
ADVANCED FLOW-BASED TYPE SYSTEMS FOR
OBJECT-ORIENTED LANGUAGES

FLORIN CRACIUN

(M.Sc., Technical University of Cluj-Napoca, Romania)

(B.Sc., Technical University of Cluj-Napoca, Romania)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48630889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGEMENTS

First of all, I would like to deeply thank my supervisor Professor Wei-Ngan Chin, who has been

a constant source of advice, guidance and encouragement. This dissertation clearly represents an

outgrowth of his research vision. His enormous energy and dedication as well as his combined

theoretical and practical sense will always remain a model.

I am very grateful to Professor Siau-Cheng Khoo for his generous and timely help, for useful

discussions, which influenced my work, and for his kindness in general.

I would like to express my gratitude to committee members Professor Jens Palsberg, Pro-

fessor Siau-Cheng Khoo, Professor Martin Henz, and Professor Roland Yap for the interest and

time they granted to this work. Their feedback and comments helped me better understand the

weaknesses and strengths of this work.

I would also like to thank my co-authors without whom many parts of this text and other

joint work would not have been possible: Professor Wei-Ngan Chin, Professor Siau-Cheng

Khoo, Professor Martin Rinard, Dr. Shengchao Qin, Corneliu Popeea and Hong Yaw Goh.

I also want to thank Razvan Voicu, Corneliu Popeea, Cristina David, Huu Hai Nguyen,

Mihail Asavoae, Mariuca Asavoae, Dana N. Xu, Wang Meng, Zhu Ping, David Lo, Stefan

Andrei, Saswat Anand, Andrei Hagiescu, Alexandru Stefan, Cristian Gherghina for being great

friends and colleagues throughout the years, and contributing to a fun and exciting environment,

in and out of office. Special thanks to my best colleague Corneliu Popeea for our many technical

discussions.

I am deeply thankful to my parents for their continued love and support. They have done

whatever they could to ensure that I had the best education possible. This work is dedicated

to them. Finally, I would like to thank my dearest Ioana for her constant encouragement and

support.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

SUMMARY . vii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

1.1 Thesis . 1

1.2 Applications . 3

1.2.1 Safe Region-based Memory Management 3

1.2.2 Software Reusability via Better Generic Types 4

1.3 Our Methodology . 5

1.4 Technical Contributions . 11

1.5 Dissertation Outline . 13

2 UNDERLYING TECHNOLOGIES . 14

2.1 Standard Type Systems . 14

2.2 From Type Systems to Flow Analyses . 22

2.3 Flow (Subtyping) Constraints Solving . 27

I SAFE REGION-BASED MEMORY MANAGEMENT

3 REGION-BASED MEMORY MANAGEMENT 34

3.1 Introduction . 34

3.1.1 Region Issues . 34

3.1.2 Motivation and Goal . 36

3.1.3 Solution and Contributions . 38

3.1.4 Organization of Part I . 40

3.2 Regions Types . 42

3.3 Region-Based Memory Model . 43

3.4 Regions Annotations . 44

3.4.1 Regions for Field Declarations . 45

3.4.2 Regions for Method Declarations . 46

3.4.3 Regions for Subclass Declarations 47

3.5 Region Subtyping Principle . 49

3.5.1 Invariant Region Subtyping . 50

TABLE OF CONTENTS iv

3.5.2 Object Region Subtyping . 50

3.6 Region Type System . 50

3.6.1 A Fragment of Core-Java . 51

3.6.2 Region Checking Rules . 51

3.7 Formalism . 56

3.7.1 Dynamic Semantics . 56

3.7.2 Safety Proof . 64

3.7.3 Comparison to Other Proofs . 66

4 REGION INFERENCE . 68

4.1 Algorithm Overview . 68

4.1.1 An Example . 70

4.1.2 Inference Rules Summary . 73

4.2 Inference for a Class . 76

4.3 Inference for Expressions . 78

4.4 Localising Regions . 80

4.5 Inference for a Method . 83

4.6 Solving Method Overriding . 87

4.7 Dependency Graph and Mutual Dependency 90

4.8 Correctness of Inference Algorithm . 93

4.9 Field Region Subtyping . 96

4.10 Experimental Validation . 98

4.10.1 Implementation . 98

4.10.2 Experiments . 99

4.11 Related Work . 104

II BETTER GENERICITY

5 VARIANT PARAMETRIC TYPE SYSTEM . 109

5.1 Introduction . 109

5.1.1 Motivation and Goal . 112

5.1.2 Solution and Contributions . 113

5.1.3 Outline . 114

5.2 Main Techniques . 115

5.2.1 Intersection Types . 115

5.2.2 Modular Flow Specification . 116

TABLE OF CONTENTS v

5.2.3 Avoiding F-Bounds where Possible 118

5.2.4 Avoiding Existential Types Always 120

5.3 Variance via Flow Analysis . 122

5.3.1 An Example . 122

5.3.2 Improved Variant Parametric Subtyping 124

5.3.3 Variant Parametric Core-Java Language 126

5.4 Class Parameterisation and Inheritance . 128

5.4.1 Type Promotion . 129

5.4.2 Class Invariant . 131

5.5 Variant Parametric Type System . 132

5.5.1 Modular Flow Verification . 133

5.6 Soundness . 135

5.7 Casting and Cast Capture . 136

5.7.1 Cast Capture Examples . 138

5.8 Experimental Validation . 139

5.8.1 Implementation . 139

5.8.2 Experiments . 140

5.9 Other Features . 142

5.10 Related Work . 144

III FINALE

6 CONCLUSION AND FUTURE WORK . 146

6.1 Safe Region-Based Memory Management 146

6.2 Better Genericity . 148

BIBLIOGRAPHY . 149

APPENDICES

APPENDIX A — REGION-BASED MEMORY MANAGEMENT 162

A.1 Dynamic Semantics of Region-Annotated Core-Java 162

A.2 Proof Details . 165

A.2.1 Auxiliary Definitions and Lemmas 165

A.2.2 Proof of Theorem 3.7.2.1 (Subject Reduction) 168

A.2.3 Proof of Theorem 3.7.2.2 (Progress) 180

A.2.4 Proof of Lemma 4.8.0.2 (Correctness) 184

TABLE OF CONTENTS vi

A.2.5 Proof of Theorem 4.8.0.3 (Soundness and Completeness) 190

A.3 Inference Rules for Dependencies . 192

A.3.1 Inference for Constituent Dependencies 192

A.3.2 Inference for Override Dependencies 193

A.4 Handling Downcast . 193

A.4.1 Backward Flow Analysis . 200

A.5 Runtime regions . 203

A.5.1 Region Coalescing . 203

A.5.2 Region Handles . 204

A.6 Discussion of Other Java Features . 206

A.7 Our Approach vs. Phantom Region Based Approach 210

APPENDIX B — BETTER GENERICITY . 212

B.1 Dynamic Semantics of Variant Parametric Core-Java 212

B.2 Soundness of Variant Type System . 214

B.3 Proofs of Theorems . 217

B.3.1 Proof of Theorem 5.1 (Progress) . 217

B.3.2 Proof of Theorem 5.2 (Preservation) 219

vii

SUMMARY

This dissertation proposes two advanced type systems to improve two aspects of software

quality, namely memory safety via region types and software reusability via generic types. Our

type systems are designed in the context of a Java-like object-oriented language. Their two main

ingredients consist of a simple flow analysis and a set of partially-ordered type annotations.

Flow analysis captures type annotations in a flow-insensitive manner through the program code,

but summarizes a parameterized flow at each method boundary. Subtyping of annotated types

provides the direction of flows. With it, the type rules generate flow (subtyping) constraints

among the annotated types.

Our first type system addresses the problem of a safe compile-time region-based memory

management. We have formulated and implemented an automatic region type inference sys-

tem. To provide an inference method that is both precise and practical, we support classes and

methods that are region-polymorphic, with region-polymorphic recursion for methods. One

challenging aspect is to ensure region safety in the presence of features such as class inheri-

tance, method overriding, and downcast operations. Our region inference rules can handle these

object-oriented features safely without creating dangling references. Initial experimental results

are encouraging, as programs based on our inferred regions have been able to reuse a significant

amount of memory, especially for cases when data are not live throughout the execution.

Our second type system addresses the problem of software reusability (genericity) in a type

safe way. We propose a novel flow-based approach for the variant parametric types. Variant

parametric types represent the successful result of combining subtype polymorphism with para-

metric polymorphism to support a more flexible subtyping for the object-oriented paradigm. A

key feature of this combination is the variance. We have formulated and implemented a novel

framework based on flow analysis and modular type checking to provide a simple but accurate

model for capturing variant parametric types. Our scheme fully supports casting for variant

parametric types with a special reflection mechanism, called cast capture to handle objects with

unknown types. Experiments indicate that more downcasts can be eliminated by our approach,

even when it is compared against the type system of Java 1.5.

viii

LIST OF FIGURES

2.1 The Syntax of Core-Java . 15

2.2 Subtyping Rules . 16

2.3 A fragment of the Type Rules . 17

2.4 A fragment of the Auxiliary Type Rules . 18

2.5 Lattice-based Subtype Satisfiability Complexity 29

2.6 Complexity of Subtype Satisfiability over Posets 29

2.7 Subtyping Entailment Complexity . 30

3.1 Region System Overview . 38

3.2 Region Types and Lifetime Constraints . 41

3.3 Memory Model based on Lexical Regions . 43

3.4 Pair Class . 45

3.5 List Class . 46

3.6 Region Subtyping Rules . 49

3.7 A Fragment of Core-Java Syntax. Multiple inheritance and exceptions are dis-
cussed in Appendix A.6, while casting is presented in Appendix A.4. 52

3.8 Region Type Checking Rules . 53

3.9 Auxiliary Region Checking Rules . 54

3.10 Region Type Checking Rules for Valid Intermediate Expressions 64

4.1 Core-Java input program . 70

4.2 Inference of Pair Class and Pair.setSnd Method 71

4.3 Initial Region-Annotation of Pair.example Method 72

4.4 Solving region constraints . 72

4.5 Region Inference Result for Pair.example Method 73

4.6 Auxiliary Rules for Region Inference . 74

4.7 Region Inference Rules for a Class . 77

4.8 Region Inference Rules for Expressions . 79

4.9 Example with Circular Structure . 81

4.10 Region Inference Rule for a Method . 84

4.11 Fixpoint Iteration for Recursive Method . 86

4.12 Overriding Check Resolution . 88

4.13 Triple Class . 89

LIST OF FIGURES ix

4.14 Region Inference for Mutually Recursive Declarations 91

4.15 Example of Mutually Recursive Classes . 92

4.16 Region Analysis Measurements . 100

4.17 Statistics of Dynamic Memory Consumption: Part I 101

4.18 Statistics of Dynamic Memory Consumption: Part II 102

5.1 A Rich Subtyping Hierarchy . 111

5.2 Examples with Variant Parametric Types . 123

5.3 Variant Parametric Subtyping . 125

5.4 Syntax of Variant Parametric Core-Java. Primitive types are discussed in Sec-
tion 5.9, while exceptions can not have generics types. 127

5.5 Type Promotion . 130

5.6 Class Invariant . 131

5.7 Variant Parametric Type Rules . 134

5.8 Results for Library Code . 141

5.9 Results for Application Code . 141

5.10 Remaining Casts for Application Code . 142

A.1 Dynamic Semantics for Region-Annotated Core-Java: Part I 163

A.2 Dynamic Semantics for Region-Annotated Core-Java: Part II 164

A.3 Constituent Dependencies Inference for Expressions 192

A.4 Override Checks for a Method . 193

A.5 Program Fragment with Downcasts . 194

A.6 Program Fragment with Downcasts . 198

A.7 Region Subtyping Rules for Downcast . 199

A.8 Region Coalescing Analysis . 204

A.9 Region Handles Analysis for Expressions . 205

A.10 Region Handles Analysis for Methods . 205

B.1 Dynamic Semantics for Variant Parametric Core-Java: Part I 213

B.2 Dynamic Semantics for Variant Parametric Core-Java: Part II 215

B.3 Type Rules for Intermediates . 216

1

CHAPTER 1

INTRODUCTION

Improving software quality is one of the most challenging problems facing software industry

today. Software engineering methods, development tools, and programming languages all work

together to accomplish this goal. Software quality consists of many aspects, however this disser-

tation focuses on only two of them, namely memory safety via region types and software reuse

via generic types.

An important component of development tools used to improve the software quality is static

program analysis. Static program analysis, as defined by Nielson et al. in [132], can be regarded

as a collection of “compile-time techniques for predicting safe and computable approximations

to the set of values or behaviours arising dynamically at run-time when executing a program”.

Design and implementation of type systems has been one of the most active fields in static

program analysis research over the last years. Among the multitude of proposals for statically-

checked program annotations, types are the most pervasive. Type checking has been received

with open arms by the software industry. Nearly all mainstream languages have been equipped

with type systems to detect errors at compile time. In many languages, programmers must

include type annotations in their source code. On top of these type annotations a large number

of type-based analyses have been developed [141].

1.1 Thesis

In the context of developing novel sophisticated type-based program analyses for object-oriented

languages we propose the following thesis: a simple flow analysis tracing partially-ordered

type annotations can produce advanced type systems with practical benefits for object-oriented

languages.

Standard type systems ensure simple safety properties at compile time. The specification of

these properties is given by the types’ semantics. More complex safety properties are enforced

by advanced type systems and their related static analyses. Advanced type systems can be

obtained by augmenting the semantics of the standard types with additional static information.

CHAPTER 1. INTRODUCTION 2

A common approach is to decorate the standard types with some annotations.

In the context of the object-oriented languages, our type decoration consists in parameter-

izing a class type with additional annotations that can refer to a property of the object itself

but also to the properties of the object fields. An annotation can take values from a partially-

ordered domain, without being restricted to atomic properties. The partial order is used to define

a subtyping relation on the annotated types.

The main ingredient is a simple flow analysis, by which we mean an analysis that is flow-

insensitive inside the method body and context-sensitive at the method boundaries. A flow-

insensitive analysis ignores the order of updates and therefore it can be considered to model

all statements interleavings. A context-sensitive flow analysis can distinguish between differ-

ent calling contexts of a method and does not allow information from one caller to propagate

erroneously to another caller of the same method.

The main role of flow analysis is to trace the properties denoted by the type annotations

through the source code level terms. However our simple flow analysis is limited to proving

only program properties which are true throughout the whole execution of a method. The flow

analysis is directly encoded in the type rules of the advanced type system. The subtyping relation

of the annotated types provides suitable directions for the flow. As a consequence, the type

rules of the resulting advanced type system generate flow (subtyping) constraints among the

annotations (rather than equalities).

A type system has practical benefits if it can satisfy the following basic requirements de-

fined by Cardelli in [32]: decidably verifiable, transparent and enforceable. The first property

means that the typechecking algorithm can ensure that a program is well typed. Indeed, most

type systems are simple enough for typechecking to be decidable. A typechecking algorithm is

decidable if it is able to automatically verify that the types provided by the programmer (assum-

ing that the programmer supplies sufficient type information) are correct and that the program

indeed has the specified type. However, in the case of advanced type systems where more com-

plex properties are verified, the typechecking algorithms may not be able to take a decision

(namely either accept or reject the program) and therefore they may not terminate. However if

sound approximations can be applied for the non-terminating situations, those type systems still

have practical benefits. The idea is to trade off completeness for the possibility to verify more

complex properties. The second property, transparency ensures that the programmer is able

CHAPTER 1. INTRODUCTION 3

to predict whether a program typechecks and the reason for the failure when the typechecking

fails. Annotated types can be quite complex. However we believe that the use of flow analysis

guided by subtyping is a natural and easy way to understand them. The third property, enforce-

able refers to the possibility of run-time checking of those type declarations which cannot be

statically verified.

Type-based program analyses are based on the type checking and/or type inference algo-

rithms developed for the advanced type systems. Using the properties of type-based analyses

described by Palsberg in [141], we introduce the requirements for the type checking and type

inference algorithms to have practical benefits as follows: simplicity, efficiency, precision and

correctness. Simplicity ensures that the algorithms are easy to implement and integrate into a

compiler. Efficiency ensures that the algorithms can be scaled to larger programs. Precision is

very important. However, algorithms which are less precise but computationally cheaper, may

be preferable in practice. We have already taken such a decision by adopting a flow-insensitive

analysis rather than a more precise flow-sensitive one. Correctness is proven using standard type

theory techniques, namely it can be stated as a type soundness theorem. The well-understood

method for proving type soundness based on proving type preservation and progress can be

extended to annotated types.

1.2 Applications

The overall goal of our dissertation is to prove our thesis by developing advanced flow-based

type systems that improve on software quality. In the context of Java-like object-oriented lan-

guages, our dissertation addresses two important applications towards this goal, as described

next.

1.2.1 Safe Region-based Memory Management

Modern object-oriented programming languages provide a run-time system that automatically

reclaims memory using tracing garbage collection [203]. A correct garbage collector can guar-

antee that the memory is not collecting too early, and also that all memory is eventually re-

claimed if the program terminates. However the space and time requirements of garbage-

collected programs are very difficult to estimate in practice. Therefore real-time and embedded

software tries to avoid the use of garbage collectors. Many different solutions were proposed for

these problems such as either real-time garbage collectors, or safe manual memory management,

CHAPTER 1. INTRODUCTION 4

or safe automatic compile-time memory management.

In the context of a safe automatic compile-time memory management, our goal was to

develop an automatic region type inference system for object-oriented languages. Region-based

memory management systems allocate each new object into a program-specified region, with

the entire set of objects in each region deallocated simultaneously when the region is deleted.

The basic ideas of a region type system and the first region type inference algorithm for a simply

typed lambda calculus have been proposed in Tofte and Talpin’s seminal work [191]. Later on,

several projects have investigated the use of region type systems for Java-like object-oriented

languages [41, 23] and C-like imperative languages [80], but without providing an automatic

region type inference. They have mostly focused on region type checking, which requires an

additional effort for the programmer to augment the program with region annotations.

1.2.2 Software Reusability via Better Generic Types

In object-oriented programming a large software is built by combining different small objects

into a large object, thus making the software reusability (also called genericity) one of the most

important issue. Traditionally, most mainstream object-oriented languages, such as Java, C++

and C#, have relied on subtype polymorphism to support software reusability. Subtype poly-

morphism is a nominal relation, based on a class hierarchy declared by the programmer. This

mechanism is convenient since it allows storage of objects via safe upcast into generic data

structure. However it is not expressive enough because the converse process of retrieving ob-

jects from the generic data structure requires the programmers to insert explicit type casts for

downcast testing at run-time. This results in losing the benefits of static type checking (safety

at compile time) and also in incurring the run-time overheads. To address these shortcomings,

there have been several recent proposals (amongst the Java [24], C++ templates, and C# [107]

communities) for parametric polymorphism to be supported. Parametric polymorphism allows

parametric types and supports structural subtyping. Parametric types can be obtained by adding

type parameters to class types. In general, type parameters denote the types of the object fields.

However structural subtyping has been restricted to invariant subtyping because fields reading

and fields writing are based on opposite flows that change the subtyping direction. To ad-

dress this shortcoming, variant parametric types (or VPT, in short) have been developed [104].

Variant parametric types represent a successful result of combining subtype polymorphism with

CHAPTER 1. INTRODUCTION 5

parametric polymorphism to support a more flexible subtyping for the object-oriented paradigm.

The key feature of this combination is the variance. Depending on how the fields are accessed,

each variance denotes a covariant, a contravariant, an invariant, or a bivariant subtyping. Vari-

ant parametric types have been adopted in Java 5 [194, 78] under the name wildcard types by

improving the original VPT proposal [104].

In this context, our goal was to develop a novel flow-based approach for variant parametric

types. The current model of variant parametric types is based on existential types. We believe

that flow analysis is more easy to understand by the programmers and it can also improve the

precision of typechecking.

1.3 Our Methodology

We use a common methodology to accomplish our goals. Our methodology is designed for

type-based value flow analyses which are performed on a Java-like object-oriented language.

This section presents the main aspects of our approach and concludes with our methodology’s

key steps.

Our Applications as Type-based Value Flow Analyses. A value flow analysis can answer the

question “whether any value appearing at a program point, P1, flows to another program point,

P2”. In general, a flow analysis assumes that each subexpression e of a program is labeled with

a label L. Thus, the above question becomes “whether L1 flows into L2”, where L1 and L2 are

the labels of program subexpressions e1 and e2, respectively. Moreover, a type-based value flow

analysis assumes that the subexpressions labels also decorate the program types and therefore

it computes the program values flow from the type derivation of the program. More concretely,

the possible flow between two subexpression e1 and e2 is computed by comparing their derived

types. However, a type-based flow analysis is not restricted to tracing program points labels,

as it can also trace more complex static information over the value flow. The static information

can decorate the types generating the annotated types. We modeled both our applications as

type-based value flow analyses.

The first application, region analysis, traces the regions (namely the memory zones where

the objects are allocated) throughout the program using the region types associated to each

program object. At each program point, it can conservatively compute the set of live regions,

namely the memory zones which are still possibly required by the program. The set of live

CHAPTER 1. INTRODUCTION 6

regions is computed by analysing the region type of the program point expression and the region

types of the free program variables. The regions that are not live can be deallocated.

The second application, genericity analysis, traces the content of the generic data structures

throughout the program using the generic types. The analysis can conservatively compute the

values which may be read/written from/into each generic data structure. Based on the types of

these values, a more precise generic type is computed for the content of each program generic

data structure. As a result, a part of the type casts inserted by the programmers (requiring

run-time checks) can be proven to be redundant at compile time.

From Annotated Types to Flow (Subtyping) Constraints. Type annotations can take values

from a finite or infinite domain (not restricted to atomic properties), e.g. {a1, a2...}. The domain

is partially-ordered, namely there is a reflexive, transitive and anti-symmetric ordering relation

(not necessary a lattice) on it. The ordering relation <:a defines a subtyping relation on the

annotations, e.g. a1<:aa2.

Our type annotation consists in parameterizing a class type with additional annotations. For

example, given a class declaration class Cell {Object fst; }, the annotated class declaration is

class Cell〈a1, a2〉 {Object〈a2〉 fst; }, where a1 denotes a property of the object, while a2 de-

notes a property of the object field fst. Note that a1 and a2 are annotation variables. Therefore,

the annotated class declaration has polymorphic annotations such that each instance of that class

can use different annotations, e.g. Cell〈a1, a2〉, Cell〈a3, a4〉. Polymorphic annotations allow us

to distinguish unrelated instances of the same class.

Class subtyping is also extended to take into account the annotations. Annotated types sub-

typing is expressed in terms of subtyping constraints. For example, Object〈a1〉 <: Object〈a2〉

holds if a1 <:a a2 holds. In general, subtyping constraints may contain both annotations and

types.

Using subtyping constraints, program value flow can be expressed as an asymmetric relation,

namely subtyping can capture not only the flow, but also its direction. For example, given a func-

tion of type Object〈a2〉 → Object〈a3〉 and an argument of type Object〈a1〉, standard language

semantics state there is a flow from the argument to the function’s domain, not vice versa. With

subtyping, the argument type is a subtype of the domain type, namely Object〈a1〉 <: Object〈a2〉,

CHAPTER 1. INTRODUCTION 7

which in turn is satisfied if a1 <:a a2. The subtyping constraint a1 <:a a2 becomes a flow con-

straint expressing that values arising at expressions characterized by the property a1 flow to

expressions characterized by the property a2. Without using subtyping, value flow is captured

as a symmetric relation, meaning that the argument and the function’s domain have the same

type. If two expressions have the same type, then there is a potential flow from the first expres-

sion to the second expression, and also vice versa. Thus, without using subtyping the flow is

imprecisely captured.

Modularity. Modularity is admitted to be the key property of a static analysis that allows it

to scale to large programs. Another important benefit is that modular analyses support separate

compilation.

Modularity concept has many different definitions in the literature, this dissertation uses the

definition found in [118]: “a static analysis is modular if a program can be decomposed into

components (decomposability) which are analyzed separately (understandability) and whose

results can be merged together in order to obtain a result valid for the whole program (compos-

ability)”. In [118] the modularity is defined at the class level since that approach looks for the

class invariants which are preserved by all class methods. However in our approach we exploit

the modularity at the method level. Thus we split the class invariant into two parts: one part

that has the same role as the class invariant of [118], namely it has to be preserved by each

instance of the class and the second part that capture the effect from invoking a method. The

second part is contained in the method precondition and has to be preserved only by those class

instances which may invoke that method. Given the following class declaration, class invariant

and method precondition are specified after the keyword where at the class level and the method

level, respectively:

class Cell〈A1, A2〉 where A1 <:a A2 {

Object〈A2〉 fst;

void set〈A1, A2, A3〉(Object〈A3〉 o) where A3 <:a A2 {this.fst=o;} }

A class invariant expresses a relation among the class annotations. A method precondition ex-

presses a relation among the method’s visible annotations, namely the annotations of the method

receiver, method arguments and method result. Method body may contain other annotations for

the local declarations, but those are not visible out of the method. Thus, a method precondi-

tion is a polymorphic summary parameterized in terms of the visible annotations. The visible

annotations usually occur as the method’s annotations parameters (e.g. set〈A1, A2, A4〉).

CHAPTER 1. INTRODUCTION 8

We adopt a summary-based approach in order to have context-sensitive analyses. A context-

sensitive analysis can distinguish between different calling contexts of a method and does not

allow information from one caller to propagate erroneously to another caller of the same method.

For example, considering the following code fragment:

Cell〈A1, A2〉 c1; Cell〈A3, A4〉 c2; Object〈A5〉 o1; Object〈A6〉 o2;

... c1.set〈A′1, A′2, A′3〉(o1);

//A′3 <:a A′2∧Cell〈A1, A2〉 <:Cell〈A′1, A′2〉∧Object〈A5〉 <:Object〈A′3〉

... c2.set〈A′′1 , A′′2 , A′′3 〉(o2);

//A′′3 <:a A′′2∧Cell〈A1, A2〉 <:Cell〈A′′1 , A′′2 〉∧Object〈A6〉 <:Object〈A′′3 〉

The corresponding flow subtyping constraints are marked as comments after each method call.

At each call site of the method set, the method summary is instantiated with fresh annotation

variables. The link between the current call context and the fresh method summary is performed

by subtyping. Thus the current types of method receiver and method arguments are subtypes of

the formal types of the method receiver and arguments. The formal types are expressed in terms

of the fresh annotation variables.

Our type checking analyses are designed in a modular fashion on a per method basis. The

type annotations (including the method preconditions) are provided by the programmer based on

the following modularity principle: type annotations appearing in the method header should de-

pend only on the method body, while each call site should be a specific instance of the method’s

type declaration. This principle is also important for easier understanding of type annotations.

We aim for interprocedural type inference analyses that infer all the type annotations includ-

ing the method’s signatures. We design our type inference analyses as summary-based analyses

guided by the dependency graphs. Each method is analyzed once to produce a polymorphic

parameterized summary that can be specialized for use at all of the call sites that may invoke

that method. A dependency graph can order the methods such that when a method is analyzed,

the summaries of all the methods that it invokes are known.

Simplicity. There is an important distinction between flow-insensitive analyses, which tend

to be simple and efficient, and flow-sensitive analyses, which are more precise but usually do

not scale well to large programs. Flow-insensitive analyses can prove properties about a piece

of code that are true throughout the whole execution of that code. In contrast, flow-sensitive

analyses can prove properties that may change from one program point to another. An analysis is

CHAPTER 1. INTRODUCTION 9

considered to be flow-sensitive or flow-insensitive based on whether or not it takes into account

the order of destructive updates.

Flow-insensitive analyses ignore the order of updates and consider all possible interleavings

of statements. In addition, the types of values remain the same everywhere in the program.

Applying a flow-insensitive analysis on the following code fragment:

//{x:Object<a0>, x1:Object<a1>, x2:Object<a2> }

x=x1; // a1 <:a a0

//{x:Object<a0>, x1:Object<a1>, x2:Object<a2> }

x=x2; // a2 <:a a0

//{x:Object<a0>, x1:Object<a1>, x2:Object<a2> }

produces two flow constraints (marked as comments after each assignment). Those two flow

constraints approximate the possible interleavings of the assignments. As can be seen, the types

of x, x1 and x2 are the same before and after each assignment (the types are specified inside the

curly brackets).

In contrast, flow-sensitive analyses take into account the order of updates and perform strong

updates. Applying a flow-sensitive analysis on the same code fragment:

//{x:Object<a0>, x1:Object<a1>, x2:Object<a2> }

x=x1; // a1 <:a a0

//{x:Object<a1>, x1:Object<a1>, x2:Object<a2> }

x=x2; // a2 <:a a1

//{x:Object<a2>, x1:Object<a1>, x2:Object<a2> }

produce two flow constraints which take into account the fact that the analysis performs strong

updating (annotated type of x is changing after each assignment). Modeling strong updates

requires must alias information that usually can be computed by complex global analyses.

In general, there are two aspects of the flow: the flow through program variables (shown by

above example) and the flow through the object fields. In the case of flow through program vari-

ables, flow-insensitive analyses can produce the same results as those of flow-sensitive analyses,

if the programs are written in Static Single Assignment (SSA) form.

Our approach employs a simple flow-insensitive analysis to collect the flow constraints and

therefore it can avoid the aliasing problem. Another direct consequence is that in our approach

the method precondition holds throughout the whole method execution, namely it holds at the

method entry-point, but also the method exit-point. The method caller must ensure the method

precondition at the method entry-point, while the method itself must ensure its precondition

CHAPTER 1. INTRODUCTION 10

at its exit-point. Thus our analyses do not require a separation between a method precondition

(holding only at the method entry-point) and a method postcondition (holding only at the method

exit-point).

Object-Oriented Features. Three main features characterize object-oriented languages: class

inheritance, method overriding, and downcasting.

Class inheritance allows a class to be extended with new features to create a subclass such

that the subclass can be used in place of the original class. Thus, the annotated type that corre-

sponds to the subclass should be a subtype of the annotated type corresponding to the original

class. In addition, the invariant of each subclass should be a strengthening of the parent class’

invariant.

Each overriding method should be a subtype of its overridden method, which means that

overridden’s method precondition should imply the overriding method’s precondition [116, 36].

This safety condition may affect the inference analyses. An additional dependency, that indi-

cates that overridden method depends on its overriding method, must therefore be added to the

dependency graph to guide the inference process. As a consequence, the inference analyses

typically require the whole class hierarchy to be known.

In general, a downcast operation may be type unsafe if the object in question is not the

subtype that was expected. For the case of the annotated types, a downcast may also be unsafe

because the actual annotations of the object in question are not in subtype relation with those

annotations which were expected.

Key Steps. Since our type-based flow analyses eventually produce and solve flow subtyping

constraints, we can regard them as constraint-based analyses. Aiken [6] defines a constraint-

based analysis as consisting of two parts: constraint generation, that is the analysis specification,

and constraint resolution, that is the analysis implementation. We use a similar approach, but

we focus more on the analysis specification part defining the following key steps:

1. design the semantics and domain of type annotations,

2. design the ordering relation on the type annotations domain (defining the annotations

subtyping relation),

3. design the rules to annotate the types,

CHAPTER 1. INTRODUCTION 11

4. design the subtyping rules of the annotated types,

5. design the flow (subtyping) constraints language,

6. design the simplification rules of the flow (subtyping) constraints,

7. design the type system (type checking) rules, and

8. design the type inference rules.

Since the type system is the target of the inference algorithm, the type checking rules are always

defined first. In addition, we use the type checking system to help prove the correctness of the

inference algorithm, and validate its execution runs.

1.4 Technical Contributions

This dissertation is based on the materials published in [40, 39, 46, 45, 47] and it makes two

main technical contributions which are highlighted below:

1. A Region Type Inference System for a Java-like Object-Oriented Language

• Region Type System: We have formulated and implemented a region type system

as a target for our region type inference. The region type system guarantees that

well-typed programs use lexically scoped regions and do not create dangling refer-

ences in the store and on the stack. Although our type system is similar to SafeJava’s

type system of Boyapati et al. [23], there are three main differences: (1) we isolated

the object encapsulation issue in our type system, (2) we added support for region

subtyping by adapting the region subtyping principle from Cyclone [80], and (3) we

provided a rigorous soundness proof for our region type system (note that SafeJava

does not provide a formal proof for its region type system).

