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Summary

In this thesis, the fast Fourier transform on multipole (FFTM) is used to accelerate

the matrix-vector product in the boundary element method (BEM) for solving

three dimensional Laplace equation, Navier equation, Stokes equation and non-

linear Poisson-type equation. The FFTM method uses multipole moments and

local expansions, together with the fast Fourier transform (FFT), to accelerate the

far field computation. The FFTM algorithm was initially developed to solve the

indirect BEM formulation for the Laplace equation. In this work, a new formulation

for handling the double layer kernel using the direct formulation is presented. The

FFTM algorithm shows different computational performances in the direct and

indirect formulations. These differences are compared and analyzed.

The FFTM algorithm is extended to solve elasticity problems, governed by the

Navier equation. The memory requirement of original FFTM algorithm tends to be

high. In addition, the Navier equation involves vector quantities, which makes the

memory requirement worse. To reduce the memory cost, a new compact storage of

the translation matrices is proposed. This reduces the memory usage significantly,

allowing large elasticity problems to be solved efficiently. To demonstrate its ac-
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curacy and efficiency, the FFTM is compared with the commonly used FMM in

terms of efficiency, accuracy and memory cost. Then it is applied to the calculation

of the effective Young’s modulus of material containing numerous voids.

To extend the FFTM to solve the Stokes equation, the same technique, as that

for the Navier equation, is used to derive the translation operators. The resulting

multipole translations for Stokes equation are similar to the Navier equation, with

the same number of multipole moments and local expansions used, due to the

similarity between the boundary integral formulations of the Navier equation and

the Stokes equation. In addition, the same compact storage technique for the

translation matrices is employed. After it is verified with a simple example, the fast

Stokes solver is applied to calculate the average drag force on numerous randomly

distributed spherical particles inside a cylinder.

The BEM becomes less attractive when used to solve non-linear equation, because

expensive volume integration and evaluation of interior values are involved. In this

thesis, the non-linear Poisson-type equation, including a Laplace operator and a

non-linear term, is solved by the FFTM. An iterative scheme is used in the fast

non-linear solver. In each iteration, a Poisson equation is solved and the interior

values are evaluated. To handle the non-homogeneous term in the Poisson equation,

two different fast methods are compared. One uses the multipole to accelerate the

volume integration, while the other obtains a particular solution through the FFT.

The second method is faster and more accurate, and adopted in the fast non-linear

algorithm. Several numerical examples are presented to show the improvement in

computational efficiency.
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Chapter 1

Introduction

1.1 Partial differential equation

In mathematics, a partial differential equation is a type of differential equation

that involves an unknown function of several independent variables and the par-

tial derivatives with respect to those variables. In this thesis, several important

partial differential equations, namely, Laplace equation, Navier equation, Stokes

equation and non-linear Poisson-type equation, are investigated with a power tool,

fast Fourier transform on multipoles (FFTM).

Laplace equation is a partial differential equation named after its discoverer, Pierre-

Simon Laplace. The scalar form of Laplace equation is

∇2Φ(x) = 0. (1.1)

The partial differential operator, ∇2, is called the Laplace operator, or just the

1



CHAPTER 1. INTRODUCTION

Laplacian. The commonly used boundary conditions for the Laplace equation are

Dirichlet boundary condition (first-type boundary condition or essential boundary

condition) and Neumann boundary condition (second-type boundary condition or

natural boundary condition). The Dirichlet boundary condition prescribes the

value of Φ on the boundary, while the Neumann boundary condition prescribes the

value of ∂Φ/∂n. The Laplace equation is important in many areas in science and

engineering, such as astronomy and electrostatics.

The elasticity problem is governed by the Navier equation,

∂2ui

∂xj∂xj

+
1

1 − 2ν

∂2uj

∂xi∂xj

= 0, (1.2)

where u is the displacement, xi is the spatial coordinates (i = 1, 2, 3), and ν is

the Poisson ratio. The Navier equation is the equation of equilibrium expressed

in terms of displacements. It can be obtained by substituting the stress-strain

relationship

σij = λδijεkk + 2µεij (k = 1, 2, 3) (1.3)

into equation of equilibrium

∂σij

∂xj

= 0 (1.4)

and using the strain-displacement relationship

εij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

). (1.5)

In these equations, σ is the stress, ε is the strain, δij is the Kronecker delta, µ is the

shear modulus and λ = 2νµ/(1 − 2ν) is the Lame constant. The Navier equation

describes the linear elasticity relationship in solids, which is the starting point for

many numerical schemes.
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CHAPTER 1. INTRODUCTION

For fluid undergoing Stokes flow, the inertial force in the fluid is small compared

to the viscous force, as indicated by the low the Reynolds number (Re << 1). In

this case, the governing equation for steady Stokes flow is given by

µ
∂2ui(x)

∂xj∂xj

=
∂P (x)

∂xi

, x ∈ Ω;

∂ui(x)

∂xi

= 0, (1.6)

where ui is the fluid velocity, xi is the spatial coordinate (i = 1, 2, 3), P is the

pressure and µ is the dynamic viscosity. Typically, the Reynolds number is low,

when the fluid velocities are very slow, the viscosity is very large, or the length-

scales are very small. Such conditions are commonly found in micro fluidic devices

or Micro-Electro-Mechanical Systems (MEMS).

In science and engineering, many problems are modeled as the following partial

differential equation, such as heat transfer and electrostatics:

∇2u(x) = f(u). (1.7)

If the solution of the equation satisfies both of the following properties, additivity

and homogeneity, the equation is a linear equation. Otherwise, it is non-linear

equation. Additivity means that if u1(x) and u2(x) are both solutions of the

equation, then u1(x) + u2(x) must also be a solution. Homogeneity means that if

u1(x) is one solution, then αu1(x) (where α is a constant) is also one solution. These

two rules, taken together, are often referred to as the principle of superposition.

Because of the lack of simple superposed solutions, the non-linear equations are

more complex and harder to understand and solve than the linear ones.

3



CHAPTER 1. INTRODUCTION

1.2 Boundary element method (BEM) and fast

algorithms

In most cases, it is difficult to obtain an analytical solution of the partial differ-

ential equations. Hence, the partial differential equations are normally solved by

numerical methods, such as finite difference method (FDM) [30], finite element

method (FEM) [69] and boundary element method (BEM) [5]. In contrast with

FDM and FEM, both of which need to discreitze the whole computational domain,

BEM discretizes only the boundary of the domain. Consequently, the number of

degrees of freedom in the problem is decreased, and the difficulties of disretizing

the whole domain are avoided. This advantage enables BEM to become popular

since the 1980s, and it has been applied successfully in many areas in science and

engineering including heat transfer [32], fluid mechanics [68, 67], acoustics [14, 84],

electromagnetics [63] and solid mechanics [1].

The critical concept in the BEM is to express the solution of the partial differential

equation in terms of boundary distributions of fundamental solutions (also called

Green’s functions). There are two approaches to the derivation of an integral

equation formulation for the partial differential equation. The first is the direct

method, and the integral equations are derived through the application of Green’s

second theorem. The other technique is the indirect method. This is based on the

assumption that the solution can be expressed in terms of a source density function

defined on the boundary.

4



CHAPTER 1. INTRODUCTION

The BEM produces a full and asymmetric matrix, which poses challenges in storing

the coefficient matrix and solving the linear system for large problems. The memory

required for storing the matrix is O(N2), and the computational time solving the

linear system with Gauss elimination method is O(N3), where N is the number

of degrees of freedom. Hence, it is not practical to solve large problem with the

traditional BEM owing to the limit of memory and long computational time. The

generalized minimal residual (GMRES) method [71] can improve the computational

efficiency of solving the linear equations from O(N3) to O(N2). In addition, in

each GMRES iteration, only the matrix-vector multiplication is needed, so that

the storage of the full matrix can be avoided. However, without storage of the

matrix, all the coefficients in the matrix are calculated in each GMRES iteration,

which means long computational time.

Such matrix-free BEM can be accelerated by performing the matrix-vector multipli-

cation in a faster manner. There are mainly two categories of such fast algorithms.

The first one is the fast multipole method (FMM) [70, 24, 52], which uses multipole

and local expansions to approximate the source densities that are at places far away

from the evaluation point. The efficiency of FMM comes from the effective usage of

the multipole and local expansions, which are employed repeatedly in a hierarchical

manner through a series of translations. The other algorithm is based on the fast

Fourier transform (FFT), and the most popular is the precorrected-FFT (pFFT)

introduced by Philips and White [62]. This method approximates a given distribu-

tion of charges by an equivalent system of smoothed source distribution that falls

on a regular grid. Subsequently, the potential at the grid points produced by the

5



CHAPTER 1. INTRODUCTION

smoothed source distribution is derived by discrete convolution, which can be done

rapidly using FFT algorithms. Recently, Ong et al. [56, 59] introduced an alterna-

tive fast algorithm, fast Fourier transform on multipoles (FFTM), that combines

the use of the multipole and FFT. The FFTM comes from the observation that

potential evaluation using multipole to local expansion translation operator can

be expressed as a series of discrete convolutions, where FFT can be employed to

evaluate the discrete convolution quickly.

1.3 Objectives of the thesis

The main objectives of this thesis are to review the FFTM algorithm in solving

the Laplace equation and to extend the FFTM to solve a larger group of par-

tial differential equations, namely Navier equation, Stokes equation and non-linear

Poisson-type equation. When solving the direct and indirect BEM formulation

of the Laplace equation with the FFTM, different multipole translations are em-

ployed. The different performances are compared and analysed. To extend the

FFTM to solve the Navier equation and Stokes equation, with vector variables, the

original FFTM needs excessive memory usage. A memory-saving strategy is devel-

oped to reduce the memory usage significantly. It is always a tough task to solve

non-linear equation with BEM. With the help of the FFTM, an efficient scheme is

investigated to solve the non-linear Poisson-type equation.

6
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1.4 Original contributions of the thesis

A new multipole translation is presented to solve the direct BEM formulation of

the Laplace equation. The new method has more physical meanings and is related

theoretically to the commonly used method. The different performances of the

FFTM in solving the direct and indirect BEM formulation of the Laplace equation

are compared and investigated.

The FFTM is extended to solve the Navier equation and Stokes equation. A new

compact storage of the translation matrices is developed to reduce the memory cost

of the original FFTM significantly. Consequently, the FFTM is efficient to solve

large practical problems. When solving the Navier equation, the performance of

FFTM is compared with the FMM in terms of efficiency, accuracy and memory

cost. The fast Navier solver is applied to calculate the effective Young’s modulus of

a material with many voids. The effects of the number, size, position and shape of

the voids are discussed. The fast Stokes solver is employed to compute the average

drag force on many randomly distributed spheres inside a cylinder. The influence

of the cylinder wall is studied.

To handle the non-homogeneous term of the Poisson equation, two fast methods are

compared in terms of efficiency and accuracy. One uses the multipole to accelerate

the volume integration, while the other obtains a particular solution through the

FFT. Since the second method is better, it is adopted in the new fast scheme. The

scheme includes calculating a particular solution with the FFT, solving the resulted

Laplace equation with the FFTM and updating the interior values also with the

7



CHAPTER 1. INTRODUCTION

FFTM.

1.5 Organization of the thesis

In this chapter, a brief introduction of several partial differential equations, BEM

and fast algorithms is provided, followed by the objectives, contributions and or-

ganization of the thesis.

Chapter 2 gives a literature review on the most commonly used fast algorithms.

Chapter 3 describes the implementations of the FFTM algorithm in solving the di-

rect and indirect BEM formulations of the Laplace equation with various boundary

conditions. The comparison of the different performances is illustrated by several

numerical examples.

Chapter 4 shows the steps of the implementation of the FFTM algorithm in the

Navier equation and gives the details of how to reduce the memory usage of storing

the translation matrices. The FFTM is compared with the FMM, and then is ap-

plied to an example to calculate the effective Young’s modulus of porous materials.

In Chapter 5, the FFTM algorithm is extended to solve the Stokes equation. It

gives the detailed derivation of the translations for the direct BEM formulation of

Stokes equation. This algorithm is applied to a practical problem, calculating the

average drag force on many spherical particles inside a cylinder.

A new numerical scheme is proposed in Chapter 6 to solve the non-linear Poisson-

8
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type equation. The FFTM is used to evaluate the interior values and to solve

the resulted Laplace equation. The non-homogeneous term is treated by obtain-

ing a particular solution with the FFT. This scheme is verified by solving several

equations with different non-homogeneous or non-linear terms.

Finally, some concluding remarks are given in Chapter 7.
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Chapter 2

Overview of fast algorithms

2.1 Fast multipole method (FMM)

In 1980s, early fast algorithms, such as the tree algorithm [3, 4], were invented to

model the gravitation of N -body problem that is governed by the Laplace equation.

They implemented a hierarchical grouping of interactions, so that the number of

operations is reduced from O(N2) to O(N log N). The hierarchical structure is

inherited by the famous fast multipole method (FMM) that was first introduced

by Rokhlin to solve the two dimensional Laplace equation [70], and then applied to

three dimensional N -body problems with Coulombic potential by Greengard and

Rokhlin [24]. The details of this FMM’s early version can be found in Greengard’s

PhD thesis [26]. This original FMM algorithm can be summarised in the following

steps:

10
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1. define a hierarchical tree partitioning of the computational domain;

2. accumulate the multipole moments for the far field by a postorder traversal

of the hierarchical tree;

3. translate the multipole moments to the local expansions;

4. accumulate the local expansions by a preorder traversal of the tree;

5. evaluate the far field action at the field point using local expansion;

6. add the near field action.

Nabors and White [48] were the first who applied the FMM to engineering appli-

cations. They developed FastCap to compute the capacitance of a complicated

three dimensional geometry of ideal conductors in a uniform dielectric. Further

improvements to FMM were investigated to obtain better performance. Nabors et

al. [47] modified the FMM by combining precondition and adaptation to reduce

both the computation and memory storage to O(N). The precondition decreases

the number of iterations of their iterative solver and the adaptation avoids opera-

tions in empty domain. White and Head-Gordon [83] introduced the multipole to

Taylor transform operator to yield simpler and more efficient transforms. In [13],

the mathematical theory was summarised and extended by Epton and Dembart for

the multipole translation operators of the three dimensional Laplace and Helmholtz

equations. Subsequently, Wang and LeSar [80] presented an efficient FMM algo-

rithm, using a multipole expansion based on the solid harmonics instead of the

more common spherical harmonics to calculate long range interactions in three di-

11
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mensional Coulombic system. The solid harmonics not only increase the efficiency

of FMM, but also lead to more compact translations that makes it easier to derive

the multipole translation formulations for more complex kernels, such as those in

the Navier equation and Stokes equation. Greengard and Rokhlin [25] presented a

new version of the FMM that is based on a diagonal form for translation operators.

This extra diagonal translation accelerates the fast algorithm further with higher

accuracy. This new version of FMM was further improved by Cheng et al. [8]. They

introduced adaptation to the algorithm to handle the non-uniform charge distri-

butions and used a compressed version of the translation operators to reduce the

computational time. Ying et al. [86] invented a kernel-independent adaptive FMM

that needs the hierarchical structure, but does not require the implementation of

multipole expansion of the kernel. The far field evaluations are approximated with

the singular value decomposition in two dimension and the FFT in three dimension.

Many researchers have solved different problems governed by the Laplace equation

with the FMM, such as [75, 53, 90, 76, 17, 55].

The FMM has been extended to solve the Navier equation, which tends to be more

complicated as the variables are vector quantities instead of scalar quantities in

the Laplace equation. Fu et al. [20] applied the FMM to solve three-dimensional

elasticity problems that involve a large number of particles embedded in a binder.

They decomposed the original three dimensional elasticity kernels into a set of

Laplace kernels, which results in four and twelve sets of multipole moments for the

displacement and traction kernels, respectively. Yoshida et al. [89] adopted the

solid harmonics, originated in [80], to solve three dimensional elastostatic crack
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problems, using four sets of multipole moments for both the displacement and

traction kernels. Due to the concise form of the solid harmonics, it is very simple

to perform derivatives on the multipole and local translations. The work in [89] and

its related work [53, 90] were summarised in Yoshida’s PhD thesis [88]. Except the

harmonics functions, the Taylor series can also be employed in the FMM. Popov and

Power [65] solved three dimensional elasticity problems with a Taylor series-based

FMM. Later, two different implementations were compared by Popov et al. [66].

Lai and Rodin [37] employed the FMM method in [20] to solve problems involving

many cracks imbedded in linearly elastic isotropic solids. Recently, the FMM is

adopted to solve composite materials. The solid harmonics in [80] and diagonal

translation in [25] was combined by Wang and Yao [79] to solve three dimensional

particle-reinforced composites. Liu et al. [40] analyzed fiber-reinforced composites

with the FMM based on a rigid-inclusion model, in which the number of degrees

of freedom exceeds ten millions.

Some work has been done to implement the FMM to solve the Stokes equation.

Sangani and Mo [72] was the first to introduce the FMM to solve Stokes flow

problems, in which they approximated the interactions among the particles in sus-

pension mechanics with multipoles. The sources in their application are the sus-

pension particles, but not the elements on the boundary. Due to the similarity of

the governing equations of elasticity and Stokes flow, the same method, as solving

the elasticity problem, can be used to solve the Stokes flow problem. The Taylor

series-based FMM was applied by Gomez and Power [22] to solve two dimensional

cavity flow problems. The decomposition method in [20] was also employed to
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solve Stokes problem by Fu and Rodin [21]. Zinchenko and Davis [92] developed a

new FMM algorithm to simulate the interaction among many deformable drops in

Stokes fluid. Their algorithm is quite different from the traditional FMM in treat-

ing both near and remote interactions. The near field is calculated by multipole

expansions, further accelerated by rotational transformation, while the far field is

treated by Taylor expansions. Later, they [93] applied this fast algorithm to simu-

late close interaction of slightly deformable drops. If the Stokes equation is solved

with vorticity formulation, the domain integral is needed. Brown et al. [6] acceler-

ated the evaluation of the domain integral with the FMM. In the design of MEMS,

the damping force on the structure is evaluated by solving an exterior Stokes prob-

lem. Frangi [16] solved such problem with the qualocation mixed-velocity-traction

approach accelerated with the FMM. This method was improved by Frangi et al.

