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Summary

The accurate prediction of the propagating wetting front arising from infiltration

into an unsaturated soil is of considerable importance to geotechnical and geoenvi-

ronmental problems. As the relevant soil properties are highly nonlinear, numerical

methods such as the finite element method are often used for solving this problem.

These numerical methods work effectively in boundary and initial value problems

with complex geometry. However, it has been shown in previous studies that nu-

merical problems like oscillation and slow convergence rate affect the calculation

of pore-water pressures in a finite element analysis. These results can lead to great

errors in the calculation of other design variables such as safety factor of slopes.

Furthermore, highly nonlinear soil-water characteristic curves are commonly en-

countered in sandy soils. Numerical simulations of unsaturated flow problem with

such soils are still plagued with difficulties and not completely solved yet. Practical

solution methods are thus of great practical importance.

This thesis presents a new combination approach TUR1 consisting of a ratio-

nal function transformation method and a common under-relaxation technique to

solve the h-based form of Richards equation. Detailed investigation shows that

the proposed TUR1 method appeared to be a practical choice for unsaturated flow

simulations, because it can produce accurate solutions at reasonable computing

ix



costs; only one ad-hoc parameter is introduced and a robust recommendation on

the choice of such parameter value is available. However, TUR1 would also break

down when the soil hydraulic property curves are rather steep and relatively large

time-step is used.

The combination of proposed TUR1 approach and the automatic adaptive

scheme (referred as ATUR1 hereafter) is shown to be a more practical numerical

method for unsaturated flow simulations, as it provides the most efficient solution

at minimal computational cost; its performance is rather robust with moderate

changes of several parameters introduced; and it is conceptually and computation-

ally simple which can be easily incorporated into existing software codes based on

the backward Euler scheme.

A number of multi-dimensional examples with both homogeneous or heteroge-

nous materials are analyzed to show the robustness and efficiency of the proposed

TUR1 and ATUR1 methods. It is shown that these improved approaches are effi-

cient in complex problems with both very dry and variably saturated condition in

homogenous or heterogeneous soils.

In the last, two typical numerical errors which are sometimes not well empha-

sized in unsaturated flow simulations due to rainfall infiltration are investigated.

Numerical results show that such numerical errors could be a result of inappropriate

mesh size or time-step size adopted in simulations. These errors in unsaturated flow

analysis, including the overprediction of the wetting fronts and artificial positive

pore-water pressure values above the infiltration fronts, have serious influence on

the slope stability calculations. The proposed TUR1 method could be an attractive

choice to produce more accurate solutions.
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Chapter 1

Introduction

1.1 Background

Accurate prediction of the propagating wetting front arising from infiltration

into an unsaturated soil is of considerable importance to geotechnical and geo-

environmental problems such as slope stability, contaminant transport and design

of capillary barrier. As the relevant soil properties (soil-water characteristic curve

and the conductivity function) are highly non-linear, numerical methods such as

the finite element and finite difference methods are often used for solving this

problem. These numerical methods work effectively in boundary and initial value

problems with complex geometry. These complicated scenarios are commonly

encountered in practice, but analytical solutions are rarely available. However,

numerical solution of this unsaturated seepage problem is known to be plagued by

a number of difficulties such as efficiency and robustness. Advancements in the so-

lution of these problems is an important and active topic of research in many areas.
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1.2 Numerical Modeling for Richards Equation

The finite element method is an attractive method for modeling water flow in

both saturated and unsaturated soils. It works effectively in boundary and initial

value problems with complex geometry. These problems are usually complicated,

and in which analytical solutions are generally not available. Many finite element

programs are available for such soil seepage analyses. Among them, the software

program, SEEP/W, developed by GEO-SLOPE (2004) is one of the more popular

programs among practicing engineers. This program can be linked with its asso-

ciate slope stability program, SLOPE/W and allows for a more realistic prediction

of slope stability under different external hydraulic influences such as rainfall in-

filtration with time. Fredlund and Rahardjo (1993) and Karthikeyan (2000) have

made use of both SEEP/W and SLOPE/W to investigate the influence of rainfall

infiltration and soil hydraulic properties on the stability of unsaturated soil slopes.

In any time dependent finite element analysis, the first step is to discretize the

spatial domain and time duration. In principle, a comprehensive convergence study

is necessary for each problem to arrive at an acceptable discretization scheme. In

practice, it is computationally expensive to conduct such studies over the full range

of mesh sizes and time-steps. In particular, existing desktop computers cannot

provide sufficient computational resources to study complex two-dimensional and

three-dimensional problems with very dense spatial grids and at very small time-

steps.

For such problems, an approximate solution, obtained by using a reasonable

element size and time-step, is often deemed satisfactory for “practical” engineering
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problems based on a fairly limited convergence study. However, in such analyses,

numerical solution is known to be plagued by a number of problems. Firstly,

it was observed that oscillations occur near the wetting front as water seeps

through the partially saturated soil. Secondly, the convergence of solutions

to the final “correct” value was found to take place slowly with decreasing

spatial and temporal discretization. Given limited computational resources,

numerical analyses are usually carried out using a coarse mesh and a relatively

large time-step size. This will thus lead to a solution that might not converge

to the correct value. These numerical artifacts have an adverse influence on

the calculation of pore-water pressure, leading to errors in the computation of

other important design variables, such as the factor of safety of an embankment

slope against translational and/or rotational failure. With the limitations often

exhibited by analytical solutions and the practical limitations of convergence stud-

ies, the correctness of numerical solutions obtained by reasonable discretization

schemes based on limited convergence studies is a serious issue of practical concern.

1.3 Convergence Problems

Because of the high nonlinearity of soil hydraulic properties, convergence problems

exist in numerical simulations of unsaturated flow analyses. It is necessary to

distinguish between different convergence problems.

Firstly, very steep hydraulic conductivity functions create difficulties for non-

linear equations that have to be solved iteratively at each time-step. The iterations

tend to oscillate between two extreme solutions represented by the extremities of
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the hydraulic conductivity function, leading to slow convergence to a stable solu-

tion within each time-step. In order to prevent this from happening, some form of

relaxation is often used to enhance the performance of nonlinear iterative schemes.

In programs such as SEEP/W, a typical under-relaxation technique is applied such

that the new iterate is calculated from the head at the mid-point of the time inter-

val. In this way, the tendency for h to oscillate around its limits will be dampened

and a smaller number of iterations will be needed.

While the under-relaxation technique discussed above helps to accelerate con-

vergence in the iterative solution of highly nonlinear equations within each time-

step, such technique may lead to a slow convergence to the correct solution with

respect to increasing refinement in mesh size and time-step. This is another form of

convergence and should not be confused with the one discussed previously. Chong

(2001) and Tan et al. (2004) studied the influence of different under-relaxation

techniques on the rate of such convergence. They demonstrated that the slow

convergence with respect to refinement of the time-step was an indirect result of

the under-relaxation technique used to update the hydraulic conductivity during

the iterative solution of the discretized nonlinear transient seepage equations at

each time-step. The under-relaxation technique used by standard programs such

as SEEP/W seems to optimize the number of iterations per time-step, but comes

with a hidden cost of requiring an extreme refinement of time-step to arrive at a

solution of acceptable accuracy, which is rarely appreciated. They recommended

an alternative under-relaxation technique that the material properties for the new

iteration are defined as the average of the pressure heads computed from the two

most recent iterations of the current time-step. It is shown that this form of under
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relaxation does not require very small time-steps to produce reasonably accurate

results, but does so at a price of increasing the number of iterations within each

time-step, and even diverges instead of converging to a stable solution when deal-

ing with soils with highly nonlinear hydraulic properties. Clearly, this limits its

application. Tan et al. (2004) did not study highly nonlinear soil parameter curves

as well. For example, Figures 1.1 and 1.2 show the soil-water characteristic curves

and the relative hydraulic conductivity curves for four typical type of soils and the

sandy clay loam used in the study of Tan et al. (2004). We can see that the sandy

clay loam is far from extreme cases. Sandy soils, such as loamy sand and sand, are

shown to be have much steeper soil parameter curves than the sandy clay loam.

Simulations with such soils are still of great difficulties and the problems have not

been solved completely.

Previous studies have already shown that the slow convergence problem exists

in unsaturated seepage analysis using SEEP/W. It is found that the calculated

pressure heads converge to a correct solution very slowly with progressive refine-

ment of the element size and time-step. However, coarse meshes and big time-steps

were usually used by practising engineers. Few of them discussed whether the

solutions generated with such meshes and time-steps were accurate or not. For

slope stability problems in unsaturated residual soils, errors made in the position

of the wetting front seriously affect the location of the failure surface and the

eventual factor of safety. For example, Figure 1.3 shows a slope stability problem

which will be studied in more detail in Chapter 6. The pore-water pressure

profiles at the crest of the slope during three days of rainfall from SEEP/W with

different mesh sizes are shown in Figure 1.4. It clearly shows that with a coarse
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mesh of 0.5 × 0.5 m, elevations of the wetting fronts are largely over predicted

compared to the dense mesh of 0.1 × 0.1 m. And this overprediction has serious

influence on the slope stability calculations, which can be seen in Figure 1.5. The

factor of safety for the coarse mesh is significantly unconservative! Note that the

“coarse” mesh - 0.5 × 0.5 m - is already fine for most analyses undertaken by

practising engineers. The error in prediction of the wetting front can be viewed

as an optimistic estimate. Thus, the correctness of numerical solutions obtained

using reasonable spatial and temporal discretization schemes based on limited

convergence studies is of direct practical concern.

1.4 Motivation and Objectives

The accurate prediction of the propagation of a wetting front in an unsaturated soil

subjected to surficial infiltration is of practical importance to many geotechnical

and geoenvironmental problems. As the soil hydraulic properties are highly nonlin-

ear, the finite element method is the most commonly used tool for modeling such

problems with complex geometry. However, it has been shown in previous stud-

ies that numerical problems like oscillation and slow convergence rate affect the

calculation of pore-water pressures in a finite element analysis. These results can

lead to significant errors in the calculation of other design variables such as safety

factor of slopes. Furthermore, highly nonlinear soil-water characteristic curves are

commonly encountered in sandy soils. Numerical simulations of unsaturated flow

problem with such soils are still plagued with difficulties and not completely solved

in terms of achieving accurate solutions at reasonable costs. Workable solution
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methods are thus of great practical importance.

The goal of this research is to develop robust numerical methods for solving

the highly nonlinear partial differential equation describing unsaturated flow in

porous media. This is motivated by the inability of current numerical methods to

provide accurate and efficient solutions to such difficult problems. The key focus

of this research is to develop methods that are practical, i.e. reasonably easy

to implement into existing computing codes and easy to use, with a minimized

number of ad-hoc parameters that need “expert” judgement, able to solve a broad

range of soil hydraulic properties, accurate and robust, and suitable for running on

ordinary personal computer.

The objectives of this study can be summarized as follows:

1. To develop a new combination approach (hereafter referred to as TUR1) of

transformation method and under-relaxation technique to solve the finite ele-

ment formulation of the h-based form of Richards equation. The performance

of this combination approach is to be examined in the sense of convergence

rate of the pore-water pressures distribution to the correct solution with mesh

and time-step refinement. To assure the robustness of this new approach, the

selection of the only ad-hoc transformation parameter value will also be in-

vestigated;

2. To investigate the numerical performance of the proposed TUR1 method

with several popular temporal adaptive schemes. Since the TUR1 method is

expected to be able to produce more accurate results with larger time-step

and coarser mesh, and the adaptive schemes could have the ability to control
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temporal errors, it is reasonable to conjecture that the combination of TUR1

with a proper temporal adaptive scheme will produce a more efficient and

robust solution strategy for unsaturated flow analysis, rather than TUR1 or

adaptive schemes on their own.

3. To carry out a series of application studies on different one-dimensional and

two-dimensional infiltration problems as well as the rainfall-induced slope

stability analysis. The robustness and efficiency of the developed numerical

methods are to be investigated.

1.5 Organization

The organization of this report is listed as follows:

Chapter 2 presents a review of the literature, which covers the general intro-

duction to the rainfall-induced slope stability analysis and the theory of water flow

in unsaturated soils. Some common numerical methods and difficulties frequently

encountered in solving the governing partial differential flow equation are discussed.

Chapter 3 presents the numerical formulations to be adopted in the proposed

TUR1 method. These include the standard finite element formulation adopted by

SEEP/W and the combination of rational function transformation (RFT) approach

and under-relaxation technique. A detailed study is then carried out to investigate

the performance of the proposed combination approach.

Chapter 4 investigates the numerical performance of the proposed TUR1

method with several different time stepping schemes.

8



Chapter 1. Introduction

Chapter 5 presents a number of more examples appeared in multi-dimensions

and with homogeneous or heterogenous materials to show the robustness and effi-

ciency of proposed methods.

Chapter 6 investigates the influence of different kind of numerical errors in

unsaturated flow simulations on the slope stability analysis. The superiority of

proposed TUR1 method is expected to be shown.

Chapter 7 presents the summary of valuable conclusions. In addition, some

suggestions on future research work are mapped out.
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Chapter 2

Literature Review

2.1 Introduction

In many tropical countries, slope failures in residual soils are common, particularly

during periods of intense rainfall. The groundwater table in these slopes may

be located deep below the ground surface and the pore-water pressures in the soil

above the groundwater table are negative to atmospheric conditions. This negative

pore-water pressure, referred to as matric suction when referenced to the pore-air

pressure, is now recognized to contribute towards the stability of unsaturated soil

slopes (Fredlund and Rahardjo, 1993; Rahardjo et al., 1995; Griffiths and Lu, 2005).

Under an external hydraulic influence, such as rainfall infiltration, seepage of

water can cause a gradual loss of matric suction in an unsaturated soil slope. As

the hydraulic properties of the soil with respect to matric suction are often highly

nonlinear, rapid changes in pore-water pressure have a significant effect on the soil

strength, and therefore the stability of the slope. Thus, the accurate prediction of

the propagating wetting front arising from infiltration into an unsaturated soil is

of considerable importance.
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2.2 Rainfall-induced Slope Failures

Slope failures due to rainfall infiltration are quite usual in tropical areas such as

Singapore, whereas these slopes remain stable for a long time before the rainstorms

(Brand, 1984; Toll, 2001). During the rainfall, a wetting front goes deeper into the

slope, which results in a gradual increase of the water content and a decrease of the

negative pore-water pressure. As this negative pore-water pressure, referred to as

matric suction when referenced to the pore air pressure, is recognized to contribute

towards the stability of unsaturated soil slopes, the loss of suction causes a decrease

in shear strength of the soil on the potential failure surface and finally triggers the

failure (Rahardjo et al., 1995; Ng and Shi, 1998). These rainfall-induced landslides

are usually shallow, as the rainfall infiltration alters the pore-water pressures only

for shallow depths (Au, 1993; Tsaparas, 2002).

There is a considerable volume of literature that has discussed the correlation

between total rainfall and probability of landslides for various geographical areas.

For Hong Kong, Brand (1984) concluded that a rainfall intensity of 70 mm/h and

above can be an indication of landslides, and a 24-hour rainfall of less than 100

mm is unlikely to produce any slope failures. For Singapore, Toll (2001) concluded

based on the available data of slope failures that major slope failures may occur

after a 24-hour rainfall of larger than 110 mm.

Although rainfall has been well recognized to have a major effect on the

stability of unsaturated slopes, there are on-going debates on the effect of the

antecedent rainfall, i.e. the rainfall that falls on the slope over a certain period

prior to the major rainfall event. Wolle and Hachichi (1989) reviewed landslides
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caused by rainfall in Brazil and concluded that intense rainfall does not cause

slope failure by itself and the antecedent rainfall must be considered in the

analysis as it increases the initial moisture of the soil. Lumb (1975) studied the

slope failures in Hong Kong between 1950 to 1973 and concluded that a 15 days

of antecedent rainfall plays an important role in the probability of slope failure

occurring. However, Brand (1984) showed that the antecedent rainfall is not a

significant factor in slope failures as long as the major rainfall is of a high intensity,

and that the controlling parameters for rainfall-induced landslides are the peak

intensity and the 24-hour rainfall. For Singapore, Pitts (1985) came to a similar

conclusion that the antecedent rainfall was not important. However, Rahardjo et

al. (1998), Toll (2001) and Rahardjo et al. (2001) showed that antecedent rainfall

plays a major role in rainfall-induced landslides in Singapore. Toll (2001) states

that minor landslides may occur after significant amounts of antecedent rainfall.

Observations of past landslides suggest that a total rainfall of 100 mm within a

six-day period would be sufficient for minor landslides to take place. Chatterjea

(1989) studied the effect of antecedent rainfall on slope failures in Singapore and

concluded that a period of 5 days should be enough for analysis of rainfall-induced

landslides.

2.3 Strength of Unsaturated Soil

Bishop (1959) firstly developed a framework to describe unsaturated soil strength

using the effective stress concept. The relationship between the effective normal
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stress and the matric suction is given by

σ′ = (σ − ua) + χ(ua − uw) (2.1)

where

σ′ = the effective normal stress;

σ = the total stress;

ua = the pore-air pressure;

uw = the pore-water pressure;

σ − ua = the net stress;

ua − uw = the matric suction; and

χ = factor related to the degree of saturation of the soil.

Fredlund et al. (1978) proposed a constitutive equation which described the

relationship between the shear strength and the two stress state variables, the net

normal stress (σ − ua) and the matric suction (ua − uw), given as

τ = c′ + (σ − ua) · tanφ′ + (ua − uw) · tanφb (2.2)

where

c′ = the effective cohesion of the soil;

φ′ = the effective angle of internal friction with respect to changes of the net

stress;

φb = the angle of internal friction with respect to changes of the matric

suction.

The equation above is also referred to as the extended Mohr-Coulomb

failure criterion for unsaturated soils (Fredlund and Rahardjo, 1993), because
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the behavior of saturated soils can be described by this failure criterion as a

special case when the matric suction is zero. The graphical presentation of this

extended Mohr-Coulomb failure criterion can be seen in Figure 2.1. In the three

dimensional graph, the classical Mohr circles defined by the shear stress axis, and

the effective normal stress are extended to the third axis of matric suction. The

failure envelope, which defines the shear strength of the unsaturated soil, is the

surface tangent to the Mohr circles.

2.4 Governing Equation for Seepage through Un-

saturated Soil

It can be seen from Equation 2.1 and Equation 2.2 that the matric suction is very

important in calculation of unsaturated soil strength. For most practical prob-

lems, seepage in unsaturated media must be modeled appropriately to estimate

this quantity. Several models have been proposed to simulate such problem. These

include the models of Horton (Horton, 1933), and Green-Ampt (Green and Ampt,

1911). According to their concepts and assumptions, the Horton formula can be

seen as a conceptual model and the Green-Ampt formula is a physically approxi-

mative and mathematical exact solution. However, in virtually all studies of the

unsaturated zone, the fluid motion is assumed to obey the classical Richards equa-

tion, which is obtained by applying the mass conservative law and the Darcy’s flow

law. It may be written in several forms with either the pressure head, h or the

volumetric water content, θ as the dependent variable. The three standard forms

of the Richards equation can be identified as the “h-based” form, the “θ-based”
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form and the “mixed” form as follows:

C(h)
∂h

∂t
= ∇ · K(h)∇h +

∂K(h)

∂z
h-based (2.3a)

∂θ

∂t
= ∇ · D(θ)∇θ +

∂K(θ)

∂z
θ-based (2.3b)

∂θ

∂t
= ∇ · K(h)∇h +

∂K(h)

∂z
mixed (2.3c)

where

K(h or θ) = the unsaturated hydraulic conductivity, ms−1;

C(h) = dθ/dh = specific moisture capacity, m−1;

D(θ) = K(θ)/C(θ) = unsaturated diffusivity, m2s−1;

z = vertical coordinate, assumed positive upward, m;

t = time, sec.

Other forms that are not widely used also exist such as the mixed-hybrid form

proposed by Bergamaschi and Putti (1999) which is expressed using the pressure

head and the Darcy’s velocity vector as independent variables.

The h-based formulation is considered to be more useful for practical problems

involving flow in layered or spatially heterogeneous soils, as well as for partially

saturated flow problems because the pressure head profiles generated are always

continuous across the spatial domain. Models of this type have been extensively

used in various applications (Haverkamp et al., 1977; Neuman, 1973; Paniconi and

Putti, 1994; Rathfelder and Abriola, 1994; Guarracino and Quintana, 2004). But, it

has been shown that the h-based form can produce significant global mass balance

errors unless very small time-steps are used. The h-based approach can be im-

proved if the derivation of the moisture capacity term is performed by suited chord
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slope approximations in replacing analytical derivatives as proposed by Rathfelder

and Abriola (1994). However, the numerical differentiation must be prevented if

the pressure head difference falls below a specific range and a proper treatment of

the derivative term is then required (for instance, resorting to an analytical evalu-

ation). Accordingly, chord slope approximation does not appear as a general and

sufficiently robust technique. It would fail under drastic parameters and initial

conditions. Difficulties of this kind were reported by Paniconi and Putti (1994).

On the other hand, θ-based schemes may be written in a mass-conservative

form and therefore should in most cases ensure mass conservation within the com-

putation domain regardless of time-step size and grid spacing (Huyakorn and Pin-

der, 1983; Hill et al., 1989). They showed that it is advantageous to use such

schemes for initially dry homogeneous soils, since the water content varies less

across a wetting front than does the pressure head. A severe limitation of θ-based

formulations is that this form cannot be used to describe flow in the saturated

zone, and flow in layered soils is also not easily simulated because of its disconti-

nuity. Furthermore, θ-based algorithms may suffer from mass balance errors at the

boundaries even when this formulation accurately conserves mass in the interior of

the flow system.

Perceiving the drawbacks of existing h-based and θ-based solutions of the

Richards equation, many have tried to combine the advantages of the two meth-

ods. The mixed form of Richards equation was thought to be able to maintain

the mass conservative property inherent in the θ-based equation, while providing

solutions in terms of the pressure head. Brutsaert (1971) was one of the first to

use the mixed-form Richards equation for solving saturated-unsaturated flow. He
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combined a finite difference approximation of the mixed-form equation with an it-

eration scheme to deal with the steep wetting fronts effectively. Allen and Murphy

(1986), Celia et al. (1987, 1990) and Williams et al. (2000) also used a mixed form

of Richards equation to derive numerical solution algorithms. Hao et al. (2005)

found that when simulating irrigation cases with the bottom boundary as a free

drainage condition, which means large amount of water moving through, large mass

balance errors still can be encountered. To solve this problem, a switching method

between the modified Picard iteration (Celia et al., 1990) and standard h-based

Picard iteration method was then proposed.

As in saturated soil, the flow of water in unsaturated soils is assumed to follow

Darcy’s flow law. In this case, the coefficient of hydraulic conductivity is not a

constant, but a function of the degree of saturation or negative pore-water pressure

in the soil. Constitutive relationships between θ and h, and K and θ (or K and

h) are almost always nonlinear in nature. These two relations are referred to

as the Soil-water Characteristic Curve and the Conductivity Function, respectively.

2.5 Constitutive Relations of Unsaturated Soil

During a transient process, even if the soil matrix is not deforming but is unsat-

urated, a certain amount of water may either be retained in or released from an

elemental volume of soil due to the difference in the flow of water in and out in

a given time increment. The ability of the soil to store water is defined by the

Soil-water Characteristic Curve, which relates the volumetric water content to the

negative pore-water pressure of the soil. This negative pore-water pressure is also
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known as matric suction when referred to the pore-air pressure. Over the years,

many equations have been suggested to fit and extrapolate soil-water data obtained

from field or laboratory measurements (Gardner, 1958; Brooks and Corey, 1964;

van Genuchten, 1980; Fredlund and Xing, 1994). Reviews of the more popular

soil-water characteristic models can be found in Leij et al. (1996) and Leong and

Rahardjo (1997a).

On the other hand, the conductivity function, which relates the unsaturated

hydraulic conductivity of the soil to matric suction, is usually associated indirectly

with the soil-water characteristic curve. The prediction of the conductivity

function from the soil-water characteristic curve is more attractive in comparison

with direct measurements in the field or laboratory, which are difficult and costly

to conduct. As with the soil-water characteristic curve, no single relationship for

the conductivity function is valid for all types of soils. Many models have been

proposed to predict the conductivity function. Some formulations are empirical

in nature (Gardner, 1958; Brooks and Corey, 1964) while others are based on

macroscopic models (Averjanov, 1950; Mualem, 1978) or statistical models (Childs

and Collis-George, 1950; Burdine, 1953; Mualem, 1976a,b). Mualem (1986), Yates

et al. (1992), Fredlund et al. (1994), Leong and Rahardjo (1997b) present reviews

on the various formulations available for predicting conductivity functions.

2.6 Analytical Solutions to Richards Equation

Due to the nonlinearity often exhibited by these two soil hydraulic relationships,

analytical solution to the Richards equation is limited to simple initial and bound-
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ary conditions. In these solutions, calculations often involve tedious steps, which

must be repeated for each particular case (Warrick et al., 1985). In addition, the

solutions are often formulated for solving one-dimensional problems only (Srivas-

tava and Yeh, 1991). For two-dimensional problems such as slope stability analyses

involving unsaturated infiltration or evaporation, analytical solutions are only avail-

able with various simplifications and assumptions (Serrano, 2004; Griffiths and Lu,

2005). Thus the scope of application is highly restricted.

Many infiltration relationships have been derived in terms of soil hydraulic

properties for simple initial and boundary conditions. The simplest condition

is that of uniform soil-water conditions and the soil is effectively infinitely deep.

Philip’s solution (Philip, 1957a,b) of Richards equation is for such a condition with

soil surface maintained at zero pore-water pressure after zero time, assuming no

ponding. In addition, there are also other classical infiltration solutions, which

involve constant surface flux condition and redistribution of soil-water into infinite

soil depth. These are discussed by Youngs (1995), who presents a review of the

developments in the physics of infiltration.

