O1,

and so on, forming rows of electrodes. The advantage of these types of montages is

that they distinguish local activity much more clearly than a referential montage.

The disadvantage of bipolar montages is that they may distort the wave shape and

amplitude of widely distributed potentials.

Clearly, the type of montage used will greatly affect the ability of a system

to recognize certain events in the signal. Since BCIs tend to deal with widely

distributed signals, most BCIs use a referential montage. After a montage is cho-

sen, the electrode voltage potentials are differentially amplified on the order of

ten to twenty thousand times the original voltage. As discussed in Spehlmann’s

EEG Primer [Spe91], the EEG reader needs to distinguish the following features:

waveform, repetition, frequency, amplitude, distribution, phase relation, timing,

persistence, and reactivity. These are common features distinguished by BCIs.
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Waveforms may be regular, having a fairly uniform appearance due to symmet-

rical rising and falling phases. One example of a regular waveform would be a

sinusoidal wave. Other waveforms may be irregular, having uneven shapes and

durations. The waveform frequencies of particular interest to clinical EEG readers

range from 0.1 Hz to around 20 Hz. Many frequencies are apparent in the normal

EEG and frequency bands help to set apart the most normal and abnormal waves

in the EEG, making frequency an important criteria for assessing abnormality in

clinical EEG. As electrodes are positioned over different parts of the head, the

electrical activity recorded may appear over large or small areas. This is the distri-

bution of a wave. Distributions may be lateralized on one side of the head or may

be diffuse. Focal activity is activity that is restricted to one or a few electrodes

over an area of the head. The reactivity of a signal refers to changes that may be

produced in some normal and abnormal patterns by various maneuvers. A com-

mon example of this is the blocking of the alpha rhythm by eye opening or other

alerting procedures [Spe91].

While some descriptors of the EEG signal seem fairly obvious, there are others

that have created controversy in the EEG community. One of the obvious ques-

tions on the nature of the EEG signal remains unknown - is the system linear or

nonlinear? It is also unknown how chaotic the data is. Without the answers to

these questions, it remains difficult to choose the proper routines for EEG signal

recognition. Toda, Murai, and Usui present a measure of nonlinearity in time

series [TMU92]. The measure of nonlinearity is calculated from the weights of a

trained feedforward neural network with nonlinear hidden units. As examples, they

measure the nonlinearity of sunspot series and a carp’s EEG. The sunspot is (of
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course) found to be nonlinear, but the carp’s EEG is linear. While there are prob-

lems with this approach, such as the lack of complete data sets and noise effects,

the approach raises the question of the possibility of globally linear neurocortical

dynamics. Freeman’s nonlinear model for the neocortex assumes chaotic nonlinear

dynamics [Fre91, Fre95]. Pyramidal cells are important neurons in the neocortex

and Freeman’s model predicts that the shar nonlinearity of the neuronal threshold

could cause chaotic dynamics if both the firing rate and the field potential of any

pyramidal cell were raised above a critical level of excitation. Simulations of his

principles have yielded the predicted chaotic dynamic properties.

There is no incontrovertible proof that the EEG reflects any simple chaotic

process [WL96]. Fundamental difficulties lie in the applicability of estimation al-

gorithms to EEG data, because of limitations in the size of data sets, noise con-

tamination, and lack of signal stationarity. Even with locally chaotic dynamics,

does this mean that there must be globally chaotic dynamics? An important class

of simulation studies suggest this must be the case [Kan90, Kan92]. These studies

concern one-dimensional chaotic numerical subprocesses of considerable general-

ity (one-dimensional chaotic maps) that are globally coupled, each to all others.

Such coupled maps exhibit global chaos and appear to escape from the law of

large numbers and the central limit theorem. However, the escape from the law of

large numbers does not occur in the presence of noise (a common element in any

EEG) [Kan90, Kan92].

The nonlinear model proposed by Freeman contrasts with one proposed by

Nunez [Nun95]. Nunez’s model treats the EEG signal as a linear wave process
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and the global dynamics of the brain are treated as a problem of the mass ac-

tion of coupled neuronlike elements [WL96]. While Freeman’s model predicts an

oscillation caused by neuronal firing at around 40 Hz that is consistent with ex-

perimental findings, Nunez’s model predicts a wave propagation velocity of 7-11

m/sec for human alpha waves that is also consistent with experimental findings.

Either model appears consistent with some experimental data, but is either model

correct? Interestingly enough, due to the noise in an EEG signal, both models

could be correct. Freeman’s model might actually agree with Nunez’s globally

linear model for neocortical EEG.

Since the nature of EEG signals is unknown, difficulties lie in trying to decide

on a particular signal recognition routine. At best, if EEG signals are linear,

then the linear recognition algorithms that most BCIs use may be sufficient. At

worst, linear recognition algorithms are poor descriptors of the signals they hope

to recognize.

2.2 Neurophysiological Signals Used in BCIs

What signals should be used for control in a BCI? This is an open question in the

field and quite a few signals are in current use. As previously stated, signals may be

broken into three general categories: implanted methods, evoked potentials, and

operant conditioning. Both evoked potential and operant conditioning methods

are normally externally-based BCIs as the electrodes are located on the scalp.

Table 2.1 describes the different signals in common use. It may be noted that some

of the described signals fit into multiple categories. As an example, single neural

recordings may use operant conditioning in order to train neurons for control or
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may accept the natural occurring signals for control. Where this occurs, the signal

is described under the category that most distinguishes it.

Several questions are of relevance when considering what signal to use for a

proposed BCI:

1. What remaining control is necessary in order to use the BCI?

Some BCIs require the use of eye movement control and some do not require

any remaining motor control.

2. Does the user of the BCI need to be trained in order to elicit

the necessary signal for control and if so, then how long does the

training last?

Operant conditioning methods may require extensive training in order to use

them for control.

3. What percentage of the population can obtain control using the

signal?

While almost everybody has apparent evoked potentials, not everybody ap-

pears to be able to use biofeedback in order to learn how to use a BCI based

on operant conditioning. This is discussed further below.

4. Does the signal provide continuous or discrete control?

Evoked potentials may only provide discrete control. Operant conditioned

signals may provide continuous control, because they are obtained from on-

going EEG activity.

5. Does the nature of the signal change over time?
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Signal Name Description
Mu, and Alpha
Rhythm Operant
Conditioning

The mu rhythm is an 8-12 Hz spontaneous EEG rhythm
associated with motor activities and maximally recorded
over sensorimotor cortex. The alpha rhythm is in the
same frequency band, but is recorded over occipital cor-
tex. The amplitudes of these rhythms may be altered
through biofeedback training.

Event-related
Synchroniza-
tion/Desynchronization
(ERS/ERD) Operant
Conditioning

Movement-related increases and decreases in specific fre-
quency bands maximally located over sensorimotor cor-
tex. Individuals may be trained through biofeedback
to alter the amplitude of signals in the appropriate fre-
quency bands. These signals exist even when the indi-
vidual imagines moving as the movement-related signals
are preparatory rather than actual.

Slow Cortical Poten-
tial Operant Condi-
tioning

Large negative or positive shifts in the EEG signal last-
ing from 300ms up to several minutes. Individuals may
be trained through biofeedback to produce these shifts.

P3 Component of the
Evoked Potential

A positive shift in the EEG signal approximately 300-
400ms after a task relevant stimulus. Maximally located
over the central parietal region, this is an inherent re-
sponse and no training is necessary.

Short-Latency Visual
Evoked Potentials

To produce the component, a response to the presenta-
tion of a short visual stimulus is necessary. Maximally
located over the occipital region, this is an inherent re-
sponse and no training is necessary.

Individual Neuron
Recordings

Individuals receive implanted electrodes that may ob-
tain responses from local neurons or even encourage
neural tissue to grow into the implant. Operant con-
ditioning may be used to achieve control or the natural
response of a cell or cells may be used.

Steady-State Visual
Evoked Potential
(SSVER)

A response to a visual stimulus modulated at a specific
frequency. The SSVER is characterized by an increase
in EEG activity at the stimulus frequency. Typically,
the visual stimulus is generated using white fluorescent
tubes modulated at around 13.25 Hz or by another kind
of strobe light. A system may be constructed by condi-
tioning individuals to modulate the amplitude of their
response or by using multiple SSVERs for different sys-
tem decisions.

Table 2.1: Common signals used in BCIs



2.2 Neurophysiological Signals Used in BCIs 25

Many of the signals currently used may change as a function of fatigue.

6. Does the signal necessitate an invasive procedure in order to work?

While most BCIs obtain control using electrodes on the scalp, implanted

methods are invasive.

Implanted methods use signals from single or small groups of neurons in order to

control a BCI. These methods have the benefit of a much higher signal-to-noise ratio

at the cost of being invasive. They require no remaining motor control and may

provide either discrete or continuous control. Chapin and Gaal have successfully

recorded up to 46 neurons and used their natural responses to enable four out

of eight rats to obtain water with the neural processes [CG99, CMMN99]. While

most systems are still in the experimental stage, Kennedy’s group has forged ahead

to provide control for locked-in patient JR [Kan90, Kan92]. Kennedy’s approach

involves encouraging the growth of neural tissue into the hollow tip of a two-wire

electrode known as a neurotrophic electrode. The tip contains growth factors that

spur brain tissue to grow through it. Through an amplifier and antennas positioned

between the skull and the scalp, the neural signals are transmitted to a computer,

which can then use the signals to drive a mouse cursor. This technique has provided

stable long term recording and patient JR has learned to produce synthetic speech

with the BCI over a period of more than 426 days. It is unknown how well this

technique would work on multiple individuals, but it has worked on both patients

(JR and MH) who have been implanted.

Evoked potentials (EPs) are usually obtained by averaging a number of brief

EEG segments time-registered to a stimulus in a simple cognitive task. In a BCI,
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EPs may provide control when the BCI application produces the appropriate stim-

uli. This paradigm has the benefit of requiring little to no training to use the BCI

at the cost of having to make users wait for the relevant stimulus presentation.

EPs offer discrete control for almost all users as EPs are an inherent response.

Exogenous components, or those components influenced primarily by physical

stimulus properties, generally take place within the first 200 milliseconds after

stimulus onset. These components include a Negative waveform around 100 ms

(N1) and a Positive waveform around 200 ms after stimulus onset (P2). Visual

evoked potentials (VEPs) fall into this category. Sutter uses short visual stimuli in

order to determine what command an individual is looking at and therefore wants

to pick [Sut92]. He also shows that implanting electrodes improves performance in

an externally based BCI.

In a different approach, McMillan and colleagues have trained volunteers to

control the amplitude of their steady-state VEPs to florescent tubes flashing at

13.25 Hz [JMCM98, MMCJ99, VWD96]. Using VEPs has the benefit of a quicker

response than longer latency components. The VEP requires that the subject

have good visual control in order to look at the appropriate stimulus and allows

for discrete control. As the VEP is an exogenous component, it should be relatively

stable over time.

Endogenous components, or those components influenced by cognitive factors,

take place following the exogenous components. Around 1964, Chapman and Brag-

don [CB64] as well as Sutton et. el. [SBZJ65] independently discovered a positive

wave peaking at around 300 ms after task-relevant stimuli. This component is

known as the P3 and is shown in Figure 3.1. While the P3 is evoked by many
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types of paradigms, the most common factors that influence it are stimulus fre-

quency (less frequent stimuli produce a larger response) and task relevance. The

P3 has been shown to be fairly stable in locked-in patients, re-appearing even after

severe brain stem injuries [OMTF96]. Farwell and Donchin first showed that this

signal may be successfully used in a BCI [FD88]. Using a broad cognitive signal

like the P3 has the benefit of enabling control through a variety of modalities, as

the P3 enables discrete control in response to both auditory and visual stimuli.

As it is a cognitive component, the P3 has been known to change in response to

subject fatigue. In one study, a reduction in the P3 was attributed to fatigue after

subjects performed the task for several hours [dSvLR86].

As shown in Table 2.1, several methods use operant conditioning on sponta-

neous EEG signals for BCI control. The main feature of this kind of operant

conditioning is that it enables continuous rather than discrete control. This fea-

ture may also serve as a drawback: continuous control is fatiguing for patients

and fatigue may cause changes in performance since control is learned. As shown

by the various groups using these methods, operant conditioning methods using

spontaneous EEG are not easily learned by everybody.

Wolpaw and his colleagues train individuals to control their mu rhythm ampli-

tude (discussed in Table 2.1) for cursor control [WMNF91]. Mu rhythm control

does not require subjects to have any remaining motor control. For the cursor

control task, normal subjects are trained on the order of 10-15 sessions in order

learn to move the cursor up/down. In the several papers examined, it appears that

not all subjects obtain control, although most seem to during this time frame. It is

normal to see four out of five subjects who obtain greater than 90% accuracy with
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the other one obtaining around chance [WMNF91]. This implies that somewhere

around 80% of the subjects may obtain good control.

In related work, the Graz brain-computer interface trains people to control the

amplitude of their ERS/ERD patterns. Subjects are trained over a few sessions in

order to learn a cursor control task. As in the mu rhythm control, not all subjects

learn to control the cursor accurately. Obtaining two out of six subjects who are

not able to perform the cursor control task has been reported [PKN+96]. Part of

the charm of this system is that it gives biofeedback to the user in the form of

a moving cursor after training. The use of areas over the sensorimotor cortex for

both ERS/ERD and mu rhythm control might pose a problem in people with ALS

because the cortical Betz cells in the motor cortex may die in the later stages of

the disease [BS96].

