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SUMMARY 
 

Coronary artery disease is a disorder with multiple genetic and environmental factors 

and dyslipidemia is one of most prominent risk factors. The major purpose of this 

study is to determine the influence of some of the genetic factors on CAD 

susceptibility and on plasma lipid traits. 

 

Acyl-CoA: cholesterol Acyltransferase-2 (ACAT2) catalyzes the formation of 

cholesteryl esters using cholesterol and long-chain fatty acids as substrates. As such 

ACAT2 is a very important enzyme in the intestinal cholesterol absorption and in the 

production of apoB-containing lipoproteins in the liver. ACAT2 has been 

demonstrated to be a potential target for treating coronary artery atherosclerosis in 

hypercholesterolemic animal model.  

 

In order to explore the effects of genetic variations in the ACAT2 gene, we screened 

for variants on its entire coding regions, intron-exon boundaries, and putative 

promoter region, using denaturing high performance liquid chromatography. A total 

of 14 polymorphisms were identified. These included three missense mutations, 

namely c. 41A>G (Gly>Glu) in exon1; c.734C>T (Thr>Ile) in exon7; and c.1291G>T 

(Ala>Ser) or G>A (Ala>Thr) in exon13; two base changes in putative promoter 

region (-331C>T and -440G>T), two synonymous exonic base changes (c.609G>T 

and  c. 610C>T in exon6), seven intronic sequence variations, comprising six single 

base substitutions (IVS1-8C->G; IVS4+172T/G, IVS5-137A/T, IVS9-178G/C, 

IVS9+37A->T and IVS9+51G->T) and one 48bp insertion.  Among these, 3 

polymorphisms, 41A>G (Glu14Gly), 734C>T (Thr254Ile), and IVS4-57_58ins48bp, 

were analyzed for their association with CAD and plasma lipid levels. A total of 2113 



 viii

subjects, comprising 1228 Chinese, 367 Malays, 518 Indians, were included in this 

case-control association study. We found these three ACAT2 polymorphisms showed 

significant ethnic variations in allele frequencies as well as significantly different 

effects on plasma lipid levels and CAD risk, though some significances were not 

observed after Bonferroni correction.  In addition, in vitro experiments were carried 

out to determine the expression levels of ACAT2 wild type and mutant proteins and 

their enzymatic activities in the ACAT-deficient AC-29 cells. The results showed that 

the enzymatic activity of mutant Glu14Gly was about two times higher compared to 

that of the wildtype ACAT2, and this increase was mostly due to the higher 

expression and/or stability of the mutant ACAT2 protein. Our observations suggest 

that the Glu14Gly polymorphism might be very important to ACAT2 protein 

expression and/or stability.  

 



 ix

Another important enzyme, lipoprotein lipase (LPL), the rate-limiting enzyme in 

hydrolysis of triglycerides in chylomicron and very-low-density lipoprotein particles, 

was analyzed in this study. LPL has a paradoxical role in the development of 

atherosclerosis as it can be considered both anti-atherogenic and pro-atherogenic. 

There is no uniform consensus regarding the association of genetic variations in LPL 

with CAD susceptibility and lipid levels. In addition, it is interesting to evaluate the 

impact of the combination of IVS6+1594C>T, IVS8+483T>G, and c.1342C>G 

polymorphisms in Asian populations. Our study showed that the most prevalent CTC 

haplotype of three LPL polymorphisms was consistently associated with increased 

CAD susceptibility in male Chineses and Indians living in Singapore. In addition, the 

rare alleles of three individual polymorphisms were also found to lower CAD risk in 

male Chinese and/or Indians, which is independent of any effect on lipid profile.  
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1. INTRODUCTION AND BACKGROUND 

 

1.1. Introduction 

Coronary artery disease (CAD) is a complicated disease with multiple genetic and 

environmental contributions, such as dyslipidemia, hypertension, diabetes mellitus, 

obesity, cigarette smoking, high-fat and high-cholesterol diet, and physical inactivity.  

Among these risk factors, dyslipidemia is the most important contributor to CAD 

susceptibility.  Dyslipidemia can be caused by monogenic disorders, such as familial 

hypercholesterolemia (Brown and Goldstein, 2001), and familial defective 

apolipoproetin (apo) B (Fisher et al., 1999).   Studies on these monogenic disorders 

have helped to unravel the pathways of cholesterol metabolism regulation and 

contributed importantly to the understanding of lipid metabolism and atherosclerosis.  

However, most cases of dyslipidemia are attributed to a combination of many 

common genetic variations and environmental factors and our understanding of these 

aspects remains incomplete.  Study on such genetic variants of candidate genes in 

lipid metabolism would contribute towards elucidating the genetic mechanisms of 

CAD and dyslipidemia. 

 

1.2.  Background  

Given the prominent role of dyslipidemia in atherosclerosis, genetic studies on 

enzymes which are important to lipid and lipoprotein metabolism have captivated 

generations of researchers.  

 

A relatively novel protein, acyl CoA: cholesterol acyltransferase (ACAT)2, an 

enzyme which converts cholesterol into cholesterol esters (CEs) (Chang et al., 1997), 
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has been shown to be associated with hypercholesterolemia and atherosclerosis using 

ACAT2-/- mice model (Buhman et al., 2000). Furthermore, the deletion of ACAT2 has 

been demonstrated to be consistently athero-protective (Willner et al., 2003; Lee et al., 

2004). Thus, selective inhibition of ACAT2 would be an important strategy for 

treatment and prevention of atherosclerosis (Rudel et al., 2005). The ACAT2, also 

called Soat2, should not be confused with acetyl-Coenzyme acetyltransferase 2, which 

is also denoted as ACAT2.   

 

Another important protein, lipoprotein lipase (LPL), is the rate-limiting enzyme 

responsible for the hydrolysis of triglycerides (TGs) in chylomicrons and very low 

density lipoproteins (VLDL). This hydrolysis functions to clear TGs from the 

circulation and also provides phospholipids and apolipoproteins to high-density 

lipoprotein (HDL) cholesterol, therefore, driving the plasma lipids in anti-atherogenic 

direction.  The familial deficiency of LPL may lead to type I hyperlipidemia, 

characterized by severe hypertriglyceridemia and extremely low HDL levels (Brunzell, 

1995). Even heterozygous LPL mutations may result in reduced or loss of LPL 

activity and increased risk of familial combined hyperlipidemia (Babirak et al., 1992). 

On the other hand, LPL also has a non-enzymatic molecular bridging function and has 

been shown to act as a ligand to mediate cellular uptake of lipoproteins and CEs 

(Stein and Stein, 2003). Furthermore, LPL has been shown to stimulate the 

proliferation of vascular smooth muscle cells (VSMC) (Mamputu et al., 2000). Hence, 

LPL may also have pro-atherogenic effects. Whether LPL acts to be anti-atherogenic 

or pro-atherogenic depends on the tissues specifically expressing LPL (Mead and 

Ramji, 2002).  
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Because of their crucial roles in lipid metabolism and atherogenesis, the ACAT2 and 

LPL are considered as important candidate genes in studies to determine whether they 

contribute to predisposition for dyslipidemia and atherosclerosis.  

Singapore is a small immigrant nation in Southeast Asia comprising different ethnic 

groups: Chinese (77.4%), Malays (14.2%), Indians (7.2%) and European Caucasians 

(0.2%). The ancestors of the Chinese were mostly migrants from the coastal regions of 

southern China. The Malays came from neighboring Malaysia and Indonesia. Most 

Indian Singaporeans are second, third or even fourth generation descendants of migrants 

from the southern Indian subcontinent. 

Over the past few decades, Singapore has witnessed a high degree of social and 

political stability and a rapid-growth economy since it obtained independence in 1965.  

Since 1980, Singapore has been considered a fully urbanized and developed city-state.  

With the rapid socioeconomic development, some “modern diseases”, such as 

cardiovascular diseases and cancer, have become the major causes of morbidity and 

mortality in this population.  Among them, CAD is the leading cause of death in this 

population.   

Each of the ethnic groups residing in Singapore has contrasting mortalities due to 

CAD (Hughes et al., 1990a; Hughes et al., 1990b; Heng et al., 1999), though they 

reside in the same physical environment and environmental factors are relative 

constant except their habitual diets, and culturally determined lifestyles. Thus, 

Singapore offers the advantage for the genetic study of ethnic differences in CAD risk 
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1.3. Objectives of this study 

1.3.1. Study on ACAT2 gene 

Although ACAT2 has been shown to be associated with hypercholesterolemia and 

atherosclerosis in animal models (Buhman et al., 2000), studies on the effects of 

genetic variants of this gene on CAD susceptibility have not been performed in the 

general population.  There was only one other genetic study which explored the 

association of two ACAT2 polymorphisms, Glu14Gly and Thr254Ile, with 

dyslipidemia in Japanese when this study was initiated in the Singaporean population 

(Katsuren et al., 2001). In 2003, a similar study on another polymorphic site, 

IVS1-8G>C, was reported by the same group (Katsuren et al., 2003).  Their studies did 

not reveal any positive association except with plasma apoIII level, which was found to 

be higher in Thr254Ile heterozygotes (Katsuren et al., 2001).  However, no further 

functional study on the genetic variant was carried out. 

Based on the significant effects of ACAT2 on atherosclerosis in ACAT2-/- mice 

(Buhman et al., 2000), it was hypothesized that genetic variants of ACAT2 gene could 

exert an important influence on susceptibility to CAD and dyslipidemia in the general 

population. The Singaporean population is made up of multiple ethnic groups, namely, 

Chinese, Malays, and Indians.  It is also therefore worthwhile to determine if the effect 

of ACAT2 variants is ethnic-specific.  

The following steps were taken to verify these hypotheses: 

1. To identify novel polymorphisms of the ACAT2 gene using denaturing high 

performance liquid chromatography (DHPLC) and to predict their possible 

biological function using computational approaches 
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2. To determine the impact of the ACAT2 gene polymorphisms on CAD susceptibility 

and plasma lipid levels in three major ethnic groups in Singapore using 

population-based case-control association study 

i. To determine the allele frequencies of ACAT2 polymorphisms between 

CAD patients and healthy control, as well as between the normolipidemic 

and dyslipidemic subgroups 

ii. To determine the allele frequencies of the ACAT2 polymorphisms in the 

three  ethnic groups, and  

iii. To evaluate the effect of these polymorphisms on plasma lipid profiles in 

different population subgroups, 

3. To conduct an in vitro functional study of two potential functional polymorphisms in 

mammalian cells. 

1.3.2. Study on LPL gene 

Three common genetic variants, IVS6+1595C>T, IVS8+484T>G, and c.1342C>G of 

the LPL gene, have been reported to be associated with abnormal lipid concentrations 

and atherosclerosis. Though these three polymorphisms have been extensively studied, 

there is no uniform consensus on their effects on CAD susceptibility and plasma lipid 

concentrations. Furthermore, most studies were conducted in Caucasian populations, 

with only a few that had examined the Asian populations (Shimo-Nakanishi et al., 

2001; McGladdery et al., 2001; Hall et al., 2000; Lee et al., 2004; Liu et al., 2004).  

In addition, to our knowledge, the combined effect of these three polymorphisms on 

CAD risk has not been determined in an Asian population.  In this study, it was 

evaluated whether these polymorphisms are associated with CAD risk and with 

abnormal lipid traits. The combined effect of these three polymorphisms on CAD risk 
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was also explored in two Asian ethnic groups with contrasting CAD risk, namely, the 

Indians and Chinese.  In addition, the different distribution of allele frequencies 

between different ethnic groups was compared. 

 

1.4. Significance and limitation of the study 

CAD is the most common cause of death in developed countries and its prevalence is 

rapidly increasing in developing countries owing to the burgeoning epidemic of 

obesity and the aging population.  For the treatment of CAD, other than modifying 

lifestyle risk factors, pharmacological intervention is an important strategy. The 

determination of specific susceptibility genes and these disease-associated genetic 

variants will contribute to the development of new drugs. In addition, the 

identification of high-risk individuals would be important for the efficient prevention 

of CAD and dyslipidemia. However, although many candidate genes and genetic 

variants related to CAD and dyslipidemia have been reported, the available data are 

either inconclusive or inconsistent. 

 

In our study, fourteen polymorphisms were identified in ACAT2 gene by screening 

cord blood samples using DHPLC. Our association study showed that a 

nonsynonymous SNP (nsSNP) in exon 7, 734C>T, was associated with decreased 

CAD risk while another nsSNP in exon 1, 41A>G, had decreased dyslipidemia in 

Chinese subjects, after correction for multiple comparisons. It was observed that these 

two nsSNPs and IVS4-57_58ins48bp (D/I), a 48bp insertin in intron 4, were in strong 

linkage disequilibrium (LD). The frequency of the most common AC haplotype of 

these two nsSNPs was significantly increased in dyslipidemic subjects when 

compared with normolipidemic ones in the Chinese.  The CAD+ group had almost 
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2-fold higher GC haplotype frequency than the CAD- controls in the three ethnic 

groups, but statistical significance was only attained in the Chinese. However, the 

normolipidemic subjects had about 3-fold higher GC haplotype frequency than 

dyslipidemic ones in the Chinese and Malay groups, although the latter did not reach 

a significant level.  The preliminary results from the functional study of these two 

nsSNPs suggested the 41A>G probably increased ACAT2 enzymatic activity by 

altering protein expression and/or stability.  

 

The identification of novel polymorphisms in ACAT gene would contribute to the 

SNP database, which is very useful for genetic association studies. Secondly, our 

association study would provide important information about the impact of ACAT2 

and LPL polymorphisms with CAD and dyslipidemia. Furthermore, our preliminary 

results from in vitro study would be helpful for the understanding of the relationship 

between the structure and function of ACAT2 protein.  

 

The study is not without its limitations, such as the age disparity between case and 

control subjects and the relatively small sample size, especially after stratification by 

gender, ethnic groups and lipid profiles.  Hence, further study using a larger sample 

size with well-matched case-control may be needed to confirm our current findings 

related to association with CAD, dyslipidemia susceptibility and altered plasma lipid 

profiles.   In addition, although the functional study of nsSNPs of ACAT2 gene in 

mammalian cell line have shown that the 41A>G (Glu14Gly) variant had significant 

effects on ACAT2 enzymatic activity, only one colony for each ACAT2 polymorphic 

type was examined.  To verify the results obtained from functional study, at least 
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three colonies for each ACAT2 polymorphic types should be included in future 

studies.  
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2.  LITERATURE REVIEW 

 

2.1. Coronary artery disease 

CAD is the leading cause of death and disability in the developed world, with an 

increasing prevalence (Bonow et al., 2002).  In the last 30 years, dyslipidemia has 

been identified as a major modifiable risk factor for CAD (Willerson and Ridker, 

2004).  In the following sections, the clinical, etiological, and epidemiological 

aspects of the most prominent risk factor, dyslipidemia, will be reviewed. 

 

2.1.1. Definition of CAD 

CAD, also called coronary heart disease (CHD) or ischemic heart disease (IHD), is 

characterized by a “narrowing” of coronary arteries resulting in inadequate blood flow 

to the heart muscle and leading to angina pectoris, with exertion or at rest, or 

myocardial infarction (MI), and even sudden death, depending on the severity of 

obstruction. The narrowing is usually caused by atherosclerosis.   

 

2.1.2. Prevalence of CAD 

CAD is a major cause of morbidity and is a leading contribution to mortality 

worldwide, especially in developed countries (Murray and Lopez, 1997).  According 

to the Heart Disease and Stroke Statistics update 2005 from American Heart 

Association (AHA), CAD caused 1 of every 5 deaths each year and every minute 

someone will die from CAD in the United States. CAD is responsible for about 

US$142.1 billion in 2005 in direct and indirect economic costs in the United States 

(Heart Disease and Stroke Statistics – AHA 2005 Update).  With the rapid economic 

development and urbanization in Singapore, CAD has been the most common cause 
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of death (Lee et al; 2001).  Even in developing countries, both CAD associated 

mortality and the prevalence of CAD risk factors continue to rise rapidly (Okrainec et 

al; 2004).  With the aging of population, westernization of the lifestyle in developing 

countries and the increasing survival rate during acute phases of ischemic disease, 

which transform acute patients into chronic patients (Viles-Gonzalez et al; 2004), 

CAD will be the single largest cause of disease burden globally by the year 2020. By 

that year, it is estimated that nearly 40% of all deaths worldwide will be due to 

cardiovascular disease (CVD), more than twice the percentage of deaths from cancer 

(Heart Disease and Stroke Statistics – AHA 2005 Update). 

 

2.1.3. Pathophysiology and pathogenesis of CAD 

Atherosclerosis in the artery wall is the major feature of CAD and is an organized, 

active, lifelong process. Our views of the pathophysiology of the progressive disease 

have evolved substantively over the past decades. Before the 1970s, the lipid 

hypothesis which is based on strong experimental and clinical relationships between 

hypercholesterolemia and atherosclerosis dominated our thinking. During the 1970s 

and 1980s, growth factors and the proliferation of smooth muscle cells have been 

considered to play a prominent role in atherosclerosis.  However, at the end of the 

last century, an increasing number of researchers have considered atherosclerosis an 

inflammatory disorder (Libby, 2002; Reiss and Glass, 2006).  

 

The accumulation of lipids has a role in inducing and promoting inflammation and 

atherogenesis. In experimental models, such as atherosclerosis-susceptible apoE-/- or 

VLDL-/- mice, the accumulation of lipoprotein particles and their aggregates are 

initially observed in the subendothelial space (Zhang et al., 1992; Ishibashi et al., 
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1993).  These retained lipoproteins, particularly those modified LDL, elicit a series 

of biological responses that lead to endothelial dysfunction, which is a critical step in 

the development of inflammation and atherosclerosis (Gonzalez and Selwyn, 2003).  

Endothelial dysfunction is caused not only by elevated and modified LDL, but also by 

other factors, such as elevated plasma homocysteine concentrations, hypertension, 

infectious micro-organisms, and free radicals.  These factors increase the 

adhesiveness of the endothelium with respect to monocytes, macrophages, and 

lymphocytes, as well as its permeability to lipoproteins and other constituents. In 

addition, the injured endothelia also increase the expression of adhesion molecules, 

such as vascular cell adhesion molecule-1 (VCAM-1), P- and E-selectin (Cybulsky et 

al., 2001; Libby, 2002; Collins and Cybulsky, 2001).  All these responses induce the 

migration of monocytes, macrophages and T lymphocytes from the blood into the 

intima of artery wall (Ross, 1999).  These monocytes and monocyte-drived 

macrophages then scavenge the subendothelial lipoproteins and become lipid-laden 

foam cells, which are the earliest lesions of atherosclerosis. These lesions are not 

clinically significant, but they may evolve to form fibrous plaques by accumulating 

lipids, smooth muscle cells and extracellular matrix.  These plaques can become 

increasingly complex and grow large by vascularization, haemorrhage, rupture, 

ulceration and calcification.  The most serious clinical complication is MI or sudden 

death caused by an acute occlusion due to the thrombus formation.  

 

All these insights suggest that lipids play a crucial role in the development and 

progression of atherosclerosis and that abnormal level of lipid accumulation is the 

triggering event in the pathogenesis of atherosclerosis.  
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2.1.4. Genetics of CAD 

A few forms of Mendelian diseases that involve premature CAD or atherosclerosis 

have been identified (Table 2-1). Most of these disorders affect the levels of LDL and 

HDL cholesterols.  Monogenic CAD due to monogenic defects without dyslipidemia 

syndrome is not common. A few genes with mutation have been identified to be 

associated with premature CAD. For example, myocyte enhancing factor-2, which 

encodes a transcription factor, has been shown to be involved in CAD in a single large 

family with dominant inheritance of CAD and MI (Lusis et al., 2004).  

 

Except for a few cases of CAD of monogenic origin, most have been proposed to be 

caused by common genetic variants with small-to-moderate effects in candidate genes. 

The magnitude of the effects of genetic factors for CAD has been studied.  A cohort 

study over 36 years in 20,966 Swedish twins has shown that the heritability of death 

from CAD due to genetic effect was 0.57 amongst male twins, and 0.38 amongst 

female twins (Zdravkovic et al., 2002). Furthermore, genetic factors are in operation 

throughout the entire life span, though genetic effects appeared to be greater at 

younger ages. This phenomenon possibly is owing to the increasing variance in 

environmental factors with age (Watkins and Farrall, 2006). A family history of 

premature coronary, cerebrovascular or peripheral vascular disease has been 

well-established risk factor for CAD by the Framingham Heart Study, PROCAM 

study, and the INTERHEART study, with the odds ratio (OR) ranging from 1.45-2.4 

(Lloyd-Jones et al., 2004; Assmann et al., 2002; Yusuf et al., 2004; Watkins and 

Farrall, 2006).  
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Although it has been well-accepted that the genetic factors have contributed to CAD 

susceptibility, the magnitude of their effect and number of contributing effects could 

not be determined until all CAD-susceptibility genes are identified.  Due to the long 

list of known risk factors and many traits having their own genetic basis, the number 

of candidate genes could be large. Successful identification of these susceptibility 

genes for CAD could be dependent on a combination of classical candidate-gene 

studies and genome-wide positional cloning. Similarly, combined genetic and 

genomic approaches have the potential to reveal new realms of quantitative heritable 

variations that influence the biological processes underlying CAD (Watkins and 

Farrall, 2006). 
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Table 2-1. Mendelian diseases relevant to premature CAD 

Disease  Mutated 
gene Prevalence Phenotype and 

Mechanism Reference 

Familial 
hypercholesterolemia LDLR 1/500 

Decrease in LDL 
uptake by the live 
due to the defective 
binding of LDL by 
receptor 

Brown and 
Goldstein, 2001 

Familial defective 
ApoB ApoB 1/3250 Reduced binding of 

ApoB to LDLR 
Fisher et al., 
1999 

Sitosterolemia ABCG5, 
ABCG8 rare 

Increased absorption 
of plant sterols by 
the intestine 

Heimerl  et al., 
2002 

Autosomal recessive 
hypercholesterolemia ARH rare 

Defective 
endocyytosis of 
LDLR in 
hepatocytes 

Garcia et al., 
2001 

Tangier disease ABCA1 rare 

Impaired cholesterol 
and phospholipids 
efflux, resulting in 
very low level of 
HDL 

Rust et al., 1999 

 ApoA1 rare 

Delection or 
loss-of-function 
mutation results in 
the virtual absence 
of HDL 

Matsunaga  et 
al., 1991 

Ad CAD1 MEF2A Rare  

A mutation in 
MEF2A results in 
dominant vascular 
disease 

Wang et al., 
2003 

Homocystinuria CBS Rare 

Impaired conversion 
from homocysteine 
to cystathionine 
results in very high 
homocysteine and 
severe occlusive 
vascular disease 

Kluijtmans et al., 
1999 

ABCG, ATP-binding cassette, subfamily G; ARH, autosomal recessive hypercholeterolaemia; 
MEF2A, myocyte enhancing factor-2; CBS, cystathionine β-synthase 
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2.2 Genetic epidemiological study of complex disease 

2.2.1. Genetic variations 

Genetic variations refer to the changes in DNA sequence and a variation with an allele 

frequency of at least 1% in the population is considered as a polymorphism.  There 

are several types of polymorphisms in the genome: single nucleotide polymorphisms 

(SNPs), tandem repeat polymorphisms, and insertions or deletions, which range from a 

single base pair to thousands of base pairs in size.   SNP refers to a single nucleotide 

in a locus having two, or sometimes three, forms in the population. There are two 

classes of SNPs: transition, changing from pyrimidine to pyrimidine or from purine to 

purine, and transversion, changing from pyrimidine to purine or from purine to 

pyrimidine.  The transition is the most common single base substitution.  A tandem 

repeat polymorphism consists of variable lengths of sequence motifs that are repeated 

in tandem in a variable copy number. Tandem repeat polymorphisms are subdivided 

into two subgroups based on the size of the tandem repeat units: micro-satellites (short 

tandem repeats, STR) and mini-satellites (variable number of tandem repeats, VNTRs).  

The STR repeat unit consists of only 1-6 base pairs (bp) while the VNTR repeat unit 

ranges from 10-50bp.  The most common microsatellites are dinucleotide, 

trinucleotide, and tetranucleotide, and they occur once in every 10kb in eukaryotic 

genomes.  Human microsatellites are informative in linkage studies as there are many 

alleles present at a microsatellite locus.  

 

SNP is the simplest and most common type of genetic variation with one 

approximately every 180 bp, making up 90% of natural variation in the human genome 

(Crawford et al., 2005).  In the latest release of SNP database (dbSNP) in the National 

Centre for Biotechnology Information, there are more than 27 million of SNPs 
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recorded with more than 4 million of SNPs lying within genes (build 125) (Serre and 

Hudson, 2006).  It is believed that these SNPs within genes, especially those within 

promoter regulatory regions, encoding regions, or splicing sites, are more likely to be 

deleterious or beneficial to humans than those within intergenic spaces.  

 

For these SNPs within encoding region, they are called non-synonymous SNP (nsSNPs) 

if they alter the encoded amino acid or synonymous SNPs if they do not change any 

amino acid. NsSNPs may be the cause of most known inherited monogenic disorders 

and may be routinely analyzed for diagnostic purposes.  However, most SNPs are 

located in non-coding regions and may have no direct known impact on an individual 

but are shown to be associated with certain traits.  These SNPs have been found to be 

useful markers in population genetic association studies of complex diseases. 

 

SNPs most often result from a non-repaired error that occurs during DNA replication.  

The frequency of the error is relatively low (10-8 substitution per base per generation), 

thus, the vast majority of SNPs are inherited rather than de novo mutations.  If 

individuals share the same allele at one position, they are most likely from same 

ancestor rather than two independent mutations occurring on them (Serre and Hudson, 

2006).   

 

A few public SNP database have been established, such as dbSNP 

(http://www.ncbi.nlm.nih.gov/projects/SNP), the SNP consortium (TSC) 

(http://snp.cshl.org), a database of Japanese SNPs (JSNP database) 

(http://snp.ims.u-tokyo.ac.jp) and Human Genome Variation database (HGVbase) 

(http://hgvbase.cgb.ki.se/).  The dbSNP aims to catalog variations throughout the 
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genome, regardless of their functional consequences and was established by the NCBI 

in collaboration with the National Human Genome Research Institute (NHGRI) 

(Sherry et al., 2001).  TSC was established in 1999 as a collaboration of several 

companies and institutions. Its initial goal was to discover 300,000 SNPs within two 

years, but to date nearly 1.8 million SNPs had been characterized. JSNP is a database 

for SNP in Japanese population with emphasis on the identification of SNPs located in 

genes or in adjacent regions that might influence the coding sequence of genes 

(Hirakawa et al., 2002). 

 

2.2.2. The discovery of genetic variations 

Direct DNA sequencing is the “gold standard” in the identification of genetic variation. 

It is an expensive methodology.  As such, the cost of identifying sequence variants in a 

gene can be substantially reduced by prescreening methods, especially when the gene 

contains multiple exons.  The prescreening methods are able to distinguish SNP alleles 

without identifying the exact position of the SNP and the affected base pair.  Each 

novel SNP would subsequently require sequencing for its confirmation and 

characterization.  Here, several classical pre-screening methods will be reviewed and 

their principles, advantages and disadvantages, will be briefly discussed. 

 

2.2.2.1. Single-strand confirmation polymorphism (SSCP) 

SSCP is based on the principle that a single base change in the DNA sequence can cause 

single-strand DNA to migrate differently under non-denaturing electrophoresis 

conditions. SSCP analysis involves the denaturation of the double-strand PCR product, 

immediate cooling of the denatured DNA, followed by gel electrophoresis under 

non-denaturing conditions.  With the exception of traditional incorporation of 
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radioisotope labeling and sliver staining, recent advances in SSCP have made the 

technique more convenient, safe, and have improved efficiency of detection through the 

application of fluorescent dye-labeled PCR primers, and more recently, capillary-based 

electrophoresis (Suh and Vijg, 2005).  SSCP is a simple technique; however, its 

sensitivity depends on the fragment size and sequence and the detected fragment should 

be shorter than 250bp.  

 

2.2.2.2. Cleavage fragment length polymorphism (CFLP) 

CFLP is a prescreening method based on the reproducible hairpin duplexes during the 

self-annealing of single-stranded DNA, the hairpins are cleaved by endonuclease 

cleavage I at the 5’ side of the junctions between the single strand and duplex region 

(Lyamichev et al., 1993).  Compared with SSCP, CFLP is more rapid and accurate and 

permits the analysis of larger fragment.  However, the assay time and temperature need 

to be optimized for each type of DNA fragment to generate reproducible hairpin 

duplexes (Suh and Vijg, 2005).  

 

2.2.2.3. Denaturing gradient gel electrophoresis (DGGE) 

DGGE has been used to separate DNA fragments based on the principle that the 

mobility of a partially melted double-stranded DNA in polyacrylamine gels increases 

compared with its complete helical form.  DNA fragments with different sequences 

may have different melting behaviors and will therefore stop migrating at different 

positions when they are subjected to a gradient of increasingly denaturing conditions.  

Although DGGE appears to be a relatively popular technique with high sensitivity, 

some disadvantages greatly hinder its rapid application, such as the designing of 

primers for optimal PCR amplification, optimal melting behavior of the amplicons 
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and optimal two-dimensional gel distribution (van Orsouw et al., 1998; Balogh et al., 

2004). 

 

2.2.2.4. DHPLC 

DHPLC is a relatively recent method that has rapidly gained popularity.  Its major 

advantage is in being an automated alternative to gel-based techniques, requiring no 

post-PCR sample processing (Suh and Vijg 2005; Xiao and Oefner, 2001; Rudolph et 

al., 2002). 

The basic principle of DHPLC for screening sequence variations is that the DNA helical 

structure tends to be unstable at or close to its melting temperature, at which 50% of the 

DNA strand is single-stranded and 50% is double-stranded.  The heteroduplexes 

display different melting properties from their corresponding homoduplexes due to the 

presence of mismatch base pairs in the former (Figure 2-1 A).  The heteroduplexes 

were formed upon mixing, denaturing, and re-annealing of two or more chromosomes 

which differ in sequence in a single base pair or the presentation of a short insertion in 

single copy.   As a result, when being analyzed on a reverse-phase column using 

DHPLC under partially denaturing temperatures, the heteroduplexes elute from the 

column earlier than the homoduplexes because of their reduced melting temperature 

(Xiao and Oefner, 2001).  As the fragments elute, they are detected by an UV detector 

and analyzed as chromatograms. Analysis can be performed on individual samples to 

determine heterozygosity, or on mixed samples to identify sequence variation between 

individuals (Figure 2-1 B).   
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Figure 2-1. The principle of the DHPLC. A: Heteroduplex formation through hybridization 
after heating and cooling the PCR products. B: the typical DHPLC profile of a heteroduplex  

 

Separation of the two forms of duplex DNAs by DHPLC is based on ionic forces 

between the negatively charged DNA and the hydrophobic stationary phase, which 

consists of C (18) chains on non-porous polystyrene-divinylbenzene (PSDVB)  

particles (2.1± 0.12酸) .  The PSDV B  par ticl es are coated with positively charged 

ion-pairing agent triethylammonium acetate (TEAA), acting as a “bridge” molecule 

between negatively charged DNA fragments and the electrically neutral and 

hydrophobic stationary phase.  The elution of the adsorbed DNA is achieved by an 

increase in the concentration of organic solvent (acetonitrile) in the mobile phase 
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(Rudolph et al., 2002). The linear gradient of acetonitrile allows separation of DNA 

fragments based on size and/or presence of heteroduplexes.  

Other than the concentration of acetonitrile, temperature is another factor which affects 

the retention of DNA fragments (Xiao and Oefner, 2001).  Temperature determines 

the sensitivity of DHPLC, and the optimum can be determined either empirically or 

predicted using DNA melting analysis software provided with the Transgenomic 

WAVE DHPLC system. 

Compared to the rest of the methodologies for mutation prescreening, DHPLC offers 

the advantage of being the automated, hand-free alternative to gel-based techniques, 

requiring no post-PCR ample processing (Suh and Vij, 2005). However, there are some 

limitations of DHPLC.  One major one is the failure to detect homozygous mutants, 

which could hardly be differentiated from homozygous wildtypes.  This limitation can 

be overcome by mixing wildtypes and homozygous mutants at ratio of 1 to 1 to 

generate the heteroduplexes during denaturing and re-annealing post-PCR processing.  

In addition, the primers should be designed to generate a single partially denaturing 

domain.  The optimal temperature could be empirically determined by running the 

samples at temperatures ranging from 2oC above and below the temperature predicted 

by the WAVE System utility software. 

 

2.2.3. Complex diseases 

Unlike monogenic diseases which result from mutations in a single gene, complex 

diseases are influenced by multiple factors, such as environmental influences, 

gene-environment interactions, and interactions among genetic variants at different 

loci.  Complex diseases, such as CAD, cancer, diabetes, asthma, hypertension, 
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obesity, and schizophrenia are very common.  In addition, complex diseases vary in 

severity of symptoms, age of onset, and even in their etiological mechanisms.  Finally, 

an important feature of complex diseases is that the contribution of each candidate gene 

and their genetic variants is small (Tabor et al., 2002). 

 

2.2.4. Approaches for genetic study of complex diseases 

Generally, two approaches are used to map the genes and to identify genetic variations 

that underlie common diseases and disease-related quantitative traits: linkage studies 

and association studies.   

 

2.2.4.1. Family-based genome-wide linkage studies 

For the last two decades, linkage studies have been the most popular approach for 

associating genes and genetic variants with human diseases.  The genome-wide 

linkage analysis is used to examine the genotypes of related individuals using numerous 

evenly distributed polymorphic markers throughout the genome to map the 

chromosomal regions that are associated with diseases or traits.  

  

Linkage analysis has been successful for mapping genes underlying monogenic 

diseases (Hirschhorn and Daly, 2005).  Genome-wide linkage analyses have also been 

carried out for many common diseases, such as inflammatory bowel disease (Hugot, et 

al., 2001; Ogura et al., 2001; Rioux et al., 2001; Stoll et al., 2004), schizophrenia 

(Stefansson et al., 2003) and type 1 diabetes (Nistico et al., 1996) and quantitative 

traits, leading to the discovery of variants that contribute to their susceptibility.  