Utilizing the procedure of Philip (1957a,b), generalized solutions have been

developed for infiltration problems (Warrick and Amoozegar-Fard, 1979; Warrick

et al., 1985). In Warrick and Amoozegar-Fard (1979), infiltration and drainage cal-

culations are developed using spatially scaled hydraulic properties. The approach

adopted by Warrick et al. (1985) is analogous but more general than the former.

In the latter, the equation is expressed in terms of dimensionless time, depth and

water content. And, it uses the hydraulic functions of van Genuchten (1980) or of

Brooks and Corey (1964) to describe the soil constitutive relations. The solutions
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then can be presented in concise tables, which allow for finding moisture profiles,

wetting front, intake rate and cumulative intake for a variety of soils and varying

initial water contents. However, it is noted that such analytical solutions are appli-

cable only with certain boundary conditions. They are valid only for homogeneous

soil, with initial uniform moisture content. Moreover, it solves one-dimensional

vertical flow problems only.

Due to the limitations often exhibited by analytical solutions, numerical

approximations using the finite element approach or the finite difference approach

have become more popular for solving unsaturated seepage flow problems with

complex geometry, especially in the light of the advancement made in computa-

tional hardware. However, in such numerical analyses, the accuracy of the solution

has to be tested and calibrated. The contribution made by the analytical solutions

is that they can provide the correct benchmark for such testing and calibration.

2.7 Numerical Solutions to Richards Equation

Due to the limitations often exhibited by analytical solutions, numerical meth-

ods are often used for estimating and predicting variably saturated flow problems.

These numerical methods work effectively in boundary and initial value problems

with complex geometry. These complicated scenarios are commonly encountered

in practice, but analytical solutions are rarely available.

The standard approximations that are applied to the spatial domain are the

finite difference method and finite element method. For a time-dependent prob-

lem, this is usually coupled with a time-marching algorithm such as the backward
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Euler scheme or the Crank-Nicholson scheme, which is used to perform the time

integration. For any time scheme other than the fully explicit forward method,

nonlinear algebraic equations can result and some linearization and/or iteration

procedure must be used to solve the discrete equations. The common iterative

schemes include the Newton-Raphson method, the Picard method and the repeated

substitution method.

Examples of finite difference models used for seepage analysis in unsaturated

soils include those presented by Brandt et al. (1971), Dane and Mathis (1981),

Freeze (1971), Haverkamp et al. (1977), Vauclin et al. (1979), Haverkamp and

Vauclin (1979), Huyakorn and Pinder (1983), Samani et al. (1985), Celia et al.

(1990), Kirkland et al. (1992), Pan and Wierenga (1995), Williams and Miller

(1999) and Williams et al. (2000). In recent years, studies have shifted towards

the finite element method for its greater advantages in versatility and efficiency

in solving problems with complex geometry (Neuman, 1973; Cooley, 1983; Milly,

1985; Allen and Murphy, 1986; Celia et al., 1990; Forsyth et al., 1995; Ju and Kung,

1997; Diersch and Perrochet, 1999; Guarracino and Quintana, 2004). Windows-

based finite element software program with graphical user interface (GUI) such as

SEEP/W have also been developed (GEO-SLOPE, 2004). SEEP/W is available

commercially and has been used widely in many fields of engineering.

In a finite element formulation, the Galerkin method of weighted residuals is

often applied to the governing partial differential equation. This form of formula-

tion is also adopted by Neuman (1973), Milly (1985), Celia et al. (1990), Ju and

Kung (1997) and Guarracino and Quintana (2004) in their studies and it is also the

formulation adopted by SEEP/W. Furthermore, the backward difference approach
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is more stable numerically and is often used in most finite element analyses (Celia

et al., 1990; Ju and Kung, 1997). SEEP/W also uses this algorithm in its time inte-

gration process. Higher order temporal schemes also can be used (Guarracino and

Quintana, 2004). However, in practical applications where accuracy of the order

of few percent is desired, low order schemes are usually found to be superior to the

higher order solvers (Wood, 1990). For example, numerical examples (Wood, 1990)

showed that the second-order Crank-Nicolson scheme outperformed the first-order

backward Euler scheme only when relative errors of less than 0.005% were required.

Other time stepping schemes appeared in the literature for the solution of Richards

equation include the three level Lees’ scheme (Paniconi et al., 1991), the Douglas-

Jones predictor-corrector method (Hornung and Messing, 1980; Babajimopoulos,

1991, 2000) and implicit Runge-Kutta schemes (Baker, 1995). Finally, to solve the

nonlinear equations, some linearization and/or iteration procedure must be used.

Paniconi et al. (1991) introduced several non-iterative procedures for solving the

nonlinear Richards equation. However, there are concerns regarding the stability

behavior of these schemes which need to be resolved. More commonly, iterative

schemes include the Newton-Raphson method and the Picard method are often

employed. Paniconi and Putti (1994) and Lehmann and Ackerer (1998) compared

these two most popular schemes. It is shown that the advantages of the Picard

method include its relative simplicity and low cost per iteration, whereas the New-

ton method achieves a higher rate of convergence and can be more robust for

certain types of problems. SEEP/W (GEO-SLOPE, 2004) used a simple iteration

technique, which involves repeated substitutions using the average of heads com-

puted at the previous time-step level and the most recent iteration of the current

26



Chapter 2. Literature Review

time-step level, to solve the nonlinear equations.

Linearizing the nonlinear problem by adopting the Newton-Raphson or Picard

method always produce a system of linear equations that need to be solved.

The traditional way to solve such linear systems is to employ direct solution

methods or its variants which are based on the classical Gaussian elimination

scheme. These direct methods can lead to the exact solution in the absence of

round-off errors. However, especially for large sparse linear systems arising from

multi-dimensional problems, direct solution methods may incur a large number

of floating point operations (additions, subtractions and multiplications), which

makes it significantly expensive to solve such a large linear system. On the

contrary, iterative solution methods are more attractive for such large scale linear

equations because only matrix-vector products and inner-products are required

in the iteration process. Preconditioned Krylov subspace iterative methods,

such as Bi-CG or GMRES, are commonly used in the simulation of unsaturated

flow problems (Tocci et al., 1998; Jones and Woodward, 2001; GEO-SLOPE, 2004).

2.8 Numerical Problems

Numerical modeling provides a convenient and effective means for solving prob-

lems of seepage in unsaturated soils with complex geometry. However, numerical

solution is known to be plagued by a number of difficulties, such as oscillations

near the wetting fronts and slow convergence rate.
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2.8.1 Numerical Oscillation

In time-dependent field problems, oscillatory results in the finite element solution

are quite common. They are found to occur when certain criteria on the ratios

of element size to time-step size are not met, even in cases where the material

properties are constant. This phenomenon has already been noticed by many

researchers in consolidation, heat diffusion and seepage flow problems (Sandhu et

al., 1977; Vermeer and Verruijt, 1981; Segerlind, 1984; Celia et al., 1990; Pan et

al., 1996; Ju and Kung, 1997; Thomas and Zhou, 1997). The common point about

the governing equations adopted in these problems is that they belong to the same

class of parabolic partial differential equations.

Sandhu et al. (1977) and Vermeer and Verruijt (1981) observed oscillations of

pore-water pressures in consolidation problems. The authors suggested a minimum

time-step size in terms of mesh size and the coefficient of consolidation, which is

shown to be useful in eliminating oscillation in one dimensional problems. Thomas

and Zhou (1997) derived two minimum time-step criteria to avoid numerical oscil-

lations in heat diffusion problems, which involves only one dependent variable, that

is temperature. The criteria are formulated in terms of thermal conductivity, spe-

cific heat capacity and element size, and they apply strictly for constant material

properties. The authors hypothesized that oscillation is purely due to time-step size

and element size and it is not affected by the oscillatory result obtained from the

previous time-step. From a theoretical verification of a one-dimensional two-noded

element case, they developed an approach to further derive minimum time-step

sizes for other types of elements, such as two-dimensional eight-noded element,

which is useful in more complex problems.
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Karthikeyan et al. (2001) made use of the minimum time-step criteria pro-

posed by Thomas and Zhou (1997) in typical two-dimensional unsaturated seepage

problems. Due to an analogy between the h-based form of Richards equation and

the heat diffusion equation, the criteria, which have been re-interpreted in terms of

hydraulic conductivity and specific storage capacity, can be shown to be adequate

in controlling oscillation in seepage flow problems. They are applicable for both

constant and highly nonlinear soil hydraulic properties. To account for material

nonlinearity, the criteria are calculated based on the most critical state, in which

the material properties correspond to the highest negative pore-water pressure un-

der the initial condition. These simple criteria are of considerable practical value

as they allow the engineer to remove numerical oscillations using their existing

software without any modifications.

On the other hand, in a finite element formulation, the mass matrix can be

consistent or lumped. Pan et al. (1996) compared the consistent (mass-distributed)

formulation with the lumped (mass-lumped) formulation for an unsaturated seep-

age flow analysis. It is found that the mass-distributed scheme generates numerical

oscillation at the sharp wetting fronts due to the highly nonlinear properties of

water flow when linear elements are used. Whereas oscillation was observed to be

eliminated in mass-lumped approach. This can be explained by the fact that only

in the lumped case does the numerical solution satisfies the maximum principle of

the partial differential equation (Bouloutas, 1989), which states that the maximum

value of the numerical solution is dictated by either the boundary conditions or

the initial data. It implies that the maximum value at current time-step level

is less than or equal to the maximum value at the previous one. Similarly, the
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minimum value at current time-step is greater than or equal to the minimum value

at the previous time-step level. However, they also found that the assumption of

the mass-lumped scheme that the neighboring node response is always positive

may be physically incorrect in a dry medium and may cause smearing of the

wetting front. Finally, Pan et al. (1996) developed two new mass-distributed

schemes which can be shown to be always oscillation free. However, they are

not popular, in part because they are difficult to use. Ju and Kung (1997) also

discussed similar oscillatory phenomena. They found that quadratic/cubic ele-

ments could cause oscillation with both consistent mass and lumped mass schemes.

2.8.2 Rate of Convergence

In numerical simulation of unsaturated seepage flow problems, the accuracy of the

solution depends on the spatial and temporal discretization adopted. In view of

the fact that analytical solutions are not generally available, convergence is a nec-

essary criterion for any numerical solution to be meaningful. It is important to

determine whether the results for different element and time-step sizes converge

to the true solution when the soil hydraulic properties are highly nonlinear with

respect to the pore-water pressure. In this case, the rate of convergence will af-

fect the acceptability of a solution, since it is not feasible to always use a refined

spatial and temporal discretization to generate the correct value, especially when

computational resources are limited.

However, slow convergence has been observed by numerous researchers. Celia

et al. (1990) showed that the results of computed wetting fronts converge to the
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correct solution slowly with reducing time-step sizes over a fixed element size. The

authors attributed the cause of the slow convergence to a mass imbalance across

the element domain when the h-based Richards equation is used. They attributed

significant under-prediction of the depth of wetting front for larger element and

time-step sizes to an improper evaluation of the capacity coefficient, which creates

the mass balance error. To maintain mass conservation, they recommended that

the mixed form of the Richards equation be used instead of the more frequently

used h-based form. Rathfelder and Abriola (1994) and Ju and Kung (1997) also

argued that attention should be given to the proper evaluation of the capacity

coefficient and its time derivative.

On the other hand, Paniconi and Putti (1994) believed that the rate of

convergence is dependent on the iterative and under-relaxation strategy used

to solve the nonlinear Richards equation. Recently, Chong (2001) and Tan et

al. (2004) studied the influence of mass balance and different under-relaxation

techniques on the rate of such convergence. They showed that even with mass

balance, slow convergence could still be observed. They demonstrated that the

slow convergence with respect to refinement of the time-step is an indirect result of

the under-relaxation technique used to update the hydraulic conductivity during

the iterative solution of the discretized nonlinear transient seepage equations at

each time-step. The under-relaxation technique used by standard programs such

as SEEP/W seems to optimize the number of iterations per time-step, but comes

with a hidden cost of requiring an extreme refinement of time-step to arrive at a

solution of acceptable accuracy, which is not well appreciated. They recommended

an alternative under-relaxation technique that the material properties for the
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new iteration are defined as the average of the pressure heads computed from

the two most recent iterations of the current time-step. It is shown that this

form of under-relaxation does not require very small time-steps to produce

reasonably accurate results, but does so at a price of increasing the number

of iterations within each time-step, and even diverges instead of converging to

a stable solution when dealing with soils with highly nonlinear hydraulic properties.

2.9 Transformation Approach

Transformation methods for solving Richards equation have existed for several

decades (Haverkamp et al., 1977; Vauclin et al., 1979). The general objective of

these methods is to overcome inefficiencies in the numerical solution process caused

by the strong nonlinearity of the media hydraulic properties, especially in the case

of infiltration into a media that is initially relatively dry. These types of infiltra-

tion problems can generate very sharp wetting fronts and lead to computationally

inefficient solutions when using standard numerical techniques. Unacceptable fine

discretizations in space and time are often required to achieve convergence to the

accurate solution. Transformation methods can reduce the nonlinearity of the so-

lution profiles through the identification and application of an appropriate change

of variable applied to the dependent variable in the governing equations. The so-

lution of the original problem may then be retrieved by applying an inverse trans-

formation. Current transformation approaches include the use of water content (θ)

(Kirkland et al., 1992), integral (Haverkamp et al., 1977; Williams and Miller, 1999;

Williams et al., 2000), hyperbolic (Ross, 1990), and rational (Pan and Wierenga,
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1995) transform functions, as well as variable switching methods (Forsyth et al.,

1995; Diersch and Perrochet, 1999; Wu and Forsyth, 2001).

Early attempts of transformation methods used an integral transform com-

monly referred to as the Kirchhoff integral transform (Haverkamp et al., 1977;

Vauclin et al., 1979). It directly reduces the nonlinearity of the conductivity terms

in Richards equation and, as a result, can optimize the number of nonlinear iter-

ations required for a solution. However, it depends on media hydraulic properties

and will therefore vary spatially with different soil types. Thus, simple application

of the Kirchhoff integral transform is limited to homogeneous media. Ross and

Bristow (1990) added a flux balancing correction term to the formula and made

it applicable to layered and gradational soils. Williams and Miller (1999) and

Williams et al. (2000) proposed a new integral transform based on the Kirchhoff

integral transform. Their study showed that this new transform is in general more

efficient. Integral transforms are more complex to implement, because an analytic

function of the inverse transform is generally not available.

Hill et al. (1989) have shown that the θ-based form of Richards equation can

result in significantly improved performances compared to h-based methods, espe-

cially when applied to very dry heterogeneous soils. This is due to the fact that the

media hydraulic functions are not as highly nonlinear when expressed in terms of θ

rather than h. However, it is restricted to unsaturated flow conditions. To benefit

from the good convergence properties of the θ-based form for both saturated and

unsaturated conditions, Kirkland et al. (1992) suggested using a transform defined

in terms of θ (THT). It is defined as an affine transformation of θ, resulting in a

dependent variable that has the characteristics of θ in the unsaturated zone and of
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the pressure head in the saturated zone. The variable switching technique (Forsyth

et al., 1995; Diersch and Perrochet, 1999; Wu and Forsyth, 2001) is similar to THT

in that it is based on switching between variables θ and h, yet it does not define

a new continuous dependent variable. Since THT is defined from the volumetric

water content, it will vary with the media type. Therefore, simple application of

THT is also restricted to homogeneous media.

Considering the limitation of transform approaches above to heterogeneous

media, an alternate class of transforms was developed that are defined strictly in

terms of h. Since h is continuous across the whole domain with different media

types, these transform functions will also be continuous in heterogeneous media.

Ross (1990) introduced an efficient transform defined in terms of the hyperbolic sine

function. However, it introduces two arbitrary parameters requiring determination

to get optimal performance. Pan and Wierenga (1995) proposed another transform

defined in terms of a rational function (referred as RFT hereafter) of h. It provides

performance improvements and introduces only one arbitrary parameter.

Previous studies have shown that transformation approaches have the potential

to lead to more efficient and robust solutions of Richards equation than traditional

approaches. And the potential advantage of transformation approaches increases

as the difficulty of the problem increases, which can be measured by the average

number of nonlinear iterations within each time-step that are required to get a

stable solution. Thus it is conjectured that the combination of the transformation

method and the under-relaxation technique will lead to a more robust and efficient

solution strategy. This combination of approaches has not been examined in the

literature to the author’s knowledge.
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2.10 Temporal Adaptive Method

In most unsaturated flow simulation methods, usually fixed spatial grids and fixed

time-steps are used. Although virtually all modern ordinary differential equation

(ODE) software employ highly sophisticated step size adjustment procedures, rel-

atively few Richards equation solvers use these adaptive schemes. Instead, most of

them use uniform time-steps (e.g. Celia et al., 1990). Such a strategy may be in-

adequate if the behavior of the solution changes within the simulation because the

step size may become either too large (annihilating accuracy) or too small (wasting

computational time).

A common temporal adaptive strategy is to adjust the step size according to the

number of iterations required for convergence of the non-linear solver (Yeh, 1987;

Celia and Binning, 1992; Simunek and van Genuchten, 1994; Rathfelder and Abri-

ola, 1994). This heuristic method is cheap to implement into existing programs.

However, there is no clear general relation between the temporal discretization

errors and solver performance, requiring purely empirical fine-tuning of the param-

eters without any apparent guidelines. And, it is unclear now how to accommodate

such a method to non-iterative solvers.

Recently, Tocci et al. (1997), Miller et al. (1998) and Williams and Miller

(1999) showed that DASPK, which is a variable-order variable-stepsize differential

algebraic equation integrator, could outperform standard fixed time-step schemes.

This approach approximates the spatial derivatives using standard schemes like

finite difference or finite element methods and then integrated in time using a

differential algebraic equation (DAE) code. Thus, the Richards equation is reduced
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to a system of ordinary differential equations (ODEs). Unlike the heuristic method,

DASPK adjusts the time-step size and order based on temporal truncation error

checking. However, in practical seepage flow simulations, the uncertainty in the

soil hydraulic properties and boundary conditions is usually large, which makes it

unnecessary to use stringent error tolerance. When medium accuracy requirements

are applied, high-order does not necessarily lead to high performance.

Another group of temporal adaptive methods are based on different kind of

local truncation error monitoring strategy. For example, a predictor-corrector

time integrator was originally introduced by Gresho et al. (1979) and subsequently

improved by Bixler (1989), and employed for groundwater flow problems by

Diersch (1988); Diersch and Perrochet (1999). In this integrator, the local

truncation error is evaluated by comparing a predictor solution and a subsequent

corrector solution, and then the time-step size is varied in accordance with

temporal accuracy requirements. More recently, Sloan and Abbo (1999) proposed

a new approach for quality-controlled automatic time stepping for elasto-plastic

consolidation analysis in geomechanics. The algorithm uses a numerical estimate

of the local temporal truncation error and an efficient time-step selector to

constrain the temporal error near a user prescribed tolerance. Based on the

solution of first-order backward Euler scheme, a solution of the second-order

Thomas-Gladwell approximation (Thomas and Gladwell, 1988) can be obtained

at virtually no extra cost. Thus, the local truncation error can be monitored

by comparing these two solutions of adjacent order of accuracy. Kavetski et al.

(2001) and Kavetski et al. (2002) applied the principles of the adaptive scheme of

Sloan and Abbo (1999) to the solution of Richards equation. The studies showed
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that this method was superior to existing uniform and heuristic time stepping

approaches, and also conceptually and computationally simple. It can be directly

incorporated into any software based on the backward Euler scheme which is

prevalent in unsaturated flow modeling.

2.11 Concluding Remarks

It is often necessary to study the effect of rainfall infiltration on the stability of

slopes using numerical methods. Considerable attention has been focused on nu-

merical modeling of such unsaturated flow problem. This chapter gives a broad,

but not in-depth, introduction to some popular numerical methods and related

topics on solutions of the governing differential equations. Especially, numerical

difficulties in these methods and possible causes are highlighted and discussed in

detail. It has been shown in previous studies that numerical problems like oscilla-

tion and slow convergence rate affect the calculation of pore-water pressures in a

finite element analysis, due to the highly nonlinearity of soil hydraulic properties.

These results can lead to errors in the calculation of other design variables. On the

other hand, transformation methods are shown to be able to reduce the sharpness

of the wetting front in unsaturated flow problems and can overcome inefficiencies in

the numerical solution process which are caused by the strong nonlinearity of the

soil hydraulic properties. It suggests that transformation methods might be able to

improve the convergence difficulties. Hence, a combination approach is proposed

in this thesis and a detailed investigation is implemented to look into its effect on

the slow convergence problems.
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Figure 2.1: Extended Mohr-Coulomb failure envelope for unsaturated soils (from
Fredlund and Rahardjo, 1993)
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Chapter 3

Rational Transformation Method
with Under-Relaxation

3.1 Introduction

Numerical modeling of transient unsaturated seepage flow is gaining importance

due to a growing recognition that matric suction contributes towards the shear

strength of partially saturated soils. Usually, the fluid motion in the unsaturated

zone can be described by the classical Richards equation. Valid solutions for dif-

ferent forms of Richards equation are difficult to obtain because of the strong

nonlinearity often exhibited by the soil-water characteristic curve and the soil hy-

draulic conductivity function. By using different methods of discretization in the

numerical resolution of these equations, a different level of accuracy can be ob-

tained. Generally, the standard approximations that are applied to the spatial

domain are the finite element method and the finite difference method. Among

them, the finite element method is the more popular. These are usually coupled

with a simple one-step Euler time-marching algorithm for transient problems. For

any Euler method other than the fully explicit forward method, nonlinear algebraic

equations result and some linearization and/or iteration procedure must be used
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to solve the discrete equations.

However, very steep hydraulic conductivity functions create difficulties for the

convergence of solution. The solution will tend to diverge instead of converge

and oscillate between two extreme solutions represented by the extremities of the

hydraulic conductivity function, leading to slow convergence to a stable solution

within each time-step. In these cases, under-relaxation techniques are often neces-

sary to curb the tendency of the calculated head from oscillating about its extreme

values and improve the rate of convergence within a time-step, especially for steep

hydraulic conductivity functions. Yet, it is found that a typical under-relaxation

technique adopted by SEEP/W optimizes the number of iterations per time-step,

but comes with a slow convergence to the correct solution with refinement of the

time-step and element size. An alternative form of under-relaxation recommended

by Chong (2001) and Tan et al. (2004) was shown to bring significant improvements

to the rate of convergence to the true solution, but does so at a price of increasing

the number of iterations within each time-step, and even diverges instead of con-

verging to a stable solution when dealing with soils with highly nonlinear hydraulic

properties.

On the other hand, a review of the literature in Chapter 2 has shown that trans-

formation methods can reduce the sharpness of the wetting front in unsaturated

flow problems and can overcome inefficiencies in the numerical solution process

caused by the strong nonlinearity of the soil hydraulic properties. It suggests that

transformation methods might be able to improve the convergence rate of the so-

lution, but without dramatically increasing the number of iterations within each

time-step.
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In the following sections, numerical formulations for solving the h-based

form of Richards equation will be described using a finite element approach. For

simplicity, the formulations will be written for one-dimensional flow problems,

in which only seepage in the vertical direction is looked into. Two dimensional

flow problems are also studied, which will be shown in Chapter 5. A backward

implicit time-stepping method is used and an iterative scheme is required to solve

the nonlinear equations. A new approach TUR1 is then proposed, in which the

RFT transformation method is applied to the finite element method, and then

combined with a typical under relaxation technique to solve the Richards equation.

To the best of the author’s knowledge, there has insofar not been any published

work found, which discusses the combination of the transformation method and

under-relaxation techniques. A detailed investigation was then undertaken to look

into its effect on the slow convergence problems. The minimum time-step criterion

presented by Karthikeyan et al. (2001) or the lumped-mass formulation is applied

to suppress oscillations so that the convergence issue can be studied without

being encumbered by extraneous complications. In addition, because almost all

transforms involve arbitrary parameters, selecting their values is important to

determine the efficiency of a particular transformation. Yet few rigorous studies

of the parameter selection have been done. In this chapter, the selection of such

parameter values will be investigated. Note that a trial and error tuning process

is self-defeating because the cost of previous tuning runs may beat the purported

efficiency of the optimized parameter. The sensitivity of efficiency to choice of

parameter value is of practical interest as well.
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3.2 Numerical Formulations

3.2.1 Finite Element Formulation in h-based form

The governing partial differential equation for the flow of water through a one-

dimensional unsaturated soil element is given as follows (GEO-SLOPE, 2004):

∂

∂z

(
K

∂H

∂z

)
+ Q =

∂θ

∂t
(3.1)

where

K = the hydraulic conductivity in the vertical direction, ms−1;

H = the total head, the sum of pressure head h and elevation head z;

Q = the applied boundary flux;

θ = the volumetric water content; and;

t = the time, sec.

Equation (3.1) can be expressed in terms of total head H by relating the

volumetric water content θ to the change of H by the equation:

dθ = λ d(H − z) (3.2)

where

λ = the specific storage capacity which is equal to mwγw;

mw = the slope of the soil-water characteristic curve, m2kN−1;

γw = the unit weight of water, kN · m−3; and

z = the elevation, assumed positive upwards, m.

Substitute equation (3.2) into equation (3.1), leading to the following expres-

sion:

∂

∂z

(
K

∂H

∂z

)
+ Q = λ

∂H

∂t
(3.3)
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If the applied boundary flux Q is not present, equation (3.3) is equivalent to the

h-based form of Richards equation, shown in equation (2.3a). It is now expressed

in terms of total head, H rather than pressure head h. The parameter, λ thus

corresponds to the specific moisture capacity function, C defined in equation (2.3a).

After applying the Galerkin weighted residual method to the governing dif-

ferential equation (3.3), the corresponding finite element equation can then be

expressed as follows:

[M ] {H} , t + [K] {H} = {Q} (3.4a)

where

[M ] = d

∫
A

(λ {N}T {N}) dA (3.4b)

[K] = d

∫
A

([B]T [k] [B]) dA (3.4c)

and

{Q} = qd

∫
({N}T ) dL (3.4d)

In the above equation,

{H} = vector of total head;

{H} , t = vector of time derivative, ∂H/∂t, at nodal points;

[B] = gradient matrix;

[k] = element hydraulic conductivity matrix;

{N} = vector of interpolating function;

q = unit flux across the side of an element;

L = boundary of element;
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A = area of element; and

d = element thickness.