• Region Type Inference: We have formulated and implemented the first region type

inference system for a Java-like object-oriented language. Our inference analysis is

designed as a summary-based flow-insensitive analysis that automatically infers all

the region annotations of the classes and methods. To provide an inference algorithm

that is both precise and practical, we support classes and methods that are region-

polymorphic, with region-polymorphic recursion for methods. Object-oriented fea-

tures such as class inheritance, method overriding, and downcast operations are fully

CHAPTER 1. INTRODUCTION 12

handled by our analysis. We have also proven that our region type inference algo-

rithm is correct with respect to our region type system.

• Experimental Validation: We have implemented a prototype of our region infer-

ence system and we have run some experiments on medium-sized benchmarks. Pre-

liminary results that we have obtained are encouraging. The programs based on our

inferred regions were able to reuse significant amount of memory for most of the

cases where data was not live throughout the execution. The experiments suggest

that our results are competitive when compared to those that are hand annotated by

human experts, and comparable also to the approach based on non-lexically scoped

regions with no-dangling-access [37]. The experiments also suggest that our region

inference analysis is fast in terms of analysis time and reasonable with respect to the

number of region parameters.

2. A Flow-based Approach for the Variant Parametric Types

• Flow-based Approach: Our framework is based on a value flow analysis which

can concisely and intuitively capture flow of values on a per method basis. We

use variance annotations primarily to predict the flows of values, and not for access

control. In contrast, the existing approaches [103, 193] view variant parametric type

system as a special case of the existential type system with subtyping.

• Modular Type Checking: Each method is specified with a flow constraint (and

variant parametric types) that is used to predict the value flows that may occur in

the method’s body. We verify each method separately to ensure that the predicted

accesses, flow constraint and variant parametric typings are efficiently and safely

checked. In contrast, the existing approaches [103, 193] use a typechecking per

class approach rather than a per method approach.

• Casting and Cast Capture: Our system supports full casting for variant paramet-

ric types. In contrast, Java 1.5 restricts the downcast mechanism to the outer type

constructor [128]. We also advocate a novel cast capture mechanism, that uses re-

flection technique to handle objects with unknown types in a type-safe way. Cast

capture mechanism help us obtain more precise generic typings for several JDK 1.5

libraries.

CHAPTER 1. INTRODUCTION 13

• Experimental Validation: We have implemented a prototype of our variant para-

metric type checker and we have run the experiments on a suite of Java libraries and

some large-sized Java applications. The experiments suggest that more downcasts

can be eliminated by our approach, even when it is compared against the state-of-

the-art type system from Java 1.5. On average, we are able to eliminate 87.9% of

the casts from non-generic Java 1.4 application code, that means 12.9% more casts

than wildcard-generic Java 1.5 application code.

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows.

Chapter 2 provides basic background about the underlying technologies of our work: type

systems, type-based flow analyses, and flow subtyping constraints. It also introduces a core

object-oriented Java-like language, called Core-Java on top of which we have developed our

work.

Part I of our dissertation, consisting of Chapter 3 and Chapter 4, presents our first applica-

tion, a safe region-based memory management for a Java-like language. Chapter 3 introduces

the main concepts and formalizes our region type system. Chapter 4 presents our region infer-

ence, the experimental results and concludes with a discussion of related work.

Part II of our dissertation, consisting of Chapter 5, presents our second application, a better

genericity for a Java-like language. Chapter 5 presents our flow-based approach for typecheck-

ing variant parametric types, the experimental results and concludes with a discussion of related

work.

Part III of our dissertation, consisting of Chapter 6, concludes the dissertation and also

discusses some perspectives for future work.

14

CHAPTER 2

UNDERLYING TECHNOLOGIES

In this chapter we provide a brief coverage of the underlying technologies used in our work:

type systems, type-based flow analyses, and flow subtyping constraints. Section 2.1 provides

some basic background on type system and introduces a standard type system for a core object-

oriented Java-like language (called Core-Java). Section 2.2 provides a background on type-

based flow analyses and illustrates the main concepts using our two applications. Section 2.3

provides a background on flow subtyping constraints solving.

2.1 Standard Type Systems

Type systems for programming languages are designed to provide several important functions:

• Safety: The main purpose of a type system is the prevention of run-time errors when exe-

cuting a program. Type systems are used to distinguish between well-typed and ill-typed

programs. This can be summarized by Milner’s famous slogan: Well-typed programs

cannot go wrong [121].

• Optimization: A type system can provide additional information to a compiler in order to

support various optimizations (e.g. make runtime testing unnecessary).

• Documentation: Type annotations can be used as a form of documentation.

• Abstraction: Types force programmers to think at a higher level of abstraction in pro-

gramming.

Languages like Haskell, ML, Java, C++, and C# are typed languages since the program

variables can be given types. Typed languages may enforce static checking by rejecting all

programs that are potentially unsafe at compile time. In contrast untyped languages like Lisp

may enforce dynamic checking by performing run-time checks. A language is type sound if any

given well-typed program does not produce a run-time error. Therefore a type sound language

does not require run-time checks. Since type systems are not expressive enough to capture all

kinds of properties, typed languages may also use a mixture of run-time and static checks. For

CHAPTER 2. UNDERLYING TECHNOLOGIES 15

P ::= def∗ (program)
def ::= class cn1 extends cn2 implements cn∗ (class decl)

{(τ f)∗ meth∗} (class body)
| interface cn1 extends cn2 (interface decl)
{(τ mn((τ v)∗) throws cn∗ {})∗} (interface body)

prim ::= int | boolean | void (primitive type)
τ ::= cn | prim | ⊥ (type)
meth ::= τ mn((τ v)∗) throws cn∗ {e} (method decl)
lhs ::= v | v.f (location)
e ::= null | lhs | k (expression)

| {(τ v) e} (block decl)
| new cn(v∗) | lhs = e
| v.mn(v∗) | e1 ; e2 | (cn)v
| if v then e1 else e2 | while v e
| throw v | try e catch (c v e)

cn ∈ class/interface names mn ∈ method names
f ∈ field names v ∈ variable names
k ∈ integer or boolean constants

Figure 2.1: The Syntax of Core-Java

example, Java requires run-time checks for the cast operations. More technical issues that arise

from the study of type systems can be found in [32, 151, 26].

In this dissertation we explore object-oriented Java-like languages. Figure 2.1 shows the

syntax of our core object-oriented language, called Core-Java. Core-Java is designed in the

same minimalist spirit as the pure functional calculus Featherweight Java [102], but it supports

imperative features (assignments). In contrast to the other imperative calculi for Java (e.g. Mid-

dleweight Java [15]), Core-Java does not allow statements, remaining an expression-oriented

calculus. The expression-oriented calculi are more suitable for the type-based analyses, since

they make easier the formulation of the static and dynamic semantics. The full syntax of Core-

Java and the translation rules of Java programs into Core-Java programs are given in [45]. We

use the following Core-Java example:

class Cell extends Object {

Object fst;

Object getFst() {fst}

void set(Object o) {fst=o}

}

class Pair extends Cell {

Object snd;

Object getSnd() {snd}

CHAPTER 2. UNDERLYING TECHNOLOGIES 16

[SubClass]
class cn extends cn′ implements cn1..cnk · · · ∈ P

P ` cn′<:cn′′ ∨ P ` cn1<:cn′′ ∨ ... ∨ P ` cnk<:cn′′

P ` cn<:cn′′

[Bottom]

P ` ⊥<:cn

[Top]

P ` cn<:Object

[Reflexivity]

P ` τ<:τ

[Transitivity]
P ` τ1<:τ2 P ` τ2<:τ3

P ` τ1<:τ3

Figure 2.2: Subtyping Rules

void set(Object o) {fst=o;snd=o}

}

to illustrate some of the key features of the object-oriented languages as follows:

• class-based languages: A class forms a template for the generation of new objects. It

consists of fields and methods. A new object is created by new expression that invokes a

constructor. A field is accessed using an expression of the form v.f where v denotes an

object and f is a field name. To invoke a method, an expression of the form v.mn(v∗) is

used, where v denotes an object.

• inheritance allows reuse of implementation: Each class declaration specifies its superclass

after the keyword extends. The class Pair, called subclass of the class Cell, inherits

Cell’s definitions of the fields (e.g. fst) and methods (e.g. getFst). A subclass can

also override an inherited method definition. For instance the class Pair overrides the

method set of the class Cell.

• types and subtyping: Each class declaration introduces a new type of the same name as

the class. For example, objects instantiated from class Cell belong to the type Cell.

The subclass relations induces a subtyping relation. For instance Cell is a supertype

of Pair, and, conversely, Pair is a subtype of Cell. The class Object serves as the

top type, which is the supertype of all types, while type ⊥ is the subtype of all types.

Subtyping guarantees the principle of safe substitution [115]: if S is a subtype of T then

any expression of type S can be safely used in any context that expects an expression

of type T. For example, considering the expression v.set(o) where the variable v is

CHAPTER 2. UNDERLYING TECHNOLOGIES 17

[PROG]
WFClasses(P) P = defi:1..n FieldsOnce(def)i:1..n MethodsOnce(def)i:1..n

P ` InheritanceOK(def)i:1..n P `def defi:1..n
` P

[CLASS]
def=class cn extends c implements c1..cn {field1..p meth1..q}

P ` InterfaceOK(ci, {meth1, ..,methq}) i = 1..n
P; {this : cn} `meth methi i = 1..q

P `def def

[METH]
P; Γ + (vj : τj)j:1..p ` e : τ0

P; Γ `meth τ0 mn((τj vj)j:1..p){e}

[BLOCK]
P; Γ + (v : τ ′) ` e : τ
P; Γ ` {(τ ′ v) e} : τ

[NULL]
P ` ⊥<:τ

P; Γ; R;ϕ ` null : τ

[VAR]
(v : τ ′) ∈ Γ
P ` τ ′<:τ

P; Γ ` v : τ

[FIELD]
(v : cn) ∈ Γ

(τ ′ f) ∈ fieldlist(P, cn) P ` τ ′<:τ
P; Γ ` v.f : τ

[RC−NEW]
P ` cn<:τ fieldlist(P, cn) = (τi fi)i:1..p

(vi : τ ′i) ∈ Γ P ` τ ′i <: τi i = 1..p
P; Γ ` new cn(v1, .., vp) : τ

[ASSIGN]
P; Γ `i lhs : τ P; Γ ` e : τ

P; Γ ` lhs = e : void

[GET−VAR]
(v : τ) ∈ Γ

P; Γ `i v : τ

[GET−FIELD]
(v : cn) ∈ Γ (τ f) ∈ fieldlist(P, cn)

P; Γ `i v.f : τ

[CAST]
P ` cn<:τ

P; Γ ` (cn)v : τ

[SEQ]
P; Γ ` e1 : Object P; Γ ` e2 : τ

P; Γ ` e1;e2 : τ

[LOOP]
Γ ` v : boolean P; Γ ` e : void

P; Γ ` while v e : void

[IF]
Γ ` v : boolean

P; Γ ` e1 : τ P; Γ ` e2 : τ
P; Γ ` if v then e1 else e2 : τ

[INVOKE]
(v0 : cn)∈Γ P`(τ ′ mn((τi vi)i:1..n) {e}) ∈ cn

(v′i : τ ′i) ∈ Γ P ` τ ′i<:τi i = 1..n P ` τ ′<:τ
P; Γ ` v0.mn(v′1..v′n) : τ

Figure 2.3: A fragment of the Type Rules

given the type Cell. The variable v can be replaced by an object either of type Cell or

type Pair and the method invocation is correctly executed. It depends on the run-time

type of the object which method set (either from class Cell or Pair) is executed. This

mechanism is called dynamic dispatch. However the subtyping based on subclass is not

flexible. For example if an object of a class Triple has the method set, it is not allowed

to substitute the object for v unless Triple is a subclass of Cell. To improve flexibility,

Java has introduced interfaces. Core-Java supports multiple inheritance through interfaces

in the same restricted way as that supported by the Java language. Each class may extend

from only a single superclass but may implement multiple interfaces.

The type system of Core-Java consists of the following main judgments:

CHAPTER 2. UNDERLYING TECHNOLOGIES 18

P ` mbr ∈D cn
P ` mbr ∈ cn

mbr=field|meth
class cn...{...mbr...}∈P

P ` mbr ∈D cn

class cn extends cn′...∈P
P`mbr∈cn′ ¬(P`mbr∈Dcn)

P ` mbr ∈ cn

fieldlist(P,Object)=def []
class cn1extends cn2..{(τi fi)i:1..p..}∈P

fieldlist(P, cn1)=deffieldlist(P, cn2)++[(τi) fi]
p
i=1

P=def1..n defi=class cni extends cni′ ...
IR={(cni, cni′) | 1≤i≤n} ID={(cni, cni) | 1≤i≤n}

TransClosure(IR)∩ID=∅ ∀i, j:i6=j · cni 6=cnj
WFClasses(P)

def=class cn...{(fdj)j:1..p...}
∀j, l:j 6=l · name(fdj)6=name(fdl)

FieldsOnce(def)

def=class cn...{...(mj)j:1..q}
∀j, l:j 6=l·name(mj) 6=name(ml)

MethodsOnce(def)

def=class cn extends cn′... {fd1..p meth1..q}
∀j∈1..q·∃meth′·P`meth′∈cn′∧name(meth′)=name(methj)

⇒(P`OverridesOK(methj ,meth′))
P ` InheritanceOK(def)

interface c extends .. {meth’1..n}
{meth’1..n} ⊂ {meth1, ..,methq}

P ` InterfaceOK(c, {meth1, ..,methq})

meth = τ0 mn((τi vi)i:1..m)...
meth′ = τ ′0 mn((τi vi)i:1..m)...

P ` τ0<:τ ′0
P ` OverridesOK(meth,meth′)

Figure 2.4: A fragment of the Auxiliary Type Rules

• P ` τ1<:τ2 is the subtyping judgment denoting that the type τ1 is a subtype of the type τ2

with respect to the program P. In our type systems the program P is regarded as a class

table that contains all the class definitions. Subtyping relation of class types is defined in

Figure 2.2 as a reflexive and transitive relation.

• ` P denoting that a program P is well-typed. The type rule [PROG] of Figure 2.3 asserts

the validity of this judgment. The predicates (defined in Figure 2.4) in the rule premise are

used to capture the standard well-formedness conditions for the object-oriented programs

(such as no duplicate definitions of classes, no cycle in the class hierarchy, no duplicate

definitions of fields, no duplicate definitions of methods).

• P `def def denoting that a class declaration def is well-typed. The type rule [CLASS] of

Figure 2.3 asserts the validity of this judgment.

• P; Γ `meth meth denoting that a method meth is well-typed with respect to the program P,

and the type environment Γ. The type rule [METH] of Figure 2.3 asserts the validity of

this judgment.

• P; Γ ` e : τ denoting that the type τ is the expected type of the expression e with respect

CHAPTER 2. UNDERLYING TECHNOLOGIES 19

to the program P, and the type environment Γ. Validity of this judgment is defined by the

rules of Figure 2.3. These rules are type checking rules which verify whether the given

type τ is a valid type for the expression e with respect to the program P, and the type

environment Γ.

• P; Γ `i lhs : τ denoting that the type τ is the derived type of the expression lhswith respect

to the program P, and the type environment Γ. Validity of this judgment is defined by the

rules [GET−VAR] and [GET−FIELD] of Figure 2.3. These two rules are type inference rules

which derive a valid type τ for the expression lhs with respect to the program P, and the

type environment Γ.

Figure 2.4 shows the method overriding rule adopted in Java, where the overriding method

meth and the overridden method meth′ have the same types for their parameters, while the

type of the overriding method result is a subtype of the type of the overridden method result.

However, our advanced type systems described in this dissertation use a more general rule that

requires the overriding method to be a subtype of the overridden method. As proven in [36] for

an object-oriented language, the function subtyping is sound if the parameters (the receiver) that

drive dynamic method selection are covariant, the normal parameters are contra-variant, and the

result is covariant. In general, the function subtyping rule requires that all the parameters are

contra-variant, and the result is covariant, as follows:

` τ ′1<:τ1 ` τ2<:τ ′2
` τ1→τ2<:τ ′1→τ ′2

Given an unary type constructor F , the covariant subtyping, contra-variant subtyping, and in-

variant subtyping are defined as follows:

[Covariant]

` τ1<:τ2
` F (τ1)<:F (τ2)

[Contra−variant]

` τ2<:τ1
` F (τ1)<:F (τ2)

[Invariant]

` τ1<:τ2 ` τ2<:τ1
` F (τ1)<:F (τ2)

In general covariant subtyping is used for reading, contra-variant subtyping is used for writing,

while invariant subtyping is used for both reading and writing.

Another important feature of an object-oriented language is exception handling. This fea-

ture is used to handle unusual conditions that may lead to errors, unless some remedial actions

are taken. In Core-Java an exception may be generated either by throw expression or by calling

a method that is supposed to throw exceptions and it is handled by try..catch expression.

To manage the different categories of flow, the type rules are extended to a pair of types, (nor-

mal execution type, exceptional type) similar with [55] to represent the type of an expression:

CHAPTER 2. UNDERLYING TECHNOLOGIES 20

P; Γ ` e : τn#τa, where τn is the normal type that characterizes normal execution of the expres-

sion and τa that is the exceptional type that characterizes the exceptional execution of e.

In our dissertation we prove the soundness of a type system using the proof techniques

from [204, 151] based on an operational semantics. The operational semantics for a program-

ming language describes how a valid program is interpreted as sequences of computational

steps. The soundness theorem consists of two properties that make a strong connection between

static semantics (type system) and dynamic semantics (operational semantics):

• Type Preservation or Subject Reduction ensures that the well-typedness of a program is

preserved under the evaluation rules of the language.

• Progress ensures that a well-typed program never gets stuck, that means it never gets into

a state where no further evaluation rules are possible.

Note that well-typedness is related to the type system, while getting stuck is a property of the

operational semantics.

Another important issue of a type system is the type inference. The type checking rules

shown in Figure 2.3 depend on the explicit type annotations of the variable and method decla-

rations. Type inference is the problem of finding a type for an expression within a given type

system, when the type environment is given. The most general type that can be found, if any,

is called principal type. Type inference is sound if the derived type is a valid type for the given

expression with respect to the given type system. Whenever there is a type for the given expres-

sion with respect to a given type system, its corresponding type inference algorithm is said to

be complete if it can derive that type. Type reconstruction consists in starting with an untyped

expression and computing a type environment, a type annotated version of that expression, and

a type for the annotated expression with respect to the computed type environment. The solu-

tion that imposes minimal assumptions on the free variables of the given untyped expression

is called principal typings. In the presence of subtyping and polymorphism, type inference is

either difficult [8, 135, 105, 66, 59, 195, 157] or even undecidable [201, 108, 92].

Traditionally, most mainstream object-oriented languages such as Java, C++ and C#, have

provided only inclusion (or subtyping) polymorphism supported by class inheritance. While this

mechanism allows the convenient storage of objects via safe upcast into generic data structures,

the converse process of retrieving objects from the same data structure requires downcast testing,

which incurs run-time overheads and is possibly unsafe. For example, an Integer object can

CHAPTER 2. UNDERLYING TECHNOLOGIES 21

be safely stored in the field fst (of type Object) of a Cell object, as follows:

Integer example(Cell cell, Integer a){

Integer b;

cell.fst=a; //safe upcast

b=(Integer) cell.fst; //explicit downcast

b }

However the field fst can only be read as an object of the same type as fst’s type, namely

Object. Therefore an explicit downcast to Integer is required. Note that this cast cannot be

checked by the type system (see rule [CAST] from Figure 2.3). This check is instead postponed

to run time.

To address the shortcomings of inclusion polymorphism, there have been several recent pro-

posals (amongst the Java [24] and C# [107] communities) for parametric types to be supported.

Here, each class is allowed to carry a list of type parameters for its fields:

class Cell〈A〉 { A fst; ...}

Each class type parameter A can either be instantiated or left as a type variable. With such pa-

rameterized class declarations, we may then define specialized instances, such as Cell〈Integer〉

or Cell〈Float〉, which contain more specific type information for the fields of each class in-

stance. Thus the explicit downcast of the previous example becomes redundant:

A example〈A〉(Cell〈A〉 cell, A a){

A b;

cell.fst=a; //safe

b=cell.fst; //safe

b }

A method which declares a type variable in its signature is called generic method. When a

generic method is invoked, it requires type parameters to be provided (e.g. example〈Integer〉

(cell,a)).

Though parametric types can coexist with class subtyping, an invariant subtyping is required

for the type parameters. For example, the subtyping relation Cell〈t1〉 <:Cell〈t2〉 is allowed

only when t1=t2. Invariant subtyping is required because field reading and field writing are

based on opposite flows that change the directions of the subtyping. This requirement limits

the re-usability of programs based on parametric types. In the second part of the dissertation

(starting with Chapter 5) we present advanced techniques that allow a more flexible subtyping.

CHAPTER 2. UNDERLYING TECHNOLOGIES 22

Existential types can also be used for object encoding to hide the types of object states [25, 2,

44, 153]. In general (bounded) existential types represent a type-theoretic basis of abstract data

types [123, 33]. An existential type is syntactically a type of the form ∃X.T , with the existential

quantifier on a type variable X. Since X is regarding as something unknown, existential types

can be used to hide some information (encapsulation of the abstract data types implementation).

A value of an existential type ∃X.T is constructed by a pair of a type U and a value v of type

[U/X]T (type T where U is substituted for the type variable X). Such a pair is often written

pack [U, v] as ∃X.T . Since U witnesses the existence of X, U is called a witness type. A value

of an existential type can be used by an expression of the form open p as [X,x] in e. It unpacks

a package p, binds the type variable X and the value variable x to the witness type and the

implementation, respectively, and evaluates e. Bounded existential types [33] allow existential

type variables to have upper bounds. For instance the type ∃X<:S.T means the type T where

X is some subtype of S. Bounded existential types correspond to abstract types, where partial

information of the implementation type is available. Subtyping of bounded existential types is

defined as follows:
` S1<:S2 X <: S1 ` T1<:T2

` ∃X<:S1.T1 <: ∃X<:S2.T2

2.2 From Type Systems to Flow Analyses

Type-based analysis is an approach to static analysis of programs that assumes that the pro-

grams are well-typed [132, 141]. Type-based analyses provide a natural separation between the

specification given by the type system and the implementation of the analysis. The types serve

as an infrastructure on top of which more complicated but efficient program analyses can be

built. Standard techniques from type theory can be applied to reason about the soundness and

completeness of the analyses.

Type-based analyses (and in general program analyses) require information about the possi-

ble flow of data within the program and the possible control paths through the program. These

two kinds of information are computed by value flow analysis. Therefore, some flow analysis is

at the conceptual and technical core of most of the type-based analyses.

Flow analysis considers a value generated or constructed at some program point, traces its

flow through the program, and computes all the places where it may be used or deconstructed.

The values can be any kind of data: atomic data such as integers, structured data such as records,

or higher-order data such as function closures. The flow analysis must be sound: whenever a

CHAPTER 2. UNDERLYING TECHNOLOGIES 23

value flow exists from a program point to another, the analysis must predict this. However

the analysis is not necessary complete: it may predict spurious flows from a program point to

another, which do not exist at execution time. An exact flow analysis that is formulated as a

decision problem is undecidable by Rice’s theorem [166].

Flow analysis for primitive values, called data flow analysis, has been used from the early

years of compilers [5]. Reynolds was first to study a flow analysis for records and tuples,

calling it data set analysis [165]. A similar flow analysis for structured values, called value flow

analysis was developed later by Schwartz [171]. Flow analysis for function closures has been

developed by Sestoft [173, 172] and Shivers [174, 175]. Sestoft has called it closure analysis,

while Shivers has called it control flow analysis. Shivers has also introduced a hierarchy of kCFA

of polyvariant flow analyses. Polyvariance allows several descriptions for a definition, one for

each context in which it is used. Polymorphic flow analysis was developed by Dussart, Henglein,

and Mossin in [58, 95, 126]. Palsberg and Schwartzbach [145, 146, 144] have introduced flow

analysis for object-oriented languages. In imperative languages, flow analysis was studied by

Horowitz, Reps and Sagiv [164, 168].

The equivalence between a type system and a flow analysis has been investigated by Pals-

berg and O’Keefe [142] and Heintze [87]. Palsberg and O’Keefe have studied which type in-

formation could be inferred from flow information. They have proven the equivalence between

a monomorphic flow analysis and a type system with recursive subtyping. From the other di-

rection, Heintze has studied which flow information could be inferred from a type derivation.

In essence, both approaches [142, 87] have proven the equivalence between a constraint based

analysis and a subtype based analysis.

In our dissertation, we adopted the approach of type-based flow analysis and we extended

the expressiveness of a type system by annotating the standard types with extra static infor-

mation. The static information is referred either as a flow label or as a flow property in [126],

as a type qualifier in [67, 68], or as an annotation. A classical example of annotations comes

from binding-time analysis [58] that uses two type annotations: static denoting values known at

compile time and dynamic denoting values which may not be known until run-time.

The approach taken in our flow-based type systems is similar to Foster’s flow-insensitive

type qualifiers [67] and Solberg’s type annotations [177]. However, our annotations are not

restricted to atomic properties. In addition, we consider our annotations more suitable for the

CHAPTER 2. UNDERLYING TECHNOLOGIES 24

object-oriented languages. The annotations are interpreted operationally as tags for the objects.

An object tag denotes a property of the object (including its fields). Our type systems model the

flow of the annotations through a program in order to estimate the program objects properties

at compile time. Type annotations are related to each other by a partial order [50], that allows

a subtyping relation over annotations. This allows a greater precision of the analysis since the

subtyping relation can produce constraints rather than equalities.

Our type-based analyses are based on the type checking and type inference rules of our

advanced type systems. Both type rules eventually produce flow subtyping constraints. Our

approach is similar to constraint-based approach for flow analyses, introduced by Palsberg

in [139]. However, we capture the flow of values on a per method basis rather than for the

entire program. Intuitively, our type checking process starts with a derivation tree of a Core-

Java method, where all annotated types (including the method precondition) are given by the

programmer. Using the method precondition and the annotated types of the method signature

(namely the annotated types of the method receiver, method arguments and method result), the

type checking rules verify the annotated types of each method body subexpression. In contrast,

our inference process starts with a Core-Java method, where all types are annotated with fresh

annotation variables, that each occurs only once. The method precondition is unknown at the

beginning. The type inference rules collect a set of flow subtyping constraints by analysing

each method body subexpression. This constraint set represents the principal flow annotation

that gives the most general description of the method. However, as in [126], we are interested

to find the minimal principal flow annotation that corresponds to solving all the local flow in-

formation that does not depend on input or free variables. In our case, this corresponds to the

inference of the method precondition by localizing all the annotation variables which do not oc-

cur in the annotated types of the method signature (namely method receiver, method arguments

and method results).

In our approach an annotated class declaration may also contain a class invariant, that ex-

presses in terms of flow subtyping constraints a safety condition that has to be preserved by each

instance of that class. It can also be regarded as a well-formed condition of the annotated type.

Our first application, described in Part I, is based on a region type system. We construct

region types by adding polymorphic region annotations directly to the standard monomorphic

types of Core-Java (Figure 2.1), without changing the structure of the underlying Core-Java

CHAPTER 2. UNDERLYING TECHNOLOGIES 25

type system. The general form of a region type is cn〈r1..rn〉, where cn is a class name and

the annotations r1..rn are region variables. The first region variable r1 is used to store the

object itself, while the rest of the region variables r2..rn are used to store the object fields. At

run-time the region variables are instantiated with memory regions.

Memory is organized as a stack of memory regions, on which the memory regions are allo-

cated and deallocated (Figure 3.3). The stack induces an ordering relation among the memory

regions lifetimes such that the memory regions with longer lifetimes (older regions) are allocated

at the bottom of the stack, while the memory regions with shorter lifetimes (younger regions)

are at the top of the stack. At static time, we use an outlive relation among region variables,

denoted by �, to model the runtime ordering relation among memory regions, such that r1�r2

means that the region variable r1 denotes a memory region whose lifetime is not shorter than

the lifetime of the memory region denoted by the region variable r2. In addition, our programs

use lexically scoped region variables.

The region subtyping principle is based on the outlive relation, as follows: wherever a region

is expected, it is always safe to provide a region with a longer or equal lifetime. This principle

is used to define the following region type subtyping relation: cn〈r1..rn〉 <:cn〈r1’..rn’〉

holds if r1�r1’ and r2=r2’,..,rn=rn’ hold. Since the first region is reserved exclusively

for the object itself, we can use region subtyping for it. However, the object fields are mutable

and therefore an invariant subtyping is required for their regions.

In summary, in the case of region types, the flow subtyping constraints denote the relations

among the region lifetimes. A class invariant expresses a no-dangling reference requirement,

that ensures that each class object never references another object stored in a region with a

shorter lifetime. A method precondition expresses the outlive relations among the method sig-

nature regions (namely the regions which annotate the method receiver, method arguments and

method result). Method body may allocate and deallocate local regions, but the only non-local

regions that it can used are those occurring in the method signature. Therefore the method

precondition reflects how the method body uses non-local regions, namely it specifies how non-

local regions must be organized on the region stack before the method execution. This region

stack organization remains the same after the method execution, since we use lexically scoped

regions. However some of the method signature regions may contain additional objects, allo-

cated during the method execution. The region type checking rules ensure that the regions are

CHAPTER 2. UNDERLYING TECHNOLOGIES 26

properly used without creating dangling references. The type inference rules localize the regions

which are no longer required (namely there is not any reference to them from the stack and from

the other regions). In case of typechecking, the region localization is done by the programmer.

Our second application, described in Part II, is based on a variant parametric type system.

Variant parametric types can be obtained from Core-Java standard types (Figure 2.1) in two

steps. The first step translates Core-Java monomorphic types into parametric types, as we illus-

trated at the end of Section 2.1. The general form of a parametric type is cn〈T1..Tn〉, where

the annotations T1..Tn are either type variables or parametric types. The annotations T1..Tn

denote the types of the class cn’s fields. The second step generates variant parametric types

by decorating the parametric types with variance annotations. The general form of a variant

parametric type is cn〈α1T1..αnTn〉, where α1..αn are either variance variables or variance

values (such as ~, ⊕, 	, �) denoting the direction of the flow for the class cn’s fields. For

example, Cell〈⊕T1〉 denotes that the class Cell’s field fst is subject to a read-only access

that corresponds to a flow-out; Cell〈	T1〉 denotes that the class Cell’s field fst is subject

to a write-only access that corresponds to a flow-in; Cell〈�T1〉 denotes that the class Cell’s

field fst is subject to a read-write access that corresponds to a flow-in and a flow-out; while

Cell〈~T1〉 denotes that the class Cell’s field fst is not accessed. However, there are some

exceptional flows, that are discussed later in Chapter 5. There is also an ordering relation among

variance values such that �<:⊕<:~ and �<:	<:~.

As we mentioned before, parametric types use an invariant subtyping, namely Cell〈T1〉

<:Cell〈T2〉 holds if T1=T2 holds. The variance annotations make subtyping more flexible such

that ⊕ denotes a covariant subtyping, 	 denotes a contra variant subtyping, while � denotes

an invariant subtyping. For example, Cell〈⊕T1〉 <:Cell〈⊕T2〉 holds if T1<:T2 holds, while

Cell〈	T1〉 <:Cell〈	T2〉 holds if T2<:T1 holds. In summary, in the case of variant paramet-

ric types, the flow subtyping constraints denote relations among the type variables. The type

variables represent the types of the values which can be read/written from/into generic data

structures. For example, the type Cell〈⊕T 〉 denotes that the field fst of class Cell contains a

value whose type is a subtype of T; the type Cell〈	T 〉 denotes that the field fst of class Cell

contains a value whose type is a supertype of T; the type Cell〈�T 〉 denotes that the field fst

of class Cell contains a value whose type is T; while the type Cell〈~T 〉 denotes that the field

fst of class Cell contains a value whose type is unknown. Therefore, it is safe to read a value

CHAPTER 2. UNDERLYING TECHNOLOGIES 27

of any supertype of T from Cell〈⊕T 〉; to write a value of any subtype of T into Cell〈	T 〉; to

read and write a value of type T to Cell〈�T 〉; and to read a value of type Object and to write

a value of type ⊥ to Cell〈~T 〉. These more precise types allow the type system to prove that

some program type casts are redundant.