Slow cortical potentials serve as the signal in the Thought Translation Device,

a communication device for ALS patients created by Birbaumer’s group in Aus-

tria [BGH+99]. Since this system is used with patients, it is difficult to tell how

hard it is to learn the system. Patients may be medicated, depressed, or fatigued:

all of which affect learning rates. Subjects are trained over several months to use

the system. All subjects that have wanted to learn the system seem to have been

successful. No remaining motor control is necessary in order to use the Thought

Translation Device. Unlike mu rhythm control or ERS/ERD, the slow cortical

potential has not been used for continuous control. It may take many seconds in

order to produce and hold a slow cortical potential in order to trigger the system.

While the signals discussed are used currently, other signals may be possible.

Several papers have been written on recognizing EEG signal differences during
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different mental calculations. These papers suggest that different parts of the brain

are active during different types of mental calculation, and if these different tasks

may be accurately recognized, they could be used in a BCI. Lin et. al. [LTL93]

describe a study where five tasks were compared: multiplication problem solving,

geometric figure rotation, mental letter composing, visual counting, and a baseline

task where the subject was instructed to think about nothing in particular. Results

from this experiment suggest that the easiest tasks to identify are multiplication

problem solving and geometric figure rotation, but even these tasks are not easily

identified. Other papers have concentrated on mental tasks, but none have found

easily recognizable differences between different tasks [Dev96, FHR+95].

2.3 Existing Systems

Current systems range from simple experimental interfaces meant to test the suit-

ability of a specific EEG signal to full applications used by patients. The system

includes the hardware used in the BCI, the underlying BCI backend software, and

the user application. While the hardware used in a research testbed does not mat-

ter as long as it performs as needed, expense, portability, and reliability become

very real issues in a BCI for patient use.

The underlying BCI backend software is not discussed in many papers. It is,

however, as important as the hardware. The backend includes software for reading

in the EEG signals, scheduling them for processing, and processing them into a form

that may be used by the user application. The backend software determines the

BCI portability, extendibility, and flexibility. It also determines how maintainable

the software will be over a period of time. For instance, the construction of the
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software may provide the flexibility to enable users to choose from a wide variety

of user applications or the user may only be able to use one application if the BCI

system is monolithic.

In assessing current user applications, it is important to consider the usability

of the application. The field of human factors tells us repeatedly that a poorly de-

signed user application may injure performance. This applies to a BCI as well as to

many other items in everyday use and will occur regardless of the signal recognition

routines used. Several important factors should be considered in the design of the

application, including the following five mentioned by Ben Shneiderman [Shn98]:

1. What is the time to learn the system?

2. What is the speed of performance?

3. How many and what kinds of errors do users make?

4. How well do users maintain their knowledge after an hour, a day, or a week?

What is their retention?

5. How much did users like using various aspects of the system? What is their

subjective satisfaction?

Several features of existing BCIs are compared in Table 2.2. Surprisingly, most

BCI papers do not discuss subjective satisfaction at all and so the category for

subjective satisfaction only includes whether or not it was considered in the papers

about the system. In addition to these considerations, the application designer

might want to consider the following general goals as specified by the U.S. Military

Standard for Human Engineering Design Criteria [Shn98]:
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1. Achieve required performance by operator, control, and maintenance person-

nel

2. Minimize skill and personnel requirements and training time

3. Achieve required reliability of personnel-equipment combinations

4. Foster design standardization within and among systems

When measured using these considerations, all BCIs fall short in some manner.

This could be because most BCIs are research instruments or grow out of a research

project. In the future, it will be very important to consider the system-wide aspects

of BCIs.

2.3.1 The Brain Response Interface

Sutter’s Brain Response Interface (BRI) [Sut92] is a system that takes advantage of

the fact that large chunks of the visual system are devoted to processing information

from the foveal region. The BRI uses visually evoked potentials (VEP’s) produced

in response to brief visual stimuli. These EP’s are then used to give a discrete

command to pick a certain part of a computer screen. This system is one of the

few that have been tested on severely handicapped individuals. Word processing

output approaches 10-12 words/min. and accuracy approaches 90% with the use

of epidural electrodes. This is the only system mentioned that uses implanted

electrodes to obtain a larger, less contaminated signal.

A BRI user watches a computer screen with a grid of 64 symbols (some of

which lead to other pages of symbols) and concentrates on the chosen symbol. A

specific subgroup of these symbols undergoes a equiluminant red/green fine check
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System Training
Time

Number
of
Choices

Speed Errors Retention Subjective
Satisfac-
tion

Brain
Response
Inter-
face 2.3.1

10-60 min-
utes

64 30 10% Excellent Considered

SSVEP
Train-
ing [MMCJ00]

6 hrs. N/A N/A 20%
or less

Not men-
tioned

Not Dis-
cussed

P3 Char-
acter
Recogni-
tion [FD88]

Minutes 36 4 5% Excellent Not Dis-
cussed

Mu
Rhythm
Train-
ing [WMNF91]

15-20 ses-
sions

2 20 10% Not men-
tioned

Not Dis-
cussed

ERS/ERD 2.3.32-2.5 hrs. 2 N/A 11%
or less

Not men-
tioned

Not Dis-
cussed

Thought
Transla-
tion De-
vice [BGH+99]

Months 27 2 10-
30%

Not Good Indirectly
discussed

Implanted
Device

Months N/A 2 Not
re-
ported

Excellent Considered

Table 2.2: A comparison of several features in existing BCIs



2.3 Existing Systems 33

or plain color pattern alteration in a simultaneous stimulator scheme at the monitor

vertical refresh rate (40-70 frames/s). Sutter considered the usability of the system

over time and since color alteration between red and green was almost as effective

as having the monitor flicker, he chose to use the color alteration because it was

shown to be much less fatiguing for users. The EEG response to this stimulus

is digitized and stored. Each symbol is included in several different subgroups

and the subgroups are presented several times. The average EEG response for

each subgroup is computed and compared to a previously saved VEP template

(obtained in an initial training session), yielding a high accuracy system.

This system is basically the EEG version of an eye movement recognition system

and contains similar problems because it assumes that the subject is always looking

at a command on the computer screen. On the positive side, this system has one

of the best recognition rates of current systems and may be used by individuals

with sufficient eye control. Performance is much faster than most BCIs, but is very

slow when compared to the speed of a good typist (80 words/min.).

The system architecture is advanced. The BRI is implemented on a separate

processor with a Motorola 68000 CPU. A schematic of the system is shown in Fig-

ure 2.2. The BRI processor interacts with a special display showing the BRI grid of

symbols as well as a speech synthesizer and special keyboard interface. The special

keyboard interface enables the subject to control any regular PC programs that

may be controlled from the keyboard. In addition, a remote control is interfaced

with the BRI in order to enable the subject to control a TV or VCR. Since the

BRI processor loads up all necessary software from the hard drive of a connected

PC, the user may create or change command sequences. The main drawback of
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Figure 2.2: A schematic of the Brain Response Interface (BRI) system as described

by Sutter.

the system architecture is that it is based on a special hardware interface. This

may be problematic when changes need to be made to the system over time.

2.3.2 P3 Character Recognition

In a related approach, Farwell and Donchin use the P3 evoked potential [FD88]. A

6x6 grid containing letters from the alphabet is displayed on the computer monitor

and users are asked to select the letters in a word by counting the number of times

that a row or column containing the letter flashes. Flashes occur at about 10 Hz

and the desired letter flashes twice in every set of twelve flashes. The average
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response to each row and column is computed and the P3 amplitude is measured.

Response amplitude is reliably larger for the row and column containing the desired

letter. After two training sessions, users are able to communicate at a rate of 2.3

characters/min, with accuracy rates of 95%. This system is currently only used in

a research setting.

A positive aspect of using a longer latency component such as the P3 is that

it enables differentiating between when the user is looking at the computer screen

or looking someplace else (as the P3 only occurs in certain stimulus conditions).

Unfortunately, this system is also agonizingly slow, because of the need to wait for

the appropriate stimulus presentation and because the stimuli are averaged over

trials. While the experimental setup accomplishes its main goal of showing that

the P3 may be used for a BCI interface, the subjective experiences of a subject with

this system have yet to be considered. The 10 Hz rate of flashing may fatigue users

as Sutter mentions and this rate of flashing may cause epilepsy in some subjects.

2.3.3 ERS/ERD Cursor Control

Pfurtscheller and his colleagues take a different approach [Nun95, PFK93, PKN+96,

PNFP97, KFN+96]. Using multiple electrodes placed over sensorimotor cortex they

monitor event-related synchronization/desynchronization (ERS/ERD) [PG99]. In

all sessions, epochs with eye and muscle artifact are automatically rejected. This

rejection can slow subject performance speeds.

As this is a research system, the user application is a simple screen that allows

control of a cursor in either the left or right direction. In one experiment, for a

single trial the screen first appears blank, then a target box is shown on one side
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of the screen. A cross hair appears to let the user know that he/she must begin

trying to move the cursor towards the box. Feedback may be delayed or immediate

and different experiments have slightly different displays and protocols. After two

training sessions, three out of five student subjects were able to move a cursor right

or left with accuracy rates from 89-100%. Unfortunately, the other two students

performed at 60% and 51%. When a third category was added for classification,

performance dropped to a low of 60% in the best case [KFN+96].

The architecture of this BCI now contains a remote control interface that allows

controlling the system over a phone line, LAN, or Internet connection. This allows

maintenance to be done from remote locations. The system may be run from a

regular PC, a notebook, or an embedded computer and is being tested for opening

and closing a hand-orthesis in a patient with a C5 lesion. From this information,

it appears that the user application must be independent from the BCI, although

it is possible that two different BCI programs were constructed.

This BCI system was designed with the following requirements in mind [GSWP99]:

1. The system must be able to record, analyze, and classify EEG-data in real-

time.

2. The classification results must have the ability to be used to control a device

online.

3. The system must have the ability to have different experimental paradigms

and give multimodal stimulations.

4. The system must display the EEG channels on-line on a monitor.

5. The system must store all data for later off-line analysis.
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The system has the ability to record up to 96 channels of EEG simultane-

ously through the use of multiple A/D boards. Simulink and Matlab are the two

software packages used: Simulink to calculate the parameters of the EEG state

in real-time and Matlab to handle the data acquisition, timing, and experimen-

tal presentation. This design has the benefit of separating data processing from

acquisition and application concerns. This may lead to greater encapsulation of

data and maintainability. This design has the drawback of trying to use Matlab

for both data acquisition and the BCI application. For simple applications such as

the cursor control task, this decision makes sense. When the application becomes

more complex this design decision may lead to problems. Matlab is not an object-

oriented language and data encapsulation is not necessarily easy to accomplish.

This may lead to poor maintainability. In addition, the system depends on Matlab

for all program capabilities. This is fine for simple graphical interfaces, but may

break down when the programmer wants to communicate with another program

or even over the web. For these cases Matlab may offer several special program

extensions, but buying many extensions becomes problematic and expensive. It

would be easier to enable the application creator to use a variety of languages for

the application.

2.3.4 A Steady State Visual Evoked Potential BCI

Middendorf and colleagues use operant conditioning methods in order to train

volunteers to control the amplitude of the steady-state visual evoked potential

(SSVEP) to florescent tubes flashing at 13.25 Hz [VWD96, MMCJ00, JMCM98].

This method of control may be considered as continuous as the amplitude may
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change in a continuous fashion. Either a horizontal light bar or audio feedback

is provided when electrodes located over the occipital cortex measure changes in

signal amplitude. If the VEP amplitude is below or above a specified threshold for

a specific time period, discrete control outputs are generated. After around 6 hours

of training, users may have an accuracy rate of greater than 80% in commanding

a flight simulator to roll left of right.

In the flight simulator, the stimulus lamps are located adjacent to the display

behind a translucent diffusion panel. As operators increase their SSVER amplitude

above one threshold, the simulator rolls to the right. Rolling to the left is caused

by a decrease in the amplitude. A functional electrical stimulator (FES), has been

integrated for use with this BCI. Holding the SSVER above a specified threshold for

one second, causes the FES to turn on. The activated FES then starts to activate at

the muscle contraction level and begins to increase the current, gradually recruiting

additional muscle fibers to cause knee extension. Decreasing the SSVER for over

a second, causes the system to deactivate, thus lowering the limb.

Recognizing that the SSVEP may also be used as a natural response, Mid-

dendorf and his colleagues have recently concentrated on experiments involving

the natural SSVEP. When the SSVEP is used as a natural response, virtually no

training is needed in order to use the system. The experimental task for testing this

method of control has been to have subjects select virtual buttons on a computer

screen. The luminance of the virtual buttons is modulated, each at a different fre-

quency to produce the SSVEP. The subject selects the button by simply looking

at it as in Sutters Brain Response Interface. From the 8 subjects participating in

th experiment, the average percent correct was 92% with an average selection time
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of 2.1 seconds. Middendorfs group has advocated using visual evoked potentials,

in thi manner as opposed to their previous work on training control of the SSVEP,

for multiple reasons. Using an inherent response means that less time is spent

on training. The main drawback of this groups approach appears to be that they

flicker ligh different frequencies. Sutter solved the problem of flicker-related fa-

tigue by using alternating red/green illumination. The main frequency of stimulus

presentation at 13.25 Hz may also cause epilepsy.

2.3.5 Mu Rhythm Cursor Control

Wolpaw and his colleagues free their subjects from being tied to a flashing florescent

tube by training subjects to modify their mu rhythm [MNRW93, WMNF91]. This

method of control is continuous as the mu rhythm may be altered in a continuous

manner. It can be attenuated by movement and tactile stimulation as well as by

imagined movement. A subject’s main task is to move a cursor up or down on a

computer screen. While not all subjects are able to learn this type of biofeedback

control, the subjects that do perform with accuracy greater than or equal to 90%.