However, any individual genetic factor generally have small to moderate effect on 

disease susceptibility.  Therefore, only linkage studies with dense marker sites, large 
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sample sizes, and large pedigrees could yield meaningful results.   For example, a 

linkage study which was able to detect the association of the Pro12Ala variant in the 

peroxisome proliferative activated receptor-γ gene (PPARG) with type 2 diabetes, 

required a genome scan of over one million affected sib pairs (Altshuler et al., 2000).  

As such, it is clear that most of these well-established disease-susceptibility alleles 

could never be detected by linkage study.  Hence, association studies with increased 

statistical power should be carried out as a strategic complement to linkage analysis.  

 

2.2.4.2. Association studies 

A genetic association study is designed to determine whether genetic variants are 

associated with the frequency or severity of particular traits.   Association studies 

provide a direct way to unravel the genetic contribution to the etiology of complex 

disease and help to predict susceptibility of an individual to certain diseases, as well 

as his or her response to environmental factors including response to drug treatment 

and adverse drug effects.   

 

Here, two approaches of association studies, namely the candidate gene and the 

genome-wide approaches, will be reviewed.  

 

2.2.4.2.1. Candidate gene association studies 

Candidate gene studies focus on genes that are related to a complex disease based on 

hypothesis about their etiological role in the pathophysiology.  Candidate gene studies 

are usually conducted with a population-based case-control design.  In the 

candidate-gene approach, the genetic influences on a complex trait are usually studied 

by carrying out the following: generate hypotheses, identify candidate genes, identify 
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variants in or near those functional genes or those that are in LD with functional 

changes, genotype variants in a population, and finally analyze the genotyping data 

statistically to determine whether there is a correlation between those variants and 

phenotypes (Tabor et al., 2002; Hirschhorn and Daly, 2005).   The two general 

strategies for analyzing genotyping data are comparing the allelic and genotype 

frequencies between the samples and allelic association.  By means of association 

studies, variations in candidate gene sequences can be interpreted as providing a 

protective or a disease-causing effect.  

Candidate genes are selected on the basis of different types of information, including 

available linkage results and results from mouse models of the phenotype.  When 

examining the association of genetic variants in a particular candidate gene with the 

disease of interest, it is important to select carefully a limited number of SNPs to 

genotype. In theory, it is desirable to study only those polymorphisms that affect the 

function or expression of the protein (Tabor et al., 2002).  However, in most situations, 

the information on the effects of these genetic variants is not available. Therefore, the 

information about the location and the type of genetic variants can be used for the 

selection of polymorphisms.  Generally, nsSNPs and nonsense changes that result in 

premature stop codon are most likely to affect disease susceptibility, and therefore they 

should be given the highest priority for genotyping in candidate-gene studies 

(Hirschhron and Daly, 2005; Tabor et al., 2002).  In addition, the correlation with 

potential causal variants (LD) and technological considerations including the 

availability of high-throughput, lower cost pre-selected SNP sets are also the criteria of 

polymorphism selection (Newton-Cheh and Hirschhorn, 2005). 
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Although candidate gene association study takes advantage of both great statistical 

power and biological understanding of the disease, it has been subjected to criticisms.  

The most common problem is the lack of reproducibility; many candidate gene 

association studies have not been replicated in subsequent independent studies.  The 

possible reasons for the discrepant findings are listed as follows: 1) Studies might differ 

in the selected population and true association in one population may not be true in 

another due to heterogeneity in genetic and environmental background; 2) The 

definition of phenotype might be different, which leads to the different 

inclusion/exclusion criteria of subject; 3) Type I error could arise from statistical 

fluctuation and the widespread, inappropriate use of P-value below 0.05 as a criterion 

for declaring association; 4) Inconsistent results could be due to technical errors in 

genotyping; 5) False association could arise from performing data analysis of 

quantitative traits if appropriate transformation to achieve normality of non-Gaussian 

traits and removal of outliers are not carried out. In addition, population stratification, 

confounder publication bias, and disease misclassification are all potential problems of 

association study. 

 

2.2.4.2.2. Genome-wide association studies 

Although candidate gene association studies have been proposed as a powerful means 

of identifying the common variants that underlie complex disease, it relies on the 

biological hypotheses generated or the fundamental location of the candidate genes 

within a previously determined region of linkage.  When these information and the 

fundamental physiological defects of a disease are unknown, the candidate-gene 

approach will be unable to fully explain the genetic basis of the disease.  In the 

absence of convincing evidence regarding the function or location of the causal genes, 
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the unbiased and comprehensive genome-wide association approach is a preferred 

option.  Genome-wide association studies involve genotyping a sufficiently 

comprehensive set of variants in a large patient sample and surveying most of the 

genome for causal genetic variants without having to guess the identity of the causal 

genes (Collins et al., 1997).  Due to the expense and labor involved, genome-wide 

studies have not been applied widely and only a few reports are available (Ozaki and 

Tanaka, 2006; Duerr et al., 2006; Donfack et al., 2006; Fung et al., 2006).  However, 

with the development of high-throughput genotyping technologies and the 

determination of LD patterns on a genome-wide scale through the HapMap project 

(Need and Goldstein, 2006; de Bakker et al., 2006; Conrad et al., 2006; The 

International HapMap Consortium, 2003), more genome-wide association studies will 

be carried out and should greatly advance our understanding of the genetic basis of 

common diseases and complex traits. 

 

2.2.4.2.3. Association tests 

To observe the association of genotypes with disease status, the most common analysis 

of SNP genotypes and case-control status at a single locus is to test the null hypothesis 

of no association between rows and columns of the 2x3 matrix that contains the counts 

of the three genotypes among cases and controls (Balding, 2006).  In terms of 

association of allele with disease, the 2x2 contingency table is used to test the null 

hypothesis of no association.  Considering the effect of confounding factors, linear and 

logistic regression methods would be advantageous as they are able to adjust these 

confounding variables (Clayton and McKeigue, 2001). 

For the association with quantitative traits, analysis of variance (ANOVA) is a 

statistical method that is generally used.  Linear regression is an alternative tool to 
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ANOVA by achieving a reduction in degrees of freedom from 2 to 1 by assuming a 

linear relationship between mean value of the trait and genotype (Balding, 2006).  In 

either case, the traits have to be normally distributed and with an equal variance.  

Haplotype is a popular strategy in association studies with multiple loci involved.  In 

regions of little recombination, haplotype can capture the correlation structure of SNPs. 

More importantly, haplotype can capture the combined effects of tightly linked variants 

(Balding 2006).  We can interpret haplotye as complete data and genotype as 

incomplete data from the statistical viewpoint, as we can extract all genotype data from 

haplotype, while the revere is not the case.  Therefore, it is generally more useful to 

consider the association based on haplotype or diplotype rather than genotype (Ito et 

al., 2004).  However, haplotype poses the problem of not being observed directly 

without involvement of family members.  They must be inferred and some uncertainty 

could arise in phase inference and the uncertainty may cause some loss of information.  

However, the information loss is usually small when LD between markers is strong 

(Balding, 2006). 

 

2.2.4.2.4. Data analysis of association studies 

Other than a well-designed study, appropriate statistical methods are very crucial to 

minimize the chance of false positives. First of all, data quality is of paramount 

importance.  Testing for Hardy-Weinberg equilibrium (HWE) using a Pearson 

goodness-of-fit test should be done before processing the analysis of association 

(Balding, 2006).  Rather than genotyping error, deviation from HWE can be due to 

population stratification, inbreeding, selection, and gene drift (Balding, 2006).  
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If multiple loci have been genotyped for association studies, haplotypes should be 

more informative than genotypes.  The haplotype frequencies can be inferred using 

softwares, such as SNPHAP (Adkins, 2004), PHASE (Stephen et al., 2001), and 

SNPAlyze from Dynacom (Kanagawa, Japan).   

Whether these polymorphisms of interest are in LD should be examined when multiple 

loci are analyzed. LD, simply defined, is the nonrandom association of alleles at linked 

loci (Jorde, 2000) and it describes the tendency of alleles to be inherited together more 

often than would be expected under random segregation.  The measure of LD, D 

quantifies disequilibrium as the difference between the observed frequency of a 

two-locus haplotype and the expected frequency if the alleles were segregating at 

random (Ardlie et al., 2002). D, one of the simplest measures of LD is equal to PAB-PA 

X PB, ,where PAB is the observed frequency of the haplotype of alleles A and B, and PA is 

the frequency of allele A at the  first locus and PB is the frequency of allele B at the 

second locus.  The most common measures are the absolute values of D’ (Lewontin, 

1964), and r2 (also denoted by ∆2) (Hill and Robertson, 1968).  The absolute value of 

D’ is determined by dividing D by its maximum possible value, given allele frequencies 

at two loci, while r2 is formed by dividing D2 by the product of the four allele 

frequencies at the two loci. The case of D’ = 1 or r2 = 1 is known as complete LD.  

However, D’ values that are near to 1 provide a useful indication of minimal historical 

recombination, but intermediate values should not be used for comparisons of the 

extent of LD. When r2 is used as a pairwise measure of LD for association studies, 

values above 1/3 might indicate sufficiently strong LD is present between two loci 

(Ardlie, 2002; Jorde, 2000).  
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2.3. Dyslipidemia 

2.3.1. Lipids and lipoproteins 

The major plasma lipids are cholesterol and TGs.  Cholesterol is an essential structural 

component of cell membranes and is the precursor of steroid hormones and vitamin D 

while TGs are energy sources.  These lipids are transported as components of the 

lipoprotein particles in the plasma, from sites of synthesis and absorption to sites of 

uptake.   These lipoprotein particles contain a hydrophobic core of CEs and TGs, with 

a hydrophilic surface coat consisting of phospholipids, free cholesterol, and 

apolipoproteins, which provide plasma lipoproteins with structural stability and 

solubility.  According to their densities, lipoproteins can be classified into four major 

subtypes: chylomicron (<0.95g/ml), VLDL (0.95-1.006g/ml), LDL (1.019-1.063g/ml) 

and HDL (1.063-1.210g/ml).  Chylomicrons are produced for the purpose of 

transporting dietary TGs and cholesterol absorbed by intestinal epithelia, while VLDLs 

are formed to transport endogenously derived TGs to extra-hepatic tissues. In addition 

to TGs, VLDLs contain some cholesterol and CEs and the apoproteins, apoB-100, 

apoC-I, apoC-II, apoC-III and apoE.  IDLs are derived from TG depletion of VLDLs. 

IDLs can be taken up by the liver for reprocessing or upon further TG depletion, be 

converted to LDLs.  LDLs are the primary plasma carriers of cholesterol for delivery 

to all tissues from the liver and apoB-100 is the exclusive apolipoprotein of LDLs.  

HDL facilitates the reverse cholesterol transport from peripheral cells to the liver. 

 

2.3.2. Definition of dyslipidemia  

Dyslipidemia describes a range of disorders that include both abnormally high and 

low lipid and lipoprotein levels, as well as disorders in the composition of these 

particles. The National Cholesterol Education Programme (NCEP) Adult Treatment 
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Panel (ATP) III defines dyslipidemia as an elevation of serum TGs, presence of small 

LDL particles and low HDL-cholesterol level.  No standard and non-expensive 

methodologies are available for the measurement of small LDL particle and 

approximately 70% of total plasma cholesterol is partitioned into LDL, thus, the 

measurement of total plasma cholesterol concentration is a surrogate of LDL level.  

In practice, dyslipidemia is defined as total plasma cholesterol (TC) ≥ 240mg/dl 

(6.15mmol/L) or TG ≥200mg/dl (2.25mmol/L).   

 

Dyslipidemia is a heterogeneous group of disorders which can be classified in several 

ways.  According to etiology, dyslipidemia can be classified into primary and 

secondary dyslipidemia.  Based on the biochemical phenotype, dyslipidemia can be 

classified into (1) mainly hypercholesterolemia, (2) a combined increase in cholesterol 

and TGs and (3) mainly hypertriglyceridemia.   

 

2.3.3. Dyslipidemia and CAD 

Dyslipidemia is a prominently important risk factor for CAD. In this thesis, two main 

types of dyslipidemia, namely, hypercholesterolemia and hypertriglyceridemia are 

reviewed. 

 

The casual relationship between cholesterol and atherosclerosis has been extensively 

surveyed from three aspects, epidemiological studies, clinical trials, and pathological 

studies, by Steinberg (2002; 2004; 2005a, 2005b, and 2006).  In population studies, 

the Framingham Heart Study (Kannel et al; 1961), the Seven Countries Study (Keys, 

1970 and 1980), and a cohort study in three large cohorts (Stamler et al., 2000) have 

provided the evidences linking hypercholesterolemia to CAD. Numerous clinical 
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trials with larger number of subjects have conclusively shown that 

cholesterol-lowering treatment reduces both coronary events and total mortality 

(Libby et al., 2000;  NCEP, ATPIII, 2002; Yokoi, et al., 2005; Ballantyne, 2005; 

Huse et al., 2006).  Moreover, the pooled results of many clinical trials using 

different cholesterol-lowering regimens indicated that for every 10% reduction in 

plasma cholesterol level, CAD mortality will be reduced by 15% (Gould et al., 1998); 

patients who received statin treatment demonstrated a 20% to 30% reduction in death 

and major cardiovascular events compared with patients who received placebo (Ross 

et al., 1999).  Other than these epidemiological studies and clinical trials, 

pathological studies also showed that the early lesion of atherosclerosis consists of 

subendothelial accumulation of foam cells.  It was nearly 100 years ago that 

cholesterol had been found to cause arterial lesions by the Russian investigators, 

Antisckkow and Chaltow (Anitschkow anf Chalatow, 1913).  The trigger event for 

atherosclerosis is the accumulation of oxidized LDL, which stimulates the underlying 

endothelial cells to produce a number of pro-inflammatory molecules (Ross, 1999), 

which then lead to foam cell formation and atherosclerosis development.   

 

In summary, the causal relationship between blood cholesterol and coronary artery 

atherosclerosis is generally accepted.  Cholesterol is not only a component of 

atherosclerotic plaques but also is an initiator of atherosclerosis (Steinberg, 2002).  

Therefore, cholesterol-lowering treatment is one of the most promising therapeutic 

targets in the prevention of coronary atherosclerosis, especially those with 

hypercholesterolemia.   
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The impact of hypertriglyceridemia on CAD risk has long been a matter of intense 

debate. However, during the last decade, a considerable number of evidences have 

been gathered to support hypertriglyceridemia as an independent risk for CAD 

(Hokanson and Austin, 1996; Assmann et al., 1996; Yarnell et al., 2001). Clinical 

trials also demonstrated the benefits of triglyceride lowering alone on clinical or 

cardiovascular outcomes (Fruchart et al., 2004). In addition, a meta-analysis of 

prospective studies conducted in the Asia-Pacific region also suggested that serum 

TGs are an important and independent predictor of CAD and stroke risk in this region 

(Patel et al., 2004) 

 

2.3.4. Genetics of dyslipidemia 

Dyslipidemia can be monogenic disorders or a part of a complex genetic disease.  

Some monogenic dyslipidemia, such as familial hypercholesterolemia and 

sitosterolemia, are found to be associated with atherosclerosis. Studies on these 

monogenic disorders have provided important insights into the fundamental biology 

of cholesterol metabolism.  For example, studies of familial hypercholesterolemia 

led to the discovery of LDLR and the elucidation of the feedback control of 

cholesterol synthesis (Brown and Goldstein, 2001).  In addition, the study of 

monogenic diseases can lead to successful drug therapies for atherosclerosis.  For 

instance, the discovery of LDLR led to development of statin drugs, which 

significantly reduce cholesterol and CAD mortality.  Statins are used as routine 

medication not only for the treatment of CAD by tens of millions of CAD patients but 

also for the prevention of CAD by the healthy.   Last but not least, monogenic 

diseases also provide a logical basis for candidate gene study for the more common 

forms of dyslipidemia (Lusis et al., 2004).  However, monogenic dyslipidemia can 
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only account for a small percentage of atherosclerosis and most dyslipidemia are 

regarded as complex diseases involving common variations in candidate genes.  

 

Over the years, many genes encoding apolipoproteins, lipoprotein receptors, and 

enzymes involved in plasma lipid metabolism have been evaluated to examine the 

possible associations with levels of plasma lipids and lipoproteins.  Some of those 

associations observed are convincing and have been replicated.  For example, three 

common apoE alleles exhibit marked effects on plasma cholesterol level in Western 

populations, accounting for 4% or more in total plasma cholesterol variation and 

increased atherosclerosis risk (Lusis et al., 2004)  Furthermore, the apoE genetic 

variation is also associated with type III hypercholesterolemia and >95% of type III 

hyperlipoproteinemia individuals have the E2/2 phenotype.  However, only 1/50th of 

E2/2 individuals manifest the overt disease (Mahley and Rall, 1995; Breslow, 2000). 

These studies also implied that lipid disorders are complex diseases and can be 

influenced not only by genetic but also by environmental factors.  Identification of 

these genetic factors and quantifying their effects are an area of great interest and the 

objective of much current research.   

 

2.4. Acyl-coenzyme A: cholesterol acyltransferase (ACAT) 

ACAT (EC2.3.1.26) catalyzes the formation of CEs by using cholesterol and 

long-chain fatty acids as substrates, and ATP and coenzyme A (CoA) as co-factors.  

The esterification of cholesterol serves several important functions in cholesterol 

metabolism: 1) Addition of long-chain fatty acids to cholesterol reduces its solubility 

in the cell membrane phospholipid bilayer and promotes CEs to be stored as lipid 

droplets within the cytoplasm (Rudel and Shelness, 2000).  This process prevents 
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toxic accumulation of free cholesterol in various cell membrane fractions.  2) The 

cholesterol esterification is required for the intestinal cholesterol absorption, since 

75-80% of cholesterol absorbed undergoes esterification before incorporation in 

chylomicrons (Klein and Rudel, 1983).  3) CEs are also required for the synthesis 

and secretion of apoB-containing lipoproteins (e.g., VLDL) by the liver (Buhman et 

al., 2000).  4) ACAT has a role in the accumulation of CEs in macrophages and 

vascular tissue, an event that is central to foam cell formation and atherosclerosis.  

 

There are two forms of ACAT, ACAT1 and ACAT2, which catalyze the formation of 

CEs using cholesterol and fatty acids. However, their distribution, physical structures 

and physiological functions in cholesterol metabolism are distinct from one another.  

Another enzyme catalyzing the formation of CEs, lecithin cholesterol acyltransferase 

(LCAT), is noteworthy. LCAT transfers an acyl chain from phosphatidylcholine 

(lecithin) to cholesterol. Furthermore, the CEs provided by LCAT are responsible for 

the maturation of HDL particles (Chang et al., 1997) and have anti-atherosclerotic 

potential (Lee et al., 2004). Before reviewing these characteristics, the identification 

of ACAT2 is described below.  

 

2.4.1. Identification of ACAT2 

The first evidence suggesting that at least two forms of ACAT exist was obtained by 

Kinnunene and his colleagues in early 1988.  They found that ACAT activity in 

pancreas was inhibited by 94% while hepatic ACAT activity was only inhibited by 

6% (Kinnunen et al., 1988) by chemically modifying an active-site histidine residue. 

In 1996, two ACAT-related sterol-esterifying enzymes (Are1p and Are2p) were 

simultaneously but independently identified in yeast (Yang et al., 1996; Yu et al., 
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1996). However, convincing evidence that at least two mammalian intracellular 

cholesterol esterifying enzymes must exist came from ACAT1-/- mice, as the 

esterification activity was absent in the adrenal glands, but not significantly reduced in 

the liver and small intestine (Meiner et al., 1996).  In 1998, the immunodepletion 

using anti-human ACAT1 monoclonal antibody further supported this hypothesis.  

After immunodepletion, ACAT activity was inhibited by 80% in adult human liver, 

adrenal glands, macrophages and kidneys, while ACAT activity was only inhibited 

20% in human intestine (Lee et al., 1998).  All these studies led to the identification 

of a second mammalian ACAT isoform, designated ACAT2, in monkeys, mice, and 

humans (Anderson et al., 1998; Cases et al., 1998; Oelkers et al., 1998).   

 

2.4.2. Distribution and function of ACAT2 

Whereas ACAT1 is ubiquitously present in a variety of tissues and cell types in 

mammals, ACAT2 is only expressed in the small intestine and liver (Lee et al., 1998; 

Oelkers et al., 1998; Chang et al., 2000; Sakashita et al., 2000).  Even in same tissue, 

the cell types of their expressions are also different. In the liver and intestine, ACAT2 

is confined to hepatocytes and enterocytes, which secrete apolipoprotein B-containing 

lipoproteins, while ACAT1 is present in numerous other cell types, such as Kupffer 

cells and macrophages (Lee et al., 2000; Parini et al., 2004).  It is clear that the 

intestine and liver are the only tissues to express ACAT2 under normal conditions and 

enterocytes and hepatocytes are the only cell types to abundantly express ACAT2 but 

do not express detectable amounts of ACAT1 (Rudel et al., 2005).   

 

The different distribution of these two ACATs determines their different 

physiological roles.  ACAT2 facilitates cholesterol absorption in the intestine and the 
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incorporation of atherogenic CEs into apoB-containing lipoproteins (Buhman et al., 

2000), while ACAT1 mainly contributes to the foam cell formation in the early stage 

of atherosclerosis development (Meiner et al., 1996; Chang et al., 1997).  The 

distinct functions of these two ACAT enzymes in cholesterol metabolism determine 

their different contributions to atherosclerosis development and render them 

tissue-specific targets for drug development.   

 

2.4.3. ACAT2 and atherosclerosis  

Due to the specific distribution of ACAT2 and its role in cholesterol absorption in the 

intestine, and in secretion and assembly of apoB-containing lipoproteins in the liver, 

the relationship between ACAT2 and atherosclerosis has attracted great interest 

among researchers.  In 2000, a study in ACAT2-/- mice indicated that the deficiency 

of ACAT2 results in a reduction in CE synthesis in the small intestine and liver, which 

in turn limits intestinal cholesterol absorption, cholesterol gallstone formation, and the 

accumulation of CEs in the plasma apoB-containing lipoproteins (Buhman et al., 

2000).  In order to examine the contribution of ACAT2 to atherosclerosis, ACAT2-/- 

mice were crossed with apoE-/- mice to generate double-knockout mice (Willner et 

al., 2003).  The results from this study suggested that it is the amount of 

ACAT2-derived CEs present in the core of these lipoproteins and not the number of 

apoB-containing lipoproteins that plays a critical role in the development of 

atherosclerotic lesions (Willner et al., 2003).  Further evidence for the atherogenic 

role of ACAT2 was obtained from studies in LDLR-/- mice with deletion of ACAT2, 

LCAT, or both enzymes together (Lee et al., 2004).  This study demonstrated that 

only LCAT and ACAT2 are responsible for synthesis of plasma CEs and the CEs 

provided by LCAT and ACAT2 have opposite atherosclerotic potential (Lee et al., 
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2004).  These data further supported the importance of ACAT2 in the development 

of atherosclerosis since this enzyme facilitates intestinal cholesterol absorption and 

incorporation of atherogenic CEs into apoB-containing plasma lipoproteins, which 

then appear to accumulate in the aortic intima and promoting atherosclerotic lesion 

development.   

 

Although ACAT1 is the enzyme responsible for the formation of CEs in macrophages 

(Meiner et al., 1996), ACAT1 deficiency did not prevent the development of 

atherosclerotic lesions in either apoE-/- or LDLR-/- mice (Accad et al., 2000; Yagyu 

et al., 2000).  Instead, severe side effects, such as extensive cutaneous xanthomatosis, 

were observed (Accad et al., 2000; Yagyu et al., 2000). Furthermore, macrophage 

ACAT1 deficiency even promotes lesion formation (Fazio et al., 2001).   Together, 

these studies suggested that complete ACAT1 deficiency has been varyingly 

problematic.   

 

All information available about ACAT1 and ACAT2 suggests that it would be 

beneficial to selectively inhibit ACAT2 to decrease atherogenicity of plasma 

lipoproteins without causing severe side effects and affecting normal membrane 

function to the body with the availability of adequate ACAT1 function (Rudel et al., 

2005).   

 

2.4.4. ACAT2 protein structure  

Human ACAT2 protein contains 522 amino acid residues and exhibits 48% sequence 

identity with ACAT1 at their carboxyl termini.  The molecular weight of ACAT2 is 

46 kDa, which is bigger than the predicted molecular size (Chang et al., 2000).   
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Some studies have been performed to unravel the relationship between the structure 

and function of ACAT and its related protein, especially regarding the activity and 

substrate-binding site.  Joyce et al. (2000) used mutagenesis methods to demonstrate 

that the conserved serine in the 245th residue of ACAT2 may be essential for ACAT 

activity.  Guo et al. (2001) also suggested the importance of the conserved serine for 

enzyme activity and stability in the ACAT1 and Are2p, an ACAT-related-enzyme in 

yeast.  Furthermore, Guo et al. (2001) also found that the mutation of a tyrosine or 

the tryptophan in the conserved FYxDWWN motif either decreased or nullified 

enzyme activity.  Because the motif containing the conserved serine is absent from 

DGAT, a member in the acyltransferase family, they speculated that the conserved 

serine of (H/Y)SF may play a role in sterol binding and the FYxDWWN domain may 

mediate the binding of acyl-CoA.  However, Lin et al. (2003) confirmed that the 

conserved serine is important for ACAT protein stability but not essential for ACAT 

catalytic activity, as they found that the mutagenesis of ACAT protein from serine to 

leucine or to alanine caused the mutant protein to be expressed at a much lower level.  

Instead, they found that a conserved histidine (His434) may be essential for ACAT2 

catalysis.  In addition, Guo et al. (2001) reported that the 31 amino acid residues at 

the amino-terminal region in Are2p, the ACAT-related-enzyme (Are)2, may mediate 

the enzyme activity in a negative fashion using the truncation approach, and suggested 

that it may be true for ACATs in general.  However, whether the amino terminal 

amino acid residues have important biological function is unclear. 

 

2.4.5. ACAT2 genomic organization and its regulation of ACAT expression 
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The ACAT2 gene (NT_029419) maps to chromosome 12 (12q13.13) and spans 

slightly over 18 kb. It is much smaller than the ACAT1 genomic DNA, which is about 

200kb in length (Li et al., 1999).  ACAT2 comprises 15 coding regions and exon 1 

contains 5’-untranslated region (5’-UTR) (AF332857, AF332858).  

 

Most genes involved in the cholesterol metabolism pathway, such as LDLR and 

HMG-CoA reductase genes, are regulated by the sterol response element binding 

protein (SREBP) (Brown and Goldstein, 1986 and 1997).  These gene promoters 

contain a 10-base-pair sterol-regulatory element and SREBP binds this element to 

mediate these gene expressions.  However, the sterol-regulatory element could not 

be identified within the ACAT1 and ACAT2 promoters (Li et al., 1999; Song et al., 

2001).  These findings indicated that both ACATs are not regulated by the SREBP 

mode.   

 

The 5’-flanking region ACAT2 gene contains many potential cis-acting elements for 

multiple potential transcriptional regulatory factors, such as Cdx-2, HNF-3b, Sp1 and 

CEBP, but lack TATA and CCAAT boxes (Song et al., 2001).  There are studies to 

show that Cdx-2, HNF-1 alpha and beta play important regulatory roles in ACAT2 

gene expression (Song et al., 2003; Pramfalk et al., 2005).  In addition, analysis of 

the promoter activity of serially deleted 5’-flanking regions of ACAT2 suggested that 

there might be positive regulatory elements between -1299 to -768 (the transcription 

start site is designated as +1) (Song et al., 2001).   
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2.4.6. Genetic analysis of ACAT2  

Although the ACAT2 gene certainly qualifies as a candidate gene for 

hypercholesterolemia and atherosclerosis, genetic association study of this gene has 

only been carried out in Japanese population (Katsuren et al., 2001 and 2003).  They 

used single-strand conformation polymorphisms (SSCP) to identify 4 polymorphisms 

and found the association of the heterozygotes of Thr254Ile with plasma apoCIII 

concentrations in 91 dyslipidemic subjects (Katsuren et al., 2001). Whether there is 

any association of ACAT2 polymorphisms with CAD susceptibility is still unknown.  

Furthermore, the association of the ACAT2 polymorphisms with dyslipidemia and 

plasma lipid parameters is worth investigating in other non-Japanese populations.   

Genetic studies on this gene may offer the opportunity to identify the determinants of 

hypercholesterolemia and atherosclerosis and help to unravel certain structural and 

functional features. 

 

2.5. Lipoprotein lipase (LPL) 

LPL (EC 3.1.1.34) is a member of the lipase super-family that includes hepatic lipase, 

pancreatic lipase and LPL itself (Hide et al., 1992). Research carried out over the past 

two decades has not only established the central role of LPL in the overall lipid 

metabolism and transport but also identified novel, non-catalytic functions of the 

enzyme. Abnormal LPL expression has also been found to be associated with 

atherosclerosis, dyslipidemia and diabetes. 

 

2.5.1. Function and localization of LPL 

LPL is a crucial enzyme in the removal of plasma TG-rich lipoproteins, such as 

chylomicrons and VLDL from the circulation, and provides non-esterified fatty acids 
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and 2-monoacylglycerol for tissue utilization.  After the hydrolysis process, the 

chylomicrons in the intestine are converted to smaller remnants and transported into 

the liver. In the case of VLDL, the lipoprotein particles become smaller IDLs and 

LDLs after the hydrolysis of its TG component by LPL.  This process also results in 

the generation of surface remnants, phospholipids and apolipoproteins, which give 

rise to HDLs.  Therefore, LPL is critical for the formation of HDL particle (Lewis 

and Rader, 2005).  

 

Other than its role in the hydrolysis of the TG component in chylomicrons and VLDL, 

LPL also fulfills other important functions. For example, LPL can function as a 

non-catalytic bridge to facilitate the uptake and cellulization of plasma lipoproteins 

and CEs through specific receptors, such as LDL receptor, and VLDL receptor 

(Pentik鄜nen et al., 2002; Merkel et al., 2002b; Stein and Stein, 2003; Loeffler et al., 

2006).  In addition, LPL has been shown to stimulate the proliferation of VSMCs 

(Mamputu et al., 2000).  Thirdly, LPL has been reported to have differential effects 

on several inflammatory pathways, such as tumor necrosis factor-alpha and 

interferon-gamma -mediated inflammatory cytokine signal transduction pathways in 

human aortic endothelial cells (HAECs) (Kota et al., 2005).  These inflammatory 

pathways are known to be important in atherosclerosis.  Finally, LPL reduces the 

secretion of apoE from macrophages, which could significantly influence apoE 

accumulation in arterial vessel wall lesions (Mead et al., 2002). 

 

Adipose and muscle cells are the major sources of LPL synthesis.  LPL is 

synthesized and secreted in catalytically active form by adipocytes and myocytes and 

then transported to the luminal surface of the capillary endothelium. The 
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physiological function in capillary endothelium is to hydrolyze the TG component of 

chylomicrons and VLDL and IDL particles on the luminal side.  The LPL in 

capillary endothelium drives the lipoprotein profiles in a non-atherogenic direction 

with increase in HDL levels.  The vast majority of the total LPL in the body is 

located in capillary endothelium.  However, LPL is also found in the arterial 

endothelium and most of the arterial LPL is derived from monocyte-derived 

macrophages and macrophage-derived foam cells and smooth muscle cells (Wang et 

al., 2006).  The LPL on the arterial intima can lead to the retention of LDL in these 

structures by acting as a molecular bridge.  Therefore, the arterial LPL has been 

suggested to have a role in atherogenesis.   Taken together, the localization of LPL 

is curicial to determine whether its role in the development of atherosclerosis is 

predominantly pro-atherogenic or anti-atherogenic. 

 

2.5.2. LPL and atherosclerosis 

2.5.2.1. The anti-atherogenic effects of LPL 

LPL expressed in adipose tissue and muscle is believed to be anti-atherogenic because 

it aids the clearance of circulating lipoprotein particles and the formation of HDL.  

The anti-atherogenic effect of LPL has been backed by clinical and experimental 

evidences. Firstly, LPL-deficient patients were reported to develop premature 

atherosclerosis (Benlian et al., 1996).  Furthermore, individuals with heterozygous 

LPL mutations which lead to decreased enzyme activity (e.g. Asn291Ser, Gly188Glu, 

and Asp9Asn) or reduced expression (e.g. -93T>G in the promoter) have been 

reported to be predisposed to hyperlipidemia and premature atherosclerosis (Reymer 

et al., 1995; Gilbert et al., 2001; Wittrup et al., 2006; Goldberg and Merkel 2001; 

Frikke-Schmidt et al., 2006).  The Ser447Ter, a naturally occurring mutation, has 
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been proven to increase LPL catalytic activity (Ross et al., 2005).  Most studies have 

suggested that this beneficial mutation was associated with decreased plasma TG 

levels, higher HDL and reduced risk of CAD (Rip et al., 2006).  Finally, 

administration of the compound NO-1886, a LPL activator, may contribute to 

improving atherosclerosis by increasing HDL cholesterol or influence the expression 

of inflammatory cytokines (Nakamura et al., 2006; Cai et al., 2006).  

 

2.5.2.2. The pro-atherogenic action of LPL 

In contrast to LPL expressed in adipose tissue and muscle, the enzyme expressed in 

cells of the arterial wall, particularly macrophages and smooth muscle cells, is 

proposed to be pro-atherogenic (Babaev et al., 1999 and 2000).  Zilversmit was the 

first to propose that chylomicron and VLDL remnants produced by LPL would 

contribute to the development of atherosclerosis (Zilversmit, 1973). LPL induces the 

formation of atherogenic lipoprotein remnants by the following mechanisms. Firstly, 

LPL converts TG-rich lipoproteins to small and dense particles with enrichment in 

their CE contents and such remnants are taken up readily by macrophages (Zilversmit, 

1995; Lindqvist et al., 1983).  In addition, LPL has been shown to act synergistically 

with sphingomyelinase in the lesion to enhance the association of LDL and the highly 

atherogenic lipoprotein(a) [Lp(a)] to the vascular wall (Tabas et al., 1993; Mead et al., 

1999).  Finally, additional functions of LPL, including stimulation of smooth muscle 

cell proliferation, adhesion of monocytes to endothelial cells and regulation of gene 

expression, may trigger other pro-atherogenic events (Mamputu et al., 1997; 

Mamputu et al., 2000; Renier et al., 1994).  It has been shown that the suppression 

of LPL expression attenuated pro-inflammatory cytokine secretion in THP-1 

macrophages (Qiu et al., 2006). 
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2.5.3. The organization of LPL protein and gene  

Mature LPL protein contains 448 amino acid residues.  LPL consists of two 

structurally distinct regions, a larger amino-terminal domain (residues 1-312) and a 

smaller carboxyl-terminal end (residues 313-448).  The C-terminus appears to be 

implicated in the uptake of lipoproteins by cell surface receptors whereas the 

N-terminus is important for the catalytic activity (Mead et al., 2002).  