[18], in which they gave detailed derivations of multipole translations. Wang et

al. [78] implemented FMM to solve Stokes problem with the direct BEM formu-

lation. They derived the multipole translations for the two kernels in the direct

BEM formulation and gave the same translations as Frangi et al. [18].

Fewer work of fast algorithms has been done on Poisson equation. Ingber [33]

proposed that when a volume integration scheme is coupled with FMM, it sig-

nificantly improves the computational efficiency. The FMM was applied by the

Greengard’s group [46, 23, 15], providing a series of two dimensional fast Poisson

solvers. Some of their work [46, 15] accelerated the volume integration by the FMM,

and Greengard and Lee [23] calculated particular solutions with spectral method

in a decomposed domain and patches the solutions together with the FMM. Ying
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et al. [87] handled the non-homogeneous part with particular solution calculated

from the FFT, while solving the homogeneous part with the kernel-independent

FMM.

2.2 Precorrected-FFT (pFFT)

Another commonly used fast algorithm is the pFFT method [62] that was first

introduced to solve the problem of coupled capacitance extraction in complicated

three dimensional geometries. The pFFT algorithm represents the long range part

of the Coulomb potential by point charges lying on a uniform grid, rather than

a series expansions as in FMM. The grid representation allows the FFT to be

used to perform potential computations efficiently. Since the calculation using

the FFT on the grid does not accurately approximate the nearby interactions, the

precorrection is needed to modify the nearby interactions. Since its appearance, the

pFFT algorithm has been applied to solve many problems governed by the Laplace

equation. It was employed by Newman and Lee [51] and Newman [50] to perform

hydrodynamic analysis of very large floating structures. Hu et al. [31] simulated

large industrial circuits with up to 121,000 inductors and over 7 billion mutual

inductive couplings with the pFFT. Tissari and Rahola [77] adopted the pFFT to

accurately localize the brain activity recorded by magnetoencephalography (MEG).

The pFFT was improved by Zhu et al. [91] to analyze wide-band electromagnetic

effects in very complicated geometries of conductors.

To extend the pFFT to equations with vector variables, such as Navier equation
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and Stokes equation, the projection procedure is more complex than the Laplace

equation. Masters and Ye [45] extended the pFFT to solve the Navier equation

and solved coupled three dimensional electrostatic and linear elastic problems. The

pFFT was also applied to solve the Stokes equation, evaluating the damping force

on the complicated structures in MEMS [81, 9, 82]. In his PhD thesis [81], Wang de-

veloped an incompressible FastStokes solver and a compressible FastStokes solver.

The compressible solver solves the linearized compressible Stokes equation to cap-

ture weak air compression effect in MEMS. With the help of the FastStokes, Ding

and Ye [9] compared two slip models in the simulation of rarefied gas flows in

MEMS. Recently, the FastStokes was applied to simulate several practical micro-

machined devices [82].

The pFFT was also implemented for Poisson equation and non-linear equation.

Ding et al. [11] introduced a fast cell-based approach, based on the pFFT technique,

that accelerates the surface integration as well as the volume integration. Later, the

same technique was extended by Ding and Ye [10] to solve some three dimensional

weakly non-linear problems, in which the number of freedom reached 4000.

2.3 Fast Fourier transform on multipoles (FFTM)

Since the FMM and pFFT have advantages and drawbacks in different aspects,

some researchers tried to retain the benefits of both methods by combining the two

methods. One combination is particle-particle-particle-mesh/ multipole-expansion

(PPPM/MPE) method that was developed for the bio-molecular simulations by
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Shimada et al. [73, 74]. This method was not further exploited mainly due to

its expensive memory usage. Elliott and Board [12] proposed another combined

method, which performs the FFT to accelerate the multipole and local translations.

In their method, the convolution variables are the indexes of the translation oper-

ators. Yet, this method becomes unstable numerically for high expansion order.

Recently, Ong et al. [56, 59] introduced a new combined fast algorithm, fast Fourier

transform on multipoles (FFTM). In 2004, the FFTM was introduced for three-

dimensional electrostatics analysis [56]. This fast algorithm uses the FFT to rapidly

evaluate the discrete convolutions in potential calculations via multipole expan-

sions. After the potentials at the cell centers are computed, the potentials at

other desired locations are obtained by interpolation. But such interpolation pro-

cedure brings extra errors. To resolve this problem, local expansion was introduced

to calculate the three-dimensional potential fields more accurately [59]. This im-

provement comes from the observation that potential evaluation using multipole

to local expansion translation operator can be expressed as a series of discrete con-

volutions, where the FFT can be employed to evaluate the discrete convolution

very fast. This new fast algorithm is different from Elliott and Board’s method

in that the convolution variables in the FFTM are the spatial coordinates of the

source and field points instead of being the indices of translation operators as in

Elliott and Board’s method. The FFTM partially resolves the memory storage

issue which was present in the method used by Shimada et al. This is achieved

through the exploitation of the symmetry relations of the spherical harmonics [59].

Compared with the FMM, the FFTM is easier to implement and is more accurate
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with a relatively low order of expansion.

Later, Ong et al. [58] showed that the parallel implementation of the FFTM could

further accelerate the algorithm with the speedup factor at 5.0-6.4. The FFTM

was also applied in acoustics problems by solving the Helmholtz equations [57, 39].

Since the FFTM forgoes the hierarchical structure in the FMM, the wave-number

radius criterion has less impact on the FFTM. More over, the FFTM implemen-

tation for the Helmholtz equation is rather straightforward compared with the

FMM. Recently, the FFTM has also showed its efficiency in solving micromagnet-

ics problems [43, 41, 42] and in modeling multiple bubbles dynamics [7]. Both the

magnetostatic field and the inviscid, incompressible and irrotational fluid field can

be formulated as a scalar potential field that is governed by the same partial dif-

ferential equation (Laplace equation) as in electrostatic analysis and potential field

calculation. Hence, such problems can be solved by an easy extension of former

work of the FFTM. In the work of Bui et al. [7], they found that the FFTM be-

comes less efficient when dealing with spatially sparse bubble distribution. In order

to overcome this deficiency, a new version of FFTM with clustering was proposed,

named FFTM Clustering. This new FFTM is as accurate as the original version

and the efficiency is less dependent on the distribution of sources in the problem

domain.

Up to now, the FFTM only solved two kinds of partial differential equations, the

Laplace equation and Helmholtz equation, both of which have well-developed mul-

tipole and local translation formulas. Other partial differential equations, such as

the Navier equation, Stokes equation and non-linear Poisson-type equation, are
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also very important in science and engineering problems. In this thesis, the FFTM

algorithm is extended to solve the above mentioned partial differential equations.

2.4 Other methods

There are also some methods that exploit the fact that a large part of the dense

matrix from the BEM is numerically low rank and apply the singular value decom-

position to obtain a sparse representation of the original dense matrix. IES3 [35]

recursively partitions the matrix, and compresses the submatrices with the singular

value decomposition. The FFTSVD [2] decomposes the matrix into different length

scales. The FFT is used to diagonalize the translation operation that computes

the long range interactions.

19



Chapter 3

Laplace equation

In this chapter, the FFTM is reviewed to solve the Laplace equation with the indi-

rect BEM formulation. Subsequently, the FFTM is implemented in the direct BEM

formulation. In order to apply multipole methods in the direct BEM formulation,

most researchers [76, 17, 55] used solid harmonics and their derivatives to treat

the double layer kernel, following Yoshida’s method [88, 52]. Here, an alternative

method is introduced for the direct BEM formulation, which is based on the phys-

ical interpretation of monopole and dipole sources. Different implementations of

the FFTM in the direct and indirect BEM formulations have different influences

on the accuracy of the BEM results. The performances are compared and ana-

lyzed, showing that the effect of FFTM is secondary to the inherent accuracy of

the standard direct and indirect BEM. This means that the FFTM accelerates the

computation without much loss of accuracy.
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3.1 BEM for Laplace equation

3.1.1 Indirect formulation

The representation of the harmonic potential (Φ(x)) by single-layer potentials is

the foundation of the indirect boundary integral equation formulation [34, 67]. The

single-layer potential is the potential associated with a continuous distribution of

simple sources of density σ extending over the surface S, which is the form

Φ(x) =

∫

S

G(x,y)σ(y)dS(y) =
1

4π

∫

S

1

r(x,y)
σ(y)dS(y), (3.1)

where r(x,y) is the distance between the source point y and the field point x and

G(x,y) is the single layer kernel. The normal derivatives of the single-potential Φ

at the point x for interior problem (denoted by subscript i) and exterior problem

(denoted by subscript e) are given by

(
∂Φ

∂n
(x))i =

1

2
σ(x) +

∫

S

K(x,y)σ(y)dS(y), (3.2)

(
∂Φ

∂n
(x))e = −1

2
σ(x) +

∫

S

K(x,y)σ(y)dS(y), (3.3)

respectively, where n is the outward normal vector, pointing from the interior to

the exterior, at the field point, with the derivative of the single layer kernel at the

point x defined as

K(x,y) =
1

4π

∂

∂n(x)
(
1

r
) =

1

4πr3
(y − x) · n(x). (3.4)

If Dirichlet boundary condition (Φ(x) given) is prescribed at the point x, σ(y) is

computed from Equation (3.1) and then substituted into Equation (3.2) or (3.3) to
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obtain the normal derivative. On the other hand, if Neumann boundary condition

is given at point x, Equation (3.2) or (3.3) are used to compute σ(y) and Equation

(3.1) is used to calculate Φ(x). In order to solve for σ(y) with Equation (3.1),

(3.2) or (3.3), the boundary integral equation needs to be discretized to obtain a

system of linear equations. In this chapter, constant triangular elements with one

node at the element center are used. The numerical integration is performed over

these elements using local intrinsic coordinates. When x and y are on different ele-

ments, the standard Gaussian quadrature (with 7 Gauss points over each element)

is applied to perform the integration. When x and y are on the same element

(x = y), weak (1/r) or strong (1/r2) singularities appear. The weak singularity

is removed by transforming the triangular elements to a quadrilateral domain on

which 7×7 Gauss points are used for Gauss quadrature. For constant element, the

integration over the strong singularity is equal to zero due to orthogonality. Al-

though the analytical integration can be employed for the constant planar element

to obtain better accuracy, as used by Masters and Ye [45], the more general Gauss

quadrature method is chosen for future extension of this algorithm to quadratic

element.

The resulting linear system can be solved using Gaussian elimination which takes

O(N3) operations, where N is the number of unknowns. Also, the N×N matrix has

to be constructed explicitly with the use of Gaussian elimination. When N is large,

the amount of computational time and memory needed by Gaussian elimination

may become exorbitantly large. This can be alleviated by using iterative linear

solvers, such as GMRES [71], which typically require O(N2) operations to solve
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the linear system, and also provide the possibility of not forming the N ×N matrix

explicitly. Within each iteration, only the matrix-vector multiplication needs to

be performed, and this corresponds to calculating Φ (Equation (3.1)) or ∂Φ/∂n

(Equation (3.2) or (3.3)) at all the node points. Within each iteration, guesses for

values of σ are used to calculate Φ or ∂Φ/∂n at all points, and then the differences

between the calculated values with the boundary condition values are used by the

iterative solver to obtain better guesses for next iteration. This iterative process is

repeated until the difference is smaller than a prescribed tolerance.

3.1.2 Direct formulation

The direct boundary element formulation is given by the following integral equation

c(x)Φ(x) +

∫

S

H(x,y)Φ(y)dS(y) =

∫

S

G(x,y)
∂Φ

∂n
(y)dS(y). (3.5)

Here, H(x,y) corresponds to the double layer kernel

H(x,y) =
∂G(x,y)

∂n(y)
=

1

4πr3
(x − y) · n(y). (3.6)

where n is the outward normal vector at the point y. The free term c(x) need

not be calculated explicitly in the direct BEM; it can be obtained by physical

considerations such as arbitrary shifting of datum in potential problems or arbitrary

rigid body motion in mechanics problems. This technique enables the free term

and the strongly singular integrals in the direct BEM formulation to be calculated

together.

Traditionally, both matrices [H] and [G] are constructed, and these two matrices
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are rearranged according to the prescribed boundary conditions. The unknowns

are gathered on one side of the equation, and the resulting linear system can be

solved, by Gaussian elimination or iterative methods, like GMRES. Equation (3.5)

can also be solved by iterative methods without forming the matrices explicitly like

the indirect method. However, there is a slight difference in the implementation.

Now, there are two sets of variables, Φ and ∂Φ/∂n; Φ are known on the nodes

where Dirichlet boundary conditions are prescribed, and ∂Φ/∂n are known on the

nodes where Neumann boundary conditions are prescribed. To handle this, all the

unknown quantities are set to zero, and ([G][∂Φ
∂n

]− [H][Φ]) is calculated. This result

serves as the negative of the right hand side of the linear system that is typically

used in the iterative solvers. Subsequently, guesses are made for unknowns, and the

expression ([G][∂Φ
∂n

]− [H][Φ]) is evaluated again, with the known quantities now set

to zero. This procedure allows the conventional iterative solvers, such as GMRES,

to be used, just like the case for the indirect BEM. For this direct formulation,

two matrix-vector product and one vector subtraction need to be performed within

each iteration.

3.2 FFTM for Laplace equation

3.2.1 Indirect formulation

The FFTM has been developed for solving the Laplace equation with Dirichlet

boundary conditions [59, 56, 58]. It is used to accelerate the matrix-vector mul-
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tiplication in the inner loops of GMRES, reducing the operations from O(N2) to

O(N log N). Here, a brief description of the FFTM algorithm used in the indirect

BEM formulation with Dirichlet boundary condition is given before showing its

extension to handle Neumann boundary condition. Figure 3.1 illustrates the four

steps of FFTM in two dimensions, where M and L stand for multipole moments

and local expansions, respectively.

In the first step (A), a rectangular domain enclosing the entire computational

domain is defined, and it is divided into numerous regularly spaced cells. The cells

separate the contribution of sources as near and far field sources. For a given node,

its near field sources consist of those in its own cell and the near cells; the sources in

the other cells are considered far field sources. In the present case, the neighbouring

cells that share at least one vertex with the node’s own cell are considered near

cells. There is a possibility of including more layers of neighbouring cells as near

cells, as discussed in [56].

In the second step (B) the integral on every element within each cell is converted

to multipole moments, following

Mm
n (O) =

1

4π

∫

Sy

ρnY −m
n (α, β)σ(y)dS(y), (3.7)

where O is the multipole cell center, (ρ, α, β) are the spherical coordinates of y

relative to O and

Y m
n (α, β) =

√

(n − |m|)!
(n + |m|)!P

|m|
n (cos α)eimβ. (3.8)

Here, the special functions Pm
n are the associated Legendre functions, which can
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be defined by Rodrigues’ formula

Pm
n (x) =

(−1)m

2nn!
(1 − x2)m/2 dn+m

dxn+m
(x2 − 1)n. (3.9)

Pm
n (cos α) are normally evaluated recursively by

(n − m)Pm
n (cos α) = (2n − 1) cos αPm

n−1(cos α) − (n + m − 1)Pm
n−2(cos α), (3.10)

for 0 ≤ m ≤ n − 2, and

Pm
m (cos α) =

(2m)!

2mm!
(− sin α)m, (3.11)

and Pm
m+1(cos α) = (2m + 1) cos αPm

m (cos α), (3.12)

for m ≥ 0.

In the third step (C), the local expansion coefficients at cell centers due to the

multipole moments in the far field are evaluated,

Lk
j (O

′) =
∞
∑

n=0

n
∑

m=−n

i|k−m|−|k|−|m|Am
n Ak

j Y
m−k
j+n (θ, φ)Mm

n (O)

(−1)nAm−k
j+n rj+n+1

, (3.13)

where O′ is the local expansion cell center, (r, θ, φ) are the spherical coordinates

of O relative to O′ and Am
n defined by

Am
n =

(−1)n

√

(n − m)!(n + m)!
. (3.14)

This process can be written as a series of three-dimensional discrete convolutions

Lk
j (x1, x2, x3) =

∞
∑

n=0

n
∑

m=−n

[
∑

x′
1

∑

x′
2

∑

x′
3

Mm
n (x′

1, x
′
2, x

′
3)

Tm,k
j,n (x1 − x′

1, x2 − x′
2, x3 − x′

3)], (3.15)

where

Tm,k
j,n =

i|k−m|−|k|−|m|Am
n Ak

j Y
m−k
j+n

(−1)nAm−k
j+n rj+n+1

(3.16)
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is the response function that relates the multipole moment Mm
n and the local

expansion Lk
j , and the indexes (x1, x2, x3) and (x′

1, x
′
2, x

′
3) denote the locations

of the local expansion and the multipole moment respectively. The calculation of

the convolution can be accelerated by the FFT. The free software FFTW (Fastest

Fourier Transform in the West), provided by Frigo and Johnson [19], is used.

The final step (D) is to compute the potential Φ(x) at the field node point. The

far field’s contribution due to the multipoles can be calculated by

Φ(x) =
∞
∑

j=1

j
∑

k=−j

Lk
j (O

′)Y k
j (θ, φ)rj, (3.17)

where (r, θ, φ) are the spherical coordinates of x relative to O′. The near field

contributions due to the sources in the near cells (including the cell containing the

node) are calculated by the standard BEM technique.

To handle Neumann boundary condition, some modifications to the last step (D)

need to be made. Here, the normal derivative, ∂Φ/∂n(x), is obtained by differen-

tiating Equation (3.17). Since this equation is expressed in spherical coordinate, it

is convenient to calculate the derivatives of ∂Φ
∂r

, 1
r

∂Φ
∂θ

and 1
r sin θ

∂Φ
∂φ

as follows.

∂Φ

∂r
=

∞
∑

j=1

j
∑

k=−j

Lk
j Y

k
j (θ, φ)jrj−1, (3.18)

1

r

∂Φ

∂θ
=

∞
∑

j=1

j
∑

k=−j

Lk
j

√

(j − |k|)!
(j + |k|)!