These experiments have also been extended to two-dimensional cursor movement,

but the accuracy of this is reported as having not reached this level of accuracy

when compared to the one dimension control [VWD96].

Since the mu rhythm is not tied to an external stimulus, it frees the user from

dependence on external events for control. The BCI system consists of a 64-channel

EEG amplifier, two 32-channel A/D converter boards, a TMS320C30-based DSP

board, and a PC with two monitors. One monitor is used by the subject and

one by the operator of the system [MW03]. Only a subset of the 64-channels are
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Figure 2.3: A schematic of the mu rhythm cursor control system architecture. The

system contains four parallel processes. The PC foreground process must be linked

to several of the other processes in order to obtain data, but these links have not

been shown as they were not explicitly stated in the reference paper.

used for control, but the number of channels allows recognition to be adjusted

to the unique topographical features of each subjects head. The DSP board is

programmable in the C-language enabling testing of all program code prior to

running it on the DSP board. Software is also programmed in C in order to create

consistency across system modules. The architecture of the system is shown in

Figure 2.3.

Four processes run between the PC and the DSP board. As signal acquisition

occurs, an interrupt request is sent from the A/D board to the DSP at the end
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of A/D conversion. The DSP then acquires the data from all requested channels

sequentially and combines them to derive the one or more EEG channels that

control cursor movement. This is the data collection process. A second process

then takes care of performing a spectral analysis on the data. When this analysis

is completed, the results are moved to dual-ported memory and an interrupt to

the PC is generated. A background process on the PC then acquires spectral data

from the DSP board and computes cursor movement information as well as records

relevant trial information. This process runs at a fixed interval of 125 msec. The

fourth process handles the graphical user interfaces for both the operator and the

subject and records data to disk.

The separation of data collection and analysis enables different algorithms to

be inserted for processing the EEG signals. All algorithms are written in C, which

is much easier to program in than Assembly language, but is not as easy as the

commercial Matlab scripting language and environment, which contains many help-

ful functions for mathematically processing data. The third and fourth processes

contain design decisions that may make maintenance and flexibility difficult. The

graphical user interface is tied to data storage. Conversion of EEG signals to cursor

control numbers happens over the DSP foreground/background processes and in

the PC background process. This lack of encapsulation promises to make changing

the application and signal processing difficult if such changes are planned.
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2.3.6 The Thought Translation Device

As another application used with severely handicapped individuals, the Thought

Translation Device has the distinction of being the first BCI to enable an in-

dividual without any form of motor control to communicate with the outside

world [BGH+99] . Out of six patients with ALS, three were able to use the

Thought Translation Device. Of the other three, one lost motivation and later

died and another discontinued use of the Thought Translation Device part way

through training, and then later was unable to regain control. The paper implies

that users do not want to use the BCI unless they absolutely must, but does not

disambiguate subjective user satisfaction of the system from general user depres-

sion.

The training program may use either auditory or visual feedback. The slow

cortical potential (see Table 2.1) is extracted from the regular EEG on-line, fil-

tered, corrected for eye movement artifacts, and fed back to the patient. In the

case of auditory feedback, the positivity/negativity of a slow cortical potential is

represented by pitch. When using visual feedback, the target positivity/negativity

is represented by a high and low box on the screen. A ball-shaped light moves

toward or away from the target box depending on a subjects performance. The

subject is reinforced for good performance with the appearance of a happy face or

a melodic sound sequence.

When a subject performs at least 75% correct, he/she is switched to the lan-

guage support program. At level one, the alphabet is split into two halves (letter-

banks) which are presented successively at the bottom of the screen for several

seconds. If the subject selects the letter-bank being shown by generating a slow
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cortical potential shift, that side of the alphabet is split into two halves and so on,

until a single letter is chosen. A return function allows the patient to erase the

last written letter. These patients may now write email in order to communicate

with other ALS patients world-wide. An Internet version of the thought transla-

tion device is under construction. The authors comment that patients refuse to

use pre-selected word sequences because they feel less free in presenting their own

intentions and thoughts.

2.3.7 An Implanted BCI

The implanted brain-computer interface system devised by Kennedy and colleagues

has been implanted into two patients [KB98, KBM+00]. These patients are trained

to control a cursor with their implant and the velocity of the cursor is determined

by the rate of neural firing. The neural waveshapes are converted to pulses and

three pulses are an input to the computer mouse. The first and second pulses

control X and Y position of the cursor and a third pulse as a mouse click or enter

signal.

The patients are trained using software that contains a row of icons representing

common phrases (Talk Assist developed at Georgia Tech), or a standard ’qwerty’

or alphabetical keyboard (Wivik software from Prentke Romich Co.). When using

a keyboard, the selected letter appears on a Microsoft Wordpad screen. When the

phrase or sentence is complete, it is output as speech using Wivox software from

Prentke Romich Co. or printed text. There are two paradigms using the Talk

Assist program and a third one using the visual keyboard. In the first paradigm,

the cursor moves across the screen using one group of neural signals and down
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the screen using another group of larger amplitude signals. Starting in the top

left corner, the patient enters the leftmost icon. He remains over the icon for two

seconds so that the speech synthesizer is activated and phrases are produced. In

the second paradigm, the patient is expected to move the cursor across the screen

from one icon to the other. The patient is encouraged to be as accurate as possible,

and then to speed up the cursor movement while attempting to remain accurate.

In the third paradigm, a visual keyboard is shown and the patient is encouraged

to spell his name as accurately and quickly as possible and then to spell anything

else he wishes.

This system uses commercially available software and thus the BCI implemen-

tation does not have to worry about maintenance of the user application. Un-

fortunately, the maximum communication rate with this BCI has been around 3

characters per minute. This is the same rate as quoted for EMG-based control with

patient JR and is comparable with the rates achieved by externally-based BCI sys-

tems. Kennedy has founded Neural Signals, Inc. in order to help create hardware

and software for locked-in individuals (see http://www.neuralsignals.com for more

information) and the company is continually looking for methods to improve con-

trol. JR now has access to email and may be contacted through the email address

shown on the companys web site.



Chapter 3
Kernel based hidden Markov model

In this chapter we address the problem of temporal signal classification. To enhance

the performance of hidden Markov model (HMM), we present a dynamic model

referred to as kernel based hidden Markov model (KHMM). The prominent feature

which distinguishes our learning algorithm from traditional maximum likelihood

based learning is that we develop a nonlinear discriminative procedure based on

a maximum margin criterion to learn the model. As a nonparametric learning

algorithm, our method has no need of prior knowledge of signal distribution while

providing a strong generalization mechanism.

3.1 Introduction

Consider the problem of temporal signals classification, such as, EEG signals. Fig-

ure 3.1 shows an example the time course of the actual average EEG signal wave-

forms. The P300 potential is created in the central sites of EEG measurements

when an infrequent and anticipated event occurs. The P300 signal is the signature

45
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Figure 3.1: This figure shows the time course of the actual average signal waveforms

(at Cz) or did not contain the desired character (standard)).

of the users brain registering the event, and typically occurs around 300 ms after

the infrequent event takes place. A ”‘good”’ P300 detector would reliably distin-

guish this impulse around 300ms with the other brain states. Previous study shows

that the dynamic model of temporal signals and the concept of state transition can

help us understand the signal well and develop the less error-prone classification

algorithm [Rab89, OGNP01].

The hidden Markov model (HMM) is a statistical model that has been widely

applied to many scientific and engineering areas [Rab89, OGNP01]. It can well

model temporal or sequential structures of signals by combining the observation

and state in an elegant manner. The most popular learning method for hidden

Markov model is maximum likelihood (ML) estimation. The goal of ML estimation
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is to find the parameter set that maximizes the likelihood of the training samples

given their corresponding categories. By using the Baum-Welch algorithm, these

parameters can be effectively estimated. However, ML estimation may not lead to

an optimal performance. This is due in part to the mismatch between the chosen

distribution form and the actual signal distribution that is typically not available.

To address this issue, a few recent endeavors resort to discriminative training

approaches, such as maximum mutual information (MMI) estimation [BYB04] and

minimum classification error (MCE) estimation [JCL97]. These approaches have

their roots in maximum a posteriori (MAP) decision theory. Different from ML,

here the learning is applied to all categories in the training phase. In the case

of inadequate sparse training samples, they can usually demonstrate significant

performance over the traditional ML approach. However, the performance of these

learning methods still largely depends on consistency to actual data distribution.

We expect a nonparametric method that can be used with arbitrary distri-

butions and without the assumption that forms of the underlying densities are

known. Support vector machine (SVM), for example, is a nonparametric classi-

fication method with solid background in statistical learning theory [Vap98]. In

principle, SVM constructs a hyperplane in the kernel space so as to maximize

the margin of separation between positive and negative examples, which guaran-

tees strong generalization compared with the traditional discriminative approaches

used to train HMM models. However, SVM suffers from an apparent lack of con-

sidering the underlying process of signal generation so that it may fail to classify

temporal signals.
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Motivated by this dilemma, we proposed a dynamic discriminative model, re-

ferred to as kernel based hidden Markov model (KHMM). It incorporates kernel-

based discriminative learning approaches into hidden Markov model, having no

need of prior knowledge of signal distribution. In this chapter, we further propose

a maximum margin discriminative learning method for KHMM. The learning is

formulated as finding the maximum margin of separation between the category

of the sample and the best runner-up in the kernel space. The formulation is

by imposing the explicit constraint to the cost function so that the inferred state

sequence from the designed model is the most possible state sequence.

3.2 Probabilistic models for temporal signal clas-

sification

Multiclass classification is to learn a function h : X 7→ Y that maps an instance

x of X into an element y of Y . In general Y is a countable set and has Y =

{1, · · · , K}. In this thesis, we consider the problem of the signal classification

where a signal x is a sequence from the set X = {X1 × · · · × XT}. In a motor

imagery signal classification task [PN01], for example, the goal is to determine

from the EEG signal, a time sequence signal for several seconds, which action the

user is imagining.

3.2.1 Generative vs. Conditional

In general, probabilistic models can be subdivided into generative and conditional

with respect to the prediction or classification task. A generative model assigns a
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normalized joint density p(x, y) to the input and output space X × Y with

p(x, y) ≥ 0,
∑
y∈Y

∫
x∈X

p(x, y) = 1.

Correspondingly, a conditional model assigns a normalized density p(y|x) only over

the output space Y with

p(y|x) ≥ 0,
∑
y∈Y

p(y|x) = 1 ∀x ∈ X .

Probabilistic interpretation of the model offers well-understood semantics and

an immense toolbox of methods for inference and learning. It also provides an

intuitive measure of confidence in the predictions of a model in terms of conditional

probabilities. In addition, generative models are typically structured to allow very

efficient maximum likelihood learning. A very common class of generative models

is the exponential family:

p(x, y) ∝ exp{wT f(x, y)}.

For exponential families, the maximum likelihood parameters w with respect to

the joint distribution can be computed in closed form using the empirical basis

function expectations ES[f(x, y) [DeG70, HTF01].

Of course, this efficiency comes at a price. Any model is an approximation to the

true distribution underlying the data. A generative model must make simplifying

assumptions (more precisely, independence assumptions) about the entire p(x, y),

while a conditional model makes many fewer assumption by focusing on p(y|x).

Because of this, by optimizing the model to fit the joint distribution p(x, y), we may

be tuning the approximation away from optimal conditional distribution p(y|x),

which we use to make the predictions. Given sufficient data, the conditional model
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will learn the best approximation to p(y|x) possible using w, while the generative

model p(x, y) will not necessarily do so. Typically, however, generative models

actually need fewer samples to converge to a good estimate of the joint distribution

than conditional models need to accurately represent the conditional distribution.

In a regime with very few training samples (relative to the number of parameters

w), generative models may actually outperform conditional models [NJ01].

3.2.2 Normalized vs. Unnormalized

Probabilistic semantics are certainly not necessary for a good predictive model if

we are simply interested in the optimal prediction. Support vector machines, which

do not represent a conditional distribution, typically perform as well or better than

logistic regression [Vap98, CST00].

In general, we can often achieve higher accuracy models when we do not learn

a normalized distribution over the outputs, but concentrate on the margin or de-

cision boundary, the difference between the optimal y and the rest. Even more

importantly, in many cases we discuss below, normalizing the model (summing

over the entire Y) is intractable, while the optimal y can be found in polynomial

time. This fact makes standard maximum likelihood estimation infeasible. The

learning methods we advocate in this thesis circumvent this problem by requir-

ing only the maximization problem to be tractable. We still heavily rely on the

representation and inference tools familiar from probabilistic models for the con-

struction of and prediction in unnormalized models, but largely dispense with the

probabilistic interpretation when needed.
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3.3 Markov random field representation of dy-

namic model

A popular family of classification function h for the problem of the signal clas-

sification is statistically based. To achieve the minimum classification error, the

optimal classifier, according to the classical Bayes decision theory, is the one that

employs the decision rule of Eq. (3.1), which is called the maximum a posteriori

(MAP) decision.

h(x) = arg max
y∈Y

P (y|x). (3.1)

The decision rule, unfortunately, is not given in practice and has to be estimated

from a training set with known class labels. A typical framework used to estimate

these probabilities is the Hidden Markov model (HMM) [Rab89]. As a probabilistic

graphical model, it is able to reveal the underlying process of signal generation

even though the properties of the signal source (state) remain greatly unknown.

As such, the a posterior probability is computed by summing over all possible state

sequences q = [q1, · · · , qT ]T , that is

P (y|x) =
∑
q

P (y,q|x). (3.2)

Unfortunately, the calculation of a posterior probability requires to enumerate

every possible state sequence of length T (the length of the signal). It is expo-

nentially large and thus computationally unfeasible. In practice the correct state

sequence, however, has the very high probability as opposed to the other state
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sequences. As an alternative to Eq. (3.2), the a posterior probability can be ap-

proximated by only considering the most likely state sequence, that is1

P (y|x) ≈ P (q̂x|x) (3.3)

where q̂y is the most likely state sequence belong to the given observation sequence

x.