A method precondition expresses the subtyping relations among the type variables occurring

in the types of the method signature (namely the types of method receiver, method arguments,

and method result). These subtyping relations capture all possible value flows that may occur in

the method body. Method body may contain some local type variables, but they do not escape

into method precondition. Type checking rules assume that all variance annotations are given

by the programmer. Checking process works in two steps, first it collects the method body flow

and then it verifies whether the method precondition entails the collected flow. Type inference

process is more complex since the variance annotations are not known at the beginning.

2.3 Flow (Subtyping) Constraints Solving

Type-based flow analyses can be regarded as constraint-based analyses, consisting of two parts:

constraint generation and constraint resolution. The constraint generation is done by both type

checking and type inference rules, since they eventually produce flow (subtyping) constraints.

These constraints require a constraint solver that is able to perform the following three oper-

ations: constraint simplification that reduces the redundant information, constraint satisfiabil-

ity that checks whether a system of constraints has a solution, and constraint entailment that

checks whether a system of constraints implies another system of constraints. For our flow-

based type systems, we designed and implemented our constraint solvers by employing tech-

niques from different research areas such as constrained types [135, 147, 176, 59], recursive

types [110, 140, 73], polymorphic types [9], constraint simplification [195, 157, 158], subtype

entailment [96, 183, 182, 181], set constraints [85, 8, 6], and mixed constraints [65]. The re-

mainder of this section presents several aspects of the constraint solvers and concludes with a

discussion about our work.

Subtyping. In general a subtyping constraint is an inequality of the form τ1<:τ2, where τ1 and

τ2 are type expressions which may contain type variables. A constraint system (or constraint

set) is a conjunction of a finite set of subtyping constraints. In subtype systems, types are

typically interpreted as trees over some base elements [110]. The base elements can be drawn

CHAPTER 2. UNDERLYING TECHNOLOGIES 28

from a lattice or a partial order [50]. Simple types [122] are interpreted over finite trees, while

recursive types [11] are interpreted over regular tree, that are possibly infinite trees with finitely

many sub-terms. Type expressions that are either constants or type variables are referred to as

atomic types since they have no complex syntactic structure. Note that subtyping over atomic

types is referred to as atomic subtyping. Two subtype orders arise naturally in practice: the

structural subtype order and non-structural subtype order. Structural subtyping allows only

types with the same shape to be related. They are related by some additional structural rules

besides the subtype relation of the base elements. An example of structural rule is the subtyping

rule [Func] of Figure 2.2, that compares two function types. Non-structural subtyping allows

the existence of two additional types, the smallest type ⊥ and the largest type >. Besides the

structural rules, two rules are added, which essentially say that ⊥ is smaller than any type, while

> is larger than any type (e.g. the rules [Bottom] and [Top] of Figure 2.2).

Constraint Satisfiability. Constraint satisfiability answers the question whether a constraint

system have solutions. Hoang and Mitchell [101] proved that the typability (namely whether

a given term has a type) is equivalent to the satisfiability of a conjunction of atomic formulas

in the language of structural subtyping constraints. A constraint system is satisfiable if there

is a valuation that satisfies each constraint of the system. A valuation is a mapping from type

variables to ground types (namely types expressions without type variables). A valuation satis-

fies a constraint if by applying the valuation on that constraint we obtain a new constraint that

holds in the lattice of ground types. A detailed discussion of several algorithms, that check

the satisfiability of subtyping constraints, can be found in Rehof’s thesis [162]. The algorithms

are based on the idea of checking consistency in the closure of the constraints with respect

to some closure rules. Subtype orderings generated from lattices have PTIME satisfiability

problems: atomic subtype satisfiability (Lincoln and Mitchell [114], Tiuryn [187], Rehof and

Mogensen [163]), finite structural subtype satisfiability (Tiuryn [187]), recursive structural sub-

type satisfiability (Rehof [162]), recursive non-structural subtype satisfiability (Palsberg and

O’Keefe [142], Pottier [157]), and finite non-structural subtype satisfiability (Kozen, Palsberg,

and Schwartzbach [109], Palsberg, Wand, and O’Keefe [148]). Figure 2.5 presents the complex-

ity results of lattice-based subtype satisfiability as were summarized by Rehof in his thesis [162].

CHAPTER 2. UNDERLYING TECHNOLOGIES 29

structural subtyping non-structural subtyping
atomic types O(n) O(n)
finite types O(n) O(n3)

recursive types O(n3) O(n3)

Figure 2.5: Lattice-based Subtype Satisfiability Complexity

In general, when partially-ordered sets (posets) are allowed (rather than lattices), satisfiabil-

ity problems become more complex. Pratt and Tiuryn [159] have proven that atomic subtype

satisfiability is NP-hard. Benke [14] has also tried to characterize the structure of posets (e.g.

n-crowns) for which the atomic satisfiability problem is tractable. Tiuryn [187] has proven that

finite structural subtype satisfiability is PSPACE-hard, and then Frey [69] has shown that it is in

PSPACE and therefore PSPACE-complete. Tiuryn and Wand [188] have shown that recursive

structural subtype satisfiability is DEXPTIME. Recently, Niehren, Priesnitz, and Su [131] have

proven that finite non-structural satisfiability is PSPACE-complete, recursive structural satisfia-

bility is DEXPTIME-hard, and recursive non-structural satisfiability is DEXPTIME-complete.

Figure 2.6 presents the complexity results on subtype satisfiability over posets as were summa-

rized by Niehren, Priesnitz, and Su [131].

structural subtyping non-structural subtyping
finite types PSPACE−complete PSPACE−complete

recursive types DEXPTIME−complete DEXPTIME−complete

Figure 2.6: Complexity of Subtype Satisfiability over Posets

Constraint Entailment. Constraint entailment answers the question whether a system of con-

straints C1 implies (or entails) another system of constraints C2. We say that C1 entails C2 if all

valuations, that hold for C1, also hold for C2. Entailment based subtyping is a key problem in

constraint simplification, as it can be used to support, justify and reason about powerful simplifi-

cation techniques. In general it can be used to check whether a particular constraint τ1<:τ2 holds

in a given system of constraints. Henglein and Rehof [96, 97, 162] have done a systematic study

of the subtyping entailment complexity. Figure 2.7 shows their results as were summarized by

Rehof in his thesis [162]. The complexity class above the line indicates an upper bound, while

the class below the line indicates a lower bound. The question marks indicate that no upper

bounds for non-structural entailment are known. However, Henglein and Rehof conjectured

that non-structural entailment is in PSPACE.

Niehren and Priesnitz [129, 130] have proven that the non-structural subtype entailment in the

CHAPTER 2. UNDERLYING TECHNOLOGIES 30

structural subtyping non-structural subtyping
atomic types O(n) O(n)

finite types coNP
coNP

?
PSPACE

recursive types PSPACE
PSPACE

?
PSPACE

Figure 2.7: Subtyping Entailment Complexity

presence of ⊥, >, and a single non-constant type constructor is PSPACE-complete if ⊥ and >

do not appear explicitly in the constraints.

In order to take into account the quantifiers, Su, Aiken, Niehren, and Priesnitz [183] have

studied issues relating to the first-order theory of subtyping constraints. The constraint entail-

ment discussed so far is in the universal fragment (∀-fragment) of the first-order theory. Let

be C a conjunction of basic constraints, the entailment C |= x<:y holds iff the universal for-

mula ∀x1..xn.(C =⇒ (x<:y)) is valid, where x1..xn are the variables free in C ∪ {x<:y}. A

more powerful entailment is the existential entailment represented as C1 |= ∃x1..xn.C2, where

fv(C2) ∩ {x1, .., xn} = ∅ and fv(C) denotes the free variables of C. The existential entailment

holds if for every solution of C1, there exists a solution for C2 such that both solutions coincide

on the variables fv(C2) \ {x1..xn}. Existential entailment is important for the simplification of

the constrained types [195, 8, 9]. A constrained type τ \ C consists of a type τ restricted by

a constraint set C. Here only the variables appearing in the type τ are important, the other

variables appearing only in C should be eliminated by the existential quantifier. Both the ex-

istential entailment and the constrained types subtyping are in the ∀∃-fragment of the first-

order theory. Thus, the existential entailment C1 |= ∃x1..xn.C2 is represented by the following

formula in the ∀∃-fragment: ∀y1..ym∃x1..xn.(C1 =⇒ C2), where y1..ym are the variables in

fv(C1) ∪ (fv(C2) \ {x1..xn}). Su et al [183, 181] have proven that the first-order theory of non-

structural subtyping constraints is undecidable for both finite and infinite trees and for any type

signature with at least one binary type constructor and a least element ⊥. They have also shown

that first-order theory of structural and non-structural subtyping constraints with unary function

symbols is decidable for both finite and infinite trees. Kuncak and Rinard [111] have proven

that first-order theory of structural subtyping of non-recursive types is decidable.

There are still a lot of open problems in this area, but among them, the most important are the

CHAPTER 2. UNDERLYING TECHNOLOGIES 31

decidability and exact complexity of non-structural subtype entailment, existential entailment,

and subtyping constrained types.

Constraint simplification. Constraint simplification consists of transformations on constraint

sets that aim at removing the redundant information. The redundant information can be defined

in the context of typings as the unnecessary degrees of freedom [162]. There are two ways to

allow types to have a higher degree of freedom than simple types: parametric polymorphism,

that has the ability to abstract a type with respect to a type variable, and subtyping, that enriches

the typing judgments with constraint sets. The simplification transformations must satisfy some

soundness conditions which ensure the preservation of the typings information content. A pow-

erful condition based on the existential entailment was used in [195, 157]: two constraint sets

are observationally equivalent if replacing one with the other does not affect the results of an

analysis. As was argued by Aiken, Wimmers and Palsberg in [9], there are three benefits of

simplification: (1) efficiency: reducing the number of gathered constraints may speed up the

analyses, especially the type inference; (2) readability: it reduces the size of type represen-

tation; (3) transparency: it makes the information content of a type more explicit. However,

Pottier has shown in [158] that efficiency and readability are conflicting goals. If the goal is

efficiency, the most succinct representation is not necessarily the easiest to deal with (e.g. it

may not preserve some invariants used by the analysis).

Fuh and Mishra [71] have developed simplification techniques for simple constraints be-

tween variables and base types. Aiken, Wimmers and Palsberg [9] have considered the number

of distinct type variables as a measure of freedom degree. They have developed a sound and

complete variable elimination algorithm to simplify quantified recursive and non-recursive types

in the presence of subtyping. They have also extended their algorithm to type languages with

intersection and union types and to type languages with constrained types. These two exten-

sions are sound but not complete. Pottier [157] and Trifonov and Smith [195] have developed

sound but not complete algorithms to simplify polymorphic constrained types. Both algorithms

have a non-structural recursive entailment at their core. Flanagan and Felleisen [66] have devel-

oped practical techniques for simplifying set constraints in the context of a static debugging for

Scheme.

Constraint resolution algorithms take an initial set of constraints and repeatedly transform

CHAPTER 2. UNDERLYING TECHNOLOGIES 32

it by applying some resolution rules until the constraint set is in a solved form. These algo-

rithms can also be regarded as simplification algorithms. In general, the resolution algorithms

are based on transitively closed constraint graphs which are incrementally built each time when

a new constraint is added. Much progress has been made on developing scalable algorithms to

handle large sets of constraints. Fahndrich and Aiken [62] have proposed several simplification

techniques to reduce the memory requirements of the constraint graphs. However the simplifi-

cations are performed only at some points since they are relatively expensive to compute. Their

results are similar to those obtained before by Heintze [86]. However Heintze has applied dif-

ferent techniques. Fahndrich et al. [63] have developed an algorithm to perform cycle detection

and elimination at every update of the constraint graph. All variables on such a cycle are equal

in all solutions of the constraints and therefore they can be collapsed to a single variable. Su

et al. [180] have proposed a technique called projection merging that can be used in conjunc-

tion with cycle elimination to obtain more scalable analyses. The technique consists of merging

many upper bounds on a variable into a single upper bound. Heintze and McAllester [89, 88]

have also developed a technique that resembles projection merging. Heintze and Tardieu [84]

have proposed an efficient algorithm for implementing dynamic transitive closure. Their al-

gorithm maintain a pre-transitive graph, namely a graph that is not transitively closed. When

information about a node is requested, a reachability computation is performed.

An important source of inefficiency in polymorphic constraint-based analyses stems from

computing instances of constraints. In general each function is separately analyzed and the in-

formation about that function is summarized as a constraint set. At different call sites of the

function, the constraint set is instantiated with fresh variables and duplicated. The constraint

set duplication is necessary in order to distinguish the different call sites. Thus, the number of

resulting constraints grows very fast even if the underlying types are small. Two solutions have

been proposed: instantiation constraints (Fahndrich et al. [64], Rehof and Fahndrich [161]) and

constraint abstractions (Gustavsson and Svenningsson [81]). Both solutions make the substitu-

tion instantiation a syntactic construct in the constraint language. Instantiation constraints are a

form of constraints similar to Henglein’s semi-unification constraints [92] but they are annotated

with an instantiation site and a polarity. Constraint abstractions allow the constraints to com-

pactly express substitution instantiation. The main difference is that the constraint abstractions

provide more structure and a notion of local scope. In the case of the instantiation constraints,

CHAPTER 2. UNDERLYING TECHNOLOGIES 33

the scope of a variable is the entire set of constraints.

Our work. Our first type system from Part I, the region type system generates region con-

straints. Region constraints (see Figure 3.2 of Chapter 3) are atomic constraints containing only

region variables. Region variables can be instantiated with the runtime regions from the runtime

stack of memory regions. At runtime, there is only one stack of memory regions, on which the

memory regions are allocated and deallocated. There is always at least one memory region on

the runtime stack (namely the heap, the first region memory that is allocated at the beginning

of the program execution and deallocated at the end of the program execution). Among the

regions is defined an outlive relation as a partial ordering (see Section 3.2). Since every subset

of runtime memory regions has a least upper bound with respect to the outlive relation, the run-

time memory regions form a lattice. Our region constraints are in the domain of lattice-based

atomic subtyping. Therefore region constraint satisfiability and region constraint entailment can

be checked in linear time. We use constraint abstractions for region inference (especially for

fixed point iterations). We also employ variable elimination techniques to localize the regions

either for a letreg block, or at the method boundary.

Our second type system from Part II, the variant parametric type system produces more

complex constraints (see Figure 5.3 and Figure 5.4 of Chapter 5). Variant parametric subtyp-

ing is in the domain of lattice-based recursive non-structural subtyping. Variant parametric

subtyping satisfiability is O(n3). The non-structural subtyping entailment is still an open prob-

lem. Our constraint solver proves the entailment ∀VG·(ψ1 =⇒ Xi<:Yi) by contradiction using

the falsity of the formula ∀VG·(ψ1∧notsub(Xi, Yi)), where notsub(t1, t2) represents negation of

subtyping relation. Our deduction mechanism detects falsity based on pair of constraints of the

form t1<:t2 and notsub(t1, t2). This is a sound approximation of the entailment problem. We can

further extend deduction mechanism with the techniques of case analysis and inductive proving

(similar to those presented by Pottier in his thesis [158]) especially for recursive types. Never-

theless, from our experience working with large sets of Java library and application codes that

have been annotated and checked with variant parametric types, we have yet to encounter real

examples which require such extensions.

PART I

Safe Region-Based Memory

Management

34

CHAPTER 3

REGION-BASED MEMORY MANAGEMENT

3.1 Introduction

Region-based memory management has been developed as an alternative approach to explicit al-

location/deallocation (e.g. malloc and free), and automatic garbage collection techniques [203,

106]. Region-based systems allocate each new object into a program-specified region [191],

with the entire set of objects in each region deallocated simultaneously when the region is

deleted. Various studies have shown that region-based memory management can provide mem-

ory management with good real-time performance. Individual object deallocation is accurate

but time unpredictable, while region deletion presents a better temporal behavior, at the cost of

some space overhead. Data locality may also improve when related objects are placed together

in the same region. Classifying objects into regions based on their lifetimes may deliver better

memory utilization if regions are deleted in a timely manner.

3.1.1 Region Issues

Regions have been introduced and used for decades in practice [167, 83]. However the original

proposals (e.g. arenas in [83]) were unsafe: deleting a region may create dangling references

that are subsequently accessed. Moreover some well-known applications such as the apache

web server and the gcc compiler (before version v3) have been written using unsafe region

libraries [74].

The main safety issue of the region-based memory management is represented by the dan-

gling references. A reference from (an object in) one region to (an object in) another region is

considered to be dangling if the latter region has a shorter lifetime than the former. A region has

a shorter lifetime than another region if it is deleted before the latter. Using a dangling reference

to access memory is unsafe because the accessed memory may have been recycled to store other

objects.

We distinguish two approaches to ensure region-based memory safety. The first approach,

called dynamic safety uses runtime checks to guarantee the region safety at runtime. In contrast

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 35

the second approach, called static safety, ensures the region safety at compile time by using

either a type system or a static analysis. The first approach is more flexible, but the runtime

checks may introduce a large runtime overhead. Some systems combine dynamic and static

safety either to be more flexible or to reduce the runtime overhead. For example, the system

from [75] prevents unsafe region deletions by maintaining a count of references to each region.

A region type system in [76, 74], may significantly reduce the cost of reference-counting.

Researchers have identified two approaches to ensure region safety at compile time. The

first approach allows the program to create dangling references, but uses a type and effect sys-

tem to ensure that the program never uses a dangling reference to access memory [191, 18,

192, 41, 80, 37]. The second approach uses a type system to prevent the program from creating

dangling references at all [23]. The first approach (no-dangling-access) may yield more precise

region lifetimes, but the latter approach (no-dangling) is required by the Real-Time Specifica-

tion for Java (RTSJ) [19] and also makes easier the co-existence of the region-based memory

management with garbage collection. For example, in ML Kit [82, 60], the original region

typing rules [191] were strengthened to forbid dangling pointers in order to make possible a

memory discipline that combines the regions and a copying garbage collection within regions.

However, in Cyclone [80] dangling references are allowed, but a conservative garbage collector

was used to reclaim the objects allocated into the heap region.

Another important issue of the region-based memory management is the accuracy of the

regions’ lifetimes to model the lifetimes of the program objects in order to avoid memory leaks.

A region conservatively approximates the lifetimes of all its objects. Therefore storing objects

with different lifetimes in the same region may potentially lead to a considerable amount of

wasted memory, especially in recursions and loops. An extreme situation occurs when no mem-

ory is ever reclaimed because all objects are placed into only one region that is alive throughout

the execution.

Based on the discipline imposed on the region lifetimes we can distinguish two kinds of

regions: lexically scoped regions and not lexically scoped regions. A lexically scoped region r

is introduced by the expression letreg r in e such that the lifetime of the region r is the scope

of the expression e [191, 192, 41, 80]. The letregion construct is aligned with the program’s

expression hierarchy, thus all region allocations and deallocations follow a stack discipline. The

problem of this approach is that in practice object lifetimes do not follow a stack discipline.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 36

Therefore a number of optimizations have been proposed on top of the lexically scoped regions.

In ML Kit [190, 18] a storage mode analysis determines when it is possible to reset a region (to

deallocate the region content) prior to deallocation of the region itself. In [7] the region variable

introduction is separated from the region allocation and deallocation. Thus the region allocation

is postponed until just before its first access, while the region deallocation is postponed just

after the last access. However these optimizations come at the cost of a region aliasing analysis

and may require rewriting of the original program. An advantage of stack discipline is that it

induces an outlive relationship on regions, which, in turn, provides a region subtyping discipline

on pointer types [80].

Not lexically scoped regions do not require a stack discipline to be allocated and deallo-

cated. They can improve the precision of the computed lifetimes at the expense of solving

an additional problem: region deallocation must take into account region aliasing. Not lexi-

cally scoped regions decouples region creation from region removal. Moreover multiple region

variables may denote the same region. Therefore wherever a region is deallocated, it is re-

quired to check whether there are no other region aliases of that region. Several solutions have

been proposed such as either a reference counting on regions that may incur noticeable runtime

overhead [75], or a combination of a region type system with a runtime reference counting on

regions [76, 199, 93], or a complex region points-to analysis [37].

Another important issue of region-based memory management is the region size. The size

of a region is the maximal size of the objects that may be allocated in that region. We can

distinguish two kinds of regions finite regions and infinite regions. Finite regions contain a finite

number of objects, while infinite regions hold an unbounded number of objects. An advantage of

finite lexically scoped regions is that they can be directly allocated on the runtime system stack.

For example, in ML Kit [190, 18] it was developed an analysis (called multiplicity inference

analysis) to determine suitable finite regions, where possible.

3.1.2 Motivation and Goal

Several projects have recently investigated the use of region-based memory management for

Java-based languages [41, 23, 19, 51]. Most of these projects have focused on region check-

ing [41, 23], which requires manual effort to augment the program with region annotations. An

issue is that region annotations may impose considerable mental overhead for the programmer

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 37

and raise compatibility issues with legacy code. In addition, the quality of the annotations may

vary, with potentially suboptimal outcomes for less experienced programmers. On the other

hand, Real-Time Specification for Java (RTSJ) [19] allows the programmers to explicitly use

scoped memory areas in order to avoid the garbage collector for time-critical tasks. However

RTSJ requires run-time checks to ensure the safety of the memory management. In addition, pro-

gramming for the RTSJ is so complex that it forces the Java programmer to adopt new coding

habits [155]. The proposal in [51] provides an automatic translation of Java code into Real-Time

Java using a dynamic analysis to determine the lifetime of an object. However the translation

may not be sound as the dynamic analysis may miss some execution paths that create and use

dangling references.

In this context our goal was to develop an automatic region type inference system for object-

oriented languages that should meet the following requirements:

• A Sound Type-based Analysis: The compiler should automatically augments the programs

with region type annotations such that the region annotated programs use a region-based

memory management at runtime. Region safety should be ensured at compile time with-

out using runtime checks.

• Convenient: The region-based memory management should be transparent for the pro-

grammers. This means that programmers should not be required to provide region anno-

tations or to rewrite the source programs in order to obtain region friendly programs.

• Scalable: The region analysis should be fast and simple.

• Precise as much as possible: The precision is defined as the ability to reuse memory as

soon as possible. Since it is hard to define the best solution for the region annotations,

we expect that the results of the inferred programs to be competitive with those of the

programs hand annotated by the human experts.

• Easy integration with a garbage collector: The inferred regions should safely co-exist

with any kind of garbage collector.

• Support for object-oriented features: The region inference rules must ensure region safety

in the presence of the main object-oriented features such as class inheritance, method

overriding, and downcast operations.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 38

Figure 3.1: Region System Overview

3.1.3 Solution and Contributions

We provide a systematic formulation of a region type inference system for the core subset of

Java, called Core-Java. Our solution uses lexically-scoped regions approach to impose stack

discipline on regions and no-dangling references approach to ensure region safety. Lexically-

scoped regions makes the region analysis simpler by avoiding the region aliasing problem. They

also allow us to define subtyping on the region types. No-dangling references approach is re-

quired by Real-Time Specification for Java [19] and also makes easier the co-existence with any

garbage collection strategy. Although no-dangling references approach seems to be less precise,

it has a little effect on overall memory behavior as shown in [60]. Our entire region system is

depicted in the diagram of Figure 3.1.

In summary, this part of our dissertation makes a number of technical contributions ex-

plained below:

• Region Type System: We have formulated and implemented a region type system for a

core subset of Java as the target for region inference. The region type system guarantees

that well-typed programs use lexically scoped regions and do not create dangling refer-

ences in the store and on the stack. Although our type system is similar to SafeJava’ type

system of Boyapati et al. [23], there are three main differences: (1) we isolated out the

object encapsulation issue in our type system, (2) we added support for region subtyping

by adapting the region subtyping principle from Cyclone [80], and (3) we provided a rig-

orous soundness proof for our region type system (note that SafeJava does not provide a

formal proof for its region type system).

◦ Region Lifetime Constraints: Our region type rules prevent dangling references

by requiring the target object of each reference to live at least as long as the source

object. We formalise this requirement explicitly through region lifetime constraints,

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 39

with support for region subtyping.

◦ Safety Proof: We have proven that our type system is safe. Safety implies that

the regions follow a stack discipline and they can be deallocated only when there

are not external references to their objects. In addition, the objects’ fields and the

program variables cannot contain references to a non-existing region. Although our

safety property (lexically scoped regions and no dangling references) is similar to

safety property preserved by the region type system of Elsman [60], our proof is

different. The proof from [60] is based on a small-step contextual semantics, while

our proof explicitly represents the heap as a stack of regions and keeps a consistency

relationship between the static and dynamic semantics. Moreover the region type

system from [60] is designed for a functional language.

• Region Inference: We have formulated and implemented a novel summary-based flow-

insensitive analysis to automatically infer region annotations for a core subset of Java. The

result of our region inference is correct with respect to our region type system. Object-

oriented features such as class subtyping, method overriding, and downcast operations are

fully handled by our analysis.

◦ Summary-based Flow-Insensitive Analysis: Our region inference is designed as

a summary-based flow insensitive analysis for classes and methods. The summary

of a class is the class invariant, while the summary of a method is the method pre-

condition. Due to a fairly complex inter-dependency between classes and methods,

the analysis is required to process the classes and methods in some particular or-

der given by a dependency graph. In a research performed concurrently with ours,

Cherem and Rugina [37] have developed a three-stage region inference algorithm

for Java. That algorithm relies on a flow analysis to propagate unifications between

regions in an interprocedural manner. Using the no-dangling-access principle, that

inference produces programs that use non-lexically scoped regions different than

our lexically scoped regions. While our inference system is based on a region type

system where object and field subtyping could be supported, the approach of [37]

directly generates region handles (the run-time structures needed to allocate an ob-

ject into a region), and uses points-to analysis and liveness analysis to determine

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 40

when regions can be deallocated.

◦ Region Polymorphism: We support classes and methods with region polymor-

phism: region-polymorphic recursion for methods, and region-monomorphic recur-

sion for classes. These features provide an inference algorithm that is precise and

yet efficient.

◦ Class Inheritance and Method Overriding: Our inference analysis provides an

improved solution for class subtyping and method overriding. Previous region types

systems for Java [41] require “phantom regions” to support inheritance with down-

casting and method overriding, which may cause a loss in lifetime precision.

◦ Downcast Safety: We provide a compile-time analysis which ensures that down-

cast operations are region-safe. Previous proposals [21] require runtime checks for

downcast operations.

◦ Correctness: We proved that our inference algorithm is sound and complete with

respect to our region type system.

◦ Runtime Regions: Since only the handles of the regions that may be written with

new objects are required at the runtime, we designed a type-based analysis that

simplifies the region annotations and generates a corresponding program with such

region handles.

• Experimental Validation: We have implemented a prototype of our region inference sys-

tem and we have run some experiments on medium-sized benchmarks. Preliminary results

that we have obtained are encouraging. The programs based on our inferred regions were

able to reuse significant amount of memory for most of the cases where data was not live

throughout the execution. The experiments suggest that our results are competitive when

compared to those that are hand annotated by human experts, and comparable also to the

approach based on non-lexically scoped regions with no-dangling-access [37]. The ex-

periments also suggest that our region inference analysis is fast in terms of analysis time

and reasonable with respect to the number of region parameters.

3.1.4 Organization of Part I

Part I of our dissertation is mainly based on papers published in [40, 47]. It consists of two

chapters organized as follows.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 41

prim ::= int | boolean | void
τ ::= cn | prim | ⊥
t ::= τ〈r∗〉 | ⊥

(a) Regions Types

ϕ ::= r1 � r2 | r1 = r2 | true

| ϕ1 ∧ ϕ2 | q〈r1, .., rn〉
q ::= cn | cn.mn

r ∈ region variable names

(b) Region Lifetime Constraints

Q ::= {(q〈r1, .., rn〉 = ϕ)+}

(c) Constraint Abstractions

Figure 3.2: Region Types and Lifetime Constraints

In Chapter 3 we introduce the main concepts and formalise our region type system. Sec-

tion 3.2 introduces the region types and the region lifetime constraints. Section 3.3 describes

the region-based memory model used by our type system. The region annotations principles for

classes and methods are presented in Section 3.4, while the region subtyping principle is defined

in Section 3.5. Section 3.6 presents Core-Java, our object-oriented core language, and the type

rules of our region type system. In Section 3.7 we formulate the dynamic semantics and prove

the safety properties of our region type system.

Chapter 4 presents our region inference, the experimental results and concludes with some

remarks and a discussion of related work. Section 4.1 introduces the inference algorithm using

a simple example. Then we formalise the main inference rules as follows: rules for classes in

Section 4.2, rules for expressions in Section 4.3, rules for region localization in Section 4.4, rules

for method overriding in Section 4.5, and rules for dependency graph in Section 4.7. Section 4.8

formulates and proves the correctness of the inference algorithm with respect to our region

type system. Section 4.9 discusses an extension of region subtyping. Section 4.10 presents

the experimental results obtained using our prototype, while Section 4.11 discusses the related

work. In addition, Appendix A.4 presents the rules for downcasting, Appendix A.5 discusses

the runtime region analyses, while Appendix A.6 discusses other Java features.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 42

3.2 Regions Types

To support region-based memory management, our region inference algorithm adds region pa-

rameters and constraints to each class and its methods. Each class definition is parameterized

with one or more regions to form a region type, denoted by t in Figure 3.2(a). For instance, a

region type cn〈r1, ..., rn〉 is a class name cn annotated with region parameters r1...rn. Param-

eterization allows us to obtain a region-polymorphic type for each class whose fields can be

allocated in different regions. The first region parameter r1 is special: it refers to the region in

which the instance object of this class is allocated. The fields of the objects, if any, are allocated

in the other regions r2...rn which should outlive the region of the object. This is expressed by

the constraint
∧n
i=2(ri � r1), which captures the property that the regions of the fields (in r2...rn)

should have lifetimes no shorter than the lifetime of the region (namely r1) of the object that

refers to them. This condition, called no-dangling requirement, prevents dangling references

completely, as it guarantees that each object never references another object in a younger re-

gion. The first region r1 of an object region type can not be used by the region types of the

object fields because our region subtyping rules (Section 3.5) assume this invariant and would

be unsound otherwise.

We do not require region parameters for primitive types, since primitive values can be copied

and stored directly in the stack or they are part of an object. In order to keep the same notation,

we use prim〈〉 to denote a region annotated primitive type. Although null values are of object

type, they are regarded as primitive values. The type of a null value is denoted by ⊥.

Figure 3.2(b) presents the syntax of region lifetime constraints. Our algorithm infers region

constraints of two forms r1�r2 and r1=r2. The constraint r1�r2 indicates that the lifetime of

region r1 is not shorter than that of r2, while the constraint r1=r2 denotes that r1 and r2 must

be the same region. The outlive relation � is a transitive relation such that if r1�r2 and r3�r1

then r3�r2. There is also a relation between equality and outliving such that r1=r2 iff r1�r2

and r2�r1. We assume that the region constraint ϕ is always closed by transitivity such that the

transitivity is performed each time a new constraint (r1�r2 or r1=r2) is added to the constraint ϕ.

Given a constraint ϕ and a set of regions R, the notation ϕ\R (or ϕ−R) denotes the elimination

from ϕ of all region constraints which use regions from R.

We also use constraint abstractions ([81]) of the form q〈r1, .., rn〉 = ϕ to capture a param-

eterized constraint (Figure 3.2(c)). A constraint abstraction is in a closed-form when its body

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 43

Figure 3.3: Memory Model based on Lexical Regions

ϕ contains only simple lifetime constraints (ri�rj or ri=rj) between the regions from its head

(ri, rj∈{r1, .., rn}).

For uniformity, the region constraint of each class and method are each captured with one

constraint abstraction, denoted by a singleton set Q. The region constraint of each class is also

known as the class invariant and is denoted using cn〈r1, .., rn〉. The region constraint of each

method is also known as the method precondition and is denoted using cn.mn〈r1, .., rn〉. Note

that mn denotes a method name, while cn denotes a class name. Constraint abstractions act

as intermediate forms in our summary-based analysis (see Section 4.1). They can be inlined

after the fixpoint analysis has been applied to obtain the closed-form formulae of the recursive

constraints (this fixpoint mechanism is described later in Section 4.5).