∂P
|k|
j (cos θ)

∂θ
eikφrj−1 (3.19)

1

r sin θ

∂Φ

∂φ
=

∞
∑

j=1

j
∑

k=−j

Lk
j Y

k
j

ik

sin θ
rj−1. (3.20)

In Equation (3.19),
∂P

|k|
j (cos θ)

∂θ
is obtained from differentiating Equations (3.10) to
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(a) Step A
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(b) Step B

L
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L
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(c) Step C

L

Evaluation node point

(d) Step D

Figure 3.1: Two-dimensional pictorial representation of FFTM for Laplace equa-

tion. Step A: Discretization of domain into cells. Step B: Transformation of sources

to multipoles, S2M (S denotes source, monopole, dipole or their combination). Step

C: Transformation of multipoles to local expansions, M2L. Step D: Transformation

of local expansions to potentials or potential gradients at destinations, L2D (D

denotes destination’s Φ or ∂Φ/∂n(x))
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(3.12). For 0 ≤ k ≤ j − 2,

(j − k)
∂P k

j (cos θ)

∂θ
= (2j − 1)(− sin θ)P k

j−1(cos θ) + −

(2j − 1) cos θ
∂P k

j−1(cos θ)

∂θ
(j + k − 1)

∂P k
j−2(cos θ)

∂θ
. (3.21)

For k = j,

∂P k
k (cos θ)

∂θ
= −(2k)!

2kk!
k(− sin θ)k−1 cos θ. (3.22)

For k = j − 1,

∂P k
j (cos θ)

∂θ
=

∂P k
k+1(cos θ)

∂θ
= −(2k + 1) sin θP k

k (cos θ)

+(2k + 1) cos θ
∂P k

k (cos θ)

∂θ
. (3.23)

Lastly, we perform a coordinate transform to obtain

















∂Φ
∂x1

∂Φ
∂x2

∂Φ
∂x3

















=

















sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

















−1 















∂Φ
∂r

1
r

∂Φ
∂θ

1
r sin θ

∂Φ
∂φ

















, (3.24)

and the derivative in the normal direction is

∂Φ

∂n(x)
= n1(x)

∂Φ

∂x1

+ n2(x)
∂Φ

∂x2

+ n3(x)
∂Φ

∂x3

. (3.25)

For Neumann boundary condition, this value of ∂Φ/∂n is used at the field node,

instead of Φ as used in the case of Dirichlet boundary condition.

3.2.2 Direct formulation

The direct formulation involves integrals of the two kernels G(x,y) and H(x,y) as

given in Equation (3.5). The double layer kernel H(x, y) is the response function
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of a dipole source. Hence, it can be considered that a dipole source with strength

µ is placed along the direction of the outward normal to the boundary n. The

multipole representation of this dipole source is

M−1
1 (y) = (− n1√

2
− n2√

2
i)µ,

M0
1 (y) = n3µ,

M1
1 (y) = (− n1√

2
+

n2√
2
i)µ, (3.26)

and

Mm
n (y) = 0, for n 6= 1, (3.27)

where n1, n2 and n3 are the components of n. The effect of the single layer ker-

nel G(x,y), which corresponds to a monopole source q, can be readily included.

The sum of these two integrals in Equation (3.5) can thus be represented by the

combined multipole representation
























M0
0 (y)

M−1
1 (y)

M0
1 (y)

M1
1 (y)

























=

























1 0

0 − n1√
2
− n2√

2
i

0 n3

0 − n1√
2

+ n2√
2
i

































−q

µ









(3.28)

and

Mm
n (y) = 0, for n 6= 0, n 6= 1. (3.29)

With this multipole representation of the source on the boundary, the multipole

moments at the cell centers can be calculated with the multipole translation oper-

ation

Mk
j (O) =

j
∑

n=0

n
∑

m=−n

Mk−m
j−n (y) · i|k|−|m|−|k−m| · Am

n · Ak−m
j−n · ρn · Y −m

n /Ak
j . (3.30)
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The implementation of FFTM in the direct BEM formulation is again similar to

that of the indirect formulation (Section 3.2.1), except for step (B), where a combi-

nation of monopole and dipole is transformed to the multipole moment at the cell

center in this case, instead of just a single layer source (monopole) in the indirect

method.

3.2.3 Alternative formulation

The above translations are based on the spherical harmonics used by Greengard

and Rokhlin [24]. Although these formulations appear different from those using

solid harmonics, which were given by Wang and LeSar [80] and adopted by Yoshida

[88] to handle the derivatives of kernels, the two sets of formulae are identical to

each other. The solid harmonics are given by

Rm
n (

−→
Oy) =

1

(n + m)!
Pm

n (cos α)eimβρn, (3.31)

Sm
n (

−→
Ox) = (n − m)!Pm

n (cos θ)eimφ 1

rn+1
. (3.32)

where (r, θ, φ) and (ρ, α, β) are the spherical coordinates of two points x and

y, respectively. The definition of associated Legendre function in Equation (3.31)

and (3.32) is slightly different from Equation (3.9). For solid harmonics, the term

(−1)m is omitted, giving

Pm
n (x) =

1

2nn!
(1 − x2)m/2 dn+m

dxn+m
(x2 − 1)n, m ≥ 0, (3.33)

and

P−m
n (cos θ) = (−1)m (n − m)!

(n + m)!
Pm

n (cos θ). (3.34)
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The similarity of the spherical and solid harmonics can be seen from their relation

to the distance between two points x and y:

1

|x − y| =
∞
∑

n=0

n
∑

m=−n

Y m
n (θ, φ)Y −m

n (α, β)
ρn

rn+1

=
∞
∑

n=0

n
∑

m=−n

Rm
n (

−→
Oy)Sm

n (
−→
Ox). (3.35)

The solid harmonics Rm
n and Sm

n correspond directly to the spherical harmonics

ρnY m
n and Y −m

n

rn+1 , respectively. Since the two sets of translations are the same, the

new method can also be expressed in terms of solid harmonics to compare with

Yoshida’s formulation. The formulations can be rewritten in solid harmonics, and

the derivatives in Equation (3.24) are given by

∂Φ

∂x1

=
∞
∑

n=0

n
∑

m=−n

∂Rm
n

∂x1

Lm
n (O′),

∂Φ

∂x2

=
∞
∑

n=0

n
∑

m=−n

∂Rm
n

∂x2

Lm
n (O′),

∂Φ

∂x3

=
∞
∑

n=0

n
∑

m=−n

∂Rm
n

∂x3

Lm
n (O′), (3.36)

where

∂Rm
n

∂x1

=
1

2
(Rm−1

n−1 − Rm+1
n−1 ),

∂Rm
n

∂x2

=
i

2
(Rm−1

n−1 + Rm+1
n−1 ),

∂Rm
n

∂x3

= Rm
n−1. (3.37)

which are the same with those from [88].

Also, the multipole to multipole translation written in solid harmonics is

Mk
j (O) =

j
∑

n=0

n
∑

m=−n

Rm
n Mk−m

j−n (y). (3.38)
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When this is used for the translation of a dipole whose representation is

M−1
1 (y) =

µ

2
(−n1 + n2i),

M0
1 (y) = n3µ,

M1
1 (y) =

µ

2
(n1 + n2i), (3.39)

the lower index of Mk−m
j−n (y) in Equation (3.38) is limited to j − n = 1, and the

upper index k − m = −1, 0, or 1. Therefore, the dipole to multipole translation

operator is

Mk
j (O) = Rk+1

j−1M
1
−1(y) + Rk+1

j−1M
1
0 (y) + Rk−1

j−1M
1
1 (y)

=
µ

2
(−n1 + n2i)R

k+1
j−1 + n3µRk

j−1 +
µ

2
(n1 + n2i)R

k−1
j−1

=
1

2
(Rk−1

j−1 − Rk+1
j−1)n1µ +

i

2
(Rk+1

j−1 + Rk+1
j−1)n2µ + Rk

j−1n3µ. (3.40)

Using the relations given in Equation (3.37), the following equation can be obtained,

Mk
j (O) = (

∂Rk
j

∂x1

n1 +
∂Rk

j

∂x2

n2 +
∂Rk

j

∂x3

n3)µ =
∂Rk

j

∂n(y)
µ, (3.41)

where n1, n2 and n3 are the direction of the dipole, and also the outward normal

direction at the point y. The result in Equation (3.41) is exactly the same as the

formulation that Yoshida used to handle the kernel H(x,y). Here, the formulation

is obtained from a physical interpretation of the dipole associated with the kernel

H(x,y).

In contrast, Yoshida [88] obtained exactly the same formulation by differentiating

Equation (3.35). For a double layer kernel that is associated with a dipole of source

strength µ, the potential is given by

µ
∂

∂n(y)

1

|x − y| =
∞
∑

n=0

n
∑

m=−n

µ
∂

∂n(y)
Rm

n (
−→
Oy)Sm

n (
−→
Ox). (3.42)
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Hence, the multipole (the coefficients of Sm
n (

−→
Ox)), associated with the double layer

kernel, are given as

Mk
j (O) =

∂Rk
j

∂n(y)
µ, (3.43)

similar with Equation (3.41).

3.3 Numerical examples

3.3.1 Accuracy of translation operators

Here, the accuracy of the translations is investigated. First, the new method of

handling the kernels H(x,y) is compared with Yoshida’s method. A source con-

sisting of a dipole (d : µ,n) and its combination with a monopole (q), is placed

at y = (1.02, 1.03, 1.05), and then the potential at x = (0.03,0.04,-0.1) due to the

sources is calculated. The exact solution for the two cases (q = 0, µ = 1) and

(q = −1, µ = 1), with n(y) = (1/2, 1/2, 1/
√

2) are given by

Φ(x)d
exact = H(x,y) = −0.3032,

Φ(x)d+q
exact = H(x,y) − G(x,y) = −0.8551, (3.44)

where the permittivity in free space is given by ǫ = 1. The potential is also

obtained, using the translation operators S2M,M2L and L2D. The centers where

the multipoles M and local expansion coefficients L are evaluated are given by

OM = (1, 1, 1) and OL = (0, 0, 0) respectively. The measure of the error is defined
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in the L2 norm as

Error =

(

∑k
i=1 |u(xi) − uexact(xi)|2
∑k

i=1 |uexact(xi)|2

)1/2

, (3.45)

where u may represent the potential Φ or its derivative ∂Φ/∂n. The new method

is compared with those of Yoshida’s method for various orders of expansion (p),

and the results from the two methods are identical (Figure 3.2). It is also noted

that the error decreases with higher orders of expansion used.
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d (Yoshida)

d+q (Yoshida)

Figure 3.2: Comparison of error between the new method handling the double layer

kernel and Yoshida’s method for increasing order of multipole expansion.

Next, the accuracy for different translation operators: q → Φ, d → Φ and q →

∂Φ/∂n are compared. These translations correspond to the different kernels in the

direct and indirect BEM formulation (as shown in Table 3.1).

The exact solutions of the translation operators used in the above example are
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Table 3.1: Different translations used in the direct and indirect BEM.

Direct formulation

q → Φ G kernel

d → Φ H kernel

Indirect formulation

q → Φ G kernel

q → ∂Φ/∂n K kernel

given by:

Φ(x)q = G(x,y) = 0.5519,

Φ(x)d = H(x,y) = −0.3032,

∂Φ

∂n
(x)q = K(x,y) = 0.3032, (3.46)

where n(x) = (1/2, 1/2, 1/
√

2), and the superscript (q or d) denotes the source.

Figure 3.3 shows the error of each translation operator for various orders of expan-

sion p. It can be seen that the translation q → Φ is the most accurate, followed by

d → Φ, and then q → ∂Φ/∂n.

For a particular order of expansion, the translation q → Φ has one more term

than the other two translations, hence it is more accurate. For the dipole case,

d → Φ, the monopole term is absent. For the calculation of derivative of potential

q → ∂Φ/∂n, the differentiation removes the zeroth order term from the expansion,

which can be seen from Equation (3.18) to (3.20), and Equation (3.37). Since

the multipole (Step B) and local expansion (Step D) are performed up to a fixed
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order of expansion (p = 4 or 6 typically), there are truncation errors in the series

expansion. For q → Φ, (p+1)2 terms are employed in the translations, S2M (Step

B), M2L (Step C) and L2D (Step D). In contrast, d → Φ gets one term less in the

multipole expansion, (p + 1)2 − 1 terms; q → ∂Φ/∂n only considers (p + 1)2 − 1

terms in local expansion. It seems that the errors in both cases should be similar

to each other. However, this is not the case for the numerical results in Figure

3.3. The reason is that the reduction by one term occurs at different steps: for

d → Φ, it occurs in S2M (Step B), and for q → ∂Φ/∂n, in L2D (Step D). The

accuracy of these transforms is also dependent on the distance between the two

points of transformation. Hence, it is not surprising that the errors in both cases

are different.
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Figure 3.3: Comparison of accuracy for various source to potential/gradient trans-

lation operators with increasing order of multipole expansion.
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3.3.2 Thermal conduction in a sphere

In this example, the thermal conduction in a sphere is considered. The temperature

distribution on the surface of the sphere (with radius 0.5) is given by

Φ(r, θ, φ) =
1

3
+ r2(cos2 θ − 1

3
) =

1

4
(cos2 θ + 1). (3.47)

The spherical coordinates (r, θ, φ) are used, and the origin coincides with the center

of the sphere. The analytical solution for the temperature gradient is given by

∂Φ(r, θ, φ)

∂n
= 2r(cos2 θ − 1

3
) = cos2 θ − 1

3
. (3.48)

Four different surface discretizations are used, with the total number of nodes

being 4858, 8566, 19234, and 33884. To investigate the influence of the parameters

of FFTM on the accuracy and computational time, various cell discretizations

(8 × 8 × 8, 16 × 16 × 16, 24 × 24 × 24 and 32 × 32 × 32) and orders of expansion

(p = 2, p = 4 and p = 6) are tested. The numerical experiments are performed on

a computer with AMD Opteron processor (2.2 GHz).

The computational timings for the direct and indirect methods are illustrated in

Figures 3.4 and 3.5. It can be seen that the direct method typically takes more

time than the indirect method, because the direct method has to handle two ker-

nels while the indirect method handles only one kernel. The FFTM reduces the

computational time significantly when the problem becomes large. The standard

BEM using GMRES shows the typical computational complexity of O(N2), while

the computational complexity of FFTM is lower, especially when higher order of

expansion p and finer cell discretization are used. The FFTM algorithm includes

38



CHAPTER 3. LAPLACE EQUATION

1.0e+01

1.0e+02

1.0e+03

1.0e+04

1.0e+05

1.0e+03 1.0e+04 1.0e+05

T
im

e

Number of nodes

Standard BEM

FFTM p=2

FFTM p=4

FFTM p=6

(a) direct formulation

1.0e+01

1.0e+02

1.0e+03

1.0e+04

1.0e+05

1.0e+03 1.0e+04 1.0e+05

T
im

e

Number of nodes

Standard BEM

FFTM p=2

FFTM p=4

FFTM p=6

(b) indirect formulation

Figure 3.4: Computational time for various orders of expansion with cell discretiza-

tion of 16 × 16 × 16 (Dirichlet problem).
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Figure 3.5: Computational time for various cell discretizations with p = 4 (Dirichlet

problem).
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the steps of S2M , M2L, L2D, and calculation of near field, whose computational

complexities are O(N), O(N log N), and O(N), respectively. So the total cost of

the FFTM is of the order of N log N . More detailed complexity analysis is given

in [59]. The FFTM introduces additional computational overheads, resulting in

slightly higher or comparable computational time as the standard BEM for prob-

lems with a small number of nodes. However, when the number of nodes increases

(to about 40,000), the FFTM reduces the computational time by almost one order

of magnitude, compared to the standard BEM.

When a higher order of expansion is used, more operations are needed, and the

computation time is longer, as shown in Figure 3.4. However, for large problems,

the time increase is not significant compared with the total computational time, as

the computational complexity decreases with the order of expansion p. Figure 3.5

shows that the computational complexity decreases with finer cell discretization.

But a finer cell discretization also results in higher overhead, and thus this may

not improve the computational efficiency when the problem size is small.

Figures 3.6 and 3.7 show the error of the results obtained by standard BEM and

FFTM with the exact solutions given in Equation (3.48). The errors of the direct

formulation is almost one order of magnitude lower than those of the indirect

formulation, since the strongly singular integral can be calculated more accurately

in the direct method. In the indirect method, evaluation of the integral involving

the K kernel is less accurate. For the direct method, as the order of expansion p

goes from 2 to 4, and 4 to 6, there is a significant improvement in accuracy (Figure

3.6). When p = 6 is used, it is very close to the standard BEM, for the panel
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Figure 3.6: Error for various orders of expansion with cells discretization of 16 ×

16 × 16 (Dirichlet problem).
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Figure 3.7: Error for various cell discretizations with p = 4 (Dirichlet problem).
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discretizations used. For the indirect method, p = 2 gives a large error, but p = 4

and p = 6 give errors that are close to the standard BEM. It is noted that the

indirect BEM tends to be less accurate than the direct BEM, hence a lower order

of expansion, like p = 4 instead of p = 6, may be sufficient for the FFTM to achieve

the accuracy of the standard BEM. Also, when the number of panels used in the

BEM is increased, a higher order of expansion p, for a fixed cell discretization, is

normally needed to maintain an accuracy close to the standard BEM.
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Figure 3.8: Error for various cell discretizations with p = 6 using the direct method

(Dirichlet problem).

Figure 3.7 illustrates the effects of cell discretization on the accuracy of FFTM

(with p = 4). For the indirect method, there is no improvement since the standard

BEM is not accurate to begin with. For the direct method, the error generally

decreases with finer cell discretization, but the improvement is slow – the lines

bunch together as finer cell discretization is used. In fact, the error increases with
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the number of panels used, which is on contrary with the standard BEM. This is

because the accuracy is not only dependent on the number of panels, but also the

cell discretization and expansion order. Since the number of cells is fixed in each

case in Figure 3.7, increasing the number of panels results in accumulating more

truncation error for a given multipole expansion in each cell. Consequently, using

more panels does not lead to better accuracy; a higher multipole expansion order

should be used to maintain the same degree of approximation and accuracy. When

a higher order of expansion (p = 6) is used, the error improves when both finer

cell and panel discretizations are used (Figure 3.8). The above example shows that

the order of expansion p has a more significant role than the cell discretization in

improving the accuracy of the FFTM algorithm.