To perform the time integration, a backward finite difference approximation

scheme is adopted leading to the following equation:

(∆t [K] + [M ]) {Hn+1} = ∆t {Qn+1} + [M ] {Hn} (3.5)

where

{Hn} = vector of total head at time-step n;

{Qn} = vector of nodal flux at time-step n; and

∆t = time-step.

To solve the finite element equations, a technique like the direct Gaussian

elimination can be used. Since the material hydraulic conductivity and storage

properties are the functions of head, the finite element equations are nonlinear and

an iterative scheme is required for the solution process. A repeated substitution

method named the Picard method is often used. And, some form of relaxation tech-

nique is often used to enhance the performance of the nonlinear iterative schemes.

This will be discussed later in Section (3.2.3).

The iterative process will continue until the iteration number reaches a pre-

scribed maximum or until the results satisfy the convergence criterion. As a mea-

sure of convergence, the Euclidean norm of the pressure head vector in SEEP/W

is used. The pressure head vector norm is defined as:

‖ h ‖=

(
nn∑
i=1

∣∣hi
∣∣2)1/2

+ 1.0 (3.6)
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where nn = number of nodes; and hi = pressure head at node i. The vector norm is

a measure of the size of the pressure head vector. A constant value of 1.0 is added

to the vector norm to prevent it from being equal to zero. The solution is deemed

to have converged when the percentage difference in the pressure head vector

norm between two consecutive iterations is less than a user specified tolerance value.

3.2.2 Constitutive Relations

There are many constitutive equations to describe the relationships between θ and

h, and K and h, as reviewed in Section (2.5). Using appropriate parameters, most

soil-water characteristic models can fit the experimental data well. Among the more

popular choices to describe the soil-water characteristic curve, the four-parameter

van Genuchten model (van Genuchten, 1980) is used here for its flexibility in fitting

fine-textured soil data, given by

Θ(h) =
θ(h) − θr

θs − θr

=

{
(1 + |ah|n)

−m
, h < 0

1, h ≥ 0
(3.7)

where

Θ = the effective saturation;

θ = volumetric water content;

θr and θs = the residual and saturated volumetric water contents, respec-

tively;

a = shape parameter, m−1;

n and m = shape parameters, where m = 1 − 1/n; and

h = the pressure head.
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The Mualem (1976) model can be coupled with the van Genuchten soil-water

characteristic curve to provide an estimate for the conductivity function (van

Genuchten 1980). The equation can be expressed by

K(Θ) = KsΘ
1/2

[
1 −

(
1 − Θ1/m

)m
]2

(3.8)

where

Ks = saturated hydraulic conductivity; and

Θ = Θ(h) from Equation (3.7).

The other parameters are as defined in Equation (3.7).

3.2.3 Under-Relaxation Technique

As a result of the nonlinearity of the soil-water characteristic curve and conductiv-

ity function, the finite element equations are nonlinear and an iterative scheme is

required for the solution process in each time-step. However, very steep hydraulic

conductivity functions create convergence difficulties. The solution will tend to di-

verge instead of converge and oscillate between two extreme solutions represented

by the extremities of the hydraulic conductivity function, leading to slow conver-

gence to a stable solution within each time-step.

During the iterative process, under-relaxation techniques are often employed to

curb the tendency of the calculated head from oscillating about its extreme values.

This will improve the rate of convergence within a time-step, especially for steep

hydraulic conductivity functions.

One form of under-relaxation uses the head at the mid-point of the time interval
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to define the material properties in each time-step (hereafter referred to as UR1).

That is, the material properties used for the next iteration m + 1 at the current

time-step n + 1 is defined at the average of heads computed from the previous

time-step n and the most recent iteration m of the current time-step n + 1. The

definition of this head can be expressed mathematically as follows:

H
i

n+1,m+1 =
H i

n+1,m + H i
n

2
(3.9)

where

H i
n+1,m = total head at spatial node i, current time-step n + 1 and iteration

m; and

H i
n = previously computed total head at spatial node i and time-step n.

In this way, the tendency for h to oscillate around its limits will be dampened and a

smaller number of iterations will be needed for the convergence to a stable solution

within each time-step. This is a commonly used under-relaxation approach and has

been adopted by standard programs such as SEEP/W. However, previous studies

(Chong, 2001; Tan et al., 2004) have shown that this form of under relaxation

technique seems to optimize the number of iterations per time-step, but comes

with a hidden cost of requiring an extreme refinement of time-step to arrive at a

solution of acceptable accuracy, which is rarely appreciated.

Another variation of under-relaxation commonly used is Gauss-Seidel iteration

(hereafter referred to as UR2). In this case, the material properties for the new

iteration are defined at the average of heads computed from the two most recent

iterations of the current time-step (Paniconi and Putti, 1994):

H
i

n+1,m+1 =
H i

n+1,m + H i
n+1,m−1

2
(3.10)
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This approach can also restrain the tendency of h from oscillating around its ex-

treme values, thus improving the rate of convergence during the iterative process.

Chong (2001) and Tan et al. (2004) recommended this form of under-relaxation

in their study. They showed that it improves the rate of convergence of solutions

with respect to increasing refinement in mesh size and time-step, but does so at

a price of increasing the number of iterations within each time-step, and even di-

verge instead of converge to a stable solution when dealing with soils with highly

nonlinear hydraulic properties.

Note that the under-relaxation technique is usually not strictly applied to de-

termine λ or mw. A purportedly more robust chord slope approximation approach

is used whereby the slope of the soil-water characteristic curve (mw) is evaluated

from a straight line connecting the volumetric water content at H i
n with that at

H i
n+1. When these two heads are nearly identical, then mw is computed from the

tangent of the soil-water characteristic curve at the average of these two heads.

In this study, a Fortran 90 program, named HFE, has been specifically written

so as to explore different linearization and iterative techniques. The formulation

adopted in HFE follows closely as that discussed previously, including the h-based

form finite element formulation, under-relaxation technique (UR1), chord slope

method for linearization and so on, which can be found in a typical finite element

program like SEEP/W. Furthermore, HFE can be shown to generate essentially

the same results as SEEP/W and this verification is included in Appendix C. The

development of the program HFE is necessary to include modifications to the finite

element formulation to be carried out easily for testing different methods such as

UR2 technique.
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3.2.4 Transformation Method

The basic idea behind the transformation approach is to define a function p(h)

that will result in a more efficient and robust solution to the Richards equation.

Several transformations have been developed as discussed previously. In the fol-

lowing studies, the RFT transform approach will be adopted due to its efficiency

in homogeneous and heterogeneous soils and easy implementation.

The RFT transform is defined in terms of a rational function of pressure head

h (Pan and Wierenga, 1995), given by

p =


h

1 + βh
, h < 0

h, h ≥ 0
(3.11)

where p is the transformed head; h is pressure head and β is a transform parameter.

With this transformation, the sharpness of the wetting front appearing in the

spatial domain in unsaturated flow problems can be reduced, which can be seen

in Figure 3.1 using a one-dimensional infiltration example. It also leads to a more

gradual change of dependent variables in temporal domain, which is shown in Fig-

ure 3.2. Thus, more efficient and robust solutions are expected with the application

of such transformation than traditional approaches.

With (3.11), equation (3.3) becomes

∂

∂z

(
K∗∂p

∂z

)
+

∂K

∂z
+ Q = λ∗∂p

∂t
(3.12a)

where

K∗ = K
∂h

∂p
(3.12b)

λ∗ = λ
∂h

∂p
(3.12c)
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∂h

∂p
=


1

(1 − βp)2
, h < 0

1, h ≥ 0
(3.12d)

The corresponding finite element equation for (3.12a) can then be expressed

as follows:

[M ]∗ {p} , t + [K]∗ {p} + [K] {z} = {Q} (3.13a)

where

[M ]∗ = d

∫
A

(λ∗ {N}T {N}) dA (3.13b)

[K]∗ = d

∫
A

([B]T [k]∗ [B]) dA (3.13c)

[K] = d

∫
A

([B]T [k] [B]) dA (3.13d)

and

{Q} = qd

∫
({N}T ) dL (3.13e)

In the above equations,

{p} = vector of transformed head;

{p} , t = vector of time derivative of {p} at nodal points;

[k]∗ = transformed element hydraulic conductivity matrix.

To perform the time integration, a backward finite difference approximation

scheme is adopted leading to the following equation:

(∆t [K]∗ + [M ]∗) {pn+1} = ∆t {Qn+1} + [M ]∗ {pn} − ∆t [K] {z} (3.14)

where {pn} = transformed head at time-step n.
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Although the transformation method can reduce the sharpness of the wet-

ting front significantly, an under-relaxation technique is still needed to solve the

nonlinear finite element equations after transformation. Otherwise, in some cases

with relatively large time-steps, stable solution cannot be achieved even after a

large number of iterations. In the proposed new approach TUR1, the UR1 under-

relaxation technique discussed above will be adopted. Studies show that the trans-

formation method alone without any under-relaxation (hereafter referred as TUR0)

or combined with the UR2 under-relaxation technique (hereafter referred as TUR2)

gives less efficient solutions than TUR1, which will be shown in Section 3.3.8. The

key difference is now the under-relaxation will be applied to the transformed heads

instead of the pressure heads. It can be expressed mathematically as follows:

p i
n+1,m+1 =

pi
n+1,m + pi

n

2
(3.15)

where

pi
n+1,m = transformed head at spatial node i, time-step n + 1 and iteration

m; and

pi
n = previously computed transformed head at spatial node i and time-step

n.

In TUR2, the under-relaxation can be expressed as:

p i
n+1,m+1 =

pi
n+1,m + pi

n+1,m−1

2
(3.16)

where

pi
n+1,m = transformed head at spatial node i, time-step n + 1 and iteration

m; and
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pi
n+1,m−1 = transformed head at spatial node i, time-step n + 1 and previous

iteration m − 1.

Note that the chord slope approach is still used here to determine λ or mw.

The under-relaxation is only applied to K and ∂h/∂p. Thus,

K∗ = K
∂h

∂p
= K(p) · 1

(1 − βp)2
(3.17a)

λ∗ = λ
∂h

∂p
= λ · 1

(1 − βp)2
(3.17b)

where p is the transformed heads after under relaxation.

3.3 Convergence Study of TUR1 method

3.3.1 Problem Descriptions

The one-dimensional test problem is similar to those used by Chong (2001) and

Tan et al. (2004) for vertical infiltration under constant surface pressure heads.

The geometry of the finite element mesh is shown schematically in Figure 3.3. In

this problem, a typical sandy clay loam soil (Case A) and a typical loam soil with

steeper hydraulic characteristic curves (Case B) are adopted. Hydraulic properties

of the former soil (Case A) are obtained from the International UNsaturated SOil

hydraulic DAtabase, UNSODA (Leij et al., 1996). The related soil parameters are

computed by curve fitting laboratory data (Soil Type 1132) using van Genuchten

(1980) soil-water characteristic model and Mualem (1976a) conductivity model

simultaneously. The latter is taken from SoilVision (2003).

To define the boundary conditions, a uniform pressure head of -8 m is first

generated throughout the soil column using a steady state analysis. This starts
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the problem from an initial dry state, with a volumetric water content close to the

residual value. The asymptotic behavior of the soil-water characteristic curve in

this region creates computational difficulties for the numerical simulations, and thus

should provide a rigorous test for all solution approaches. For subsequent transient

analyses, a zero pressure head is imposed at the top of the column, while the

pressure head is maintained at -8 m at the bottom. This simulates an infiltration

condition, whereby the negative pore-water pressure at the top is reduced to zero

as soon as infiltration starts.

The porous medium properties, initial conditions and boundary conditions

are summarized in Table 3.2. The nonlinear soil hydraulic characteristics for these

chosen soil types are illustrated in Figures 3.4 and 3.5.

3.3.2 Benchmark Solution

Chong (2001) and Tan et al. (2004) has showed that the solution of HFE with

UR1 do converged to some values when extreme refinement of time-steps and

corresponding extreme spatial discretization (hereafter referred to as the dense

grid mesh) are used. In order to verify that the converged solution produced by

the program HFE are correct, the generalized solution derived by Warrick et al.

(1985) for the infiltration problem is computed and compared with the solution

generated from such dense grid mesh for three different pressure heads as shown

in Figure 3.6. A close agreement is observed between this dense mesh finite

element solution and Warrick et al.’s (1985) generalized semi-analytical solution.

Therefore, the converged solution generated by HFE, with an element size of 0.001
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m and a corresponding time-step of 5.52 s, can be assumed correct. As Warrick

et al.’s (1985) solution is only restricted to the three pressure heads shown in

Figure 3.6, the dense mesh solution will be used as the benchmark solution in the

following study for comparison and will appear as a bold line in all figures plotted

subsequently.

3.3.3 Transformation Parameter β

Because the transformation in Equation (3.11) involves an arbitrary parameter β,

selecting its value is important to determine the efficiency of this method. The

absolute value of the transformation parameter β should not be too small in order

to keep the benefits of the transformation. It also should not be too large, which

would reduce the gradient too much and cause big errors. Pan and Wierenga

(1995) recommended that in practice, one may calculate the transformed hydraulic

conductivity K∗, and plot it versus the pressure head for the soil involved. The

recommended value of β can be chosen as the largest value for which the curves

remains monotonic. But this recommendation was not studied in detail. In partic-

ular, the difference in efficiency between this a prior choice and the most optimized

parameter is unknown. The range of soils in which this recommendation is feasible

is also unknown. These practical questions are important and are studied below.

The transformed hydraulic conductivity K∗ curves are plotted in Figures

3.7 and 3.8 for Case A and Case B, respectively. For Case A, the biggest β

allowed as long as the K∗ curve is still monotonic is around -2.72 m−1 (previous

recommendation). Figure 3.9 shows a comparison of results with different β
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values. It shows that both a very small β value (-0.01 m−1) and the biggest β

allowed (-2.72 m−1) generate unsatisfactory results, whereas an intermediate value

(-1.4 m−1) produce the most accurate solution. It suggests a tentative way to

choose a more optimum β value. In the following studies, the average value of the

biggest β and zero, that is, half of the biggest β is used. For Case A, the biggest β

allowed is around -2.72 m−1, thus, -1.4 m−1 will be used as the β value. For Case

B, the biggest β allowed is around -24 m−1, thus, -12 m−1 will be used as the β

value. The choice of the optimal transformation parameter value will be explored

further in the following sections.

3.3.4 Convergence for a General Case

Chong (2001) and Tan et al. (2004) have studied the convergence pattern of UR1

and UR2. When UR1 is adopted, it is shown that, apparent “convergence” of

pressure head profiles was observed when the element size was reduced over a fixed

time-step size. However, the wetting front was observed to migrate deeper as the

time-step size was reduced, indicating that convergence to the “true” solution is

actually not achieved. When the time-step size was reduced over a fixed element

size, slow convergence resulted leading to a severe under-prediction of the wetting

fronts. On the other hand, when UR2 is adopted, it is shown that, the calculated

pressure head profiles converge to a solution closed to the correct one when the

element size was reduced over a fixed time-step size. In addition, the converged

profiles approached the correct solution as the time-step size reduced, with smaller

discretization errors appear as reduced diffusion about this sharp profile.
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In the following analysis, the convergence of TUR1 for a general case is studied.

For the first analysis, the effect of element size is studied by keeping the time-

step size fixed at 55200 sec. Figure 3.10(a) shows the variation of pressure head

with elevation for this analysis. It can be observed that the calculated pressure

heads of TUR1 converge to a sharp profile, close to the dense grid mesh solution.

Similar convergence trends can be seen when the time-step size is further reduced

to 13800 s, and subsequently 3450 s, as illustrated by Figures 3.10(b) and 3.10(c),

respectively. In addition, the converged depth of infiltration approaches the correct

solution as the time-step size reduces, generating correspondingly less diffusion in

each case.

Next, to investigate the influence of temporal discretization, the time-step

sizes are now reduced while keeping the element size fixed at 0.1 m. Figure 3.11(a)

shows that for a fixed element size, the computed pressure heads begin to oscillate

when the time-step is reduced below a certain threshold. The results converge to

a sharp profile as shown by the dense grid mesh solution with refinement of the

time-step, with the larger discretization errors appearing as increased diffusion

about this sharp profile. Similarly, the same observations can be made from

Figures 3.11(b) and 3.11(c), which show the calculated results for two other

smaller element sizes.

3.3.5 Convergence with Minimum Time-step Criteria

3.3.5.1 Application of Minimum Time-step Criteria

Thomas and Zhou (1997) developed two minimum time-step criteria to avoid nu-
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merical oscillations in heat diffusion problems. These criteria are formulated in

terms of thermal conductivity, specific head capacity and element size, and they

apply strictly for constant material properties. Karthikeyan et al. (2001) applied

similar criteria to unsaturated seepage flow problems in SEEP/W, in which the

same formulation was used in the solution process. These criteria were found to be

applicable to seepage flow in unsaturated soil with nonlinear hydraulic properties

to control oscillations.

Table 3.1 gives a summary of the minimum time-step sizes for different element

types. It shows that the minimum time-step size is related to the element length,

L, which is perpendicular to the direction of flow and material properties, K and

λ.

To calculate the minimum time-step, it is necessary to determine the ratio

of λ to K, which is not a constant when the soil-water characteristic curve and

conductivity function are nonlinear. This ratio is observed to increase as the pore-

water pressure becomes more negative. Since an imposed infiltration boundary

condition is not expected to result in the further drying of the soil, the most critical

case will correspond to the initial state where the negative pore-water pressure is the

highest. This initial state is used to calculate the ratio of λ to K. In this case, the

value of mw is calculated from the tangential slope of the soil-water characteristic

curve. This approach is found to be adequate in removing oscillations from the

pore-water pressure profiles generated (Karthikeyan et al., 2001).

To illustrate the problem with the oscillation-free case, different sets of element

sizes and corresponding time-step sizes that satisfy the Thomas and Zhou (1997)

criteria are used.
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From Table 3.1, there is only one minimum time-step criteria required by one-

dimensional element to be satisfied for a non-oscillatory solution. For an initial

pressure head of -8 m, the values of λ and K are found to be 3.70 × 10−3 m−1

and 1.12 × 10−10 ms−1, respectively. Applying the criterion in Table 3.1, a mini-

mum time-step of around 55200 s is required for an element size of 0.1 m. Other

combinations are summarized in Table 3.3.

Figure 3.10 and Figure 3.11 show that the minimum time-step criteria

developed by Thomas and Zhou (1997) is still applicable to TUR1 to curb

oscillation. Further studies with other soils also validate this finding. To the

author’s knowledge, this observation is first demonstrated in this study. Note that

the minimum time-step criteria are computed based on the original λ and K.

3.3.5.2 Stability of Solution within a Time-step

An analysis adopting an element size of 0.05 m and a time-step of 13800 s was

carried out for the 1D unsaturated seepage flow problem. Figure 3.12 shows the

variation in the normalized elevation corresponding to a pressure head of -6 m with

the iteration number at four elapsed times. The normalized elevation is defined

as the ratio of the computed elevation to the correct elevation from the dense

grid mesh solution. The solution is considered to be “stable” when the percentage

difference in the pressure head vector norm between two successive iterations is less

than 0.001.

Figure 3.12 shows that during the iterative process in each time-step, calcu-

lations generated with UR1 converges to a stable solution very rapidly (less than
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10 iterations) without oscillation. However, this stable solution differs significantly

from the correct solution. It was found that the normalized elevation for the time

of 55200 s can be as high as 2.5. This problem was also reported by Tan et al.

(2004). In contrast, although the stable solutions for UR2 attained in each time-

step are shown to be within 80% of the correct dense grid solution, it requires

around 100 iterations to converge to stable solutions. It is also worth mentioning

that the solution generated by UR2 converges to a stable solution in a different way

from UR1. It appears to oscillate around the correct solution and converge slowly.

On the other hand, TUR1 is able to produce stable solutions in each time-step

that are within 90% of the correct dense grid solution with less than 20 iterations.

Its convergence pattern within a time-step is like UR1. That is, the calculation

converges to the stable solution monotonically without oscillation. This is possibly

because relaxation technique in UR1 form is still used in TUR1. In addition, the

nonlinearity of the problem will be alleviated by transformation method, which

may greatly reduces the error that appeared in UR1.

Figure 3.13 shows the different convergence procedures of UR1, UR2 and TUR1

demonstrated on the hydraulic conductivity curve for a gauss point near the wetting

front. It is observed that for the UR1 method, the calculated permeability have

little changes during iterations, thus a stable solution can be obtained very quickly

(6 iterations). However, these permeability values are far from accurate (about

1× 10−10 m/s compared to the accurate value of 3.3× 10−7 m/s), which makes the

converged solution differs significantly from the correct one. For the UR2 method,

the calculated permeability approaches the correct value gradually and converges

slowly in an oscillatory pattern. Therefore, the converged solution of UR2 is more
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accurate than UR1, but with the price of using much more iterations. While

for the TUR1 method, the calculated permeability approaches the correct value

monotonically without oscillation, hence a much more accurate solution compared

to that using UR1 can be obtained quickly within less than 20 iterations.

Overall, the above results indicate the relatively significant advantages of

the proposed TUR1 method compared to existing UR1 and UR2 schemes. The

under-relaxation technique adopted by SEEP/W, UR1, requires fewer iterations

per time-step but requires a significantly more refined time-step size to produce ac-

curate solutions at a given elapsed time. At the same time, to suppress oscillation,

the corresponding element size would also need to be refined significantly. The al-

ternative under-relaxation technique, UR2, can produce more accurate solutions at

the same elapsed time using a much coarser mesh and therefore a larger time-step

but requires considerably more iterations per time-step. On the other hand, the

proposed combination of transformation method and UR1 (TUR1) can improve

its accuracy quite significantly but only with a marginal increase in cost in terms

of iterations per time-step. But does this mean that TUR1 can reach a solution of

specified accuracy at a give elapsed time with the least computer run time using

different mesh sizes and time-steps? The following section will clarify this question.

3.3.5.3 Convergence of Solution with Mesh and Time-step Refinement

The computational effort required to calculate the wetting front at the elapsed

time of 55200 s is studied using six combinations of element size and time-step,

shown in Table 3.3. Figures 3.14, 3.15 and 3.16 show the wetting front plots
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for reducing spatial and temporal discretization simultaneously of UR1, UR2 and

TUR1, respectively. It is observed that the convergence patterns of UR1, UR2

and TUR1 are quite different. For UR1, the wetting fronts traversed slowly down

the soil depth with decreasing time-step sizes, and large temporal discretization

is found to under-predict the infiltration depth significantly. On the contrary, for

UR2 and TUR1, the pressure heads are observed to converge to a sharp profile and

larger discretization errors appear as increased diffusion about this sharp profile.

A comparison among UR1, UR2 and TUR1 on the basis of accuracy and total

run time is shown in Figures 3.17 and 3.18. In the former plot, the accuracy of the

computed wetting front is measured using the normalized elevations corresponding

to two representative pressure heads of -6 m and -2 m. In the latter, the accuracy

is measured using the L2 error norm which is defined as

‖ ε ‖2 =

[
1

nn

nn∑
i=1

∣∣∣ĥi − hi
∣∣∣2]1/2

(3.18)

where ĥi is an accurate approximation of the true solution based on a dense grid

mesh. Run time is obtained by executing the code (compiled using Microsoft

FortranTM PowerStation 4.0) on a Pentium IV, 2.4 GHz machine. It appears that

UR1 executes the fastest among these three approaches for each combination of

element size and time-step, but approaches the correct solution slowly with mesh

and time-step refinement. On the other hand, UR2 and TUR1 are able to approach

the correct solution much more rapidly with the refinement of mesh and time-step.

Between them, TUR1 is observed to be faster than UR2. For example, to maintain

an error of around 5%, which is acceptable in practice, UR1 requires 200 elements

and 400 time-steps, while both UR2 and TUR1 requires 40 elements and 16 time-

steps. The corresponding run times are 14.72 s, 1.37 s and 0.33 s, respectively.
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With a reasonable element size in practice to be used, such as 0.1 m, UR2 and

TUR1 can get a solution with maximum error around 45%, while the solution

from UR1 has a maximum error as high as 170% in terms of differences between

the calculated wetting fronts and the correct solutions. Furthermore, TUR1 uses

much less time than UR2. Hence, TUR1 is the most efficient from a computational

viewpoint for any prescribed level of accuracy. It is also reassuring to note that

with the refinement of the element size and time-step size, TUR1 approaches the

same limit as UR1, which has been shown to produce the correct solutions at the

extreme mesh and time-step refinement.

The total number of iterations and the average number of iterations per time-

step are shown in Figure 3.19. At each combination of element size and time-step,

it can be seen that UR2 requires the most iterations than UR1 and TUR1, while

TUR1 requires a little more iterations than UR1. However, the total number of

iterations needed to stay within a prescribed error band, say ±5%, is 1261, 611 and

123 for UR1, UR2 and TUR1 respectively. The first reason for this difference is that

both UR2 and TUR1 can use bigger time-steps thus require much less number of

time-steps than UR1 to obtain such solutions. Between these two, TUR1 requires

less iterations to converge within each time-step than UR2. Another reason is that

a coarser time-step permits larger element sizes to be used if oscillations are to be

suppressed using the minimum time-step criterion. This results in a smaller set of

finite element equations to solve, which further implies that every iteration in every

time-step is cheaper to perform for UR2 and TUR1 than UR1. For large 2D and

3D problems involving global matrices with significant bandwidth, the number of

operations required for direct matrix solvers will approach O(N3) and this penalty
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should be even heavier for UR1, where N is the number of degrees of freedom.