In the case of mutually recursive methods (or classes), the fixpoint analysis is applied to

a set of constraint abstractions (see Section 4.7). This set is the union of the singleton sets

corresponding to the mutually recursive methods (or classes). Note that there is one singleton

set (consisting of one constraint abstraction) per method (class).

3.3 Region-Based Memory Model

We adopt a memory model based on a stack of regions, as illustrated in Figure 3.3. Regions are

memory blocks that are introduced and disposed by the construct letreg r in e, where the

region r can only be used to allocate objects in the expression e. Our region inference algorithm

localizes the regions by introducing letreg constructs in the original program code. The older

regions (with longer lifetime) are allocated at the bottom of the stack while the younger regions

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 44

(shorter lifetime) are at the top.

We can also allow a single heap region that conceptually lives forever. For instance, the

first region r0 at the bottom of the stack can be reserved to denote a global heap with unlimited

lifetime, that is ∀r·r0�r. From a type-checking and inference perspective it is equivalent to put

a letreg around the body of the main method to introduce the region r0.

Our region inference computes the region where each object is allocated. Region objects

are deallocated when the region is popped from the stack of regions. For a method that allocates

objects into a region, our system infers the region handles (the run-time structures needed to

allocate an object in a region) that may need passing to that method at its call sites.

Lifetime constraints of the regions from Figure 3.3 can be expressed as r0�r1∧r1�r2

∧r2�r3 ∧r3�r4. Figure 3.3 shows two kinds of references: non-dangling references (drawn

using normal lines) and possible dangling references (drawn using dashed lines). Non-dangling

references originate from objects placed in a younger region and point to objects placed either

in an older region or inside the same region. Possible dangling references occur when ob-

jects placed in an older region point to objects placed in a younger region. Possible dangling

references turn into dangling references when the younger region is deallocated. Our region in-

ference algorithm disallows the references from the older regions to the younger regions, totally

preventing the dangling references.

3.4 Regions Annotations

Our region inference algorithm adds region parameters and constraints to each class and its

methods. There are a number of ways to perform such region annotations. The following

principles guide our approach:

• Keep the regions of fields in each class (and the regions of the parameters and results of

each method) distinct, where possible.

• Keep the region constraints on classes and methods separate. Region constraints on a

class capture the expected class invariant (including the no-dangling requirement) on the

regions of each instance of the class. Region constraints on a method denote the pre-

condition for invoking the method that follows from the effect of assignments inside the

respective method.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 45

class Pair〈r1,r2,r3〉 extends Object〈r1〉 where r2�r1 ∧ r3�r1 {
Object〈r2〉 fst;
Object〈r3〉 snd;
Object〈r4〉 getFst〈r1,r2,r3,r4〉() where r2�r4
{return fst;}

void setSnd〈r1,r2,r3,r4〉(Object〈r4〉 o) where r4�r3
{snd=o;}

Pair〈r4,r5,r6〉 cloneRev〈r1,r2,r3,r4,r5,r6〉() where r2�r6∧r3�r5
{ Pair〈r4,r5,r6〉 tmp;
tmp =new Pair〈r4,r5,r6〉(null,null);
tmp.fst=snd; tmp.snd=fst; return tmp;}

void swap〈r1,r2,r3〉() where r2=r3
{ Object〈r2〉 tmp=fst; fst=snd; snd=tmp; }

}

Figure 3.4: Pair Class

The first principle allows more region polymorphism, where applicable. The second principle

places the region constraints that must hold for every instance of a given class in the class,

while the region constraints of the method is to capture the method’s effects. Placing region

constraints with methods where possible allows these constraints to be selectively applied to

only those objects which may invoke the methods. We shall see how this idea improves the

precision of region lifetimes.

3.4.1 Regions for Field Declarations

Consider the Pair class in Figure 3.4. As there are two fields in this class, we introduce a dis-

tinct region for each of them, r2 for fst field and r3 for snd field. The Pair object is placed

in the region r1. To ensure that every Pair instance satisfies the no-dangling requirement, we

also add r2�r1∧r3�r1 to the class invariant. In general the class invariant of a class consists

of the no-dangling requirement for the region type of the current class, the no-dangling require-

ments for the fields’ region types, and the class invariant of the parent class (see Section 4.2).

Sometimes the class invariant could be strengthened with region constraints from the methods

(see Section 4.6).

Next consider the List class with next as its recursive field in Figure 3.5. There are many

different ways of annotating such recursive fields; the best choice depends on how the objects are

manipulated. To keep matters simple, we use a special form of region-monomorphic recursion

for class declarations, similar to Tofte/Birkedal’s handling of data structures [191, 18, 189], but

with support for region subtyping. We introduce a distinct region for all the recursive fields.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 46

class List〈r1,r2,r3〉 extends Object〈r1〉 where r3�r1∧r2�r3∧r2�r1 {
Object〈r2〉 value;
List〈r3,r2,r3〉 next;

Object〈r4〉 getValue〈r1,r2,r3,r4〉() where r2�r4
{ return value; }

List〈r4,r5,r6〉 getNext〈r1,r2,r3,r4,r5,r6〉() where r5=r2∧r6=r3
{ return next; }

void setNext〈r1,r2,r3,r4,r5,r6〉(List〈r4,r5,r6〉 o)where r5=r2∧r6=r3=r4
{ next = o; }

}

Figure 3.5: List Class

This approach ensures that each recursive field has the same annotation as its class, except for

its first region. Given a recursive class declaration with region type cn〈r1,r∗,rn〉, where rn is

the region for recursive fields, we annotate each of the recursive fields as cn〈rn,r∗,rn〉. The

reason for allowing region polymorphic data recursion on the first region parameter is to support

object region subtyping (see Section 3.5), while the use of region monomorphic data recursion

on the other fields helps to simplify our region inference mechanism. This combination can

be implemented cheaply and is also critical for supporting another form of region subtyping

based on immutable fields (see Section 4.9). Mutually recursive class declarations are similarly

handled (see Section 4.7). In the case of the List class, region r3 is reserved specially for

the recursive next field, as illustrated in Figure 3.5. To ensure that every List object satisfies

the no-dangling requirement, we add r2�r1∧r3�r1 to the class invariant. We also add the

no-dangling requirement for the region type of the recursive field, as r2�r3∧r3�r3. Based on

the above guidelines, the constraint abstractions for the Pair and List classes are:

Pair<r1,r2,r3> = r2�r1∧r3�r1

List<r1,r2,r3> = r3�r1∧r2�r3∧r2�r1

3.4.2 Regions for Method Declarations

For each method declaration, we provide a set of regions to support the method parameters

(including the receiver) and the method result. For simplicity, no other externally defined regions

are made available for a method. Thus, all regions used in a method either are mapped to

these region parameters or are localised by letreg in the method body. Region localisation is

described later in Section 4.4.

We also provide region lifetime constraints over such region parameters and the regions of

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 47

this object. These constraints naturally depend on how the method manipulates the objects.

Consider the getFst, setSnd and cloneRev methods of the Pair class. We introduce a set of

distinct region parameters for the methods’ parameters, and the results, as shown in Figure 3.4.

The receiver regions are taken from the class definition. Moreover, the region (lifetime) con-

straints are based on the possible operations of the respective methods. For example, due to an

assignment operation and region subtyping, we have r4�r3 for setSnd, while r2�r6∧r3�r5

are due to copying by the cloneRev method.

Consider the swap method. A region constraint r2=r3 is present due to the swapping

operation on the receiver object. Though this constraint is exclusively on the regions of the

current object, we associate the constraint with the method. In this way, only those objects that

might call the method are required to satisfy this constraint.

The region constraint for a method also contains the class invariants of its parameters in-

cluding the receiver and its result. For example, the region constraint for cloneRev implicitly

includes the class invariant r6�r4∧r5�r4 of the resulting type Pair〈r4,r5,r6〉 and the class

invariant r2�r1∧r3�r1 of the receiver Pair〈r1,r2,r3〉. For simplicity, we omit the presen-

tation of such constraints in this dissertation. These constraints can be easily recovered from

the method’s type signature. Except for this omission, the constraint abstractions for the various

methods of the Pair class are as shown below:

Pair.getFst<r1,r2,r3,r4> = r2�r4

Pair.setSnd<r1,r2,r3,r4> = r4�r3

Pair.cloneRev<r1,r2,r3,r4,r5,r6> = r2�r6∧r3�r5

Pair.swap<r1,r2,r3> = r2=r3

Note that the first three regions r1,r2,r3 are the regions of the current receiver. The receiver

regions could be also omitted from the method region parameters list since they are recovered

from the region type of the receiver during the type checking. However the region inference

algorithm generates them by default in front of the method region parameters list (Section 4.5).

3.4.3 Regions for Subclass Declarations

Each subclass typically augments its superclass with additional fields and methods. Correspond-

ingly, the regions of each subclass are extended from its superclass, its invariant represents a

strengthening from the invariant of its superclass. These requirements are needed to support

class subsumption. Consider:

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 48

class A〈r1..rm〉 extends Object〈r1〉 where ϕA . . .

class B〈r1..rm..rn〉 extends A〈r1..rm〉 where ϕB . . .

We expect the regions of the subclass B, namely 〈r1..rm..rn〉, to be an extension from the re-

gions of A, namely 〈r1..rm〉, with n≥m. Likewise, the region invariant of ϕB is a strengthening

of ϕA, with the logical implication ϕB⇒ϕA. These requirements allow an object of the B class

to be safely passed to any location that expects an A object, as the invariant of the latter holds

by implication.

Method overriding poses another challenge which requires subtyping of functions to be

taken into account. In general, the method of a subclass is required to be a subtype of the over-

ridden method. As it was proved in [36], in object-oriented languages the function subtyping

is sound if the parameters (the receiver) that drive dynamic method selection are covariant, the

normal parameters are contravariant, and the result is covariant.

Consider a method mn in class A that is overridden by another method mn from the B subclass.

Let us assume that the region type of class A is A〈r1..rm〉, while the region type of class B is

B〈r1..rm..rn〉. Let us also assume a class X with its region type X〈x1..xp〉 and a class Y

with its region type Y〈y1..yq〉:

Y〈y1..yq〉 A〈r1..rm〉.mn〈r1..rm,x1..xp,y1..yq〉 (X〈x1..xp〉 a)

where ϕA.mn

Y〈y1..yq〉 B〈r1..rm..rn〉.mn〈r1..rm..rn,x1..xp,y1..yq〉(X〈x1..xp〉 a)

where ϕB.mn

The constraints ϕA.mn and ϕB.mn are the preconditions for the region parameters 〈r1..rm,x1

..xp,y1..yq〉 of A.mn and 〈 r1..rm..rn,x1..xp,y1..yq〉 of B.mn, respectively. These

parameters must be contravariant for function subtyping, requiring ϕA.mn⇒ϕB.mn. With the

class invariant, ϕB of class B (as the receiver), it is also safe to weaken this soundness check

to ϕB∧ϕA.mn⇒ϕB.mn. The class invariant of B can be used as this method is only invoked

when the current receiver is of the B class or any other subclass of B. Hence, strengthening ϕB

may help the method satisfy this soundness check. Its inclusion is critical to our approach for

handling method overriding without phantom regions. Phantom regions is the solution adopted

by a previous approach [41]. A comparison between phantom regions and our approach is

shown in Appendix A.7.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 49

[SubClass]
class cn〈r1..n〉 extends cn′〈r1..m〉 · · · ∈ P′

n≥m≥p ` cn′〈x1..m〉<:cn′′〈x′1..p〉, ϕ
` cn〈x1..n〉<:cn′′〈x′1..p〉, ϕ

[Null]

` ⊥<:cn〈x1..n〉, true

[InvRegSub]
ϕ =

∧n
i=1(xi=x̂i)

` τ〈x1..n〉 <:inv τ〈x̂1..n〉, ϕ

[ObjRegSub]
ϕ = (x1�x̂1) ∧

∧n
i=2(xi=x̂i)

` τ〈x1..n〉 <:obj τ〈x̂1..n〉, ϕ

Figure 3.6: Region Subtyping Rules

Method overriding is particularly challenging for region inference. We introduce some tech-

niques to ensure the compliance of the overriding checks in Section 4.6, after the basic region

inference method has been presented.

3.5 Region Subtyping Principle

The region subtyping principle allows an object from a region with longer lifetime to be assigned

to a location where a region with a shorter lifetime is expected. This concept was pioneered in

Cyclone [80]. We use the region subtyping, where applicable, to improve the precision of the

regions’ lifetimes. Figure 3.6 presents two versions of the region subtyping rules; the versions

differ in the precision of the regions’ lifetimes: invariant (region) subtyping (rule [InvRegSub])

and object (region) subtyping (rule [ObjRegSub]). The first kind of subtyping was used in [23]

and [41]. The second kind was introduced in [80]. A further extension of the region subtyping

to immutable fields is presented in Section 4.9.

To discuss the technical differences, we introduce the general form of the region subtyping

relation:
` t1 <: t2, ϕ

which establishes that t1 is a subtype of t2 and infers a region lifetime constraint ϕ.

The class subtyping rule used by both kinds of the region subtyping is described by the rule

[SubClass] of Figure 3.6. Note that P ′ denotes the region annotated program. The rule is applied

until the left hand side region type has the same class name cn′′ as the right hand side region

type. Then the specific region subtyping rule is called according to the context. A subclass

can have more regions than its superclass, n≥m. The class subtyping rule does not impose any

constraint on the subclass’s additional regions, xm+1..n, though these regions are required during

downcasting. In order to support downcasting, Appendix A.4 will modify the class subtyping

rule.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 50

A special case of the subtyping rule is described by the rule [Null] of Figure 3.6. This rule

ensures that a value of type ⊥ can be assigned to any object without imposing any restriction on

the region type of that object.

3.5.1 Invariant Region Subtyping

The rule [InvRegSub] of Figure 3.6 defines the invariant region subtyping. We use
∧n
i=1(xi=x̂i)

to denote invariant subtyping on the region of the objects and their fields’ regions.

3.5.2 Object Region Subtyping

Object region subtyping relies on the fact that once an object is allocated in a particular region,

it stays within the same region and never migrates to another region. This property allows us

to apply covariant subtyping to the region of the current object. However, the object fields

are mutable (in general) and must therefore use invariant subtyping to ensure the soundness of

subsumption. By reserving the first region exclusively for the region of each object, we can

therefore use the subtyping rule [ObjRegSub] from Figure 3.6. Note that x1�x̂1 allows an object

in a region with a longer lifetime to be assigned to a location that expects objects in a region

with a shorter lifetime. For the other regions (that are used by the fields), a stronger invariant

constraint
∧n
i=2(xi=x̂i) would be used instead to allow field mutability.

One situation where the object region subtyping is better than the invariant region subtyping

is the following:

void foo (Object a, Object b)

{ Object tmp; if ... then tmp=a else tmp=b;}

Without object subtyping, the dual assignments of both a and b to tmp would cause their regions

to be coalesced together and generate the constraint ra=rb (where ra and rb are the regions for

a and b). With object subtyping, regions of a and b may be different, as long as they both

outlive the region of tmp. Therefore in our approach we use object region subtyping rule for

assignments and to support pass-by-value mechanism of the parameters.

3.6 Region Type System

In this section we formalise the region type system that is the target of our region inference

algorithm. To ease the formulation, Section 3.6.1 introduces Core-Java, an object-oriented core

language. Some Java programs can be automatically translated into a Core-Java program by our

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 51

translator [45] and then the region inference algorithm is applied to it. The region type system

can be used either to check type safety of the user-supplied programs written in region-annotated

Core-Java, or to type check the region-annotated programs generated by our region inference

algorithm. The latter was especially useful during the debugging phase of region inference

system implementation.

3.6.1 A Fragment of Core-Java

For simplicity, we start the presentation with a fragment of Core-Java language (Figure 3.7(a)).

Multiple inheritance and exceptions are discussed in Appendix A.6, while casting is presented

in Appendix A.4.

Core-Java assignment evaluates to a void value instead of the value of the right hand side

expression. The sequence e1; e2 evaluates to the value of the expression e2, while a block expres-

sion {(τ v) e} evaluates to the value of e. Core-Java uses the pass-by-value mechanism. The

suffix notation s∗ denotes a list of zero or more distinct syntactic terms separated by appropriate

separators, while s+ represents a list of one or more distinct syntactic terms. The syntactic terms

could be v, r, (t v), etc. For example, (t v)∗ denotes (t1 v1, . . . , tn vn) where n≥0. Note that

this is a reserved variable referring to the current object.

Figure 3.7(b) presents region-annotated Core-Java, the target language of our region infer-

ence system. This language extends Core-Java with region types and region constraints for each

class and method. In addition, letreg declarations introduce local regions with lexical scopes.

Every class declaration in the target language is parameterized with one or more regions; the

first region parameter refers to the region in which the current object of the class is stored, while

the remaining regions are used to store the class fields. The invariant associated with every class

expresses mainly the no-dangling requirement. The instance methods of a subclass can override

the instance methods of the superclass. Every method in the target language is decorated with

zero or more region parameters; these parameters capture the regions used by each method’s

parameters (including this) and result. Each method also has a region lifetime constraint that

is consistent with the operations performed in the method body.

3.6.2 Region Checking Rules

Our region type system guarantees that region-annotated Core-Java programs running using the

region-based memory model described in Section 3.3 never create dangling references. To avoid

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 52

P ::= def∗ (program)
def ::= class cn1 extends cn2 (class decl)

{(τ f)∗ meth∗} (class body)
prim ::= int | boolean | void (prim type)
τ ::= cn | prim | ⊥ (type)
meth ::= τ mn((τ v)∗) {e} (method decl)
lhs ::= v | v.f (location)
e ::= null | k | lhs (expression)

| {(τ v) e} (block decl)
| new cn(v∗) | lhs = e
| v.mn(v∗) | e1 ; e2
| if v then e1 else e2
| while v e (loop)

(a) The Source Language

P ::= def∗ (region ann program)
def ::= class ca1 extends ca2 (region ann class decl)

where ϕ (class invariant)
{(t f)∗ meth∗} (class body)

ca ::= cn〈r+〉 (region ann class)
t ::= τ〈r∗〉 (region type)
meth ::= t mn〈r∗〉((t v)∗) (region ann meth)

where ϕ (meth precondition)
{e} (meth body)

e ::= null | k | lhs (region ann expression)
| {(t v) e} (region ann block)
| new ca(v∗) | lhs = e
| v.mn〈r∗〉(v∗) | e1 ; e2
| if v then e1 else e2
| while v e
| letreg r in e (region declaration)

(b) The Target Language

cn ∈ class names r ∈ region variable names
mn ∈ method names ϕ ∈ region constraints
f ∈ field names v ∈ variable names
k ∈ integer or boolean constants

Figure 3.7: A Fragment of Core-Java Syntax. Multiple inheritance and exceptions are
discussed in Appendix A.6, while casting is presented in Appendix A.4.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 53

[RC−PROG]
WFClasses(P)
P = defi:1..n

FieldsOnce(def)i:1..n
MethodsOnce(def)i:1..n

P ` InheritanceOK(def)i:1..n
P `def defi:1..n

` P

[RC−CLASS]
def = class cn〈r1..n〉extends c〈r1..m〉

where ϕ {field1..p meth1..q}
r1 6∈

⋃p
i=1 reg(fieldi)

ϕ⇒ri � r1 i = 2..n R = {r1, . . . , rn}
P; {this : cn〈r1..n〉}; R;ϕ `meth methi i = 1..q

P; R;ϕ `field fieldi i = 1..p
P `def def

[RC−METH]
Γ′ = Γ + (vj : tj)j:1..p R′ = R ∪ {r1, . . . , rm}
ϕ′ = ϕ ∧ ϕ0 P; R′;ϕ′ `type tj , j = 0..p
P; Γ′; R′;ϕ′ ` e : t′0 P; R′;ϕ′ ` t′0 <: t0

P; Γ; R;ϕ `meth t0 mn〈r1..m〉((tj vj)j:1..p)where ϕ0 {e}

[RC−EB]
P; R;ϕ `type t′

Γ′ = Γ + (v : t′)
P; Γ′; R;ϕ ` e : t

P; Γ; R;ϕ ` {(t′ v) e} : t

[RC−CONS1]

P; Γ; R;ϕ ` null : ⊥

[RC−CONS2]

P; Γ; R;ϕ ` k : prim〈〉

[RC−VAR]
(v : t) ∈ Γ

P; Γ; R;ϕ ` v : t

[RC−FD]
(v : cn〈a1..n〉) ∈ Γ

(t f) ∈ fieldlist(cn〈r1..n〉)
P; Γ; R;ϕ ` v.f : [r1 7→ a1...rn 7→ an]t

[RC−NEW]
P; R;ϕ `type cn〈r1..n〉

fieldlist(cn〈r1..n〉) = (ti fi)i:1..p
(vi : t′i) ∈ Γ P; R;ϕ ` t′i <: ti i = 1..p

P; Γ; R;ϕ ` new cn〈r1..n〉(v1, .., vp) : cn〈r1..n〉

[RC−IF]
v : boolean〈〉 ∈ Γ

P; Γ; R;ϕ ` e1 : t1 P; R;ϕ ` t1 <: t
P; Γ; R;ϕ ` e2 : t2 P; R;ϕ ` t2 <: t
P; Γ; R;ϕ ` if v then e1 else e2 : t

[RC−ASSGN]
P; Γ; R;ϕ ` lhs : t
P; Γ; R;ϕ ` e : t′

P; R;ϕ ` t′<:t
P; Γ; R;ϕ ` lhs = e : void

[RC−SEQ]
P; Γ; R;ϕ ` e1 : t1
P; Γ; R;ϕ ` e2 : t2

P; Γ; R;ϕ ` e1;e2 : t2

[RC−LOOP]
v : boolean〈〉 ∈ Γ

P; Γ; R;ϕ ` e : void
P; Γ; R;ϕ ` while v e : void

[RC−INVOKE]
(v0 : cn〈a+〉)∈Γ P; R;ϕ `type cn〈a+〉

P`(t mn〈a+r′+〉((ti vi)i:1..n)where ϕ0 {e}) ∈ cn〈a+〉
(v′i : t′i)i:1..n ∈ Γ a′+∈R ρ = [r′+ 7→a′+]
ϕ⇒ρϕ0 P; R;ϕ ` t′i<:ρ ti i = 1..n
P; Γ; R;ϕ ` v0.mn〈a+a′+〉(v′1..v′n) : ρ t

[RC−LETR]
a = fresh()

ϕ′ = ϕ ∧
∧
r′∈R(r′�a)

P; Γ; R∪{a};ϕ′ ` [r 7→a]e : t
reg(t) ⊆ R

P; Γ; R;ϕ ` letreg r in e : t

ρt, ρϕ, ρe region substitution on a type, a constraint, and an expression
reg(field), reg(t) computes the region variables of a field (or a type) (see Figure 4.6)
fieldlist(cn〈r1..n〉) computes all fields of cn and their region types according to

regions r1..n (see Figure 4.6)
fresh() returns one or more new/unused region names

Figure 3.8: Region Type Checking Rules

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 54

P = ...def...
def ∈ P

P ` mbr ∈D cn〈r1..n〉
P ` mbr ∈ cn〈r1..n〉

mbr=field|meth class cn〈r1..n〉...{...mbr...}∈P
P ` mbr ∈D cn〈r1..n〉

class cn〈r1..n〉 extends cn′〈r1..m〉...∈P
P ` mbr ∈ cn′〈r1..m〉 ¬(P ` mbr∈Dcn〈r1..n〉)

P ` mbr ∈ cn〈r1..n〉

` t <: t′, ϕ′ ϕ⇒ϕ′
P; R;ϕ `type t P; R;ϕ `type t′

P; R;ϕ ` t<:t′

P; R `constr t, ϕ′ ϕ⇒ϕ′

P; R;ϕ `type t P; R `constr prim〈〉, true
r ∈ R

P; R `constr Object〈r〉, true

class cn〈r1..n〉 extends c〈...〉 where ϕ {...} ∈ P
R⊇{x1, ..., xn}

P; R `constr cn〈x1..n〉, [r1 7→x1..rn 7→xn]ϕ
P; R;ϕ `type t

P; R;ϕ `field t v

P=def1..n defi=class cni〈...〉 extends cni′〈...〉...
IR={(cni, cni′) | 1≤i≤n} ID={(cni, cni) | 1≤i≤n}

TransClosure(IR)∩ID=∅ ∀i, j:i6=j · cni 6=cnj
WFClasses(P)

def=class cn〈...〉...{(fdj)j:1..p...}
∀j, l:j 6=l · name(fdj) 6=name(fdl)

FieldsOnce(def)

def=class cn〈...〉...{...(mj)j:1..q}
∀j, l:j 6=l · name(mj) 6=name(ml)

MethodsOnce(def)

def=class cn〈r1..n〉 extends cn′〈r1..m〉whereϕ {fd1..p meth1..q}
n≥m P; {r1, .., rm} `constr cn′〈r1..m〉, ϕ′ ϕ⇒ϕ′

∀j∈1..q · ∃meth′ · P`meth′∈cn′〈r1..m〉∧name(meth′)=name(methj)
⇒(P;ϕ`OverridesOK(methj ,meth′))

P ` InheritanceOK(def)

meth = t0 mn〈x1..p(p+1)..q, r1..n〉((t v)i:1..m) where ϕ ...
meth′ = t0 mn〈x1..p, r1..n〉((t v)i:1..m) whereϕ′... ϕ0∧ϕ′⇒ϕ

P;ϕ0 ` OverridesOK(meth,meth′)

Figure 3.9: Auxiliary Region Checking Rules

variable name duplication, we assume that the local variables of the blocks and the arguments

of the functions are uniquely renamed in a preprocessing phase. Region type checking rules

are depicted in Figure 3.8, with some auxiliary rules in Figure 3.9. Judgments of the following

forms are employed:

• ` P denoting that a program P is well-typed.

• P `def def denoting that a class declaration def is well-formed.

• P; Γ; R;ϕ `meth meth denoting that a method meth is well-defined with respect to the pro-

gram P, the type environment Γ, the set of live regions R, and region constraint ϕ.

• P; Γ; R;ϕ ` e : t denoting that an expression e is well-typed with respect to the program

P, the type environment Γ, the set of live regions R, and region constraint ϕ.

• P; R;ϕ `type t denoting that a type t is well-formed, namely, the regions of the type t are

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 55

from the set of the live regions R, and the invariant of the type t is satisfied by the constraint

context ϕ.

• P; R `constr t, ϕ denoting that the regions of the type t are from the set of the live regions

R, while ϕ is the invariant of the type t.

• P; R;ϕ `field field denoting that the type of a field field is well-formed with respect to `type

judgment.

• P; R;ϕ ` t<:t′ denoting that the type t is a subtype of the type t′, namely both types are

well-formed and the region constraint of the subtyping relation (defined in Section 3.5) is

satisfied by the constraint context ϕ.

The rule [RC−PROG] denotes that a region-annotated program is well-typed if all declared

classes are well-typed. The predicates in the premise are used to capture the standard well-

formedness conditions for the object-oriented programs, as follows:

• no duplicate definitions of classes and no cycle in the class hierarchy

• no duplicate definitions of fields

• no duplicate definitions of methods

• soundness of class subtyping and method overriding

These predicates are formulated in Figure 3.9, where the last two rules are used to check

the soundness of the class subtyping and method overriding. Take note that ϕ⇒ϕ′ in the

InheritanceOK(def) rule is to support the soundness of the class subtyping, while ϕ0∧ϕ′⇒ϕ in

the last rule is to ensure the soundness of the method overriding.

The rule [RC−CLASS] indicates that a class is well-formed if all its fields and methods are

well-formed, and the class invariant ensures the necessary lifetime relations among class region

parameters. In addition, the rule does not allow the first region of the class to be used by the

region types of the fields. Using the first region on a field would break the object (region)

subtyping (rule [ObjRegSub] of Figure 3.6). Function reg returns the region variables of a field

type (see Figure 4.6).

The rule [RC−METH] checks the well-formedness of a method declaration. Each region type

is checked to be well-formed, that means its regions are in the current set of live regions and its

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 56

invariant is satisfied by the current constraint context. The method body is checked using the

type relation for expressions such that the gathered type has to be a subtype of the declared type.

Our type relation for expressions is defined in a syntax-directed fashion. Take note that re-

gion constraints of the variables are not checked at their uses ([RC−VAR]), but at their declaration

sites ([RC−EB]). The region invariant of an object is also checked when that object is created

([RC−NEW]). In the rule for object creation ([RC−NEW]), the function fieldlist(cn〈x1..n〉) returns

a list comprising all declared and inherited fields of the class cn〈x1..n〉 and their region types

according to the regions x1..xn of the class cn (see Figure 4.6). They are organized in an order

determined by the constructor function.

The rule [RC−INVOKE] is used to check a method call. It ensures that the method region

parameters are live regions and the method precondition is satisfied by the current constraint

context as ϕ⇒ρϕ0. A substitution ρ is computed for the method’s formal region parameters.

The current arguments are also checked to be subtypes of the method’s formal parameters.

The rule [RC−LETR] is used to check a local region declaration. The local expression is

checked with an extra live region a (that is a fresh region), and an extra constraint
∧
r′∈R(r′�a)

that ensures that new introduced region is on the top of the region stack. The rule uses a region

substitution on the expressions. Note that the region substitutions on expressions, constraints

and types are defined as expected. The gathered region type of the local expression is checked

to contain only live regions (from R excepting a). This guarantees that the localized region a

does not escape. Function reg(t) returns all region variables of t (see Figure 4.6).

3.7 Formalism

First, we define the dynamic semantics of the target language. Then we show that our region

type system for the target language is sound, meaning that the programs accepted by the type

system do not create dangling pointers.

3.7.1 Dynamic Semantics

We define the dynamic semantics of region-annotated Core-Java as a small-step rewriting rela-

tion from machine states to machine states. A machine state has the form 〈$,Π〉[e] where $ is

the heap organized as a stack of regions, Π is the variable environment, and e is the current pro-

gram. Our dynamic semantics was inspired by the previous work on abstract models of memory

management [125] and region-based memory management [41, 80]. The following notations

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 57

are used:

Region Variables : r, a ∈ RegVar

Offset : o ∈ Offset

Locations : ` or (r, o) ∈ Location=RegVar×Offset

Primitive Values : k | null ∈ Prim

Values : δ ∈ Value = Prim] Location

Variable Environment : Π ∈ VEnv = Var ⇀fin Value

Field Environment : V ∈ FEnv = FieldName ⇀fin Value

Object Values : cn〈r∗〉(V) ∈ ObjVal = ClassName× (RegVar)n × FEnv

Store : $ ∈ Store = []|[r 7→Rgn]Store

Runtime Regions : Rgn ∈ Region = Offset ⇀fin ObjVal

Regions are identified by region variables. We assume a denumerably infinite set of region

variables, RegVar. The store $ is organized as a stack, that defines an ordered map from region

variables, r to runtime regions Rgn. The notation [r 7→Rgn]$ denotes a stack with the region r

on the top, while [] denotes an empty store. The store can only be extended with new region

variables. A runtime region Rgn is an unordered finite map from offsets to object values. We

assume a denumerably infinite set of offsets, Offset for each runtime region Rgn.

The set of values that can be assigned to variables and fields is denoted by Value. Such a

value is either a primitive value (a constant or a null value) or it is a location in the store. A

location consists of a pair of a region variable and an offset.

An object value consists of a region type cn〈r∗〉, and a field environment V mapping field

names to values. V is not really an environment since it can only be updated, never extended.

An update of field f with value δ is written as V+{f 7→δ}.

The variable environment Π is a mapping Var ⇀fin Value, while the type environment Γ that

corresponds to the runtime variable environment is also a mapping Var ⇀fin Type. To avoid

variable name duplication, we assume that the local variables of the blocks and the arguments

of the functions are uniquely renamed in a preprocessing phase.

Notation f : A ⇀fin B denotes a partial function from A to B with a finite domain, written

A=dom(f). We write f+{a 7→ b} for the function like f but mapping a to b (if a∈dom(f) and

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 58

f(a)=c then

(f+{a 7→ b})(a)=b).