 

The LPL gene is located on chromosome 8p22, spanning about 35 kb, and contains 10 

exons separated by 9 introns.  Exon 1 encodes the 5’–UTR while exon 10, notably 

longer than the others, encodes the entire 3’-UTR (Enerback and Gimble, 1993; 

Raisonnier et al., 1995). LPL gene expression is regulated by transcriptional and 

post-transcriptional control (Mead et al., 2002). 

 

2.5.4. Genetic analysis of LPL 

Because of the physiological importance of LPL in the catabolism of TG-rich 

lipoprotein particles and its possible role in lipid-related pathologies, LPL is an 

important candidate gene for association studies on atherosclerosis risk in the general 

population.  About 100 natural-occurring polymorphisms have been identified in the 

LPL gene, of which 80% occur in coding regions and the others in non-coding regions 

(Murthy et al., 1996).  There are 61 missense mutations, most of which are located 

on exons 5 and 6; 12 nonsense mutations, 10 frameshift mutations or small 

insertions/deletions, 3 gross mutations, 8 splicing mutations, and 4 promoter variants 

(Merkel et al., 2002a).  Some functional mutations can influence LPL function in 

different ways, such as affecting catalytic activity, dimerization, secretion, and 

heparin binding (Razzaghi et al., 2000), leading to altered lipid profiles.  Some of 
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them have been associated with familial LPL deficiency (FLLD) and 

chylomicronemia.  For instance, Gly188Glu has been identified in almost 50% 

FLLD in European and Indian ancestry (Mailly, et al., 1997) and two families with 

type I hyperlipidemia (Paulweber et al., 1991).  Pro207Leu is the most common 

cause of familial chylomicronemia in French Canadians (Ma et al., 1992).  However, 

most of these functional LPL mutations are rare, either restricted to families with LPL 

deficiency or isolated geographic regions.  For example, Gly188Glu, Asn291Ser, 

and Asp9Asn are common in some Western populations, such as the French Canadian 

population, but not in the Asian general population (Yoshida et al., 2000; Yamana et 

al., 1998: Yang et al., 2003).  In this review, only three most common genetic 

variants with modest effects on lipids profiles are surveyed.  

 

The c.1342C>G, a C to G transversion, results in a premature stop codon truncating 

the LPL protein by two amino acids and it is usually defined as Ser447Ter or S447X.  

The c.1342C>G  is a very common variant, occurring at a frequency approximately 

20% in general population and has been reported to be the only variant with increased 

LPL activity (Merkel et al., 2002a).  Results from association studies suggested that 

the 1342G carriers had a beneficial lipid profile (Kuivenhoven et al., 1997; Razzaghi 

et al., 2000; Groenemeijer et al., 1997; Arai et al., 2005; Souverein et al., 2005; 

Brousseau et al., 2004; Morabia et al., 2003; Chen et al., 2001; Humphries et al., 

1998) and a reduced risk of atherosclerosis (Humphries et al., 1998; Clee et al., 2001; 

Arca et al., 2000; Shimo-Nakanishi et al., 2001).  However, inconsistent results have 

been reported (Morrison et al., 2002; Jemaa et al., 1995; Fidani et al., 2005).  
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Two variations, IVS6+1595C>T and IVS8+484T>G, in intronic regions, have been 

most extensively studied.  The IVS6+1595C>T polymorphism, a C>T transition, can 

be identified by the cleavage of restriction enzyme PvuII (Chamberlain et al., 1991; 

Nicklas et al., 2000), hence, it is usually defined as PvuII polymorphism.  The 

IVS8+484T>G polymorphism is a T>G transversion and can be identified by 

restriction enzyme HindIII (Heizmann et al., 1991), so it is also known as HindIII 

polymorphism. The rare G allele of the IVS8+484T>G polymorphism has 

consistently been shown to be associated with lower TGs and/or elevated 

HDL-cholesterol, and the impact may be modulated by other environmental factors, 

such as smoking and physical activity (Senti et al., 2001; Corella et al., 2002; Whiting 

et al., 2005; Reilly et al., 2005).  In addition, the IVS8+484T>G polymorphism has 

been shown to influence CAD susceptibility and the progression of atherosclerosis in 

several studies (Jemaa et al., 1995; Taylor et al., 2004; Socquard et al., 2006). The 

results on the association of the IVS6+1595C>T polymorphism with plasma lipids 

have been inconsistent; increased TGs in T allele carriers were reported in some 

studies (Chamberlain et al., 1989; Galton et al., 1994; Duman et al., 2006) but not in 

others (Peacock et al., 1994; Jemaa et al., 1995).  Although the IVS6+1595C>T 

polymorphism has been reported to be associated with the severity of CAD in 

Australian whites (Wang et al., 1996), no association was found with CAD in most 

studies in other populations (Galton et al., 1994; Taylor et al., 2004; Duman et al., 

2006).  

 

The three polymorphisms,  c.1342C>G , IVS8+484T>G, IVS6+1595C>T, have been 

found to be in LD in most populations (Chamberlain et al., 1989; Hallman et al., 1999; 

Razzaghi et al., 2000). Furthermore, most IVS8+484T>G-associated effects could be 
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explained by the LD between the IVS8+484T>G and c.1342C>G (Humphries et al., 

1998; Talmud and Humphries, 2001).  

 

As mentioned above, although there have been many studies to examine the effects of 

LPL genetic variants, these results are inconsistent.  Furthermore, most studies were 

carried out in Caucasian populations and only a few studies have examined the impact 

of these polymorphisms in Asian populations (Shimo-Nakanishi et al., 2001; 

McGladdery et al., 2001; Hall et al., 2000; Radha et al., 2006) and in Singaporeans 

(Lee et al., 2004; Liu, et al., 2004).  To our knowledge, there are no large-scale 

studies to explore their combined effects of these three polymorphisms on CAD risk 

and lipid profiles in an Asian population. Therefore, other than individual effects of 

these polymorphisms, the combined effects should be investigated.  
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3. MATERIALS AND METHODS 

 

3.1. Subjects 

For polymorphism screening of the ACAT2 gene, umbilical cord blood was collected 

from 336 consecutive newborns at the National University Hospital, Singapore.  

Informed consent was obtained from mothers of the neonates.   

 

For the association studies, the CAD+ subjects were selected from patients who had 

been admitted to Singapore National Heart Center for coronary artery bypass graft 

surgery.  All the patients had more than 50% stenosis in at least one of the major 

coronary arteries as revealed by angiography.  The controls were recruited from 

workers sent by their employers to attend routine health screening.  This screening 

included blood hemoglobin estimation, urine analysis for albumin and sugar, chest 

X-ray and resting electro-cardiogram.   Subjects with any abnormal test results or 

who had a history of heart illnesses, stroke, diabetes or hypertension were excluded.   

All subjects gave informed consent.  

 

A total of 809 CAD patients (CAD+) were included in the ACAT2 gene association 

study.   These comprised 526 Chinese, 137 Malays and 146 Asian Indians.  A total 

of 1304 controls (CAD-) comprising 702 Chinese, 230 Malays and 372 Indians were 

studied. 

 

However, only male Chinese and male Indians were studied in our LPL gene 

association study.  Since the LPL gene has been extensively studied in many 

populations, we are interested to examine the genetic effect in male Chinese and 
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Indians, which have contrasting mortalities from CAD and Malays have intermediate 

mortality from CAD (Hughes et al., 1990a and 1990b). The CAD+ patient samples 

comprised only 899 Chinese males and 302 Indian males and the CAD- controls 

comprised 538 Chinese and 305 Indians.  

 

This study was approved by the Research and Ethics Committee, National University 

Hospital, which is the predecessor of the Institutional Review Board . 

 

3.2. DNA analysis  

3.2.1. DNA Extraction 

After blood was collected, the white blood cells and plasma were separated by 

centrifugation at 1500g for 15 min.   The white blood cells were used for DNA 

extraction and the plasma was freezed at -20oC for the measurement of lipids.  

Afterwards, genomic DNA was isolated from white blood cells using Parzer’s method 

(Parzer and Mannhalter, 1991).  Five ml of blood sample was lyzed using 10ml of 

lysis buffer (0.32 M sucrose, 5mM MgCl2, 0.01M Tris-HCl, 1% Triton X-100, pH 8.0) 

and then centrifuged for 10 min at 3000g.  The supernatant was discarded and the 

pellet was re-suspended in 14ml of NaCl/EDTA solution (10mM NaCl, 10mM EDTA, 

pH8.0) and centrifuged as before. Then the pellet was incubated with 210痞 of  20% 

sodium sarcosyl, 150痞 o f  7 . 5M a mmo ni um a cet ate,  2 . 1ml  o f  6M guani di um 

hydrochloride and 60痞 of  10mg / ml  pr ot ei nase K at  60 oC for 2-5min until the solution 

was clear.  This digested mixture was cooled to 0oC on ice and DNA was 

precipitated using 10ml of cold absolute ethanol. The precipitated DNA was dried at 

room temperature and then dissolved with 100痞 of  TE (10mM Tr i s -HCl, 1M EDTA, 

pH 8.0) and stored at 4oC.  
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3.2.2. Primer design for polymorphism screening of ACAT2 gene 

The DNA sequence of the ACAT2 gene was obtained from a public database 

(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=16163027; accession no. 

NT_030118).  For the polymorphism detection, the regions of interest, such as the 

coding regions, the intron-exon boundaries, 5’-UTR, and the putative promoter region, 

were screened.  Primers to amplify these regions in separate amplification reactions 

were designed using the program at http://seq.yeastgenome.org/cgi-bin/web-primer.  

The primer sequences and their related information are shown in Table 3-1.  For the 

region, exon 9 and its flanking intronic boundary, an additional upstream primer with 

20bp of GC content (CGCCCGCCGCCGCCCGCCGC) at the 5’ end was used to 

increase the resolution (Marsh et al., 2001; Narayanaswami and Taylor, 2001).  All 

primers were purchased from Qiagen (Tokyo, Japan) or Alpha DNA (Montreal, 

Canada).  
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Table 3-1. PCR primers and DHPLC conditions  
 

Regions Forward primer  
Reverse primer 

PCR Product
Length (bp) 

Annealing  
Tm (oC)(A-B)

DHPLC  
Gradient* 

DHPLC 
Tm (oC) 

Promoter 
region (a) 

5’-TCTCCAGATGGCAATGGAAG-3’ 
5’-TCTGTGAGGCTTGATGGCTTG-3’ 

384 60-53 
59-65%B 

3min 
60-62 

Promoter 
region (b) 

5’-AGGAACCCAGCAAAGAGGAAC-3’ 
5’-TGAGCATGTAGGCAGAAAGG-3’ 

349 60-53 58-64%B 

3min 
57-59 

Promoter  
Region (c) 

5’-CGTGAGTAGCACAGTGCCAA-3’ 
5’-TTGTCCCACTCAGCTCAGGTG-3’ 

439 61-54 
60-66%B 

3min 
60-62 

Exon1 5’-CAGATAACCTATCGCACTCCC-3’ 
5’-CTTCTCTCCATAGCGCATCTC-3’         

323 62-56 
60-66% B 

 3 min 
61-63 

Exon 2 5’-GTCTGCAGAACCCCAATTCC-3’ 
5’-AGCCGAGATTGTGCCAATGC-3’          

268 63-57 
57-63%B 

3 min 
60-64 

Exon 3 5’-CTGGTGAATGAAAGGATGGCTG-3’  
5’-CTGATAAAGCTGGCAAGGGCAC-3’       

290 61-54 
57-63%B 

3 min 
62-64 

Exon 4 5’-TTGGCTCCCAAGTATTGACC-3’ 
5’-CTGGGGATGAGAAATGAGG-3’ 

227 61-54 
55-61%B 

3min 
60-62 

Exon 5 5’-TGGAAGTTCTGGATCGCTAG-3’ 
5’-GTTGGGAGCAATGTTGGTAC-3’ 

355 62-55 
51-60%B 

5 min 
61-65 

Exon 6 5’-CAGACTGAAGAGGAAGGGGAC-3’ 
5’-CCCCTCTGCTGAGATGGC-3’ 

399 63-56 55-64%B 

5 min 
61-64 

Exon 7 5’-CGATTTGCTTAAAGCCACACAGC-3’ 
5’-AAGAGGACTGAGTTCACAACCGG-3’ 

164 62-56 
51-57%B 

3 min 
59-61 

Exon 8 5’-CTTACTAATCCACCCCTCTCATTC-3’ 
5’-GAGGGGAGAGTAGAAGGGTAAG-3’ 

185 63-53 
49-58%B 

 4.5 min 
60-63 

Exon 9 5’-CGTCCCAGGCTGAACAGAGAACAACA-3’
5’-ATGAGTCACAGGTCCACCCTT-3’ 

205 63-52 
53-59%B 

3 min 
61-63 

Exon 10 5’-TGCTGGGCCAGAGGTCAATG-3’ 
5’-CACAGCTGCTCTAGCCCTAC-3’          

239 64-60 
55-61%B 

3 min 
62-65 

Exon 11 5’-GCCTCTTGTCCCCAACCAC-3’  
5’-CACCCAACCTGGCTACCATC-3’          

205 63-56 
52-58%B 

3min 
61-64 

Exon 12 5’-GAACCCAGATGCTTGCTTACCTC-3’ 
5’-GAGAGCCCCTATTAACTGTGAGAG-3’    

202 63-56 
53-59%B 

3min 
61-63 

Exon 13 5’-GAGGAGCTCAGGGAGACTTAC-3’ 
5’-AGGCCTCCCACCATCAGTCTG-3’ 

275 63-56 
56-62%B 

3min 
60-63 

Exon 14 5’-CACTCCTGGAGCTGGAATGAC-3’ 
5’-GGACTGGCTGTTGGTCTGTG-3’ 

251 63-54 
56-62%B 

3 min 
61-63 

Exon 15 5’-CTTGGGGGTGATGGACTC-3’ 
5’-GTTTTGCAGGCAGAGAACTTGG-3’ 197 63-54 54-60%B 

3 min 
59-62 

 

*: buffer B percentage (start gradient - stop gradient). 
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3.2.3. PCR amplification 

All amplification reactions were carried out in a 40µl of mixture containing 100ng of 

genomic DNA, reaction buffer, 0.2 mM each dNTP, 10% dimethyl sulfoxide, 40 pmol of 

each primer and 0.4U of DynaZyme II (Finnzymes, Espoo, Finland).  The reaction 

mixture was denatured at 94oC for 2 min, followed by an initial 14 cycles of denaturing 

at 94oC for 30s and annealing from a range of temperatures as given in Table 3-1 at 

ramping rate of 0.5oC per cycle.  The subsequent 20 cycles were run at annealing 

temperature BoC (Table 3-1). The final extension step is at 72oC for 10 min. The 

reactions were carried out in the T-GRADIENT Thermocycler (Biometra, Goettingen, 

Germany).  

 

3.3. Survey of genetic variant in ACAT2 gene from public resources 

Before screening the regions of interest, known SNPs have been identified using the 

program at http://www.ncbi.nlm.nih.gov/projects/SNP/snp_blastByOrg.cgi. Other SNP 

resources, such as TSC at http://snp.cshl.org, JSNP at http://snp.ims.u-tokyo.ac.jp, and 

HGVbase at http://hgvbase.cgb.ki.se/, were also explored.  We aimed to identify 

novel polymorphisms when we screened these regions using DHPLC. 

 

3.4. DHPLC analysis 

DHPLC was carried out using the Transgenomic WA V E® DNA  Fragment A nalysis 

system (Transgenomic, Omaha, USA). The amplified DNA fragments of interest were 

injected (3-10µl) automatically from the 96-well autosampler onto the DNAsep 

cartridge.  They were then eluted at a constant flow rate of 0.9ml/min with a linear 

acetonitrile gradient that has been determined by the WAVEMaker software 

(Transgenomic) based on their size and GC. The gradient was achieved by combining 
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buffer A (0.1M triethylammonium acetate, pH 7.0) and buffer B (0.1M TEAA and 25% 

acetonitrile in water, pH 7.0). The DNA fragment elution was monitored with a UV 

detector at 260nm and displayed as chromatography using the Transgenomic WAVE 

MAKERTM software, and the chromatograms were compared and analyzed. 

 
The processing time for each sample was about 7 min, comprising a 2.2-min lag for the 

detector, a 0.5-min sample loading with a 5% decrease in Buffer B, a 3-min linear 

gradient step with a slope of 5% decrease in Buffer B per minute, a 0.5-minute cleaning 

stage using 75% acetonitrile, and a 0.9-min equilibration before next injection.  Homo- 

and hetero-duplex peaks were detected between the initial injection peak, which is 

produced by residual nucleotides and primers in the sample mixture, and the washing 

peak. The washing peak is produced by the acetonitrile wash at the end of each analysis. 

 
PCR products were initially analyzed under non-denaturing conditions (50oC) to assess 

the quality of the PCR products. A single sharp peak was taken as indication for pure 

PCR products that could be used for subsequent polymorphism screening at partial 

denaturation temperatures.  The WAVE System utility software predicted the range of 

partial denaturation temperatures based on the DNA fragment sequence.  The sample 

was run at 2oC above and below the predicted temperature.  Given that heteroduplexes 

are less stable, they denatured earlier than the homoduplexes and will be eluted first.  

 
A minimum of 48 samples for each of three ethnic groups (Chinese, Malay and Indian) 

were screened by DHPLC.  In order to increase the chance of heteroduplex formation, 

eight individual samples were pooled together by mixing same amount of PCR products 

from each individual sample.  The mixture and all the individual samples were 

denatured at 95oC for 4 min, and then gradually re-annealed by decreasing the 

temperature to 25 蚓 over  a per i od of  45 mi n in a thermal cycler.  The pooled samples 
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were screened first and if a heteroduplex peak was detected in the DHPLC profile, the 

corresponding 8 individual samples were then screened to find the mutant samples.  

The DHPLC gradient and the range of partial denaturation temperature are displayed in 

Table 3-1.  

 

3.5. Sequencing 

Samples that generated abnormal DHPLC heteroduplex patterns were further 

sequenced using ABI3100 to confirm the presence of the altered sequence.  For this 

purpose, the genomic DNA from the samples with atypical DHPLC profiles were 

amplified using PCR and purified via Qiaquick gel extraction kit (Qiagen, Tokyo, 

Japan ) following agarose gel electrophoresis (if more than one band was observed by 

UV) or Qiaquick PCR purification kit (Qiagen, Tokyo, Japan). The purified PCR 

products were used as templates for sequencing with the ABI Prism BigDye 

Terminator cycle sequencing kit (Applied Biosystems, USA).  For cycle sequencing, 

each 20µl sequencing reaction comprises 20ng of template, 3.2 pmol of primer, 2µl of 

Terminator Ready Reaction mix and 3µl of 5x sequence buffer.  The reaction mixture 

was denatured at 94蚓 for  5 mi n and then 25 cycl es of  denatur i ng at  96蚓 f or 10 s, 

annealing at 50蚓 f or  5 s,  and ext ensi on at 60蚓 f or  4 mi n.   Af ter  25 cycl es,  the 

reaction was rapidly chilled to 4蚓.   The react ion pr oduct s we re pr eci pi tat ed by the 

ethanol/sodium acetate method.  Firstly, 20µl of a mixture of 3.0µl of 3M sodium 

acetate (pH 4.6), 14.5μl of deionized water and 62.5μl of non-denatured 95% ethanol 

was added to each sequencing sample.  After a minimum 15 min of incubation at 

room temperature, the products were the centrifuged for 20 min at 14,000 rpm.  After 

removing the supernatant, the pellet was washed in 250μl of 70% ethanol and then 

re-centrifuged for 10 min at 14,000 rpm.  The samples were finally air dried for 5 
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min.  After the clean-up step, 15µl of HiDi-formamide (ABI) was added to each 

sample and then samples were loaded into 96 well optical microplate and ran on the 

A BI PRISM ® 3100 Genetic A nalyzer. The sequencing data was analyzed using the 

ABI Genetic Analyzer Data Collection Software. 

 

In case the polymorphic sites were located at the extreme end of the fragment of 

interest,   each fragment was sequenced bi-directionally using forward and reverse 

primers in two separated reactions. 

 

3.6. Prediction of biological impact of polymorphisms 

Among the polymorphisms that were found in this study, two SNPs were located in 

the putative promoter region. However, it is unlikely that these two SNPs affect 

ACAT2 gene regulation, as the deletion of the fragment containing these two SNPs 

did not significantly change the promoter activity (Song et al., 2001). Thus, further 

functional predictions of these two polymorphisms using computational methods were 

not needed.  Hence, only these polymorphisms within encoding region were 

examined using these approaches as follows.   

 

I. Two substitution matrix scores, GRANTHAM (Grantham, 1974) and 

BLOSUM62 (Henikoff and Henikoff, 1992), were used to identify any amino 

acid changes and to assess their potential to be deleterious to the protein. 

Variations involving two amino acids are given the same weight irrespective 

of their positions in the protein.  As such, these substitution scores are merely 

based on physicochemical change but are not position-specific.  Amino acid 

changes with GRANTHAM scores of more than 100 are considered radical 
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changes and increasingly associated with disease (Balasubramanian et al., 

2005).  The BLOSUM62 matrix defines amino acid substitution as 

conservative and non-conservative changes.  Conservative changes are those 

having a positive or neutral value on the matrix, whereas non-conservative 

changes are those having a negative score. Non-conservative changes are more 

likely to be disease-causing mutations (Henikoff and Henikoff, 1992).  

 

II. Multiple sequence alignment was used to identify conserved amino acid 

positions. It is known that an amino acid substitution occurring at a conserved 

position is likely to affect the function of protein. Five mammalian ACAT2 

protein sequences from human (NP 003569), monkey (O 77759), mouse (NP 

666176), rat (NP 714950) and dog (XP 543637)  were aligned using 

CLUSTAL W version 1.82 software program.  All orthologs were at least 

65% identical to human ACAT2 protein sequence.  In addition, the 

sequences of six acyltransferase (ACAT1 NP 003092, ACAT2 NP 003569, 

DGAT1 NP_036211, DGAT2 NP_115953, Are1P NP_009978 and Are2p 

NP_014416) were compared to investigate whether these polymorphic loci are 

conserved in the family.  

 

III. Polymorphism Phenotyping (PolyPhen) (http://genetics.bwh.harvard.edu/pph/), 

a position-specific phylogenetic approach, was employed to evaluate the 

evolutionary conservation of these polymorphic sites.  PolyPhen is based on 

the analysis of profile scores and various structural parameters to discriminate 

between disease-causing mutation and neutral substitution.  An amino acid 

variant is predicted to affect function or structure of the protein if the 
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substitution is at a functional site, or is not compatible with the context of 

amino acid substitution at the position in the family of homologous proteins, 

or changes hydrophobicity and electrostatic charge, or affects solubility, or 

involves a proline residue in the α-helix, or affects protein-ligand interactions 

(Sunyaev et al., 2001).  The profile score, known as 

position-specific-independent count (PSIC), is a logarithmic ratio of the 

likelihood that a given amino acid occurring at a particular site, to the 

likelihood of this amino acid occurring at  any site.  A large PSIC difference 

indicates that the substitution is rarely or never observed in the protein family 

and probably affects protein functions (Sunyaev et al., 2001). A variant is 

predicted to be possibly damaging if PSIC is more than 1.5 (Ramensky et al., 

2002). 

 

3.7. Genotyping of ACAT2 gene Polymorphisms 

Three polymorphisms, 734C>T, 41A>G, and D/I, were genotyped.  The genotyping 

method for 734C>T was carried out as described previously (Katsuren et al., 2001).  

In brief, the presence of the point mutation (ATC to ACC) was verified by digesting 

the PCR amplicons generated with primers 5’-CAG ATC TTA CAC TCT GCC TGC 

CTC T-3’ and 5’-TGC ACC TGC TGG CTT CAT TCA GTC A-3’ with the BamHI 

restriction enzyme.  

     
The 41A>G genotype was determined using mutagenic primers and restriction 

enzyme via restriction fragment length polymorphism (RFLP).   A pair of primers 

was designed to introduce a BsrI restriction site (ACTGGN/) by changing a base from 

A to T: forward primer: 5’-GCC CGT CTG CGT CTG CAG AGG ACT G-3’ and 

reverse primer: 5’-AGG CCA CAG CTC TGA CAT AGC-3’.  The amplified 269-bp 
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PCR product was digested with BsrI enzyme followed by gel electrophoresis. The 

PCR amplicon of the rare G allele (GAA to GGA) is cleaved into 243-bp and 26-bp 

fragments. 

 
The D/I was first found and genotyped in this study.  The D/I polymorphism had an 

amplicon size difference of 48bp between the I allele with the 48bp insertion and the 

D allele without the insertion and as such, can be directly genotyped by visualization 

on a 2% agarose gel after PCR amplification with a pair of primers: 5’-GCT GGA 

AGT TCT GGA TCG CTA-3’ and 5’-TAA CCA AAG GGG GAA CCT GT-3’.  

 

3.8. Genotyping of three LPL gene polymorphisms 

The methods used in genotyping of IVS8+484T>G and IVS6+1595C>T 

polymorphisms have been previously described (Ahn et al., 1993).  The genotyping 

of c.1342C>G was carried out according to Kuivenhoven et al. (1997).  The 

corresponding primers and annealing temperatures for PCR are shown in Table 3-2.  

The PCR products were digested using appropriate restriction enzymes (Table 3-2). 

The digestion reactions were incubated at 37oC overnight.  After digesting the 

amplified fragments, the resultant products were analyzed using 2% agarose gel.  
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Table 3-2. Primers and conditions for genotyping three LPL polymorphisms. 
 

SNP Primers 
Annealing 

Tm (0C) 

Restriction 

enzyme 

Products 

sizes (bp) 

IVS6+1595C>T 

 

5’-GTGGGTGAATCACCTGAGGTC-3’ 

5’-TAGAGGTTGAGGCACCTGTGC-3’ 
64 PvuII 

CC: 858 

CT: 592 

TT: 266 

IVS8+484T>G 

 

5’-TTTAGGCCTGAAGTTTCCAC-3’ 

5’-CTCCCTAGAACAGAAGATC-3’ 

 

60 

 

HindIII 

 

TT: 1300 

TG: 700 

GG: 600 

c.1342C>G 

 

5'-TACACTAGCAATGTCTAGGTGA-3' 

5'-TCAGCTTTAGCCCAGAATGC-3' 
61 MnlI 

CC: 285 

CG: 248 

GG: 203 

 

 

3.9. Estimation of plasma lipid levels 

This assay was done by the technician in our laboratory.  Venous blood was drawn 

from subjects after an overnight fast of at least 10 hours.  Plasma was separated from 

blood cells by centrifugation and stored at -20oC until lipid analysis.  

TC and TGs were analyzed by colorimetric enzymatic methods on a COBAS Mira 

autoanalyzer (Roche, Basel Switzerland) using the manufacturer’s reagent kits 

(cholesterol kit 2016630, TG kit 2016647, Roche Diagnostics, Mannheim, Germany).  

Cholesterol was determined using a commercial cholesterol oxidase method by a series 

of enzymatic reactions (Allain et al., 1974).  The principle of the reaction is as follows. 

CEs are hydrolyzed to free cholesterol by cholesterol esterase.  Free cholesterol is then 

oxidized by cholesterol oxidase producing hydrogen peroxide which forms a red 

chromophore when combined with 4-aminophenazone and phenol. The chromophore 

formed is measured at photometrically 520 nm at 37oC and is directly proportional to 

the cholesterol concentration of the sample.  
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TGs were measured using a colorimetric enzymatic assay kit. In this method 

(McGowan et al., 1983), the TGs are hydrolyzed by lipase to produce free glycerol.  

The liberated glycerol is then reacted with glycerol kinase followed by oxidization to 

dihydroxyacetone phosphate and hydrogen peroxide.  The free glycerol is determined 

by enzymatic, colorimetric reaction of peroxide and 4-aminophenazone to form a 

colored product, the concentration of which is directly proportional to the amount of 

TGs present in the sample. 

HDL-cholesterol quantification was performed by using the above-described 

cholesterol method after precipitation of non-HDL cholesterol (LDL and VLDL) with 

polyanions and magnesium chloride.  

 LDL-C was calculated by the Friedewald formula (Friedewald et al. 1972):  

LDL-C = TC- HDL-C – TG/2.2 (all measured in mmol/L) when TG<4.49mmol/L. 

When TG is over 4.49mmol/L, the estimation of LDL-C by this method is not 

accurate.  

ApoA1 and apoB were estimated by an immunoturbidometric assay on the same 

machine using the Tina quant apoA Unisys (no. 03032612122) and Tina quant apoB 

Unisys from Roche Diagnostics (Mannheim, Germany). 

Lipoprotein (a) [Lp(a)] was estimated by enzyme-linked immunosorbent assay 

(ELISA) using commercially available kits [TintElize Lp(a), cat. no. 610220, Biopool, 

Umeå, Sweden].  
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3.10. Statistical analysis 

Allele frequencies were estimated by the gene-counting method.  Before performing 

other data analysis, Pearson’s chi-square test was used to test HWE for each locus. 

Haplotypes were constructed using the Phase Standard analysis software version 2.0.2 

available at http://archimedes.well.ox.ac.uk/pise/.  Haplotype frequencies of each 

group were estimated by the Expectation-Maximization algorithm using the 

SNPAlyze software version 4.0 from Dynacom (Kanagawa, Japan).  Diplotypes 

were obtained by combining genotype information from different polymorphic sites.  

The Z-test was used to determine significant differences in allele frequencies between 

the cases and controls and between the different ethnic groups.  Odds ratios (OR) are 

presented with 95% confidence intervals (CI) when significant associations were 

observed.  LD between polymorphic sites was assessed by Δ (Hill and Robertson, 

1968).  The lipid profiles were significantly different between different ethnic groups 

and gender.  As such we further stratified the subjects by ethnicity and gender.  In 

order to accurately evaluate the influences of ACAT2 gene variants on plasma lipid 

profiles, CAD-subjects within each ethnicity were further stratified into 

normolipidemic (TC<6.15mM and TG<2.25mM) and dyslipidemic (TC>=6.15mM or 

TG>=2.25mM) group according to the NECP ATP III criteria (NCEP ATPIII, 2002).   

Allele, haplotype and diplotype frequencies between cases and controls as well as 

between normolipidemic and dyslipidemic subjects and between ethnic groups were 

compared.  

 

The association of plasma lipids with genotypes and diplotypes was investigated only 

in the CAD- subjects, as the lipid levels of the cases (CAD+) would have been 

affected by treatment with lipid-lowering drugs.  The lipids were presented as means 
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± SD unless otherwise stated. Due to the skewed distribution of TG and L p(a) in all 

populations, their values were transformed by natural logarithm prior to using 

parametric tests.  

 

Three different models were used in this association study: 1) dominant (wildtypes vs. 

heterozygotes and mutant homozygotes), 2) additive (wildtypes vs. heterozygotes vs. 

mutant homozygotes), and 3) recessive (wildtypes and heterozygote vs. mutant 

homozygotes).  Confounding factors such as age, smoking and body mass index 

(BMI) were included as covariates in the analysis of covariance (ANCOVA) model.  

The lipid levels between diplotypes were compared by carrying out post hoc multiple 

comparisons using Tukey’s honestly significant difference (HSD) test.   

 

Most analysis was carried out using the SPSS software version 11.  Statistical 

significance was defined by P value of 0.05 or less.  Bonferroni correction was used 

to adjust the p value according to the number of tests performed. 

 

3.11. Cell line, vector and reagents 

The AC-29 cell line, an ACAT-deficient Chinese hamster ovary cell mutant (Cadigan 

et al. 1988), was kindly provided by TY Chang’s lab (Department of Biochemistry, 

Dartmouth Medical School, US).  The vector pRS426GP and pCR3.1/ACAT2 

(Oelkers et al., 1998; Liang et al., 2004) were obtained from Dr Yang (Department of 

Biochemistry, National University of Singapore).  The pcDNA3.1/His expression 

vector containing Xpress epitope (Asp-Leu-Tyr-Asp-Asp-Asp-Lys) and the 

monoclonal antibody against Xpress were from Invitrogen (California, US).  Antipain, 

chymostatin, leupeptin, fetal bovine serum, and Nile red, were purchased from Sigma 
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(St. Louis, US).  Geneticin (G-418 sulfate), Ham’s F-12 and DMEM/F-12 medium, 

and anti-Xpress were from Invitrogen (California, US). [9,10(n)-3H]oleic acid and 

anti-mouse Ig were from Amersham Biosciences (Hilleroed, Denmark). 

 
3.12. Cell culture 

The AC-29 cells were grown as monolayers in Ham’s F-12 medium supplemented with 

10% fetal bovine serum, 2mM L-glutamine, 1% Eagle’s vitamins and 100 units/ml of 

Penicillin and 100 μg/ml of Streptomcyin in 5% CO2 incubator at 37oC.  

 

3.13. Expression of various ACAT2 proteins 

3.13.1. Construction of various ACAT2 gene expression plasmids  

The expression vector pcDNA3.1/His was digested using restriction enzymes, EcoRI 

and NotI, at 37oC overnight.  The digested product was then purified using the gel 

purification kit from Qiagen (Tokyo, Japan).  