Given the observed signals up to time T , the conditional probability distribution

P (q|x) is modeled with a Markov Random Field (MRF) [LMP01]. The structure of

a Markov Random Field is defined by an undirected graph G = {S,G}, where the

nodes are associated with variables S = {q1, · · · , qT}. A clique [GG84] is a set of

nodes c ⊆ S that form a fully connected subgraph (every two nodes are connected

by an edge). Note that each subclique of a clique is also a clique. We denote an

assignment of variables in a clique c as qc, and the space of all assignments to the

clique as Qc. According to the theorem of random fields [LMP01], we define a

conditional distribution associated with potential Vc(qc,x) as:

P (q|x) =
1

Z(x)
exp

[∑
c∈C

Vc(qc,x)

]
,

where C is the set of cliques for a graph and Z(x) is the partial function given by

Z(x) =
∑

q∈Q exp[
∑

c∈C V (qc,x)].

For simplicity, only first order Markov chain is used in our work. We con-

sider a left-right directed graph and each node is a singleton clique. In the

chain network in Figure 3.2, the cliques are simply the nodes and the edges:

C(G) = {{q1}, · · · , {qT}, {q1, q2}, · · · , {qT−1, qT}}. Intuitively, the node potentials

1in Eq. (3.3), p(q|x) = p(y,q|x) because we can certainly identify every state sequence q as

the unique category.
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Figure 3.2: First order Markov chain

quantify the correlation between the input x and the value of the node, while the

edge potentials quantify the correlation between the pair of adjacent state variables

as well as the input x. Potentials do not have a local probabilistic interpretation,

but can be thought of as defining an unnormalized score for each assignment in

the clique. Conditioned on the signal input, appropriate node potentials in our

network should give high scores to the most possible hidden state chains. For sim-

plicity, assume that the edge potentials would not depend on the input signals, but

simply should give high scores to pairs of hidden states that tend to appear often

consecutively.

In fact, a Markov random field is a generalized log-linear model, since the

potentials Vc(qc,x) could be represented as a sum of basis functions over x,qc:

Vc(qc,x) =
nc∑

k=1

wc,kfc,k(qc,x) = wT
c fc(qc,x)

where nc is the number of basis functions for the clique c. Hence the log of the

conditional probability is given by:

log P (y|x) ≈
∑

c∈C(G)

wT
c fc(qx,c,x) − log Z(x). (3.4)
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In case of node potentials for temporal signal classification, we define the basis

function as the kernel features of the observation xt, given the state qt, we denote

it as φφφ(qt,xt). For the edge potentials, we can define basis functions as the indicator

functions where ft−1,t(qt−1, qt) = 1 only if the transition from state qt−1 to state

qt is allowed. In this problem, as well as many others, we are likely to share the

weights of the model wc across cliques. Usually, all of node potentials would share

the same weights and basis functions and similarly for the pairwise cliques, no

matter in what position they appear in the graph.

We define a vector f to replace all the basis functions above, simplifying the

decision rule. For the first-order Markov model, f has node functions and edge

functions, so when the clique c is a node, the edge functions in f(qc,x) are defined

to evaluate to zero. Similarly, when the clique c is an edge, the node functions in

f(qc,x) are also defined to evaluate to zero. Now we can write:

f(q,x) =
∑

c∈C(G|y)

f(qc,x).

The weights w can be defined in the corresponding manner, so the classifier ac-

cording to our proposed model is given by:

h(x) = arg max
y∈Y

wT f(qx,x). (3.5)

3.4 Inference

There are several important questions that can be answered by probabilistic mod-

els. The task of finding the most likely assignment, known as maximum a-posteriori

(MAP) or most likely explanation (MPE), is just one of such questions, but most

relevant to our discussion. This problem is solved straightforward in the case of
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the normal pattern classification tasks, since there is no more unknown variable

once the model is built via the training samples. The temporal signal classifica-

tion, however, has to attempt to recover all the states associated with the given

observation sequence before finding assignment.

It should be clear that there is no ”‘correct”’ states sequence to be found.

Hence for practical situations, an optimality criterion is usually used to solve this

problem as best as possible. The difficulty lies with the definition of the optimal

state sequence. That is, there are several possible optimality criteria. For example,

one possible optimality criterion is to choose the state qt that are individually

most likely at each time t. This optimality criterion maximizes the confidence of

correct individual states. To implement this solution, we can define the a posteriori

probability variable with logarithm form

γt(i) = log P (qt = i|x), (3.6)

that is, the logarithm of probability of being in state i at time t, given the ob-

servation sequence x. According to Eq. (3.4), we can express γt as the following

form:

γt(i) = wT f(i,x),

where w is the weight for the dynamic model. Using γt(i), we can solve for the

individually most likely state q̂t at time t, as

q̂t = arg max
1≤i≤M

γt(i), 1 ≤ t ≤ T. (3.7)

Although Eq. (3.7) maximizes the note potential of correct states (by choosing the

most likely state for each t), there could be some problems with the resulting state

sequence. For example, when the dynamic model has state transitions which are
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not allowed (ft(i, j,x) = 0 for some i and j), the ”‘optimal”’ state sequence may,

in fact, not even be a valid state sequence. This is because the solution of Eq (3.7)

simply determines the most likely state at every instant, without regard to the

edge potential associated with the note t.

One possible solution to the above problem is to modify the optimality criterion

by involving the associated edge cliques. For example, one could solve for the

state sequence that maximizes the confidence of correct pairs of states (qt−1, qt), or

triples of states (qt−2, qt−1, qt), etc. Although these might be applicable for some

applications, the most widely used criterion, also used in our work, is to find the

single best state sequence, that is

q̂ = arg max
q∈Qy

P (q|x).

This problem can be solved by the Viterbi dynamic programming in O(L)

time [Vit67, For73]. Let the highest score of any subsequence from q1 to qt−1

ending with state i be defined as

δt(i) = max
q1,··· ,qt−1

[
t−1∑
t′=1

wT f(qt′ ,x) +
t−1∑
t′=1

wT f(qt′ , qt′+1,x)

]
.

By induction we have

δt+1(j) = max
i

[
δt(i) + wT f(i, j,x) + wT f(j,x)

]
. (3.8)

To actually retrieve the state sequence, we need to keep track of the argument that

maximized Eq (3.8), for each t and j. We do this via the array ψt(j).

We shall illustrate with an example on how the maximization is done. Consider

a three state KHMM. Figure 3.3a shows the possible paths of state transition as

described above, while Figure 3.3b is the procedure to find the most likely path

for the simple example.
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Figure 3.3: Illustration of Viterbi searching: (a) The state machine. (b) How

a path of maximum score is traced out using the Viterbi algorithm. The final

maximum score path is shown in bold.
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Consider Figure 3.3b. We take an observation sequence x1, · · · x4 of length four.

At time t = 2 state 1 can be visited from any of the three states that we had at time

t = 1. We find out the potentials on each of these notes and add corresponding

edge potentials to the initial confidences (we shall call this cumulative potentials

at state 1 as the score at state 1 at time t = 2). Thus going from state 1 to state 1,

the score at state 1 is 3 + 1 = 4. Similarly the score at state 1 in going from state

2 to state 1 is 3 + 2 = 5 and the score in going from state 3 to state 1 is 2 + 4 = 6.

Of these the score 6 is maximum. Hence we retain this score at state 1 for further

calculations. The maximum cumulative score paths are shown in the figure by

arrowed lines. The cumulative scores have been shown alongside the respective

states at each time instant. We repeat the same procedure for state 2 and state

3. We see that the maximum scores at state 2 and state 3 are 6 (through state 3)

and 6 (through state 1) respectively.

We repeat the above procedure again for t = 3 but now using the scores calcu-

lated above for each state rather than the initial confidences (we used them above

because we started with t = 1). And the same procedure is repeated for t = 4.

Now select out the state which has maximum score of all the states. We see that

state 3 is the required state with a score of 17. Back tracing the sequence of states

through which we got at state 3 at time t = 4 gives the required sequence of states

through which the given observation sequence has highest confidence of occurrence.

As can be seen from the figure this state sequence is state 1 ,state 3 ,state 1 ,state

3. This sequence has been shown in bold in the figure.

To prove our point suppose you were given that the length of observation se-

quence is required to be two and that the last state is to be state 3. What path
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would you choose to maximize the cost? The procedure outlined above clearly

shows that we would choose the path beginning at state 1 and ending at state 3

(at t = 2) as that gave the maximum score cost (viz. 6) at state 3. All other paths

have a lower score. Similar argument applies if any other state were required to

be the last state. Similarly if the observation sequence were to be of length three

and ending in say state 1 we would choose the path state 1, state 3, state 1 as

outlined in the figure and described above. This means that at any given instant

the path tracked up to any state by the above procedure is the maximum score

path if we were to stop at that instant at that state. Proceeding to t = 4 we see

that we have the maximum score paths corresponding to stopping in state 1, state

2 or state 3 respectively. We just pick up the highest of these three because we

are interested in the maximum score and hence we choose to stop in state 3 which

gives us the maximum score. The complete procedure for finding the most likely

state sequence is stated in Figure 3.4.

3.5 Maximum margin discriminative learning

Support vector machine, as one of the most important applications of statistical

learning theory, is originally designed for the binary classification problem. It has

a nice geometrical interpretation of discriminating one class from the other by a

hyperplane with the maximum margin. Maximum Margin discriminative learning

can be used to find this optimal decision surface, increasing the “confidence” of

the classification. However, It is not straightforward that defining the margin in

the case of multi-category classification problem. Currently, there are two types

of approaches for multi-class SVM. One is by constructing and combining several
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1. Initialization

δ1(i) = wT f(i,x)

ψ1(i) = 0, 1 ≤ i ≤ M

2. Recursion

δt(j) = max
1≤i≤M

[
δt−1(i) + wT f(i, j,x)

]
+ wT f(j,x)

ψt(j) = arg max
1≤i≤M

[
δt−1(i) + wT f(i, j,x)

]
, 2 ≤ t ≤ T, 1 ≤ j ≤ M

3. Termination

log P (q̂) = max
1≤i≤M

δT (i)

q̂T = arg max
1≤i≤M

δT (i)

4. Backtracking

q̂t = ψt+1(q̂t+1), t = T − 1, · · · , 1

Figure 3.4: The complete inference algorithm
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binary classifiers [BCD+94, Kre99, PCSt00], while other is by directly considering

all data in one optimization formulation [WW99, CS01]. We define our margin

in a similar way as Crammer and Singer [CS01], to construct the decision surface

in such a way that the margin between the true class and the best runner-up is

maximized. Therefore, given the training sample {(xi, yi)}N
i=1, the margin r has

the upper bound as follows:

r ≤ min
i

{
max
q∈Q|yi

[wyi
· f(q,xi)] − max

k 6=yi

[
max
q∈Q|k

[wk · f(q,xi)]

]}
(3.9)

where f(q,x) is the basis function defined in previous section.

Unfortunately, it may be difficult to maximize the margin of separation directly.

Similar to the support vector machine, this optimization problem is equivalent to

minimizing the Euclidean norm of the weight vector w while keeping the margin

r = 1. In consequence, the conditional probability of the most possible state

sequence for the correct class, given the optimal weights, is larger by at least one

than the probabilities assigned to the rest of the state sequences. Mathematically,

∀i, k,q wk · f(q,xi) + (1 − δk,yi
) ≤ wyi

· f(q̂i,xi) (3.10)

where q̂i = arg maxq [wyi
· f(q,xi)] is the most possible state for the correct class.

In the case of violating the condition defined by Eq. (3.10), we have to suffer

a loss which is linearly proportional to the difference between the confidence of

the correct label and the maximum among the confidences of the other labels. A

graphical illustration of the above is given in Figure 3.5. The circles in the figure

denote different labels and the correct label is plotted in dark while the rest of

the labels are plotted in blank. The height of each label designates its confidence.

Three settings are plotted in the figure. The left plot (a) corresponds to the case
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when the margin is not less than one, and therefore the condition is hold, and

hence the example is correctly classified. The middle figure (b) shows a case where

the example is correctly classified but with a small margin and we suffer some loss.

The right plot depicts the loss of a misclassified example. In summary, our goal

is to develop a computationally efficient procedure for using the training sample

S = {(xi, yi)}N
i=1 to find the optimal hyperplane such that above loss is equal to

zero for all the samples. When the sample S is linearly separable by a kernel based

hidden Markov model, we seek all the matrices wk
K
k=1 of the smallest summation

of norm that satisfies Eq. (3.10). The result is the following optimization problem,

min
w

1

2

∑
k

‖wk‖2
2

subject to : ∀i, k,q wyi
· f(q̂i,xi) + δk,yi

− wk · f(q,xi) ≥ 1.

(3.11)

Note that N × MT of the constraints for k = yi are automatically satisfied since,

∀q wyi
· f(q̂i,xi) + δyi,yi

− wyi
· f(q,xi) ≥ 1,

where M is the number of states and T the length of temporal signal.

This property is an artifact of the linearly separable case. In the case of non-

separable patterns, however, it is not possible to construct a separating hyperplane

without encountering classification errors. In order to allow some constraints to be

violated, we introduce a new set of nonnegative slack variables {ξi}N
i=1. Therefore,

the constrained optimization problem that we have to solve may now be stated as:

Given the training sample {(xi, yi)}N
i=1, find the optimum values of the weight

vector w such that they satisfy the constraints

∀i, k,q wyi
· f(q̂i,xi) + δk,yi

− wk · f(q,xi),≥ 1 − ξi
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(a) correct classification (b) correct with loss (c) misclassification

Figure 3.5: Illustration of the margin bound employed by the optimization problem

and the weight vector w minimizes the cost function:

J(w) =
1

2

∑
k

‖wk‖2
2 + C

∑
i

ξi,

Where C > 0 is a regularization constant and is determined experimentally.

