
AUTOMATIC RELATION EXTRACTION

AMONG NAMED ENTITIES FROM TEXT

CONTENTS

CHEN, JINXIU
(B.Eng. M.Eng., Xiamen University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48630972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I would like to take this opportunity to thank all the people who helped me to

complete this thesis.

I would first like to thank my supervisor, Dr. Donghong Ji, whose insights and

guidance have helped me develop this thesis. I greatly appreciate my co-supervisor

Dr. Chew Lim Tan, who gave me lots of good advice and invaluable support over the

years.

Thanks to my labmates, Xiaofeng Yang, Zhengyu Niu, Jie Zhang, Huaqing Hong,

Dan Shen, Juan Xiao etc.. They make the lab a pleasant place to work and have

helped me clarify many design and implementation issues through discussions. I

would like to thank them for always pushing me to finish my thesis.

Thanks also to my flatmates, Dan Lin, Jin Ben, Xiaofei Qi, Kun Qu and many

other friends for making my life in Singapore a wonderful memeory.

Finally, my deepest thanks to my family who provide the love and support I can

always count on. To my dad, my mom and my fiance Daiqiang, I love all of you so

much!

i

ii

Table of Contents

Acknowledgments i

Summary vii

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 The Objectives and Significance of this thesis 4

1.2.1 The Objectives . 4

1.2.2 The Significance . 5

1.3 Overview of the Thesis . 6

2 Background 8

2.1 Relation . 9

2.1.1 What are Relations? . 9

2.1.2 Relation: Explicit / Implicit 10

2.1.3 Relation vs. Non-relations . 15

iii

2.1.4 Coreference of Relation Mentions 15

2.2 Relation Extraction Task . 16

2.3 Evaluation of Relation Extraction . 19

3 Literature Review for Relation Extraction 21

3.1 Knowledge Engineering Approach . 22

3.2 Supervised learning methods . 23

3.2.1 Integrated Parsing . 23

3.2.2 Kernel Methods . 26

3.2.3 Feature-based Methods . 31

3.3 Semi-Supervised Learning methods 32

3.3.1 Background: Bootstrapping 32

3.3.2 DIPRE (Brin, 1998) . 34

3.3.3 SnowBall (Agichtein and Gravano, 2000) 36

3.3.4 Zhang (2004)’s Method . 40

3.4 Unsupervised Learning methods . 43

3.4.1 Context Similarity Based: Hasegawa et al. (2004) 43

3.4.2 Tree based similarity: Zhang et al. (2005) 45

3.5 Summary . 46

3.6 Comparison with Related Work . 48

4 Data Set 50

5 Knowledge Representation for Automatic Relation Extraction Mod-

els 54

5.1 Instance Representation . 55

iv

5.2 Feature Inventory . 56

5.3 Summary . 60

6 Semi-supervised Relation Extraction with Label Propagation 62

6.1 Motivation . 63

6.2 Modelling semi-supervised relation extraction problem 66

6.3 Resolution . 68

6.3.1 A Label Propagation Algorithm 68

6.3.2 Convergence . 70

6.4 Similarity Measures . 72

6.5 Experiments and Results . 73

6.5.1 Experiment Setup . 73

6.5.2 Experimental Evaluation . 74

6.6 Discussion . 80

6.7 Summary . 82

7 An Unsupervised Model for Relation Extraction 84

7.1 Model Unsupervised Relation Extraction Problem 85

7.1.1 Named entity tagging . 86

7.1.2 Context Collecting . 86

7.1.3 Context Similarity among Entity Pairs 86

7.1.4 Context Clustering . 87

7.1.5 Relation Labeling . 88

7.2 An Unsupervised Model with Order Identification Capability 88

7.3 Experimental Evaluations . 95

v

7.3.1 Experiment setup . 95

7.3.2 Evaluation method for clustering result 96

7.3.3 Experiments and Results . 97

7.4 Discussion . 99

7.5 Summary . 101

8 An Improved Model for Unsupervised Relation Disambiguation 102

8.1 Modeling Graph-based Unsupervised Relation Disambiguation Problem 103

8.2 Context Clustering Using Spectral Clustering 105

8.2.1 Transformation of Clustering Space 106

8.2.2 The elongated K-means algorithm 110

8.2.3 An example . 112

8.3 Experiments and Results . 114

8.3.1 Data Setting . 114

8.3.2 Experimental Design . 115

8.3.3 Discussion . 119

8.4 Summary . 120

9 Conclusions and Future Work 122

9.1 Main Contributions . 123

9.2 Future Work . 126

Bibliography 128

vi

Summary

This thesis studies the task of relation extraction, which has received more and more

attention in recent years. The task of relation extraction is to identify various semantic

relations between named entities from text contents. With the rapid increase of

various textual data, relation extraction will play an important role in many areas,

such as question answering, ontology construction, and bioinformatics.

The goal of our research is to reduce the manual effort and automate the process of

relation extraction. To realize this intention, we investigate semi-supervised learning

and unsupervised learning solutions to rival supervised learning methods so that we

can resolve the problem of relation extraction with minimal human cost and still

achieve comparable performance to supervised learning methods.

First, we present a label propagation (LP) based semi-supervised learning algo-

rithm for relation extraction problem to learn from both labeled and unlabeled data.

It represents labeled and unlabeled examples and their distances as the nodes and the

weights of edges of a graph, then propagating the label information from any vertex

to nearby vertices through weighted edges iteratively, finally inferring the labels of

unlabeled examples after the propagation process converges.

Secondly, we introduce an unsupervised learning algorithm based on model or-

der identification for automatic relation extraction. The model order identification

vii

is achieved by resampling-based stability analysis and used to infer the number of

relation types between entity pairs automatically.

Thirdly, we further investigate unsupervised learning solution for relation disam-

biguation using graph based strategy. We define the unsupervised relation disam-

biguation task for entity mention pairs as a partition of a graph so that entity pairs

that are more similar to each other, belong to the same cluster. We apply spectral

clustering to resolve the problem, which is a relaxation of such NP-hard discrete graph

partitioning problem. It works by calculating eigenvectors of an adjacency graph’s

Laplacian to recover a submanifold of data from a high dimensionality space and then

performing cluster number estimation on such spectral information.

The thesis evaluates the proposed methods for extracting relations among named

entities automatically, using the ACE corpus. The experimental results indicate that

our methods can overcome the problem of being short of manually labeled relation

instances for supervised relation extraction methods. The results show that when only

a few labeled examples are available, our LP based relation extraction can achieve

better performance than SVM and another bootstrapping method. Moreover, our

unsupervised approaches can achieve order identification capabilities and outperform

the previous unsupervised methods. The results also suggest that all of the four

categories of lexical and syntactic features used in the study are useful for the relation

extraction task.

viii

List of Figures

2-1 An example for tuples of Organization/Location 18

2-2 The visualization of evaluation metric. 20

3-1 An example of a parse tree with entity annotations but no relation

annotations. 24

3-2 An example of an augmented parse tree from Figure 3-1 with relation

annotated. 24

3-3 An example of input to the system of Zelenko et al. (2002). 27

3-4 Dependency tree for two instances of the near relation. 30

3-5 The main components of the snowball system. 36

3-6 The initial seed tuples of snowball. 37

3-7 The overview of Hasegawa et al. (2004)’s unsupervised system. . . . 43

5-1 An example of relation instance represented by the five-tuple. 55

5-2 An example: features derived from the output of the Charniak parser

and Chunklink script. 58

ix

6-1 Classification result on the two moons pattern dataset. (a) Data set

with two labeled points; (b) Classification result given by the SVM;

(c) Classification result given by bootstrapping algorithm using k-NN

with k = 1; (d) Ideal classification. 64

6-2 Classification result of LP algorithm on two moons pattern dataset.

The convergence process of LP algorithm with t varying from 1 to 400

is shown from (a) to (d). Note that the initial label information are

diffused along the moons. 72

6-3 Comparison of the performance of SVM and LP with different sizes of

labeled data for Relation Classification 77

6-4 An example: comparison of SVM and LP algorithm on a small data

set from ACE corpus. ◦ and 4 denote the unlabeled examples in the

training set and the test set respectively, and other symbols (¦,×,2, +

and 5) represent the labeled examples with respective relation type

sampled from training set. 78

7-1 An example for stability based model selection. 91

8-1 Nature of the affinity matrix . 108

8-2 An example of matrix representation for spectral clustering algorithm 109

8-3 An example:(a) The three circle dataset. (b) The clustering result us-

ing K-means; (c) Three elongated clusters in the 2D clustering space

using spectral clustering: two dominant eigenvectors; (d) The clus-

tering result using spectral-based clustering (σ2=0.05). (4,◦ and +

denote examples in different clusters) 113

x

List of Tables

3.1 List of features assigned to each node in the dependency tree. 29

3.2 Bootstrapping with the Yarowsky’s (1995) algorithm. Conf(D) is the

set of labellings of data D with confidence greater than some threshold. 33

3.3 Zhang (2004)’s bootstrapping procedure based on random feature pro-

jection. 41

4.1 Frequency of relation subtypes in the ACE training and devtest corpus. 53

6.1 The performance of SVM and LP algorithm with different sizes of

labeled data for relation detection on relation subtypes. The LP al-

gorithm is run with two similarity measures: Cosine similarity and JS

divergence. 76

6.2 The performance of SVM and LP algorithm with different sizes of la-

beled data for relation detection and classification on relation subtypes.

The LP algorithm is run with two similarity measures: cosine similarity

and JS divergence. 76

6.3 Comparison of the performance of the bootstrapped SVM method by

Zhang (2004) and LP method with 100 seed labeled examples for rela-

tion type classification task. 80

xi

6.4 Comparison of the performance of previous methods on ACE RDC task. 81

7.1 Model selection algorithm for relation extraction 89

7.2 Some context examples in two clusters of the output in the domain

PER-ORG. 93

7.3 Unsupervised algorithm for evaluation of model order selection 94

7.4 Three domains of entity pairs: frequency distribution for different re-

lation subtypes . 95

7.5 Automatically determined the number of relation subtypes using differ-

ent evaluation functions: Munnorm
k is unnormalized objective function

and Mnorm
k is normalized objective function. 98

7.6 Performance of the context clustering algorithm with various context

window size settings over three domains. 99

8.1 Context clustering using spectral-based clustering technique. 107

8.2 Contribution of different features . 115

8.3 Performance of context clustering with different context window size

setting . 116

8.4 Performance of various unsupervised methods for relation disambigua-

tion. 118

xii

Chapter 1

Introduction

This chapter starts from the motivation of this study. Then it describes the objectives

and significance of the thesis and gives an overview of the rest of the thesis.

1.1 Motivation

With the development of the electronic technology, there is a dramatic increase of

textual information available in the digital archives and the World Wide Web. How-

ever, the structure of these resource is largely concerned with the visual formatting of

data and not with the data’s syntactic and semantic properties. Hence, within these

structured pages exists a vast amount of unstructured text ready to be mined and

exploited in technologies like web search, question answering and database generation.

In the face of the huge amounts of resource, how can computers help humans

make sense of all this data? Ideally, every piece of information that would ever be

needed to answer queries or to sort and search data would be neatly marked in the

text with some kind of universally agreed upon standard. However, in practice this

1

is rarely the case and most data remains a set of words strung together (albeit in a

not so arbitrary way).

This ideal was recently popularized by Berners-Lee et al. (2001) in their description

of the Semantic Web. In the Semantic Web, meaning and language structure are

marked up in addition to page format. The major problem facing the Semantic

Web is how to mark up billions and billions of pages. The sheer size of the data

makes human annotation infeasible. Furthermore, web designers rarely conform to

W3C1 standards when creating pages. Expecting the designers of tomorrow to add

an additional layer of markup in future documents is unrealistic.

One course of action would be to have a computer annotate all this electronic

data with the structures that are of interest to humans. This is not trivial. How do

we tell or teach a computer to recognizer that a piece of text has a semantic property

of interest in order to make correct annotations? This process is called Information

Extraction (IE).

Information Extraction (IE) is an application of natural language processing that

identifies relevant information from text documents in a certain domain and put it in a

structural format. Information Extraction is different from the more mature technol-

ogy of Information Retrieval (IR): IR retrieves relevant documents from collections,

while IE extracts relevant information from documents.

Generally, there are two main subtasks in current Information Extraction research,

that is, Entity Extraction and Relation Extraction. In the past decade, a large amount

of work has been done and obtained satisfied performance on identifying entities from

texts (Bikel et al., 1999; Tjong and De, 2003). Hence, extracting entities is not a focus

1World Wide Web Consortium, http://www.w3c.org.

2

of this thesis. The focus of this thesis will be Relation Extraction, that is, how to

teach computers to recognize relationships between entities in unstructured text.

The task of relation extraction was first introduced as part of the Template Ele-

ment task in MUC 6 (MUC, 1995). Most work at MUC was rule-based, which tried to

use syntactic and semantic patterns to capture the corresponding relations by means

of manually written linguistic rules. Adaptation for a particular domain entails the

collection of knowledge that is needed to operate within that domain. Experience

indicates that such collection cannot be undertaken by manual means only, i.e., by

enlisting domain experts to provide expertise, and computational linguists to induce

the expertise into the system, as the costs would compromise the enterprise. Hence,

it is generally agreed that the main barriers to wider use of IE technologies due to the

difficulties in adapting systems to new applications and domains. It is also challenging

to keep track of dynamic information resources (e.g. web pages).

To address these challenges, recently, there is a trend shift in the research com-

munity from knowledge-based approaches to machine learning techniques (McCallum

and Jensen, 2003). The application of machine learning techniques to IE attempts to

relieve the acquisition bottleneck: turning an IE system into out-of-the-shelf compo-

nents that can be applied to any domain with ease and require no special expertise

in artificial intelligence or computational linguistics.

With the availability of corpora as well as sophisticated NLP tools, recent years

have seen the application of machine learning techniques, in the Relation Extraction

task (Miller et al., 2000; Zelenko et al., 2002; Culotta and Soresen, 2004; Kamb-

hatla, 2004; Zhou et al., 2005; Brin, 1998; Agichtein and Gravano, 2000; Zhang,

2004; Hasegawa et al., 2004; Zhang et al., 2005). Among them, supervised learning

3

approaches have received more and more research attention (Miller et al., 2000; Ze-

lenko et al., 2002; Culotta and Soresen, 2004; Kambhatla, 2004; Zhou et al., 2005).

However, for supervised learning methods, a large amount of labeled training data

is needed, which needs much human labor and time consumption. Hence, the main

goal of this study is to automatically extract relations among named entities from

text contents with minimal human intervention.

1.2 The Objectives and Significance of this thesis

1.2.1 The Objectives

To overcome the shortcoming of manually labeled data, our research aims to auto-

mate the process of relation extraction so that we could reduce the manual effort.

To realize this intention, we investigate semi-supervised learning and unsupervised

learning resolutions to rival supervised learning methods, so that we could resolve

the problem of relation extraction with minimal human cost and still are able to

achieve comparable performance with the supervised learning methods.

The first objective is to present a label propagation (LP) based semi-supervised

learning approach for the relation extraction task. First, this approach represents

labeled and unlabeled examples as vertices of a graph, and then propagates the label

information from any vertex to any nearby vertex through weighted edges iteratively.

Finally we can infer the labels of unlabeled examples after the propagation pro-

cess converges. The LP based method overcomes the limitation of local consistency

constraint of existing bootstrapping-based semi-supervised learning approaches and

performs relation classification based on a global consistency assumption by using the

4

graph-based method, i.e. LP algorithm.

The second objective is to investigate unsupervised learning method for relation

extraction problem with order identification capability. Model order identification

is achieved by resampling based stability analysis and used to infer the number of

relation types between entity pairs automatically.

The last objective is to introduce a novel application of spectral clustering tech-

nique to disambiguate various relations between named entities in a fully unsupervised

manner. The spectral clustering based method performs a dimensionality reduction

on the context vectors of entity pairs, and provides robustness and efficiency that

standard clustering methods do not display in direct use. We would like to verify

that the application of spectral clustering algorithm can improve the performance of

the above unsupervised relation extraction through experimental evaluation.

1.2.2 The Significance

The greatest significance of this study is that we can use the least annotated train-

ing examples to extract relations between entity pairs automatically through semi-

supervised and unsupervised manner. Experiments are conducted on the ACE corpus

to evaluate the proposed methods. The experimental results show that when only

a few labeled examples are available, our Label Propagation based relation extrac-

tion can achieve better performance than a Support Vector Machine based supervised

method and another bootstrapping method. Regarding the proposed unsupervised

approaches, the advantages include: a) it does not need any manual labeling of the

relation instances; b) it does not need to pre-define the number of the context clusters

or pre-specify the similarity threshold for the clusters. The experimental results show

5

the effectiveness of our proposed algorithm and improve the performance of relation

extraction compared to the previous unsupervised method (Hasegawa et al., 2004).

1.3 Overview of the Thesis

Chapter 2 gives the basic concepts related to relations. It analyzes the properties of

relations and describes the task of relation extraction as well as evaluation methods

used for this task.

Chapter 3 surveys the previous research work on Relation Extraction. The litera-

ture review starts with the Knowledge Engineering approaches, and then concentrates

on the machine learning based work, including supervised learning, semi-supervised

learning, and unsupervised learning based approaches. Advantages and disadvantages

of these approaches are discussed in the chapter.

Chapter 4 gives a brief introduction of the ACE corpus used in our experiments.

Chapter 5 focuses on the knowledge representation of issue of automatic relation

extraction task. The chapter first introduces the instance representation for each

occurrence of entity pairs, and then describes the feature set adopted in this study.

Chapter 6 presents a graph based algorithm, a label propagation (LP) algorithm,

for relation extraction task. It formulates the relation extraction problem in the

context of semi-supervised learning, and then provides a detail description of the

label propagation algorithm and shows how it works for relation extraction. This

chapter also introduces two similarity strategies used in the experiments. In the end

of the chapter, analysis and discussion of the experimental results are given.

Chapter 7 describes the design of the unsupervised method for relation disam-

biguation. The chapter first formulates the unsupervised relation extraction problem,

6

and then further presents the stability based model analysis algorithm to estimate the

“target” number of relation types. This chapter also provides the evaluation method

for context clustering result and shows the experimental results for the unsupervised

method.

Chapter 8 proposes another improved unsupervised model for relation disambigua-

tion, using a spectral clustering technique. First, the chapter models the unsupervised

relation disambiguation problem using the graph based strategy. Second, the chapter

presents how to apply the spectral clustering technique to resolve the task, which

involves how to transform the clustering space and how the Elongated K-means al-

gorithm works on the space. Finally, we describe experiments and evaluations for the

unsupervised method.

Finally, Chapter 9 presents conclusions and suggests future work.

7

Chapter 2

Background

Relation extraction is the task of detecting and classifying implicit and explicit rela-

tions between named entities from text contents. It is a key subproblem of information

extraction (IE), and is crucial in many natural language applications, such as question

answering (QA), bioinformatics, ontology construction and so on.

This chapter will present the background knowledge about relation and the rela-

tion extraction task. The first part of the chapter gives the basic notations and con-

cepts of relation. It analyzes the properties of relation. The second part describes the

task of relation extraction and introduces the commonly adopted evaluation methods

for this task.

8

2.1 Relation

2.1.1 What are Relations?

Generally, a relation is defined as a logical or natural association between two or

more things; or relevance of one to another; or connection. From the perspective of

computational linguistics, relations capture the association between named entities.

Every relation takes two primary arguments: the two named entities that it links.

A named entity is any concept that can be identified in text and is related to other

named entities. An entity mention is a reference of to a named entity. Entities may

be referenced in a text by their name, indicated by a common noun or noun phrase,

or represented by a pronoun. For example, the following are several mentions of a

single entity:

Name Mention: Joe Smith

Nominal Mention: the guy wearing a blue shirt

Pronoun Mentions: he, him

Named entities usually are limited to some entity types. Examples of entity types

are person, organization, and location. Here, we give the formal statement of the

concepts of named entities and relations:

Definition 2.1 (Named Entity) A named entity can be a single token or a set of

consecutive tokens with a predefined boundary. Named entities in a document

are labeled as E1;E2;... according to their order of appearance, and they take

values that range over a set of entity types CE.

Definition 2.2 (Relation) A (binary) relation Rij = (Ei; Ej) represents the relation

9

between Ei and Ej, where Ei and Ej are its two arguments. In addition, Rij

can range over a set of relation types CR.

Examples of relations are person-affiliation and organization-location. The person-

affiliation relation means that a particular person is affiliated with a certain organi-

zation. For instance, the sentence

“John Smith is the chief scientist of the Hardcom Corporation.”

conveys the semantic relation “person-affiliation”, between the entities “John

Smith” (PERSON) and “Hardcom Corporation” (ORGANIZATIONS).

2.1.2 Relation: Explicit / Implicit

Relations that are supported by explicit textual evidence will be distinguished from

those that depend on contextual inference on the part of the reader.

We do not include relationships dependent on a reader’s knowledge of the world.

All relations must be based on textual or contextual evidence found within the scope

of the document.

We consider a link to be syntactically explicit when a mention modifies another

one, or when two mentions are arguments of the same event. Any link between entities

that is implied by the text but not rooted in the syntactic connection between two

mentions is Implicit. Implicit relations are understood to be between two entities,

while explicit relations are considered to be between mentions of two entities.

10

2.1.2.1 Explicit Relations

Explicit relations are those for which the document provides explicit textual support.