The notation {} (or ∅) stands for an undefined function. Given a function f : A ⇀fin B , the

notation f−C denotes the function f1 : (A−C) ⇀fin B such that ∀x∈(A−C) · f1(x) = f(x).

We require some intermediate expressions for the small-step dynamic semantics to follow

through. The syntax of intermediate expressions is thus extended from the original expression

syntax as follows:

e ::= . . . | (r, o) | ret(v, e) | retr(r, e)

The expression ret(v, e) is used to capture the result of evaluating a local block, or the result of

a method invocation. The variable associated with ret denotes either a block local variable or a

method receiver or a method parameter. This variable is popped from the variable environment

at the end of the block’s evaluation. In the case of a method invocation there are multiple nested

rets which pop off from the variable environment the receiver and the method parameters at

the end of the method’s evaluation. The expression retr(r, e) is used to pop off the top, r of the

store stack at the end of expression e evaluation.

Dynamic semantics rules of region annotated Core-Java are shown in Appendix A.1. The

evaluation judgment is of the form:

〈$,Π〉[e]↪→〈$′,Π′〉[e′]

where $ ($′) denotes the store before (after) evaluation, while Π (Π′) denotes the variable

environment before (after) evaluation.

The store $ organized as a stack establishes the outlive relations among regions at runtime.

The function ord($) returns the outlive relations for a given store, the function dom($) returns

the set of the store regions, while the function location dom($) returns the set of all locations

from the store. They are defined as follows:

ord([r1 7→Rgn1][r2 7→Rgn2]$)=def (r2�r1)∧ord([r2 7→Rgn2]$)

ord([r 7→Rgn]) =def true ord([]) =def true

dom([r 7→Rgn]$)=def{r}∪dom($) dom([r 7→∅]$)=def{r}∪dom($) dom([])=def∅

location dom($)=def{(r, o) | $=$1[r 7→Rgn]$2 ∧ Rgn6=∅ ∧ o∈dom(Rgn)}

Notation $(r)(o) denotes an access into the region r at the offset o, as follows:

$(r)(o)=defRgn(o) where $=$1[r 7→Rgn]$2

We define the meaning of no-dangling references property at runtime. The property refers

to two kinds of references: (1) references from variable environment to store locations, and (2)

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 59

references from store locations to store locations. Note that the notion of no-dangling references

was introduced in Section 3.3, and a reference is formalized as a location (r, o) in this section.

Definition 3.7.1.1. (live location) A location (r, o) is live with respect to a store $, if r∈dom($).

Definition 3.7.1.2. (no-dangling)

1. A variable environment Π is no-dangling with respect to a store $ if for all v ∈ dom(Π),

Π(v) is either a primitive value, or a live location (r, o) with respect to $.

2. A runtime store $ is no-dangling if each region r1 ∈ dom($) contains only references

to regions older than itself, that means that for each location (r1, o) ∈location dom($)

containing an object value $(r1)(o)=cn〈r1..n〉(V) that object satisfies the non-dangling

requirement for a class, such that ord($)⇒
∧
i:2..n(ri�r1) and the current values of the

fields are either primitives or references to regions older than those expected by the region

type cn〈r1..n〉, as follows:

∀f ∈ dom(V) . V(f)=(rf , of) ord($)⇒rf�fieldregion(cn〈r1..n〉, f)

Function fieldregion(cn〈r1..n〉, f) computes the region type of the class field f and then re-

turns its first region where the field is expected to be stored.

The dynamic semantics evaluation rules may yield two possible runtime errors, namely:
Error ::= nullerr | danglingerr

The first error nullerr is due to null pointers (by accessing fields or methods of null objects).

The second error danglingerr is reported when a store updating operation or a variable envi-

ronment updating operation creates a dangling reference.

Our dynamic semantics rules use runtime checks to guarantee that a danglingerr error is

reported (and the execution is aborted) whenever the program evaluation tries to create a dan-

gling reference. There are five situations that require no-dangling reference checks at runtime:

• creation of a new object value, where we check the class invariant, mainly whether the

fields regions outlive the region of the object. We also check whether the initial values of

the fields are stored in regions that outlive the corresponding expected regions.

• updating an object field, where we check whether the new value is stored into a region

that outlives the expected region for that field. The expected region of an object field is

computed from the regions of the object value.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 60

• updating a variable from the variable environment with a new location, where we check

whether the new location is live.

• deallocation of a region, where we check whether the computed result, the variable envi-

ronment, and the store locations do not contain references to the deallocated region. We

also check whether the deallocated region is on the top of the current store.

• calling a method, where we check whether the method’s region arguments are in the

current store.

The static semantics of the language is also extended to include the new intermediate expres-

sions. The process requires introduction of a store typing to describe the type of each location.

This ensures that objects created in the store during run-time are type-wise consistent with those

captured by the static semantics. Store typing is conventionally used to link static and dynamic

semantics [151]. In our case, it is denoted by: Σ ∈ StoreType = RegVar⇀finOffset ⇀fin Type. The

judgments of static semantics are extended with store typing, as follows:

P; Γ; R;ϕ; Σ ` e : t

For a store typing Σ : R⇀finO⇀finType, a region r, a location (r, o), and a type t we introduce the

following notations:

dom(Σ)=R Σ(r)(o)=f(o), where f=Σ(r)

location dom(Σ)=def{(r, o) | r∈dom(Σ) ∧ f=Σ(r) ∧ f 6=∅ ∧ o∈dom(f)}

Σ−r=defΣ1 such that Σ1 : (R−{r})⇀finO⇀finType

∧∀r′∈(R−r) · Σ1(r′)=Σ(r′)

Σ+r=defΣ2 such that Σ2 : (R∪{r})⇀finO⇀finType

∧Σ2(r)=∅ ∧ ∀r′∈R · Σ2(r′)=Σ(r′)

Σ−(r, o)=defΣ3 such that Σ3 : R⇀finO⇀finType

∧r∈R ∧ Σ3(r)=Σ(r)−{o} ∧ ∀r′∈(R−r) · Σ3(r′)=Σ(r′)

Σ+((r, o) : t)=defΣ4 such that Σ4 : R⇀finO⇀finType

∧r∈R ∧ Σ4(r)=Σ(r)+{o 7→t} ∧ ∀r′∈(R−r) · Σ4(r′)=Σ(r′)

Definition 3.7.1.3. The function vars(e) computes the set of all program variables which occur

in the expression e, excepting those variables introduced by e’s block subexpressions, as follows:

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 61

vars(e) =def case e of

ret(v, e) → {v} ∪ vars(e)

{(t v) e} → vars(e) \ {v}

retr(r, e) | letreg r in e → vars(e)

v.f = e | v = e | while v e → {v} ∪ vars(e)

v.f | v → {v}

if v then e1 else e2 → {v} ∪ vars(e1) ∪ vars(e2)

e1 ; e2 → vars(e1) ∪ vars(e2)

new cn〈r+〉(v∗) → {v∗}

v.mn〈r∗〉(v∗) → {v} ∪ {v∗}

otherwise → ∅

Definition 3.7.1.4. The function retvars(e) computes the set of all program variables which

occur in the ret subexpressions of the expression e, as follows:

retvars(e) =def case e of

ret(v, e) → {v} ∪ retvars(e)

retr(r, e) | v.f = e | v = e | {(t v) e} → retvars(e)

while v e | letreg r in e → retvars(e)

e1 ; e2 | if v then e1 else e2 → retvars(e1) ∪ retvars(e2)

otherwise → ∅

Definition 3.7.1.5. The function regs(e) computes the set of all region variables which occur in

the expression e, excepting those regions introduced by e’s letreg subexpressions, as follows:

regs(e) =def case e of

{(t v) e} → reg(t) ∪ regs(e)

retr(r, e) → {r} ∪ regs(e)

letreg r in e → regs(e) \ {r}

ret(v, e) | v.f = e | v = e | while v e → regs(e)

(r, o) → {r}

if v then e1 else e2 | e1 ; e2 → regs(e1) ∪ regs(e2)

new cn〈r+〉(v∗) | v.mn〈r+〉(v∗) → {r+}

otherwise → ∅

where reg(t) is defined in the Figure 4.6.

Definition 3.7.1.6. The function retregs(e) computes the set of all region variables which occur

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 62

in the retr subexpressions of the expression e, as follows:

retregs(e) =def case e of

retr(r, e) → {r} ∪ retregs(e)

ret(v, e) | v.f = e | v = e | {(t v) e} → retregs(e)

while v e | letreg r in e → retregs(e)

e1 ; e2 | if v then e1 else e2 → retregs(e1) ∪ retregs(e2)

otherwise → ∅

Definition 3.7.1.7. (valid program)

1. An expression e is a valid expression if the predicate valid(e) holds, where valid(e) is

defined as follows:

valid(e) =def case e of

{(t v) e} → retvars(e)=∅ ∧ retregs(e)=∅

lhs = e → retvars(e)∩vars(lhs)=∅ ∧ valid(e)

e1 ; e2 → retregs(e2)=∅ ∧ retvars(e2)=∅ ∧ valid(e1)

∧retvars(e1)∩vars(e2)=∅ ∧ retregs(e1)∩regs(e2)=∅

if v then e1 else e2 → retregs(e1)=∅ ∧ retvars(e1)=∅

∧retregs(e2)=∅ ∧ retvars(e2)=∅

while v e | letreg r in e → retregs(e)=∅ ∧ retvars(e)=∅

ret(v, e) → v 6∈ retvars(e) ∧ valid(e)

retr(r, e) → r 6∈ retregs(e) ∧ valid(e)

otherwise → true

2. A method is a valid method if the method’s body e, is a valid block expression such that

retvars(e)=∅ and retregs(e)=∅.

3. A class is a valid class if all the class’s methods are valid methods.

4. A program is a valid program if all the program’s classes are valid classes.

Note that a source language Core-Java program is by default a valid program since it does not

contain any intermediate expression.

Definition 3.7.1.8. Using the evaluation rules from Appendix A.1, the function lvar(e) estimates

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 63

the set of variables which may be popped off from the variable environment Π during the evalu-

ation of the valid expression e (note that only ret(v, e) may affect Π), as follows:

lvar(e) =def case e of

ret(v, e) → {v} ∪ lvar(e)

retr(r, e) | lhs = e | e ; e1 → lvar(e)

otherwise → ∅

Definition 3.7.1.9. Using the evaluation rules from Appendix A.1, the function lreg(e) estimates

the set of regions which may be popped off from the store $ during the evaluation of the valid

expression e (note that only retr(r, e) may affect $), as follows:

lreg(e) =def case e of

retr(r, e) → {r} ∪ lreg(e)

ret(v, e) | lhs = e | e ; e1 → lreg(e)

otherwise → ∅

Definition 3.7.1.10. Using the evaluation rules from Appendix A.1, the function lloc(e) estimates

the new location which may be created into an existing region during one evaluation step of the

valid expression e (note that only new may create a new location), as follows:

lloc(e) =def case e of

new cn〈r1, .., rn〉(v∗) → {(r1, o)}

ret(v, e) | retr(r, e) | lhs = e | e ; e1 → lloc(e)

otherwise → ∅

where the offset o of the region r is the offset where the next allocation in r is done.

The judgments of the new intermediate expressions are presented in Figure 3.10. They as-

sume that the expressions are valid with respect to the Definition 3.7.1.7. The first two rules

[RC−LOCATION] and [RC−ObjVal] are used to type the store, either a location or an object value

(i.e. a location’s content). Rule [RC−ObjVal] preserves the same invariants as those of the rule

[RC−NEW]. Rule [RC−RET] ensures that the variable to be popped off, v is in the current en-

vironment Γ. The subsumption rule, [SUBSUMPTION], simplifies the next theorems and their

proofs.

Rule [RC−RETR] is similar to rule [RC−LETR], but it takes into account the evaluation of the

expression retr(r, e). The first check ensures that the region to be deallocated, a is in R. The

Rt denotes the regions of R which are different than a and are not younger than a. Note that

lreg(e) denotes the regions which are younger than a. The second check ensures that our type

system uses only lexically scoped regions such that the region to be deallocated, a is always on

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 64

[RC−LOCATION]

r∈R
Σ(r)(o) = t

P; Γ; R;ϕ; Σ ` (r, o) : t

[RC−ObjVal]
P; R;ϕ `type cn〈r1..n〉

fieldlist(cn〈r1..n〉) = (ti fi)i:1..p
P; Γ; R;ϕ; Σ ` V(fi) : t′i P; R;ϕ ` t′i <: ti i=1..p

P; Γ; R;ϕ; Σ ` cn〈r1..n〉(V) : cn〈r1..n〉

[RC−RET]
v∈Γ P; Γ; R;ϕ; Σ ` e : t

P; Γ; R;ϕ; Σ ` ret(v, e) : t

[SUBSUMPTION]
P; Γ; R;ϕ; Σ ` e : t′ P; R;ϕ ` t′ <: t

P; Γ; R;ϕ; Σ ` e : t

[RC−RETR]
a∈R Rt=R−lreg(e)−{a} ϕ⇒

∧
r∈Rt

(r�a)
reg(t)⊆Rt reg(Γ−lvar(e)) ⊆ Rt P; Γ; R;ϕ; Σ ` e : t

P; Γ; R;ϕ; Σ ` retr(a, e) : t

reg(t) computes the region variables of a type (see Figure 4.6)
fieldlist(cn〈r1..n〉) computes all fields of cn and their region types according to

regions r1..n (see Figure 4.6)

Figure 3.10: Region Type Checking Rules for Valid Intermediate Expressions

the top of the regions stack. The third and the fourth check ensure that the region a and the

regions younger than a do not escape either through the result or through the live variables of

the type environment. Note that lvar(e) denotes the local variables of the expression e which are

deallocated from the variable environment during the evaluation of e.

3.7.2 Safety Proof

By using the standard techniques found in [204] we show that a valid program well-typed by the

type system we have presented, never creates dangling references. In what follows, we formulate

the type preservation theorem and the progress theorem. The soundness of our static semantics

relies on the following consistency relationship between the static and dynamic semantics.

Definition 3.7.2.1. (consistency) A run-time environment ($,Π) is consistent with a static envi-

ronment (Γ,R, ϕ,Σ), written Γ,R, ϕ,Σ � 〈$,Π〉, if the following judgment holds:

dom(Γ)=dom(Π) ∀v ∈ dom(Π) · P; Γ; R;ϕ; Σ ` Π(v) : Γ(v) reg(Γ)⊆R

location dom(Σ)=location dom($) dom(Σ)=dom($) R=dom($) ord($)⇒ϕ

∀(r, o)∈location dom($) · P; Γ; R;ϕ; Σ ` $(r)(o) : Σ(r)(o)

Γ,R, ϕ,Σ � 〈$,Π〉

Note that $(r)(o) returns an object value cn〈r∗〉(V) whose type is cn〈r∗〉. In our instrumented

operational semantics an object value and its type are stored together.

The subject reduction theorem ensures that the type is preserved during the evaluation of a

valid program, as follows:

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 65

Theorem 3.7.2.1. (Subject Reduction): If

valid(e) P; Γ; R;ϕ; Σ ` e : t

Γ,R, ϕ,Σ � 〈$,Π〉

〈$,Π〉[e] ↪→ 〈$′,Π′〉[e′]

then there exist Σ′, Γ′, R′, and ϕ′, such that

(Σ′−(lreg(e′)−lreg(e)))−(lloc(e)−lloc(e′)) = Σ−(lreg(e)−lreg(e′))

Γ′−(lvar(e′)−lvar(e)) = Γ−(lvar(e)−lvar(e′))

R′−(lreg(e′)−lreg(e)) = R−(lreg(e)−lreg(e′))

ϕ′−(lreg(e′)−lreg(e))⇒ ϕ−(lreg(e)−lreg(e′))

Γ′,R′, ϕ′,Σ′ � 〈$′,Π′〉

valid(e′) P; Γ′; R′;ϕ′; Σ′ ` e′ : t.

Proof: By structural induction on e. The detailed proof is in Appendix A.2.2.

Although the hypothesis of the above theorem contains an evaluation relation, the proof does

not use the runtime checks associated with the evaluation rules to prove that the result of the

evaluation (result and dynamic environment) is well-typed, valid and consistent.

The following theorem guarantees that the evaluation of a valid program cannot generate

danglingerr errors, by proving that those runtime checks are redundant for a well-typed valid

program (the runtime checks are proved by the static semantics).

Theorem 3.7.2.2. (Progress) If

valid(e) P; Γ; R;ϕ; Σ ` e : t

Γ,R, ϕ,Σ � 〈$,Π〉
then either

• e is a value, or

• 〈$,Π〉[e]↪→nullerr or

• there exist $′,Π′, e′ such that 〈$,Π〉[e] ↪→ 〈$′,Π′〉[e′].

Proof: By induction over the depth of the type derivation for expression e. The detailed proof

is in Appendix A.2.3.

We conclude with the following soundness theorem for Core-Java. The theorem states that

if a valid program is well-typed and is evaluated in a runtime environment consistent with the

static environment, the result is (1) either an error different than dangling error, (2) or a value,

(3) or the program diverges. The evaluation never reports dangling errors, namely the program

never creates dangling references.

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 66

Theorem 3.7.2.3. (Soundness) Given a well-typed valid Core-Java program P=def∗ and the

main function (void main(void){e0})∈P, where e0 is a well-typed valid closed term (without free

regions and free variables), such that retvars(e0)=∅ ∧ retregs(e0)=∅ and

P; Γ0; R0;ϕ0; Σ0 ` e0 : void, where Γ0=∅, R0=∅, ϕ0=true, and Σ0=∅ . Starting from the initial

runtime environment 〈$0,Π0〉, where $0=[], Π0=∅, such that Γ0,R0, ϕ0,Σ0 � 〈$0,Π0〉. Then

either

(1) 〈$0,Π0〉[e0] ↪→∗ nullerr

or there exist a store $, a variable environment Π, a value δ, a type environment Γ, a set of

regions R, a region constraint ϕ, a store typing Σ such that

(2) 〈$0,Π0〉[e0] ↪→∗ 〈$,Π〉[δ] Γ,R, ϕ,Σ � 〈$,Π〉 P; Γ; R;ϕ; Σ ` δ : void

or for a store $, a variable environment Π, a valid expression e, a type environment Γ, a set of

regions R, a region constraint ϕ, a store typing Σ such that

〈$0,Π0〉[e0] ↪→∗ 〈$,Π〉[e] Γ,R, ϕ,Σ � 〈$,Π〉 P; Γ; R;ϕ; Σ ` e : void valid(e)

there exist a store $′, a variable environment Π′, an expression e′, a type environment Γ′, a set

of regions R′, a region constraint ϕ′, a store typing Σ′ such that

(3) 〈$,Π〉[e] ↪→ 〈$′,Π′〉[e′] Γ′,R′, ϕ′,Σ′ � 〈$′,Π′〉 P; Γ′; R′;ϕ′; Σ′ ` e′ : void valid(e′)

Proof: The proof is an induction on the number of the reduction steps. We can repeatedly

use the progress theorem (Theorem 3.7.2.2) to prove that there is a reduction step and then the

preservation theorem (Theorem 3.7.2.1) to prove that the runtime environment after evaluation

is still well-typed and the evaluation result is valid.

Although the type void typically denotes the empty type, here we assume void to be isomorphic

to the type unit. Thus, the singleton value of type void is ().

3.7.3 Comparison to Other Proofs

We have proven the safety properties of our region type system by induction. In previous effect-

based region type system, Tofte and Talpin [192, 189, 17] and Christiansen and Velschow [41]

made use of co-induction to prove the soundness. Their proof requires co-induction partly

because they prove two properties at the same time: type soundness and translation soundness.

The latter property guarantees that there exists a semantic relation between source program and

its region-annotated counterpart. Our safety theorems are only focused on the problem of type

CHAPTER 3. REGION-BASED MEMORY MANAGEMENT 67

soundness, thus are simpler to prove. A coinductive definition is required in their proof also

because they use a big-step semantics where certain information is lost when deleting a region

from the store, as discussed in [91, 29]. Our system uses a small-step operational semantics

instrumented with regions which makes the consistency definition and the proof easier. Later,

Calcagno [28] used stratified operational semantics to avoid co-induction in the proof of safety

properties of a simple region calculus, while Helsen [90] introduced a special constant for

defunct regions in their big-step semantics which made the soundness proof simpler. A similar

proof with ours is the safety proof of Niss [133], that in addition to a simple functional language

handles an imperative calculus, and like our proof avoids explicit co-induction by using store

typing. An early example of a proof with store types is in [1]. Cyclone [80] also has an effect

system used for a soundness proof and does not use coinduction. Elsman [60] has refined

Tofte and Talpin’s region type system in order to forbid the dangling references and proved

by induction the safety for a small functional language. There are many differences between

his proof and ours. His proof is based on a small-step contextual semantics [124], while in

our proof we explicitly modelled the heap as a stack of regions and we used a consistency

relation between the static and dynamic semantics. In addition Elsman used a syntax-directed

containment relation to express the regions of the program values and also to force the stack

dicipline for regions’allocation and deallocation. In our case the region requirements and the

order among regions are expressed by the type system region constraints. However we also

imposed a syntactic condition to restrict the valid non-source programs.

68

CHAPTER 4

REGION INFERENCE

4.1 Algorithm Overview

The goal of our region inference is to automatically set a region for each object of the input

program such that the output program uses the region-based memory model described in Sec-

tion 3.3 and never creates dangling references. The trivial solution is to put everything in one

region (that could be a pre-allocated region that lives forever), but our region inference is going

to aim for a better solution where better means to put objects into regions with shorter life-

time, whenever our system can guarantee that it is safe to do so. Given a Core-Java program P,

our algorithm infers the appropriate region annotations for each class, method, and expression

from P generating as output a region-annotated Core-Java program P’. The input program is

assumed to be a well-typed Core-Java program. The region inference algorithm is designed as

summary-based flow insensitive analysis and consists of the following main components:

1. A Dependency Graph to guide the Summary-Based Flow Insensitive Analysis.

Our region inference is designed as a summary-based analysis [202] for classes and meth-

ods. The summary of the class consists of the class region parameters and the class in-

variant, while the summary of the method consists of the method region parameters and

the method precondition. In general the class invariant corresponds to the non-dangling

requirement, while the method precondition encapsulates the method effect. Our analysis

traverses each class (method) only once to collect the summary. The summary is ex-

pressed as a constraint abstraction that usually is not in a closed-form. The gathered sum-

mary may contain the constraint abstractions of other classes and/or methods on which

the current class/method depends. In order to compute the closed-form of the current

class/method summary, it is required to process the classes and methods in some particu-

lar order given by the complex inter-dependency between classes and methods. Therefore

a dependency graph of classes and methods is built. The final dependency graph has

the classes and methods organized into a hierarchy of strongly connected components

(SCCs). Each SCC is separately analysed, first the classes and then the methods. The

CHAPTER 4. REGION INFERENCE 69

summaries of classes (methods) in the same SCC have cyclic dependencies, so they are

computed simultaneously by a fixed point iteration. In contrast, the summaries of classes

(methods) in different SCCs have hierarchical dependencies (or no dependence at all),

and hence are computed by bottom-up traversal on SCCs, without iteration. Section 4.7

presents more details about the dependencies and also discusses the case of the mutually-

dependent classes/methods. The method overriding aspects are presented in Section 4.6.

For simplicity, from Section 4.1 to Section 4.5, we assume that each SCC contains at most

one class and one method.

2. Inference for a Class.

The region parameters and the class invariant of a class are inferred. The algorithm is

based on the principles introduced in Section 3.4 and consists of the following steps,

formalized in Section 4.2:

(a) Inherit the regions and the class invariant of the superclass.

(b) Reserve the first region for the receiver object (this).

(c) Compute the regions for the fields. The recursive fields should have the same region

annotation as the class, except for the first region. All recursive fields reuse the same

special region as their first region. This special region is the last region parameter of

the class.

(d) Add the fields’ regions to the region annotation of the class.

(e) Add the fields’ constraints (corresponding to the class invariants of the fields’ region

types) to the class invariant.

(f) Add the no-dangling requirements to the class invariant.

3. Inference for a Method.

The method region parameters and the method precondition are inferred. The algorithm

consists of the following steps:

(a) Compute the region parameters of the method based on the region parameters of the

method’s parameters (including this) and the method result (Section 4.5).

(b) Gather constraints from the method body and compute the method precondition.

The method precondition naturally depends on how the method manipulates the

CHAPTER 4. REGION INFERENCE 70

(a) Acyclic Data Structure

class Pair extends Object {
Object fst;
Object snd;
void setSnd(Object o) {snd=o;}
Pair example(){
Pair p1,p2,p3,p4;
p4 = new Pair(null,null);
p3 = new Pair(p4,null);
p2 = new Pair(null,p4);
p1 = new Pair(p2,null);
p1.setSnd(p3);
p2}

}
(b) Source program

Figure 4.1: Core-Java input program

objects (Section 4.3). In the case of a recursive method, a fixpoint iteration is per-

formed to compute the method precondition (Section 4.5).

(c) Introduce letreg expressions in the method body (Section 4.4). Only the global re-

gions (used to annotate the method parameters, the method receiver and the method

result) can escape outside of the method body. The regions younger than the global

regions are localised by letreg expressions. The regions older than the global

regions are made equivalent to suitable global regions.

4.1.1 An Example

We next illustrate our region inference algorithm with a simple example. Figure 4.1(b) shows

the Core-Java input program. Consider a Pair class with two fields of type Object. For

simplicity, this class has only two methods: setSnd that modifies the value of the second field

and example that builds the acyclic data structure drawn in Figure 4.1(a). First we compute the

dependency graph. Thus, we obtain the following dependencies:

• Pair.example→Pair: denotes that the method Pair.example makes use of the class

Pair in its body

CHAPTER 4. REGION INFERENCE 71

class Pair〈r1,r2,r3〉 extends Object〈r1〉 where r2�r1 ∧ r3�r1 {
Object〈r2〉 fst;
Object〈r3〉 snd;

}
(a) Inference for the class

class Pair〈r1,r2,r3〉 extends Object〈r1〉 where r2�r1 ∧ r3�r1
{ ...

void setSnd〈r1,r2,r3,r4〉(Object〈r4〉 o) where ...
{snd=o;}

}
(b) Inference for the method region parameters

class Pair〈r1,r2,r3〉 extends Object〈r1〉 where r2�r1 ∧ r3�r1
{ ...

void setSnd〈r1,r2,r3,r4〉(Object〈r4〉 o) where r4�r3
{snd=o;} // r4�r3

}
(c) Inference for the method precondition

Figure 4.2: Inference of Pair Class and Pair.setSnd Method

• Pair.example→Pair.setSnd: denotes that the method Pair.example calls the method

Pair.setSnd

• Pair.setSnd→Pair: denotes that the method Pair.setSnd makes use of the class

Pair in its body

Based on the computed dependencies, we perform region inference in the following order: (i)

the inference for the class Pair, (ii) the inference for the method Pair.setSnd, and (iii) the

inference for the method Pair.example.

The result of the inference for the class Pair is shown in Figure 4.2(a). The class Pair is

annotated with three region parameters: region r1 is for this, region r2 stores the first field

fst and region r3 stores the second field snd. The class invariant r2�r1∧r3�r1 denotes the

non-dangling requirement.

Figures 4.2(b) and 4.2(c) present the inference for the method Pair.setSnd. First the

method region parameters are inferred based on the region types of the parameter o and the

receiver this. Then the method body is analysed. The body generates the constraint r4�r3

based on the object (region) subtyping for assignment (see Section 4.3). This constraint refers

only to the method region parameters and therefore it becomes part of the method precondition.

CHAPTER 4. REGION INFERENCE 72

class Pair〈r1,r2,r3〉 extends Object〈r1〉 where r2�r1 ∧ r3�r1
{ ...

Pair〈r5,r6,r7〉 example〈r1,r2,r3,r5,r6,r7〉()
where pre.Pair.example〈r1,r2,r3,r5,r6,r7〉 {

Pair〈l4,l4a,l4b〉 p4; //l4a�l4∧l4b�l4
Pair〈l3,l3a,l3b〉 p3; //l3a�l3∧l3b�l3
Pair〈l2,l2a,l2b〉 p2; //l2a�l2∧l2b�l2
Pair〈l1,l1a,l1b〉 p1; //l1a�l1∧l1b�l1
p4 = new Pair〈n4,n4a,n4b〉(null,null);
//n4�l4∧l4a=n4a∧l4b=n4b∧n4a�n4∧n4b�n4
p3 = new Pair〈n3,n3a,n3b〉(p4,null);
//l4�n3a∧n3�l3∧l3a=n3a∧l3b=n3b∧n3a�n3∧n3b�n3
p2 = new Pair〈n2,n2a,n2b〉(null,p4);
//l4�n2b∧n2�l2∧l2a=n2a∧l2b=n2b∧n2a�n2∧n2b�n2
p1 = new Pair〈n1,n1a,n1b〉(p2,null);
//l2�n1a∧n1�l1∧l1a=n1a∧l1b=n1b∧n1a�n1∧n1b�n1
p1.setSnd〈l1,l1a,l1b,l3〉(p3); //l3�l1b
p2 //l2�r5∧l2a=r6∧l2b=r7
}

}

Figure 4.3: Initial Region-Annotation of Pair.example Method

Gathered Region Constraints:
n2b=l2b∧l2b=r7∧n2a=l2a∧l2a=r6∧l1a=n1a∧l1b=n1b∧l4a=n4a∧l4b=n4b∧l3a=n3a
∧l3b=n3b∧l3�l1b∧l4a�l4∧l4b�l4∧l3a�l3∧l3b�l3∧r6�l2∧r7�l2∧l1a�l1
∧l1b�l1∧n4�l4∧l4a�n4∧l4b�n4 ∧l4�l3a∧n3�l3∧l3a�n3∧l3b�n3
∧l4�r7∧n2�l2∧r6�n2∧r7�n2∧l2�l1a ∧n1�l1∧l1a�n1∧l1b�n1∧l2�r5

Global and Local Regions:
GlobalRegions={r1,r2,r3,r5,r6,r7}
OutliveGlobalRegions={l4a,n4a,l4b,n4b,n4,l4,l2,n2,l2b,n2b,l2a,n2a}
LocalRegions={l1,n1,l1a,n1a,l1b,n1b,l3,n3,l3a,n3a,l3b,n3b}

Solutions for the Regions that outlive Global Regions
l2=n2=r5∧n2a=l2a=r6∧n2b=n4=n4a=n4b=l4=l4a=l4b=l2b=r7
Localising the Regions using Letreg
l1a=n1a=n1=l1=n1b=l1b=l3=n3=n3a=l3a=n3b=l3b=r

Figure 4.4: Solving region constraints

CHAPTER 4. REGION INFERENCE 73

class Pair〈r1,r2,r3〉 extends Object〈r1〉 where r2�r1 ∧ r3�r1
{ ...
Pair〈r5,r6,r7〉 example〈r1,r2,r3,r5,r6,r7〉()where r7�r5∧r6�r5{

letreg r in {
Pair〈r7,r7,r7〉 p4;
Pair〈r,r,r〉 p3;
Pair〈r5,r6,r7〉 p2;
Pair〈r,r,r〉 p1;
p4 = new Pair〈r7,r7,r7〉(null,null);
p3 = new Pair〈r,r,r〉(p4,null);
p2 = new Pair〈r5,r6,r7〉(null,p4);
p1 = new Pair〈r,r,r〉(p2,null);
p1.setSnd〈r,r,r,r〉(p3);
p2}

}}

Figure 4.5: Region Inference Result for Pair.example Method

All of the dependencies of Pair.example were analysed, thus we can continue with the

region inference of this method. As shown in Figure 4.3, our inference rules initially annotate

each method parameter, local variable, and constructor with new distinct regions and proceed

to gather the constraints from each sub-expression. A set of equality and outlive constraints

are collected and simplified; these constraints can be applied to reduce the number of distinct

regions. The only regions that can be used outside of the method body are the global regions

(used to annotate the method parameters, object receiver and the result) r1,r2,r3,r5,r6,r7.

Based on region lifetime constraints, our rule computes the regions that outlive the global re-

gions. These regions escape the method and are made equivalent to suitable global regions. The

rest of the regions can be localized and coalesced into a single region. The steps are highlighted

in Figure 4.4, with the final result of region inference shown in Figure 4.5.