To solve this optimization problem, the correct path q̂ has to be estimated in

advance. We will discuss this obstacle in the next chapter.

3.6 Conclusion

In this chapter, we presented here a kernel based hidden Markov model for clas-

sifying multi-class temporal signal data. The model is capable of both exploring

the temporal dynamic of the signals and maximizing the margins between classes

in an efficient way, by taking advantage of the rich language of Markov model and

the kernel techniques.

Because our approach only relies on using the maximum in the model for pre-

diction, and does not require a normalized distribution P (y|x) over all outputs,
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maximum margin estimation can be tractable when maximum likelihood is not. It

can be formulated as a compact QP with linear constraints, which we will explore

in the next chapter. An additional advantage of our approach is that the solutions

to the estimation are relatively sparse in the dual space, which makes the use of

kernels much more efficient.



Chapter 4
KHMM algorithms and experiments

In the previous chapter we introduce the kernel based hidden Markov model for

temporal signal classification. The chief computational bottleneck in learning the

parameters of model is due to a complete absence of the labels of states. To address

this problem, this chapter present a two-step learning algorithm that alternatively

estimates the parameters of the designed model and the most possible state se-

quences until convergence. The convergence of this algorithm has been proved in

this paper. Furthermore, we provide a set of the compact formulations equivalent

to the dual problem of our proposed framework, which dramatically reduces the

exponentially large optimization problem to polynomial size.

We apply our KHMM framework and two-step learning algorithm to a set of

synthetic data sequences with mixture of Gaussian. We show that our models

significantly outperform the traditional HMM approach by incorporating high-

dimensional decision boundaries of RBF kernels while capturing dynamic structure

of temporal signals.

65
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4.1 Two-step learning algorithm

Because the underlying stochastic process is not usually observable and thus the

optimal state sequence has to be estimated, the constrained optimization problem

given in section 3 can not be solved directly using standard quadratic programming

(QP) techniques. In this section, we present a two-step learning algorithm for

solving the constrained optimization problem. It can be seen that this two-step

algorithm is similar to the mathematics of standard Expectation-Maximization

(EM) technique [DLR77], although our optimization problem is not directly related

to probability estimation.

The EM algorithm is an iterative optimization technique to solve the parame-

ters estimation problem while we are not given some “hidden” nuisance variables.

In particular, an auxiliary function which averages over the values of the hidden

variables given the parameters at the previous iteration is defined. By minimizing

this auxiliary function, we will always carry out an improvement over the previ-

ous estimated parameters, unless finding the optimal values of parameters. In our

case, the hidden variables are the most possible state sequences q̂i. Instead of

considering the expected values over the distribution on these unobservable state

sequences, we just consider the sequences of states that minimize the cost, given

the previous values of the parameters:

Q(w, w̄)
def
=

1

2

∑
k

‖wk‖2
2 + C

∑
i

ξi

+
∑
i,k,q

ηi,k,q [wk · f(q,xi) − wyi
· f(q̂i(w̄yi

),xi) − δyi,k + 1 − ξi]

(4.1)

where the auxiliary nonnegative variables ηi,k,q are Lagrange multipliers, and q̂i(w̄yi
)

is the most possible state sequence of the sample xi given the previous value of
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weight w̄yi
.

4.1.1 Derivation of reestimation formulas from the Q-function

The next step is to find a new set of weights w which minimizes Q(w, w̄) where

w̄ is the previous set of weights. To solve this optimization subproblem, we use

Karush-Kuhn-Tucker (KKT) theorem [Ber95]. Accordingly, the solution to the

optimization subproblem given in Eq. (4.1) is determined by the the saddle point

of the function Q, which would be minimized with respect to w and ξ; it also would

be maximized with respect to η. Thus, the minimum over the variables ξ requires

the following condition of optimality:

∂Q

∂ξi

= C −
∑
k,q

ηi,k,q = 0. (4.2)

Application of this optimality condition yields:

∑
k,q

ηi,k,q = C. (4.3)

Combining with the constraint ηi,k,q ≥ 0, it leads to the following constraint:

0 ≤ ηi,k,q ≤ C. (4.4)

Similarly, for w we require,

∂Q

∂wk

= wk +
∑
i,q

ηi,k,qf(q,xi) −
∑

i

[
δyi,kf(q̂i,xi)

∑
k,q

ηi,k,q

]
= 0. (4.5)

Substituting Eq. (4.3) into Eq. (4.5) and representing f(q̂i,xi) =
∑

q δq̂i,qf(q,xi),

we have,

wk =
∑
i,q

(Cδyi,kδq̂i,q − ηi,k,q) f(q,xi). (4.6)
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Let αi,k,q = Cδyi,kδq̂i,q−ηi,k,q. Then Eq. (4.6) that describes the form of w becomes:

wk =
∑
i,q

αi,k,qf(q,xi). (4.7)

Additionally, we have the following constraint:∑
k,q

αi,k,q =
∑
k,q

(Cδyi,kδq̂i,q − ηi,k,q)

= C −
∑
k,q

ηi,k,q

= 0.

(4.8)

To postulate the dual problem for our optimization subproblem, we first expand

Eq. (4.1) as follows:

Q(w, w̄) =
1

2

∑
k

‖wk‖2
2 +

∑
i,k,q

ηi,k,qwk · f(q,xi) −
∑
i,k,q

ηi,k,qwyi
· f(q̂i,xi)

+
∑

i

ξi

(
C −

∑
k,q

ηi,k,q

)
+

∑
i,k,q

ηi,k,q (1 − δyi,k) .

(4.9)

The fourth term on the right-hand side of Eq. (4.9) is zero by virtue of the op-

timality condition of Eq. (4.3). Furthermore, from Eqs. (4.7) and (4.8), and the

definition of α we rewrite other terms of Eq. (4.9) as follows:∑
k

‖wk‖2
2 =

∑
k

(∑
i,q

αi,k,qf(q,xi)

)
·

(∑
j,q′

αj,k,q′f(q′,xj)

)

=
∑

k

∑
i,j,q,q′

αi,k,qαj,k,q′K(q,xi,q
′,xj),

∑
i,k,q

ηi,k,qwk · f(q,xi)

=
∑
i,k,q

{
(Cδyi,kδq̂i,q − αi,k,q)

[∑
j,q′

αj,k,q′f(q′,xj)

]
· f(q,xi)

}

=C
∑
i,j,q

αj,yi,qK(q̂i,xi,q,xj) −
∑

k

∑
i,j,q,q′

αi,k,qαj,k,q′K(q,xi,q
′,xj),
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∑
i,k,q

ηi,k,qwyi
· f(q̄i,xi)

=
∑
i,k,q

{
(Cδyi,kδq̂i,q − αi,k,q)

[∑
j,q′

αj,yi,q′f(q′,xj)

]
· f(q̂i,xi)

}

=C
∑
i,j,q

αj,yi,qK(q̂i,xi,q,xj) −
∑
i,j,q′

[
αj,yi,q′K(q̂i,xi,q

′,xj)

(∑
k,q

αi,k,q

)]

=C
∑
i,j,q

αj,yi,qK(q̂i,xi,q,xj),

∑
i,k,q

ηi,k,q (1 − δyi,k) =
∑
i,k,q

(Cδyi,kδq̂i,q − αi,k,q) (1 − δyi,k) =
∑
i,k,q

δyi,kαi,k,q,

where we define K(·) = f(q,xi) · f(q′,xj).

Therefore, we obtain the following optimization subproblem in the dual formu-

lation as follows:

max
α

{
−1

2

∑
k

∑
i,q

∑
j,q′

αi,k,qαj,k,q′K(q,xi,q
′,xj) +

∑
i,k,q

αi,k,qδyi,k

}

s.t.
∑
k,q

αi,k,q = 0,∀i; αi,k,q ≤ Cδyi,kδq̂i,q, ∀i, k,q;

(4.10)

Having determined the optimum Lagrange multipliers, denoted by αi,k,q, we

may compute the optimum weights w, yielding:

wk =
∑

i

∑
q∈Q|k

αi,k,qf(q,xi) (4.11)

where Q|k is the subset of state sequences q which belongs to model k.

4.1.2 Convergence

The algorithm consists of steps of repeatedly replacing w̄ by w using update

Eq. (4.11) until convergence. Theorem 4.2 guarantees that such an approach will

converge in a finite number of iterations to a solution so that the cost function
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J(w) reaches the minimal point. Note that the algorithm leads to local minima

only. To give the proof of theorem 4.2, we first prove the following lemma,

Lemma 4.1. For any pair (w, w̄) in Ω × Ω,

J(w) − Q(w, w̄) ≤ 0,

with equality if and only if w = w̄.

Proof. From the KKT condition of quadratic optimization [Ber95], the third term

of Q(w, w̄) must be equal to zero. Thus,

J(w) − Q(w, w̄) =

[
1

2

∑
k

‖wk‖2
2 + C

∑
i

ξ′i

]
−

[
1

2

∑
k

‖wk‖2
2 + C

∑
i

ξi

]

= C
∑

i

(ξ′i − ξi)

where {ξ′i} and {ξi} are the set of slack variables in the function J(w) and Q(w, w̄),

respectively. According to the definition of slack variables, we can compute {ξ′i}

and {ξi} as follows:

ξ′i = max
k

{wk · f(q,xi) − wyi
· f(q̂i(wyi

),xi) − δyi,k + 1} .

ξi = max
k

{wk · f(q,xi) − wyi
· f(q̂i(w̄yi

),xi) − δyi,k + 1} .

Since q̂ is by definition the most possible state sequence, we have the inequality

wyi
· f(q̂i(wyi

),xi) ≥ wyi
· f(q̂i(w̄yi

),xi). Thus,

J(w) − Q(w, w̄) =
∑

i

(ξ′i − ξi)

=
∑

i

[wyi
· f(q̂i(w̄yi

),xi) − wyi
· f(q̂i(wyi

),xi)] ≤ 0.

and the identity only holds when w = w̄.
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Theorem 4.2. Suppose that w(p) for p = 0, 1, 2, . . . is an instance of the two-step

learning algorithm such that:

1. the sequence J(w(p)) is bounded, and

2. Q(w(p+1),w(p)) − Q(w(p),w(p)) ≤ 0 for all p.

Then the sequence w(p) converges to some w∗ in the closure of Ω.

Proof. Using Lemma 4.1, the identity J(w) = Q(w,w) and the definition of w(p),

we can derive the following inequality:

J(w(p+1)) − J(w(p)) = J(w(p+1)) − Q(w(p+1),w(p)) + Q(w(p+1),w(p)) − Q(w(p),w(p))

≤ Q(w(p+1),w(p)) − Q(w(p),w(p)) ≤ 0,

as required to prove the convergence of w(p) to some w∗.

4.2 Decomposing the optimization problem

The dual QP given by Eq. (4.10) can be solved using standard QP techniques.

However, the number of variables α in Eq. (4.10) are exponential in the length of

observation sequence T . Therefore, converting the dual QP given by Eq. (4.10)

into a standard QP form yields a representation that employs a matrix of size

KNMT × KNMT (M the number of states), which leads to a very large scale

problem in general. We now introduce a simple, memory efficient algorithm for

solving the dual QP by decomposing it into small problems.

The core idea of our algorithm is based on the fact that the constraints of

Eq. (4.10) can be separated into N disjoint sets with respect to each training

sample. This allows us to perform the search in rounds. On each round the
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algorithm chooses a sample p and optimizes the Lagrange multipliers related to

this sample.

Let us define a vector αi,k which is formed by simply stacking all the variables

αi,k,q together for the sample i associated to category k, and the corresponding

matrix Ki,j,k whose elements are the values of the kernel function in accordance

with the Eq. (4.10). Using this notation we can rewrite the Eq. (4.10) in the

following vector form:

min
α

Q(α) =
1

2

∑
k

∑
i,j

αT
i,kKi,j,kαj,k −

∑
k

∑
i

δyi,kα
T
i,k1̄

s.t. ∀i, k αi,k ≤ C1̄q̂i
; ∀i

∑
k

αT
i,k1̄ = 0.

(4.12)

Let us fix a sample index p and write the QP only in terms of the variables

αi,k. We now isolate the contribution of αi,k in Q:

Q(αp,k) =
1

2

∑
k

∑
i,j

αT
i,kKi,j,kαj,k −

∑
k

∑
i

δyi,kα
T
i,k1̄

=
1

2

∑
k

αT
p,kKp,p,kαp,k +

∑
k

∑
i 6=p

αT
i,kKi,p,kαp,k

+
1

2

∑
k

∑
i6=p,j 6=p

αT
i,kKi,j,kαj,k −

∑
k

δyp,kα
T
p,k1̄ −

∑
k

∑
i 6=p

δyi,kα
T
i,k1̄

=
1

2

∑
k

αT
p,kKp,p,kαp,k +

∑
k

[∑
i6=p

αT
i,kKi,p,k − δyp,k1̄

T

]
αp,k

+
∑

k

[
1

2

∑
i6=p,j 6=p

αT
i,kKi,j,kαj,k −

∑
i6=p

δyi,kα
T
i,k1̄

]
.