This means that the two entity mentions identified as arguments of the relation occur

in one of the following syntactic constructions. These constructions either link one

entity to the other as a direct or indirect modifier, or else connect the two entities

together as arguments of an event.

¦ Modification

A modification links one entity to the other.

• Copular Predicate Modifier:

(Eg 2.1) President Clinton was in Washington today.

Relation: Located (“Clinton”, “Washington”)

• Prepositional Phrase:

(Eg 2.2) The CEO of Microsoft...

Relation: Role (“CEO”, “Microsoft”)

• Adjectival Modifier/Compound Nominal:

(Eg 2.3) The American envoy left the talks early.

Relation: Role (“envoy”, “American”)

• Possessive:

(Eg 2.4) Nathan Myhrvold, Microsoft’s chief scientist.

Relation: Role (“Microsoft’s chief scientist”, “Microsoft”)

11

• Conjoined Phrases and Many-to-one Relationships:

(Eg 2.5) the three permanent members of the UN, the US, England, and China

Relation: Role (“the three permanent members of the UN ”, “UN ”)

Role (“US”, “the three permanent members of the UN ”)

Role (“England”, “the three permanent members of the UN ”)

Role (“China”, “the three permanent members of the UN ”)

• Formulaic Constructions

For these standard constructions, we will capture the following relations.

Reporter sign-off:

(Eg 2.6) Jane Clayson, ABC News, South Lake Tahoe.

Relation: AT (“Jane Clayson”, “South Lake Tahoe”)

Role (“Jane Clayson”, “ABC News”)

Addresses:

(Eg 2.7) Mary Smith, Medford, Mass. I feel we should...

Relation: Role (“Smith”, “Medford”)

Elected officials:

(Eg 2.8) Senate Majority Leader Trent Lott (R-Miss.)

Relation: Role.Member (“Senate Majority Leader Trent Lott”, “R”)

AT.Residence (“Senate Majority Leader Trent Lott”,“Miss.”)

• Non-Identified Entities as modifiers

12

In cases where a modifier is not an identified entity, and entity embedded in a

modification chain may be promoted.

(Eg 2.9) Mary Smith at the Paris conference made a statement today.

Relation: At (“Smith”, “Paris”)

In this example, Paris modifies conference, which in turn PP-modifies Mary

Smith. Because conference is not an identified entity, Paris may be promoted

through the modification chain to fill the Location argument of the relation.

Note that promotion is allowable only through non-identified arguments.

¦ Events

The relation was conveyed by the linking both entities to an event.

• Event Clause:

(Eg 2.10) At one point, the marchers blocked the main road running through

Dura with boulders...

Relation: AT (“the marchers”, “the main road running through Dura”)

In Eg 2.10, the marchers and the main road running through Dura are linked

to the blocked event.

(Eg 2.11) Adam Merriman of Vail, Colo., who travelled to Japan...

Relation: AT (“Merriman”, “Japan”)

In the above case, the arguments are linked through relative clauses.

• Nominalized Event NP:

(Eg 2.12) Angry over the release of prisoners in the Irish republic...

13

Relation: AT (“prisoners”, “the Irish republic”)

2.1.2.2 Implicit Relations

Implicit relations are those relations that are not captured by an explicit relation or

a chain of explicit relations but that they believe are conveyed by the document as

part of the natural understanding of the document’s meaning.

(Eg 2.13) In what appeared to be effort to divert some flak away from Zhu, Hu

Jintao, another member of the Communist Party’s all-powerful seven-man Standing

Committee, is leading the working committee nominally in charge of devising the

streamlining plan.

In the above example, we can get an implicit relation between Zhu and Standing

Committee.

Note that implicit relations should have supporting contextual evidence for the

relation and do not include those relations that should be derived by combining an

understanding of the document with outside world knowledge. In the following is

another example, one article whose dateline was Copenhagen, Denmark began with

the sentence:

(Eg 2.14) Prime Minister Poul Rasmussen on Thursday made a surprise an-

nouncement of national elections.

and the remainder of the article all concerned Danish party politics. That docu-

ment does convey an implicit role relation between Rasmussen and Denmark because

the other connections and actions ascribed to Rasmussen in the rest of the article

only make sense if we do understand that he is the prime minister of Denmark.

14

Note that most current research involves explicit relations because of poor inter-

annotator agreement in the annotation of implicit relations and their limited number.

2.1.3 Relation vs. Non-relations

From the point of view of computational linguistics, relations that depend on external

world knowledge rather than on contextual evidence from the document are regarded

as non-relations. For example, transitive conclusions based on relations found in the

text do not count as identified relations.

(Eg 2.15) an Alabama women’s clinic

This example clearly conveys a Located explicit relation between the clinic and

Alabama, but while it might also suggest through transitivity Located relations be-

tween the clinic and the South, the US, or the world, such transitive conclusions do

not count as markable relations.

2.1.4 Coreference of Relation Mentions

When two relations connect the same two identified entities in exactly the same

relationship, they should be coreferenced with the same relation ID. And the values

of relation type must be identical. For example:

(Eg 2.16)

ROLE.Member (“the US”(GPE, E3), “UN”(ORG, E20))

ROLE.Member (“America” (GPE, E3), “the United Nations”(ORG, E20))

15

2.2 Relation Extraction Task

In the introduction chapter, we have mentioned that the problem of information

extraction has been roughly divided into two sub-tasks: Entity Extraction and Rela-

tion Extraction. The task of Entity Extraction is essentially a classification problem:

given a piece of text in a document, the task consists in deciding whether it fits into

some entity class. The task of Relation Extraction, also known as event extraction or

template filling, additionally aims to establish relations between the classified entities.

(Eg 2.17) Profits soared at Boeing Co., easily topping forecasts on Wall Street,

as their CEO Alan Mulally announced first quarter results. The Seattle-based com-

pany[...].

Entity Extraction task: identify the entities “Alan Mulally”, “Boeing” and “Seat-

tle” as instances of the Classes PERSON, ORGANIZATION, and LOCATION

respectively;

Relation Extraction task: identify the relations “”Alan Mulally - Boeing” and

“Boeing - Seatle” as instances of the class “PERSON - AFFILIATION ” and

“ORGANIZATION - LOCATION ”.

Entity extraction has received a lot of attention in IE research. Recently, relation

extraction is a focal point of attention.

Relation Extraction is the task to detect and classify implicit and explicit relation-

ships between named entities from text contents. It seems clear that extracting such

information could improve many applications, such as question answering. Though

generally useful, Relation Extraction is still a very complex and difficult issue to be

16

resolved. And traditional knowledge-based approaches for relation extraction will in-

evitably face its limitations. Hence, in this thesis we focus on the task of automatic

relation extraction problem.

Relation Extraction is an emerging NLP technology, and plays an important role

in many applications such as Question Answering (Litkowski, 1999; Katz and Lin,

2003; Jijkoun et al., 2004; Shen and Klakow, 2006), Bioinformatics (Rosario and

Hearst, 2004; McDonald et al., 2004a; Huang et al., 2004; McDonald et al., 2005),

and Ontology Construction (Navigli and Velardi, 2004; Omelayenko,) and so on.

First of all, relation extraction is a key to question answering. Text documents

often hide valuable structured data. For example, a collection of newspaper arti-

cles might contain information on the location of the headquarters of a number of

organizations. If we need to find:

What is the location of the headquarters of Microsoft?

we could try and use traditional information retrieval techniques for finding doc-

uments that contain the answer to our query (Salton, 1998). The näıve strategy is

to find documents in which [LOCATION 〈 unknown 〉] and [ORGANIZATION 〈 Mi-

crosoft 〉] are within each other’s vicinity. This strategy can produce nice results, but

does not always work. Alternatively, we could answer such a query more precisely if

we somehow had available a table listing all the organization-location pairs that are

mentioned in our document collection. A tuple 〈o, l〉 in such a table would indicate

that the headquarters of organization o are in location l, and that this information

was present in a document in our collection. Tuple 〈Microsoft, Redmond〉 in our

table would then provide the answer to our query, Figure 2-1 shows such an example

17

Organization Location

Microsoft Redmond

Apple

 Computer
Cupertino

Nike Portland

Apple'

Cupertino, Cal Nike

Portland,

Ore

s programmers "think different" on a "campus" in

. employees "just do it" at what the

company refers to as its "World Campus," near

.

Brent Barlow, 27, a software analyst and

 beta-tester at Apple Computer headquarters

in , was fired Monday for "thinking

a little too different."

Microsoft's central headquarters in Redmond

is home to almost every product group and division.

Cupertino

Figure 2-1: An example for tuples of Organization/Location .

for tuples of Organization/Location.

Relation extraction is also very important for bioinformatics. The volume of

biological literature is increasing exponentially. This makes it difficult for biologists

to keep up with current research or to find particular pieces of information that they

need. Using keywords to narrow the search often produces far more candidates than

can be properly read (or processed). Therefore, relation extraction techniques have

been applied in biomedical domain to identify various relations among biomedical

entities, such as DNA, proteins, diseases, etc. Especially, identifying the interactions

between proteins is one of the most important challenges in modern genomics, with

applications throughout cell biology, including expression analysis, signaling, and

rational drug design.

Relation extraction is crucial for ontology construction. With the rapid increase of

data on the internet, the process of constructing ontologies manually becomes costly

18

and difficult for ontology engineering. The researchers of ontology construction can

use relation extraction technologies to identify relationships between ontology con-

cepts automatically. This reduces the effort necessary for the knowledge acquisition

process.

Due to its importance, relation extraction has received more and more research

interest in recent years. In the most recent MUC, relation extraction is defined as an

important subtask of information extraction. In the Automatic Content Extraction

Program (ACE)1, which aims to develop automatic content extraction technology to

support automatic processing of source languages, the relation extraction task has

also been emphasized as an absolutely necessarily objective, ACE RDC subtask.

For a relation extraction task, we would like to answer the following two questions:

Q1 : Is there a relation between two entities?

Q2: If so, which type of relation exists between the two entities?

The answers to these two questions correspond to the two subtasks. That is,

• Relation Detection

• Relation Classification

2.3 Evaluation of Relation Extraction

The necessity for an evaluation metric for the relation extraction problem started with

MUC. The starting points for the development of these metrics were the standard IR

metrics of recall and precision. However, the definitions of these measures have been

altered from those used in IR, although the names have been retained.

1http://www.ldc.upenn.edu/Projects/ACE/

19

Extracted Ideal

Correct

location

Figure 2-2: The visualization of evaluation metric.

In the relation extraction task, recall may be interpreted as a measure of the

fraction of relation instances that has been correctly extracted, and precision as a

measure of the fraction of extracted relation instances that is correct. Recall then

refers to how many relation instances are correctly extracted, while precision refers

to the reliability of the relation instances extracted.

Precision and recall are defined as follows:

Precision =
|Correct (Extracted

⋂
Ideal) |

|Extracted
⋂

Ideal | (2.1)

Recall =
|Correct (Extracted

⋂
Ideal) |

| Ideal | (2.2)

Both recall and precision are always on the interval [0,1], their optimum being at

1.0. They are, however, inversely related to each other, meaning that by allowing for

a lower recall one can achieve a higher precision and vice versa.

And F −measure is the harmonic mean of Recall and Precision:

F −measure =
2×Recall × Precision

Recall + Precision
(2.3)

20

Chapter 3

Literature Review for Relation

Extraction

Relation extraction has long been recognized as an important and difficult problem

by researchers in linguistics, philosophy and computer sciences. This chapter will give

a review of literature on the research of relation extraction, which is organized in a

way that reflects the trend of the research in this field.

This chapter begins with the traditional knowledge engineering approach and

provides a categorization of existing approaches. Then it focuses on presenting the

learning based work, which uses supervised learning, semi-supervised learning and

unsupervised learning based approaches.

21

3.1 Knowledge Engineering Approach

In this last decades, to solve the relation extraction problem, many methods have

been proposed. In principal, the used approaches can be categorized into two groups:

1. The Knowledge Engineering approach;

2. The Learning approach.

The Knowledge Engineering (KE) approach asks for a system developer, who is

familiar with both the requirements of the application domain and the function of the

designed IE system. The developer is concerned with the definition of rules used to

extract the relevant information. Therefore, a corpus of domain-relevant texts will be

available for this task. Furthermore, she or he is free to apply any general knowledge

or intuitions in the design of rules. Thus, the performance of the IE system depends

on the skill of the knowledge engineer. The KE approach uses an iterative process,

whereas within each iteration the rules are modified as a result of the system’s output

on a training corpus. Thus, the KE approach demands a lot of effort.

The task of relation extraction was first introduced as part of the Template El-

ement task in MUC6 (MUC, 1995). Most works at MUC were rule-based, which

are the representative of the KE approach for relation extraction. They tried to use

syntactic and semantic patterns to capture the corresponding relations by means of

manually written linguistic rules.

Due to the cumbersome manual generation of extraction rules accomplished by

knowledge engineers, research has been directed towards automating this task with

learning approaches. Learning approaches do not require system expertise. This

approach calls only for someone who has enough knowledge about the domain and

22

the tasks of the system to annotate the texts appropriately. According to the differ-

ent machine learning strategy adopted, these approaches may be divided into three

categories: supervised learning methods, semi-supervised learning methods and un-

supervised learning methods.

3.2 Supervised learning methods

Supervised learning methods learn relation patterns using corpora which have been

annotated to indicate the information to be extracted. A range of extraction models

have been used.

3.2.1 Integrated Parsing

The system proposed by Miller et al. (2000) used an integrated supervised parsing

approach. The novelty of their system is to re-annotate natural language parse trees

to include relation information at each non-terminal node. Using the re-annotated

trees, it is then possible to train a parser (they use the Collins parser (Collins, 1997))

to parse new sentences and extract relation information accordingly.

To build a statistical parsing model which simultaneously recovers syntactic rela-

tion and the information extraction information, Miller et al. (2000) used the following

steps:

Step 1: annotate training sentences for entities, descriptors, coreference, links, and

relation links;

Step 2: train a Collins parser on the Penn treebank (Marcus et al., 1993), and apply

it to the new training sentences. Force the parser to produce parses that are

23

NP/per-desc-r

NP/per-desc

DT VBN NN

a paid consultant

NP/org-r

TO

to

NNP/org

News

NNP/org

ABC

PP /org-ptr

involved ...was

VP

S

Figure 3-1: An example of a parse tree with entity annotations but no relation anno-
tations.

NP/per-desc-r

NP/per-desc

DT VBN NN

a paid consultant

NP/org-r

TO

to

NNP/org

News

NNP/org

ABC

PP-link/employee-of

PP /org-ptr

involved ...was

VP

S

Figure 3-2: An example of an augmented parse tree from Figure 3-1 with relation
annotated.

consistent with the entity/descriptor etc. boundaries;

Step 3: augment the parse trees to include the entity and relation information;

Step 4: re-train the Collins parser on the augmented trees in order to tag new sen-

tences.

Miller et al. (2000)’s model is based on a fundamental insight: the realization that

by encoding relation and entity information into a parse-tree’s non-terminals, results

24

in the ability to train a state-of-the-art parser to extract relations. No additional

models are necessary for relations or entities since they are encoded in the resulting

parse tree.

Figure 3-1 shows us an example of an parse tree with entity annotations. In this

sentence, the string a paid consultant to ABC News is a person description, in which

ABC News is an organization. Both entities are in an employee-of relation. This is

the case when the modifier entity is actually part of the entity being modified. In such

case, Miller et al. (2000) insert a link node directly below the topmost node and the

child of that node that subsumes the second entity in the relation (the organization

in this case). This node is then labeled with the employee-of relation and receives the

same syntactic category as the child node. The augmented parse tree with relation

annotated can be seen in Figure 3-2.

The above example addressed the case when one entity in the relation modifies

the other. When two entities related in a tree are non-overlapping or non-modifying,

Miller et al. (2000) handled the case by finding the lowest-most node that subsumes

both entities and then the node is augmented to indicate the relation type.

With the augmented syntactic full parse trees with semantic information corre-

sponding to entities and relations, Miller et al. (2000) built generative probability

models for the augmented trees. At the training stage, rules for a lexicalized prob-

abilistic context free grammar were estimated that incorporated that semantic at-

tributes. At the evaluation stage, the decoding process yielded a relation-specific

interpretation of text, in addition to a syntactic parse.

The system was evaluate on MUC-7, obtained 81% precision and 64% recall in

recovering relations.

25

The intuition behind the integrated parsing approach seems sound. Every entity,

relation, POS, and parse tree decision is related and they should all be made at the

same time. However, one of the primary disadvantages of the Miller et al. parser is

its inability to incorporate long-range features into relation decisions. The reason is

that parsing models are constrained to be local (due to complexity issues), that is,

Collins parsing model only considers local pairwise dependencies with very little his-

tory (relative to the entire tree). Another possible drawback is the use of a generative

parse model since generative models cannot easily represent a rich set of dependent

features in a computationally tractable manner.

3.2.2 Kernel Methods

3.1.2.1 Zelenko et al. (2002)

Zelenko et al. (2002) designed a model, which extracts relations by computing ker-

nel functions between parse trees, to combat the problems that arose in Miller et

al. (2000)’s approach. Unlike Miller et al. (2000)’s work, Zelenko et al. (2002) use

shallow parses and not full parses to encode relations. For each shallow parse, the

model generates all possible relation instantiations and makes straightforward yes/no

classifications on each instantiation to determine what relations, if any, it may con-

tain.

Shallow Parsing A shallow parse is like a full parse, except it only aims to identify

the basic surface level components of a sentence, such as noun phrases and en-

tities. The shallow parser used by Zelenko et al. (2002) identifies noun-phases,

people, organizations and locations as well as the part-of-speech tags of those

words that occur outside noun-phrases or within noun-phrases when there are

26

Type = Sentence

Type = Person
Text = John Smith

Type = Verb
Head = be

Type = PNP
Head = scientist

Type = PNP
Head = scientist

Type = Prep
Text = of

Type = Entity
Text = Hardoom Corp.

Type = Det
Text = the

Type = Adj
Text = chief

Type = Noun
Head = scientist

Figure 3-3: An example of input to the system of Zelenko et al. (2002).

non-noun words. Once the shallow parse regions of a sentence have been estab-

lished, the primary question asked is whether a subtree is an example of the

relation of interest. Assuming there is a large set of labeled data, it is possible

to create a set of positive and negative examples for classification. For example,

say there was interest in the employee-of relation. First a sentence is parsed

with the shallow parser. Then for every person/organization pair in the tree, the

lowest common node subsuming both entities is found and the subtree rooted

at that node extracted. The entity nodes are labeled with a role (e.g., person

or organization) in the relation. If those entities are known to be related, then

the subtree is given a positive classification and negative otherwise.

Kernels for Relation Extraction Having extracted various positive and negative

examples it is fairly straightforward to create a classifier to identify sub-trees

containing the relation of interest. Kernel methods do not explicitly gener-

ate features. More precisely, an example is no longer a feature vector as it is

27

common in machine learning algorithms. Instead, examples retain their origi-

nal representations (of shallow parses) and are used within learning algorithms

only via computing a similarity (or kernel) function between them. That is, the

approach passes parse tree representations directly into the kernel. Figure 3-3

shows an example of such input. The nodes of the shallow parse trees have at-

tributes, Zelenko et al. (2002) define the following kernel on two subtrees rooted

at nodes N1 and N2:

K(N1, N2) =





0, if t(N1, N2) = 0;

k(N1, N2) + Kchild(N1, N2), otherwise.
(3.1)

t(N1, N2) =





1, if N1.role = N2.role & N1.type = N2.type;

0, otherwise.
(3.2)

k(N1, N2) =





1, if N1.text = N2.text;

0, otherwise.
(3.3)

Classification Every kernel implicitly represents the dot product of the two input

examples in some high dimensional space. Therefore, any learning algorithm

that can be reformulated so that each input example is only used in dot product

calculations with other input examples can be considered a kernel method,

since it is always possible to substitute a kernel calculation for a dot product

calculation. Zelenko et al. (2002) experiment with both the voted perceptron

(Freund and Schapire, 1999) and support vector machines (SVMs). SVMs are

similar to the perceptron in that they find a separating hyperplane (when the

data is separable), except that SVMs guarantee that the hyperplane returned

28

Table 3.1: List of features assigned to each node in the dependency tree.

Feature Example
word troops, Tikrit

part-of-speech (24 values) NN, NNP
general-pos (5 values) noun, verb, adj

chunk-tag NP, VP, ADJP
entity-type person, geo-political-entity
entity-level name, nominal, pronoun

Wordnet hypernyms social group, city
relation-argument ARG A, ARG B

will be that that which maximizes margin.

3.1.2.2 Culotta and Soresen (2004)

Culotta and Soresen (2004) extended the work of Zelenko et al. (2002) to estimate

kernel functions between augmented dependency trees. They represent each relation

instance as an augmented dependency tree. A dependency tree represents the gram-

matical dependencies in a sentence; they augment this tree with features for each

node (e.g. part of speech). Table 3.1 lists the features assigned to each node in the

dependency tree. Figure 3-4 shows two relation instances, where each node contains

the original text plus the features used for the matching. Culotta and Soresen (2004)

use the subtree for each pair of entities in a dependency tree that includes both enti-

ties instead of the entire tree to reduce noise and emphasize the local characteristics

of relations. They choose this representation based on the hypothesis that instances

containing similar relations will share similar substructures in their dependency trees.