4.1.2 Inference Rules Summary

Our rules assume that the source program P is globally available. Some of our rules also assume

that parts of the target (region-annotated) program P′ are also available. This is possible as we

perform region inference in stages, in accordance with the calling hierarchy with the help of

the dependency graph. For simplicity, first we assume that there is at most one class and one

method at each stage. The main judgments employed by our region inference are the following:

• `defVdef′,Q denoting the region inference for a class declaration (only fields) def; the

CHAPTER 4. REGION INFERENCE 74

fieldlist(Object〈r〉)=def []

class cn1〈r1..n〉 extends cn2〈r1..m〉..{(ti fi)i:1..p..}∈P′

`=fieldlist(ρ cn2〈r1..m〉) ρ=[ri 7→xi]ni=1

fieldlist(cn1〈x1..n〉)=def `++[(ρ ti) fi]
p
i=1

methlist(Object〈r〉)=def []

class cn1〈r1..n〉 extends cn2〈r1..m〉..{..methj:1..q}∈P′

`=methlist(ρ cn2〈r1..m〉) ρ=[ri 7→xi]ni=1

methlist(cn1〈x1..n〉)=def `++[(ρ methj)]
q
j=1

recursivefieldlist([], cn)=def []
τ=cn l=[(τ f)]++recursivefieldlist(fdl, cn)

recursivefieldlist([(τ f)]++fdl, cn)=def l

nonrecursivefieldlist([], cn)=def []
τ 6=cn l=[(τ f)]++nonrecursivefieldlist(fdl, cn)

nonrecursivefieldlist([(τ f)]++fdl, cn)=def l

st(ϕ, s1, s2)=def{x 7→sx|x∈s1 ∧sx∈{y | y∈s2∧ϕ⇒(x=y)}}

ors(ϕ, s1, s2)=def{r|r∈s1∧∃r′∈s2 · (ϕ⇒r�r′)} ors(ϕ, s1, s2)=defs1−ors(ϕ, s1, s2)

reg({})=def{} reg({v:τ〈r∗〉}∪Γ)=def{r∗}∪reg(Γ) reg(τ〈r∗〉)=def{r∗}

reg((τ〈r∗〉 f))=def{r∗} reg(true)=def{} reg(r1=r2)=def{r1, r2}

reg(r1�r2)=def{r1, r2} reg(q〈r1..rn〉}=def{r1..rn} reg(ϕ1∧ϕ2)=def reg(ϕ1)∪reg(ϕ2)

ρ t, ρ ϕ, ρ e, region substitution on a type, a constraint, an expression,
ρ meth and a method
fresh() returns one or more new/unused region names
r∗j denotes a possible empty sequence rj1 ..rjn where n≥0
r+j denotes a non-empty sequence rj1 ..rjn where n>0

Figure 4.6: Auxiliary Rules for Region Inference

inference result consists of the region-annotated class def′ and the class invariant (as a

constraint abstraction) Q.

• `τVt, ϕ denoting that t and ϕ are the region type and the class invariant corresponding to

a type τ with respect to the region-annotated program P′. Note that t and ϕ are generated

using fresh region names.

• `tVϕ denoting that ϕ is the class invariant corresponding to the region type twith respect

to the region-annotated program P′.

• `t<:t′Vϕ denoting that ϕ is the region constraint corresponding to the subtype relation

defined in Section 3.5. However ϕ also contains the class invariants of the region types t

and t′.

• Γ`methVmeth′,Q denoting the region inference for a method meth with respect to the

region type environment Γ; the inference result consists of the region-annotated method

meth′ and the method precondition (as a constraint abstraction) Q.

CHAPTER 4. REGION INFERENCE 75

• Γ`eVe′:t, ϕ denoting the region inference for an expression e with respect to the region

type environment Γ; the inference result consists of the region-annotated expression e′, its

region type t, and the derived region constraint ϕ.

• Γ`ebVeb′:t, ϕ denoting the region inference for a block expression eb with respect to the

region type environment Γ; the inference result consists of the region-annotated block

expression eb′, its region type t, and the derived region constraint ϕ. This inference rule

may introduce a letreg in eb′ to localise the regions that do not escape the block. However

the region localisation could be done for any kind of expression at any level, not only for

the expression blocks. For simplicity, we formalize the region localisation only for the

expression blocks.

• `def1..nVdef′1..n,Q1..n denoting the region inference for the mutually-recursive class dec-

larations (only fields) def1..n; the inference result consists of the region-annotated classes

def′1..n and the set of the constraint abstractions Q1..n.

• Γ`meth1..nVmeth′1..n,Q1..n denoting the region inference for the mutually-recursive meth-

ods meth1..n with respect to the region type environment Γ; the inference result consists of

the region-annotated methods meth′ and the set of the constraint abstractions Q1..n.

Figure 4.6 presents some auxiliary functions used by the main inference rules. The first two

functions fieldlist(cn〈r1..n〉) and methlist(cn〈r1..n〉) compute all (defined and inherited) fields

and methods of the class cn with respect to the current region annotation of the class, cn〈r1..n〉.

The function recursivefieldlist(fdl, cn) returns the sublist of all the fields with type cn from an

input list of fields fdl. The function nonrecursivefieldlist(fdl, cn) returns the sublist of all the fields

whose types are different than cn from an input list of fields fdl. These two functions are used to

separate out the recursive fields from the non-recursive fields for a given class cn.

Given two sets of regions s1 and s2 and a region constraint ϕ, st(ϕ, s1, s2) computes (when

it is possible) a region substitution for each region of s1 to a region of s2 based on the equality

constraints from ϕ. Specifically, for each region x of s1, a subset of s2 is generated, such that the

subset contains all the regions of s2 which have the same lifetime as x with respect to the region

constraint ϕ. If the generated subset is not empty, an element sx is randomly selected from it

and a corresponding substitution for x is generated.

CHAPTER 4. REGION INFERENCE 76

The function ors(ϕ, s1, s2) computes the regions of the set s1 which outlive at least one

region of the set s2 with respect to the region constraint ϕ. The function ors(ϕ, s1, s2) computes

the regions of the set s1 which do not outlive any region of the set s2 with respect to the region

constraint ϕ.

The function reg is overloaded, it computes the regions of a region type environment Γ, the

regions of a region type t, the regions of a field (t f), and the regions of a constraint ϕ. Note that

the region substitutions on a type, a constraint, an expression, a class, and a method are defined

as expected.

4.2 Inference for a Class

Figure 4.7 presents the inference rules for a class declaration. The first three rules [RI−PRIM],

[RI−OBJ], and [RI−OBJ] are instances of the judgment:

` τ V t, ϕ

that takes a type τ as input and generates its region type, t and its region invariant ϕ with respect

to the region-annotated program P′. Primitive types are not annotated with regions, while the

reference types are annotated with one or more regions. The output contains fresh region names,

generated by the function fresh().

The rules [RI−INV−1], [RI−INV−2], and [RI−INV−3] generate the region class invariant of

a given region type with respect to the region-annotated program P′. The rule [RI−SUBTYPE]

generates the region constraint corresponding to a region subtyping relation and the region class

invariants of the subtyping relation components.

The inference rules for a class declaration are based on a judgment of the following form:

` defV def′,Q

where def is the source code of the class declaration, def′ is the region-annotated class decla-

ration, while Q is a constraint abstraction capturing the region class invariant. The constraint

abstraction is useful for mutually recursive class declarations (see Section 4.7). The goal of the

region inference for a class is to compute the class region annotation and the class invariant.

The inference rule [RI−CLASS−1] is designed for a class that does not contain recursive

fields. First, the rule calls the functions recursivefieldlist(fdi, cn2) and nonrecursivefieldlist(fdi, cn2)

(defined in Figure 4.6) to separate out the non-recursive fields from the recursive fields. In this

case the list of the recursive fields is empty. Then the region types and the class invariants of the

CHAPTER 4. REGION INFERENCE 77

[RI−PRIM]

`primVprim〈〉, true

[RI−OBJ]
r=fresh()

`ObjectVObject〈r〉, true

[RI−CT]
class cn〈r1..n〉...whereϕ {...}∈P′

a1..n=fresh()
`cnVcn〈a1..n〉, ([ri 7→ai]i:1..n ϕ)

[RI−INV−1]

`prim〈〉Vtrue

[RI−INV−2]

`Object〈r〉Vtrue

[RI−INV−3]
class cn〈r1..n〉...whereϕ {...}∈P′

`cn〈a1..n〉V([ri 7→ai]i:1..n ϕ)

[RI−SUBTYPE]
` t <: t′, ϕ0 `tVϕ `t′Vϕ′

`t<:t′Vϕ0∧ϕ∧ϕ′

[RI−CLASS−1]
recursivefieldlist(fdi:1..n, cn2)=[] nonrecursivefieldlist(fdi:1..n, cn2)=[(τi fi)i:1..n]

` cn1Vcn1〈a1..l〉, ϕ0 ` τiVτi〈r∗i 〉, ϕi i=1..n
ϕ=ϕ0∧

∧n
i=1(ϕi∧r∗i�a1) Q={cn2〈a1..l, r

∗
1..p〉=ϕ}

` class cn2 extends cn1 {fdi:1..n ...} V
class cn2〈a1..l, r

∗
1..p〉 extends cn1〈a1..l〉whereϕ {(τi〈r∗i 〉 fi)i:1..n, ...},Q

[RI−CLASS−2]
recursivefieldlist(fdi:1..n, cn2)=[(cn2 fi)i:p+1..n] nonrecursivefieldlist(fdi:1..n, cn2)=[(τi fi)i:1..p]

r=fresh() ` cn1Vcn1〈a1..l〉, ϕ0 ` τiVτi〈r∗i 〉, ϕi i=1..p
ϕ=ϕ0∧

∧p
i=1(ϕi∧r∗i�a1∧r∗i�r)∧

∧l
i=2(ai�r)∧r�a1 Q={cn2〈a1..l, r

∗
1..p, r〉=ϕ}

` class cn2 extends cn1 {fdi:1..n ...} V
class cn2〈a1..l, r

∗
1..p, r〉 extends cn1〈a1..l〉whereϕ

{(τi〈r∗i 〉 fi)i:1..p, (cn2〈r, a2..l, r
∗
1..p, r〉 fi)i:p+1..n, ...},Q

Figure 4.7: Region Inference Rules for a Class

parent class and of the fields are generated (using fresh regions). At this stage of the inference,

the dependency graph guarantees that the inference for the parent class and for the classes of the

fields was already done and their region types are available. The region type of the current class

is formed from the regions of the parent class followed by the regions of the fields. The invariant

of the current class is computed as a conjunction of the parent class invariant, fields invariants,

and the no-dangling requirement for the current class region type. Note that the no-dangling

requirement captures the property that all regions of a region type should outlive the first region

of that region type.

The inference rule [RI−CLASS−2] deals with a class with recursive fields (the result of the

function recursivefieldlist(fdi, cn2) is nonempty). The inference process of the non-recursive fields

is similar with that described by the previous rule. In contrast the recursive fields have the same

region annotation as the class, except for the first region that is a fresh region, r. However,

the same region r is shared by all class recursive fields. The class invariant is similar with that

computed by the rule [RI−CLASS−1], except the additional invariants of the recursive fields and

the non-dangling requirement corresponding to the additional region r.

CHAPTER 4. REGION INFERENCE 78

4.3 Inference for Expressions

The inference rules for expressions are based on the following judgment:

Γ ` eV e′ : t, ϕ

where e is the unannotated expression, e′ is the region-annotated expression, t is the inferred

region type, and ϕ is the derived region constraint. The inference is done with respect to the

region type environment Γ. The syntax-directed inference rules for expressions are detailed in

Figure 4.8.

The first two rules [RI−CONS1] and [RI−CONS2] infer the region types for constants, either

primitives or null values. Note that null values are never used as a destination to store other

objects.

Based on the type environment, the rules [RI−VAR] and [RI−FD] retrieve the region types

for a variable and for an object field. In rule [RI−FD], the relation `(t f)∈fieldlist(cn〈x∗〉)

(see Figure 4.6) computes the current region type of a field according to the region type of the

field object.

Rule [RI−ASSGN] is the region inference rule for the assignment. It uses the region sub-

typing rule (from Section 3.5) to express that the inferred region type of the right hand side

expression e is a subtype of the left hand side location lhs. The gathered region constraint con-

sists of two parts: one from the inference for the expression e and the second from the region

subtyping itself. Note that the region type of the left hand side location (variable or field) is

directly retrieved from the environment and the corresponding region constraint is true.

Our region inference is flow-insensitive, thus the rule [RI−SEQ] does not take into account

the order of the sequence when it combines the inference results of its components.

Rule [RI−NEW] is the region inference rule for the new operator. First it generates a fresh

region type for the given class cn. Then it calls the function fieldlist (see Figure 4.6) to get

the list of all fields and their region types according to the current region type associated to cn.

The arguments of new are the initial values for the class fields. The rule assumes that there is a

one-to-one correspondence between the arguments of new and the fields of class cn. We apply

the region subtyping rules for region types of arguments and fields. The class invariant and the

region subtyping constraints then form the gathered region constraint.

Rule [RI−IF] is the region inference rule for the conditional expression. First it infers the

two region types for two branches. Second it computes the most specific region supertype t of

CHAPTER 4. REGION INFERENCE 79

[RI−CONS1]

Γ ` nullV null : ⊥, true

[RI−CONS2]

Γ ` k V k : prim〈〉, true

[RI−VAR]
v : τ〈r∗〉 ∈ Γ

Γ ` v V v : τ〈r∗〉, true

[RI−FD]
(v : cn〈x+〉) ∈ Γ (t f) ∈ fieldlist(cn〈x+〉)

Γ ` v.fV v.f : t, true

[RI−ASSGN]
Γ ` lhsV lhs : t, true

Γ ` eV e′ : t′, ϕ′ `t′<:tVϕ
Γ ` lhs = eV lhs = e′ : void, ϕ∧ϕ′

[RI−SEQ]
Γ ` e1 V e′1 : t1, ϕ1

Γ ` e2 V e′2 : t2, ϕ2

Γ ` e1 ; e2 V e′1 ; e′2 : t2, ϕ1∧ϕ2

[RI−NEW]
`cnVcn〈x+〉, ϕ0 fieldlist(cn〈x+〉)=[(ti fi)]

p
i=1

(vi : t′i)∈Γ ` t′i<:tiVϕi i=1..p
Γ ` new cn(v1..p)V new cn〈x+〉(v1..p) : cn〈x+〉, ϕ0∧

∧p
i=1 ϕi

[RI−IF]
(v0 : boolean〈〉) ∈ Γ Γ ` e1 V e′1 : t1, ϕ′1 Γ ` e2 V e′2 : t2, ϕ′2

`t1<:tVϕ1 `t2<:tVϕ2 (¬∃t̂ · (`t1<:t̂Vϕ̂1)∧(`t2<:t̂Vϕ̂2)∧(`t̂<:tVϕ̂))
Γ ` if v0 then e1 else e2 V if v0 then e′1 else e′2 : t, ϕ′1∧ϕ′2∧ϕ1∧ϕ2

[RI−INVOKE]
v′1 : cn〈x′+1 〉∈Γ (τ0〈x∗0〉mn〈y+〉((τj〈x∗j 〉 vj)j:2..p) where ϕ̂ {e})∈methlist(cn〈x′+1 〉)

`cn〈x′+1 〉Vϕ1 (v′j : τ ′j〈x′∗j 〉) ∈ Γ ` τ ′j〈x′∗j 〉<:τj〈x∗j 〉Vϕj j = 2..p
Γ ` v′1.mn(v′2, ..., v′p)V v′1.mn〈y+〉(v′2, ..., v′p) : τ0〈x∗0〉, ϕ̂∧

∧p
j=1 ϕj

[RI−EB1]
` τ1Vτ1〈x∗1〉, ϕ1 Γ, {v1 : τ1〈x∗1〉}`eVe′:τ〈r∗〉, ϕ

ρ=st(ϕ ∧ ϕ1, {x∗1}, reg(Γ))
rs=ors(ϕ∧ϕ1, reg(ϕ)∪{x∗1}, {r∗}∪reg(Γ))

rs=∅
Γ`{(τ1 v1) e}Vρ {(τ1〈x∗1〉 v1) e′} : τ〈ρ r∗〉, ρ(ϕ∧ϕ1)

[RI−EB2]
` τ1Vτ1〈x∗1〉, ϕ1 Γ, {v1 : τ1〈x∗1〉}`eVe′:τ〈r∗〉, ϕ

ρ=st(ϕ ∧ ϕ1, {x∗1}, reg(Γ))
rs=ors(ϕ∧ϕ1, reg(ϕ)∪{x∗1}, {r∗}∪reg(Γ))

rs6=∅ a=fresh() ρ′={x 7→a|x∈rs}
Γ`{(τ1 v1) e}Vletreg a in ρ′ρ{(τ1〈x∗1〉 v1) e′}:τ〈ρr∗〉, ρ((ϕ∧ϕ1)\rs)

[RI−LOOP]
(v0 : boolean〈〉) ∈ Γ Γ ` eV e′ : void, ϕ

Γ ` while v0 eV while v0 e′ : void, ϕ

Figure 4.8: Region Inference Rules for Expressions

CHAPTER 4. REGION INFERENCE 80

the previous two region types. The inferred region constraints are conjoined.

Rule [RI−INVOKE] is the region inference rule for the instance method invocation. The

function methlist (defined in Figure 4.6) retrieves the region-annotated method mn with respect

to the current region type of the receiver v′1. The function automatically does the substitution of

the receiver regions cn〈x′+1 〉 for the region-annotated methodmn (region types and precondition).

The other region names used by the region-annotated method are fresh region names. These

fresh regions are instantiated by the region type subtyping rule applied for the current arguments.

4.4 Localising Regions

For simplicity, we present a set of rules that may introduce localised regions at expression

blocks. However effective placement of local variable declarations, object allocations and

expression blocks can affect region placement and the extent to which memory is effectively

reused. Therefore our region inference algorithm can support region localisation for any kind of

expression or for a group of expressions.

The key inference rules that govern this process for expression blocks are presented in Fig-

ure 4.8, rule [RI−EB1] and rule [RI−EB2]. The first rule deals with the case when region lo-

calisation is not possible, while the second rule introduces a letreg statement for the local

objects. The goal of these two rules is to localise the regions that do not escape the expression

block. Those regions that may escape the block can be traced to the regions that exist in either

the region type environment or the region type of the expression block body. All regions that

outlive these regions also escape.

The first part of the inference process (first three lines) is similar for both rules. First the

rules [RI−EB1] and [RI−EB2] compute the fresh region type and the region invariant for the

local variable declaration. Then this region type is used to infer the region type and the region

constraint of the expression block body. Based on the region constraint of the block body and

the region invariant of the local variable, the function st (defined in Figure 4.6) identifies which

of the newly introduced regions are equivalent to the regions in the type environment Γ. The

result is a substitution ρ from the newly introduced regions to the existing regions of Γ. We

also use the function reg (shown in Figure 4.6) to extract the region variables either from a

given constraint or from the type environment. The set of all regions which must escape the

expression block consists of the regions from the type environment and the regions that appear

CHAPTER 4. REGION INFERENCE 81

(a) Cyclic data structure

{Pair p1=new Pair(null,null);
Pair p2=new Pair(p1,null);
Pair p3=new Pair(null,null);
p1.setSnd(p2);
p2.setSnd(p3);
p3 }

(b) Source program

{Pair〈r1,r1a,r1b〉 p1 =
new Pair〈r1,r1a,r1b〉(null,null);
//r1a�r1 ∧ r1b�r1

Pair〈r2,r2a,r2b〉 p2 =
new Pair〈r2,r2a,r2b〉(p1,null);
// r2a�r2 ∧ r2b�r2 ∧ r1�r2a

Pair〈r3,r3a,r3b〉 p3=
new Pair〈r3,r3a,r3b〉(null,null);
//r3a�r3 ∧ r3b�r3

p1.setSnd〈r1,r1a,r1b,r2〉(p2); // r2�r1b
p2.setSnd〈r2,r2a,r2b,r3〉(p3); // r3�r2b
p3 }

(c) Initial region-annotated program

{ letreg r in {
Pair〈r,r,r〉 p1 =

new Pair〈r,r,r〉(null,null);
Pair〈r,r,r〉 p2 =

new Pair〈r,r,r〉(p1,null);
Pair〈r3,r3a,r3b〉 p3=

new Pair〈r3,r3a,r3b〉(null,null);
//r3a�r3 ∧ r3b�r3

p1.setSnd〈r,r,r,r〉(p2);
p2.setSnd〈r,r,r,r3〉(p3);
p3 }}

(d) Final region-annotated program

Figure 4.9: Example with Circular Structure

CHAPTER 4. REGION INFERENCE 82

in the region type of the block body. The set of the candidate regions for localisation consists of

the newly introduced regions and the regions which appear in the region constraint of the block

body but do not appear in the previous set (of the regions that must escape). Based on the region

constraint of the block body and the region invariants of the local variables, the function ors

(defined in Figure 4.6) computes the set rs of the regions that can be safely localised. The set

rs consists of those regions which do not outlive any region that must escape the expression

block.

From this point the inference rules are different. The rule [RI−EB1] does not localise any

region because the set rs is empty. However the substitution ρ (corresponding to equivalent

regions) is applied to the result (expression block, region type and region constraint). The rule

[RI−EB2] localises the regions from rs using a fresh region a. Thus an additional substitution ρ′

is applied to the result. The region constraints that use regions from rs are eliminated from the

region constraint of the result. This operation is denoted by ϕ \ r, where ϕ is a region constraint

and r is a set of regions.

The rules [RI−EB1] and [RI−EB2] can be directly used to localize the regions inside a loop.

A loop can be treated as an expression block that does not return any value (rule [RI−LOOP]

of Figure 4.8). There exist programs which consume an infinite amount of space as a result of

executing a loop, but a constant amount if a localization can be done for each loop iteration by

introducing a letreg inside the loop body.

We next illustrate the region localisation with a simple code fragment in Figure 4.9(b), which

constructs a cyclic structure involving two Pair nodes, p1 and p2, as shown in Figure 4.9(a).

The initial inferred program with region annotations is shown in Figure 4.9(c). After constraint

simplification to coalesce equal regions together and to localise non-escaping regions, we obtain

the target program in Figure 4.9(d). Because of the outlives constraint from the no-dangling

requirement, every cyclic structure must be placed in the same region. Notice that p1 and p2

are initially placed in regions r1 and r2, respectively. However, the region constraint gathered,

namely r2�r1b∧r1b�r1∧r1�r2a∧r2a�r2, implies that r1=r2=r1b=r2a. Applying this

extra constraint causes the two objects to be located in the same region. The resulting type of

this block is Pair〈r3,r3a,r3b〉 with the region constraint r3b�r3∧r3a�r3∧r3�r2b. As

the regions used to store the p1 and p2 objects do not escape the block, the [RI−EB2] rule

introduces a single local region r to replace them. The regions r3,r3a,r3b are not replaced

CHAPTER 4. REGION INFERENCE 83

by local region r because they escape the expression block.

4.5 Inference for a Method

Figure 4.10 presents the inference rules [RI−METH−1] and [RI−METH−2] for a method decla-

ration using the following judgment:

Γ ` methV meth′,Q

where Γ is the region type environment, meth is the source code of the method declaration

and meth′ is the region-annotated method declaration, while Q is the constraint abstraction

corresponding to the method precondition. The constraint abstraction is useful for recursive (or

mutually recursive) method declarations (see Section 4.7). The goal of the region inference for

a method is to compute the method region annotation and the method precondition. The method

region annotation consists of the region types of the method parameters (including the receiver)

and the region type of the method result.

First the rule computes the class invariant of the receiver. The region type of the receiver

this is taken from the type environment. Then, it computes the fresh region types and the

region invariants for the method parameters and the method result. Region types of the method

parameters and the receiver are used to infer the region type and the region constraint for the

method body. The inferred region type must be a subtype of the expected method result type.

The inference for the method body does also a region localisation at the method body level. All

derived region constraints are put together to form the method region precondition. Since only

the global regions r+, r∗1 , .., r∗p, r∗0 corresponding to the region types of the parameters (including

the receiver) and the result are visible outside the method, the local regions (denoted by the set

rs) outliving the global regions are made equal to global regions (rule [RI−METH−2]). The

algorithm is described by the definition of nesc. Thus nesc takes as arguments a set of local

regions Rl, a set of global regions Rg, a region constraint ϕ and returns a substitution and a

constraint. The substitution maps the regions of Rl to the regions of Rg with respect to the

constraint ϕ. When the function nesc is called, it is assumed that each region of Rl outlives (or

has the same lifetime as) at least one region from Rg. The function nesc groups the regions of

Rl into two categories denoted by Req and Rll. The first category, Req contains the regions of Rl

which are equal to one or more regions of Rg. The substitutions are directly generated from the

equality constraints. The second category, Rll contains the regions of Rl which outlive at least

one region of Rg. Each region a of Rll is made equal to the oldest region of Rg which is younger

CHAPTER 4. REGION INFERENCE 84

[RI−METH−1]
class cn〈x+〉...where ϕ̂ {...}∈P′ ϕ′′=[x+ 7→r+]ϕ̂

`τiVτi〈r∗i 〉, ϕi i=0..p
{this : cn〈r+〉, (vi : τi〈r∗i 〉)i:1..p}`eVe′:τ ′0〈x∗0〉, ϕ′
`τ ′0〈x∗0〉<:τ0〈r∗0〉Vϕ′0 ϕ=ϕ′∧ϕ′0∧ϕ′′∧

∧p
i=0 ϕi

rs={a | a∈(reg(ϕ)∪regs(e′))∧a6∈{r+, r∗1 , .., r∗p, r∗0}∧
∧(∃r′∈{r+, r∗1 , .., r∗p, r∗0} · (ϕ⇒a�r′ ∨ ϕ⇒a=r′))}
rs=∅ Q={cn.mn〈r+, r∗1 , .., r∗p, r∗0〉=ϕ}

{this : cn〈r+〉} ` τ0 mn((τi vi)i:1..p) {e} V
τ0〈r∗0〉 mn〈r+, r∗1 , .., r∗p, r∗0〉((τj〈r∗i 〉 vi)i:1..p) where ϕ {e},Q

[RI−METH−2]
class cn〈x+〉...where ϕ̂ {...}∈P′ ϕ′′=[x+ 7→r+]ϕ̂

`τiVτi〈r∗i 〉, ϕi i=0..p
{this : cn〈r+〉, (vi : τi〈r∗i 〉)i:1..p}`eVe′:τ ′0〈x∗0〉, ϕ′
`τ ′0〈x∗0〉<:τ0〈r∗0〉Vϕ′0 ϕ=ϕ′∧ϕ′0∧ϕ′′∧

∧p
i=0 ϕi

rs={a | a∈(reg(ϕ)∪regs(e′))∧a6∈{r+, r∗1 , .., r∗p, r∗0}∧
∧(∃r′∈{r+, r∗1 , .., r∗p, r∗0} · (ϕ⇒a�r′ ∨ ϕ⇒a=r′))}

rs6=∅ nesc(rs, {r+, r∗1 , .., r∗p, r∗0}, ϕ)=(ρe, ϕe)
Q={cn.mn〈r+, r∗1 , .., r∗p, r∗0〉=ρe(ϕ∧ϕe)}

{this : cn〈r+〉} ` τ0 mn((τi vi)i:1..p) {e} V
τ0〈r∗0〉 mn〈r+, r∗1 , .., r∗p, r∗0〉((τj〈r∗i 〉 vi)i:1..p) where ρe(ϕ∧ϕe) {ρee},Q

Req={a | a∈Rl ∧ (∃r∈Rg · (ϕ⇒r=a))} Rll=Rl−Req
mkequal({(a, same(a, Rg, ϕ)) | a∈Req})=ρeq

combine({(a, lower(a, Rg, ϕ)) | a∈Rll})=(ρe, ϕe)
nesc(Rl, Rg, ϕ)=def (ρe◦ρeq, ϕe)

lower(a, Rg, ϕ)=def{r | r∈Rg ∧ (ϕ⇒a�r) ∧ (6 ∃r′ · ϕ⇒a�r′ ∧ ϕ⇒r′�r)}
same(a, Rg, ϕ)=def{r | r∈Rg ∧ (ϕ⇒r=a)}

x∈s
sel(s)=defx

ρi=[ai 7→sel(Ri)] i=1..n
mkequal({(a1, R1), .., (an, Rn)})=defρ1◦..◦ρn

ρi=[ai 7→sel(Ri)] ϕi=
∧
r∈Ri

(ai=r) i=1..n
combine({(a1, R1), .., (an, Rn)})=def (ρ1◦..◦ρn, ϕ1∧..∧ϕn)

ρϕ, ρe region substitution on a constraint and an expression
reg(ϕ) computes the region variables of a constraint (see Figure 4.6)
regs(e) computes the region variables of an expression (see Definition 3.7.1.5)

Figure 4.10: Region Inference Rule for a Method

CHAPTER 4. REGION INFERENCE 85

than a (see definition of lower in Figure 4.10). If the result of lower for a region a is a set (rather

than a single region), all the regions of that set are made equal to a.

At the end a constraint abstraction Q is generated. With the help of the recursive constraint

abstractions, our inference rules directly support region-polymorphic recursion. In the case of

recursive methods, the inference rules [RI−METH−1] and [RI−METH−2] build a recursive con-

straint abstraction. Subsequently, a fixpoint analysis is applied to obtain a closed-form formula

for that abstraction.

In Figure 4.11 we illustrate how the region annotations and the constraints are inferred for

a recursive method. For simplicity, we consider a simple method without the receiver object.

Figure 4.11(a) contains a method which merges two lists of objects. It is a functional merge

in the sense of producing a new list as result. Because the method swaps its parameters at the

recursive call, the resulting list contains alternating elements from both lists.

Our algorithm generates a set of fresh region types and collects the region constraints. We

use the region inference results for the class List and its methods getValue and getNext,

presented before in Figure 3.5. A final region annotated program is shown in Figure 4.11(b). The

method precondition is the constraint abstraction join〈r1,r2,r3,r4,r5,r6,r7,r8,r9〉

(shown in Figure 4.11(c)) that consists of the following components:

• the class invariants, ϕi of the method parameters and the method result.

• the region constraints collected from the method body. Some of the collected constraints

duplicate those from ϕi and therefore they are ignored. The only different constraint is

the outlive constraint r2�r8 that corresponds to the last line of the method, where the

field value (that is in the region r8) of the newly created List is initialized with x (that

is in the region r2).

• the constraint abstractions corresponding to the recursive calls. In this case there is only

one constraint abstraction because both recursive calls use the same region annotation

join〈r4,r5, r6,r1,r2,r3,r7,r8,r9〉.