 

The ACAT2 cDNA insert was excised from recombinant pRS426GP/ACAT2, which 

was constructed from vector pRS426GP and pCR3.1/ACAT2, using EcoRI and NotI 

restriction enzymes.  As the pcDNA3.1/His expression vector contained an ATG start 

codon, the ACAT2 gene’s start codon and the upstream sequence between the start 

codon and the EcoRI cutting site were deleted using site-directed mutagenesis 

(Stratagene, California, USA).  The mutagenic primers were designed using 

Stratagene’s recommended program at http://labtools.stratagene.com/QC.  The two 

complimentary oligonucleotides which contained the desired mutations were 

synthesized using pRS426GP/ACAT2 as the template and 5'-TTT GAA AAT TCA 

AGG AAT TCG AGC CAG GCG GGG C-3' and 5'-GCC CCG CCT GGC TCG AAT 

TCC TTG AAT TTT CAA A-3' as sense and anti-sense primers, respectively.  The 
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synthesis reaction was carried out in thermal cycler (T-GRADIENT, Biometra, 

Goettingen, Germany) with a denaturing step at 95oC for 30 s followed by 18 cycles of 

denaturing at 95oC for 30 s, annealing at 55oC for 1 minute and extension at 68oC for 

10 min.  After the mutant strand synthesis, the parental DNA template was digested 

by specific DpnI endonuclease at 37oC for 1 hour.  The selected mutation-containing 

synthesized DNA was then transformed into XL1-Blue super-competent cells 

(Stratagene, California, USA). The generated plasmids were purified using the 

miniprep kit (Qiagen, Tokyo, Japan) and the deletion of the ATG start codon and 

upstream sequence was confirmed by DNA sequencing.  The resultant ACAT2 insert 

was ligated with the expression vector pcDNA3.1/His between the EcoRI and NotI 

sites.  The generated construct pcDNA3.1/His/ACAT2 was confirmed using PCR 

amplification and DNA sequencing. 

 
 
In this study, two nsSNPs, Glu14Gly and Thr245Ile, were explored for their effects on 

the ACAT2 enzyme activity as well as on gene and protein expression.  For this 

purpose, the wildtype and three mutant ACAT2s, consisting of two variants carrying 

one mutant, Gly14 or Ile245, and one variant carrying both mutants, Gly14Ile245, 

were constructed.  The recombinant pcDNA3.1/His/ACAT2, which contained the wild 

type ACAT2, designated as wild type pcDNA3.1/His/ACAT2 (WT), was used as the 

template to generate various mutant ACAT2s using Stratagene’s QuickChange 

site-directed mutagenesis kit. The construction procedure is briefly described here: 1) 

The ACAT2 Gly14 was generated using the wild type pcDNA3.1/His/ACAT2 and 

oligonucleotides 5'-GCA GAG GAC AGG AGG GCT GGG AGG-3' and 5'-CCT CCC 

AGC CCT CCT GTC CTC TGC-3' as sense and anti-sense primers, respectively.  

The resultant ACAT2 was designated ACAT2 Gly14.  2) The ACAT2 Ile254 was 
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produced using the wild type pcDNA3.1/His/ACAT2 as the template and 

oligonucleotides 5’-GCT GTG CCT GGG ATC CTT CGT GCC AGA C-3’ and 

5’-GTC TGG CAC GAA GGA TCC CAG GCA CAG C-3’ as sense and anti-sense 

primers, respectively.  The resultant ACAT2 was designated as ACAT2 Ile254.  3) 

The recombinant pcDNA3.1HisACAT2 with mutant amino acid residues at position 14 

and 254 was produced using pcDNA3.1/His/ACAT2 Gly14Thr254 as the template and 

5’-GCT GTG CCT GGG ATC CTT CGT GCC AGA C-3’ and 5’-GTC TGG CAC 

GAA GGA TCC CAG GCA CAG C-3’ as sense and anti-sense primers, respectively.  

The resultant was designated as pcDNA3.1/His//ACAT2 Gly14Ile254.  The sequences 

of the various pcDNA3.1/His/ACAT2s recombinants were confirmed by DNA 

sequencing. 

 
 
3.13.2. Transfection of AC-29 with various pcDNA3.1/His/ACAT2 

The AC-29 cells were transfected with various pcDNA3.1/His/ACAT2 using the 

calcium phosphate transfection kit (Invitrogen, California, US).  The unmodified 

pcDNA3.1/His vector was also used to transfect the AC-29 cells to serve as a negative 

control.  The procedure used is briefly described below.  The day before 

transfection, the AC-29 cells were plated at the density of 1.5x106 cells in 10ml of 

Ham’s F-12 medium in a 100mm-diameter Petri dish.  This would produce cells that 

would be 50-60% confluent on the day of transfection.  On the day of transfection, 

the medium was changed 3-4 hours prior to transfection and the cells were further 

incubated at 37oC.  Twenty 痢 of  DNA  wa s mi xed with 36痞 of  2M Ca Cl 2 in a final 

volume of 300痞, and the mi xt ur e wa s added sl owl y to 300痞 of  2x HBS  ( HEP ES 

Buffered Saline) in 1-2 min and incubated at room temperature for 30 min in order to 

form a fine DNA CaPO4 coprecipitate.  The precipitate was added dropwise to the 
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medium containing the AC-29 cells, which were then incubated in the 37oC CO2 

incubator overnight.  The medium was then removed and the cells were washed 

twice with 1xPBS.  Three ml of 10% DMSO in 1xPBS was added into the Petri dish 

and incubated at room temperature for exactly 2.5 min.  After the DMSO shock 

treatment, fresh medium was added and the cultures were incubated at 37oC in the 5% 

CO2 incubator for another 48 hours.  

 
3.13.3. Selection of stable transformants 

After the cells were maintained in non-selective media for 2 days post-transfection, 

they were scraped off using a scraper and transferred to be grown in selective medium 

containing 500痢/ ml  of  G -418 for 2 weeks.  Discreet G-418 resistant colonies were 

seen after 2 weeks.  Single colonies were picked up and transferred into a 6-well 

plate for subsequent propagation.  

 
 
3.13.3. Selection of positive stable transformants 

After the G-418 resistant cells were grown for 2 weeks, they were examined for their 

cytoplasmic CEs under an inverted phase-contrast microscope (ULWCD 0.30, 

Olympus, Tokyo, Japan).  The cytoplasmic lipid droplets were further examined 

using a differential interference contrast microscope (BX60; Olympus, Tokyo, Japan) 

after staining with 100 痢/ ml  Ni le red .  Nile red is a highly fluorescent compound 

which preferentially partitions into hydrophobic environments such as intracellular 

neutral (Greenspan and Fowler, 1985a and 1985b) lipid droplets. In positive 

transformants containing pcDNA3.1/His/ACAT2, the CEs would be synthesized 

leading to a large accumulation of intracellular CEs.  In contrast, in the negative cells, 

in which the G-418 resistant gene might be expressed but the target ACAT2 gene was 

not expressed, no obvious Nile red-staining lipid drops were observed. 
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The procedure of Nile red staining was described as below.  The monolayers were 

washed twice with 1xPBS and incubated with 1ml non-enzymatic dissociation 

solution (Sigma, St. Louis, US) per well at 37oC for 10 min. The cells were then 

transferred into a sterile tube and then stained using Nile red (100-150ng/ml).  After 

Nile red staining, cytoplasmic CE lipid droplet content was examined using 

differential interference contrast microscope.  Only colonies containing abundant 

cytoplasmic lipid droplets were re-cultured in 6-well plate containing selective 

medium. 

 
3.14. Ex vivo ACAT activity assay 

This activity assay was described by Chang et al. previously (1986).  The cells were 

plated in 25cm2 flask and grown to 80% confluence. Two hours before pulse, medium 

was changed and the cells were incubated in a 37oC water bath capping the flask 

tightly. The cells were pulsed with 3H-oleate BSA and the flask was incubated in 37oC 

water for 30 min.  The medium was then removed and the cells were rinsed five times, 

each with 5 ml of cold 1xPBS.  The cells were lyzed using 0.2 M NaOH at room 

temperature 40 min and then neutralized by adding 3M HCL and KH2PO4.   The 

cellular lipids were extracted with chloroform-methanol (2:1) after adding cholesteryl 

oleate as carrier and [14C] cholesterol as internal standard.  The various lipids were 

then separated using thin layer chromatography and the different lipid bands identified 

using iodine vapor.   The bands of cholesterol ester and cholesterol were excised from 

the sheet and dissolved in scintillation cocktail.  The ACAT enzyme activity was 

determined by calculating the incorporation of labeled oleate into CEs and normalized 

with the concentration of the internal standard, [14C] cholesterol, and total proteins.  

The enzymatic activities were expressed as means ± standard deviations (SDs) of 

triplicate assays over at least three separate experiments. 
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3.15. Quantitative reverse transcription (RT) PCR 

Total RNA was prepared using Trizol ® (Invitrogen, California, US) following the 

manufacturer’s instructions.  Cells were grown in a 25cm2-flask to 70-80% 

confluence and then lyzed with the addition of  2.5ml of Trizol and incubation for 5 

min at room temperature. The cell lysates were put into 10ml tubes and 0.5ml of 

chloroform was added.  The tubes were capped tightly and shaken vigorously by 

hand for 15s and incubated at room temperature for 3 min.  The tubes were then 

centrifuged at 12,000 x g for 15 min at 4oC, and the supernatant was transferred to 

fresh tubes containing 1.25ml of isopropyl alcohol and incubated at room temperature 

for 10 min.  The mixture was centrifuged at 12000 x g for 10 min at 4oC to get the 

RNA pellet.  This RNA pellet was washed again with 3 ml of 75% ethanol, vortexed 

and centrifuged for 5 min at 7500 x g at 4oC.  The pellet was briefly dried and 50痞 

of RNase-free water was added for re-constitution. 

The total RNA extracted from cells grown to 70-80% confluence was used as template 

to run real-time RT-PCR to determine whether the expression of wild type and various 

mutant ACAT2 mRNA were different.  Before doing quantitative the real-time 

RT-PCR, RT-PCR was carried out first using the OneStep RT-PCR kit (Qiagen, Tokyo, 

Japan) to confirm the expression of ACAT2 mRNA in the AC-29 cells.  The 

oligonucleotides, 5’-CCC AGT TTC TCC AGC TAC CT-3’and 5’-AAG ACA GGA 

ACA CAG AGG CG-3’, were used as ACAT2 gene-specific primers in the OneStep 

RT-PCR and the follow-up real-time RT-PCR amplification.   

The real-time RT-PCR amplification was performed to determine the mRNA 

expression of the various ACAT2s using LightCycle RNA Master SYBR Green I 

(Roche Diagnostics, Mannheim, Germany).  Each of 20痞 react ion cont ai ned 3. 25mM 
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Mn(OAc2), 6痞 SYB R Gr een I, 0. 3然 e ach pri mer ,  and 450ng RNA t empl ate.  The  

real-time RT-PCR was started with an initial reverse transcription at 61oC for 20 min, 

followed by a denaturation step of  95oC for 30 s and 40 cycles of amplification (95oC 

for 1s, 57oC for 4s followed by 72oC 13s).  After completion of the amplification 

samples were subjected to a melting curve analysis to test the product specificity.  The 

reaction was carried out in LightCycler capillary tubes.  The LightCycler apparatus 

measured the fluorescence of each sample in every cycle at the end of the annealing 

step.  The Second Derivative Maximum Method was used for the determination of the 

crossing point (Cp) automatically for the individual samples.  A housekeeping gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was included as a reference 

gene.  A pair of primers, 5’-TTC TGG CAA AGT GGA AGT TGT TG-3’ and 5’- 

ATG GTG ATG GCC TTC CCG TT-3’, was used to amplify GAPDH gene.  The 

relative quantification, of the wild type and various mutants, was normalized by 

GAPDH gene.  To ensure that the correct product was amplified in the quantification 

reaction, all samples were visualized on 2% agarose gel electrophoresis.  The 

quantitative reverse transcription was done in triplicate over three experiments.  The 

t-test was employed to test the statistical significance of fold changes in gene 

expression of mutant ACAT2 relative to wildtype. 

3.16. Western blot 

When cells reached 70%-80% confluence in the 75cm2 flask, they were lyzed with 

0.5-1ml of a cocktail consisting of 1x Phosphate Buffered Saline (PBS) containing 

2% SDS and proteinase, and then centrifuged at 14,000rpm at 4oC for 20 min.  The 

supernatant was kept as the total soluble protein.  Protein concentration was 

determined using the method by Bradford (1976). The total soluble protein (15ug) 

was incubated with 5x loading buffer at 37oC for 15 min and subjected to 
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SDS-polyacrylamide gel electropherosis (SDS-PAGE)  using a 12% Tris-glycine gel.  

The separated proteins were electrotransferred to a nitrocellulose membrane. The 

membrane was incubated in 15ml of 5% non-fat milk at 4oC overnight. After blocking, 

the blot was incubated with primary antibody, Anti-Xpress (Invitrogen, California, 

US), at 1:5000 dilutions in Tris Buffered Saline (TBS) at room temperature for 1 hour.  

After washing with TBST (TBS with 0.5% Tween-20) three times and TBS once, the 

blot was then subjected to blotting with  as secondary antibody, anti-mouse Ig, at 

1:10,000 dilutions in TBS, with 2.5% non-fat milk, at room temperature for 1 hour.  

After the second round of washing, the membrane was subjected to the enhanced 

chemiluminescent detection kit (ECL, Amersham Biosciences).  Densitometric 

analysis of western blot signals was conducted to compare the different expression 

levels of the various recombinant ACAT2 proteins in the tranfected AC-29 cells.  
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4. STUDY OF ACAT2 GENE 

 

4.1. Introduction 

In this study, the putative promoter, 5’-UTR, encoding regions, and intron-exon 

boundaries of ACAT2 gene were screened for genetic polymorphisms with DHPLC. 

After identifying polymorphisms in this gene, the possible biological significances of 

three nsSNPs, 41A>G (Gly>Glu) in exon1, 734C>T (Thr>Ile) in exon7, and 

c.1291G>T (Ala to Ser) or G>A (Ala to Thr) in exon 13, were predicted using 

computational approaches.  The association of three polymorphisms, 41A>G, 

734C>T, and one 48bp insertion (D/I), with CAD and dyslipidemia was examined in 

the three ethnic groups (Chinese, Malay and Indian) in Singapore.  The nsSNP, 

c.1291G>T or G>A, is very rare and only one heterozygote was found among 348 

samples.  It was therefore not included in the association study.  The effects of two 

nsSNPs, 41A>G and 734C>T, on ACAT2 function were further investigated by in 

vitro functional study  using the AC-29 cell line, a mutant Chinese hamster ovary 

(CHO) cell line deficient in ACAT activity (Cadigan et al., 1988).   

 

4.2. Results 

4.2.1. Polymorphism screening 

4.2.1.1. Survey of known genetic variants in ACAT2 gene 

Before screening for novel ACAT2 gene polymorphisms, known SNPs were first 

identified using public SNP resources.  By searching these public SNP databases, 

such as NCBI SNPdatabase, TSC, JSNP, and HGVbase, a total of 10 SNPs were 

identified among these regions of interest (Table 4-1).  
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4.2.1.2. Polymorphism screening  

After the systematic screening of these regions of interest in ACAT2 gene with 

DHPLC using cord blood DNA samples from 336 neonates, distinct elution profiles 

were detected for some DNA fragments of interest (shown in Figure 4-1).  The 

corresponding samples were amplified by PCR and sequenced to verify these variants. 

The sequencing results are shown in Figure 4-2.  A total of 14 polymorphisms were 

detected, 9 of them were novel and are indicated by their corresponding SubSNP (ss) 

numbers in the NCBI SNPdatabase (Table 4-1).  These included three missense 

mutations [c.41A>G (Gly>Glu) in exon1, c.734C>T (Thr>Ile) in exon7, and 

c.1291G>T ss5607249 (Ala to Ser) or G>A (Ala to Thr) ss6313900 in exon13], two 

single-base changes in the putative promoter region (-331C>T ss9807253 and 

-440G>T ss9807252), two silent mutations (c.609G>T ss4480613 and  c. 610C>T 

ss4480614 in exon6), seven single-base changes in intronic regions, comprising six 

single-base substitutions (IVS1-8C>G; IVS4+172T/G ss4329267, IVS5-137A/T 

ss4329269, IVS9-178G/C ss5606370, IVS9+37A>T and IVS9+51G>T), and one 

48bp insertion (D/I ss4329268).  Information of all the novel polymorphisms is 

available at 

http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/SNP/snp_viewTable.cgi?handle=N

USPAE.  

 

The DHPLC profile for most polymorphisms showed two different, homozygous and 

heterozygous, patterns (Figure 4-1), while the D/I polymorphism presented three 

distinct profiles: wild type homozygotes (DD), heterozygotes (DI), and mutant 

homozygotes (II) (Figure 4-3).  The wildtype and mutant homozygotes of D/I 

polymorphism each gave one sharp peak in their profiles, except that the retention 
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time of the wildtype was longer than that of the mutant homozygotes.  The 

heterozygotes of D/I however showed an elution profiles quite different from those of 

the two homozygotes.  
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Table 4-1. ACAT2 gene polymorphisms found in the regions of interest in this study 
 

 

a and b: Variations reported by Katsuren et al. (2001) and Haga et al. (2002), respectively.  
Those polymorphisms underlined were searched from SNP databases. 
 

 

 

Polymorphisms Position Type 
RefSNP 

(rs#) 

Found in this 

study  
Novel variant 

41A>Ga exon Glu>Gly 9658625 yes  

734C>Ta exon Thr>Ile  2272296 yes  

609G>T exon 
Silent 

mutation 
3219199 yes novel 

610C>T exon 
Silent 

mutation 
3219200 yes novel 

c. 1291G>T or A exon 
Ala>Ser (or 

Thr) 
4244355 yes novel 

-331C>T promoter SNP 2280698 yes novel 

-440G>T promoter SNP 6413499 yes novel 

IVS1-8C>G intron SNP 17551115 yes  

IVS9+37A>Tb intron SNP 2280696 yes  

IVS9+51G>Tb intron SNP 711315 yes  

IVS4+172T/G  intron SNP 3093945 yes novel 

IVS5-137A/T intron SNP 3093947 yes novel 

IVS9-178G/C intron SNP 4151119 yes novel 

IVS4-57_58INS48bp  intron insertion 3093946 yes novel 

-74A>G 5’-UTR SNP 2280698 no  

-1297G>A promoter SNP 6413499 no  

-1283G>A promoter SNP 1053167 no  

-1327A>C promoter SNP 1053153 no  

-1382A>C promoter SNP 1053149 no  
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41A>G 609 G>T and 610C>T 734C>T c. 1291G>T 

                        

         

1291G>A IVS5-137A>T IVS4+172T>G IVS9+178G>C 

   

    

IVS9+37A>T IVS9+51G>T -331C>T -440G>T 

 

   

 

   

IVS1-8G>C    

Figure 4-1. DHPLC profiles of ACAT2 polymorphisms.  For each polymorphism, 
the upper pattern is from wild type homozogotes and the lower from the mutant 
heterozygotes. 
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Figure 4-2. DNA sequencing results of ACAT2 polymorphisms detected in this study.  
The corresponding polymorphisms were marked with arrow. 
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Figure 4-3. DHPLC profile of ACAT2 D/I polymorphism.  The upper one that gives 
one sharp peak and emerges earlier is wildtype homozygote and the lowest one 
emerging later is mutant homozygote and the middle one giving three peaks is 
heterozygote.    
 

 

 

 

 

 
 
Figure 4-4. Sequencing result of ACAT2 D/I.  A: wild type DD; B: mutant 
homozygotes II; Arrow in A indicates the site where the 48bp inserts. 
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4.2.1.3. Improved efficiency of mutation screening using modified primers  
 
Two polymorphisms, IVS9+37A>T and IVS9+51G>T, in the flanking region of exon 

9, were reported in the NCBIs dbSNP.  However, in the study, none of them  was 

detected when normal primers were used to amplify the fragment of interest, as the 

corresponding DHPLC profile generated a broad unresolved peak (Figure 4-5 A).  

The melting profiles of the fragment predicted using WAVEMAKER software is 

shown in Figure 4-6 A.  The two polymorphisms are located in the high melting 

domain, which is predicted to partially denature at 62oC.  The temperature range 

from 60oC to 63oC was chosen to detect the sequence variants.  However, the peaks 

became broad and the variants were poorly discernible when running at 62oC (Figure 

4-5A).  As a result, the polymorphism IVS9+37A>T was not detected when running 

at predicted temperatures.  

 

In order to change the melting property of the DNA fragment and to improve the 

resolution of hetero- and homoduplex peaks in the elution profile, a modified primer 

with a 20bp GC-clamp was used. After the modification, the IVS9+37A>T was able 

to be detected and the resolution of IVS9+51G>T was significantly improved (Figure 

4-6B.  Therefore, it was proved that application of GC-clamp modified primers can 

increase the resolution of the heteroduplexed fragments.  
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Figure 4-5. DHPLC profiles of IVS9+51G>T (lowest) and IVS9+37A>T (middle) 
and the wild type (upper) amplified with primers with non-clamped (A) and with 
GC-clamp (B). 
 
 
 

Figure 4-6. Predicted melting profile of the fragment containing exon 9.  The upper 
panel shows the fragment amplified with the non-GC-clamp primers and the lower 
panel shows one amplified with GC-clamp primers. 
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4.2.1.4. Factors affecting DHPLC elution profiles 
 
The DHPLC profiles of some fragments of interest showed artefact peaks or shoulders 

in front of the elution peak.  In order to find out the possible reasons causing the 

artefact peak or shoulder, two factors were examined: the methods of extracting DNA 

(Parzer’s method or phenol: chloroform method), and the amount of template used. 

The salts used for DNA extraction in Parzer’ method may not be removed completely 

and thus it may affect the DNA quality and PCR amplification reaction.  However, 

the results showed that the artefact peaks or shoulders could be decreased by using 

less amount of template for PCR amplification (Figure 4-7), while DNA extraction 

methods had no significant effect on the DHPLC profile.  
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Figure 4-7. DHPLC profile of the fragment containing ACAT2 gene exon 8.  The 
upper profile is the elution profile of the amplicon using 0.6μl template (about 100ng) 
in 20μl reaction and the lower profile for the amplicon using 0.3μl template (about 
50ng) in same volume of reaction. For both cases, 5μl of PCR product was used to run 
DHPLC. 
 
 
 
 
4.2.1.5. Prediction of functional implications of ACAT polymorphisms 

Among the 14 identified polymorphisms, only three polymorphisms, 41A>G 

(Glu14Gly) in exon1, 734C>T (Thr254Ile) in exon7, and c.1291G>T (Ala431Ser) or 
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G>A (Ala431Thr) in exon13, are nsSNPs.  The possible biological significances of 

the three nsSNPs were predicted with different approaches. 

 

When evaluating whether there is any difference in the physiochemical properties 

between wildtype and mutant amino acids, two substitution scoring matrices, 

GRANTHAM and BLOSUM62, were applied. The results showed that the 

GRANTHAM D values obtained for Glu14Gly, Thr254Ile, and Ala431Ser (or Thr), 

were 98, 89, and 99 (58), respectively. Variations with values >100 were more likely 

to affect disease susceptibility. However, the distinction between disease-causing 

mutations and neutral mutations is not clear.  The BLOSUM62 scores of these 

substitutions were -2, -1, and 1 (-1), respectively.  The amino acid change with a 

value less than -1 was probably a disease-causing mutation. Taken together, these 

evaluations suggested that the Glu14Gly may have greater biological significance 

than Thr254Ile and Ala431Ser (or Thr). 

 

Other than the influence on the physiochemical properties, the evolutionary 

conservation was also examined by using an interspecies alignment. The protein 

sequences of the ACAT2 protein from human, monkey, mouse, rat, and dog, were 

compared.  The comparison indicated that the Gly14 and Ala431 are identical in the 

five species while the Thr254 was not conserved (Figure 4-8).  The Thr254 was 

present in human, monkey and dog while the Ile254 occurred in mouse and rat.  It 

suggested that the Thr254 was less likely to affect protein function while the other 

two amino acid residues were evolutionarily conserved, at least in the five species, 

and thus, probably had some biological significance.  
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                           Glu14Gly 

Human        -MEPGGARLRLQRTEGLGGERERQPCG-DGNTETHRAPDLVQWTRHMEAVKAQLLEQAQG 58 
Monkey       -MEPGGARLRLQRTEGPGGEREHQPCR-DGNTETHRAPDLVKWTRHMEAVKAQLLEQAQG 58 
Mouse        EMQPKVPQLR--RREGLGEEQEKGARGGEGNARTHGTPDLVQWTRHMEAVKTQFLEQAQR 58 
Rat          -MEPKAPQLR--RRERQGEEQENGACG-EGNTRTHRAPDLVQWTRHMEAVKTQCLEQAQR 56 
Dog          -MEPKATRLR--RGEGPRGEQEDRPSG-EGEPPSGGA----ESWEVLEVVKTQLLEHAQG 52 
              *:*  .:**  * *    *:*  .   :*:. :  :    :  . :*.**:* **:***  
 
                                 Thr254Ile 
 
Human       EQVRFLMKSYSFLREAVPGTLRARRGEGIQAPSFSSYLYFLFCPTLIYRETYPRTPYVRW 294 
Monkey      EQVRFLMKSYSFLREAVPGTLRARRGEGIQAPSFSSYLYFLFCPTLIYRETYPRTPYIRW 298 
Mouse       EQVRLLMKSYSFLRETVPGIFCVRGGKGISPPSFSSYLYFLFCPTLIYRETYPRTPSIRW 298 
Rat         EQVRFLMKSYSFLRETVPGIFCVRGGKGICTPSFSSYLYFLFCPTLIYRETYPRTPSIRW 296 
Dog         EQVRLLMKSYSFLREALPGTLCARVGEGMQAPSFSSYLYFLFCPTLIYRKTYPRTPNVRW 292 
            ****:**********::** : .* *:*: .******************:****** :** 
            
 
                              Ala431Ser 
 
Human       GARARGVAMLGVFLVSAVAHEYIFCFVLGFFYPVMLILFLVIGGMLNFMMHDQRTGPAWN 474 
Monkey      GAQARGVAMLGVFLVSAVAHEYIFCFVLGFFYPVMLILFLVIGGMLNFMMHDQHTGPAWN 478 
Mouse       GRRARGVAMLGVFLVSAVVHEYIFCFVLGFFYPVMLMLFLVFGGLLNFTMNDRHTGPAWN 478 
Rat         GRQGRGAAMLGVFLVSALVHEYIFCFVLGFFYPVMLILFLVVGGLLNFTMNDRHTGPAWN 476 
Dog         GGRARGAAMLAVFLVSAVVHEYIFCFVLGFFYPVMLILFLVIGGLMNFMMHDRHTGPAWN 472 
            * :.**.***.******:.*****************:****.**::** *:*::****** 

 

Figure 4-8. Multiple alignments of ACAT2 protein orthologs from Homo sapiens 
(NP_003569), Africa green monkey (O77759), Mus musculus (NP_666176 ), Rattus 
norvegicus (NP_714950), and Canis familiaris (XP 543637) using CLUSTAL W 
ver.1.82. Highlights are nsSNPs found in current study. “*”: identical residues; “:”: 
conserved residues; “.”: semi-conserved. 
 

 

In addition, multiple sequence alignments were conducted in the acyltransferase 

family and 6 family members (ACAT1, ACAT2, Are1p, Are2p, DGAT1, and DGAT2) 

were chosen. This comparison showed that only the 14th residue is semi-conserved 

and the other two amino acid residues (254th and 431th) are not. The 254th residue is 

most variable, and four different amino acids occurred among these members with 

isoleucine occurring in DGAT1. The 431A>S or T is less variable, with alanine to be 

found in ACAT, DGAT, and Are1p and serine in Are2p.  At the 14th amino acid 

residue, glutamic acid was found in ACAT2 and DGAT2, glutamine in Are2p and 

arginine in ACAT1, Are1p and DGAT1. Although glutamic acid is not completely 

conserved at the 14th residue, no glycine was found at this site in the homologous 
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family.  Therefore, it is likely that the substitution of glutamine to glycine affects 

ACAT2 function or structure. 

 

Whether these nsSNPs affect protein structure and function was also predicted by 

PolyPhen.  Analysis of the Glu14Gly variant with PolyPhen yielded a PSIC of 1.575, 

suggesting that it is possibly damaging while the other two variants were predicted to 

be neutral changes.  

                             Glu14Gly 
ACAT2:     M---EPGGARLRLQRTEGLGGERERQ---------------------PCGDG-NTETHRA 
ACAT1:     MVGEEKMSLRNRLSKSRENPEEDEDQRN-------------------PAKESLETPSNGR 
Are1p:     MTETKDLLQDEEFLKIRRLNSAEANKRHSVTYDNVIL----------PQESMEVSPRSST 
Are2p:     MDKKKDLLENEQFLRIQKLNAADAGKRQSITVDDEGELYGLDTSGNSPANEHTATTITQN      
DGAT1      M-------GDRGSSRRRRTGSRPSSHGG----------------GGPAAAEEEVRDAAAG 
DGAT2      M--KTLIAAYSGVLRGERQAEADRSQRSH---------------GGPALSREGSGRWGTG 
           *             : .        :                     .             
 
                               Thr245Ile 
 
ACAT2:     MKSYSF---------LREAVPGTLRA--RRGEGIQAP----------------------- 
ACAT1:     MKAHSF---------VRENVPRVLNSAKEKSSTVPIP----------------------- 
Are1p:     MKSHSFAFYNGYLWDIKQELEYSSKQLQKYKESLS-PETREILQKSCDFCLFELNYQT-- 
Are2p:     MKMHSFAFYNGYLWGIKEELQFSKSALAKYKDSINDPKVIGALEKSCEFCSFELSSQSLS 
DGAT1      LKLFSYRDVNSWCRRARAK----AASAGKKASSAAAP----------------------- 
DGAT2      MGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMP----------------------- 
           :   ::                              *                        
 
                                           Ala431Ser 
 
ACAT2:     DWLYSYVYQDGLRLLGARARGVAMLGVFLVSAVAHEYIFCFVLGFF--YPVMLILFLVIG 
ACAT1:     DWLYYYAYKDFLWFFSKRFKSAAMLAVFAVSAVVHEYALAVCLSFF--YPVLFVLFMFFG 
Are1p:     KFLLRHVYHSSMGALHLS-KSQATLFTFFLSAVFHEMAMFAIFRRVRGYLFMFQLSQFVW 
Are2p:     KFLLRHVYHSSMSSFKLN-KSQATLMTFFLSSVVHELAMYVIFKKLRFYLFFFQMLQMPL 
DGAT1      KWCIRHFYKPMLR--RGSSKWMARTGVFLASAFFHEYLVSVPLRMFRLWAFTGMMAQIPL 
DGAT2      SKPITTVVGEPITIPKLEHPTQQDIDLY------HTMYMEALVKLFDKHKTKFGLPETEV 
         .          :               :      *   .   .  .        :      
 

Figure 4-9.  Multiple alignments of acyltransferase family members: ACAT1 
(NP_003092), ACAT2 (NP_003569), Are1P (NP_009978), Are2p (NP_014416), 
DGAT1 (NP_036211), and DGAT2 (NP_115953).. Highlights are nsSNPs found in 
current study. “*”: identical residues; “:”: conserved residues; “.”: semi-conserved. 
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4.2.2. Association studies of ACAT2 gene  

4.2.2.1. Genotyping of three polymorphisms 

The individual genotype for three polymorphisms, 41A>G, 734C>T, and D/I, were determined based 

on the number and size of DNA bands on DNA gel image (Figure 4-10). 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10. Genotyping results of three ACAT2 gene polymorphisms. A: 41A>G; B: 
734C>T; C: D/I 
 
 
4.2.2.2. Population Demographics  

           The characteristics of the study population are summarized in Table 4-2.  Healthy 

controls were selected from workers who underwent pre-employment medical 

check-up, and they were significantly younger than the CAD+ subjects in all ethnic 
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groups (P<0.0005). The controls had significant lower BMI than the CAD+ subjects 

in Chinese males (P<0.001) and females (P<0.0005) as well as Malay females 

(P<0.001) but not in the Indians.  However, this significance did not exist after 

adjusting for age. Cigarette smoking was more prevalent among males than females in 

three ethnic groups.  The percentage of smokers was significantly higher in the 

CAD+ than the CAD- in the Chinese and male Indians but not in the Malays.  Three 

parameters, age, BMI, and smoking, are known to influence CAD susceptibility and 

plasma lipid profiles, so all of them were included as confounders in the association 

tests. Significantly higher levels of HDL-C, apoA1 and lower levels of Lp(a) were 

seen in the CAD+ subjects as compared to the CAD- subjects.  Smoking is known to 

decrease HDL-C level, thus, its effect was adjusted when the HDL-C level was 

compared between the CAD+ and CAD- subjects. Lower levels of TC, LDL-C, TG 

and apoB were observed in male CAD+ in all ethnicities compared with the male 

CAD- subjects (P<0.05 or less).  The same trend was also seen in the females. These 

observations are most likely due to the effects of lipid-lowering drugs and adoption of 

healthy lifestyle in the CAD+ subjects.  In view of such confounding effects on the 

lipid levels, the CAD+ patients were not included when carrying out ANOVA to see 

whether the genotypes and diplotypes were associated with lipid levels.   

 

.



Table 4-2. Demographics of the Singaporean subjects.  A ge, BM I and plasma lipid profiles are presented in mean ± SD. 
 

