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Summary 

 
 The application of the turbo principle in mitigating the detrimental effects of 

intersymbol interference (ISI) channels has gained widespread interest for the past 

decade due to their remarkable bit error rate (BER) performances. In this thesis, we 

consider turbo equalization over coded ISI channels, wherein extrinsic information of 

transmitted code bits is exchanged iteratively between a soft-input/soft-output (SISO) 

channel equalizer and an outer decoder. The exact implementation of the SISO channel 

equalizer is usually based on the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, which 

has a computational complexity growing exponentially with channel memory length. 

Practical implementation thus requires low complexity alternatives to the BCJR 

algorithm with comparable BER performances.  

 In the literature, many low complexity SISO channel equalizers have been 

proposed. The proposed schemes generally fall into two categories, namely, trellis-based 

equalization algorithms and filter-based equalization algorithms. In this thesis, we 

propose a novel approach to reduce the computation complexity of the SISO channel 

equalizer while maintaining insignificant performance degradation as compared to the 

BER-optimal BCJR implementation. The proposed method is based on the observation 

that we may view the SISO channel equalization task as a combinatorial optimization 

problem with a finite set of binary-constrained solutions. Heuristic search methods 
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which were previously employed to solve large-scale combinatorial optimization 

problems could thus be adapted for use as an equalization algorithm.  

 Numerous heuristic search algorithms exist in the literature such as the local 

search (LS), evolutionary programming (EP), genetic algorithm (GA), greedy algorithm, 

etc. In this thesis, we focus on studying the application of the LS algorithms to turbo 

equalization due to its superior performance when a relatively reliable initial solution is 

available from the outer decoder in the previous iteration. BER performance 

comparisons and computational complexity analysis reveal that the proposed heuristic-

based LS turbo equalizer is a viable alternative to the trellis-based BCJR turbo equalizer, 

the filter-based minimum-mean-squared-error (MMSE) turbo equalizer and even their 

low complexity variants.  

 To understand the reasons behind the superior performance of the proposed 

heuristic-based LS turbo equalizer, analysis is carried out through the use of the 

EXtrinsic Information Transfer (EXIT) chart. Through EXIT chart analyses, numerous 

interesting insights on the heuristic-based LS turbo equalizer are unearthed. In particular, 

we observe indirectly through the EXIT chart that our proposed heuristic-based LS turbo 

equalizer is more robust against the detrimental effects of imperfect channel knowledge 

as compared to both the trellis-based BCJR turbo equalizer and the filter-based MMSE 

turbo equalizer. Consequently, simulation results obtained show that the proposed 

heuristic-based LS turbo equalizer has the best BER performance as compared to the 

other two turbo equalizer approaches. This important finding suggests that, in practice, 

our proposed heuristic-based LS turbo equalizer could be a serious contender to the other 

existing techniques where perfect channel knowledge is usually unavailable to the 

receiver.  
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Chapter 1 

 

Introduction 

 In this chapter, we first give a brief introduction to the concept of turbo 

equalization, after which a survey of some of the existing equalization algorithms is 

provided in Section 1.2. Due to the iterative nature of the turbo equalizer where repeated 

equalization and decoding have to be carried out on the same set of transmitted data bits 

for improved performance, it would be important to grasp an understanding of the 

complexity concerns for a turbo receiver. A discussion on the complexity concerns will 

be carried out in Section 1.3. Thereafter, some low complexity equalization algorithms 

are briefly mentioned. In Section 1.5, the motivation and a summary of the work 

presented in this thesis are highlighted. Finally, the organization of this thesis is given.   

 

1.1 Introduction to Turbo Equalization 

The discovery of turbo codes by Berrou et at. [1] in 1993 with iterative decoding 

has ignited significant research interest due to their remarkable near-capacity 

performance over memoryless additive white Gaussian noise (AWGN) channels. Soon 

after the introduction of turbo codes and its corresponding receiver called the turbo 

decoder, it was recognized that iterative decoding could be incorporated as a general 

methodology for advanced receiver design. The term “turbo processing” was 
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subsequently coined in [2] to describe the general strategy for joint decoding and 

detection.  

In 1995, Douillard et al. proposed the concept of “turbo equalization”, which 

extends from the application of turbo processing in joint equalization and channel 

decoding [3]. Specifically, Douillard et al. presented an iterative receiver called the turbo 

equalizer that is capable of mitigating the effects of intersymbol interference (ISI) due to 

multi-path effects on convolutionally-coded Gaussian channels, provided that the 

channel impulse response is known to the receiver.  

In essence, the implementation of an iterative receiver (also known as turbo 

receiver) involves the use of detection/decoding modules that employ soft-input/soft-

output (SISO) algorithms [4]-[8]. Soft decision values, usually expressed in the form of 

log-likelihood ratios (LLR), are computed by one of the modules and thereafter passed 

to the other. The estimates of the data bits transmitted are then refined by sharing 

information between the two SISO modules in an iterative fashion. More specifically, 

the extrinsic output of one SISO module can be used as a priori information by the next 

SISO module.  

The reason for the passing of soft information from one module to the other is to 

ensure no information is lost between the SISO modules. Beside this, the passing of only 

extrinsic information from one SISO module to the next is also an important requirement 

for any receiver employing turbo processing scheme. This is to prevent “positive 

feedback” problems which may destabilize the information passed. Essentially, extrinsic 

information refers to new information that is derived by a particular SISO module at a 

particular stage of iteration. From a general intuitive perspective, the extrinsic 

information from a particular SISO module could be obtained by taking the a posteriori 
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probability (APP) LLR generated by the SISO module after each stage of 

detection/decoding and subtracting all the inputs that are used in computing this APP 

LLR.  

 

 

 

 

Figure 1.1: Transmitter section of a data transmission model 

In this thesis, the transmitter section of the data transmission system considered 

is shown in Figure 1.1 where the channel encoder and the ISI channel are separated by 

an interleaver. The function of the pseudo-random interleaver, as the name implies, is to 

rearrange or scramble a block of code bits from the channel encoder in a pseudo-random 

manner.  

In Figure 1.2 on the next page, the structure of the original turbo equalizer 

proposed by Douillard et al. [3] is presented. Here, the generation of extrinsic 

information to be used as a priori information for the next SISO module is explicitly 

shown by the inclusion of adders.  In the feedforward path, the equalizer and channel 

decoder are separated by a de-interleaver which performs the reverse operation of the 

interleaver, i.e., to undo the scrambling done by the interleaver. The distinct feature of a 

turbo equalizer is the presence of a feedback path from the decoder to the equalizer to 

allow iterative exchanges of refined estimates. The interleaver used in the feedback path 

is identical to that utilized in the transmitter end. 
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Figure1.2: A general receiver model performing turbo equalization  

The presence of the interleaver/deinterleaver is crucial in decorrelating the error 

events introduced by the equalizer between neighboring bits. These error “bursts” are 

hard to deal with, in particular, by a channel decoder which employs convolutional 

codes. Besides decorrelating the error events, the presence of the interleaver and de-

interleaver at the receiver end also serve to provide independence, at least locally and for 

several iterations, between neighboring LLR estimates. This independent assumption is a 

critical property that is utilized in the modeling of the LLR estimates, which 

subsequently allows an open-loop simulation of the respective SISO modules in the 

turbo receiver to be carried out. Such open-loop simulations on the SISO modules form 

the basis for the generation of EXtrinsic Information Transfer (EXIT) chart [9][10], 

which is an important tool for gaining insights into the operation of a receiver employing 

turbo processing. 

The iterative exchanges of refined estimates are to be carried out until a 

prescribed number of iterations are reached. This prescribed number of iterations could 

be obtained through the use of the EXIT chart and it should be varied accordingly for 
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different signal-to-noise ratio (SNR) values for optimum bit-error rate (BER) 

performance. In general, there is an inverse relationship between the number of 

iterations for optimum BER performance and the SNR of the received signal. In other 

words, a decrease in the SNR of the received signal would lead to an increase in the 

number of iterations required for optimum BER performance and vice versa. It is to be 

noted that this generalization is only true provided that the SNR is above a certain value 

called the decoding threshold. The EXIT chart will be formally presented in Chapter 4 

where the above relationship will be discussed in detail. 

In this thesis, the investigation into the performance of a turbo equalizer 

employing different equalization algorithms is carried out. No studies are carried out 

with respect to an optimum construction of the interleaver; pseudo-random interleaving 

is assumed throughout the whole thesis. The channel code used for error correction is a 

recursive systematic convolutional (RSC) code and its corresponding decoder employs 

the BER optimum Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [11] which operates on 

the code constraints specified indirectly by the code trellis.  

Various equalization algorithms suited for used in a turbo equalization scheme 

are available in the literature. In the next section, we provide a review of existing 

equalization techniques with an emphasis on some of the more well-known algorithms. 

These well-known equalization algorithms will also form the basis for comparison, in 

terms of BER performance, etc., when we present our proposed equalization algorithm 

based on heuristic search methods in Chapter 3.  

 

 

 



Chapter 1. Introduction  

 

  6   

1.2 Introduction to Existing Equalization Algorithms  

The derivation of differing equalization algorithms are primarily motivated by 

the numerous ways of visualizing the ISI channel or the channel equalization problem. 

 From a signal processing perspective, an ISI channel essentially behaves as a 

band-limited linear filter that introduces bandwidth restriction on the transmitted bits. 

This bandwidth restriction introduces superpositioning of the transmitted bits’ pulses 

when the bandwidth of the transmitted bits is larger than the bandwidth of the channel. 

Typically, a finite impulse response (FIR) filter with real/complex coefficients is used to 

represent an ISI channel.  

From another school of thought in the realm of coding theorists, an ISI channel 

could be visualized as a rate-1 non-recursive convolutional encoder with additive and 

multiplicative operations defined over the field of real numbers. Since a convolutional 

encoder is simply a finite state machine, a trellis diagram could be used to describe the 

behavior of the ISI channel.  

With these two representations of an ISI channel, two well-known classes of 

equalization techniques evolved naturally. One equalization methodology compensates 

for ISI using a filter-based algorithm [5][12] while the other aims to reduce the 

detrimental effects of ISI using a trellis-based algorithm [11][13].   

In recent years, some researchers [14][15] have came up with a new method in 

tackling the channel equalization task by viewing it as a received phasor classification 

problem where the phasors may become linearly non-separable due to channel 

disturbances. This concept extends from the field of artificial intelligence where they 

utilize the well-known radial basis function (RBF) used in neural networks to design a 
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nonlinear reduced-complexity Jacobian RBF-assisted equalizer. This methodology came 

about from the realization that the RBF network has an equivalent structure to the so-

called optimal Bayesian equalization solution and can provide the conditional density 

function of the transmitter bits as soft-output for use by the channel decoder.  

In this thesis, as a form of background review, we narrow down our scope to 

cover the more well-known and established algorithms, namely, the trellis-based and 

filter-based equalization algorithms. For a better understanding of the RBF-assisted 

equalization technique, we refer the interested reader to [14][15].  

 

1.2.1  Trellis-Based Equalization Algorithm 

The task of equalization can be formulated in terms of a first-order finite-state 

Markov random process observed through additive noise. Any finite-state Markov 

process can be represented by a trellis diagram. With this representation, the problem of 

estimating the APP of the state sequence of a Markov source observed through noise has 

two well-established trellis-based solutions, namely the BCJR algorithm [11] and the 

soft-output Viterbi algorithm (SOVA) [13]. Once the state sequence is estimated, it is a 

trivial task to determine the transmitted code bits associated with it.  

Essentially, both the trellis-based algorithm exploits two fundamental properties 

of the underlying Markov process. The first property is that Markov process is first 

order. The second property is that the conditional probability of a particular observation 

through white noise, i.e., the received channel observation at a particular time instance, 

given the entire state sequence is equal to the conditional probability of the observation 

given only the state transition that is related to that time instance. These two properties 

along with the rules of conditional probability and the assumption that the channel noise 
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is independent, allow a recursive and computationally efficient manner for computing 

the extrinsic LLR values for each bits.  

The BCJR algorithm was formally presented in 1974 as an alternative to the 

Viterbi algorithm, introduced in 1967, for the decoding of convolutional codes. It is 

noted that the SOVA is an extension of the classical Viterbi algorithm for providing the 

reliability information of bit estimates. 

Basically, the BCJR algorithm is an optimum algorithm in minimizing the BER 

whereas the SOVA is an optimum algorithm in minimizing the frame error rate (FER). 

Hence, the SOVA is generally used for sequence estimation whereas the BCJR 

algorithm is used for symbol-by-symbol estimation. Besides differing in their optimality 

criterion, another key difference between these two algorithms is that the states 

estimated by the SOVA must form a connected path through the trellis, whereas that 

estimated by the BCJR algorithm need not be connected.  

From the numerous results available in the literature, it is well-known that the 

BCJR algorithm has a better BER performance when compared to the SOVA. Hence, 

only the BCJR algorithm will be presented as a representative of the class of trellis-

based equalization algorithm for comparisons to our proposed heuristic-based 

equalization algorithm to be made.  
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1.2.2  Filter-Based Equalization Algorithms 

 The trellis-based equalization algorithms are optimal either in terms of 

minimizing BER or FER. However, they have large computational complexities and 

hence are unfavorable for use in an actual system implementation, especially in a turbo 

equalization setup.  

 As such, researchers have been exploring sub-optimal equalization methods that 

typically consist of linear processing of the received signal through the use of linear 

filters. The parameters of these filters can be selected using a variety of optimization 

criteria, such as the zero forcing (ZF) or the minimum mean squared error (MMSE) 

criteria [5].  

 The ZF design approach essentially, as the name implies, forces all the unwanted 

ISI to zero. By viewing the frequency response of the filter designed using the ZF 

criteria, it is observed that the equalizer frequency response is basically an inversion of 

that of the channel frequency response. Hence the concatenation of the ISI channel and 

the ZF equalizer results in an overall flat frequency response as seen from the output of 

the ZF equalizer which translates to zero ISI in the time domain. As additive noise is 

present at the input of the equalizer, this inversed frequency response will lead to undue 

noise enhancement if the ISI channel frequency response has near-zero spectral content 

in some frequency regions. As such, the ZF design approach is not widely used.  

A more general approach which overcomes the noise enhancement problem in 

ZF equalizers is through the use of the MMSE design criteria. In designing the filter, the 

MMSE approach takes into account both the ISI as well as the additive noise perturbing 

the received signal. A compromise is stricken by the MMSE approach which avoids 

infinite noise enhancement at the expense of some residual ISI at the output of the 
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equalizer. A well-known FIR filter which employs the MMSE design criteria is the 

Wiener filter. 

Non-linear filters could also be implemented for equalization purposes. Well-

known non-linear filters that are used for equalization includes decision feedback 

equalizers [16] and the Kalman filter [12]. We refer the interested reader to [12][16] for 

a more in-depth understanding of their implementation. 

In this thesis, we showcase the MMSE equalization algorithm for comparisons to 

our proposed heuristic-based equalization algorithm to be made. This is because, in our 

point of view, the MMSE equalization algorithm is a relatively simple yet effective 

technique in mitigating the effects of ISI, among all other filter-based equalizer design 

approaches.  

 

1.3 Complexity Concerns for a Turbo Receiver 

 The remarkable performance of turbo equalization scheme comes at the cost of 

large decoding delay and high complexity, especially so when equalization and decoding 

are performed using the BER optimum trellis-based BCJR algorithm.  

 The BCJR algorithm essentially operates as two Viterbi algorithms with one 

running in the forward direction and the other running in the backward direction. The 

forward Viterbi algorithm is used to compute forward metrics whereas the backward 

Viterbi algorithm is used to compute backward metrics. The final LLR output is then 

obtained by appropriately combining these two metrics. The details of the BCJR 

algorithm will be described in Chapter 2. Due to the requirements for the computation of 

the backward metrics, it is necessary for an entire sequence to be received before the 
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equalization or decoding operations could commence. As such, large decoding delay and 

huge memory requirements for storing the various metrics are to be expected. 

 Moreover, as the BCJR algorithm operates on the code/channel trellis whose 

number of trellis states has an exponential relationship to the code/channel memory 

length, the BCJR thus has an exponential complexity when computing the required 

metrics for each particular bit.  

 In addition, to obtain good performance, the equalization and decoding tasks 

have to be iterated a few times on each set of data bits, thereby further exacerbating the 

latency and complexity problems described above.  

 

1.4 Low Complexity Equalization Algorithms 

 In recent years, after researchers had fully appreciated the potential of turbo 

processing for reliable communications, numerous efforts have been made in the 

complexity reduction of such iterative algorithms [17]-[24]. One such focus is the 

simplification of the equalization task. In the literature, many low complexity SISO 

channel equalizers have been proposed within the two main categories of equalizers.  

Low complexity variants of the trellis-based equalization algorithm include the 

M-BCJR algorithm [18][19][21], the T-BCJR algorithm [21] and the trellis-splicing 

algorithm [20]. The general approach adopted in these algorithms is based on 

simplifying the channel trellis to reduce the computational requirements of the original 

full complexity BCJR (FC-BCJR) algorithm. The M-BCJR algorithm is derived to ease 

computational load by reducing the number of channel states at each trellis stage while 

the T-BCJR algorithm achieves low complexity by decreasing the number of paths 
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searched in the trellis. The trellis-splicing algorithm operates at low latency simply by 

shortening the channel trellis based on early-decoding of reliable bits. In [22], a sliding-

window BCJR algorithm (SW-BCJR) is proposed which allows the BCJR algorithm to 

operate on a fixed memory span and thereafter output the “smoothed” probability 

distributions [22] following a given delay. This alleviates the need to receive an entire 

sequence, thereby reducing decoding delay.    

In the filter-based equalizer category, it should be mentioned that this category is 

already one of the low complexity alternatives to the trellis-based equalizer. As an 

illustration, in the Master’s thesis by Michael Tühler [24], he proposes a time-varying 

MMSE equalizer with quadratic computational complexity (in the equalizer filter length) 

by using a recursive algorithm to efficiently compute the MMSE equalizer filter 

coefficients. A significant saving in computational complexity is observed when 

compared with the FC-BCJR equalizer which has exponential computational complexity 

(in the ISI channel memory length). Then in [5], a further reduction in the complexity of 

the MMSE equalizer is attained by implementing two time-invariant filters whose 

coefficients are similarly obtained using the MMSE design criterion, albeit  at different 

initial condition assumptions. This hybrid approach is shown to attain the performance 

of the time-varying MMSE equalizer by performing the iterative equalization tasks 

through optimally switching between the two filters. Basically, an optimization criterion 

is set in this hybrid approach to determine which filter is to be used at each iterations. 

Neglecting the computation of the optimization criterion, a linear complexity in terms of 

the equalizer and/or channel memory length is achieved by this hybrid approach. 
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1.5  Motivation and Summary of Present Work 

 Motivated by the need for low complexity alternatives while maintaining 

comparable BER performance to the FC-BCJR algorithm, we propose a novel approach 

to the channel equalization problem based on heuristic-search methods.  

 The work in this thesis consists of two parts. First, we propose a heuristic-based 

equalization approach that utilizes local search (LS) algorithms. LS algorithms are the 

most widely used heuristic methods [25]-[36] for solving large-scale combinatorial 

optimization problems and, in general, all other heuristic search methods can be 

considered as an extension of LS.  

 In the second part, we utilize the EXIT chart [9] to analyze the LS-based turbo 

equalizer that we proposed by monitoring the evolution of the extrinsic information as 

the iterations proceed. This analysis provides enlightening insights into the operation of 

the LS-based equalizers in a turbo equalization setup and even suggests the feasibility of 

our proposed equalizer in actual system implementation, where perfect channel 

knowledge is usually unavailable at the receiver end.  

 

1.5.1  Heuristic–Based Equalization Algorithm Utilizing Local Search 

 The proposed heuristic search method is based on the observation that we may 

view the SISO channel equalization task as a combinatorial optimization problem with a 

finite set of binary-constrained solutions.  

Unlike most optimization problems, the channel equalization problem in a turbo 

equalization setup features a relatively good initial estimate (for example, delivered by 

other equalizer or fed back from the channel decoder) as a starting point for optimization 



Chapter 1. Introduction  

 

  14   

to begin. In particular, the proposed scheme can be decoupled into several successive 

stages.  

 In the first stage, we obtain tentative hard estimates of the transmitted code bits 

as an initial solution for the optimization problem based on the a priori LLR fed back 

from the channel decoder in the previous iteration. In the second stage, we employ 

heuristic search methods to optimize an objective function based on the maximum a 

posteriori (MAP) metric and derive a candidate list that consists of all potential 

solutions. Finally, we produce the a posteriori LLR of the code bits by restricting the 

LLR calculation to the derived candidate list, which can then be used as soft-input for 

the channel decoder after subtracting the a priori LLR from it. In this thesis, we utilize 

the heuristics based on LS algorithms. We nevertheless point out that other heuristic 

search methods, such as simulated annealing, evolutionary programming, genetic 

algorithm, greedy algorithm, etc., could also be employed. 

 From the simulation results obtained, we show that the proposed receiver 

utilizing the LS-based algorithm has a negligible BER performance loss when compared 

to the FC-BCJR equalizer, especially so at moderate-to-high SNR, while significantly 

reducing the overall computational complexity to a square order magnitude in terms of 

the ISI channel memory length. Depending on the type of LS algorithm (i.e. 1-Opt LS or 

k-Opt LS) used and the severity of the ISI introduced, the proposed LS-based equalizer 

is also shown to outperform the equalizer designed using the MMSE criterion. 