From the aspect of convergence to a correct solution with progressive refine-

ment of the element size and time-step, the above results show the superiority of

TUR1 over UR1 and UR2. UR1 is able to reach a stable solution very rapidly in

each time-step, but requires significantly more refinement of the time-step to arrive

at a solution of acceptable accuracy. At the same time, to suppress oscillation,

element size needs to be correspondingly reduced, thus imposing even greater

demands on computational resources. Adopting UR2 would mean that a large

time-step which permits a much coarser mesh under the Thomas and Zhou (1997)

criterion for oscillation control can produce reasonably accurate results, but at a

price that within each time-step, much more iterations are needed. On the other

hand, TUR1 has the advantages of both UR1 and UR2. Firstly, like UR2, TUR1

can use larger time-steps to produce acceptable results and thus corresponding

coarser meshes to suppress oscillation. Secondly, like UR1, TUR1 can converge to

a stable solution quickly in each time-step.

3.3.6 Convergence with Lumped Mass Scheme

3.3.6.1 Lumped Mass Scheme

In previous sections, numerical oscillations in the pressure head profiles are con-

trolled by employing the minimum time-step criteria developed by Thomas and

Zhou (1997). However in some cases, it is found that the oscillation-free time-step

for a reasonable mesh size according to the minimum time-step criteria is too big to

be used. Alternatively, oscillation was observed to be eliminated in lumped mass
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formulation in which the mass matrix is diagonal (van Genuchten, 1982; Celia et

al., 1990; Pan et al., 1996). Although it is reported that solutions with lumped

mass formulation are less accurate than those with consistent mass formulation as

it may cause smearing of the wetting front, and quadratic or cubic elements could

cause oscillation with both consistent and lumped mass schemes, this lumped mass

approach is very popular in the modeling of unsaturated flow problems and included

in many commercial softwares such as SEEP/W (GEO-SLOPE, 2004). Thus, in

the following sections, the performance of proposed TUR1 method with lumped

mass formulation is examined.

Several lumping schemes have been developed in the context of finite element

publications, e.g., Zienkiewicz and Taylor (2000) and Pan et al. (1996). Here, the

mass matrix is diagonalized by simply adding the off-diagonal elements onto the

main diagonal, which is often called a “row sum” method:

[M ]ei,j =


∑

k

∫
Ae

(
λNT

i Nk

)
dA, i = j

0, i 6= j

(3.19)

This simplifies to

[M ]ei,j =


∫

Ae

(
λ NT

i

)
dA, i = j

0, i 6= j
(3.20)

since the sum of the shape functions is unity.

3.3.6.2 Convergence of Solution with Lumped Mass Scheme

The computational effort required to calculate the wetting front at the elapsed

time of 55200 s is studied using four different element sizes with refinement in

time-steps. A comparison among UR1, UR2 and TUR1 on the basis of accuracy
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and total run time is shown in Figure 3.20. It can be seen that for all four element

sizes, when a same large time-step is used, UR2 and TUR1 are able to produce

much more accurate solutions than UR1, although UR1 uses the least run time to

get a stable solution among these three approaches. And between UR2 and TUR1,

the latter runs much faster than the former. For example, when 40 elements

(element size of 0.025 m) and 16 time-steps (time-step size of 3450 s) are adopted,

UR1 uses 0.24 s to get a solution with L2 error of 3.53 m, while UR2 and TUR1

can get much more accurate solutions with L2 error around just 0.3 m. However,

UR2 uses 1.44 s to get such solution, which is 5 times more compared to UR1,

while TUR1 runs almost as fast as UR1 (0.34 s). Thus, the superiority of TUR1

in efficiency over UR1 and UR2 is demonstrated again that for a fixed element

size, TUR1 can use larger time-steps to produce much more accurate results than

UR1, but without dramatically increasing the total run time as UR2.

3.3.7 Parameter Estimation

Firstly, the influence of transformation parameter on the performance of TUR1

method is studied when the minimum time-step criteria are used to control the

oscillation problem. A comparison of performance on the basis of accuracy and

total run time with different transformation parameter values is shown in Figure

3.21. The tentative observation in Section 3.3.3 that the intermediate value (-1.4

m−1) is the optimal choice of the transformation parameter is validated. It appears

to be the most efficient among 5 different values with the refinement of element size

and time-step. It can be seen that for the same element size and time-step size,
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total run times for different β values are similar. However, the intermediate value of

-1.4 m−1 achieves the most accurate solution. Actually, when a very small β value

such as -0.5 m−1 is used, the solution underpredicted the depth of the wetting front

as UR1 method did. When the biggest β value for which the K∗ curve remains

monotonic such as -2.72 m−1 is adopted, which is recommended previously by Pan

and Wierenga (1995), the solution is also quite erroneous as it overpredicts the

depth of the wetting front.

For the case when lumped mass scheme is adopted to curb the oscillation

problem, the choice of transformation parameter value is examined below. Figure

3.22 shows the effect of different transformation parameter values on the L2 error

of the solution with refinement in time-steps for different element sizes. The same

observation can be seen that for almost all combinations of element sizes and time-

steps, the intermediate value of -1.4 m−1 produces the most accurate solutions.

The general trend of the curves is that the L2 error decreases when the absolute β

value increases from a very small value, say 0.01 m−1; and the smallest L2 error is

obtained when the absolute β value increases to be around the intermediate value

of 1.4 m−1. Then the error begins to increase as the absolute β value increases

further. Note that the previous recommendation by Pan and Wierenga (1995) of

choosing the β value as -2.72 m−1 does not give satisfactory results.

The above results show that choosing an intermediate value which equals to

half of the biggest β value allowed as long as the K∗ curve is still monotonic for

the transformation parameter in TUR1 method is a reasonable choice to produce

near optimal results.
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3.3.8 Performance of TUR1 versus TUR0 and TUR2

In previous studies, a new approach TUR1, which combines the RFT transforma-

tion method with the UR1 under-relaxation technique, is shown to outperform the

original UR1 and UR2 methods without transformation. Obviously, the transfor-

mation in TUR1 improves the performance of original UR1 method dramatically.

While it is interesting to ask whether the UR1 under-relaxation in TUR1 method

is a necessity. Does the UR1 under-relaxation technique also improve the perfor-

mance of the original transformation method? Thus, in this section, the perfor-

mance of TUR1 method is examined versus the original transformation method

alone without any under-relaxation (TUR0) or combined with the UR2 under-

relaxation technique (TUR2). The effect of the UR1 under-relaxation then can be

demonstrated.

A performance comparison among TUR1, TUR0 and TUR2 for four combi-

nations of element size and corresponding oscillation-free time-step is shown in

Table 3.4 for Case A example. Note that two transformation parameter values are

adopted, which include the proposed value in this study (β = -1.4 m−1), and the

previous recommendation (β = -2.72 m−1) by Pan and Wierenga (1995).

It can be seen that the transformation method alone without any under-

relaxation (TUR0) does not guarantee an efficient solution. It fails to get a stable

solution for most cases. Even when it gets a stable solution with a dense mesh

and a small time-step, it is much less accurate than the TUR1 method. When

the transformation method is combined with the UR2 under-relaxation technique

(TUR2), the convergence becomes even worse. Much more iterations are needed
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to complete the calculation. It also shows that the inefficiency of TUR0 and TUR2

methods is not because inappropriate transformation parameter value is adopted.

Actually, the performances of TUR0 and TUR2 are almost the same with these

two recommended β values.

The studies above show that the UR1 under-relaxation technique is a necessary

part to assure the efficiency of the TUR1 combination approach. It dramatically

improves the convergence ability of the original transformation method.

3.3.9 More Difficult Type of Soil

In this section, a different soil (Case B) with steeper soil-water characteristic

curve and hydraulic conductivity curve is studied. The more severe nonlinearity of

hydraulic properties combined with the extreme initial conditions make it a much

more difficult problem to be solved, although the material type is not uncommon.

To get the correct solution, very dense mesh and time-step must be used. Figure

3.23 shows the comparison between a dense grid mesh solution (element size of

0.00005 m and time-step size of 4.428 s) with the generalized solution of Warrick et

al. (1985) for three different pressure heads. A close agreement is observed between

this dense mesh finite element solution and Warrick et al.’s (1985) generalized

semi-analytical solution. Therefore, this converged solution generated by HFE,

with an element size of 0.00005 m and a corresponding time-step of 4.428 s, can

be assumed correct.
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3.3.9.1 With the Application of Minimum Time-step Criteria

For a elapsed time of 88560 s, the maximum element size that can be used is

0.005 m under the minimum time-step criteria. A performance comparison among

UR1, UR2 and TUR1 for four combinations of element size and corresponding

oscillation-free time-step is shown in Table 3.6. It can be seen that, for coarser

material soil with more nonlinear hydraulic properties, UR2 needs a more refined

time-step and corresponding element size to generate stable and oscillation-free

solutions. TUR1 can get such a solution with a coarser mesh and a bigger

time-step. UR1 can produce stable solutions for all cases, but large errors

are found except when very small element size and time-steps are adopted. It

is also noteworthy that TUR1 would also break down when the soil hydraulic

property curves are steep (such as Case B soil) and relatively large time-step is used.

3.3.9.2 With the Application of Lumped Mass Scheme

In practice, the element size that engineers used in their simulations cannot be very

small. For example, for a 2D infiltration problem of 10 m × 10 m, if quadrilateral

elements with element size of 0.01 m × 0.01 m is used, then there will be one

million elements in total. This is an exceptionally large number of elements which

is impractical for most practical analysis. For a reasonable element size of 0.1 m,

Table 3.5 shows that the minimum time-step to generate oscillation-free solutions

is 17712000 s, which is obviously too big to use. Indeed, the resolution should be

small enough to capture variations in hourly or daily rainfalls. Thus, the minimum

time-step criteria is not applicable any more. The lumped mass scheme will be

69



Chapter 3. Rational Transformation Method with Under-Relaxation

used to control the oscillation instead.

In the following studies, a practical element size of 0.1 m is used. Table 3.7

shows the convergence of solutions with refinement in time-step with fixed element

size of 0.1 m. It is showed that for a relatively coarse mesh, even with very small

time-step, large errors are still observed in the results of UR1 and UR2. On the

other hand, TUR1 can get a solution with an error of less than 10% with a large

time-step size of 3542.4 s (approximately 1 hour resolution).

The above results show that when a relatively coarse mesh is used in practical

simulations, TUR1 is still better than UR1 and UR2. It can use bigger time-steps

to get “acceptable” results with a reasonable element size. Considering large 2D

and 3D problems involving matrices with significant bandwidth, the run time

for each time-step will be very long. Bigger time-step size means less number of

time-step needed, thus, less computation time. Several 2D examples are discussed

in Chapter 5.

3.4 Concluding Remarks

In this chapter, a combination approach of RFT transformation method (Pan and

Wierenga, 1995) and a typical under-relaxation technique was applied to solve the

finite element formulation of the h-based form of Richards equation. A detailed

investigation was then implemented to look into its effect on the slow convergence

problems. In addition, the minimum time-step criterion presented by Karthikeyan

et al. (2001) or the lumped-mass formulation was applied to suppress oscillations so

that the convergence issue can be studied without being encumbered by extraneous
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complications.

Comparison of this proposed combination approach (TUR1) and two under-

relaxation techniques without transformation (UR1 and UR2) were carried out.

From the aspect of convergence to a correct solution with progressive refinement of

the element size and time-step, numerical results showed the superiority of TUR1

over UR1 and UR2. UR1 is able to reach a stable solution very rapidly in each

time-step, but requires significantly more refinement of the time-step to arrive at a

solution of acceptable accuracy. At the same time, to suppress oscillation, element

size needs to be correspondingly reduced, thus imposing even greater demands on

computational resources. Adopting UR2 would mean that a large time-step which

permits a much coarser mesh under the Thomas and Zhou (1997) criterion for os-

cillation control can produce reasonably accurate results, but at a price that within

each time-step, much more iterations are needed and even diverges instead of con-

verging to a stable solution when dealing with soils with highly nonlinear hydraulic

properties. On the other hand, TUR1 has the advantages of both UR1 and UR2.

Firstly, like UR2, TUR1 can use larger time-steps to produce acceptable results

and thus corresponding coarser meshes to suppress oscillation. Secondly, like UR1,

TUR1 converges to a stable solution quickly in each time-step. Above all, TUR1

appears superior than UR1 and UR2 in the sense that a more realistic solution

can be obtained using a practically reasonable spatial and temporal discretization

eventually.

The transformation methods often involve arbitrary parameters. A robust

approach that does not resort to time-consuming trial and error “tuning” runs

and does not compromise the efficiency significantly is of practical importance.

71



Chapter 3. Rational Transformation Method with Under-Relaxation

In this new approach TUR1, only one ad-hoc parameter is introduced. Pan and

Wierenga (1995) recommended a practical way to choose this parameter value in

RFT transform. But they did not explore it in detail. Williams et al. (2000) showed

that the optimal transform parameters depend upon media properties, boundary

conditions and spatial and temporal discretization. For the proposed combination

method, numerical studies showed that choosing an intermediate value which equals

to half of the biggest β value allowed as long as the K∗ curve is still monotonic for

the transformation parameter in TUR1 method is a reasonable choice to produce

near optimal results.

This study also showed that the minimum time-step criteria can be applied to

the transformed flow equation by using the original λ and K to curb the oscilla-

tions. However, when steep soil parameter curves are encountered, the minimum

oscillation-free time-step is sometimes too large in comparison to hourly or daily

varieties in rainfall intensity.

In conclusion, the proposed TUR1 method appears to be a more practical

choice than existing methods, because it can produce accurate solutions at rea-

sonable computing cost; only one ad-hoc parameter is introduced and a robust

recommendation on the choice of such parameter value is given; and finally it is

workable for difficult problems with highly nonlinear soil hydraulic parameters.
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Table 3.1: Minimum time-step sizes for different types of elements (Karthikeyan et
al., 2001)

Oscillation One-dimensional element Two-dimensional element

Type 2-noded 3-noded 4-noded 8-noded

Type 1 ∆t ≥ L2λ/6K ∆t ≥ L2λ/40K ∆t ≥ L2λ/2K ∆t ≥ L2λ/40K

Type 2 - ∆t ≥ L2λ/20K - ∆t ≥ L2λ/20K

where ∆t = time-step size;

λ = specific moisture capacity function, m−1;

K = hydraulic conductivity, ms−1; and

L = element length or width perpendicular to the direction of flow.

Table 3.2: One-dimensional test problems

Variable Case A Case B

Medium Properties θr 0.186 0.20

θs 0.363 0.58

a m−1 1.000 8.000

n 1.53 1.412

Ks ms−1 1.0 × 10−6 1.1574 × 10−6

Initial Conditions h(z, t = 0) m -8 -8

Boundary Conditions h(z = 1, t) m 0 0

h(z = 0, t) m -8 -8
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Table 3.3: Minimum time-step size for different element sizes of Case A

Element Size (m) Minimum Time-step (s)

0.1 55200

0.05 13800

0.025 3450

0.01 552

0.005 138

0.0025 34.50

Table 3.4: Comparison of efficiency between the proposed TUR1 method and the
transformation method without under-relaxation (TUR0) and with UR2 under-
relaxation (TUR2) under the minimum time-step criterion

Approaches Element Time β = −1.4 β = −2.72

Size Step L2 Error Total L2 Error Total

(m) (s) (m) Iterations (m) Iterations

TUR1 0.1 55200 1.874 14

0.05 13800 0.577 55

0.025 3450 0.247 123

0.01 552 0.068 463

TUR0 0.1 55200 - Fail 4.075 28

0.05 13800 - Fail - Fail

0.025 3450 - Fail - Fail

0.01 552 1.806 642 1.998 655

TUR2 0.1 55200 4.086 18 4.075 39

0.05 13800 - Fail - Fail

0.025 3450 - Fail - Fail

0.01 552 1.801 918 1.991 951

Notes: “Fail” means “does not converge in 1000 iterations”.
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Table 3.5: Minimum time-step size for different element sizes of Case B

Element size (m) Minimum Time-step (s)

0.1 17712000

0.05 4428000

0.025 1107000

0.01 177120

0.005 44280

0.0025 11070

0.001 1771.2

0.0005 442.8

0.0002 70.848
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Table 3.6: Convergence of the solution with refinement in mesh size and time-step
satisfying Thomas and Zhou’s (1997) criterion of Case B (elapsed time 88560 s)

Approaches Element size Time-step Normalized elevation L2 error Runtime

(m) (s) of h = −6 m (m) (s)

UR1 0.005 44280 1.481 4.56 0.1

0.001 1771.2 1.418 4.26 10

0.0005 442.8 1.338 3.85 75

0.0002 70.848 1.095 2.11 1188

UR2 0.005 44280 - - Fail

0.001 1771.2 - - Fail

0.0005 442.8 - - Fail

0.0002 70.848 1.011 0.75 2640

TUR1 0.005 44280 - - Fail

0.001 1771.2 - - Fail

0.0005 442.8 0.845 0.77 212

0.0002 70.848 0.983 0.61 1975

Notes: “Fail” means “does not converge in 1000 iterations”.
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Table 3.7: Convergence of the solution with refinement in time-step with fixed
element size of 0.1 m of Case B (elapsed time 88560 s)

Approaches Time-step Number of Normalized elevation L2 error

(s) Time-steps of h = −6 m (m)

UR1 88560 1 1.42 4.76

44280 2 1.41 4.50

17712 5 1.40 4.33

8856 10 1.40 4.27

3542.4 25 1.39 4.24

1771.2 50 1.39 4.23

885.6 100 1.39 4.22

354.24 250 1.39 4.22

141.696 625 1.39 4.22

70.848 1250 1.39 4.22

UR2 88560 1 - Fail

44280 2 1.38 4.10

17712 5 1.39 4.18

8856 10 1.39 4.20

3542.4 25 1.39 4.21

1771.2 50 1.39 4.22

885.6 100 1.39 4.22

354.24 250 1.39 4.22

141.696 625 1.39 4.21

70.848 1250 1.39 4.21

TUR1 88560 1 1.39 3.85

44280 2 1.24 3.00

17712 5 1.24 2.87

8856 10 1.10 2.48

3542.4 25 1.09 2.55

1771.2 50 1.09 2.58

885.6 100 1.09 2.60

354.24 250 1.09 2.60

141.696 625 1.09 2.61

70.848 1250 1.09 2.61
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Figure 3.1: Spatial linearization by transformation (t = 50000 s)
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Figure 3.2: Temporal linearization by transformation (z = 0.7 m)
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Figure 3.4: Soil-water characteristic curve
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Figure 3.20: Convergence of the L2 error of the solution with refinement in time-
step for different element sizes with the application of lumped mass scheme

96



Chapter 3. Rational Transformation Method with Under-Relaxation

0.01 0.1 1 10 100
Runtime (sec)

0.1

1

10

L
2
 e

rr
o

r 
(m

)

UR1

UR2

TUR1

No. of Time-steps=1

4

1
1

16

4

16

400

16

100

100
400

1600
10000

1600

10000100

(c) Element size = 0.025 m

0.01 0.1 1 10 100 1000
Runtime (sec)

0.01

0.1

1

10

L
2
 e

rr
o

r 
(m

)

UR1

UR2

TUR1

No. of Time-steps=1
4

1
1

16

4

16

40016

100

100

400

1600

10000

1600

100

1600

(d) Element size = 0.01 m

Figure 3.20: Convergence of the L2 error of the solution with refinement in
time-step for different element sizes with the application of lumped mass scheme
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Chapter 4

Temporal Adaptive TUR1
Method

4.1 Introduction

In Chapter 3, a combination approach TUR1 of RFT transformation method (Pan

and Wierenga, 1995) and a typical under-relaxation technique was applied to solve

the finite element formulation of the h-based form of Richards equation for unsat-

urated flow analyses, where numerical difficulties such as slow convergence often

exist because of the highly nonlinear soil hydraulic properties. In this approach,

the inherent nonlinearity of the problem is reduced through application of the

transformation on the dependent variable, thus the big error usually appearing in

the original UR1 approach is dramatically alleviated, while the advantage of UR1

approach that it can converge to a stable solution very quickly in each time-step

is retained. Numerical studies on several examples have demonstrated that TUR1

can use larger time-steps to produce acceptable results and also converge to a sta-

ble solution quickly in each time-step. The practical bottomline is that TUR1

can achieve a more accurate solution than UR1 and UR2 more quickly using a

practically reasonable spatial and temporal discretization eventually.
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However, numerical studies on TUR1 in Chapter 3 are based upon a fixed

time-step method. In view of recent developments on temporal adaptive methods,

especially the most recent automatic time stepping scheme developed by Kavetski

et al. (2001) and Kavetski et al. (2002), it is worthwhile to investigate the numerical

performance of the proposed TUR1 method with such adaptive schemes. Since the

TUR1 method is shown to be able to produce more accurate results with larger

time-steps and coarser meshes, and the adaptive schemes could have the ability

to control temporal errors, it is reasonable to conjecture that the combination

of TUR1 with a proper temporal adaptive scheme will produce a more efficient

and robust solution strategy for unsaturated flow analysis, rather than TUR1 or

adaptive schemes on their own.

Naturally, similar improvements in efficiency are also expected for spatial adap-

tive schemes with the application of proposed TUR1 method. However, a number of

computational limitations are found in existing mesh adaption techniques (Mansell

et al., 2002), such as

• The cost for development, implementation, and testing of those spatial adap-

tive algorithms may be substantial;

• Solution-based (a posteriori) error estimators are still limited to model prob-

lems (Bern et al., 1999);

• Optimal adaptive strategies remain largely under development, especially for

complex problems with spatial heterogeneity of soils;

• Effectiveness of an adaptive mesh scheme often requires implementation of an

efficient data management scheme. However, the complexity of data struc-
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tures can be substantial (Oden and Demkowicz, 1987); etc.

Because of these difficulties, mesh adaption techniques are not commonly adopted

by popular commercial softwares such as SEEP/W or PlaxFlow. Therefore, further

studies are still needed to overcome these difficulties and to make spatial adaptive

schemes more practical for engineering simulations.

The following studies are to illustrate the usefulness of the combination of

adaptive schemes and the proposed TUR1 method. The major objectives of this

chapter are to: (1) compare the performance of different time stepping schemes in

the global temporal accuracy; (2) assess if combinations of the proposed TUR1

method and temporal adaptive schemes lead to more robust and efficient solutions,

which means more efficient than TUR1 without adaptivity or adaptive schemes

without under-relaxation and transformation.

4.2 Heuristic Temporal Adaptive Method

The heuristic time stepping method (Yeh, 1987; Celia and Binning, 1992; Simunek

and van Genuchten, 1994; Rathfelder and Abriola, 1994) is the most commonly

used approach to adaptive time-step solutions to the Richards equation, which

empirically adjust the step size according to the number of iterations required for

convergence of the non-linear solver. SEEP/W also adopted a modified version of

such scheme, which is based on the average number of iterations required in previous

time-steps (GEO-SLOPE, 2004). The algorithm can be described as below:

• if (N i
iter < Nmin), then ∆ti+1 = min(∆ti × Fincrease, ∆tmax )
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if the iteration convergence is fast, increase the step size;

• if (N i
iter > Nmax), then ∆ti+1 = max(∆ti × Fdecrease, ∆tmin )

if the iteration convergence is slow, decrease the step size;

• else, ∆ti+1 = ∆ti

if the iteration convergence is moderate, retain the current step

size.

where

N i
iter = the number of iterations required by the nonlinear solver to converge

for time-step i;

Nmin = a lower iteration limit;

Nmax = a upper iteration limit;

Fincrease = a time-step acceleration factor;

Fdecrease = a time-step deceleration factor;

∆tmin = the minimum allowable time-step size;

∆tmax = the maximum allowable time-step size.

The advantage of this empirical approach is that it is cheap to implement into

existing fixed time-step programs. However, several a-priori arbitrary parameters

need to be specified either by the code or the user. Little theoretical guidance is

available in the selection of optimal parameter values.
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4.3 Automatic Temporal Adaptive Method

The automatic temporal adaptive method was firstly proposed by Sloan and Abbo

(1999) for quality-controlled time stepping for elasto-plastic consolidation analysis

in geomechanics. Then, Kavetski et al. (2001) and Kavetski et al. (2002) applied

the principles of this adaptive scheme to the solution of Richards equation. Their

studies showed that this automatic algorithm led to a consistent and efficient se-

lection of time-steps, improving the performance of the nonlinear solvers.

The algorithm uses a numerical estimate of the local temporal truncation

error and selects the stepsize for the next time-step based on the value of this

error estimate to constrain the temporal error near a user-prescribed tolerance.

Based upon the solution of a first-order backward Euler scheme, a solution of the

second-order Thomas-Gladwell approximation (Thomas and Gladwell, 1988) can

be obtained at virtually no extra cost. Thus, the local truncation error can be

monitored by comparing these two solutions of adjacent order of accuracy.

4.3.1 Error Estimator

In the following, the automatic adaptive time stepping algorithm is presented for

the pressure-based form of Richards equation. The application to the transformed

form is straightforward.

Recall that the Galerkin finite element form of the Richards equation can be

expressed as:

[M ] {h} , t + [K] {h} + [K] {z} = {Q} (4.1)
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Applying the first-order backward Euler scheme leads to the following equation:

(∆t [K] + [M ]) {hn} = ∆t {Qn} + [M ] {hn−1} − ∆t [K] {z} (4.2)

and the derivative is

ḣn =
hn − hn−1

∆t
(4.3)

It is found that the accuracy of the above approximation can be raised to

second-order by averaging the derivative estimates, which can be shown to corre-

spond to a member of the Thomas and Gladwell integration family (Thomas and

Gladwell, 1988):

hTG
n = hn−1 +

1

2
∆t

(
ḣn−1 + ḣn

)
(4.4)

while the original first-order backward Euler solution gives:

hBE
n = hn−1 + ∆t · ḣn (4.5)

A measure of the absolute local truncation error of the backward Euler ap-

proximation (4.4) can then be estimated by the difference between (4.4) and (4.5):

en =
1

2
∆t

∣∣∣ḣn−1 − ḣn

∣∣∣ (4.6)

It is noted that when applied to the transformed form of Richards equation,

the error estimation is still in terms of the pressure head in the following

studies. This is firstly for the convenience of comparing the performances of

different adaptive schemes in transformed or non-transformed form with same

error tolerances. Also, the value of transformed head is dependent directly

on the transformation parameter. A small change of the parameter may

produce a significantly different transformed head values. Thus, adopting an
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error estimation in terms of the transformed head may increase the sensitivity

of the transformation parameter on the performance, which is not well appreciated.