Culotta and Soresen (2004) evaluate their approach on the ACE corpus, and achieved

63.2 F-measure in relation detection and 45.8 F-measure in relation classification on

the 5 ACE relation types. The kernel in (Culotta and Soresen, 2004) is a recursive

29

t0

moved
verb
NA
NA

t1

forces
noun

person
ARG_A

t3

toward
prep
NA
NA

t4

Baghdad
noun

geo-political
ARG_B

t2

quickly
adverb

NA
NA

t0

advanced
verb
NA
NA

t1

Troops
noun

person
ARG_A

t3

near
prep
NA
NA

t4

Tikrit
noun

geo-political
ARG_B

Figure 3-4: Dependency tree for two instances of the near relation.

match from the root of a dependency tree down to the leaves where the entity nodes

reside, a successful match of two relation examples requires their entity nodes to be

at the same depth of the tree. This is a strong constraint on the matching of syntax.

To sum up, kernel-based approaches proposed by Zelenko et al. (2002) and Culotta

and Soresen (2004) are able to exploit non-local dependencies since they are not re-

quired to model the parse structures of their system (unlike Miller et al. (2000)). This

is explicitly handled through the similarity metric. Trees that share more substruc-

ture will be given a higher similarity score, making the function global in nature.

Furthermore, kernel-based methods are able to explore the implicit feature space

without much feature engineering and by reformulating the problem into a yes/no

classification problem, they are able to take advantage of state-of-the-art discrimina-

tive classification techniques like SVMs (Joachims, 2002) and the voted perceptron

(Collins, 2002) to easily handle millions of highly dependent features. And kernel

function appears to be a good similarity metric. However, in places the kernel seems

a little restrictive. For instance,the indicator function k(x, y) that is only on when

substrings match exactly is excessive. A function that takes into account string sim-

30

ilarity, edit distance or even word overlap might be more indicative. Yet further

research work on exploring more feature information is still expected to make it ef-

fective with complicated relation extraction tasks.

3.2.3 Feature-based Methods

The most recent model emphasizes feature extraction as proposed by Kambhatla

(2004) and Zhou et al. (2005). The feature-based approaches take advantage of dis-

criminative classification techniques to incorporate the diverse lexical, syntactic and

semantic information. Unlike kernel based methods, in feature based methods, exam-

ples are represented using feature vectors and the discriminative classification model

applies directly to predict the type of relation (if any) between every entity mention

pairs within each sentence.

Kambhatla (2004) employed maximum entropy models for extracting relations.

For each pair of entity mentions, Kambhatla (2004)’s system compute feature streams

derived from word, entity type, mention level, overlap, the syntactic parse tree and

the dependency tree. All the syntactic features are derived using a statistical parser

trained on the Penn TreeBank using the maximum entropy framework (Ratnaparkhi,

1999). The system is evaluated on ACE corpus and achieves 52.8 F-measure on the

24 ACE relation subtypes.

Zhou et al. (2005) further explored the feature-based approach with a systematic

study on the extensive incorporation of diverse lexical, syntactic and semantic in-

formation using SVM. Compared with Kambhatla (2004)’s work, Zhou et al. (2005)

separately incorporate the base phrase chunking information, which contributes to

most of the performance improvement from the syntactic aspect. They also show

31

how semantic information like WordNet and name lists can be equipped to further

improve the performance. In addition, evaluation on the ACE corpus shows the

feature-based approach by Zhou et al. (2005) outperforms tree kernel-based systems

(Culotta and Soresen, 2004) by over 20 points in F-measure on 5 ACE relation types.

The above supervised methods have been particularly successful in some specific

domains. And we also learned from these methods that the incorporation of diverse

features enable systems to combine various kinds of evidence to assist relation extrac-

tion. However, the drawback in supervised learning method is that manually tagging

of large amounts of training data is time-consuming. Furthermore, it is difficult for

one extraction system to be reused across different domains.

3.3 Semi-Supervised Learning methods

Due to the limitation of supervised learning methods, semi-supervised learning meth-

ods have been put forward to lessen the corpus annotation requirement. Among the

earlier efforts on relation extraction, there are three representative systems that use

semi-supervised learning method.

3.3.1 Background: Bootstrapping

Bootstrapping is a general class of semi-supervised learning algorithms. There are two

forms of bootstrapping that garner the most attention in the natural language pro-

cessing community. Blum and Mitchell (1998)’s co-training algorithm and Yarowsky

(1995)’s algorithm. At the heart of both algorithms is the notion of a weak learner

(or learners) and a large set of unlabeled examples. The algorithm is iterative, using

32

Table 3.2: Bootstrapping with the Yarowsky’s (1995) algorithm. Conf(D) is the set
of labellings of data D with confidence greater than some threshold.

Algorithm: Bootstrapping

Input: A set of seed examples S and a set of unlabeled data D

1. T = S ;

2. Train a classifier C on T ;

3. Label D using C ;

4. T = Conf(D)
⋃

S;

5. Repeat step 2-5 until convergence;

6. Label D using C.

the output of the learner as training data for the next iteration. Ideally, this process

will improve performance. Co-training uses two or more learners, each with a sep-

arate view of the unlabeled data. The output of one is then used as the input for

others during the next iteration of training. Yarowsky (1995)’s algorithm uses just

one trainer, taking the highest confidence examples on each iteration as training for

the next iteration. Yarowsky (1995)’s algorithm is the framework primarily deployed

by most semi-supervised relation extraction approaches. Table 3.2 outlines the basic

Yarowsky (1995)’s algorithm.

When using the Yarowsky (1995)’s algorithm to design system, two considerations

must be taken into account, that is, selectivity and coverage. Selectivity refers to our

confidence in the classifier’s ability to generate precise training examples for future

iterations. If the classifier routinely generates false positives, then its accuracy will

decrease every iteration, until it becomes of no use whatsoever. This is easily managed

by manipulating the classifier to only output positives with extremely high confidence.

However, selectivity must be balanced with coverage. Coverage is the system’s

33

ability to generate new (or all) labeled examples. A classifier that is overly selec-

tive will not introduce any new examples and the system will terminate without

significantly expanding its seed set. Both these issues play a central role in the con-

siderations of existing system for relation extraction, like (Agichtein and Gravano,

2000).

3.3.2 DIPRE (Brin, 1998)

DIPRE (Dual Iterative Pattern Relation Expansion) by Brin (1998) is a bootstrapping-

based system that used a pattern matching system as a classifier to exploit the duality

between sets of patterns and relations. The technique was used to extract (author,

book) relation from the World Wide Web.

DIPRE starts with a small set of (author, book) relations. The system then

extracts a tuple for every instance of a (author, book) seed pair in relative proximity:

[author, book, order, left, middle, right]

where order is 1 if the author string occurs before the book string and 0 oth-

erwise, left/right are strings containing the 10 characters occurring to the left/right

of the match and middle the string occurring between the author and book. For

example, the tuple extracted for (Shakespeare, King Lear) for the string, “Consider

Shakespeare’s play King Lear, which tells the tale ...” would be:

[Shakespeare, King Lear, 1, ‘Consider’, ‘’s play’, ‘ which tel’]

Each tuple extracted is then grouped by matching order and middle. For each

group of tuples, the longest common suffix of the left field and the longest common

34

prefix of the right field is extracted. Hence, each group induces a pattern:

long-comm-suff(left).AUTHOR.middle.BOOK.long-comm-pref(right)

The above example is for the case when order dictates author before title. Using

such a pattern allows the system to extract new examples of (author, book) pairs. In

turn these pairs can generate new patterns.

The primary problem is that some patterns are too easily matched and lead to

many false positives. To combat this, DIPRE scores each pattern by |prefix||middle||suffix|,
where |s| is the length of string s. Intuitively larger strings are harder to match as

they are less common, making these matches more significant. In order to reduce

false positives, DIPRE simply throws away all patterns whose score is less than some

threshold.

This algorithm is easy to relate to the Yarowsky algorithm. The classifier used by

DIPRE is simply a pattern matching system, which is trained by extracting patterns

for known (author,book) pairs. All strings that match at least one of the classifier’s

patterns are classified as positive and all other strings negative. The (author,book)

pairs in the strings classified as positive and then added to the set of labeled examples

to retrain the classifier (i.e., extract more patterns). DIPRE terminates when no new

candidate pairs are extracted, or when a human observer decides sufficiently many

pairs have been returned.

One of the central insights of DIPRE is that the size of the web allows the use

of extremely selective patterns to induce new example pairs of (author,book). Even

with extremely selective patterns, new seed examples will be introduced due to the

sheer size of the web. Hence, DIPRE explicitly maintains selectivity by using highly

35

Occurrences of Seed Tuples

Tag Entities

Generate Extraction Patterns

Generate New Seed Tuples

Augment Table

Initial Seed Tuples

Figure 3-5: The main components of the snowball system.

precise patterns and implicitly increases coverage through the size of the unlabeled

data set.

3.3.3 SnowBall (Agichtein and Gravano, 2000)

Snowball by Agichtein and Gravano (2000) is another system that used bootstrap-

ping techniques for extracting relations from unstructured text. Snowball shares

much in common with DIPRE, including the employment of the Yarowsky (1995)’s

bootstrapping framework as well as the use of pattern matching to extract new can-

didate relations. The relation that Snowball focuses on is the (organization, location)

relation. Figure 3-5 shows the main procedure of Snowball system.

Initial Seed Tuples

We can see that like DIPRE, the Snowball system begins with some initial seed tuples

(ok, lk). Figure 3-6 gives us some examples of the initial seed tuples.

36

ORGANIZATION LOCATION

Microsoft Redmond

IBM Armonk

Boeing Seattle

Intel Santa Clara

Figure 3-6: The initial seed tuples of snowball.

Occurrences of Seed Tuples and Generate extraction Patterns

Snowball then extracts a tuple for every string in which a known location and organi-

zation pair (ok, lk) are closed to one another: [l, e1,m, e2, r]. Where e1, e2 ∈ {loc, org}
& e1 6= e2. m is a feature vector that represents the tokenized terms that occur

between the identified pair. Similarly l and r are also feature vectors representing

the tokenized terms occurring to the left or right of the pair up to some limit on the

number of terms.

Agichtein and Gravano (2000) define a similarity function over extracted tuples:

Match(tupi, tupj) =





(li · lj) + (mi ·mj) + (ri · rj), if e1,i = e1,j & e2,i = e2,j;

0, otherwise.

(3.4)

tupi = [li, e1,i,mi, e2,i, ri]

Clearly tuples that share common terms in their feature vectors are going to have

higher similarity over those that do not. Also note that this is a much softer matching

criteria than used by DIPRE.

Snowball then induces patterns in two steps. The first step is to cluster all the

tuples into a set of groups, G = {g1, ..., gm}, gk = {tupk
1, ..., tupk

n}, using the similarity

37

function Match. In the second step, each group, gk ∈ G induces a tuple pattern:

pgk = [lC , e1,mC , e2, rC]

where lC , mC and rC are the centroids of all the left, right and middle feature

vectors for the tuples in the group. By the definition of the similarity metric, Match,

every tuple belonging to the same group will have identical values for e1 and e2.

Snowball handles selectivity by first removing the group that induced the pattern

only contained a small number of tuples. A confidence score is then assigned to each

pattern:

Conf(pgk) =
numpos(pgk)

numpos(pgk) + numneg(pgk)
(3.5)

where numpos(pgk) and numneg(pgk) are the numbers of positive and negative pairs

resulting from the application of each pattern pgk, respectively.

Unlike DIPRE, which uses patterns with the highest confidence to introduce new

pairs for the next iteration, Snowball uses the confidence measure of patterns to

recalculate the confidence of the pairs that the induced patterns extract. Only those

pairs with highest confidence are kept for the next iteration.

Tag Entities and generate new Seed Tuples

To extract new pairs, Snowball runs a named-entity tagger over the data to identify

all the location and organization entities within the documents. For each organi-

zation/location pair, (o, l) that are within the same sentence, the system extracts a

tuple, tup(o,l) in the same manner as in the previous section. Hence, a pair that occurs

many times will have a set of tuples associated with it, tup
(j)
(o,l). This tuple is then

compared to all the induced patterns that were previously extracted and introduced

to the classifier.

38

For each candidate pair, (o, l), the system records which patterns match the pair

with a similarity greater than τsim, as well as what the similarity value is.

M = {< pgk,Match(tupj
(o,l), pgk) > |∀pgk, tupj

(o,l) s.t.Match(tupj
(o,l), pgk) > τsim}

(3.6)

Let Mi[0] be the pattern involved in the ith entry of M and Mi[1] be the similarity

score causing this entry.

Snowball defines the confidence of a pair, (ok, lk) as:

Conf((ok, lk)) = 1−
|M |∏

i=0

(1− (Conf(Mi[0]) ·Mi[1])) (3.7)

The seed set for the next iteration is set to the original seed set, plus the candidate

pairs with the highest confidence (confidence greater than τconf).

One disadvantage of Snowball is that it relies on an intrinsic property of organiza-

tions and locations - that every organization has its headquarters in only one location

- when calculating the confidence score of a pattern. This property does not hold for

all relations. For instance, in the author-of relation, one author can be associated

with many books and one book with many authors. Even organizations can have

multiple headquarters in different parts of the world.

Another disadvantage of Snowball is its reliance on a large number of input pa-

rameters for similarity and confidence. The definition of most of these parameters is

clear, but there is no guarantee that good values on one set of data will translate to

good values on all sets of data. However, these parameters do provide a method for

which users can balance their requirements of the system.

Moreover, the use of (Yarowsky, 1995) style bootstrapping algorithms may cause

39

the problem that the patterns that the system extracts degrade with every iteration

since ultimately some errors will be introduced to the system.

3.3.4 Zhang (2004)’s Method

The third system approached the relation classification problem with bootstrapping

on top of Support Vector Machines as proposed by Zhang (2004). This system focuses

on the ACE subproblem, RDC, and extracts various lexical and syntactic features

for the classification task, which includes lexical features, shallow-syntactic features,

deep-syntactic features, and so on. However, they don’t actually “detect” relations.

Rather, their goal is to classify the type of relation between two entities given that

they are known to be related.

Table 3.3 shows their bootstrapping procedure based on random feature projec-

tion. The basic idea is to generalize the co-training algorithm (Blum and Mitchell,

1998) and relax its two assumptions1, by only exploiting the potential redundancy in

the feature space.

Instead of explicitly “splitting” the feature space, they generate multiple overlap-

ping “views” by random projection from the original feature space. Specifically, in

each projection, the features are randomly selected with probability p, and therefore

the eventual projected feature space has p ∗ F features on average, where F is the

size of the original feature space. Classifiers trained in the projected spaces are then

asked to vote on the unlabeled data points. And the agreement measure in Table 3.3

1Two assumptions for the original co-training algorithm (Blum and Mitchell, 1998):

• are both sufficient for classification;

• are conditionally independent given the label.

40

Table 3.3: Zhang (2004)’s bootstrapping procedure based on random feature projec-
tion.

Algorithm Bootstrapping using random feature projection

Input: labeled seed set L and unlabeled data set U ;

batch size S;

number of projections P ;

feature sampling probability p;

Begin

repeat

for i = 1 to P do

Generate projected feature space Fi, by randomly selecting

features probability p;

Project both L and U onto Fi, thus generate Li and Ui;

Train classifier Ci on Li;

Run Ci on Ui;

end for

Find (at most) S instances in U with the highest agreement

among the P classifiers and assign the most dominant label;

Add them into L;

until No data points available or no reasonable agreement can

be reached.

End

41

are defined using the notion of entropy:

H = −
C∑

i

‖ri‖
B

log
‖ri‖
B

(3.8)

The proposed algorithm evaluated on the ACE corpus and showed us that it can

reduce the need for labeled training data with sacrificing of performance.

From the survey, we found that current works within the realm of semi-supervised

relation extraction mostly use the bootstrapping algorithm. The algorithm does not

require a large number of time-consuming hand annotations and one only need pre-

define a small set of initial seeds. However, in each iteration step of the bootstrapping

procedure, unlabeled examples are classified using a model only trained from labeled

data. In other words, it is based on a local consistency assumption: examples close

to labeled examples within the same class will have the same labels. This is also the

assumption underlying many supervised learning algorithms. Such methods ignore

considering the similarity between unlabeled examples and do not perform classifi-

cation from a global consistency viewpoint, which may fail to exploit appropriate

manifold structure in data. Another common feature of these algorithms is that

they need to pre-define some initial seeds for any particular relation so that they can

bootstrap from the seeds to acquire the relation. However, it is very subjective to

determine how to select these seeds and how many seeds to be selected.

42

�������������� ������� ������

�	�
��	��

����

�����
�
�	��������
�
���
�

�����
	�	�
���

�	��	�

��
	�

�������	

������� �������	
�

��������������

�

������� ������

�����
���
	���

����

���		�

����

����������	
�

����

����

�

���������
�
	�
�

� �	�
��	��

���� �

����
	�	��
�	����	��	��
�
�!

"#�
���	�$��	�
��	��

���� %

���$"&'$(&�"

")����	�� (���	���)����	��

�
�
	�
�)
���

$�������
	��

�
�
	�

Figure 3-7: The overview of Hasegawa et al. (2004)’s unsupervised system.

3.4 Unsupervised Learning methods

3.4.1 Context Similarity Based: Hasegawa et al. (2004)

Although semi-supervised learning approaches lessen the need of large annotated cor-

pus, they still need some human intervention to pre-define initial seeds. To avoid this

constraint, Hasegawa et al. (2004) proposed a method to resolve relation extraction

problem in a completely unsupervised way. Figure 3-7 shows the procedure of the

unsupervised method. Their assumption is that pairs of entities with same relations

between them tend to occur in similar contexts, and the representative words in the

contexts can be regarded as a characterization of the relation. Thus, their method

contains three key steps:

Collect context vectors: getting co-occurrence pairs of named entities and their

43

context, where a context vector for each named entity pair consists of the bag

of words formed from all intervening words from co-occurrences of two named

entities, and each word of a context vector is weighted by tf ∗ idf , the product

of term frequency and inverse document frequency;

Cluster named entity pairs: clustering the context vectors in which the pairs of

entities occur using a hierarchical clustering method, where cosine similarity

is adopted to calculate the similarities between the set of contexts of Named

Entity pairs;

Label clusters: selecting the most frequent words from the context to label the

relation.

Hasegawa et al. (2004)’s system only compare named entity pairs which have the

same named entity types, e.g., one PERSON-GPE pair and another PERSON-GPE

pair. Moreover, they assume that for any two particular entities e1 and e2, they

may hold only one kind of relations. Hence, they accumulate context words for all

occurrences of entities e1 and e2 to construct the context vector.

For the unsupervised approach, we noticed some limitations. First, they adopted a

hierarchical clustering method to cluster the contexts. However, the similarity thresh-

old for the clusters, such as the appropriate number of clusters, is somewhat difficult

to pre-define. Second, after context clustering, they select the most frequent words in

the contexts to represent the relation that holds between the entities. However, such

words may occur frequently in other clusters too, and may not have adequate quality

to discriminate between clusters.

44

3.4.2 Tree based similarity: Zhang et al. (2005)

Zhang et al. (2005) proposed another unsupervised learning method using tree simi-

larity based clustering to extract relations between named entities from a large raw

corpus. The method regards relation extraction as a clustering problem on shallow

parse trees. The similarity between two relation instances is defined between two

parse trees. And clustering entity pairs is based on the similarity score generated by

the tree similarity function.

First, Zhang et al. (2005) extend the tree kernels in (Zelenko et al., 2002) to a

novel tree similarity measure function. The tree similarity function K(T1, T2) over

two trees T1 and T2, with the root nodes r1 and r2, is defined as follows:

K(T1, T2) = m(r1, r2) ∗ {s(r1, r2) + Kc(r1[c], r2[c])} (3.9)

where the kernel function K(T1, T2) is defined in terms of the similarity function

s(r1, r2) between the parent nodes, r1 and r2, and the similarity function Kc over the

two children node sequences r1[c] and r2[c].

m(pi, pj) =





1, if pi · f2 = pj · f2;

0, otherwise.
(3.10)

s(pi, pj) =





1, if pi · f1 = pj · f1 & pi · f3 = pj · f3 ;

0.5, else if pi · f1 = pj · f1;

0.25, if other features match;

0, no match.

(3.11)

45

Kc(p1[c], p2[c]) = arg max
a,b,l(a)=l(b)

{K(p1[a], p2[b])} (3.12)

K(p1[a], p2[b]) =
l(a)∑

i=1

K(p1[ai], p2[bi]) (3.13)

Then, following the clustering strategy of Hasegawa et al. (2004), the similarity

between parse trees is used in a hierarchical clustering algorithm to group entity

pairs into different clusters. Finally, each cluster is labeled by an indicative word and

unreliable clusters are pruned out.

Since the system by Zhang et al. (2005) mainly follows the hierarchical clustering

strategy, it would inevitably face the same limitations in (Hasegawa et al., 2004).

3.5 Summary

In this chapter we gave a literature review of the previous work on relation extraction

task. Our discussion focused on machine learning based resolutions. Compared with

the knowledge engineering approaches, the machine learning approaches can auto-

matically learn relation patterns from the training data. According to the different

machine learning strategies adopted, existing learning based approaches for relation

extraction can be divided into three categories: supervised learning methods, semi-

supervised learning methods and unsupervised learning methods.

Supervised learning based approaches use a training model to learn relation pat-

terns from annotated data. A range of extraction model have been used. Miller et

al. (2000) use an integrated parsing approach to extracting relations. In (Miller et

al., 2000), full parse trees are used to represent relations and the system makes all

relation, entity and syntax decisions at once using a generative probability model.