Specifically, for severe ISI condition, the proposed k-Opt LS outperforms the time-

varying MMSE equalizer with approximately 0.3 dB improvements at a BER of 10-3.  
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1.5.2  EXIT Chart Analysis of Local Search-Based Turbo Equalizers 

 The performance of a receiver design is conventionally quantified using the BER 

metric which could be obtained either via time-consuming simulations or through 

derivation to arrive at an analytical expression. For a receiver in a turbo setup, such 

analytical derivation is usually difficult due to the presence of the interleaver. Moreover, 

in the context of understanding the performance of a turbo receiver or to be specific, a 

turbo equalizer, the BER metric is usually of limited capability to reflect the iterative 

nature of the equalization and decoding processes. Essentially, the BER metric could 

only be viewed as a summary of the performance of a turbo equalizer design.  

 The EXIT chart, a semi-analytical tool originally pioneered by Stephan ten Brink 

[9] for the analysis of turbo codes, is a powerful technique to analyze the behavior of a 

turbo receiver. In brief, the EXIT chart basically tracks the evolution of the extrinsic 

LLR’s probability density function (PDF) indirectly by measuring an information 

theoretic quantity called mutual information. The EXIT chart is derived by carrying out 

open-loop simulations on the respective SISO modules to obtain the respective transfer 

characteristics (also known as transfer function) of both the equalizer and the channel 

decoder. The transfer characteristics of both the equalizer and channel decoder are then 

plotted on a single figure to obtain the EXIT chart. From the EXIT chart, the 

equalization and decoding steps can be visualized explicitly by following a staircase-like 

trace that is bounded by the two transfer characteristics. This trace is known as the 

predicted trajectory. 

 In this thesis, we utilize EXIT chart to carry out an analysis of the proposed LS-

based turbo equalizer. As the EXIT chart assumes a Gaussian distribution when 

modeling the a priori input to the respective SISO modules, we found that this 
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assumption does not really hold for a LS-based turbo equalizer. As such, we devise a 

general technique to obtain the EXIT chart for our LS-based turbo equalizer. The 

original EXIT chart is then compared to our proposed EXIT chart. Through asymptotic 

simulations carried out (i.e., very large frame size of typically at least 105 data bits per 

frame), it is found that our proposed EXIT chart is able to predict the performance of the 

LS-based turbo equalizer more accurately than the original EXIT chart in terms of the 

number of iterations required for convergence and the associated BER at each iteration. 

For example, at an SNR of 4.5 dB, the proposed EXIT chart reflects accurately the 

attainment of fixed point with 15 iterations whereas the original EXIT chart deviate 

significantly from the actual case by being overly-optimistic with 7 iterations fewer. The 

decoding threshold obtained from the proposed EXIT chart also agrees with that 

obtained using density evolution [37]-[39]. This further indicates the accuracy of our 

proposed EXIT chart in its asymptotic predictions of the LS-based turbo equalizer.  

  

1.6  Organization of Thesis 

 The rest of the thesis is organized as follows. In Chapter 2, we give a description 

of some of the equalization algorithms commonly used in a turbo equalizer. These 

equalization techniques would form the basis for comparison when we present our 

proposed LS-based equalizer. The focus of this chapter is the trellis-based BCJR 

algorithm and the filter-based MMSE algorithm. Certain key properties of the BCJR 

algorithm will be highlighted since this algorithm is also used for the decoding of the 

RSC code employed in this thesis. The corresponding low complexity variants from 

these two categories of equalization algorithms will also be briefly mentioned.  
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 In Chapter 3, we present the details of the heuristic-based turbo equalizers 

utilizing LS algorithm. We first give an introduction to heuristic search algorithm to 

enable the readers to appreciate the nature of such technique. Following that, in Section 

3.2, we formulate the equalization problem formally before addressing this problem 

from a heuristic approach utilizing LS. Variants of LS, namely 1-Opt and k-Opt 

algorithms will be described. A low complexity implementation of the LS algorithm is 

then presented in Subsection 3.2.3. After illustrating the implementation details, we 

carried out some analysis on the LS-based equalizer by looking at its computational 

complexity and its decoding threshold. Finally, the simulation results are presented 

together with a discussion on these results in Section 3.5. 

 The EXIT chart analysis of the LS-based equalizers is exemplified in Chapter 4. 

We first give an introduction to familiarize the readers with the EXIT chart after which 

an exposition on the principles of EXIT chart in provided in Section 4.2. Then, the 

original EXIT chart is presented in Section 4.3 and is shown to be inaccurate in 

predicting the asymptotic behavior of our LS-based turbo equalizer. A new EXIT chart 

is proposed in Section 4.4 for our LS-based turbo equalizer and subsequently verified in 

Section 4.5 to be more accurate than the original EXIT chart in the various predictions. 

Then, in Section 4.5.6, we carried out further investigation into the LS-based equalizer 

by observing some key points on the EXIT chart as the SNR varies and under different 

conditions. This exploration leads to an interesting discovery on our proposed LS-based 

turbo equalizers, which hinted its robustness against BER performance degradation in 

situation where imperfect channel impulse response (CIR) knowledge is given to the 

receiver. Finally, the thesis is concluded in Chapter 5 with some comments on possible 

directions for further work.  
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Chapter 2 

 

Survey of Equalization Algorithms for  

Turbo Equalizers  

 In this chapter, a selected review on two well-established categories of 

equalization algorithms, namely, the trellis-based equalization algorithm and the filter-

based equalization algorithm are presented. We begin this chapter with a description of 

the system model so as to provide a unified framework for the presentation of the 

various equalization algorithms outlined in this thesis. This section will also familiarize 

the readers in terms of common symbols and notations used while describing the various 

algorithms. An exposition on the trellis-based equalization algorithm will be presented in 

Section 2.2. Here, the full complexity BCJR (FC-BCJR) and some of its low complexity 

variants will be described. The low complexity variants of the FC-BCJR presented here 

are the M-BCJR and the SW-BCJR. Following that, in Section 2.3, we touch on the 

filter-based turbo equalizers implemented based on the MMSE design criterion. Low 

complexity implementation of the MMSE turbo equalizers based on time-invariant 

filters will also be described. A comparison of the computational complexity between 

these two categories of equalization techniques is carried out in Section 2.4, after which 

selected simulation results are presented. Finally, the chapter concludes with a summary 

in Section 2.6. 
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2.1  System Model  

 The transmitter section in consideration is a serial concatenated system 

consisting of a single RSC encoder and an ISI channel separated by an interleaver. The 

schematic of this system model is similar to that depicted in Chapter 1 and is replicated 

here in Figure 2.1. 

 

 

 

 

 The binary data bits di are first encoded by an RSC encoder and passed to a 

random interleaver. The interleaved code bit stream bi is then binary-phase-shift-keying 

(BPSK) modulated and transmitted over a band-limited ISI channel perturbed by AWGN 

which is represented as n(t) with single-sided power spectral density level No. The 

received signal can be expressed as 

( ) ( ) ( )∑ +−=
+∞

−∞=i
bi tniTtgbtr        (2.1) 

where g(t) = p(t)⊗ c(t). Here, p(t) is the pulse shape filter at the transmitter end, c(t) 

refers to the continuous-time channel impulse response and ⊗  denotes the linear 

convolution operator. The code bit interval is specified in (2.1) as Tb.  

 To convert the continuous-time signal r(t) to its equivalent discrete form, we 

apply a matched filter g(-t) as the receiver front-end together with a sampler operating at 

a bit rate of 1/Tb. The corresponding discrete-time signal is thus given by 

     ∑ +=
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−

m

mj
ijiji wbhy        (2.2) 

Figure 2.1: Discrete-time equivalent noise-whitened channel model 
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where {hj : j = -m, -m + 1,…, m} is the discrete-time impulse response of the equivalent 

channel and wi denotes additive Gaussian noise. Here, we assume that the ISI span is 

finite, i.e., hj = 0 for |j| > m.  

 The application of the matched filter g(-t) leads to correlations in the noise 

sequence at the output of the matched filter, resulting in a colored-noise channel model. 

It is possible to further process the output of the matched filter by applying a discrete-

time noise-whitening filter [40] to attain a corresponding noise-whitened channel given 

by 

       i

m

j
jiji nbfz +∑=

=
−

0
       (2.3) 

where {fj : j = 0, 1,…, m} denotes the tap coefficients of the noise-whitened channel 

model and ni is the discrete-time AWGN samples. From (2.3), it is observed that the 

application of the noise-whitening filter leads to a causal description of the discrete-time 

channel model.  The cascade of the matched filter, the sampler and the noise-whitening 

filter is called the whitened matched filter (WMF).  

 The relationship between the coefficients of the colored-noise channel model and 

that of the noise-whitened channel model is given by 

∑=
−

=
+

im

j
jiji ffh

0
        (2.4) 

Both {yi} and {zi} constitute equivalent sets of sufficient statistics for the 

estimation of the transmitted data bits bi. Depending on situations such as the ease of 

evaluation of performance, etc., one of the set of sufficient statistics or equivalently, one 

of the types of channel model descriptions, could be preferred instead of the other.  

 In this chapter, we utilize the noise-whitened channel model as in (2.3) in the 

exposition of the various equalization algorithms.  
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2.2 Trellis-Based Turbo Equalizers 

 In the following subsections, we give a brief review of the FC-BCJR algorithm. 

The BCJR algorithm [11] is the optimum algorithm for the recovering of a Markov 

source perturbed by AWGN in terms of BER. We first give an exposition of the BCJR 

algorithm in the context of equalization over a noisy ISI channel. As the BCJR algorithm 

could also be used to implement the channel decoder, the variation of the branch metric 

in the BCJR algorithm to suit the decoding process will be highlighted. From the 

descriptions of the FC-BCJR algorithm [11], a greater understanding of the turbo 

principle is obtained. The M-BCJR [21] and SW-BCJR [22] as low complexity 

alternatives to the FC-BCJR will also be briefly described.  

 

2.2.1 Full Complexity BCJR Algorithm  

 The FC-BCJR equalizer produces the a posteriori information of the transmitted 

code bits {bi} in the form of LLR as 
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where the channel states at time instant i, si, is defined as the m most recent inputs to the 

channel at time instant i, i.e., si = (bi-1, bi-2, …, bi-m). The vector z refers to an entire 

frame of observations obtained from the whitened-noise channel, i.e., z = (z0, z1, …, zi, 

…, zL-1), where L refers to the frame size or equivalently, the trellis length.  
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The FC-BCJR computes (2.5) by simplifying the calculation of (2.6) through the 

use of the Markovian properties of the underlying transmission process together with the 

rules of conditional probabilities to arrive at a computation of the forward recursion α 

metric and a backward recursion β metric over the 2m-state trellis of the ISI channel. 

Assuming a memoryless transmission channel, the joint probability P(si, si+1, z) is thus a 

product of three independent terms written as 

( ) ( ) ( ) ( )1111 ,, ++++ ⋅→⋅= iiiiiiiiP sssszss βγα       (2.7) 

where a forward recursion and a backward recursion over the code trellis could be used 

to compute the α and β metrics respectively as 
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The forward and backward recursion are initialized with α0(s0) = 1 and βL(sL) = 1 

only for s0 and sL corresponding to the all-zero state, i.e s = (-1, …, -1) in BPSK style. 

The rest of the states at this two time instances are set to 0. This initialization is based on 

the assumption that the trellis starts and ends at the all-zero state. In the event where 

trellis termination is not possible or unknown, βL(sL) = 1/2m for all the possible states at 

the trellis end will then be initialized instead.  

 For complexity and precision reasons, the BCJR algorithm is usually 

implemented in the logarithmic domain (log-domain) [41]. Two realizations of the BCJR 

algorithm in the log-domain are the max-log-MAP algorithm and the log-MAP 

algorithm [41]. Both realizations perform the multiplications in (2.7) to (2.9) as additions 

except with a difference in how they compute the addition in the log-domain.  
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The branch metric γ based on the noise-whitened channel model described in 

(2.3) when expressed in the log-domain is given by 
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where La(bi) denotes the a priori LLR of bit bi fed back from the decoder and σ2 is the 

channel noise variance. The a priori LLR La(bi) is the interleaved extrinsic information 

Le(bi) produced by the RSC decoder.  

 The FC-BCJR algorithm could also be implemented for the colored-noise 

channel model described by (2.2) with an equivalent BER performance by re-expressing 

the branch metric as [42] [43] 
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where the implementation of the noise-whitening filter could be avoided. 

 The FC-BCJR algorithm described above is exemplified in the context of 

equalization over a trellis-based rate-1 ISI channel. As the RSC code constraints could 

be indirectly specified by a code trellis, the FC-BCJR algorithm may also be used for 

decoding operations. The algorithms for equalization and decoding proceed in a similar 

manner except with some minor differences highlighted below: 

• The equalizer is only required to compute the APP of the channel inputs {bi}. On 

the other hand, the decoder is required to compute not only the APP of code bits 

{ci}, but also the APP of data bits {di}. Hard decisions taken on the APP of the 

data bits would then be considered as estimates of the transmitted bits.  

• As the channel is of rate-1, each of the channel trellis edges corresponds to a 

single channel output. However, for a code trellis, each edge corresponds to more 
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than one output. In this thesis, a rate-1/2 RSC code is considered and as such, the 

code trellis edge has two outputs for every state transition.  

• For a turbo equalizer structure depicted in Figure 1.2, the decoder does not have 

access to the channel output. Therefore, the first term in the branch metric stated 

in (2.10) or (2.11) reduces to a constant and could be eliminated in the 

calculation. As such, the branch metric for the RSC decoder reduces to 

         ( ) ( ) ( )qia
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where n refers to the number of code bits per data bit. Note in (2.12) that the 

branch metric for the trellis-based RSC decoder depends solely on the a priori 

information La(ci,q) provided by the channel equalizer.  

The above descriptions highlighted the key differences between the trellis-based 

equalizer and trellis-based decoder. As a general note, in this thesis, the code trellis of 

the RSC encoder is terminated by an appropriate selection of the tail bits to flush the 

content of the encoder to the all-zero state. The channel trellis is also terminated by 

simply appending m ‘-1’s bits to the BPSK modulated interleaved code bits.  

 An important observation that can be made from the implementation of the FC-

BCJR algorithm for both the equalizer and decoder is that the only “new” information as 

the iterations proceed enters the equalizer or decoder in the form of a priori information 

at the branch metric described by (2.10) – (2.12). This new a priori information is the 

extrinsic information produced by the previous SISO module. The significant BER 

improvement of a turbo equalizer comes about solely from an improvement in the 

reliability of the a priori information as the iterations proceed. This exchange of refined 

estimate of the a priori information is the essence of a turbo receiver. 
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2.2.2 Low Complexity Variants of BCJR Algorithm 

A)   M-BCJR Algorithm 

 The M-BCJR algorithm [18][19][21] is a reduced state-trellis technique which 

aims to reduce the computational complexity of the original FC-BCJR by limiting the 

number of trellis states kept active to a predetermined constant M where M < 2m. As 

mentioned before, 2m is the number of trellis states per stage and m is the channel 

memory length.  

 In more details, the forward recursion on αi-1 to αi described in (2.8) is carried out 

using only the M largest metric values of αi-1 while the rest are declared inactive or dead. 

This same principle is applied in the generation of the backward beta recursion metric. 

However, to facilitate the appropriate combining of the alpha and beta metrics to form 

the LLR output, the backward recursion is only executed on the region of the trellis 

where the forward metrics are still alive. Hence, the exponential computational 

complexity of the FC-BCJR algorithm is reduced accordingly to the predetermined value 

M in M-BCJR algorithm  

 

 
 As an illustration on the operation of the M-BCJR algorithm, a trellis section is 

shown in Figure 2.2. This figure is adapted from the paper by Fragouli et al. [18]. Here, 

Figure 2.2: Trellis paths of M-BCJR algorithm where M = 2 
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the channel memory m is of length 2. The number of trellis states per stage is thus 2m = 

4.  In the trellis section depicting the paths taken for the forward recursion, note that the 

number of trellis states per stage that is kept alive is M = 2. Also shown in Figure 2.1 is 

the paths taken for the execution of the backward recursion. Visualizing the paths 

selected by the forward recursion based on the M-BCJR as a tree of active nodes, the 

backward recursion is thus a subtree of the chosen active nodes. The final APP LLR is 

then generated using the edges in this common subtree.  

 
B)   SW-BCJR Algorithm 

 The SW-BCJR algorithm is proposed in [22] to reduce the latency associated 

with the original FC-BCJR algorithm in generating the APP LLR. Instead of the need to 

receive an entire data frame, the SW-BCJR algorithm relaxes this constraint by operating 

on a fixed memory span and output the APP LLR after a given delay D, where D << L. 

The channel trellis operated on by the SW-BCJR algorithm remains exactly the same as 

that of the one operated on by FC-BCJR algorithm. The only difference between the two 

algorithms lies in the way the backward recursion is initialized.  

In the SW-BCJR algorithm, the backward recursion for the generation of APP 

LLR at the ith time instant is initialized at (i+D)th time instant instead of the end of the 

trellis at time instant L. This initialization is carried out using the value of the forward 

recursion metrics at this (i+D)th time instant. The computation of the backward recursion 

is then carried out as usual but based on this new manner of initialization.  

With this method of initialization, the intrinsically block oriented FC-BCJR 

algorithm is modified to allow a continuous decoding/equalization of the received 

stream. As such, decoding/equalization delays associated with the FC-BCJR algorithm is 

greatly reduced in the SW-BCJR algorithm.  
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2.3 Filter-Based Turbo Equalizers 

In the following subsections, we give a review on the implementation of the 

filter-based equalizer designed using the MMSE criterion. The exposition outlined here 

summarizes the procedures and highlights the key equations in deriving the MMSE 

equalizer and its corresponding extrinsic information output. For a more detailed 

presentation, the interested readers could refer to the paper by Michael Tüchler et al. [5].  

Following that, two low complexity implementations of the MMSE equalizer are 

briefly described. These two low complexity variants are based on approximate 

implementations of the original time-varying MMSE equalizer.  

 

2.3.1 MMSE Equalization Algorithm 

 The MMSE equalizer described here is implemented using a linear FIR filter of 

length N whose time-varying filter coefficients ci,k, k = -N1, 1 - N1, … , N2, where N = N1 

+ N2 + 1, are obtained using the MMSE design criterion.  

 

 

 

 

 

 

In essence, the concept of MMSE filtering or estimation is to select the filter 

coefficients ci,k such that the error signal as depicted in Figure 2.3 is minimized in the 

mean square sense. Through this design criterion, the MMSE filter attempts to estimate 

Figure 2.3: Schematic diagram of a filter with an emphasis on its role to reshape the 
input signal to match the desired signal 
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the part of the desired signal that is correlated with its input signal; any uncorrelated 

component present in its input signal is unaffected. Generally, the uncorrelated 

component embedded in the input signal is noise. Perfect estimation of the correlated 

component in the desired signal is possible only in the event when there is no noise at 

the input of the MMSE filter. In the context of channel equalization, this perfect 

estimation due to an absence of input noise results in a ZF equalization approach, 

thereby translating to zero ISI at the MMSE filter output. 

In the general situation where input noise is present, the optimum MMSE 

equalizer attempts to strike a good compromise between ISI reduction and noise 

enhancement at the equalizer output. This compromise is determined by the SNR of the 

signal at the equalizer input. If the input signal is of high SNR, the MMSE equalizer 

would concentrate on reducing the mis-equalization and hence reducing the detrimental 

effects of ISI at the equalizer output. However, for low SNR input signal, most of the 

effort of the MMSE equalizer would be focused on noise reduction instead. Typically, 

low SNR input signal is encountered in an ISI channel transmission process where 

spectral nulls are present in some frequency regions of the channel frequency response.  

Relating Figure 2.3 to the noise-whitened channel model described in (2.3), the 

input signal could be visualized as the channel observations zi and the desired signal as 

the interleaved code bits bi. We denote the output signal of the filter as xi. 

To apply the MMSE estimation approach to the turbo equalization scheme, it is 

necessary to derive the extrinsic information from the equalizer output xi for use as a 

priori information by the SISO decoder. In Section 2.2, the APP LLR iΛ  of the 

transmitted code bits bi is obtained from the BCJR algorithm. Extrinsic information 

LE(bi)  is then derived from this APP LLR iΛ  by subtracting the a priori LLR La(bi) used 
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in the computation from it. For the MMSE equalizer case, instead of generating the APP 

LLR, the algorithm could be modified to produce the extrinsic information directly from 

the statistics of the equalizer output xi. Specifically, the MMSE equalizer is able to 

produce the extrinsic information described as 
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where the second term in (2.13) is the a priori LLR La(bi) of the interleaved code bits bi 

obtained from the RSC decoder.   

 As an overview, the implementation of the MMSE equalizer for use in a turbo 

equalization scheme could be summarized in four steps: 

(1) Derive the optimum equalizer filter coefficients ci,k using the MMSE design 

criterion; 

(2) Obtain the equalizer output xi by filtering the observations zi through the MMSE-

optimum filter derived in (1); 

(3) Determine the first order statistics of the optimum equalizer output xi; 

(4) Compute the extrinsic information Le(bi) of the transmitted code bits bi from the 

first order statistics determined in (3) by assuming a Gaussian distribution on the 

conditional probability P(xi | bi = ±1). 

