
POWER MANAGEMENT FOR INTERACTIVE 3D

GAMES

YAN GU

M.Eng.(Computer Science & Engineering), Zhejiang University, China

A THESIS SUBMITTED

FOR THE REQUIREMENT OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2008

List of Publications

1. Y. Gu and S. Chakraborty. Control theory-based DVS for interactive 3D games.

In Proc. 2008 Design Automation Conference (DAC), Anaheim, CA, USA, 8-13 June,

2008.

2. Y. Gu and S. Chakraborty. A hybrid DVS scheme for interactive 3D games. InProc.

14th IEEE Real-Time Technology and Applications Symposium (RTAS), St. Louis, MO,

USA, 22-24 April, 2008. IEEE Press.

3. Y. Gu and S. Chakraborty. Power management of interactive 3D games using frame

structures. InProc. 2008 International Conference on VLSI Design (VLSID), pages

679-684, HICC, Hyderabad, India, 4-8 January, 2008. IEEE Press.

4. Y. Gu. Power-aware gaming on portable devices. InSIGDA Ph.D. Forum at Design

Automation Conference (DAC), San Diego, CA, USA, 4-8 June, 2007.

5. Y. Gu, S. Chakraborty and W. T. Ooi. Games are up for DVFS. InProc. 2006 Design

Automation Conference (DAC), pages 598-603, San Francisco, CA, USA, 24-28 July,

2006. ACM Press.

i

Acknowledgments

As I stand at the threshold of earning my doctorate, I am overwhelmed when I recall all

the people who have helped me get this far.

First and foremost, I would like to thank my Ph.D advisor, Dr. Samarjit Chakraborty,

for his constant support, guidance, and inspiration that a graduate student can expect

from his advisor. Samarjit is a truly remarkable advisor who grants students a lot of

freedom to explore new ideas, but at the same time advises on them. I myself have

gained more confidence on my research ability from such role-model as a researcher.

I look forward to continuing my association with him in the future. I am indebted to

Professor Wynne Hsu, my primary advisor, for offering me the chance to go that far in

my research career. Thanks to her, I have never been ended up without my doctorate.

There are two professors whom I would specifically like to thank for their valuable

advices throughout the hard time in my PhD study: Professor Beng Chin Ooi – his

continuously recommendation for my graduate study in NUS, Dr. Zhiyong Huang – his

generously personal help for my first year in Singapore.

I have had very productive collaborations with Professor Akkihebbal L. Ananda,

who also recommended me working as a research assistant at Department of Computer

Science, NUS, Dr. Mun Choon Chan, Dr. Rajesh Krishna Balan and Anand Bhojan. I

ii

have also had valuable discussions on various aspects of the thesis and the life with Dr.

Holun Cheng, Dr. Ye Wang and Professor Roger Zimmermann.

I would like to thank my thesis committee, for providing insightful comments and

constructive criticisms on the ideas presented in this thesis.

Thanks also are due to Ying Chee Woo and Chandra Mukaya from Department of

Electrical and Computer Engineering, NUS, for their help in the initial set up for power

measurement of laptops in the thesis work. As well, for Yong Jun Aw’s help in the

power measurement of PDAs.

My graduate student colleagues have made my stay at NUS a truly enjoyable one.

I would like to thank Binbin Chen, Wendong Huang, Yicheng Huang, William Ku, Lin

Ma, Yuan Ni, Xiuchao Wu, Hang Yu and Jie Yu. My graduate student career has also

been enriched by interactions with several labmates, including Unmesh Dutta Bordoloi,

Jimin Feng, Ramkumar Jayaseelan, Lei Ju, Yun Liang and Balaji Raman.

My gratitude goes out to all the staffs at school’s workshop, graduate office, finance

and human resource offices, especially to Madam Line Fong Loo, Madam Tse Wei Hee,

Madam Hui Chu Lou, Madam Siew Foong Ho and Madam Michelle Yeo.

Moving towards more personal acknowledgements, I am, of course, particularly

indebted to my husband, Luke, for his monumental, unwavering spiritual and material

support and encouragement. He has truly always been there for me, and without him

none of this would have been even possible.

Last, but definitely not the least, I would like to express my gratitude to my parents

for being an unstinting source of support and encouragement. My parents have taught

me through their courage in overcoming the challenges of life and have worked hard to

provide me the very best of it. They have always been there when I have needed them.

iii

Contents

List of Publications i

Acknowledgments ii

Summary viii

1 Introduction 1

1.1 Anatomy of a Game Engine . 4

1.2 A First Cut: Reducing Frame Rates . 8

1.2.1 Experiments . 9

1.3 Thesis Contributions . 13

1.3.1 DVS for Game Applications 13

1.3.2 A Control Theory-based DVS Scheme 13

1.3.3 A DVS Scheme by Exploiting Frame Structure 14

1.3.4 A Hybrid DVS Scheme . 15

1.3.5 Implementation on Multiple Platforms 16

1.4 Organization of Thesis . 18

2 Previous Work 19

iv

2.1 Workload Characterization of 3D Graphics 19

2.2 Dynamic Voltage and Frequency Scaling for Video Applications 21

2.2.1 History-based Approaches . 22

2.2.2 Control Theory Approaches 26

2.2.3 Offline Approaches . 32

2.3 Power Management for 3D Graphics 34

3 A Control Theory-based DVS Scheme 36

3.1 Introduction . 36

3.2 Control Theory in Video Applications 39

3.3 PID Controller Basics . 40

3.4 PID Controller Design . 42

3.4.1 Tuning PID Parameters . 43

3.4.2 Applying to a Different Demo File 47

3.5 Workload Prediction . 51

3.6 Summary . 51

4 A DVS Scheme by Exploiting Frame Structure 54

4.1 Introduction . 55

4.2 Preliminaries . 57

4.2.1 Game Workload . 58

4.2.2 Game Maps . 59

4.3 Workload Characterization . 61

4.3.1 Brush Model . 63

4.3.2 Alias Model . 65

v

4.3.3 Texture . 67

4.3.4 Light Map . 68

4.3.5 Particles . 68

4.3.6 Correlation Functions . 70

4.4 Workload Prediction . 72

4.4.1 Exploiting the Frame Structure 72

4.5 Summary . 74

5 A Hybrid DVS Scheme 78

5.1 Introduction . 78

5.2 Workload Prediction . 81

5.2.1 Workload Variation . 81

5.2.2 Prediction Mode Switching 88

5.3 Optimal PID Controller . 91

5.3.1 Parameters . 93

5.3.2 Results . 93

5.4 Discussion . 95

5.5 Prediction Accuracy and Overheads 96

5.5.1 Prediction Overhead . 96

5.5.2 Prediction Accuracy . 97

5.6 Summary . 99

6 Experimental Evaluation 100

6.1 Implementation Issues . 100

6.1.1 Frequency Mapping . 101

vi

6.1.2 Frequency Transition . 102

6.2 Settings . 103

6.2.1 Laptop Settings . 104

6.2.2 PDA Settings . 106

6.3 Results on the Laptop . 107

6.4 Results on the PDA . 114

6.4.1 Workload Characterization . 115

6.4.2 Workload Variations . 117

6.4.3 Prediction Accuracy . 120

6.4.4 Performance of DVS Schemes 124

6.5 Summary . 127

7 Concluding Remarks 129

7.1 Future Work . 131

vii

Summary

Graphics-intensive computer games are now widely available on a variety of portable

devices ranging from laptops to PDAs and mobile phones. Battery life has been a major

concern in the design of both the hardware and the software for such devices. Towards

this, dynamic voltage scaling (DVS) has emerged as a powerful technique. However,

the showcase applications for DVS algorithms so far have largely been video decoding

where the workload associated with processing different frames can vary significantly.

It is unclear if DVS algorithms can be applied to games due to their interactive (and

hence highly unpredictable) nature. Motivated by the existing work in video decoding

applications and the increasing availability of game applications on portable devices,

this thesis addresses the problem of power-aware gaming on portable devices, which to

the best of our knowledge has not been studied before.

In this thesis, we investigate the workload characteristics of game applications and

observe that interactive game applications exhibit sufficient workload variations, thereby,

are highly amenable to DVS techniques. Specifically, we have two key observations for

game applications, as illustrated in the following.

• Unlike video frames, game framescannot be buffered due to the interactive

nature, while buffering is exploited in many known DVS algorithms.

• Game frames offer more ”structure” information than video frames (which only

contain the I, B, or P frame-type information). More specifically, the workload

associated with processing a game frame depends on the contents of the frame,

or the constituentobjects, which can be easily determined by parsing the frame.

viii

Based on the above observations, we study several issues regarding the power-aware

gaming on portable devices in the thesis. The relevant contributions are listed below.

1. Whereas video frames can be buffered, buffering is not possible in game applica-

tions. As a result, many control-theoretic mechanisms designed for video decod-

ing applications by employing queue capabilities as the feedback in their control

systems are not applicable to game applications. We design a DVS scheme by

exploiting control-theoretic feedback mechanisms, which have not yet been ex-

plored in the context of games. In ourcontrol theory-basedDVS scheme, the

prediction error between the predicted and the actual game workload is fed back

to the controller and used to regulate the workload prediction for next frame. This

control theory-based DVS scheme performs better in terms of power saving and

output quality than the known history-based schemes for game applications.

2. As we observe that the workload prediction for game applications shouldnot

merely rely on the processing time of previous frames. More specifically, the

”structure” information of constituting objects in game frames can be exploited

to predict their workload. Towards this, we design a novelframe structure-based

DVS scheme for game applications by parsing a frame, prior to it being actually

processed. The obtained structure of the frame is then used to estimate the frame’s

processing workload.

3. Furthermore, we observe that the game workload exhibits different degrees of

variabilities. For game plays where the frame workload exhibits sufficient vari-

ability, our frame structure-based prediction scheme works well (and outperforms

control-theoretic prediction schemes). However, for the frames with relatively

constant rendering workload, the proposed control-theoretic prediction schemes

ix

happen to perform better. To take advantage of both these schemes, we propose

a hybrid DVS scheme by switching between the two schemes based on their rel-

ative performance.

In summary, the above issues are concerned with three general problems related

to power management for interactive 3D games on portable devices. Is the workload

associated with game applications sufficiently variable so that DVS algorithms achieve

significant power savings? How can the workload of game applications be predicted ac-

curately so that they become amenable to DVS? How to design efficient DVS algorithms

that can offer sufficient control over energy savings versus game quality tradeoffs? The

results corresponding to these problems that are presented in this thesis demonstrate that

our proposed schemes provide effective power management techniques for graphics-

intensive 3D game applications on portable devices.

x

List of Tables

4.1 Coefficients in the linear functions for Quake II (demo file: crusher.dm2). 72

5.1 Standard deviation thresholds for different groups of workload variations. 93

6.1 Coefficients in the linear functions for Quake on the PDA. 117

xi

List of Figures

1.1 Frameprocessingin a game application. 5

1.2 The diagram of rendering pipeline. 7

1.3 Quake II occupies 95% CPU bandwidth. 8

1.4 Resulting frame rates when the processor frequency is set to five sup-

portive levels. 11

1.5 Average power consumption for different processor frequencies. 11

3.1 Integrating DVS in a game loop. 38

3.2 Kp = 1, I = 28, andD = 0.00001. The mean absolute prediction error

is 4× 106 cycles with standard deviation2.5× 106. 43

3.3 Kp = 0.7, I = 28, andD = 0.00001. The mean absolute prediction

error is3.4× 106 cycles with standard deviation2.7× 106. 44

3.4 Kp = 0.3, I = 28, andD = 0.00001. The mean absolute prediction

error is3× 106 cycles with standard deviation2.1× 106. 44

3.5 Kp = 0.1, I = 28, andD = 0.00001. The mean absolute prediction

error is3.1× 106 cycles with standard deviation2.1× 106. 44

xii

3.6 Kp = 0.5, I = 28, andD = 0.00001. The mean absolute prediction

error is2.4× 106 cycles with standard deviation1.8× 106. 46

3.7 Impact of the proportional parameterKp on frame workload prediction

(errors in processor cycles), using the PID controller-based scheme. . . 46

3.8 Impact of the integral parameterI on frame workload prediction (errors

in processor cycles), using the PID controller-based scheme. 47

3.9 Impact of the derivative parameterD on frame workload prediction (er-

rors in processor cycles), using the PID controller-based scheme. 47

3.10 ApplyKp = 0.5, I = 28, andD = 0.00001 to a different demo file.

The mean absolute prediction error is2.6 × 106 cycles with standard

deviation2.3× 106. 48

3.11 Apply Kp = 1, I = 28, andD = 0.00001 to a different demo file.

The mean absolute prediction error is4.2 × 106 cycles with standard

deviation2.9× 106. 48

3.12 ApplyKp = 0.7, I = 28, andD = 0.00001 to a different demo file.

The mean absolute prediction error is3.3 × 106 cycles with standard

deviation2.2× 106. 50

3.13 ApplyKp = 0.3, I = 28, andD = 0.00001 to a different demo file.The

mean absolute prediction error is2.7× 106 cycles with standard devia-

tion 2.3× 106. 50

3.14 ApplyKp = 0.1, I = 28, andD = 0.00001 to a different demo file.

The mean absolute prediction error is3.8 × 106 cycles with standard

deviation2.8× 106. 50

xiii

3.15 Impact of the proportional parameterKp on frame workload prediction

(errors in processor cycles), when applied to a different demo file. . . . 52

3.16 Impact of the integral parameterI on frame workload prediction (errors

in processor cycles), when applied to a different demo file. 52

3.17 Impact of the derivative parameterD on frame workload prediction (er-

rors in processor cycles), when applied to a different demo file. 52

3.18 Overview of the PID-based DVS scheme. 53

4.1 Workload in different game scenarios exhibits considerable similarity. . 56

4.2 DVS in a game loop. 56

4.3 Corresponding workload associated with steps in processing a game

frame. 58

4.4 Game maps. 60

4.5 Rasterization workload per frame. 61

4.6 Total processing workload per frame. 61

4.7 Linear correlation between rasterization and total processing workload

of a frame. 62

4.8 Brush model. 63

4.9 Alias model. 65

4.10 Rasterization workload for alias models linearly scales to number of

alias models (Game Map:Installation). 66

4.11 Texture. 67

4.12 Particles. 69

4.13 Contributions of the different objects in a frame towards the rasteriza-

tion workload. 70

xiv

4.14 Linear correlations of individual primitives - brush model, alias model,

texture and particles. 71

4.15 Overview of the frame structure based workload prediction scheme. . . 76

4.16 Rasterization workload variations for individual primitives – brush model,

alias model, texture and particles. 77

5.1 DVS in a game loop. 79

5.2 Sample run of the hybrid scheme. 81

5.3 Workload prediction using a history-based predictor for a frame se-

quence with relatively low workload variability. 82

5.4 Workload prediction using a PID controller-based predictor for a frame

sequence with relatively low workload variability. 82

5.5 Workload prediction using a frame structure-based predictor for a frame

sequence with relatively low workload variability. 83

5.6 Workload prediction using a history + frame structure-based predictor

for a frame sequence with relatively low workload variability. 83

5.7 Workload prediction using a PID controller + frame structure-based hy-

brid predictor for a frame sequence with relatively low workload vari-

ability. 83

5.8 Workload prediction using a history-based predictor for a frame se-

quence exhibiting high workload variability. 84

5.9 Workload prediction using a PID controller-based predictor for a frame

sequence exhibiting high workload variability. 84

5.10 Workload prediction using a frame structure-based predictor for a frame

sequence exhibiting high workload variability. 85

xv

5.11 Workload prediction using a history + frame structure-based hybrid pre-

dictor for a frame sequence exhibiting high workload variability. 85

5.12 Workload prediction using a PID controller + frame structure-based hy-

brid predictor for a frame sequence exhibiting high workload variability. 85

5.13 Workload prediction using a PID controller + frame structure-based hy-

brid predictor for brush models. 86

5.14 Workload prediction using a PID controller + frame structure-based hy-

brid predictor for alias models. 86

5.15 Workload prediction using a PID controller + frame structure-based hy-

brid predictor for particles. 87

5.16 Workload prediction using a history-based predictor for particles. 87

5.17 Workload prediction using a frame structure-based predictor for particles. 87

5.18 Workload prediction error versus variability. 88

5.19 Overview of the hybrid DVS algorithm. 89

5.20 Workload transition for alias models in the optimal PID controller. . . . 92

5.21 Workload prediction using an optimal PID controller + frame structure-

based hybrid predictor for a frame sequence exhibiting high workload

variability. 94

5.22 Workload prediction using an optimal PID controller + frame structure-

based hybrid predictor for a frame sequence with relatively low work-

load variability. 94

5.23 Comparison of prediction errors with different predictors. 98

5.24 Distribution of absolute prediction errors for a 160-second demo file. . . 99

5.25 Distribution of relative prediction errors for a 160-second demo file. . . 99

xvi

6.1 Power measurement on a laptop. 105

6.2 Processor frequency versus total system power consumption of the laptop.105

6.3 iWave prototype PDA board. 107

6.4 Power measurement on the iWave prototype PDA board. 108

6.5 Processor frequency versus total system power consumption of the PDA. 108

6.6 Comparison of game quality using different prediction schemes on a

laptop running WinXP (with the target frame deadline set to1/20th of

a second). The results were collected for a 4 second game play (88000

to 92000 millisecond), which was excerpted from a demo file in [43]. . 110

6.7 Comparison of game quality using the different prediction schemes on

a laptop running WinXP (with the target frame deadline set to1/30th of

a second). The results were collected for a 4 second game play (88000

to 92000 millisecond), which was excerpted from a demo file in [43]. . 112

6.8 Comparison of game quality for a 160 second demo file in [43] on a

laptop running WinXP (with the target frame deadline set to1/20th of

a second). 113

6.9 Comparison of game quality for a 160 second demo file in [43] on a

laptop running WinXP (with the target frame deadline set to1/30th of

a second). 114

6.10 Linear correlations of individual primitives - brush model, alias model,

texture and particles on the PDA. 116

6.11 Linear correlation between rasterization and total processing workload

on the PDA. 117

xvii

6.12 Rasterization workload exhibiting low variability for individual primi-

tives - brush model, alias model, texture, particles on the PDA. 118

6.13 Rasterization workload exhibiting high variability for individual primi-

tives - brush model, alias model, texture, particles on the PDA. 119

6.14 Processing workload exhibiting low variability on the PDA. 120

6.15 Processing workload exhibiting high variability on the PDA. 120

6.16 Workload prediction usingPID controller scheme on the PDA,

for a frame sequence exhibiting low workload variability. 121

6.17 Workload prediction usingFrame structure scheme on the PDA,

for a frame sequence exhibiting low workload variability. 122

6.18 Workload prediction usingHistory scheme on the PDA, for a frame

sequence exhibiting high workload variability. 122

6.19 Workload prediction usingPID controller scheme on the PDA,

for a frame sequence exhibiting high workload variability. 122

6.20 Workload prediction usingFrame structure scheme on the PDA,

for a frame sequence exhibiting high workload variability. 123

6.21 Workload prediction usingHybrid(history) scheme on the PDA,

for a frame sequence exhibiting high workload variability. 123

6.22 Workload prediction usingHybrid(control) scheme on the PDA,

for a frame sequence exhibiting high workload variability. 123

6.23 Comparison of prediction errors with different predictors on the PDA.

The results were collected for a 10 second game play, which was ex-

cerpted from a demo file in [44]. 124

xviii

6.24 Comparison of game quality using different prediction schemes on a

PDA (with the target frame deadline set to1/5th of a second). The

results were collected for a 10 second game play, which was excerpted

from a demo file in [44]. 125

6.25 Normalized power consumption using the different prediction schemes

againstFIX as a baseline on the PDA. The results were collected for a

10 second game play, which was excerpted from a demo file in [44]. . . 126

xix

Chapter 1
Introduction

Computer games have recently experienced a sharp increase in popularity and have

attracted considerable attention in both the industry and academia. They are driving a

number of innovations in areas ranging from graphics hardware and high performance

computer architecture to networking and software engineering. Although most of the

graphics-rich games are still largely played on high-performance desktops, over the

last couple of years, a number of games are also available on portable devices such

as Personal Digital Assistants (PDA) (e.g www.doompda.com) and cellular phones.

Playing games on portable devices running on battery brings more mobility to life.

Since such devices are becoming increasingly popular and powerful, we believe that

this trend will certainly continue in the coming years.

Energy efficiency is one of the most critical issues in the design of such battery-

powered portable devices. These portable devices are usually facilitated with dynamic

voltage and frequency-scalable processors. The availability of such processors on portable

devices has led to power management schemes based on DVS algorithms. Since the

power dissipated per cycle with CMOS circuity scales quadratically to the supply volt-

age and linearly to the frequency (P ∝ f · V 2), DVS can potentially provide a very

1

large power saving through voltage and frequency scaling. DVS algorithms have been

shown to be useful to reduce power consumption for a variety of application scenarios,

such as audio [7] and digital signal processing applications [8].

Specifically, over the last few years, such algorithms have been very successfully

applied to video encoding/decoding applications which are also computationally ex-

pensive and where the workload associated with processing different frames can vary

significantly (for example, see [1, 11, 26, 56]). The basic principle behind most of

these algorithms is to predict the workload associated with processing a video frame

from the workloads of the previously decoded frames. The voltage/frequency of the

underlying processor is then scaled based on such history-based workload predictions.

This basic scheme has also been refined using control-theoretic feedback mechanisms,

where previous prediction errors are taken into account while estimating the workload

of a current frame [32, 41, 53, 54].

The main differences between games and video decoding applications stem from

(i) the interactivenature of games, (ii) unlike video frames, game framescannot be

buffered (buffering is exploited in many DVS algorithms [27, 53, 54]), (iii) game

frames are more ”structured” than video frames (which only contain the I, B, or P

frame-type information). More specifically, the workload associated with processing

a game frame depends on the contents of the frame, or the constituentobjects, which

can be easily determined by parsing the frame. Similar conclusions were also arrived at

[36, 37] for workload characterization of a 3D graphics processing pipeline.

Although DVS algorithms have been extensively applied to video encoding/decoding

applications (which have almost attained the status of thedining philosophers problem

in this domain) [38, 55, 56], their use in graphics-intensive games has not been suffi-

2

ciently explored so far. Motivated by the abovementioned line of work and the increas-

ing availability of game applications on portable devices, this thesis addresses the issue

of power management for interactive games. In the thesis, we investigate the workload

characteristics of game applications. The sufficient workload variations indicate that

the interactive game applications are highly amenable to DVS techniques. However,

existing control theory-based DVS schemes from video applications employ queue ca-

pabilities as the feedback in their control systems. As we know, there is no buffering

in game applications. Therefore, these control-theoretic feedback schemes exploiting

queue capabilities are not applicable to game applications. In this thesis, we design a

novel control theory-based workload predictor in DVS scheme for game applications.