As the constraint abstraction is recursive, we apply a fixpoint analysis to obtain its closed-

form formula. Starting with the initial version of join0, we progressively refine the definition

of join until a fixpoint is reached, as highlighted in Figure 4.11(d). The initial version join0,

that is True (no constraint on the method regions) denotes no more calls (the termination of the

recursive calls). Based on join0, the first iteration join1 (corresponding to the last recursive

CHAPTER 4. REGION INFERENCE 86

List join(List xs, List ys)
{if isNull(xs) then

if isNull(ys) then null else join(ys,xs)
else { Object x; List res;
x=xs.getValue();xs=xs.getNext();
res=join(ys,xs); new List(x,res) } }

(a) Source program

List〈r7,r8,r9〉 join〈r1,r2,r3,r4,r5,r6,r7,r8,r9〉(List〈r1,r2,r3〉 xs,
List〈r4,r5,r6〉 ys) where join〈r1,r2,r3,r4,r5,r6,r7,r8,r9〉

{if isNull〈r1,r2,r3〉(xs) then
if isNull〈r4,r5,r6〉(ys) then null
else join〈r4,r5,r6,r1,r2,r3,r7,r8,r9〉(ys,xs)
else {
Object〈r8〉 x; List〈r7,r8,r9〉 res;
x=xs.getValue〈r2〉();
xs=xs.getNext〈r1,r2,r3〉();
res=join〈r4,r5,r6,r1,r2,r3,r7,r8,r9〉(ys,xs);
new List<r7,r8,r9>(x,res) // generates the below constraint r2�r8

} }

(b) Final region-annotated program

Q = {join〈r1,r2,r3,r4,r5,r6,r7,r8,r9〉 = ϕi∧(r2�r8)∧join〈r4,r5,r6,r1,r2,r3,r7,r8,r9〉}
where ϕi=(r2�r1∧r3∧r1)∧(r5�r4∧r6�r4)∧(r8�r7∧r9�r7)

(c) Recursive Constraint Abstraction

join0〈r1,r2,r3,r4,r5,r6,r7,r8,r9〉 = True
join1〈r1,r2,r3,r4,r5,r6,r7,r8,r9〉 = r2�r8∧join0〈r4,r5,r6,r1,r2,r3,r7,r8,r9〉

= ϕi∧(r2�r8)
join2〈r1,r2,r3,r4,r5,r6,r7,r8,r9〉 = r2�r8∧join1〈r4,r5,r6,r1,r2,r3,r7,r8,r9〉

= ϕi∧(r2�r8∧r5�r8)
join3〈r1,r2,r3,r4,r5,r6,r7,r8,r9〉 = r2�r8∧join2〈r4,r5,r6,r1,r2,r3,r7,r8,r9〉

= ϕi∧(r2�r8∧r5�r8)

(d) Fixpoint analysis

Figure 4.11: Fixpoint Iteration for Recursive Method

CHAPTER 4. REGION INFERENCE 87

call) is built. The iterative process ends when the result at the step i is a subset of the result of

the step i+1, namely joini⇒joini+1. Fixpoint analysis always terminates for our constraint

abstractions — the finite set of possible constraints is made up from a bounded set of regions.

For simplicity, in this example the local regions of the method body are made equivalent to

suitable global regions (regions of the method parameters, method receiver and method result).

This is not possible in all situations. Therefore the local regions may appear in the constraint

abstraction, but after each fixpoint iteration they are eliminated from the iteration result. In

general, only after the computation of the method precondition, the regions that outlive the

global regions are made equivalent to suitable global regions, while the regions that do not

outlive the global regions are localised by letreg.

The presented example relies on region-polymorphic recursion, whereby each recursive

call may have a different region type (region parameters) from its caller. Without region-

polymorphic recursion some lifetime precision may be lost or regions may be coalesced to-

gether.

4.6 Solving Method Overriding

As mentioned in Sec 3.4.3, class subtyping and method overriding must comply with their re-

spective checks to ensure the soundness of subsumption. The class subtyping check is relatively

easy to enforce. The existing inference rules[RI−CLASS−1] and [RI−CLASS−2] (shown in Fig-

ure 4.7) already accumulate the invariant from each class A to its subclass B in order to ensure:

inv.B〈r1 ..rm ..rn〉 ⇒ inv.A〈r1 ..rm〉

In contrast, the method overriding check is more complex. Consider a class A, its subclass

B, and a method A.mn overridden by B.mn. For method overriding to be sound, we require the

following property to be valid:

inv.B〈r1 ..rm ..rn〉 ∧ pre.A.mn〈r1 ..rm , r ′1 ..r ′p〉 ⇒ pre.B.mn〈r1 ..rm , rm+1 ..rn , r ′1 ..r
′
p〉

This property may not hold initially. To rectify this, the region inference can selectively augment

the premise of each overriding check, with the following considerations:

1. We can strengthen either the premise inv.B〈r1..rm..rn〉 or the premise

pre.A.mn〈r1..rm, r′1..r′p〉 or both.

2. Strengthening pre.A.mn〈r1..rm, r′1..r′p〉 can be problematic as some regions, namely

rm+1..rn, are present in class B but not A.

CHAPTER 4. REGION INFERENCE 88

[C1]

I ∧ X⇒ Y
I,X, Y ` I,X

[C2]
ϕ ∈ Y ¬(I ∧ X⇒ ϕ) reg(ϕ) ⊆ RX

I,X ∧ ϕ, Y ` I ′,X′

I,X, Y ` I ′,X′

[C3]

ϕ ∈ Y ¬(I ∧ X⇒ ϕ) reg(ϕ) ⊆ RB

I ∧ ϕ,X, Y ` I ′,X′

I,X, Y ` I ′,X′

[C4]
ϕ ∈ Y ¬(I ∧ X⇒ ϕ)

ρ : (reg(ϕ)∩(RB−RA))→ RA

I ∧ mkconstr(ρ),X ∧ ρϕ, Y ` I ′,X′

I,X, Y ` I ′,X′

mkconstr([r1 7→r′1, .., rn 7→r′n])=def

∧
i:1..n

(ri=r′i)

ρ ϕ region substitution on a constraint
reg(ϕ) computes the region variables of a constraint (see Figure 4.6)

Figure 4.12: Overriding Check Resolution

These two issues can be considered systematically by examining each basic constraint of

pre.B.mn〈r1..rm, rm+1..rn, r
′
1..r
′
p〉 to determine if (i) it is already valid, or (ii) it can be added

to pre.A.mn, or (iii) it can be added to inv.B, or (iv) it can be split into an equality constraint

for inv.B and a modified constraint for pre.A.mn. We formalise this conflict resolution as the

following inference rule:

I,X, Y ` I ′,X′

where I denotes the class invariant of the subclass, X denotes the precondition of the overrid-

den method (from the superclass), while Y represents the precondition of the overriding method

(from the subclass). The results I ′, X ′ are strengthened versions of I,X which satisfy the sound-

ness of overriding. Each constraint is expressed as a conjunction of atomic constraints
∧
ϕ,

where ϕ has the form r1�r2 or r1=r2. Strengthening of a constraint is done by adding atomic

conjuncts to that constraint.

The resolution rules are shown in Figure 4.12. Note that RB = {r1..rm, rm+1..rn}, RX =

{r1..rm, r′1..r′p} and RA = {r1..rm}. Notation ρ : R1→R2 denotes a region substitution with

R1(R2) as its domain (co-domain). The function mkconstr(ρ) transforms a substitution ρ into

an equality constraint. Note that function reg(ϕ) (defined earlier in Figure 4.6) returns all regions

occurring in the constraint ϕ.

Rule [C1] corresponds to the case when the override check is valid, while the last three rules

denote the cases when at least one constraint ϕ of Y is not implied by I∧X. Based on the region

variables of the constraint ϕ, our algorithm strengthens either the precondition of the overridden

method X (rule [C2]), or the subclass invariant I (rule [C3]), or both X and I (rule [C4]).

CHAPTER 4. REGION INFERENCE 89

class Triple〈r1,r2,r3,r3a〉
extends Pair〈r1,r2,r3〉 where r2�r1∧r3�r1∧r3a�r1 {
Object〈r3a〉 thd
Pair〈r4,r5,r6〉 cloneRev〈r1,r2,r3,r3a,r4,r5,r6〉() where r2�r6∧r3a�r5
{ Pair〈r4,r5,r6〉 tmp =new Pair〈r4,r5,r6〉(null,null);
tmp.fst=thd; tmp.snd=fst; tmp}

Figure 4.13: Triple Class

To illustrate the override resolution mechanism, we define Triple class as a subclass of

Pair class (defined in Figure 3.4), as shown in Figure 4.13. Two basic constraints are present in

an overriding cloneRev method, namely r2�r6 and r3a�r5. The first constraint is already

satisfiable, but the second constraint cannot be directly placed in the class invariant of Triple,

nor in the precondition of Pair.cloneRev. Nonetheless, we can still split it into two con-

straints r3a=r3 and r3�r5 that can be added to inv.Triple and pre.Pair.cloneRev,

respectively. We have a choice of mapping the extra region r3a to either r3 or r2 using

[r3a7→r3] or [r3a 7→r2], respectively. We choose the former since (r3�r5) exists in pre.

Pair.cloneRev but not (r2�r5). While multiple solutions exist, we choose a solution which

minimizes the number of new constraints.

The overridden method and the overriding method must have the same signature, namely

the same number of region parameters. Therefore after solving all the override checks, we

change the region annotations of the methods such that the overridden methods have the same

number of regions as their corresponding overriding methods. This affects only the regions of

the receiver, and effectively uses the maximal regions from classes where the virtual methods

are defined. Given a program, we assume that for any class of the program all the subclasses

(used in that program) are known. Consider a class A〈r1..rm〉, its subclass B〈r1..rm..rn〉, and

a method A.mn〈r1..rm, r′1..r′p〉 overridden by B.mn〈r1..rm..rn, r′1..r′p〉. The region parameters of

A.mn are changed to A.mn〈r1..rm..rn, r′1..r′p〉.

Moreover, at each call site to a virtual method, additional regions are instantiated from ei-

ther padded regions or from the first region of the current receiver, consistent with the solution

adopted for downcasting (see Appendix A.4 for more details). A solution that uses the first re-

gion of the current receiver is illustrated by the following example, where the regions constraints

are shown as comments:

A〈r1..rm〉 a = new B〈p1..pm..pn〉(..)//pm+1=p1∧..∧ pn=p1

· · · a.mn〈r1..rm,rm+1..rn,r′1..r
′
p〉(..)· · · //rm+1=r1∧..∧ rn=r1

CHAPTER 4. REGION INFERENCE 90

4.7 Dependency Graph and Mutual Dependency

Due to a fairly complex inter-dependency between classes and methods, our summary-based

region analysis is required to process the classes and methods in some particular order given by

a global dependency graph. We group the dependencies into two main categories:

1. Constituent Dependencies arising from the constituents of each class and method:

• cni→cnj: the class cni depends on the class cnj . It denotes that the class cnj is the

type of a field of the class cni or that the class cni is a subclass of the class cnj .

• c.mni→cnj: the method mni of the class c depends on the class cnj . It denotes that

the method c.mni makes use of the class cnj in its body.

• c.mni→cn.mnj: the method mni of the class c depends on the method mnj of the

class cn. It denotes that the method c.mni calls the method cn.mnj .

2. Override Dependencies arising from the method overriding checks of the following form:

inv.cn〈..〉 ∧ pre.cn′.mn〈..〉 ⇒ pre.cn.mn〈..〉

where cn is a subclass of cn′, cn′.mn is the overridden method, while cn.mn is the over-

riding method. The check is performed during the analysis of the overridden method,

when the subclass invariant and the overriding method precondition have to be already

computed. Overriding conflict resolution may strengthen the subclass invariant and/or the

overridden method precondition. In order to localize the changes, the subclass and the

overridden method have to be analysed together, that means they are in the same SCC

node of the dependency graph. The overriding method depends on its receiver that is an

instance of the subclass. Therefore in general the subclass, the overridden method, and

the overriding method are in the same SCC node. For each method overriding check, the

following override dependencies are generated:

• cn′.mn→o cn.mn: overridden method cn′.mn depends on overriding method cn.mn.

• cn →o cn.mn: subclass cn depends on overriding method cn.mn. Note that a con-

stituent dependency cn.mn→ cn also exists, because cn.mn is a method of cn.

• cn→o cn
′.mn: subclass cn depends on overridden method cn′.mn.

• cn′.mn→o cn: overridden method cn′.mn depends on subclass cn.

CHAPTER 4. REGION INFERENCE 91

[RI−M−CLASS]
`defiVdef′i,Qi i : 1..n
Q′i:1..n=fixpoint(Qi:1..n)
`defi:1..nVdef′i:1..n,Q

′
i:1..n

[RI−M−METH]
Γi`methiVmeth′i,Qi i : 1..n

Q′i:1..n=fixpoint(Qi:1..n)
Γ1, ..,Γn`methi:1..nVmeth′i:1..n,Q

′
i:1..n

Figure 4.14: Region Inference for Mutually Recursive Declarations

We propose a set of inference rules that attempt to collect the constituent and override depen-

dencies from a Core-Java application (more details are given in Appendix A.3). A topological

sorting algorithm orders the collected dependencies into a global dependency graph. The global

dependency graph organizes the class declarations and the method declarations into a hierarchy

of strongly connected components (SCCs). Each SCC consists of a set of mutually dependent

class declarations and method declarations.

Our region inference performs a bottom-up processing of the SCCs, such that each SCC is

analysed only once. In order to simplify the region inference for a SCC, inside each SCC we

ignore the override dependencies and using only the constituent dependencies we topologically

sort the class declarations and the method declarations into a local hierarchy. In fact this local

hierarchy is still a hierarchy of SCCs, that we called Sub-SCCs to distinguish from the others.

Each set of classes (or methods) in a Sub-SCC is regarded as a set of mutually recursive class

declarations (or method declarations).

Mutually recursive class (method) declarations have to be analysed together. Figure 4.14

presents the main rules for classes and methods. Constraint abstractions are used to do the fix-

point iteration. Mutually recursive classes are handled in a similar way as the recursive fields of

a class according to region monomorphic recursion principle. We illustrate the inference process

in Figure 4.15. The two classes A and B are mutually recursive and therefore they have the same

region annotation and invariant. The additional region r3 is used to store the mutually recursive

field fst of class A. Mutually recursive methods can be handled in a similar way as the recur-

sive method according to the region polymorphic recursion. The fixpoint analysis is applied on

a set of mutually recursive constraint abstractions (one constraint abstraction per method). The

iteration is progressively done until all these constraint abstractions reach a fixpoint.

As a conclusion, the region inference for one SCC (regarded as a Sub-SCCs hierarchy that

is processed bottom-up) consists of the following steps:

1. Region inference for each class declaration of the current Sub-SCC:

CHAPTER 4. REGION INFERENCE 92

class A extends Object { B fst; }
class B extends A { Object snd; }

(a) Before Inference

class A〈r1,r2,r3〉 extends Object〈r1〉 where r3�r1∧r2�r3{
B〈r3,r2,r3〉 fst; }

class B〈r1,r2,r3〉 extends A〈r1,r2,r3〉 where r3�r1∧r2�r3{
Object〈r2〉 snd; }
(b) After Inference

Figure 4.15: Example of Mutually Recursive Classes

(a) Set the region types for the class fields.

(b) Set the region type for the class itself.

(c) Two previous steps use the monomorphic recursion principle for the case of recur-

sive fields or mutually recursive class declarations.

(d) Compute the class invariant as a constraint abstraction.

2. Region inference for each method declaration of the current Sub-SCC:

(a) Annotate the method with fresh region types.

(b) Collect the region constraints from the method body and the invariants of the method

parameters, method result and receiver.

(c) Compute the method precondition as a constraint abstraction.

(d) In the case of a recursive method (or mutually recursive methods) do the fixpoint

analysis.

(e) For an overriding method solve the method overriding. If a class invariant or a

method precondition is changed re-start the analysis from the Sub-SCC that cor-

respond to that class or method. Note that only the computation of the constraint

abstractions (either preconditions or invariants) has to be re-done, the bodies of the

class declarations and method declarations are not traversed again.

3. Solve the region annotations inside the body of each method of the SCC (the order is not

longer important because at this step every method precondition and class invariant has

reached the fixpoint). Based on the region constraint collected before from the method

body, either localize the regions by letreg or make them equivalent to the global regions.

CHAPTER 4. REGION INFERENCE 93

Treating the whole program as one big SCC may have a bad impact on the region annota-

tion of the classes. It can lead to a bunch of unnecessary region parameters on classes, because

of the monomorphic recursion principle that forces all SCC classes to have the same region

annotation. The precision of the class invariant may also be affected by the no-dangling require-

ment imposed on the additional regions. However the method precondition computation is not

affected.

4.8 Correctness of Inference Algorithm

This section is devoted to the correctness of the region inference, which is formulated in terms

of soundness and completeness. We first introduce a lemma that states that any result of the

region inference is correct, that means it is well typed according to the region type system and is

valid according to the Definition 3.7.1.7. Note that the symbol =⇒ denotes logical implication,

while⇒ denotes region constraint entailment.

Definition 4.8.0.1 (Region Annotations Erasure). The erasure of region annotations is defined

as follows:

1. Given a region-annotated program P ′ such that P ′ = def1..defn. The function erasure(P ′)

is defined as

erasure(P ′) =def erasure(def1)..erasure(defn)

2. Given a region-annotated class declaration def’ such that def’ = class cn1〈r+〉 extends cn2〈r+〉

where ϕ {(t f)∗ meth∗}. The function erasure(def’) is defined as

erasure(def’) =def class cn1 extends cn2 {(erasure(t) f)∗ (erasure(meth))∗}

3. Given a region-annotated method meth’ such that meth’ = t mn〈r∗〉((t v)∗) where ϕ {e}. The

function erasure(meth’) is defined as

erasure(meth’) =def erasure(t) mn((erasure(t) v)∗) {erasure(e)}

4. Given a region type t such that t = τ〈r∗〉. The function erasure(t) is defined as

erasure(t) =def τ

CHAPTER 4. REGION INFERENCE 94

5. Given a region-annotated expression e′. The function erasure(e′) is defined as follows:

erasure(e′) =def case e′ of

{(t v) e} → {(erasure(t) v) erasure(e)}

letreg r in e → erasure(e)

lhs = e → lhs = erasure(e)

new cn〈r+〉(v∗) → new cn(v∗)

while v e → while v erasure(e)

if v then e1 else e2 → if v then erasure(e1) else erasure(e2)

e1 ; e2 → erasure(e1) ; erasure(e2)

v.mn〈r∗〉(v∗) → v.mn(v∗)

null → null

k → k

lhs → lhs

Lemma 4.8.0.1. Given any source language Core-Java program, P such that WFClasses(P) and

∀def∈P · FieldsOnce(def)∧MethodsOnce(def). Suppose ` PV P′.

1. If τ ∈ P , `τVt, ϕ, and t ∈ P′, then erasure(t) = τ .

2. Given any source language Core-Java expression, e. If Γ ` eVe′:t, ϕ, then erasure(e′) = e.

3. Given any source language Core-Java method, meth of a class cn∈P . Let be R={r1..n},

Γ={this : cn〈r1..n〉}, and ϕ=inv.cn〈r1..n〉. If Γ ` methV meth′; Q, then erasure(meth′) = meth.

4. Given any source language Core-Java class declaration, def∈P . If ` defVdef′; Q, then

erasure(def′) = def.

Proof: Using the Definition 4.8.0.1, the proof is by induction on the inference rules.

Lemma 4.8.0.2. Given any source language Core-Java program, P such that WFClasses(P) and

∀def∈P · FieldsOnce(def)∧MethodsOnce(def). Suppose ` PV P′, valid(P ′), WFClasses(P′), and

∀def′∈P ′ · FieldsOnce(def ′)∧MethodsOnce(def ′).

1. If τ ∈ P , `τVt, ϕ, and t ∈ P′, then

∀R,ϕ′ · (reg(t)⊆R ∧ ϕ′⇒ϕ) =⇒ P′; R;ϕ′ `type t

CHAPTER 4. REGION INFERENCE 95

2. Given any t ∈ P ′ and t′ ∈ P ′. If `t<:t′Vϕ and ϕ 6= false, then

∀R,ϕ′ · (reg(ϕ)⊆R ∧ ϕ′⇒ϕ) =⇒ P′; R;ϕ′`t<:t′

3. Given any source language Core-Java expression, e. If Γ ` eVe′:t, ϕ and all classes that

e′ depends on are well-formed in P′, then

retvars(e′)=∅ and retregs(e′)=∅ and

∀R,ϕ′·((regs(e′)∪reg(Γ)∪reg(ϕ))⊆R ∧ ϕ′⇒ϕ) =⇒ P′; Γ; R;ϕ′`e′:t

4. Given any source language Core-Java method, meth of a class cn∈P . Let be R={r1..n},

Γ={this : cn〈r1..n〉}, and ϕ=inv.cn〈r1..n〉. If Γ ` methV meth′; Q and all classes that meth′

depends on are well-formed in P′, then

valid(meth′) and P′; Γ; R;ϕ `meth meth′

5. Given any source language Core-Java class declaration, def∈P . If ` defVdef′; Q, all

methods meth ∈ def are inferred such that Γ ` methVmeth′; Q where meth′ ∈ def′, for all

meth′ ∈ def′ the method overriding is solved with respect to the resolution rules from Fig-

ure 4.12, and all classes that def′ depends on are well-formed in P′, then

valid(def ′) and P′ `def def′ and P′`InheritanceOK(def′)

Proof: The detailed proof is in Appendix A.2.4.

Theorem 4.8.0.3. (Correctness) Given any well-normal-typed source program P (class decla-

rations and their methods) in Core-Java.

1. (Soundness)

If ` PV P′, then P′ is a valid program well-typed by the region type system, i.e., valid(P ′)

and `P′.

2. (Program Preserving)

If ` PV P′, then erasure(P′) = P.

3. (Completeness)

There exists a program P′ in region-annotated Core-Java, such that ` PV P′.

where ` PV P′ denotes the inference algorithm summarized in Section 4.7.

CHAPTER 4. REGION INFERENCE 96

Proof: (1) The proof is based on Lemma 4.8.0.2. (2) The proof is based on Lemma 4.8.0.1.

(3) The proof is based on the fact that our fixpoint analysis always terminates [132] and that the

region constraint entailment is decidable [96, 181].

Proof is detailed in Appendix A.2.5.

4.9 Field Region Subtyping

The concept of region subtyping (defined in Section 3.5) can be further extended to selected

fields if they are immutable after object initialization. We assume that object initialization is

done in the constructors. The fields of recursive structures are particularly important as they

may involve many objects that are typically grouped into the same region. We can use an

isRecReadOnly function to check if a class has immutable recursive fields or not. With this

information, we can support a more precise region subtyping rule, as follows:

isRecReadOnly(τ) ϕ = (x1�x̂1) ∧
∧n−1
i=2 (xi=x̂i) ∧ (xn�x̂n)

` τ〈x1, .., xn〉 <: τ〈x̂1, .., x̂n〉, ϕ

Note that the last region of a recursive type is used to store the recursive fields. One advantage

of this field region subtyping rule is that it allows each recursive object to be placed in a region

that is different (and may have a longer lifetime) from that of the prior object in the recursive

chain. Such a feature is important for recursive methods that build temporary data structures

during recursive invocations. An example is the following program, called Reynolds3, that was

highlighted in [52, 18]. We use RList to denote a list structure with an immutable recursive

field. Our current proposal places onus on the programmer to indicate the immutable fields.

Compile-time techniques for checking (and/or inferring) immutable fields at definition-site can

be found in [149, 16, 196], or at use-site in [103, 39]. Applying region inference with field

subtyping, we are able to obtain the following program where the new lists p1 and p2 are

created in the local regions r1 and r2, respectively:

class RList〈r1,r2,r3〉 where r3�r1∧r2�r3

{ Integer〈r2〉 value;

RList〈r3,r2,r3〉 next; . . .}

class Tree〈r1,r2,r3〉 where r3�r1∧r2�r3

CHAPTER 4. REGION INFERENCE 97

{ Integer〈r2〉 value;

Tree〈r3,r2,r3〉 left;

Tree〈r3,r2,r3〉 right; . . . }

boolean search (RList〈l1,l2,l3〉 p, Tree〈t1,t2,t3〉 t)

where l3�l1∧l2�l3∧t2�l2∧t3�t1∧t2�t3 {

if isNull(t) then return false;

else { if member(t.value,p) then return true;

else { boolean b1;

letreg r1 in {

RList〈r1,l2,r1〉 p1 =new RList〈r1,l2,r1〉(t.value,p);

b1 = search(p1,t.left);

}

if b1 then return true;

else { boolean b2;

letreg r2 in {

RList〈r2,l2,r2〉 p2 =new RList〈r2,l2,r2〉(t.value,p);

b2 = search(p2,t.right);

}

return b2; } } }

The memory performance of such a region-inferred program is comparable to that obtained by

escape analysis [52].

In contrast, applying object region subtyping to Reynolds3 benchmark, we are not able to

localise the new lists p1 and p2 inside the function. They are created in the global region l1 of

input list p. This causes a space leak inside the region l1.

boolean search (RList〈l1,l2,l3〉 p, Tree〈t1,t2,t3〉 t)

where l3=l1∧l2�l3∧t2�l2∧t3�t1∧t2�t3 {

if isNull(t) then return false;

else { if member(t.value,p) then return true;

else { boolean b1;

RList〈l1,l2,l1〉 p1 =new RList〈l1,l2,l1〉(t.value,p);

b1 = search(p1,t.left);

if b1 then return true;

else { boolean b2;

CHAPTER 4. REGION INFERENCE 98

RList〈l1,l2,l1〉 p2 =new RList〈l1,l2,l1〉(t.value,p);

b2 = search(p2,t.right);

return b2; } } }

The memory performance of such a region-inferred program is comparable to that obtained by

the original region inference for ML ([18]), but worse than that obtained by escape analysis [52].

We thus advocate the use of field region subtyping where possible, to obtain better region

annotations and space reuse.

4.10 Experimental Validation
4.10.1 Implementation

We have constructed a prototype of our region inference algorithm. The prototype takes as input

either a Java program or a region-annotated Java program and outputs a Titanium Java program

with regions.

We have used the Titanium 2.205 infrastructure (based on Java 1.4) [100] to execute region-

annotated programs. The Titanium language is a Java dialect for high-performance parallel

scientific computing. In addition to garbage collection, Titanium also supports memory man-

agement with explicit regions based on Gay’s work [75, 76, 74]. This region-based memory

management uses runtime checks to ensure that deleting a region does not create dangling refer-

ences. We added instrumentation code to the Titanium infrastructure to collect dynamic memory

consumption and other region statistics.

We have implemented the entire prototype using the Glasgow Haskell 6.4.1 compiler [150].

Our prototype consists of the following main modules (some of them are depicted in Figure 3.1):

• Java to Core-Java Translator that can translate either a Java program or a region-annotated

Java program into an equivalent Core-Java or region-annotated Core-Java program. The

translator can also build the dependency graph using the rules presented in Appendix A.3.

A description of our translator is given in [45].

• Region Inference Module that takes an input Core-Java program and generates an equiv-

alent region annotated Core-Java program. The module implements the main inference

algorithm including method overriding (Section 4.6) and downcasting (Appendix A.4)

and also a part of the extensions (like field region subtyping presented in Section 4.9,

CHAPTER 4. REGION INFERENCE 99

and statements, exceptions, static fields and methods, arrays and a simple solution for the

interfaces presented in Appendix A.6).

• Region Type Checking Module that checks the type safety of a region-annotated Core-Java

program. The region-annotated program could either be supplied by the programmer or

generated by the inference module. In the latter case, the region-annotated programs

always pass the type checker.

• Core-Java with Runtime Regions Module that implements those two analyses (described

in Appendix A.5) that translate the region types into region handles used at runtime.

• Titanium Program Generation that can translate a Core-Java program with region handles

into a Titanium Java program with regions.

We have also built a special library to solve the region lifetime constraints, ϕ, from Figure 3.2(b).

Our constraint solver mainly performs the following three operations: constraint simplification

to reduce the number of the gathered constraints, constraint satisfiability to check the possible

contradictions (used only by the type checker) and constraint entailment, ϕ1⇒ϕ2 to check that

the constraint ϕ2 is satisfied by the context ϕ1. The main part of our solver consists of a simple

transitive closure algorithm (based on transitivity and equality) that computes the upper and

lower bounds for each region variable from a given constraint ϕ. The entailment is implemented

as a subset check of the region bounds. Note that if a region does not occur in a constraint, by

default its lower and upper bounds are ⊥ and heap, respectively.

4.10.2 Experiments

The primary objective of our experiments was to validate the correctness of our region inference

algorithm. In our framework, this validation can be done in two ways: either at compile time

by the type checking module or at execution time by Titanium runtime checks. We run the

experiments on a 3 GHz Pentium 4 machine with 2GB RAM running Linux Fedora Core 4.0.

The first column of the table in Figure 4.16 presents the list of benchmark programs used in

our experiments: RegJava benchmark programs from [41], Java Olden benchmarks from [34]

and also two small benchmarks, Reynolds3 (discussed in Section 4.9) from [52, 18] and our

foo-sum that multiplies a pattern from an example described in [80] at page 6 (function foo

from Section 3.5.2 shows that pattern). The second column of the table in Figure 4.16 shows

CHAPTER 4. REGION INFERENCE 100

Programs Size Compile Regions
(lines) Time (sec) (maximum)

Class Meth
Src Ann Infer Check Param Param Handles

RegJava benchmarks
Sieve of Eratosthenes 80 12 0.08 0.09 2 4 2

Ackerman 67 5 0.02 0.02 1 1 0
Merge Sort 170 16 0.35 0.30 2 6 3
Mandelbrot 110 14 0.05 0.05 1 3 1
Naive Life 114 14 0.08 0.14 3 9 2

Optimized Life (array) 121 15 0.09 0.16 3 9 2
Optimized Life (dangling) 35 5 0.01 0.02 9 0 0

Optimized Life (stack) 80 10 0.04 0.05 3 3 1
Java Olden benchmarks

BH 1191 96 7.02 12.87 26 66 9
Bisort 345 16 0.11 0.20 2 4 2
Em3d 510 37 0.26 1.10 7 11 3
Health 594 42 0.47 0.55 3 9 3
MST 494 44 1.84 5.44 10 49 5

Perimeter 750 48 0.97 1.28 4 26 2
Power 789 40 0.44 1.26 13 19 13

Treeadd 200 12 0.02 0.05 2 6 2
TSP 562 21 0.22 0.58 2 10 2

Voronoi 1058 93 7.15 13.62 9 46 3
Other benchmarks

Reynolds3 59 12 0.11 0.18 3 7 3
foo-sum 65 10 0.11 0.15 3 6 2

Figure 4.16: Region Analysis Measurements

the number of source lines for each benchmark, while the third column denotes the number

of source lines affected by region annotations (letreg statements, method preconditions, class

invariants). Region annotations occur in around 12.3% of the source lines for the programs of

the RegJava benchmarks and in around 7% of the source lines for the programs of Java Olden.

This may represent a sizable mental effort for a programmer (with a region type checker) who

manually writes the region annotations.

The second objective of our experiments was to check the scalability of our region inference

system. The fourth and fifth columns of the table in Figure 4.16 show the region inference and

region checking times, respectively. These times also include the region handles analysis. The

region inference runs in less than one second for all of the programs of RegJava benchmarks,

Reynolds3 and foo-sum and in less than eight seconds for all programs of Java Olden bench-

marks. These results suggest that our region inference algorithm is tractable in practice. On

the other hand, the region checking times are higher than those of region inference. The region

checking system requires more entailment checks than the region inference system. The table in

Figure 4.16 also contains the number of region parameters (maximum number per program) in-

ferred by our algorithm for classes (sixth column) and methods (seventh column), respectively.

CHAPTER 4. REGION INFERENCE 101

(1-Memory Usage/Total Allocation)*100%
Java Olden benchmarks Our system Jreg system

[37]
BH 91.5% 88%

Bisort 0% 0%
Em3d 0.8% 0%
Health 76% 71%
MST 0.5% 0%

Perimeter 0% 0%
Power 98.2% 97%

Treeadd 0% 0%
TSP 57.3% 56%

Voronoi 2.6% 2%

Figure 4.17: Statistics of Dynamic Memory Consumption: Part I

These data were collected before code generation (before runtime region analyses described in

Appendix A.5). We also measured the number of region handles after runtime region analysis.

The last column of the table in Figure 4.16 shows the number of region handles (maximum

number per program) for methods. The number of region parameters of a class depends on the

number of class fields (recursive and non-recursive), the class level in the class hierarchy but

also on the dependencies in the global dependency graph. The number of region parameters

of a method depends on the number of method arguments, but also on the number of region

parameters of each argument type, including the receiver. For all benchmarks that we used, the

average number of class region parameters is 3.9, the average number of method region param-

eters is 5.1, while the average number of method region handles is 0.4. In general, these average

numbers and the maximum numbers shown in the table from Figure 4.16 suggest that our region

annotations have reasonable size in practice.

The third objective of our experiments was to evaluate the quality of our automatically

inferred region annotations as compared to region annotations produced by human experts.

We tested our system on the RegJava benchmark programs. These programs have been hand-

annotated for the RegJava region checker in [41]. We obtained the same results as those from

the RegJava system, except for optimized life (with dangling) program. Our region inference

produces one less local region, since our system uses the no-dangling policy rather than the no-

dangling-access policy of the RegJava checker. This set of programs suggests that our region

inference is comparable in performance to human experts.