The four steps described above are to be iterated for the generation of the extrinsic 

information Le(bi) for each time instant i. As such, an exact implementation of the 

MMSE equalizer requires a re-computation of the optimal time-varying filter 

coefficients for every time instant i.  
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The MMSE-optimal filter coefficients is derived based on the first and second 

order statistics of the underlying jointly wide sense stationary transmission processes, 

namely, the auto-covariance function of the channel observations vector zi and the cross-

covariance function between the desired signal bi and the channel observations vector zi. 

Here, vector zi is of length N instead of L as described in (2.25) and (2.26). Since these 

two statistical quantities is inevitably related to the a priori LLR La(bj) for j = (i - m - N2, 

…, i, … i + N1) as the iterations proceed, it is thus necessary to set the a priori LLR 

La(bi) to 0 when computing the optimal-MMSE filter coefficients ci,k and also for the 

generation of the filter output xi. The a priori LLR La(bj) for ij ≠  is unaffected and used 

accordingly when computing this MMSE-optimal filter coefficients for the generation of 

the extrinsic information Le(bi) at this particular ith time instant.  

As such, the time-varying MMSE-optimal filter coefficients (in vector form) for 

the detection of the ith bit is consequently set to 

                ( )( ) sssFFVIc 12 1 −
−++= T

i
T

iNi vσ     (2.15) 

where σ2
 is the channel noise variance, IN is the identity matrix of order N, vi is the 

variance of the transmitted bit bi derived from the a priori LLR La(bi) and the superscript 

T refers to matrix transpose. Here, Vi is a diagonal matrix defined as 

  ( )
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and F is the N x (N + m) channel convolution matrix based on the noise-whitened 

channel model written as 
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The vector s in (2.15) is utilized in the derivation of the filter coefficients in a way 

similar to an indicator function to remove the a priori information on the ith bit and is 

defined as 

      ( )[ ]TNmN 12 11 ,1, ×+×= 00Fs      (2.18) 

With the derivation of the MMSE-optimal filter coefficients ci, the filter output xi can 

then be expressed as 

         ( )sbFzc iii
T
ii bx +−=      (2.19) 

where ib  is the mean of the transmitted code bits bi derived from the a priori LLR La(bi) 

fed back from the decoder and ib  is the mean vector defined as  

                                T
NiNmiNmii bbb ],,,[

122 1 ++−−−−= Lb     (2.20) 

The mean ib  and variance vi of the transmitted code bits bi is derived from the a priori 

LLR La(bi) using  
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and  

         ( ) ( )
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From the MMSE-optimal filter output xi described in (2.19), the 1st moment and 2nd 

central moment are then derived from xi to give the mean bi,μ  and variance 2
,biσ  of xi as 
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     scT
ibi b ⋅=,μ                   (2.24) 
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Assuming a Gaussian distribution on the conditional probabilities P(xi | bi = b), b ∈  {+1, 

-1}with parameters described in (2.24) and (2.26), the final extrinsic LLR Le(bi) 

described by (2.14) can then be re-written as 
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This thus completes the descriptions for the exact implementation of the MMSE 

equalizer based on time-varying filter coefficients for use in a turbo equalization scheme.  

 From (2.15), it is observed that a matrix inversion operation is required for the 

generation of the MMSE-optimal filter coefficients ci, which is a costly operation with a 

cubic order computation complexity (in the matrix order or equivalently in the equalizer 

filter length N). A recursive algorithm with a square order computation complexity (in 

the equalizer filter length N) is employed in [24] to efficiently compute the MMSE 

equalizer filter. This time-recursive update approach is based on the observation that the 

submatrices of the matrices to be inverted are identical for time instances i and (i+1). As 

such, based on an initial condition obtained simply by carrying out the conventional 

matrix inversion for the derivation of the MMSE-optimal filter coefficients for the first 

time instant, subsequent derivation of the MMSE-optimal filter coefficients for other 

time instances could be obtained through this recursive approach.  
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2.3.2 Low Complexity Variants of MMSE Equalization Algorithms 

 The low complexity variants of the MMSE equalizer described here forth are 

implemented based on a time-invariant implementation of the exact time-varying MMSE 

equalizer described in the previous section. Such approximate implementations of the 

MMSE equalizer are derived based on two different scenarios where the MMSE 

equalizer has either zero a priori information or perfect a priori information.  

 
A)   Approximate Implementation I – Zero A Priori Information Scenario 

 The MMSE filter described here is designed based on zero a priori LLR, i.e., 

La(bi) = 0 ∀  i which thus results in ib  = 0 and vi = 1 ∀  i, as determined from (2.21) and 

(2.23). Substituting these parameters into (2.15), a time-invariant MMSE equalizer with 

coefficients czero could then be obtained as 

 ( ) sFFIc 12
zero

−
+= T

Nσ      (2.29) 

where subscript “zero” is used to denote the time-invariant MMSE coefficients derived 

based on zero a priori information.  

However, to allow this approximate MMSE filter to be used in a turbo 

equalization scheme, it must still incorporate the a priori information from the SISO 

decoder into the derivation of the required statistics, bearing in mind that the a priori 

information for the ith bit is still required to be set to 0 when computing the extrinsic 

information for the ith bit. As such, from the MMSE filter coefficients described by 

(2.29), the filter output xi is similarly obtained as in (2.19), from which the required 

statistics are computed using (2.24) and (2.25). Finally, after obtaining the necessary 

statistics from the filter output xi, the extrinsic LLR Le(bi) is then obtained using (2.27).  

Since computing 2
1,+iσ  for each time instant i is computationally expensive, a further 
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simplification to approximate 2
1,+iσ  using the time average could be carried out. As such, 

the parameter 2
1,+iσ  could be replaced with a time-invariant 2

zeroσ  defined as  
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where L is the frame size of the transmitted code bits bi.  

 
B)   Approximate Implementation II – Perfect A Priori Information Scenario 

 The second approximate implementation of the MMSE filter is derived based on 

the situation where perfect a priori information is available to the equalizer. Since 

|La(bi)| → ∞ ∀  i, this thus translates to ib  = bi and vi = 0 ∀  i, based on (2.21) and 

(2.23). Substituting these parameters into (2.15), the MMSE filter coefficients is thus 
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where subscript “perfect” is used to denote the time-invariant MMSE coefficients 

derived based on perfect a priori information. Note that sTs is the energy Ef of the ISI 

channel defined as 
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Following the same procedures as for the zero a priori information scenario, the final 

extrinsic LLR is then obtained as  
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where the variance 2
1,+iσ  could similarly by approximated by its time average as  
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2.4 Computational Complexity Comparison 

 Beside BER performance, the computational complexity of a SISO module is a 

major consideration in its actual implementation in a turbo receiver. In this thesis, the 

foremost aim is to derive an alternative low complexity algorithm for the equalization 

task carried out in a turbo equalizer, while yet trades off with a negligible BER 

performance degradation when compared with the BER-optimal FC-BCJR equalization 

algorithm. With this objective in mind, it is thus necessary to evaluate and compare both 

the computational complexities and the BER performances of the various equalization 

algorithms described in this chapter to establish a form of benchmark for use in 

comparing with our proposed heuristic-based LS equalization algorithm that will be 

presented in the next chapter.  

 The computational complexity of some of the equalization algorithms [5] are 

depicted in Table 2.1 on the next page. The focus is on the SW-BCJR algorithm and the 

exact time-varying implementation of the MMSE algorithm. Such an emphasis on these 

two algorithms is due to their relatively good tradeoff between computational 

complexity and BER performance as compared with the BER-optimal FC-BCJR 

algorithm. This understanding will become clearer when we present the BER 

performance of the various equalization algorithms in the next section.  

The computational complexities of the two approximate implementations of the 

exact MMSE equalization algorithm described in Section 2.3.2 are also listed in Table 

2.1. Although their individual BER performances are not impressive, it is shown in 

Chapter 4 indirectly through the use of the EXIT chart that they could achieve the same 

BER performance as the exact MMSE algorithm when utilized together in a hybrid 
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manner. This is done by carrying out the equalization tasks through an optimal switching 

between the two approximate implementations as the iterations proceed.  

From here on, various trellis-based equalization algorithms will be represented 

by their respective descriptions used in Section 2.2. For the exact time-varying MMSE 

equalization algorithm described in Section 2.3.1, we would denote it as “MMSE 

EXACT”. The approximate time-invariant implementations of the MMSE equalization 

algorithm based on zero and perfect a priori LLR will be denoted as “MMSE APRX I” 

and “MMSE APRX II” respectively.  

The number of required operations for the SW-BCJR algorithm is arrived at 

based on its implementation in the logarithmic domain.  

For the MMSE case, any overhead due to initialization (one-time operations for 

all iterations, for example, to compute czero as the starting point for the first iteration), is 

neglected. The required a priori statistics ib  and vi of La(bi) are assumed to be available 

for all i and the subsequent computation of Le(bi) described by (2.24) – (2.28) are not 

considered. The number of required operations for the MMSE-based approaches follows 

from the recursive implementations stated in [5][24].  

 

 

 

Equalization  
Algorithms 

Number of real  
additions 

Number of real 
multiplications 

SW-BCJR 2m × (2mD + 7D + 2m + 10) 4 × 2m 
MMSE EXACT 8N2 + 2m2 - 10N + 6m + 8 16N2 + 4m2 + 18m - 4N + 10 
MMSE APRX I 4N + 4m 4N + 8m + 8 
MMSE APRX II 10m + 8 10m + 10 

 

 

Table 2.1: 
Number of required operations for the detection of one transmitted bit per iteration 

using varying SISO equalization algorithms where 
m: channel memory length; D: SW-BCJR decision delay; N: Equalizer filter length. 
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2.5 Simulation Results and Discussion 

 In this section, we present the BER performance results of various SISO 

equalization algorithms described in this chapter by simulating data transmission using 

the transmitter structure shown in Figure 2.1 and based on the system model described in 

Section 2.1. A rate-1/2 RSC encoder with generator polynomials in octal form, (g1, g2) = 

(7, 5), where g1 is the feedback polynomial and g2 is the feedforward polynomial, is used 

as the channel code for all simulations. Beside that, the data di frame size is set to 212 = 

4,096. No deliberate interleaving optimization is carried out; random interleaving is used 

for all simulations here. 

 The turbo equalizer structure depicted in Figure 1.2 is utilized as the receiver. 

The RSC decoder is implemented based on the BER-optimal FC-BCJR algorithm 

operating in the log-domain, which works on the code trellis specified by the RSC 

encoder described above. To facilitate turbo equalization, the interleaving pattern used in 

the transmitter end, the ISI channel impulse response (2.3) and the AWGN channel noise 

variance σ2 are known to the receiver. The noise variance σ2 is determined according to 

the SNR Eb/No (in dB) defined as  
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where Eb is the energy of the data bit di, Ec is the energy of the code bit ci and R is the 

code-rate which is the ratio of the number of data bits to code bits. For the simulations 
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shown here, we set Ec = 1 and R = 1/2 to scale the AWGN noise variance σ2 accordingly 

to the prescribed SNR value.  

All the BER performances curves presented are the simulation results acquired 

from the 15th iterations, unless otherwise stated. Here, we consider the first time 

equalization and decoding tasks with zero a priori information at the input of the 

equalizer as the first iteration. In short, all variable parameters, i.e., code-rate, generator 

polynomials of RSC code, frame size, interleaving pattern, SNR definition, decoder 

implementation, predetermined number of iterations etc., which may affect the BER 

performances comparisons, are kept constant; the only difference in the system setup is 

the type of equalization algorithms utilized.  

Beside the general system parameters described above, other specific parameters 

relating to the respective equalization algorithms are to be detailed for a fair comparison. 

For the SW-BCJR equalization algorithm, the decision delay D is set to 2m, which is 

twice the memory length of the ISI channel. This value is selected to allow a fair 

comparison when we present the LS equalization algorithm in the next chapter so as to 

ensure that both equalization algorithms operate on the same length of observation 

window. For the M-BCJR equalization algorithm, the number of survival states per 

trellis stage is set to M = 5 [21]. For all the MMSE-based implementations, the filter 

length is set to N = 15 where N1 = 9 and N2 = 5, which is identical to that used in [5].  

 In the simulations, we also test the efficacy of the various SISO equalization 

algorithms under different ISI conditions modeled by an ISI channel of memory length 

m = 4 with different coefficients as shown in Table 2.2. Using (2.32), the energy of the 

respective ISI channels in Table 2.2 could be computed and is found to be unity. The 

characteristics of the respective channels are also stated in the table.  
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 The simulations are first carried out using a 5-tap ISI channel whose 

corresponding noise-whitened coefficients are given by 

{ }05.0,10.0,15.0,25.0,45.0=f . This ISI channel is denoted in Table 2.2 as 

Channel I and is used in [1] and [44] to demonstrate the performance of turbo 

equalization schemes. This channel introduce mild ISI contributed by both delay and 

amplitude distortions. The effect of amplitude distortions on the transmitted data could 

be appreciated by observing the non-flat magnitude response of Channel I depicted in 

Figure 2.4. Though not shown here, the phase response characteristic of Channel I is a 

non-linear function of the frequency, which accounts for the delay distortions on the 

transmitted data.  

 The BER performances of the various equalization algorithms illustrated in this 

chapter under the ISI condition described by Channel I are shown in Figure 2.5. For 

comparison purposes, the performance of FC-BCJR convolutional decoding over an 

AWGN channel without any ISI (curve labeled as “AWGN”) is also included to serve as 

a lower bound for coded ISI systems.  Once the BER performance of the turbo equalizer 

reaches this bound, the detrimental effects of ISI on the transmitted data caused by the 

channel are completely removed by the equalizer. From Figure 2.5, it is observed that 

the best BER performance is attained by the turbo equalizer employing FC-BCJR 

Channel 
Description  Noise-Whitened Coefficients 

ISI Due To  
Distortions By ISI 

Condition
Delay Amplitude 

Channel I { }05.0,10.0,15.0,25.0,45.0=f Yes Yes Mild 

Channel II 
(Proakis C 
Channel) 

{ }227.0 ,460.0 ,688.0 ,460.0 ,227.0=f  No Yes Severe 

Table 2.2: 
Descriptions and characteristics of ISI channels used in the simulations 
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equalization algorithm. Though not shown here, the performance of the SW-BCJR 

algorithm is almost identical to the FC-BCJR algorithm. As such, from here on, we 

would not distinguish the BER performances between these two algorithms. The exact 

implementation of the time-varying MMSE equalizer has a performance similar to that 

of the M-BCJR algorithm. It is also observed that these algorithms attained the ISI-free 

bound (“AWGN” curve) at a SNR of about 4 dB. The approximate implementations of 

the MMSE equalizer, however, have serious performance degradations through the 

simulated SNR range. The MMSE APRX I performs worse than the SW-BCJR 

equalization algorithm by approximately 4 dB at a BER of 10-3, while the MMSE APRX 

II does not work at all for this channel.  

 Next, we consider data transmission through another ISI channel with noise-

whitened coefficients { }227.0 ,460.0 ,688.0 ,460.0 ,227.0=f  which is denoted as 

Channel II in Table 2.2. This channel is also known as Proakis C channel [40] and has 

been used in [5] to test the performance of the time-varying MMSE equalizer. This 

channel causes severe ISI contributed solely by amplitude distortions. The severity of the 

ISI is due to the presence of spectral nulls as observed in the magnitude response of the 

channel depicted in Figure 2.6.  

 The BER performances of the various equalization algorithms utilized to combat 

ISI in Channel II are shown in Figure 2.7. As before, the best performing equalization 

algorithm is still that of the SW-BCJR algorithm and it manages to converge to the ISI-

free bound at a SNR value of 4 dB with a BER of 10-3. The performance of the FC-

BCJR algorithm is indistinguishable from that of the SW-BCJR algorithm and hence not 

shown for clarity. A difference between the BER performances of the FC-BCJR/SW-

BCJR algorithms depicted in Figure 2.7 as compared to Figure 2.5 is the noticeable loss 
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at low SNR region for the severe ISI case. Next, it is also observed that the MMSE 

EXACT performs better than the M-BCJR algorithm in this channel, although both reach 

the ISI-free bound at the same SNR value of approximately 5.8 dB; a SNR value of 1.8 

dB more as compared to the mild ISI case. Similar to Figure 2.5, the approximate 

implementations of the time-varying MMSE equalizer (MMSE APRX I and MMSE 

APRX II) have a large performance loss over this channel.  

 From the BER performance curves depicted in Figure 2.5 and Figure 2.7, we can 

conclude that trellis-based SW-BCJR algorithm and the filter-based MMSE EXACT 

algorithm are good representatives of their respective categories of equalization 

algorithms in terms of the trade-off between BER performances and computational 

complexities, under general ISI conditions.  

 Next, we further explore the BER performances of the SW-BCJR algorithm and 

the MMSE EXACT algorithm as the iterations proceed for a particular SNR value. The 

relationship between BER performance and the number of iterations at different SNR 

values for the two channels depicted in Table II are shown in Figure 2.8 and Figure 2.9 

respectively. In general, the BER performance is said to converge to a fixed point if 

further iterations carried out by the turbo equalizer does not improve BER performance 

anymore. As observed in these figures, the SW-BCJR algorithm is able to converge 

faster (i.e., required less iterations to attain a constant BER performance) than the 

MMSE EXACT algorithm. An important observation that can be seen in these figures is 

that the number of iterations required for convergence and the corresponding BER 

attained at convergence are heavily dependent on the SNR value. The reasons behind 

such phenomena could be understood when we present the EXIT chart in Chapter 4.  
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Figure 2.4: Magnitude response of Channel I where 
{ }05.0,10.0,15.0,25.0,45.0=f  

Figure 2.5: Performance of various equalization algorithms for Channel I 



Chapter 2. Survey of Equalization Algorithms for Turbo Equalizers 

 

  43   

Figure 2.7: Performance of various equalization algorithms for Channel II  
(Proakis C Channel) 
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Figure 2.6: Magnitude response of Channel II (Proakis C Channel) where 
f = {0.227, 0.460, 0.688, 0.460, 0.227} 
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Figure 2.8: Performance of selected equalization algorithms at different iterations 
for Channel I 

Figure 2.9: Performance of selected equalization algorithms at different iterations 
for Channel II (Proakis C Channel) 



Chapter 2. Survey of Equalization Algorithms for Turbo Equalizers 

 

  45   

2.6 Chapter Summary 

 A survey of some of the equalization algorithms for use in a turbo equalization 

scheme has been carried out in this chapter. Two well-known categories of equalization 

algorithms from the trellis-based class and filter-based class have been described. The 

essential implementation details for these two categories to suit the turbo equalization 

process are also highlighted. In general, these implementation details revolve around 

manipulating or modifying the respective algorithms so that it could accept soft a priori 

information from the decoder and are able to generate extrinsic information for use by 

the decoder.  

 The system model used in this chapter is based on the noise-whitened channel 

model described in Section 2.1. The relationship between the coefficients of the noise-

whitened channel model and that of the colored-noise channel model is also established 

in this section. This thus lays the groundwork for the presentation of our proposed 

heuristic-based LS equalization algorithm in the next chapter since it utilizes the 

colored-noise channel model for an efficient implementation. 

 BER performance curves for the various equalization algorithms described in this 

chapter under different ISI conditions have been obtained and presented to illustrate the 

efficacy of these algorithms to mitigate the detrimental effects of ISI. Beside BER 

performance, an analytical treatment on the computational complexity for selected 

algorithms is also presented.  
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Chapter 3 

 

Heuristic-Based Local Search Turbo Equalizer 

 In this chapter, we propose a novel class of SISO channel equalizer based on 

heuristic search methods as applied to a receiver employing turbo equalization. The local 

search (LS) algorithm, a modern problem-independent heuristic technique, is the focus 

here. We begin this chapter with a brief introduction into the rich field of heuristic 

search algorithms which were previously designed to solve large-scale optimization 

problems. The similarity of such problems to the equalization task is also drawn in this 

section. Following that, in Section 3.2, the heuristic-based LS turbo equalizer is formally 

presented. Through this derivation, it could be observed that the turbo equalization setup 

features a natural adoption of the LS algorithm due to the availability of a good quality 

initial solution for optimization to commence. Variants of the LS algorithm, namely, 1-

Opt and k-Opt, will be described in this section, together with their reduced-complexity 

implementations. Then in Section 3.3, an analysis of the computational complexity of 

the proposed LS equalizer is provided. Following that, further investigation into the 

more powerful k-Opt LS algorithm is carried out through density evolution to derive its 

decoding threshold. Simulation results are then presented in Section 3.5 together with a 

discussion before we conclude the chapter with a summary in Section 3.6.  
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3.1  Introduction to Heuristic Search Methods 

 A heuristic [25]-[36] is a search method that is used to chance upon the optimum 

solution to an optimization problem in a short time. In comparison to exact approaches 

such as the BER-optimum FC-BCJR algorithm [11] described in Chapter 2 or the FER-

optimum SOVA [13], a heuristic might not always find the optimum solution nor 

provide an assurance to find a solution within a certain range to that of the optimum. 

Nevertheless, the ability of heuristics to generate a good solution in reasonable time 

warrants serious consideration in its application to situations whereby the number of 

candidate (possible) solutions grows exponentially (usually in the solution length) such 

that simple enumeration schemes are rendered practically infeasible. In fact, both the 

BCJR algorithm and SOVA which work on the trellis could be considered as elegant 

enumeration schemes of all the possible solutions with a great reduction in the 

computational complexity from being exponential in trellis length to being exponential 

in the channel memory length.  