Further, based on one of our key observations that game frames offer more ”struc-

tures” than video frames, we present an innovative DVS scheme for game applications

by exploiting frame structure. The emergence of different degrees of variabilities in

game workload motivates our hybrid DVS scheme by combining the frame structure

and the control theory techniques for game applications. All the above mentioned DVS

schemes are evaluated on a laptop and a PDA, with simulation setting, real platforms

such as Windows and Windows Mobile.

Before elaborating on our work in the thesis, we would like to introduce the design

of a game engine, which is the reusable core of a game application. By adding details

(which are often referred to as ”assets”) like models, animation, sound and story to a

game engine, a (concrete) game is derived.

3

1.1 Anatomy of a Game Engine

A game engine runs in an infinite loop, where the body of this loop consists of tasks

responsible for processing a single frame. This loop body is shown in Figure 1.1. Here

Eventdenotes the user inputs or interactions with the game, which along with the cur-

rent state of the game is used to generate the next frame to be displayed. This involves

two sequential steps—computing and rendering—which we describe below. A more

detailed discussion may be found in [6, 50].

The computing step comprises tasks such as collision detection, AI, simulation of

game physics and particle systems. Collision detection includes algorithms for check-

ing collisions between the different objects and characters in the game. Such algorithms

compute intersections between two given solids, their trajectories as they move, impact

times during a collision and their impact points. In some engines, the AI tasks deter-

mine the movement of the characters in the game. Game physics incorporates physical

laws into the game engine so that different effects (e.g. collisions) appear more realistic

to a player. Typically, simulation physics is only a close approximation of real physics,

and computation is performed using discrete rather than continuous values. Finally, a

particle system model allows a variety of other physical phenomenon to be simulated.

These include smoke, moving water, blood, explosions and gun fires. The number of

particles that may be simulated is typically restricted by the computing power of the

machine on which the game is being played.

The rendering step involves algorithms to generate an image (or a frame) from a

model, which is then displayed as shown in Figure 1.1. In this case, the model is

typically a description of several three dimensional objects using a predefined language

or data structure. It consists of geometry, viewpoint, texture and lighting information.

4

Physics

Rendering

AI

Display

Collision

detection

Particle

Event

Computing

Figure 1.1: Frameprocessingin a game application.

In the case of 3D graphics, rendering may be done offline, as in pre-rendering, or in

real time. Pre-rendering is a computationally intensive process that is typically used for

movie creation, while real-time rendering is commonly done in 3D computer games,

which often relies on the use of a specialized processor called a Graphics Processing

Unit (GPU).

The rendering step involves two stages:geometry stageand rasterization stage.

Each stage is pipelined as shown in Figure 1.2. The geometry stage performs per-

vertex operations such as vertices transformation of solid objects to the screen space,

lighting, texture coordinates generation and deletion of invisible pixels by clipping.

The processed vertices are assembled into primitives and sent to the rasterization stage.

The rasterization performs per-pixel operations, from simple operations such as writing

color values into the frame buffer, to more complex operations such as texture mapping,

depth buffering and alpha blending. The outcome of these steps is the transformation

of 3D data onto 2D screen.

The first step in the rasterization is to decide whether a pixel is to be rendered or

not. To determine whether a pixel is within a triangle, the most popular of algorithm is

thescanline algorithm1. Scanline rendering is an algorithm for visible surface determi-

nation, which works on a row-by-row basis. Firstly, all of the polygons to be rendered

1http://en.wikipedia.org/wiki/Scanlinealgorithm

5

are sorted according to their topy coordinates. Secondly, by using the intersection of

a scan line with the polygon on the top of the sorted list, each row of the polygon is

computed.

To determine whether a pixel is occluded or blocked by another pixel, az buffer is

used to ensure that the pixels close to the viewer are not overwritten by pixels far away.

Thez buffer is a 2D array corresponding to the image plane which stores a depth value

for each pixel. Whenever a pixel is drawn, it updates thez buffer with its depth value.

Any new pixel need check its depth value against thez buffer value before it is drawn.

Next, the rasterization need find out a pixel’s color, texture and shading information.

A texture mapis a bitmap that is applied to a triangle to define its look. Each vertex

of a triangle is associated with a texture color information and a texture coordinate

(u, v) in 2D space. Whenever a pixel on a triangle is rendered, the correspondingtexel

2 (the texture is represented by arrays of texels) in the texture must be found. This is

extrapolated from the distance between the triangle’s vertices and the rendered pixel.

Lighting effect on the pixel is taken into account to determine its resultant color.

Generally, there are three types of lighting effects [2], i.e.directional lights, point

lightsandspotlights. Directional lights come from a single direction and have the same

intensity throughout the entire scene. Point lights are the lights with a definite position

in space and radiate light evenly in all directions. The point lights in real life experience

quadratic attenuation in the intensity of light incident on objects farther away. Spotlights

are the lights with a definite point in space, a direction, and an angle defining the cone

of the spotlight.

The last step in the rasterization isshading[2]. The shading algorithm accounts for

the distance from light and the normal vector of the shaded object with respect to the in-

2http://en.wikipedia.org/wiki/Texel(graphics)

6

Transform 3D

position into screen

position

Geometry stage3D triangles Rasterization stage

Compute

attributes

2D triangles Pixels

Rasterize triangles

Interpolate vertex

attribute across

triangles

Shade pixels

Resolve visibility

Figure 1.2: The diagram of rendering pipeline.

cident direction of light. The fastest algorithm isflat shading, in which all pixels on any

given triangles are assigned with a constant lighting value. There is other algorithm –

Gouraud shading, which separately shades vertices and interpolates the lighting values

for the rendered pixels. The slowest and most realistic approach isPhong shading, in

which the lighting value for each pixel is computed individually, by performing bilinear

interpolation of the normal vectors.

Rendering is computationally expensive and occupies a significant fraction of the

total processing time of a frame. The most significant component of the rendering task

involves the rasterization stage.

In the next section, we explore the possibility of lowering the frame-rate of a game,

thereby reducing its processing workload. This reduction would enable the game ap-

plication to run at a constant, but lower processor frequency, thereby reducing power

consumption. Although this approach would be a competing approach to DVS, we

discuss what are its disadvantages and why dynamically changing the processor’s volt-

age/frequency might be better in the case of games.

7

1.2 A First Cut: Reducing Frame Rates

A rule of thumb in game design is that users prefer high frame rates. As a result, most

game applications are designed to maximize frame rates without any consideration to-

wards resource usage or power consumption. The loop described in Section 1.1 there-

fore runs at the maximum possible rate and fully utilizes the available CPU bandwidth.

We measure the CPU usage of Quake II running on an IBM laptop using Intel VTune

Analyzer 7.23 and notice that it occupies 95% of the CPU bandwidth on an average as

shown in Figure 1.3, all through 60 second. However, the frame rate varies over time

and depends on the state of the game (e.g. the number of characters and the complexity

of the scene).

0
10
20
30
40
50
60
70
80
90

100

 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

C
P

U
 U

sa
ge

 (
%

)

Time (ms)
 Frame resolution = 1024x768 pixels

Quake II process

Figure 1.3: Quake II occupies 95% CPU bandwidth.

A recent study [12] on the effects of frame rates and resolution in First Person

Shooter games concluded that although frame rates have a significant impact on the

perceived quality-of-service, for most parts of a game very high frame rates are not

required. More specifically, the resulting frame rate when a game application fully

utilizes the CPU bandwidth might be unnecessarily high. As a result, a natural question

that comes up is: Why not run the game at aconstant(but lower) frequency?

It turns out that this is not a good strategy, because the variation in the number of

3http://www.intel.com/cd/software/products/asmo-na/eng/vtune/vpa/index.htm

8

processor cycles required to process different frames is considerably high, as we show

in Chapter 4. While running the CPU at a constant but lower frequency would reduce

the overall frame rate, the rate might drop below the tolerable range when rendering

complex scenes. Before we present the results supporting this observation, let us briefly

outline the experimental setup that we use throughout this thesis.

1.2.1 Experiments

We conducted all our experiments on an IBM laptop with a 1400 MHz Intel Mobile

Processor built with SpeedstepTM technology, and an ATI RadeonTM Mobility Video

card. The CPU supports five different frequency operating points: 1400, 1200, 1000,

800 and 600 MHz. All our results are based on the ”vanilla” Quake II, version 3.21,

whose source code is instrumented and compiled to run on Windows XP.

To ensure that the game is not preempted by other processes, we ran it with the

highest priority and rendered the game with the ”software” option. The ”software” op-

tion disables the use of the GPU, causing the 3D functions to be executed on the CPU.

This option usesDirectDraw to draw the pixels on the screen. Sounds are disabled dur-

ing measurements, as our initial results show that the workload in loading and playing

audio during games is negligible (approximately 1.8% of the total workload). All the

processor cycle measurements are carried out usingRDTSC(read time-stamp counter)

instruction. We choose to use a software-only renderer as many battery-powered per-

sonal mobile devices such as (low-end) laptops, PDAs and mobile phones do not sup-

port GPUs yet. As investigated, a wide range of available PDAs do not provide hard-

ware accelerators for graphical tasks4, and we believe the market will continue for

some time. In the future, it might be more PDAs and mobile phones facilitated with

4http://www.brighthand.com/bestpdas/default.asp?display=mostpopular

9

GPUs. However, the power management techniques that will be supported by GPUs is

not clear at this stage. In conclusion, our proposed techniques hold today for most of

PDAs and they could be applied to future portable devices as well.

To ensure reproducibility, instead of actually playing the game, we replayed pre-

recorded demo files in Quake II. The game resolution is set to 1024×768, running

in full-screen mode. While replaying demos allows us and the research community

to repeat our experiments, the workload measured is slightly lower than the workload

incurred by games played in real-time. The difference arises from the fact that, the

demo has certain pre-recorded states (such as position of objects in each frame and

input from users) and therefore these states are not computed again during playback.

Our experiments suggest that this computation accounts for approximately 3% of the

total workload of the game.

For power measurements, we removed the battery from the laptop and connected it

to the external power supply using an AC power adapter. We then tapped the cable lead-

ing from the power adapter to the laptop using special probes connected to a National

Instruments PXI-4071 71
2
-digit Digital Multimeter which measure the instantaneous

current and voltage drawn by the laptop.

Figure 1.4 shows an excerpt of how the instantaneous frame rate varies with time

for replaying the default Quake II demo with the processor frequency set to the five

supportive levels. We measured the instantaneous frame rate as the reciprocal of the

frame processing time. Note that with 1400 MHz, the frame rate varies between ap-

proximately 35 and 95 frames per second (fps). With 600 MHz, the frame rate varies

roughly between 5 and 55 fps. With frequencies set to five levels between 600 and

1400 MHz, the frame rates are shown from lowest to highest respectively. A frame rate

10

0
10
20
30
40
50
60
70
80
90

100
110
120

 70000 80000 90000 100000 110000 120000

F
ra

m
e

ra
te

 (
fr

am
es

/s
ec

)

Time (ms)
 Frame resolution = 1024x768 pixels

Processor frequency = 600 MHz
Processor frequency = 800 MHz

Processor frequency = 1000 MHz
Processor frequency = 1200 MHz
Processor frequency = 1400 MHz

Figure 1.4: Resulting frame rates when the processor frequency is set to five supportive
levels.

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

600 MHz 800 MHz 1000 MHz 1200 MHz 1400 MHz

P
ow

er
 (

W
at

t)

Frame resolution = 1024x768 pixels

22.1 23.4 24.9 26.9 28.8

Figure 1.5: Average power consumption for different processor frequencies.

of 95 fps is much higher than necessary [12]. On the other hand, if we run the processor

at a constant frequency of 600 MHz, we achieve undesirably low frame rates on certain

frames exhibiting complex scenes. The average power consumptions corresponding to

the five frequency values supported by our laptop with the game running on it are shown

in Figure 1.5. We observe that the power consumption decreases correspondingly to the

frequency. We computed these values by recording the instantaneous currentc(t) and

voltagev(t) drawn by the laptop every 5 ms, and calculating the power consumption

over a duration of lengthT as
∑T

t=0(c(t)v(t)δt)/T , whereδt is the sampling interval

(5 ms). Note that these values correspond to the total system power consumption and

not the power consumed by the processor alone.

The first attempt to reduce frame rates by running a processor at a lower but constant

11

level leads to lower frame rates on certain frames with large game workload demands,

albeit it reduces power consumption. On the other hand, thisconstantfrequency scal-

ing results in unnecessarily higher frame rates on certain frames with small workload

demands. In contrast, dynamically scaling frequency to match required game workload

could guarantee better frame rates with more power saving than the naive constant fre-

quency scaling. In the thesis, we study the following three problems related to the issue

of power management for interactive 3D games on portable devices.

• Is the workload associated with game applications sufficiently variable so that DVS

algorithms achieve significant power savings?

The unpredictable interaction from game players incurs different game workload as-

sociated with variable constituent objects. From first point of view, it is unclear whether

game applications are amenable to DVS or not. In this thesis, we show using detailed

experiments that interactive games are highly amenable to DVS. We elaborate on this

issue in Section 1.3.1.

• How can the workload of game applications be predicted accurately so that they

become amenable to DVS?

As explained above, the nature of game applications is very different from video

decoding applications, our finings of game workload in the first problem lead to a num-

ber of innovative DVS algorithms targeted towards game applications, exactly as video

decoding applications have motivated a variety of schemes for DVS. In this thesis, we

present three innovative DVS schemes towards interactive games. Section 1.3.2, 1.3.3

and 1.3.4 explain our proposed DVS algorithms in detail. To the best of our knowledge,

it is the first time that DVS techniques have been applied to games.

• How to design efficient DVS algorithms that can offer sufficient control over energy

savings versus game quality tradeoffs?

12

We are concerned with several critical issues regarding hardware and system, in

the implementation of proposed DVS algorithms on multiple platforms. Section 1.3.5

elaborates our design of the mechanisms to address such issues and validates our design

on multiple real platforms (e.g. laptops, PDAs).

1.3 Thesis Contributions

We designed power management techniques for graphics-interactive 3D games on portable

devices. The results derived from different platforms show the consistently superior per-

formance of our schemes, compared with known DVS algorithms designed for video

decoding applications. Parts of work reported in the thesis have been published in

[23, 19, 20, 22, 21].

1.3.1 DVS for Game Applications

We initiated a study of applying DVS technique for game applications in [23]. By

carrying out detailed experiments using an open source, popular Fist Person Shooter

game called Quake II, we observed that game applications exhibit sufficient variability

in their workload to meaningfully exploit DVS schemes for power savings. Moreover,

our investigation offers the possibility of developing DVS algorithms that better exploit

the characteristics of game applications (compared to those that have been developed

for video decoding applications).

1.3.2 A Control Theory-based DVS Scheme

One of the primary differences between video processing and game applications is the

interactive nature of games. Whereas video frames can be buffered, buffering is not

13

possible in game applications where the content of a frame is dependent on the user

input. As a result, many of the control-theoretic feedback mechanisms that were devel-

oped for predicting the workload of video processing applications (e.g. see [53, 54])

cannot be applied to games.

We investigated the use of such control-theoretic feedback mechanisms for dynamic

voltage scaling for interactive 3D game applications in [20]. Such mechanisms have

not yet been explored in the context of games, and more importantly, the buffer-centric

approaches for workload prediction cannot be applied in this context.

We used a proportional-integral-derivative (PID) controller to predict the process-

ing workload of a game frame. Following standard control theory terminology [28],

the predicted processing workload of a frame was set as themeasured variableand

the actual workload (obtained after rendering the frame) was considered to be theset

point. The resulting prediction error (i.e. the difference between the predicted and the

actual workload) was fed back to the PID controller and was used for predicting the

workload of the next frame. The predicted frame workload was taken to decide the

voltage/frequency level of the processor.

The tunable parameters in the PID controller could be manually adjusted towards

specific applications or automatically selected by available softwares. This scheme

has negligible computational overhead, owing to the discrete formulation of the PID

controller.

1.3.3 A DVS Scheme by Exploiting Frame Structure

Furthermore, we observed that the nature of game workload is very different from those

arising from video decoding applications in [23], which motives the need for different

14

DVS schemes compared to the ones traditionally used for video decoding. In the case

of game applications, the frames contain ”structure” which can be exploited to predict

their workload or processor cycle requirements. While processing a frame, the work-

load depends heavily on the scene that the frame is depicting. More specifically, the

workload depends on the content of the frame or the constitutingobjectsthat need to be

processed.

Towards this, we designed a more efficient DVS algorithm for game applications by

exploiting the ”structure” information (e.g. number of brush and alias models, textures

and light maps information, number of particles) of game frames in [22]. By parsing

a frame, prior to it being actually processed, the structure of the frame, or the consti-

tuting objectsthat need to be processed is efficiently obtained, which is then used to

estimate the frame’s processing workload. The predicted frame workload is used to

decide whether the voltage/frequency of the processor should be scaled or not.

Compared with the control theory-based DVS scheme, this scheme incurs more

computational overhead due to the parsing of game frames. However, this scheme could

be extended and generalized to other game applications without losing the accuracy of

workload prediction.

1.3.4 A Hybrid DVS Scheme

We observed that our frame structure-based prediction scheme works well (and outper-

forms control-theoretic prediction schemes) for game plays where the frame workload

exhibits sufficient variability. However, for the frames with relatively constant rendering

workload, the proposed control-theoretic prediction schemes happen to perform better.

To take advantage of both these schemes, we proposed ahybrid workload prediction

15

scheme in [21], where we kept on switching between the two schemes based on their

relative performance.

The hybrid prediction scheme combines two different techniques: (i) adjusting

workload prediction by control-theoretical feedback mechanism, and (ii) analyzing the

graphical objects in the current game scene by parsing the corresponding frame.

We evaluated the performance of the proposed control-theoretic DVS scheme, the

frame structure-based DVS scheme and the hybrid DVS scheme by comparing with

the known history-based DVS algorithms for interactive games. Our results derived

from different platforms consistently show that there are significant improvements of

our proposed DVS schemes, based on the data from the full-blown Quake games. The

hybrid DVS scheme achieves the best performance in power saving and output quality;

and its prediction overhead is within a feasible region.

1.3.5 Implementation on Multiple Platforms

In this thesis, we are concerned with frequency mapping and frequency transition over-

head on the performance of DVS algorithms.

A number of previously-proposed algorithms for DVS have assumed the processor’s

frequency range to be continuous (e.g. see [32]). However, most voltage/frequency-

scalable processors only support a fixed number of discrete frequency levels. Hence, in

the thesis we assume that only a fixed number of frequency levels are available and the

computed optimum frequency is mapped onto the next available higher frequency level.

Such a conservative mapping satisfies the workload demands of the game application,

at the cost of less than ideal energy savings. However, we also conduct simulations

where we assume that the processor’s frequency is continuously scalable.

Frequency switching of a processor is associated with an overhead which depends

16

on the processor’s microarchitecture as well as the OS running on top of it. Our ex-

perimental results suggest that for the same processor, this overhead is higher in Win-

dows XP compared to Linux. The average transition overhead in Windows XP running

on an Intel Pentium Mobile processor is 20 million cycles, i.e., the overhead is 14 mil-

liseconds with the operating frequency set to 1400 MHz.

Hence, to skip unnecessary frequency switches, we use alazytransition mechanism.

Instead of immediately switching the processor frequency whenever the predicted work-

load of a game frame changes, we defer the switch to the immediate next frame.

Apart from the evaluation of our proposed DVS schemes on a configurable simula-

tion platform, we conduct the experiments on two heterogenous platforms: a laptop with

Intel Pentium Mobile processor facilitated with SpeedStepTM, running Windows and a

PDA with Intel XScale processor, running Window Mobile. Their consistent results

derived from the platforms enforce that our DVS schemes are applicable to different

configurations, regardless of the underlying hardware and the operating system.

The measurements on the laptop are conducted based on Quake II engine for several

reasons. It is a representative game that can be played on current, general purpose

portable devices without hardware accelerators, such as low-end laptops, PDAs and

mobile phones. The game engine of Quake II is the basis of other popular First Person

Shooter games. Here, we would like to clarify that a game engine is the reusable core

of a game applications. By adding details (which are often referred to as ”assets”) like

models, animation, sound and story to a game engine, a (concrete) game is derived.

Since our experimental results are based on Quake II, they immediately extend to other

First Person Shooter games (e.g., Heretic II (1998), SiN (1998), Kingpin: Life of Crime

(1999)) derived from the same game engine.

17

In addition, the results and conclusions of Quake II on the laptop are in line with

Quake5 on the PDA. Quake is an earlier version of Quake II. The structure of Quake en-

gine involves the same game objects and the processing of game tasks follows the same

logic as Quake II. Unfortunately, the high computational workload by Quake II results

in unacceptable low frame rates on a PDA (less than 5 frames per second), thereby

deteriorated the game quality. Thus, in the thesis, we adopt portable Quake instead of

Quake II on the PDA without tampering comparability of results.

1.4 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 reviews some prior work

of graphics workload characterization and DVS algorithms in video decoding applica-

tions. Chapter 3 presents a DVS scheme by using control theory. Chapter 4 introduces

a framework of workload characterization for game applications, followed by a DVS

scheme exploiting frame structure information. The exhibition of game frames with a

large degree of workload variability leads to a hybrid DVS scheme in Chapter 5. Chap-

ter 6 shows the results of our proposed DVS algorithms on different platforms – a laptop

and a PDA. Finally, some potential directions of this study are discussed in Chapter 7.

5http://quake.pocketmatrix.com/

18

Chapter 2
Previous Work

In this chapter, we discuss some prior work on workload characterization of 3D graphics

and introduce the existing work of DVS techniques, mostly towards video decoding

applications, finally, the latest work on power management for 3D graphics.

2.1 Workload Characterization of 3D Graphics

Mitra and Chiueh [34] discussed the bandwidth and memory requirements of rasteriza-

tion workload in graphics hardware. First, they considered the bandwidth requirement

of geometry information transferred between the CPU and the graphics hardware, over

a high-speed system bus such as PCI. By demonstrating the variable requirements of

triangles, pixels, spansand pixelstampsin each frame in different stages of rasteri-

zation processing, they suggested sufficient FIFO buffers between different stages of

the pipeline are used to absorb the variation without introducing stalls. Second, they

discussed the behavior of memory access in rasterization and proposed to improve the

locality of frame buffer access by changing the pixel generation order during scan con-

version. For texture, they investigated the effect of texel block and caching to the effi-

ciency of texture memory access.

19

Their work mainly investigates the bandwidth and memory requirements of rasteri-

zation on system architecture, thereby, presents some implications for graphics pipeline,

frame buffer design, texture memory management and system bus design. However,

they did not discuss the workload of game applications on the processor. Their impli-

cations are hardly applicable for DVS algorithms.