Balancing between the computational time and accuracy, it can be seen that 16×

16 × 16 cells and p = 4 are preferred for most cases. With such parameters, the

computational complexity of the FFTM is about O(N1.2), shown in Figures 3.4

and 3.5. The memory usage for all the discretizations ranges from 390M to 480M .

Most of the memory (about 330M) is used to store the M2L translation matrix.

Hence, the memory requirement is determined mainly by the number of cells and

expansion order p. Apart from the 330M , the rest of the memory usage scales

linearly with the number of nodes. Based on the memory requirement in this

example, the largest problem that can be solved with the FFTM, using a computer

with 1GB of RAM, is estimated to have 200,000 degrees of freedom.
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3.3.3 Sphere moving in potential flow

In this example, an exterior problem consisting of a sphere moving through a fluid

(modeled as a potential flow) is considered. The sphere moves at a constant of

velocity U , and a non-penetrating boundary condition (of the Neumann type) on

the surface of the sphere is imposed.

∂Φ

∂n
= U cos θ, (3.49)

where Φ is the velocity potential. The analytical solution for Φ is

Φ = −1

2
Ur0 cos θ, (3.50)

where r0 = 0.5 is the radius of the sphere.

The computational timings for this problem are very similar with those in the

previous example with Dirichlet boundary conditions, so they are not presented

here. For the accuracy of FFTM, the errors (referenced to the analytical solution

in Equation (3.50)) in this Neumann boundary condition problem are generally

lower than those in the previous thermal conduction (Dirichlet boundary condition)

example. Figure 3.9 shows the accuracy of FFTM for various orders of expansion p

used. Similar to the previous example, the FFTM needs p = 6 to achieve accuracy

close to the standard BEM when the direct formulation is used. For the indirect

formulation, p = 2, 4 and 6 are able to achieve the same accuracy as the standard

BEM, as the standard indirect BEM is not very accurate (probably due to the

difficulty to evaluate the strongly singular integral that involves the kernel K).

Figure 3.10 shows the accuracy of the FFTM with various cell discretizations.
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Figure 3.9: Error for various orders of expansion with cell discretization of 16 ×

16 × 16 (Neumann problem).
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Figure 3.10: Error for various cell discretizations with p = 4 (Neumann problem).
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Similar to the previous example, the accuracy does not improve significantly with

finer cell discretization. For the indirect method, the poor accuracy of standard

BEM dominates the error so that the FFTM cell discretization error is insignificant.

For the direct formulation, finer cell discretization improves the accuracy of FFTM,

but rather slowly. In this example, p = 4 is sufficient to show improvement in error

when both cell and panel discretizations are refined, as compared to the previous

example that needs p = 6.

3.4 Summary of FFTM for Laplace equation

In this chapter, the FFTM algorithm is used to accelerate the BEM when solving

Laplace equation. This is implemented in both the indirect and direct formulations

of the BEM. The translations for the indirect BEM formulation with Dirichlet

boundary condition are provided, followed by detailed derivation of the translations

for the Neumann problem. For the direct BEM formulation, a new formulation for

handling the double layer kernel is obtained. This new method is based on the

physical interpretation of monopole and dipole sources, and it is obvious to be

related theoretically to the method given by Yoshida. Hence, the results from this

new method are the same with Yoshida’s method. The performances are illustrated

and analyzed with two simple numerical examples. The direct formulation tends

to take more computational time due to the evaluation of an extra integral. The

direct formulation is more accurate than the indirect formulation because the direct

formulation has the advantage of avoiding the calculations of the free term and the
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strongly singular integral explicitly. The multipole and local translations introduce

approximation errors, but these are not significant compared with the discretization

error in the direct or indirect BEM formulation. Since the constant boundary

element is used, the discretization error of BEM is high. FFTM can achieve the

same error as the standard BEM with sufficient high multipole expansion order

used.
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Chapter 4

Navier equation

In this Chapter, the conventional BEM for elasticity problems will be introduced,

followed by the details of the implementation of the FFTM. As the variables are now

vectors (displacement and tractions), to solve the governing equation, which is the

Navier equation (Equation (1.2)), the kernels are more complicated than those of

the Laplace equation. More translation operators are needed to map vectors to their

multipole representations. In this chapter, the translation operators in Yoshida’s

[88, 89] work are adopted. Only four sets of multipole moments are needed. The

memory storage requirement of the FFTM algorithm is dominated by the storage

of kernels for the multipole to local expansion transform. Using the original FFTM

method, the memory requirement is of O(p4), where p is the expansion order.

For elasticity problems, where the variables are vector quantities, the memory

requirement for the translation operators is more than that for scalar equations,

such as the Laplace equation. Hence, reducing the memory requirement is critical
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for implementing the FFTM in large elasticity problems. Here, a more concise form

is presented to store the transformation matrices, and the memory requirement is

reduced to O(p2). The performance of the improved FFTM is compared with the

standard method, as well as the commonly used FMM. Lastly, several case studies

are presented to highlight the computational accuracy and efficiency of the FFTM.

4.1 BEM for Navier equation

The Navier equation (Equation (1.2)) can be rewritten in its integral form

cijui(x) =

∫

Sy

Tij(x,y)uj(y)dSy −
∫

Sy

Uij(x,y)tj(y)dSy, (4.1)

where Sy is the boundary and cij is the free term. The single layer kernel Uij

(displacement kernel) and the double layer kernel Tij (traction kernel) are defined

as ([5])

Uij(x,y) =
1

16πµ(1 − ν)

1

r(x,y)
[(3 − 4ν)δij +

∂r(x,y)

∂yi

∂r(x,y)

∂yj

], (4.2)

and

Tij(x,y) =
−1

8π(1 − ν)r2(x,y)

∂r(x,y)

∂n(y)
[(1 − 2ν)δij + 3

∂r(x,y)

∂yi

∂r(x,y)

∂yj

]

− 1 − 2ν

8π(1 − ν)r2(x,y)
[
∂r(x,y)

∂yj

ni(y) − ∂r(x,y)

∂yi

nj(y)], (4.3)

where r is the distance between the source point y and the evaluation point x, and

n(y) is the outward normal direction at the source point.

For BEM, the boundary of the domain is discretized into elements, and a system
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of equations involving the nodal displacements [u] and tractions [t] is obtained,

[T ][u] − [U ][t] = 0, (4.4)

where [T ] and [U ] are coefficient matrices obtained by performing the integrations

in Equation (4.1) over the boundary elements. In this chapter, the same constant

element and numerical integration scheme, as the previous chapter, are used to cal-

culate the coefficients. Equation (4.4) can be solved similarly as shown in Section

3.1.2. One method is to rearrange the system of equations into the form [A][x] = [b],

where [A] is a big full matrix and [b] is a vector obtained from known boundary

conditions. The resulting linear system (with matrix [A] and vector [b] known) can

be solved by Gauss elimination or GMRES. The other method is to solve Equation

(4.4) by GMRES without forming the matrix [A] explicitly. In each iteration of

GMRES scheme, guess values of the unknowns and the boundary conditions are

used to perform the matrix-vector multiplication [T ][u]− [U ][t] without storing the

matrices [T ] and [U ]. The entries in these two matrices are calculated in every

iteration. For the case of mixed boundary conditions, the GMRES solver needs

a preconditioner to achieve fast convergence. In this chapter, a simple but effec-

tive diagonal preconditioner is used by post-multiplying the [T ] and [U ] matrices

by the inverse of the corresponding diagonal matrices, [diagT ]−1 and [diagU ]−1,

respectively,

[T ][u] − [U ][t] =
{

[T ][diagT ]−1
}

[diagT ][u] −
{

[U ][diagU ]−1
}

[diagU ][t]. (4.5)

The intermediate variables, [ũ] = [diagT ][u] and [t̃] = [diagU ][t], are solved, from

which the original variables can readily be obtained. As the matrices [T ] and [U ]
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are diagonally dominant, the resulting system with coefficient matrices [T ][diagT ]−1

and [U ][diagU ]−1 are well-conditioned for the use with iterative solvers, especially

when mixed boundary conditions are prescribed. In all the numerical examples,

convergence to reasonable accuracy can be achieved within 40 iterations.

4.2 FFTM for Navier equation

The integral equation (Equation (4.1)) can be interpreted as a field calculation due

to single and double layer sources as expressed by the kernels Uij and Tij, respec-

tively. The FFTM algorithm provides an acceleration of this field calculation by

grouping of the sources into equivalent multipole and local expansion representa-

tions. This is accurate especially when the source point y and field point x are

far apart. To evaluate the field at a node, the sources are divided into two groups,

near sources and far sources, based on the distance between the field point and the

sources points. This is done by dividing the computational domain into a grid of

regularly spaced cells that contain all the nodes and elements. The near sources

consist of those in the same cell as the field point and the neighbouring cells that

share at least one vertex with the cell containing the field point. This is equivalent

to assigning one layer of surrounding cells as the near sources. It is also possible

to use more layers of surrounding cells as near sources, as implemented in [56].

The field due to the near sources are calculated directly using the standard BEM,

while the contribution from far sources are calculated using the multipole and local

expansions.
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Similar to the case of the Laplace equation, the FFTM needs three translations

in the Navier equation, namely source to multipole moment (S2M), multipole

moment to local expansion (M2L) and local expansion to destination (L2D). For

the Navier equation, the variables at the source and destination are both 3 × 1

vectors, and the translation operators are more complicated than those for scalar

variables in the Laplace equations. Here, Yoshida’s formulation [88], which uses

only four sets of multipole moments (and local expansions) to represent each group

of sources, is employed.

The expression for 1/r(x,y) is expanded in terms of solid harmonics Rm
n and Sm

n ,

1

r(x,y)
=

∞
∑

n=0

n
∑

m=−n

Sm
n (

−→
Ox)Rm

n (
−→
Oy). (4.6)

where

Rm
n (

−→
Oy) =

1

(n + m)!
Pm

n (cos α)eimβρn, (4.7)

Sm
n (

−→
Oy) = (n − m)!Pm

n (cos α)eimβ 1

ρn+1
, (4.8)

O is the cell center, with (ρ, α, β) being the relative spherical coordinates of the

point y from O, and Pm
n is the Legendre polynomial. With the usage of solid har-

monics, the Legendre polynomial defined as in Equation (3.33) is slightly different

from Equation (3.9). The single layer kernel can then be expressed in terms of solid

harmonics

Uij(x,y) =
1

16πµ(1 − ν)

∞
∑

n=0

n
∑

m=−n

(3 − 4ν)[δijSm
n (

−→
Ox)Rm

n (
−→
Oy) −

(
−→
Ox)j

∂

∂xi

Sm
n (

−→
Ox)Rm

n (
−→
Oy) +

∂

∂xi

Sm
n (

−→
Ox)(

−→
Oy)jR

m
n (

−→
Oy)]. (4.9)
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And the double layer kernel can be obtained from the single layer kernel

Tij(x,y) = Ccjdl
∂Uid(x,y)

∂yl

nc(y), (4.10)

giving

Tij(x,y) =
1

16πµ(1 − ν)

∞
∑

n=0

n
∑

m=−n

Ccjdl(3 − 4ν)[δidSm
n (

−→
Ox)

∂

∂yl

Rm
n (

−→
Oy) −

(
−→
Ox)d

∂

∂xi

Sm
n (

−→
Ox)

∂

∂yl

Rm
n (

−→
Oy) +

∂

∂xi

Sm
n (

−→
Ox)

∂

∂yl

((
−→
Oy)dR

m
n (

−→
Oy))]nc(y), (4.11)

where

Cijkl =
2µν

1 − 2ν
δijδkl + µ(δikδjl + δilδjk). (4.12)

So the multipole moments at the cell centers are defined by (S2M)

Mm
n,j(O) =

∫

Sy

Ccdjl
∂Rm

n (
−→
Oy)

∂yl

ud(y)nc(y)dSy −
∫

Sy

Rm
n (

−→
Oy)tj(y)dSy,

Mm
n (O) =

∫

Sy

Ccdjl
∂

∂yl

[(
−→
Oy)jR

m
n (

−→
Oy)]ud(y)nc(y)dSy −

∫

Sy

(
−→
Oy)jR

m
n (

−→
Oy)

tj(y)dSy. (4.13)

where Mm
n,j consists of three components (j = 1, 2, 3), and Mm

n is a scalar.

These four sets multipole moments can be translated to four sets of local expansions

defined at another point O′ (M2L) by

Lm′

n′,j(O
′) =

∞
∑

n=0

n
∑

m=−n

(−1)n′

Sm+m′

n+n′ (
−−→
OO′)Mm

n,j(O)

Lm′

n′ (O′) =
∞
∑

n=0

n
∑

m=−n

(−1)n′

Sm+m′

n+n′ (
−−→
OO′)[Mm

n (O) − (
−−→
OO′)jM

m
n,j(O)].(4.14)

The M2L translation operators are functions of only the distance between the

points O and O′. This can be seen as a convolution in space coordinates, and

hence the FFT can be used to accelerate the calculation.
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Lastly, the field at the destination point can be obtained from the local expansion

coefficients Lm
n,j and Lm

n by (L2D):

∫

Sy

Tij(x,y)uj(y)dSy −
∫

Sy

Uij(x,y)tj(y)dSy =
1

16πµ(1 − ν)

∞
∑

n=0

n
∑

m=−n

{[(3 − 4ν)δijR
m
n (

−−→
O′x) − (

−−→
O′x)j

∂Rm
n (

−−→
O′x)

∂xi

]Lm
n,j(O

′) +
∂Rm

n (
−−→
O′x)

∂xi

Lm
n (O′)}. (4.15)

The application of FFTM in Navier equation can be summarized in the following

steps, shown in Figure 4.1:

A. Define a rectangular domain that contains the whole computational domain

and discretize the spatial domain into many smaller cells.

B. Convert sources (u and t) within each cells to multipole moments (S2M),

using Equation (4.13).

C. Evaluate the local expansion coefficients at cell centers due to the multipole

moments at other cells (Equation (4.14)). This process is a series of discrete

convolutions that are accelerated by the FFT (M2L).

D. Compute the field quantity (u) at the nodal locations using local expansions

(L2D) (Equation (4.15)), which only account for the distant charges contri-

butions, and also add the contributions from the near sources.

From Equation (4.14), the translation operators Sm+m′

n+n′ and Sm+m′

n+n′ (
−−→
OO′)j for the

M2L translation are actually matrices that need to be stored. For example, the
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Figure 4.1: Two dimensional pictorial representation of FFTM for Navier equation.

Step A: discretization of domain, Step B: sources to multipoles translation (S2M),

Step C: multipoles to local expansions translation (M2L) accelerated by FFT, Step

D: field evaluation by local expansions (L2D) and direct calculation.
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operator Sm+m′

n+n′ between two cells can be written explicitly in the matrix form

















































S0
0 S−1

1 S0
1 S1

1 S−2
2 S−1

2 · · ·

S−1
1 S−2

2 S−1
2 S0

2 S−3
3 S−2

3 · · ·

S0
1 S−1

2 S0
2 S1

2 S−2
3 S−1

3 · · ·

S1
1 S0

2 S1
2 S2

2 S−1
3 S0

3 · · ·

S−2
2 S−3

3 S−2
3 S−1

3 S−4
4 S−3

4 · · ·

S−1
2 S−2

3 S−1
3 S0

3 S−3
4 S−2

4 · · ·

· · · · · · · · · · · · · · · · · · · · ·

















































, (4.16)

and the dimension of this matrix is (p + 1)2 × (p + 1)2. However, many entries in

this matrix are the repeated. A more compact storage

[

S0
0 S−1

1 S0
1 · · · S2p−1

2p S2p
2p

]

(4.17)

can be obtained by only storing the distinct terms. The dimension of this vector

is (2p + 1)2, compared to the original (p + 1)4. This reduces the memory storage

considerably. For example, when p = 4, the new scheme needs to store 81 com-

plex numbers for each multipole/local expansion component, compared with 625

complex numbers using the original scheme. The operators Sm+m′

n+n′ (
−−→
OO′)j can be

stored compactly in a similar manner.

4.3 Numerical examples

In this section, several examples are provided to demonstrate the accuracy and

efficiency of the new algorithm. A hydrostatically loaded sphere is first presented,
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with a comparison of the numerical solutions with the analytical solution and the

FMM. Next, the new algorithm is applied to calculation of the effective stiffness in

materials with voids of various shapes and sizes. The latter examples, with all the

voids modeled explicitly, involve a large number of degrees of freedom, and they

benefit greatly from the present fast algorithm in terms of memory storage and

computational time.

4.3.1 Hydrostatically loaded sphere

z

y

x

Figure 4.2: Hydrostatically loaded sphere

In this example, illustrated in Figure 4.2, a sphere under hydrostatic load is con-

sidered. Dirichlet boundary condition is prescribed on the sphere surface with the

displacement in the radial direction given to be δ. For a small displacement δ, the

analytical solution for the normal traction t̄ is then given by

t̄ =
δE

r(1 − 2ν)
. (4.18)
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In this problem the radius of the sphere r is 0.5 m, the Young’s modulus E is 165

MPa, and the Poisson’s ratio ν is 0.3. The measure of the error is defined in the

L2 norm as

Error =

√

∑N
i=1 |t(xi) − t̄(xi)|2
∑N

i=1 |t̄(xi)|2
, (4.19)

where t is the numerical solution of the normal traction.

To illustrate the advantages of the FFTM algorithm, we compare our results with

the standard BEM, as well as the FMM. In the literature, researchers compared

their fast algorithms with three different standard BEMs. They are referred in

this work as Standard BEM (GE), Standard BEM (GMRES) and Standard BEM

(matrix-free). In the Standard BEM (GE) and Standard BEM (GMRES), the full

coefficient matrix is constructed and the resulted linear equations are solved by

Gauss elimination method and GMRES method, respectively. In the Standard

BEM (matrix-free), the construction of the big matrix is avoided with the help of

the GMRES, but the coefficients in the matrix are calculated in every iteration in

GMRES scheme.