Males 

  Chinese   Malays   Indians  

Variables CAD- CAD+ P CAD- CAD+ P CAD- CAD+ P 

 n = 389 n = 402  n = 188 n = 106  n =215 n = 119  

Age (years) 39±14 59±9 <0.0005 39±9 57±10 <0.0005 43±14 59±11 <0.0005 

BMI (kg/m2) 23.41±3.62 24.30±3.59 0.306 25.32±4.15 25.63±3.35 0.265 24.43±3.89 24.75±3.48 0.898 

Smokers* (%) 30.23 59.95 <0.0005 60.96 57.58 0.619 19.16 52.68 <0.0005 

TC (mM) 5.69±1.32 4.53±1.11 <0.0005 5.89±1.25 4.63±1.10 <0.0005 5.86±1.18 4.41±1.16 <0.0005 

HDL-C (mM) 1.26±0.33 0.96±0.27 <0.0005** 1.16±0.26 0.89±0.26 <0.0005** 1.02±0.27 0.91±0.23 <0.001** 

LDL-C (mM) 3.92±1.34 2.92±0.85 0.016 4.26±1.22 3.56±0.85 0.003 4.26±1.20 3.51±1.16 <0.0005 

TG (mM) 2.03±1.98 1.79±1.00 0.035 2.16±1.42 1.92±0.94 0.582 2.24±1.58 1.63±0.76 <0.0005 

ApoA1 (mg/dl) 140.64±24.01 117.49±20.81 <0.0005 128.43±17.70 114.25±19.82 <0.0005 132.08±23.83 112.33±22.27 <0.0005 

ApoB (mg/dl) 108.65±30.68 101.57±29.53 <0.001 122.85±28.75 102.29±28.20 <0.0005 129.70±32.17 101.05±29.16 <0.0005 

Lp(a) (mg/dl) 12.95±15.90 21.73±20.77 <0.0005 11.82±11.18 22.37±18.14 <0.0005 18.30±19.17 29.39±25.04 <0.0005 
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Table 4-2(Continued) Demographics of the Singaporean subjects. A ge, BM I and plasma lipid profiles are presented in mean ± SD  
Females 

 Chinese Malays Indians 

Variables CAD- CAD+ P CAD- CAD+ P CAD- CAD+ P 

  n = 313 n = 124  n =42 n = 31  n =157 n = 27  

Age (years) 35±12 62±9 <0.0005 29±12 61±7.78 0.0005 38±13 61±8 <0.0005 

BMI (kg/m2) 22.14±3.82 23.91±3.34 0.447 23.27±6.08 28.03±3.95 0.260 24.73±4.77 25.22±4.90 0.261 

Smokers* (%) 3.19 16.81 <0.0005 4.76 10.34 0.327 1.91 7.69 0.148 

TC (mM) 5.54±1.20 4.61±1.24 <0.0005 5.09±1.04 4.68±1.20 0.121 5.26±1.08 4.04±1.11 <0.0005 

HDL-C (mM) 1.55±0.41 1.04±0.32 <0.0005** 1.39±0.33 0.99±0.31 <0.0005** 1.27±0.34 0.96±0.29 <0.0005**

LDL-C (mM) 3.61±1.20 3.57±0.99 0.543 3.35±0.97 3.64±0.91 0.552 3.60±1.10 2.99±0.64 0.082 

TG (mM) 1.36±0.79 1.75±0.80 <0.0005 1.04±0.64 1.82±1.02 <0.0005 1.46±1.11 1.68±0.73 0.314 

ApoA1 (mg/dl) 151.97±23.93 126.73±24.56 <0.0005 146.38±18.11 119.13±22.51 <0.0005 140.08±26.36 122.78±21.90 0.002 

ApoB (mg/dl) 92.43±26.66 98.71±28.65 0.031 97.12±20.56 98.42±26.25 0.811 108.89±27.45 90.67±25.02 0.002 

Lp(a) (mg/dl) 17.76±21.60 25.23±24.35 0.004 13.26±11.20 21.44±17.44 0.031 22.16±20.12 27.68±30.83 0.250 
 

*: Smokers and ex-smokers form one category while non smokers constitute another. **: Adjusted by smoking. 



4.2.2.3. Genotype and allele frequencies  

The genotype distributions for the three polymorphisms are shown in Table 4-3 and 

4-4.  All genotype frequencies did not deviate from the expected Hardy-Weinberg 

proportions. In terms of the association of the genotypes with CAD and dyslipidemia 

susceptibility, two genetic models, dominant and recessive, were used.  In the case 

of dominant model, no association was detected in the three ethnic groups.  Under 

the assumption of recessive model, the 734C>T and the 41A>G were found to be 

associated with CAD risk in the Chinese, with heterozygotes and mutant homozygotes 

being more prevalent in the CAD+ subjects, (P=0.0051, and P=0.0104, respectively) 

and the D/I in Indians (P=0.015). However, only the association of the 734C>T had 

statistical significance after multiple comparison correction (OR=1.49; 95% CI: 1.43 

– 1.55).   

 

The distribution of allele frequencies of the three polymorphisms in different ethnic 

groups was investigated before carrying out the test of their association with disease.   

The results showed that the allele frequencies of the 734C>T and D/I were 

significantly different among the three ethnic groups (Table 4-3).  The 734T and I 

alleles were the lowest in Indians, followed by Malays, and Chinese.  Unlike the 

734C>T and D/I, whose distributions were significantly different among the three 

ethnic groups, 41A>G showed different allele frequency only between the Chinese 

and Indians.  In terms of association with CAD susceptibility, the 734T frequency 

was significantly lower in the CAD+ patients than in the CAD- controls in the 

Chinese (0.26 in CAD- vs.  0.20 in CAD+, P = 0.003; OR = 0.72; 95% CI: 0.57 – 

0.90).  The statistical significance was still observed after Bonferroni correction.  In 

Indians, the I allele was associated with increased CAD risk (0.17 in CAD+ vs. 0.10 
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in CAD-, P = 0.01; OR= 1.89; 95% CI: 1.65-2.18).  However, this significance did 

not remain after Bonferroni correction.   

 

Considering the effect of confounders such as age, BMI and smoking, the binary 

logistic regression model was applied with these confounders as covariates.  It was 

observed that the association of the 734C>T polymorphism with CAD was still 

significant after adjusting for these confounding effects (P=0.039).  In fact, age and 

smoking were not significant confounding factors in the Chinese but BMI was.  In 

the Indians, smoking and age were the significant confounders.  However, the 

association of the D/I polymorphism with CAD remained significant in the presence 

of smoking and age in the model.  After Bonferroni correction, all these significant 

associations did not remain. 

 

There was no significant difference in genotype and allele frequencies of 734C>T and 

D/I between the normolipidemic and dyslipidemic subgroups in all three ethnic 

groups.  Comparing normolipidemic and dyslipidemic individuals in the three ethnic 

groups, significantly higher G allele frequency was observed in the normolipidemic 

Chinese (P=0.008).  The analysis under the assumption of recessive genetic model 

also showed that the AG+GG genotype was more prevalent in the normolipidemic 

subjects than the dyslipidemic subjects (P=0.0059).  However, these significant 

differences did not exist after multiple comparison correction. 

 

4.2.2.4. Linkage disequilibrium among these three polymorphisms  

The genomic distance between 41A>G and 734C>T is 12.5kb, with D/I being located 

between them.  The D/I is closer to 41A>G (2.2kb) than to 734C>T (10.3kb). Linkage 
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disequilibria of different degrees were found between these three polymorphisms in the 

various subgroups (Table 4-5).  The 734C>T was found to be in very strong LD with 

D/I in the CAD+ (∆> = 0.64, P<0.0005) in three ethnic groups and in the CAD- group 

(∆>0.90, P<0.0005).  Strong LD was also observed between 41A>G and 734C>T and 

between 41A> G and D/I. 

 

4.2.2.5. Multi-loci case-control analysis 

Other than the single-locus analysis, two forms of multi-loci association tests, using 

haplotypes and diplotypes, were also conducted to evaluate the combined effects of 

different polymorphic sites. Due to the nearly complete LD between D/I and 734C>T, 

the D/I was not included in the haplotype and diplotype analysis. Only subjects with 

complete genotype data at the two loci were examined in the two-locus association 

study. The final subjects consisted of 580 Chinese (158 CAD+ vs. 422 CAD-), 156 

Malays (45 CAD+ vs. 111 CAD-) and 202 Indians (51 CAD+ vs. 151 CAD-).  

 

The results of the 4 haplotypes for these two polymorphic sites are summarized in 

Table 4-6.  The differences in haplotype frequencies between the CAD+ and CAD- 

subjects and between the normolipidemic and dyslipidemic groups were evaluated by 

permutation test.  In all three ethnic groups, the GC haplotype was about two times 

higher among the CAD+ patients than among the CAD- controls.  However, 

statistically significant difference was attained only in the Chinese (Permutation 

P=0.032; OR = 1.85; 95%CI: 1.38-2.48) but not in Malays and Indians, which was  

most likely due to the smaller sample sizes in these two ethnic groups.  The 

comparison of the haplotype frequencies between the normolipidemic and the 

dyslipidemic groups showed that the GC haplotype was more frequent in the 



   92

normolipidemic subjects than in the dyslipidemic subjects (Permutation P=0.012; OR = 

0.32; 95%CI: 0.14-0.76) in the Chinese while the AC haplotype was higher in the 

dyslipidemic group as compared to the normolipidemic group (Permutation P = 0.023; 

OR = 1.44; 95%CI: 1.29-1.59).  The lower GC haplotype in the dyslipidemic subjects 

was not expected; however, the result is still reasonable, as dyslipidemia is only one of 

many risk factors for CAD. 

 

Diplotypes were determined by combining genotype information from the 41A>G and 

734C>T polymorphic sites.  All possible combinations of eight diplotypes were 

present in the Chinese group while the Malays and Indians had only seven diplotypes. 

There was no significant difference in diplotype frequencies between the CAD+ and 

CAD- subjects, as well as between the normolipidemic and dyslipidemic groups in all 

three ethnic groups. 
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Table 4-3. Genotype and allele frequencies (freq) of the ACAT2 polymorphisms in 
the three Singaporean ethnic groups.   
 
 Chinese Malays Indians 

 CAD- CAD+ CAD- CAD+ CAD- CAD+ 

CC 274 (56) 240 (65) 97 (66) 71(73) 162 (83) 87 (86) 

CT 182 (37) 110 (30) 45 (31) 23 (23) 29 (15) 14 (14) 

TT 37 (7) 19 (5) 4 (3) 4 (4) 4 (2) 0 (0) 

734C>T n (%) 

 

 T freq 0.26†‡ 0.20 0.18_ 0.16 0.09_  0.07 

T freq 0.003 0.563 0.386 

CC+CT vs. TT  0.165 0.563 0.305 

P 

 

 CC vs. CT+TT 0.005 0.325 0.493 

AA 367 (68) 175 (66) 100 (72) 48 (70) 231 (78) 56 (72) 

AG 164 (30) 84 (32) 34 (25) 18 (26) 61 (20) 20 (25) 

GG 9 (2) 4 (2) 4 (3) 3 (4) 5 (2) 2 (3) 41A>G n (%) 

 G freq 0.17† 0.17 0.15 0.17 0.12† 0.15 

G freq 0.960 0.604 0.342 

CC+CT vs. TT  0.878 0.308 0.609 P 

CC vs. CT+TT 0.010 0.663 0.267 

DD 313 (54) 198 (60) 128 (62) 64 (63) 182 (83) 91 (72) 

DI 223 (38) 105 (32) 72 (35) 34 (33) 34 (15) 30 (23) 

II 45 (8) 25 (8) 6 (3) 4 (4) 4 (2) 6 (5) 

D/I n (%) 

 

I freq 0.27†‡ 0.24 0.20_  0.21 0.10_  0.17 

I freq 0.156 0.773 0.011 

CC+CT vs. TT  0.945 0.638 0.119 P 

CC vs. CT+TT 0.058 0.918 0.015 
 

 

_, _,  :  Significant difference in allele frequencies between ethnic groups (P<0.01). 
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Table 4-4 Genotype and allele frequencies (freq) of 734C>T, D/I and 41A>G in the 
normolipidemic (Normo) and dyslipidemic (Dys) subjects. 
 Chinese Malays Indians 

 Normo Dys Normo Dys Normo Dys 

CC 170 (54) 107 (60) 53 (70) 45 (62) 93 (85) 70 (81) 

CT 117 (37) 65 (36) 20 (27) 25 (35) 14 (13) 15 (17) 

TT 29 (9) 8 (4) 2 (3) 2 (3) 2 (2) 2 (2) 

734C>T n (%) 

 

 T freq 0.28 0.23 0.18 0.20 0.08 0.11 

T freq 0.085 0.662 0.317 

CC+CT vs. TT  0.054 0.967 0.943 

P 

 

 CC vs. CT+TT 0.223 0.294 0.366 

AA 208 (64) 156 (75) 53 (74) 47 (71) 136 (81) 95 (74) 

AG 112 (32) 50 (24) 18 (25) 16 (24) 30 (18) 31(24) 

GG 7 (2) 2 (1) 1 (1) 3 (5) 2(1) 3 (2) 41A>G n (%) 

 G freq 0.19* 0.13* 0.14 0.17 0.10 0.14 

G freq 0.008 0.492 0.140 

CC+CT vs. TT  0.295 0.270 0.451 P 

CC vs. CT+TT 0.006 0.782 0.133 

DD 183 (53) 127 (56) 49 (64) 62 (62) 90 (84) 75 (82) 

DI 134 (38) 87 (38) 24 (32) 35 (35) 16 (15) 15 (16) 

II 31 (9) 14 (6) 3 (4) 3 (3) 1 (1) 2 (2) 

D/I n (%) 

 

I freq 0.28 0.25 0.20 0.20 0.08 0.10 

I freq 0.257 0.944 0.488 

CC+CT vs. TT  0.226 0.731 0.474 P 

CC vs. CT+TT 0.463 0.737 0.629 

* Significant difference in allele frequency (P<0.01) 
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Table 4-5. Linkage disequilibria between the 3 polymorphisms of ACAT2 gene 

 Chinese Malays Indians 

 CAD- CAD+ CAD- CAD+ CAD- CAD+ 

LD between 

734C>T and D/I  

∆=0.98 

P<0.0005 

∆=0.67 

P<0.0005 

∆ = 0.96 

P<0.0005 

∆=0.71 

P=0.009 

∆ = 0.91 

P<0.0005 

∆=0.64 

P=0.086 

LD between 

734C>T and 

∆ = 0.52 

P<0.0005 

∆ = 0.42 

P<0.0005 

∆ = 0.65 

P<0.0005 

∆ = 0.41 

P=0.004 

∆ = 0.62 

P<0.0005 

∆ = 0.68 

P<0.0005 

LD between D/I 

and 41A>G 

 ∆ = 0.52 

P<0.0005 

∆ = 0.37 

P<0.0005 

∆ = 0.75 

P<0.0005 

∆ = 0.58 

P<0.0005 

∆ = 0.59 

P<0.0005 

∆ = 0.53 

P<0.0005 
 

∆: Linkage disequilibria correlation coefficient. 
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Table 4-6 Haplotype frequencies for 41A>G and 734C>T in CAD+ and CAD- 
subjects as well as in normolipidemic and dyslipidemic various groups.   

 

Chinese 

Haplotype CAD- CAD+ Permutation P* Normo Dys Permutation P* 

AC 0.698 0.707 0.763 0.671 0.745 0.023 

AT 0.129 0.113 0.482 0.133 0.122 0.689 

GC 0.042 0.075 0.032 0.057 0.019 0.012 

GT 0.131 0.106 0.279 0.139 0.115 0.325 

Malays 

Haplotype CAD- CAD+ Permutation P* Normo Dys Permutation P* 

AC 0.791 0.751 0.483 0.796 0.785 0.869 

AT 0.047 0.071 0.421 0.058 0.037 0.350 

GC 0.047 0.093 0.126 0.067 0.0278 0.106 

GT 0.115 0.085 0.470 0.078 0.151 0.097 

Indians 

Haplotype CAD- CAD+ Permutation* Normo Dys Permutation P 

AC 0.853 0.843 0.877 0.862 0.839 0.613 

AT 0.031 1.92E-10 0.153 0.045 0.009 0.071 

GC 0.044 0.0784 0.164 0.045 0.043 0.781 

GT 0.072 0.078 0.842 0.041 0.110 0.103 
 

 

*Permutation test significance levels for individual haplotype frequency comparisons between 

the CAD+ and CAD- groups.
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4.2.2.6. Association of single-locus genotype with lipid traits in the CAD- subjects 

In terms of the association with plasma lipid profiles, three models, dominant, 

additive, and recessive, were applied when three different genotypes were present.  

For normolipidemic Malay and Indian females, no mutant heterozygote was observed. 

Therefore, only additive model was used in these two subgroups.  Except for the 

normolipidemic Malay and Indian females, there was no significant association to be 

found using any genetic model in other subjects. As such, only the data for 

normolipidemic female subjects is presented in details. 

 

4.2.2.6.1. c.734C>T 

There was no significant difference in lipid profiles between the CAD+ and CAD- 

subjects as well as between the normolipidemic and dyslipidemic subgroups in the 

Chinese. The correlation of genotypes with plasma lipid traits in female 

normolipidemic Malays and Indians is shown in table 4-7.  The normolipidemic 

female Malays with the CT genotype had significantly lower apoA1 level than those 

with the CC genotype (P=0.007).  In the normolipidemic female Indians, 

significantly decreased plasma apoA1 (P=0.027), increased apoB (P=0.007) and Lp(a) 

(P=0.011) levels were observed in the CT heterozygous than the CC individuals. 

These analysis were adjusted with age, BMI, and smoking.  No TT homozygote was 

found in the two female normolipidemic groups.  However, these statistical 

significances were not observed after multiple comparison correction in the two 

subgroups.  The CT carriers had a trend towards increased LDL-C compared with 

CC individuals, but this is not statistically significant.   
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4.2.2.6.2. D/I 

ANOVA with age, BMI and smoking as covariates showed that the effects of this 

polymorphism on apoA1 in female normolipidemic Malays and on Lp(a) in female 

Indians were very  similar to that of 734C>T (Table 4-8).  The phenomenon is not 

surprising as both polymorphisms are in strong linkage disequilibrium.  However, 

the statistically significance was only observed on Lp(a) level in Indian females 

(P=0.004), with DI heterozyotes being associated with increased Lp(a) level.  In 

addition, elevated LDL was found in DI heterozygotes comparing with the DD 

carriers in Malay females (P=0.013).  Actually, the trend was the same as that of 

734C>T on LDL in this Malay group.  However, all these significances did not 

remain after Bonferroni correction.  

 

4.2.2.6.3. c.41A>G 

In female normolipidemic Indians (Table 4-9), the heterozygous carriers of the 

41A>G had higher TC than AA homozygotes.  The rare GG homozygotes were not 

found in female Malays and female Indians.  

 

4.2.2.7. Association of diplotypes with lipid traits  

Diplotypes were determined by combining genotype information from the 41A>G 

and 734C>T sites. All possible combinations of eight diplotypes were present in 

Chinese group while Malays and Indians had only seven diplotypes.  There was no 

significant difference in diplotype frequencies between CAD+ and CAD-, as well as 

between normolipidemic and dyslipidemic groups in all three ethnic groups.  The 

association study of diplotypes and lipid traits was conducted only in CAD- subjects 

and only positive results were present here (Table 4-10).  There were only 4 
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diplotypes in normolipidemic Malay and Indian females and 1 diplotype (AA/CT) 

was omitted due to small sample size in the Malays.  In normolipidemic Malay 

females, only apoA1 level was found to be significantly different between AG/CT and 

AA/CC as well as AG/CC (P=0.0031 and P=0.0035 respectively).  In the Indian 

females, the AA/CT carriers had significantly higher level of apoB relative to the wild 

type AA/CC homozygotes (P=0.006).  After multiple comparison correction, the 

association did not exist any more. 
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Table 4-7. Genotypic lipid levels (M ean ± SD) of the 734C>T in the healthy normolipidemic Chinese, Malay and Indian females.                              

 Chinese Malays               Indians 

 CC CT TT  CC CT P 
 CC CT  

 n=97 
 

n=58 
 

n=16 
 P n=18 

 
n=7 

  n=49 n = 7 
 

P 
 

TC(mM) 4.67±0.71 
 

4.60±0.66 
 

4.95±0.49 
 

0.212 
 

4.32±0.70 
 

4.70±0.37 
 

0.287 
 

4.67±0.79 
 

4.76±0.62 
 

0.238 
 

LDL-C(mM) 
 

2.75±0.73 
 

2.86±0.71 
 

3.00±0.47 
 

0.715 
 

2.59±0.70 
 

3.20±0.46 
 

0.131 
 

2.95±0.81 
 

3.26±0.72 
 

0.069 
 

HDL-C(mM) 
 

1.56±0.31 
 

1.44±0.38 
 

1.50±0.20 
 

0.529 
 

1.29±0.22 
 

1.23±0.26 
 

0.566 
 

1.29±0.31 
 

1.09±0.22 
 

0.147 
 

ApoA1(mg/dl) 
 

148.29±22.11 
 
 

143.77±23.98 
 

144.27±25.56 
 

0.784 
 

150.22±14.63 
 

131.29±13.10 
 

0.007 
 

137.76±25.96 
 

114.71±17.23 
 

0.027 
 

ApoB(mg/dl) 
 

79.74±18.18 
 

76.62±17.28 
 

81.55±14.96 
 

0.267 
 

87.17±12.78 
 

93.67±13.10 
 

0.345 
 

94.88±17.25 
 

107.86±18.49 
 

0.007 
 

lnTG* 
 

0.02±0.39 
 

0.06±0.41 
 

0.09±0.40 
 

0.697 
 

0.07±0.37 
 

0.29±0.28 
 

0.204 
 

0.06±0.38 
 

0.04±0.29 
 

0.765 
 

TG** 
 

1.02 
 

1.06 
 

1.09 
  1.07 

 
1.34 

  1.06 
 

1.04 
  

lnLp(a)* 
 

2.41±0.94 
 

2.30±0.93 
 

2.58±0.84 
 

0.595 
 

2.51±0.57 
 

2.94±0.72 
 

0.191 
 

2.65±0.71 
 

3.42±0.82 
 

0.011 
 

Lp(a)** 8.50 9.97 12.18  12.30 18.92  14.15 30.57  
 

 

*: lnTG and lnLp(a): natural logarithmic transformed TG and Lp(a), respectively. 
**: TG and Lp(a) levels are presented in geometric means. 
Age, BMI and smoking were included as covariates in the ANOVA. 
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Table 4-8. Genotypic lipid levels (M ean ± SD) of the D/I in the healthy normolipidemic Chinese, M alay and Indian females.   
                                                                                    

 
 

Chinese     
 

Malays       
 

Indians  

 DD DI II P DD DI P 
 DD DI P 

 

 n=106 
 

n=61 
 

n=16 
  n=18 

 
n=11 

  n=68 
 

n = 11  

TC(mM) 5.08±0.69 
 

4.93±0.71 
 

5.23±0.58 
 

0.224 
 

4.74±0.78 
 

5.19±0.58 
 

0.110 
 

4.76±0.66 
 

4.57±0.66 
 

0.705 
 

LDL-C(mM) 3.09±0.69 
 

3.09±0.77 
 

3.24±0.55 
 

0.709 
 

2.89±0.70 
 

3.55±0.56 
 

0.013 
 

3.07±0.70 
 

3.06±0.68 
 

0.678 
 

HDL-C(mM) 1.59±0.32 
 

1.52±0.31 
 

1.59±0.29 
 

0.475 
 

1.36±0.25 
 

1.35±0.28 
 

0.903 
 

1.27±0.29 
 

1.19±0.22 
 

0.409 
 

ApoA1(mg/dl) 151.17±20.89 
 

149.30±20.55 
 

144.87±23.25 
 

0.582 
 

149.88±13.46 
 

142.30±15.00 
 

0.187 
 

130.11±19.24 
 

124.45±18.26 
 

0.368 
 

ApoB(mg/dl) 82.35±17.16 
 

80.09±15.29 
 

85.50±14.78 
 

0.372 
 

89.56±13.63 
 

101.10±15.18 
 

0.049 
 

94.32±19.20 
 

95.45±19.24 
 

0.510 
 

lnTG* -0.055±0.36 0.0013±0.37 -0.0069±0.32 0.632 -0.136±0.34 -0.196±0.27 0.628 0.0808±0.36 0.0016±0.26 0.493 

TG** 1.07 1.00 1.01  1.15 1.22  1.08 1.00  

lnLp(a)* 
 

2.40±0.93 
 

2.30±0.92 
 

2.43±0.68 
 

0.817 
 

2.55±0.53 
 

2.31±0.76 
 

0.402 
 

2.45±0.63 
 

3.23±0.63 
 

0.004 
 

Lp(a)** 11.02 9.97 11.36  12.81 10.07  15.56 25.28  
 
 
 

*: lnTG and lnLp(a): natural logarithmic transformed TG and Lp(a), respectively. 
**: TG and Lp(a) levels are presented in geometric means. 
Age, BMI and smoking were included as covariates in the ANOVA. 
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Table 4-9. Genotypic lipid levels (M ean ± SD) of the 41A >G in the healthy female normolipidemic Chinese, Malays and Indians 
 

 
 

Chinese  
 

Malays  
 

Indians  

 AA AG GG P AA AG P AA AG P 
 

 
 

n=115 
 

n=63 
 

n=5  
 

n=19 
 

n=9  
 

n=65 
 

n = 19  

TC(mM) 5.09±0.65 
 

4.97±0.70 
 

5.01±0.62 
 

0.578 
 

4.61±0.81 
 

4.66±0.77 
 

0.899 
 

4.84±0.69 
 

5.06±0.71 
 

0.042 
 

LDL-C(mM) 3.17±0.71 
 

3.14±0.67 
 

2.93±0.62 
 

0.777 
 

2.81±0.68 
 

2.99±0.65 
 

0.620 
 

3.24±0.77 
 

3.37±0.82 
 

0.208 
 

HDL-C(mM) 1.60±0.38 
 

1.55±0.35 
 

1.70±0.39 
 

0.489 
 

1.45±0.33 
 

1.33±0.31 
 

0.347 
 

1.24±0.31 
 

1.28±0.26 
 

0.660 
 

ApoA1(mg/dl) 151.83±23.33 
 

151.70±22.91 
 

145.60±28.99 
 

0.788 
 

148.44±15.28 
 

137.89±19.60 
 

0.156 
 

107.33±9.00 
 

104.37±15.57 
 

0.659 
 

ApoB(mg/dl) 83.30±17.17 
 

89.02±17.45 
 

82.20±14.76 
 

0.099 
 

86.39±13.39 
 

93.67±21.64 
 

0.255 
 

97.19±22.38 
 

104.17±16.29 
 

0.070 
 

lnTG* -.0054±0.43 -.032±0.36 -.0114±0.30 0.955 -0.21±0.39 -0.24±0.35 0.789 0.016±0.38 0.06±0.52 0.382 

TG** 0.99 0.97 0.99  0.81 0.76  1.02 1.06  

lnLp(a)* 2.47±0.93 2.40±0.79 2.65±1.21 0.841 2.34±0.54 2.51±0.61 
 

0.634 2.63±0.71 2.46±0.84 0.387 

Lp(a)** 11.82 11.02 14.15  10.38 12.30  13.87 11.70  
 
 
 

*: lnTG and lnLp(a): natural logarithmic transformed TG and Lp(a), respectively. 
**: TG and Lp(a) levels are presented in geometric means. 
Age, BMI and smoking were included as covariates in the ANOVA.
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Table 4-10. Diplotypic lipid levels in normolipidemic Malay and Indian females. 
                                                                                               

  Malays      
 

 Indians   

 AA/CC AG/CC AG/CT 
 

AA/CC AG/CC AA/CT AG/CT 

 n=13 n=4 n=4 
 

n=37 n=6 n=3 n=3 

TC (mM) 4.71±0.92 4.96±0.91 4.65±0.32 
 

4.56±0.81 4.70±0.50 4.98±0.85 4.53±0.52 

LDL-C (mM) 2.83±0.77 2.99±0.79 3.16±0.56 
 

2.84±0.87 2.86±0.64 3.33±1.09 3.05±0.45 

HDL-C (mM) 1.45±0.36 1.52±0.25 1.19±0.31 
 

1.30±0.37 1.38±0.38 1.26±0.21 1.02±0.045 

ApoA1(mg/dl) 150.08±15.39a 152.50±15.55b 125.50±16.34c 
 

133.00±23.53 130.60±7.27 125.67±9.45 108.33±21.60 

ApoB (mg/dl) 88.67±12.45 101.50±23.76 94.25±14.98 
 

92.30±18.92d 97.83±16.43 115.0±28.62e 99.33±3.51 

TG 0.87 0.99 0.71 
 

1.04 1.07 0.97 1.01 

InTG -0.13±0.44 -0.01±0.10 -0.34±0.38 
 

0.04±0.34 0.07±0.61 -0.04±0.40 0.01±0.15 

Lp(a) 12.68 11.13 16.44 
 

14.59 11.02 33.45 25.53 

InLp(a) 2.54±0.57 2.41±0.66 2.80±0.61 
 

2.68±0.68 2.40±1.08 3.51±1.20 3.24±0.68 
 
 

a significantly higher than c (P=0.031) 
b significantly higher than c (P=0.035) 
d significantly lower than e (P<0.006) 
Age, BMI and smoking were included as covariates in the ANOVA.
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4.2.3. Functional analysis of two nsSNPs of ACAT2 gene 

4.2.3.1. Expression of ACAT2 in AC-29 cell 

In contrast to pcDNA3.1 vector-transfected cells, ACAT2-transfected cells contained 

abundant lipid droplets, which were seen under inverted or differential interference 

contrast microscope or fluorescence microscope after Nile red staining (Figure 4-11). 

 

The mRNA expression was verified by reverse transcription PCR using ACAT2-specific 

primers and GAPDH-specific primers.  The amplification of ACAT2 was only detected 

in ACAT2 transfected cells, but not in parent AC-29 cells and in the cells transfected 

with vector alone (Figure 4-12 A).  With regards to the mRNA expression levels of 

wild type ACAT2 and the other three variants, reverse transcription real-time PCR 

showed that there was no significant difference in ACAT2 gene expression level 

between wildtype ACAT2 and mutant ACAT2s, when normalized by reference gene 

GAPDH (Gly14/WT: 1.32 ± 0.22, P=0.13; Ile254/WT: 0.94±0.14, P=0.57; 

Gly14Ile254/WT: 1.10±0.22, P=0.64).  The western blot results however showed that 

the ACAT2 protein was expressed about two-fold higher level in mutants with Gly14 

when compared to that of wildtype and the mutant with Ile254 (Figure 4-12 B).  

 

4.2.3.2. ACAT2 activity assay 

The measurement of ACAT enzyme activity was carried out in triplicate and their 

average was used for data analysis.  The ACAT2 activity assay showed that the rate of 

CE biosynthesis in intact cells transfected with the Gly14 mutants was higher than that 

in cells transfected with wildtype or  the Ile254 mutant only (Figure 4-13).  
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Figure 4-11. Cells viewed with inverted microscope (A and A’) and Nile red-staining 
with Texas red (B and B’) and differential infraction contrast (C and C’). 
ACAT2-transfected cells (A’, B’ and C’ was filled with numerous lipid droplets while 
no obvious lipid droplets were seen in control cells (vector-transfected cells, A, B and 
C). Arrows indicated lipid droplets. 
 
 
 
 

 
 
Figure 4-12. ACAT2 mRNA and protein expression in AC-29 cells. Lane 1: wildtype 
ACAT2; Lane 2: ACAT2-Gly14; Lane 3: ACAT2-Ile254; Lane 4: ACAT2-Gly14Ile254; 
Lane 5 and 6: negative controls (vector alone-transfected AC-29 cells and 
untransfected AC-29). Ratio: the expression level ratio of various mutant ACAT2 to 
wildtype ACAT2. (A) The amplified ACAT2 products were detected in 
ACAT2-transfected cells but not in control (cells transfected with vector alone and 
untransfected AC-29 cells). (B) Western blot analysis using anti-Xpress and anti- 
β-actin as primary antibody and quantitations of ACAT2 bands by densitometric 
analysis. The ACAT2 protein was detected in ACAT2-transfected cells. 

 

A B 
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Figure 4-13. ACAT2 enzyme activity analysis of wild type and mutant ACAT2s.  
(A) The relative rates of cholesteryl ester biosynthesis in intact cells expressing 
various ACAT2 indicated. (B) Normalized ACAT2 activity of various ACAT2 by 
different ACAT2 protein expression levels. 
 

 

S p e c i f i c  A C A T 2  a c t i v i t y  ( c p m / m i n / m g )

0
5 0

1 0 0
1 5 0

2 0 0

2 5 0

1 2 3 4

Specific ACAT2 activity (cpm/mg/min) 

   WT      Gly14       Ile254   Gly14Ile254   

B 

  R e la t iv e  A C A T 2  a c t iv i t y  ( c p m /m in /m g )

0

1 0 0

2 0 0

3 0 0

4 0 0

1 2 3 4 5 6

Relative ACAT2 activity (cpm/mg/min) 

     WT      Gly14     Ile254    Gly14Ile254     AC29    pcDNA3.1 

A 



   107

4.3. Discussion 

ACAT2 has been identified as an important enzyme in the development of 

hypercholesterolemia and as a therapeutic target for treatment of 

hypercholesterolemia and coronary artery atherosclerosis (Buhman et al., 2000; 

Chang et al., 2000; Rudel et al., 2005). It was hypothesized that the variations in 

ACAT2 gene may be implicated in hypercholesterolemia and CAD susceptibility as 

well as related phenotypes.  In order to test this hypothesis, the regulatory regions 

and the entire coding region of ACAT2 gene, were screened for sequence variations.  

This is the initial step for subsequent association study to investigate the effect of 

ACAT2 gene polymorphisms on hypercholesterolemia and CAD susceptibility. 

 

For the detection of ACAT2 gene polymorphisms, a highly sensitive and economic 

method, DHPLC, was used.  After screening about 300 cord blood samples, a total 

of fourteen polymorphisms were found.  Of these polymorphisms, two were 

single-base changes in the putative promoter region; five were sequence variants 

located in exonic regions: three were nsSNPs and two were silent mutations; and 

seven were sequence variants, comprising six single base substitutions and one 

48bp-insertion, within intronic regions.  Among these seven sequence variants, five 

SNPs, 41A>G, 734C>T, IVS9+37A>T, IVS9+51G>T, IVS1-8C>G, had been 

reported previously (Katsuren et al., 2001 and 2003; Haga et al., 2002), and other nine 

polymorphisms were novel and have been submitted to the NCBIs SNP database. 

 

DHPLC has been documented to be a highly sensitive method for the detection of 

point mutation and small insertions/deletions (Xiao and Oefner 2001; O’Donovan et 

al., 1998; Liu et al; 1997; Gross et al., 1999; Jones et al., 1999), which also has been 
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proven in the study.  In this study, all known polymorphisms within the coding 

region and all intronic-exonic boundaries had been detected.  However, within the 

5’UTR or putative promoter region, some SNPs, such as -74A>G, -1279G>A, 

-1283G>A, -1327A>C, and -1382A>C, had been reported in the NCBIs SNP database 

but were not found in current study.  It was postulated that these undetected 

polymorphisms may occur only in certain population or at quite low frequencies.  