46

Later kernel methods (Zelenko et al., 2002) have been proposed to combat the prob-

lem of Miller et al. (2000)’s system. Unlike Miller et al. (2000), Zelenko et al. (2002)

use shallow parses and not full parses to encode relations. The model of (Zelenko et

al., 2002) used the output of a shallow parser as its gold standard. For each shallow

parse, the model generates all possible relation instantiations and allows for the use

of discriminative classification techniques. Culotta and Soresen (2004) extended the

work of Zelenko et al. (2002) to estimate kernel functions between augmented depen-

dency trees. Each relation instance is represented as an augmented dependency tree.

Recently, feature-based methods have been put forward to takes advantage of dis-

criminative classification techniques to incorporate the diverse lexical, syntactic and

semantic information for supervised relation extraction task. The major drawback of

superivsed learning based methods for relation extraction is that a large amount of

labeled training data is needed, which needs quite a lot of human labor and time.

For semi-supervised learning based systems, the primary advantage is that they

lessen the corpus annotation requirement. There are three representative systems

that use semi-supervised learning method. SnowBall (Agichtein and Gravano, 2000)

shares much in common with DIPRE (Brin, 1998), including the employment of the

(Yarowsky, 1995)’s bootstrapping framework as well as the use of pattern matching

to extract new candidate relations. Zhang (2004) approaches the relation classifi-

cation problem with bootstrapping on top of support vector machines using vari-

ous lexical and syntactic features. Most of the current relation extraction based on

semi-supervised learning adopted bootstrapping technique. The main problem with

Yarowsky (1995) style bootstrapping algorithms according to Yarowsky (1995) is that

the patterns that the system extracts degrade with every iteration since ultimately

47

some errors will be introduced to the system.

To avoid the requirement of manually labeled data for supervised and semi-

supervised learning methods, Hasegawa et al. (2004) introduced an unsupervised

method for relation discovery from large corpora. Their idea is clustering pairs of

named entities according to the similarity of context words intervening between the

named entities. Zhang et al. (2005) also introduced an unsupervised learning method

to extract relations, which is based on a tree-similarity clustering. This method ap-

plied the tree kernel technique in previous supervised method (Zelenko et al., 2002)

to calculate the similarity between relation instances, and then cluster them using a

hierarchical clustering algorithm as Hasegawa et al. (2004)’s work.

3.6 Comparison with Related Work

The previous semi-supervised method by Zhang (2004) and unsupervised method by

Hasegawa et al. (2004) are most related to our works. However, our work in the thesis

differs from these others in the following ways:

• Zhang (2004)’s work focuses on the ACE subproblem, RDC and extracts var-

ious lexical and syntactic features for the relation classification task. They

approach semi-supervised relation classification problem with bootstrapping on

top of support vector machines. In contrast, our proposed label propagation

based method for relation extraction is a graph based semi-supervised learning

method, which can more effectively combine unlabeled data with labeled data in

the learning process. To our knowledge, our work is the first one to do relation

extraction using graph based semi-supervised learning techniques.

48

• Zhang (2004)’s semi-supervised work does not actually “detect” relations, but

to classify the type of relation between two entities given that they are known

to be related. In contract, our proposed LP-based semi-supervised method aims

to resolve both relation detection and relation classification problem.

• Hasegawa et al. (2004) propose an unsupervised method for relation discovery.

Their assumption is that the same entity pairs in different occurrences have the

same relation. In contrast, our proposed unsupervised methods assume that

the same entity pairs in different occurrences can have different relation types.

• Hasegawa et al. (2004)’s work adopted a hierarchical clustering method to clus-

ter the contexts. It is somewhat difficult to pre-define the similarity threshold

for the clusters, like the appropriate number of clusters. In contrast, our work

proposes two resolutions for unsupervised relation extraction, one is resampling

based stability clustering (Chapter 7) and the other is based on spectral clus-

tering (Chapter 8). Both of the approaches can achieve model selection.

• Hasegawa et al. (2004)’s work only make use of the context words intervening

between the named entities to make the context vectors. In contrast, our work

extracts various lexical and syntactic features from the entities and the contexts

before, between and after the named entities to construct context vectors.

49

Chapter 4

Data Set

In this study we evaluate our proposed methods for the task of relation extraction on

the official ACE 2003 corpus. It contains 519 files from sources including broadcast

news, newswire, and newspaper. According to the scope of the LDC ACE program1,

current research in information extraction has three main objectives: Entity Detection

and Tracking (EDT), Relation Detection and Characterization (RDC), and Event

Detection and Characterization (EDC). This thesis focuses on the second problem,

RDC. The goal of RDC is to detect and characterize relations between EDT entities,

for example, that a person is at a location. We dealt with only intra-sentence explicit

relations and assumed that all entities have been detected beforehand in the EDT

sub-task of ACE. There are five entity types in the ACE corpus, which are:

ORGANIZATION An organization has some formally established association and

a persistent, established existence. Typical examples are businesses, government

units, sports teams, and formally organized music groups. Industrial sectors are

also treated as organizations.

1http://www.ldc.upenn.edu/Projects/ACE/

50

PERSON Each distinct person or set of people mentioned in a document refers to

an entity of type person. People may be specified by name (“John Smith”),

occupation (“the butcher”), family relation (“dad”), pronoun (“he”), etc., or

by some combination of these.

GPE (Geographical-Political Entities) Geo-Political entities are composite en-

tities comprised of a population, a government, a physical location, and a nation

(or province, state, country, city, etc.)

LOCATION Location entities are defined on a geographical or astronomical basis

which are mentioned in a document and do not constitute a political entity.

These include, for example, the solar system, Mars, the continents, the Hudson

River, Mt. Everest, and Death Valley.

FACILITY Facilities are artifacts falling under the domains of architecture and civil

engineering. For example,buildings and similar facilities designed for human

habitation, such as houses, factories, stadiums, office buildings, and so on.

There are also five high-level relations defined in ACE RDC annotation guidelines

V3.6. Subtypes will be assigned to every relation further characterizing the identified

relationships. For each type, there is a set of possible subtypes. The following lists a

categorization of relation types and subtypes, which are:

ROLE affiliation between people and organizations, facilities, and GPEs (Geo-Political

Entities). ROLE has six subtypes: Management, General Staff, Member, Owner,

Founder, Client, Affiliate-Partner, Citizen-Of, and Other. For example,

(Eg 4.1) the CEO of Microsoft

Relation: Role.Management (“the CEO of Microsoft”, “Microsoft”)

51

PART part-whole relationships between organizations, facilities and GPEs. PART

has three Subtypes: Part-Of, Subsidiary, and Other.

(Eg 4.2) Microsoft’s headquarters are in Washington.

Relation: PART.Part-Of (“Microsoft’s headquarters”, “Microsoft”)

AT location of a Person, Organization, GPE, or Facility entity. For example, a

person is at a Location, GPE or Facility if the context indicates that the person

was, is or will be there. An Organization is in a Location/GPE if it has a branch

there. AT has three Subtypes: Located, Based-In, and Residence.

(Eg 4.3) The Canadian Hockey Team won in Salt Lake City.

Relation: AT.Based-In (“The Canadian Hockey Team”, “Canada”)

AT.Located (“The Canadian Hockey Team”,“Salt Lake City”)

NEAR indicates that an entity is explicitly near a location, but not actually in

that location or part of that location. Near relations only have one subtype:

Relative-Location.

(Eg 4.4) The city, just west of the mountains,....

Relation: NEAR.Relative-Location (“the city”, “the mountains”)

SOC(Social) personal or professional relationships between people, such as rela-

tive, associate, etc. The subtypes for SOC relation include: Parent, Sibling,

Spouse, Grandparent, Other-Relative, Other-Personal, Associate, and Other-

Professional.

(Eg 4.5) Joe and Sarah were married 10 years ago.

Relation: SOC.Spouse (“ Joe”, “Sarah”)

52

Table 4.1: Frequency of relation subtypes in the ACE training and devtest corpus.

Type SubType Training Devtest

ROLE General-Staff 550 149
Management 677 122
Citizen-Of 127 24
Founder 11 5
Owner 146 15
Affiliate-Partner 111 15
Member 460 145
Client 67 13
Other 15 7

PART Part-Of 490 103
Subsidiary 85 19
Other 2 1

AT Located 975 192
Based-In 187 64
Residence 154 54

SOC Other-Professional 195 25
Other-Personal 60 10
Parent 68 24
Spouse 21 4
Associate 49 7
Other-Relative 23 10
Sibling 7 4
GrandParent 6 1

NEAR Relative-Location 88 32

Table 4.1 lists the types and subtypes of relations for the ACE Relation Detection

and Characterization (RDC) task, along with their frequency of occurrence in the

ACE training set and test set.

53

Chapter 5

Knowledge Representation for

Automatic Relation Extraction

Models

The knowledge representation problem is a key issue for a learning based approach.

Before we introduce our proposed models for automatic relation extraction problem,

we would like to first discuss the knowledge representation problem in our models.

For example, what kinds of knowledge should be used to indicate the relationship

between named entities? And how does one obtain such knowledge?

This chapter will explore the knowledge representation problem for automatic

relation extraction problem. We will interpret the instance representation for each

occurrence of each entity mention pair and give a description of feature set used in

our study.

54

… ’s central headquarters in …Microsoft RedmondMicrosoft… ’s central headquarters in Redmond …

(Cpre , e1 , Cmid , e2 , Cpost)

Organization Location

Figure 5-1: An example of relation instance represented by the five-tuple.

5.1 Instance Representation

The problem of relation extraction is to detect and characterize the relationship be-

tween named entities. It is assumed that Entity Identification has already taken place

beforehand, hence all entity-related information is available at the time of relation

extraction. We only deal with intra-sentence explicit relations in this study. In other

words, the two entity mentions of the entity arguments of a relation must occur within

a common syntactic construction, in this case a sentence.

The basic idea of machine learning based relation extraction is to use machine

learning technique to classify and assign an appropriate relation type to an occurrence

of two entity pairs in a given context. The information from contexts can help us to

capture the characteristics of each occurrence of entity pairs so that we can use the

information to discriminate among all entity mention pairs. The first question is how

to tell what context an entity mention pair is in. A particularly simple definition is to

say that the context of an entity mention pair refers to those context words between

55

two entity mentions, plus context words before the first entity mention and context

words after the second entity mention.

With the definition of context, the problem can be cast into a standard classifica-

tion framework, which can be formalized as follows:

R → (Cpre, e1, Cmid, e2, Cpost) (5.1)

where e1 and e2 denote the entity mentions, and Cpre,Cmid,and Cpost are the contexts

before, between and after the entity mention pairs. A relation label R is assigned to

the five-tuple. An example text shown in Figure 5-1.

From Eq.5.1, we can tell that the knowledge for each relation instance comes from

two aspects:

• Two entity mentions: e1 and e2

• Three contexts: Cpre,Cmid,and Cpost

In the next section we will further explain how to extract features from the two

knowledge resources for each instance.

5.2 Feature Inventory

Features are the distinguishing attributes of objects that help to discriminate among

them. The choice of features is crucial for the task of automatic relation extraction.

In this section we will resolve this question:

• What features are defined to represent the characteristics of each entity mention

pair?

56

From the three contexts and the entity mention pair, we extract the lexical and

syntactic features, which are computed from the parse trees derived from Charniak

Parser (Charniak, 1999) and the Chunklink script1 written by Sabine Buchholz from

Tilburg University. The procedure involves the following steps:

1. Segment the text into sentences using the sentence segmenter provided by the

DUC competition2;

2. Parse the sentence using Charniak Parser (Charniak, 1999);

3. Convert the parse trees into chunklink format using chunklink.pl;

4. Extract and compute features from the chunklink format.

As illustration, Figure 5-2 shows the output information which is produced from

the Charniak parser and Chunklink script.

We compute the following lexical and syntactic features to construct the context

vectors for each occurrence of an entity mention pair.

Words: Surface tokens of the two entity mentions e1 and e2, and words in the three

contexts Cpre,Cmid,and Cpost.

Entity Type: the entity type of both entity mentions e1 and e2, which can be PER-

SON, ORGANIZATION, FACILITY, LOCATION and GPE.

POS features: Part-Of-Speech tags corresponding to all tokens in the two entity

mentions e1 and e2, and words in the three contexts Cpre,Cmid,and Cpost.

1Software available at http://ilk.uvt.nl/∼sabine/chunklink/
2http://duc.nist.gov/past duc/duc2003/software/

57

arguments: IOB tag: Begin, word numbering: file

columns: file_id sent_id word_id iob_inner pos word function heads head_ids iob_chain

1 4 124 B-NP DT The NOFUNC NOMINAL#11-67#PER_President 125 B-S/B-NP

1 4 125 I-NP NN NOMINAL#11-67#PER_President NP criticized 128 I-S/I-NP

1 4 126 O AUX has NOFUNC criticized 128 I-S/B-VP

1 4 127 O AUX been NOFUNC criticized 128 I-S/I-VP/B-VP

1 4 128 B-VP VBN criticized VP/S criticized 128 I-S/I-VP/I-VP/B-VP

1 4 129 B-PP IN by PP criticized 128 I-S/I-VP/I-VP/I-VP/B-PP

1 4 130 B-NP NNS NOMINAL#22-95#PER_members NP by 129

I-S/I-VP/I-VP/I-VP/I-PP/B-NP/B-NP

1 4 131 B-PP IN of PP NOMINAL#22-95#PER_members 130

I-S/I-VP/I-VP/I-VP/I-PP/I-NP/B-PP

1 4 132 B-NP JJ NAME#23-96#ORG_Congress NOFUNC

NOMINAL#24-97#ORG_groups 137 I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 133 I-NP CC and NOFUNC NOMINAL#24-97#ORG_groups 137

I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 134 I-NP JJ NAME#14-84#GPE_U.S. NOFUNC NOMINAL#24-97#ORG_groups

137 -S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 135 I-NP JJ human NOFUNC NOMINAL#24-97#ORG_groups 137

 I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 136 I-NP NNS rights NOFUNC NOMINAL#24-97#ORG_groups 137

I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 137 I-NP NNS NOMINAL#24-97#ORG_groups NP of 131

 I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

arguments: IOB tag: Begin, word numbering: file

columns: file_id sent_id word_id iob_inner pos word function heads head_ids iob_chain

1 4 124 B-NP DT The NOFUNC NOMINAL#11-67#PER_President 125 B-S/B-NP

1 4 125 I-NP NN NOMINAL#11-67#PER_President NP criticized 128 I-S/I-NP

1 4 126 O AUX has NOFUNC criticized 128 I-S/B-VP

1 4 127 O AUX been NOFUNC criticized 128 I-S/I-VP/B-VP

1 4 128 B-VP VBN criticized VP/S criticized 128 I-S/I-VP/I-VP/B-VP

1 4 129 B-PP IN by PP criticized 128 I-S/I-VP/I-VP/I-VP/B-PP

1 4 130 B-NP NNS NOMINAL#22-95#PER_members NP by 129

I-S/I-VP/I-VP/I-VP/I-PP/B-NP/B-NP

1 4 131 B-PP IN of PP NOMINAL#22-95#PER_members 130

I-S/I-VP/I-VP/I-VP/I-PP/I-NP/B-PP

1 4 132 B-NP JJ NAME#23-96#ORG_Congress NOFUNC

NOMINAL#24-97#ORG_groups 137 I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 133 I-NP CC and NOFUNC NOMINAL#24-97#ORG_groups 137

I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 134 I-NP JJ NAME#14-84#GPE_U.S. NOFUNC NOMINAL#24-97#ORG_groups

137 -S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 135 I-NP JJ human NOFUNC NOMINAL#24-97#ORG_groups 137

 I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 136 I-NP NNS rights NOFUNC NOMINAL#24-97#ORG_groups 137

I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

1 4 137 I-NP NNS NOMINAL#24-97#ORG_groups NP of 131

 I-S/I-VP/I-VP/I-VP/I-PP/I-NP/I-PP/I-NP

Figure 5-2: An example: features derived from the output of the Charniak parser and
Chunklink script.

58

Chunking features: This category of features is extracted from the Chunklink rep-

resentation, which includes:

• Chunk tag information of the two entity mentions e1 and e2, and words

in the three contexts Cpre,Cmid,and Cpost. The “0” tag means that the word

is not in any chunk. The “I-XP” tag means that this word is inside an XP

chunk. The “B-XP” by default means that the word is at the beginning of

an XP chunk. Here, “XP” can be any chunk, for example, “NP” chunk.

• Grammatical function of the two entity mentions e1 and e2, and words

in the three contexts Cpre,Cmid,and Cpost. The last word in each chunk is

its head, and the function of the head is the function of the whole chunk.

For example, “NP-SBJ” means a NP chunk as the subject of the sentence.

The other words in a chunk that are not the head have “NOFUNC” as

their function.

• IOB-chains of the heads of the two entity mentions e1 and e2. So-called

IOB-chain, noting the syntactic categories of all the constituents on the

path from the root node to this leaf node of tree.

The position information is also specified in the description of each feature above.

For example, word features with position information include:

1) WE1 (WE2): all words in e1 (e2)

2) WHE1 (WHE2): head word of e1 (e2)

3) WMNULL: no words in Cmid

4) WMFL: the only word in Cmid

59

5) WMF, WML: first word, last word in Cmid when at least two words in Cmid

6) WM2, WM3, ...: second word, third word, ...in Cmid when at least three words

in Cmid

7) WEL1, WEL2, ...: first word, second word, ... before e1

8) WER1, WER2, ...: first word, second word, ... after e2

We combine the above lexical and syntactic features with their position informa-

tion in the contexts to form context vectors. Before that, we filter out low frequency

features which appear only once in the dataset.

5.3 Summary

In this chapter we discussed the knowledge representation problem of our automatic

relation extraction models. In our study, two aspects of knowledge are used to rep-

resent the instance for each occurrences of an entity mention pair, that is, the two

entity mentions themselves and the three contexts before, between and after the entity

mention pairs. The two types of knowledge reflect the relationships between the two

entity mentions, which can explicitly represent the characteristics of each instance for

better learning.

The definition of the features is vital for a learning-based system. In this chapter

we gave a detailed description of the features used in our study, which include lexical

and syntactic features with their position information in the contexts.

With instance representation prepared, in the following three chapters we will

have an in-depth discussion of our graph-based semi-supervised model and two other

unsupervised based models, respectively. As regards the importance of these differ-

60

ent features in relation extraction we will provide an analysis in the experimental

evaluation in Chapter 8.

61

Chapter 6

Semi-supervised Relation

Extraction with Label Propagation

The advantage of semi-supervised based approaches to relation extraction is that

it can reduce the requirement of a large amount of manually annotation corpus for

supervised based methods. From the previous literature review, we found that current

works on semi-supervised relation extraction solution mostly use the bootstrapping

algorithm. However, can such a model accurately represent the relation extraction

problem? Or is there another more reasonable learning model?

This chapter will present a novel graph based semi-supervised method for relation

extraction. Firstly, we discuss the motivation of the graph based semi-supervised

method for relation extraction. Secondly, we formulate the relation extraction prob-

lem in the context of semi-supervised learning. Thirdly, we present the solution using

Label Propagation based semi-supervised learning. Finally, we show the evaluation

result of the proposed method.

62

6.1 Motivation

As described, to date, most work on semi-supervised learning based methods for

relation extraction adopts the bootstrapping algorithm. The bootstrapping algorithm

aims to dispense with the need for a large number of time-consuming hand annotations

and one only needs to pre-define a small set of initial seeds. It works by iteratively

classifying unlabeled examples and adding confidently classified examples into labeled

data using a model learned from the augmented labeled data in the previous iteration.

However, in each iteration step of bootstrapping procedure, unlabeled examples are

classified using a model only trained from the labeled data. The affinity among

unlabeled examples is not fully explored in this bootstrapping process.

Bootstrapping is based on a local consistency assumption: examples close to

labeled examples within the same class will have the same labels. This is also the

assumption underlying many supervised learning algorithms. Such methods ignore

considering the similarity between unlabeled examples and do not perform classifi-

cation from a global consistency viewpoint, and thus may fail to exploit appropriate

manifold structure in data when labeled training data is limited.

To illustrate the consistency assumption, let us consider a toy dataset with a two

moon pattern shown in Figure 6-1(a). Every point should be similar to points in its

local neighborhood, and furthermore, points in one moon should be more similar to

each other than to points in the other moon. The classification results given by the

Support Vector Machine and bootstrapping are shown in Figure 6-1(b) and Figure

6-1(c) respectively. According to the assumption of consistency, however, the two

moons should be classified as shown in Figure 6-1(d). We can find that both SVM

and bootstrapping do not work well and misclassify some points of two moons. The

63

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Toy Data (Two Moons)

unlabeled point
labeled point −1
labeled point +1

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(b) SVM (RBF Kernel)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(c) k−NN

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(c) Ideal Classification(c) Bootstrapping(c) Bootstrapping d

Figure 6-1: Classification result on the two moons pattern dataset. (a) Data set with
two labeled points; (b) Classification result given by the SVM; (c) Classification result
given by bootstrapping algorithm using k-NN with k = 1; (d) Ideal classification.

reason is that both SVM and bootstrapping are based on local consistency assumption

and the coherent structure (two moon pattern) in the unlabeled data was not explored

when inferring the class boundary.