 Relating the equalization task to a particular class of optimization problems, i.e., 

combinatorial optimization problems, a similarity could be seen whereby both 

manipulate discrete decision variables which are usually binary. As such, based on the 

two key points mentioned above, we could thus relate the ISI channel equalization task 

to a nondeterministic polynomial-time (NP)-hard binary-constrained optimization 

problem, commonly known as a binary quadratic program in the area of combinatorial 

optimization. Heuristic search methods, typically employed to solve such a problem 

approximately within a reasonable time, could therefore be applied to the channel 

equalization task at hand.  
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 To effectively apply heuristics to the equalization problem, a clear notion of 

solution quality [25] must exist through proper definition of an objective function. With 

the establishment of such an objective function in relation to the problem statement, any 

heuristic search method can then be applied and modified to suit the equalization 

problem. As a consequence, the proposed method outlined in this chapter is actually a 

general framework in which other heuristics could also be applied in a similar manner.  

 Among various heuristic search methods, LS algorithm [25][26][28] is the most 

widely used heuristic for solving large-scale optimization problems due to its relatively 

high efficiency. Essentially the LS algorithm is a form of improvement heuristics (as 

opposed to construction heuristics which construct feasible solutions for optimization 

problems from scratch; a well-known example of a construction heuristic is the greedy 

algorithm [25][31]) which takes a feasible solution as input and tries to find a better or 

“improved” solution by stepwise transition in its local neighborhood. This basic idea of a 

neighborhood search is problem independent. However, in our proposed implementation 

of the LS-based equalizer, we incorporate some form of problem-specific domain 

knowledge into the LS algorithm so as to permit a more efficient and effective algorithm 

for the equalization process to take place.  

 To enable the LS algorithm to search each neighborhood at each step more 

efficiently, we utilize the colored-noise channel model in its derivation to allow a more 

efficient implementation based on the computation of gains (of a new solution) and 

difference of gains to evaluate the quality of a solution instead of a direct explicit 

computation of its objective function. This will be clearer when we present the details in 

Section 3.2.3. To allow a more effective search to take place, we employ the best 

improvement approach by selecting the solution with the highest objective value at each 
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optimization steps for use as input solution for the next step to commence, as opposed to 

the first improving solution found (first improvement approach). The best improvement 

approach is carried out at the first step of each turbo iteration by initializing the input 

solution with the hard estimates obtained from the a priori LLR fed back from the 

decoder derived in the previous iteration and the past bit estimates produced by the 

equalizer in the current iteration. This form of initialization is carried out as it utilizes the 

most reliable information at hand and thus likely to have a larger objective value, 

compared with a randomly chosen candidate vector from the solution space. 

 Ironically, the main disadvantage of the LS algorithm is a direct consequence of 

its advantageous point mentioned previously. Due to the fact that the LS algorithm is a 

form of improvement heuristics which serve to improve the quality of the input solution, 

the LS algorithm is thus susceptible to being trapped in a local optimum [25][28]. In 

general, all neighborhood search based algorithms are improvement heuristics and hence 

the performance outcome is highly dependent on the starting solution. This form of 

search is only guided by local information where no other information is utilized.  As 

such, an inappropriate choice for the starting solution may lead to a local optimum with 

low objective value and thus large distance away from the optimum solution with respect 

to the objective function.  

In the recent developments of heuristic search methods, hybrid methods that 

combine two or more search strategies, for example, memetic algorithms [25] which are 

hybrid of neighborhood search methods and evolutionary algorithms, were proposed to 

utilize the benefits of evolutionary algorithms to escape the predicament of being 

trapped in local optima, while preserving high efficiency through the use of 

neighborhood search methods. Specifically, memetic algorithms are designed to employ 
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variation operators commonly used in evolutionary algorithms to perform “jump” in the 

search space to escape the attractor region of a local optimum with the aim of reaching 

the basin of attraction of another local optimum with higher objective value, and hence 

closer to the optimum solution. In a turbo equalization scheme, the presence of a SISO 

decoder can be visualized as an effective “operator” to facilitate such a jump since it 

accepts the interleaved local optimum solution from the LS-based equalizer and further 

process them using additional new information provided by the code constraints 

specified indirectly by the code trellis. As such, the turbo equalization setup is a natural 

format for the utilization of LS algorithm where after being trapped at a local optimum, 

the decoder may assist the LS-based equalizer in escaping to a better solution region in 

the next turbo iteration.  

 An overview of our proposed LS-based turbo equalizer is provided below: 

(1) For the first search step (at each turbo iteration), initialize the input solution with 

the hard decisions derived from the a priori LLR fed back from the decoder 

obtained in the previous iteration and the APP LLR obtained by the equalizer in 

the current iteration.  

(2) Based on the neighborhood of the input solution obtained in (1), find the 

candidate vector with the largest objective value and update this particular 

candidate vector as the input solution for the next search step to commence. Save 

all the candidate vectors that are encountered in each search steps to form a list of 

candidate vectors. In this thesis, the search process is carried out using variants of 

LS heuristics, namely 1-Opt LS and k-Opt LS. 

(3) Compute the bitwise APP LLR based on the candidate list obtained in (2). 
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3.2 Heuristic-Based Turbo Equalizers 

  In the following subsections, we present the implementations details of our 

proposed heuristic-based turbo equalizer utilizing the LS algorithm. Before delving into 

these details, we first reformulate the equalization problem formally as in Section 2.1 so 

as to set the stage for the presentation of our heuristic-based LS turbo equalizer.  

 We begin by rewriting the colored-noise channel model described by (2.2) in 

matrix form as  

     iii wHby +=        (3.1) 

where the subscript i denotes the observation window for the detection of the ith 

transmitted bit bi. In the channel model described by (3.1), the transmitted interleaved 

code bits vector is of length (4m + 1) defined as bi = [bi-2m, …, bi, …, bi+2m]T where the 

superscript T denotes matrix transpose. As before, m denotes the memory length of the 

equivalent noise-whitened ISI channel. The additive Gaussian noise wi and the 

corresponding received channel observations yi are both vectors of length (2m + 1) 

defined as wi = [wi-m, …, wi, …, wi+m]T and yi = [yi-m, …, yi, …, yi+m]T respectively. The 

(2m + 1) x (4m + 1) channel convolution matrix H based on the colored-noise channel 

model (2.2) is written similarly to (2.17) as  
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 From the presentations described in Chapter 2, it is noted that the trellis-based 

FC-BCJR algorithm is the BER-optimum equalization algorithm which could be 

modified to form the SW-BCJR algorithm that allows each bit to be processed in a serial 

manner by operating on a fixed memory span. From the simulation results, it is observed 

that the SW-BCJR algorithm suffers negligible performance degradation as compared to 

the FC-BCJR algorithm despite having a restricted observation window of length D << 

L, where L is the channel trellis length. As such, we adopt a similar sliding-window 

approach to yield a low-complexity method to approximate the APP LLR calculation of 

the interleaved code bits bi stated in (2.5) and (2.6) by considering only the channel 

observations yi of length (2m + 1) instead of the entire received frame of length L as  
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where the summations in the numerator and denominator of (3.4) are over all possible 

24m binary vectors vi of length (4m + 1) associated with the ith transmitted code bit 

hypothesis  bi = +1 and bi = -1 respectively. Relating the conditional probability P(vi | yi) 

in (3.4) to the channel model described by (3.1), the APP LLR can thus be expressed as  
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where ( )
ivΩ  is a  metric for (4m + 1)-tuple candidate bit vector vi defined by 

( ) ( ) mi
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Here, vi,m is a binary vector of length (2m + 1) defined as  

      [ ]Tmiiiimimi vvbvv ++−−= ,,,,,, 11, LLv       (3.7) 

and λi is the a priori LLR vector obtained from the interleaved extrinsic output of the 

SISO decoder defined as  

                        ( ) ( ) ( )[ ]Tmiaiamiai bLbLbL +−= ,,,, LLλ       (3.8) 

Viewing all the possible candidate vectors vi as a binary vector space of dimension-(4m 

+ 1), the vector vi,m could thus be visualized as a vector in the subspace of vi as 
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The metric function ( )ivΩ  defined in (3.6) has a similar form as the branch 

metric of the FC-BCJR algorithm derived based on the colored-noise channel model 

stated in (2.11). Expressing the metric function in this manner avoids the occurrence of 

the squared-term as observed in the branch metric stated in (2.10) derived based on the 

whitened-noise channel model. The deliberate choice of the colored-noise channel model 

based on this consideration allows an efficient implementation of the LS algorithm to be 

carried out. This observation will become apparent when we present the efficient form of 

LS algorithms in Subsection 3.2.3.  

Although the APP LLR iΛ  defined above has its computational complexity 

reduced by limiting the length of the observation window to (2m + 1) instead of the 

entire channel frame size L, the summation in (3.5) is still over the entire binary vector 

space of dimension-(4m + 1). To further reduce this exponential computational 

complexity (in m), we propose to approximate (3.5) by summing a relatively small 

number of terms that have large metric values as determined from (3.6) and hence 
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dominate the calculation. In another words, instead of computing the metrics for all 

possible candidate vectors in the entire vector space of dimension-(4m + 1), we 

approximate the summations in (3.5) as 
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where ε is a subset of {+1, -1}4m+1 comprising of a list of candidate vectors with large 

metric values. The size of this candidate list ε is adjustable and as such the complexity of 

(3.10) is proportional to the cardinality of ε. For example, if the list is selected to be ε = 

{+1, -1}4m+1, then (3.10) is equivalent to (3.5) and the entire vector space is searched. 

The task now is to select an appropriate list ε such that this it provides a good 

approximation to the computation of (3.5) through the use of (3.10) without involving an 

exhaustive search over the entire vector space in question. 

 A few important considerations have to be taken into account when generating ε 

so as to minimize performance loss and restrict the focus on a targeted space of 

candidate vectors with large metric values. These considerations are listed below:  

(A1) The candidate list ε used in (3.10) for the computation of the APP LLR of the ith 

transmitted code bi must contain at least two vectors iv′  and iv ′′  described as 

                 [ ]miiiimii vvbvv 2112 ,,,,,, ++−− ′′′′′=′ LLv                 (3.11) 

                [ ]miiiimii vvbvv 2112 ,,,,,, ++−− ′′′′′′′′′′=′′ LLv      (3.12) 

where 1−=′′′ iibb . This is to prevent either the numerator or denominator of (3.10) 

being zero due to an absence of the respective candidate vector in the list, thereby 

resulting in a negative or positive infinite LLR.  
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(A2) To minimize performance loss, the candidate list ε should contain candidate 

vectors that correspond to large metric values. 

(A3) From the metric function ( )ivΩ  described by (3.6), it could be observed that the 

metric value is heavily dependent on vi,m relative to vi. Since the size of the 

search space is directly related to the dimension of the candidate vector, we could 

thus restrict the size of the search space by finding large metric value vectors of 

vi,m instead of vi. This restriction in the search space thus allows a more focus 

search to be carried out while at the same time, contributes to further 

computational complexity reduction when we generate ε.  

An obvious choice for a particular binary vector vi in the list ε with large metric 

value can be obtained by taking a hard decision on the a priori LLR fed back from the 

decoder derived in the previous iteration and using the bit estimates delivered by the 

equalizer in the current iteration. In another words, we could select this vector to be 
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where the m precursor bits in (3.13) are obtained based on the APP LLR (of past 

estimates) derived by the equalizer in the current iteration as 
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and the remaining (3m + 1) elements in vi described by (3.13) are derived from the a 

priori LLR fed back from the decoder obtained in the previous iteration as 
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The rationale behind this particular choice lies with the fact that this candidate vector 

described by (3.13) is obtained from the most reliable information at hand and hence 

likely to be estimated well with a larger metric value compared with a randomly selected 

vector from the solution space {+1, -1}4m+1.  

 Based on the consideration stated in (A3), the m precursor bits and m postcursor 

bits defined in (3.13) for the generation of the APP LLR of the ith code bit bi is hence 

fixed. As such, the task of generating a suitable list ε comprising of length-(4m + 1) 

candidate vectors vi having large metric values thus reduces to a search for a list of 

appropriate vectors vi,m of length (2m + 1). In other words, the candidate list ε contains a 

list of length-(4m + 1) vectors with variations in its elements only in the positions 

specified by vi,m. In general, (3.16) depicts the candidate list ε once populated, where the 

first vector ( )0,0
iv  is identical to that described by (3.13).   
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Here, the superscript (a,b) is used to denote the different vectors vi,m encountered in the 

search process. In the following subsections, we would give a description of the LS 

algorithm, which is a highly efficient approach to generate such a candidate list. 
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3.2.1 1-Opt Local Search Algorithm  

 Essentially, as the name suggests, the LS (Local Search) algorithm [25][28][29] 

takes a feasible solution as input and tries to search for a better solution by stepwise 

transition in the vicinity of the input solution. A generalization of the LS algorithm to the 

channel detection problem yields a fixed-radius sphere search algorithm with the center 

of the sphere fixed at the input solution. The quality of the solutions generated by the LS 

algorithm is thus heavily dependent on the quality of the input solution. As such, the 

vector defined in (3.13) is used as an input solution or specifically, as a starting vector to 

commence the search.  

Since we are required to find a candidate list based on large metric value vectors 

due to variations only in vi,m, we could thus utilize the metric function described in (3.6) 

as a form of objective (or cost) function in deciding which possible vectors vi,m to use 

when populating the candidate list ε. In another words, at each search step p, the 1-Opt 

LS algorithm is to produce an updated vector v(p+1) based on the previous estimate v(p) by 

maximizing the objective function ( )ivΩ  described in (3.6) as 
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where the subscript (i,m) in v(p+1) and v(p) described in (3.17) has been dropped to avoid 

unnecessary cluttering. As mentioned, the initial solution v(0) to commence the search is 

set to (3.13) and N1(v(p)) is defined as a Hamming sphere with radius-1 that consists of 

all possible binary vectors that differ from the central vector v(p) by one element, i.e., 
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where 
H

⋅  denotes the Hamming weight of its vector argument. The final candidate list 

will then be formed by all trial solutions encountered in the LS procedures at every step. 

For a better appreciation of the 1-Opt LS algorithm, consider an initial input 

solution vector of length-4 described by v(0) = [+1, +1, +1, +1]T. For the first search step, 

i.e., p = 1, the 1-Opt neighborhood of v(0) thus consists of four vectors [-1, +1, +1, +1]T, 

[+1, -1, +1, +1]T, [+1, +1, -1, +1]T and [+1, +1, +1, -1]T.  

Assuming that the updated vector v(1) selected based on (3.17) is the vector v(1) = 

[-1, +1, +1, +1]T, then for the second search step, i.e., p = 2, the 1-Opt neighborhood of 

v(1) thus consists of another 4 vectors [+1, +1, +1, +1]T, [-1, -1, +1, +1]T, [-1, +1, -1, +1]T 

and [-1, +1, +1, -1]T. The updated vector v(1) stated here is specially selected such that 

the first vector stated in the 1-Opt neighborhood of v(1) is identical to initial input 

solution v(0). As such, this particular candidate list ε generated by a 1-Opt LS with search 

step p = 2 for an input vector of length-4 consists of 8 distinct vectors (including the 

initial solution) as stated above.  

In general, at the end of a p-step 1-Opt LS optimization carried out with a 

starting vector of length-(2m + 1), the candidate list ε1-Opt, p consists of all trial solutions 

encountered in the LS procedure from which the APP LLR of bit bi can be approximated 

according to (3.10). The cardinality of this candidate list is thus | ε1-Opt, p | ≤  1 + p(2m + 

1) and hence the 1-Opt LS equalizer developed here has linear computational complexity 

(in terms of the noise-whitened channel memory length m).  
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3.2.2 k-Opt Local Search Algorithm 

 The basic principle behind the 1-Opt LS algorithm described in the previous 

section could be extended to derive a more powerful LS algorithm called the k-Opt LS 

algorithm [25] where the k-Opt neighborhood consists of all possible binary vectors that 

differ from its center vector by one up to k elements. For example, a 2-Opt LS algorithm 

is realized by flipping one up to two elements to reach a neighboring solution. As such, 

the size of a k-Opt neighborhood centered on a vector v(q) of length (2m + 1) is  
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where the superscript q is used to denote the search step for k-Opt LS algorithm similar 

to the superscript p that is used to denote the search step for 1-Opt LS algorithm.  

 From (3.19), it is easy to conceive that the computational complexity to search a 

complete k-Opt neighborhood is very high. To efficiently search a subset of the k-Opt 

neighborhood, a divide and conquer approach based on the principle of Lin-Kernighan 

algorithm [27] used for solving the well-known traveling salesperson problem (TSP) 

could be applied. The basic idea behind this approach is to decouple the k-Opt LS search 

operation into successive 1-Opt LS procedures. At each k-Opt search step q, a variable 

number of elements in the current solution, i.e., the vector fixed at center of search 

sphere, are flipped to arrive at a better neighboring solution. For a (2m + 1)-tuple 

candidate center vector considered in this chapter, a list of (2m + 1)(m + 1) = (2m2 + 3m 

+ 1) solutions is produced at each k-Opt step. Firstly, each bit of the input solution is 

flipped exactly once so that all the solutions in the list are distinct. The update estimate 

from this 1-Opt LS algorithm is then used as the input solution for a next 1-Opt LS 

algorithm. Both 1-Opt LS algorithms utilized here are embedded within one k-Opt 
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search step. The solution derived by the first 1-Opt LS algorithm may differ in one up to 

(2m + 1) elements from the initial solution.  

 For clarity purposes, the pseudo code of the k-Opt LS algorithm for the ISI 

channel detection problem is depicted below as Algorithm I. 

 
Algorithm I – (k-Opt LS for Soft-Output ISI Channel Detection) 

(1) Initialization: Obtain the initial solution of length-(2m + 1) v(0) as in (3.13) and 

compute the best objective (i.e., metric) value and the best solution based on this 

initial solution as ( )( ) ΩΩ ′→0v  and ( ) vv ′→0 ; 

(2) For search step q = 1, …, Q where Q is the total number of k-Opt LS search steps: 

a. Let v denote the current solution v(q-1) →  v. Generate a set C = {1, …, 

2m + 1} to record positions on which the elements of v will be flipped; 

b. Find the best neighboring solution vi by flipping elements recorded in C, 

using ( ) ( ) Cvv ∈∀≥ jji   ΩΩ , where vi (vj, respectively) differs from v 

by only the ith (jth, respectively) element; 

c. If  ( ) ΩΩ ′≥iv , update ( )( ) ΩΩ ′→0v  and vv ′→i  accordingly; 

d. Reduce the density of C by excluding the ith position as C = C \ {i}. Set vi 

→  v and repeat from step b until C = Φ ; 

e. If ( )1−≥′ qvΩΩ , set ( )( )qvΩΩ →′  and ( )qvv →′ ; 

(3) End. Store all trial solutions encountered in the k-Opt LS procedures described 

above in the candidate list εk-Opt, q. Compute APP LLR using (3.10) with this list. 

The cardinality of εk-Opt, q is thus given by | εk-Opt, q | ≤  1 + q(2m + 1)(m + 1). Hence, the 

k-Opt LS detector based on the Lin-Kernighan implementation has a square order 

computational complexity (in terms of the noise-whitened channel memory length m). 
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From the understanding of the operational procedures carried out by the LS 

algorithm described previously, it is interesting to compare the construction of the 

candidate list by the LS algorithm and the list-sphere decoding algorithm as described in 

[45]. The list-sphere decoder constructs a list of candidate symbol vectors by using a 

modification of the traditional real (or complex) sphere decoder to search a sphere 

around the zero-forcing (ZF) symbol detector based on a channel-dependent distance 

function. By doing so, it has to store all possible values of the real (or complex) lattice 

set. In contrast, the LS algorithm uses a bit vector obtained from other decoding stages 

as the center of a binary Hamming sphere, where the center and radius of the sphere is 

updated and fixed respectively, at each search step. The symbol vectors corresponding to 

binary vectors described here within the sphere are then used to construct a candidate 

list. Hence, the LS algorithm can thus be viewed as a binary list-sphere decoder that 

constructs the candidate list directly from the bit level.  

 

3.2.3 Low Complexity Implementation of Local Search Algorithm 

The most computationally intensive part of LS algorithm hinges on the 

calculation of the metric value or the objective function given by (3.6) for every 

candidate vector encountered in the LS procedures. A direct evaluation of this objective 

function for a particular candidate vector would require O(m2) floating point operations, 

or to be specific, 4m2 + 8m + 3 additions and 2 multiplications.  

In LS algorithms, the objective function can always be computed based on a 

neighboring candidate vector or solution that differ by only one bit from the old solution. 

As the objective value of the old solution is known, the objective value of the new 

solution can be obtained by simply focusing on the bit that has changed in value. In other 
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words, the structure of the local neighborhood searched by LS algorithms could be 

exploited to compute the metric values of all candidate vectors in each 1-Opt vicinity by 

drawing our attention to the gain gj associated with the change in the jth bit position.  

For simplicity of notations, let [ ]Tmjjj vvvvv 12111 ,,,,,, ++− −=′ LLv  denote a 

neighboring solution that differs from the current solution v by only the jth element. 

After some simplifications, the gain gj associated with flipping the jth element in v could 

thus be calculated as 

( ) ( )vv ΩΩ −′=jg        (3.20) 

     jj
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where jv  is the jth element in the vector mi,v  and nv  is the nth element in the vector vi 

and jλ  is the jth element in the vector λi as described by (3.7), (3.9) and (3.8) 

respectively. As such, evaluating a candidate vector can be accomplished in (2m + 1) 

additions and 2 multiplications. With a 1-Opt neighborhood size of (2m + 1), we would 

thus require O(m2) operations, or to be specific, (2m + 1)(2m + 2) = (4m2 + 6m + 2) 

additions and (4m + 2) multiplications, to compare the metric values of all the candidate 

vectors in this neighborhood. 