(4.13)

By Defining Ap,k =
∑

i6=p αT
i,kKi,p,k − δyp,k1̄

T and omitting all the constants that

do not affect the solution, we have

min
α

Q(αp,k) =
1

2

∑
k

αT
p,kKp,p,kαp,k +

∑
k

Ap,kαp,k

s.t. ∀k αp,k ≤ C1̄q̂p ;
∑

k

αT
p,k1̄ = 0.

(4.14)
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Note that the normalization constraints on the multipliers α are local to each

example i. This allows us to perform a block-coordinate ascent where a block

corresponds to the vector of multipliers αi associated with a single example i. The

general skeleton of the block-coordinate ascent algorithm is given in Figure 4.1.

The algorithm is initialized with setting the multipliers αi,k,q = 0 for all {i, k,q}.

At each iteration, we choose an example from the training set and improve the

multipliers of this example by solving the isolated QP given in Eq. (4.14). The

loop continues iterating as long as the algorithm does not meet a stopping criterion.

A naive criterion is to run the algorithm for a fixed number of rounds. A better

way which we discuss in the section 4.3 is to keep on running the loop until a

predefined accuracy is not met.

To complete the details of the algorithm we need to address two issues. The first

problem we have to solve is to design a scheme for choosing the sample p on each

round for optimization. Two commonly used methods are to scan the training set

sequentially or to choose a sample uniformly at random. In the following section

we present a scheme for choosing a sample in a parsimonious manner. This scheme

appears to perform better empirically than other naive schemes. Second, we need

to discuss how to solve efficiently the isolated QP given by Eq. (4.14). A sequential

minimum optimization approach is described in section 4.4 to address this issue.

This method is more efficient than using the standard QP techniques, especially

when it suffices to find an approximation to the optimal solution.
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• Input {(x1, q̂1, y1), · · · , (xN , q̂N , yN)}.

• Set αi,k,q = 0, ∀i, k,q.

• Main loop:

1. Choose a sample p.

2. Compute the constants for the isolated optimization problem:

Ap,k =
∑
i 6=p

αi,kαi,kαi,k
TKi,p,k − δyp,k1̄

T .

3. Find αααp,k to be the solution of the the reduced problem for one

sample:

min
α

Q(αp,k) =
1

2

∑
k

αT
p,kKp,p,kαp,k +

∑
k

Ap,kαp,k

s.t. ∀k αp,k ≤ C1̄q̂p ;
∑

k

αT
p,k1̄ = 0.

Figure 4.1: Skeleton of the algorithm for learning kernel based hidden Markov

model



4.3 Sample selection strategy 75

4.3 Sample selection strategy

In this section we address the strategy of choosing a sample from the training set

for isolated optimization, and the stopping criterion for outer loop is also presented.

According to optimization theory, the solutions for the optimization problem

given by Eq. (4.14) must satisfy the KKT conditions. Therefore, we can choose

those samples who do not meet the KKT conditions. Before deriving the formal

criterion, let us recall the Lagrangian of the problem, that is:

L(α, u, θ) =
1

2

∑
k

αT
p,kKp,p,kαp,k +

∑
k

Ap,kαp,k

−
∑

k

ūT
k (C1̄q̂i

− αp,k) − θ
∑

k

αT
p,k1̄

(4.15)

The first condition is,

∂L
∂αp,k

= Kp,p,kαp,k + AT
p,k + ūk − θ1̄ = 0̄. (4.16)

Define F (p, k,q) =
∑

i

∑
q′ αi,k,q′K(q,xp,q

′,xi) − δyp,k. Using this definition and

KKT conditions, we get the following set of constraints on a feasible solution for

the isolated QP:

∀k,q F (p, k,q) + uk,q = θ; (4.17)

∀k,q uk,q

(
Cδyp,kδq̂p,q − αp,k,q

)
= 0; (4.18)

∀k,q uk,q ≥ 0. (4.19)

We can further simplify the equations by considering two cases. The first case is

when there is a αp,k,q such that αp,k,q = Cδyp,kδq̂p,q. In this case Eq. (4.18) holds

automatically. By combining Eq. (4.17) and Eq. (4.19) we have,

F (p, k,q) ≤ θ. (4.20)
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In the second case αp,k,q < Cδyp,kδq̂p,q for each element of q. In order for Eq. (4.18)

to hold we must have uk,q = 0. Thus, using Eq. (4.17) we get that,

F (p, k,q) = θ. (4.21)

As stated before, the constraints on α from the isolated optimization problem

given by (4.14) imply that for all k, αp,k ≤ C1̄q̂p , and
∑

k αT
p,k1̄ = 0. As such,

if these constraints are satisfied there must exist at least one variable αp,k,q such

that αp,k,q < Cδyp,kδq̂p,q. Let us define Λ = {k,q : αp,k,q < Cδyp,kδq̂p,q}. We thus

get that θ = min{k,q}∈Λ F (p, k,q). Finally, we obtain:

max
k,q

F (p, k,q) ≤ min
{k,q}∈Λ

F (p, k,q). (4.22)

We now define the difference as follows:

dp = max
k,q

F (p, k,q) − min
{k,q}∈Λ

F (p, k,q). (4.23)

According to the definition, F (p, k,q) is the confidence of input signal xp along the

state path q for the model k. As such, we can compute the maximum of F (p, k,q)

for all p and k through our inference algorithm presented in the previous chapter.

Similarly, the right item of inequality above can be calculated by adjusting the

inference algorithm to find the minimum over the path sequence space Λq.

Since maxk,q F (p, k,q) ≥ min{k,q}∈Λ F (p, k,q) then necessary condition to be

an optimum for Eq. (4.14) is that dp = 0. In the actual numerical implementation,

we will relax this condition to a given tolerance 0 ≤ ε ¿ 1 such that dp ≤ ε.

Therefore, we keep performing the main loop of Figure 4.1 so long as there are

examples (xp, yp) whose values dp are greater than ε.

The variables dp also serve as our criterion for selecting an sample for an update.

In our implementation we select the sample index p for which the associated dp
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is maximal. We then find the multipliers αp,k,q for all possible k,q which are

the solution of the isolated optimization problem given in Eq. (4.14). Due to

the change in αp,k,q we need to recalculate the maximum of F (p, k,q) and the

minimum of F (p, k,q) over Λ for all p and k. The pseudo-code describing this

process is deferred to the next section in which we present an efficient algorithm

for solving the isolated QP problem without any extra matrix storage and without

using numerical QP optimization steps at all.

4.4 Sequential minimal optimization

In the case of the problems with a small number of classes k, sequences T and

states M , the standard QP techniques can solve efficiently the isolated dual prob-

lems above. However, this could be intractable when we are facing the larger size

of the isolated dual problem. Fortunately, we do not need to solve the reduced

optimization problem above at each pass through the data, but just involving two

Lagrange multipliers at each optimization step. It is analogous to the sequential

minimal optimization (SMO) method used in SVM [Pla99].

The core idea of Sequential Minimal Optimization (SMO) approach is to take

an ascent step that modifies the least number of variables.In our case, we must

alter simultaneously at least two Lagrange multipliers, in order to respect the

normalization constraint given by Eq. (4.14). This can be satisfied by moving

weight from one dual variable to another.

In the following subsections, we address two components crucial to this opti-

mization problem, an analytic solution for optimizing two multipliers simultane-

ously and a strategy to selecting these two multipliers.
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4.4.1 Optimizing two multipliers

Assume we have picked two multipliers from sample 1 and denote these two mul-

tipliers as α1 and α2, without loss of generality. Similarly, the state sequences

associated to these two multipliers are represented to q1 and q2. We also let the

new values of these two multipliers be α∗
1 and α∗

2, respectively. Due to the normal-

ization constraint, we define a constant D and have the following equality:

D = α∗
1 + α∗

2 = α1 + α2

We can simplify Eq. (4.14), by considering the two cases. The first case is when

both α1 and α2 belong to the same category, called 1. In this case, those multipli-

ers from other categories do not affect the solution and can be omitted from the

optimization problem. We have

Q′(α1, α2) =
1

2
K(q1,x1,q1,x1)α

2
1 +

1

2
K(q2,x1,q2,x1)α

2
2 + K(q1,x1,q2,x2)α1α2

+ α1

S∑
s=3

αsK(q1,x1,qs,x1) + α2

S∑
s=3

αsK(q2,x1,qs,x1)

+ α1

N∑
i=2

S∑
s=1

αsK(q1,x1,qs,xi) + α2

N∑
i=2

S∑
s=1

αsK(q2,x1,qs,xi)

− δy1,1α1 − δy1,1α2,

where S is the number of all the possible state sequences in the state space Q. With

slight abuse of notation, we replace Q′ as Q and have the following definitions:

V1 =
S∑

s=3

αsK(q1,x1,qs,x1) V2 =
S∑

s=3

αsK(q2,x1,qs,x1)

θ1 =
N∑

i=2

S∑
s=1

αsK(q1,x1,qs,xi) θ2 =
N∑

i=2

S∑
s=1

αsK(q2,x1,qs,xi).
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Along the linear the linear equality constraint and the above definition, the objec-

tive function Q can be expressed in terms on α2 alone:

Q(α2) =
1

2
K11(D − α2)

2 +
1

2
K22α

2
2 + K12(D − α2)α2

+ (V1 + θ1 − δy1,1)(D − α2) + (V2 + θ2 − δy1,1)α2,

(4.24)

where K11 = K(q1,x1,q1,x1), K22 = K(q2,x1,q2,x1) and K12 = K(q1,x1,q2,x1).

The extremum of the object function is at

dQ
dα2

= −K11(D−α2)+K22α2+K12D−2K12α2−(V1+θ1−δy1,1)+(V2+θ2−δy1,1) = 0.

If the second derivative is positive, which is the usual case, then the minimum of

α2 can be expressed as

α∗
2(K11 + K22 − 2K12) = (K11 − K12)D + (V1 + θ1) − (V2 + θ2).

According the definition of F (p, k,q, for the state sequences q1 and q2 we have F1

and F2 as follows:

F1 = F (1, 1,q1) = K11α1 + K12α2 + V1 + θ1 − δy1,1

F2 = F (1, 1,q2) = K12α1 + K22α2 + V2 + θ2 − δy1,1

Therefore, we compute the minimum of multiplier α2 through

α∗
2 = α2 +

F1 − F2

K11 + K22 − 2K12

.

In the second case that α1 and α2 belong to different categories (suppose 1 and

2), we use the similar derivation and get the solution for finding the minimum of

multiplier α2 through

α∗
2 = α2 +

F1 − F2 + δy1,1 − δy1,2

K11 + K22

.
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Note that we can rewrite the new assignments of the given multipliers in these two

cases to a unified form, as

α∗
2 = α2 +

(F1 + δy1,k1) − (F2 + δy1,k2)

K11 + K22 − 2δk1,k2K12

α∗
1 = α1 −

(F1 + δy1,k1) − (F2 + δy1,k2)

K11 + K22 − 2δk1,k2K12

,

(4.25)

where k1, k2 are the class label associated with α1 and α2, respectively.

In addition to the normalization constraints, the update of α also need to

meet the marginal constraints αp,k,q ≤ Cδyp,kδq̂p,q. Considering together with

normalization constraints, we derive the bound of the multipliers α as

0 ≤ αp,k,q ≤ C if δyp,kδq̂p,q = 1;

−C ≤ αp,k,q ≤ 0 if δyp,kδq̂p,q = 0.

In the Figure 4.2 we show an example for optimizing a multiplier with which

δyp,kδq̂p,q = 1 is associated. It is clear that the above bounds cause the Lagrange

multipliers to lie within the bounds. The updated optimum either occurs at the

minimum of the parabola if it is feasible or the upper or lower bound otherwise, as

shown in the figure. The similar situation is hold when δyp,kδq̂p,q = 0.

4.4.2 Selecting SMO pairs

In the previous subsection we present an algorithm for optimizing the two chosen

multipliers α1 and α2. As long as the algorithm always optimizes and updates

two multipliers at every step, then each step will decrease the objective function.

The optimum will be found when no one Lagrange multiplier violate the KKT

conditions. Note that KKT conditions are also used as the strategy to select the

sample in the section 4.3. To remind the reader, we choose the sample who have
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Figure 4.2: The bound of optimum of a multiplier with δyp,kδq̂p,q = 1, horizontal

axis represents α with two vertical lines depicting the lower and upper bounds 0

and C, respectively. Vertical axis represents the objective cost. Optimum either

occurs at the minimum of the parabola if it is feasible or the lower or upper bound

otherwise.



4.4 Sequential minimal optimization 82

the maximal dp = maxk,q F (p, k,q) − min{k,q}∈Λ F (p, k,q). As long as there is a

multiplier who violates the KKT conditions, the variable d of the corresponding

sample must be greater than zero, and eventually the sample would be chosen for

optimization. The computation of d is determined by two state sequences, the most

likely state sequence for input signal and the least likely state sequence among the

support vectors associated with the input signal. They all must violate the KKT

conditions. Therefore, we can choose their multipliers for optimization and keep

performing the selection until the variable d corresponding to the given sample is

less than the predefined tolerance ε.