Recently a promising family of semi-supervised learning algorithm was introduced,

which effectively combine unlabeled data with labeled data during the learning process

by exploiting manifold structure (cluster structure) in data (Belkin and Niyogi, 2002;

Blum and Chawla, 2001; Blum et al., 2004; Zhu and Ghahramani, 2002; Zhu et

al., 2003). These graph-based semi-supervised methods usually define a graph where

the nodes represent labeled and unlabeled examples in a dataset, and edges (may

be weighted) reflect the similarity of examples. These methods usually assume label

smoothness over the graph. Graph methods are nonparametric, discriminative, and

64

transductive in nature. Many graph-based methods can be viewed as estimating a

function f on the graph. One wants the labeling function f to satisfy two constraints

at the same time:

1. it should be close to the given labels on the labeled nodes ;

2. it should be smooth on the whole graph.

This can be expressed in a regularization framework where the first term is a loss

function, and the second term is a regularizer. These methods differ from traditional

semi-supervised learning methods in that they use graph structure to smooth the

labeling function.

To the best of our knowledge, no work has been done on using graph based semi-

supervised learning algorithms for the relation extraction task. Actually the assump-

tion of graph-based methods, that two points with similar features tend to be in the

same class, fit the problem structure of relation extraction. This observation moti-

vated us to consider how to use graph based methods to detect and identify relations

between named entities (Chen et al., 2006a; Chen et al., 2006c). We investigate a

label propagation algorithm (LP) (Zhu and Ghahramani, 2002) for relation extrac-

tion task. This algorithm works by representing labeled and unlabeled examples as

vertices in a connected graph, then propagating the label information from any vertex

to nearby vertices through weighted edges iteratively, finally inferring the labels of

unlabeled examples after the propagation process converges.

65

6.2 Modelling semi-supervised relation extraction

problem

Like in other learning based applications, before applying a machine learning algo-

rithm to relation extraction, we should first design the learning model of the problem,

including:

• What constitutes an instance of the problem? That is, what is the definition of

features to represent each occurrence of entity pairs?

• How to construct the graph to represent the knowledge related to the problem?

• How to use a graph-based classification to solve the problem?

For the first question, the solution is to represent each instance using lexical and

syntactic features in the three contexts of the entity mention pair and two entity men-

tions themselves. In Chapter 5, we have given an introduction about what features

will be extracted to construct the context vector of an instance.

As regards to the other two questions, they concern how to formulate the relation

extraction problem in the context of semi-supervised leaning using the graph based

method. We will give answers in the following. First, we show how to construct the

graph to represent the knowledge related to the problem.

Let X = {xi}n
i=1 be a set of instances of all the entity mention pairs, where xi

represents the context vector of the i-th occurrence of entity mention pairs, and n is

the total number of occurrences. Let C = {rj}R
j=1 be a label set, where rj denotes

relation type and R is the total number of relation types.

66

Then we can construct labeled data and unlabeled data:

• Labeled data (x1, y1)...(xl, yl): The first l examples xi (i ≤ l) in X are

labeled as yi (yi ∈ C), that is, YL = {yi}l
i=1 ∈ C.

• Unlabeled data (xl+1, yl+1)...(xl+u, yl+u): The remaining u (l + 1 ≤ u ≤ n)

examples are unlabeled, that is, YU = {yi}l+u
i=l+1.

The goal is to predict the label of the unlabeled examples YU from X and YL.

Intuitively, we assume that:

If two occurrences of entity mention pairs have the similarity context vectors, they

tend to hold the same relation type.

Based on the assumption, we define a graph G = (V, E), where the vertices V

represent the context vectors of labeled and unlabeled occurrences of entity mention

pairs, and the edge E between any two vertices xi and xj is weighted so that the

closer the vertices not by some distance measure, the larger the weight associated

with this edge. Hence, the weights are defined as follows:

Wij = exp(−s2
ij

α2
) (6.1)

where sij is the similarity between xi and xj calculated by some similarity measures,

e.g., cosine similarity, and α is used to scale the weights. In this study, we set α as

the average similarity between labeled examples from different classes.

Once the graph is constructed, the next question is how to use a graph-based

classification to solve the problem.

67

To realize the global consistency assumption, the problem of relation extraction

can be formulated as a form of propagation on a graph, where a vertex’s label prop-

agates to neighboring vertices according to their proximity. Specifically, we need to

design a classifying function which is sufficiently smooth with respect to the intrin-

sic structure revealed by labeled and unlabeled points. In the next section, we will

describe a Label Propagation algorithm to construct such a smooth function.

6.3 Resolution

6.3.1 A Label Propagation Algorithm

Given such a graph with labeled and unlabeled vertices, the label propagation al-

gorithm can help us propagate the label information of any vertex in the graph to

nearby vertices through weighted edges until a global stable state is achieved. Larger

edge weight allows labels to travel through more easily. Thus the closer the examples,

more likely they have similar labels (the global consistency assumption).

We define soft label as a vector that is a probabilistic distribution over all the

classes. In the label propagation process, the soft label of each initial labeled example

is clamped in each iteration to replenish label sources from these labeled data. Thus

the labeled data act like sources to push out labels through unlabeled data. With this

constant push from labeled examples, the class boundaries will be pushed through

edges with large weights and settle in gaps along edges with small weights. If the

data structure fits the classification goal, then LP algorithm can use unlabeled data

to help learning.

According to the property of classification, we expect that the value of Wij across

68

different classes is as small as possible and the value of Wij within the same class

is as large as possible. This will make label propagation to stay within the same

class. This label propagation process will make the labeling function smooth on the

graph. In this thesis, we set α as the average similarity between labeled examples

from different classes.

Define a n× n probabilistic transition matrix T

Tij = P (j → i) =
wij∑n

k=1 wkj

(6.2)

where Tij is the probability to jump from vertex xj to vertex xi. We define a (l+u)×R

label matrix Y , where Yij represents the probabilities of vertex yi to have the label

rj.

Then the label propagation algorithm consists the following main steps:

Step1 : Initialization

• Set the iteration index t = 0;

• Let Y 0 be the initial soft labels attached to each vertex, where Y 0
ij = 1 if

yi is label rj and 0 otherwise.

• Let Y 0
L be the top l rows of Y 0 and Y 0

U be the remaining u rows. Y 0
L is

consistent with the labeling in the labeled data and the initialization of Y 0
U

can be arbitrary.

Step 2 : Propagate the labels of any vertex to nearby vertices by Y t+1 = TY t ,

where T is the row-normalized matrix of T , i.e. Tij = Tij/
∑

k Tik, which can

maintain the class probability interpretation.

69

Step 3 : Clamp the labeled data, that is, replace the top l rows of Y t+1 with Y 0
L .

Step 4 : Repeat from step 2 until Y converges.

Step 5 : Assign xh(l + 1 ≤ h ≤ n) with a label: yh = arg maxj Yhj.

In the above steps , during each iteration of Step 2, each point receives the infor-

mation from its neighbors, and also retains its initial information on Step 3. Step 3

is critical. Instead of letting the initially labeled data points ‘fade away’, we clamp

their class distributions, so the probability mass is concentrated on the given class.

6.3.2 Convergence

The above algorithm ensures that the labeled data YL never changes since it is clamped

in Step 3. Actually we are interested in only YU . In the following we show that this

algorithm will converge to a unique solution. The transition matrix T̄ is split into

labeled and unlabeled sub-matrices

T̄ =




T̄LL T̄LU

T̄UL T̄UU


 (6.3)

Then it can be shown that the LP algorithm equals to:

YU = T̄UUYU + T̄ULYL (6.4)

which leads to

YU = lim
n→∞(T̄UU)nY 0

U + (
n∑

i=1

(T̄UU)(i−1))T̄ULYL (6.5)

where Y 0
U is the initial value for YU . We need to show (T̄UU)nY 0

U → 0. Since T̄ is row

70

normalized, and T̄UU is a sub-matrix of T̄ , it follows

∃γ < 1,
u∑

j=1

(T̄UU)ij ≤ γ, ∀i = 1, ..., u (6.6)

Therefore

∑

j

(T̄UU)n
ij =

∑

j

∑

k

(T̄UU)
(n−1)
ik (T̄UU)kj

=
∑

k

(T̄UU)
(n−1)
ik

∑

j

(T̄UU)kj

≤ ∑

k

(T̄UU)
(n−1)
ik γ

≤ γn

Therefore the row sums of (T̄UU)n converges to zero, which means (T̄UU)nY 0
U → 0.

Thus the initial value Y 0
U is not important, since Y 0

U does not affect the estimation of

ŶU . And obviously,

ŶU = lim
t→∞Y t

U = (I − T̄uu)
−1T̄ulY

0
L (6.7)

is a fixed point (I is u×u identity matrix). Therefore it is the unique fixed point and

the unique solution to the LP iterative algorithm.

As an example, consider the toy problem mentioned earlier, Figure 6-2 shows

the classification result of Label propagation algorithm, which shows the convergence

process of the algorithm with t increasing from 1 to 400. Note that the initial label

information are diffused along the moons. We can find when t = 400 the LP algorithm

converged to a fixed point, which achieved the ideal classification result.

71

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) t = 10

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(b) t = 50

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(c) t = 100

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(d) t = 400

Figure 6-2: Classification result of LP algorithm on two moons pattern dataset. The
convergence process of LP algorithm with t varying from 1 to 400 is shown from (a)
to (d). Note that the initial label information are diffused along the moons.

6.4 Similarity Measures

The similarity sij between two occurrences of entity pairs is important to the perfor-

mance of the LP algorithm. In this chapter, we investigate two similarity measures,

cosine similarity measure and Jensen-Shannon (JS) divergence (Lin, 1991). Cosine

similarity is a commonly used semantic distance, which measures the angle between

two feature vectors α and β.

Cosine(θ) =
α · β
|α||β| (6.8)

JS divergence has been used as a distance measure for document clustering, which

outperforms cosine similarity based document clustering (Slonim et al., 2002). JS

72

divergence measures the distance between two probability distributions when feature

vectors are considered as probability distribution over features. JS divergence is

defined as follows:

JS(q, r) =
1

2
[DKL(q‖p̄) + DKL(r‖p̄)] (6.9)

DKL(q‖p̄) =
∑
y

q(y)(log
q(y)

p̄(y)
) (6.10)

DKL(r‖p̄) =
∑
y

r(y)(log
r(y)

p̄(y)
) (6.11)

p̄ =
1

2
(q + r) (6.12)

where JS(q, r) represents JS divergence between probability distributions q(y)

and r(y) (y is a random variable), which is defined in terms of KL-divergence.

6.5 Experiments and Results

6.5.1 Experiment Setup

We evaluate the above graph based semi-supervised method for relation subtype

detection and characterization task on the ACE corpus. Table 4.1 lists the types and

subtypes of relations, along with their frequency of occurrence in the ACE training

set and test set. We constructed labeled data by randomly sampling some examples

from ACE training data and additionally sampling examples with the same size from

the pool of unrelated entity pairs for the “NONE” class. We used the remaining

examples in the ACE training set and the whole ACE test set as unlabeled data. The

testing set was used for final evaluation. And we will evaluate along two subtasks

73

of relation extraction: Relation Detection and Relation Classification. For Relation

Detection, it means that if an entity mention pair is classified not to “NONE” class

but to the other 24 subtype classes, then it has a relationship between them.

In this study, to construct the context vector for each instance, we set the mid-

context window as the words between the two entity mentions and the pre- and post-

context as up to two words before and after the corresponding entity mention.

6.5.2 Experimental Evaluation

In this experiment, to verify the effectiveness of the label propagation algorithm for

relation detection and classification, we compare the LP based method with SVM

based and bootstrapping based method for relation extraction. For SVM, the labeled

data by sampling is used as the training data for SVM model.

LP vs. SVM

Support Vector Machines (SVMs) are a supervised machine learning technique

motivated by the statistical learning theory (Vapnik, 1998). Based on the structural

risk minimization of the statistical learning theory, SVMs seek an optimal separating

hyper-plane to divide the training examples into multi classes and make decisions

based on support vectors which are selected as the only effective instances in the

training set.

The reason why we choose SVM for this purpose is that it represents the state-of-

the-art in the machine learning community and had shown its capability for the super-

vised relation extraction task (Zhou et al., 2005). Hence, we choose SVM to explore

the effectiveness of our semi-supervised learning compared to supervised learning. In

74

this experiment, we use the LIBSVM tool1, which is an integrated software for support

vector classification, regression, and distribution estimation (one-class SVM). It sup-

ports multi-class classfication, and provides probability estimates as well. Moreover,

we only apply the simple linear kernel, although other kernels can perform better.

For comparison between SVM and LP, we ran SVM and LP with different sizes of

labeled data and evaluate their performance on unlabeled data using Precision, Recall

and F-measure. Firstly, we ran SVM or LP algorithm to detect possible relations from

unlabeled data. If an entity mention pair is classified not to the “NONE” class but to

the other 24 subtype classes, then it has a relation. Then construct labeled datasets

with different sampling set size l, including 1%×Ntrain, 10%×Ntrain, 25%×Ntrain,

50% × Ntrain, 75% × Ntrain, 100% × Ntrain (Ntrain is the number of examples in the

ACE training set). If any relation subtype was absent from the sampled labeled set,

we redid the sampling. For each size, we performed 20 trials and calculated average

scores on the test set over these 20 random trials.

Table 6.1 reports the performance of SVM and LP with different sizes of labled

data for relation detection task. We used the same sampled labeled data in LP as

the training data for SVM model.

From Table 6.1, we see that both LPCosine and LPJS achieve higher Recall than

SVM. Specifically, with small labeled dataset (percentage of labeled data ≤ 25%),

the performance improvement by LP is significant. When the percentage of labeled

data increases from 50% to 100%, LPCosine is still comparable to SVM in F-measure

while LPJS achieves slightly better F-measure than SVM. On the other hand, LPJS

consistently outperforms LPCosine.

1LIBSV M : a library for support vector machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

75

Table 6.1: The performance of SVM and LP algorithm with different sizes of labeled
data for relation detection on relation subtypes. The LP algorithm is run with two
similarity measures: Cosine similarity and JS divergence.

SVM LPCosine LPJS

Percentage P R F P R F P R F
1% 35.9 32.6 34.4 58.3 56.1 57.1 58.5 58.7 58.5

10% 51.3 41.5 45.9 64.5 57.5 60.7 64.6 62.0 63.2

25% 67.1 52.9 59.1 68.7 59.0 63.4 68.9 63.7 66.1

50% 74.0 57.8 64.9 69.9 61.8 65.6 70.1 64.1 66.9

75% 77.6 59.4 67.2 71.8 63.4 67.3 72.4 64.8 68.3

100% 79.8 62.9 70.3 73.9 66.9 70.2 74.2 68.2 71.1

Table 6.2: The performance of SVM and LP algorithm with different sizes of labeled
data for relation detection and classification on relation subtypes. The LP algorithm
is run with two similarity measures: cosine similarity and JS divergence.

SVM LPCosine LPJS

Percentage P R F P R F P R F
1% 31.6 26.1 28.6 39.6 37.5 38.5 40.1 38.0 39.0

10% 39.1 32.7 35.6 45.9 39.6 42.5 46.2 41.6 43.7

25% 49.8 35.0 41.1 51.0 44.5 47.3 52.3 46.0 48.9

50% 52.5 41.3 46.2 54.1 48.6 51.2 54.9 50.8 52.7

75% 58.7 46.7 52.0 56.0 52.0 53.9 56.1 52.6 54.3

100% 60.8 48.9 54.2 56.2 52.3 54.1 56.3 52.9 54.6

76

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1% 10% 25% 50% 75% 100%

Percentage of Labeled Examples

F
-m

ea
su

re SVM

LP_Cosine

LP_JS

Figure 6-3: Comparison of the performance of SVM and LP with different sizes of
labeled data for Relation Classification

Table 6.2 reports the performance of relation classification by using SVM and LP

with different sizes of labled data. And the performance describes the average values

of Precision, Recall and F-measure over major relation subtypes.

From Table 6.2, we see that LPCosine and LPJS outperform SVM by F-measure

in almost all settings of labeled data, which is due to the increase of Recall. With

smaller labeled dataset (percentage of labeled data ≤ 50%), the gap between LP and

SVM is larger. When the percentage of labeled data increases from 75% to 100%, the

performance of LP algorithm is still comparable to SVM. On the other hand, the LP

algorithm based on JS divergence consistently outperforms the LP algorithm based

on Cosine similarity. Figure 6-3 visualizes the accuracy of the three algorithms.

As shown in Figure 6-3, the gap between SVM curve and LPJS curves is large

when the percentage of labeled data is relatively low.

77

-3 -2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(a)
-3 -2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(b)

-3 -2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(c)
-3 -2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(d)

Figure 6-4: An example: comparison of SVM and LP algorithm on a small data set
from ACE corpus. ◦ and 4 denote the unlabeled examples in the training set and
the test set respectively, and other symbols (¦,×,2, + and 5) represent the labeled
examples with respective relation type sampled from training set.

78

An Example

In Figure 6-4, we selected 25 instances in the training set and 15 instances in the test

set from the ACE corpus,which covered five relation types. Using the Isomap tool 2,

the 40 instances with 229 feature dimensions are visualized in a two-dimensional space

as the figure. We randomly sampled only one labeled example for each relation type

from the 25 training examples as labeled data. Figure 6-4(a) and 6-4(b) show the ini-

tial state and ground truth result respectively. Figure 6-4(c) reports the classification

result on test set by SVM (accuracy = 4
15

= 26.7%), and Figure 6-4(d) gives the clas-

sification result on both the training set and test set by LP (accuracy = 11
15

= 73.3%).

Comparing Figure 6-4(b) and Figure 6-4(c), we find that many examples are mis-

classified from class ¦ to other class symbols. This may be caused that SVMs method

ignores the intrinsic structure in data. For Figure 6-4(d), the labels of unlabeled

examples are determined not only by nearby labeled examples, but also by nearby

unlabeled examples, so using the LP strategy achieves a better performance than the

local consistency based SVM strategy when the size of labeled data is quite small.

LP vs. Bootstrapping

In (Zhang, 2004), they perform relation classification on ACE corpus with bootstrap-

ping on top of SVM. To compare with their proposed Bootstrapped SVM algorithm,

we use the same feature stream setting and randomly selected 100 instances from the

training data as the size of initial labeled data.

Table 6.3 lists the performance of the bootstrapped SVM method from (Zhang,

2004) and LP method with 100 seed labeled examples for relation type classification

2The tool is available at http://isomap.stanford.edu/.

79

Table 6.3: Comparison of the performance of the bootstrapped SVM method by
Zhang (2004) and LP method with 100 seed labeled examples for relation type clas-
sification task.

Bootstrapping LPJS

Relation type P R F P R F
ROLE 78.5 69.7 73.8 81.0 74.7 77.7

PART 65.6 34.1 44.9 70.1 41.6 52.2

AT 61.0 84.8 70.9 74.2 79.1 76.6

SOC 47.0 57.4 51.7 45.0 59.1 51.0

NEAR − − − 13.7 12.5 13.0

task. We can see that the LP algorithm outperforms the bootstrapped SVM algorithm

on four of the relation type classification tasks, and performs comparably on the

relation “SOC” classification task.

6.6 Discussion

In this Chapter,we have investigated a graph-based semi-supervised learning approach

for relation extraction problem. Experimental results showed that the LP algorithm

performs better than SVM and bootstrapping. We have some findings from these

results:

The LP based relation extraction method can use the graph structure to smooth

the labels of unlabeled examples. Therefore, the labels of unlabeled examples are

determined not only by the nearby labeled examples, but also by nearby unlabeled

examples. For supervised methods, e.g., SVM, very few labeled examples are not

80

Table 6.4: Comparison of the performance of previous methods on ACE RDC task.

Method

Culotta et al. Tree kernel based

Kambhatla Feature based, Maximum Entropy model

Zhou et al. Feature based, SVM model

Relation Detection Relation Detection and Classification
On Types on Subtypes

P R F P R F P R F

Culotta et al. 81.2 51.8 63.2 67.1 35.0 45.8 - - -

Kambhatla - - - - - - 63.5 45.2 52.8

Zhou et al. 84.8 66.7 74.7 77.2 60.7 68.0 63.1 49.5 55.5

enough to reveal the structure of each class. Therefore they can not perform well,

since the classification hyperplane was learned only from few labeled data and the

coherent structure in unlabeled data was not explored when inferring class boundary.

Hence, our LP-based semi-supervised method achieves a better performance on both

relation detection and classification when only few labeled data are available.

Currently most of the works on the RDC task of ACE focused on supervised learn-

ing methods (Culotta and Soresen, 2004; Kambhatla, 2004; Zhou et al., 2005). Table

6.4 lists a comparison on the relation detection and classification of these methods.

Zhou et al. (2005) reported the best result as 63.1%/49.5%/55.5 in Precision/Recall/F-

measure on the relation subtype classification using feature based method, which out-

performs tree kernel based method by Culotta and Soresen (2004). Compared with

Zhou et al. (2005)’s method, the performance of our LP-based method is slightly

81

lower. It may be due to that we used a much simpler feature set. The current experi-

ment focuses on the investigation of a graph based semi-supervised learning algorithm

for relation extraction. We could use more effective feature sets (Zhou et al., 2005) or

kernel based similarity measure with LP for relation extraction in future to do further

comparison.