 From the simulation results that are to be shown in the penultimate section, it 

could be observed indirectly through BER performances that several search steps, i.e., p 

> 1 for 1-Opt LS or q > 1 for k-Opt LS, are usually required in LS algorithms to 

successively improve the quality of the solution generated. As such, instead of 

computing the gains at each search step using (3.21), a more efficient approach is to 

consider only the difference of gains from the second search step onwards.  
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 In more detail, we consider the computation of the difference of gain lg ′  at the 

second search step due to a flipping of the lth element in v′ , where we assume that v′  is 

selected as the input solution for the second 1-Opt search step. For ease of 

understanding, denote the input solution vector at the second search step as 

[ ]Tmlll vvvvv 12111 ,,,,,, ++− ′′′′′=′ LLv  which differs from the initial input solution v at the 

first search step by the jth element. Let [ ]Tmlll vvvvv 12111 ,,,,,, ++− ′′′−′′=′′ LLv  denotes the 

candidate vector encountered in the second search step with one bit different from the 

center v′  of the corresponding sphere. Since we are considering the second search step, it 

is thus implied that all the gains gj for j = {1, …, 2m+1}, associated with flipping the jth 

element in the initial solution v, have already been obtained from (3.21). Hence, the 

difference of gain lg ′  associated with flipping the lth element in v′  with respect to the 

initial vector v can then be obtained efficiently as 

      ( ) ( )vv ′−′′=′ ΩΩlg       (3.22) 
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     (3.23) 

where 

  mjljljl Hvvg +−= ,, 8Δ       (3.24) 

As such, the evaluation of the objective values of all the (2m + 1) 1-Opt neighboring 

solutions starting from the second search step can thus be achieved in O(m) operations, 

or to be specific, (4m + 2) additions only.  

 To further reduce computational complexity, we could apply the abovementioned 

concept of gains to the initialization of the objective values for each of the first input 

solutions derived at each turbo iteration. A direct implementation of this initialization 
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based on (3.6) would require L(4m2 + 8m + 3) additions and 2L multiplications. Since 

we are detecting one bit at a time, a more efficient method is to first calculate the 

objective values of an L-tuple sequence formed based on the tentative hard estimates fed 

back from the outer decoder in the previous iteration. If the refined bit estimate at the ith 

bit position delivered by the LS-based equalizer at the current iteration turns out to be 

different from the initial estimate, we can then update the metric value of the L-tuple 

sequence efficiently using the gain already obtained in the previous LS procedures. The 

updated metric value could then be used as the initial value for the detection of the (i + 

1)th bit. In this manner, the number of operations required for initialization is at most 

(2mL + 4L) additions and 2 multiplications.  

 The implementation details of the proposed LS-based turbo equalizer have been 

completed. To further reinforce the understanding of the essential principles in this 

section, the schematic diagram of our proposed LS-based turbo equalizer is shown in 

Figure 3.1. The structure shown here is similar to the original turbo equalizer proposed 

by Douillard et al. depicted in Chapter 1, except with the explicit inclusion of an 

additional feedback path where hard decision is taken on the a priori LLR to deliver the 

tentative hard estimates used as a starting input vector for LS algorithm to commence. 
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Figure 3.1: Turbo equalizer based on LS algorithms for coded ISI channels 
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3.3 Computational Complexity Analysis of Local Search  
Algorithm  

The computational complexities of the respective LS algorithms, namely 1-Opt 

and k-Opt, are directly proportional to the cardinality of their respective derived 

candidate list and the subsequent computation of the candidate vectors’ objective values. 

For a fair comparison with the other equalization algorithms described in Chapter 2, we 

compute the exact number of required operations based on these two aspects for the 

detection of each bit. The respective numbers of required operations shown in Table 3.1 

below is based on the efficient implementation described in Section 3.2.3. The cost of 

initialization is also included in the calculation of the computational complexities for the 

LS algorithms. 

 

 

 

Equalization  
Algorithms 

Number of real  
additions 

Number of real 
multiplications 

1-Opt LS 2m + 4 + (2m + 1)(2m + 2p) 4m + 2 
k-Opt LS 2m + 4 + (2m + 1)(4m + 2)q 4m + 2 

SW-BCJR 2m × (2mD + 7D + 2m + 10) 4 × 2m 
MMSE EXACT 8N2 + 2m2 - 10N + 6m + 8 16N2 + 4m2 + 18m - 4N + 10
MMSE APRX I 4N + 4m 4N + 8m + 8 
MMSE APRX II 10m + 8 10m + 10 

 

 At a quick glance, both the 1-Opt LS and the k-Opt LS equalizers have a square 

order computation complexity in terms of the channel memory length m. The SW-BCJR 

equalizer has an exponential computation complexity in m whereas the time-varying 

MMSE equalizer has a square order computational complexity in terms of both m and 

the filter length, N. The approximate MMSE implementations have linear complexity. 

Table 3.1: 
Number of required operations for the detection of one transmitted bit per iteration 

using varying SISO equalization algorithms where 
m: Channel memory length; D: SW-BCJR decision delay; N: Equalizer filter length; 

p: Number of search steps for 1-Opt LS; 
q: Number of search steps for k-Opt LS. 
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3.4 Decoding Threshold of k-Opt Equalizers 

 Density evolution (DE) [37]-[39] is a useful technique to analyze the 

convergence of iterative algorithms. The details of DE analysis for ISI channels can be 

found in [5], [38] and [39]. The basic idea is to introduce the assumption that the 

sequence transmitted over the channel is identically and uniformly distributed (i.u.d). In 

this section, we briefly describe how to use the DE technique to predict the decoding 

thresholds for LS-based turbo equalizer.  

 When applied to iterative equalization and decoding, DE analysis involves the 

computation of the probability density function (PDF) of the extrinsic information 

exchanged locally within each of the respective SISO modules and also globally 

between the different SISO modules. Specifically, the PDF of the extrinsic information 

fd at the output of the equalizer can be expressed as a function of the PDF of the extrinsic 

information fo at its input, where the subscripts d and o are used to denote extrinsic 

information delivered by the equalizer and the decoder respectively. Since no analytical 

expression is known, a Monte Carlo approach [38] is used to obtain the transfer function 

Fd of the equalizer, i.e.,  

( ) ( )( )ob
q

od
q

d NEfFf ,1−=      (3.25) 

where the superscript q denotes the qth turbo iteration between the equalizer and decoder. 

Here, q could be any integer from one up to Q where Q is the predetermined number of 

iterations normally initialized in a turbo equalization scheme. Due to the nonlinear 

nature of ISI channels, the sequence input to the channel is not assumed to be the all-

zero vector but is a sufficiently long randomly selected i.u.d sequence and the a priori 

input for the equalizer is generated according to the PDF of the extrinsic LLR (observed 

through a histogram approach) from the decoder. The PDF fd is then obtained by 



Chapter 3. Heuristic-Based Local Search Turbo Equalizer 

 

  67    

observing the histogram of the equalizer output LLR. In a similar vein, we can also 

obtain the transfer function Fo of the decoder which is given by  

( ) ( )( )q
do

q
o fFf =      (3.26) 

where an all-zero input sequence can be used here to approximate fo. From (3.25) and 

(3.26), we can then represent the iterative receiver as a single-parameter system as 

  ( ) ( )( )( )ob
q

odo
q

o NEfFFf ,1−=      (3.27) 

By definition, the decoding threshold is stated as the minimum SNR value Eb/No 

described above in (3.27) in which the decoding errors approach zero when the 

codeword length L and the total number of iterations Q are increased to infinity [38].  In 

a mathematical representation, the decoding threshold Cth of the iterative system could 

thus be written as 

     ( ) ( ){ }∫= ∞−∞→∞→

0
app,limlim:inf ξξ dfNEC q

oqLobNEth
ob

   (3.28) 

where ( )q
of app,  denotes the PDF of the a posteriori output from the decoder which could be 

obtained by  

( ) ( ) ( )q
o

q
d

q
o fff ⊗=app,      (3.29) 

As before, the symbol ⊗  is used to denote the convolution operator.  

 Based on the above procedures outlined, the decoding thresholds for the k-Opt 

LS-based Turbo equalizer as employed in Channel II (Proakis C Channel) described in 

Chapter 2 for the number of search steps q = 1 and q = 2 are 4.5 dB and 4.2 dB 

respectively. In the next section, we would show that the decoding thresholds obtained 

here can be used to predict the waterfall region that is a typical phenomenon in the BER 

plot of an iteratively decoded system.  
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3.5 Simulation Results and Discussion 

 In this section, we present the BER performance results of our proposed 

heuristic-based LS turbo equalizer. Key results of the 1-Opt LS and k-Opt LS turbo 

equalizer with varying search steps p and q respectively will be shown. All the general 

system parameters described in Chapter 2 remains identical here so as to allow a fair 

comparison with the trellis-based and filter-based equalization algorithms described in 

the previous chapter. The only difference lies in the receiver structure whereby the LS-

based turbo equalizer utilized is shown in Figure 3.1 while all others utilized that 

depicted in Figure 1.2.  

In addition, since it is desirable for the LS-based turbo equalizer to receive a 

good quality input solution for the search to commence, we utilize the time-invariant 

MMSE filter derived based on the zero a priori LLR scenario (stated in Section 2.3.2 

A)) for the first turbo iteration and thereafter switch the equalization task to the LS 

equalizer for all subsequent iterations. It is to be noted here that this choice is not a 

necessity; any other equalization algorithms are also possible. Essentially, the intention 

is to find an equalizer implementation based on the lowest possible computational 

complexity while providing a relatively good quality initial solution for the LS equalizer 

to commence its search. In another words, the proposed LS-based equalizer can also be 

used in the first iteration. However, due to an absence of the a priori LLR at the first 

iteration, a good quality input solution cannot be formed and as such, a randomly chosen 

input solution from the solution space would be selected to commence the search. 

Typically, a randomly chosen input solution could be the all-zero vector or the all-one 

vector. Consequently, this random choice will, in general, have a low objective value 

and therefore increase the number of iterations required to realize the potential BER 
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improvement. For all simulation results presented here, it will be implicit that the first 

turbo iteration is carried out by the abovementioned time-invariant MMSE filter.  

 First, we consider turbo equalization over the mild ISI conditions described by 

Channel I in Table 2.2 given in the previous chapter. The BER performances over this 

channel are shown in Figure 3.2. Here, several LS-based equalizers are considered in the 

simulation studies, namely, the 1-Opt LS equalizer with search steps p = 1 and p = 2, and 

the k-Opt LS equalizer with search step q = 1. For comparison purposes, the BER 

performance curves of the various equalization algorithms presented in Chapter 2 are 

also replicated here. As observed, the 1-Opt LS equalizer has a performance loss of 

about 0.7 dB compared with the FC-BCJR equalizer at a BER of 10-2. Increasing the 

value of p to 2 reduces the loss to 0.4 dB. Though not shown here, using more search 

steps (e.g., p = 4) for 1-Opt LS does not translate to much more performance gain. As 

such, we switch our attention to the more powerful k-Opt LS algorithm with a search 

step q = 1 and discover that it outperforms all other equalization algorithms and is very 

close in performance to the FC-BCJR equalizer. For the k-Opt LS with q = 1, the 

equalizer searches 46 distinct candidate vectors per bit as opposed to the 1-Opt LS with 

p = 1 and p = 2 which only searches 10 and 19 distinct candidate vectors per bit 

respectively.  

 Next, we carry out simulation studies over the severe ISI channel denoted as 

Channel II in Table 2.2 of previous chapter. As mentioned before, this channel is also 

known as the Proakis C Channel in [40]. All the performance curves for the various 

equalization algorithms described in Chapter 2 are similarly shown here in Figure 3.3 for 

ease of comparison. We carry out simulation studies using more powerful LS 

algorithms, namely the 1-Opt LS with a search step p = 3 and the k-Opt LS with a search 
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step q = 1 and q = 2. As observed in Figure 3.3, the 1-Opt LS, despite having a larger 

search step of p = 3, is not able to effectively mitigate the detrimental effects of ISI 

introduced by this channel. However, a significant performance gain of about 1.5 dB at a 

BER of 10-3 is attained simply by switching to the k-Opt LS with a search step of q = 1. 

Noting that the k-Opt LS with q = 1 still has some performance gap to the SW-BCJR 

performance curve, we increase the search step to q = 2 and discover that a further 

improvement of approximately 0.8 dB is realized at this BER of 10-3. At this BER, the 

proposed k-Opt LS with q = 2 outperforms the M-BCJR algorithm with M = 5 and even 

that of the time-varying MMSE equalizer. The k-Opt LS with q = 2 is also able to attain 

the ISI-free bound (“AWGN” curve) much earlier than both the M-BCJR and the time-

varying MMSE equalizer at an SNR of approximately 5.3 dB.  

 In Figures 3.4 and 3.5, we present BER performance results of some selected LS-

based equalizers as a function of the number of iterations under the two ISI conditions 

described by Channel I and Channel II respectively. In general, the number of iterations 

needed to converge to the performance of the SW-BCJR equalizer is a function of the 

SNR values. Convergence of a turbo equalizer is attained when further iterations does 

not translate to any additional BER improvements. As observed in Figure 3.4, increasing 

the search step from p = 1 to p = 2 for the 1-Opt LS leads to a much faster convergence. 

The switching from a 1-Opt LS to the more powerful k-Opt LS also results in a similar 

phenomenon. Comparing only the k-Opt LS with that of the time-varying MMSE 

equalizer in Figures 3.4 and 3.5, it could be observed that in general, under various ISI 

conditions and SNR values, the k-Opt LS is able to converge much faster than the time-

varying MMSE equalizer and in some cases, the convergence for the k-Opt LS even 

occurs at a much lower BER that that of the time-varying MMSE equalizer. For 
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example, with reference to Figure 3.5, the k-Opt LS (with q = 2) is able to attain 

convergence using approximately 12 iterations whereas that of the time-varying MMSE 

equalizer requires approximately 3 more iterations. Further, though the time-varying 

MMSE equalizer requires more iterations for convergence, the corresponding BER 

attained is still slightly worse off than the k-Opt LS by half an order of magnitude 

difference.  

 In general, a faster rate of convergence for a particular turbo equalizer 

implementation means fewer numbers of turbo iterations are required to attain a 

particular BER. This thus translates to a shorter decoding delay and also indirectly 

lowers the overall computational complexity of the receiver system. To be more specific, 

if a turbo equalizer employs a low-complexity equalization algorithm but can only attain 

the desired BER performance after many rounds of iterations, the benefits of its low 

complexity implementation may thus be significantly reduced. On the other hand, a 

slightly more computationally intensive algorithm with a comparatively smaller number 

of iterations needed to attain that desired BER performance may be highly preferred 

instead. From the rate of convergence and the corresponding BER attained at 

convergence shown in Figures 3.4 and 3.5 together with their respective computational 

complexities shown in Table 3.1 in this chapter, we can conclude that the k-Opt LS with 

q = 1 and q = 2 offer the best of both worlds, in terms of faster convergence with low 

complexity and excellent BER performances, as compared with all other equalization 

algorithms described in this thesis. In general, it is also observed that with an increase in 

the severity of the ISI, an improvement in performance can be attained by switching the 

search step of the k-Opt LS from q = 1 to q = 2.  
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 Since the k-Opt LS equalization algorithm offers an excellent alternative to the 

trellis-based and filter-based equalization algorithms when employed in a turbo setup, 

we further illustrate their BER performances curves in Figures 3.6 and 3.7 as the number 

of iterations proceed for q = 1 and q = 2 respectively. The respective decoding thresholds 

(denoted as Cth) determined by density evolution are also shown in the figures to mark 

the start of the waterfall region.  
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Figure 3.2: Performance comparisons between the proposed heuristic-based LS 
turbo equalizers and other equalization algorithms for Channel I 
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Figure 3.3: Performance comparisons between the proposed heuristic-based LS 
turbo equalizers and other equalization algorithms for Channel II  

(Proakis C Channel) 
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Figure 3.4: Performance of selected equalization algorithms at different iterations  
for Channel I 

Figure 3.5: Performance of selected equalization algorithms at different iterations for 
Channel II (Proakis C Channel) 
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Figure 3.6: Convergence behavior of k-Opt LS turbo equalizer with q = 1 
for Channel II (Proakis C Channel) 

Figure 3.7: Convergence behavior of k-Opt LS turbo equalizer with q = 2 
for Channel II (Proakis C Channel) 
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3.6 Chapter Summary 

The implementation procedures of the proposed heuristic-based LS turbo 

equalizer have been described in details in this chapter. An introduction to the rich field 

of heuristics with an emphasis on LS algorithms in relation to the turbo equalization 

scheme is highlighted as a prelude to the presentation of these implementation details. 

From the analysis of these algorithms’ computational complexities and their 

corresponding BER simulation results obtained, we show that the proposed LS-based 

equalizer can provide adjustable performance/complexity tradeoffs with a simple 

modification in their number of search steps. Generally, the k-Opt LS equalization 

algorithm outperforms that of the 1-Opt LS and BER performance improvements could 

be expected by increasing the number of search steps. Comparing the k-Opt LS 

equalization algorithm with the trellis-based and filter-based equalization algorithms as 

employed in a turbo equalization scheme, we also show that the k-Opt LS turbo 

equalizer with a search step of q = 2 outperforms the time-varying MMSE equalizer and 

attains very closely to the performance of the BER-optimal FC-BCJR equalizer under 

severe ISI conditions, with a much lower computational complexity. As such, the 

proposed k-Opt LS turbo equalizer is a viable alternative to these two well-known 

classes of equalization algorithms, in terms of both BER performance and computational 

complexity considerations.  
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Chapter 4 

 

EXIT Chart Analysis of Heuristic-Based Local Search 

Turbo Equalizer 

 The implementation details of the proposed heuristic-based LS turbo equalizer 

have been presented. Simulation results show that it can attain very close to the BER-

optimal FC-BCJR turbo equalizer while yet alleviating the huge computational 

complexity of the latter tremendously. In this chapter, an investigation into the proposed 

heuristic-based LS turbo equalizer is carried out through the use of the EXtrinsic 

Information Transfer (EXIT) chart. The EXIT chart is a useful analytical tool to 

investigate or predict the asymptotic behaviors of a turbo equalizer in the waterfall 

region. We begin this chapter with an introduction to the EXIT chart, after which the 

basis for such an analytical tool is provided in Section 4.2. The original EXIT chart as 

shown in Section 4.3 is found to be inaccurate in providing useful insights. As such, a 

new EXIT chart for the k-Opt turbo equalizer is proposed in Section 4.4 and subsequently 

verified in Section 4.5 to be more accurate in its asymptotic predictions than the original 

EXIT chart. Through the proposed EXIT chart for the k-Opt turbo equalizer, comparisons 

with selected equalization algorithms are then carried out in Section 4.6.  Finally, some 

simulations results are presented after the EXIT chart analysis on the k-Opt turbo 

equalizer reveals its robustness against imperfect channel impulse response knowledge.  
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4.1  Introduction to EXIT Chart 

 The EXtrinsic Information Transfer (EXIT) chart [9] was originally proposed by 

Stephan ten Brink as a semi-analytical tool to investigate the convergence behavior of 

iteratively decoded parallel concatenated codes (also known as turbo codes). In a similar 

vein as the application of turbo processing concept to the equalization task, the EXIT 

chart could also be likewise applied to investigate the convergence behavior of a turbo 

equalizer [5][46]-[52].  

 Basically, as the name suggests, the EXIT chart is used to track the iterative 

transfers of extrinsic information (expressed in the form of LLR’s) from one SISO 

module to the next by monitoring the evolution of the probability density function (PDF) 

of the extrinsic LLR indirectly through an information-theoretic quantity called mutual 

information. From the EXIT chart, the improvement on the quality of the extrinsic LLR 

as the iterations proceed could be visualized explicitly as a staircase-like trace (also 

known as trajectory) bounded by the transfer functions of the respective constituent SISO 

modules in the turbo setup.  

A direct application of the EXIT chart [5] is to allow an asymptotic analysis (in 

the sense of very large frame size; typically about 105 bits or more) of a particular turbo 

equalizer implementation in the waterfall region without the need to carry out time-

consuming closed-loop simulations on the actual system setup such as that depicted in 

Figure 1.2. In another words, the staircase-like trajectory bounded by the respective 

transfer functions of the equalizer and decoder in the turbo setup could be used to predict 

the average behavior of the turbo equalizer (for very large frame size) in terms of the 

associated BER at each iteration, the number of iterations required for convergence to a 

fixed point such that further iterations does not lead to any BER improvements and also 
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its decoding threshold. For clarity, we call the staircase-like trace bounded by the transfer 

functions depicted in the EXIT chart as the predicted trajectory and the trace acquired by 

closed-loop simulations as the averaged system trajectory. The averaged system 

trajectory is simply obtained by averaging the snapshot system trajectories derived from 

repeated closed-loop simulation trials. Each snapshot system trajectory represents the 

improvement in the quality of the extrinsic LLR, measured in terms of the mutual 

information between the output extrinsic LLR derived from the constituent SISO 

modules in the turbo setup and the respective bits at the transmitter end, as the iterations 

proceed, for a particular simulated frame carried out at a predetermined SNR value. From 

a slightly different perspective, the EXIT chart allows the asymptotic averaged system 

trajectory and its associated parameters of interest at a particular SNR value to be 

obtained indirectly through the predicted trajectory, without carrying out time-consuming 

closed-loop simulations on very large frame size.  