For example, -1279G>A, -1283G>A, -1327A>C, and -1382A>C were found in 

Caucasians, and the -1279G>A occurs at a very low frequency (0.005 for rare A 

allele).  

 

In addition, it was proven that the use of primers with a GC clamp is able to improve 

the efficiency of mutation detection.  The mechanism behind is described as follows. 

At higher temperature, double-strand DNA dissociates into single-strand DNA, 

leading to peak broadening when passing through DHPLC column.  The addition of 

a GC-clamp at one end of the fragment should stabilize the DNA and raise the 

temperature at which the double-strand DNA is denatured into single-strand DNA to 

ensure a sharp peak even at higher temperature (Narayanaswami and Taylor, 2001).  

The use of GC-clamped primers greatly enhances the sensitivity of detection of 

mutant hetero- and homoduplex peaks in DHPLC profiles compared to 

non-GC-clamped primers. Thus, when screening sequence variants, the incorporation 

of appropriate GC-clamped primers provides a simple method of altering the melting 

behavior and increases the resolution of homo- and heteroduplex peaks.   

 

For a tri-allele polymorphism, c.1291G>T or A in exon 13, the two kinds of mutant 

heterozygotes (GT and GA) showed very similar DHPLC profiles, and direct 
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sequencing detected different base substitutions (G>T or A).  This polymorphism 

occurs at a very low frequency, as only one heterozygote of each was found among 

the 348 samples screened.  In order to exclude the possibility that this substitution 

was introduced during Taq DNA polymerase amplification, re-amplification by Pfu 

DNA polymerase with high fidelity was carried out.  The same heteroduplex profile 

can be generated from the amplicon obtained using the Pfu DNA polymerase and the 

base substitution was also confirmed by DNA sequencing.  Thus, this polymorphism 

is a naturally occurring genetic variant with a very low frequency in general 

population. 

 

Among the polymorphisms identified in this study, two polymorphisms were 

identified in the putative promoter region. However, previous study suggested that the 

fragment containing the two polymorphic sites was not important for promoter 

activity (Song et al., 2001). For the polymorphisms found in intronic regions, none of 

them was located within splicing sites or branch sites and thus it is unlikely to have 

biological influence.  So only those located in the coding region are considered for 

function analysis to evaluate their biological significance.   

 

The GRANTHAM D values of the Glu14Gly, Thr254Ile and Ala431Ser were close to 

100, while the D value of Ala431Thr was 58.  The BLOSUM scores of the former 

triad were negative and only the Ala431Thr has a positive value.  Recent studies on 

sequence variants in G-protein-coupled receptors using substitution matrix suggested 

that variations with GRANTHAM scores >100 or BLOSUM scores<-1 are 

increasingly associated with disease-causing mutations (Balasubramanian et al., 2005). 

However, these substitution matrix scores did not consider position-specific 
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information and whether these substitution matrixes are useful for predicting function 

is still controversial (Miller and Kumar, 2001; Ng and Henikoff, 2001; Leabman et al., 

2003). Interspecies sequence alignment and acyltransferase family members sequence 

comparison were carried out to define the evolutionary conserved sites.  The Glu14 

and Ala431 were conserved in Homo sapiens, Africa green monkey, Mus musculus, Rattus 

norvegicus, and Canis familiaris but not in all acyltransferase family.  The Thr254 

was not conserved both interspecies and in the acyltransferase family. PolyPhen 

demonstrated that the Glu14Gly was possibly damaging.  Combining all the 

predicted results, the Glu14Gly may have a functional role. 

 

Other than these prediction approaches, literature review on ACAT2 also gave us 

some information on the possible functional roles of these polymorphic sites.  For 

example, the 254th amino acid residue is very close to an important amino acid residue, 

serine, at the 245th residue. The mutation from serine to leucine mutation at the 245th 

residue led to loss of ACAT2 enzyme activity (Joyce et al., 2000; Lin et al., 2003).  

It was proposed that this 245th residue may be very important to ACAT2 protein 

expression or stability.  In addition, the amino acid residues at the amino-terminal 

region in ACAT family have been suggested to negatively mediate the enzyme 

activity (Guo et al., 2001).  Therefore, it is likely that the The254Ile and Glu14Gly 

polymorphisms may have some biological function.  

 

With the information on the potential biological significance of The254Ile and 

Glu14Gly polymorphisms, it is instructive to investigate their effect of these two 

polymorphisms on disease susceptibility in Singaporean population using a 
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case-control association study. The D/I polymorphism was also included in this study, 

as a long insertion is uncommon among sequence variations.  

 

The findings from this association study indicated that common genetic variants 

within the ACAT2 gene were associated with altered plasma lipid levels and CAD risk 

in Singaporean population.  The heterozygote 734C>T was associated with 

decreased apoA1 and/or increased apoB and Lp(a) in healthy female normolipidemic 

Malays and Indians.  The 41A>G heterozygotes had significantly higher TC level 

and a trend towards increased apoB in the Indian females. It was found that the 

734C>T was in almost complete LD with D/I polymorphism and in very strong LD 

with 41 A>G.  As such, very similar associations were observed for the 734C>T and 

D/I with plasma lipid levels.  However, all these associations with lipids were not 

observed after strict Bonferroni correction.   

 

The T allele of 734C>T was significantly lower in the Chinese CAD+ patients with 

multiple comparison correction.  In addition, the analysis using the recessive model 

also showed that the Chinese CAD+ patients had lower CT+TT genotypes compared 

with the CAD- controls.  These results suggest that the CT+TT genotypes and T 

allele may be protective against CAD in the Chinese, although no corresponding 

protective effect on plasma lipid levels was observed.   In the other two ethnic 

groups, Malays and Indians, the T allele frequency was also slightly higher in the 

CAD- subjects compared to the CAD+ patients but did not reach a significant level.  

No significant association was observed between the 734C>T polymorphism and 

dyslipidemia in any ethnic group.  This was consistent with that of the study done by 

Katsuren et al. (2001) in the Japanese.  The allele frequency of 734C>T in the 
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Chinese subjects in the study was also similar to those reported in the Japanese study.  

In the normolipidemic Indian and Malay females, the heterozygotes of 734C>T had 

decreased apoA1 and /or increased apoB and Lp(a) levels, but no significant 

difference was detected in the dyslipidemic subjects.  The effects of 734C>T on 

plasma lipid traits were probably explained by the function of ACAT2 in the synthesis 

and secretion of apoB-containing lipoproteins and in intestinal cholesterol absorption.  

As for the effect of ACAT2 on apoA1 level, it probably results from an increase in 

LCAT activity, which may complementarily increase if ACAT2 activity is lower in 

the T allele carriers.  Such compensatory increase in LCAT activity due to ACAT2 

activity deficiency was observed in ACAT2-/- ApoE-/- mice (Willner et al., 2003).   

 

Katsuren’s study in the Japanese (2001) showed that 734C>T heterozygotes in 

normolipidemic and dyslipidemic subjects had significantly higher apoC-III levels as 

compared to the other two homozygous genotypes (CC and TT).  There was no 

significant difference in apoA1 and apoB levels between different genotypes.  It 

should be noted that these association of the 734C>T polymorphism with lipids may 

be spurious, as the significance was not observed after strict multiple test correction.  

 

As for the 41A>G, there was no difference in allele frequencies of this nsSNP 

between the CAD+ and CAD- subjects in all three ethnic groups.  However, when 

the CAD- subjects were stratified into normolipidemic and dyslipidemic subgroups, 

the G allele frequency was significantly higher in normolipidemic subjects than in 

dyslipidemia subjects in Chinese but not in Malays and Indians.  It appears that the 

G allele was protective against dyslipidemia in the Chinese, but this effect was not 
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consistent across ethnic groups.  However, this effect was not detected after 

adjusting multiple tests. 

 

The 41A>G heterozygotes had higher TC and apoB in the normolipidemic female 

Indians compared to the AA homozygotes.  Together with the higher G allele 

frequency in the dyslipidemic Indians, it suggested that the G allele may be associated 

with an increase in ACAT2 activity, resulting in the corresponding increase in the 

intestinal cholesterol absorption and the secretion of apoB-containing lipoproteins.  

 

The impact of the D/I polymorphism on plasma lipid profiles was quite similar to that 

of the 734C>T.  In addition, significant effect of the D/I polymorphism on LDL 

level was observed among the normolipidemic Malay females, with DI genotype 

being associated with increased LDL level.  Increased LDL was also found in 

heterozygous carriers of the 734C>T, but the increase did not reach statistical 

significance.  The lack of statistical significance is most likely due to the smaller 

sample size of the heterozygotes of the 734C>T polymorphism in this group.  

Although the functions of introns are still controversial, it is not likely that the 

intronic D/I polymorphism exerts its effect through any change in the ACAT2 enzyme 

structure or serves any regulatory role.  As such, any D/I-related association may be 

due to its LD with a functional site.    

 

In order to assess the combined effects of multiple polymorphisms, the association 

testing using haplotyes and diplotye was carried out.  As the D/I site is in almost 

complete LD with 734C>T, it was deemed not sufficiently informative for inclusion 

in the haplotype and diplotype analysis. Therefore included only two loci, 41A>G and 
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734C>T, for haplotype and diplotype analysis were included.   In the haplotype 

case-control study, it was observed that in the Chinese, the GC haplotype was almost 

two times more frequent in the CAD+ patients than in the CAD- controls but three 

times more frequent in the normolipidemic group than those who are dyslipidemic.  

It was noted that the association of haplotype with CAD does not rule out the 

possibility of its association with lower atherogenic lipid levels since the latter is only 

one of the many risk factors of CAD.  It is clear that Malay individuals with 

diplotypes bearing the GC haplotype (AG/CC) have significantly higher protective 

plasma apoA1 levels while the Indian subjects with the AT-bearing diplotype (AA/CT) 

have the highest atherogenic apoB levels.  The probable small ‘protection’ conferred 

by the GC haplotype in terms of its association with favorable levels of lipids could 

be overridden by other more pronounced effects from genes that are in LD with other 

CAD candidate genes located both upstream and downstream of ACAT2 (12q13).  

These include the genes encoding the LDL receptor-related protein 6 (12p13.3-p11.2), 

apoB mRNA editing enzyme catalytic polypeptide 1  12p13.1, LDL, oxidized, 

receptor 1 (12p13-p12) and scavenger receptor class B, member 1 (12q24.31), though 

the latter might be far from ACAT2 gene.  In the vicinity of the ACAT2 gene are also 

those related to immune response, such as interleukins. They are known to play 

important roles in CAD, which is, in many ways, considered as an inflammatory 

disease.   

 

The association study of diplotypes and plasma lipid levels showed that, in female 

normolipidemic Malays, the AG/CT diplotype had the lowest level of apoA1 than the 

AA/CC and AG/CC diplotypes.  It is therefore apparent that the lower apoA1 is 

likely to be due to the T allele.  This is consistent with the single-locus analysis of 
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734C>T. In the female Indians, the AA/CT had a significantly higher level of apoB 

than the AA/CC.  Since the AA genotype was kept constant in the two diplotypes, 

the higher apoB is more likely to be attributed to the 734C>T site.   However, the 

effects of 734C>T on Lp(a), and 41A>G on TC were only observed in single-locus 

analysis but not with diplotypes.  This might be due to the reduced sample sizes of 

the diplotype analysis as only samples with both sites successfully genotyped were 

included.  

  

The lack of significant association between the polymorphisms and plasma lipid 

levels in the dyslipidemic subgroups may be due to the following.  Firstly, the 

contributions of a single gene or a few polymorphisms are expected to be very small.  

Therefore, their effects are very likely to be masked by a myriad of other 

environmental factors, such as diet, physical activity and lifestyle.  In statistical 

analysis, BMI, age and smoking were included as covariates in the ANOVA models 

to adjust for their confounding effects.  Secondly, there are many other genes 

involved in lipid metabolism. Genes such as those coding for apolipoproteins, LPL 

and LDL receptors confer great effects on lipid levels and CAD risks.  However, 

these were not taken into account in the statistical analysis although their influences 

on plasma lipid levels may mask that of 734C>T and 41A>G.  Thirdly, the T and G 

alleles may exert their influences only by interacting with other genes or 

environmental factors.  Fourthly, statistical analysis with the small sample sizes in 

Malays and Indians might not have sufficient power to reliably detect a true 

association.  Last but not least, it does not exclude the possibility of Type I error, as 

all these associations with lipids were not observed any more after Bonferroni 

correction for multiple comparisons. 
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The 734C>T polymorphism was shown to be associated with CAD risk in the Chinese 

Singaporean.   In addition, the 41A>G and 734C>T were found to be correlated 

with altered lipid profiles in female normolipidemic Malays and Indians, but the 

significance was not observed after Bonferroni correction. Thus, further experiments 

were carried out to verify whether these two nsSNPs were really functional variants 

and their underlying mechanism.  Meanwhile, the experimental study also verifies 

the validity of the computational predictions for these nsSNPs. 

 

The wild-type and three mutant ACAT2 proteins (Gly14, Ile254, and Gly14Ile254) as 

well as the empty vector were expressed in an AC-29 cell line,  in which ACAT 

activity was absent. The functional analysis was performed by measuring the 

expression levels of ACAT2 genes and their proteins, and their relative enzyme 

activities of various polymorphic forms. 

 

The preliminary results from in vitro experiments indicated that the relative catalytic 

activity of ACAT2-Gly14 was almost 2-fold higher compared to that of 

ACAT2-Glu14. There was no significant difference between ACAT2-Thr254 and 

ACAT2-Ile254.  The higher activity of ACAT2-Gly14 was obviously due to the 

higher protein expression of ACAT2 bearing Gly14.  No significant difference was 

detected after performing western blot to normalize the activities with their 

corresponding protein expression levels.  There was no significant difference in 

ACAT2 mRNA expression between wildtype and various variants, suggesting that a 

post-transcriptional mechanism may mainly account for the difference in ACAT2 

protein expression levels.  Thus, the current functional study suggested that the 
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Glu14Gly polymorphism was important to ACAT2 protein expression and/or protein 

stability while the Thr254Ile might be a non-functional polymorphism. 

 

The association study suggested that the Thr254Ile mutant was anti-atherogenic in 

Chinese (He et al., 2005).  In addition, the Glu14Gly affected the TC level in female 

normolipidemic Indians while the Thr254Ile altered apoA1 and/or apoB and Lp(a) 

concentrations. The possible reasons for the different effects in different subgroups 

were stated (He et al., 2005).  The effect of the Glu14Gly on plasma cholesterol 

concentration in female normolipidemic Indians was consistent with the higher 

expression level in the experimental study.  As for the Thr254Ile, its expected 

influence from this in vitro experimental study is opposite to that of epidemiological 

study.  This might be explained by the following reasons.  First, the functional 

effect of the Thr254Ile might be too small to be detected in the experimental system in 

AC-29 cells, but might become observable in a specific human tissue or upon 

exposure to relevant environmental factors.  Second, other factors such as the cell 

type and DNA constructs used for this study might affect experimental outcomes.  It 

is known that different cell types and DNA constructs might exert different regulatory 

influences that may affect the function of a genetic variant (Rebbeck et al., 2004).  

Finally, the inconsistency may be due to some inherent bias in epidemiological 

investigations, such as insufficient statistical power and multiple comparisons in the 

statistical analyses, which could produce false positive inferences (Rebbeck et al., 

2004).  The experimental study in AC-29 cell line also supported the computational 

prediction that the Glu14Gly was conserved and probably have biological implication 

while the Thr254Ile was not. 
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We also should be aware that these results are very preliminary, as all these 

experiments, including real-time RT PCR, western blot, and activity assay, were done 

with only one colony for each polymorphic form.  Therefore, before making a 

conclusion, all of these assays should be repeated with at least three colonies for each 

polymorphism type in  future work.  

 

In conclusion, a total of 14 ACAT2 gene polymorphisms were identified in this study. 

The population study showed that the three polymorphisms were associated with CAD 

susceptibility in an ethnic-specific manner, and the statistical significance was not 

observed any more except for 734C>T in the Chinese after multiple test correction.  

The 43A>G and 734C>T were correlated with altered plasma lipid profiles in female 

normolipidemic Malays and Indians, but the significance did not exist after Bonferroni 

correction.  For the functional characterization of the two nsSNPs, preliminary results 

suggested that the Glu14Gly might be important to ACAT2 protein expression and/or 

stability, implying that the Glu14Gly might clinically be related with CAD and 

hypercholesterolemia.  However, further study including at least three colonies for 

each polymorphic form is needed to confirm this finding. 
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5. ASSOCIATION STUDY OF THREE LIPOPROTEIN LIPASE 

POLYMORPHISMS IN CHINESE AND ASIAN INDIANS 

 

 
5.1. Introduction 
 
LPL has a paradoxical role of being anti-atherogenic and pro-atherogenic, which is 

dependent on the tissues expressing LPL.  Plasma LPL confers decreased risk of 

atherosclerosis while arterial wall LPL is associated with increased risk (Clee et al., 

2000). 

 

Although there are many variants in the LPL gene, most of the functional LPL ones 

are rare and either or restricted to families with LPL deficiency or isolated in 

geographic regions (Brunzell, 1995; Santamarina-Fojo et al., 1991).  Three common 

genetic variants, the IVS6+1595C>T polymorphism in intron 6, the IVS8+484T>G 

polymorphism in intron 8, and the c.1342C>G in exon 9, are widely studied. Some 

results showed that these polymorphisms are associated with altered lipid profiles 

(Razzaghi et al., 2000; Morabia et al., 2003; Gerdes et al., 2005) and cardiovascular 

diseases susceptibility (Yang et al., 2004; Taylor et al., 2004).  However, 

inconsistent finding have been reported (Fidani et al., 2005; Spence et al., 2003; 

Brousseau et al., 2004).  These association studies were carried out mainly in 

Caucasian populations and a few studies have been done to examine the impact of 

these polymorphisms in the Asian population (Shimo-Nakanishi et al., 2001; Lee et 

al., 2004; McGladdery et al., 2001; Hall et al., 2000). To our knowledge, the 

combined effect of these three polymorphisms on CAD risk has not been investigated 

in any Asian population.   Thus in this study, the impact of the haplotypes formed 

by the three polymorphisms on CAD susceptibility in two Asian ethnic groups in 
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Singapore, namely the Indians and Chinese, was examined. The correlations of the 

individual polymorphisms with CAD risks and plasma lipid traits were evaluated in 

this population. 

 
 
5.2. Results 

5.2.1. Demographic characteristics of subjects 

The demographic characteristics of the CAD+ patients and the healthy (CAD-) 

controls are presented in Table 5-1.  The healthy controls were younger than the 

CAD+ patients and the smoking rate was significantly lower in the healthy group 

compared to the CAD+ group in both ethnic groups.  The Chinese CAD+ patients 

had higher BMI than the respective controls.  In terms of lipid parameters, 

anti-atherogenic lipid traits, such as HDL and apoA1, were significantly higher in 

healthy individuals than the CAD+ patients in both ethnic groups.  However, 

atherogenic TC and apoB were significantly lower in patients than controls in both 

ethnic groups. TGs were also significantly lower in the CAD+ patients compared with 

healthy controls in Indians.   All CAD+ patients were put on lipid lowering 

medications and advised to go on a restricted diet and adopt a healthier lifestyle. The 

lower levels of TC and apoB in the patients, along with lower TG values in Indian 

patients, were therefore mainly due to a regime of controlled diet and drug therapy.  
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Table 5-1.  Demographics of male Chinese and Indian subjects   

  Chinese   Indians  

Variables CAD- CAD+ P CAD- CAD+ P 

 n = 538 n = 899  n = 305 n = 302  

Age (years) 41±14 58±9 <0.0005 43±14 57±10 <0.0005 

BMI (kg/m2) 23.47±3.45 24.15±3.50 0.066† 24.51±3.93 24.68±3.24 0.576† 

Smokers* (%) 25.47 30.50 0.025 17.10 25.52 0.008 

TC (mg/dl) 224.26±50.63 202.70±55.21 <0.0005 228.50±46.05 198.88±50.86 <0.0005 

HDL-C (mg/dl) 48.72±12.68 33.96±11.67 <0.0005** 39.661±10.74 30.79±10.64 <0.0005)** 

LDL-C (mg/dl) 143.57±46.91 136.31±52.86 0.011 154.00±41.95 136.37±48.47 <0.0005 

TG (mg/dl) 175.16±173.30 165.59±95.75 0.568 189.56±97.07 132.64±89.37 0.003 

ApoA1 (mg/dl) 141.27±23.26 116.87±37.65 <0.0005 132.69±23.22 110.38±39.93 <0.0005 

ApoB (mg/dl) 111.98±31.35 104.91±31.80 <0.0005 129.23±31.49 106.15±30.66 <0.0005 

Lp(a) (mg/dl) 12.31±15.54 22.03±22.48 <0.0005 18.41±19.09 31.16±31.20 <0.0005 

*: Smokers form one category while non smokers and ex-smokers constitute another.  
Adjusted for the confounding effect of †age and**smoking. 
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5.2.2. Genotyping results of three LPL polymorphisms 

The genotyping gel pictures are shown in Figure 5-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-1. Genotyping of three polymorphisms. A: IVS8+484T>G. Lane 1,3,6, and 7: TT 
Lane 2 and 4: TG; Lane 5: GG. B: IVS6+1595C>T, Lane 1, 3, 6, and 7: CC; Lane 2 and 4: 
CT; Lane 5: TT. C: c.1342C>G. The PCR product contains two MnlI cutting sites, one of 
which is polymorphic site. Lane 2, 4, 5 and 7: CC; Lane 1 and 6: CG; Lane 3: GG. 
 
 

5.2.3. Distribution of three LPL polymorphisms 

All genotype frequencies were in accordance with HWE (P>0.05), with the exception 

of the IVS6+1595C>T polymorphism in the Indian controls (P=0.033). The test of 

HWE is very sensitive to rare homozygous genotype.  In this case, had there been 64 

instead of 66 individuals with the TT genotype, the distribution would have been 
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within Hardy Weinberg expectation.  Therefore this departure is attributed to chance 

rather than an indication of a violation of Hardy-Weinberg assumptions.   This is 

also supported by the fact that the other two LPL and three ACAT2 gene 

polymorphisms in the same subjects are well within Hardy-Weinberg expectations. 
 

Table 5-2 and 5-3 show the distribution of genotype and allele frequencies of the 

IVS6+1595C>T, IVS8+484T>G and c.1342C>G polymorphisms between the CAD+ 

patients and controls as well as between dyslipidemic and normolipidemic subgroups 

in the Chinese and Indians, respectively.  No significant difference in genotype and 

allele frequencies of the IVS6+1595C>T polymorphism was observed between the 

healthy and CAD+ subjects in both ethnic groups after Bonferroni correction.  The 

major T allele of the IVS8+484T>G polymorphism was significantly higher in the 

CAD+ patients compared to the healthy controls in the Chinese (OR = 1.34, P = 

0.0063) and in Indians (OR = 1.47, P = 0.0014).  However, no significant difference 

in genotype frequencies was found in both ethnic groups under dominant and 

recessive models.  The C allele frequency of the c.1342C>G polymorphism was 

higher in the CAD+ patient in both ethnic groups but the statistically significant 

difference was only observed in the Chinese (OR = 1.72, P = 0.0034).  Furthermore, 

mutant homozygotes were significantly higher in the CAD+ patients compared with 

the healthy controls.  Different distributions of allele frequencies of the 

IVS8+484T>G and IVS6+1595C>T polymorphisms were found between Chinese and 

Indians controls; however, there was no significant difference in the allele frequencies 

of the c.1342C>G between the two ethnic groups. When stratifying the healthy 

controls into dyslipidemic and normolipidemic subgroups and comparing the 

distribution of allele frequencies and genotypes, no significant association of allele 

and genotype frequencies with dyslipidemia was found in the two ethnic groups. In 

dyslipidemic subjects, the T allele was present more frequently in Chinese compared 

to Indians. Significant LD with Δ ranging from 0.34 to 0.60 was observed in all 

loci-pairs for both ethnic groups (Table 5-4). 
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5.2.4. Hapolotype distribution  

The distribution of haplotypes in the CAD+ patients and control groups is present in 

Table 5-5. All eight of the expected haplotypes were observed.   The most 

predominant haplotype is the CTC haplotype which constitutes more than 50% of the 

population followed by the TTC and TGC haplotypes in both ethnic groups. The 

frequency of the most prevalent haplotype, CTC, is also significantly and consistently 

elevated in the CAD+ patients than the healthy controls in both Chinese and Indians 

(P=0.0096 and P=0.0011, respectively).   The OR of having CAD for individuals 

with the CTC ‘risk’ haplotype vs. those without is 1.4 (95% CI 1.1 to 1.8) for the 

Chinese and 2.0 (95% CI 1.3 to 3.0) for the Indians.    The TGG haplotype is 

‘protective’ with a significantly lower frequency in the Chinese CAD+ patients 

compared to that of healthy controls.  However, this association is not significant in 

the Indians.  Instead, another ‘protective’ TGC haplotype has a significantly higher 

frequency in the healthy controls.   
 

The haplotype distribution was also compared between dyslipidemic and 

normolipidemic subgroups in the two ethnic groups (Table 5-6).  Although there 

were 8 expected haplotypes present before stratifying healthy controls into 

dyslipidemic and normolipidemic subgroups, only 6 and 7 haplotypes were reported 

in the two subgroups in the Chinese and in the Indians, respectively. It may be 

because that haplotypes with low frequency are not reported by the software. No 

significant association was observed between haplotype distribution and dyslipidemia 

in both ethnic groups.  
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Table 5-2. Distribution of LPL polymorphisms in male CAD+ patients and controls 
 

 Chinese Indians 

 CAD- CAD+ CAD- CAD+ 

CC 183 351 93 103 

CT 236 412 121 142 

TT 67 106 66 41 

IVS6+1595C>T 

 

 T freq 0.38† 0.36 0.45† 0.39 

T freq 0.030 0.041 

CC vs. CT+TT 0.323 0.484 P 

 CC+CT vs. TT 0.401 0.005 

      

TT 252 421 133 132 

TG 155 208 100 69 

GG 33 27 30 15 IVS8+484T>G 

 G freq 0.25† 0.20 0.30† 0.23 

G freq 0.0063 0.0014 

TT vs. TG+GG 0.0214 0.0209 P 

 TT+TG vs. GG 0.0158 0.096 

      

CC 246 474 131 171 

CG 68 86 46 38 

GG 6 0 3 3 c.1342C>G  

 G freq 0.12* 0.08* 0.14 0.10 

 G freq 0.0034 0.0902 

P CC vs CG+GG 0.019 0.064 

 CC+CG vs. GG 0.0011 0.840 
 
 

† and ‡:  Significant difference in allele frequencies between ethnic groups (P<0.05) 
*: Significant difference in allele frequencies between cases and controls.  
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Table 5-3. Distribution of LPL polymorphisms in dyslipidemic and normolipidemic 
subjects 
 

         Chinese Indians 

Polymorphism  Dys Normo Dys Normo 

CC 84 102 45 48 

CT 117 116 66 55 

TT 30 37 36 30 

IVS6+1595C>T  

 

 T freq 0.39* 0.38 0.47* 0.43 

      

TT 120 134 71 62 

TG 76 77 52 48 

GG 13 20 17 13 IVS8+484T>G 

 G freq 0.25 0.26 0.31 0.30 

      

CC 132 114 67 64 

CG 35 33 25 21 

GG 3 3 0 3 

c.1342C>G 

 

 G freq 0.12 0.13 0.14 0.15 
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Table 5-4.  Linkage disequilibria correlation coefficient (∆) between two loci in 
male Chinese and Indians  
 

 Chinese Indians 

 IVS6+ 

1595C>T 

IVS8+ 

484T>G 

c.1342C>G IVS6+ 

1595C>T 

IVS8+ 

484T>G8

c.1342C>G 

IVS6+ 

1595C>T 

- 0.57 0.53 - 0.46 0.55 

IVS8+ 

484T>G 

0.52 - 0.34 0.49 - 0.38 

c.1342C>G 0.44 0.60 - 0.37 0.49 - 

 

In each race, values for CAD patients are above the diagonal and values for controls are 
below the diagonal.  
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Table 5-5. Haplotype frequencies for three polymorphisms in the CAD+ patients and 
control subjects 
 

Chinese 

IVS6+1595C>T IVS8+484T>G c.1342C>G Overall CAD-  CAD+ Permutation P* 

C T C 0.606 0.632 0.563 0.0096 

C T G 0.004 0.003 0.005 0.713 

C G C 0.028 0.016 0.048 0.001 

C G G 0.005 0.004 0.005 0.779 

T T C 0.165 0.169 0.158 0.566 

T T G 0.005 0.003 0.008 0.202 

T G S 0.107 0.106 0.109 0.855 

T G G 0.080 0.067 0.104 0.017 

Indians 

IVS6+1595C>T IVS8+484T>G c.1342C>G Overall CAD-  CAD+ Permutation P* 

C T C 0.511 0.576 0.451 0.0011 

C T G 0.010 0.005 0.013 0.312 

C G C 0.051 0.043 0.060 0.319 

C G G 0.004 0.008 0.000006 0.110 

T T S 0.193 0.181 0.205 0.425 

T T G 0.011 0.008 0.015 0.415 

T G S 0.113 0.087 0.136 0.042 

T G G 0.107 0.092 0.121 0.231 
 
 

* P values were obtained from Z-tests to compare haplotype frequencies between the case and 
control groups. 
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Table 5-6. Haplotype frequencies for three polymorphisms in dyslipidemic and 
normolipidemic subjects 
 

Chinese 

IVS6+1595C>T IVS8+484T>G c.1342C>G Overall Dys  Normo Permutation P* 

C T C 0.564 0.586 0.536 0.2496 

C T C 0.052 0.037 0.071 0.088 

C G G 0.005 0.005 0.005 0.955 

T T C 0.163 0.160 0.168 0.800 

T G C 0.102 0.106 0.096 0.692 

T G G 0.114 0.105 0.124 0.508 

Indians 

IVS6+1595C>T IVS8+483T>G c.1342C>G Overall Dys  Normo Permutation P* 

C T C 0.457 0.443 0.480 0.517 

C T G 0.018 0.007 0.022 0.264 

C G C 0.057 0.074 0.038 0.167 

T T C 0.201 0.229 0.162 0.137 

T G C 0.135 0.112 0.160 0.209 

T G G 0.132 0.135 0.128 0.861 

T T G 0.00000 6.15E-1 9.76E-3 0.208 
 
 

 

5.2.5. Association with plasma lipid levels  

ANOVA was carried out to examine the correlation of these LPL polymorphisms with 

lipid profiles using age, BMI and smoking as covariates.  These results are shown in 

Table 5-7 and Table 5-8.   In Chinese, a significant association was found between 

the IVS6+1595C>T polymorphism and plasma HDL level (P = 0.003), with the minor 

T allele being associated with elevated HDL, after Bonferroni correction.  The same 

trend of increased HDL level was also observed in c.1342C>G carriers but did not 

attain statistical significance, which is most probably due to the small sample size of 

mutant homozygotes for c.1342C>G.  
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When the healthy controls were classified into dyslipidemic and normolipidemic 

subgroups, the same effect of IVS6+1595C>T on HDL was still observed in 

normolipidemic subjects but not in dyslipidemic subjects in Chinese.  No significant 

effect was seen in the Indians.     
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Table 5-7. Genotypic lipid levels (M ean ± SD) of three polymorphisms in the healthy Chinese males  

  n TC(mg/dl) LDLC(mg/dl) HDLC(mg/dl) ApoA1(mg/dl) ApoB(mg/dl) lnTG* TG** lnLp(a)* Lp(a)** 

 CC 183 220.22±54.03 137.61±48.34 47.08±10.16† 139.47±24.89 110.97±33.18 5.00±0.62 195.89 2.15±0.92 8.58 

IVS6+1595C>T CT 236 231.65±49.36 144.02±46.29 48.41±10.86† 142.43±21.68 110.69±30.50 4.95±0.54 166.34 2.17±0.89 8.76 

 TT 67 224.67±47.38 142.22±43.00 51.58±11.74† 145.13±19.45 114.81±29.07 4.96±0.51 162.52 2.24±0.89 9.39 

            

 TT 252 221.42±52.74 140.41±49.25 48.42±12.54 140.02±22.42 112.44±32.21 4.99±0.53 173.91 2.18±0.89 8.85 

IVS6+483C>T TG 155 227.57±48.34 147.52±46.01 50.65±12.04 145.36±22.39 114.16±31.11 4.94±0.53 161.25 2.25±0.97 9.49 

 GG 33 218.20±52.46 
 

139.82±48.78 48.84±12.47 141.90±22.28 110.45±28.33 4.88±0.52 148.27 1.99±0.64 7.32 

            

 CC 246 230.04±52.95 155.16±49.92 46.62±10.57 139.42±21.49 117.82±31.59 4.97±0.52 169.01 2.15±1.01 8.58 

c.1342C>G  CG 68 226.70±42.56 147.70±42.37 47.41±11.15 146.05±19.53 110.65±30.27 4.98±0.54 169.88 2.03±1.01 7.61 

 GG 6 223.00±43.94 132.00±52.76 51.40±10.62 145.60±31.17 108.50±23.74 5.05±0.48 171.50 2.14±1.08 8.50 

*: lnTG and lnLp(a): natural logarithmic transformed TG and Lp(a), respectively.   
**: TG and Lp(a) levels are presented in geometric means.   
† Significant difference (P=0.003).   
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Table 5-8. Genotypic lipid levels (M ean ± SD) of three polymorphisms in the healthy normolipidemic Chinese males 
 
 

  n TC(mM) LDLC(mM) HDLC(mM) ApoA1(mg/dl) ApoB(mg/dl) lnTG* TG** lnLp(a)* Lp(a)** 

 CC 100 4.87±0.76 

 

3.24±0.79 

 

1.26 0.24_ 

 

137.35±23.64 

 

95.56±25.31 

 

0.20±0.37 1.22 2.19±0.96 

 

8.93 

IVS6+1595C>T CT 116 4.94±0.76 3.31±0.78 1.30 0.28_ 141.50±20.20 92.62±21.02 0.16±0.39 1.17 2.11±0.81 8.24 

 TT 37 5.04±0.91 3.30±0.97 1.40 0.27_ 146.56±18.97 98.82±24.16 0.19±0.37 1.21 1.93±0.77 6.89 

            

 TT 132 4.88±0.77 3.24±0.82 1.28±0.26 139.88±20.37 95.46±22.51 0.21±0.35 1.23 2.18±0.86 8.85 

IVS8+484T>G TG 77 5.03±0.79 3.35±0.80 1.30±0.27 142.32±22.25 97.14±22.79 0.17±0.41 1.19 2.11±0.97 8.25 

 GG 20 4.98±0.96 3.33±1.08 1.31±0.22 141.55±15.50 100.15±23.02 0.16±0.44 1.17 1.95±0.72 7.03 

            

 CC 114 5.07±0.75 3.58±0.71 1.24±0.29 138.57±21.07 99.41±22.94 0.20±0.38 1.22 1.94±0.98 6.96 

c.1342C>G CG 33 5.01±0.69 3.37±0.65 1.28±0.38 147.47±19.68 93.60±20.16 0.20±0.37 1.22 1.82±1.06 6.17 

 GG 3 5.84±0.14 4.24±0.4 1.29±0.30 129.00±16.09 119.00±21.00 0.40±0.24 1.49 2.86±0.78 17.46 

 
 
 

*: lnTG and lnLp(a): natural logarithmic transformed TG and Lp(a), respectively. 
**: TG and Lp(a) levels are presented in geometric means. 
†: Significant difference in HDL levels between different IVS6+1595C>T genotypes (P=0.008) 
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5.3. Discussion 
 
We have characterized the distribution and association of three LPL polymorphisms with 

the respective plasma lipid profiles, CAD susceptibility, and the severity of CAD in male 

Chinese and Asian Indians living in Singapore.   The major outcome of this study is the 

finding of different distribution of allele and haplotype frequencies of these three 

polymorphisms between the CAD+ patients and controls, suggesting that these 

polymorphisms may confer some effects on CAD risks in both ethnic groups.  No 

significant difference was found in allele and haplotype frequency distribution between 

normolipidemic and dyslipidemic subgroups.  Regarding the effect on lipid profiles by 

individual polymorphisms, it was found that, in the Chinese, the IVS6+1595C>T 

polymorphism carriers had significantly higher HDL-cholesterol, and this increase in 

HDL-cholesterol level was also observed in the c.1342C>G polymorphism carriers but 

not reaching statistically significant level. No association was found between the 

IVS8+484T>C polymorphism and lipid levels.   In addition, these three polymorphisms 

were found to be in strong LD with each other. 