We are now ready to describe the complete implementation of the algorithm

for learning kernel based hidden Markov model. The algorithm gets a required ac-

curacy parameter ε, ε′ and the value of C. We begin the algorithm with αi,k,q = 0

for all indices and the initial estimates of the hidden state sequence. Such initial

estimates can be obtained in a number of ways, for example, manual segmentation

of the input sequences into states and segmental k-means segmentation with clus-

tering. After the initial estimates, the algorithm goes to main loop for iteratively

reestimating the weights of the model using two-step learning algorithm. On each

iteration we compute from Fi,1 and Fi,2 the value di for each sample and choose

the sample index p for which dp is the largest. We then call the sequential min-

imal optimization algorithm which in turn finds the solution to the isolated QP

problem for the sample indexed p. This algorithm selects two Lagrange multipliers

who violate the KKT conditions and find the optima of these two multipliers. This

process is repeated so long as the value di is larger than ε for all 1 ≤ i ≤ N . We

outline the complete algorithm in Figure 4.3.
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Input {(x1, y1), . . . , (xN , yN)}.
Initialize

1. αi,k,q = 0 fori = 1, . . . , N, k = 1, . . . , K,q ∈ Q

2. q̂i i = 1, . . . , N

Repeat

• Initialize for i = 1, . . . , N, k = 1, . . . , K,q ∈ Q

1. Fi,1 = maxk,q F (p, k,q) (ki,1,qi,1) = arg maxk,q F (p, k,q)

2. Fi,2 = min{k,q∈Λ} F (p, k,q) (ki,2,qi,2) = arg min{k,q∈Λ} F (p, k,q)

3. di = Fi,1 − Fi,2

• Repeat:

– Set: p = arg maxi di

– Repeat:

∗ Set k1 = kp,1, k2 = kp,2, q1 = qp,1, q2 = qp,2

∗ Update αp,k1,q1 and αp,kp,1,q2 by the sequential maximal optimiza-
tion algorithm

∗ Update Fp,1, Fp,2, dp

– Until dp ≤ ε

– Update: Fi,1, ki,1,qi,1 for i = 1, . . . , N

– Update: Fi,2, ki,2,qi,2 for i = 1, . . . , N

– Update: di for i = 1, . . . , N

• Until di ≤ ε for i = 1, . . . , N

Until
∣∣∑

k

(
‖w∗

k‖
2
2 − ‖wk‖2

2

)∣∣ ≤ ε′

Output:

h(x) = arg max
k

max
q∈Q|k

 ∑
i,q′∈Q|k

αi,k,qK(xi,q
′,x,q)

 .

Figure 4.3: The complete two-step learning algorithm
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4.5 Experimental results

In this section, a classification experiment based on a set of synthetic sequence data

were conducted to study the characteristics of our proposed learning algorithm, and

the difference in classification performances as compared to traditional learning

method.

In this experiment, we individually generate two classes of the synthetic data

set using two different first-order hidden Markov models. Each model is a left-right

model and consists of three states. Every state is modeled as a Gaussian mixture

with two components. To evaluate the performance of our method, we define the

states belong to the different classes are so similar that there are very big overlap

between them. Fig. 4.4 shows a scatter plot of some synthetic data generated for

the two classes.

We divide the dataset into 10 training subsets and one testing subset. The

testing data set contains 1000 samples with 15 time sequences. To evaluate the

generalization of the different methods, we randomly choose the training samples

with different size. The accuracy results, summarized in Figure 4.5, are averages

over the 10 folds. We implemented the HMM and our proposed kernel based

hidden Markov model (referred to KHMM in figure 4.5). The parameters of HMM

were trained by the traditional maximum likelihood learning algorithm, while our

proposed model was trained by margin maximization. The kernel function used in

our proposed model was the RBF kernel [Hay99].

Figure 4.5 shows two types of gains in accuracy. The use of kernels leads

our margin-based method to achieve a very significant gain in accuracy over the
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Figure 4.4: The distribution of synthetic data
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Figure 4.5: Average classification performance for HMM and KHMM

respective the likelihood maximizing method. Our approach gave 6.7% improve-

ment in classification accuracy over ML method for 60 training samples, while 8.1$

improvement was achieved for 200 training samples. Furthermore, our proposed

approach obtained a smoother curve with respect to the different size training sets.

It shows that our method has better generalization performance in the case of the

training data with big overlap. Interestingly, the traditional maximum likelihood

method might cause the model to be overtrained when the training set is the size

of 200, while the curve of the results given by our proposed model keep relatively

smooth.

4.6 Conclusion

We presented here a kernel based hidden Markov model (KHMM) for classifying

multi-class sequential signals/data. The model is capable of both exploiting the



4.6 Conclusion 87

temporal dynamics of the signals and maximizing the margins between classes in

an effective way, by taking advantage of the rich language of hidden Markov model

and superior separability of the kernel techniques. One of the most important

contributions in our work is to propose a maximum margin discriminative learn-

ing method. It was presented with a two-step learning algorithm for constructing

KHMM, a theoretical analysis showing its convergence to local minima, and com-

plexity reduction method for optimization process.

The experimental results on the synthetic sequence data have shown that

KHMM can exploit the nature of sequential signals and significantly outperforms

the HMM based parametric methods. Overall, we believe that our proposed model

will significantly further the applicability of high accuracy margin-based methods

to real-world temporal signals. In the next chapter, we apply this framework to an

application of brain computer interfaces, motor imagery signals.



Chapter 5
Motor imagery based brain computer

interfaces

Improving classification accuracy is a key issue to advancing brain computer in-

terface (BCI) research from laboratory to real world applications. This chapter

presents a high accuracy EEG signal classification method using single trial EEG

signal to detect left and right hand movement imagination. We apply an optimal

temporal filter to remove irrelevant signal and subsequently extract key features

from spatial patterns of EEG signal to perform classification. Specifically, the pro-

posed method transforms the original EEG signal into a spatial pattern and applies

the RBF feature selection method to generate robust feature. Classification is per-

formed by the kernel based hidden Markov framework presented in the chapter 3,

and our experimental results have shown significant improvement in classification

accuracy over SVMs and HMMs.

88
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5.1 Introduction

A brain-computer interface (BCI) is a communication system that does not depend

on the brain’s normal output pathways of peripheral nerves and muscles [WBM+02].

At present, eletroencephalography (EEG) is one of the most prevailing signals used

in non-invasive BCI systems.

There are various kinds of EEG based BCIs categorized by the signals used [WBM+02].

Typical signals include slow cortical potential, µ/β rhythms, EEG (de)synchronization

evoked by motor imagery, steady-state visual evoked potential, P300 potential, etc.

EEG signals evoked by limb movement or motor imagery are of interest to this

chapter.

The preparation, actual operation and mental imagination of limb movements

activate similar EEG changes at sensorimotor areas on the scalp. When such

regions become activated, EEG activities display an amplitude attenuation or

event-related desynchronization (ERD). For instance, imagination of right-hand

or left-hand movement results in the most prominent ERD localized over the cor-

responding sensorimotor cortex. However, ERD is subject-related, i.e. different

subjects have different spatial localizations of ERD. This leads to difficulty when

extracting features for classification.

Pfurtscheller et. al. [PNFP97] extracted motor imagery signals from C3 and

C4 EEG Channels to build an online BCI system. The features presented to the

classifier were short-term power spectra in pre-define frequency bands. This system

using a LVQ algorithm achieved an accuracy of approximately 80% for 3 subjects.

Studies showed that the position of ERD may vary from subject to subject,

and are not necessarily located beneath electrode positions C3 and C4 [PN01]. As
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such, using more channels of signals may improve performance. Müller-Gerking et.

al. [MGPF99] proposed to use Common Spatial Patterns (CSP) for the classifica-

tion of motor execution or imagery signals. The CSP method resulted in significant

improvement to performance as compared to their previous work in [PNFP97].

To extract the more significant and reliable features, as we mentioned before,

the noises interfering with the interesting signals have to be reduced. Principal

Component Analysis (PCA), as one of the popular noise reduction methods, has

been widely used in statistical pattern recognition and signal processing. The main

idea of PCA is to transform the data space to a feature space where the features

are uncorrelated with each other. By retaining the features which have largest

variances, the noises can be reduced to a certain degree. Motivated by this, in this

chapter we attempt to develop a mathematical process to combine CSP feature

extraction method with PCA method. The resulted transformation is equivalent

to a set of spatial filters optimized to distinguish between the left and right hand

movement or motor imagery.

In addition, temporal filtering was applied to reduce noise. In the past, the

selection of frequency bands was limited to a few pre-defined bands [MGPF99,

PN01]. In this chapter, we investigated the effects of temporal filtering for specific

subject by an exhaustive search over all the frequency bands. We showed that

classification performance could be improved significantly by applying proper band-

pass filter.

To further enhance recognition accuracy, a Radial Basis Function (RBF) based

feature selection and generation algorithm [CYB96] was adapted. We applied

the Orthogonal Least Square (OLS) algorithm [CYB96] to feature selection and
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generation. The extracted features are then used to train the SVMs, HMMs and our

proposed KHMM framework. We show that our models significantly outperform

other two approaches.

5.2 Experimental paradigm

In the standard paradigm for the discrimination of two mental states, the experi-

mental task is to imagine either right-hand or left-hand movement depending on a

visually presented cue stimulus. The subject was instructed to fixate on a computer

screen about in 180cm front of him. Each trial was nine seconds long (Figure 5.1),

starting with a blank screen which indicated a pause. At the 2nd second, an acous-

tic stimulus indicates the beginning of the trial, the blank screen was replaced by

a cross ”‘+”’ for 1s. At t = 3s, a prompting arrow stimulus was displayed as

cue, pointing either to the left or to the right lasting for 6 seconds. Following the

direction of the arrow, the subject performed motor imagery accordingly.

Two male subjects (age 30-40 years) took part in the study, and both of them

were not familiar with BCI. They are free from medication and central nervous

system abnormalities. There were three experiments run in the different days, and

two sessions of them were performed by subject A. The complete session consisted

of five runs, each run consisted of 20 trials. The number of left and right hand

imaginations are balanced.

EEG signals were recorded using the Neuroscan SynAmp2 system, sampled

at 250 Hz. 28 channels of EEG around the C3 and C4 region related to the

sensorimotor cortex were then chosen from the 64 scalp electrodes. EEG signals

between 100 ms before stimuli and 4000 ms after stimuli were extracted for later
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Figure 5.1: Timing scheme for the motor imagery experiments

processing.

5.3 EEG feature extraction

A classification task is usually broken up into two main parts. The first part is

the extraction of relevant features that capture the class-invariant characteristics

from some trial. The second part is the classification algorithm, performed on

the extracted features. In this section, we present the feature extraction realized

by projections of the high-dimensional, spatial-temporal raw signals onto very few

specifically designed spatial filters. These filters are designed in such a way that the

variances of the resulting signals carry the most discriminative information. The

adjunct of the filters are called Common Spatial Patterns, and they are obtained

from a set of calibration data by the method of CSP.
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The features for the classification proper are vectors whose elements are the

variances of the projected signals. These feature vectors are finally classified by

machine learning approaches, such as simple linear Bayes classifiers, support vector

machine,hidden Markov model, whose parameters a obtained again from the same

set of calibration data, after projection onto the CSPs obtained in the first step.

The method of CSPs now finds a decomposition of the two groups of recordings

into modes that are common to both groups, but maximally suited to distinguish

between the groups. Mathematically, the method relies on the simultaneous diag-

onalization of two matrices closely related to the covariance matrices.

Given an N -channels spatial-temporal EEG signal X, where X is a N ×K ma-

trix and K denotes the number of samples in each channel. Let X = [x1, · · · ,xK ],

the covariance matrix for i-th trial is

R(i) =
K∑

k=1

(
x

(i)
k − 1

K

K∑
k=1

x
(i)
k

)(
x

(i)
k − 1

K

K∑
k=1

x
(i)
k

)T

(5.1)

where x
(i)
k is an N -dimensional vector at time k. This way, we can estimate covari-

ance matrices for left and right hand data respectively. The normalized covariance

matrices are

RL =
1

l

l∑
i=1

R
(i)
L

trace(R
(i)
L )

RR =
1

r

r∑
i=1

R
(i)
R

trace(R
(i)
R )

(5.2)

where RL, RR are the normalized covariance matrices and l, r denote numbers of

trials, for the left and right hand data respectively.

The common spatial pattern [MGPF99] is extracted based on the simultaneous

diagonalize of two covariance matrices belonging to left and right hand movement,

and the resulted decomposition maximizes the differentiation between two groups
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of data. After we have covariance matrices RL and RR, we can find

R = RL + RR = UλUT (5.3)

where U and λ are the eigenvectors and eigenvalues of R respectively. With these

matrices, we can find a transformation matrix W = λ−1
2U

T
to calculate CSP

features. For details on this, refer to [MGPF99]. Here, we modify the approach

of [MGPF99] by combining PCA, i.e., we only use the p principal eigenvectors from

U to form the transformation matrix

Ws = λ
− 1

2
s UT

s (5.4)

where Us is composed of the p most significant eigenvectors of U, p ≤ N , and λs

the corresponding eigenvalues. We can then evaluate the transformed covariance

matrices SL,SR as

SL = WsRLWs
T and SR = WsRRWs

T (5.5)

Hence,

SL + SR = WsRWs
T

= λ
− 1

2
s UT

s UλUTUT
s λ

− 1
2

s

= λ
− 1

2
s

[
Ip 0

] Ip

0

λ
− 1

2
s

= Ip (5.6)

where Ip is a p × p identity matrix. The above equation shows that the CSP

criterion is still satisfied when using the sub-matrix Ws. From (5.6), it can be



5.4 Feature selection and generation 95

found that SL and SR share a common eigenvectors matrix B such that

SL = BλLB
T (5.7)

SR = BλRBT (5.8)

For each trial, the data matrix X = [x1, . . . ,xK ], is transformed to Y by

Y = BTWsX = PX (5.9)

where the matrix Y is of size p×K. This matrix is used to obtain the final features

for classification by

fj = log


var(yj)

m/2∑
k=1

var(yk)


j = 1, · · · , m

2

(m ≤ p)
(5.10)

and

fj = log


var(yp−m+j)

p∑
k=p−m

2
+1

var(yk)


j = m

2
+ 1, · · · ,m

(m ≤ p)
(5.11)

where yj is the j-th row of Y and var(yj) = yjy
T
j is the variance of yj. The optimal

variable m and p are found experimentally. We denote the features generated by

this method PCA+CSP, as the transformation matrix Ws is found based on the

p most significant principal components.