 The transfer functions of each constituent SISO modules, namely, the equalizer 

and the decoder, are obtained separately by carrying out open-loop simulations 

independently. Essentially, a transfer function simply depicts the quality of the output 

extrinsic LLR derived from a particular SISO module, given a specific quality of input a 

priori LLR. For a serially concatenated receiver model such as the turbo equalizer 

structure depicted in Figures 1.2 and 3.1, an important distinction exists between the 

transfer function of the equalizer and that of the decoder. Basically, the transfer function 

of the equalizer depicts the input/output relationship of the LLR quality at a particular 

SNR value, whereas the transfer function of the decoder has a fixed input/output 

relationship irregardless of the SNR value. Another aspect to note stems from the 

simulation setup for the decoder. Since the open-loop simulation carried out to obtain the 
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transfer function for the decoder yields the data estimate as a side product, a relationship 

between the BER and corresponding value of the mutual information between the output 

extrinsic LLR and the coded bits can thus be established and used for BER prediction. 

The simulation setup for generating the transfer function of the equalizer and that of the 

decoder are shown at the end of this section as Figures 4.1 and 4.2, respectively.  

As mentioned earlier on, the quality of the LLR measured by the EXIT chart is 

quantified through the computation of the mutual information between the respective 

LLR and its corresponding bits at the transmitter end. Other means of quantifying the 

quality of the LLR exist in the literature, for example, the measurement of its SNR value 

[53], the tracking of its means or variances [9], or some form of correlation measure [54] 

as the iterations proceed.  

However, there are several advantages to the use of mutual information as a form 

of quantifier. Firstly, the use of mutual information as a quantifier is shown in [9] to 

provide a better agreement between the predicted trajectory obtained by the EXIT chart 

and the corresponding asymptotic averaged system trajectory. A close agreement 

between the predicted trajectory and its corresponding asymptotic averaged system 

trajectory is crucial in allowing an accurate prediction of the various key performance 

parameters from the EXIT chart. Secondly, since the value of mutual information ranges 

from zero to one, its use can therefore compactly describes the quality of the extrinsic 

LLR and hence allows a convenient graphical display of the trajectory, unlike its SNR 

value counterpart which could have a range up to infinity. Furthermore, the use of mutual 

information as a quantifier in EXIT chart can also provide an information-theoretic 

interpretation to the well-known Shannon’s noisy channel coding theorem [10][55] 

through the respective transfer functions’ area properties when the inner code for a 
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serially concatenated scheme is of rate-1, such as the data transmission model used 

throughout the whole of this thesis as depicted in Figure 1.1.  

 To carry out open-loop simulations of the respective SISO modules, a modeling 

of the input a priori LLR is required. Typically, the sequence of input a priori LLR is 

modeled as consistent uncorrelated Gaussian random variables with its absolute mean 

half of that of its variance in conjunction with the known transmitted bits. The quality of 

the input a priori LLR quantified through mutual information is varied from zero (which 

denotes no a priori information) to a value of one (which denotes perfect a priori 

information) indirectly through a suitably chosen variance parameter, 2
Lσ . Given a 

particular quality of input a priori LLR determined by 2
Lσ , the corresponding output 

extrinsic LLR from the respective SISO modules are then obtained by simulations where 

the PDF of the output extrinsic LLR are derived through a histogram measurement. From 

the derived PDF, the mutual information between the output extrinsic LLR and the 

corresponding bits used in the open-loop simulation is then numerically computed. In 

short, even though the input a priori LLR for each mutual information value is modeled 

and assumed to be Gaussian with parameters given by ( )22 ,2 LLN σσ , the mutual 

information for the output extrinsic LLR is obtained without any reliance on this 

assumption.  

In the next section, a simple derivation is provided to justify the reason behind the 

Gaussian model and its associated parameters used in the modeling of the input a priori 

LLR. Thereafter, the one-to-one relationship between the values of the variance 

parameter 2
Lσ  and the mutual information is shown.  
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Figure 4.1: Simulation setup for generating the transfer function of the equalizer 

Figure 4.2: Simulation setup for generating the transfer function of the decoder 
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4.2 Principles of EXIT Chart  

A)   Input a priori LLR model 

Consider a simple transmission process when the channel corrupts the transmitted 

signal by the addition of white Gaussian noise. The corresponding received real-valued 

discrete-time signal z is thus  

     nbz +=            (4.1) 

where b denotes the transmitted binary bit in BPSK format and n denotes an AWGN 

sample with mean zero and variance 22
on N=σ  (double-sided noise power spectral 

density). From (4.1), the corresponding LLR L (in natural log format) could be written as 

         
( )
( )1

1
log

−=

+=
=

bzP
bzP

L e        (4.2) 

where the conditional PDF in (4.2) is given as 

    ( ) ( ) { } ( )∞∞−∈−+∈
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    (4.3) 

Substituting (4.3) into (4.2) and simplifying, the LLR value can then be expressed as 

zL
n
2

2
σ

=                    (4.4) 

   ( )nb
n

+= 2

2
σ

        (4.5)  

From (4.5), we thus could visualized the LLR L as a Gaussian random variable with 

associated parameters given by 

    b
n

L 2

2
σ

μ =             and   2
2 4

n
L σ

σ =       (4.6)  

where Lμ  and 2
Lσ  denotes the mean and variance of the LLR L, respectively.  



Chapter 4. EXIT Chart Analysis of Heuristic-Based Local Search Turbo Equalizer 

 

 84    

From (4.6), an important relationship between the absolute value of the mean of the LLR 

and its corresponding variance is established as  

 
2

2
L

L
σ

μ =         (4.7) 

The LLR expression used in (4.2) has a form identical to the definition of 

extrinsic information as observed earlier on in Chapter 2 in the exposition of the MMSE 

equalizer. Since the extrinsic information derived from one SISO module is used as a 

priori information for the next SISO module in a turbo setup, the above derivation 

leading to the relationship in (4.7) thus forms the basis for the modeling of the a priori 

LLR at the input of each SISO module. In particular, two important properties required 

for the modeling of the input a priori LLR could be deduced from the derivation, namely: 

(1) The input a priori LLR of each transmitted bit fed into each SISO module is 

assumed to be statistically independent. 

(2) Each a priori LLR is modeled as a Gaussian random variable with its absolute 

mean and variance related as in (4.7). In addition, the mean of a particular a priori 

LLR takes the sign of its corresponding bit that it represents.  

Interestingly, the important relationship in (4.7) can also be derived using the 

consistency condition [37] for the distribution of the LLR L using 

            ( ) ( ) ( )xlxXlPxXlP exp=−==       (4.8) 

where the conditional probability of the random variable L given X = x stated in (4.8) is 

of a Gaussian distribution given by  

                          ( ) ( ) ( )∞∞−∈
⎭
⎬
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⎩
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L σ
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B)   A measure of information content – Mutual Information 

 Mutual information is a measure of the amount of information that one random 

variable contains about another [55]. In simpler term, it indicates how much one knows 

about a random variable indirectly through the observation of another. Mutual 

information is defined between two random variables, say X and Y, as 

      ( ) ( ) ( )
( ) dydx
xP
yxP

yxPYXI   log,; 2∫ ∫=     (4.10) 

where the range of mutual information (used in the context of the EXIT chart) is  

( ) 1;0 ≤≤ YXI      (4.11) 

For ( ) 0; =YXI , it implies no knowledge about the random variable X could be derived 

from observing random variable Y. For ( ) 1; =YXI , it indicates that we have a perfect 

knowledge of random variable X simply by observing random variable Y alone.  

 Relating the concept of mutual information to measure the improvement in the 

reliability of the a priori LLR and extrinsic LLR as the iterations proceed for a turbo 

receiver with respect to the transmitted bits, we could rewrite (4.10) as  

          ( )
{ }

( ) ( )
( ) ( ) dl

BlPBlP
bBlP

bBlPBLI
b

 
11

2
log

2
1; 2

1,1 −=++=

=
=∫∑=

∞+

∞−−+=
  (4.12) 

where random variable L denotes either the a priori LLR or the extrinsic LLR observed 

at the receiver end, and random variable B refers to the transmitted binary bit associated 

with the observed LLR L. In (4.12), it is assumed that the binary bit, transmitted in BPSK 

format, is equiprobable. In the context where L is the a priori LLR, for ( ) 0; =BLI , it 

represents zero a priori information and for ( ) 1; =BLI , it indicates perfect a priori 

information is available to the respective SISO modules in the turbo setup [5][9][10].  
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Substituting the statistical model of the a priori LLR L derived previously in 

Section 4.2 A) into (4.12), the input mutual information could then be rewritten as 
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where InputI  is used to denote the mutual information between the input a priori LLR fed 

to the respective SISO modules in the turbo setup and the associated transmitted bit. 

From (4.13), a one-to-one relationship exists between 2
Lσ  and InputI  which is shown in 

Figure 4.3. For easy reference, the variations of the variance parameter 2
Lσ  in relation to 

the values of the mutual information InputI  are also provided in Table 4.1.  

 To compute the mutual information between the extrinsic LLR and their 

corresponding binary bits at the transmitter end using (4.12), a histogram approach is 

used to gather a long sequence of extrinsic LLR into evenly-spaced bins to estimate the 

PDF of the extrinsic LLR. Using such an approach in (4.12), the output mutual 

information can then be rewritten as 
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where N denotes the number of histogram bins used to collect the extrinsic LLR and    

          ( )
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           ( )
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Note that in the event where the numerator goes to zero or both the numerator and 

denominator go to zero in (4.14), we use the following convention ( ) 00log0 =  and 

( ) 000log0 =  which could be arrived at from continuity [55]. 
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Table 4.1: Variations of input mutual information and its corresponding variance 

Figure 4.3: One-to-one mapping between variance and input mutual information 
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4.3 EXIT Chart Analysis on k-Opt Turbo Equalizer 

The respective transfer functions of the k-Opt equalizer and RSC decoder are 

generated from the simulation setup shown in Figure 4.1 and 4.2, respectively using the 

Gaussian model for the input a priori LLR described in Section 4.2 A) in conjunction 

with the simulation parameters stated in Table 4.1. The frame size for generating the 

transfer functions is set to 104 averaged over 100 trials. The EXIT chart of the k-Opt 

turbo equalizer is then subsequently obtained by plotting the transfer functions of both 

the equalizer and decoder in a single figure, with the ordinate of the decoder’s transfer 

function flipped with its abscissa. To facilitate analysis and discussion, we restrict the 

EXIT chart analysis to the turbo equalizer employing k-Opt LS equalizer with search step 

q = 2 over Channel II (Proakis C Channel) and decoder for a rate-1/2 RSC encoder with 

generator polynomials in octal form given by (g1, g2) = (7, 5). As such from here on, we 

would simply refer to the abovementioned as the k-Opt equalizer and decoder, 

respectively. The resultant EXIT charts at a SNR of 5.0 dB are shown in Figures 4.4 and 

4.5. Note that the SNR description of the EXIT refers to the SNR value of the AWGN 

samples ni as in Figure 4.1 for the generation of the equalizer’s transfer function.  

As mentioned in Section 4.1, a close agreement between the predicted trajectory 

and the averaged system trajectory is important in allowing an accurate asymptotic 

analysis and prediction of the key performance indicators of the turbo equalizer through 

the use of the EXIT chart. From here on, unless otherwise stated, the averaged system 

trajectories shown in the EXIT charts are obtained through simulations of the actual 

system setup at the same SNR value as the equalizer’s transfer function using a data 

frame size of 105 averaged over 100 trials or equivalently 100 snapshot system 

trajectories.  
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In Figure 4.4, the averaged system trajectory obtained using the k-Opt equalizer at 

the first iteration with input solution the all-one vector is shown together with the 

predicted trajectory obtained from the EXIT chart. From Figure 4.4, it is observed that 

the predicted trajectory and the averaged system trajectory match well with each other 

only at the first iteration, but subsequent iterations between the two deviate significantly. 

A particular iteration can be easily seen from the trajectory as a vertical upward 

movement depicting the equalization process and a horizontal rightward movement 

depicting the decoding process.  

In Figure 4.5, the averaged system trajectory is obtained through the use of the 

MMSE APRX I equalizer in the first iteration to provide a better quality input solution 

(as compared to the all-one vector). Thereafter in subsequent iterations, the equalization 

task reverts back to the proposed k-Opt equalizer. In such a system implementation, the 

overall turbo equalizer is considered a hybrid one [5]. As such, to obtain the predicted 

trajectory from the EXIT chart, it is required for both the transfer functions of the MMSE 

APRX I equalizer and that of the k-Opt equalizer to be plotted together. To avoid 

cluttering of the figures, we only show the transfer function of MMSE APRX I equalizer 

at zero mutual information since it is only used in the first iteration. The predicted 

trajectory is subsequently obtained as shown by the dash lines in Figure 4.5. Comparing 

the predicted trajectory and the averaged system trajectory, it is observed that both 

trajectories matches well for the first one and a half iterations and subsequently deviate. 

Here, we refer to the first half iteration as the equalization process.  

To understand the reasons behind the deviation between the predicted trajectory 

and the averaged system trajectory, an investigation into the PDF of the a priori LLR and 

extrinsic LLR is carried out though simulation of the actual system. The investigation 
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into the PDF of the LLR involves two aspects, namely, the progression of the variance 

parameters over the range of mutual information and the validity of the Gaussian 

assumption for the modeling of the a priori LLR. From the histogram plots obtained from 

the decoder’s extrinsic LLR, it is observed that the mean of the LLR does not increase as 

much as that depicted indirectly by the simulation parameters stated in Table 4.1.  

To quantitatively validate the Gaussian model, we use empirical skewness 

[56][57] and kurtosis [56]-[58] to determine the Gaussianity of the LLR measured at the 

output of both the equalizer and decoder, since many PDF have a signature relationship 

between their skewness and kurtosis. Skewness S and kurtosis K are the third and fourth 

moments of a PDF defined as 
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where M denotes the frame size of extrinsic LLR, li denotes the value of the ith LLR. 

Here, η and σ denote the empirical mean and empirical standard deviation of the extrinsic 

LLR, respectively. For a Gaussian PDF, its skewness and kurtosis is 0 and 3, 

respectively. The variation of skewness and kurtosis of the PDF of the extrinsic LLR at 

the output of the equalizer and decoder as the iterations proceed are obtained from 

simulation using a data frame size of 32768 (averaged over 100 trials) and are shown in 

Figures 4.6 and 4.7, respectively. From these figures, it could easily be observed that the 

Gaussian PDF is not an accurate model for the input a priori LLR.  
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Figure 4.4: EXIT chart of k-Opt turbo equalizer with random start at 5.0 dB for 
Channel II (Proakis C channel) 

Figure 4.5: EXIT chart of k-Opt turbo equalizer with MMSE APRX I 
as first iteration at 5.0 dB for Channel II (Proakis C channel) 
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Figure 4.6: Gaussianity of extrinsic LLR measured at the output of 
equalizer at 5.0 dB 

Figure 4.7: Gaussianity of extrinsic LLR measured at the output of 
RSC decoder at 5.0 dB 
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4.4 Proposed EXIT Chart of k-Opt Turbo Equalizer 

 From the previous section, the EXIT chart obtained from a consistent Gaussian 

assumption with the parameters stated in Table 4.1 is found to be inaccurate in providing 

an asymptotic prediction of the averaged system trajectory of the k-Opt turbo equalizer.  

As such, in this section, we propose a general approach extended from the 

principles of the EXIT chart to obtain the respective transfer functions of the k-Opt 

equalizer and its corresponding RSC decoder such that the predicted trajectory acquired 

from the proposed EXIT chart can better match the averaged system trajectory.  

The general idea is based on a “trajectory-fitting” approach together with the 

assumption that the exact model for the PDF of the a priori LLR is not important; the 

critical aspect simply lies in finding a convenient and suitable description for the input a 

priori LLR at certain values of mutual information that can constantly give an accurate 

representation of the transfer functions for the equalizer and decoder obtained through the 

observation of the system trajectories.  

An outline of the proposed trajectory-fitting approach is as follows: 

(1) At a suitably chosen SNR value that is slightly above the decoding threshold, plot a 

few snapshot system trajectories (obtained using a frame size of at least 105 data bits) 

on the original EXIT chart obtained as in Section 4.2. If the decoding threshold is 

unknown, simply plot the snapshot system trajectories at any SNR value where the 

trajectories can extend as much as possible over the entire range of Eq
InputI . 

(2) Approximate the equalizer’s transfer function at certain critical points based on the 

area marked out by the snapshot system trajectories by observing how these points 

relate to the original transfer function of the equalizer. Get the desirable parameters 
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from the original transfer function of the equalizer and set it for use in the modeling 

of the a priori LLR for these points using a Gaussian assumption as before.   

(3) For the decoder’s transfer function, simply choose either a chi-square distribution or a 

Student’s t distribution to model the input a priori LLR. The extra parameter that is 

available from such a PDF is the degree(s) of freedom which can be suitably selected 

to adjust the transfer function of the decoder at various values of input mutual 

information to fit the system trajectories. Once these parameters are obtained for a 

decoder matched to a RSC encoder with particular generator polynomials, it can be 

freely extended to derive the transfer functions of other decoders matched to other 

generator polynomials since the decoder’s transfer function is a fixed function that is 

independent of SNR values.  

 

4.4.1 Transfer Function of k-Opt Equalizer  

 The original transfer function of the k-Opt equalizer is plotted along with five 

snapshot system trajectories at a SNR of 5.0 dB as shown in Figure 4.8. These snapshot 

trajectories are obtained through simulations with the k-Opt equalizer given an all-one 

input solution in the first iteration.  From the area marked out by the snapshot system 

trajectories in Figure 4.8, it is observed that we could approximate the transfer function of 

the k-Opt equalizer at three critical points, namely, at input mutual information of values 

0, 0.5 and 1.0 accordingly. Two straight lines are then used to connect these critical 

points to depict the transfer function of the k-Opt equalizer at this particular SNR value.  

 At zero input mutual information, it is observed that the corresponding output 

mutual information at this particular point is heavily reliant on the quality of the input 

solution in which the k-Opt local search commence. In another words, from the first 



Chapter 4. EXIT Chart Analysis of Heuristic-Based Local Search Turbo Equalizer 

 

 95    

straight dash line connecting the points corresponding to input mutual information of 0 

and 0.5 as drawn in Figure 4.8, it is found that the particular output mutual information at 

this point of zero input mutual information could be approximated as 

( ) ( )
2IN

Eq
Output1IN

Eq
Output

Eq
Output I75.0I25.0I ×+×≈      (4.19) 

where ( )
IN1

Eq
OutputI  and ( )

IN2
Eq
OutputI  denote the output mutual information of the k-Opt 

equalizer obtained by providing the k-Opt equalizer with zero input LLR with the all-one 

input solution, and a worst case of all-wrong input solution to commence its search 

respectively.  

 At input mutual information of 0.5, the critical point relates back to the original 

transfer function at input mutual information of 0.358 as shown in Figure 4.8. At an input 

mutual information of 0.358, the corresponding variance parameter as obtained from 

Figure 4.3 is found to be 2.611. As such, to obtain the transfer function of the k-Opt 

equalizer at input mutual information of 0.5, we replace the variance parameter of 4.1761 

as shown in Table 4.1 with 2.611 while yet maintaining the Gaussian model with its 

mean half of its variance as before. 

 At input mutual information of 1.0, the output mutual information of the second 

straight dash line is found to coincide with that obtained from the original transfer 

function of the k-Opt equalizer. As such, the output mutual information for input mutual 

information of 1.0 is obtained similarly as before.  

 A further note here is that, except for zero mutual information, the input solution 

to commence the search is obtained directly by taking hard decision based on the a priori 

LLR generated as described above.  
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4.4.2 Transfer Function of RSC Decoder  

 To obtain the transfer function of the RSC decoder, we model the input a priori 

LLR with the corresponding PDF depicted in Table 4.2 together with the same variance 

parameters as stated in Table 4.1. The mean of the input a priori LLR at the various 

values of mutual information is also half of the corresponding variance parameters.  

 The use of either a chi-square distribution or a Student’s t distribution is to allow 

a third parameter (i.e., degrees of freedom) for adjusting the decoder’s transfer function 

to fit the trajectories. It is to be noted that the PDF selected may not be identical to the 

actual PDF of the input a priori LLR. Nevertheless, once selected and fixed, these 

parameters may be used to obtain the transfer function of the decoder corresponding to 

other generator polynomials.  

Figure 4.8: Linear approximation for the transfer function of the proposed k-Opt equalizer 
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Mutual  
Information, 

 InputI  

Student’s t  
Distribution 

(Degrees of Freedom)

0.55 50 

0.60 50 

0.65 50 

0.70 50 

0.75 100 

0.80 100 

0.85 100 

0.90 100 

0.95 100 

1.00 100 

Mutual 
Information, 

 InputI  

Chi-Square 
Distribution 

(Degrees of Freedom)

0.00 1 

0.05 1 

0.10 2 

0.15 5 

0.20 6 

0.25 6 

0.30 6 

0.35 6 

0.40 8 

0.45 18 

Table 4.2: PDF used to model decoder’s input a priori LLR 

Figure 4.9: A trajectory-fitting approximation for the transfer function of the RSC 
decoder when used together with a k-Opt equalizer 
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4.5 Verification of Proposed k-Opt EXIT Chart 

 In this section, we verify the accuracy of the proposed EXIT chart as described in 

Section 4.4 and compare some important results with the asymptotic behavior of the k-

Opt turbo equalizer obtained by simulating a very large frame size of 105 averaged over 

at least 100 frame trials [5][9]. For the BER comparisons, the asymptotic and the finite 

frame size simulation are carried out until at least 100 error frames are gathered.  