4.3.2 Stepsize Adaption

An error test takes place following the above estimation of the local truncation

error. In order to simulate the flows in both saturated and unsaturated cases

(where the pressure head may approach zero), a mixed absolute-relative error test

is recommended. The time-step is accepted if

max
(
ei

n − τR

∣∣hi
n

∣∣ − τA

)
< 0 (4.7)

where τR and τA are absolute and relative error tolerance respectively; and i is the

spatial node index. The node with the largest mixed error is then stored as iCrit

to be used for the stepsize adaption.

If the current time-step size is accepted, the stepsize for the next time-step is

calculated as

∆tn+1 = ∆tn × min

(
s

√
τR |hiCrit

n | + τA

max (eiCrit
n , EPS)

, rmax

)
(4.8)

and, if the current time-step is rejected, it is re-calculated with a reduced stepsize

as

∆t̃n = ∆tn × max

(
s

√
τR |hiCrit

n | + τA

max (eiCrit
n , EPS)

, rmin

)
(4.9)

where the multiplier constraints rmax and rmin, the safety factor s and the

machine constant EPS are introduced to increase the robustness of the algorithm

by guarding against spuriously large or small stepsize changes, since the error

measure (4.6) is not exact and may contain numerical noise. Typical values
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for these factors are recommended (Kavetski et al., 2001, 2002) as rmax = 4.0,

rmin = 0.1, s = 0.9, and EPS = 10−10. Kavetski et al. (2001, 2002) have shown

that the performance of this automatic adaptive scheme is robust with respect to

moderate changes in these parameters.

4.3.3 Other Implementation Details

The treatment of intermediate output time levels is an important issue from the

practical point of view. Usually, the user would like to monitor the time-evolution

of the solution for several fixed times within the simulation. Although it is not par-

ticularly important theoretically, treatment of such intermediate output time could

have substantial implications on the computational performance of the algorithms.

Shampine (1994) proposed an efficient “look-ahead” technique and adopted by

Kavetski et al. (2001, 2002), which is shown to be able to avoid undesirable abrupt

changes in time-step size, given by

• Check whether toutput can be reached in a single time-step ∆t, i.e., tcurrent +

∆t ≥ toutput;

◦ Yes ⇒ truncate ∆t to produce output at toutput: ∆t = toutput − tcurrent.

Perform the time-step;

◦ No ⇒ check whether toutput can be reached in two steps ∆t, i.e., tcurrent+

2 · ∆t ≥ toutput;

¦ Yes ⇒ equalize the time-steps, i.e., ∆t = (toutput − tcurrent)/2. Per-

form the time-step;
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¦ No ⇒ proceed with unchanged time-step ∆t.

The oscillation problem is another issue that needs to be considered. Since

the time-step size is now not constant during the whole simulation, the minimum

time-step criteria is obviously not applicable. Thus, the lumped mass scheme is

adopted here to curb undesirable oscillations.

If the nonlinear iteration fails to converge in one time-step, i.e., the maximum

number of iterations is reached without convergence, it is recommended to

reduce the current stepsize by half and repeat the time-step (GEO-SLOPE,

2004). A small number of allowable iterations to reach convergence is pre-

ferred compared to a large one, because if the iteration gets stuck on any

time-step, it will reach the maximum allowable iterations more quickly. It is a

trade-off between repeating a time-step and allowing more iterations per time-step.

4.4 Numerical Studies

4.4.1 Problem Descriptions

The same one-dimensional infiltration problem from Chapter 3 is adopted here to

study the performance of different approaches, while the geometry of the finite

element mesh and boundary conditions are shown schematically in Figure 3.3.

In the following analysis, a typical sandy clay loam soil (Case A) is adopted as

the porous medium. The nonlinear soil hydraulic characteristics are presented in

Figures 3.4 and 3.5.

The analysis in this Chapter focuses on temporal errors, since spatial errors
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arise due to the finite element discretization and are unrelated to the time stepping

scheme. Therefore, all solutions below are obtained using an identical and relatively

dense spatial mesh with 100 linear elements of uniform size. The error measure

used in the following study is calculated by comparing the approximate and an

“exact-in-time” solution at a series of specified output times, where the “exact-

in-time” solution is evaluated numerically by using the same spatial mesh and a

very small time-step size of 0.05 s. This procedure isolates the temporal errors and

facilitates the assessment of time accuracy.

In order to simplify the error analysis, pure absolute error requirements are

enforced by setting τR = 0 in the automatic adaptive scheme. The error norm is

defined as

‖ ε ‖2 =

[
1

nn

nn∑
i=1

∣∣∣ĥi − hi
∣∣∣2]1/2

(4.10)

where ĥi is the “exact-in-time” solution. Run time is obtained by executing the

code (compiled using Microsoft FortranTM PowerStation 4.0) on an Intel Core Duo

2, 2.4 GHz machine. For the Picard iterative procedures, the relative tolerance is

set to be 0.001 percent. A transformation parameter value of -1.4 m−1 is adopted

for all schemes with the TUR1 method.

4.4.2 Performance of Fixed Time-step Schemes

The performance of fixed time-step schemes are studied with no under-relaxation

(hereafter referred to as UR0), UR2 and TUR1 method respectively. Figure 4.1

shows the temporal accuracy of the stepsize-fixed UR0, UR2 and TUR1 scheme

with time-step size ∆t ranging from 1000 s to 50 s. It can be seen that for fixed time-
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step schemes, significant errors are observed at the beginning of the simulations,

although the accuracy improves with elapsed time. The large discretization errors

appearing at the beginning of the simulations may be explained in part by the

highly nonlinear behavior of the solution at the initial time periods, where an

abrupt change of the boundary condition is applied at t = 0. For example, Figure

4.2 shows the calculated derivatives of pressure heads with different time-step sizes

for different times. It can be seen that the changes of pressure heads are quite

nonlinear during the whole simulation as severe changes are found at the initial

parts and milder at the later parts. If a big time-step size (∆t = 200 s) is adopted,

the derivative of pressure heads will be highly underpredicted at the initial part

of the simulation compared to a more accurate value from a smaller time-step size

(∆t = 1 s), which can be seen from Figure 4.2. Thus, big temporal discretization

errors will be incurred at the initial parts. This is because the backward Euler

method which is used in the temporal discretization procedure assumes a linear

change of pressure heads in one time-step. Therefore, if accurate intermediate

results are required for the early part of the simulation, the user may be forced

to run the entire analysis with fine time-step size which is controlled by a short

segment of the temporal domain with pronounced nonlinearity. The errors decrease

as time elapses because the nonlinearity weakens. Thus, the effort expended in

using such fine time-steps is wasted for most parts of the simulations.

Comparison of the computational efficiency for fixed time-step UR0, UR2 and

TUR1 schemes is given in Table 4.1 and Figure 4.3. The effects of under-relaxation

and transformation are shown. It can be seen that with the same time step

sizes, UR2 gets exactly the same solutions as UR0, while UR2 uses less iterations
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than UR0 because of the effect of under-relaxation. The superiority of TUR1

method in efficiency over UR2 method is also demonstrated as shown in Chapter

3. It can be seen that TUR1 method can get more accurate solutions with less

run time than UR0 and UR2 methods. For example, with a same time-step

size of 500 s, TUR1 method generates a solution with maximum temporal error

of 0.217 m at a cost of 446 iterations, while UR2 method uses 70% more run

time (758 iterations) to achieve a solution with maximum temporal error of 0.318 m.

4.4.3 Performance of Heuristic Temporal Adaptive
Schemes

In this section, several sets of typical values of the empirical parameters are adopted

to illustrate the performance of the heuristic temporal adaptive schemes, which

are given in Table 4.2. Figure 4.4 shows the temporal accuracy of the heuristic

temporal adaptive UR0 (HUR0), UR2 (HUR2) and TUR1 (HTUR1) schemes with

these adaptive parameters. It can be seen that the heuristic scheme is capable of

producing solutions with more or less uniform error profiles throughout the entire

simulation. And with more stringent adaptive parameters (Run 1 to Run 4), more

accurate solutions are obtained. These results may be explained by Figure 4.6,

which shows the time-step sequences selected by the heuristic schemes. It shows

that the heuristic temporal adaptive schemes can select a meaningful time-step

size variation: the beginning of the simulation with high nonlinearity is performed

using relatively fine step sizes. When the nonlinear character of the infiltration

front is reduced as time passes, the time-step increases correspondingly.

Table 4.3 and Figure 4.5 show the computational efficiency of the heuristic
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temporal adaptive schemes without under-relaxation (HUR0) and combined with

UR2 (HUR2) and TUR1 (HTUR1) methods. Compared with the fixed time-step

schemes shown in Table 4.1, heuristic schemes outperform fixed time-step schemes

for all of the UR0, UR2 and TUR1 methods at a comparable level of accuracy.

For example, when an accuracy requirement on the maximum L2 error of 0.1 m is

applied, fixed time-step UR0 method needs to adopt a small time-step size of 50 s,

which requires 3412 iterations and 11.58 s of run time; while the heuristic adaptive

scheme requires 2105 iterations and total run time of 7.42 s. Fixed time-step UR2

method requires 2572 iterations and 9.16 s of run time with the time-step size of

50 s; while the heuristic adaptive UR2 method requires 1748 iterations and total

run time of 6.34 s. Fixed time-step TUR1 method also needs the time-step size

of 50 s to satisfy the accuracy requirement, but with less iterations (2275) and

total run time (8.11 s) than fixed time-step UR0 and UR2 methods; while the

heuristic adaptive TUR1 method appears to be the most efficient as it only takes

441 iterations and 1.61 s to get a solution with required accuracy.

It also can be seen from Table 4.3 and Figure 4.5 that the heuristic adaptive

scheme alone does not guarantee an efficient solution. Actually, the heuristic adap-

tive UR2 method is slightly more efficient than the heuristic adaptive scheme alone

without under-relaxation. While it becomes the most efficient when the heuristic

adaptive scheme is combined with the TUR1 method.

Furthermore, it can be seen from Table 4.3 that with the same set of adaptive

parameters, the heuristic adaptive TUR1 (HTUR1) method usually results in a

smaller number of time-steps than HUR0 and HUR2 methods. Thus, temporal

errors from the adaptive HTUR1 method may be bigger than those from adaptive
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HUR0 and HUR2 methods with the same set of adaptive parameters. This is

because the TUR1 method always use less iterations to reach a stable solution in a

given time-step than UR0 and UR2 methods. Therefore, in the heuristic adaptive

procedure, HTUR1 method tends to invoke much more times of step increasing

operations. Time-step size selected by HTUR1 then becomes much bigger than

HUR0 and HUR2 which takes much more iterations per time-step. For cases when

a comparable number of time-steps are adopted, TUR1 with the heuristic adaptive

scheme can achieve solutions with the same or slightly higher accuracy as UR2,

but spends less run time, which makes it a more efficient approach. For example,

HUR2 method takes 299 time-steps to get a solution with maximum error of 0.059

m for Run 2 case shown in Table 4.2. With the same set of adaptive parameters,

HTUR1 only takes 95 time-steps. But the solutions obtained are less accurate

with a higher maximum error of 0.078 m. When a set of more stringent adaptive

parameters of Run 3 is adopted, HTUR1 can produce solutions with approximately

the same accuracy as HUR2 with Run 2 parameters. However, it takes only half

the run time (3.64 s) than that of HUR2 (6.34 s).

However, in the heuristic temporal adaptive schemes, there is little indication of

the relationship between those adaptive parameters and actual numerical accuracy

of the solutions. The iteration tolerance also interacts strongly with the iteration

limits (Nmax and Nmin), because a small iteration tolerance means more iterations

in a time-step. Thus, it is difficult to select appropriate parameter values for differ-

ent problems. Moreover, it is less clear how to adjust those parameters if a different

nonlinear solver is employed, such as the Newton-Raphson scheme instead of the

Picard solver. In practice, the efficiency of such schemes becomes dependent on
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the ability of the user to determine the optimal heuristic time stepping parameters.

4.4.4 Performance of Automatic Temporal Adaptive
Method

In this section, performance of the automatic temporal adaptive method is studied

with four different absolute error tolerances, which are given as 0.5 m, 0.1 m,

0.05 m and 0.01 m. Figure 4.7 shows the temporal accuracy of the automatic

temporal adaptive scheme without under-relaxation (AUR0) and combined with

UR2 (AUR2) and TUR1 (ATUR1) methods with these tolerances. It can be seen

that the automatic scheme is also able to produce solutions with more or less

uniform error profiles throughout the entire simulation, similar to the heuristic

adaptive schemes. This may be explained by Figure 4.9, which shows the time

step sequences selected by the automatic adaptive schemes. It shows a similar

pattern in the time step variations to the heuristic temporal adaptive schemes:

relatively fine step sizes are adopted at the beginning part of the simulation with

high nonlinearity due to abrupt forcing. Then larger time-steps are selected to

maintain an uniform error profile in the subsequent portion where the nonlinearity

diminishes .

Table 4.4 and Figure 4.8 show the computational efficiency of the automatic

temporal adaptive schemes without under-relaxation (AUR0) and combined with

UR2 (AUR2) and TUR1 (ATUR1) methods. Comparing with the heuristic adap-

tive schemes shown in Table 4.3, it is found that the automatic adaptive schemes are

quantitatively as efficient as the heuristic adaptive schemes. For example, AUR2

method requires around 100 time-steps to obtain a maximum error of about 0.17
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m for both adaptive schemes. ATUR1 method also obtains a same maximum error

of about 0.075 m at a similiar cost of around 100 time-steps for these two adaptive

schemes.

Although the heuristic adaptive scheme is quantitatively as efficient as the au-

tomatic adaptive scheme, the latter scheme outperforms the former scheme in the

way that it ensures a direct proportionality between the actual error and the pre-

scribed tolerance, which can be seen from Figure 4.10. This relationship between

the actual errors and the tolerance is critical for the success of an adaptive scheme

(Shampine, 1994). Figure 4.10 shows that the maximum L2 error is proportional to

the square root of the tolerance for the automatic adaptive UR2 (AUR2) method.

This result is consistent with the mathematical formulation derived by Kavetski

(2002). On the other hand, the automatic adaptive TUR1 (ATUR1) method also

can get a linear proportionality between the error and the tolerance, but the factor

is different. This difference may be explained by the effect of transformation pa-

rameter as a fixed parameter value is adopted for the entire simulation. Previous

studies have shown that the optimal transformation parameter value is sensitive

to the element size and time step size, although near optimal solutions can be

obtained by using the proposed method to choose a fixed value for this transfor-

mation parameter. The time step size changes over several orders of magnitude

in the automatic adaptive schemes. Thus, additional errors may be introduced

and the proportion factor is correspondingly changed. Nevertheless, these schemes

are reliable in the sense that the temporal discretization error can be reduced in

response to the reduction of the user prescribed tolerance.

It also can be seen from Table 4.4 and Figure 4.8 that the automatic adaptive
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scheme alone (AUR0) does not guarantee an efficient solution. Although it is

found that with a same error tolerance, automatic adaptive UR0, UR2 and

TUR1 methods select almost the same number of time-steps, the adoption of

under-relaxation and transformation can dramatically improve the convergence in

one time step, which means less total iterations and run time are needed. The

solutions from TUR1 are also found to be more accurate than those from UR0

and UR2. Overall, the automatic adaptive TUR1 (ATUR1) scheme seems to be

the most efficient.

4.5 Concluding Remarks

In this chapter, the UR2 under-relaxation approach and the proposed TUR1 combi-

nation approach are studied with three different time stepping schemes, which can

be listed as the fixed time step scheme, the heuristic temporal adaptive scheme,

and the automatic temporal adaptive scheme. Several conclusions can be made

based on a series of numerical studies:

• Temporal adaptive schemes presented in this chapter are superior to the fixed

time step scheme in terms of the ability to control temporal errors. Both

adaptive schemes are able to produce solutions with more or less uniform

error profiles throughout the entire simulation, while the fixed time stepping

scheme generates significant errors when highly nonlinear behavior of the

solution is encountered, which is usually caused by abrupt changes of the

boundary condition.
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• Comparison between the heuristic and automatic temporal adaptive schemes

shows that the latter outperforms the former scheme in the way that it en-

sures a direct proportionality between the actual error and the prescribed

tolerance, which is critical for the success of an adaptive scheme. On the

contrary, relationship between the heuristic adaptive parameters and the ac-

tual numerical accuracy of solutions is hard to identify. Hence, the efficiency

of such scheme becomes uncertain as it is dependent on the ability of the

user to determine optimal heuristic time stepping parameters for different

scenarios.

• Neither the heuristic adaptive scheme nor the automatic adaptive scheme

alone without under-relaxation and transformation gives an efficient solu-

tion. The adoption of under-relaxation and transformation can dramatically

improve the convergence in one time step, which means less total iterations

and run time are needed.

• The superiority of proposed TUR1 approach over UR2 approach is verified

when combined with different time stepping schemes in terms of efficiency

that it takes less run time to produce solutions satisfying the requirements in

accuracy. In addition, the combination of TUR1 method and the automatic

adaptive error control scheme provides the most efficient solution in a way

that the temporal error is constrained proportionally to a user prescribed

tolerance at minimal computational cost.

In conclusion, the combination of proposed TUR1 approach and the auto-

matic adaptive scheme (ATUR1) can be a robust numerical method for practical
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unsaturated flow simulations, as it provides the most efficient solution at minimal

computational cost; its performance is robust with moderate changes of several

parameters introduced. It is conceptually and computationally simple which can

be easily incorporated into existing software codes based on the backward Euler

scheme.
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Table 4.1: Computational efficiency of the fixed time schemes

Approaches Time step Maximum L2 error Number of Total Runtime

(s) (m) time-steps iterations (s)

UR0 1000 0.456 50 829 2.72

500 0.318 100 1058 3.52

250 0.190 200 1417 4.73

100 0.113 500 2265 7.66

50 0.063 1000 3412 11.58

UR2 1000 0.456 50 672 2.26

500 0.318 100 758 2.58

250 0.190 200 1274 4.39

100 0.113 500 2140 7.40

50 0.063 1000 2572 9.16

TUR1 1000 0.269 50 276 0.95

500 0.217 100 446 1.56

250 0.172 200 714 2.55

100 0.118 500 1550 5.48

50 0.083 1000 2275 8.11

Table 4.2: Time stepping parameters of the heuristic temporal adaptive schemes

Run 1 Run 2 Run 3 Run 4

∆t0 (s) 100 10 5 1

Nmin 6 5 4 3

Nmax 12 10 8 6

Fincrease 1.5 1.2 1.1 1.1

Fdecrease 0.95 0.95 0.9 0.9
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Table 4.3: Computational efficiency of the heuristic temporal adaptive schemes

Approaches Maximum L2 error Number of Total Runtime

(m) time-steps iterations (s)

HUR0 Run 1 0.159 101 1079 3.78

Run 2 0.057 401 2105 7.42

Run 3 0.019 920 3693 13.55

Run 4 0.011 1594 4744 16.95

HUR2 Run 1 0.172 92 734 2.64

Run 2 0.059 299 1748 6.34

Run 3 0.017 933 3676 13.34

Run 4 0.016 984 3851 14.00

HTUR1 Run 1 0.154 44 264 0.95

Run 2 0.078 95 441 1.61

Run 3 0.054 260 991 3.64

Run 4 0.018 987 2922 10.70

122



Chapter 4. Temporal Adaptive TUR1 Method

Table 4.4: Computational efficiency of the automatic temporal adaptive schemes

Approaches τA Maximum L2 error Number of Total Runtime

(m) (m) time-steps iterations (s)

AUR0 0.5 0.170 112 1224 4.19

0.1 0.073 268 1788 6.11

0.05 0.054 380 2227 7.61

0.01 0.023 925 3498 12.59

AUR2 0.5 0.170 111 925 3.39

0.1 0.073 268 1604 5.73

0.05 0.054 380 1964 7.00

0.01 0.023 925 3496 12.56

ATUR1 0.5 0.075 113 530 1.92

0.1 0.054 263 1024 3.68

0.05 0.042 375 1246 4.53

0.01 0.022 835 2480 8.99
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Figure 4.1: Temporal accuracy of the fixed time step schemes
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Figure 4.4: Temporal accuracy of the heuristic temporal adaptive schemes
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Figure 4.6: Time step size variation given by the heuristic temporal adaptive
schemes
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Figure 4.7: Temporal accuracy of the automatic temporal adaptive schemes
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Figure 4.9: Time step size variation given by the automatic temporal adaptive
schemes
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Chapter 5

Benchmark Studies for
Unsaturated Flow Problems

5.1 Introduction

In Chapter 3 and Chapter 4, a combination approach TUR1 consisting of the RFT

transformation method and a typical under-relaxation technique is proposed to

solve the highly nonlinear unsaturated seepage flow problem. Detailed numerical

investigation on a simple one-dimensional problem shows that such combination

appears to be more superior than previous approaches without transformation in

the sense that a more accurate solution can be obtained much more quickly using

a practically reasonable spatial and temporal discretization. The superiority of

the TUR1 method can be further identified and improved when combined with

an automatic time stepping scheme with an embedded temporal error control. It

shows that this ATUR1 method provides the most efficient solution in a way that

the temporal error can be constrained proportionally to a user prescribed tolerance

at minimal computational cost.

In this chapter, more realistic benchmarking examples are presented to show

the robustness and efficiency of proposed TUR1 and ATUR1 methods.
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5.2 One-dimensional Infiltration Problems

In this section, the performance of the proposed TUR1 method is studied using

the same one-dimensional infiltration problem in Chapter 3, but with a variety of

different soil types. The input parameters are given in Table 5.1, including consti-

tutive parameters, spatial and temporal domains, initial and boundary conditions,

spatial and temporal discretizations, and the transformation parameter values used

in the simulations. The material properties in Problem A-D correspond to the av-

erage values for the soil textural group of sand, loamy sand, loam and clay loam,

respectively, according to the estimation of Carsel and Parrish (1988) from a large

number of soils. For each problem, two mesh sizes and three time-step sizes are

simulated to study the effect of spatial and temporal discretization.

A set of simulations was conducted to compare the performance of proposed

TUR1 method and UR1, UR2 method without transformation. Table 5.2 to Table

5.5 show the results of these simulations for four test problems, with one dense

mesh and one coarse mesh, and three different time-step sizes. Based on this set

of simulations, the following observations can be made:

1. TUR1 method generally leads to more accurate solutions than UR1 and UR2

approaches without transformation, as shown by the smaller L2 errors;

2. TUR1 method is generally more robust than UR1 and UR2 approaches with-

out transformation. It is shown that TUR1 is able to converge for all test

cases, while both UR1 and UR2 failed to converge in several of the simula-

tions;
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3. for more uniform soil types (n > 2.0), TUR1 might take more CPU run time

than UR1 and UR2, however the solutions were much more accurate. In terms

of the overall performance , it still showed comparable or more efficiency.

5.3 Two-dimensional Infiltration Problems

In this section, the performance of proposed TUR1 and ATUR1 method is

evaluated using two-dimensional infiltration problems with very dry and variably

saturated conditions in heterogeneous soils.

5.3.1 Forsyth et al.’s Problem

An infiltration problem in a large caisson consisting of heterogeneous soils at dry

initial conditions has been studied by Forsyth et al. (1995) and Diersch and Perro-

chet (1999). Figure 5.1 shows the schematic view of this 2D problem. The spatial

discretization is 89 × 20 quadrilateral 4-noded elements (1890 nodes in total) as

the same in Forsyth et al. (1995). The initial pressure head for all nodes is set to

be -7.34 m. Four different soils are used for different zones of the domain. The

material properties are listed in Table 5.6. The whole simulation time is 30 days.

Following the proposed criteria discussed previously, the optimal transforma-

tion parameter values for these four soils are different. Here, we choose the smallest

value for the whole simulation, which is -2.0 m−1.

In the following simulation, three different time-step sizes (86400 s; 22800 s;
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8640 s) are adopted for the fixed time-step schemes (UR1, UR2 and TUR1). Three

different tolerances (Case 1: τR = 1.0, τA = 1.0; Case 2: τR = 0.5, τA = 0.5; Case

3: τR = 0.1, τA = 0.1) are adopted for the automatic adaptive time-step scheme

(ATUR1).

Table 5.7 shows the performance of the fixed time-step schemes (UR1, UR2 and

TUR1). While the UR1 and UR2 methods failed for all cases, the TUR1 method

achieved convergent results. Figure 5.2 shows the saturation contour results at 30

days of TUR1 with these 3 time-step sizes. Here, the saturation is defined as

S =
θ

θs

. (5.1)

It can be seen that the most different part among these solutions occurs along the

left-bottom edge. The wetting front is found to be predicted slightly ahead for

larger time-steps. Compared with the solution of TUR1 with a very small time-

step size (86.4 s), it shows that the solution with a time-step size of 8640 s has

already converged.

Figure 5.3 shows the saturation contour results at 30 days of ATUR1. The same

observation can be made that if loose tolerances are adopted in adaptive scheme,

which usually means bigger time steps in simulations, substantial errors are found

along the left-bottom edge as the depth of the wetting front is overpredicted. It

also shows that the solution with case 3 tolerances can be seen as a converged

solution. Table 5.8 shows the performance of ATUR1 approach. The robustness

and efficiency of ATUR1 method are clearly shown.

For comparison, Figure 5.4 shows the result of Forsyth et al. (1995) using a

variable substitution method. The results of TUR1 and ATUR1 are in general
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agreement, but there are significant differences in the details. A more diffusive

wetting front is found in Forsyth et al.’s result. However, it is found that very

small number of time steps were used in their simulation (29 iterations in total),

which may be not enough to get a correct solution. Diersch and Perrochet (1999)

also noticed this problem. As shown in Figure 5.5, they found that Forsyth et

al.’s solutions agreed quite well with their results of the “low-cost” TBFN method

which also adopted a small number of time steps (15 time steps). The PCOSN

method provided a much steeper saturation front, as more time steps were used

(199 time steps). This result from PCOSN agrees well with solutions of TUR1 and

ATUR1 as shown in Figure 5.2 and Figure 5.3. This example clearly illustrates

that more emphasis should be put on the choice of appropriate time-step size or

adaptive control parameters, and a convergence study is necessary as a seemingly

accurate solution can be far from correct when dealing with a highly nonlinear

unsaturated flow problem.