The proposed semi-supervised algorithm inevitably faces its limitations. Since the

algorithm resolved the problem by exploiting the manifold structure (cluster struc-

ture) in data, the underlying definition of the manifold structure of the added un-

labeled data will affect the result of label propagation. If the added unlabeled data

holds a clarity manifold, it would help us to propagate labels through unlabeled ex-

amples more accurately, otherwise it will make it worse. Another limitation lies in the

selection of initial seed examples. Just as other semi-supervised learning algorithms,

it is very subjective to determine how to select these seeds and how many seeds are to

be selected. Furthermore, our model has not yet handled a large amount of data and

thus did not address the scalability issue. But, the graph-based algorithm needs to

calculate the similarity among all examples, which accounts for much computational

cost. Because semi-supervised learning is useful when the size of unlabeled data is

large, this is clearly a problem.

6.7 Summary

This chapter approaches the problem of semi-supervised relation extraction using

a label propagation algorithm. It represents labeled and unlabeled examples and

their distances as the nodes and the weights of edges of a graph, and tries to obtain

a labeling function to satisfy two constraints: 1) it should be fixed on the labeled

82

nodes, 2) it should be smooth on the whole graph. In the classification process, the

labels of unlabeled examples are determined not only by nearby labeled examples, but

also by nearby unlabeled examples. Our experimental results demonstrated that this

graph based algorithm can achieve a better performance than SVM when only very

few labeled examples are available, and also outperforms the bootstrapping method

for relation extraction task.

In the next two chapters we will further investigate unsupervised solutions for

extracting relations between entity mention pairs so that we can fully automatic the

relation extraction task.

83

Chapter 7

An Unsupervised Model for

Relation Extraction

The previous chapter presented a semi-supervised model for relation extraction. Al-

though it reduces the requirement of a large amount of manually labeled data for

supervised learning based approaches, one common feature of semi-supervised learn-

ing based method for relation extraction is that they still need to pre-define some

initial seeds for any particular relation, and then to derive further relations from the

seeds. However, to decide how to select these initial labeled data and how many

labeled data are to be selected can be very subjective. To overcome the difficulties

on the requirement of labeled data and enumeration of all class labels, unsupervised

learning based methods have received more and more research interest.

In this chapter we will model relation extraction problem in an unsupervised learn-

ing manner. First, we give an overview of the main phases of the unsupervised learn-

ing based approach. Secondly, we introduce how to use the stability-based method

to cluster the contexts. Thirdly, we report experimental results of the unsupervised

84

model with model order selection.

7.1 Model Unsupervised Relation Extraction Prob-

lem

Following the same assumption in the previous chapter of semi-supervised learning

based model for relation extraction:

If two occurrences of entity mention pairs have the similarity context vectors, they

tend to hold the same relation type.

we assume that pairs of entity mentions occurring in the similar context can

be clustered and that each pair in a cluster is an instance of the same relation.

Then unsupervised relation extraction problem can be formulated as a clustering

task. Generally the basic idea of unsupervised relation extraction can be modeled as

follows:

1. Tagging named entities in the text corpus;

2. Getting co-occurrence pairs of named entities and their context;

3. Measuring context similarities among pairs of named entities;

4. Making clusters of pairs of named entities;

5. Labeling the relation for each cluster of pairs of named entities.

85

7.1.1 Named entity tagging

Since our goal here is to achieve fully unsupervised learning, we do not need richly

annotated corpora or any initial manually selected seeds. For the plain corpus, we

only need a named entity (NE) tagger. As before, we use the ACE corpus, which

already tags named entities in the corpus.

7.1.2 Context Collecting

We assume that for any two particular entity mentions e1 ∈ E1, and e2 ∈ E2, they

may hold more than one kind of relation. So, we collect the contexts from a corpus in

which e1 and e2 co-occur within a context window of d words in a sentence. Here,the

context includes the words between, before and after them (in this chapter, following

Hasegawa et al. (2004)’s work, we use only words as the features of context vectors).

In fact, the approach also applies to the cases that e1 and e2 hold only one kind of

relations, in such cases, we need to collect and accumulate the contexts as (Hasegawa

et al., 2004).

7.1.3 Context Similarity among Entity Pairs

Following Hasegawa et al. (2004), we only compare entity pairs which have the same

named entity types, e.g., one PERSON-GPE pair and another PERSON-GPE pair.

We define a domain as a pair of named entity types, e.g., the PERSON-GPE do-

main. For example, we have to detect relations between PERSON and GPE in the

PERSON-GPE domain.

In this study, cosine similarity is adopted to calculate the similarities between the

context vectors of entity mention pairs. A context vector for each entity mention pairs

86

consists of the bag of words formed from all intervening words from all co-occurrences

of two entity mention pairs. The cosine similarity cosine(θ) between context vector

α and β is calculated by the following formula:

cosine(θ) =
α · β
|α||β| (7.1)

7.1.4 Context Clustering

In this phase, we cluster each context by the type of relation it represents. For

a cluster c with a relation r, the entity mentions e1 and e2 whose context vector

belongs to c can be regarded as holding the relation r. The most prevalent problem

for context clustering is that we do not exactly know the number of relation types in

advance. Moreover, since we do not have any labeled data at hand, we also can not

learn this information from the labeled data. The previous methods (Hasegawa et

al., 2004) for unsupervised relation extraction task also did not address this problem.

Compared with supervised and semi-supervised methods, Hasegawa et al. (2004)’s

unsupervised approach for relation extraction can overcome the difficulties on require-

ment of a large amount of labeled data and enumeration of all class labels. Hasegawa

et al. (2004)’s method is to use a hierarchical clustering method to cluster pairs of

named entities according to the similarity of context words intervening between the

named entities. However, the drawback of hierarchical clustering is that it required

providing the cluster number by the user.

For a fully unsupervised model, we should achieve the order identification capa-

bility, so that we can exactly know the most likely number of relation types held in

all entity mention pairs. In the next section and the next chapter, the discussion

87

describes the strategies we used to overcome this challenge.

7.1.5 Relation Labeling

After context clustering, each cluster can be regarded as a set of entity mention pairs

which hold the same relation type. Hence, we need to select some representative words

as the label of each relation cluster. In (Hasegawa et al., 2004), they simply select the

frequent common words in a cluster to become the label of the relation. In our work,

we use DCM (Discriminative Category Matching) scheme to identify discriminative

label, which is also used in document classification (Fung et al., 2002) and weights

the importance of a feature based on their distribution. For relation labeling, we do

not address more in this thesis. The details can reference our previous work (Chen

et al., 2005a).

In the next section we will introduce how to resolve the context clustering problem

in our unsupervised model.

7.2 An Unsupervised Model with Order Identifi-

cation Capability

Since we do not know how many relation types in advance and do not have any la-

beled relation training examples at hand, the problem of model order selection arises,

i.e. estimating the “correct” number of clusters. In this chapter, the model selection

capability is achieved by resampling based stability analysis, which has been success-

fully applied to several unsupervised learning problems (e.g. (Levine and Domany,

2001), (Lange et al., 2002), (Roth and Lange, 2003) , (Niu et al., 2004)).

88

Table 7.1: Model selection algorithm for relation extraction

Model Selection Algorithm for Relation Extraction:

Input: Corpus D tagged with Entities(E1, E2);
Output: Model Order (number of relation types);

1. Collect the contexts of all entity pairs in the document corpus
D, namely P ;

2. Set the range (Kl, Kh) for the possible number of relation
clusters;

3. Set estimated model order k = Kl;

4. Cluster all entity pairs set P into k clusters using stability
analysis method;

5. Record k and the score of the merit of k, namely Mk;

6. If k < Kh, k = k + 1, go to step 4; otherwise, go to Step 7;

7. Select k which maximizes the score of the merit Mk;

To estimate the number of the clusters, we need a criterion to evaluate the merit

for each possible number of clusters, and select the model order which maximizes the

criterion. Formally, let k be the model order, we need to find k as follows:

k = arg max
k
{criterion(k)} (7.2)

Here, the criterion is set up based on resampling-based stability analysis. Table

7.1 shows the procedure of the model selection algorithm for unsupervised relation

extraction.

The basic idea of stability based model selection is:

Solutions on two data sets from the same source should be similar!

89

This idea ensures that the clustering solution reflects structural properties of the

data source, and that it will not be influenced too much by noise in the data. The

general procedure for this idea is:

1. Draw two data sets X, X’ from the same source;

2. Cluster both data sets using a clustering algorithm;

3. Compute agreement between both solutions.

Then Stability := expected agreement of solutions.

As an example which shows how the wrong number of clusters can lead to instable

solutions, consider the case in Figure 7-1: The data set is a mixture of Gaussians with

3 modes, and it is clustered with K -means. The picture shows the cluster boundaries

for the case when k = 3 and when k = 4. As one can see, for k = 4, the two

solutions are very different, because the mode which was split was a different one.

We conclude that the agreement between two solutions for data sets from the same

source is indicative for the number of clusters to be inferred. Moreover, having a

stable solution is also highly preferable from a practical point of view.

From this example,we also can conclude, if the model order is (not) appropriate

for the data, then groupings on different data from the same source data are similar

(dissimilar) with high probability.

However, the practical problem is that actually X’ is not available. Thus, resam-

pling acts as an alternative.

Let P µ be a subset sampled from full entity pairs set P with size α|P | (α set as

0.9 in this study.), C(Cµ) be |P | × |P |(|P µ| × |P µ|) connectivity matrix based on

90

Stable Solution: K = 3

 Unstable Solution: K = 4

Figure 7-1: An example for stability based model selection.

91

the clustering results on P (P µ). Each entry cij(c
µ
ij) of C(Cµ) is calculated in the

following: if the entity pair pi ∈ P (P µ), pj ∈ P (P µ) belong to the same cluster, then

cij(c
µ
ij) equals 1, else 0. Then the stability is defined in Equation 7.3:

M(Cµ, C) =

∑
i,j δµ

i,j∑
i,j δi,j

(7.3)

where

δµ
i,j =





1, if Cµ
i,j = Ci,j = 1, pi ∈ P µ, pj ∈ P µ;

0, otherwise.
(7.4)

δi,j =





1, if Ci,j = 1, pi ∈ P µ, pj ∈ P µ;

0, otherwise.
(7.5)

Intuitively, M(Cµ, C) denotes the consistency between the clustering results on

Cµ and C. The assumption is that if the cluster number k is actually the “natural”

number of relation types, then clustering results on subsets P µ generated by sampling

should be similar to the clustering result on full entity pair set P . Obviously, the above

function satisfies 0 ≤ M ≤ 1.

It is noticed that M(Cµ, C) tends to decrease when increasing the value of k.

Therefore for avoiding the bias that small value of k is to be selected as cluster

number, we use the cluster validity of a random predictor ρk to normalize M(Cµ, C).

The random predictor ρk achieved the stability value by assigning uniformly drawn

labels to objects, that is, splitting the data into k clusters randomly. Furthermore,

for each k, we tried q times. So, the normalized object function can be defined as

Equation 7.6:

92

Table 7.2: Some context examples in two clusters of the output in the domain PER-
ORG.

Cluster 1:

[PER] vice president of the [ORG]

[PER] president and chief operating officer of [ORG]

[PER] senior vice president of [ORG]
...

Cluster 2:

[PER] joined the communist -backed [ORG]

[PER] and joined a laborer’s [ORG]

[PER] a partner in Blackstone, will join Host Marriott’s [ORG]

...

Mnorm
k =

1

q

q∑

i=1

M(Cµi
k , Ck)− 1

q

q∑

i=1

M(Cµi
ρk

, Cρk
) (7.6)

Normalizing M(Cµ, C) by the stability of the random predictor can yield values

independent of k. The effect of such normalization can be observed from the exper-

imental results (See Table 7.5). Table 7.3 shows the evaluation procedure of model

order selection.

After the number of optimal clusters has been chosen, we adopted K-means al-

gorithm for the clustering phase. The output of context clustering is a set of context

clusters, each of them is supposed to denote one relation type. As an example, Table

7.2 lists two clusters with some context examples.

93

Table 7.3: Unsupervised algorithm for evaluation of model order selection

Function: criterion(k, P, q)

Input: cluster number k, entity pairs set P , and sampling frequency q;

Output: the score of the merit of k;

1. With k as input, perform K-means clustering analysis on pairs
set P ;

2. Construct connectivity matrix Ck based on above clustering
solution on P ;

3. Use random predictor ρk to assign uniformly drawn labels to
each object in P ;

4. Construct connectivity matrix Cρk
based on above clustering

solution on P ;

5. Construct q subsets of the full pairs set, by randomly selecting
αN of the N original pairs, 0 ≤ α ≤ 1;

6. For each subset, perform the clustering analysis in Step 2, 3, 4,
and result Cµ

k , Cµ
ρk

;

7. Compute Mnorm
k to evaluate the merit of k using Equation

7.6;

8. Return Mnorm
k ;

94

Table 7.4: Three domains of entity pairs: frequency distribution for different relation
subtypes

PER-ORG num:786 ORG-GPE num:262 ORG-ORG num:580
Subtypes Percentage Subtypes Percentage Subtypes Percentage
Management 36.39% Based-In 46.56% Member 27.76%

General-
staff

29.90% Located 35.11% Subsidiary 19.83%

Member 19.34% Member 11.07% Part-Of 18.79%

Owner 4.45% Affiliate-
Partner

3.44% Affiliate-
Partner

17.93%

Located 3.28% Part-Of 2.29% Owner 8.79%

Client 1.91% Owner 1.53% Client 2.59%

Other 1.91% Management 2.59%

Affiliate-
Partner

1.53% Other 1.21%

Founder 0.76% Other 0.52%

7.3 Experimental Evaluations

In this experiment, we evaluate our proposed unsupervised model by comparing with

the previous unsupervised approach (Hasegawa et al., 2004).

7.3.1 Experiment setup

Following Hasegawa et al. (2004)’s work , we constructed three subsets from ACE

corpus for domains PER-ORG (person-organization), ORG-GPE (organization-gpe)

and ORG-ORG (organization-organization) respectively. The details of these subsets

95

are given in Table 7.4, which are broken down by different relation types.

To verify our proposed method, we only extracted those pairs of entity mentions

which have been tagged relation types in the given corpus for evaluation. Then the

relation type tags were removed to test the unsupervised relation disambiguation.

During the evaluation procedure, the relation type tags were used as ground truth

classes.

Following Hasegawa et al. (2004)’s work, in this chapter we only use the word fea-

tures to construct the context vectors. And the data preprocessing involves lowering

the upper case characters, ignoring all words that contain digits or non alpha-numeric

characters, removing words from a stop word list, stemming and filtering out low fre-

quency words which appeared only once in the entire set.

7.3.2 Evaluation method for clustering result

When assessing the agreement between clustering result and hand-tagged relation

types (ground truth classes), we encounter the problem that there was no relation

type tags for each cluster in our clustering results.

To resolve the problem, we adopted a permutation procedure to assign different

relation type tags to only min(|EC|,|TC|) clusters, where |EC| is the estimated

number of clusters, and |TC| is the number of ground truth classes (relation types).

This procedure aims to find an one-to-one mapping function Ω from the TC to EC

which is based on the assumption that for any two clusters, they do not share the

same class labels. Under this assumption, there are at most |TC| clusters which

are assigned relation type tags. If the number of the estimated clusters is less than

the number of the ground truth clusters, empty clusters should be added so that

96

|EC| = |TC| and the one-to-one mapping can be performed.

With the estimated clusters and the ground truth classes, we construct a contin-

gency table T , where each entry ti,j gives the number of the instances that belong

to both the i-th cluster and j-th ground truth class. The mapping procedure can be

formulated as the function:

Ω̂ = arg max
Ω

|TC|∑

j=1

tΩ(j),j (7.7)

where Ω(j) is the index of the estimated cluster associated with the j-th class.

Given the result of one-to-one mapping, we adopt F-measure to evaluate the

clustering result.

7.3.3 Experiments and Results

For comparison of the effect of the outer context of entity pairs, we set the middle

context as everything between two entity mentions within a sentence and conducted

three different settings of outer context window size for each domain. For example,

the setting of “2” means that the intervening words between an entity mention pair

together with the two words before the first entity mention and two words following

the second entity mention constitute the context vector of the entity mention pair.

Table 7.5 shows the results of model order identification with unnormalized and

normalized objective functions. The results show that the model order identification

algorithm with the unnormalized function Munnorm
k fail to identify the real number

of relation types since the score of Munnorm
k decreased when increasing the cluster

number k and finally resulted in 2 clusters over all domains. On the other hand,

the algorithm with the normalized function Mnorm
k achieves the reasonable cluster

97

Table 7.5: Automatically determined the number of relation subtypes using differ-
ent evaluation functions: Munnorm

k is unnormalized objective function and Mnorm
k is

normalized objective function.

PER-ORG ORG-GPE ORG-ORG
Context
Win
Size

Real # Munnorm
k Mnorm

k Real # Munnorm
k Mnorm

k Real # Munnorm
k Mnorm

k

0 9 2 7 6 2 6 9 2 7

2 9 2 8 6 2 6 9 2 8

5 9 2 5 6 2 2 9 2 6

number around the real value over three domains.

From Table 7.5, we also can find that with the context window size setting, “2”,

the estimated number of the clusters equals or very close to the real number of classes,

which is better than the setting without outer context. Furthermore, with context

window size setting as “5”, the estimated cluster number is the most far away from

the real number of classes. It demonstrates that the close contextual words beyond

(before and after) the entities may be appropriate features, which can help reflect the

structure behind the contexts. However, when extending the outer context window

size too much, it would tend to include more noisy features to disturb the relation

disambiguation instead, as can be seen that the performance deteriorates.

Table 7.6 shows the performance of the clustering algorithm over three domains

with different context window size settings. In this table, we compared the clustering

results of our unsupervised model with the Hasegawa et al. (2004)’s context clustering

algorithm. For the Hasegawa et al. (2004)’s clustering algorithm, i.e. hierarchical

clustering, we specify the cluster number as the number of ground truth classes.

98

Table 7.6: Performance of the context clustering algorithm with various context win-
dow size settings over three domains.

PER-ORG ORG-GPE ORG-ORG
Context
Window
size

F1
(our
method)

F2
(Hasegawa’s
method)

F1
(our
method)

F2
(Hasegawa’s
method)

F1
(our
method)

F2
(Hasegawa’s
method)

0 35.7 33.5 47.4 43.1 41.0 29.9

2 39.4 36.2 50.7 42.9 38.9 28.1

5 31.3 28.4 46.5 42.3 33.2 26.3

Comparing the F-measure result of two clustering methods, we can find that our

method can achieve better or comparable performance obviously. The result confirms

that the estimated model order of our method can reflect a preferable cluster structure

corresponding to the distribution of various relation subtypes. In addition, in three

domains, we can see that the best performance is achieved in the context window

size setting, “0” or “2”. On the other hand, the performance becomes worse when

extending the context window too much, that is, when the context window size setting

is “5”. The reason is that extending the context too much may include more features,

but at the same time, the noise also increases.

7.4 Discussion

In this chapter, we try to resolve the relation extraction task in an fully unsupervised

manner. Compared with the existing unsupervised method (Hasegawa et al., 2004),

there are several advantages in our approach.

Relation Types In (Hasegawa et al., 2004), each entity pair is treated as having

99

one and only one relation type, so they accumulated contexts of all occurrences of

an entity pair. That is, only one context vector was generated for an entity pair.

However, our proposed method is based on a more reasonable assumption that there

may exist several relation types among different occurrences of an entity pair, so, we

collect all instances of the occurrences of an entity pair, and represent each instance

using a context vector. Then our task turns into disambiguating the relation types

among the context occurrences of all entity pairs.

Context Clustering (Hasegawa et al., 2004) adopted a hierarchical clustering

method to cluster the contexts. It is very difficult to determine the threshold for

the similarity between clusters, like the appropriate number of clusters. In contrast,

through model order selection we can estimate the “natural” number of relation types

so that we do not need to manually pre-define any parameters during the clustering

process.

Evaluation method In (Hasegawa et al., 2004), each cluster is mapped to one

ground truth class simply by choosing the one which has the most overlap with it.

But two clusters may be mapped to the same relation class, to avoid this bias, we try

to find a one to one mapping from the estimated cluster to the ground truth classes.

However, the proposed unsupervised model achieved the above advantages at the

expense of more computing time. This is because for each possible cluster number,

the algorithm needs to perform resampling analysis iteratively, and to calculate the

similarity among examples. These operations would increase time complexity of the

algorithm.

100

7.5 Summary

In this chapter, we proposed an unsupervised model for relation disambiguation,

using resampling based stability analysis. The advantages of the proposed approach

includes that it does not need any manual labeling of the relation instances, it does

not need to pre-define the number of the context clusters, or pre-specify the similarity

threshold for the clusters.

Following the domain and feature setting in Hasegawa et al. (2004)’s work, we pro-

vide an experimental comparison between our method with Hasegawa et al. (2004)’s

clustering algorithm and verify that our method can achieve a better performance

and identify the “natural” number of relation types.

In the next chapter, we will propose another unsupervised model to further im-

prove the performance of relation disambiguation and can be performed efficiently.

101

Chapter 8

An Improved Model for

Unsupervised Relation

Disambiguation

The previous chapter presented a unsupervised model for automatic relation extrac-

tion, which adopt resampling based stability analysis to achieve order identification

capability. However, like the previous unsupervised method (Hasegawa et al., 2004),

the model performed clustering in the original high dimensional space, which may

take too much time to perform iterative operations of resampling and stability analy-

sis, and also hard to identify non-convex clusters. Inevitably, we would like to find an

improved model for unsupervised relation disambiguation to challenge these underling

problems. In chapter 6, we have mentioned that graph-based algorithm is suitable

for relation extraction task. Under the same model assumption that if it is true

that two points with similar features tend to be in the same class, then graph-based

methods can be used for unsupervised model for relation extraction. Since unlike

102

semi-supervised relation extraction, which has some initial labeled data to propagate

the label information to those unlabeled vertices, then how to apply the graph strat-

egy to resolve the unsupervised relation disambiguation problem? And how to obtain

data representation in the low-dimensional space that can be easily clustered?