To compare with the FMM, we select Wang and Yao’s work [79] which presents

the most recent and detailed results. In addition, Wang and Yao used constant

element, and ran their program on a single CPU computer, which make it easy

and reasonable for us to compare. For comparison, their data in the Figure 5 (a)

in their paper are scaled, so that the time of the standard method (Standard BEM

(GE)) in their paper is the same with ours. Such scaling is based on the fact that

the computational time of the standard method, in [79] and current work, should
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be equivalent approximately. They solved a mixed boundary condition problem to

obtain the data and used about 30 GMRES iterations to get the FMM algorithm

converged to a residue less than 10−5. Although for the current pure Dirichlet

problem about 20 GMRES iterations are sufficient to obtain the same residue, we

still run 30 iterations to compare the computational time fairly with the FMM. The

extra iterations do not affect the accuracy and memory usage very much. In the

FFTM, 16 × 16 × 16 cells are used to discretize the spatial domain and expansion

order p = 4 and p = 6 are tested.
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Figure 4.3: Computational time compared with standard methods

Figure 4.3 shows the timings of the FFTM algorithm, compared with the three

standard methods. The Standard BEM (GE) shows the typical computational

complexity of O(N3), and the computational complexity of the Standard BEM

(GMRES) and Standard BEM (matrix-free) is O(N2), while the complexity of the

FFTM is lower. FFTM keeps the same computational complexity, O(N log N),
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when it is used to solve the Navier equation. The matrix-vector multiplication in

GMRES constitutes the bulk of the timing. In each multiplication, the complexities

of S2M , M2L and L2D are O(N), O(N log N) and O(N), respectively. When the

problem becomes large (more than 10,000 panels), the FFTM reduces the compu-

tational time by almost one order of magnitude, compared with the Standard BEM

(matrix-free). For large problems, the use of the Standard BEM (GE) and Stan-

dard BEM (GMRES) is not possible on personal computer due to the large memory

requirement (typically more than 2 GB). For smaller problems, the Standard BEM

(GMRES) is the fastest, as the matrix is found and stored in memory. Figure 4.4

gives the memory usage comparison of the FFTM and standard methods. The

Standard BEM (GE) and Standard BEM (GMRES) need O(N2) memory to store

the full coefficient matrix. With 2 GB memory, the two methods can solve prob-

lems with less than 5,000 panels. With the help of the compact memory storage,

explained in the above section, the FFTM (p = 6) can solve the largest problem

with less than 400 MB memory. This is acceptable for most PCs. Most of the

memory, O(Nc × p2), is used to store the M2L translation matrices, where Nc is

the number of cells. The other part grows linearly with the number of panels (N).

The Standard BEM (matrix-free) uses less memory, but it needs to recompute the

matrix entries during the iterations, and hence slows down the computation.

In Figure 4.5, the efficiency of the FFTM is compared with that of the FMM. For

the FMM, the expansion order for multipole and local expansion is equal to 10,

and the exponential expansion order is 9. Both the FMM and FFTM reduce the

computational time when the problem becomes large. The standard BEM (GE)
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Figure 4.4: Memory usage compared with standard methods
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Figure 4.5: Computational time compared with FMM
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has a complexity of O(N3), and the complexity of the FMM is O(N) [79]. The

FFTM method has similar complexity with the FMM. The timings of the FMM,

with p = 9, 10, are comparable with those of FFTM, with p = 6, for large problems.

When the number of nodes is less than 8000, the FMM uses less time than FFTM

(p = 6), but longer time than FFTM (p = 4).
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Figure 4.6: Accuracy compared with FMM

Figure 4.6 shows the accuracy of the fast algorithms. The FFTM provides relatively

good accuracy. With higher expansion order (p = 6), the FFTM’s results are closer

to the standard BEM than p = 4. Since Wang and Yao did not provide detailed

results to show the accuracy in [79], it is difficult to compare the accuracy directly.

But when Wang et al. [78] extended their FMM algorithm to solve the Stokes

equation, they gave the accuracy of with various expansion orders. When the

exponential expansion order equals to 9, the error is a little higher than 10−2,

regardless of the multipole expansion used. Hence it is reasonable to estimate the
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accuracy of the FMM, in solving Navier equation, to be about 10−2, as shown in

Figure 4.6. With p = 9, 10, the accuracy of the FMM is comparable with the FFTM

(p = 4). This is also consistent with the results of the early FFTM work from Ong

et al. [59]. The FFTM is able to give comparable accuracy with lower expansion

order than the FMM. When p = 4, the error of FFTM does not decrease with the

number of nodes. This is the same behavior as that in Section 3.3.2. Again, with

a fixed number of cells, more nodes are present in a cell and this leads to a higher

truncation error for a given order of multipole expansion. A higher expansion order

should be used when more nodes are present to reduce the truncation error. When

a higher expansion order of p = 6 is used, the errors are shown to reduce.
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Figure 4.7: Memory usage compared with FMM

In Figure 4.7, the memory cost of the FMM, from Figure 5(b) in [79], grows lin-

early with number of panels. Even with the compact storage method, the FFTM

consumes more memory than the FMM, especially when higher expansion order
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is used. So in summary, the FFTM obtains comparable accuracy with shorter

computational time, but with higher memory requirment.

4.3.2 Effective Young’s modulus with uniformly distributed

spherical voids

In this example, a simulation of an elastic material containing voids undergoing

a uniaxial tension, as shown in Figure 4.8, is considered. The voids provide the

advantage of reducing the mass in cases where the weight of the material is crucial,

but the stiffness and strength of the material also decrease. Hence, it is important

to quantify the stiffness and strength of such materials when they are used in load

bearing structures. In many applications, a numerical model containing all the

voids will result in a large number of degrees of freedom. Even with the BEM that

applies only boundary discretization, the computational resources needed may be

formidable. O’Rourke et al. [60] have used a parallel implementation of BEM (with

162 processors) to compute the effective modulus of porous materials. Here, the

FFTM is applied to accelerate the BEM computation.

In this numerical example, the bulk material has Young’s modulus, E = 165MPa

and Poisson’s ratio ν = 0.3. For a cube of height L, a displacement in the z

direction, d = 0.01L, is applied at the top boundary, and the bottom boundary

is fixed in the z direction. All other boundaries, including the wall of the cube

and the surfaces on the voids, are traction free. In the elastic regime, only small

deformation is allowed, and the shape of the voids are not changed. The resultant
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z

y

x

Figure 4.8: Axially loaded cube with uniformly distributed spherical voids

force F can be calculated at the top surface of the cube,

F =

∫

top

tzdS, (4.20)

and the effective Young’s modulus Eeff of the porous material is defined by

Eeff =
FL

Ad
, (4.21)

where A is the area over which the displacement d is applied. The normalized

effective Young’s modulus is then compared with the results from Nemat-Nasser et

al. [49]. In this numerical example, the number of voids in the model ranges from

8 to 125. Table 4.1 gives the number of panels on the cube and the voids, with the

largest number of degrees of freedom being 103650. For all the cases, a 16×16×16

cell discretization of the computational domain and an expansion order of p = 4 are

used. Using an AMD Opteron processor running at 2.2 GHz, the computational

time ranges from 20 minutes to 3 hours. The maximum memory needed for the

FFTM is about 250 MB, which is much lesser than that for the standard BEM
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(estimated to be 80 GB).

Table 4.1: Number of panels in each case

Number of voids Panels on the cube Panels on each void Total

8 4800 238 6704

27 4800 238 11226

64 4800 238 20032

125 4800 238 34550
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Figure 4.9: Typical FFTM computational time compared with that estimated for

standard BEM

Figure 4.9 gives the typical computational time of the FFTM for the four cases

with different voids. The computational time of the standard BEM is estimated

from the timings in the above example, based on the O(N2) complexity of GMRES.

The FFTM algorithm shows considerable savings in computational time, and also a
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Figure 4.10: Normalized effective Young’s modulus as a function of void volume

fraction (uniformly distributed spherical voids)

lower computational complexity. For a fixed number of voids or degrees of freedom,

computational timings for different void volume fractions are obtained, and these

timings do not defer very much. The average computational times are given in

Figure 4.9.

The effective Young’s modulus of the porous material, normalized by the bulk

Young’s material, is given in Figure 4.10 as a function of the void volume fraction.

Increase in the void volume fraction results in a reduced stiffness of the material.

The effective Young’s modulus is not sensitive to the number of the voids, but

only dependent on the void volume fraction. The FFTM results deviate from the

series solution of Nemat-Nasser et al. [49] as the void volume fraction increases.

However, they are close to the numerical results from O’Rourke et al. [60].
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4.3.3 Effective Young’s modulus with randomly distributed

spherical voids

z

y

x

Figure 4.11: Axially loaded cube with randomly distributed spherical voids

This example investigates the effect of randomly distributed voids (shown in Figure

4.11). The same material in the previous example, E = 165MPa and ν = 0.3, is

used and the effective Young’s modulus of the cube is calculated. A small and

random shift of the position of each void from its regularly spaced position is

given. The shift is kept small to avoid two spheres from getting too close or

intersecting with each other. The distribution is pseudo random with the voids

being distributed over most parts of the cube. To avoid getting an extremely fine

mesh that takes long computational time, the voids are not allowed to get too close

to each other and those cases where voids are concentrated in a small volume are

not considered. All the cases in Figure 4.10 are repeated, and the calculations are

performed for ten random configurations in each case. Without the fast algorithm,

it will be very time consuming to run so many cases. Figure 4.12 shows the average
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Figure 4.12: Average normalized effective Young’s modulus as a function of void

volume fraction (randomly distributed spherical voids)
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Figure 4.13: The standard deviation of the effective Young’s modulus for random

void configurations
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results of the ten random configurations. The results are very similar with those in

Figure 4.10. In addition, the standard deviations of the effective Young’s modulus,

shown in Figure 4.13, are very small, suggesting that the positions of the voids

have little influence on the effective Young’s modulus of the porous material. For

a fixed void volume fraction, more voids lead to a smaller standard deviation of E.

4.3.4 Effective Young’s modulus with uniformly distributed

ellipsoidal voids

z

y

x

(a) Angle = 0

z

y

x

(b) 0 < Angle < 90

z

y

x

(c) Angle = 90

Figure 4.14: Axially loaded cube with uniformly distributed ellipsoidal voids

In this example, the effect of the void shape is considered. Here the material

properties used are the same as the previous example. Figure 4.14 shows ellipsoidal

voids with different orientations. The distribution of the ellipsoidal voids is the

same as those cases in Section 4.3.2. Here, there are 64 ellipsoidal voids inside

the cube with 20032 nodes in the model. The ellipsoids are distributed uniformly

and the angular orientation of all the ellipsoidal voids are the same. The lengths

of three semi-axes are represented by a, b and c, and three types of ellipsoid are

analyzed: 4
5
a = b = c, 2

3
a = b = c and 1

2
a = b = c.
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Figure 4.15: Normalized effective Young’s modulus as a function of ellipsoid angular

orientation (64 ellipsoidal voids and the void volume fraction is 0.1)

Figure 4.15 illustrates the normalized effective Young’s modulus of different materi-

als with 64 voids when the void volume fraction is 0.1. The horizontal line in Figure

4.15 corresponds to the numerical result for spherical voids. The effective stiffness

of the material changes with the aspect ratio and orientation of the ellipsoid voids.

Compared with the case with spherical voids, the material with ellipsoidal voids

becomes stiffer, when the angle between the major axis and the z-axis is small

(Figure 4.14(a)). When the angle is large (Figure 4.14(c)), the material becomes

softer. When the aspect ratio a/b becomes bigger, the ellipsoid deviates more from

the sphere, and the material stiffness also differ more from the spherical case. It

is interesting to note that the effective Young’s modulus is almost the same for

different aspect ratios when the angular orientation is 45o.
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4.4 Summary of FFTM for Navier equation

In this chapter, the FFTM algorithm is applied to solve elastostatics problems gov-

erned by the Navier equation. Since the Navier equation involves vector quantities,

the multipole translations are more complex than the Laplace equation. The trans-

lation formulations, derived by Yoshida, are adopted. Both the displacement kernel

and the traction kernel can be represented by four sets of multipoles. These sets

of multipoles result in more translation operations, as well as a tougher memory

requirement than the Laplace equation. A compact storage of the matrix of the

multipole to local expansion is introduced to reduce the memory usage, allowing

large elasticity problems to be solved efficiently. In addition, a simple diagonal pre-

conditioner is employed to achieve a faster convergence of GMRES algorithm for

mixed boundary condition problems. With these techniques, the FFTM is com-

pared with the FMM. The FFTM is faster and requires more memory than the

FMM to obtain comparable accuracy. Then the fast algorithm is applied to the

calculation of effective Young’s modulus of a material containing numerous voids

of various positions, sizes, shapes and orientations. For a material with spherical

voids, the void volume fraction plays a significant role in determining the effective

Young’s modulus. The number of the voids or the positions of the voids do not

have an obvious influence on the effective modulus. For a material with ellipsoidal

voids, the effective Young’s modulus is found to be dependent on the shape and

orientation of the voids.
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Stokes equation

In this chapter, FFTM is extended to solve Stokes equation following the formula-

tions provided by Frangi et al. [18] and Wang et al. [78]. The Stokes equation is

the governing equation for fluid flow where the inertia force is small compared with

the viscous force. The integral form of the Stokes equation is very similar with

that of the Navier equation. Hence the technique for solving the Navier equation

using the FFTM can easily be extended to solve the Stokes equation. However,

the translation operators of Stokes equation differ from those of Navier equation

(due to different kernels) and the formulations are present is this chapter. The

same compact storage method of the translation matrices and the diagonal pre-

conditioner are employed. The fast algorithm is verified with a simple example,

calculating the drag force on a sphere centered in a cylinder tube. Lastly, the al-

gorithm is applied to simulate Stokes flow in a cylinder tube with many spherical

suspensions.
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5.1 BEM for Stokes equation

The Stokes equation (Equation (1.6)) can be rewritten in its integral form

cijui(x) =

∫

Sy

Tij(x,y)uj(y)dSy −
∫

Sy

Uij(x,y)tj(y)dSy, (5.1)

where Sy is the boundary and cij is the free term. The single layer kernel Uij and

double layer kernel Tij are defined as

Uij(x,y) = − 1

8πµ

1

r(x,y)
× [δij +

∂r(x,y)

∂yi

∂r(x,y)

∂yj

], (5.2)

and

Tij(x,y) =
3

4π

1

r2

∂r(x,y)

∂n(y)

∂r(x,y)

∂yi

∂r(x,y)

∂yj

, (5.3)

where r is the distance between the source point y and the evaluation point x,

n(y) is the outward normal direction at the source point, and δij is the Kronecker

delta.

Except for the expressions of the kernels, the standard BEM implementation for

the Stokes equation is the same as the Navier equation.

5.2 FFTM for Stokes equation

The implementation of the FFTM in the Stokes equation is the same as the Navier

equation (see Figure 4.1). The computational domain is discretized with numerous

small cells, and then the translations of S2M , M2L and L2D are employed to

accelerate the calculation. In addition, the compact storage of the translation in

Equation (4.17) and the preconditioner in Equation (4.5) are also used.
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The expression for 1/r(x,y) is expanded in terms of solid harmonics Rm
n and Sm

n ,

1

r(x,y)
=

∞
∑

n=0

n
∑

m=−n

Sm
n (

−→
Ox)Rm

n (
−→
Oy). (5.4)

where

Rm
n (

−→
Oy) =

1

(n + m)!
Pm

n (cos α)eimβρn, (5.5)

Sm
n (

−→
Oy) = (n − m)!Pm

n (cos α)eimβ 1

ρn+1
, (5.6)

O is normally the cell center, with (ρ, α, β) being the relative spherical coordinates

of the point y from O, and Pm
n is the Legendre polynomial. The single layer kernel

can then be expressed in terms of solid harmonics

Uij(x,y) = − 1

8πµ

∞
∑

n=0

n
∑

m=−n

{[δijSm
n (

−→
Ox) − (

−→
Ox)j

∂

∂xi

Sm
n (

−→
Ox)]Rm

n (
−→
Oy) +

∂

∂xi

Sm
n (

−→
Ox)(

−→
Oy)jR

m
n (

−→
Oy)}

= − 1

8πµ

∞
∑

n=0

n
∑

m=−n

[F 1
ij(
−→
Ox)Rm

n (
−→
Oy) + F 2

i (
−→
Ox)(

−→
Oy)jR

m
n (

−→
Oy)], (5.7)

giving

∫

Sy

Uij(x,y)tj(y)dSy = − 1

8πµ

∞
∑

n=0

n
∑

m=−n

[F 1
ij(
−→
Ox)

∫

Sy

Rm
n (

−→
Oy)tj(y)dSy +

F 2
i (
−→
Ox)

∫

Sy

(
−→
Oy)jR

m
n (

−→
Oy)tj(y)dSy], (5.8)

where

F 1
ij(
−→
Ox) = δijSm

n (
−→
Ox) − (

−→
Ox)j

∂

∂xi

Sm
n (

−→
Ox)

F 2
i (
−→
Ox) =

∂

∂xi

Sm
n (

−→
Ox). (5.9)

And the double layer kernel can be obtained from the single layer kernel

Tij(x,y) = [
δjk

4π

∂

∂xi

(
1

r(x,y)
) + µ(

∂Uij(x,y)

∂yk

+
∂Uik(x,y)

∂yj

)]nk(y), (5.10)
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giving

∫

Sy

Tij(x,y)uj(y)dSy = − 1

8π

∞
∑

n=0

n
∑

m=−n

{F 1
ij(
−→
Ox)

∫

Sy

∂Rm
n (

−→
Oy)

∂yk

[uj(y)nk(y) +

uk(y)nj(y)]dSy + F 2
i (
−→
Ox)

∫

Sy

(
−→
Oy)j

∂Rm
n (

−→
Oy)

∂yk

[uj(y)nk(y) + uk(y)nj(y)]dSy}.(5.11)

In the derivation, the following expressions are used, corresponding to the three

terms in Equation (5.10),

∫

Sy

δjk

4π

∂

∂xi

(
1

r(x,y)
)uj(y)nk(y)dSy =

1

4π

∞
∑

n=0

n
∑

m=−n

F 2
i (
−→
Ox)

∫

Sy

2δjkR
m
n (

−→
Oy)

uj(y)nk(y)dSy,(5.12)

∫

Sy

µ
∂Uij(x,y)

∂yk

uj(y)nk(y)dSy = − 1

8π

∞
∑

n=0

n
∑

m=−n

{F 1
ij(
−→
Ox)

∫

Sy

∂Rm
n (

−→
Oy)

∂yk

uj(y)

nk(y)dSy + F 2
i (
−→
Ox)

∫

Sy

[δjkR
m
n (

−→
Oy) + (

−→
Oy)j

∂Rm
n (

−→
Oy)

∂yk

]uj(y)nk(y)dSy},(5.13)

∫

Sy

µ
∂Uik(x,y)

∂yj

uj(y)nk(y)dSy = − 1

8π

∞
∑

n=0

n
∑

m=−n

{F 1
ik(

−→
Ox)

∫

Sy

∂Rm
n (

−→
Oy)

∂yj

uj(y)

nk(y)dSy + F 2
i (
−→
Ox)

∫

Sy

[δjkR
m
n (

−→
Oy) + (

−→
Oy)k

∂Rm
n (

−→
Oy)

∂yj

]uj(y)nk(y)dSy}

= − 1

8π

∞
∑

n=0

n
∑

m=−n

{F 1
ij(
−→
Ox)

∫

Sy

∂Rm
n (

−→
Oy)

∂yk

uk(y)

nj(y)dSy + F 2
i (
−→
Ox)

∫

Sy

[δjkR
m
n (

−→
Oy) + (

−→
Oy)j

∂Rm
n (

−→
Oy)

∂yk

]uk(y)nj(y)dSy}.(5.14)

By summing up the above three equations, all the terms with δjk cancel each other.