Wimmer and Wonka [52] considered graphics pipeline as a parallelled rendering

process, in which the CPU and the GPU perform tasks in parallel. Since the rendering

tasks on the GPU constitute the most important factors for the rendering time, they

proposed several heuristics to calculate the rendering time estimation functions.

Theview-cell samplingmethod works for a view-cell based system, where a poten-

tially visible set (PVS) is stored for each view cell. For each view cell, they discretized

the set of view directions, randomly generatedn views around each discretized direc-

tion and measured the rendering time for each view. The maximum rendering time of

then sample views is used as an estimation for the total rendering time of the direction

and the view cell under consideration.

Anotherper-object samplingmethod estimates the rendering time of a set of objects

by adding the rendering time estimations of the individual objects. To estimate the

rendering time of a single object, they parameterized the rendering time estimation

function by three angles. The first angle is the angle between the two supporting lines

on the bounding sphere. This angle (which is related to the solid angle) is an estimate

for the size of the screen projection. The other two angles (for elevation) describe from

which direction the object is viewed. In a preprocess, they sampled this function using

a regular sampling scheme and stored the values in a lookup table together with the

object.

20

Their sampling for each object rendered on the GPU incurs huge computational

overhead in their proposedper-object samplingmethod. The situation is deteriorated

when varying objects occur in the scene. Such overhead is prohibitive in interactive

applications such as games, as usually there are thousands of visible objects in game

scenes.

The most recent work of workload characterization was done by Mochocki et al.

[36, 37]. They discussed that quality factors of 3D graphics, such as resolution, LOD,

lighting model and texture models affect power consumption on portable devices. They

simplified graphics pipeline with a simulator and developed asignature bufferin the

simulator. From the signature buffer, they obtained specific parameters which imply

graphics workload: (i) average triangle area, (ii) triangle count, (iii) average triangle

height, and (iv) vertex count. These parameters are concatenated as a signature and

used to find a closest matching signature from a signature table. The corresponding

workload is read from the table as the predicted workload.

2.2 Dynamic Voltage and Frequency Scaling for Video

Applications

Recently, power management techniques with DVS for mobile devices have received

increasing research attention [31, 35, 40, 46, 55]. Those techniques exploit an impor-

tant characteristic of CMOS-based processors: the frequency scales almost linearly to

the voltage, and the power dissipated per cycle scales quadratically to the supply volt-

age and linearly to the frequency. DVS algorithms have been applied for a variety of

application scenarios, such as audio [7], digital signal processing applications [8].

21

Specifically, lately there is a large body of existing work devoted to DVS algo-

rithms for video decoding applications. These work can be broadly classified into (i)

history-based approaches, by exploiting historical information of applications, (ii) con-

trol theory-based approaches, in which previous output of control system is fed back to

the system to adjust its performance, (iii) off-line meta-data approaches, by analyzing

pre-recorded sequences of video applications.

2.2.1 History-based Approaches

The basic history-based prediction is to monitor the system utilization of previous

uniform-length intervals, which is extrapolated as the voltage level for the next uniform-

length interval. This idea can be extended by weightedly averaging actual workload of

previously processed frames [15, 39].

Weighted Averaging

Weiser et al. [51] and Govil et al. [15] are among the first researchers who proposed

DVS algorithms in operating systems.

In 1994, Weiser et al. first proposed an interval-based DVS algorithm to monitor

CPU utilization constantly on a general purpose operating system. Processor frequency

and voltage are adjusted at the beginning of each interval according to the CPU utiliza-

tion of previous execution traces.

Govil et al. compared five DVS algorithms by assigning weights in different man-

ners in [15]. For instance, in theirLONG SHORTalgorithm, more weight is assigned to

short-term historical intervals than long-term historical intervals. Therefore, it attempts

to smooth behavior to a global average, but shows more concern for local peaks.

22

Aydin et al. discussed a series of algorithms in [3, 4], which anticipated early com-

pletions of future execution by using the average-case workload information.

Pering et al. proposed a weighted averaging scheme in [39]. In their scheme, a

weighting factorα is used to filter out severe fluctuations of workload and achieve

smaller average prediction error. The estimated workload of next intervalt+1 is defined

asWorkloadavg(t + 1), which is predicted by extrapolating from actual and estimated

workload of intervalt, shown as follows.

Workloadavg(0) = Workload(0) (2.1)

Workload(t + 1) = α ·Workload(t) + (1− α) ·Workloadavg(t) (2.2)

= α ·
t∑

τ=0

(1− α)τ ·Workload(t− τ) (2.3)

As Pering et al. examined DVS algorithms through trace-driven simulation. Grunwald

et al. further evaluated DVS policies through physical measurements [18].

Chandrasena et al. [9] incorporated the strengths of the conventional workload av-

eraging technique with therate selection algorithm. System workloads are buffered to

estimate the CPU rate until the scaling factor matches the system quantized rates.

Averaging by Exploiting Frame Information

As introduced above, the weighted DVS algorithms smooth workload prediction de-

pending on global and local behaviors of applications. They could be further refined

by exploiting the frame information (e.g. frame type) of video decoding applications

[5, 11].

Bavier et al. proposed a workload predictor by concerning with frame type and size

of MPEG data in [5]. In their empirical study of MPEG data, they observed that there

23

is a linear model with least square algorithm (R2 = 0.97) between actual and predicted

workload. However, it is computational expensive to apply least square algorithm incre-

mentally for the applications. Therefore, they proposed aFRAMETYPELENpredictor

to approximate the model. This predictor estimates processing frame time by averag-

ing frame time of previously processed frames with same type. At the same time, it

adjusts its prediction by taking into account the linear increment of cycles with num-

ber of bytes. Such foreknowledge about the linear model is used to eliminate those

misleadingly predicted points.

Choi et al. proposed a frame type-based workload averaging scheme in [11]. They

categorized processing steps of each type of video frames (i.e. I, P or B frame) into two

phases. The first phase includes IDCT and reconstruction steps, whose processing time

varies with frame type. Therefore, this phase is defined asframe-dependent(FD). The

second phase mainly involves dithering, whose processing time is constant regardless

of frame type as discussed in [42]. Hence, this phase is defined asframe-independent

(FI). In their DVS algorithm, the workload of FD phase for a specific frame type is

estimated by averaging actual workload of previously processed FD phases with same

type. The misprediction by averaging for FD phase is compensated by taking FI phase

into appropriate level of frequency.

Stochastic Model of Workload Distribution

There are some other work in DVS for video decoding applications, in which they pro-

file workload for a much longer duration, thereby, provide more insights on workload

distribution than the above introduced averaging approaches [31, 16, 17, 13].

Lorch and Smith estimated workload distribution in parametric and nonparametric

24

methods in [31]. Based on the probability distribution of workload requirements, they

proposed an optimal scheduling for video decoding applications by assuming continu-

ous frequency scaling.

Gruian [16, 17] combined off-line and on-line scheduling at both task level and

task-set level. Stochastic data derived from previous task execution traces are used to

produce energy-efficient schedules. Multiple frequency levels may be assigned to a

single task.

Liu et al. [30] defined theavailable cycle function (ACF)and therequired cycle

function (RCF)to capture the CPU workload of the real-time tasks. The values of these

two functions are derived from the parameters of the task set and the scheduling policy

used to dispatch the tasks of the system. In their experiments, the execution time of

each job is generated using a normal distribution. The functions capture the workload

envelope, thereby, derive the optimal clock speed between an upper bound and a lower

bound of processor cycles.

The history-based DVS algorithms estimate workload by exploiting historical informa-

tion (short-term or long-term). They are effective in applications such as video decoding

or audio, where workload exhibits rather less and small variations.

However, the underlying principle of these algorithms makes them inapplicable for

workload with a large degree of variability, such as game applications. Because these

algorithms cannot track workload variations, output quality of game applications with

fluctuant workload will be severely deteriorated.

25

2.2.2 Control Theory Approaches

The control theory approaches bring in another element – control theory to DVS algo-

rithms for video decoding applications.

Feedback Control

The history-based approaches have been refined using control-theoretic feedback mech-

anisms. Some of control-theoretic mechanisms use the buffer occupancies as the pri-

mary input to the feedback controller [32, 33, 53, 54]. Some of work predict work-

load by exploiting proportional-integral-derivative (PID) controller for DVS scheduling

[47, 49, 58].

Lu et al. presented a feedback-control scheduling algorithm for DVS in [32, 33].

The decoding application is modelled asM/M/1 queue system, where the following

equation holds:

T =
1

µ− λ
(2.4)

whereT is the average delay for the frame,µ is the frame decoding rate andλ is

the frame arrival rate. The controller system is modelled by using first order Taylor

expansion about the desired decoding rateµ:

T (k + 1) = T (k)− T 2
0 ∗ (µ ∗ γ(k + 1)− µ ∗ γ(k)) (2.5)

whereT0 is the user-specified delay andγ(k+1) is the frequency factor (a value between

0 and 1) at timek + 1. Based on the difference between the user-specified delay and

the actual average delay from the previous frames, the controller will produce a new

frequency factor, which is used to scale voltage/frequency.

26

Wu et al. modelled multiple-clock-domain processors as queue system, in which

queue occupancies are used to trigger DVS algorithm [53, 54]. To be more specific,

their controller monitors two queue signals: the relative queue occupancy(qi − qref)

and the relative queue difference(qi − qi−1), whereqi represents the queue occupancy

at thei-th sampling point, andqref is the target queue occupancy. The continuous-time

model of their DVS control is expressed as follows:

ḟ(t) =
m

h(f)

step

Tm0

(q(t)− qref) +
l

h(f)

step

Tl0

q̇(t) (2.6)

whereḟ is the time derivative of normalized frequencyf (i.e. ∂f/∂t); q̇ is the time

derivative of queue occupancy;step is the step size of the frequency change triggered by

the queue signals;Tm0 andTl0 are the basic time delays for the queue signals(qi−qref)

and(qi−qi−1) respectively;m andl are constants;h(f) is a function off which is used

to take account of possible affects off on the effective time delay.

Some researchers proposed PID controller for DVS scheduling in video decoding

applications. A PID controller consists of three different elements, namely, proportional

control, integral control and derivative control. The typical form of a PID implementa-

tion is expressed as follows:

y(t) = KP · x + KI ·
∫ t

0

(x− y)dt + KD · dx

dt
(2.7)

in whichy is the output of the controller at timet, andx is the input at timet.

Stankovic et al. presented a scheduling paradigm by using feedback control in [47].

They chose PID controller as the basic feedback control technique in the scheduling.

The system deadline miss ratioMR(t), i.e. the percentage of tasks that miss their dead-

27

lines at timet, was defined as themeasured variable. MRs(t) = 0 was defined as the

set point, thenerror = MRs(t) −MR(t) = −MR(t). The PID controller computes

the control∆CPU(t) in requested CPU utilization with the following formula:

∆CPU(t) = −KP ·MR(t)− 1

KI

·
∑
IW

MR(t)+KD ·MR(t)−MR(t−DW)

DW
(2.8)

∆CPU(t) > 0 means that the requested utilization should be increased, otherwise the

requested utilization should be decreased.

Varma et al. proposed a modified PID controller upon known DVS scheduling al-

gorithms in [49]. In their work, they defined the actual and predicted workload atn-th

interval asxn andyn. By applying the modified PID controller, they obtained the pre-

dicted workloadyn+1 by using the previousm values of workload as follows:

yn+1 = KP · xn + KI ·
n∑

n−m+1

xi

m
+ KD · (xn − xn−1) (2.9)

whereKP , KI andKD are constants. Compared with Formula 2.7, the modified PID

controller is converted from continuous-time formulation to discrete formulation, by re-

placing the integral operation with a summation, replacing the derivative operation with

the difference between the current and the previous actual workload and eliminating the

feedback termy in the loop.

Zhu et al. proposed a EDF scheduling algorithm based on a PID controller in [58].

In their work, they predicted worse-case execution cyclesCAij
for thej-th job of a task

28

Ti using the following discrete PID control formula:

∆CAij
= KP · ε(t) +

1

KI

·
∑
IW

ε(t) + KD · ε(t)− ε(t−DW)

DW
(2.10)

CAi(j+1)
= CAij

+ ∆CAij
(2.11)

whereKP , KI andKD are proportional, integral and derivative coefficients, respec-

tively. ε(t) is the monitored error.IW andDW are tunable window sizes. The output

∆CAij
is fed back to the system and is used to regulate the next anticipated value for

execution cycles.

Usually, the PID controller-based approaches adjust the system performance by peri-

odically feeding the output back to the system. In order to achieve rapid and accurate

response to the input, it is critical to select the appropriate set point and return the feed-

back to the system. To our knowledge, no existing PID controller-based DVS scheme

has been proposed targeted towards game applications. This thesis is the first time to

introduce the feedback control mechanism in the context of interactive games.

Adaptive Control

As more and more DVS algorithms are proposed to save energy, some people suggested

DVS algorithms should be integrated with hardware adaptation. As we know, the exe-

29

cution time and energy equations are:

Execution time = Instruction count× 1

IPC
× 1

f
(2.12)

Energy = Power × Execution time (2.13)

= CV 2f
Instruction count

IPC × f
(2.14)

= CV 2 Instruction count

IPC
(2.15)

IPC is instruction per cycle,f is frequency,V is the supply voltage andC is the ef-

fective capacitance. These equations suggest at least tow forms of hardware adaptation.

The first is DVS, the other is to adapt the architecture to reduce the effective capaci-

tance.

In [25, 26], they proposed two forms of adaptations – architectural adaptation and

DVS to reduce energy. Their algorithm 1 begins with by predicting the energy of each

instructionEPI of all possible hardware configurations (architecture and frequency)

using profiles of a single frame for a subset of the configures. Subsequently, before the

execution of each frame, the algorithm predicts the number of instructions with history-

based schemes. With the instruction count andEPI estimates, the algorithm chooses

the architecture and frequency combination that will consume the least energy and meet

the deadline for the next frame.

The integrated adaptive control algorithm has more efficiency than the feedback control

algorithm which applies DVS to save energy alone. However, their work assumed that

IPC was almost constant for different frames of the same type at a given frequency.

IPC of a frame is almost independent of clock frequency and the instruction count for

a given frame type varies slowly frame frame to frame, due to mostly smooth changes

30

Algorithm 1 Adaptive Control
Profiling

1: For each architectural configuration and frame type: MeasureIPCA and powerPA.
2: For each hardware configuration define:Imax = Deadline× frequency × IPC.
3: For each frame type, order the hardware configurations in increasing order ofPA·V 2

H

IPCA
.

Adaptation

1: Predict instruction count for the next frame of the same type using a history-based
predictor.

2: Choose the lowestEPI architecture that hasImax higher than the predicted instruc-
tion count.

in the amount of work per frame. Obviously, due to their assumption of smooth change

in application workload in control theory approach, the algorithms are inapplicable in

the fast-pace application with large fluctuations. This approach is hardly applicable in

interactive applications such as games, where the processing workload is unpredictable

because of the user behavior.

Optimal Control

Zhang et al. proposed an algorithm in [57], where the information about the task exe-

cution time distribution obtained by profiling similar recently executed tasks was used

to optimally procrastinate voltage increase as much as possible to minimize unneces-

sary energy expenditure. Assuming the workload distribution of a taskS has been

binned in ascending order in term of the number of clock cycles{c1, c2, c3, ..., ck} and

their associated probabilities{p1, p2, p3, ..., pk}. To calculate a set of scheduling volt-

ageV (S) = {V1, V2, ..., Vk} based on the workload distribution ofS and deadlineT by

31

solving constrained optimization problem, they obtain:

V1 =

c1 + (c2 − c1)(1− p1)
1/3 + ... + (ck − ck−1)(1−

k−1∑
i=1

pi)
1/3

KT
(2.16)

Vj = V1 ·

1

1−
j−1∑
i=1

pi

1/3

j = 2, ..., k (2.17)

All calculations are done offline. At runtime, if the task finishes before its worst-

case execution time, a low power mode for the rest of period is set to minimize the

consumption. Following is their proposed algorithm 2 in the paper, whereK is a system

constant.

Algorithm 2 Optimal Control
Offline

1: Given taskS, deadlineT , workload distribution{c1, c2, c3, ..., ck} and correspond-
ing probability{p1, p2, p3, ..., pk}.

2: Calculate optimal scheduleV (S) = V1, V2, ..., Vk using equations 2.16 and 2.17.

Online

1: Intial voltagefrequency(S): V = V1, f = KV1.
2: On number of clock cycles finished equal toci−1, change voltage and frequency to:

V = Vi, f = KVi, i = 2, ..., k.
3: Upon taskfinish: set processor to low power mode untilT .
4: Back to Step 1 for next task

Their assumption that the probability distribution of their cycle demands is stable or

changes slowly and smoothly does not hold for interactive applications as games.

2.2.3 Offline Approaches

Instead of directly estimating decoding workload of video frame during decoding phase,

Huang et al. proposed an idea to insert meta-data information into MPEG-2 bitstream

32

during video encoding phase [24]. These meta-data is parsed while decoding, so that

the voltage/frequency is scaled accordingly to its pre-specified information.

To be more specific, in video decoding applications, three tasks predominately oc-

cupy most of processing workload: variable length decoding (VLD), inverse discrete

cosine transform (IDCT) and motion compensation (MC). In their paper, they identi-

fied that the workload of these tasks could be parameterized with known information.

As the VLD task involves Huffman decoding followed by run-length decoding, whose

workload is estimated by Huffman codes with the number of non-zero IDCT coeffi-

cients. It is calculated as follows:

nV LD = a · ncoeff + b (2.18)

wherencoeff is the number of non-zero IDCT coefficients,a andb are constants deter-

mined by processor microarchitecture and the VLD code.

The MC task performs functions with different input parameters, therefore, its work-

load is determined by the specific input parameters. These parameters include whether:

(i) Y 1 component’sx-dimension is HALF-PIXEL, (ii)Y component’sy-dimension is

HALF-PIXEL, (iii) U or V component’sx-dimension is HALF-PIXEL, (iv)U or V

component’sy-dimension is HALF-PIXEL, (v) forward or backward motion compen-

sation is required, and (vi) the motion compensation window size is16× 8 or 16× 16.

By counting the number of functions with specific input parameters, the workload of

the MC can be accurately predicted.

The workload of IDCT could be approximated as a constant in an optimized algo-

rithm, as shown in [10, 14].

1Each frame in MPEG-2 is represented inYUVcolor space. See ISO MPEG-2 standard for details.

33

By offline parsing video clips and obtaining the coefficients for each task (i.e. VLD

and MC), they estimated workload for each video microblock and stored in meta-data.

Such meta-data approaches analyze pre-stored video clips offline and insert estimated

workload into video frame. Obviously, it is impossible to extend these approach to

realtime interactive applications such as games.

2.3 Power Management for 3D Graphics

Mochocki et al. [36, 37] proposed a signature-based estimation for predicting 3D graph-

ics workload. In their simplified graphics simulator, they obtained specific parameters

which imply graphics workload: (i) average triangle area, (ii) triangle count, (iii) aver-

age triangle height, and (iv) vertex count. By table looking-up techniques, the workload

with the closest signature could be estimated.

Although their work investigates the application of DVS techniques for graphics ap-

plications, their graphics pipeline simulator used in the paper is customized for their

experiments. It could hardly represent the typical graphics applications, especially a

full-blown 3D game engine. The usage of signature tables would incur computational

cost and impact the prediction accuracy, especially for the applications where the sig-

natures exhibit big variability.

As discussed, a large number of paper on DVS algorithms for video decoding ap-

plication works on the assumption that the application workload exhibits larger simi-

larities. However, our results in the following chapters show that game workload has

different characteristics from video decoding workload. Furthermore, we observe that

game frames involve different types ofobjects, which contribute to the corresponding

34

processing workload of frames.

To exploit the observed natures of game workload, in the thesis, we propose three

novel DVS schemes towards interactive gam applications. The first DVS scheme is

designed based on a PID controller, which periodically adjusts workload prediction by

responding to recent prediction errors. The second DVS scheme provides workload

prediction by parsing constituent objects in game frames, without the foreknowledge of

their historical behaviors. The above two DVS schemes work well for respective frame

sequences exhibiting different degrees of variability. To take advantage of both, we

propose a hybrid DVS scheme by combining two techniques. Our experiments show

that the hybrid DVS scheme achieves significant power saving with good output quality.

35

Chapter 3
A Control Theory-based DVS Scheme

In this chapter, we propose a control theory-based DVS algorithm for interactive 3D

game applications running on battery-powered portable devices. Using this scheme, we

periodically adjust the game workload prediction based on the feedback from recent

prediction errors. Although such control-theoretic feedback mechanisms have been

widely applied to predict the workload of video decoding applications, they heavily rely

on estimating the queue lengths of video frame buffers. Given the interactive nature of

games – where game frames cannot be buffered – the control-theoretic DVS schemes

for video applications can no longer be applied. Our main contribution is to suitably

adapt these schemes for interactive games.

3.1 Introduction

Graphics-intensive game applications are now increasingly spilling over from high-end

desktops to mobile devices (e.g. PDAs, cell phones and portable game consoles) for

which battery-life is a major concern. This has resulted in a growing interest in power

management schemes specifically directed towards 3D graphics and game applications

36

[23, 36, 37]. It is now well-established that such applications exhibit sufficient variabil-

ity in their workload for dynamic voltage scaling (DVS) algorithms to be meaningfully

applied [23, 29, 48]. Over the last few years, such algorithms have been very success-

fully applied to video encoding/decoding applications which are also computationally

expensive and where the workload associated with processing different frames can vary

significantly (for example, see [1, 11, 26, 56]). The basic principle behind most of

these algorithms is to predict the workload associated with processing a video frame

from the workloads of the previously decoded frames. The voltage/frequency of the

underlying processor is then scaled based on such history-based workload predictions.

This basic scheme has also been refined using control-theoretic feedback mechanisms,

where previous prediction errors are taken into account while estimating the workload

of a current frame [32, 41, 53, 54].

One of the primary differences between video processing and game applications is

the interactive nature of games. Whereas video frames can be buffered, buffering is not

possible in game applications where the content of a frame is dependent on the user

input. As a result, many of the control-theoretic feedback mechanisms that were devel-

oped for predicting the workload of video processing applications cannot be applied to

games. Such mechanisms use the various buffer occupancies as the primary input to the

feedback controller (e.g. see [53, 54]). Here, the buffer fill levels are used as clues on

the speed-balance between various processors or the processor and the output device.

The goal is to maintain such buffer fill levels at some predetermined constant level,

while running the processor at the lowest-possible frequency at all time. To achieve this

goal, the processor’s frequency has to be scaled in response to a time-varying workload

to ensure that the buffers in question do not underflow or overflow.