5.4 Feature selection and generation

In the CSP method, the first m/2 features are evaluated using the first m/2 rows of

Y and the last m/2 features use the corresponding last m/2 rows of Y [MGPF99].



5.4 Feature selection and generation 96

To improve the feature selection strategy, we perform feature selection by the Or-

thogonal Least Square (OLS) algorithm. The OLS is an efficient implementation

of the forward stepwise feature selection method [CCG91]. It selects the “impor-

tant” regressors from an initial linear regression model sequentially. As the OLS

algorithm can be implemented very efficiently, it can be applied to select models

from very large initial systems.

Here we apply OLS to select features from the input feature vectors calculated

from (5.10) and (5.11). Suppose that the input feature row vector for i-th trial is

denoted by f (i) = [f
(i)
1 , · · · , f

(i)
m ]T and constitutes the training set F,

F =


f

(1)
1 · · · f

(1)
m

...
...

...

f
(Q)
1 · · · f

(Q)
m

 (5.12)

where F consists of Q trials and m features per trial.

To improve robustness of features, we apply OLS to find a parsimonious selec-

tion of features from F. Let zi denotes i-th column of F, the subset model found

is F̃,

OLS1(F) = F̃ = [z̃1, · · · , z̃m̃] 0 < m̃ ≤ m (5.13)

where OLS1 denotes the OLS function and {z̃i} are the features chosen from input

features using OLS method.

In addition to feature selection, the OLS algorithm may be used to generate

the new features based on the training set. Chng et. al. [CYB96] introduced an

efficient adaptive model selection method based on the OLS algorithm. It first

select a small subset RBF models from a large initial one and subsequently applies

a local learning step to modify the selected node’s parameters. Using simulation
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results, they showed that the selected model’s performance is improved, and that

the pre-set values of the initial network become less critical. In this chapter, the

same algorithm denoted by OLS2 is applied to generate feature vectors for our

classifier, namely

OLS2(F) = [z̃1, · · · , z̃m̃, ẑ1, · · · , ẑm̂] (5.14)

where {ẑi} are the newly generated features. We denote features generated by this

method as PCA+CSP+OLS2

5.5 Experimental results

We evaluate our approach on the classification of EEG signals for motor imagery,

to distinguish left and right hand movement imagination. The data sets used were

denoted as {A1, A2, B1}.

5.5.1 temporal filtering

Due to the lack of training sample (100 samples for each session), we use a public

dataset, courtesy of Müller and Curio[BCM02], to find the frenquency band of

motor imagery signals. Undoubtedly, the frequency band obtained by the public

dataset would not be the optimum values for the datasets used in our experiments.

But the purpose of our experiments is mainly to compare the performance of

classification algorithms. Deploying the parameters of the temporal filters obtained

from other motor imagery dataset does not affect our justification.

An Infinite Impulse Response (IIR) band-pass filter is applied on the raw data

before it is sent for feature extraction. To evaluate the effect of cut-off frequency,
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Figure 5.2: Evaluation Set: Classification accuracy using the different low/high

cut-off frequency selection.

we perform an exhaustive search on various combinations of high and low cut-

off frequencies by monitoring classification accuracy. Results are illustrated in

Fig 5.2. The x-axis and y-axis of this figure are the low and high cut-off frequency

of the bandpass filter respectively and the classification accuracy is reflected by

the intensity level. It is found that when the low-cutoff frequency is in the range of

10− 15Hz and high cut-off frequency is about 30Hz, similar classification accuracy

can be achieved.



5.5 Experimental results 99

Input 
features

69

70

71

72

73

74

75

2 3 4

Number of selected features

R
ec

o
g

n
it

o
n

 A
cc

u
ra

cy
 (

%
) 4

6
8
10
12

Figure 5.3: Evaluation Set: Classification performance using different number of

features selected by OLS1.

5.5.2 Optimization of Orthogonal Least Square Algorithm

The optimal parameter p for feature extraction is found to be 18 by similar ap-

proach described above. With this optimal p, feature extraction using (5.10) and

(5.11) is performed and the OLS1 is used to select features. Fig 5.3 shows the

classification performance versus the number of features found by OLS1. The best

performance is obtained when m̃ = 2 for various m and interestingly for m̃ = 2,

the selection is similar to what was used in basic CSP, i.e., the first and last row

of yi
j were used to evaluate f i

1 and f i
2 [MGPF99].

To further improve performance, the OLS2 is applied to generate additional

features. Fig 5.4 shows the classification performance on the evaluation set using
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Figure 5.4: Evaluation Set: Classification performance using different number of

selected and generated features obtained by OLS2.

selected and generated features. Specifically, the x-axis on Fig 5.4 shows the num-

ber of generated features, and the different lines represent the experiments using

0, 1 and 2 selected features respectively. The best result is obtained for selected

features m̃ = 0 and generated features m̂ = 6.

5.5.3 Classification results

All of three datasets were divided into 20 folds of 95 training and 5 test samples

each. Before classification, the time sequences are first divided into segments of

900ms length with 250ms overlap for feature extraction. For the purpose of com-

parison, common spatial patterns (CSP) features are employed in all classification

methods. For each dataset, all of these 900ms long window signals were stacked
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Figure 5.5: The state transition model used in the HMM and KHMM.

together to find the transformation matrix Ws for extracting features, as well as

feature selection phase. Additionally, both HMM and our proposed method consist

of 3 states (Figure 5.5) for capturing the structure of EEG data.

The kernel function used in SVM and KHMM is the RBF kernel [Vap98]. The

classification results, shown in table 5.1, are averages over these 20 folds. We

compare our proposed algorithm with other two classification approaches, SVM

and HMM. In the A2 dataset, our proposed approach gave the highest classifi-

cation accuracy of 93%, compared to the SVM (78%) and HMM (84%). For all

of the datasets, KHMM obtained quite remarkable improvement over traditional

likelihood maximization. Furthermore, the results shows that SVM always has

the worst classification accuracy. The low classification accuracy may be due to

the fact that it does not explicitly take the temporal dynamic of the signals into

account.
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A1(%) A2 B1

SVM(%) 70 78 72

HMM(%) 74 84 80

KHMM(%) 81 93 82

Improvement over SVM(%) 15.7 19.2 13.9

Improvement over HMM(%) 9.5 10.7 2.5

Table 5.1: Average classification performance for SVM, HMM and our proposed

method.

5.6 Conclusion

In this chapter, we present our research result on the classification of EEG signal

for distinguishing left and right hand movement, preparation or imagination. We

propose to extract CSP features by combining PCA to reduce noise, and use OLS

algorithm to generate features for classification. These methods are found effective

and help achieve a high accuracy for single trial motor imagery classification.

The experimental results on real motor imagery EEG signal classification have

shown that our proposed algorithm can exploit the nature of sequential signals

and significantly outperforms the non-structural methods, and the HMM based

parametric methods.



Chapter 6
Conclusion and future work

This thesis presents multiple aspects of brain computer interfaces for building a

communication channel between brain and computer. We have shown that the per-

formance or the transmit rate is largely dependent on the performance of classifiers

for the brain signals. To address this issue, feature extraction and signal classifi-

cation in brain signals based on graphical model, especially Markov random field,

and the spatio-temporal characteristic are studied to deal with the heavily noisy,

high deformable and non-stationary brain signal, such as eletroencephalography

(EEG).

This work proposes a dynamic model referred to as kernel based hidden Markov

model (KHMM) for classifying multi-class temporal signal data. This dynamic

model incorporates kernel-based discriminative learning approaches into hidden

Markov model, having no need of prior knowledge of signal distribution. The

notion of Markov Random field is used to represent the interaction between signal

observation and state, and the interaction between states as well. Given this

MRF representation, the learning is formulated as finding the maximum margin

103
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of separation between the category of the sample and the best runner-up in the

kernel space. The formulation is by imposing the explicit constraint to the cost

function so that the inferred state sequence from the designed model is the most

possible state sequence. To effectively predict the brain’s activities, a Viterbi

dynamic programming is developed to recover all the state associated with the

given observation sequence.

There are several theoretical advantages to our approach in addition to the

empirical accuracy improvements we have shown experimentally. Because our ap-

proach only relies on using the maximum in the model for prediction, and does not

require a normalized distribution P (x|y) over the model y, maximum margin esti-

mation can be tractable when maximum likelihood is not. For example, to learn

a probabilistic model P (x|y) over bipartite matchings using maximum likelihood

requires computing the normalizing partition function, which is #P-complete. By

contrast, maximum margin estimation can be formulated as a compact QP with

linear constraints. Similar results hold for an important subclass of Markov net-

works and non-bipartite matchings.

This dissertation developed an efficient two-step learning algorithm for solving

the training problem of the kernel based hidden Markov model. Because the un-

derlying stochastic process is not usually observable and thus the optimal state

sequence has to be estimated, the constrained optimization problem can not be

solved directly using standard quadratic programming (QP) techniques. In the

case of a partial or complete absence of the labels of states, the kernel based hidden

Markov model suffers the chief computational bottleneck in learning the parame-

ters of model. We solve this problem by alternatively estimating the parameters
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of the designed model and the most possible state sequences, until convergence. It

can be seen that this two-step algorithm is similar to the mathematics of standard

Expectation-Maximization (EM) technique, although our optimization problem is

not directly related to probability estimation.

In particular, an auxiliary function which averages over the values of the hidden

variables given the parameters at the previous iteration is defined. By minimizing

this auxiliary function, we will always carry out an improvement over the previous

estimated parameters, unless finding the optimal values of parameters. The next

step is to find a new parameter set of model which minimizes the constrained

optimization problem given the previous estimated states sequence. To solve this

optimization subproblem, we can use Karush-Kuhn-Tucker (KKT) theorem and

the solution to the optimization problem is determined by the the saddle point of

the function Q.

Although the second step in the two-step algorithm is a QP with linear number

of variables and constraints in the size of the data, for most of real datasets, there

would be thousands and tens of thousands possible states sequence and it is very

difficult to solve using standard software. We present an efficient algorithm for

solving the estimation problem called Structured SMO. Our online-style algorithm

uses inference in the model and analytic updates to solve these extremely large

estimation problems.

We then apply the kernel based hidden Markov model to the application of

continuous motor imagery BCI system. In our framework, the user is just to

imagine his/her hand movement and our system will execute the user’s command

depending on the prediction of which hand the user is imagining. This is guaranteed
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by our developed high accuracy EEG signal classification algorithm which use single

trial EEG signal to detect left and right hand movement imagination.

We first apply an optimal temporal filter to remove irrelevant signal and sub-

sequently extract key features from spatial patterns of EEG signal to perform

classification. The reason of employing multiple channel EEG signals is that the

position of ERD may vary from subject to subject, and are not necessarily located

beneath electrode positions C3 and C4. In addition, the noises interfering with the

interesting signals would not be neglected if we build high performance BCI sys-

tem. Therefore, in our framework a mathematical process to combine CSP feature

extraction method with PCA method is developed. The resulted transformation is

equivalent to a set of spatial filters optimized to distinguish between the left and

right hand movement or motor imagery.

To further enhance recognition accuracy, a Radial Basis Function (RBF) based

feature selection and generation algorithm was adapted. We applied the Orthog-

onal Least Square (OLS) algorithm to feature selection and generation. The

extracted features are then used to train the SVMs, HMMs and our proposed

KHMM framework. We show that our models significantly outperform other two

approaches.

Our future work involves the theoretical analysis of the generalization bound

of our proposed kernel based Markov model. As discussed above, our proposed

dynamic model provides a minimum empirical risk owing to its maximum margin

learning. However, how to relate the error rate on the training set to the general-

ization error is still an open question. This could be our future research. Moreover,
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the study in the generalization bound of kernel based hidden Markov model is use-

ful for theoretically comparing our proposed framework with other classification

algorithm.

We have discussed so far the underlying principal and algorithmic issues that

arise in the design of kernel based hidden Markov model. However, to make the pro-

posed techniques practical in applications with large databases it will be beneficial

for our future study to explore more technical improvements. These improvements

would lead to a significant improvement in running time, while they do not change

the underlying design principals. For example, in the section 4.3 we choose a sam-

ple to optimize the parameters of the model as long as its dp is greater than a given

tolerance ε (0 ≤ ε ¿ 1). This may result in minuscule changes and a slow decrease

in Q once most examples have been updated. To accelerate the process, especially

on early iterations, a possible improvement is to use a variable tolerance, rather

than a fixed accuracy. On early iterations the tolerance value is set to a high value

so that the algorithm will spend only a small time on adjusting the weights of the

support patterns. As the number of iterations increases we decrease ε and spend

more time on adjusting the weights of support patterns.

Using the kernel based hidden Markov model to build a continuous motor im-

agery BCI system with high performance has been extensively studied in this thesis.

However, this dynamic model can be applied to more types of BCI system. A possi-

ble candidate for such system is a continuous text input application. We may apply

our proposed dynamic framework to the P3 word speller based on the P300 event

related potential. Theoretically speaking, a kernel based hidden Markov model is

capable of modeling stochastic processes of any length. In the case of word speller
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application, however, it is desirable to model the characters that may be repeated

in the longer continuous processes (word) using KHMM rather than modeling the

continuous processes directly. How to connecting these character classifiers using

the level-building strategy will be one of our future research directions.

We have presented a supervised learning framework for temporal signal classi-

fication with rich and interesting structure. Our approach has several theoretical

and practical advantages over standard probabilistic models and estimation meth-

ods. We hope that continued research in this framework will help tackle evermore

sophisticated classification problems in the future.
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