In this chapter we present another improved model for unsupervised relation dis-

ambiguation using graph-based methods. First, we formulate the unsupervised rela-

tion disambiguation problem using a graph-based strategy. Then we come to the sec-

ond stage of this method: cluster these context vectors automatically. We will present

how to apply the spectral clustering technique to resolve the task, which involves how

to transform the clustering space and how to modify the K-means algorithm as the

elongated K-means algorithm to adapt the problem. Finally we report experimental

results comparing with other unsupervised methods for relation disambiguation.

8.1 Modeling Graph-based Unsupervised Relation

Disambiguation Problem

Assume that two occurrences of entity pairs with similar contexts hold the same

relation type. Thus unsupervised relation disambiguation problem can be formulated

as partitioning collections of entity pairs into clusters according to the similarity of

contexts, with each cluster containing only entity pair labeled by the same relation

type.

Let X = {xi}n
i=1 be the set of context vectors of occurrences of all entity mention

pairs, where xi represents the context vector of the i-th occurrence, and n is the total

number of occurrences of all entity mention pairs.

103

As described in the previous chapters, each occurrence of an entity mention pair

can be denoted as follows:

R → (Cpre, e1, Cmid, e2, Cpost) (8.1)

where e1 and e2 represent the entity mentions, and Cpre,Cmid,and Cpost are the con-

texts before, between and after the entity pair respectively.

In this chapter, we also extract features from e1, e2, Cpre, Cmid, Cpost to construct

context vectors. And the feature set is the same as the feature set that we described

in Chapter 5, which includes words, entity type, POS features, and chunking features.

We combine the above lexical and syntactic features with their position information

in the context to form the context vector. Before that, we filter out low frequency

features which appeared only once in the entire set.

We represent each context vector of an entity pair as a vertex in an undirected

graph. Each edge (i,j) in the graph is assigned a weight Wij that reflects the similarity

between two context vectors i and j. That is, the set of context vectors X = {xi}n
i=1

can be represented as a weighted graph G(V, E), where V = {xi} and E = {Wij}.
Hence, the relation disambiguation task for entity mention pairs can be defined

as a partition of the graph so that entity mention pairs that are more similar to each

other, e.g. labeled by the same relation type, belong to the same cluster. However,

as we know, the graph partition is an NP-hard problem.

As a relaxation of such NP-hard discrete graph partitioning problem, spectral

clustering is a possible solution, which represents the above similarity graph as a

matrix. From the knowledge of linear algebra, the eigenvalues and eigenvectors of a

matrix provide global information about its structure. The top eigenvectors of the

104

graph Laplacian can unfold the data manifold to form meaningful clusters. This is the

intuition behind spectral clustering. Hence, spectral clustering technique computes

eigenvalues and eigenvectors of a Laplacian matrix related to the given graph, and

construct data clusters based on such spectral information. At the heart of this

approach is a transformation of the original input into a set of orthogonal eigenvectors.

Then it works in the space defined by the first few eigenvectors, using standard

clustering techniques in the reduced space.




w11 · · · w1n

...
...

wn1 · · · wnn







v1

...

vn




= λ




v1

...

vn




(8.2)

8.2 Context Clustering Using Spectral Clustering

In recent years, spectral clustering technique has received more and more attention as

a powerful approach to a range of clustering problems. Among the efforts on spectral

clustering techniques (Weiss, 1999; Kannan et al., 2000; Shi and Malik, 2000; Ng et

al., 2001; Zha et al., 2001; Sanguinetti et al., 2005), we adopt a modified version of the

algorithm by (Ng et al., 2001), which can provide us model order selection capability.

A significant challenge in any clustering task is to determine how many clusters

should be created for the given data. While discriminating relation types, we face a

similar question: how many relation types do entity pairs actually have? As we do

not have any labeled relation training examples at hand, the problem of model order

selection arises, i.e. estimating the “optimal” number of clusters. Formally, let k be

105

the model order, we need to find k as follows:

k = arg max
k
{criterion(k)} (8.3)

Here, the criterion is defined on the result of spectral clustering. The following dis-

cussion describes the various strategies we used to overcome this challenge in our

experiments.

Table 8.1 shows the details of the whole algorithm for context clustering, which

contains two main stages:

1. Transformation of clustering space (Step 1-4);

2. Clustering in the transformed space using the elongated K-means algorithm

(Step 5-6).

8.2.1 Transformation of Clustering Space

In this step, we want to obtain data representation in a low-dimensional space that

can be easily clustered.

The starting point of context clustering is to construct an affinity matrix A from

the data, which is an n×n matrix encoding the distances between the various points.

The nature of the affinity matrix is that “closer” vertices will get larger weights, as

Figure 8-1 presents. The affinity matrix is then normalized to form a matrix L1 by

conjugating with the diagonal matrix D−1/2 which has as entries the square roots of

the sum of the rows of A. This is to take into account the different spread of the

1There are several variations in the definition of L: some authors prefer to use I−L, some others
set to zero the diagonal entries in A. These differences do not significantly alter the algorithm.

106

Table 8.1: Context clustering using spectral-based clustering technique.

Algorithm: Context Clustering with Model Order Selection

Input: A set of context vectors X = {x1, x2, ..., xn}, X ∈ <n×d;
Output: Clustered data and number of clusters;

1. Construct an affinity matrix A ∈ Rn×n by

Aij =

{
exp(− s2

ij

σ2), if i 6= j;
0, if i = j.

(8.4)

Here, sij is the similarity between xi and xj calculated by Cosine
similarity measure. And the free distance parameter σ is used to
scale the weights.

2. Normalize the affinity matrix A to create the matrix

L = D−1/2AD−1/2 (8.5)

where D is a diagonal matrix whose (i,i) element is the sum of A’s
ith row, i.e.,

D = diag(
d∑

j=1

Aij) (8.6)

3. Set q = 2;

4. Compute q eigenvectors of L with the greatest eigenvalues. Arrange
them in a matrix Y .

5. Perform elongated K-means with q +1 centers on Y , initializing the
(q + 1)-th mean at the origin;

6. If the q+1-th cluster contains any data points, then there must be at
least an extra cluster; set q = q+1 and go back to step 4. Otherwise,
algorithm stops and outputs clustered data and number of clusters.

107

Figure 8-1: Nature of the affinity matrix

various clusters (points belonging to more rarified clusters will have lower sums of

the corresponding row of A). Figure 8-2 shows an example about the above matrix

representation for spectral clustering algorithm. It is straightforward to deduce that

the matrix L is a symmetric matrix. For symmetric matrices, they have an important

property, i.e., eigenvectors for distinct eigenvalues are orthogonal.

Let K be the true number of clusters present in the dataset. We have discussed

that the top eigenvectors of the graph’s Laplacian can unfold the data manifold to

form meaningful clusters. Hence, if K is known beforehand, the first K eigenvectors of

L (the ones corresponding to the largest eigenvalues) will be computed and arranged

as columns in a n×K matrix Y . Each row of Y corresponds to a context vector of

the entity pair, and the above process can be considered as transforming the original

context vectors in a d-dimensional space to new context vectors in the K-dimensional

space. Therefore, the rows of Y will cluster upon mutually orthogonal points on the

K dimensional sphere, rather than on the coordinate axes (that is, it has reduced

dimension from n× n to n×K).

108

0.1

2

0.2

0.8

0.7

0.6

0.8

0.8

0.8

5

4
6

3

1

Degree Matrix (D):

Symmetric matrix

Affinity Matrix (A):

0.26 0.48

0.27 0.54

0.29 0.48

0.51 -0.25

0.52 -0.28

0.47 -0.29

x1 x2 x3 x4 x5 x6

x1 1.5 0 0 0 0 0

x2 0 1.6 0 0 0 0

x3 0 0 1.6 0 0 0

x4 0 0 0 1.7 0 0

x5 0 0 0 0 1.7 0

x6 0 0 0 0 0 1.5

x1 x2 x3 x4 x5 x6

x1 0 0.8 0.6 0 0.1 0

x2 0.8 0 0.8 0 0 0

x3 0.6 0.8 0 0.2 0 0

x4 0 0 0.2 0 0.8 0.7

x5 0.1 0 0 0.8 0 0.8

x6 0 0 0 0.7 0.8 0

0.26 0.48 -0.61 -0.34 0.43 -0.08

0.27 0.54 -0.04 0.28 -0.67 -0.30

0.29 0.48 0.62 0.08 0.31 0.43

0.51 -0.25 0.38 -0.42 0.06 -0.58

0.52 -0.28 -0.21 -0.27 -0.39 0.60

0.47 -0.29 -0.20 0.73 0.31 -0.07

0.00 1.23 0.92 0.00 0.15 0.00

To normalize affinity matrix

1.23 0.00 1.28 0.00 0.00 0.00

0.92 1.28 0.00 0.32 0.00 0.00

0.00 0.00 0.32 0.00 1.36 1.11

0.15 0.00 0.00 1.36 0.00 1.27

0.00 0.00 0.00 1.11 1.27 0.00

2.59 0.00 0.00 0.00 0.00 0.00

0.00 2.22 0.00 0.00 0.00 0.00

0.00 0.00 -0.81 0.00 0.00 0.00

0.00 0.00 0.00 -1.12 0.00 0.00

0.00 0.00 0.00 0.00 -1.39 0.00

0.00 0.00 0.00 0.00 0.00 -1.50

Laplacian Matrix (L):
EigenValues (diagonal):

Symmetric matrix

Matrix : EigenVectors :

e2

e1

Figure 8-2: An example of matrix representation for spectral clustering algorithm

109

8.2.2 The elongated K-means algorithm

Once we build the embedded space from the eigenvectors corresponding to the k

largest eigenvalues, we can apply clustering algorithm on the matrix Y (treat each

row as a context vector of the entity mention pair).

As the step 5 of Table 8.1 shows, we perform an elongated K-means algorithm

to fulfill the objective. In this algorithm, the clustering result of elongated K-means

algorithm is also used to detect whether the number of clusters selected q is less than

the true number K, and allows one to iteratively obtain the number of clusters so

that we can achieve order identification capability.

Why do we not just apply K-means algorithm directly?

We have mentioned that if we know the true number of clusters K present in the

dataset, the rows of the matrix Y that has as columns the clustering eigenvectors will

cluster upon mutually orthogonal points on the K dimensional sphere. Consider the

case when the number of clusters q is less than the true cluster number K present

in the dataset. In such a situation, taking the first q < K eigenvectors, we will

be selecting a q-dimensional subspace in the clustering space, whose position will in

general bear no relation to the clusters. As the rows of the K eigenvectors clustered

along mutually orthogonal vectors, their projections in a lower dimensional space will

cluster along radial directions. Therefore, the general picture will be of q clusters

elongated in the radial direction, with possibly some clusters very near the origin

(when the subspace is orthogonal to some of the discarded eigenvectors).

Hence, given the elongated nature of the clusters, the K-means algorithm is mod-

ified as the elongated K-means algorithm to downweight distances along radial di-

110

rections and penalize distances along transverse directions. Explicitly, the elongated

K-means algorithm computes the distance of point x from the center ci as follows:

• If the center is not very near the origin, cT
i ci > ε (ε is a parameter to be fixed

by the user), the distances are calculated as:

edist(x, ci) = (x− ci)
T M(x− ci) (8.7)

where

M =
1

λ
(Iq − cic

T
i

cT
i ci

) + λ
cic

T
i

cT
i ci

(8.8)

λ is the sharpness parameter that controls the elongation (the smaller, the more

elongated the clusters) 2.

• If the center is very near the origin, cT
i ci < ε, the distances are measured using

the Euclidean distance.

In this way, if a center is within a cluster, all the points in the cluster will be very

near to it, while points in another cluster (i.e. along another radial direction) will be

judged to be further from that center than from the original.

In each iteration of procedure in Table 8.1, elongated K-means is initialized with q

centers corresponding to data points in different clusters and one center in the origin.

The algorithm then will drag the center in the origin towards one of the clusters

accounted for. We compute the next eigenvector (thus increasing the dimension of

the clustering space to q + 1) and repeat the procedure. Eventually, when one reach

as many eigenvectors as the number of clusters present in the data, no points will be

2 In this paper, the sharpness parameter λ is set to 0.2

111

assigned to the center at the origin, leaving the cluster empty. This is the signal to

terminate the algorithm.

8.2.3 An example

Figure 8-3 visualizes the clustering result of three circle dataset using K-means and

spectral-based clustering. Figure 8-3(a) is the visualization of three circle dataset.

From Figure 8-3(b), we can see that K-means does not separate the non-convex

clusters in three circle dataset successfully since it is prone to local minimal.

For spectral-based clustering, as the algorithm described, initially (set q = 2),

we took the two eigenvectors of L with largest eigenvalues, which gave us a two-

dimensional clustering space. Then to ensure that the two centers are initialized

in different clusters, one center c1 is set as the point that is the farthest from the

origin, while the other center c2 is set as the point that simultaneously farthest the

first center c1 and the origin. As we know that there will be at least two clusters in

the plane, this initialization guarantees that the second center is set at a point in a

different cluster.

Then we add a third center c3 at the origin. Because we are going to do an

elongated K-means clustering, each center is considered closer to points that lie along

the same radial line than to points that lie off this line. For this reason we find that

the first two centers will not easily be moved away from the two clusters they started

in. However, as c3 is set in the origin, distances from it will be measured using the

standard Euclidean distance, and this will mean that the points of the third cluster

will be assigned to it (as their Euclidean distance from the origin is smaller than their

elongated distance from another cluster). The consequence of this is that c3 gets

112

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(a)

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(c)

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(d)

Figure 8-3: An example:(a) The three circle dataset. (b) The clustering result us-
ing K-means; (c) Three elongated clusters in the 2D clustering space using spectral
clustering: two dominant eigenvectors; (d) The clustering result using spectral-based
clustering (σ2=0.05). (4,◦ and + denote examples in different clusters)

113

dragged towards the third cluster, and we achieve the clustering we desired, as each

of the clusters in the 2D clustering space of Figure 8-3(c) corresponds to one of the

concentric circles in Figure 8-3(a).

When iterating the algorithm further, all three clusters will have a mean vector

initialized at one of their points. Therefore, the assignment rule of K-means will force

the fourth center c4 (initialized at the origin) to have no points assigned to it. This

will be taken as the termination signal. The final result is visualized in Figure 8-3(d),

which exploits manifold structure (cluster structure) in data.

8.3 Experiments and Results

8.3.1 Data Setting

Like the previous chapters, our proposed unsupervised relation extraction is evaluated

on the ACE corpus. To verify our proposed method, we only collect those pairs of

entity mentions in the devtest set of the given corpus. Then the relation type tags

were removed to test the unsupervised relation disambiguation. During the evaluation

procedure, the relation type tags were used as ground truth classes. Table 4.1 lists

the types and subtypes of relations, along with their frequency of occurrence in the

ACE training set and test set.

To verify the effectiveness of the improved model for unsupervised relation disam-

biguation, we use the same evaluation method for clustering as Chapter 7. Firstly,

we find one-to-one mapping between the clustering result and hand-tagged relation

types (ground truth classes), and then given the result of one-to-one mapping using

Precision, Recall and F-measure to evaluate the clustering result.

114

Table 8.2: Contribution of different features

Features cluster number Precision Recall F-measure

Words 15 41.6 30.2 34.9

+Entity Type 18 40.3 42.5 41.5

+POS 18 37.8 46.9 41.8

+Chunking Infomation 19 43.5 49.4 46.3

8.3.2 Experimental Design

We perform our unsupervised relation extraction on the devtest set of ACE corpus and

evaluate the algorithm on relation subtype level. Firstly, we observe the influence of

Different Feature set and Context Window Size. Secondly, to verify the effectiveness

of our method, we further compare it with other unsupervised methods.

Contribution of Different Features

As the previous section presented, we incorporate various lexical and syntactic fea-

tures to extract relation. To measure the contribution of different features, we report

the performance by gradually increasing the feature set, as Table 8.2 shows.

Table 8.2 shows that all of the four categories of features contribute to the im-

provement of performance more or less. Firstly, using word features only achieves

the performance of 41.6%/30.2%/34.9 in Precision/Recall/F-measure. Secondly, the

addition of entity type feature is very useful, which improves F-measure by 6.6.

Thirdly, adding POS features can increase F-measure score but does not improve

very much. Finally, chunking features also show their great usefulness with increas-

ing Precision/Recall/F-measure by 5.7%/2.5%/4.5. With the addition of chunking

115

Table 8.3: Performance of context clustering with different context window size setting

Context Window Size cluster number Precision Recall F-measure

0 18 37.6 48.1 42.2

2 19 43.5 49.4 46.3

5 21 29.3 34.7 31.7

features, we also acquire the closer estimate cluster number to the truth number of

ACE relation subtypes, 24, although it is not equal to this prior knowledge exactly.

Since these features are all helpful for the relation disambiguation task. We con-

tinue to combine all these features to do all other evaluations in our experiments.

Setting of Context Window Size

We have mentioned in Section 8.1 that the context vectors of entity pairs are derived

from the contexts before, between and after the entity mention pairs. Hence, we have

to specify the three context window size first. As before, we set the mid-context

window as everything between the two entity mentions, and the context window size

for pre- and post- context is defined as before.

For comparison of the effect of the outer context of the entity mention pair, we

conducted three different settings of context window size (0, 2, 5) as Table 8.3 shows.

From this table we can find that with the context window size setting, 2, the algorithm

achieves the best performance of 43.5%/49.4%/46.3 in Precision/Recall/F-measure.

With the context window size setting, 5, the algorithm achieves the closest estimated

cluster number to the truth number of ground truth classes. However, it also results

the worst performance. Hence, we can say that the setting of context window size

116

as “5” is not suitable because extending the context too much may include more fea-

tures, but at the same time, the noise also increases, which may confuse the manifold

structure. From this observation, we also can tell that characteristics of an relation

instance is mainly determined by the most neighboring contexts around the two entity

mentions.

Comparison with other Unsupervised methods

In this experiment, we explore the effectiveness of our unsupervised methods com-

pared to other unsupervised methods. Table 8.4 is the performance using various

context clustering techniques and feature sets.

In (Hasegawa et al., 2004), they preformed unsupervised relation extraction based

on hierarchical clustering and they only used word features between entity mention

pairs to construct context vectors. We reported the clustering results using the same

clustering strategy as Hasegawa et al. (2004) proposed. In Table 8.4, Hasegawa’s

Method 1 means the test only used the word feature as Hasegawa et al. (2004)’s

work, while Hasegawa’s Method 2 means the test used the same feature set as our

methods, which includes various lexical and syntactic features described in Chapter 5.

In both tests, we specified the cluster number as the number of ground truth classes.

We also tried the relation disambiguation problem using the standard clustering

technique, K-means algorithm, where we adopted the same feature set defined in

our proposed method to cluster the context vectors of entity mention pairs and pre-

specified the cluster number as the number of ground truth classes.

In Table 8.4, we also report the result of our proposed unsupervised model in the

previous chapter, which we will call “Our Proposed Method 1(Stability based)”. We

117

Table 8.4: Performance of various unsupervised methods for relation disambiguation.

Precision Recall F-measure

Hasegawa’s Method 1 38.7 29.8 33.7

Hasegawa’s Method 2 37.9 36.0 36.9

K-means based Method 34.3 40.2 36.8

Our Proposed Method 1 (Stability based) 40.9 44.5 42.6

Our Proposed Method 2 (Spectral based) 43.5 49.4 46.3

call the unsupervised model proposed in this chapter as “Our Proposed Method 2

(Spectral-based)”. Both of our proposed methods adopt the feature set we described

in Chapter 5.

As the result shows, both of our proposed methods for context clustering clearly

achieve better performance than Hasegawa et al. (2004)’s method and K-means based

clustering method. Firstly, for Hasegawa et al. (2004)’s method, we find that the

test using lexical and syntactic feature set outperforms the test using only word

feature. This result again validates that the incorporation of various lexical and

syntactic features is effective even for standard clustering method. Secondly, using

the same feature set information, our proposed method1 which used resampling based

stability analysis outperforms Hasegawa et al. (2004)’s method and another K-means

clustering based methods by 5.7 and 5.8 in F-measure respectively. Finally, the best

result for context clustering is achieved by our Proposed Method2 based on spectral

clustering as 43.5%/49.4%/46.3 in Precision/Recall/F-measure, which is also better

than our proposed method1 based on stability clustering. These findings support our

assumption that the graph based method is effective for the relation extraction task.

118

8.3.3 Discussion

In this chapter, we have shown that the modified spectral clustering technique, with

various lexical and syntactic features derived from the context of entity pairs, per-

formed well on the unsupervised relation disambiguation problem. Our experiments

show that we can estimate the cluster number without any labeled instances. We no-

tice that the estimated cluster number is less than the number of ground truth classes

in most cases. The reason for this phenomenon may be that some relation types can

not be easily distinguished using the context information only. For example, the re-

lation subtypes “Located”, “Based-In” and “Residence” are difficult to disambiguate

even for human experts to differentiate. Hence, the instances belong these subtypes

may have similar context information and easily be recognized as the same clusters

wrongly.