37

Estimate frame workload using

proportional-integral-derivative

(PID) predictor

Use estimate as input to

voltage/frequency scaling logic

Render frame

p
ro

cess n
ex

t fra
m

e

Compute frame

Figure 3.1: Integrating DVS in a game loop.

In this chapter, we investigate the use of such control-theoretic feedback mecha-

nisms for dynamic voltage scaling for interactive 3D game applications. Such mech-

anisms have not yet been explored in the context of games, and more importantly,

the buffer-centric approaches for workload prediction cannot be applied in this con-

text. A high-level overview of our proposed scheme is shown in Figure 3.1. We use

a proportional-integral-derivative (PID) controller to predict the processing workload

of a game frame. Following standard control theory terminology [28], the predicted

processing workload of a frame is set as themeasured variableand the actual workload

(obtained after rendering the frame) is considered to be theset point. The resulting pre-

diction error (i.e. the difference between the predicted and the actual workload) is fed

back to the PID controller and is used for predicting the workload of the next frame.

The second component of our scheme is thevoltage/frequency scaling logicwhich takes

the predicted frame workload as input and decides whether the voltage/frequency of the

processor should be changed from its current level. Since scaling a processor’s volt-

age/frequency is associated with a certain overhead (which depends on the processor’s

38

architecture, as well as the operating system running on top of it), very frequent volt-

age or frequency changes might not lead to optimal energy savings. Hence, thevolt-

age/frequency scaling logicdoes not trigger a voltage/frequency switch in response to

everyworkload change, but does so when such a change appears to last over a slightly

longer duration. This is explained in further detail later in Section 6.1.

The rest of this chapter is organized as follows. Next section reviews the existing

work of control theory mechanisms in video decoding applications, followed by the

basics of PID controllers for close-loop systems in Section 3.3. In Section 3.4 we

design our PID controller for game applications and apply the PID controller into the

DVS scheme in Section 3.5. Finally we summarize this chapter in Section 3.6.

3.2 Control Theory in Video Applications

In [53, 54], Wu et al. modelled the buffers among multiple clock domains with queue

theory, the queue occupancy was used to regulate the processor frequency in their DVS

algorithm. Lu et al. presented a feedback-control scheduling algorithm for DVS in

[32, 33]. The video decoding applications is modelled withM/M/1 queue system.

The difference between the user-specified delay and the actual average delay is used to

balance the processor frequency.

However, there is no buffer in game applications as video applications. Therefore,

the control theory mechanisms which use the various buffer occupancies as the primary

input to the feedback controller are not applicable to game applications.

39

3.3 PID Controller Basics

In this section, we describe a general proportional-integral-derivative (PID) controller

for close-loop systems with an emphasis on the aspects that are important for under-

standing our scheme.

Feedback control is one of the fundamental mechanisms for dynamic systems to

achieve equilibrium. In a feedback system, some variables –measured process vari-

ables, are monitored and measured by the feedback controller and compared to their

desired values –set points. The differences (errors) between the controlled variable

and the set point are fed back to the controller repeatedly. Corresponding system states

are usually adjusted according to the differences to let the system variables approximate

the set points as closely as possible.

A PID controller is a generic control loop feedback mechanism that is used to ad-

just system parameters based on the feedback from the recent error between ameasured

process variableand a desiredset point. The measured variable usually reaches its set

point and stabilizes within a short period. It involves three separate components –Pro-

portional Control, Integral ControlandDerivative Control. The proportional control

determines the speed of the system in reacting to errors. The integral control is used

to determine the accuracy of the system based on recent errors. Finally, the derivative

control determines the system reaction based on the rate at which the error changes.

The PID feedback controller can be described in three major forms: the ideal form,

the discrete form and the parallel form. Although the discrete form is often used in

digital algorithms to keep tuning similar to electronic controllers, the parallel form is

the simplest one where each control element is given the same error input in parallel.

40

The output of the controller is given by

Output(t) = Pcontrib + Icontrib + Dcontrib (3.1)

wherePcontrib, Icontrib andDcontrib are the feedback contributors of the PID controller.

Pcontrib = Kp · ε(t) (3.2)

Icontrib =
1

I
·
∫

ε(t)dt (3.3)

Dcontrib = D · dε(t)

dt
(3.4)

whereε(t) is defined as the difference between a measured variable and a desired set

point. Kp, I andD are the constants, which are defined asproportional gain, integral

gainandderivative gainrespectively.

By tuning the values of these gains, the PID controller can provide individualized

control specific to process requirements involving error responsiveness, overshoot of

the set point and system oscillation.

A high proportional gain results in a large change in the controller’s output, given

a changed system error. In contrast, a small proportional gain results in a small system

response to a large system error, i.e., a less sensitive controller.

The integral contributor accelerates the movement of process towards set point and

eliminates the residual steady-state error that occurs with a proportional-alone con-

troller. However, since the integral contributor is responding to accumulated errors

from the past, it can cause the present value to overshoot the set point (i.e. cross over

the set point and then create a deviation in the other direction).

The derivative controller slows the rate at which the system output changes. Hence,

41

it is used to reduce the magnitude of the overshoot produced by the integral contributor

and improve the controller stability. However, differentiation of an input error amplifies

noise in the error, and thus the derivative controller is highly sensitive to noise in the

error and can cause a process to become unstable, if the noise and the derivative gain

are sufficiently large.

3.4 PID Controller Design

Here, the goal is topredict the workload of a game frame before the frame is pro-

cessed/rendered. This is estimated to be the sum of the predicted workload of the pre-

vious frame and the output of the PID controller, which takes as input the prediction

errors of a certain number of previously processed frames. Towards this we select the

predicted workload̄ωi as themeasured variableand the actual workloadωi as theset

point. The resulting error is periodically measured by the PID controller and is given

by ε(t) = ωi − ω̄i, wheret is the time stamp of thei-th frame. The following discrete

PID controller formulation is used in our DVS scheme:

∆ω̄i = Kp · ε(t) +
1

I
·
∑
TI

ε(t) + D · ε(t)− ε(t− TD)

TD

(3.5)

ω̄i+1 = ω̄i + ∆ω̄i (3.6)

As explained in Section 3.3, hereKp, I andD are the proportional, integral and deriva-

tive coefficients respectively.TI andTD are the tunable parameters of the controller.

In our scheme,TI is set to the frame interval, and hence,
∑

TI
ε(t) is the sum of the

prediction errors from frame(i − TI) to framei. TI is set to be 5 frames; hence, only

the errors from previous 5 frames contribute to the integral element.TD is set to be

42

equal to the frame execution time and henceε(t − TD) is the prediction error at time

t − TD. We restrictTD to be the execution time of the last one frame to ensure that

multiple feedback corrections do not affect one another. The output∆ω̄i is fed back to

the controller and regulates the next estimated frame workloadω̄i+1.

3.4.1 Tuning PID Parameters

In our experiments, we observe that the selection of values impacts the prediction results

significantly. By manually tuning the parameters, we obtain the best prediction when

Kp = 0.5, I = 28 andD = 0.00001 for entire game play, however, the optimal values

of these parameters might vary from one game engine to the next (depending on the

variability of the workload).

Proportional Gain

Figure 3.2, 3.3, 3.4 and 3.5 show the workload prediction using the proposed PID

controller-based scheme with unchangedI andD, while Kp is set to 1, 0.7, 0.3 and 0.1

respectively.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

 90000 91000 92000 93000 94000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.2:Kp = 1, I = 28, andD = 0.00001. The mean absolute prediction error is
4× 106 cycles with standard deviation2.5× 106.

Note that if the proportional parameter is too large, the controller becomes unstable

43

15.0

20.0

25.0

30.0

35.0

40.0

45.0

 90000 91000 92000 93000 94000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.3:Kp = 0.7, I = 28, andD = 0.00001. The mean absolute prediction error
is 3.4× 106 cycles with standard deviation2.7× 106.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

 90000 91000 92000 93000 94000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.4:Kp = 0.3, I = 28, andD = 0.00001. The mean absolute prediction error
is 3× 106 cycles with standard deviation2.1× 106.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

 90000 91000 92000 93000 94000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.5:Kp = 0.1, I = 28, andD = 0.00001. The mean absolute prediction error
is 3.1× 106 cycles with standard deviation2.1× 106.

44

(see Figure 3.3 and Figure 3.2). In Figure 3.3, the mean prediction error is3.4 × 106

cycles with standard deviation2.7 × 106. While in Figure 3.2, the mean absolute pre-

diction error goes up to4× 106 with 2.5× 106 standard deviation.

In contrast, a smaller proportional parameter results in a slower response to input

errors in the controller as shown in Figure 3.5 and Figure 3.4, where the mean prediction

errors are3×106 cycles with standard deviation2.1×106. By compared with the result

shown in Figure 3.6 whenKp is set to 0.5, where the mean absolute prediction error

is 2.4 × 106 cycles with standard deviation1.8 × 106, we notice the big improvement

whenKp is set to the optimal value.

Integral and Derivative Gains

Moreover, we compare the results of the PID controller-based predictors with fixed

Kp = 0.5 andD = 0.00001, while the integral parameter is set to different values such

as 25, 26, 27, 28, 29 and 30. We notice that the predictor gives the best result when

the integral parameter is set to 28. In the same manner, we manually tune the derivative

parameter to different values such as 0.000001, 0.00001, 0.0001, 0.001, 0.01 and 0.1,

coupled withKp = 0.5 andI = 28. With the derivative parameter set to 0.00001, the

predictor provides better result than the others. Furthermore, we notice that there are

huge deviations from set points when the derivative parameter is sufficiently large (e.g.

0.1).

Impact of Proportional, Integral and Derivative Gains

Figure 3.7, 3.8 and 3.9 compare the workload prediction errors in cycles with the above

tested values of three parameters, respectively. Note that the PID controller produces

the best prediction whenKp = 0.5, I = 28 andD = 0.00001. Figure 3.7 shows that

45

15.0

20.0

25.0

30.0

35.0

40.0

45.0

 90000 91000 92000 93000 94000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.6:Kp = 0.5, I = 28, andD = 0.00001. The mean absolute prediction error
is 2.4× 106 cycles with standard deviation1.8× 106.

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Kp of the PID controller

Figure 3.7: Impact of the proportional parameterKp on frame workload prediction
(errors in processor cycles), using the PID controller-based scheme.

46

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 24 25 26 27 28 29 30 31

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

I of the PID controller

Figure 3.8: Impact of the integral parameterI on frame workload prediction (errors in
processor cycles), using the PID controller-based scheme.

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-7 -6 -5 -4 -3 -2 -1

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

lg(D) of the PID controller

Figure 3.9: Impact of the derivative parameterD on frame workload prediction (errors
in processor cycles), using the PID controller-based scheme.

the absolute prediction error is as high as4 × 106 cycles whenKp is set to 1, while its

error drops to2.4 × 106 with kp = 0.5, I = 28 andD = 0.00001. Figure 3.8 shows

that the prediction error drops from3.4 × 106 cycles withI = 30 to 2.4 × 106 with

kp = 0.5, I = 28 andD = 0.00001. In Figure 3.9, the prediction error comes up to

3.4 × 106 cycles whenD = 0.01, compared with prediction error in2.4 × 106 cycles

with the optimal values.

3.4.2 Applying to a Different Demo File

We investigate that the optimal values selected based on one demo file could be applied

to a different demo file from the same game engine, as they exhibit the similar degree of

workload variability. In this section, we observe that the PID controller-based scheme

47

with the same optimal values of these parameters (i.e.Kp = 0.5, I = 28 andD =

0.00001) consistently achieves the best prediction, when applied to a different Quake II

demo file from the above.

Proportional Gain

Figure 3.11, 3.12, 3.13 and 3.14 show the workload prediction using the proposed

PID controller-based predictors with unchangedI andD, while Kp is set to 1, 0.7, 0.3

and 0.1 respectively. Figure 3.10 shows the best prediction whenKp is set to 0.5. where

the mean absolute prediction error is2.6×106 cycles with standard deviation2.3×106.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

 136000 137000 138000 139000 140000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.10: ApplyKp = 0.5, I = 28, andD = 0.00001 to a different demo file. The
mean absolute prediction error is2.6× 106 cycles with standard deviation2.3× 106.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

 136000 137000 138000 139000 140000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.11: ApplyKp = 1, I = 28, andD = 0.00001 to a different demo file. The
mean absolute prediction error is4.2× 106 cycles with standard deviation2.9× 106.

48

Notice that the controller becomes unstable (see Figure 3.12 and Figure 3.11), if

the proportional parameter is too large (Kp = 0.7 andKp = 1). In Figure 3.12, the

mean prediction error comes up to3.3×106 cycles. While it becomes even worse when

Kp = 1 as shown in Figure 3.11.

While the controller becomes less sensitive to input error with a smaller proportional

parameter (Kp = 0.1 andKp = 0.3), as shown in Figure 3.14 and Figure 3.13, where

the mean prediction errors are3.8× 106 and2.7× 106 cycles.

Integral and Derivative Gains

We apply the optimal value of the integral parameter (I = 28) to the different demo file,

with fixed Kp = 0.5 andD = 0.00001. By compared with other settings such as 25,

26, 27, 29 and 30, we notice that the predictor gives the best result when the integral

parameter is set to 28. Similarly, we observe that the predictor provides better result

than the others, when the derivative parameter is set to 0.00001, coupled withKp = 0.5

andI = 28.

Impact of Proportional, Integral and Derivative Gains

Figure 3.15, 3.16 and 3.17 compare the workload prediction errors in cycles, whenKp,

I andD are set to different values respectively. Note that the PID controller produces

the best prediction whenKp = 0.5, I = 28 andD = 0.00001. Figure 3.7 shows

that the prediction errors is up to4.2 × 106 whenKp = 1, compared with2.6 × 106

whenkp = 0.5, I = 28 andD = 0.00001. Figure 3.8 shows that the prediction error

is 3.2 × 106 when I = 25, while it drops to2.6 × 106 with the optimal values. In

Figure 3.9, the prediction error goes up to3.9 × 106 with D = 0.01, compared with

2.6× 106 with kp = 0.5, I = 28 andD = 0.00001.

49

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

 136000 137000 138000 139000 140000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.12: ApplyKp = 0.7, I = 28, andD = 0.00001 to a different demo file. The
mean absolute prediction error is3.3× 106 cycles with standard deviation2.2× 106.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

 136000 137000 138000 139000 140000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.13: ApplyKp = 0.3, I = 28, andD = 0.00001 to a different demo file.The
mean absolute prediction error is2.7× 106 cycles with standard deviation2.3× 106.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

 136000 137000 138000 139000 140000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 3.14: ApplyKp = 0.1, I = 28, andD = 0.00001 to a different demo file. The
mean absolute prediction error is3.8× 106 cycles with standard deviation2.8× 106.

50

3.5 Workload Prediction

Figure 3.18 shows the various components of our DVS scheme. The value of the er-

ror ε(t) (obtained from previous frames) is used to compute the proportional, integral

and derivative elements. Finally, the sum of these elements is used to estimate the

workload of the current frame. This is followed by computing the voltage/frequency

of the processor based on the predicted frame workload and the target frame rate. The

processor’s voltage/frequency is then scaled based on ascaling logic, followed by the

rendering steps.

3.6 Summary

Although the control-theoretic feedback mechanisms have been previously applied to

video encoding/decoding applications, their use in games have not been explored be-

fore. In this chapter we proposed the PID controller-based DVS scheme for interactive

3D game applications. In this DVS scheme, the resulting prediction error between the

predicted and the actual workload is fed back to the PID controller and used to regulate

the workload prediction of next frame.

In Chapter 5 and Chapter 6, this scheme is compared to other workload prediction

schemes on different platforms (e.g. laptops and PDAs). It yields improvements in

terms of power saving as well as output quality, compared to history-based workload

prediction schemes – where the workload of a game frame is predicted by averaging the

workload of previously rendered frames.

51

2.0

2.5

3.0

3.5

4.0

4.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Kp of the PID controller

Figure 3.15: Impact of the proportional parameterKp on frame workload prediction
(errors in processor cycles), when applied to a different demo file.

2.0

2.5

3.0

3.5

 24 25 26 27 28 29 30 31

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

I of the PID controller

Figure 3.16: Impact of the integral parameterI on frame workload prediction (errors in
processor cycles), when applied to a different demo file.

2.0

2.5

3.0

3.5

4.0

4.5

-6 -5 -4 -3 -2 -1

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

lg(D) of the PID controller

Figure 3.17: Impact of the derivative parameterD on frame workload prediction (errors
in processor cycles), when applied to a different demo file.

52

setup transformation for rendering

poll player's message

compute visible objects

scale processor's voltage and frequency

game loop

compute required processor frequency from target frame rate

and predicted frame workload

render frame

total frame workload

= sum of P, I, D contributors + predicted workload of last frame

fr
a

m
e

w
o

rk
lo

a
d

 p
re

d
ic

ti
o

n

v
o
lt

a
g
e/

fr
eq

u
en

cy

sc
a
li

n
g

p
ro

ce
ss

 n
ex

t
fr

a
m

e

compute prediction error as the difference between actual &

predicted workload

Kp×

proportional

contributor

Ú I

integral

contributor

D×

derivative

contributor

Figure 3.18: Overview of the PID-based DVS scheme.

53

Chapter 4
A DVS Scheme by Exploiting Frame

Structure

In this chapter, we propose a novel DVS scheme that is specifically directed towards 3D

graphics-intensive interactive game applications running on battery-operated portable

devices. The key to this DVS scheme lies in parsing each game frame to estimate its

rendering workload and then using such an estimate to scale the voltage/frequency of

the underlying processor. The main novelty of this scheme stems from the fact that

game frames offer a rich variety of ”structural” information (e.g. number of brush and

alias models, texture information and light maps) which can be exploited to estimate

their processing workload. Although DVS has been extensively applied to video de-

coding applications, compressed video frames do not offer any information (beyond

the frame types – I, B or P) that can be used in a similar manner to estimate their pro-

cessing workload. As a result, DVS algorithms designed for video decoding mostly

rely on history-based mechanisms, where the workload of a frame is predicted from the

workloads of the previously-rendered frames.

54

4.1 Introduction

Although DVS algorithms have been extensively applied to video encoding/decoding

applications (which have almost attained the status of thedining philosophers problem

in this domain) [38, 55, 56], their use in graphics-intensive games has not been suffi-

ciently explored so far. We initiate a study of this problem in [23] and observe that game

applications exhibit sufficient variability in their workload to meaningfully exploit DVS

schemes for power savings. Moreover, they offer the possibility of developing DVS al-

gorithms that better exploit the characteristics of game applications (compared to those

that have been developed for video decoding).

One can envisage partitioning a game play into multiplescenarios. Each scenario

can then be associated with a different power management policy – or in the simplest

case a fixed operating frequency level. However, our experiments suggest that it is

not possible to distinguish between workload variations across different scenarios, es-

pecially with reasonably simple scenario definitions (e.g. rooms). Figure 4.1 shows

the workload variation when a scenario is defined as a room. The segment from 5000

to 65000 millisecond demonstrates the workload distribution when the player was in

Room 1. The player kept changing his directions to face the different objects within this

room, thereby, the workload varies from 14 to 29 million cycles per frame. The player

moved fromRoom 1and passed a short passage before he enteredRoom 2. While the

segment from 75000 to 135000 millisecond illustrates the workload variation for a dif-

ferentRoom 2. Note that the game workload generated inRoom 2varies from 14 to 28

million cycles. The workload variations fromRoom 1andRoom 2exhibit considerable

similarity. One could also define a scenario as a room viewed from a certain direction.

However, we observe that even with such scenario definitions, it is still infeasible to

55

10

15

20

25

30

35

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Room 1 Room 2

Figure 4.1: Workload in different game scenarios exhibits considerable similarity.

Estimate frame workload using

frame structure information

Use estimate as input to

voltage/frequency scaling logic

Render frame

p
ro

cess n
ex

t fra
m

e

Compute frame

Figure 4.2: DVS in a game loop.

distinguish them by their workload variations. In fact, we observe that game scenario

is constituted of multiple objects. More specifically, game frames are more ”struc-

tured” than video frames (which only contain the I, B, or P frame-type information).

The workload associated with processing a game frame depends on the contents of the

frame, or the constituentobjects, which can be easily determined by parsing the frame.

Similar conclusions were also arrived at in [36, 37] for workload characterization of a

3D graphics processing pipeline.

Hence, in this chapter, we propose a workload prediction and DVS scheme by ex-

ploiting such frame structure. Instead of predicting the workload associated with pro-

56

cessing a game frame from the history of previously-processed frames – as done with

video decoding applications – we estimate this workload byparsing the game frame.

The main novelty of our scheme stems from the observation that game frames offer a

rich variety ofstructural information which can be used to predict their workload or

processor cycle requirements.

An overview of this scheme is shown in Figure 4.2. The ”voltage/frequency scal-

ing logic” is used to decide whether the voltage/frequency of the processor is to be

changed from its current level based on the workload estimation. Since scaling the

voltage/frequency of a processor involves a certain overhead – which depends on the

processor’s architecture as well as the underlying operating system – it might not be

meaningful to switch the voltage and frequency in response to every workload change.

This is explained in further detail later in Section 6.1. It may be noted that this scheme of

parsing a frame to estimate its processing workload cannot be applied to video frames,

which offer no structural information beyond the frame type (i.e. I, B or P).

The rest of this chapter is organized as follows. In the next section we give a brief

overview of game workload and game maps. In Section 4.3, we introduce our frame-

work of game workload characterization, followed by our workload prediction scheme

using frame structures in Section 4.4. We summarize this chapter in Section 4.5.

4.2 Preliminaries

In this section, we introduce the corresponding processing workload for the important

steps in a game engine (shown in Figure 1.1) and game ”assets” – game maps.

57

Game
workload

Computational
workload

Rendering
workload

Other
workload

Rasterization
workload

Scene complexity

Figure 4.3: Corresponding workload associated with steps in processing a game frame.

4.2.1 Game Workload

As mentioned in Section 1.1, a game engine is designed to sequentially execute the

computing and rendering tasks. For each frame, the engine polls the user’s input and

passes it over to the computing subsystems responsible for collision detection, AI, par-

ticle simulation etc. These subsystems compute new locations and appearances of the

visible objects based on the user input. We refer to the resulting workload as thecom-

putation workload. The results of these computations are passed to the rendering task,

which renders all the visible objects in the current frame and displays them on the

screen. A significant component of this rendering task involvesrasterizingobjects on

the screen. From this point on, we are primarily concerned with this rasterization com-

ponent of the rendering task. Henceforth, we define the workload resulting from the

rasterization task as therasterization workload. Figure 4.3 illustrates the workload to-

wards different tasks in a frame. As most of available mobile devices (e.g. low-end

laptops, PDAs) do not support hardware accelerators, all tasks – including geometry

processing, rasterization and texture processing – are performed on the CPU.