5.3.2 Kirkland et al.’s Problem 1

Kirkland et al. (1992) presented a challenging two-dimensional infiltration problem

involving strictly unsaturated conditions. As shown in Figure 5.6, the whole domain

is divided into nine alternating blocks of clay and sand, which generates a complex

problem geometry. All boundaries are impermeable except where the infiltration

is imposed. The material properties are listed in Table 5.9. The simulation is run

with a very high initial negative pressure head of -500 m, which simulates a dry

initial condition. As demonstrated in their study, a spatial discretization of 0.05

137



Chapter 5. Benchmark Studies for Unsaturated Flow Problems

m was judged to be adequate for the problem presented, thus the element size is

chosen to be 0.05 m × 0.05 m. The whole simulation time is 12.5 days.

Following the criteria discussed perviously, the transformation parameter for

this problem is chosen to be equal to the smaller optimal value for these two soils,

which is -1.0 m−1.

In the following simulation, three different time-step sizes (3600 s; 1200 s; 600

s) are adopted for the fixed time-step schemes (UR1, UR2 and TUR1). Three

different tolerances (Case 1: τR = 0.5, τA = 5.0; Case 2: τR = 0.1, τA = 1.0; Case

3: τR = 0.01, τA = 0.1) are adopted for the automatic adaptive time-step scheme

(ATUR1).

Table 5.10 shows the performance of the fixed time-step schemes (UR1, UR2

and TUR1). While the UR1 and UR2 methods failed for all cases, the TUR1

method produces stable results when the time-step size is reduced to 1200 s and

600 s. Figure 5.8 shows the pressure head contour results at 12.5 days of TUR1 with

these 2 time-step sizes. Slight differences are found between these two results and

the dense time-step solution with a time-step size of 60 s. A comparison between

these contours and Kirkland et al.’s results shown in Figure 5.7 reveals a good

agreement, which verifies the correctness of these solutions.

Figure 5.9 shows the pressure head contour results at 12.5 days of ATUR1

method. These results are found to be indistinguishable with the dense time-step

solution. It shows that the tolerances of Case 1 is enough to get correct solutions.

Table 5.11 shows the computational efforts of ATUR1 approach. It can be seen

that the adaptive ATUR1 method is more efficient than the fixed time-step TUR1
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method, as it takes only 441 s to get acceptable results compared to 830 s using

the TUR1 method. Actually, a closer examination of the iteration procedures of

TUR1 method reveals that small time-step sizes are needed only for several time

steps in the very beginning of the simulation due to convergence requirement.

And this time-step size may be unnecessarily small for the rest of the simulation.

5.3.3 Kirkland et al.’s Problem 2

Kirkland et al. (1992) presents another two-dimensional infiltration problem of a

developing perched water table surrounded by very dry unsaturated conditions. It

is a good example to show the performances of the proposed TUR1 and ATUR1

methods in problems with both unsaturated and saturated zones. As shown in

Figure 5.10, a 3 m × 2 m region of sand is surrounded by clay on both sides

and underneath with a 1 m layer of sand below the clay. All boundaries are

impermeable except where the infiltration is imposed. The material properties are

listed in Table 5.9. The simulation is also run with a very high initial negative

pressure head of -500 m, which simulates a dry initial condition. As demonstrated

in their study, a spatial discretization of 0.05 m was judged to be adequate for the

problem presented, thus the element size is also chosen to be 0.05 × 0.05 m. The

whole simulation time is 1 day.

Following the criteria discussed perviously, the transformation parameter for

this problem is chosen to be equal to the smaller optimal value for these two soils,

which is -1.0 m−1.

In the following simulation, three different time-step sizes (120 s; 60 s; 30 s) are
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adopted for the fixed time-step schemes (UR1, UR2 and TUR1). Three different

tolerances (Case 1: τR = 0.5, τA = 5.0; Case 2: τR = 0.1, τA = 1.0; Case 3:

τR = 0.01, τA = 0.1) are adopted for the automatic adaptive time-step scheme

(ATUR1).

Table 5.12 shows the performance of the fixed time-step schemes (UR1, UR2

and TUR1). Similar to the previous two examples, while the UR1 and UR2 meth-

ods failed for all cases, the TUR1 method produces stable results for these three

time-step sizes. Figure 5.12 shows the pressure head contour results at 1 day of

TUR1 with these three time-step sizes and also with a dense time-step of 10 s. It

is found that the result with time-step size of 120 s shows some differences when

compared with the dense time-step solution, while the other two with smaller time

steps show good agreement. A comparison between these contours and Kirkland

et al.’s results shown in Figure 5.11 reveals an acceptable agreement, which verifies

the correctness of these solutions. However, it is worth noting that Kirkland et

al.’s results appear to be more diffuse than the present solutions, which can be

seen from the relatively larger intervals between the contours of pressure head 0

m and -400 m in Figure 5.11 compared with those in Figure 5.12. This could be

the effect of the proposed transformation method as the sharpness of the wetting

front can be alleviated, thus a more accurate solution can be obtained by using the

same spatial discretization. The higher sharpness of the present solutions can also

be identified in comparison with Diersch and Perrochet’s results, shown in Figure

5.14.

Figure 5.13 shows the pressure head contour results at 1 day of ATUR1

method. These results are found to be indistinguishable from the dense time-step
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solution. It shows that the tolerances of Case 1 is enough to get correct solutions.

Table 5.13 shows the computational efforts of ATUR1 approach. It can be seen

that the adaptive ATUR1 method is more efficient than the fixed time-step TUR1

method, as it takes only 489 s to get acceptable results compared to 1369 s of

TUR1 method with time-step size of 60 s.

5.4 Experimental Verification

In this section, a two-dimensional (2D) infiltration example (Vauclin et al., 1979)

is analyzed to assess the performance of TUR1 on real 2D problems. The geometry

and the boundary conditions are shown in Figure 5.15.

In this problem, a fine river sand of fairly regular grain-size distribution is used

as the porous medium. To define the hydraulic properties, different constitutive

relations from previous studies are used to interpolate the soil-water characteristic

curve and the hydraulic conductivity function.

The soil-water characteristic curve is defined as

θ = θs
α

α + |h|β
(5.2)

in which

θ = volumetric water content;

θs = 0.30 cm3/cm3, the saturated volumetric water contents;

α = 40000;

β = 2.90.
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The hydraulic conductivity function is defined as

K = Ks
A

A + |h|B
(5.3)

in which

K = the hydraulic conductivity;

Ks = 35 cm/hr, the saturated hydraulic conductivity;

A = 2.99 × 106;

B = 5.0.

The nonlinear soil hydraulic characteristics for this chosen soil type are shown

in Figures 5.16 and 5.17.

Following the proposed criteria discussed perviously, we choose an intermediate

value of β to be 0.20 cm−1 as long as the K∗ curve is still monotonic.

In the following studies, 8-noded quadrilateral elements are adopted. Ju and

Kung (1997) found that such quadratic elements could cause oscillation with both

consistent mass and lumped mass schemes. Thus, to curb potential oscillation

problems, the minimum time-step criteria is adopted. To use the criteria in Table

3.1 to determine the minimum time-step, the slope mw of the soil-water charac-

teristic curve and the permeability value k of the soil have to be established. As

discussed before, they are derived from the initial dry state of the soil, and the

critical values for both parameters correspond to a point where the matric suction

is the highest. For this problem, and with the initial condition described, λ which

equals to the product of mw and γw is computed to be 0.000674 cm−1, and k has

a value of 0.0166 cm/hr.

Two reasonable element sizes of 10 cm × 10 cm and 5 cm × 5 cm are used.
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The more stringent second criterion in Table 3.1 is adopted and, according to

this formula, the minimum time-step to curb oscillation is 0.20 hr and 0.05 hr,

respectively.

Table 5.14 shows that because of the convergence deficiency of UR2, it fails to

get stable solution for both element sizes and corresponding oscillation-free time

steps. On the other hand, UR1 and TUR1 can get stable solutions with these

two reasonable element sizes. A comparison between experimental and numerical

results is shown in Figures 5.18 to 5.21. It is showed that with reasonable element

sizes, big errors were observed in the solutions of UR1 which makes it unacceptable

from the practical view. On the contrary, TUR1 can get more accurate solutions

than UR1. The accuracy is good enough to be used in the computation of other

important design variables, such as the factor of safety of an embankment slope

against translational and/or rotational failure.

5.5 Concluding Remarks

In this chapter, a number of two-dimensional examples are analyzed, using the

improved numerical methods presented in previous chapters. These examples are

chosen from the literature, with homogeneous or heterogenous materials. The

robustness and efficiency of the proposed TUR1 and ATUR1 methods are demon-

strated against traditional and alternative solution strategies. It is showed that

these improved approaches are robust in complex problems with both very dry and

variably saturated condition in homogenous or heterogeneous soils. The TUR1

method with the automatic time stepping scheme appears to be more efficient
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than the fixed time-step schemes as acceptable results can be obtained using the

least computational cost.
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Table 5.1: One-dimensional infiltration problems

Variable Problem A Problem B Problem C Problem D

Medium Properties

θr 0.045 0.057 0.078 0.095

θs 0.430 0.410 0.430 0.410

a m−1 14.5 12.4 3.60 1.90

n 2.680 2.280 1.560 1.310

Ks md−1 7.128 3.502 0.250 0.062

β m−1 -1.5 -3 -4.5 -3

Boundary Conditions

h(z, t = 0) m -8 -8 -8 -8

h(z = 1, t) m 0 0 0 0

h(z = 0, t) m -8 -8 -8 -8

Calculation Domain

z m [0, 5.0] [0, 5.0] [0, 5.0] [0, 5.0]

t d [0, 0.12] [0, 0.225] [0, 2.25] [0, 5]

Discretizations

∆z m 0.0125 0.0125 0.0125 0.0125

0.1 0.1 0.1 0.1

∆t d 1.0 × 10−4 1.5 × 10−4 3.0 × 10−3 2.0 × 10−3

3.0 × 10−4 5.0 × 10−4 9.0 × 10−3 6.94 × 10−3

1.0 × 10−3 1.5 × 10−3 3.0 × 10−2 2.0 × 10−2
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Table 5.2: Results of one-dimensional infiltration problem A

∆z (m) ∆t (d) Approaches L2 error (m) Run time (s)

0.0125 1.0 × 10−4 UR1 5.86 18.03

UR2 5.85 18.06

TUR1 2.52 42.76

3.0 × 10−4 UR1 5.86 9.72

UR2 5.85 9.97

TUR1 2.25 20.33

1.0 × 10−3 UR1 5.88 3.32

UR2 5.70 5.86

TUR1 3.36 11.50

0.1 1.0 × 10−4 UR1 5.92 2.08

UR2 5.92 2.06

TUR1 2.74 4.73

3.0 × 10−4 UR1 5.92 0.7

UR2 5.92 0.7

TUR1 2.74 2.01

1.0 × 10−3 UR1 5.92 0.22

UR2 5.92 0.22

TUR1 2.90 0.83
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Table 5.3: Results of one-dimensional infiltration problem B

∆z (m) ∆t (d) Approaches L2 error (m) Run time (s)

0.0125 1.5 × 10−4 UR1 Fail

UR2 Fail

TUR1 0.83 52.63

5.0 × 10−4 UR1 4.97 12.54

UR2 Fail

TUR1 0.97 23.63

1.5 × 10−3 UR1 Fail

UR2 Fail

TUR1 1.43 15.08

0.1 1.5 × 10−4 UR1 5.33 2.52

UR2 5.33 2.50

TUR1 0.71 5.84

5.0 × 10−4 UR1 5.33 0.77

UR2 5.33 0.77

TUR1 0.88 2.12

1.5 × 10−3 UR1 5.33 0.52

UR2 5.33 0.52

TUR1 1.11 0.95

Notes: “Fail” means “does not converge in 1000 iterations”.
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Table 5.4: Results of one-dimensional infiltration problem C

∆z (m) ∆t (d) Approaches L2 error (m) Run time (s)

0.0125 3.0 × 10−3 UR1 0.79 25.67

UR2 0.73 47.49

TUR1 0.11 32.10

9.0 × 10−3 UR1 Fail

UR2 0.79 34.72

TUR1 0.37 16.36

3.0 × 10−2 UR1 3.78 2.91

UR2 Fail

TUR1 0.43 6.81

0.1 3.0 × 10−3 UR1 2.00 3.00

UR2 1.96 3.50

TUR1 0.17 3.37

9.0 × 10−3 UR1 2.23 1.86

UR2 1.94 2.61

TUR1 0.11 1.50

3.0 × 10−2 UR1 Fail

UR2 Fail

TUR1 0.13 0.65

Notes: “Fail” means “does not converge in 1000 iterations”.
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Table 5.5: Results of one-dimensional infiltration problem D

∆z (m) ∆t (d) Approaches L2 error (m) Run time (s)

0.0125 2.0 × 10−3 UR1 1.01 55.29

UR2 1.00 55.48

TUR1 0.40 62.74

6.94 × 10−3 UR1 0.36 23.53

UR2 1.68 32.25

TUR1 0.39 27.04

2.0 × 10−2 UR1 1.33 11.91

UR2 1.29 19.22

TUR1 0.28 13.19

0.1 2.0 × 10−3 UR1 1.86 7.98

UR2 1.86 7.98

TUR1 0.44 8.56

6.94 × 10−3 UR1 1.89 2.60

UR2 1.87 2.98

TUR1 0.48 2.84

2.0 × 10−2 UR1 Fail

UR2 1.88 2.29

TUR1 0.63 1.37

Notes: “Fail” means “does not converge in 1000 iterations”.
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Table 5.6: Soil properties for Forsyth et al.’s problem

Variable Zone 1 Zone 2 Zone 3 Zone 4

θr 0.102 0.0985 0.0859 0.0859

θs 0.368 0.351 0.325 0.325

a m−1 3.34 3.63 3.45 3.45

n 1.982 1.632 1.573 1.573

Ks ms−1 9.153 × 10−5 5.445 × 10−5 4.805 × 10−5 4.805 × 10−4

Table 5.7: Performances of fixed time-step approaches for Forsyth et al.’s problem

Approaches ∆t (s) Total Runtime (s)

UR1 86400 Fail

28800 Fail

8640 Fail

UR2 86400 Fail

28800 Fail

8640 Fail

TUR1 86400 20.87

28800 46.16

8640 118.04

Notes: “Fail” means “does not converge in 1000 iterations”.

Table 5.8: Performances of adaptive approaches for Forsyth et al.’s problem

Approaches Cases τA(m) τR Total Runtime (s)

ATUR1 Case 1 1 1 28.84

Case 2 0.5 0.5 35.83

Case 3 0.1 0.1 74.19
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Table 5.9: Soil properties for Kirkland et al.’s problem

Variable Sand Clay

θr 0.0286 0.1060

θs 0.3658 0.4686

a m−1 2.80 1.04

n 2.239 1.3954

Ks ms−1 6.262 × 10−5 1.516 × 10−6

Table 5.10: Performances of the fixed time-step approaches for Kirkland et al.’s
problem 1

Approaches ∆t (s) Total Runtime (s)

UR1 3600 Fail

1200 Fail

600 Fail

UR2 3600 Fail

1200 Fail

600 Fail

TUR1 3600 Fail

1200 829.28

600 1469.42

Notes: “Fail” means “does not converge in 1000 iterations”.

Table 5.11: Performances of the adaptive approaches for Kirkland et al.’s problem
1

Approaches Cases τA(m) τR Total Runtime (s)

ATUR1 Case 1 5.0 0.5 441.17

Case 2 1.0 0.1 667.44

Case 3 0.1 0.01 1237.29
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Table 5.12: Performances of the fixed time step approaches for Kirkland et al.’s
problem 2

Approaches ∆t (s) Total Runtime (s)

UR1 120 Fail

60 Fail

30 Fail

UR2 120 Fail

60 Fail

30 Fail

TUR1 120 855.22

60 1369.24

30 2596.93

Notes: “Fail” means “does not converge in 1000 iterations”.

Table 5.13: Performances of the adaptive approaches for Kirkland et al.’s problem
2

Approaches Cases τA(m) τR Total Runtime (s)

ATUR1 Case 1 5.0 0.5 489.48

Case 2 1.0 0.1 771.80

Case 3 0.1 0.01 1592.14
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Table 5.14: Results of two-dimensional infiltration problems (elapased time 2 hr)

Approaches Element size Time-step Total Iterations

(cm) (hr)

UR1 10 × 10 0.20 165

5 × 5 0.05 532

UR2 10 × 10 0.20 Fail

5 × 5 0.05 Fail

TUR1 10 × 10 0.20 89

5 × 5 0.05 850

Notes: “Fail” means “does not converge in 1000 iterations”.
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Figure 5.1: Forsyth et al.’s infiltration problem (Forsyth et al., 1995)
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Figure 5.2: Saturation contours of TUR1 method for Forsyth et al.’s problem
(dimensions in meter)
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Figure 5.3: Saturation contours of ATUR1 method for Forsyth et al.’s problem
(dimensions in meter)

Figure 5.4: Saturation contours of Forsyth et al.’s results (Forsyth et al., 1995)

155



Chapter 5. Benchmark Studies for Unsaturated Flow Problems

Figure 5.5: Saturation contours of Diersch and Perrochet’s results (Diersch and
Perrochet, 1999)
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Figure 5.6: Kirkland et al.’s infiltration problem 1 (Kirkland et al., 1992)

Figure 5.7: Pressure head contours of Kirkland et al.’s results (Kirkland et al.,
1992)
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Figure 5.8: Pressure head contours of TUR1 method for Kirkland et al.’s infiltration
problem 1 (dimensions in meter)
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Figure 5.9: Pressure head contours of ATUR1 method for Kirkland et al.’s infiltra-
tion problem 1 (dimensions in meter)
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Figure 5.10: Kirkland et al.’s infiltration problem 2 (Kirkland et al., 1992)

Figure 5.11: Pressure head contours of Kirkland et al.’s results (Kirkland et al.,
1992)
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Figure 5.12: Pressure head contours of TUR1 method for Kirkland et al.’s infiltra-
tion problem 2 (dimensions in meter)
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Figure 5.13: Pressure head contours of ATUR1 method for Kirkland et al.’s infil-
tration problem 2 (dimensions in meter)
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Figure 5.14: Pressure head contours of Diersch and Perrochet’s results (Diersch
and Perrochet, 1999)
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Figure 5.16: Soil-water characteristic curve for two-dimensional infiltration problem
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Figure 5.17: Conductivity function for two-dimensional infiltration problem
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Figure 5.18: Water content profiles measured and computed from UR1 with element
size of 10 cm × 10 cm at different section for different times
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Figure 5.19: Water content profiles measured and computed from TUR1 with
element size of 10 cm × 10 cm at different section for different times
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Figure 5.20: Water content profiles measured and computed from UR1 with element
size of 5 cm × 5 cm at different section for different times
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Figure 5.21: Water content profiles measured and computed from TUR1 with
element size of 5 cm × 5 cm at different section for different times
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Chapter 6

Slope Stability Analysis due to
Rainfall Infiltration

6.1 Introduction

Shallow failures of slopes due to rainfall infiltration are quite usual in tropical

countries such as Singapore. During the rainfall, a wetting front goes deeper into

the slope, which results in a gradual increase of the water content and a decrease

of the matric suction, which is recognized to contribute towards the stability of

unsaturated soil slopes. The loss of suction causes a decrease in shear strength of the

soil on the potential failure surface and finally triggers the failure (Rahardjo et al.,

1995; Ng and Shi, 1998). Thus, the accurate prediction of the propagating wetting

front arising from rainfall infiltration into the unsaturated soil is of considerable

importance to slope stability analysis, especially when unusual heavy and prolonged

rainfall becomes more frequent due to the global climate changes.

Due to the limitations often exhibited by analytical solutions, to obtain realistic

representations of the ground water condition under a transient rainfall situation,

numerical methods such as finite element method are often necessary for such un-

saturated flow simulations. Many commercial finite element packages are available
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for such analyses. Among them, SEEP/W, developed by Geoslope (2004) is one of

the most popular programs among engineers (e.g., Rahardjo et al., 2001; Tsaparas,

2002). It is observed in passing that the Green-Ampt and similar simplified models

are popular in soil sciences (Green and Ampt, 1911; Cho and Lee, 2002; Kim et

al., 2004), but there are fundamental difficulties in these models.

However, as the soil hydraulic properties are highly nonlinear, it has been

shown in previous studies that numerical problems like oscillation and slow conver-

gence rate exist in such unsaturated flow analysis. These results can lead to errors

in the calculation of slope stability analysis. For example, Karthikeyan (2000) has

shown that the oscillation of calculated pressure head around the wetting fronts

can leads to serious discrepancy in the computed factor of safety. In view of the fact

that results from seepage analyses are often imported directly into slope stability

analyses by practicing engineers, it is thus important to investigate and highlight

the influence of such numerical errors on the computed factor of safety of the slope.

6.2 Slow Convergence

Previous studies have already shown that slow convergence problem existed in un-

saturated seepage analysis using SEEP/W. It is found that the calculated pressure

heads converged to a correct solution very slowly with progressive refinement of

the element size and time-step. However, in the literature, the effect of different

mesh sizes and time-step sizes is not well emphasized and systematic convergence

studies are quite rare. Usually, coarse meshes and big time-steps were used in their

studies. For example, Rahardjo et al. (2001) used only 424 triangular or quadrilat-
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eral elements in a slope stability analysis with the slope height of 35m and width

of around 60m. Few of the studies discussed whether the solutions generated with

such meshes and time-steps were accurate or not. For slope stability problems in

unsaturated residual soils, errors made in the position of the wetting front could

seriously affect the location of the failure surface and the eventual factor of safety.

Thus, the correctness of numerical solutions obtained using reasonable spatial and

temporal discretization schemes based on limited convergence studies is of direct

practical concern.

In the following, numerical simulations are carried out to show the effects of

different mesh sizes on the calculated pore-water pressure response during rainfall

infiltration in a slope and also the influence on the calculation of slope stability.

A 10m high slope at an inclination of 26.6◦ (inclination 2H:1V) is adopted in this

study, which is shown in Figure 6.1. The soil properties are defined in Table

6.1. The four parameter van Genuchten model is used here to define the soil-water

characteristic curve. The Mualem model is used to define the conductivity function.

For the initial condition, a constant negative pressure head of -8 m is defined for the

whole domain. To define the boundary condition, a zero pressure head is imposed

at the slope surface. This type of boundary condition represents a rainfall greater

than the saturated permeability of the soil with the non-infiltrating water taken as

runoff. To avoid the oscillation problem, 4-noded quadrilateral element is adopted.

Two different meshes are compared in the following study, as a coarse one with

mesh size of 0.5 × 0.5 m (2400 elements) and a dense one of mesh of 0.1 × 0.1

m (60000 elements). The time-step size is chosen to be the same in each case as

3600 sec. It is worth noting that a coarser mesh means less number of degrees of
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freedom (2541 DOFs for coarse mesh vs. 60701 DOFs for dense mesh). This results

in a smaller set of FEM equation to solve, which further implies fewer operations

required for the direct matrix solver in each iteration, as it is reported that for large

2D and 3D problems involving matrices with significant bandwidth, the number

of operations required for the direct matrix solver will approach O(N3) (Press et

al., 1986), where N is the number of DOFs. For the specific problem studied

here, it is observed that the solution of linear system grows with N1.3 because the

global matrix is relatively sparse. Therefore, the penalty on total run time becomes

significantly heavier for denser mesh, which can be seen from the results of runtime

in Table 6.2.

The result of pore-water pressure profiles at the crest of the slope from

SEEP/W with different mesh sizes is shown in Figure 6.2. It clearly shows that

with a coarse mesh of 0.5 × 0.5 m, elevations of the wetting fronts are largely over

predicted compared to the dense mesh of 0.1 × 0.1 m. And this overprediction has

serious influence on the slope stability calculations, which can be seen in Table 6.2

and Figure 6.4. For example, after 48 hours of rainfall, the wetting front reaches

to the elevation of 18.2m with the dense mesh, compared to 19.0m with the coarse

mesh. The corresponding factors of safety (FOS) are 1.137 for the dense mesh and

2.295 for the coarse mesh. The FOS for coarse mesh is significantly unconservative!

Note that the “coarse” mesh - 0.5 × 0.5 m - is already fine for most analy-

ses undertaken by practising engineers. Hence, the error in the prediction of the

wetting front is not artificially produced by the choice of an unrealistically coarse

mesh. In fact, given that the mesh used by most engineers can be coarser than

that shown in Figure 6.1, the error can be viewed as an optimistic estimate.
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It also can be seen from Figure 6.2 and Figure 6.3 that with the same

coarse mesh, the TUR1 method proposed in Chapter 3 generates much more

accurate results than SEEP/W which adopts the UR1 under-relaxation technique.

Actually, the calculated depths of wetting fronts from TUR1 are quite close to

the dense mesh solution from SEEP/W. This is also true for the calculation

of FOS of the slope, which can be seen in Table 6.2 and Figure 6.4. It clearly

shows that with a “reasonable” mesh, TUR1 method can generate approximately

correct solutions for unsaturated seepage flow problem, and hence more accurate

computation of the factor of safety of the slope. A minor disadvantage of TUR1

is that it may requires a few more iterations per time-step to get a stable

solution, thus more runtime than UR1 with the same mesh (Table 6.2). But con-

sidering the accuracy and efficiency of solutions, the superiority of TUR1 is obvious.