Our results showed that the three polymorphisms are very common in the Chinese and 

Indians living in Singapore.   Among them, the IVS6+1595C>T polymorphism is the 

most prevalent, followed by the IVS8+484T>G and c.1342C>G.   The C allele 

frequency of the c.1342C>G polymorphism (0.12) in the Chinese is in agreement with a 

previous study in Singapore (Lee et al., 2004). However, its higher frequency in the 

Indians relative to the reported frequency can be explained as follow. It was not stated 

whether all of their subjects were healthy. If CAD+ subjects had been included, then the 

difference would be reasonable, as here generally the CAD+ subjects had lower allele 

frequency than healthy controls (Table 5-2). 
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The case-control association analysis based on the distribution of allele frequencies 

indicated that the rare G allele of IVS8+484T>G was associated with decreased CAD risk 

in both ethnic groups, while the rare T allele of IVS6+1595C>T and the rare G allele of 

c.1342C>G was associated with lower CAD risk in Chinese and Indian, respectively.   

As such, these polymorphisms may have anti-atherogenic effects or may be in LD with 

another functional site.   

 

The c.1342C>G polymorphism results in a truncated LPL protein.   It had been 

demonstrated that the c.1342C>G polymorphism can increase LPL enzymatic activity 

and non-enzymatic activity, which then enhance TG-rich lipoproteins conversion and 

LDL removal (Nierman et al., 2005). These might contribute to the decreased risk of 

cardiovascular diseases. In contrast, the IVS6+1595C>T and IVS8+484T>G 

polymorphisms are sequence variants in non-coding region.   Thus, it has been 

proposed that the effect of the IVS8+484T>G and IVS6+1595C>T polymorphisms on 

CAD risk was due to their LD with the functional variant, c.1342C>G.  However, the 

effect of c.1342C>G could not explain all the IVS8+484T>G- and 

IVS6+1595C>T-related association.   For example, in single-locus analysis, both 

common alleles of these two polymorphisms were correlated with higher CAD risk while 

no association was seen between the c.1342C>G and CAD risk in Indians.  In haplotype 

analysis, the effect of IVS8+484T>G was more apparent, which was independent of 

c.1342C>G.   

 
In order to examine the combined influence of these three polymorphisms, the haplotype 

was constructed and the haplotype frequencies were compared between cases and 
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controls. It was suggested that the most common CTC haplotype was consistently 

atherogenic in Chinese and Indians, while the TGG and CGC haplotypes were associated 

with lowered CAD risk in the Chinese and the TGC haplotype was protective from CAD 

in the Indians.   The opposite effects of the CTC and CGC haplotypes on CAD 

susceptibility in the Chinese suggests that the anti-atherogenic effect of G allele of the 

IVS8+484T>G polymorphism is independent of the c.1342C>G polymorphism.   In 

addition, in the Indians, the CTC haplotype was pro-atherogenic while the TGC 

haplotype was anti-atherogenic, although the same C allele was present in the c.1342C>G 

polymorphic site.   Furthermore, it is known that the IVS6+1595C>T polymorphism is 

located in intron 6 and no functional element has been identified thus far in this intron.  

On the other hand, though the IVS8+484T>G polymorphism is within intronic region, a 

regulatory element encompassing the IVS8+484T>G site was reported to be important 

for LPL transcriptional activity (Enerback et al., 1992).   Taken together, the 

IVS8+484T>G polymorphism may be a functional site by itself, which is consistent with 

the Razzaghi et al.’s studies (2000). 

 
We also found that the T allele of IVS6+1595C>T increased plasma HDL-cholesterol in 

Chinese and this effect was probably due to its LD with a functional site, such as 

c.1342C>G.   A similar increasing trend in HDL level was also found in homozygous 

GG carriers of the c.1342C>G, but it is not statistically significant. The lack of statistical 

significance may be due to too few individuals with the GG genotype, as the higher HDL 

level in G allele carriers was reported in a previous study with large sample size in 

Singapore (Lee et al. 2000).   In addition, although this study showed a significant 

effect of T allele of IVS6+1595C>T on lipid profiles in the Chinese, this polymorphism 
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was not associated with CAD risk. One possible reason is that its impact on HDL level is 

not sufficiently strong to cause any significant difference in CAD susceptibility.  

 
We did not observe any significant differences in allele and haplotype frequencies 

between normolipidemic and dyslipidemic subgroups. As such, these polymorphisms 

may influence atherosclerosis susceptibility through other mechanisms rather than 

through altering lipid profiles.  Due to the dual role of LPL in atherosclerosis, an 

independent association of these polymorphisms with CAD risk is not unexpected despite 

the lack of significant association with circulating lipid levels.   Furthermore, many 

genetic and environmental factors have been suggested to modulate the effects of LPL 

polymorphisms on CAD risk and lipid profiles, such as smoking, practical activities, age, 

race, sex, and oestrogen (Lee et al., 2004; Senti et al., 2001; Holmer et al., 2000; 

Hallman et al., 2001).  Thus, it is also possible that the interaction between LPL and 

these factors might have masked the small influence of LPL on lipid traits. 

 
In conclusion, it was shown that the most prevalent CTC haplotype of the three LPL 

polymorphisms, IVS6+1595C>T, IVS8+484T>G and c.1342C>G, was consistently 

associated with increased CAD susceptibility in male Chinese and Indians living in 

Singapore. The finding is that the rare alleles of the three individual polymorphisms 

decreased CAD risk in male Chinese and/or Indians and the protection against CAD is 

independent of any effects on lipid profiles.   

 



 137

6. REFERENCES 

 
1) Accad M, Smith SJ, Newland DL, Sanan DA, King LE Jr, Linton MF, Fazio S, Farese 

RV Jr. 2000. Massive xanthomatosis and altered composition of atherosclerotic 

lesions in hyperlipidemic mice lacking acyl CoA: cholesterol acyltransferase 1. J Clin 

Invest. 105(6):711-719. 

2) Adkins RM. 2004. Comparison of the accuracy of methods of computational 

haplotype inference using a large empirical dataset. BMC Genet. 5:22. 

3) Ahn YI, Kamboh MI, Hamman RF, Cole SA, Ferrell RE. 1993. Two DNA 

polymorphisms in the lipoprotein lipase gene and their associations with factors 

related to cardiovascular disease. J Lipid Res. 34(3):421-428. 

4) Allain CC, Poon LS, Chan C, Richmond W, and Fu PC. 1974. Enzymatic 

determination of total serum cholesterol. Clin Chem. 20(4): 470-475. 

5) Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, 

Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, 

Groop L, Lander ES. 2000. The common PPARgamma Pro12Ala polymorphism is 

associated with decreased risk of type 2 diabetes. Nat Genet. 26(1):76-80. 

6) Anderson RA, Joyce C, Davis M, Reagan JW, Clark M, Sheness GS, Rudel LL. 1998. 

Identification of a form of acyl-CoA: cholesterol acyltransferase specific to liver and 

intestine in nonhuman primates.   J Biol Chem.  273:26747-26754. 

7) Anitschkow N and Chalatow S. 1913. Classics in arteriosclerosis research: On 

experimental cholesterin steatosis and its significance in the origin of some 

pathological processes. Arteriosclerosis. 1983;3(2):178-182. 



 138

8) Arai H, Yamamoto A, Matsuzawa Y, Saito Y, Yamada N, Oikawa S, Mabuchi H, 

Teramoto T, Sasaki J, Nakaya N, Itakura H, Ishikawa Y, Ouchi Y, Horibe H, Egashira 

T, Hattori H, Shirahashi N, Kita T. 2005.  Polymorphisms in Four Genes Related to 

Triglyceride and HDL-cholesterol Levels in the General Japanese Population in 2000. 

J Atheroscler Thromb.  12(5):240-250. 

9) Arca M, Campagna F, Montali A, Barilla F, Mangieri E, Tanzilli G, Seccareccia F, 

Campa PP, Ricci G, Pannitteri G. 2000. The common mutations in the lipoprotein 

lipase gene in Italy: effects on plasma lipids and angiographically assessed coronary 

atherosclerosis.  Clin Genet.  58(5):369-374. 

10) Ardlie KG, Kruglyak L, Seielstad M. 2002. Patterns of linkage disequilibrium in the 

human genome. Nat Rev Genet. 3(4):299-309. 

11) Assmann G, Cullen P, Schulte H. 2002. Simple scoring scheme for calculating the 

risk of acute coronary events based on the 10-year follow-up of the prospective 

cardiovascular Munster (PROCAM) study. Circulation. 22; 105(3):310-315.  

12) Assmann G, Schulte H, von Eckardstein A. 1996. Hypertriglyceridemia and elevated 

lipoprotein(a) are risk factors for major coronary events in middle-aged men. Am J 

Cardiol. 77(14):1179-1184.  

13) Babaev VR, Fazio S, Gleaves LA, Carter KJ, Semenkovich CF, Linton MF. 1999. 

Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in 

vivo.  J Clin Invest.  103: 1697–1705. 

14)  Babaev VR, Patel MB, Semenkovich CF, Fazio S, Linton MF. 2000.  Macrophage 

lipoprotein lipase promotes foam cell formation and atherosclerosis in low density 

lipoprotein receptor-deficient mice.  J Biol Chem.  275: 26293–26299. 



 139

15) Babirak SP, Brown BG, Brunzell JD. 1992. Familial combined hyperlipidemia and 

abnormal lipoprotein lipase. Arterioscler Thromb. 12(10):1176-1183. 

16) Balasubramanian S, Xia Y, Freinkman E, Gerstein M. 2005. Sequence variation in 

G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic 

Acids Res. 33(5):1710-1721. 

17) Balding DJ. 2006. A tutorial on statistical methods for population association studies. 

Nat Rev Genet. 7(10):781-791.  

18) Ballantyne CM. 2005. Rationale for targeting multiple lipid pathways for optimal 

cardiovascular risk reduction. Am J Cardiol. 96(9A):14K-19K; 

19) Balogh K, Patocs A, Majnik J, Racz K, Hunyady L. 2004. Genetic screening methods 

for the detection of mutations responsible for multiple endocrine neoplasia type 1. 

Mol Genet Metab. 83(1-2):74-81. 

20) Benlian P, De Gennes JL, Foubert L, Zhang H, Gagne SE, Hayden M. 1996. 

Premature atherosclerosis in patients with familial chylomicronemia caused by 

mutations in the lipoprotein lipase gene. N Engl J Med. 335(12):848-854. 

21) Bonow RO, Smaha LA, Smith SC Jr, Mensah GA, Lenfant C. 2002. World Heart Day 

2002: the international burden of cardiovascular disease: responding to the emerging 

global epidemic. Circulation. 106(13):1602-1605. 

22) Bradford M. 1976. "A Rapid and Sensitive Method for the Quantitation of Microgram 

Quantities of Protein Utilizing the Principle of Protein-Dye Binding" Anal. Biochem. 

72:248-254.  

23) Breslow JL. 2000. Genetics of lipoprotein abnormalities associated with coronary 

artery disease susceptibility. Annu Rev Genet. 34:233-254. 



 140

24) Brousseau ME, Goldkamp AL, Collins D, Demissie S, Connolly AC, Cupples LA, 

Ordovas JM, Bloomfield HE, Robins SJ, Schaefer EJ. 2004.  Polymorphisms in the 

gene encoding lipoprotein lipase in men with low HDL-C and coronary heart disease: 

the Veterans Affairs HDL Intervention Trial.  J Lipid Res.  45(10):1885-1891. 

25) Brown MS, Goldstein JL. 1986. A receptor-mediated pathway for cholesterol 

homeostasis. Science. 232: 34–47. 

26) Brown MS, Goldstein JL. 1997. The SREBP pathway: regulation of cholesterol 

metabolism by proteolysis of a membrane-bound transcription factor. Cell. 

89(3):331-340.  

27) Goldstein JL, Brown MS. 2001. Molecular medicine. The cholesterol quartet. Science. 

292(5520):1310-1302. 

28) Brunzell JD. 1995. Familial lipoprotein lipase deficiency and other causes of the 

chylomicronemia syndrome. In : the Metabolic Basis of Inherited Disease.  7th Ed.   

CR Schriver, AL Beander, WS Sly, Valle D, Editors. McGraw-Hill, New York, pp.  

1913-1932. 

29) Buhman KK, Accad M, Novak S, Choi RS, Wong JS, Hamilton RL, Turley S, Farese 

RV Jr. 2000. Resistance to diet-induced hypercholesterolemia and gallstone 

formation in ACAT2-deficient mice.   Nat Med 6:1341-1347. 

30) Cadigan, K.M., Heider, J.G., Chang, T.Y. 1988. Isolation and characterization of 

Chinese hamster ovary cell mutants deficient in acyl-coenzyme A: cholesterol 

acyltransferase activity. J. Biol. Chem. 263: 274-282. 

31) Cai M, Yin W, Li Q, Liao D, Tsutsumi K, Hou H, Liu Y, Zhang C, Li J, Wang Z, 

Xiao J. 2006. Effects of NO-1886 on inflammation-associated cytokines in 



 141

high-fat/high-sucrose/high-cholesterol diet-fed miniature pigs. Eur J Pharmacol. 

540(1-3):139-146.  

32) Cases S, Novak S, Zheng YW, Myers HM, Lear SR, Sande E, Welch CB, Lusis AJ, 

Spencer TA, Krause BR, Erickson SK, Farese RV Jr. 1998. ACAT-2, a second 

mammalian acyl-CoA: cholesterol acyltransferase.   Its cloning, expression, and 

characterization.   J Biol Chem.  273:26755-26764. 

33) Chamberlain JC, Thorn JA, Morgan R, Bishop J, Rees A, Galton DJ. 1991. Genetic 

variation at the lipoprotein lipase gene associates with coronary atherosclerosis.   

Adv Expt Med Biol.  285:275-281.  

34) Chamberlain JC, Thorn JA, Oka K, Galton DJ, Stocks J. 1989. DNA polymorphisms 

at the lipoprotein lipase gene: associations in normal and hypertriglyceridaemic 

subjects. Atherosclerosis. 79(1):85-91. 

35) Chang CC, Sakashita N, Ornvold K, Lee O, Chang ET, Dong R, Lin S, Lee CY, 

Strom SC, Kashyap R, Fung JJ, Farese RV Jr, Patoiseau JF, Delhon A, Chang. 2000. 

Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver 

and small intestine.   J Biol Chem 275:28083-28092. 

36) Chang TY, Chang CC, Cheng D. 1997. Acyl-coenzyme A:cholesterol acyltransferase. 

Annu Rev Biochem. 66:613-638.  

37) Chang, C.C., Chang, T.Y. 1986. Cycloheximide sensitivity in regulation of acyl 

coenzyme A:cholesterol acyltransferase activity in Chinese hamster ovary cells. 2. 

Effect of sterol endogenously synthesized. Biochemistry. 25: 1700-1706. 

38) Chen W, Srinivasan SR, Elkasabany A, Ellsworth DL, Boerwinkle E, Berenson GS. 

2001.  Influence of lipoprotein lipase serine 447 stop polymorphism on tracking of 



 142

triglycerides and HDL cholesterol from childhood to adulthood and familial risk of 

coronary artery disease: the Bogalusa heart study.  Atherosclerosis. 159(2):367-373.   

39) Clayton D, McKeigue PM. 2001. Epidemiological methods for studying genes and 

environmental factors in complex diseases. Lancet. 358(9290):1356-1360. 

40) Clee SM, Bissada N, Miao F, Miao L, Marais AD, Henderson HE, Steures P, 

McManus J, McManus B, LeBoeuf RC, et al. 2000.  Plasma and vessel wall 

lipoprotein lipase have different roles in atherosclerosis.  J Lipid Res.  41: 521–531. 

41) Clee SM, Loubser O, Collins J, Kastelein JJ, Hayden MR. 2001. The LPL S447X 

cSNP is associated with decreased blood pressure and plasma triglycerides, and 

reduced risk of coronary artery disease. Clin Genet. 60(4):293-300. 

42) Collins FS, Guyer MS, Charkravarti A. 1997. Variations on a theme: cataloging 

human DNA sequence variation. Science. 278(5343):1580-1581. 

43) Collins T, Cybulsky MI. 2001. NF-kappaB: pivotal mediator or innocent bystander in 

atherogenesis? J Clin Invest. 107(3):255-264. 

44) Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, Pritchard JK. 

2006. A worldwide survey of haplotype variation and linkage disequilibrium in the 

human genome. Nat Genet. 38(11):1251-1260.  

45) Corella D, Guillen M, Saiz C, Portoles O, Sabater A, Folch J, Ordovas JM. 2002. 

Associations of LPL and APOC3 gene polymorphisms on plasma lipids in a 

Mediterranean population: interaction with tobacco smoking and the APOE locus. J 

Lipid Res. 43(3):416-427. 

46) Crawford DC, Akey DT, Nickerson DA. 2005. The patterns of natural variation in 

human genes. Annu Rev Genomics Hum Genet. 6:287-312. 



 143

47) Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos 

JC, Connelly PW, Milstone DS. 2001. A major role for VCAM-1, but not ICAM-1, in 

early atherosclerosis. J Clin Invest. 107(10):1255-1262.  

48) de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D. 2005. 

Efficiency and power in genetic association studies. Nat Genet. 37(11):1217-1223 

49) Donfack J, Buchinsky FJ, Post JC, Ehrlich GD. 2006. Human susceptibility to viral 

infection: the search for HIV-protective alleles among Africans by means of 

genome-wide studies. AIDS Res Hum Retroviruses. 22(10):925-930.  

50) Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, 

Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, 

Datta LW, Kistner EO, Schumm LP, Lee A, Gregersen PK, Barmada MM, Rotter JI, 

Nicolae DL, Cho JH. 2006. A Genome-Wide Association Study Identifies IL23R as 

an Inflammatory Bowel Disease Gene. Science.  

51) Duman BS, Turkoglu C, Akpinar B, Guden M, Vertii A, Dak E, Cagatay P, Gunay D, 

Buyukdevrim AS. 2004. Lipoprotein lipase gene polymorphism and lipid profile in 

coronary artery disease. Arch Pathol Lab Med. 128(8):869-874. 

52) Enerback S, Gimble JM. 1993. Lipoprotein lipase gene expression: physiological 

regulators at the transcriptional and post-transcriptional level. Biochim Biophys Acta. 

1169(2):107-125. 

53) Enerback S, Ohlsson BG, Samuelsson L, Bjursell G. 1992.  Characterization of the 

human lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, 

LP-alpha and LP-beta, of importance for the differentiation-linked induction of the 

LPL gene during adipogenesis.  Mol Cell Biol.  12(10):4622-4633. 



 144

54) Fazio S, Major AS, Swift LL, Gleaves LA, Accad M, Linton MF, Farese RV Jr. 2001. 

Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. 

J Clin Invest. 107(2):163-171. 

55) Fidani L, Hatzitolios AI, Goulas A, Savopoulos C, Basayannis C, Kotsis A. 2005. 

Cholesteryl ester transfer protein TaqI B and lipoprotein lipase Ser447Ter gene 

polymorphisms are not associated with ischaemic stroke in Greek patients.  Neurosci 

Lett.  384(1-2):102-105. 

56) Fisher E, Scharnagl H, Hoffmann MM, Kusterer K, Wittmann D, Wieland H, Gross 

W, Marz W. 1999. Mutations in the apolipoprotein (apo) B-100 receptor-binding 

region: detection of apo B-100 (Arg3500-->Trp) associated with two new haplotypes 

and evidence that apo B-100 (Glu3405-->Gln) diminishes receptor-mediated uptake 

of LDL. Clin Chem. 45(7):1026-1038. 

57) Friedewald WT, Levy RI, Fredrickson DS. 1972.  Estimation of low density 

lipoprotein cholesterol levels in plasma without use of the preparative 

ultracentrification.  Clin Chem 18: 499-502 

58) Frikke-Schmidt R, Sing CF, Nordestgaard BG, Steffensen R, Tybjaerg-Hansen A. 

2007. Subsets of SNPs define rare genotype classes that predict ischemic heart disease. 

Hum Genet. 120(6):865-877 

59) Fruchart JC, Nierman MC, Stroes ES, Kastelein JJ, Duriez P. 2004. New risk factors 

for atherosclerosis and patient risk assessment. Circulation. 109(23 Suppl 1):III15-19.  

60) Fung HC, Scholz S, Matarin M, Simon-Sanchez J, Hernandez D, Britton A, Gibbs JR, 

Langefeld C, Stiegert ML, Schymick J, Okun MS, Mandel RJ, Fernandez HH, Foote 

KD, Rodriguez RL, Peckham E, De Vrieze FW, Gwinn-Hardy K, Hardy JA, 



 145

Singleton A. 2006. Genome-wide genotyping in Parkinson's disease and 

neurologically normal controls: first stage analysis and public release of data. Lancet 

Neurol. 5(11):911-916. 

61) Galton DJ, Mattu RK, Cavanna J. 1994.  Polymorphisms of the lipoprotein lipase 

gene and premature atherosclerosis.   J Intern Med 236 (suppl.736):63-68. 

62) Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, Calandra S, Bertolini S, 

Cossu F, Grishin N, Barnes R, Cohen JC, Hobbs HH. 2001. Autosomal recessive 

hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. 

Science. 292(5520):1394-1398. 

63) Gerdes C, Gerdes LU, Hansen PS, Faergeman O. 1995.   Polymorphisms in the 

lipoprotein lipase gene and their associations with plasma lipid concentrations in 

40-year-old Danish men.   Circulation 92:1765-1769. 

64) Gilbert B, Rouis M, Griglio S, de Lumley L, Laplaud P. 2001. Lipoprotein lipase 

(LPL) deficiency: a new patient homozygote for the preponderant mutation 

Gly188Glu in the human LPL gene and review of reported mutations: 75 % are 

clustered in exons 5 and 6. Ann Genet. 44(1):25-32.  

65) Goldberg IJ, Merkel M. 2001. Lipoprotein lipase: physiology, biochemistry, and 

molecular biology. Front Biosci. 6:D388-405. 

66) Gonzalez MA, Selwyn AP. 2003. Endothelial function, inflammation, and prognosis 

in cardiovascular disease. Am J Med. 115 Suppl 8A:99S-106S. 

67) Gould AL, Rossouw JE, Santanello NC, Heyse JF, Furberg CD. 1998. Cholesterol 

reduction yields clinical benefit: impact of statin trials. Circulation. 97(10):946-952. 



 146

68) Grantham R. 1974. Amino acid difference formula to help explain protein evolution. 

Science. 185(4154):862-864. 

69) Greenspan P, Fowler SD. 1985a. Spectrofluorometric studies of the lipid probe, 

Nilered. J Lipid Res. 26(7):781-789. 

70) Greenspan P, Mayer EP, Fowler SD. 1985b. Nilered: a selective fluorescent stain for 

intracellular lipid droplets. J Cell Biol. 100(3):965-973. 

71) Groenemeijer BE, Hallman MD, Reymer PW, Gagne E, Kuivenhoven JA, Bruin T, 

Jansen H, Lie KI, Bruschke AV, Boerwinkle E, Hayden MR, Kastelein JJ. 1997. 

Genetic variant showing a positive interaction with beta-blocking agents with a 

beneficial influence on lipoprotein lipase activity, HDL cholesterol, and triglyceride 

levels in coronary artery disease patients.  The Ser447-stop substitution in the 

lipoprotein lipase gene.  REGRESS Study Group.  Circulation. 95(12):2628-2635. 

72) Gross E, Arnold N, Goette J, Schwarz-Boeger U, Kiechle M. 1999. A comparison of 

BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC. Hum Genet. 

105(1-2):72-78. 

73) Guo Z, Cromley D, Billheimer JT, Sturley SL. 2001. Identification of potential 

substrate-binding sites in yeast and human acyl-CoA sterol acyltransferases by 

mutagenesis of conserved sequences. J Lipid Res. 42(8):1282-1291. 

74) Hall S, Talmud PJ, Cook DG, Wicks PD, Rothwell MJ, Strazzullo P, Sagnella GA, 

Cappuccio FP. 2000. Frequency and allelic association of common variants in the 

lipoprotein lipase gene in different ethnic groups: the Wandsworth Heart and Stroke 

Study. Genet Epidemiol. 18(3):203-216. 



 147

75) Hallman DM, Groenemeijer BE, Jukema JW, Boerwinkle E, Kastelein JJ. 1999. 

Analysis of lipoprotein lipase haplotypes reveals associations not apparent from 

analysis of the constituent loci.  Ann Hum Genet.  63(Pt 6):499-510. 

76) Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T. 2002. Gene-based SNP 

discovery as part of the Japanese Millennium Genome Project: identification of 

190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J 

Hum Genet. 47(11):605-610. 

77) He, X., Lu, Y., Saha, N., Yang, H., Heng, C.K. 2005. Acyl-CoA: cholesterol 

acyltransferase-2 gene polymorphisms and their association with plasma lipids and 

coronary artery disease risks. Hum Genet. 30: 1-11. 

78) Heart Disease and Stroke Statistics – AHA 2005 Update 

79) Heizmann C, Kirchgessner T, Kwiterovich PO, Ladias JA, Derby C, Antonarakis SE, 

Lusis AJ. 1991.  DNA polymorphism haplotypes of the human lipoprotein lipase 

gene in possible association with high density lipoprotein levels.   Hum Genet 

86:578-584. 

80) Heimerl S, Langmann T, Moehle C, Mauerer R, Dean M, Beil FU, von Bergmann K, 

Schmitz G. 2002. Mutations in the human ATP-binding cassette transporters ABCG5 

and ABCG8 in sitosterolemia. Hum Mutat. 20(2):151. 

81) Heng CK, Saha N, Low PS. 1999. Evolution of the apolipoprotein B gene and 

coronary artery disease: a study in low and high risk Asians. Ann Hum Genet. 63(Pt 

1):45-62.  

82) Henikoff S, Henikoff JG. 1992. Amino acid substitution matrices from protein blocks. 

Proc Natl Acad Sci U S A. 89(22):10915-10919. 



 148

83) Hide WA, Chan L, Li WH. 1992. Structure and evolution of the lipase superfamily. J 

Lipid Res. 33(2):167-178. 

84) Hill WG, Robertson A. 1968. Linkage disequilibrium in finite populations. Theor 

Appl Genet 38:226-231. 

85) Hirakawa M, Tanaka T, Hashimoto Y, Kuroda M, Takagi T, Nakamura Y. 2002. 

JSNP: a database of common gene variations in the Japanese population. Nucleic 

Acids Res. 30(1):158-162. 

86) Hirschhorn JN, Daly MJ. 2005. Genome-wide association studies for common 

diseases and complex traits. Nat Rev Genet. 6(2):95-108.  

87) Hokanson JE, Austin MA. 1996. Plasma triglyceride level is a risk factor for 

cardiovascular disease independent of high-density lipoprotein cholesterol level: a 

meta-analysis of population-based prospective studies. J Cardiovasc Risk. 

3(2):213-219.  

88) Holmer SR, Hengstenberg C, Mayer B, Doring A, Lowel H, Engel S, Hense HW, 

Wolf M, Klein G, Riegger GA, Schunkert H. 2000.  Lipoprotein lipase gene 

polymorphism, cholesterol subfractions and myocardial infarction in large samples of 

the general population.  Cardiovasc Res.  47(4):806-812. 

89) Hughes K, Lun KC, Yeo PP .1990a. CardiovascularCardiovascular diseases in 

Chinese, Malays, and Indians in Singapore. I. Differences in mortality. J Epidemiol 

Community Health 44:24-28. 

90) Hughes K, Yeo PP, Lun KC, Thai AC, Sothy SP, Wang KW, Cheah JS, Phoon WO, 

Lim P .1990b. Cardiovascular diseases in Chinese, Malays, and Indians in Singapore. 

II. Differences in risk factor levels. J Epidemiol Community Health 44:29-35. 



 149

91) Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk 

C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, 

Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. 

2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's 

disease. Nature. 411(6837):599-603. 

92) Humphries SE, Nicaud V, Margalef J, Tiret L, Talmud PJ. 1998. Lipoprotein lipase 

gene variation is associated with a paternal history of premature coronary artery 

disease and fasting and postprandial plasma triglycerides: the European 

Atherosclerosis Research Study (EARS). Arterioscler Thromb Vasc Biol.  

18(4):526-534. 

93) Huse DM, Song X, Ozminkowski RJ, Maguire J, Williams SA, Borok GM, 

McDonough K. 2006. Impact of rosuvastatin use on costs and outcomes in patients at 

high risk for cardiovascular disease in US managed care and medicare populations: A 

data analysis. Clin Ther. 28(9):1425-1442.  

94) Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. 1993. 

Hypercholesterolemia in low density lipoprotein receptor knockout mice and its 

reversal by adenovirus-mediated gene delivery. J Clin Invest. 92(2):883-893. 

95) Ito T, Inoue E, Kamatani N. 2004. Association test algorithm between a qualitative 

phenotype and a haplotype or haplotype set using simultaneous estimation of 

haplotype frequencies, diplotype configurations and diplotype-based penetrances. 

Genetics. 168(4):2339-2348. 

96) Jemaa R, Fumeron F, Poirier O, Lecerf L, Evans A, Arveiler D, Luc G, Cambou J-P, 

Bard J-M, Fruchart J-C, Apfelbaum M, Cambien F, Tiret L. 1995.   Lipoprotein 



 150

lipase gene polymorphisms: associations with myocardial infarction and lipoprotein 

levels, the ECTIM study.   J Lipid Res 36:2141-2146. 

97) Jones AC, Austin J, Hansen N, Hoogendoorn B, Oefner PJ, Cheadle JP, O'Donovan 

MC. 1999. Optimal temperature selection for mutation detection by denaturing HPLC 

and comparison to single-stranded conformation polymorphism and heteroduplex 

analysis. Clin Chem. 45(8 Pt 1):1133-1140. 

98) Jorde LB. 2000. Linkage disequilibrium and the search for complex disease genes. 

Genome Res. 10(10):1435-1444. 

99) Joyce CW, Shelness GS, Davis MA, Lee RG, Skinner K, Anderson RA, Rudel LL. 

2000. ACAT1 and ACAT2 membrane topology segregates a serine residue essential 

for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell. 

11(11):3675-367587. 

100) Kannel WB, D awber TR, Kagan A, Re votskie N, Stoke J 3rd. 1961. Factors of risk 

in the development of coronary heart disease--six year follow-up experience. The 

Framingham Study. Ann Intern Med. 1961 55:33-50. 

101) Katsuren K, Fukuyama S, Takata K, Ohta T. 2003. Effects of a new 

single-nucleotide polymorphism in the Acyl-CoA:cholesterol acyltransferase-2 gene 

on plasma lipids and apolipoproteins in patients with hyperlipidemia. J Atheroscler 

Thromb. 10(1):32-36. 

102) Katsuren K, Tamura T, Arashiro R, Takata K, Matsuura T, Niikawa N, Ohta T. 2001. 

Structure of the human acyl-CoA:cholesterol acyltransferase-2 (ACAT-2) gene and its 

relation to dyslipidemia. Biochim Biophys Acta. 1531(3):230-240. 



 151

103) Keys A. 1970. Coronary heart disease in seven countries. Circulation (Suppl to 

vol.41) 1-211. 

104) Keys A. 1980. Seven Countries. A Multivariate Analysis of Death and Coronary 

Heart Disease, Harvard University Press, Cambridge, MA. 

105) Kinnunen PM, DeMichele A, Lange LG. 1988. Chemical modification of 

acyl-CoA:cholesterol O-acyltransferase. 1. Identification of acyl-CoA:cholesterol 

O-acyltransferase subtypes by differential diethyl pyrocarbonate sensitivity. 

Biochemistry. 27(19):7344-7350. 

106) Klein RL, Rudel LL. 1983. Cholesterol absorption and transport in thoracic duct 

lymph lipoproteins of nonhuman primates. Effect of dietary cholesterol level. J Lipid 

Res. 24(4):343-356. 