From Equations (5.8) and (5.11), the multipole moments can be calculated from

the sources on the boundary, following

Mm
n,j(O) =

∫

Sy

∂Rm
n (

−→
Oy)

∂yk

[uj(y)nk(y) + uk(y)nj(y)]dSy −
1

µ

∫

Sy

Rm
n (

−→
Oy)tj(y)dSy,
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Mm
n (O) =

∫

Sy

(
−→
Oy)j

∂Rm
n (

−→
Oy)

∂yk

[uj(y)nk(y) + uk(y)nj(y)]dSy −
1

µ

∫

Sy

(
−→
Oy)j

Rm
n (

−→
Oy)tj(y)dSy,(5.15)

where Mm
n,j consists three components and Mm

n is a scalar. The four sets of multi-

pole moments can be translated to four sets of local expansions defined at another

point O′ by

Lm′

n′,j(O
′) =

∞
∑

n=0

n
∑

m=−n

(−1)n′

Sm+m′

n+n′ (
−−→
OO′)Mm

n,j(O);

Lm′

n′ (O′) =
∞
∑

n=0

n
∑

m=−n

(−1)n′

Sm+m′

n+n′ (
−−→
OO′)(Mm

n (O) − (
−−→
OO′)jM

m
n,j(O)).(5.16)

The M2L translation operators in the Stokes equation are exactly same as those

in the Navier equation (Equation (4.14)). They are functions of only the distance

between the points O and O′. This can be seen as a convolution in space coordi-

nates, and hence the FFT can be used to accelerate the calculation. Finally, the

field at the destination point can be obtained from the local expansion coefficients

Lm
n,j and Lm

n by:

∫

Sy

Tij(x,y)uj(y)dSy −
∫

Sy

Uij(x,y)tj(y)dSy = − 1

8π

∞
∑

n=0

n
∑

m=−n

{[δijR
m
n (

−−→
O′x) − (

−−→
O′x)j

∂

∂xi

Rm
n (

−−→
O′x)]Lm

n,j(O
′) +

∂

∂xi

Rm
n (

−−→
O′x)Lm

n (O′)}. (5.17)
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5.3 Numerical examples

5.3.1 Drag force on a fixed sphere in a tube

In this example, a Stokes problem consisting of a stationary rigid sphere in a

cylinder is considered, as shown in Figure 5.1. The fluid flows from the left to the

right and the drag force on the sphere is calculated. The cylinder has length L = 1

and radius R = 1/3. The radius of the sphere is r, ranging from 1/18 to 1/6. Non-

slip boundary condition is prescribed on the surface of the sphere and cylinder. A

pressure drop of 1 is prescribed: at the inlet, the tractions ty = 1, and tx = tz = 0;

and at the outlet, the tractions tx = ty = tz = 0, where y direction is the flow

direction. The resulting velocity profile at the inlet and outlet in the cylinder is

quadratic, given by Figure 5.2. Drag force is normalized by that in infinite fluid

F =

∫

tydS

6πµrU
, (5.18)

where ty is the traction in the flow direction and U is the average velocity in the

flow direction at the inlet. The analytical solution, from Haberman and Sayre

[27] using an algebraic stream function approach, is used to validate the numerical

results,

F̄ = 2(1 − 0.66667
r2

R2
− 0.20217

r5

R5
)/(1 − 2.1050

r

R
+ 2.0865

r3

R3

−1.7068
r5

R5
+ 0.72603

r6

R6
). (5.19)

To solve this problem, three sets of mesh on the boundary of the computational

domain are tested (Table 5.1), ranging from coarse to fine. The tolerance of the
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Figure 5.1: Stokes fluid flows from left to right. The drag force is calculated on the

inside sphere.
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Figure 5.2: Normalized velocity u in the flow direction at the inlet and outlet.

Since the velocity distribution is axis-symmetric, only the results on one arbitrary

radius R are shown.
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Figure 5.3: Computation timings of FFTM and standard BEM
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Table 5.1: Three sets of meshes are used to calculate the drag force on a single

sphere inside a cylinder cube.

Panels on the cylinder Panels on the sphere Total

Coarse 4160 238 4398

Medium 7560 862 8422

Fine 10920 3182 14102

residue in the GMRES is set as 10−4. The largest case (with 14102 panels) needs

40 iterations in the GMRES procedure to converge. To show the efficiency of the

fast algorithm, we run 40 iterations for all the cases. Figure 5.3 shows the timings

of the FFTM, compared with the standard BEM, with different cell discretizations

and expansion order. The FFTM reduces the computational time significantly

when the problem size becomes large. The standard BEM using GMRES shows

the typical computational complexity of O(N2), while the computational complex-

ity of FFTM is lower, especially when higher order of expansion p and finer cell

discretization are used. The FFTM introduces additional computational overhead,

resulting in slightly higher or comparable computational time as the standard BEM

for problems with a small number of panels. When a higher order of expansion is

used, more operations are needed, and the computation time is longer, as shown

in Figure 5.3(a). However, for large problems, the time increase is not significant

compared with the total computational time, as the computational complexity de-

creases with the order of expansion p. Figure 5.3(b) shows that the computational

complexity decreases with finer cell discretization. But a finer cell discretization
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also results in extra overhead, and thus this may not improve the computational

efficiency when the problem size is small.
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Figure 5.4: The drag force changes with the radius of the sphere.

Figures 5.4 and 5.5 shows the accuracy of the FFTM. The computational domain

is discretized into 16× 16× 16 cells and the expansion order (p) of the translations

is equal to 4. In Figure 5.4, it can be seen that the normalised drag force on

the sphere decreases when the sphere becomes smaller. For various dimensions of

sphere, the results of FFTM agree very well with the analytical solution, especially

when the fine mesh is employed. Figure 5.5 shows the actual errors in the numerical

scheme. With finer mesh, the results are more accurate. In addition, the accuracy

is improved with smaller sphere, since the absolute size of the elements is smaller

on a smaller sphere.
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Figure 5.5: The accuracy of drag force changes with the radius of the sphere.

5.3.2 Drag force on numerous spheres in a tube

In this example, a more complex problem is considered, shown in Figure 5.6. The

dimensions of the cylinder tube are the same with the previous example, L =

1 and R = 1/3. Numerous small spheres are placed randomly in the cylinder

and kept stationary. The distribution of spheres is pseudo random, similar with

that in Section 4.3.3. Again high concentration of spheres in a small region is

not considered to avoid a very fine mesh. The boundary conditions are also the

same with the previous example. Non-slip boundary condition is prescribed on the

surface of the spheres and cylinder, and pressure drop is 1 between the inlet and

outlet.

We look at two cases with different number of spheres, as shown in Table 5.2. In

each case, 4160 panels are used to discretize the cylinder and 238 panels for each
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Figure 5.6: Stokes fluid flows from left to right. The average drag force is calculated

on the inside spheres. The spheres are randomly distributed inside the tube.

sphere (238). In the second case, there are more panels, as there are more spheres.

So it needs more GMRES iterations to obtain convergence. The simulations of the

two cases need about three and nine hours approximately on an AMD Opteron

processor running at 2.2 GHz.

Table 5.2: Case studies with 63 and 105 spheres

Spheres (n) Panels Cells p Iterations Time (Hour)

1 63 19154 16 × 16 × 16 4 60 ∼ 3

2 105 29150 16 × 16 × 16 4 100 ∼ 9

For an infinite number of randomly distributed spheres in an unconfined domain,

the average drag force on the spheres is related to the spheres’ solid volume fraction

φ. Kim and Russel [36] derived the expression of the average drag force

FKim = 1 +
3√
2

√

φ +
135

64
φ ln φ + 16.456φ. (5.20)

The spheres in this example are confined in a cylinder tube, so φ is defined as

φ =
4/3nπr3

πLR2
=

4nr3

3LR2
, (5.21)
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where n is the number of spheres inside the cylinder tube, and L = 1 in this

example. The interest here is to investigate whether the relation of average drag

force and volume fraction (φ), Equation (5.20), is still valid in this problem.
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Figure 5.7: Average drag force on 63 spheres. Harberman: drag force on a single

sphere in a cylinder (Equation (5.19)); Kim: drag force on randomly distributed

spheres in an unconfined domain (Equation (5.20)); Average 1: the average of

all the spheres inside the cylinder; Average 2: the average of the spheres whose

distance from the axis is less than 0.6R

Figures 5.7 and 5.8 show the average drag force on the spheres. The present results

of the average force on the numerous spheres in a cylinder are compared with the

drag force on a single sphere in a cylinder and the average drag force on spheres in

an unconfined domain. In this work, two average forces, Average 1 and Average 2,

are discussed. The Average 1 is calculated from all the spheres inside the cylinder

and the Average 2 is calculated only from the spheres whose distance from the
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Figure 5.8: Average drag force on 105 spheres. Harberman: drag force on a single

sphere in a cylinder (Equation (5.19)); Kim: drag force on randomly distributed

spheres in unconfined domain (Equation (5.20)); Average 1: the average of all the

spheres inside the cylinder; Average 2: the average of the spheres whose distance

from the axis is less than 0.6R
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cylinder axis is less than 0.6R. This distance is arbitrary chosen so that spheres

near the wall are not considered, and it reduces the wall effects. It better shows

the fluid force on spheres in an unconfined domain, and compares better with Kim

and Russel approximation [36]. When the sphere radius is small, the interactions

among the spheres are negligible. The average drag force is close to the Harberman

and Sayre’s results that are for one sphere located in the center line of the cylinder.

Since the Average 2 calculates the spheres nearer to the center line, it gives better

estimation than Average 1. With bigger spheres, the interactions among the spheres

become more dominant. When the radius r of the sphere is larger (0.052 in Figure

5.7 and 0.041 in Figure 5.8), the results get nearer to those of many randomly

distributed spheres (Kim and Russel). The results of the Average 1 are larger

than Kim and Russel’s expression. This is beacause the cylinder wall will induce

additionally drag force on the spheres near the wall (which is not present in the

calculation of Kim and Russel). The spheres nearer to the axis resemble the spheres

in the Kim and Russel’s model. Hence, the Average 2 gives results closer to Kim

and Russel’s results. With more spheres, the problem approximates the model used

by Kim and Russel better, so the results in Figure 5.8 are closer to the results of

Kim and Russel.

5.4 Summary of FFTM for Stokes equation

In this chapter, the FFTM algorithm is extended to solve the Stokes equation. The

same methods of derivation and implementation as in solving the Navier equation
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can be employed to solve Stokes equation. There are only slight modifications to

the translation operators compared with the Navier equation. The fast Stokes al-

gorithm reduces the computational time when the problem becomes large, while

maintaining good accuracy. In calculating the average drag force, we have demon-

strated cases with more than 100 spheres and the total number of degrees of freedom

exceeds 90,000. When the spheres are small, the interactions among the spheres

can be ignored and the average drag force can be approximated by that of the sin-

gle sphere inside a cylinder, given by Haberman and Sayre. When the spheres get

bigger, the interactions among the spheres are dominant. In this case, the average

drag force on the spheres get closer to the estimation, given by Kim and Russel, for

randomly distributed spheres in an unconfined domain. But this approximation is

only good for the sphere away from the wall of the cylinder.
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Chapter 6

Non-linear Poisson-type equation

Non-linear equation is very important in engineering, such as Navier-Stokes equa-

tion and Navier equation with non-linear material properties. To illustrate the ap-

plication to non-linear problem, the FFTM is employed to solve non-linear Poisson-

type equation in this chapter. The BEM becomes less attractive when the partial

differential equation has a non-linear term, as expensive volume integration and

interior evaluation are required. In the solution procedure of the non-linear equa-

tion, the Poisson equation needs to be solved. To handle the non-homogeneous

term in the Poisson equation, two fast methods are compared. One method intro-

duces the multipole to accelerate the volume integration, and the other calculates

a particular solution through the FFT. Since the second method is faster and more

accurate, it is adopted in the new fast non-linear scheme. In each iteration of the

scheme, there are mainly three steps, namely calculating a particular solution with

the FFT, solving the resulted Laplace equation with the FFTM and updating the
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interior values also with the FFTM. The new scheme is tested by several non-linear

Poisson-type equations with various non-linear terms.

6.1 Overview of BEM solving non-homogeneous

and non-linear equations

When solving the non-homogeneous equation, such as Poisson equation, with the

BEM, various approaches have been proposed to avoid or alleviate the burden due

to the non-homogeneous term. The meshless methods, such as the dual reciprocity

method (DRM) [61], multiple reciprocity method (MRM) [54] and particular so-

lution method (PSM) [29], were commonly used to maintain the advantage of

boundary only discretization in the BEM. However, Ingber [33] proposed that a

cell-based direct volume integration scheme can be used to give better accuracy.

In addition, when such a volume integration scheme is coupled with the FMM, it

significantly improves the computational efficiency over the meshless methods. In

order to apply the volume integration method in complex domain, Mammoli [44]

developed the auxiliary domain method (ADM) to simplify the mesh generation.

Various fast algorithms have been applied to accelerate the solution procedure. The

group of Greengard [46, 23, 15] provided a series of two dimensional fast Poisson

solver based on the FMM. Ding et al. [11] introduced a fast cell-based approach,

based on the pFFT technique, that accelerates the surface integration as well as

the volume integration. Ying et al. [87] handled the non-homogeneous part with
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a particular solution, while solving the homogeneous part with FMM. They used

the FFT to calculate the particular solution, which is much faster than the global

shape function method used in the PSM.

When the non-homogeneous term is a non-linear function of the unknown solu-

tion, the equation becomes a non-linear equation. The DRM and MRM have

been applied to solve such non-linear equation. There were also some modified

and improved methods [85, 64], based on the DRM. Liao [38] applied the general

boundary element method to solve strongly non-linear problem. With the help of

the homotopy analysis method (HAM), the general boundary element method is

valid even for governing equations and boundary conditions that do not contain any

linear terms. Most of the above algorithms were applied to solve two dimensional

problems with small number of freedom, but rarely in three dimensional ones. Re-

cently, Ding and Ye [10] applied the pFFT to solve some three dimensional weakly

non-linear problems, where the number of degrees of freedom reaches 4000.

Table 6.1: Different BEM methods solving Poisson and non-linear equation

Poisson equation Non-linear equation

DRM [61] DRM [61]

Conventional method MRM [54] MRM [54]

PSM [29] Liao [38]

Ingber et al. [33] Ding and Ye [10]

Fast method Group of Greengard [46, 23, 15]

Ding et al. [11]

Ying et al. [87]
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The above methods are summarized in Table 6.1. The conventional methods have

been applied in solving many problems, but the degrees of freedom of the problems

cannot be very large. The fast methods are comparatively new and can be used to

solve large scale problems. Most of the fast algorithms treat the non-homogeneous

term of the Poisson equation or non-linear equation by accelerated volume inte-

gration. Ingber et al. [33] and some of Greengard’s work [46, 15] accelerated the

volume integration by the FMM, while Ding et al. [11] and Ding and Ye [10], by

the pFFT technique. The others calculated a particular solution in a fast manner.

Greengard and Lee [23] calculated particular solutions with spectral method in a

decomposed domain and patches the solutions together with the FMM. Ying et

al. [87] obtained a particular solution with the FFT. In this chapter, two methods

handling the non-homogeneous part in the Poisson equation are compared, namely

multipole accelerated volume integration and method of particular solution ob-

tained from FFT. In [33], Ingber et al. calculated the particular solution using

radial basis functions and claimed that multipole accelerated method is both faster

and more accurate than the particular solution method. However, if the FFT is

adopted, in place of the radial basis function method, to calculate a particular so-

lution, it is found that this method has great advantages in efficiency and accuracy

over the multipole accelerated volume integration method.

Table 6.1 indicates that relatively few work has been done on the fast non-linear

solver. In this chapter, a fast non-linear algorithm is presented, based on the

FFTM, to solve large three dimensional non-linear problem. The non-linear equa-

tion is Poisson-type equation, in which the linear term is the Laplace operator
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and the non-homogeneous term is a non-linear function of the unknown solution.