As observed, the total processing workload has a clear correspondence with the

58

complexity of game scene. Moreover, we notice that the rasterization workload of a

frame clearly has a direct correspondence with theobjectsthat are contained in the

frame. In other words, it depends on the ”complexity” of the scene to be rendered.

4.2.2 Game Maps

Before proceeding further, we will need to understand what agame map(also referred

to as alevel) is. The storyline of a game can be considered to progress from one location

(or level) to the next, where each of these locations is represented using a game map.

Examples of game maps might be cities, buildings, rooms and corridors. Intuitively,

a game map may be considered to be a data structure which stores all the objects and

characters in the scenario represented by the map. Snapshots of three different game

maps from Quake II, calledOuter Base, InstallationandCommand Centerare shown

in Figures 4.4(a), 4.4(b) and 4.4(c) respectively. The game mapInstallation is used in

the default demo.

A commonly used data structure to represent a game map is a Binary Space Par-

tition (BSP) tree [50]. A BSP tree represents a recursive, hierarchical partitioning or

subdivision of space into convex subspaces. The BSP tree is constructed by partition-

ing a space using a hyperplane, with the resulting partitions being further partitioned by

recursively applying the same procedure. For each leaf in the BSP tree, a set of leaves

that arevisiblefrom this leaf are calculated and updated as the game is played. This set

is referred to as the Potentially Visible Set (PVS). In addition, the BSP tree also records

information related to texture and lighting. Both the computation and the rendering

steps in processing a game frame (Figure 1.1) involve traversing and manipulating the

BSP tree.

59

(a) Outer Base.

(b) Installation.

(c) Command Center.

Figure 4.4: Game maps.

60

In Quake-serial engines, a game map is divided into convex regions, forming the

leaves of the BSP tree. To render a game map, the BSP tree is traversed to determine the

leaf in which thecamerais located. Once this leaf is identified, the PVS associated with

this leaf lists the potentially visible leaves from this camera location1. The bounding

boxes of these leaves are then used to quicklycull leaves from the PVS that are not

within the viewing frustum. The remaining leaves are then passed to the subsequent

rendering tasks, which include matrix transformations on the data and the rasterizing of

a frame as 2D image onto the screen.

4.3 Workload Characterization

0.0

20.0

40.0

60.0

 0 10000 20000 30000 40000 50000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

Figure 4.5: Rasterization workload per frame.

0.0

20.0

40.0

60.0

 0 10000 20000 30000 40000 50000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

Figure 4.6: Total processing workload per frame.

1http://www.flipcode.com/articles/articleq2bsp.shtml”

61

0

10

20

30

40

50

 0 10 20 30 40 50

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Processor cycles (x106)
 Frame resolution = 1024x768 pixels

Figure 4.7: Linear correlation between rasterization and total processing workload of a
frame.

As mentioned in Section 4.2.1, both the rasterization workload and the total game

workload of a frame clearly have direct correspondences with theobjectsthat are con-

tained in the frame. Figure 4.5 and 4.6 show how these two workload changes with

time. Note that the fluctuations in the processor cycle demands in Figures 4.5 and 4.6

are highly correlated. Figure 4.7 shows the correlation between these two workloads,

with the horizontal axis denoting the rasterization workload. Further, our measurements

show that the rasterization workload constitutes approximately 75% of the total work-

load generated in processing a frame. From such observations, we believe that one can

predict the total processing workload to reasonable accuracy if one can estimate the

rasterization workload.

The rest of this section shows how the rasterization workload can be predicted. We

propose a workload characterization in which the workload associated with rasterizing

a frame depends on the constituting objects – which is specified asprimitives. Our

experimental results show that for Quake II, the types of primitives that predominately

contribute to this workload arebrush model, alias model, texture, light mapandparti-

cles.

62

4.3.1 Brush Model

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

 8.00

 200 400 600 800 1000 1200 1400

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of polygons
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

(a) Workload for a brush model versus the number of polygons constituting the
brush model (Game Map:Command Center).

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

 8.00

 200 400 600 800 1000 1200 1400

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of polygons
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

(b) Workload for a brush model versus the number of polygons constituting the
brush model (Game Maps:Outer BaseandInstallation).

Figure 4.8: Brush model.

Brush models are 3D convex solids composed of polygons. Brush models are used

to construct the geometry of a game map and they define the ”world space” in which

players can move around. The workload resulting from rasterizing a frame will depend

on thenumberof brush models in the frame and also thetypesof these models. We

therefore parameterize a brush model using the number ofpolygonsconstituting it. To

identify the workload involved in rasterizing a brush model with a specified number

of polygons, we collect the number of polygons constituting each brush model and the

number of processor cycles involved in rasterizing them.

Our results obtained from the replay of a demo using the game mapCommand

63

Centerare shown in Figure 4.4(c). Figure 4.8(a) shows that the number of processor

cycles required to rasterize a brush model increases almost linearly with the number of

polygons in it, which indicates that the rasterization workload of brush model can be

predicted based on the relationship with the number of constituting polygons. Let us

assume thatc(n) is the number of processor cycles requires to rasterize anyonebrush

model withn polygons. Thenc(n) is calculated by the above-mentioned correlation.

To compute the rasterization workload forall brush models in a frame, let us assume

thatB(n) is the number of brush models in this frame withn polygons. Then the total

rasterization workload for all the brush models in the frame is equal to
∑

n=1,...,∞ c(n)×

B(n) processor cycles (where∞ is the maximum possible number of polygons in any

brush model).

To see if the relationship between the rasterization workload and the number of

polygons in a brush model holds for different game maps, we repeat the experiments

using other game maps as well. Figure 4.8(b) shows the workload involved in rasteriz-

ing brush models with different number of polygons from two other game maps,Outer

BaseandInstallation(see Figures 4.4(a) and 4.4(b)). Note that the number of process-

ing cycles for each polygon is consistent across the three game maps and the workload

involved in rasterizing brush models also increases linearly with the number of polygons

for the latter two game maps. It is known that different game maps may include differ-

ent brush models, however, different brush models all consist of polygons. Therefore,

the rasterization workload of brush models in different game maps is totally determined

by the rasterization of constituting polygons. Our results confirm that the relationship

between the rasterization workload of brush models and the number of polygons holds

across different game maps. Thus, we can predict the rasterization workload of brush

64

models based on the relationship with the number of polygons from a different game

map.

4.3.2 Alias Model

0

2

4

6

8

 0 100000 200000 300000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

(a) Workload involved in rasterizing alias models for different values of pixels
(Game Map:Installation).

0

2

4

6

8

 0 100000 200000 300000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

(b) Workload involved in rasterizing alias models for different values of pixels
(Game Maps:Outer BaseandCommand Center).

Figure 4.9: Alias model.

Alias models are used to represent different entities in Quake II (such as monsters,

soldiers and weapons). Usually an alias model is composed oftriangles. Since the

rasterization of triangles is done on the CPU instead of a graphics hardware, the number

of pixelsconstituting each triangle affects the CPU workload.

We characterize the rasterization workload of an alias model by the total number

of pixels rendered. This number can be obtained by summing up the area of triangles

constituting an alias model. To compute the rasterization workload of alias models with

65

0

10000

20000

30000

40000

50000

60000

 0 1 2 3 4

P
ro

ce
ss

or
 c

yc
le

s

Number of alias models
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

Figure 4.10: Rasterization workload for alias models linearly scales to number of alias
models (Game Map:Installation).

different values of constituting pixels, we capture all models arising in different frames

along with their rasterization workloads.

Figure 4.9(a) shows the results for alias models with different pixels. This figure

shows that the rasterization workload of an alias model scales almost linearly with the

number of pixels. Similar to brush models, these results suggest that the rasterization

workload of alias models can be predicted based on its relationship with the number of

pixels of alias models.

It seems that these relationships are also consistent across game maps. Figure 4.9(b)

shows the workload involved in rasterizing alias models with different number of pixels

from two different game maps,Outer BaseandCommand Center. Note that the linear

relationships are consistent across the different game maps, which suggests that the ras-

terization workload of alias models can be predicted based on the relationship with the

number of pixels from a different game map. It can be explained that the rasterization

of constituting pixels determines the rasterization of alias models regardless of game

maps, although different game maps may contain different alias models.

From Figure 4.10, note that when multiple alias models with these pixels occurred

in a frame, their rasterization workload almost linearly scales with the number of alias

66

models. The same linear relationship also holds for alias models with different number

of pixels and for different game maps. This case is therefore similar to brush models

whose workload is parameterized using the number of polygons. The workload in-

volved in rasterizing all alias models in a frame can be therefore calculated from the

workloads of different alias models (i.e. models having different number of pixels) oc-

curring in the frame and multiplying them by the number of times a particular model

occurs.

4.3.3 Texture

10

15

20

 0 100

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of surfaces
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

(a) Rasterization workload for textures versus the number of surfaces constitut-
ing the textures (Game Map:Command Center).

10

15

20

25

30

35

40

 0 100 200 300 400

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of surfaces
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

(b) Rasterization workload for textures versus the number of surfaces constitut-
ing the textures (Game Maps:Outer BaseandInstallation).

Figure 4.11: Texture.

Textures are the 2D images applied to the face of brush models to give them the

appearance of real surfaces. For instance, concrete slabs, brick walls and metal plates.

67

Textures are typically composed of multiplesurfaces. We therefore characterize the

rasterization workload of textures in terms of the number of surfaces constituting them.

As in the case of brush models, we capture the textures arising from a sample

game play and plot their rasterization workload versus their number of surfaces in Fig-

ure 4.11(a). In this case we find that the rasterization workload increases almost linearly

with the number of surfaces in textures. This observation implies that the rasterization

workload of textures could be predicted from the number of constituting surfaces.

Again, Figure 4.11(b) shows the rasterization workload of textures against the num-

ber of surfaces in two different game maps,Outer BaseandInstallation. Note that the

correlations are consistent across different game maps. This implies that the correlation

from a game map could be applied to predict the rasterization workload of textures in a

different game map.

4.3.4 Light Map

Light maps are used to store pre-calculated lighting information for different scenes in

a game. Static light maps in Quake II are low resolution bitmaps which are rendered

as multiplesurfaces. Hence, the workload involved in rasterizing light maps is already

included in the workload resulting from rasterizing textures. Therefore it need not be

accounted for separately.

4.3.5 Particles

Particles are often used to model small debris resulting from gun shots hitting a tar-

get. They are usually generated as a set of 3Dpoints. Thus, the number ofpixelsof

the points is used to parameterize the rasterization workload of particles. This work-

68

0.0

0.1

0.1

0.2

0.2

 0 500 1000 1500 2000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

(a) Rasterization workload for particles versus the number of pixels (Game
Map: Command Center).

0

1

1

2

2

 0 5000 10000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels
 Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

(b) Rasterization workload for particles versus the number of pixels (Game
Maps:Outer BaseandInstallation).

Figure 4.12: Particles.

load scales almost linearly with the number of pixels as shown in Figure 4.12(a), and

the scaling factor again remains consistent across game maps (Outer BaseandInstal-

lation), as shown in Figure 4.12(b). These observations imply that the rasterization

workload of particles could be predicted by the number of constituting pixels. The cor-

relation between the rasterization workload and the number of pixels of particles could

be applied across the different game maps.

The contributions of the abovementioned five types of primitives to the rasterization

workload are summarized in Figure 4.13 (the workload resulting from light maps is not

shows for reasons already described). Rasterizing textures and light maps is clearly the

most computational expensive. Lastly, note that apart from these five primitives,sprite

69

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

Brush
model

Alias
model

Texture Particles Sprite
model

P
er

ce
nt

ag
e

(%
)

Processor frequency = 1400 MHz, Frame resolution = 1024x768 pixels

11 23 65 1 0.01

Figure 4.13: Contributions of the different objects in a frame towards the rasterization
workload.

modelsare also responsible for a small fraction (almost negligible) of the rasterization

workload. These models are often used to represent dust particles or special effects like

sparkles.

4.3.6 Correlation Functions

While computing, or rather predicting, the rasterization workload of the different prim-

itives constituting a frame, several correlations between the rasterization workload of

each type of primitives and their detailed constitution need to be computed. We observe

that a (nearly) linear correlation for most of the primitives such as brush model, alias

model, texture and particles, as shown in Figure 4.14, where the workload increases

along with the detailed constitution of each type of primitives.

We generate the correlation coefficients withlinear regression modelsin Matlab

fitting toolkit 2. Table 4.1 summarizes the coefficients of each linear functionf(x) =

x · p1 + p2 for brush model, alias model, texture, particles and game frame, where

x is the detailed constitution andf(x) is the corresponding workload in processing

cycles,p1 and p2 are two coefficients of the linear function. In the proposed DVS

scheme by exploiting frame structure, the acquired function coefficients are employed

2http://www.mathworks.com/access/helpdesk/help/toolbox/curvefit/

70

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0 500 1000 1500

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of polygons
 Frame resolution = 1024x768 pixels

(a) Rasterization workload correlates with number of polygons of brush model.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0 100000 200000 300000 400000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels
 Frame resolution = 1024x768 pixels

(b) Rasterization workload correlates with number of pixels of alias model.

10.0

15.0

20.0

25.0

30.0

35.0

40.0

 0 100 200 300 400 500

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of surfaces
 Frame resolution = 1024x768 pixels

(c) Rasterization workload correlates with number of surfaces of texture.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0 5000 10000 15000 20000 25000 30000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels
 Frame resolution = 1024x768 pixels

(d) Rasterization workload correlates with number of pixels of particles.

Figure 4.14: Linear correlations of individual primitives - brush model, alias model,
texture and particles.

71

to compute the corresponding workload once the detailed constitution of each primitive

is obtained. Furthermore, the correlation functions generated from one game map could

be extended to compute the corresponding workload in other game maps, on account of

consistently-consumed workload for detailed constitution of each type of primitives, as

aforementioned.

p1 p2

Brush model 2763 5.887× 104

Alias model 28.78 1.507× 105

Texture 5.848× 104 1.157× 107

Particles 60.2 1.136× 104

Game frame 1.024 4.714× 106

Table 4.1: Coefficients in the linear functions for Quake II (demo file: crusher.dm2).

4.4 Workload Prediction

In this section we describe the frame structure-based workload prediction scheme that

forms the basis of our DVS algorithm. It may be noted that a significant component of

the rendering task involvesrasterizingobjects on the screen. Our experimental results

suggest that the total workload generated from processing a frame is almost linearly

correlated with its rasterization workload, as shown in Figure 4.7. Hence, we predict

the total workload by estimating the rasterization workload of a frame.

4.4.1 Exploiting the Frame Structure

Figure 4.15 shows an overview of the proposed frame structure-based workload predic-

tion scheme. Note that it primarily consists of estimating the rasterization workload for

each frame. Towards this, we compute the number of occurrences of the different prim-

itives in a frame (e.g. brush models, alias models and particles) and multiply these with

72

the workload involved in processing each of these primitives. This is possible because,

once again, the workload involved in processing all primitives of the same type almost

linearly scales with the number of primitives occurring in the frame. The workload cor-

responding to a single primitive of any given type is computed in an offline fashion. We

have experimentally verified this (nearly) linear correlation for most of the primitives

such as brush models, alias models, textures and particles. It may also be noted that the

workload corresponding to each of these primitives exhibits sufficient short-term vari-

ability, as shown in Figure 4.16. Hence, our proposed scheme performs significantly

better than history-based predictors even if they are applied individually to the different

primitive-types. In what follows, we describe our rasterization workload estimation in

further details.

For each frame, once the currentview frustumis computed based on the user input,

the number of occurrences of the different primitives in the frame is estimated (e.g. the

number of brush models, alias models, etc.). Further, for each of these primitives, its

detailed constitution is also computed. For each brush model, this amounts to comput-

ing its number of constituent polygons. For each alias model it amounts to computing

its number of pixels, for each texture model its number of surfaces, and for each par-

ticle its number of pixels. Based on offline simulation, the workload associated with

each of the different primitives is parameterized by their constitution as elaborated in

Section 4.3.6. For example, these correlations include the workload associated with

processing an alias model withm pixels for different values ofm. Let us assume that

c(m) is the number of processor cycles requires to rasterize anyonealias model with

m polygons. Thenc(m) is calculated by the above-mentioned correlation. To compute

the rasterization workload forall alias models in a frame, let us assume thatB(m) is

73

the number of alias models in this frame withm pixels. Then the total rasterization

workload for all the alias models in the frame is equal to
∑

m=1,...,∞ c(m)×B(m) pro-

cessor cycles (where∞ is the maximum possible number of pixels in any alias model).

This procedure is followed for all the different primitives, with the exception of texture

models (which is explained below).

The abovementioned estimation process clearly has a computational overhead, which

turns out to be prohibitive in the case of textures. Textures are drawn on brush models

and hence their number of constituent surfaces cannot be determined unless the associ-

ated brush models are rasterized. However, rasterizing brush models solely for work-

load estimation purposes is prohibitively expensive. Hence, as shown in Figure 4.15,

the workload associated with rasterizing texture models in a frame is estimated using

a history-based prediction scheme. Although this is not as accurate as frame structure-

based predictions, this loss of accuracy is unavoidable. However, using frame structure-

based estimation, at least for the other primitives like brush models, alias models and

particles, reduces the overall error compared to using history-based predictors for all

the primitives. Further, this mix of two different estimation schemes results in a good

tradeoff between prediction accuracy and computational overhead.

4.5 Summary

In this chapter we proposed the frame structure-based DVS scheme targeted towards

graphics-intensive game applications. Using the proposed framework of workload char-

acterization, the rasterization workload of a frame is computed as the sum of the raster-

ization workload of its constituent primitives. The computed workload is then appro-

74

priately scaled topredict the total processing workload of the frame, which is used to

adjust the processor’s voltage and frequency.

We implemented our scheme on a Intel Pentium based laptop running Windows XP

and a Intel XScale PDA running Window Mobile. Chapter 6 shows the attractive re-

sults in energy saving and output quality, compared to known DVS algorithm that were

developed for video decoding applications.

Further, we explore the possibilities of designing hybrid workload predictors that

combine the PID controller-based (which has lower prediction overhead) and the pro-

posed frame structure-based predictors in the following chapter.

75

compute required processor frequency from target frame

rate and predicted frame workload

game loop

render frame

for each workload primitive

compute its number of

occurrences

brush model,

alias model,

particles

predict rasterization

workload of texture using

history-based prediction

texture

estimate total frame workload by using correlation between

rasterization workload and total workload

compute rasterization workload

by multiplying #occurrences with

workload of single primitive

total rasterization workload

= sum of rasterization workloads of different primitives

fr
a
m

e
w

o
rk

lo
a
d

 p
re

d
ic

ti
o
n

p
ro

ce
ss

 n
ex

t
fr

a
m

e

scale processor's voltage and frequency

v
o
lt

a
g
e/

fr
eq

u
en

cy

sc
a
li

n
g

setup transformation for rendering

poll player's message

compute visible objects

game loop

Figure 4.15: Overview of the frame structure based workload prediction scheme.

76

0.5

1.0

1.5

2.0

2.5

 88000 89000 90000 91000 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

(a) Workload of brush model.

0

5

10

15

20

25

 88000 89000 90000 91000 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

(b) Workload of alias model.

5

10

15

20

25

 88000 89000 90000 91000 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels
(c) Workload of texture.

0.0

0.2

0.4

0.6

0.8

 88000 89000 90000 91000 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels
(d) Workload of particles.

Figure 4.16: Rasterization workload variations for individual primitives – brush model,
alias model, texture and particles.

77

Chapter 5
A Hybrid DVS Scheme

In this chapter, we propose a novel DVS scheme based on an accurate prediction of

the rendering workload of a current game scene. Based on the observation that there

exist two types of workload variations in First Person Shooter games such as Quake II,

we compute the voltage/frequency setting for any game scene using a hybrid combina-

tion of two different techniques: (i) adjusting the workload prediction using a control-

theoretical feedback mechanism, and (ii) analyzing the graphical objects in the current

game scene by parsing the corresponding frame. In our experiments, we obtain signifi-

cant power savings while maintaining high frame rates.

5.1 Introduction

A game application, similar to a video decoder, runs in an infinite loop and processes

a sequence of game frames that have to be rendered and displayed on the screen. Our

proposed DVS algorithm for such applications is integrated into this game loop. The

critical step is to accurately predict the workload of a frame, which is followed by a

”voltage/frequency scaling logic” (that we describe in more detail later in this paper).

78

Estimate frame workload

by a hybrid scheme

Use estimate as input to

voltage/frequency scaling logic

Render frame

p
ro

cess n
ex

t fra
m

e

Compute frame

Figure 5.1: DVS in a game loop.

An overview of this DVS algorithm is shown in Figure 5.1.

As introduced in Chapter 4, we develop the frame structure-based DVS algorithm in

which each game frame is parsed to identify its constituent objects, based on which the

workload associated with rendering the frame is estimated. This estimate, along with

the target frame rate is used to determine the frequency (and voltage) of the processor

running the game application.

Note that although ourframe structure-based predictionworks well (and outper-

forms control-theoretic prediction schemes) for game plays where the frame workload

exhibits sufficient variability, often there are sequences of frames with relatively con-

stant rendering workload. For such frames, control-theoretic prediction schemes happen

to perform better. To take advantage of both these schemes, in this chapter we propose

a hybrid workload prediction scheme, where we keep on switching between the two

schemes based on their relative performance.

In the hybrid workload prediction scheme, the workload associated with rendering

a game frame is roughly the sum of the workloads generated by processing the dif-

79

ferent objects (e.g.brush models, alias models, etc.) constituting the frame. Each of

these workload components is estimated separately and then summed up to compute

the processing workload of a frame. Whenever the estimation error for any object type

is beyond a certain level, the scheme switches to a different prediction mode for that

object type. In other words, our hybrid scheme is applied at anobjectlevel rather than

at the frame level. Naturally, this leads to a more accurate workload prediction (albeit at

the cost of slightly higher computational overhead) compared to applying this scheme

at the frame level.

An illustrative example: Figure 5.2 shows the workload variation for theparticles

object type in an excerpt from a game play, and the corresponding run of our workload

prediction scheme. The horizontal axis shows the time stamp of game frame in millisec-

ond. The workload is measured in terms of number of processor cycles. Note that the

first switch from the control-theoretic scheme to the frame structure-based prediction

scheme occurs at 92142 millisecond, when the real frame workload exhibits a signif-

icant increase from a flat profile. Once the profile again becomes relatively flat from

92585 millisecond, the relative performance of the frame structure-based scheme de-

grades and the scheme switches back to the control-theoretic scheme. The final change

from the control-theoretic to the frame structure-based scheme (at 92765 millisecond)

again occurs when the workload profile shows a relatively large dip. In summary, this

scheme keeps on switching between the two workload prediction schemes based on

their relative prediction errors. For a relatively flat workload profile, as seen in Fig-

ure 5.2, the prediction accuracy of the control-theoretic scheme dominates. Whenever

the workload profile exhibits a significant variation, the frame structure-based predic-

tion scheme takes over.