 From Figure 4.8, it is observed that the linear approximations of the k-Opt 

equalizer’s transfer function is only accurate for the second iteration onwards. As such, to 

allow an accurate prediction through the proposed EXIT chart, we carried out simulations 

of the actual system setup for 2 (respectively, 3) iterations for predicting the performance 

of the k-Opt turbo equalizer utilizing an all-one input solution in the first iteration 

(respectively, for predicting the performance of the hybrid k-Opt turbo equalizer with 

MMSE APRX I in the first iteration) using a finite frame size of 4096 to mark out the 

asymptotic trajectories for the first 2 (respectively, 3) iterations on the EXIT chart. All 

the asymptotic predictions from the respective third and fourth iterations onwards are 

then obtained from the proposed EXIT chart.  

 The rationale behind this approach is motivated by the fact that statistical 

independence between the local neighborhoods of the a priori LLR at the input of the 

respective SISO modules in the turbo setup will at least be maintained for the first three 

iterations for a finite frame size of 4096.  

 To sum up, the asymptotic behavior of the k-Opt turbo equalizer is predicted 

using the proposed EXIT chart as described in Section 4.4, together with simulations of 

finite frame size of 4096 for the first 2 or 3 iterations.  

 



Chapter 4. EXIT Chart Analysis of Heuristic-Based Local Search Turbo Equalizer 

 

 99    

4.5.1   Predicted Trajectory vs Averaged System Trajectory 

 The proposed transfer functions of the k-Opt equalizer and its corresponding RSC 

decoder as shown in Figure 4.10 and 4.11 are obtained as described in Section 4.4 at a 

SNR of 5.0 dB over Channel II (Proakis C Channel).  

 In Figure 4.10, we use the proposed EXIT chart to predict the asymptotic 

averaged system trajectory of a k-Opt turbo equalizer (the first iteration utilized k-Opt 

equalizer given an all-one vector as input). Here, the predicted trajectory for the first 2 

iterations is obtained using a finite frame size simulation of 4096 while the rest of the 

iterations are obtained from the proposed EXIT chart.  As observed, the predicted 

trajectory and the asymptotic averaged system trajectory match very well.  

 For Figure 4.11, we use the proposed EXIT chart to predict the asymptotic 

averaged system trajectory of a hybrid k-Opt turbo equalizer (with the first iteration using 

the MMSE APRX I equalizer). For this case, the predicted trajectory for the first 3 

iterations is obtained using a finite frame size simulation of 4096 while the rest of the 

iteration are obtained from the proposed EXIT chart. As observed, the predicted 

trajectory and the asymptotic average system trajectory match very well. 

 To further verify the accuracy of the k-Opt equalizer’s transfer function, we have 

to look at its accuracy in predicting the averaged system trajectory over different SNR 

values. It is found that the respective predicted trajectories obtained from the proposed 

EXIT chart with finite frame simulations for the first 2 or 3 iterations and their 

corresponding asymptotic average system trajectories match very well with each other for 

SNR values of 4.5, 5.0, 5.5 and 6.0 dB. We will show a summary of the accuracy of our 

proposed EXIT chart at these SNR values by looking at the number of iterations required 

to attain convergence to a fixed point in Subsection 4.5.3. 
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Besides this, the procedure outlined in Section 4.4.2 is used to obtain the 

decoder’s transfer function for an RSC encoder having generator polynomials (g1, g2) = 

(62, 56) with total memory 4 as used in [5]. Though not shown here, the corresponding 

decoder transfer function obtained using the proposed method is found to match the 

asymptotic averaged system trajectory very well.  
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Figure 4.10: Proposed EXIT chart for k-Opt turbo equalizer at 5.0 dB 
with k-Opt equalizer given an all-one vector as input solution in the 1st iteration 

(Note that the first two iterations of the predicted trajectory are obtained by simulation 
with a finite frame size of 4096 data bits)
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Figure 4.11: Proposed EXIT chart for k-Opt turbo equalizer at 5.0 dB 
with MMSE APRX I in the 1st iteration 

(Note that the first three iterations of the predicted trajectory are obtained by simulation  
with a finite frame size of 4096 data bits) 
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4.5.2   Comparison of BER Prediction  

 The corresponding BER associated with the variation of the output mutual 

information of the decoder as obtained from the open-loop simulation depicted in Figure 

4.2 together with the simulation parameters as stated in Table 4.1 and 4.2 are shown in 

Figure 4.12. Though not shown here, the BER curve obtained as a consequence of 

generating the original decoder’s transfer function as in [5] is exactly the same as that 

depicted in Figure 4.12. 

 In Figures 4.13 and 4.14, the asymptotic BER prediction for the first 2 or 3 

iterations are obtained from a finite frame size of 4096. Subsequent asymptotic BER 

prediction for the remaining iterations are obtained by plotting the predicted trajectory 

using the EXIT chart and taking note of the values of Dec
OutputI  at each iteration. The 

corresponding BER at these iterations are then obtained using Figure 4.12. 
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Figure 4.12: Variation of BER with output mutual information (obtained from 

open loop simulations of decoder’s transfer function) 
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Figure 4.13: Comparison of BER between predictions by proposed and original EXIT charts with 
that obtained by asymptotic and finite frame size simulations (k-Opt equalizer in 1st iteration) 

Figure 4:14: Comparison of BER between predictions by proposed and original EXIT 
charts with that obtained by asymptotic and finite frame size simulations (MMSE 

APRX I in 1st iteration) 
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 From Figures 4.13 and 4.14, it is observed that proposed EXIT chart is more 

accurate than the original EXIT chart in predicting the asymptotic BER of the k-Opt turbo 

equalizers. However, it is found that the EXIT chart BER prediction obtained from both 

the original and proposed EXIT chart is not able to predict the asymptotic BER values of 

less than approximately 5*10-4 accurately. This is primarily due to the sensitivity of the 

BER plot depicted in Figure 4.12 for values of output mutual information approximately 

greater than 0.990. As such, for a fixed point of the EXIT chart that occurs at output 

mutual information of greater than 0.990, the BER predictions obtained from the EXIT 

chart using such a method would not be accurate anymore for the last few iterations that 

have output mutual information greater than 0.990.  

 Also shown in Figures 4.13 and 4.14 are the simulated BER values as the 

iterations proceed for a finite frame size of 4096. It is observed that the predicted BER 

obtained from the proposed EXIT chart is able to accurately predict the finite frame size 

BER for about 10 iterations and 7 iterations respectively, at this particular SNR value of 

5.0 dB. Furthermore, given sufficient number of iterations, the asymptotic BER can be 

attained from finite frame size simulations.  

 

4.5.3   Numbers of Iterations to Convergence  

 We compare the proposed EXIT chart and the original EXIT chart in terms of 

predicting the asymptotic number of iterations required to reach their respective fixed 

points on the EXIT chart for the k-Opt turbo equalizer here.  

 The number of iterations predicted from the respective EXIT chart and that 

obtained from the asymptotic frame size simulations for four SNR values are shown in 

Table 4.3. It is observed that the original EXIT chart is overly optimistic in predicting the 
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number of iterations required to attain convergence to a fixed point. On the other hand, 

the proposed EXIT chart is able to predict the number of iterations for asymptotic frame 

size more accurately.  

 

 

 

4.5.4   Decoding Threshold of k-Opt Turbo Equalizer 

 Once an accurate description of the k-Opt turbo equalizer’s EXIT chart is 

obtained, it can be used to determine its decoding threshold easily. In general, the 

decoding threshold of a particular turbo equalizer implementation can be predicted from 

the EXIT chart by simply determining the SNR value in which the equalizer’s transfer 

function coincide or touches that of the decoder [5][9][10].  

 For the case of the k-Opt turbo equalizer, in addition to finding the SNR value in 

which the equalizer’s transfer function coincides with that of the decoder, it is necessary 

to carry out simulations at this particular SNR value using a finite frame size of 4096 for 

2 iterations to mark out the start of the third iterations in the proposed EXIT chart. This is 

due to the inability of the proposed EXIT chart in predicting the first 2 iterations of the k-

Opt turbo equalizer. The decoding threshold of the k-Opt turbo equalizer as found from 

the EXIT chart is 4.2 dB as shown in Figure 4.15 and it is identical to the decoding 

SNR (dB) 

4.5 5.0 5.5 6.0 
Original EXIT Chart 

Prediction 8 7 6 5 

Proposed EXIT Chart 
Prediction 15 11 8 7 

Asymptotic Frame Size 
Simulation 15 11 9 7 

Table 4.3: Comparisons between original EXIT chart’s predictions and proposed EXIT 
chart’s predictions on the number of iterations to convergence to a fixed point with 

respect to asymptotic frame size simulation for Channel II (Proakis C Channel) 
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threshold as determined in Chapter 3 using density evolution [38]. Also shown in Figure 

4.15 are the respective points where the third iterations commence for the case where the 

first iteration utilizes the k-Opt equalizer given an all-one input solution and the case 

where the first iteration utilizes the MMSE APRX I equalizer. 
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 The accuracy of the proposed EXIT chart in predicting the asymptotic averaged 

system trajectory, the expected BER at each number of iterations (up to a BER of 

approximately 5*10-4), the number of iterations to convergence to a fixed point and the 

decoding threshold have been verified to be very precise accordingly.  

 

 

 

 

Figure 4:15: Decoding threshold prediction using proposed EXIT chart 
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4.5.5   Effects of Finite Frame Size 

 The EXIT chart is a semi-analytical tool that is used in understanding the 

asymptotic behavior (in the sense of very large frame size) of a turbo decoder or turbo 

equalizer. As such, it would be interesting to find out the extent of deviation from its 

asymptotic behavior for the case where finite frame size is considered [5].  

In Figures 4.16, 4.17 and 4.18, the averaged system trajectories obtained through 

simulations with at least 100 trials at a SNR of 5.0 dB using finite frame sizes of 512, 

4096 and 32768 are shown, respectively. Here, the maximum number of iterations is set 

to 15 and MMSE APRX I equalizer is used in the first iteration for all cases. As these 

figures show, greater interleaving gain (associated with a bigger frame size) is manifested 

in its averaged system trajectory as better quality (measured in terms of mutual 

information) output extrinsic LLR from the decoder, given a specific quality of input a 

priori LLR. Specifically, the maximum achievable quality of the output extrinsic LLR 

from the decoder is not exploited fully when smaller frame sizes of 512 and 4096 are 

utilized. For a frame size of 32768 as shown in Figure 4.18, the averaged system 

trajectory almost touches the transfer function of the decoder. This indicates that the 

maximum interleaving gain for the k-Opt turbo equalizer is almost exploited fully for a 

frame size of 32768. Consequently, this also justified the rationale behind the choice of 

frame size (i.e. 105 data bits per frame) that is used for the asymptotic simulations to 

prove the accuracy of the proposed EXIT chart.  

Interestingly, frame size does not affect the quality of the output extrinsic LLR 

produced by the k-Opt equalizer given a specific quality of input a priori LLR. This is 

observed in Figures 4.16 and 4.17 from the averaged system trajectories which touch the 

proposed transfer function of the k-Opt equalizer for a frame size of 512 and 4096 data 
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bits respectively. Beside this, it is also observed that the proposed EXIT chart is able to 

predict accurately (from the fourth iterations onwards) for at least a few iterations even 

for finite frame size of 512 and 4096 data bits.  
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Figure 4:16: Averaged system trajectory of k-Opt turbo equalizer (with q = 2) for 

frame size of length 512 data bits at 5.0 dB 
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Figure 4:18: Averaged system trajectory of k-Opt turbo equalizer (with q = 2) for 

frame size of length 32768 data bits at 5.0 dB 

Figure 4:17: Averaged system trajectory of k-Opt turbo equalizer (with q = 2) for 
frame size of length 4096 data bits at 5.0 dB 
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4.5.6   Variation of Critical Points vs SNR (k-Opt Equalizer) 

 To have a greater appreciation of the k-Opt equalizer, the variations of its transfer 

function’s critical points at the input mutual information of 0.0, 0.5 and 1.0 over an SNR 

range from 0 dB to 20 dB are shown in Figure 4.19.  

 From Figure 4.19, it could be observed that the output mutual information of the 

k-Opt equalizer corresponding to an input mutual information of 0.0 does not increase 

significantly as the SNR increases. This thus translates to low starting points in the EXIT 

chart at the first iteration, thereby resulting in a slow convergence to the corresponding 

fixed points. This impediment could be easily overcome by incorporating another 

equalizer (such as the MMSE APRX I equalizer) in the first iteration to provide a good 

quality input solution to jump-start the iterative process, following which the equalization 

process could then revert back to the k-Opt equalizer.  

 The mid-point of the transfer function (as denoted by “input mutual information = 

0.5” in Figure 4.19) for the k-Opt equalizer is observed to increase steadily till a value of 

approximately 0.7 at a SNR of about 12.0 dB. In general, the mid-point of the transfer 

function for a RSC decoder implemented via the BCJR algorithm is approximately equal 

to the rate of the RSC code [5][58]. Here, the mid-points of the respective transfer 

functions are with respect to the abscissa of the EXIT chart as denoted by the axis 

Dec
Output

Eq
Input II = .  In other words, for a rate-1/2 RSC decoder’s transfer function at the point 

where 50.0IDec
Output = , its associated ordinate value in the EXIT chart will thus be 

approximately 50.0IDec
Input = . Similarly, for a rate-8/9 RSC decoder’s transfer function at 

the point where 50.0IDec
Output = , its associated ordinate value in the EXIT chart will thus be 

approximately 89.0IDec
Input = . As such, it could be easily deduced that the k-Opt equalizer 
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cannot work with a code of high rate since the k-Opt equalizer’s transfer function will lie 

below that of the corresponding decoder’s transfer function.  

 Next, the variation of the output mutual information for the k-Opt equalizer 

corresponding to an input mutual information of 1.0 is found to be identical to that of the 

FC-BCJR equalizer (not shown to avoid cluttering of the figure). This indicates that the 

k-Opt equalizer can attain identical performance to the BER-optimal FC-BCJR equalizer 

implementation, provided sufficient iterations are allowed for the k-Opt turbo equalizer to 

run and the SNR values in consideration are above the decoding threshold of the k-Opt 

turbo equalizer.  

 Also shown in Figure 4.19 is the variation of the output mutual information of the 

k-Opt equalizer over the SNR range given a perfect input solution and zero a priori LLR. 

This is strictly a hypothetical scenario since it is not possible to obtain a perfect input 

solution for the local search to commence if the a priori LLR given to the k-Opt equalizer 

is zero. Recall that the input solution is obtained simply by taking hard decision on the a 

priori LLR. Nevertheless, this suggests the relative importance and weight given to the 

input solution as compared to the quality of the a priori LLR in the equalization process 

carried out by the k-Opt equalizer. That is, greater importance is placed on the quality of 

the input solution rather than that of the a priori LLR in producing better quality output 

mutual information.  
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Figure 4.19: Output mutual information of k-Opt equalizer vs SNR for different 
qualities of input a priori LLR 
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4.6 Comparisons with Selected Equalization Algorithms 

 In this section, we utilize the EXIT chart to compare some asymptotic 

characteristics of selected equalizers’ implementations, namely the FC-BCJR equalizer, 

the MMSE EXACT equalizer and the Hybrid MMSE equalizer (implemented through the 

use of either MMSE APRX I or MMSE APRX II equalizers) with that of our proposed k-

Opt equalizer. The decoder in consideration in this section is the rate-1/2 RSC encoder 

with generator polynomials (g1, g2) = (7, 5) as used throughout the thesis.  

 Before going further, the various equalizers’ transfer functions at a SNR of 5.0 dB 

and 6.0 dB are shown in Figures 4.20 and 4.21, respectively. Specifically, the transfer 

functions of the FC-BCJR equalizer, the MMSE EXACT equalizer and the Hybrid 

MMSE equalizer are obtained using the methods outlined in Sections 4.2 and 4.3.  These 

transfer functions have been shown in [5] to be accurate in predicting the averaged 

system trajectories. The proposed and original transfer functions for the k-Opt equalizer 

are also included in these figures.  

 From Figures 4.20 and 4.21, it could be observed that the original transfer 

functions of the k-Opt equalizer are found to exceed that of the FC-BCJR equalizer at an 

input mutual information of approximately above 0.3 and 0.42 respectively. This is an 

interesting phenomenon since it shows that given an identical a priori LLR input that 

follows the same description as illustrated in Section 4.2, the k-Opt equalizer is able to 

outperform that of the BER-optimal FC-BCJR equalizer.  

 Also observed from the two figures is that the transfer functions of MMSE APRX 

I equalizer and MMSE APRX II equalizer have the same start and end points, 

respectively, as the MMSE EXACT equalizer. This indicates that the Hybrid MMSE 

equalizer [5], which is implemented via either MMSE APRX I or MMSE APRX II 
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equalizers, is able to attain the performance of the MMSE EXACT equalizer given 

sufficient iterations and also under the condition that the SNR values in consideration are 

above its decoding threshold.  

 A further point to note here is that despite having different starting points in the 

transfer functions of the FC-BCJR equalizer, the MMSE EXACT equalizer and the k-Opt 

equalizer (as observed in the proposed transfer functions for the k-Opt equalizer), all 

three equalizer implementations are found to share the same end points for perfect a 

priori LLR as shown in Figures 4.20 and 4.21. This thus implies that all turbo equalizers 

implemented with the various mentioned equalization algorithms together with an 

identical decoder (for all cases) are able to attain quite similar final BER performances 

provided the SNR values in consideration are above their respective decoding thresholds. 

As such, at a particular SNR value that is well above the maximum decoding thresholds 

of all the equalizers in comparison, for example at a SNR value of 6.0 dB (refer to Table 

4.5 for a list of their respective decoding thresholds), the two vital factors that will 

discriminate between the various equalizers’ implementations will thus be their 

respective computational complexities and the numbers of iterations that are required to 

attain convergence.  

 The issue of computational complexities for the various equalization algorithms 

has been addressed in Chapter 3. As such, in this section, we would utilize the EXIT 

chart to compare the various equalizers’ implementation in terms of the number of 

iterations required to attain convergence. For the k-Opt equalizer, the number of iterations 

to attain convergence to a fixed point is obtained using the proposed EXIT chart as 

outlined in Sections 4.4 and 4.5.  The decoding thresholds for various turbo equalizers 

implemented using different equalization algorithms will also be presented. After which, 
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the variations of the critical points of the transfer functions, at the input mutual 

information of 0.0, 0.5 and 1.0 specifically, of selected equalization algorithms over a 

SNR range from 0 dB to 20 dB will be presented. A quick overview of the various 

equalizers’ implementations in terms of their performances over the stipulated SNR range 

can thus be seen. Besides that, it also allows us to understand the rationale behind using 

MMSE APRX I equalizer in the first iteration instead of either the FC-BCJR equalizer or 

the MMSE EXACT equalizer.  

 Finally, this section ends by investigating the effect of imperfect channel impulse 

response (CIR) knowledge on the critical points of the various equalizers’ transfer 

functions. This investigation is primarily motivated by the findings in the previous 

section when we consider the variation of the k-Opt equalizer’s output mutual 

information given a perfect input solution and zero a priori LLR as the SNR increases. 

From this hypothetical scenario, it is deduced that the k-Opt equalizer places a much 

heavier reliance on a good quality input solution rather than on a good quality a priori 

LLR. In the context of imperfect CIR knowledge given to the equalizer, the extrinsic 

LLR derived from the equalizer is expected to suffer degradation in its quality. This 

degradation will propagate through the decoder and eventually give rise to poor quality a 

priori LLR for the equalizer in the next iteration. As the FC-BCJR equalizer and the 

MMSE EXACT equalizer depend solely on the quality of a priori LLR, such degradation 

will therefore seriously affect their performances. On the other hand, the degradation in 

the quality of the a priori LLR may not seriously affect the k-Opt equalizer’s 

performance due to its greater reliance on the quality of the input solution. Although the 

input solution is obtained by taking hard decision on the a priori LLR, the ensuing 

degradation in the quality of the input solution is still minimal since it is highly unlikely 
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that the sign of the a priori LLR may be flipped due to degradation in its quality.  As 

such, the plot depicting the variation of the k-Opt equalizer’s output mutual information 

given a perfect input solution and zero a priori LLR as shown in Figure 4.19 can thus be 

viewed as a lower bound on the end-point of the k-Opt equalizer’s transfer function in the 

context where imperfect CIR knowledge is given to the k-Opt equalizer.  

Bearing this in mind, we go a step further to investigate the impact of imperfect 

CIR knowledge on the various equalizers’ output mutual information at three critical 

points to observe the extent of degradation in the quality of the extrinsic LLR.  
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Figure 4.20: Comparison of selected equalizers’ transfer functions at a SNR of 5.0 dB 
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Figure 4.21: Comparison of selected equalizers’ transfer functions at a SNR of 6.0 dB 
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4.6.1   Number of Iterations to Convergence 

 The number of iterations as obtained from the EXIT chart to attain convergence to 

a fixed point at a particular SNR value for the various equalizer implementations are 

shown in Table 4.4. The fixed points for all the equalizer implementations here are 

identical (except for the case of Hybrid MMSE equalizer at a SNR of 5.0 dB), which 

indicates that the BER performance of all the equalizers in comparison (upon 

convergence) are the same. For the case of the k-Opt turbo equalizer, the number of 

iterations reflected in the table include the first iteration that is carried out through the use 

of the MMSE APRX I equalizer.  