Simple Richardson iterative scheme is used to solve the non-linear equation. Each

iteration includes calculating a particular solution through fast Fourier transform

(FFT), solving the resulting Laplace equation with the FFTM and evaluating the

interior values also with the FFTM. With the above ideas, large non-linear prob-

lems can be solved efficiently. The numerical examples demonstrate the method

for problems with number of degrees of freedom exceeding 30,000.

6.2 Methodology

To solve a non-linear equation

∇2u(x) = f(u), (6.1)

where f(u) is a non-linear function of u, two approaches can be employed. One

approach introduces u at interior points as additional unknowns and collocates

integral formulation at these points. The other approach gives a initial guess for

the intierior value of u. A Poisson equation is then solved to find the unknowns

on the boundary. The obtained boundary values together with the given boundary

conditions are then used to update interior value of u and iteration continues until

a convergence tolerance is met. The second scheme is easier to implement and less

expensive in memory cost, but slower to converge, compared with the first scheme.

In this chapter, the second scheme is implemented.
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6.2.1 BEM for Poisson equation

In each iteration of non-linear solver, the Poisson equation can be rewritten into a

direct boundary integral formulation

c(x)u(x) +

∫

S

H(x,y)u(y)dS(y) +

∫

Ω

G(x,y)fdΩ(y) =

∫

S

G(x,y)
∂u(y)

∂n(y)
dS(y).

(6.2)

Here, c is the free term, and G(x,y) and H(x,y) correspond to the single layer

kernel and double layer kernel, respectively,

G(x,y) =
1

4πr
,

H(x,y) =
∂G(x,y)

∂n(y)
=

1

4πr3
(x − y) · n(y), (6.3)

where r = |y − x|. The surface integrals, corresponding to homogeneous part

(Laplace equation), can be calculated rapidly by fast algorithms, such like FMM,

pFFT or FFTM. All of them have comparable (N log N) efficiency. In this chapter,

the FFTM with the solid harmonics is adopted, since the use of solid harmonics

results in a more compact storage of the translation matrices, as shown in Section

4.2. Except the choice of harmonic functions, the implementation procedure is the

same as that in Section 3.2.2. The non-homogeneous term is transformed into a

volume integration term in the integral equation. It is very expensive to discretize

the interior domain and perform the volume integration with traditional BEM.

However, the volume integration can be accelerated by multipole method.

An alternative way of solving the Poisson equation is to separate the solution into
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the particular solution up and homogeneous solution uh,

u(x) = up(x) + uh(x). (6.4)

The particular solution up satisfies the Poisson equation, but not necessarily the

boundary conditions. The homogeneous solution uh satisfies the corresponding

Laplace equation and enforces the boundary conditions of the original Poisson

equation,

∇2up(x) = f(x), x ∈ Ω

∇2uh(x) = 0, x ∈ Ω

∂uh(x)

∂n
= f1(x) − ∂up(x)

∂n
, x ∈ S1

uh(x) = f2(x) − up(x), x ∈ S2, (6.5)

where f1 and f2 are the boundary conditions of the original Poisson equation. The

homogeneous part is also solved with the FFTM algorithm, and the particular

solution is obtained by finding the Fourier transform of f .

6.2.2 Multipole accelerated volume integration

For the standard BEM implementation, the volume integration is performed for

every node point, and then the result is added to the right hand side of the Laplace

solver. To avoid the interior discretization, the cells that are used in the FFTM

algorithm are used as interior discretization for the volume integration. The volume

integral is approximated by the Gaussian quadrature. When a cell intersects the

boundary, shown in Figure 6.1, the values at the Gauss points outside the boundary
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are set to zero. This process provides a simple way of handling the intersection of

the boundary and the cells. Accuracy can be improved by sub-dividing the original

cell into smaller cells or increasing the number of Gauss points used.

The volume integration can be accelerated by the FFTM, which includes repre-

senting the sources located at the interior Gauss points into multipoles, translating

the multipoles to local expansions, and lastly calculating the potential at the des-

tination node points. However, there is an even faster method to perform the

volume integration. In the current method, the interior sources are represented

into multipoles, and then summed up with the multipoles from the interior sources

and surface sources. The resulted multipoles are substituted into the fast Laplace

solver to give the results for the Poisson equation. In other words, the surface and

volume integrals can be treated uniformly by multipole representations.

S

Ω

Gauss points

Figure 6.1: When a cell intersects with the boundary, the values of the Gauss

points outside the boundary are set to zero.

Very small cell is not always viable to keep computational efficiency for the surface
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Figure 6.2: A cell being sub-divided into smaller cells to improve the accuracy of

volume integration via FFTM. The multipoles M in the smaller cells are trans-

formed to initial cell center’s MΩ.

integration, as shown by [59], while small cell is always preferred for the volume

integration in the far field. So, two sets of cells are used: bigger cells for the

surface integration and smaller cells for volume integration. The cells used for

surface integral are further divided into smaller cells, as shown in Figure 6.2. The

multipole moments for the volume sources are obtained at the smaller cell centers,

and then translated to the cell centers of the bigger cells,

Mm
Ω,n =

n
∑

n′=0

n′
∑

m′=−n′

Rm′

n′ Mm−m′

n−n′ . (6.6)

The multipole moments for the volume sources (MΩ) are then combined with those

from the surface sources.

For the near field (shaded area in Figure 6.3), the volume integral is performed

by Gaussian quadrature. When the evaluation node point is in or close to a cell
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Evaluation node point

Figure 6.3: For the near field (shaded area), the standard volume integration is

needed.

that the integration is performed, the weakly singularity appears. The weakly

singularity can be regularized by the coordinate transform

∫

Ω

G(x,y)f(y)dΩ(y) =

∫ y12

y11

∫ y22

y21

∫ y32

y31

f(y1, y2, y3)

4πr(y1, y2, y3)
dy1dy2dy3

=

∫ rb(θ,φ)

0

∫ π

0

∫ 2π

0

1

4π
f(r, θ, φ)r sin θdrdθdφ. (6.7)

6.2.3 Particular solution method with FFT

Except the volume integration, there is also another way to handle the non-

homogeneous term in the Poisson equation. The solution of the Poisson equation

can be separated into a homogeneous solution and a particular solution. The ho-

mogeneous solution is obtained by solving the Laplace equation and the particular

solution is calculated fast with the help of the FFT.
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f(x1)

(a)
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f̂l

(b)

1 8

ûp,l

(c)

a1 b1

up(x1)

(d)

fast sine transform

ûp,l = − f̂l(b1−a1)2

π2l2

inverse fast sine transform

Figure 6.4: One dimensional illustration of how to obtain a particular solution from

FFT
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In the present implementation, f(x) is extended to the rectangular domain C

defined as [a1, b1] × [a2, b2] × [a3, b3], used in FFTM. The rectangular domain C is

discretized by a regular grid, preferably 2p × 2q × 2r for implementing FFT, where

p, q and r are positive integers. The grid is used to calculate the particular solution

via the FFT. Figure 6.4 illustrates the main steps to calculate a particular solution

using FFT for a 1D example. Figure 6.4(a) shows the non-homogeneous term f

of the Poisson equation. The Fourier coefficients f̂ , given in Figure 6.4(b), can be

obtained by the fast Fourier sine transform. In 3D, the coefficients f̂lmn are given

by

f(x1, x2, x3) =
∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

f̂lmn sin(
x1 − a1

b1 − a1

lπ) sin(
x2 − a2

b2 − a2

mπ) sin(
x3 − a3

b3 − a3

nπ),

(6.8)

and

f̂lmn =
8

(b1 − a1)(b2 − a2)(b3 − a3)

∫ b1

a1

∫ b2

a2

∫ b3

a3

f(x1, x2, x3) sin(
x1 − a1

b1 − a1

lπ)

sin(
x2 − a2

b2 − a2

mπ) sin(
x3 − a3

b3 − a3

nπ)dx1dx2dx3. (6.9)

Again, f(x) = 0, when the grid point x falls outside the domain of the problem Ω.

The particular solution to the Poisson equation can readily be obtained by

up(x1, x2, x3) =
∞
∑

l=1

∞
∑

m=1

∞
∑

n=1

ûp,lmn sin(
x1 − a1

b1 − a1

lπ) sin(
x2 − a2

b2 − a2

mπ) sin(
x3 − a3

b3 − a3

nπ),

(6.10)

where,

ûp,lmn = − f̂lmn

π2
/[

l2

(b1 − a1)2
+

m2

(b2 − a2)2
+

n2

(b3 − a3)2
]. (6.11)

Equation (6.11) is the simple algebraic operation in frequency domain to obtain ûp.

This is also illustrated in Figure 6.4(c) for the 1D example. The inverse fast Fourier
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sine transform is then used to calculate the particular solution up, as illustrated in

Figure 6.4(d).

The particular solutions on the grid points are obtained from inverse fast Fourier

sine transform on û. The particular solutions at the nodes on the boundary are

then obtained by three-dimension 64-point Lagrange interpolation. In Figure 6.5,

a one-dimension example is given to show how the Lagrange interpolation works.

The interpolation formulation is

up(x) =
3
∑

k=0

up(xk)Lk(x). (6.12)

So

L0(x) = − 1

6h3
(x − x1)(x − x2)(x − x3),

L1(x) =
1

2h3
(x − x0)(x − x2)(x − x3),

L2(x) = − 1

2h3
(x − x0)(x − x1)(x − x3),

L3(x) =
1

6h3
(x − x0)(x − x1)(x − x2), (6.13)

in which h is the equidistant step size used. The derivative of up, which is needed

x0 x1 x2 x3x
h h h

Figure 6.5: One dimensional 4-point Lagrange interpolation

in Equation (6.5), is obtained from performing derivative on both sides of Equation
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(6.12), as follows

∂up(x)

∂x
=

3
∑

k=0

f(xk)
∂Lk(x)

∂x
, (6.14)

where

∂Lk(x)

∂x
= − 1

6h3
[(x − x2)(x − x3) + (x − x1)(x − x3) + (x − x1)(x − x2)],

∂Lk(x)

∂x
=

1

2h3
[(x − x2)(x − x3) + (x − x0)(x − x3) + (x − x0)(x − x2)],

∂Lk(x)

∂x
= − 1

2h3
[(x − x1)(x − x3) + (x − x0)(x − x3) + (x − x0)(x − x1)],

∂Lk(x)

∂x
=

1

6h3
[(x − x1)(x − x2) + (x − x0)(x − x2) + (x − x0)(x − x1)].(6.15)

6.2.4 FFTM for non-linear Poisson-type equation

When solving the non-linear equation, an iterative scheme is used. At the beginning

of each iteration (t), the ut and ∂ut/∂n at the boundary nodes and ut at the

interior area are known. In each iteration, the following Poisson equation is solved

to calculate ut+1 and ∂ut+1/∂n on the boundary:

∇2ut+1(x) = f(ut), x ∈ Ω

∂ut+1(x)

∂n
= f1(x), x ∈ S1

ut+1(x) = f2(x), x ∈ S2. (6.16)

From the new values on the boundary, ut+1 inside the boundary is updated. The

advantages of the method of particular solution in Section 6.2.3 will be seen clearly

from the comparison in the following numerical examples in the next section. So

this method is chosen to solve the non-linear equation. The fast non-linear algo-

rithm needs the following steps in each iteration:
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1. calculate f(ut) at the interior grid points;

2. calculate the particular solution up,t+1 on the grid points from f(ut) through

the FFT and then interpolate on the node points to obtain up,t+1 and ∂up,t+1/∂n.

These are used to obtain the new boundary conditions for the homogeneous

Laplace equation (details in Section 6.2.3);

3. solve the homogeneous part, a Laplace equation, to obtain uh,t+1 and ∂uh,t+1/∂n

on the boundary nodes with the FFTM (details in Section 3.2.2);

4. evaluate the interior values uh,t+1 due to uh,t+1 and ∂uh,t+1∂/n on the bound-

ary using the FFTM

uh,t+1(x) =

∫

S

G(x,y)
∂uh,t+1(y)

∂n(y)
dS(y) −

∫

S

H(x,y)uh,t+1(y)dS(y); (6.17)

5. sum up the particular solution and the homogeneous solution to get ut+1 and

∂ut+1/∂n on the boundary nodes and ut+1 on the grid points;

6. compare ut, ∂ut/∂n and ut+1, ∂ut+1/∂n on the node points. If the difference

is smaller than a pre-set tolerance, the scheme is deemed to have converged.

In the step 4, we need to calculate the unknown solution at all the interior grid

points. Since there is no volume integral in Equation (6.17), the fast surface in-

tegration algorithm is employed without any change for the interior values. If the

distance between a evaluation point and a boundary element is very small (smaller

than half size of a typical element), the analytical nearly singular integration algo-

rithm in [28] is implemented to obtain good accuracy.
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6.3 Numerical examples

In this section, five numerical examples are given to investigate different aspects of

the fast non-linear solver. For all the problems, the computational domain Ω is a

sphere with radius 0.5 and the sphere center is the origin of the x1x2x3 coordinate.

The boundary condition is the Dirichlet boundary condition. The measure of the

error is defined in the L2 norm as

Error =

√

∑N
i=1 |∂u(xi)/∂n − ∂u∗(xi)/∂n|2

∑N
i=1 |∂u∗(xi)/∂n|2

, (6.18)

when an analytical solution u∗ is available.

For surface integration, constant triangular elements (plane panels) with one node

at the element center are used. The numerical integration is performed over these

elements using local intrinsic coordinates. When x and y are on different elements,

the standard Gaussian quadrature (with 7 Gauss points over each element) is ap-

plied to perform the integration. When x and y are on the same element (x = y),

weak (1/r) or strong (1/r2) singularities appear. The weak singularity is removed

by transforming the triangular elements to a quadrilateral domain on which 8 × 8

Gauss points are used for Gauss quadrature. The free term c does not need to be

calculated explicitly in the direct BEM; it can be obtained by physical considera-

tions such as arbitrary shifting of datum in potential problems or arbitrary rigid

body motion in mechanics problems. This technique enables the free term and the

strongly singular integrals in the direct BEM formulation to be calculated together.

Four different surface discretizations are used, with the total number of nods being

4858, 8566, 19234 and 33884. When implementing the FFTM to accelerate the
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surface integration, the rectangular domain C is discretized into 16× 16× 16 cells,

and two expansion orders p = 4 and p = 6 are compared.

To compare the two methods in Sections 6.2.2 and 6.2.3 fairly, the same number

of Gauss points are used to perform the volume integration as the number of

grid points to calculate the particular solution in the rectangular domain C. This

also makes the number of the Gauss points and the number of grid points inside

the computational domain Ω to be almost the same. For convenience, the Gauss

points used in the volume integration are also referred to as “grid points”. This

means that regularly distributed grid points are used in calculating the particular

solution from FFT, but irregularly distributed grid points are used in performing

the volume integration. In the following examples, three different sets of grid points

are studied, namely 128×128×128, 256×256×256 and 512×512×512. The volume

integration is calculated with 8×8×8 grid points (Gauss points) in each cell. With

16× 16× 16 cells used for accelerating the surface integration, the number of grid

points, used for the accelerated volume integration, is (16×8)×(16×8)×(16×8) =

128 × 128 × 128. When the 16 × 16 × 16 cells are further divided to perform the

volume integration, the number of grid points can be (32×8)×(32×8)×(32×8) =

256 × 256 × 256 and (64 × 8) × (64 × 8) × (64 × 8) = 512 × 512 × 512. Also, two

expansion order p = 4 and p = 6 are used to study the accuracy of multipole

transform for interior sources.
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6.3.1 Poisson equation with a constant non-homogeneous

term

In this example, a Poisson equation with a constant non-homogeneous term is

considered. The equation, boundary condition and analytical solution are given in

Equation (6.19)

∇2u(x) = 1, x ∈ Ω,

u(x) =
x2

1

2
,

∂u∗

∂n
= x1n1, x ∈ S, (6.19)

where x1 is the first component of the coordinate and n1 is the first component of

the normal direction.

Figures 6.6 and 6.7 show the timings of different methods handling the non-

homogeneous term. The standard method performs the volume integration with

the Gaussian quadrature for all the node points, the multipole method translates

the far sources into multipoles and performs the standard integration for the near

field , and the particular method calculates the particular solution with the FFT

for all the node points. Both of the two fast algorithms save a lot of computa-

tional time. Calculating the particular solution is about one order of magnitude

faster than the multipole accelerated volume integration and about three orders of

magnitude faster than the standard method with the same number of grid points.

Increasing the expansion order p from 4 to 6 only increases the computational

time of the accelerated volume integration marginally. For all the three methods,
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Figure 6.6: Timings for the three methods, standard volume integration (Stan-

dard), multipole accelerated volume integration (Multipole) and particular solution

method from FFT (Particular), to handle the non-homogeneous term with fixed

number of nodes (33884)
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Figure 6.7: Timings for the three methods, standard volume integration (Stan-

dard), multipole accelerated volume integration (Multipole) and particular solution

method from FFT (Particular), to handle the non-homogeneous term with fixed

number of grid points (256 × 256 × 256)
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more grid points result in longer computational time, as shown in Figure 6.6. The

time of the particular method increases at a rate of O(Ng log Ng) with respect of

the number of grid points (Ng), which comes from the complexity of the FFT. The

complexity of the standard method is O(Ng), only slightly lower than the particular

method. The complexity of the multipole method to translate the interior sources

in the far field is also O(Ng). However, with 128×128×128 grid points, the volume

integration of the whole near field needs to be performed by regularizing the weakly

singular integral following Equation (6.7). In contrast, with more grid points, the

near field volume integration is performed with smaller cells and the regularization

of the weakly singular integration is only needed for smaller fraction of near field.

The implementation time of Equation (6.7) is longer than the standard Gaussian

quadrature. Hence, when the number of grid points is small, the complexity of the

calculation for the near field is higher than O(Ng), so that the total complexity of

the multipole method is lower than O(Ng).