80

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 91950 92100 92250 92400 92550 92700 92850

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

PID
controller

Frame
structure

PID
controller

Frame
structure

Real
Predicted

Figure 5.2: Sample run of the hybrid scheme.

The rest of this chapter is organized as follows. In Section 5.2 we describe our hy-

brid workload prediction scheme, followed by an optimal control method in the hybrid

workload prediction in Section 5.3. Section 5.4 briefly explains other possible hybrid

schemes, apart from our hybrid workload prediction scheme in the thesis. We evaluate

the performance of our hybrid DVS scheme in Section 5.5 and finally we conclude in

Section 5.6.

5.2 Workload Prediction

In this section, we present our hybrid frame workload prediction which combines the

two techniques described in Chapter 3 and 4, i.e. (i) adjusting the workload prediction

using a control-theoretic feedback mechanism (viz. PID controller), and (ii) analyzing

the graphical objects in the current game scene by parsing the corresponding frame (viz.

the frame structure scheme).

5.2.1 Workload Variation

As we already discussed, game workload exhibits a large degree of variability. We have

experimented with various game plays and workload prediction schemes. In particular,

81

15

20

25

30

35

 105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.3: Workload prediction using a history-based predictor for a frame sequence
with relatively low workload variability.

15

20

25

30

35

 105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.4: Workload prediction using a PID controller-based predictor for a frame
sequence with relatively low workload variability.

we have investigated three different prediction schemes: (i) history-based predictors,

where the workload of a game frame is estimated to be the average of the workloads of

a certain number of previous frames, (ii) PID controller-based predictors (as described

in Chapter 3), and (iii) frame structure-based predictors (as described in Chapter 4). Our

results show that for frame sequences which exhibit relatively low workload variation,

the first two schemes outperform (iii). However, there also exists frame sequences with

high workload variability, and for such sequences a frame structure-based predictor is

certainly better. In fact, this observation is the main motivation behind devising a hybrid

workload prediction scheme.

Figure 5.3, 5.4 and 5.5 show comparisons of the three abovementioned schemes for

a sequence of game frames with relatively low variability respectively. Clearly, the PID

82

15

20

25

30

35

 105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.5: Workload prediction using a frame structure-based predictor for a frame
sequence with relatively low workload variability.

15

20

25

30

35

 105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.6: Workload prediction using a history + frame structure-based predictor for a
frame sequence with relatively low workload variability.

15

20

25

30

35

 105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.7: Workload prediction using a PID controller + frame structure-based hybrid
predictor for a frame sequence with relatively low workload variability.

83

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.8: Workload prediction using a history-based predictor for a frame sequence
exhibiting high workload variability.

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.9: Workload prediction using a PID controller-based predictor for a frame
sequence exhibiting high workload variability.

controller-based prediction scheme outperforms the other two, with the frame structure-

based predictor giving the worst result. Figure 5.6 and 5.7 show the performance of

two hybrid predictors, which are explained in the followings. Obviously, the two hybrid

schemes outperform the history-based, the PID controller and the frame structure-based

schemes for the sequence of frames with low variability.

Figure 5.8, 5.9 and 5.10 show the same comparisons of the history, PID controller,

and frame structure-based predictors for a sequence of frames exhibiting a high vari-

ability in their workload. It is easy to see that for this sequence of frames, the frame

structure-based predictor outperforms the first two. Figures 5.11 and 5.12 show the

performance of two hybrid predictors, which perform even better.

To be more specific, Figure 5.13, 5.14 and 5.15 show the respective prediction

84

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.10: Workload prediction using a frame structure-based predictor for a frame
sequence exhibiting high workload variability.

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.11: Workload prediction using a history + frame structure-based hybrid pre-
dictor for a frame sequence exhibiting high workload variability.

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.12: Workload prediction using a PID controller + frame structure-based hybrid
predictor for a frame sequence exhibiting high workload variability.

85

0

1

2

3

4

5

88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.13: Workload prediction using a PID controller + frame structure-based hybrid
predictor for brush models.

0

5

10

15

20

25

88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.14: Workload prediction using a PID controller + frame structure-based hybrid
predictor for alias models.

for brush models, alias models and particles with the hybrid scheme by combining the

PID controller-based and the frame structure-based techniques. Taking particles as an

example, we compare the prediction results with the history and the frame structure-

based prediction schemes (as shown in Figures 5.16 and 5.17), the proposed hybrid

scheme provides much better prediction for particles in Figure 5.15.

We describe the details of these two predictors in the following sections. Fig-

ure 5.18 summarizes the above observations. It shows how the relative prediction errors

of the different predictors change as the workload variability of a sequence of frames

increases. When the frame workload approaches to a relatively high variability, any pre-

dictors appeal to relatively larger workload prediction errors than their errors when the

frame workload exhibiting relatively low variability. Further, in the case of frame work-

86

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.15: Workload prediction using a PID controller + frame structure-based hybrid
predictor for particles.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.16: Workload prediction using a history-based predictor for particles.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.17: Workload prediction using a frame structure-based predictor for particles.

87

load with a high variability, usually the frame structure-based predictor generates less

prediction error than the history/PID controller-based predictor. In contrast, in the case

of frame workload with a low variability, the history/PID controller-based predictor has

less prediction error than the frame structure-based predictor.

Frame structure

History/PID controller

Frame structure

History/PID controller

P
re

d
ic

ti
o

n
 e

rr
o

r

Workload variation

Figure 5.18: Workload prediction error versus variability.

5.2.2 Prediction Mode Switching

Figure 5.19 shows an overview of our proposed hybrid workload prediction scheme. As

mentioned before, the total workload involved in processing a frame is made up of the

sum of the rasterization workloads of the different primitives that constitute the frame

and the workload associated with tasks such as collision detection, AI, simulation of

game physics and particle systems. Our prediction scheme estimates the rasterization

workload and scales it appropriately to obtain the total frame workload (which is almost

linearly proportional to the rasterization workload; see Section 4.4). Figure 5.19 shows

the workload estimation scheme for a single primitive type (e.g. brush models). The

same scheme is followed for other types of primitives (e.g. alias models, particles),

with the exception of textures. As explained in Section 4.4, the number of constituent

88

surfaces of textures cannot be determined unless the associated brush models are ras-

terized. Hence, the estimation process by exploiting the frame structure turns out to

be prohibitive in the case of textures. In order to reduce the estimation overhead of

textures, we avoid repetitively rasterizing associated brush models by using a history-

based prediction scheme. Such mix of two different estimation schemes results in a

good tradeoff between prediction accuracy and computational overhead.

estimate frame workload by parsing

frame (frame structure scheme)

estimate frame workload based

on PID controller (PID scheme)

use estimation for processor

voltage/frequency scaling logic

compute estimation error

of frame structure scheme

compute estimation error of

PID scheme

compute estimation error

& update error threshold

re
ta

in
 p

re
v
io

u
s

es
ti

m
a
ti

o
n

 s
ch

em
e

switch workload

estimation scheme

reta
in

 p
rev

io
u

s

estim
a
tio

n
 sch

em
e

p
ro

cess n
ex

t fra
m

e

p
ro

ce
ss

 n
ex

t
fr

a
m

e

render frame

frame structure

scheme ?

error > threshold ?
error of frame

structure scheme >

error of PID

scheme ?

YES

workload

estimation for

other primitives

YES YES

Figure 5.19: Overview of the hybrid DVS algorithm.

In what follows, we describe how to switch between the two prediction schemes

(viz. the PID controller-based scheme and the frame structure-based scheme). First,

it should be noted that when the frame structure-based scheme is in use, the PID

controller-based scheme is also kept active, but its estimation result is not used for

89

voltage/frequency scaling. This incurs a certain (negligible) computational overhead.

However, when the PID controller-based scheme is in use, the frame structure-based

predictor is switched off because it is computationally expensive. If the workload of

the last frame is estimated using the frame structure-based predictor, then our proposed

algorithm computes twoprediction errors; one incurred by the frame structure-based

predictor and the other incurred by the PID controller. If the former error is larger than

the latter then a prediction mode switch is enabled (i.e. the scheme switches to the PID

controller-based predictor), otherwise the same predictor is retained.

On the other hand, if the PID controller is currently in use, the mode switching

decision is based on whether the prediction error for the last frame is greater than

a certainthreshold error. However, this threshold error is not statically predefined,

but is constantly computed (or updated) at runtime. This threshold error depends on

the frames whose workload was last predicted using the frame structure-based pre-

dictor. Let these be theα-th to theβ-th frames. In other words,α andβ are such

that the workload of the(α − 1)-th and(β + 1)-th frames were predicted using the

PID controller-based predictor, and the workload of theα-th to theβ-th frames were

predicted using the frame structure-based predictor. Thethreshold erroris equal to

min(
Pβ

i=α εi,o

β−α+1
,
Pβ

i=α εi,c

β−α+1
) + τ |

Pβ
i=α (εi,o−εi,c)

β−α+1
|, whereεi,o andεi,c denote the prediction er-

rors of thei-th frame as incurred by the frame structure-based and the PID controller-

based schemes respectively. The value of0 < τ ≤ 1 has to be appropriately chosen.

With the PID controller currently in use, if the prediction error of a frame exceeds the

threshold error, then a mode switch is enabled.

Once again, note that this scheme is individually applied to all the different prim-

itives constituting a frame, except for textures, whose workload is always estimated

90

using a PID controller-based scheme. The total estimated workload of a frame, along

with the desired frame rate is used to compute the target processor frequency, which

is then mapped onto a discrete voltage/frequency level that is supported by the proces-

sor. In summary, our hybrid predictor switches between two prediction schemes based

on their relative performance. Finally, it may be noted that the PID controller-based

predictor may be replaced by a simple history-based predictor (that is described in Sec-

tion 5.2.1) with everything else remaining the same. This would result in a history +

frame structure-based hybrid predictor.

5.3 Optimal PID Controller

As discussed above, the PID controller-based mode is evoked for frame workload with

a relatively low degree of variability. Notice that even in this mode, it is possible to

categorize the frames into different groups based on their workload variation (measured

by the standard deviation). In our experiments, whenever the workload prediction is

switched to the PID controller-based mode, we compute the standard deviations of real

workload in previous certain frames for each type of primitives. Their workload is

compared with thestandard deviation thresholdsand categorized into eithermedium

workload variation orflat workload variation.

Notice that the same process is individually executed for each type of primitives ex-

cept for textures, i.e., brush models, alias models and particles. For different categories

of workload variation, different sets of the proportional, integral and derivative param-

eters are adaptively applied to the predictor. The total estimated workload of a frame,

along with the desired frame rate is used to compute the target processor frequency,

which is then mapped onto a discrete voltage/frequency level that is supported by the

processor.

91

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

26600 26800 27000 27200 27400

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Frame
structure

PID Frame
structure

Medium Flat Medium Flat

Real
Predicted

Figure 5.20: Workload transition for alias models in the optimal PID controller.

An illustrative example: Figure 5.20 shows the workload variation for thealias mod-

els in an excerpt from a game play, and the corresponding run of the optimal PID

controller in the hybrid workload prediction scheme. The horizontal axis shows the

time stamp of game frame in millisecond. The workload is measured in terms of num-

ber of processor cycles. Note that the hybrid prediction first switches from the frame

structure-based to the PID controller-based scheme, when the real frame workload ex-

hibits a decrease in variation from a fluctuant profile (at 26592 millisecond). Once the

profile again becomes relatively fluctuant from 27237 millisecond to the end, the rela-

tive performance of the PID controller-based scheme degrades and the scheme switches

back to the frame structure-based scheme.

Within the first phase with the PID controller-based scheme, we further differen-

tiate the frames into different workload variations which are indicated by eitherflat

or medium, according to their standard deviations. From 26592 to 26675 millisecond

and from 26982 to 27058 millisecond, the frame workload exhibits medium variation.

While from 26702 to 26945 and from 27108 to 27190 millisecond, the frame workload

exhibits flat variation as shown.

92

Flat variation (×106 cycles) Medium variation (×106 cy-
cles)

Brush
model

[0, 0.1) [0.1, 0.3)

Alias model [0, 0.5) [0.5, 0.8)
Particles [0, 0.02) [0.02, 0.07)

Table 5.1: Standard deviation thresholds for different groups of workload variations.

5.3.1 Parameters

Table 5.1 shows the specified standard deviation thresholds offlat andmediumworkload

variations for brush models, alias models and particles. For brush models, the workload

with standard deviation below 0.1 million cycles is defined asflat and from 0.1 up to

0.3 million cycles is defined asmedium. For alias models, the workload with standard

deviation below 0.5 million cycles is defined asflat and from 0.5 up to 0.8 million cycles

is defined asmedium. While for particles, the workload with standard deviation below

0.02 million cycles is defined asflat and from 0.02 up to 0.07 million cycles is defined

asmedium.

In order to obtain the optimal parameters of PID controller predictors for the speci-

fied mediumandflat workload, we segment the long demo file and conduct the predic-

tion process for each segment. It is found that for a sequence of frames withmedium

workload variation, the values ofKp = 0.5, I = 28 and0.00001 work well. For a

sequence of frames withflat workload variation, the values change toKp = 0.3, I = 28

and0.01, by giving a less sensitive PID controller.

5.3.2 Results

Figure 5.21 shows the comparison of workload prediction by using an optimal PID

controller + frame structure-based hybrid predictor for a 4-second demo file. Note that

93

the prediction with optimal PID controller in the hybrid scheme (Figure 5.21) does

not improve the result too much, compared with the hybrid without optimal controller

(Figure 5.12), as the workload shown in Figure 5.21 is rather fluctuant so that there are

few frames in PID controller mode.

15

20

25

30

35

40

45

88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.21: Workload prediction using an optimal PID controller + frame structure-
based hybrid predictor for a frame sequence exhibiting high workload variability.

In the case when there are more frames with a relative low workload variability, i.e.

as shown in Figure 5.22, the optimal PID controller in the hybrid prediction scheme

improves the prediction, compared with the result in Figure 5.7.

15

20

25

30

35

105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

Figure 5.22: Workload prediction using an optimal PID controller + frame structure-
based hybrid predictor for a frame sequence with relatively low workload variability.

94

5.4 Discussion

In order to apply the optimal PID controller for each type of primitive objects, the

differentiation of workload variation is conducted based on the historical standard de-

viation, which does not capture the variation very well. In our experiments, we notice

that the impacts of different sets of PID parameters on each type of primitive objects

are not as noticeable as their impacts on total frame workload (as shown in Chapter 3),

as each type of objects contributes to part of the total workload. Although such optimal

PID controller provides better results for the frames with a low workload variability,

the 3D First Person Shooter games usually generate rather fluctuant workload. There-

fore, with such concerns and observations, in our following experiments, we keep using

the original hybrid scheme by combining the frame structure-based and the static PID

controller-based techniques.

As discussed so far, in our work, we apply the hybrid scheme to each type of primi-

tive objects. In other words, either the frame structure-based or the PID controller-based

mode is applied to each type of objects respectively, based on its relative prediction er-

ror. However, as shown in Figure 5.7 and Figure 5.12, the total workload of game frame

exhibits a large degree of variability. Instead of applying such sophisticated hybrid DVS

scheme to each type of objects, it is possible to take the game frame as a whole and ap-

ply either the frame structure-based or the PID controller-based mode to the entire game

frame, without explicitly taking into account of the workload variation of each type of

objects. In such hybrid scheme, the prediction overhead in the frame structure-based

mode will not be reduced, since this scheme still obtains the occurrences of each repre-

sentative objects in the game frame as usual.

95

5.5 Prediction Accuracy and Overheads

In this section, we compare the performance of the following predictors in terms of the

overhead incurred and the prediction accuracy.

• History : The history-based predictor that estimates the workload of a frame

by averaging the actual workload of a certain number of previously processed

frames. Letωi be actual workload of framei, then the estimated workload of

framei+1 by the history-based predictor is defined asω̄i+1 =
Pi

k=i−l+1 ωk

l
, where

l is the number of previous frames.

• PID controller : The PID controller-based predictor described in Chapter 3.

• Frame structure : The frame structure-based predictor described in Chap-

ter 4.

• Hybrid(history) : The hybrid predictor that switches betweenHistory

andFrame structure predictors.

• Hybrid(control) : The hybrid predictor that switches betweenPID controller

andFrame structure predictors.

5.5.1 Prediction Overhead

As one would expect, bothHistory andPID controller incur negligible compu-

tational overheads. TheFrame structure workload predictor is computationally

more expensive and incurs, on an average, 1.7 million processor cycles per frame on a

laptop with an Intel Pentium Mobile processor running Windows XP. Note from Fig-

ure 5.8 that the workload generated by processing a frame varies between 15 to 45 mil-

96

lion cycles. Hence, the computational overhead incurred by the frame structure-based

predictor and its hybrid combinations is certainly within the feasible region.

5.5.2 Prediction Accuracy

Figure 5.8, 5.9, 5.10, 5.11 and 5.12 compare the different workload predictors against

the actual workload of a sequence of game frames. The excerpt shown in the figures is

generated from a 4 second demo file of Quake II (massive1.dm21) running on a laptop

with Windows XP. Each point in the figures corresponds to a frame and the horizontal

axis refers to the time stamp (in milliseconds) associated with each frame. The verti-

cal axis refers to the total processing workload of a frame in terms of the number of

processor cycles. It may be noted that the workload varies between 15 million cycles

to 45 million cycles per frame (and therefore offers the possibility of dynamic volt-

age/frequency scaling).

It it clear from this figure that our proposed hybrid schemes match the profile of the

actual frame workload more closely than the history, PID controller, or frame structure-

based predictors. To measure the incurred prediction error, we used two metrics: (i) the

absolute prediction errorwhich is defined as the absolute difference in processor cycles

between the actual and predicted workloads, and (ii) therelative prediction errorwhich

is defined as the ratio between the absolute prediction error and the actual workload.

Note that the errors in Figure 5.8 (i.e. using theHistory predictor) turn out to be 3.6

million cycles and 0.15 respectively. These errors drop to 1.2 million cycles and 0.05

respectively using our proposedHybrid(control) scheme (see Figure 5.12).

Figure 5.23 summarizes the absolute and relative prediction errors with different

1http://cure.gamepoint.net/files/massive1.zip

97

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.0

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

History
PID controller

Frame structure
Hybrid(history)
Hybrid(control)

(a) Absolute prediction errors.
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

R
at

io

History
PID controller

Frame structure
Hybrid(history)
Hybrid(control)

(b) Relative prediction errors.

Figure 5.23: Comparison of prediction errors with different predictors.

predictors on the laptop. Note that our proposedHybrid(control) predictor re-

sults in more than 60% improvement in prediction accuracy over a simple history-based

workload predictor.

Furthermore, our proposedHybrid(control) predictor consistently achieves

the best prediction even for a longer demo file (160 second), when compared with

History andFrame structure predictors. Figure 5.24 and 5.25 compare the

cumulative distribution of absolute and relative prediction errors using different predic-

tors. Note that in Figure 5.24, 90% frames withHybrid(control) have 2.7 million

cycles in absolute prediction error, while the absolute errors increase up to 5.5 and 4 mil-

lion cycles respectively for 90% frames withHistory andFrame structure pre-

dictors. Hence,Hybrid(control) provides much better prediction for the 160 sec-

ond demo file, compared withHistory andFrame structure . While History

and Frame structure have the comparable prediction errors, on account of the

exhibition of a large degree of variability in the long-duration game play.

98

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

R
at

io

Processor cycles (x106)

History
Frame structure
Hybrid(control)

Figure 5.24: Distribution of absolute prediction errors for a 160-second demo file.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0

R
at

io

Ratio

History
Frame structure
Hybrid(control)

Figure 5.25: Distribution of relative prediction errors for a 160-second demo file.

5.6 Summary

We observed that the frame workload exhibits a larger degree of variability in game

applications. Furthermore, we investigated that the frame structure-based DVS scheme

works better than the history-based DVS scheme for frames with relatively high work-

load variability, while the latter works better for frames with relatively low workload

variability. Such observations motivate the hybrid DVS scheme for game applications

in this chapter.

The proposed hybrid DVS scheme switches prediction between the frame structure-

based and the PID controller-based modes based on their relative performance, for each

type of workload primitives (i.e. brush model, alias model, particles). Our evaluation

shows that this hybrid DVS scheme achieves significant improvement in prediction ac-

curacy over the other predictors, for a 4-second and a 160-second demo file.

99

Chapter 6
Experimental Evaluation

In this chapter, we introduce our design accounting for several systems and hardware

issues, in the implementation of our DVS schemes on multiple real platforms. Next,

we evaluate the performance of our proposed DVS schemes on simulation and real

platforms. Our results show that the hybrid DVS schemes achieves significant improve-

ments in terms of game quality and power saving.

6.1 Implementation Issues

As discussed before, the predicted workload for each frame is fed into a voltage/frequency

scaling logic, which takes into account several hardware and systems issues to decide

the voltage/frequency level of a processor for a current frame. In this section, we de-

scribe the voltage/frequency logic in detail.

Most processors support a fixed number of discrete operating frequency (and as-

sociated voltage) levels. From predicted workload of a game frame and the target

frame/display rate, the optimum operating frequency of the processor may be calcu-

lated. This calculated frequency needs to be mapped onto the discrete frequency levels

100

available on the processor in a conservative manner. Further, since scaling a processor’s

voltage/frequency is associated with a certain overhead – which depends on the proces-

sor’s microarchitecture and the OS running on top of it – it might not be meaningful to

switch the clock frequency at every possible game frame or workload change. Below

we address these issues in detail.

6.1.1 Frequency Mapping

A number of previously-proposed algorithms for DVS have assumed the processors

were facilitated with fine-granularity frequencies (e.g. [32, 45]). Lu etc. evaluated

their system using real workload of video decoding applications on a Compaq iPAQ

with a StrongArm SA-1100 processor in [32]. They assumed the processor supported

32 discrete levels in their simulation and claimed that the quantizing frequency scaling

factors into discrete levels had a negligible effect on performance since the transition

time was small compared to frame decoding time (40 millisecond). In [45], the authors

modelled the frequency scaling of XScale processor as 320 steps and modelled that of

Transmeta processor as 32 steps.