 As observed in Table 4.4, the use of the FC-BCJR equalizer allows the fastest 

convergence in terms of the numbers of iterations required. This is followed by the k-Opt 

equalizer and then the MMSE EXACT equalizer. The Hybrid MMSE equalizer does not 

converge to a good fixed point as compared with the rest of the equalizers at a SNR of 

5.0 dB.  This is because at this particular SNR, the transfer functions of both the MMSE 

APRX I and MMSE APRX II are found to lie below that of the decoder’s transfer 

function in the EXIT chart. To be more precise, convergence to a good fixed point is not 

possible since this particular SNR is below the decoding threshold for the Hybrid MMSE 

equalizer (see Table 4.5). At an SNR of 6.0 dB which is above the decoding threshold of 

the Hybrid MMSE equalizer, it is found to be able to converge to the same fixed point as 

the other equalizers, albeit requiring more iterations as seen in Table 4.4. 

 From Tables 4.4 and 3.1, it could easily be deduced that there is a tradeoff in 

terms of the computational complexity of a particular equalizer’s implementation and its 

rate of convergence in terms of the number of iterations.  
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SISO Equalizer 
SNR FC-BCJR MMSE 

EXACT 
Hybrid 
MMSE k-Opt LS 

5.0 dB 7 12 No 
Convergence 11 

6.0 dB 5 8 14 7 

 

4.6.2   Decoding Thresholds 

 The decoding thresholds of selected turbo equalizers implemented via the various 

equalization algorithms mentioned are shown in Table 4.5 below. From the results 

presented, the FC-BCJR equalizer has the lowest. This attribute of the FC-BCJR 

equalizer coupled with the fact that it requires the least number of iterations to attain 

convergence thus explains its superior BER performances in the waterfall region as 

compared to the other equalizers observed in Figures 3.2 and 3.3.  The decoding 

thresholds of the turbo equalizers implemented using either MMSE EXACT equalizer or 

k-Opt LS equalizer are found to be quite similar. As expected, the Hybrid MMSE 

equalizer has the highest decoding threshold.  

 

SISO Equalizer  Decoding Threshold 

FC-BCJR  3.4 dB 

MMSE EXACT 4.0 dB 

Hybrid MMSE 5.3 dB 

k-Opt LS 4.2 dB 

 

Table 4.4: Number of iterations to convergence to a fixed point for selected equalizer 
implementations  

Table 4.5: Decoding thresholds of selected turbo equalizer implementations 
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4.6.3   Variations of Critical Points vs SNR (Comparisons) 

 To enable a quick overview of the transfer functions of the various equalizers, the 

variations in the critical points of their respective transfer functions, as the SNR 

increases, at an input mutual information of 0.0, 0.5 and 1.0 are shown in Figure 4.22. 

The parenthesis in the legend of this figure indicates the corresponding values of Eq
InputI  

given to the respective equalizers.  

 In general, with the exception of the k-Opt LS equalizer, the critical points of the 

various equalizers’ transfer functions are found to increase when the SNR increases. As 

expected, the FC-BCJR equalizer’s transfer functions have the best start points (at input 

mutual information = 0.0) and mid-points (at input mutual information = 0.5) throughout 

the depicted SNR range. Though not shown in the figure, the start points of the transfer 

functions for MMSE APRX I equalizer are found to be identical as that of the MMSE 

EXACT. All the equalizers’ transfer functions with the exception of MMSE APRX I 

equalizer (not shown) are found to have identical end points (at input mutual information 

= 1.0) as shown in Figure 4.22. 

From the BER plots as shown in Figure 3.3, the k-Opt LS equalizer (with q = 2) is 

able to attain the AWGN bound at a SNR of 5.0 dB and above. Turning to Figure 4.22, 

between an SNR of 5.0 and 6.0 dB, the transfer functions’ start-points of FC-BCJR 

equalizer (denoted by ) is found to be only slightly better than that of the MMSE 

EXACT equalizer or equivalently MMSE APRX I equalizer (denoted by ). Since 

the MMSE APRX I equalizer has the lowest computational complexity compared to 

MMSE EXACT equalizer and FC-BCJR equalizer, it is thus the best choice to be used in 

the first iteration for the k-Opt turbo equalizer to jump-start the turbo equalization 
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Figure 4.22: Output mutual information of selected equalizers vs SNR for different 
qualities of input a priori LLR 

process, which is essential to avoid the low starting points of the k-Opt LS equalizer 

(denoted by ).  
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Besides jump-starting the equalization process to a higher value of Eq
OutputI  for the 

first iteration, the use of the MMSE APRX I equalizer also allows the value of Eq
OutputI  in 

the second iteration to reach the bound depicted by the original transfer function of the k-
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Opt equalizer as seen in Figure 4.11 (this phenomenon is also true if FC-BCJR equalizer 

or the MMSE EXACT equalizer is used in the first iteration). Note that the original 

transfer function of the k-Opt equalizer has a higher Eq
OutputI  values than the transfer 

function of the MMSE EXACT equalizer for 1.0IEq
Input >  at both SNR values of 5.0 dB 

and 6.0 dB as observed in Figures 4.20 and 4.21. Also, in Figure 4.22, the mid-point of 

the transfer function for the k-Opt LS equalizer (denoted by ) within an SNR range 

of 0 to about 10 dB are found to be slightly better than that of the MMSE EXACT 

equalizer (denoted by ). Furthermore, as observed in Figures 4.20 and 4.21, the k-

Opt equalizer’s transfer functions have a linear relationship connecting the mid- and end-

points whereas the MMSE EXACT equalizer’s transfer functions have a slight convex 

relationship (relative to the abscissa of the figures) connecting the mid- and end-points. 

These three reasons explain the better BER performance of the k-Opt turbo equalizer in 

the waterfall region as compared to the MMSE EXACT turbo equalizer seen in Figure 

3.3.  

 

4.6.4   Effects of Imperfect Knowledge of Channel Impulse Response 

An investigation into the effects of imperfect channel impulse response (CIR) 

knowledge on the critical points of the various equalizers’ transfer functions is carried out 

here. All the simulation parameters are kept constant (including the modeling of the a 

priori LLR; possible degradation in the quality of the a priori LLR at the input of the 

equalizers due to imperfect CIR knowledge is not considered here due to the difficulty in 

the modeling of the a priori LLR in such scenario) as that used in generating Figure 4.22 

except that the equalizers are only given information on the length of the channel impulse 
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response and not the exact values of the coefficients. With this in mind, together with the 

constraint of unit energy for the ISI channel for comparison purposes, the equalizers are 

hence provided with the channel knowledge of { }447.0,447.0,447.0,447.0,447.0=f  

instead of { }227.0,460.0,688.0,460.0,227.0=f  which is the actual channel impulse 

response used in the transmission.  

 The effects of imperfect CIR knowledge on the critical points of the transfer 

functions for the various equalizers are shown in Figure 4.23. Since the a priori LLR is 

modeled as before in the context where perfect CIR knowledge is available to the 

respective equalizers, the corresponding variations in Eq
OutputI  over the depicted SNR range 

are thus not indicative of their actual values in such a scenario. In another words, the 

predicted trajectory obtained from the EXIT charts corresponding to these values of 

Eq
OutputI  shown in Figure 4.23 at a specific SNR value may not be similar to the averaged 

system trajectory obtained by simulation of the actual system setup. Nevertheless, Figure 

4.23 can still be used to observe the extent of degradation in the quality of the extrinsic 

LLR between the various equalizers by comparing with Figure 4.22.  

 In general, comparing Figures 4.22 and 4.23, the values of Eq
OutputI  for the critical 

points of all the equalizers are lower when imperfect CIR knowledge are given to the 

equalizers. However, interestingly, the extent of degradation of Eq
OutputI  for the k-Opt 

equalizer at the start and mid-points of its transfer function is found to be less severe 

compared to that of both the FC-BCJR and MMSE EXACT equalizer.  

Recalling that the start point for the k-Opt equalizer as seen in Figure 4.22 are the 

lowest as compared to that of the FC-BCJR and MMSE EXACT equalizer. However, in 

the context of imperfect CIR knowledge as observed in Figure 4.23, the start points of k-
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Opt equalizer is found to be better than that of the other two from 0.0 dB up to 

approximately 12.0 dB. This phenomenon is also manifested in the mid-point of the k-

Opt LS equalizer’s transfer functions depicted in Figure 4.23 to the extent that it is well-

above that of the FC-BCJR equalizer and MMSE EXACT equalizer for the entire 

stipulated SNR range. Surprisingly, the mid-points of both the FC-BCJR equalizer and 

MMSE EXACT equalizer are observed to deteriorate in the higher SNR regions. The end 

points of all the equalizers are found to be similar; although that of the FC-BCJR 

equalizer and the MMSE equalizer are found to be slightly better than that of the k-Opt 

LS equalizer from about 4.0 dB onwards.  
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Figure 4:23: Effects of imperfect CIR knowledge on critical points of selected 
equalizers’ transfer functions 
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4.7 Simulation Results and Discussion 

 In this section, we present BER performance results for the case where imperfect 

CIR knowledge is available to the respective equalizers. All the simulation parameters 

are kept constant as in Chapter 2 and Chapter 3. The only difference is that the equalizer 

is given the CIR knowledge of { }447.0,447.0,447.0,447.0,447.0=f  instead of the actual 

CIR that is used in the respective simulations.  

 As a brief summary, the purpose of this investigation is primarily motivated by 

the following two observations made in Section 4.5, namely: 

1) The quality of the extrinsic LLR from the k-Opt LS equalizer is found to be heavily 

dependent on a good quality input solution rather than on a good quality a priori 

LLR. Although the input solution is obtained by taking hard decision on the a priori 

LLR, the ensuing degradation (due to imperfect CIR knowledge) in the quality of the 

input solution should be minimal since it is highly unlikely that the sign of the a 

priori LLR may be flipped.  

2) The extent of degradation in the quality of the extrinsic LLR in the context where 

imperfect CIR knowledge is provided to the k-Opt LS equalizer is less severe as 

compared to both FC-BCJR equalizer and MMSE EXACT equalizer. Importantly, the 

quality of the extrinsic LLR for the k-Opt LS equalizer in such a scenario is found to 

be better than that of the BER-optimal FC-BCJR equalizer and the MMSE EXACT 

equalizer given an a priori LLR of input mutual information of 0.5.  

With these two observations above, it is possible to reason that the k-Opt turbo equalizer 

could outperform both the FC-BCJR turbo equalizer and the MMSE EXACT turbo 

equalizer in the situation where imperfect CIR knowledge is available to the equalizer. To 

prove our hypothesis, we shall present the simulation results to verify our proposition. 
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We first consider turbo equalization under imperfect CIR knowledge over the 

mild ISI conditions described by Channel I in Table 2.2. The BER performances of the 

various equalizers under this scenario are shown in Figure 4.24 (denoted in parenthesis as 

“Imperfect”). Also shown in this figure are the BER performances of the respective 

equalizers in the situation where perfect CIR knowledge is available; these BER curves 

are denoted in parenthesis as “Perfect” in Figure 4.24 and are exactly the same as that 

depicted previously in Figure 3.2.  

From Figure 4.24, the BER performances of the various equalizers under 

imperfect CIR knowledge are found to be worse compared to the situation where perfect 

CIR knowledge is available. Where perfect CIR knowledge is available, the best 

performing equalizer in terms of BER performance is found to be the FC-BCJR 

equalizer. However, in the context where imperfect CIR knowledge is provided, the best 

performing equalizer in terms of BER performance turns out to be the k-Opt turbo 

equalizer. In the BER range of around 10-5, the k-Opt turbo equalizer is found to be about 

1.0 dB away from the AWGN bound. On the other hand, the FC-BCJR turbo equalizer 

and the MMSE EXACT turbo equalizer are found to be approximately 4.0 dB and 5.6 dB 

away from the AWGN bound respectively. This is an interesting phenomenon as the k-

Opt turbo equalizer is able to outperform the BER optimum FC-BCJR turbo equalizer. 

We note that the BER curve of the MMSE EXACT (under imperfect CIR knowledge) 

actually worsen off with an increase in SNR within the 7 – 9 dB region. This could be 

due to error propagation (during the exchange of inaccurate extrinsic information derived 

from imperfect CIR knowledge) since the corresponding BER with fewer iterations (i.e., 

less than 15 iterations) within this SNR region is better.  
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Next, we carry out simulation studies over the severe ISI channel denoted as 

Channel II in Table 2.2 depicted in Chapter 2. Recall that this channel is also known as 

the Proakis C Channel. The BER performance of the respective turbo equalizers given 

perfect (denoted in parenthesis as “Perfect”) and imperfect (denoted in parenthesis as 

“Imperfect”) CIR knowledge are shown in Figure 4.25. To avoid unnecessary cluttering 

of the figure, the BER performance for both the FC-BCJR turbo equalizer and MMSE 

EXACT turbo equalizer are plotted from 6.0 dB onwards.  

Similar to Figure 4.24, the BER performance, as observed in Figure 4.25, of the 

various turbo equalizers under imperfect CIR knowledge are worse than their respective 

counterparts under perfect CIR knowledge. The k-Opt turbo equalizer is also found to be 

the best performing turbo equalizer in terms of BER performance as compared to the FC-

BCJR turbo equalizer and MMSE EXACT turbo equalizer under imperfect CIR 

knowledge. At a BER of around 10-5, the k-Opt turbo equalizer is found to be 

approximately 5.0 dB away from the AWGN bound. As shown in Figure 4.25, the FC-

BCJR turbo equalizer and MMSE EXACT turbo equalizer are not able to attain a BER of 

10-5 even up to a SNR of 20.0 dB. 

We conclude that the k-Opt turbo equalizer performs very well where imperfect 

CIR knowledge is available to the equalizer. This advantageous property of the k-Opt 

turbo equalizer hints its robustness in practical system implementation and also implies 

that highly precise channel identification process (for a time-invariant channel) may not 

be necessary when a k-Opt turbo equalizer is utilized. For a time-varying channel where 

training sequences are required to be send through the channel periodically, a shorter 

training sequence may suffice in ensuring that the k-Opt turbo equalizer can still function 

properly, thereby leading to the advantage of a higher overall code-rate.  
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Figure 4.24: Performance comparison between k-opt LS turbo equalizer and other 
equalization algorithms for Channel I 

under imperfect CIR knowledge of { }447.0,447.0,447.0,447.0,447.0=f  
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Figure 4.25: Performance comparison between k-opt LS turbo equalizer and other 
equalization algorithms for Channel II (Proakis C Channel) 

under imperfect CIR knowledge of { }447.0,447.0,447.0,447.0,447.0=f  
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4.8 Chapter Summary  

 The proposed EXIT chart for the k-Opt turbo equalizer has been verified through 

asymptotic simulations of very large frame size to be more accurate than the original 

EXIT chart in predicting the BER performances at each iterations and the required 

number of iterations to convergence to a fixed point. Through the proposed EXIT chart, 

several important and interesting insights on the k-Opt turbo equalizers are discovered. 

Firstly, it is found that the k-Opt equalizer cannot operate in conjunction with a high 

code-rate RSC code. Secondly, the k-Opt equalizer is found to place a heavier reliance on 

the quality of its input solution rather than on the quality of the a priori LLR in producing 

a good quality extrinsic LLR. Thirdly, the extent of degradation in the quality of the 

extrinsic LLR in the case where imperfect CIR knowledge is given to the receiver is 

found to be the lowest for the k-Opt turbo equalizer. Motivated by the last two 

observations obtained through the proposed EXIT chart for the k-Opt turbo equalizer, 

simulation studies on selected turbo equalizers in the case of imperfect CIR knowledge 

are carried out. From the simulation results and discussion that follows, it is found that 

the k-Opt turbo equalizer may be a serious contender for practical system 

implementations as compared to the FC-BCJR turbo equalizer and the MMSE EXACT 

turbo equalizer.  
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Chapter 5 

 

Conclusions and Further Work 

 In this thesis, an investigation is carried out on low complexity turbo 

equalizations over coded intersymbol interference channels, with an emphasis on the 

aspects of equalization algorithms. In particular, a novel class of low complexity 

equalization algorithms based on heuristic approach as applied to a turbo equalization 

scheme has been proposed. Analytical work carried out through the use of the EXIT 

chart reveals interesting insights on the proposed heuristic-based turbo equalizer that 

explains its superior performances over their filter-based counterparts. Furthermore, in 

situations where imperfect channel impulse response knowledge is given to the 

respective classes of equalization algorithms, we have even discovered that our proposed 

heuristic-based turbo equalizer surpasses their trellis-based counterparts in terms of BER 

performances.  

 The thesis can be divided into three parts. In Part 1, which consists of Chapter 1 

and 2, a survey of the existing literature in the area of optimal and sub-optimal (low 

complexity alternatives) equalization algorithms as applied to a turbo equalization 

scheme has been carried out. In particular, two well-known classes of equalization 

algorithms, namely, the trellis-based equalization algorithms and the filter-based 

equalization algorithms have been studied. From the class of trellis-based equalization 
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algorithms, the BCJR algorithms and its low-complexity variants are focused. Then, 

from the class of filter-based equalization algorithms, the MMSE EXACT and its low 

complexity approximate implementations are presented. In Part 2 of the thesis, which 

comprises of Chapter 3, a novel equalization algorithm as applied to a turbo equalization 

scheme based on heuristic approach is proposed. Thereafter in Part 3, which consists of 

Chapter 4, we investigate the proposed heuristic-based LS turbo equalizers through the 

use of the EXIT chart to draw insights into its asymptotic performances. The details of 

the work contributed in Part 2 and 3 of the thesis are elaborated further below. 

 In Part 2 of the thesis, a general framework has been established in the context of 

turbo equalization such that any heuristic search methods (beside the local search 

heuristics that is focused in this thesis) can be applied to perform the equalization task. 

Furthermore, we have shown through simulation results and computational complexity 

analysis that our proposed local search turbo equalizers utilizing k-Opt heuristics is a 

viable alternative to the trellis-based BCJR turbo equalizers and the filter-based MMSE 

turbo equalizers (in terms of both BER performances and computational complexity 

considerations) in situation where perfect channel impulse response knowledge is 

available to the respective receivers.  

 In Part 3 of the thesis, a general approach for the application of the EXIT chart 

has been proposed and is found to be accurate in predicting the asymptotic behaviors of 

our proposed k-Opt turbo equalizer. Through the proposed EXIT chart, a discovery on 

the robustness of the k-Opt turbo equalizer against imperfect channel impulse response 

knowledge is unearthed. Subsequent simulation results which verified this important 

findings further reinforce the idea that the proposed k-Opt turbo equalizer could well be 

a serious contender to the BCJR turbo equalizer and the MMSE turbo equalizer in actual 
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system implementation where perfect channel knowledge is usually unavailable to the 

receiver.  

 

Directions for Further Work  

  Several important issues arise during the EXIT chart analysis carried out on our 

proposed k-Opt turbo equalizer which would be worth addressing here as possible 

directions for further work. These issues are highlighted below. 

 The averaged system trajectory of the k-Opt turbo equalizer is not able to attain 

the prediction given by the original transfer function of the k-Opt equalizer. A post-

processing operation could be carried out on the extrinsic LLR derived from the k-Opt 

equalizer in a similar manner as that used in [59][60] to allow the averaged system 

trajectory achieves the bound dictated by the original transfer function. This would thus 

lead to a faster rate of convergence for the k-Opt turbo equalizer and also the possibility 

of employing a high-rate outer code.  

 EXIT chart analysis and simulation results show that the k-Opt turbo equalizer 

outperforms the FC-BCJR turbo equalizer and the MMSE EXACT turbo equalizer in 

situation where imperfect channel impulse response knowledge is given. However, it is 

still unclear whether it is the use of the heuristic-based equalizer or the use of a mixture 

of hard and soft a priori information that have resulted in such a phenomenon.  

Preliminary investigations into the effects of channel knowledge on the BER 

performances of the respective turbo equalizers reveal that the FC-BCJR turbo equalizer 

can attain a BER of around 10-5 within the stipulated SNR range (refer to Figure 4.25) 

under Channel II (Proakis C Channel) provided a better channel impulse response 



Chapter 5. Conclusions and Further Work 

 

136  

knowledge is available. This phenomenon is also observed for the MMSE EXACT turbo 

equalizer. Viewing the coefficients of a time-invariant channel as a point in a vector 

space, a simple distance measurement between two points show that the given channel 

impulse response knowledge of { }447.0,447.0,447.0,447.0,447.0=f  is at a distance of 

approximately 0.3514 and 0.3940 away from that of Channel I and Channel II 

respectively. Recall that the MMSE EXACT turbo equalizer is able to attain a BER of 

10-5 for Channel I but not for Channel II when given the channel knowledge of 

{ }447.0,447.0,447.0,447.0,447.0=f  for both cases. Consequently, this hinted that there 

exists a sphere centered around the actual channel impulse response whereby any given 

channel knowledge that falls outside this sphere will render convergence to a good BER 

by a particular turbo equalizer’s implementation impossible. Bearing this in mind, the 

radius of such a sphere for each turbo equalizer’s implementation could be an additional 

discriminating criterion, beside BER performances and computational complexity etc., 

which could be used to differentiate the suitability of the various turbo equalizers’ 

implementations in actual system usage. Conversely, the knowledge of such a parameter 

could be used to dictate the minimum required accuracy level of channel identification 

such that a particular turbo equalizer’s implementation is expected to perform.  
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