6.3 Positive Pore-water Pressure

In previous studies on numerical simulation of slope stability under rainfall con-

dition, some authors have shown that positive pore-water pressure could develop

above the infiltration front in highly permeable soils due to their hydraulic char-

acteristics. For example, in the numerical flow simulation of Tsaparas (2002),

positive pore-water pressures behind the wetting front were observed to develop

to a value of around 15 kPa at the crest of the slope during a 16-hours heavy

rainfall with rainfall intensity of 15 mm/hour for a highly permeable soil with sat-

urated permeability of 1 × 10−4 m/s, which is shown in Figure 6.5. Collins and

Znidarcic (2004) also showed that positive pore-water pressure developed in a one-
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dimensional infiltration analysis for coarse soils (Figure 6.6). They explained that

this positive pore-water pressure development was due to the low permeability of

the unsaturated soil as a high gradient was needed to push water into such soils.

However, if homogenous soil is adopted in the infiltration analysis, such positive

pore-water pressures could be artificial and doubtful. For example, for the one-

dimensional simulation of Collins and Znidarcic (2004), Figure 6.6 shows their

pressure head results with such positive water pressure profiles. A, B and C are

three points chosen from the pressure head curve for time of 1.8 hr. It clearly shows

that these three points are all in the saturated zone. Thus, the water content in

the region from point A to C is constant as the saturated water content, and the

permeability in this region is also constant as the saturated permeability. The

seepage flow in this region is then a simple saturated flow problem. From Darcy’s

flow law, the flow rate between the points A and B, B and C can be calculated as

qAB = K · HA − HB

zA − zB

= Ks ·
{

hA − hB

zA − zB

+ 1

}
(6.1a)

and

qBC = K · HB − HC

zB − zC

= Ks ·
{

hB − hC

zB − zC

+ 1

}
(6.1b)

where H is the total head; h is the pressure head; and z is the elevation.

However, it can be easily seen from the figure that

hA − hB

zA − zB

6= hB − hC

zB − zC

(6.2a)

because

hA − hB

zA − zB

< 0 (6.2b)
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and

hB − hC

zB − zC

> 0 (6.2c)

thus,

qAB 6= qBC (6.3)

which obviously contradicts the mass conservative law.

In the following, numerical simulations are carried out using SEEP/W with

two different mesh sizes and also TUR1 to show the possible causes of such arti-

ficial positive pore-water pressure response during rainfall infiltration and also its

influence on the calculation of slope stability. The same slope example in Section

6.2 is adopted. The only change of the parameter is the saturated permeability of

the soil. A higher value of 1.0 × 10−5 m/s is chosen here, which is 10 times the

previous value.

The result of pore-water pressure profiles at the crest of the slope from

SEEP/W with a mesh size of 0.5 m and a time-step size of 360 s is shown in

Figure 6.7. Positive pore-water pressures can be observed to develop above the

wetting front with the values around 0.5 m. And the maximum positive pressure

value increases slowly with time. L’Heureux et al. (2006) also noticed this kind

of numerical errors and they demonstrated that it is because inappropriate time

stepping scheme was adopted in the simulations with SEEP/W. The adaptive time

stepping option called “nodal heads” is suggested to be adopted, which scans every

node individually in the whole mesh to see if the allowable percent head changes

is upheld. The second option, called “vector norm”, considers all heads simultane-

ously. This approach usually leads to bigger time-steps and thus is faster for large

174



Chapter 6. Slope Stability Analysis due to Rainfall Infiltration

mesh problems. However, positive pressure values are shown behind the infiltration

front with this scheme. It implies that such numerical errors may be removed by

using smaller time-steps. But even with a very small time-step size of 3.6 s, such

artificial positive pressures still can be observed in Figure 6.8 with the same mesh,

which shows that time-step size is not the only reason.

On the other hand, results with the dense mesh of 0.1 m and time-step size

of 360 s are shown in Figure 6.9. No positive values can be found above the

wetting fronts. Also, the results from the TUR1 method with the coarse mesh of

0.5 m and time-step size of 360 s, shown in Figure 6.10, do not show apparent

positive pressures. These results suggest that this kind of numerical error would

be a consequence of the high nonlinearities in the solutions, both spatially and

temporally. As such nonlinearities can be reduced by either using a denser mesh or

adopting the transformation method, more accurate results then can be obtained

by these two options. However, considering the superiority of TUR1 method in

efficiency, it is obviously a more attractive choice.

Besides the numerical error appearing as artificial positive pore-water pres-

sures, the results in Figures 6.7, 6.9 and 6.10 also show the problem of slow con-

vergence of wetting fronts when inappropriate mesh size or time-steps are adopted

in simulations with SEEP/W. Section 6.2 has already showed the negative effects

of such underprediction of depth of wetting fronts on the slope stability analysis.

In the following, the effect of the artificial positive pressures behind the infiltration

fronts on the calculation of slope stability is studied separately from the slow con-

vergence problem. Figure 6.11 shows artificial pore-water pressure profile results at

the crest of the slope, which are modified from the results of SEEP/W with mesh
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size of 0.5 m and time-step size of 360 s, shown in Figure 6.7, by simply cutting

off all the positive pressures above the wetting fronts to zero. Thus, for a given

rainfall time, the pressure head distributions in these two figures are of the same

depth, and the only difference is with or without positive values behind the wet-

ting fronts. Slope stability calculation results with these two pore-water pressure

profiles are given in Table 6.3. Much smaller FOS values are obtained for solutions

with such artificial positive pressures than those without them, even if the depth

of the wetting fronts are the same. The differences in FOS values between these

two profiles can be as high as 20%.

Some field investigations on slopes under rainfall conditions also revealed that

positive pore-water pressures can develop in the top layer of the slope (Tsaparas,

2002; Matsushi, 2006). However, this phenomenon should not be confused with the

numerical errors discussed above. In fact, such positive water pressures develop

because soils in the top layer of the slope are usually much more permeable than

those in the lower layers, which could be due to the presence of grass roots or

surficial weathering. During the rainfall, the infiltration front reaches the bottom

of the top layer quickly, but then it is difficult to infiltrate further deeper due

to the much lower permeability of soils at larger depth. Thus, the rainfall water

accumulates in the top layer of the slope, which forms a saturated zone with positive

pore-water pressures. The above discussion implies that in order to carry out more

realistic simulations of field cases, more accurate soil parameters for the whole

domain should be adopted.
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6.4 Concluding Remarks

Accurate simulation of the rainfall-induced infiltration into unsaturated soils is

of considerable importance to slope stability analysis. When rainfall water infil-

trates the unsaturated soils, the negative pore-water pressures start to increase.

The loss of such negative pore-water pressures decreases the shear strength of the

soils along the potential failure surface. However, due to the high nonlinearity

appeared in unsaturated hydraulic properties of soils, numerical problems such as

oscillated wetting fronts, overprediction of the infiltration and artificial positive

pore-water pressures above the infiltration fronts exist in such unsaturated seepage

flow analysis. In this chapter, two typical numerical errors which are sometimes

not well emphasized in the literature were studied. Numerical results show that

such numerical errors could be a result of inappropriate mesh size or time-step

size adopted in simulations. These errors in unsaturated flow analysis, including

the overprediction of the wetting fronts and artificial positive pore-water pressure

values above the infiltration fronts, have serious influence on the slope stability

calculations. Furthermore, as the nonlinearity of solutions can be reduced by ei-

ther using a denser mesh and smaller time-steps or adopting the transformation

method, more accurate results can be produced by these two options. However,

considering the superiority of TUR1 method in efficiency, it is obviously a more

attractive choice.
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Table 6.1: Summary of soil properties

Hydraulic θs θr a n Ks

parameters (m−1) (ms−1)

0.363 0.186 1.000 1.53 1.0 × 10−6

Strength Saturated Unsaturated c′ φ′ φb

parameters unit weight unit weight

(kN/m3) (kN/m3) (kN/m3) (◦) (◦)

20 19 1 25 25

Notes: θs, θr, a, n, Ks are hydraulic parameters in van Genuchten and

Mualem models;

c′, φ′ are effective cohesion and effective angle of internal friction;

φb is friction angle with respect to the matric suction.

Table 6.2: Results of slope safety factors and total runtime

Real time (hours) Initial 12 24 36 48 60 72

Coarse Total runtime 0 9 15 21 31 39 47

mesh (seconds)

(SEEP/W) Safety factor 2.768 2.726 2.704 2.675 2.295 1.856 1.023

Dense Total runtime 0 368 848 1668 3448 5200 7080

mesh (seconds)

(SEEP/W) Safety factor 2.768 2.727 1.874 1.149 1.137 1.095 1.074

Coarse Total runtime 0 10 20 31 42 53 64

mesh (seconds)

(TUR1) Safety factor 2.768 2.658 2.213 1.273 1.126 1.125 1.086
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Table 6.3: Results of slope safety factors w/ or w/o the artificial positive pressures

Real time (hours) 6 8 10 12

Safety factors 2.139 0.960 0.968 0.944

w/ artificial positive pressures

Safety factors 2.188 1.171 1.171 1.123

w/o artificial positive pressures
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Figure 6.2: Pore-water pressure profiles at the crest of the slope from SEEP/W
with different mesh sizes
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Figure 6.7: Pore-water pressure profiles at the crest of the slope from SEEP/W
with mesh size of 0.5 m and time-step size of 360s
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Figure 6.8: Pore-water pressure profiles at the crest of the slope from SEEP/W
with mesh size of 0.5 m and time-step size of 3.6s
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Figure 6.9: Pore-water pressure profiles at the crest of the slope from SEEP/W
with mesh size of 0.1 m and time-step size of 360s
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Figure 6.10: Pore-water pressure profiles at the crest of the slope from TUR1 with
mesh size of 0.5 m and time-step size of 360s
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Figure 6.11: Artificial pore-water pressure profiles at the crest of the slope modified
from Figure 6.7 by removing the positive values
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Chapter 7

Conclusions

7.1 Summary and Conclusions

Shallow slope failures in residual soils are common in many tropical countries, which

are usually related to intense rainfall. Under such external hydraulic conditions,

seepage of water can cause a gradual loss of matric suction in an unsaturated soil

slope, which has an adverse influence on the soil strength and therefore the stability

of the slope. In order to obtain realistic representations of the slope condition

under such situation, numerical modeling of groundwater flow is often necessary.

However, in view of the limitation of computational resources, it is often impossible

to use very refined element sizes and small time-step sizes in simulations. This

often brings numerical difficulties, such as oscillation, slow convergence rate, in the

solution process with popular numerical approaches, due to the strong nonlinearity

often exhibited by the soil hydraulic functions. These numerical difficulties affect

the accuracy of calculated pore-water pressure profiles, leading to errors in the

subsequent computation of slope stability. The developments of robust and efficient

numerical schemes are therefore of practical importance, which are expected to be

able to achieve a more realistic solution using a practically reasonable spatial and
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temporal discretization eventually.

The chief goal of this research is to develop robust numerical methods for solv-

ing the highly nonlinear partial differential equation describing unsaturated flow in

porous media. The key focus of this research is to develop methods that are prac-

tical, i.e. reasonably easy to implement into existing computing codes and easy to

use, minimizing the number of ad-hoc parameters that need “expert” judgement, be

able to solve a broad range of soil hydraulic properties, be accurate and robust, and

be suitable for running on an ordinary PC. A review of the literature showed that

transformation methods for Richards equation such as RFT transform can lead to

a more robust and efficient numerical approximation than traditional approaches.

Therefore, a combination approach of RFT transformation method and UR1 un-

der relaxation technique was proposed to solve the finite element formulation of

h-based form of Richards equation. A detailed study was then implemented to look

into its performance. Numerical studies showed that this combination method out-

performs previous numerical schemes in the sense that it can use larger time-steps

and mesh sizes to produce acceptable results and also converge to a stable solu-

tion quickly in each time-step. Furthermore, the superiority of proposed TUR1

approach was also identified when combined with different time stepping schemes

in terms of efficiency that it takes less run time to produce solutions satisfying the

requirements in accuracy. In addition, the combination of TUR1 method and the

automatic time stepping scheme with embedded error control provides the most

efficient and robust solution in a way that the temporal error can be constrained

proportionally to a user prescribed tolerance at minimal computational cost.

In more detail, some useful concluding remarks can be summarized as follows:
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1. A new combination approach of RFT transformation method (Pan and

Wierenga, 1995) and a typical under relaxation technique was applied to

solve the finite element formulation of the h-based form of Richards equa-

tion. A detailed investigation was then implemented to look into its effect on

the slow convergence problems. In addition, the minimum time-step criterion

presented by Karthikeyan et al. (2001) or the lumped-mass formulation was

applied to suppress oscillations so that the convergence issue can be studied

without being encumbered by extraneous complications. Comparison of this

proposed combination approach (TUR1) and two under relaxation techniques

without transformation (UR1 and UR2) were carried out. From the aspect

of convergence to a correct solution with progressive refinement of the ele-

ment size and time-step, numerical results showed the superiority of TUR1

over UR1 and UR2. UR1 is able to reach a stable solution very rapidly in

each time-step, but requires significantly more refinement of the time-step to

arrive at a solution of acceptable accuracy. At the same time, to suppress

oscillation, element size needs to be correspondingly reduced, thus impos-

ing even greater demands on computational resources. Adopting UR2 would

mean that a large time-step, which permits a much coarser mesh under the

Thomas and Zhou (1997) criterion for oscillation control, can produce rea-

sonably accurate results, but at a price that within each time-step, many

more iterations are needed and even diverge instead of converging to a stable

solution when dealing with soils with highly nonlinear hydraulic properties.

On the other hand, TUR1 has the advantages of both UR1 and UR2. Firstly,

like UR2, TUR1 can use a larger time-step to produce acceptable results and
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thus a correspondingly coarser mesh to suppress oscillation. Secondly, like

UR1, TUR1 converges to a stable solution quickly in each time-step. Above

all, TUR1 appears superior to UR1 and UR2 in the sense that a more realistic

solution can be obtained using a practically reasonable spatial and temporal

discretization eventually.

2. It was showed that the minimum time-step criteria (Thomas and Zhou, 1997)

can be applied to the transformed flow equation by using the original λ and

K to curb the oscillations. However, when steep soil parameter curves are

encountered, the minimum oscillation-free time-step is sometimes too large

in comparison to hourly or daily varieties in rainfall intensity. In this case,

the lumped mass formulation could be an alternative choice. However, it is

not applicable to quadratic/cubic elements to curb oscillations.

3. The transformation methods often involve arbitrary parameters. Selecting

parameter values is then important to determine the efficiency of the method.

Pan and Wierenga (1995) recommended a practical way to choose the param-

eter value in RFT transform. But they did not explore it rigorously. Williams

et al. (2000) showed that the optimal transform parameters depend upon me-

dia properties, boundary conditions and spatial and temporal discretization.

For the proposed combination method, numerical studies showed that choos-

ing an intermediate value which equals to half of the biggest β value allowed

for the transformed K∗ curve to be still monotonic for the transformation pa-

rameter in the TUR1 method is a reasonable choice to produce near optimal

results.
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4. The proposed TUR1 method appeared to be a more practical choice than

existing methods such as UR1, UR2 and a transformation method alone,

because it can produce accurate solutions with reasonable computing costs;

only one ad-hoc parameter is introduced and a robust recommendation on

the choice of such parameter value is given; and finally it is workable for

difficult problems with highly nonlinear soil hydraulic parameters. However,

TUR1 would also break down when the soil hydraulic property curves are

rather steep and a relatively large time-step is used.

5. Two temporally adaptive schemes were investigated and they were found to

be superior to the fixed time-step scheme in terms of the ability to control

temporal errors. Both adaptive schemes are able to produce solutions with

more or less uniform error profiles throughout the entire simulation, while the

fixed time stepping scheme generates significant errors when highly nonlinear

behavior of the solution is encountered, which is usually caused by abrupt

changes of the boundary condition.

6. Comparison between the heuristic and automatic temporally adaptive

schemes showed that the latter outperforms the former scheme in the way

that it ensures a direct proportionality between the actual error and the pre-

scribed tolerance, which is critical for the success of an adaptive scheme. On

the contrary, the relationship between the adaptive parameters and the ac-

tual numerical accuracy of solutions is hard to identify. Hence, the efficiency

of such scheme becomes uncertain as it is dependent on the ability of the

users to determine optimal heuristic time stepping parameters for different

scenarios.
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7. The superiority of the proposed TUR1 approach over the UR2 approach was

verified when combined with different time stepping schemes in terms of effi-

ciency that it takes less run time to produce solutions satisfying the require-

ments in accuracy. In addition, the combination of TUR1 method and the

automatic adaptive error control scheme was found to provide the most effi-

cient solution in a way that the temporal error is constrained proportionally

to a user prescribed tolerance at minimal computational cost.

8. The combination of proposed TUR1 approach and the automatic adaptive

scheme was shown to be a robust numerical method for practical unsaturated

flow simulations, as it provides the most efficient solution at minimal com-

putational cost; its performance is rather robust with moderate changes of

several parameters introduced; and it is conceptually and computationally

simple which can be easily incorporated into existing software codes based

on the backward Euler scheme.

9. A number of multi-dimensional examples with both homogeneous or het-

erogenous materials were analyzed to show the robustness and efficiency of

the proposed TUR1 and ATUR1 methods against traditional and alterna-

tive solution strategies. It was shown that these improved approaches are

robust in complex problems with both very dry and variably saturated con-

dition in homogenous or heterogeneous soils. And the TUR1 method with

the automatic time stepping scheme appears to be more efficient than the

fixed time-step schemes as acceptable results can be obtained using the least

computational cost.
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10. In the last, two typical numerical errors appearing in the simulation of rainfall

infiltration problems which are sometimes not well emphasized in the litera-

ture were studied. Numerical results showed that such numerical errors could

be a result of inappropriate mesh size or time-step size adopted in simula-

tions. These errors in unsaturated flow analysis, including the overprediction

of the wetting fronts and artificial positive pore-water pressure values above

the infiltration fronts, have serious influence on the slope stability calcula-

tions. Furthermore, as the nonlinearity of solutions can be reduced by either

using a denser mesh and smaller time-steps or adopting the transformation

method, more accurate results can be produced by these two options. How-

ever, considering the superiority of TUR1 method in efficiency, it is obviously

a more attractive and practical choice.

7.2 Recommendation for Future Study

To give a closure to this thesis, some suggestions of future work can be given:

1. Linearizing the nonlinear Richards equation by adopting the Newton-

Raphson or Picard method always produces a system of linear equations

that need to be solved. The traditional way to solve such linear system is

to employ direct solution methods or its variants which are based on the

classical Gaussian elimination scheme. These direct methods can lead to the

exact solution in the absence of round-off errors. However, especially for large

sparse linear systems arising from multi-dimensional problems, direct solution

methods may incur a large number of floating point operations (additions,
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subtractions and multiplications), which makes it significantly expensive to

solve such a large linear system. On the contrary, iterative solution meth-

ods are more attractive for such large scale linear equations because only

matrix-vector products and inner-products are required in the iteration pro-

cess. Preconditioned Krylov subspace iterative methods, such as Bi-CG or

GMRES, are commonly used in the simulation of unsaturated flow problems

(Tocci et al., 1998; Jones and Woodward, 2001; GEO-SLOPE, 2004). The

performance of proposed TUR1 approach is worth further study when com-

bined with these iterative solution methods.

2. An examination of the spatial pressure head profiles in the above infiltration

simulation cases shows that usually only a small part of the nodes are located

in the region with highly nonlinear infiltration front. The remaining spa-

tial nodes contribute little to accuracy, but bring much computational load.

Therefore, spatially adaptive approaches appear attractive, especially when

used together with the temporally adaptive approaches discussed in Chapter

4, although computational limitations are found in existing adaptive mesh

techniques. Further studies are still needed to overcome those difficulties and

to make spatial adaptive schemes more practical for engineering simulations.

Specifically, meshfree methods such as the radial point interpolation method

(RPIM) might be used as a more flexible tool for such spatial adaptive pro-

cedures.
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Appendix A

Program Verification

A.1 Introduction

In Chapter 3, it was purported that the program HFE with UR1 generates

essentially the same results as SEEP/W. In this chapter, the verification will be

carried out with different cases. Close agreement between SEEP/W and HFE can

be observed.

A.2 Modeling of One-dimensional Flow

A simple one-dimensional seepage problem (Figure A.1) is adopted here. The soil

column is discretized using finite element method into ten 8-nodes quadrilateral

elements with element size of 0.1 m. One time step level of 17000 sec is used to

simulate the transient process. The boundary conditions are as followed:

Initial boundary condition: h(z, 0) = −8 m;

Transient boundary condition: h(0, t) = −8 m; and h(1, t) = 0 m.

Three cases are considered for the simulation.
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A.2.1 Linear Soil-water Characteristic Curve and Nonlin-
ear Hydraulic Conductivity Function

The slope of the soil-water characteristic curve, mw is taken as 4.0× 10−4 m2kN−1.

The hydraulic conductivity function is taken from Case A in Chapter 3. Figure

A.2 shows that the results from HFE are almost identical to that of SEEP/W.

The maximum difference is 6.0 × 10−6 m and the maximum relative difference is

1.3 × 10−6.

A.2.2 Nonlinear Soil-water Characteristic Curve and Con-
stant Hydraulic Conductivity Function

In this case, the soil-water characteristic curve is taken from Case A in Chapter 3.

The constant hydraulic conductivity value, k is taken as 1.0 × 10−6 ms−1. Figure

A.3 shows that the results from HFE are almost identical to that of SEEP/W. The

maximum difference is 1.8×10−5 m; the maximum relative difference is 3.5×10−6.

A.2.3 Nonlinear Soil-water Characteristic Curve and Non-
linear Hydraulic Conductivity Function

In this case, both the soil hydraulic relationships are nonlinear. They are taken

from Case A in Chapter 3. Figure A.4 shows that the results from HFE are

almost identical to that of SEEP/W. The maximum difference is 1.84 × 10−4 m;

the maximum relative difference is 3.14 × 10−5.
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A.3 Modeling of Two-dimensional Flow

A two-dimensional infiltration problem is shown in Figure A.5. The soil geometry

is 2 m high and 3 m wide. In the simulation, it is discretized using finite element

method into 24 8-nodes quadrilateral elements with the element size of 0.5 m. The

soil is assumed to be isotropic and the soil model of sandy clay loam of Case A in

Chapter 3 is adopted.

Initially, the ground water table is 1.5 m below the surface. The initial pore-

water pressure head is assumed to be linear with height. To simulate the infiltration

problem, the pressure head at the infiltration surface is fixed to zero, and the total

head at the vertical right hand side of 0.5 m high is maintained at 0.5 m.

In this case, 4 time steps of 22500 sec are used to simulate the transient process.

Figure A.6, Figure A.7, Figure A.8, Figure A.9 show the contour of total head at

∆t = 22500, 45000, 67500, 90000 sec, respectively. Again, close agreement can be

observed between the results of SEEP/W and HFE.
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Figure A.1: Modeling of one-dimensional flow
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Figure A.2: Graph of elevation vs. pressure head for unsaturated transient flow
with linear soil-water characteristic curve and nonlinear hydraulic conductivity
function
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Figure A.3: Graph of elevation vs. pressure head for unsaturated transient flow
with nonlinear soil-water characteristic curve and constant hydraulic conductivity
function
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Figure A.4: Graph of elevation vs. pressure head for unsaturated transient flow
with nonlinear soil-water characteristic curve and nonlinear hydraulic conductivity
function

Figure A.5: Modeling of two-dimensional flow
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Figure A.6: Contour of total head of ∆t = 22500 sec (solid line: SEEP/W; dash
line: HFE)
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Figure A.7: Contour of total head of ∆t = 45000 sec (solid line: SEEP/W; dash
line: HFE)
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Figure A.8: Contour of total head of ∆t = 67500 sec (solid line: SEEP/W; dash
line: HFE)
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Figure A.9: Contour of total head of ∆t = 90000 sec (solid line: SEEP/W; dash
line: HFE)
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Appendix B

Source Codes in FORTRAN 90

B.1 Introduction

The following FORTRAN 90 codes are modified partially from the book “Program-

ming the finite element method” written by Smith and Griffiths (1998), and the

program “richSolver7” written by Kavetski (2002).

B.2 Main Program

program THFELA

!-------------------------------------------------------

! Transient Unsaturated Flow Analysis using Richards Eqn

! general program for 2-D or 3-D analysis

!-------------------------------------------------------

use new_library

use geometry_lib

use unsat

use msflib

use portlib

implicit none

integer :: nels,neq,nband,nn,nr,nip,nodof,nod,ndof,i,k,iel,ndim, &

fixed_nodes,initial_nodes,timestep,nstep,count,MaxIter, &

UR,loaded_nodes,no_total_head,np_types,npri,nres,stea, &

tran=1,nltyp

integer :: total,tt2,lumped,curTOut,nTOut,iCrit,DECtype,dtKeep, &

itMin,itMax,passNL=0,passEC,failprev,schtype=1

double precision :: det,perm,dtim,elapsedtime,diff,gammaw=9.807D0, &

tol,phg,phgi,phgf,thetagi,thetagf,norm,ethick
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double precision :: theta0=0.D0,flux=0.D0,penalty=1.D20,cumumass, &

temp,hEl,Lt,curT,preT,htmax,stepTolA,stepTolR, &

dtIni,q,dtIncF,dtRedF,trunErrA,safety, &

qmin,qmax,NLtolA,NLtolR,stepTol,tt1

double precision :: beta,t_elev,pg,pgi,pgf,dhoverdp,ptmax

character(len=15) :: element

character(len=50) :: ctrl

logical :: status,ifmb=.false.