However, most voltage/frequency-scalable processors only support a fixed number

of discrete frequency levels. Hence, we have assumed that only a fixed number of

frequency levels are available and the computed optimum frequency is mapped onto

the next available higher frequency level. Such a conservative mapping satisfies the

workload demands of the game application, at the cost of less than ideal energy savings.

However, we have also conducted simulations where we assumed that the processor’s

frequency is continuously scalable. In Chapter 6 we present a comparison of the energy

savings obtained with such ideal settings and where the frequency can only be set to

discrete levels.

101

6.1.2 Frequency Transition

As mentioned before, switching the frequency of a processor is associated with an over-

head which depends on the processor’s microarchitecture as well as the OS running on

top of it. Our experimental results suggest that for the same processor, this overhead

is higher in Windows XP compared to Linux. The average transition overhead in Win-

dows XP running on an Intel Pentium Mobile processor is 20 million cycles, i.e., the

overhead is 14 milliseconds with the operating frequency set to 1400 MHz.

Hence, to skip unnecessary frequency switches, we have used alazy transition

mechanism. Instead of immediately switching the processor frequency whenever the

predicted workload of a game frame changes, we defer the switch to the immediate

next frame. For instance, if the estimated quantized frequency (i.e. the computed fre-

quency mapped to the frequency level available on the processor) for the current framei

is different from the frequency associated with the previous framei−1, then the switch-

ing decision is deferred to the next frame (i.e. framei + 1). If the computed quantized

frequency of the(i + 1)-th frame is also different from the frequency of the(i − 1)-

th frame, then the frequency of the processor is changed to the frequency computed for

framei+1, otherwise the operating frequency is kept unchanged. Such alazyfrequency

scaling is resilient to frequent frequency adaptations which might be unnecessary and

expensive.

Note that we defer the frequency scaling decision by only one frame. Our experi-

mental results suggest that for our setup this provides satisfactory results. However, if

in a different setting, the switching overhead is even higher, then it might be meaning-

ful to defer the switching decision by multiple frames. Finally, note that we switch the

operating frequency of the processor with the assumption that the voltage is automati-

102

cally scaled accordingly (i.e. we do not explicitly control the operating voltage of the

processor).

6.2 Settings

We evaluate our proposed DVS scheme by integrating it with the Quake/Quake II game

engines running on a number of different platform settings: (i) on a laptop with an Intel

Pentium Mobile processor running Windows XP, (ii) on a PDA with an Intel XScale

processor running Window Mobile 5, (iii) using a discrete event simulator where the

processor has the same power consumption characteristics as in the laptop/PDA, but its

frequency transition overhead is assumed to be zero, and (iv) same as (iii) with the addi-

tional assumption that the processor’s frequency is continuously scalable. Settings (iii)

and (iv) are referred to assimu-disc(i.e. simulation with discrete frequency levels) and

simu-cont(simulation with continuous frequency levels) respectively. These two set-

tings represent ideal cases and the results obtained using them give an upper bound on

the energy savings that can be obtained using our scheme.

Our motivation behind using the Quake-serial game engines primarily stems from

the fact that it is a popular game that can be played on a variety of mobile devices

such as PDAs, mobile phones and laptops without additional graphics hardware. Fur-

ther, this game engine forms the core of a number of other First Person Shooter games

(e.g. Hexen II) and its software architecture is representative of those in many other

commercially-available games. Finally, the source codes of Quake and Quake II are

freely available, which allows for experimentation and appropriate modification.

To ensure reproducibility, we use pre-recorded demo files. Since these demo files

keep pre-recorded states and therefore they are not computed during playback, there is

103

some difference in workload when compared to a real-time game play. However, we

verify that these differences are negligible and do not affect the conclusions derived

from this study. Finally, the game resolution on the laptop is set to1024 × 768 pixels,

running in full-screen mode. Again, the conclusions derived from this setting also hold

for other resolutions, as verified by our experiments with running Quake at240 × 320

pixels on the PDA. To ensure that the game process is not preempted by other processes,

it is set to the highest priority.

6.2.1 Laptop Settings

The laptop used for our experiments (with the 1400 MHz Intel Pentium Mobile pro-

cessor) is equipped with SpeedstepTM technology and had an ATI RadeonTM Mobility

Video card. The processor supported five different operating points with clock frequen-

cies of 1400, 1200, 1000, 800 and 600 MHz. For Pentium processors, theRDTSC1 (read

time-stamp counter) instruction is an excellent high-resolution, low-overhead mecha-

nism to collect execution requirements of tasks in terms of processor cycles. All pro-

cessor cycle counts on the laptop are measured using theRDTSCinstruction that is

inserted into the Quake II source code.

We set the processor frequency by calling Windows APIs.ReadProcessorPwrScheme

andWriteProcessorPwrSchemeare a pair of APIs to retrieve and write processor power

policy settings for the specified power scheme. The change of frequency does not affect

the current system power policy untilSetActivePwrSchemeis called with the index of

this power scheme.

All the power measurements are conducted by connecting this laptop to a National

1Intel 64 and IA-32 Software Developer’s Manual Vol 2B

104

NI PXI-4071

Digital Multimeter

AC

Adaptor

Laptop

Figure 6.1: Power measurement on a laptop.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

 0 200 400 600 800 1000 1200 1400

P
ow

er
 (

W
at

t)

Processor frequency (MHz)
 Frame resolution = 1024x768 pixels

Figure 6.2: Processor frequency versus total system power consumption of the laptop.

Instruments PXI-4071 71
2
-digit Digital Multimeter. Figure 6.1 shows the setup used.

The laptop battery is removed and the system runs on the external DC power adapter.

The power cable of laptop is connected to the Multimeter. We collect the instantaneous

currentc(t) and voltagev(t) supplied every 5 ms. The average power consumptions

over a duration of lengthT are calculated as
∑T

t=0(c(t)v(t)δt)/T , whereδt is the sam-

pling interval (5 ms). Our estimated power consumptions therefore refer to the full

system power and not that of the processor alone. Figure 6.2 shows the total system

power consumption for the five different processor frequency levels on the laptop. Note

that this varies between 28.8 Watts and 22.1 Watts, which correspond to the processor

frequencies of 1400 MHz and 600 MHz respectively. Hence, the maximum possible

reduction in power consumption is upper bounded by 23%.

105

6.2.2 PDA Settings

The PDA used for our experiments is a Dell Axim X51 with a 520 MHz Intel XScale

PXA270 processor and 64MB SDRAM. The processor supports six different operating

frequency points: 520, 416, 312, 208, 156 and 104 MHz. Unfortunately, theRDTSC

instruction is not supported by XScale processors and processor cycle counts cannot

be read by application programs. Hence, we use high-resolution and low-overhead

Windows APIs such as theQueryPerformanceCounterto retrieve the processor time

associated with different tasks. However, the results returned by these APIs become

unreliable especially when the operating frequency of the processor is changed at run-

time. To avoid these problems we, in addition, conduct experiments using a discrete

event simulator with the power characteristics measured from the PDA.

To estimate the power characteristics of the PDA, we measure the power consump-

tion of its CPU-core by connecting an iWave prototype PDA board2 to the National

Instruments PXI-4071 71
2
-digit Digital Multimeter (as we did with the laptop). The

iWave prototype board has the same processor as many regular PDAs (i.e. Intel XScale

PXA270) (see Figure 6.3). Furthermore, each component on the board (e.g. CPU-core,

LCD, wireless interface, etc.) can be hooked up to measuring instruments. Hence,

the measured CPU-core power consumption of the iWave board is used to estimate the

power characteristics of a regular PDA. Figure 6.5 shows the CPU-core power con-

sumptions for the six different frequencies on the PDA. Note that the power consump-

tion of the CPU-core varies between 0.4 to 0.13 Watt, corresponding to the frequency

range 520 - 104 MHz. Therefore, the maximum possible reduction in power consump-

tion is upper bounded by 68%. This clearly shows that DVS can achieve much better

2http://www.iwavesystems.com/

106

power savings when the CPU-core of the PDA is considered in isolation, compared

to the maximum system-wide power savings that can be achieved for the laptop we

experiment with (which, as mentioned above, is 23%).

Figure 6.3: iWave prototype PDA board.

6.3 Results on the Laptop

We define two quality metrics that have been motivated by a study in [12]. This study

concluded that while frame rates higher than a pre-defined constant target frame rate

do not improve the overall gaming experience, lower than target frame rates severely

degrade the game quality. In our work, we define the target frame rate asΓ. Hence,

each frame has to be processed within1/Γth of a second, which is set as theframe

deadline. Theactual workloadandpredicted workloadof framei are defined asωi and

107

Figure 6.4: Power measurement on the iWave prototype PDA board.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

 0 100 200 300 400 500 600

P
ow

er
 (

W
at

t)

Processor frequency (MHz)
 Frame resolution = 240x320 pixels

Figure 6.5: Processor frequency versus total system power consumption of the PDA.

ω̄i respectively. The required continuous processor frequencyζi is calculated by the

formulaζi = ω̄i × Γ. In thesimu-contsetting, the resultant frame rateγi is calculated

by the formulaγi = ζi

ωi
. While in thesimu-discsetting and the real platforms, the

continuous frequency has to be mapped to the next available discrete frequencyζ̄i. By

scaling the processor frequency to the mapped discrete frequencyζ̄i, the resultant frame

rateγi is calculated by the formulaγi = ζ̄i

ωi
.

Our first metric of game quality only measures the percentage of frames that miss

108

their deadlines by the formulaperc = 100 × κ
N

, whereγ1, γ2, ... γκ are less than the

target frame rateΓ; N is the total number of frames. The second metric also takes into

account the magnitude of the missed deadlines (or thetardiness). It is computed by the

formulatardiness = 100×
P |Γ−γi|/Γ

N
, wherei ∈ [1, κ].

We compare the performance of different DVS schemes:FIX (where the processor

is run at a constant frequency of 1400 MHz, i.e. no frequency scaling),History (DVS

with a history-based predictor),PID controller (DVS with the PID controller-

based predictor),Frame structure (DVS using the frame structure-based work-

load prediction scheme),Hybrid(history) (DVS with a hybrid combination of

history-based and the frame structure-based predictors), andHybrid(control) (DVS

with our proposed hybrid combination of a PID controller-based predictor and a frame

structure-based predictor). For all our experiments on the laptop, we set the target

frame rate to 20 frames/second. Hence, each frame has to be processed within1/20th

of a second, which is set as theframe deadline. We manually tune the PID controller pa-

rameters inPID controller andHybrid(control) and obtain the best results

with Kp = 0.5, I = 28, andD = 0.00001 on the laptop.

Clearly, the energy consumption during a game play and the quality of the game are

mutually dependent on each other. Hence, to compare the different DVS schemes (i)

we fix the energy consumption and then measure the output quality resulting from the

different schemes, and (ii) we fix the output quality (e.g.all frames have to be processed

within their pre-specified deadline, which is equal to1/20th of a second when the target

frame rate is 20 frames/sec) and measure the energy consumption resulting from the

different schemes.

In order to achieve the same energy consumption for each scheme, we selected the

109

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Simu-cont Simu-disc WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History

PID controller
Frame structure

Hybrid(history)
Hybrid(control)

(a) Percentage of frames with missed deadlines.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Simu-cont Simu-disc WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History

PID controller
Frame structure

Hybrid(history)
Hybrid(control)

(b) Average tardiness of frames.

Figure 6.6: Comparison of game quality using different prediction schemes on a laptop
running WinXP (with the target frame deadline set to1/20th of a second). The results
were collected for a 4 second game play (88000 to 92000 millisecond), which was
excerpted from a demo file in [43].

110

power ofHistory as the baseline in each setting. If the power consumption of other

scheme is higher than the baseline value, we tuned the pre-specified frame deadline

to slow down the processor frequency. The lower frequency consumes the less power

consumption, while the playing time for the same demo file keeps the same in game

application. Therefore, the energy of playing the same demo file with other scheme

is reduced. By this approach, we could guarantee the same power consumptions with

different predictors in each setting.

Similarly, in order to ensure none of frames misses its deadline, we tuned the pre-

specified frame deadline in the experiments. If the percentage of frames missing their

deadline is not zero, we tuned the pre-specified frame deadline to speed up the processor

frequency. The higher frequency provides more processing cycles for game workload,

thereby, reduces the percentage of frames missing their deadline.

Figure 6.6 shows the game quality for the different DVS schemes under the two

metrics outlined above. From this figure, it may be noted that under the average tar-

diness metric, our proposedHybrid(control) scheme results in more than 72%

improvement overHistory on a laptop running Windows XP, for the same amount

of energy consumption. The results under the simulation setting (with the PDA power

characteristics) are even more attractive. In terms of power savings, compared to the

FIX scheme, our proposedHybrid(control) scheme achieves up to 22% power

savings, where the upper bound on the savings, as mentioned before, is 23% on the lap-

top. Note that to match the target frame deadline, most of the frequencies computed for

the estimated frame workload approach the lowest possible frequency (i.e. 600 MHz)

on the laptop.

When the target frame deadline is reduced to1/30th of a second (i.e. 30 frames/sec),

111

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Simu-cont Simu-disc WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History

PID controller
Frame structure

Hybrid(history)
Hybrid(control)

(a) Percentage of frames with missed deadlines.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Simu-cont Simu-disc WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History

PID controller
Frame structure

Hybrid(history)
Hybrid(control)

(b) Average tardiness of frames.

Figure 6.7: Comparison of game quality using the different prediction schemes on a
laptop running WinXP (with the target frame deadline set to1/30th of a second). The
results were collected for a 4 second game play (88000 to 92000 millisecond), which
was excerpted from a demo file in [43].

112

more processor cycles are required to speed up the game play. Therefore, the power sav-

ings fromHybrid(control) drops to 13% comparing withFIX . Finally, as shown

in Figure 6.7, the game quality obtained using theHybrid(control) is consistently

better than that obtained usingHistory .

0

1

2

3

4

5

6

7

8

9

10

WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History

Frame structure
Hybrid(control)

(a) Percentage of frames with missed deadlines.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

WinXP
P

er
ce

nt
ag

e
(%

)

FIX
History

Frame structure
Hybrid(control)

(b) Average tardiness of frames.

Figure 6.8: Comparison of game quality for a 160 second demo file in [43] on a laptop
running WinXP (with the target frame deadline set to1/20th of a second).

We also evaluate the power consumptions resulting from the different DVS algo-

rithms on the laptop, whenall the frames are required to meet their deadlines. We

observe that the power savings ofHybrid(control) overHistory on the laptop

are not as obvious as the improvements in quality as discussed above. This is primar-

ily because we consider the power consumption of the entire laptop and not the CPU

alone. As shown in Figure 6.2, only around 6% more power is consumed, even when

the frequency is scaled to one higher level on the laptop.

Figure 6.8 shows the game quality for the 160 second demo file usingHistory

scheme,Frame structure scheme andHybrid(control) scheme under the

two metrics outlined above. From this figure, it may be noted that under the average

tardiness metric, our proposedHybrid(control) scheme results in more than 29%

improvement overHistory on a laptop running Windows XP, for the same amount

113

0

2

4

6

8

10

12

14

16

18

WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History

Frame structure
Hybrid(control)

(a) Percentage of frames with missed deadlines.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00

WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History

Frame structure
Hybrid(control)

(b) Average tardiness of frames.

Figure 6.9: Comparison of game quality for a 160 second demo file in [43] on a laptop
running WinXP (with the target frame deadline set to1/30th of a second).

of energy consumption. In terms of power savings, compared to theFIX scheme, our

proposedHybrid(control) scheme achieves up to 21% power savings, where the

upper bound on the savings, as mentioned before, is 23% on the laptop.

When the target frame deadline is reduced to1/30th of a second (i.e. 30 frames/sec),

more processor cycles are required to speed up the game play. Therefore, the power

savings fromHybrid(control) drops to 12% comparing withFIX . Finally, as

shown in Figure 6.9, the game quality obtained using theHybrid(control) results

in more than 46% improvement under the average tardiness metric, compared with

History .

6.4 Results on the PDA

In this section, we discuss the applicability of proposed schemes on a different plat-

form – a PDA. We investigate the framework of workload characterization (proposed

in Chapter 4) on the PDA. The results imply that the proposed frame structure-based

DVS scheme is extensible on the PDA. Furthermore, our experiments on the PDA show

114

that game frames exhibit a large degree of workload variability, which indicate that the

proposed hybrid DVS scheme is also applicable on the PDA. By compared with the

other predictors in prediction accuracy on the PDA, the hybrid DVS scheme achieves

the best prediction. Finally, the results on the PDA demonstrate that our hybrid DVS

scheme outperforms the other DVS schemes in terms of the game quality and the power

saving.

6.4.1 Workload Characterization

In the experiments on the PDA, we study Quake engine instead of Quake II. The reason

is that the high computational workload generated by Quake II results in unacceptably

low frame rates (around 5 frames per second) on the PDA, thereby deteriorating the

game quality.

Fortunately, Quake engine is designed with similar architecture as Quake II, namely,

it processes the representative primitives in the same approach. Therefore, we charac-

terize the rasterization workload of individual primitives – brush model, alias model,

texture and particles with their detailed constitution and observe the correlations be-

tween the constitution and the corresponding rasterization workload for each type of

primitives, as shown in Figure 6.10. Figure 6.10(a) shows that the rasterization work-

load of brush model almost linearly scales to the number of constituent polygons. Fig-

ure 6.10(b) shows that the rasterization workload of alias model linearly scales to the

number of pixels. Figure 6.10(c) shows that the rasterization workload of texture al-

most linearly scales to the number of constituent surfaces. Figure 6.10(d) shows that

the rasterization workload of particles linearly scales to the number of pixels. Hence,

the respective rasterization workload of each type of primitives could be derived from

the involved detailed constitution.

115

0.0

5.0

10.0

15.0

20.0

25.0

30.0

 0 500 1000 1500 2000 2500 3000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of polygons
 Frame resolution = 240x320 pixels

(a) Rasterization workload correlates with number of polygons of brush model.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

 0 500 1000 1500 2000 2500 3000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels
 Frame resolution = 240x320 pixels

(b) Rasterization workload correlates with number of pixels of alias model.

0.0

5.0

10.0

15.0

 0 20 40 60 80 100 120 140

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of surfaces
 Frame resolution = 240x320 pixels

(c) Rasterization workload correlates with number of surfaces of texture.

0.0

5.0

10.0

15.0

 0 500 1000 1500

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels
 Frame resolution = 240x320 pixels

(d) Rasterization workload correlates with number of pixels of particles.

Figure 6.10: Linear correlations of individual primitives - brush model, alias model,
texture and particles on the PDA.

116

20.0

40.0

60.0

80.0

100.0

 10 20 30 40 50 60

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Processor cycles (x106)
 Frame resolution = 240x320 pixels

Figure 6.11: Linear correlation between rasterization and total processing workload on
the PDA.

p1 p2

Brush model 9016 0
Alias model 3686 7.334× 105

Texture 4.291× 104 3.522× 106

Particles 6123 0
Game frame 1.154 1.451× 107

Table 6.1: Coefficients in the linear functions for Quake on the PDA.

Moreover, our experimental results suggest that the total workload generated from

processing a frame is almost linearly correlated with its rasterization workload. Hence,

we predict the total workload by estimating the rasterization workload of a frame. Fig-

ure 6.11 show the correlation between these two workload, with the horizontal axis

denoting the rasterization workload.

Similarly, we generate the coefficients of those linear correlations with linear re-

gression models in Table 6.1.

6.4.2 Workload Variations

The game workload exhibits a large degree of variability on the laptop, as shown in

Section 5.2. We observe the similar results on the PDA. Figure 6.12 illustrates the ras-

terization workload for each type of primitives exhibiting low variability. Figure 6.13

117

0.0

1.0

2.0

3.0

4.0

5.0

 24000 26000 28000 30000 32000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

(a) Workload of brush model.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 24000 26000 28000 30000 32000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

(b) Workload of alias model.

0.0

2.0

4.0

6.0

8.0

10.0

 24000 26000 28000 30000 32000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

(c) Workload of texture.

0.0

2.0

4.0

6.0

8.0

10.0

 24000 26000 28000 30000 32000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
3)

Time (ms)
 Frame resolution = 240x320 pixels

(d) Workload of particles.

Figure 6.12: Rasterization workload exhibiting low variability for individual primitives
- brush model, alias model, texture, particles on the PDA.

118

0.0

1.0

2.0

3.0

4.0

5.0

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

(a) Workload of brush model.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

(b) Workload of alias model.

0.0

2.0

4.0

6.0

8.0

10.0

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

(c) Workload of texture.

0.0

2.0

4.0

6.0

8.0

10.0

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
3)

Time (ms)
 Frame resolution = 240x320 pixels

(d) Workload of particles.

Figure 6.13: Rasterization workload exhibiting high variability for individual primitives
- brush model, alias model, texture, particles on the PDA.

119

illustrates the rasterization workload for each type of primitives exhibiting high vari-

ability.

Figure 6.14 shows game workload varying from 50 to 75 million cycles per frame.

In contrast, Figure 6.15 shows the fluctuant game workload varying from 20 to 90 mil-

lion cycles per frame.

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

 24000 26000 28000 30000 32000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Figure 6.14: Processing workload exhibiting low variability on the PDA.

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Figure 6.15: Processing workload exhibiting high variability on the PDA.

Such observations on the PDA are in line with those on the laptop, which motivates

the hybrid DVS scheme.

6.4.3 Prediction Accuracy

In Section 5.2, we have conducted the experiments to compare the performance of pre-

diction schemes on the laptop. The results show that for frame sequences which exhibit

120

40

50

60

70

80

90

 24500 25000 25500 26000 26500 27000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Real
Predicted

Figure 6.16: Workload prediction usingPID controller scheme on the PDA, for
a frame sequence exhibiting low workload variability.

low workload variation, the history-based, the PID controller-based predictors outper-

form the frame structure-based predictor. Our experiments on the PDA demonstrate the

same results. Figure 6.16 and 6.17 show the comparisons of the PID controller-based

and the frame structure-based predictors for a sequence of game frames with low vari-

ability respectively. Note that the PID controller-based prediction scheme surpasses the

frame structure-based predictor.

Figure 6.18, 6.19 and 6.20 show the comparisons of the history, PID controller

and frame structure-based predictors for a sequence of frames exhibiting high work-

load variability. It is easy to see that the frame structure-based predictor exceeds

the first two. Figure 6.21 and 6.22 show the performance of two hybrid predictors,

which match the profile of the actual frame workload more closely than the history,

PID controller, or frame structure-based predictors. Here, the workload varies between

20 million processor cycles and 90 million cycles per frame. The absolute and relative

errors in Figure 6.18 (i.e. using theHistory predictor) are 6.2 million cycles and

0.15 respectively. These errors drop to 2.5 million cycles and 0.06 respectively for the

Hybrid(control) predictor (see Figure 6.22).