107) Kluijtmans LA, Boers GH, Kraus JP, van den Heuvel LP, Cruysberg JR, Trijbels FJ, 

Blom HJ. 1999. The molecular basis of cystathionine beta-synthase deficiency in 

Dutch patients with homocystinuria: effect of CBS genotype on biochemical and 

clinical phenotype and on response to treatment. Am J Hum Genet. 65(1):59-67. 

108) Kota RS, Ramana CV, Tenorio FA, Enelow RI, Rutledge JC. 2005. Differential 

effects of lipoprotein lipase on tumor necrosis factor-alpha and 

interferon-gamma-mediated gene expression in human endothelial cells. J Biol Chem. 

280(35):31076-31084.  

109) Kuivenhoven JA, Groenemeyer BE, Boer JM, Reymer PW, Berghuis R, Bruin T, 

Jansen H, Seidell JC, Kastelein JJ. 1997. Ser447stop mutation in lipoprotein lipase is 

associated with elevated HDL cholesterol levels in normolipidemic males.  

Arterioscler Thromb Vasc Biol.  17(3):595-599. 



 152

110) Leabman MK, Huang CC, DeYoung J, Carlson EJ, Taylor TR, de la Cruz M, Johns 

SJ, Stryke D, Kawamoto M, Urban TJ, Kroetz DL, Ferrin TE, Clark AG, Risch N, 

Herskowitz I, Giacomini KM. 2003. Pharmacogenetics Of Membrane Transporters 

Investigators. Natural variation in human membrane transporter genes reveals 

evolutionary and functional constraints. Proc Natl Acad Sci U S A. 

100(10):5896-5901.  

111) Lee J, Heng D, Chia KS, Chew SK, Tan BY, Hughes K. 2001. Risk factors and 

incident coronary heart disease in Chinese, Malay and Asian Indian males: the 

Singapore Cardiovascular Cohort Study. Int J Epidemiol. 30(5):983-988. 

112) Lee J, Tan CS, Chia KS, Tan CE, Chew SK, Ordovas JM, Tai ES. 2004. The 

lipoprotein lipase S447X polymorphism and plasma lipids: interactions with APOE 

polymorphisms, smoking, and alcohol consumption. J Lipid Res. 45(6):1132-1139.  

113) Lee O, Chang CCY, Lee W, Chang TY. 1998. Immunodepletion experiments 

suggest that acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) protein plays a 

major catalytic role in adult human liver, adrenal glang, macrophages, and kidney, but 

not in intestines. J Lipid Res 39:1722-1727. 

114) Lee RG, Kelley KL, Sawyer JK, Farese RV Jr, Parks JS, Rudel LL. 2004. Plasma 

cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme 

a:cholesterol acyltransferase 2 have opposite atherosclerotic potential. Circ Res. 

95(10):998-1004. 

115) Lewis GF, Rader DJ. 2005. New insights into the regulation of HDL metabolism and 

reverse cholesterol transport. Circ Res. 96(12):1221-1232.  



 153

116) Lewontin RC. 1964. The Interaction of Selection and Linkage. I. General 

Considerations; Heterotic Models. Genetics. 49(1):49-67. 

117) Li BL, Li XL, Duan ZJ, Lee O, Lin S, Ma ZM, Chang CC, Yang XY, Park JP, 

Mohandas TK, Noll W, Chan L, Chang TY. 1999. Human acyl-CoA:cholesterol 

acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase 

ACAT-1 mRNA is produced from two different chromosomes. J Biol Chem. 

274(16):11060-11071. 

118) Liang JJ, Oelkers P, Guo C, Chu PC, Dixon JL, Ginsberg HN, Sturley SL. 2004. 

Overexpression of human diacylglycerol acyltransferase 1, acyl-coa:cholesterol 

acyltransferase 1, or acyl-CoA:cholesterol acyltransferase 2 stimulates secretion of 

apolipoprotein B-containing lipoproteins in McA-RH7777 cells. J Biol Chem. 

279(43):44938-44.  

119) Liang S, Wu X, Fisher EA, Ginsberg HN. 2000. The amino-terminal domain of 

apolipoprotein B does not undergo retrograde translocation from the endoplasmic 

reticulum to the cytosol. Proteasomal degradation of nascent apolipoprotein B begins 

at the carboxyl terminus of the protein, while apolipoprotein B is still in its original 

translocon. J Biol Chem. 275(41):32003-32010. 

120) Libby P, Aikawa M, Schonbeck U. 2000. Cholesterol and atherosclerosis. Biochim 

Biophys Acta. 1529(1-3):299-309. 

121) Libby P. 2002. Inflammation in atherosclerosis. Nature. 420(6917):868-874.  

122) Lin S, Lu X, Chang CC, Chang TY. 2003. Human acyl-coenzyme A:cholesterol 

acyltransferase expressed in chinese hamster ovary cells: membrane topology and 

active site location. Mol Biol Cell. 14(6):2447-2460.  



 154

123) Lindqvist P, Ostlund-Lindqvist AM, Witztum JL, Steinberg D, Little JA. 1983. The 

role of lipoprotein lipase in the metabolism of triglyceride-rich lipoproteins by 

macrophages. J Biol Chem. 258(15):9086-9092. 

124) Liu A, Lee L, Zhan S, Cao W, Lv J, Guo X, Hu Y. 2004. The S447X polymorphism 

of the lipoprotein lipase gene is associated with lipoprotein lipid and blood pressure 

levels in Chinese patients with essential hypertension. J Hypertens. 22(8):1503-1509. 

125) Liu WO, Oefner PJ, Qian C, Odom RS, Francke U. 1997-98. Denaturing 

HPLC-identified novel FBN1 mutations, polymorphisms, and sequence variants in 

Marfan syndrome and related connective tissue disorders. Genet Test. 1(4):237-242. 

126) Lloyd-Jones DM, Nam BH, D'Agostino RB Sr, Levy D, Murabito JM, Wang TJ, 

Wilson PW, O'Donnell CJ. 2004. Parental cardiovascular disease as a risk factor for 

cardiovascular disease in middle-aged adults: a prospective study of parents and 

offspring. JAMA. 291(18):2204-2211. 

127) Loeffler B, Heeren J, Blaeser M, Radner H, Kayser D, Aydin B, Merkel M. 2007. 

Lipoprotein lipase facilitated uptake of LDL is mediated by the LDL receptor. J Lipid 

Res. 48(2):288-298. 

128) Lusis AJ, Mar R, Pajukanta P. 2004. Genetics of atherosclerosis. Annu Rev 

Genomics Hum Genet. 5:189-218. 

129) Lyamichev V, Brow MA, Dahlberg JE. 1993. Structure-specific endonucleolytic 

cleavage of nucleic acids by eubacterial DNA polymerases. Science. 

260(5109):778-783. 

130) Ma Y, Wilson BI, Bijvoet S, Henderson HE, Cramb E, Roederer G, Ven Murthy MR, 

Julien P, Bakker HD, Kastelein JJ, et al. 1992. A missense mutation (Asp250----Asn) 



 155

in exon 6 of the human lipoprotein lipase gene causes chylomicronemia in patients of 

different ancestries. Genomics. 13(3):649-653. 

131) Mahley R, Rall SC. 1995. Type III hyperlipoproteinemia (dysbetalipoproteinemia): 

the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. The 

Metabolic and Molecular Bases of Inherited Disease. New York: McGraw Hill. 

1953-1980. 

132) Mailly F, Palmen J, Muller DP, Gibbs T, Lloyd J, Brunzell J, Durrington P, 

Mitropoulos K, Betteridge J, Watts G, Lithell H, Angelico F, Humphries SE, Talmud 

PJ. 1997. Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene 

mutations identified in 20 patients from the UK, Sweden, and Italy. Hum Mutat. 

10(6):465-473. 

133) Mamputu JC, Desfaits AC, Renier G. 1997. Lipoprotein lipase enhances human 

monocyte adhesion to aortic endothelial cells. J Lipid Res. 38(9):1722-1729. 

134) Mamputu JC, Levesque L, Renier G. 2000. Proliferative effect of lipoprotein lipase 

on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 

20(10):2212-2219. 

135) Marsh DJ, Theodosopoulos G, Howell V, Richardson AL, Benn DE, Proos AL, Eng 

C, Robinson BG. 2001. Rapid mutation scanning of genes associated with familial 

cancer syndromes using denaturing high-performance liquid chromatography. 

Neoplasia. 3(3):236-244. 

136) Matsunaga T, Hiasa Y, Yanagi H, Maeda T, Hattori N, Yamakawa K, Yamanouchi 

Y, Tanaka I, Obara T, Hamaguchi H. 1991. Apolipoprotein A-I deficiency due to a 



 156

codon 84 nonsense mutation of the apolipoprotein A-I gene. Proc Natl Acad Sci U S 

A. 88(7):2793-2797. 

137) McGladdery SH, Pimstone SN, Clee SM, Bowden JF, Hayden MR, Frohlich JJ. 

2001. Common mutations in the lipoprotein lipase gene (LPL): effects on 

HDL-cholesterol levels in a Chinese Canadian population. Atherosclerosis. 

156(2):401-407.  

138) McGowan MW, Artiss JD, Strandbergh DR, Zork B. 1983. A peroxidase-coupled 

method for the colorimetric determination of serum triglycerides. Clin Chem. 29(3): 

538-542. 

139) Mead JR, Cryer A, Ramji DP. 1999. Lipoprotein lipase, a key role in atherosclerosis? 

FEBS Lett. 462(1-2):1-6. 

140) Mead JR, Irvine SA, Ramji DP. 2002. Lipoprotein lipase: structure, function, 

regulation, and role in disease. J Mol Med. 80(12):753-769. 

141) Mead JR, Ramji DP. 2002. The pivotal role of lipoprotein lipase in atherosclerosis. 

Cardiovasc Res. 55(2):261-269. 

142) Meiner VL, Cases S, Myers HM, Sande ER, Bellosta S, Schambelan M, Pitas RE, 

McGuire J, Herz J, Farese RV Jr. 1996. Disruption of the acyl-CoA:cholesterol 

acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification 

enzymes in mammals. Proc Natl Acad Sci U S A. 93(24):14041-14016. 

143) Merkel M, Eckel RH, Goldberg IJ. 2002a. Lipoprotein lipase: genetics, lipid uptake, 

and regulation. J Lipid Res. 43(12):1997-2006.  

144) Merkel M, Heeren J, Dudeck W, Rinninger F, Radner H, Breslow JL, Goldberg IJ, 

Zechner R, Greten H. 2002b. Inactive lipoprotein lipase (LPL) alone increases 



 157

selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it 

also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J Biol 

Chem. 277(9):7405-11.  

145) Miller MP, Kumar S. 2001. Understanding human disease mutations through the use 

of interspecific genetic variation. Hum Mol Genet. 10(21):2319-2328. 

146) Morabia A, Cayanis E, Costanza MC, Ross BM, Bernstein MS, Flaherty MS, Alvin 

GB, Das K, Morris MA, Penchaszadeh GK, Zhang P, Gilliam TC. 2003.  

Association between lipoprotein lipase (LPL) gene and blood lipids: a common 

variant for a common trait? Genet Epidemiol.  24(4):309-321. 

147) Murray CJ, Lopez AD. 1997. Mortality by cause for eight regions of the world: 

Global Burden of Disease Study. Lancet. 349(9061):1269-1276. 

148) Morrison AC, Ballantyne CM, Bray M, Chambless LE, Sharrett AR, Boerwinkle E. 

2002.  LPL polymorphism predicts stroke risk in men.  Genet Epidemiol.  

22(3):233-242. 

149) Murthy V, Julien P, Gagne C.1996. Molecular pathobiology of the human 

lipoprotein lipase gene. Pharmacol Ther. 70(2):101-135. 

150) Nakamura A, Harada N, Takahashi A, Mawatari K, Nakano M, Tsutsumi K, Nakaya 

Y. 2007. NO-1886, a lipoprotein lipase activator, attenuates vascular smooth muscle 

contraction in rat aorta. Eur J Pharmacol. 554(2-3):183-190 

151) Narayanaswami G, Taylor PD. 2001. Improved efficiency of mutation detection by 

denaturing high-performance liquid chromatography using modified primers and 

hybridization procedure. Genet Test. 5(1):9-16. 



 158

152) National Cholesterol Education Program (NCEP) Expert Panel on Detection, 

Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment 

Panel III) (2002). Third report of the National Cholesterol Education Program (NCEP) 

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in 

Adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421. 

153) Need AC, Goldstein DB. 2006. Genome-wide tagging for everyone. Nat Genet. 

38(11):1227-1228.  

154) Newton-Cheh C, Hirschhorn JN. 2005. Genetic association studies of complex traits: 

design and analysis issues. Mutat Res. 573(1-2):54-69.  

155) Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions. Genome 

Res. 11(5):863-874. 

156) Nicklas BJ, Ferrell RE, Rogus EM, Berman DM, Ryan AS, Dennis KE, Goldberg 

AP. 2000. Lipoprotein lipase gene variation is associated with adipose tissue 

lipoprotein lipase activity, and lipoprotein lipid and glucose concentrations in 

overweight postmenopausal women.  Hum Genet.  106(4):420-424. 

157) Nierman MC, Prinsen BH, Rip J, Veldman RJ, Kuivenhoven JA, Kastelein JJ, de 

Sain-van der Velden MG, Stroes ES. 2005. Enhanced conversion of triglyceride-rich 

lipoproteins and increased low-density lipoprotein removal in LPLS447X carriers. 

Arterioscler Thromb Vasc Biol. 25(11):2410-2415. 

158) Nistico, L. et al. 1996. The CTLA-4 gene region of chromosome 2q33 is linked to, 

and associated with, type 1 diabetes. Hum. Mol. Genet. 5, 1075−1080.  

159) O'Donovan MC, Oefner PJ, Roberts SC, Austin J, Hoogendoorn B, Guy C, Speight 

G, Upadhyaya M, Sommer SS, McGuffin P. 1998. Blind analysis of denaturing 



 159

high-performance liquid chromatography as a tool for mutation detection. Genomics. 

52(1):44-49. 

160) Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL. 1998. Characterization 

of two human genes encoding acyl coenzyme A: cholesterol acyltransferase-related 

enzymes.  J Biol Chem 273:26765-26771. 

161) Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran 

T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM,Kirschner BS, 

Hanauer SB, Nunez G, Cho JH. 2001. A frameshift mutation in NOD2 associated 

with susceptibility to Crohn's diseaseNature. 411(6837):603-606 

162) Okrainec K, Banerjee DK, Eisenberg MJ. 2004. Coronary artery disease in the 

developing world. Am Heart J. 148(1):7-15. 

163) Ozaki K, Tanaka T. 2006. Genome-wide association study to identify 

single-nucleotide polymorphisms conferring risk of myocardial infarction. Methods 

Mol Med. 128:173-180. 

164) Parini P, Davis M, Lada AT, Erickson SK, Wright TL, Gustafsson U, Sahlin S, 

Einarsson C, Eriksson M, Angelin B, Tomoda H, Omura S, Willingham MC, Rudel 

LL. 2004. ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying 

enzyme in human liver. Circulation. 110 (14):2017-2023.  

165) Parzer S, Mannhalter C. 1991.   A rapid method for the isolation of genomic DNA 

from citrated whole blood.   Biochem J 273:229-231. 

166) Patel A, Barzi F, Jamrozik K, Lam TH, Ueshima H, Whitlock G, Woodward M; Asia 

Pacific Cohort Studies Collaboration. Serum triglycerides as a risk factor for 



 160

cardiovascular diseases in the Asia-Pacific region. Circulation. 2004 ; 

26;110(17):2678-2686. 

167) Paulweber B, Wiebusch H, Miesenboeck G, Funke H, Assmann G, Hoelzl B, Sippl 

MJ, Friedl W, Patsch JR, Sandhofer F. 1991. Molecular basis of lipoprotein lipase 

deficiency in two Austrian families with type I hyperlipoproteinemia. Atherosclerosis. 

86(2-3):239-250. 

168) Peacock RE, Hamsten A, Johansson J, Nilsson-Ehle P, Humphries SE. 1994.  

Association of genotypes of the apolipoprotein AI-CIII-AIV, apolipoprotein B and 

lipoprotein lipase gene loci with coronary atherosclerosis and high density lipoprotein 

subclasses.  Clin Genet 46:273-282. 

169) Pentik鄜nen  M O, Oksjoki R, 嘱r ni  K,  Ko vanen PT.  2002.  Li popr ot ei n l ipase in the 

arterial wall. Linking LDL to the arterial extracellular matrix and much more. 

Arterioscler Thromb Vasc Biol.22: 211–217.  

170) Pramfalk C, Davis MA, Eriksson M, Rudel LL, Parini P. 2005. Control of ACAT2 

liver expression by HNF1. J Lipid Res. 46(9):1868-1876. 

171) Qiu G, Ho AC, Yu W, Hill JS. 2007. Suppression of endothelial lipase or lipoprotein 

lipase expression in THP-1 macrophages attenuates pro-inflammatory cytokine 

secretion. J Lipid Res. 48(2):385-394 

172) Radha V, Mohan V, Vidya R, Ashok AK, Deepa R, Mathias RA. 2006. Association 

of lipoprotein lipase Hind III and Ser 447 Ter polymorphisms with dyslipidemia in 

Asian Indians. Am J Cardiol. 97(9):1337-1342.  



 161

173) Raisonnier A, Etienne J, Arnault F, Brault D, Noe L, Chuat JC, Galibert F. 1995. 

Comparison of the cDNA and amino acid sequences of lipoprotein lipase in eight 

species. Comp Biochem Physiol B Biochem Mol Biol. 111(3):385-398. 

174) Ramensky, V., Bork, P., Sunyaev, S. 2002. Human non-synonymous SNPs: server 

and survey. Nucleic Acids Res. 30: 3894-3900. 

175) Razzaghi H, Aston CE, Hamman RF, Kamboh MI. 2000. Genetic screening of the 

lipoprotein lipase gene for mutations associated with high triglyceride/low 

HDL-cholesterol levels.  Hum Genet.  107(3):257-267. 

176) Rebbeck, T.R., Spitz, M., Wu, X. 2004. Assessing the function of genetic variants in 

candidate gene association studies. Nat Rev Genet. 5: 589-597. 

177) Reilly MP, Foulkes AS, Wolfe ML, Rader DJ. 2005. Higher order lipase gene 

association with plasma triglycerides. J Lipid Res. 46(9):1914-1922. 

178) Reiss AB, Glass AD. 2006. Atherosclerosis: immune and inflammatory aspects. J 

Investig Med. 54(3):123-131.  

179) Renier G, Skamene E, DeSanctis JB, Radzioch D. 1994. Induction of tumor necrosis 

factor alpha gene expression by lipoprotein lipase. J Lipid Res. 35(2):271-278. 

180) Reymer PW, Gagne E, Groenemeyer BE, Zhang H, Forsyth I, Jansen H, Seidell JC, 

Kromhout D, Lie KE, Kastelein J, et al. 1995. A lipoprotein lipase mutation 

(Asn291Ser) is associated with reduced HDL cholesterol levels in premature 

atherosclerosis. Nat Genet. 10(1):28-34. 

181) Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z, Delmonte T, 

Kocher K, Miller K, Guschwan S, Kulbokas EJ, O'Leary S, Winchester E, Dewar K, 

Green T, Stone V, Chow C, Cohen A, Langelier D, Lapointe G, Gaudet D, Faith J, 



 162

Branco N, Bull SB, McLeod RS, Griffiths AM, Bitton A, Greenberg GR, Lander ES, 

Siminovitch KA, Hudson TJ. 2001. Genetic variation in the 5q31 cytokine gene 

cluster confers susceptibility to Crohn disease. Nat Genet. 29(2):223-228. 

182) Rip J, Nierman MC, Ross CJ, Jukema JW, Hayden MR, Kastelein JJ, Stroes ES, 

Kuivenhoven JA. 2006. Lipoprotein lipase S447X: a naturally occurring 

gain-of-function mutation. Arterioscler Thromb Vasc Biol. 26(6):1236-1245. 

183) Ross CJ, Liu G, Kuivenhoven JA, Twisk J, Rip J, van Dop W, Excoffon KJ, Lewis 

SM, Kastelein JJ, Hayden MR. 2005. Complete rescue of lipoprotein lipase-deficient 

mice by somatic gene transfer of the naturally occurring LPLS447X beneficial 

mutation. Arterioscler Thromb Vasc Biol. 25(10):2143-2150.  

184) Ross R. 1999. Atherosclerosis is an inflammatory disease. Am Heart J. 138(5 Pt 

2):S419-420 

185) Rudel LL, Lee R, Parini P. 2005. ACAT2 Is a Target for Treatment of Coronary 

Heart Disease Associated With Hypercholesterolemia. Arterioscler Thromb Vasc Biol. 

25(6):1112-1118.    

186) Rudel LL, Shelness GS. 2000. Cholesterol esters and atherosclerosis-a game of 

ACAT and mouse. Nat Med. 6(12):1313-1314. 

187) Rudolph JG, White S, Sokolsky C, Bozak D, Mazzanti C, Lipsky RH, Goldman D. 

2002. Determination of melting temperature for variant detection using dHPLC: a 

comparison between an empirical approach and DNA melting prediction software. 

Genet Test. 6(3):169-176. 



 163

188) Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, 

Duverger N, Denefle P, Assmann G. 1999. Tangier disease is caused by mutations in 

the gene encoding ATP-binding cassette transporter 1. Nat Genet. 22(4):352-355. 

189) Sakashita N, Miyazaki A, Takeya M, Horiuchi S, Chang CC, Changx TY, Takahashi 

K. 2000. Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 

(ACAT-1) in macrophages and in various tissues. Am J Pathol. 156(1):227-236. 

190) Santamarina-Fojo S, Brewer HB Jr. 1991. The familial hyperchylomicronemia 

syndrome. New insights into underlying genetic defects. JAMA. 265(7):904-908. 

191) Senti M, Elosua R, Tomas M, Sala J, Masia R, Ordovas JM, Shen H, Marrugat J. 

2001. Physical activity modulates the combined effect of a common variant of the 

lipoprotein lipase gene and smoking on serum triglyceride levels and high-density 

lipoprotein cholesterol in men. Hum Genet. 109(4):385-392. 

192) Serre D, Hudson TJ. 2006. Resources for Genetic Variation Studies. Annu Rev 

Genomics Hum Genet.; 7:443-457. 

193) Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. 

2001. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 

29(1):308-311.  

194) Shimo-Nakanishi Y, Urabe T, Hattori N, Watanabe Y, Nagao T, Yokochi M, 

Hamamoto M, Mizuno Y. 2001.  Polymorphism of the lipoprotein lipase gene and 

risk of atherothrombotic cerebral infarction in the Japanese.  Stroke.  

32(7):1481-1486. 



 164

195) Socquard E, Durlach A, Clavel C, Nazeyrollas P, Durlach V. 2006. Association of 

HindIII and PvuII genetic polymorphisms of lipoprotein lipase with lipid metabolism 

and macrovascular events in type 2 diabetic patients. Diabetes Metab. 32(3):262-269. 

196) Song BL, Qi W, Wang CH, Yang JB, Yang XY, Lin ZX, Li BL. 2003. Preparation 

of an anti-Cdx-2 antibody for analysis of different species Cdx-2 binding to acat2 

promoter. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 35(1):6-12. 

197) Song BL, Qi W, Yang XY, Chang CC, Zhu JQ, Chang TY, Li BL. 2001. 

Organization of human ACAT-2 gene and its cell-type-specific promoter activity. 

Biochem Biophys Res Commun. 282(2):580-588. 

198) Souverein OW, Jukema JW, Boekholdt SM, Zwinderman AH, Tanck MW. 2005. 

Polymorphisms in APOA1 and LPL genes are statistically independently associated 

with fasting TG in men with CAD.  Eur J Hum Genet.  13(4):445-451. 

199) Spence JD, Ban MR, Hegele RA. 2003. Lipoprotein lipase (LPL) gene variation and 

progression of carotid artery plaque. Stroke. 34(5):1176-1180.  

200) Stamler J, Daviglus ML, Garside DB, Dyer AR, Greenland P, Neaton JD. 2000. 

Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to 

long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA. 

284(3):311-318. 

201) Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, 

Gunnarsdottir S, Walker N, Petursson H, Crombie C, Ingason A, Gulcher JR, 

Stefansson K, St Clair D. 2003. Association of neuregulin 1 with schizophrenia 

confirmed in a Scottish population. Am J Hum Genet. 72(1):83-87. 



 165

202) Stein Y, Stein O. 2003.  Lipoprotein lipase and atherosclerosis.  Atherosclerosis.  

170(1):1-9. 

203) Steinberg D. 2002. Atherogenesis in perspective: hypercholesterolemia and 

inflammation as partners in crime. Nat Med. 8(11):1211-1217.  

204) Steinberg D. 2004. Thematic review series: the pathogenesis of atherosclerosis. An 

interpretive history of the cholesterol controversy: part I. J Lipid Res. 

45(9):1583-1593.  

205) Steinberg D. 2005a. Thematic review series: the pathogenesis of atherosclerosis: an 

interpretive history of the cholesterol controversy, part III: mechanistically defining 

the role of hyperlipidemia. Lipid Res. 46(10):2037-2051. 

206) Steinberg D. 2005b. Thematic review series: the pathogenesis of atherosclerosis. An 

interpretive history of the cholesterol controversy: part II: the early evidence linking 

hypercholesterolemia to coronary disease in humans. J Lipid Res. 46(2):179-190.  

207) Steinberg D. 2006. Thematic review series: the pathogenesis of atherosclerosis. An 

interpretive history of the cholesterol controversy, part V: the discovery of the statins 

and the end of the controversy. J Lipid Res. 47(7):1339-1351.  

208) Stephens, M., Smith, N., and Donnelly, P. 2001. A new statistical method for 

haplotype reconstruction from population data. American Journal of Human Genetics, 68, 

978--989. 

209) Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA, 

Rosenstiel P, Albrecht M, Croucher PJ, Seegert D, Nikolaus S, Hampe J, Lengauer T, 

Pierrou S, Foelsch UR, Mathew CG, Lagerstrom-Fermer M, Schreiber S. 2004. 



 166

Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature 

Genet. 36, 476−480.  

210) Suh Y, Vijg J. 2005. SNP discovery in associating genetic variation with human 

disease phenotypes. Mutat Res. 573(1-2):41-53.  

211) Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P. 2001. 

Prediction of deleterious human alleles. Hum Mol Genet. 10(6):591-597. 

212) Tabas I, Li Y, Brocia RW, Xu SW, Swenson TL, Williams KJ. 1993. Lipoprotein 

lipase and sphingomyelinase synergistically enhance the association of atherogenic 

lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism 

for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell 

formation. J Biol Chem. 268(27):20419-20432. 

213) Tabor HK, Risch NJ, Myers RM. 2002. Opinion: Candidate-gene approaches for 

studying complex genetic traits: practical considerations. Nat Rev Genet. 

3(5):391-397. 

214) Talmud PJ, Humphries SE. 2001. Genetic polymorphisms, lipoproteins and coronary 

artery disease risk. Curr Opin Lipidol. 12(4):405-409. 

215) Taylor KD, Scheuner MT, Yang H, Wang Y, Haritunians T, Fischel-Ghodsian N, 

Shah PK, Forrester JS, Knatterud G, Rotter JI. 2004. Lipoprotein lipase locus and 

progression of atherosclerosis in coronary-artery bypass grafts.  Genet Med.  

6(6):481-486. 

216) The International HapMap Consortium. 2003. The International HapMap Project. 

Nature. 426(6968):789-796. 



 167

217) van Orsouw NJ, Zhang X, Wei JY, Johns DR, Vijg J. 1998. Mutational scanning of 

mitochondrial DNA by two-dimensional electrophoresis. Genomics. 52(1):27-36. 

218) Viles-Gonzalez JF, Anand SX, Valdiviezo C, Zafar MU, Hutter R, Sanz J, Rius T, 

Poon M, Fuster V, Badimon JJ. Update in atherothrombotic disease. Mt Sinai J Med. 

2004, 71(3):197-208.  

219) Wang L, Fan C, Topol SE, Topol EJ, Wang Q. 2003. Mutation of MEF2A in an 

inherited disorder with features of coronary artery disease. Science. 

302(5650):1578-1581. 

220) Wang J, Xian X, Huang W, Chen L, Wu L, Zhu Y, Fan J, Ross C, Hayden MR, Liu 

G. 2007. Expression of LPL in Endothelial-Intact Artery Results in Lipid Deposition 

and Vascular Cell Adhesion Molecule-1 Upregulation in Both LPL and 

ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol. 27(1):197-203  

221) Wang XL, McCredie RM, Wilcken DE. 1996.  Common DNA polymorphisms at 

the lipoprotein lipase gene.   Association with severity of coronary disease and 

diabetes.   Circulation 93:1339-1345. 

222) Watkins H, Farrall M. 2006. Genetic susceptibility to coronary artery disease: from 

promise to progress. Nat Rev Genet. 7(3):163-173. 

223) Whiting BM, Anderson JL, Muhlestein JB, Horne BD, Bair TL, Pearson RR, 

Carlquist JF; Intermountain Heart Collaborative Study Group. 2005. Candidate gene 

susceptibility variants predict intermediate end points but not angiographic coronary 

artery disease. Am Heart J. 150(2):243-250. 

224) Willerson JT, Ridker PM. 2004. Inflammation as a cardiovascular risk 

factor.Circulation. 109(21 Suppl 1):II2-10. 



 168

225) Willner EL, Tow B, Buhman KK, Wilson M, Sanan DA, Rudel LL, Farese RV Jr. 

2003. Deficiency of acyl CoA: cholesterol acyltransferase 2 prevents atherosclerosis 

in apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A. 4; 100(3):1262-7. 

226) Wittrup HH, Andersen RV, Tybjaerg-Hansen A, Jensen GB, Nordestgaard BG. 

2006.Combined analysis of six lipoprotein lipase genetic variants on triglycerides, 

high-density lipoprotein, and ischemic heart disease: cross-sectional, prospective, and 

case-control studies from the Copenhagen City Heart Study. J Clin Endocrinol Metab. 

91(4):1438-1445. 

227) Xiao W, Oefner PJ. 2001. Denaturing high-performance liquid chromatography: A 

review. Hum Mutat. 17(6):439-474.  

228) Yagyu H, Kitamine T, Osuga J, Tozawa R, Chen Z, Kaji Y, Oka T, Perrey S, 

Tamura Y, Ohashi K, Okazaki H, Yahagi N, Shionoiri F, Iizuka Y, Harada K, 

Shimano H, Yamashita H, Gotoda T, Yamada N, Ishibashi S. 2000. Absence of 

ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in 

mice with congenital hyperlipidemia. J Biol Chem. 275(28):21324-30 

229) Yamana K, Yanagi H, Hirano C, Kobayashi K, Tanaka M, Tomura S, Tsuchiya S, 

Hamaguchi H. 1998. Genetic polymorphisms and mutations of the lipoprotein lipase 

gene in Japanese schoolchildren with hypoalphalipoproteinemia. J Atheroscler 

Thromb. 4(3):97-101.  

230) Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, 

Rothstein R, Sturley SL. Sterol esterification in yeast: a two-gene process. 

Science. 1996, 272(5266):1353-1356. 



 169

231) Yang T, Pang CP, Tsang MW, Lam CW, Poon PM, Chan LY, Wu XQ, Tomlinson B, 

Baum L. 2003. Pathogenic mutations of the lipoprotein lipase gene in Chinese patients 

with hypertriglyceridemic type 2 diabetes. Hum Mutat. 21(4):453 

232) Yang Y, Ruiz-Narvaez E, Niu T, Xu X, Campos H. 2004. Genetic variants of the 

lipoprotein lipase gene and myocardial infarction in the Central Valley of Costa Rica. 

J Lipid Res. 45(11):2106-2109. 

233) Yarnell JW, Patterson CC, Sweetnam PM, Thomas HF, Bainton D, Elwood PC, 

Bolton CH, Miller NE. 2001. Do total and high density lipoprotein cholesterol and 

triglycerides act independently in the prediction of ischemic heart disease? Ten-year 

follow-up of Caerphilly and Speedwell Cohorts. Arterioscler Thromb Vasc Biol. 

21(8):1340-1345.  

234) Yokoi H, Nobuyoshi M, Mitsudo K, Kawaguchi A, Yamamoto A; ATHEROMA 

Study Investigators. 2005. Three-year follow-up results of angiographic intervention 

trial using an HMG-CoA reductase inhibitor to evaluate retardation of obstructive 

multiple atheroma (ATHEROMA) study. Circ J. 69(8):875-883.  

235) Yoshida T, Gotoda T, Okubo M, Iizuka Y, Ishibashi S, Kojima T, Murakami T, 

Murase T, Yamada N. 2000. A Japanese patient with lipoprotein lipase deficiency 

homozygous for the Gly188Glu mutation prevalent worldwide. J Atheroscler Thromb. 

7(1):45-49. 

236) Yu C, Kennedy NJ, Chang CC, Rothblatt JA. 1996. Molecular cloning and 

characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol 

acyltransferase. J Biol Chem. 271(39):24157-63. 



 170

237) Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, 

Pais P, Varigos J, Lisheng L. 2004. INTERHEART Study Investigators. Effect of 

potentially modifiable risk factors associated with myocardial infarction in 52 

countries (the INTERHEART study): case-control study. Lancet. 364(9438):937-952. 

238) Zdravkovic S, Wienke A, Pedersen NL, Marenberg ME, Yashin AI, De Faire U. 

Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 

Swedish twins. J Intern Med. 2002; 252(3):247-254. 

239) Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia 

and arterial lesions in mice lacking apolipoprotein E. Science. 1992, 

258(5081):468-471. 

240) Zilversmit DB. 1973. A proposal linking atherogenesis to the interaction of 

endothelial lipoprotein lipase with triglyceride-rich lipoproteins. Circ Res. 

33(6):633-638. 

241) Zilversmit DB. 1995. Atherogenic nature of triglycerides, postprandial lipidemia, 

and triglyceride-rich remnant lipoproteins. Clin Chem. 41(1):153-158. 

 
 


	Table of contents(05-14-18-38-35).pdf
	Thesis _final_lh.pdf