!-----------------------Dynamic Arrays------------------------------

double precision,allocatable :: bp(:),bk(:),elev(:),points(:,:), &

kay(:,:),coord(:,:),fun(:),jac(:,:),der(:,:),deriv(:,:), &

weights(:),kp(:,:), pm(:,:),funny(:,:),g_coord(:,:),value(:), &

h0(:),h1(:),LS(:),RS(:),trload(:),ph(:),mw(:),h2(:),havg(:), &

thetag(:),phi(:),phf(:),trload0(:),trload1(:),tothead_value(:),&

flow_rate(:),nodal_flow_value(:),prop(:,:),PROP02(:,:)

double precision,allocatable :: p0(:),p1(:),p2(:),pavg(:),kg(:,:), &

bg(:),p0t(:),p1t(:),ptt(:)

double precision,allocatable :: h0t(:),h1t(:),htt(:),TOut(:)

integer,allocatable :: nf(:,:),g(:),num(:),g_num(:,:),node(:), &

no(:),g_g(:,:),noln(:),nodal_flow_no(:),etype(:),elen(:), &

ltyp(:),enips(:,:)

!------------------------input and initialisation-------------------

status=changedirqq(’D:\NR\Year2008\0117\THFELA\10cm’)

IF(.not.status) stop ’WRONG DIRECTORY’

open (9 , file = ’FFEinitial.dat’ , status = ’old’ ,action =’read’)

open (10 , file = ’FFEin.dat’ , status = ’old’ ,action =’read’)

!read(10,*)stea,tran

READ(10,*)NELS,NN,NODOF,NOD,nip,NDIM,np_types,nltyp,ethick,lumped

read(10,*)dtIni,nstep,npri,nres

read(10,*)MaxIter,tol,UR,beta

ndof=nod*nodof

open(11,file=’FFEout.txt’, status = ’replace’, action =’write’)

open(12,file=’FFEcoord.txt’,status = ’replace’, action =’write’)

open(13,file=’FFEiter.txt’, status = ’replace’, action =’write’)

open(14,file=’FFEmb.txt’, status = ’replace’, action =’write’)

open(15,file=’FFEadap.dat’, status = ’old’ , action =’read’)

write(12,’(a,i5)’)"number of elements = ",nels

write(12,’(a,i5)’)"number of nodes = ",nn

allocate(nf(nodof,nn),points(nip,ndim),weights(nip),kay(ndim,ndim),&

coord(nod,ndim), fun(nod), jac(ndim,ndim),g_coord(ndim,nn), &

der(ndim,nod), deriv(ndim,nod), pm(ndof,ndof),g_num(nod,nels),&

kp(ndof,ndof), g(ndof),funny(1,nod),num(nod),g_g(ndof,nels), &

thetag(nip),mw(nip),prop(8,np_types),etype(nels),ltyp(nels), &

enips(2,5),PROP02(9,np_types),kg(ndof,ndof))

!read(10,*) PROP02 !READ PROP02:SWC,ALPHA,BETA,A,B,KX,KY,KZ,MV

213



Appendix B. Source Codes in FORTRAN 90

read(10,*) prop !READ PROP:swc,rwc,a,n,kx,ky,kz,mv

read(10,*) enips

etype=1

ltyp=1 !!! 1D=5,2D=1

if (nltyp>1) read(10,*) ltyp

READ(10,*) G_COORD

do k=1,nels

read(10,*) etype(k),g_num(:,k)

end do

nf=1

read(10,*) nr

if (nr>0) read(10,*) (k,nf(:,k),i=1,nr)

call formnf(nf)

neq=maxval(nf)

!----loop the elements to find nband and store steering vectors----

nband = 0

elements_1: do iel = 1 , nels

NUM=g_num(:,iel)

call num_to_g (num,nf,g)

g_g( : , iel ) = g

if(nband<bandwidth(g)) nband = bandwidth(g)

end do elements_1

write(12,’(a)’) "Global coordinates "

do k=1,nn

write(12,’(a,i5,a,3e12.4)’) "Node",k," ",g_coord(:,k)

end do

write(12,’(a)’) "Global node numbers "

do k=1,nels

write(12,’(a,i5,a,16i5)’)"Element ",k," ",g_num(:,k)

end do

allocate(bp(neq*(nband+1)),bk(neq*(nband+1)),LS(neq*(nband+1)), &

RS(neq*(nband+1)),h0(0:neq),h1(0:neq),h2(0:neq),havg(0:neq), &

ph(0:neq),phi(0:neq),phf(0:neq),elev(0:neq),trload(0:neq), &

trload0(0:neq),trload1(0:neq),p0(0:neq),p1(0:neq),p2(0:neq), &

pavg(0:neq),bg(neq*(nband+1)),h0t(0:neq),h1t(0:neq),htt(0:neq),&

p0t(0:neq),p1t(0:neq),ptt(0:neq))

write(12,’(2(a,i5))’) &

"There are ",neq," equations and the half-bandwidth is ",nband

!------------- Obtaining Elevation Head For All Nodes---------------

elev=0.d0

do i=1, nn

elev(i) = g_coord(ndim,i)

end do

!--------------------Specify Initial Nodal Values ------------------

read(9,*) initial_nodes

if (initial_nodes/=0) read(9,*) (k,h0(nf(:,k)),i=1,initial_nodes)

p0=0.d0
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call h2p(h0,elev,p0,beta)

!-----Read Flow Rate Boundary Condition(if q>k, H=elevation)--------

no_total_head=0

trload0=0.d0

read(10,*) loaded_nodes

if (loaded_nodes /= 0) then

allocate(noln(loaded_nodes),tothead_value(loaded_nodes), &

flow_rate(loaded_nodes),nodal_flow_no(loaded_nodes), &

nodal_flow_value(loaded_nodes),elen(loaded_nodes)) &

noln=0

tothead_value=0.d0

read(10,*) (flow_rate(i), elen(i), nodal_flow_no(i), &

nodal_flow_value(i),i=1,loaded_nodes)

do i=1, loaded_nodes

!if (flow_rate(i) < PROP02(7,etype(elen(i)))) then

if (flow_rate(i) < PROP(5,etype(elen(i)))) then

trload0(nf(1,nodal_flow_no(i)))=nodal_flow_value(i)

else

no_total_head=no_total_head+1

tothead_value(no_total_head)=elev(nodal_flow_no(i))

noln(no_total_head)=nf(1, nodal_flow_no(i))

call h2p1(tothead_value(i),elev(nodal_flow_no(i)), &

tothead_value(i),beta)

end if

end do

end if

!-------------------------Read Total Head Fixity--------------------

read(10,*) fixed_nodes

if (fixed_nodes/=0) then

allocate(node(fixed_nodes),no(fixed_nodes),value(fixed_nodes))

read(10,*)(node(i),value(i),i=1,fixed_nodes)

do i=1,fixed_nodes

no(i)=nf(1,node(i))

call h2p1(value(i),elev(node(i)),value(i),beta)

end do

end if

!-------------------------Read Output Time--------------------------

read(10,*) nTOut

allocate(TOut(nTOut))

read(10,*) (TOut(i),i=1,nTOut)

Lt=TOut(nTOut)

!-------------------------

read(15,*) DECtype,stepTolA,stepTolR,NLtolA,NLtolR

read(15,*) safety,qmax,qmin

read(15,*) itMin,dtIncF

read(15,*) itMax,dtRedF

!===================================================================
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IF (tran/=0) THEN

!-------------------time stepping recursion---------------------

total=0

elapsedtime=timef()

h2=h0

h1=h0

havg=h0

WRITE(11,*) "Values at node:", nres

WRITE(11,*) " Time Elev-Head Total-Head Pressure-Head"

dtim=dtIni !!!! no init cal

preT=0.

curTOut=1

dtKeep=0

count=0

htt=0.d0

timestep=1

timesteps: do while(preT<Lt)

!=====adjust the time step to avoid overshooting

if (preT+dtim>=TOut(curTOut)) then

if (DECtype/=3) dtIni=dtim

dtim=TOut(curTOut)-preT

else if (preT+dtim+dtim>TOut(curTOut)) then

if (DECtype/=3) then

dtIni=dtim

else

dtim=.5d0*(TOut(curTOut)-preT)

end if

end if

! !=====initial guess for h

! ! Method 1

! h1=h0

! ! Method 2

! h1=h0+dtim*(h0t+.5d0*dtim*htt)

! ! Method 3

! !h1=h0+dtim*h0t

!=====initial guess for p

! Method 1

p1=p0

! Method 2

!p1=p0+dtim*(p0t+.5d0*dtim*ptt)

! Method 3
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!p1=p0+dtim*p0t

p2=p1

call unre(pavg,p0,p1,p2,UR)

call p2h(p1,elev,h1,beta)

h2=h1

call p2h(pavg,elev,havg,beta)

do !iteration

if (dtKeep==0) then

curT=preT+dtim

end if

ph=havg-elev

phi=h0-elev

phf=h1-elev

bk=0.d0

bp=0.d0

bg=0.d0

do iel = 1 , nels

call element_type(element,nip,nod,ltyp,enips,iel)

ndof=nod*nodof

deallocate (num,coord,g,points,weights,der,deriv, &

fun,kp,funny,mw,pm,kg)

allocate (num(nod),coord(nod,ndim),g(ndof),mw(nip),&

weights(nip),points(nip,ndim),der(ndim,nod),&

deriv(ndim,nod),fun(nod),kp(ndof,ndof), &

funny(1,nod),pm(ndof,ndof),kg(ndof,ndof))

call sample (element,points,weights)

num = g_num(:,iel)

coord = transpose( g_coord( : , num ))

g = g_g( : , iel )

kp=0.d0

pm=0.d0

kg=0.d0

kay=0.d0

if (lumped==1) then

do i=1,ndof

do k=1,ndof

if (i/=k) then

pm(i,i)=pm(i,i)+pm(i,k)

pm(i,k)=0.d0
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end if

end do

end do

end if

call formkv(bk,kp,g,neq)

call formkv(bp,pm,g,neq)

call formkv(bg,kg,g,neq)

end do

!------------------factorise left hand side-------------

LS=bk*dtim+bp

!---total head fixity by flow rate boundary

trload1=0.0

if (no_total_head /= 0) then

LS(noln)=LS(noln)+penalty

trload1(noln)=LS(noln)*tothead_value !(i)

end if

!--------Total Head Fixity------------------------------

trload=0.0

if (fixed_nodes/=0) then

LS(no)=LS(no)+penalty

trload(no)=LS(no)*value !(i)

end if

!-------------------------------------------------------

call banred(LS,neq)

call linmul(bp,p0,p1t)

call linmul(bg,elev,p1)

p1=p1t-dtim*p1+trload+trload1+trload0*dtim

p1(0)=0.d0

call bacsub(LS,p1)

total=total+1

count=count+1

call p2h(p1,elev,h1,beta)

call p2h(p2,elev,h2,beta)

call control((h2-elev),(h1-elev),nn,nf,diff,norm)

write(*,’(2f20.12,i7,e14.8)’) curT,dtim,count,diff

if (diff<=NLtolR) then

passNL=1

else

passNL=0

end if

! passNL=1

if (passNL==0) then
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if (mod(count,MaxIter)==0) then

write(*,*) curT,’ Iter cannot converge, &

decrease dt’

write(13,*) curT,’ Iter cannot converge &

in MaxIter, decrease dt’

dtim=.5d0*dtim !!!!

dtKeep=0

p1=p0

p2=p1

call p2h(p1,elev,h1,beta)

h2=h1

call unre(pavg,p0,p1,p2,UR)

call p2h(pavg,elev,havg,beta)

cycle

else

dtKeep=1

call unre(pavg,p0,p1,p2,UR)

call p2h(pavg,elev,havg,beta)

p2=p1

h2=h1

cycle

end if

end if

p1t=(p1-p0)/dtim

h1t=(h1-h0)/dtim

ptt=(p1t-p0t)/dtim

htt=(h1t-h0t)/dtim

select case(DECtype)

case(0)

q=1.d0

count=0

dtim=dtIni

exit

case(1)

if (count<itMin) then

q=dtIncF

else if (count>itMax) then

q=dtRedF

else

q=1.d0

end if

passEC=1

case(3)

call mixErrorTest(0.5d0*dtim*abs(h1t(1:)-h0t(1:)),&

abs(h1(1:)-elev(1:)),nn,stepTolA,stepTolR, &

passEC,iCrit)
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trunErrA=.5d0*dtim*abs(h1t(iCrit)-h0t(iCrit))

if (trunErrA>1.d-10) then

q=safety*sqrt((stepTolA +

stepTolR*abs(h1(iCrit)-elev(iCrit)))/trunErrA)

else

q=qmax

end if

end select

count=0

if (timestep<=2) passEC=1 !no change Dt for the first two

if (passEC==0) then

!write(*,*) ’Step failed’,dtim

write(13,*) ’Step failed’

failprev=1

q=max(q,qmin)

if (q>1.0) q=.9 !young add

dtim=q*dtim

dtKeep=0

!p1=p0+dtim*(p0t+.5d0*dtim*ptt)

p1=p0

p2=p1

call p2h(p1,elev,h1,beta)

h2=h1

call unre(pavg,p0,p1,p2,UR)

call p2h(pavg,elev,havg,beta)

else

exit

end if

end do

preT=curT

timestep=timestep+1

write(14,*) curT,dtim,trunErrA

if (schtype==1) then

p0=p1

h0=h1

else if (schtype==2) then

p0=p0+.5d0*dtim*(p1t+p0t)

call p2h(p0,elev,h0,beta)

end if

p0t=p1t

h0t=h1t
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if (preT==TOut(curTOut)) then

write(*,*) preT

!write to file

write(11,’(a,e12.4)’) "For the time of", curT

write(11,’(a)’)" Node X-Coord Elev-Head &

Total-Head Pressure-Head"

do k=1,nn

write(11,’(i5,5e15.7)’) k,g_coord(:,k),h0(nf(1,k)),&

(h0(nf(1,k))-elev(k))

end do

curTOut=curTOut+1

if (DECtype==0.or.DECtype==1) dtim=dtIni

end if

if (failprev==0) then

q=min(q,qmax)

else if (failprev==1) then

q=min(q,1.d0)

failprev=0

end if

dtim=q * dtim

dtKeep=0

if (dtim<1.d-20) then

stop ’Time step size is too small!’

end if

end do timesteps

elapsedtime=timef()

write(11,’("*** Total iterations :",i11)’) total

write(11,’("*** Under relaxation :",i11)’) UR

write(11,’("*** Elapsed time :",f16.4)’) elapsedtime

write(11,’("*** Adap tol(Rel&Abs) :",2e16.4)’) stepTolR,stepTolA

write(11,’("*** Transformation beta :",f16.4)’) beta

2000 format(’$$$ Transient Analysis ends at ’,a,’.’)

END IF

end program THFELA

!!!=================================================================

!!!=================================================================

subroutine mixErrorTest (absE, base, n, tolA, tolR, pass, iCrit)

implicit none
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! Dummy variables:

! Input:

! n = physical and logical (dynamically allocated) dimension

! absE = properly defined absolute error vector

! tolA = absolute error tolerance

! tolR = relative error tolerance

integer, intent(in) :: n

double precision, dimension(n), intent(in) :: absE, base

double precision, intent(in) :: tolA, tolR

! output:

! pass = indicates whether convergence satisfied (1) or not (0)

! iCrit = coordinate of the worse offender in the mixed error sense

integer, intent(out) :: pass, iCrit

! Local variables

integer :: i ! loop counter

double precision :: curErr ! current worse mixed error

double precision :: ErrChar ! worse mixed error

double precision :: curAbs ! current absolute error

double precision :: absMax ! worse absolute error

double precision :: curRel ! current relative error

double precision :: relMax ! worse relative error

double precision :: scale ! implicit scale

!scale = tolA / tolR ! threshold absolute / relative

iCrit = 1

ErrChar = -1.d14 ! VERY negative number

absMax = 0.d0

relMax = 0.d0

if (maxval(abs(base))*tolR > tolA) then

do i = 1, n

! employ relative test for critical points

!if (abs(base(i))>=scale) then

if (abs(base(i))*tolR>=tolA) then

! ignore Components below threshold

curRel = abs(absE(i) / base(i))

if (curRel > relMax) then

relMax = curRel

iCrit = i

end if

end if

! update infinity norm of the characteristic error vector
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curErr = abs(absE(i)) - abs(base(i)) * tolR

if (curErr > ErrChar) ErrChar = curErr

end do

else

do i = 2, n

! employ absolute test for critical points

curAbs = abs(absE(i))

if (curAbs > absMax) then

absMax = curAbs

iCrit = i

end if

! update infinity norm of the characteristic error vector

curErr = abs(absE(i)) - abs(base(i)) * tolR

if (curErr > ErrChar) ErrChar = curErr

end do

end if

! Test error in mixed sense

if (ErrChar > 1*tolA) then

!if (ErrChar > tolA) then

pass = 0 ! no good

else

pass = 1 ! OK

end if

end subroutine mixErrorTest

B.3 New Subroutines for Module new library

module new_library

!!!=================================================================

subroutine control(ph0,ph1,nn,nf,diff,ECnorm1)

double precision,intent(in):: ph0(0:),ph1(0:)

integer,intent(in)::nn,nf(:,:)

integer::i

double precision,intent(out)::diff,ECnorm1

double precision::add0,add1,ECnorm0

add0=0.0

ECnorm0=0.0

do 10 i=1,nn

add0=add0+(abs(ph0(nf(1,i))))**2

10 continue

ECnorm0=sqrt(add0)+1.0
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add1=0.0

ECnorm1=0.0

do 20 i=1,nn

add1=add1+(abs(ph1(nf(1,i))))**2

20 continue

ECnorm1=sqrt(add1)+1.0

diff=abs((ECnorm1-ECnorm0)/ECnorm0*100.00)

return

end subroutine control

!!!=================================================================

subroutine element_type(element,nip,nod,ltyp,enips,iel)

integer, intent(in)::iel,ltyp(:),enips(:,:)

character(*), intent(out)::element ; integer, intent(out)::nip,nod

select case(ltyp(iel))

case(1); element=’quadrilateral’; nip=enips(1,1); nod=enips(2,1)

case(2); element=’triangle’ ; nip=enips(1,2); nod=enips(2,2)

case(3); element=’hexahedron’ ; nip=enips(1,3); nod=enips(2,3)

case(4); element=’tetrahedron’ ; nip=enips(1,4); nod=enips(2,4)

case(5); element=’line’ ; nip=enips(1,5); nod=enips(2,5)

end select

return

end subroutine

!-------------------------------------------------------------------

end module new_library

B.4 Module unsat

module unsat

contains

!--------- 4 parameter Van Genuchten (1980) model-------------------

!subroutine to get volumetric water content of unsaturated soil

!===================================================================

subroutine volwatcon(theta,swc,rwc,a,n,h)

implicit none

double precision,intent(in)::swc,rwc,a,n,h

double precision,intent(out)::theta

double precision::m

m=1.d0-(1.d0/n)

if(h<0.d0) then

theta=rwc+(swc-rwc)/(1.d0+(a*abs(h))**n)**m
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else

theta = swc

end if

return

end subroutine volwatcon

!===================================================================

!subroutine to get volumetric water content of unsaturated soil

!Vauclin et al. model

!===================================================================

subroutine volwatcon02(theta,swc,alpha,beta,h)

implicit none

double precision,intent(in)::swc,alpha,beta,h

double precision,intent(out)::theta

if(h<0.d0) then

theta = swc*alpha/(alpha+(abs(h))**beta)

else

theta = swc

end if

return

end subroutine volwatcon02

!===================================================================

!--------------- Mualem’s Conductivity model (1976a)----------------

!subroutine to get hydraulic conductivity in unsaturated soil

!===================================================================

subroutine hydrcond(k,swc,rwc,n,ks,theta)

implicit none

double precision,intent(in)::swc,rwc,n,ks,theta

double precision,intent(out)::k

double precision::m,nwc

m=1.d0-(1.d0/n)

if(theta<swc)then

nwc=(theta-rwc)/(swc-rwc)

k=ks*sqrt(nwc)*(1.d0-(1.d0-nwc**(1.d0/m))**m)**2.d0

else

k=ks

end if

return

end subroutine hydrcond

!===================================================================

!subroutine to get hydraulic conductivity in unsaturated soil

!Vauclin et al. model

!===================================================================

subroutine hydrcond02(k,a,b,ks,h)

implicit none
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double precision,intent(in)::a,b,ks,h

double precision,intent(out)::k

if(h<0.d0)then

k=ks*a/(a+(abs(h))**b)

else

k=ks

end if

return

end subroutine hydrcond02

!===================================================================

!--------------- Secant (Chord) slope of swc curve------------------

!subroutine to get the mw of Soil Water Curve (SWC)

!given initial & final volumetric water contents

!===================================================================

subroutine chordslope(cslope,theta1,wc2,h1,h2,mv)

implicit none

double precision,intent(in) :: theta1,wc2,h1,h2,mv

double precision,intent(out)::cslope

cslope=abs((wc2-theta1)/(h2-h1)/9.807d0)

return

end subroutine chordslope

!--------------- Tangent slope of swc curve-------------------------

!subroutine to get mw of SWC when h0 & h1 are similar

!given initial & final volumetric water contents

!===================================================================

subroutine slope(mslope,swc,rwc,a,n,mv,h)

implicit none

double precision,intent(in) :: swc,rwc,a,n,mv,h

double precision,intent(out) :: mslope

double precision :: m

m=1.d0-1.d0/n

if (h<0.d0) then

mslope=abs(a*n*m*(swc-rwc)*(a*abs(h))**(n-1.d0)/(1.d0+ &

(a*abs(h))**n)**(m+1.d0)/9.807d0)

else

mslope=mv

end if

return

end subroutine slope

!===================================================================

!subroutine to get mw of SWC when h0 & h1 are similar

!given initial & final volumetric water contents

!Vauclin et al. model

!===================================================================

subroutine slope02(mslope,swc,alpha,beta,mv,h)
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implicit none

double precision,intent(in) :: swc,alpha,beta,mv,h

double precision,intent(out) :: mslope

if (h<0.d0) then

mslope=swc*alpha*beta*(abs(h))**(beta-1.d0)/((alpha+ &

(abs(h))**beta)**2.d0)/9.807d0

else

mslope=mv

end if

return

end subroutine slope02

!----------------Under-relaxation techniques------------------------

subroutine unre(havg,h0,h1,h2,UR)

implicit none

double precision,intent(in) :: h0(:),h1(:),h2(:)

double precision,intent(out) :: havg(:)

integer, intent(in) :: UR

if (UR .eq. 1) then

havg= (h0+h1)/2.d0

else if (UR .eq. 2) then

havg= (h1+h2)/2.d0

else if (UR .eq. 0) then

havg= h1

!--add young, for test

else if (UR .eq. 3) then

havg=h1/2+(h0+h2)/4

!--add end

end if

return

end subroutine unre

!===================================================================

! pressure head to transformed head

!===================================================================

subroutine h2p(h,elev,p,beta)

implicit none

double precision,intent(in) :: h(0:),elev(0:),beta

double precision,intent(out) :: p(0:)

integer :: nn,i

nn=ubound(h,1)

do i=0,nn

if ((h(i)-elev(i))<0) then

p(i)=(h(i)-elev(i))/(1+beta*(h(i)-elev(i)))

else

p(i)=h(i)-elev(i)

end if
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end do

return

end subroutine h2p

!===================================================================

! pressure head to transformed head

!===================================================================

subroutine h2p1(h,elev,p,beta)

implicit none

double precision,intent(in) :: h,elev,beta

double precision,intent(out) :: p

if ((h-elev)<0) then

p=(h-elev)/(1+beta*(h-elev))

else

p=h-elev

end if

return

end subroutine h2p1

!===================================================================

! transformed head to pressure head

!===================================================================

subroutine p2h(p,elev,h,beta)

implicit none

double precision,intent(in) :: p(0:),elev(0:),beta

double precision,intent(out) :: h(0:)

integer :: nn,i

nn=ubound(h,1)

do i=0,nn

if (p(i)<0) then

h(i)=p(i)/(1-beta*p(i))+elev(i)

else

h(i)=p(i)+elev(i)

end if

end do

return

end subroutine p2h

!===================================================================

! transformed head to pressure head

!===================================================================

subroutine p2h1(p,elev,h,beta)

implicit none
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double precision,intent(in) :: p,elev,beta

double precision,intent(out) :: h

if (p<0) then

h=p/(1-beta*p)+elev

else

h=p+elev

end if

return

end subroutine p2h1

!===================================================================

end module unsat
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Description of Input Files

C.1 File FFEin.dat

nels,nn,nodof,nod,nip,ndim,np_types,nltyp,ethick,lumped

750 806 1 4 4 2 2 1 1.0 1

dtIni,nstep,npri,nres

10.00 8640 8640 0

MaxIter,tol,UR,beta

200 0.001 1 -1.0

swc,rwc,a,n,kx,ky,kz,mv (soil parameters; two soils given)

0.4686 0.1060 1.04 1.3954 1.516D-6 1.516D-6 1.516D-6 1.D-25

0.3658 0.0286 2.80 2.2390 6.261D-5 6.261D-5 6.261D-5 1.D-25

element type (see subroutine ‘‘element_type’’ for details)

4 4 0 0 0 0 0 0 4 2

coordinates(ndim,nn)

0 0

0.1 0

0.2 0

...

soil_type(nels), elements(nod,nels)

2 1 27 28 2

2 2 28 29 3

1 3 29 30 4

1 4 30 31 5

...

fixed_nodes

0
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(nodes with flux boundary)

total number of nodes with flux boundary

16

flux,no_elem,no_nodes,nodal_flux

5.7870E-06 726 781 2.8935E-07

5.7870E-06 727 783 2.8935E-07

...

(nodes with fixed head boundary)

total number of nodes with fixed head boundary

26

no_nodes,fixed_head

1 -500

2 -500

...

(time for output)

total number of output times

24

output_times (in second)

3600

7200

...

C.2 File FFEinitial.dat

nn (number of nodes)

806

nnodes,init_head

1 -500

2 -500

3 -500

...

C.3 File FFEadap.dat

adap_type,tolA,tolR,NLtolA,NLtolR

3 1.d0 1.d-1 0.d-4 1.d-3
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(adap_type =0, fixed time step scheme

=1, heuristic adaptive scheme

=3, automatic adaptive scheme)

(additional parameters in automatic adaptive scheme)

safety,qmax,qmin

.9d0 4.0d0 .1d0

(parameters in heuristic adaptive scheme)

itMin,dtIncF

4 1.1d0

itMax,dtRedF

8 .95d0
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