Figure 6.23 summarizes the absolute and relative prediction errors with different

121

40

50

60

70

80

90

 24500 25000 25500 26000 26500 27000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Real
Predicted

Figure 6.17: Workload prediction usingFrame structure scheme on the PDA, for
a frame sequence exhibiting low workload variability.

20

30

40

50

60

70

80

90

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Real
Predicted

Figure 6.18: Workload prediction usingHistory scheme on the PDA, for a frame
sequence exhibiting high workload variability.

20

30

40

50

60

70

80

90

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Real
Predicted

Figure 6.19: Workload prediction usingPID controller scheme on the PDA, for
a frame sequence exhibiting high workload variability.

122

20

30

40

50

60

70

80

90

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Real
Predicted

Figure 6.20: Workload prediction usingFrame structure scheme on the PDA, for
a frame sequence exhibiting high workload variability.

20

30

40

50

60

70

80

90

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Real
Predicted

Figure 6.21: Workload prediction usingHybrid(history) scheme on the PDA, for
a frame sequence exhibiting high workload variability.

20

30

40

50

60

70

80

90

 60000 62000 64000 66000 68000 70000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 240x320 pixels

Real
Predicted

Figure 6.22: Workload prediction usingHybrid(control) scheme on the PDA, for
a frame sequence exhibiting high workload variability.

123

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.0
6.4
6.8
7.2
7.6
8.0
8.4
8.8

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

History
PID controller

Frame structure
Hybrid(history)
Hybrid(control)

(a) Absolute prediction errors.
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

R
at

io

History
PID controller

Frame structure
Hybrid(history)
Hybrid(control)

(b) Relative prediction errors.

Figure 6.23: Comparison of prediction errors with different predictors on the PDA. The
results were collected for a 10 second game play, which was excerpted from a demo file
in [44].

predictors on the PDA. Notice that on the PDA, our proposedHybrid(control)

predictor results in more than 60% improvement in prediction accuracy over a simple

history-based workload predictor.

6.4.4 Performance of DVS Schemes

On the PDA, the best results are obtained withKp = 0.7, I = 50, andD = 0.00001 for

the target frame rate set to 5 frames/second. For theFIX scheme, the XScale processor

is run at a constant frequency of 520 MHz. Figure 6.24 shows the game quality under

the two metrics for the different DVS schemes on the PDA. Note that under the aver-

age tardiness metric, our proposedHybrid(control) scheme leads to more than

100% quality improvement overHistory with the simu-contsetting for the same

power consumption. With thesimu-discsetting, this drops to 95% improvement. Fi-

nally, compared toFIX , our scheme yields more than 35% and 25% improvements in

power savings with thesimu-contandsimu-discsettings, where the upper bound on the

savings, as mentioned before, is 68%.

124

0

5

10

15

20

25

30

35

40

45

50

55

60

65

Simu-cont Simu-disc

P
er

ce
nt

ag
e

(%
)

FIX
History

PID controller
Frame structure

Hybrid(history)
Hybrid(control)

(a) Percentage of frames which missed their deadlines.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Simu-cont Simu-disc

P
er

ce
nt

ag
e

(%
)

FIX
History

PID controller
Frame structure

Hybrid(history)
Hybrid(control)

(b) Average tardiness of frames.

Figure 6.24: Comparison of game quality using different prediction schemes on a PDA
(with the target frame deadline set to1/5th of a second). The results were collected for
a 10 second game play, which was excerpted from a demo file in [44].

125

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Simu-cont Simu-disc

N
or

m
al

iz
ed

 p
ow

er

FIX
History

PID controller
Frame structure

Hybrid(history)
Hybrid(control)

Figure 6.25: Normalized power consumption using the different prediction schemes
againstFIX as a baseline on the PDA. The results were collected for a 10 second game
play, which was excerpted from a demo file in [44].

As shown in Figure 6.5, the CPU-core power consumption of each scheme is nor-

malized againstFIX as a baseline. It exhibits a relatively large change as the proces-

sor frequency is scaled. Therefore, the power savings ofHybrid(control) over

History on the PDA are more significant than those on the laptop, when no frames

are allowed to miss their predefined deadlines. Figure 6.25 shows the CPU-core power

consumptions resulting from the different DVS algorithms using the simulation plat-

form with PDA power characteristics. Here,Hybrid(control) achieves 26% and

19% more CPU-core power savings thanHistory under thesimu-contandsimu-disc

settings respectively.simu-conthas more savings thansimu-discsince we assume con-

tinuous frequency scaling and no frequency transition overhead (i.e. it represents an

ideal case, which results in an upper bound on the energy savings).

126

6.5 Summary

In this chapter, we compared the performance of our proposed DVS schemes with

known history-based algorithms developed for video decoding applications, on the sim-

ulators and the real platforms. Our results indicate that there are significant improve-

ments of our proposed hybrid DVS scheme over the known algorithms in the game

quality. At the same time, it saves considerable power consumption, compared with a

scheme running the applications at a constant and full frequency.

Along with the evaluation on the laptop, we conducted the experiments on the dif-

ferent platform – the PDA. We characterized the workload primitives with their detail

constitution, i.e. the number of constituting polygons of brush model, the number of

constituting pixels of alias model, the number of pixels of texture, the number of con-

stituting pixels of particles. We observed that there are linear correlations between

workload primitives and their constitution on the PDA, even the resolution of the PDA

is different from the laptop. Therefore, those correlations are exploited to predict the

rasterization workload from the detailed constitution. By parsing game frame, we ob-

tained the constituent primitives, thereby, determined frame workload on the PDA.

Moreover, we observed the frame workload on the PDA exhibits a large degree

of variability, which explains why the proposed hybrid DVS scheme provides the best

prediction, compared with other predictors.

On the PDA facilitated with the different microarchitecture, the different operating

system and the different game resolution, we observed the consistent results of the

proposed DVS schemes on the PDA. Next, we further evaluate their performance in

game quality and power saving on the PDA. Even further improvement in the power

saving is achieved on the PDA, as we considered the power consumption of the CPU-

127

core of the PDA in isolation, compared with the power consumption of the entire system

of the laptop.

128

Chapter 7
Concluding Remarks

In this thesis, we looked into several issues related to power management for interactive

3D games on portable devices. The power management techniques have already been

widely studied in the context of video decoding applications, which are computationally

expensive. However, these studies have mostly focused on scaling voltage/frequency of

a processor by predicting the workload associated with processing a video frame from

the workload of the previously decoded frames. The power management techniques

for interactive 3D games, on the other hand, exploit the unique natures of game appli-

cations and prolong game play with guaranteed game quality on portable devices. In

this context, the main results that we have obtained in this thesis can be summarized as

follows.

• We presented experimental results to identify the workload primitives, e.g. brush

model, alias model, texture and particles, which predominantly contribute to the raster-

ization workload of the First-Person-Shooter game – Quake. Since Quake belongs to

the genre of fast-pace action game without much artificial intelligence, the computation

workload is relatively smaller than the rasterization workload.

129

We observed that the rasterization workload of each primitive varies accordingly to

the detailed constitution, i.e. the constituent polygons of brush model, the constituent

pixels of alias model, the constituent surfaces of texture and the constituent pixels of

particles. Therefore, we identified that there is correlation between the detailed consti-

tution and the rasterization workload of each type of primitives. Those correlations are

exploited to predict the rasterization workload from the detailed constitution in our pro-

posed DVS schemes. By parsing game frame, we obtained the constituent primitives,

thereby, determined frame workload.

• For the frame sequences exhibiting fluctuant workload, we proposed theframe

structure-based DVS schemeby exploiting the observed ”structure” information of game

frames. In contrast, we introduced thePID controller-based DVS schemefor the frame

sequences exhibiting flat workload, where this DVS scheme achieves better prediction

than the frame structure-based DVS scheme.

Motivated by the observation that game workload exhibits a large degree of vari-

ability, i.e. frame sequences with flat workload and frame sequences with fluctuant

workload, we presented thehybrid DVS schemeby switching between two techniques:

(i) adjusting workload prediction by the PID controller-based mechanism (viz. PID con-

troller), and (ii) analyzing the graphics objects in current game scene (viz. the frame

structure scheme).

• To investigate the influences of frequency mapping and frequency transition over-

head to the DVS schemes, we designed two simulators. The performance of our pro-

posed DVS schemes were evaluated on the simulators and the real platforms. From

the experiments, we observed that the hybrid DVS achieves significant improvement in

130

the game quality, compared with known history-based DVS algorithms. At the same

time, it saves considerable power consumption, compared with a scheme running the

applications at a constant and full frequency.

The proposed DVS schemes were extended from the laptop to the different plat-

form – the PDA. With the different microarchitecture of underlying processor and the

different operating system on the PDA, we observed that the results on the PDA are

consistent with those obtained on the laptop. Moreover, we observed further improve-

ment in the power saving on the PDA, as the CPU-core of the PDA is considered in

isolation, compared to the maximum system-wide power savings that can be achieved

for the laptop.

All of the above results are derived from the data on the full-blown game engines on

the real platforms, which are interesting to system-level design of power management

techniques on mobile devices.

7.1 Future Work

Our work also gives rise to several open issues. A few of these have been listed below.

• The DVS schemes we proposed in the thesis consider power consumption of a pro-

cessor alone. As we know, there are other components (e.g. wireless interface, LCD,

backlight, etc.), which drain the battery largely on a portable device. For example, in the

context of multi-player online games, the wireless interface keeps signalling communi-

cation even when no real game data is transmitted. In such scenarios, it is interesting

to design intelligent power management techniques for the wireless interface. Further

work could be extended to integrate the power management techniques of the processor

131

with the wireless interface or other components, such that the entire system consumes

as less power as possible for interactive game applications.

• To provide content-rich graphics applications like 3D games on portable devices,

the design community is moving towards multiprocessors to leverage application par-

allelism for higher performance. In [36, 37], they simulated the graphics rendering

pipeline with three processor elements and discussed the quality factors such as level of

detail and the resolution in graphics application. However, to date, no power manage-

ment techniques have been proposed for game application on multiprocessor architec-

ture. The possible future work in power-aware gaming on multiprocessor architecture

should partition whole game pipeline into different parts according to different work-

load characteristics of each partition. Each partition should be mapped to individual

processor and be executed in parallel or in sequence due to the data dependency. As the

consequence of partitioning games on multiple processors, it will be important to de-

sign power management techniques for individual processor and to adapt bus frequency

based on partition traffic so that the total on-chip power consumption is minimized with

guaranteed game quality.

132

Bibliography

[1] A. Acquaviva, L. Benini, and B. Ricćo. An adaptive algorithm for low-power

streaming multimedia processing. InProc. 2001 Design, Automation and Test in

Europe (DATE), pages 273 – 279, Munich, Germany, March 2001. ACM Press.

[2] T. Akenine-Moller and E. Haines.Real-time Rendering. A K Peters, Ltd, 2002.

[3] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and agressive

scheduling techniques for power-aware real-time systems. InProc. 22nd IEEE

Real-Time Systems Symposium (RTSS), pages 95–105, London, UK, December

2001. IEEE Press.

[4] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware scheduling

for periodic real-time tasks.IEEE Trans. Comput., 53(5):584–600, 2004.

[5] A. C. Bavier, A. B. Montz, and L. L. Peterson. Predicting MPEG execution times.

In Proc. 1998 SIGMETRICS, pages 131 – 140, Madison, Wisconsin, USA, June

1998. ACM Press.

[6] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz. Designing a PC game

engine.IEEE Computer Graphics and Applications, 18(1), 1998.

133

[7] T. D. Burd, T. Pering, A. Stratakos, and R. W. Brodersen. A dynamic voltage

scaled microprocessor system.IEEE Journal of Solid-State Circuit, 35(11):1571.

[8] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data driven signal process-

ing: an approach for energy efficient computing. InProc. 1996 International

Symposium on Low Power Electronics and Design (ISLPED), pages 347 – 352,

Monterey, CA, USA, August 1996. IEEE Press.

[9] L. H. Chandrasena, P. Chandrasena, and M. J. Liebelt. An energy efficient rate

selection algorithm for voltage quantized dynamic voltage scaling. InProc. 14th

International Symposium on Systems Synthesis (ISSS), pages 124 – 129, Montreal,

Canada, October 2001. IEEE Press.

[10] W.-H. Chen, C. Smith, and S. Fralick. A fast computational algorithm for the

discrete cosine transform.IEEE Transactions on Communications, 25(9):1004–

1009, 1977.

[11] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-based dynamic voltage

and frequency scaling for a MPEG decoder. InProc. 2002 International Confer-

ence on Computer-Aided Design (ICCAD), pages 732 – 737, San Jose, California,

USA, November 2002. ACM Press.

[12] M. Claypool, K. Claypool, and F. Damaa. The effects of frame rate and resolution

on users playing First Person Shooter games. InProc. 2006 Multimedia Comput-

ing and Networking Conference (MMCN), San Jose, CA, USA, June 2006. ACM

Press.

[13] A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving feedback EDF schedul-

ing for embedded systems with real-time constraints. InProc. 2002 Joint Con-

134

ference on Languages, Compilers, and Tools for Embedded Systems and Soft-

ware and Compilers for Embedded Systems (LCTES-SCOPES), pages 213 – 222,

Berlin,Germany, June 2002. ACM Press.

[14] E. Feig and S.Winograd. Fast algorithms for the discrete cosine transform.IEEE

Transactions on Signal Processing, 40(9):2174–2193, 1992.

[15] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms for dynamic speed-

setting of a low power CPU. InMobile Computing and Networking (MobiCom),

pages 13 – 25, Berkeley, CA, USA, November 1995. ACM Press.

[16] F. Gruian. Hard real-time scheduling for low energy using stochastic data and DVS

processors. InProc. 2001 International Symposium on Low-Power Electronics

and Design (ISLPED), pages 46 – 51, Huntington Beach, CA, USA, August 2001.

ACM Press.

[17] F. Gruian and K. Kuchcinski. LEneS: task scheduling for low-energy systems

using variable voltage processors. InProc. 2001 Asia and South Pacific Design

Automation Conference ((ASP-DAC), pages 449 – 455, Yokohama, Japan, January

2001. ACM Press.

[18] D. Grunwald, C. B. Morrey, P. Levis, M. Neufeld, and K. Farkas. Policies for

dynamic clock scheduling. InProc. 4th Symposium on Operating Systems Design

and Implementation (OSDI), pages 73–86, San Diego, CA, USA, October 2000.

USENIX Association.

[19] Y. Gu. Power-aware gaming on portable devices. InSIGDA Ph.D. Forum at

Design Automation Conference (DAC), San Diego, CA, USA, June 2007.

135

[20] Y. Gu and S. Chakraborty. Control theory-based DVS for interactive 3D games.

In Proc. 2008 Design Automation Conference (DAC), Anaheim, CA, USA, June

2008.

[21] Y. Gu and S. Chakraborty. A hybrid DVS scheme for interactive 3D games. In

Proc. 14th IEEE Real-Time Technology and Applications Symposium (RTAS), St.

Louis, MO, USA, April 2008. IEEE Press.

[22] Y. Gu and S. Chakraborty. Power management of interactive 3D games using

frame structures. InProc. 21st International Conference on VLSI Design (VLSID),

pages 679–684, HICC, Hyderabad, India, Janauary 2008. IEEE Press.

[23] Y. Gu, S. Chakraborty, and W. T. Ooi. Games are up for DVFS. InProc. 2006

Design Automation Conference (DAC), pages 598 – 603, San Francisco, CA, USA,

July 2006. ACM Press.

[24] Y. Huang, S. Chakraborty, and Y. Wang. Using offline bitstream analysis for

power-aware video decoding in portable devices. InProc. 2005 ACM Multimedia

(MM), pages 299 – 302, Singapore, November 2005. ACM Press.

[25] C. Huges, J. Srinivasan, and S. Adve. Saving energy with architectural and

frequency adaptations for multimedia applications. InProc. 34th International

Symposium on Microarchitecture, pages 250 – 261, Austin, TX, USA, December

2001. IEEE Press.

[26] C. J. Hughes and S. V. Adve. A formal approach to frequent energy adaptations

for multimedia applications. InProc. 31st International Symposium on Computer

Architecture (ISCA), pages 138– 149, Munich, Germany, June 2004. IEEE Press.

136

[27] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling with buffers in low-power

multimedia applications.ACM Transactions on Embedded Computing Systems

(TECS), 3(4):686–705, 2004.

[28] B. C. Kuo and F. Golnaraghi.Automatic Control Systems. Wiley, 2002.

[29] G. Lafruit, L. Nachtergaele, K. Denolf, and J. Bormans. 3D computational grace-

ful degradation. InProc. 2000 International Symposium on Circuits and Systems

(ISCAS), pages 547 – 550, Geneva, Switzerland, May 2000. IEEE Press.

[30] Y. Liu and A. K. Mok. An integrated approach for applying dynamic voltage scal-

ing to hard real-time systems. InProc. 9th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS), pages 116 – 123, Toronto, Canada,

May 2003. IEEE Press.

[31] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms with

PACE. InProc. 2001 SIGMETRICS, pages 50 – 61, Cambridge, Massachusetts,

United States, June 2001. ACM Press.

[32] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron. Control-theoretic

dynamic frequency and voltage scaling for multimedia workloads. InProc. 2002

International Conference on Compilers, Architecture and Synthesis for Embedded

Systems (CASES), pages 156 – 163, Greenoble, France, October 2002. ACM Press.

[33] Z. Lu, J. Lach, M. R. Stan, and K. Skadron. Reducing multimedia decode power

using feedback control. InProc. 2003 International Conference on Computer

Design (ICCD), pages 489– 496, San Jose, CA, USA, October 2003. IEEE Press.

[34] T. Mitra and T. Z. Chiueh. Dynamic 3D graphics workload characterization and

137

the architectural implications. InProc. 32nd International Symposium on Mi-

croarchitecture, pages 62 – 71, Haifa, Israel, 1999. IEEE Press.

[35] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar. Criti-

cal power slope: Understanding the runtime effects of frequency scaling. InProc.

2002 International Conference on Supercomputing (ICS), pages 35 – 44, New

York City, NY, USA, June 2002. ACM Press.

[36] B. Mochocki, K. Lahiri, and S. Cadambi. Power analysis of mobile 3D graphics.

In Proc. 2006 Design, Automation, and Test in Europe (DATE), pages 502 – 507,

Leuven, Belgium, March 2006. European Design and Automation Association.

[37] B. Mochocki, K. Lahiri, S. Cadambi, and X. S. Hu. Signature-based workload

estimation for mobile 3D graphics. InProc. 2006 Design Automation Conference

(DAC), pages 592 – 597, San Francisco, CA, USA, July 2006. ACM Press.

[38] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian. In-

tegrated power management for video streaming to mobile handheld devices.

In Proc. 2003 ACM Multimedia (MM), pages 582 – 591, Berkeley, CA, USA,

November 2003. ACM Press.

[39] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic

voltage scaling algorithms. InProc. 1998 International Symposium on Low Power

Electronics and Design (ISLPED), pages 76 – 81, Monterey, CA, USA, August

1998. ACM Press.

[40] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power em-

bedded operating systems. InProc. 2001 ACM Symposium on Operating Systems

138

Principles (SOSP), pages 89 – 102, Chateau Lake Louise, Banff, Alberta, Canada,

October 2001. ACM Press.

[41] C. Poellabauer, L. Singleton, and K. Schwan. Feedback-based dynamic frequency

scaling for memory-bound real-time applications. InProc. 11th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages 234 – 243,

San Francisco, CA, USA, March 2005. IEEE Press.

[42] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips. Power-aware video de-

coding. InPicture Coding Symposium, 2001.

[43] Quake II demo file

http://www.comp.nus.edu.sg/∼guyan/massive1.1.dm2.

[44] Quake demo file

http://www.comp.nus.edu.sg/∼guyan/test.dem.

[45] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,

and M. L. Scott. Energy-efficient processor design using multiple clock domains

with dynamic voltage and frequency scaling. InProc. 2002 High-Performance

Computer Architecture (HPCA), pages 29– 40, Boston, Massachusettes, USA,

February 2002. IEEE Press.

[46] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. D. Micheli. Dynamic volt-

age scaling and power management for portable systems. InProc. 2001 Design

Automation Conference (DAC), pages 524 – 529, Las Vegas, NV, USA, June 2001.

ACM Press.

[47] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao. The case for feedback control

139

real-time scheduling. InProc. 1999 Euromicro Conference on Real-Time Systems

(ECRTS), pages 11 – 20, University of York, York, UK, June 1999. IEEE Press.

[48] N. Tack, F. Moŕan, G. Lafruit, and R. Lauwereins. 3D graphics rendering time

modeling and control for mobile terminals. InInternational Conference on 3D

Web Technology, 2004.

[49] A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L. Srinivasan, and J. Bruce.

A control-theoretic approach to dynamic voltage scheduling. InProc. 2003 In-

ternational Conference on Compilers, Architecture and Synthesis for Embedded

Systems (CASES), pages 255 – 266, San Jose, California, USA, October 2003.

ACM Press.

[50] A. Watt and F. Policarpo.3D Games: Real-time Rendering and Software Technol-

ogy, Volume 1. Addison-Wesley, 2001.

[51] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU

energy. InProc. 1994 Operating Systems Design Implementation (OSDI), pages

13–23, Monterey, CA, USA, November 1994. USENIX Association.

[52] M. Wimmer and P. Wonka. Rendering time estimation for real-time rendering. In

Eurographics Workshop on Rendering (EGWR), 2003.

[53] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal online methods for volt-

age/frequency control in multiple clock domain microprocessors. InProc. 2004

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 248 – 259, Boston, MA, USA, October

2004. ACM Press.

140

[54] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark. Formal control

techniques for power-performance management.IEEE Micro, 25(5):52–62, 2005.

[55] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU scheduling for

mobile multimedia systems. InProc. 2003 ACM Symposium on Operating Systems

Principles (SOSP), pages 149 – 163, Bolton Landing, NY, USA, October 2003.

ACM Press.

[56] W. Yuan and K. Nahrstedt. Practical voltage scaling for mobile multimedia de-

vices. InProc. 2004 ACM Multimedia (MM), pages 924 – 931, New York, NY,

USA, October 2004. ACM Press.

[57] Y. Zhang, Z. Lu, J. Lach, K. Skadron, and M. R. Stan. Optimal procrastinating

voltage scheduling for hard real-time systems. InProc. 2005 Design Automation

Conference (DAC), pages 905 – 908, San Diego, CA, USA, June 2005. ACM

Press.

[58] Y. Zhu and F. Mueller. Feedback EDF scheduling exploiting dynamic voltage scal-

ing. In Proc. 10th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 84– 93, Toronto, Canada, May 2004. IEEE Press.

141