Not all the three methods use longer time to handle the non-homogeneous term

with more number of nodes. The standard BEM performs volume integration for

every node point, so the slope of the curve from the standard BEM is about one

(O(N)). The particular solution is calculated from FFT in the whole rectangular

domain C with FFT, and then interpolated at every node. Since the interpolation

procedure is not time consuming, the computational time does not increase with

number of nodes. The accelerated volume integration approximates the far sources

with multipoles and performs standard volume integration for the near sources.

The computational time of volume integration in the near field is dependent lin-
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Figure 6.8: The accelerated volume integration method includes tow parts, namely,

performing standard volume integration for the near field (Near field) and preparing

the multipoles for the far field (Far field). (256 × 256 × 256 grid points)

early on the number of nodes, while the time of translating the far sources is only

dependent on the number of grid points. In Figure 6.7, the increasing rate of the

accelerated volume integration is nearly one, which may indicates that the time

for the near field in dominant. The timings of the two parts of the accelerated

volume integration are demonstrated in Figure 6.8. For large problems, more time

is spent on calculating the volume integration for the near field than transforming

the far sources. The time for the near field increases with the number of nodes,

which makes the accelerated volume integration less efficient than calculating a

particular solution from FFT for large problems. Higher expansion order p only

results in longer time for the far field approximation.

Figure 6.9 gives the results of the two fast algorithms for the largest problem stud-
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Figure 6.9: Results for solving the Poisson equation with two methods, namely

multipole accelerated volume integration (Multipole) and calculating a particular

solution from FFT (Particular) (constant non-homogeneous term, 33884 nodes)
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ied in this example with 33884 nodes. The total time in Figure 6.9(a) includes

solving a Laplace equation and handling the non-homogeneous term. The compu-

tational time of accelerated volume integration method increases faster than the

particular solution method in terms of the number of grid points, which is also

shown in Figure 6.6. In the particular solution method, higher p only increases

the computational time for solving the Laplace equation. Yet in the accelerated

volume integration method, higher p also results in more time for preparing the

multipole for the far field. So the computational time of accelerated volume inte-

gration method also increases more than the particular solution method with the

expansion order. Figure 6.9(b) shows that the accuracy changes with the expan-

sion order p and the number of grid points. Higher expansion order and more grid

points produce higher accuracy. Higher expansion order gives better approximation

of multipoles for solving the Laplace equation and preparing the multipoles for the

interior sources. More grid points approximate the non-homogeneous term more

accurately. However, with the same p and number of grid points, the particular

solution method is always more accurate than the accelerated volume integration

method. In addition, the accelerated volume integration method converges slower

than the particular solution method in terms of grid points. For p = 4, both the

method converge to about 1 × 10−2; for p = 6, they tend to converge to about

1.5 × 10−3. When p = 4, the accelerated domain integral method needs more grid

points to obtain the accuracy of 1 × 10−2, whereas the particular solution method

can achieve that with as few as 128 × 128 × 128 grid points. This is because the

particular solution method gives good accuracy, such that the error in the total
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solution is dominated by the homogeneous solution. This can be seen from the

typical errors of the Laplace solver, shown in Figures 3.6(a) and 3.7(a), which

are comparable with the total error displayed in Figure 6.9(b). In fact, the error

1 × 10−2 in the particular solution method comes mainly from the Laplace solver.

The accelerated domain integral method gives lower accuracy for a coarse grid,

and the total error only approaches that of the Laplace solver (1 × 10−2) when

512 × 512 × 512 grid points are used.

6.3.2 Poisson equation with a non-constant non-homogeneous

term

In this Poisson equation, the non-homogeneous term is no longer constant, but a

function of interior position as shown in the following equation

∇2u(x) = (2x3
2 + 6x2)e

x1+x3 , x ∈ Ω,

u(x) = x3
2e

x1+x3 ,

∂u∗

∂n
= x2

2e
x1+x3(x2n1 + 3n2 + x2n3), x ∈ S, (6.20)

where x = (x1, x2, x3) is the coordinate and n = (n1, n2, n3) is the normal direction.

Since the change of the non-homogeneous term does not influence the computa-

tional time, the timings should be almost the same with the first example. So only

the accuracy of the solution procedures is discussed in this example. Figure 6.10

shows a similar behavior in convergence as the first example. The non-constant

non-homogeneous term only decreases the accuracy with course grid. With suffi-
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Figure 6.10: Accuracy for solving the Poisson equation with different methods and

number of interior values (variational non-homogeneous term, 33884 nodes)

cient grid points, the accuracy is as good as that in the previous example. All the

results from the particular solution method are still more accurate than those from

the accelerated volume integration method and the convergence is faster as more

grid points are used. Similar with the previous example, when p = 4, the dominant

error from FFTM Laplace solver limits any improvement in accuracy when more

grid points are used.

From the above two examples, the advantages of the particular solution method,

obtained from FFT, over accelerated volume integration method are quite clear.

The former is not only faster than the latter, but also more accurate with the

same number of grid points. Moreover, increasing the accuracy of the former

is less expensive. Hence, the particular solution method is used, when the non-

linear equations are solved in the following examples. With this method, there is
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another big advantage that volume integration is avoided when function variable

is evaluated at the interior grid points. In the following examples, 256× 256× 256

grid points are utilized, after balancing the computational cost and accuracy.

6.3.3 Non-homogeneous modified Helmholtz equation

The equation in this example is a non-homogeneous modified Helmholtz equation

∇2u(x) − k2u(x) = h(x), (6.21)

with k2 = 1. The equation, boundary condition and analytical solution are

∇2u(x) = u + h(x), x ∈ Ω

u(x) = 3x3
1x2 + 2x2

1x
2
2 − x1x

3
2 + x3,

∂u∗

∂n
= (9x2

1 + 4x1x
2
2 − x3

2)n1 + (3x3
1 + 4x2

1x2 − 3x1x
2
2)n2 + n3,

x ∈ S, (6.22)

where h(x) = 4x2
1 + 4x2

2 + 12x1x2 − 3x3
1x2 − 2x2

1x
2
2 + x1x

3
2 − x3. This equation

is a linear equation. With the Helmholtz kernels, this equation can be solved in

the same method as the Poisson equation. Yet, there is also an alternative way to

solve the non-homogeneous modified Helmholtz equation. It can be considered as

a non-linear Poisson-type equation and solved with an iterative scheme.

In each iteration, the right hand side, which is a function of the unknown solution,

needs to be evaluated at all the interior grid points. Most of the 256 × 256 × 256

grid points are inside the boundary. Since the number of the evaluation points is

very big, it is very expensive to calculate using the standard integration method, as
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Figure 6.11: Computational time for evaluation of interior points using the standard

BEM and FFTM

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+04

T
im

e 
(S

ec
on

d)

Number of nodes

Particular solution

Laplace equation (p=4)

Laplace equation (p=6)

Interior values (p=4)

Interior values (p=6)

Figure 6.12: Computational time needed for particular solution, Laplace equation

and interior values in each iteration
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shown in Figure 6.11. It compares the computational time for calculating the values

of u at the interior grid points between the standard method and the FFTM (the

step 4 in Section 6.2.4). The time of updating the interior values with the standard

method increases linearly with the number of nodes, as the complexity is O(NNg),

where N is the number of nodes and Ng is the number of grid points. When solving

the largest problem, with 33884 nodes, more than 43 hours are needed to update all

the interior values once. If the FFTM algorithm is employed to update the interior

value, the computational time is two-order less time than the standard method.

In the procedure of the FFTM, the complexities of the S2M , M2L and L2D are

O(N), O(N log N) and O(Ng), respectively. Consequently, the total complexity

is O(N log N + Ng). In addition, Ng is about 107, much larger than N = 33884.

Hence, the total complexity of the FFTM updating the interior values, appeared

in the Figure 6.11, is lower than O(N). Increasing the expansion order p from 4 to

6 does not increase the computational time very much.

In each iteration, the calculation of the particular solution, solution of the Laplace

equation and evaluation of the interior values take up most of the computational

time. Figure 6.12 shows the timings of the three procedures in one iteration. The

calculation of the particular solution is much faster than the others. The time

for evaluating the interior points does not increase very much with more number

of nodes. When the problem becomes very large, solving the Laplace equation

takes more time than evaluating the interior values. Higher p results in longer

computational time solving the Laplace equation and updating the interior values,

but the increase is marginal.
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Figure 6.13: Dahed line: Error; Solid line: Residue; �: 4858 nodes; △: 8566 nodes;

©: 19234 nodes; +: 33884 nodes. Convergence procedures for different number of

nodes, when solving ∇2u = u + h(x)
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Figure 6.13 shows the convergence procedures. The residue is defined as

Residue =

√

∑N
i=1 |∂ut+1(xi)/∂n − ∂ut(xi)/∂n|2

∑N
i=1 |∂ut(xi)/∂n|2

. (6.23)

The problem takes four iterations to reach a residue of less than 1 × 10−5. The

convergence for this problem is very fast and is not dependent on the number of

nodes or expansion order p. After three iterations, when the residues become less

than 1 × 10−3, the errors for all the cases converge to values in the region of 10−2.

More iterations reduce the residue, but do not improve the accuracy of the results

further. This is because the error of the problem is limited by the discretization

error of the BEM and the truncation error of multipole translations. Table 6.2

gives the computational timings and errors after three iterations. With higher p,

the computational time becomes longer and the accuracy becomes better. However,

the timings increase by a little, while the accuracy improves considerably, especially

for large problems. Since the number of cells is fixed, increasing the number of

nodes results in accumulating more truncation error of multipole expansion in

each cell. Consequently, more nodes do not always mean better accuracy. Yet,

higher expansion order reduces the truncation error, which gives better accuracy

convergence.
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Table 6.2: Numerical results of the FFTM with different number of nodes after

three iterations

Number of nodes Computational time (Second) Error

p = 4 p = 6 p = 4 p = 6

4858 2158 3007 0.69% 0.30%

8566 2582 3440 0.65% 0.25%

19234 4990 5834 0.84% 0.22%

33884 10291 11549 0.97% 0.22%

6.3.4 Non-linear Poisson-type equation

In this example, a truly non-linear Poisson-type equation (Equation (6.24)) is con-

sidered.

∇2u(x) = u + u3, x ∈ Ω

u(x) = tan(
x1 + x2 + x3√

6
),

∂u∗

∂n
=

1 + u2

√
6

(n1 + n2 + n3), x ∈ S, (6.24)

where x = (x1, x2, x3) is the coordinate and n = (n1, n2, n3) is the normal direction.

With stronger non-linearity, the convergence, shown in Figure 6.14, is slower than

that in the above example. Now, six iterations are needed to reduce the residues to

less than 1× 10−5. After four iteration, the residues are less than 1× 10−3 and the

errors can not be decreased further. The convergence is still neither dependent on

the number of nodes, nor the expansion order p. Table 6.3 shows the results after

four iterations. The results are similar with Table 6.2, and again p = 6 is preferred
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Figure 6.14: Dahed line: Error; Solid line: Residue; �: 4858 nodes; △: 8566 nodes;

©: 19234 nodes; +: 33884 nodes. Convergence procedures of for different number

of nodes, when solving ∇2u = u + u3
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for large problems.

Table 6.3: Numerical results of the FFTM with different number of nodes after

four iterations

Number of nodes Computational time (Second) Error

p = 4 p = 6 p = 4 p = 6

4858 3953 4851 0.70% 0.30%

8566 3989 4914 0.71% 0.24%

19234 7557 8035 0.90% 0.21%

33884 14188 15661 1.0% 0.21%

6.3.5 Burger’s equation

In this example, the static Burger’s equation is solved. Burgers’ equation is a

fundamental partial differential equation from fluid mechanics. The equation and

boundary condition are given as

∇2u(x) = αu
∂u

∂x3

, x ∈ Ω,

u(x) = n1(x) + n2(x) + n3(x), x ∈ S. (6.25)

Higher α presents stronger non-linearity. Inside the boundary, the term ∂u/∂x3 is

calculated by 4th order finite difference for all the values at the interior grid points.

This method is a little less accurate than the direct evaluation from the integral

equation, but much faster. From the previous examples, it is noted that the results
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Figure 6.15: The number of iterations that is needed to enable the residue less than

1 × 10−3

converge when the residue is less than 1× 10−3. So, in this example, the tolerance

of the iterative scheme is set 1× 10−3. Figure 6.15 shows the number of iterations

that are needed to reduce the residue to less than the tolerance. With higher α,

the convergence needs more iterations. When α > 25, the current scheme is not

efficient to converge. Figure 6.16 gives the solution u of the Burger’s equation on

the x1x2 plane. With the α increasing, the solution changes gradually.

6.4 Summary of FFTM for non-linear Poisson-

type equation

In this chapter, a fast non-linear solver based on the FFTM algorithm is presented.

A simple Richardson iterative scheme is adopted. In each iteration, a Poisson equa-
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(a) α = 1 (b) α = 5

(c) α = 10 (d) α = 15

(e) α = 20 (f) α = 25

Figure 6.16: The contour of solution u on the x1x2 plane (x3 = 0)
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tion is solved and the values inside the domain are updated. Two fast methods

of handling the non-homogeneous term of the Poisson equation are presented and

compared, namely accelerating the volume integration with multipoles and cal-

culating a particular solution with FFT. With the same number of interior grid

points, the particular solution method is faster and more accurate than the accel-

erated volume integration method. So, in each iteration of the fast algorithm, a

particular solution is calculated by the FFT, the resulted Laplace equation is solved

by the FFTM and the interior values are updated also by the FFTM. Such a fast

solver is applied to solve several non-linear Poisson-type equations with different

non-linear term. It can converge very fast with weak and moderate non-linearity.

Higher expansion order of the FFTM can improve the accuracy of the algorithm,

but cannot speedup the convergence. The convergence rate is only dependent on

the property of the non-linear term.
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Conclusion

The main purpose of this thesis is to apply a fast algorithm, the fast Fourier

transform on multipoles (FFTM), based on the boundary element method (BEM),

to solve the Laplace equation, Navier equation, Stokes equation and non-linear

Poisson-type equation. The FFTM solve these different kinds of partial different

equations fast and accurately. For each equation, several numerical examples are

given to show the advantages of the FFTM.

The FFTM is extended to solve the direct BEM formulation of Laplace equation.

In the implementation of direct formulation, a new method is developed to perform

the translations for the double layer kernel. This new method presents a physical

interpretation of Yoshida’s method used in the literature. In both of the direct

and indirect formulations, the FFTM accelerates the computational process signif-

icantly and provides reasonable accuracy. In the two formulations, the FFTM uses

different translations that introduce different approximation errors to the results.
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However, the error from the FFTM is less significant than the error introduced by

the choice of the direct or indirect formulation.

Unlike the Laplace equation, there are no simple translations for the kernels in

the Navier equation. Following the Yoshida’s method, the FFTM is applied in the

Navier equation. The translations in the Navier equation are more complex and

cost more memory than those in the Laplace equation. Storing the multipole-to-

local translation matrices costs most of the memory usage. A compact storage of

the matrix is proposed to reduce the memory usage of the FFTM significantly. The

fast algorithm is shown to be efficient for large scale problems, as demonstrated in

the calculation of effective Young’s modulus of porous materials.

For Stokes equation, the multipole translations are quite similar with those in the

Navier equation. In addition, the compact matrix storage, used in solving the

Navier equation, is also used to solve Stokes equation. This fast Stokes solver is

employed to simulate the Stokes flow in a cylinder with many spherical particles

inside. The average drag force on the spheres is calculated and compared with

various theoretical solutions.

When solving non-linear Poisson-type equation, a Poisson equation needs to be

solved. Two methods of handling the non-homogeneous term in Poisson equation

are compared. It is found that calculating a particular solution through the FFT is

faster and more accurate than accelerating the volume integration by the FFTM.

Further more, the particular solution method avoids volume integration when eval-

uating the non-linear function at the interior points. So this method is employed in
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the new fast non-linear solver. The non-linear scheme includes calculating a partic-

ular solution through fast Fourier transform (FFT), solving the resulting Laplace

equation with the FFTM and evaluating the interior values with the FFTM. The

iterative scheme converges fast with weak and moderate non-linearity. The higher

expansion order, such as p = 6, is preferred, when solving large problems, as it

improves accuracy significantly and only increases the computational time slightly.

With such a fast non-linear solver, large three dimensional non-linear problems are

solved efficiently.
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Code structure of the FFTM

In this appendix, the implementation details of the FFTM are illustrated. The

same code structure is implemented for Laplace equation, Navier equation and

Stokes equation. The following pseudo-codes, including the main() function and

the MVmulti() function, show how to implement the FFTM.

main() {

input(); // to input the coordinates of node, node-element connection

and boundary condition

getCellInfo(); // to define the spatial domain in Figure 3.1(a); to set

number to each cell (This three-digit number can indicate the position

of every cell.); to obtain the connection between the nodes and cell

getS2M(); // to calculate translation matrices used to perform S2M

(Step B in Figure 3.1(b)), following Equations (3.7), (4.13) and (5.15)

132



APPENDIX A. CODE STRUCTURE OF THE FFTM

getM2L(); // to construct the matrices used in Step C M2L in Figure

3.1(c), following Equations (3.13), (4.14) and (5.16)

getFFTM2L(); // to perform FFT on the M2L translation matrices, whose

results are used to compute the local expansion coefficients rapidly in

each iteration of GMRES solver.

getRHS(); // to evaluate the right hand side of the linear system (For

the indirect formulation, the right hand side comes from the boundary

condition directly; while for the direct formulation, it comes from one

matrix-vector multiplication that is shown in the following MVmulti()

function.)

GMRES(); // to solve the linear system (In each iteration of GMRES solver,

one matrix-vector multiplication is performed rapidly with the FFTM, whose

details are shown in the following MVmulti() function.)

output(); // to output the results

}

The translation matrices S2M and M2L are constructed and stored outside the

GMRES solver. They are calculated only once. The following function to do the

matrix-vector multiplication is called in every GMRES iteration.

MVmulti() {

getM(); // to obtain the multipoles from sources and S2M matrices
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getL(); // to calculate the local expansions from the multipoles and M2L

matrices using FFT

getDfar(); // to evaluate at the field point from the local expansions

for the far field, following Equations (3.17), (4.15) and (5.17)

getDnear(); // to evaluate the near field from standard boundary element

method

}
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