The results also show that various lexical and syntactic feature set contains useful

information for the relation extraction task. Specifically, although we did not use

the dependency tree and full parse tree information as other supervised methods

(Miller et al., 2000; Culotta and Soresen, 2004; Kambhatla, 2004; Zhou et al., 2005),

the incorporation of simple features, such as words and chunking information, can

still provide complement information for capturing the characteristics of entity pairs.

Another observation from the results is that extending the outer context window of

the entity mention pair too much may not improve the performance since the process

may incorporate more noise information and confuse the manifold structure.

As regards to the context clustering technique, our spectral-based clustering method

performs better than other direct clustering methods, such as Hasegawa et al. (2004)’s

Hierarchical clustering or K-means clustering. Since the spectral-based algorithm

119

works in a transformed space of low dimensionality, data can be easily clustered so

that the algorithm can be implemented with better efficiency and speed. And the

performance using spectral-based clustering can be improved due to the reason that

spectral-based clustering overcomes the drawback of K-means clustering (prone to

local minima) and may find non-convex clusters consistent with human intuition.

Currently most of works on the RDC task of ACE focused on supervised learning

methods. Table 6.4 lists a comparison of these methods on relation detection and re-

lation classification. (Zhou et al., 2005) reported the best result as 63.1%/49.5%/55.5

in Precision/Recall/F-measure on the extraction of ACE relation subtypes using fea-

ture based method, which outperforms tree kernel based method by (Culotta and

Soresen, 2004). Although our unsupervised method still can not outperform these

supervised methods, from the point of view of unsupervised resolution for relation

extraction, our approach already achieves best performance of 43.5%/49.4%/46.3 in

Precision/Recall/F-measure compared with other clustering methods.

8.4 Summary

In this chapter, we resolve the unsupervised relation disambiguation problem from

the point of view of graph based method, by using spectral-based clustering technique

with diverse lexical and syntactic features derived from context. It works by calculat-

ing eigenvectors of an adjacency graph’s Laplacian to recover a submanifold of data

from a high dimensional space, and then performing cluster number estimation on a

transformed space defined by the first few eigenvectors. The advantage of our method

is that it doesn’t need any manually labeled relation instances, and pre-definition the

number of the context clusters. This method may help us find non-convex clusters

120

and perform clustering effectively and efficiently. Experiment results on the ACE

corpus show that our method achieves a better performance than other unsupervised

methods. In the experiments we also examined the utility of the features in the

unsupervised model and found out the different contribution of each feature.

121

Chapter 9

Conclusions and Future Work

The purpose of our thesis is to find effective semi-supervised and unsupervised learn-

ing models for the automatic relation extraction task. The traditional semi-supervised

models are based on the local consistency assumption that examples close to labeled

examples within the same class will have the same labels. As a result the affinity

information among unlabeled examples can not be fully explored. Furthermore, the

previous unsupervised models cannot determine the “natural” number of relation

types among entity mention pairs and are unable to to handle non-convex clusters.

The thesis has confirmed our hypothesis that the need of a large amount of labeled

data can be avoided for automatic relation extraction task. The main contribution of

this thesis is that it presents graph based models for semi-supervised and unsupervised

relation extraction task to overcome the above limitations of the previous works.

We will now summarize and highlight the significance of the research work that

has been discussed in the previous chapters and will discuss some potential directions

for future work.

122

9.1 Main Contributions

The thesis has the following contributions:

The construction of the graph based model for Semi-supervised relation extraction

With an aim to address the problems of the conventional models for relation ex-

traction, this thesis proposes, for the first time to the best of our knowledge, graph

based model to do relation extraction. Actually, the assumption of graph-based meth-

ods, that two points with similar features tend to be in the same class, fit the problem

structure of relation extraction. As stated in Chapter 6, we proposed a Label Propa-

gation (LP) based semi-supervised learning algorithm to learn from both labeled and

unlabeled data. This algorithm works by representing labeled and unlabeled exam-

ples as vertices in a connected graph, then propagating the label information from

any vertex to nearby vertices through weighted edges iteratively, finally inferring the

labels of unlabeled examples after the propagation process converges.

The experimental results on the ACE corpus showed that our LP-based semi-

supervised method achieves a better performance than SVM and another bootstrap-

ping method based on SVM by Zhang (2004) on both relation detection and classifi-

cation tasks when only few labeled data is available. The results also showed that our

method achieves a comparable performance to SVM using the full set of the available

ACE training examples. It is possible that, for supervised method (SVM) and boot-

strapping method, too few labeled examples are not enough to reveal the structure

because the classification hyperplane was learned only from few labeled data and

the coherent structure in unlabeled data was not explored when inferring the class

boundary. The findings indicated that our method can overcome the problem of not

123

having enough manually labeled relation instances for supervised relation extraction

methods.

The achievement of order identification capability in unsupervised model

Chapter 7 modeled relation extraction problem in an unsupervised learning man-

ner and gave an overview of the main phases of an unsupervised approach. Specif-

ically, in this chapter, we introduced an unsupervised learning algorithm based on

model order identification for automatic relation extraction. We have confirmed our

hypothesis that model order identification can be achieved by resampling based sta-

bility analysis. The main idea behind the stability based model selection is that

solutions on two data sets from the same source should be similar. Actually, pre-

vious works did not addressed model selection problem in unsupervised manner for

relation extraction. Hence, this is a significant improvement over the unsupervised

learning technique for relation extraction problem compared with the existing work

by Hasegawa et al. (Hasegawa et al., 2004). Experiments results showed that we can

infer the number of relation types between entity mention pairs automatically. With

the estimated “natural” number of relation types, our method also outperforms the

other unsupervised methods.

The improvement of unsupervised relation disambiguation using graph based model

Chapter 8 further investigated the unsupervised learning solution for relation ex-

traction. Unlike Hasegawa et al. (2004)’s work, we also allow multiple relation to be

captured for the same entity pair which leads to the need to do relation disambigua-

tion. Enlightened by the graph based model for semi-supervised relation extraction in

124

Chapter 6, we modelled the unsupervised relation disambiguation problem as a graph

partitioning problem. As a relaxation of such NP-hard discrete graph partitioning

problem, we proposed a novel application of spectral clustering technique to detect

and classify relation instances of entity pairs. Compared with the stability based

method described in Chapter 7, the spectral-based algorithm can be implemented

with much more efficiency and speed. It is due to space transformation from the orig-

inal high dimensionality to a low dimensionality. Experimental results also showed

that the spectral based method can improve the performance of context clustering.

Currently most of work on the RDC task of ACE focused on supervised learning

methods. Although the experiments compared with these methods showed that our

method still cannot outperform these supervised methods, from the point of view of

unsupervised relation type disambiguation, our approach already achieves the best

performance compared with other unsupervised based methods. The reason is that

spectral clustering is likely to find non-convex clusters which traditional clustering

algorithms cannot obtain. As a result, this efficient approach is a big step towards

automatic relation extraction without any human intervention.

Knowledge representation for automatic relation extraction

Chapter 5 explores the knowledge representation issue in the our automatic rela-

tion extraction models. Our thesis proposes to represent each relation instance using

the context information before, between and after an entity mention pair and the

two entity mentions themselves. Various lexical and syntactic features have been ex-

tracted to describe the properties underlying these knowledge source, including word

features, POS features, entity type, and several chunking features. All the adopted

125

knowledge is domain-independent.

Chapter 9 evaluates the utility of the features in the relation extraction task. By

gradually increasing the feature set, we found that all of the four categories of features

contributes to the relation extraction task more or less, hence, the incorporation

of diverse features enables our system achieve the best reported performance. In

addition, Evaluations in Chapter 8 and 9 also show us the influence of the setting of

context window size, which indicate that extending the context too much may not

improve the performance since the process may incorporate more noise information

to confuse the characteristics of relation instance.

9.2 Future Work

In addition to the contributions made by this thesis, a number of further contributions

can be made by extending this work in new directions. Some of these potential

extensions are discussed below.

Our proposed semi-supervised and unsupervised methods are mostly feature based

method, similarity between two relation instances are measured using the feature vec-

tors derived from the context of two entity mentions. Firstly, since the feature space

is relatively sparse, in order to improve the searching efficiency and to optimize the

clustering result, in the future, we could apply some feature selection techniques to

select an important feature set beforehand to construct context vectors (Roth and

Lange, 2003). Secondly, as an alternative to the feature-based method, we have men-

tioned earlier that kernel-based methods (Zelenko et al., 2002; Culotta and Soresen,

2004) have the special property, that is, they are able to exploit non-local dependen-

cies. Inspired by this, in the future, we could also consider to incorporate the tree

126

similarity function into our learning models so that we could capture more structure

information from the parse tree for a relation instance. Dependency structures appear

to be a reasonable alternative since they naturally model verbs and their arguments,

which is how many relations can be seen. Thirdly, currently, we only extracted those

lexical and syntactic features derived from contexts of entity pairs. We could inves-

tigate effective ways to explore semantic knowledge such as WordNet and namelists,

to assist the relation extraction task.

For relation extraction problem, unsupervised learning solution is a promising

topic of research. We can not expect that unsupervised methods will ever exceed

supervised methods in cases where there is plenty of labeled training data, but we

can hope that, when only unlabeled data is available, unsupervised methods will be

important and useful tools. As described in our previous work on relation extraction

(Chen et al., 2005a; Chen et al., 2005b; Chen et al., 2006b; Chen et al., 2006d),

unsupervised learning method does not need a large amount of labeled data as their

precondition, so it would make great significance if we can further improve the per-

formance of our methods presented in this thesis. However, detecting relations is a

difficult task for an unsupervised method because the set of all non-relation instances

is extremely heterogeneous, and is therefore difficult to characterize them with a simi-

larity metric. We believe that our work has made an importance in the right direction

to lead to more future exciting work in unsupervised learning in automatic relation

extraction.

127

Bibliography

E. Agichtein and L. Gravano. 2000. Snowball: Extracting Relations from large

Plain-Text Collections. In Proceedings of the 5th ACM International Conference

on Digital Libraries (ACMDL’00).

M. Belkin and P. Niyogi. 2002. Using Manifold Structure for Partially Labeled

Classification. Advances in Neural Infomation Processing Systems 15.

T. Berners-Lee, J. Hendler, and O. Lassila. 2001. The Semantic Web. Scientific

American.

D. Bikel, R. Schwartz, and R. Weischedel. 1999. An algorithm that learns what’s in

a name. Machine Learning Journal Special Issue on Natural Language Learning.

A. Blum and S. Chawla. 2001. Learning from Labeled and Unlabeled Data Using

Graph Mincuts. In Proceedings of the 18th International Conference on Machine

Learning.

A. Blum and T. Mitchell. 1998. Combining Labeled and Unlabeled Data with Co-

training. In COLP: Proceedings of the Workshop on Computational Learning

Theory.

A. Blum, J. Lafferty, R.Rwebangira, and R. Reddy. 2004. Semi-Supervised Learning

128

Using Randomized Mincuts. In Proceedings of the 21th International Conference

on Machine Learning.

Sergey Brin. 1998. Extracting patterns and relations from world wide web. In

Proceedings of WebDB Workshop at 6th International Conference on Extending

Database Technology (WebDB’98).

E. Charniak. 1999. A Maximum-entropy-inspired parser. Technical Report CS-99-

12,Computer Science Department, Brown University.

Jinxiu Chen, DongHong Ji, ChewLim Tan, and ZhengYu Niu. 2005a. Automatic

Relation Extraction with Model Order Selection and Discriminative Label Iden-

tification. In Proceedings of the 2nd International Joint Conference on Natural

Language Processing (IJCNLP-05), Jeju Island, Korea.

Jinxiu Chen, DongHong Ji, ChewLim Tan, and ZhengYu Niu. 2005b. Unsupervised

Feature Selection for Relation Extraction. In Proceedings of the 2nd International

Joint Conference on Natural Language Processing (IJCNLP-05), Jeju Island, Ko-

rea.

Jinxiu Chen, DongHong Ji, ChewLim Tan, and ZhengYu Niu. 2006a. Relation

Extraction Using Label Propagation Based Semi-Supervised Learning. In Pro-

ceedings of the joint conference of the International Committee on Computational

Linguistics and the Association for Computational Linguistics (COLING/ACL-

2006), Sydney, Australia.

Jinxiu Chen, DongHong Ji, ChewLim Tan, and ZhengYu Niu. 2006b. Unsuper-

vised Relation Type Disambiguation Using Spectral Clustering. In Proceedings of

the joint conference of the International Committee on Computational Linguistics

129

and the Association for Computational Linguistics (COLING/ACL-2006), Syd-

ney, Australia.

Jinxiu Chen, DongHong Ji, ChewLim Tan, and ZhengYu Niu. 2006c. Semi-supervised

Relation Extraction with Label Propagation. In Proceedings of the Human Lan-

guage Technology conference - North American chapter of the Association for

Computational Linguistics annual meeting (HLT-NAACL 2006), New York, USA.

Jinxiu Chen, DongHong Ji, ChewLim Tan, and ZhengYu Niu. 2006d. Unsupervised

Relation Disambiguation with Order Identification Capabilities. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing (EMNLP

2006), Sydney, Australia.

M. Collins. 1997. Three Generative, Lexicalised Models for Statistical Parsing. In

Proceedings of the 35th Annual Meeting of the ACL1997.

M. Collins. 2002. Discriminative Trainning Methods for Hidden Markov Models:

Theory and Experiments with Perceptron Algorithms. In Proceedings of Empirical

Methods in natural language Processing.

A. Culotta and J. Soresen. 2004. Dependency tree kernels for relation extraction.

In Proceedings of 42th Annual Meeting of the Association for Computational Lin-

guistics, Barcelona, Spain.

Y. Freund and R.E. Schapire. 1999. Large margin classification using the perceptron

algorithm. Machine Learning, 37(3):277-296, 1999.

Gabriel Pui Cheong Fung, Jeffrey Xu Yu, and Hongjun Lu. 2002. Discriminative

Category Matching: efficient Text Classification for Huge Document Collections.

130

In Proceedings of the IEEE International Confernece on Data Mining (ICDM),

Maebashi City, Japan.

T. Hasegawa, S. Sekine, and R. Grishman. 2004. Discovering Relations among Named

Entities from Large Corpora. In Proceedings of 42th Annual Meeting of the Asso-

ciation for Computational Linguistics, Barcelona, Spain.

Minlie Huang, Xiaoyan Zhu, Donald G.Payan, Kunbin Qu, and Ming Li. 2004. Dis-

covering patterns to extract protein-protein interactions from full biomedical texts.

In Proceedings of 20th International Conference on Computational Linguistics.

Valentin Jijkoun, Jori Mur, and Maarten de Rijke. 2004. Information extraction for

question answering: Improving recall through syntactic patterns. In Proceedings

of COLING-2004.

T. Joachims. 2002. Learning to Classify Text Using Support Vector Machines.

Kluwer.

N. Kambhatla. 2004. Combining lexical, syntactic and semantic features with Max-

imum Entropy Models for extracting relations. In Proceedings of 42th Annual

Meeting of the Association for Computational Linguistics, Barcelona, Spain.

R. Kannan, S. Vempala, and A. Vetta. 2000. On clustering: Good,bad and spectral.

In Proceedings of the 41st Foundations of Computer Science, pages 367-380.

Boris Katz and Jimmy Lin. 2003. Selectively Using Relations to Improve Precision

in Question Answering. In Proceedings of the EACL 2003 Workshop on Natural

Language Processing for Question Answering, Budapest, Hungary.

T. Lange, M. Braun, V. Roth, and J. M. Buhmann. 2002. Stability-Based Model

Selection. Advances in Neural Information Processing Systems 15.

131

E. Levine and E. Domany. 2001. Resampling Method for Unsupervised Estimation

of Cluster Validity. Neural Computation, Vol.13, 2573-2593.

J. Lin. 1991. Divergence Measures Based on the Shannon Entropy. IEEE Transac-

tions on Information Theory, pages Vol 37, No.1, 145–150.

K. Litkowski. 1999. Question-answering using semantic relation triples. In E.

Voorhees & D. Harman, (red.), Proceedings of the eigth Text Retrieval Confer-

ence (TREC 8), Gaithersburg, Maryland.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Building a Large Annotated

Corpus of English: the Penn Treebank. Computational Linguistics, 19(2):313-

330.

A. McCallum and D. Jensen. 2003. A Note on the Unification of Information Extrac-

tion and Data Mining using Conditional-Probability. In Workshop on Learning

Statistical Models from Relational Data at IJCAI’03.

D.M. McDonald, H. Chen, H. Su, and B.B. Marshall. 2004a. Extracting gene pathway

relations using a hybrid grammar: the Arizona Relation Parser. Bioinofrmatics,

pages 20(18):3370–78.

Ryan McDonald, Fernando Pereira, Seth Kulick, Scott Winters, Yang Jin, and Pete

White. 2005. Simple Algorithms for Complex Relation Extraction with Applica-

tions to Biomedical IE. In Proceedings of ACL2005.

S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. 2000. A novel use of statistical

parsing to extract information from text. In Proceedings of 6th Applied Natural

Language Processing Conference, Seattle USA.

132

Defense Advanced Research Projects Agency, 1995. Proceedings of the sixth Message

Understanding Conference (MUC-6). Morgan Kaufmann Publishers, Inc.

Roberto Navigli and Paola Velardi. 2004. Learning Domain Ontologies from docu-

ment Warehouses and Dedicated Web Sites. Computational Linguistics, Vol. 30,

Issue 2.

A. Y. Ng, M. Jordan, and Y. Weiss. 2001. On spectral clustering: Analysis and an

algorithm. In Proceedings of Advances in Neural Information Processing Systems,

pages 849-856.

Zhengyu Niu, Donghong Ji, and Chew Lim Tan. 2004. Document Clustering Based on

Cluster Validation. In Proceedings of CIKM’04, Washington, DC, USA, November

8-13.

Borys Omelayenko. Learning of Ontologies for the Web: the Analysis of Existent Ap-

proaches. In Proceedings of the International Workshop on Web Dynamics, held

in conj. with the 8th International Conference on Databased Theory (ICDT’01),

London, UK.

Adwait Ratnaparkhi. 1999. Learning to Parse Natural Language with Maximum

Entropy. Machine Learning (Special Issue on Natural Language Learning), 34(1-

3):151-176.

Barbara Rosario and Marti A. Hearst. 2004. Classifying semantic relations in bio-

science texts. In Proceedings of ACL.

Volker Roth and Tilman Lange. 2003. Feature Selection in Clustering Problems. In

NIPS2003 workshop.

133

Gerard Salton. 1998. Automatic Text Processing: The transformation, analysis, and

retrieval of information by computer. Addison-Wesley.

G. Sanguinetti, J. Laidler, and N. Lawrence. 2005. Automatic determination of the

number of clusters using spectral algorithms. IEEE Machine Learning for Signal

Processing.

D. Shen and D. Klakow. 2006. Exploring Correlation of Dependency Relation Paths

for Answer Extraction. In Proceedings of the ACL 2006.

J. Shi and J. Malik. 2000. Normalized cuts and image segmentation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, pages 22(8):888–905.

N. Slonim, N. Friedman, and N. Tishby. 2002. Unsupervised Document Classifi-

cation Using Sequential Information Maximization. In Proceedings of the 25th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval.

K. S. Tjong and M. F. De. 2003. Introduction to the CONLL-2003 Shared Task:

Language-Independent Named Entity Recognition. In Proceedings of CONLL-

2003.

V. Vapnik. 1998. Statistical Learning Theory. Whiley, Chichester, GB.

Yair Weiss. 1999. Segmentation using eigenvectors: A unifying view. ICCV(2), pages

pp.975–982.

D. Yarowsky. 1995. Unsupervised Word Sense Disambiguation Rivaling Supervised

Methods. In Proceedings of the 33rd Annual Meeting of the Association for Com-

putational Linguistics, pages 189–196.

134

D. Zelenko, C. Aone, and A. Richardella. 2002. Kernel Methods for Relation Extrac-

tion. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing (EMNLP), Philadelphia.

H. Zha, C. Ding, M. Gu, X. He, and H. Simon. 2001. Spectral Relaxation for k-means

clustering. Neural Information Processing Systems (NIPS2001), pages 1057–1064.

Min Zhang, Jian su, Danmei Wang, Guodong Zhou, and Chew Lim Tan. 2005.

Discovering Relations Between Named Entities from a Large Raw Corpus Using

Tree Similairty-based Clustering. In Proceedings of the 2nd International Joint

Conference on Natural Language Processing (IJCNLP-05), Jeju Island, Korea.

Zhu Zhang. 2004. Weakly-supervised relation classification for Information Extrac-

tion. In Proceedings of ACM 13th conference on Information and Knowledge

Management (CIKM’2004), Washington D.C.,USA.

GuoDong Zhou, Jian Su, Jie Zhang, and min Zhang. 2005. Exploring Various Knowl-

edge in Relation Extraction. In Proceedings of 43th Annual Meeting of the Asso-

ciation for Computational Linguistics, USA.

Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from Labeled and Unlabeled

Data with Label Propagation. CMU CALD tech report CMU-CALD-02-107.

Xiaojin Zhu, Zoubin Ghahramani, and J. Lafferty. 2003. Semi-Supervised Learn-

ing Using Gaussian Fields and Harmonic Functions. In Proceedings of the 20th

International Conference on Machine Learning.

135