The fourth objective of our experiments was to evaluate the ability of our region-based sys-

tem to reuse memory. We have compiled our benchmarks to run on Titanium. We measured

CHAPTER 4. REGION INFERENCE 102

Programs (1-Memory Usage/Total Allocation)*100%
Our system RegJava

Invariant Sub Object Sub Field Sub system
RegJava benchmarks
Sieve of Eratosthenes 0% 0% 0% 0%

Ackerman 99.6% 99.6% 99.6% 99.6%
Merge Sort 82.1% 82.1% 82.1% 82.1%
Mandelbrot 99.8% 99.8% 99.8% 99.8%
Naive Life 0% 0% 0% 0%

Optimized Life (array) 80.4% 80.4% 80.4% 80.4%
Optimized Life (dangling) 0% 0% 0% 0%

Optimized Life (stack) 0% 0% 0% 0%
Other benchmarks

Reynolds3 0% 0% 99.6% -
foo-sum 66% 99% 99% -

Figure 4.18: Statistics of Dynamic Memory Consumption: Part II

the total memory allocation running the programs in a setting that never reclaims memory. This

setting is similar to the situation where there is only one region that is never garbage collected

but is deallocated at the end of the program. The memory utilization was measured running the

programs with region-based support and no garbage collector. The collected data include only

the application memory size and not the memory used by the virtual machine itself. The results

were measured as an average for a large set of inputs. The second column of the table in Fig-

ure 4.17 shows the statistics for the Java Olden benchmarks, while the fourth column of the table

in Figure 4.18 shows the statistics for the RegJava benchmarks. These statistics represent the

relative memory savings of region-based memory management with respect to the total memory

allocation. They also can be regarded as a measure of how good is the inference result with

respect to the trivial inference solution (put everything in one region). The results indicate that

the ability of our region-based system to reuse memory depends on memory characteristics of

each particular application. The memory savings fluctuate across our set of benchmarks, rang-

ing from value 0% (denoting no reuse) to large values (which indicate a high degree of reuse).

The initial results are encouraging showing that our region-based system was able to reuse sig-

nificant amounts of memory for the cases where data was not live throughout the program. A

closer inspection of the benchmarks for which the memory savings were less than 3% revealed

that most data objects are long-lived. The current prototype implements the simple solution for

downcasting from Appendix A.4.

The fifth objective of our experiments was to evaluate the performance of three kinds of

CHAPTER 4. REGION INFERENCE 103

region subtyping presented in the paper: invariant (region) subtyping, object (region) subtyp-

ing and field (region) subtyping. Columns 2-4 of the table in Figure 4.18 show the results for

some of the program benchmarks. Note that our prototype uses the object region subtyping and

automatically switches to the field region subtyping when the programmer provides the class

fields which are immutable. In the current experiments, we provided immutability information

only for Reynolds3. The table in Figure 4.18 indicates that the results are similar for the RegJava

benchmarks. We also did the same experiments for the Java Olden benchmarks and we obtained

identical results for all three kinds of region subtyping. However, two benchmarks, foo-sum and

Reynolds3, require the object region subtyping and field region subtyping, respectively, in order

to obtain a higher degree of reuse. Although these two benchmarks are small, they suggest that

there are potential benefits for using improved region subtyping.

The sixth objective was to compare our approach with other region-based approaches. Our

approach uses lexically scoped regions and forbids dangling references. First, we have com-

pared our experimental results with those obtained using the RegJava system. RegJava uses

lexically scoped regions, allows creating dangling references but prevents the program from ac-

cessing dangling references. The last column of the table in Figure 4.18 presents the results of

RegJava as they were given in [41]. Despite an extra region localized by the RegJava system

for optimized life (with dangling), our memory reuse results are similar to those of the RegJava

system. Second, we have compared our experimental results for the Java Olden benchmarks

with those produced by the Jreg system in [37]. Jreg uses non-lexically scoped regions, allows

creating dangling references but prevents the program from accessing dangling references. The

comparison indicates that our system performed about as well as Jreg for all of the Java Olden

programs.

In conclusion, the overall results for our benchmarks are encouraging, the programs based

on our inferred regions were able to reuse significant amount of memory for most of the cases

where data was not live throughout the execution. The experiments suggest that our results are

competitive with those hand annotated by human experts, but also with the approach based on

non-lexically scoped regions with no-dangling-access [37]. The experiments also suggest that

our region inference analysis is scalable in terms of analysis time and the number of region

parameters.

CHAPTER 4. REGION INFERENCE 104

4.11 Related Work

The basic ideas of a region type system were introduced by Tofte and Talpin [191]. They pro-

posed a region inference approach for a typed call-by-value λ-calculus, and tested their approach

in a region-based implementation of Standard ML [190]. A soundness proof for region inference

is presented in [192] and the inference algorithms are given in [189, 17]. In their approach, all

values (including primitives and function values) are put into regions at runtime, and all points

of region placement can be inferred automatically using a polymorphic effect system with effect

masking inspired from [184]. Specifically, each polymorphic effect denotes the set of regions

the program might access, which permits dangling references (to closures and data structures)

that are never accessed. In contrast, our region type system uses outlives constraints to ensure

that the program never creates dangling pointers. Our system supports region type subtyping,

while Tofte and Talpin’s system does not have subtyping. Their rules are based on unification

of types that contain effects. Effects are sets paired with effect variables. Effect variables are

used to support unification, type polymorphism (with monomorphic recursion) and higher-order

functions. Although we handle function subtyping via method overriding, we have not consid-

ered type polymorphism and higher-order functions. In [94], a more permissive region type

system than Tofte and Talpin’s system was presented using a System F-like polymorphism in

types, regions, and effects rather than the let-polymorphism of the original system.

Following Tofte and Talpin’s work, Grossman, Morrisett et al. [80, 98] have developed a

region-based approach for a safe dialect of C, called Cyclone. Cyclone’s type system keeps

track of the set of live regions (called capability as in [48]) at any program point. Whenever

a pointer is dereferencing Cyclone checks at compile time whether the associated region of

the pointer is in the capability. Function effects are not inferred from the function body, but

rarely need to written by the programmer because of the default annotations. In order to handle

type polymorphism and existential types (which can encode closures and objects) Cyclone uses

a special operator on types (instead of having effect variables) to denote the region variables

which occur free in a type.

Christiansen and Velschow proposed a region-based approach (similar to Tofte and Talpin’s

approach) to memory management in an object-oriented language like Java [41]. They call their

system RegJava and use a stack of lexically scoped regions for memory management. They

developed a region type system and demonstrated its soundness by linking the static semantics

CHAPTER 4. REGION INFERENCE 105

with the dynamic semantics. However, their system requires programmers to manually annotate

programs with region annotations. In their system, each class is augmented with the full set of

regions from its class hierarchy, including those from its subclasses. As a result many phantom

regions may be introduced for superclasses. However, the phantom regions make downcast

operations and method overriding trivially safe. As a comparison, the padded regions used by

of our region-safe downcast solution are different from phantom regions. We selectively attach

padded regions to superclasses only when relevant downcast operations may occur subsequently.

Researchers have recently advocated non-lexical regions to support tighter region lifetimes

[75, 76, 199, 98, 185]. Some of these approaches require programmers to at least indicate when

regions are to be created, allocated and released. Gay and Aiken implemented a region-based

extension of C, called C@, which used reference counting on regions to safely allocate and

deallocate regions with a minimum of overhead [75]. Using special region pointers and explicit

deleteregion calls, they provided a means of explicitly manipulating region-allocated memory.

This approach allows non-lexical regions where earlier deallocation of regions are possible,

but stack implementation of regions is no longer valid. Their work indicated that region-based

programming often use less memory and is faster than traditional malloc/free-based memory

management. However, counting escaping references can incur noticeable overhead. One tech-

nique [7] accepts a program with lexically scoped regions, then transforms the program to allow,

when possible, late creation and early deletion of these regions. This technique is complemen-

tary to our approach to region inference, as it could be used as a post-phase. With an explicit

outlive relation on the lexical regions, we have also exploited the concept of region subtyping,

as pioneered in [80].

Henglein et al. [93] developed a region type system HMN, where the region annotations

uses an imperative language for manipulating region handles. HMN has its own region type

system (proven sound by Niss [133]) and its inference algorithm. Makholm [119] has extended

the inference algorithm to a theoretical framework applicable to multiple languages. In the case

of object-oriented languages he used an approach where phantom regions are possible. How-

ever, no implementation of this inference algorithm has been provided for an object-oriented

language.

The Real-Time Specification for Java (RTSJ) [19] provides a new memory management

model for Java based on scoped memory areas. Scoped memory areas provide predictable

CHAPTER 4. REGION INFERENCE 106

allocation and deallocation performance, and ensure that real-time threads need not block while

memory is being reclaimed. Our regions are similar in principle to scopes. The main difference

is that scopes are first-class entities which can be entered/re-entered by multiple threads in a

lexical manner. However, a scope may be reset when the last thread exits the scope. The

order in which threads enter scopes induces a runtime parent relation on scopes that determines

safety reference patterns. The RTSJ forbids dangling references by a rule similar to our no-

dangling condition: an outer (parent) scope may not hold a reference to an object within an inner

(child) scope. To avoid cycles in the scope parent relation, a scope may have at most one parent

such that the nesting structure of scopes is restricted to trees. To avoid the unbounded pauses

caused by the garbage collectors, hard real-time threads are prohibited from manipulating heap

references, even though it is perfectly legal for heap references to be stored in any scope. The

RTSJ requires runtime checks to ensure that memory accesses do not violate the safety rules.

Beebee and Rinard presented an early implementation of scoped memory for Real-Time

Java in the MIT Flex compiler infrastructure [13]. They rely on both static analysis and dynamic

debugging to help locate incorrect uses of scoped memory.

Higuera et al. [99] have studied the combination of the region-based memory management

with an incremental garbage collector in the context of Real-Time Specification for Java. They

proposed a solution to improve the write barrier performance of both region-based memory

management and the garbage collection.

Boyapati et al. [23] combined region types [191, 192, 48, 41] and ownership types [43, 42,

20, 22] in a unified framework to capture object encapsulation and prevent dangling references.

The static type system guarantees that scope-memory runtime checks never fail for well-typed

programs. It also ensures that real-time threads do not interfere with the garbage collector. Using

object encapsulation, each object and all components it owns are put into the same region; in

order to optimize on region lifetimes. Our region type system is similar to theirs, but we separate

out object encapsulation and RTSJ issues. Moreover, we infer region types automatically across

procedures, whilst they have limited support through intra-procedure inference and the use of

defaults for region types.

Scoped types [205] is another proposal to statically maintain the invariants that RTSJ checks

dynamically. They provide a syntactic approach to map the run-time hierarchy of RTSJ scoped

memory areas in the program text by using the static hierarchy of Java packages. Thus, RTSJ

CHAPTER 4. REGION INFERENCE 107

programs must be re-factored so that objects which are meant to live in the same memory scope

have to be declared in the same Java package. The model distinguishes between two kinds of

classes: scoped classes which are allocated within a particular memory scope and gate classes

whose instances turn scopes into first-class entities. A thread may enter a scope only by invoking

methods of gate objects. Scoped classes in a package are accessible only to the classes defined

in that package and its sub-packages, while gate classes are only accessible to classes defined in

their immediate parent package. Thus, classes are not allowed to access classes in inner nested

sub-packages other than gates of their immediate sub-packages. These accessibility constraints

are similar to our non-dangling requirement. However, for the classes which are used in several

RTSJ memory scopes, it may be necessary to either modify the application logic or to duplicate

code.

Deters and Cytron [51] automatically translated Java code into Real-Time Java using dy-

namic analysis to determine the lifetime of an object. Because the analysis is dynamic, it may

not be sound — it may miss some execution paths that create and use dangling references given

their extracted object lifetime information. Also, Dhurjati et al. [53] proposed a compiler tech-

nique, based on type homogeneity principle, which tolerates dangling references as long as each

freed object is being overwritten by another object of the same type. Their approach requires

explicit malloc/free operation to be correctly supplied by programmer. While type safety is pre-

served, any logical errors caused by premature deallocation of objects is not detected by their

system – neither at compile time, nor at runtime. Lattner and Adve [112] have used a context-

sensitive pointer analysis to segregate distinct instances of logical data structures into separate

pools in the heap. However, the programmer still has to explicitly deallocate objects. Their

method is therefore applicable to C programs, but not for Java-based programs. Their primary

focus is on performance improvement, but not automatic memory management. They evaluate

how their transformation affects memory hierarchy behavior and overall program performance.

In research performed concurrently with ours, Cherem and Rugina have developed a three-

stage region inference algorithm for Java [37]. Their algorithm relies on a flow analysis to prop-

agate unifications between regions in an interprocedural manner. Using the no-dangling-access

principle, their inference produces programs that use non-lexically scoped regions different than

our lexically scoped regions. While our inference system is based on a region type system where

object and field subtyping could be supported, their approach is formulated directly to generate

CHAPTER 4. REGION INFERENCE 108

region handles, and uses points-to analysis and liveness analysis to determine when regions can

be deallocated. The use of non-lexical regions could in theory achieve better precision for region

lifetime, and thus improve on space usage. However experimental results for the Java Olden

benchmarks did not confirm this.

Salagnac et al. [169, 170] have developed a region inference algorithm that stores all con-

nected objects into the same region. This simplistic policy leads to regions with a high percent-

age of dead objects. These potential memory leaks are reported to the programmer who can

modify his code to avoid the leak. In contrast, our region inference uses automatic techniques

(e.g. subtyping, polymorphism) to improve regions lifetimes without modifying the original

program. Recently, Alex et al. [178] have proposed more advanced techniques to improve the

lifetime of our inferred regions.

Qian and Hendren [160] have developed a runtime region-based allocator as an alternative to

the region static analyses. Their approach dynamically categorizes allocation sites as local and

non-local. Local objects are stored into local regions attached as extensions to the stack frames.

Non-local objects are directly allocated into a global region that is garbage collected. However

their prediction scheme is coarser than our region inference algorithm. For instance the case

where the same allocation site is sometimes local and sometimes non-local is categorized as

non-local by their scheme.

PART II

Better Genericity

109

CHAPTER 5

VARIANT PARAMETRIC TYPE SYSTEM

5.1 Introduction

In object-oriented programming a large software is built by combining different small objects

into a large object, thus making the software reusability (or genericity) one of the most important

issue.

Traditionally, most mainstream object-oriented (OO) languages, such as Java, C++ and C#,

have relied on class subtyping to support reuse via subtype polymorphism (also called inclu-

sion polymorphism). Subtype polymorphism is a nominal relation, based on a class hierarchy

declared by the programmer. This mechanism is convenient since it allows storage of objects

via safe upcast into generic data structure. However it is not expressive enough because the

converse process of retrieving objects from the generic data structure requires the programmers

to insert explicit type casts for downcast testing at runtime. This results in losing the benefits of

static type checking (safety at compile time) and also in incurring the runtime overheads. As an

example, we consider the following program fragment that uses the class Cell:

class Cell {

Object fst; · · · }

· · ·

Cell cell; Int a;

cell.fst = a;//safe upcast

Int b = (Int) cell.fst;//explicit cast

String s = (String) cell.fst;//explicit cast

Above explicit casts, inserted by programmer, are compiled into runtime checks. As can be

seen, the first cast succeeds, while the second cast fails since Int is not a subtype of String.

However the type checker is unable to predict them.

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 110

To address the shortcomings of subtype polymorphism, there have been several recent pro-

posals (amongst the Java [24, 4, 127, 136, 35] and C# [107] communities) for parametric poly-

morphism to be supported with various design and implementation schemes. Parametric poly-

morphism allows parametric types and supports structural subtyping. For example, each class

c is allowed to carry a list of type parameters for its fields, e.g., c〈t1,..,tn〉, whereby the type

of each field can either be instantiated or left as a type variable. Below are two classes whose

fields have been parameterized:

class Cell〈A〉 {

A fst; · · · }

class Pair〈A,B〉 extends Cell〈A〉 {

B snd; · · · }

With such parameterized class declarations, we may then define specialized instances, such as

Cell〈Int〉, Cell〈Float〉 or Pair〈Int,Num〉, which contain more specific type information

for the fields of each class instance. Though parametric types can coexist with class subtyping,

pointwise matching of the respective fields is required. For example, the subtyping relation

Pair〈t1,t2〉 <:Cell〈t3〉 is allowed only when Pair<:Cell and t1=t3. The latter condition

is for pointwise matching of the common field. Similarly, Pair〈t1,t2〉<:Pair〈t3,t4〉 holds,

provided t1=t3 and t2=t4. Pointwise matching (invariant subtyping) is required because field

reading and field writing are based on opposite flows that change the directions of subtyping.

This requirement limits the reusability of programs based on parametric types. In addition, a

main proposal for Java, called GJ [24], uses raw types in order to ensure maximum compatibility

with existing non-generic code. In GJ, every parameterized class c〈t1,..,tn〉 provides the raw

type c as a supertype of any parameterized type c〈t1,..,tn〉 for any t1,..,tn. Moreover GJ

permits unsafe coercions from a raw type to a parameterized type. For example, an object of

type Cell can be passed where Cell〈Int〉 is expected. This coercion is clearly unsafe since

the field fst of an object of type Cell is not necessarily of type Int. Thus GJ compiler accepts

such unsafe operatons by signaling unchecked warnings. Therefore static type safety cannot be

guaranteed. However dynamic safety is still guaranteed by inserting runtime downcast checks.

It is the programmer’s responsibility to ensure that all unchecked operations are in fact safe.

To address the shortcomings of parametric polymorphism, Igarashi and Viroli [103] de-

veloped a new variant parametric type system (or VPT, in short) to improve the subtyping of

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 111

Figure 5.1: A Rich Subtyping Hierarchy

generic structures, depending on how the fields are being accessed. Let c denote a class with

one type parameter. Let o denote an object of variant parametric type c〈α1t1〉 while v denotes

a location of variant parametric type c〈α2t2〉, into which o is to pass. Each variant parametric

type c〈αt〉 has a variance α (see Section 5.3.2) attached to its field to indicate how the field is to

be accessed. A field that is subject to read-only access via reference of v (denoted by α2 = ⊕)

may be supported by covariant subtyping. That is, c〈α1t1〉<:c〈⊕t2〉 if α1<:⊕ and t1<:t2. Con-

versely, a field that is subject to write-only access via reference of v (denoted by α2 =) may

be supported by contravariant subtyping. That is, c〈α1t1〉<:c〈	t2〉 if α1<:	 and t2<:t1. Also, a

field that is subject to both read and write accesses via reference of v (denoted by α2 = �) must

be supported by invariant subtyping. That is, c〈α1t1〉<:c〈�t2〉 if α1<:� and t1<:t2∧t2<:t1.

Lastly, if a field is not accessed via reference of v (denoted by α2 = ~), we can use bivariant

subtyping. That is, we support c〈α1t1〉<:c〈~t2〉 for any t1,t2.

Variant parametric types give a much richer subtyping hierarchy than parameterized types

do. Figure 5.1 illustrates some variant types for Cell objects and their places in the sub-

typing hierarchy. Note that → denotes a subtyping relation in the graph. Also, Cell〈~t〉,

Cell〈⊕Object〉 and Cell〈	⊥〉 are equivalent to each other while Cell〈�Num〉, Cell〈�Float〉

and Cell〈�Int〉 are unrelated. Note that ⊥ denotes the type of null values which can be

assigned into any class type. However, each Cell〈�t〉 is a subtype of both Cell〈⊕t〉 and

Cell〈	t〉. Also, types of the form Cell〈⊕t〉 and Cell〈	t〉 have a subtyping hierarchy based

on covariance and contravariance, respectively.

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 112

The benefits of variant parametric typing have been known for some time. However, early

proposals have attached access rights to the fields of each class declaration. This mechanism is

known as declaration-site variance and is shown in the following example:

class DSCell〈A〉 {

⊕A fst;

A getFst() { return fst; }

void setFst(A x) { fst=x; } }

The field fst is declared read only using the variance ⊕. Consequently, the method setFst

cannot be invoked. Using the concept of structured virtual type, Thorup and Torgersen [186]

were the first to link access rights and covariant subtyping to the fields of each use of a class

rather than the class declaration itself. This use-site variance mechanism is much more flexible

than previous mechanisms based on declaration-site variance. In the following example, the ac-

cess to the field fst is governed by the variance variable α. A reference of type USCell〈⊕Int〉

allows read-only access, while a reference of type USCell〈�Int〉 allows read-write access to

the field fst.

class USCell〈αB〉 {

αB fst;

B getFst() { return fst; }

void setFst(B x) { fst=x; } }

Later, Igarashi and Viroli extended this concept to support contra- and bi-variance [103].

They formalized the variant parametric type system by mapping it into a corresponding existen-

tial type system [33, 123, 134]. A recent proposal by Sun Microsystems for generics in Java

1.5 [193] supports wildcard type based on an improvement of Igarashi and Viroli’s variant para-

metric type system, but it is still viewed as a special case of the existential type system with

subtyping. However, a more general version of existential type system, called System F≤, has

undecidable subtyping [152], while the decidability of Igarashi and Viroli’s variant parametric

type system, remains an open problem [104, 149].

5.1.1 Motivation and Goal

While the mechanism of variant parametric type system (VPT) has now been validated in a full-

scale Java implementation, its wide-scale adoption by the programming community is likely

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 113

to take some time due to the need to provide type and variance annotations manually. These

annotations are non-trivial and hard to understand by the programmer. The current model of

variant parametric types is based on existential types which are not so intuitive for Java regular

programmers.

In this context our goal was to develop a novel flow-based approach for variant parametric

types. The main goal of genericity is to support highly reusable software components. To allow

this to happen in a type-safe way, we should strive to provide type descriptions that are concise,

understandable, general and accurate. Specifically, each well-typed generic program should be

accurately identified where possible. As a side benefit, the type system should be able to track

type information in a precise manner, allowing redundant cast operations to be eliminated where

possible. We believe that flow analysis is more easy to understand by the programmers and it

can also improve the precision of typechecking. In addition type checking should be scalable to

larger programs and should support separate compilation.

5.1.2 Solution and Contributions

We propose a new approach for the variant parametric type system that is based on the mech-

anism of flow analysis. Our flow analysis captures value flows via subtyping constraints. A

major benefit of this approach is the considerable knowledge in flow analysis that has been

accumulated in the recent past [142, 157, 195, 96, 97, 183, 143]. In particular, to support mod-

ular type-checking, we require non-structural subtype entailment of the form ∀v(C1 =⇒ ∃wC2),

where C1, C2 are subtyping constraints while v, w are sets of type variables. These constraints

are non-structural as we use ⊥ <: t <: Object, to support the object-oriented class inheritance

mechanism. While the decidability of non-structural subtype entailment remains an open prob-

lem, there exist sound approximations that use constraint simplification and induction tech-

niques [157, 195]. Our work is built on top of sound but practical solutions to subtyping (flow)

constraints.

In summary, this chapter makes a number of technical contributions explained below:

• Flow-based Approach: Our framework is based on flow analysis which can concisely

and intuitively capture flow of values on a per method basis (Section 5.3). We use variance

annotations primarily to predict the flows of values, and not for access control. We also

provide special considerations for two type values. A value of Object type can always

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 114

flow out from any location, while a null value of ⊥ type can always flow into any location.

In contrast, the other approaches [103, 193] view variant parametric type system as a

special case of the existential type system with subtyping.

• Intersection Types: We augment our generic type system with intersection types to help

capture information flow more accurately. An intersection type t1&t2 denotes a type

with both the properties of t1 and t2. Such types are important for languages with mul-

tiple inheritance (such as Java via its interface mechanism), and can accurately capture

the flow of objects with their expected field accesses. Java 1.5 provides a restricted sup-

port for the intersection types, as they can only be used as upper bounds of method type

parameters [128].

• Modular Type Checking: Each method is specified with a flow constraint (and variant

parametric types) that is used to predict the value flows that may occur in the method’s

body. We verify each method separately to ensure that the predicted accesses, flow con-

straint and variant parametric typings are efficiently and safely checked (Section 5.5). In

contrast, the previous approaches [103, 193] use a type-checking per class approach rather

than a per method approach.

• Casting and Cast Capture: A general casting mechanism allows us to define a novel

cast capture that uses a reflection technique to deal with an unknown type (Section 5.7).

Cast capture has helped improve the generic implementation of several JDK 1.5 libraries.

In contrast, Java 1.5 restricts the downcast mechanism to the outer type constructor [128].

• Soundness: We have proven the soundness of our constraint-based type checker.

• Experimental Validation: We have implemented a prototype of our variant parametric

type checker and have run the experiments on a suite of Java libraries and some large

size Java applications (Section 5.8.2). On average, we are able to eliminate 87.9% of

the casts from non-generic Java 1.4 application code, that means 12.9% more casts than

wildcard-generic Java 1.5 application code.

5.1.3 Outline

This chapter is mainly based on a paper published in [39]. The remainder of this chapter is orga-

nized as follows. Section 5.2 introduces the main techniques used in our approach. Section 5.3

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 115

presents the flow-based interpretation of the variance, variant parametric subtyping rules and

the annotations on our object-oriented core language. Section 5.4 presents the class parameter-

ization, the mechanism of type promotion and the class invariant. In Section 5.5 we formulate

our type checking rules and the modular flow verification. Section 5.6 proves the soundness

of our variant parametric type system. Section 5.7 discusses our general casting and the cast

capture mechanism. Section 5.8 presents the experimental results obtained using our prototype.

Section 5.9 presents other extensions, while Section 5.10 discusses related work.

5.2 Main Techniques

In this section, we examine the key aspects for which our approach based on flow analysis makes

improvements over existing approaches based on existential types. Some of these improvements

may not be peculiar to the flow-based approach, but they were gradually developed starting from

a different view point.

5.2.1 Intersection Types

Parametric type systems use number of cast operations eliminated as a measure of accuracy

[54, 72]. As it turns out, there may be competing decisions on what types to use for certain cast

operations to be eliminated. The following example from [54] illustrates:

class B1 extends A implements I { · · · }

class B2 extends A implements I { · · · }

void foo(Boolean b) {

Cell cb1 = new Cell(new B1());

Cell cb2 = new Cell(new B2());

Cell c = b ? cb1 : cb2;

A a = (A) c.get();

I i = (I) c.get();

B1 b1 = (B1) cb1.get();

B2 b2 = (B2) cb2.get(); }

This program contains four cast operations. With the help of parametric types, Donovan et al.

[54] suggested three sets of possible types, each with a different subset of casts eliminated, as

summarized below:

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 116

Types of Variables Casts Eliminated

cb1 cb2 c (A) (I) (B1) (B2)

Cell〈B1〉 Cell〈B2〉 Cell
√ √

Cell〈A〉 Cell〈A〉 Cell〈A〉
√

Cell〈I〉 Cell〈I〉 Cell〈I〉
√

Note that Cell denotes a raw type where nothing is known of its components. Hence, only

Object values are statically retrievable from it. Raw type was originally proposed in [24] for

backwards compatibility, and it is the basis for generic typing through inclusion polymorphism.

However, none of the three proposed solutions are able to eliminate all four casts. This indicates

that parametric typing is not expressive enough to capture generic type for such programs. There

are two possible improvements. First, note that the fields of cb1, cb2 and c are subject to read-

only accesses, and not modified in the program fragment. We can therefore provide covariant

annotations to the fields of these variables, and obtain two possible outcomes, each with three

casts eliminated:

cb1 cb2 c (A) (I) (B1) (B2)

Cell〈⊕B1〉 Cell〈⊕B2〉 Cell〈⊕A〉
√ √ √

Cell〈⊕B1〉 Cell〈⊕B2〉 Cell〈⊕I〉
√ √ √

Second, both classes B1 and B2 have supertypes A and I in common. To exploit this, we can use

an intersection type parameter in Cell〈⊕(A&I)〉 to describe the variable c. In a lattice of type

values, an intersection type A&I essentially defines the greatest lower bound of A and I. With

this, all four casts can now be eliminated in our new solution to genericity, as shown below:

cb1 cb2 c (A) (I) (B1) (B2)

Cell〈⊕B1〉 Cell〈⊕B2〉 Cell〈⊕A&I〉
√ √ √ √

Note that the above example cannot be coded in Java 1.5 syntax. Java 1.5 does not allow the use

of intersection types for local variable declaration, field declaration or method argument/return

types. Intersection types can be used only as upper bounds for a method type parameter.

5.2.2 Modular Flow Specification

Another important principle for better genericity is that type description should be designed in

a modular fashion (on a per method basis). Type annotations appearing in the method header

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 117

should depend only on the method body while each call site should be a specific instance of

the method’s type declaration. This principle is important for efficient type checking and ease

of type annotation. Specifically, for each instance method, we provide the following method

declaration:

t | t0 mn(t1 v1,...,tn vn) where ψ {...}

A separate annotation “t |” is added at the beginning of each method’s declaration to capture

the variance of the implicit this parameter. This separate annotation (omitted in previous

works, such as [103, 193]) allows us to capture the behaviour of each method, independent

of its class declaration. Note that ψ captures the expected value flows of each method’s body

in terms of type of the parameters (t1, .., tn), result (t0), and receiver (t). We support modular

type checking by localizing type variables which are not present in the type of parameters,

result and receiver. A previous approach [103] relies on the existential open/close mechanism

for the receiver parameter to determine if the receiver parameter is of suitable variance while

other parameters are checked via subtyping. In contrast, we achieve uniform treatment for all

parameters.

To illustrate the modular type annotation mechanism, consider three method declarations

for the Pair class:

class Pair〈A,B〉 extends Cell〈A〉 {

B snd;

Pair〈~,⊕Y〉 | Y getSnd()

{return this.snd;}

Pair〈~,	Y〉 | void setSnd(Y v)

{this.snd=v;}

Pair〈~,~〉&W | Pair〈�W,�W〉 dup()

{return new Pair〈W,W〉(this,this);} }

First, note that getSnd will read the second field while setSnd will write to it. Because

of these effects, we may apply covariant (⊕) and contravariant () subtypings to the second

component of the Pair object for getSnd and setSnd, respectively. Second, bivariant (~)

subtyping is allowed for the unaccessed component of the Pair object for both methods. As

a shorthand, we may write ~ to denote ~t since all bivariant types are equivalent. Note that Y

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 118

from getSnd and Y from setSnd denote different type variables treated independently by our

modular type checker.

The third method is an interesting application of intersection type. The method itself does

not access the fields of the this parameter, which escapes into the two fields of the method’s

Pair result. To capture this value flow, we declare an intersection type Pair〈~,~〉&W for the

this parameter. The type Pair〈~,~〉 is to acknowledge that we have a Pair object whose

fields are not accessed by the current dup method. A type variable W helps indicate that this

parameter will escape into the fields of the result with type Pair〈�W,�W〉. This flow allows the

variant type of W to flow into the two fields of the output Pair. Hence, for a given receiver of

type t, we have t<:Pair〈~,~〉 and t<:W. Possible candidates for the type t are Pair〈⊕X,⊕Y〉

or Pair〈⊕X,	Y〉, etc. In contrast, if we use the following type suggested in [103]:

Pair〈�X,�Y〉 | Pair〈�Pair〈�X,�Y〉,�Pair〈�X,�Y〉〉 dup()

we require t=Pair〈�X,�Y〉 or t=⊥, which restricts the possible uses of the method. One way

to improve this situation is to duplicate the dup method for different scenarios, as shown below:

Pair〈⊕X,⊕Y〉 | Pair〈�Pair〈⊕X,⊕Y〉,�Pair〈⊕X,⊕Y〉〉 dup()

Pair〈⊕X,	Y〉 | Pair〈�Pair〈⊕X,	Y〉,�Pair〈⊕X,	Y〉〉 dup()

Pair〈�X,	Y〉 | Pair〈�Pair〈�X,	Y〉,�Pair〈�X,	Y〉〉 dup()

However, such duplications go against the goal of genericity. On the other hand, our solution

with intersection types can improve genericity by allowing value flows to be accurately captured.

5.2.3 Avoiding F-Bounds where Possible

One feature that adds to the expressivity of bounded existential type is the use of F-bounds [30]

which effectively capture recursive constraints of the form T<:C〈.., T, ..〉 where T is a type

variable and C is a class name. While the designers of Java 1.5 consider this feature to be

significant and useful [193], it is also a source of complication as reported recently in [120]. In

particular, F-bound together with existential type is a source of undecidability for System F≤

which caused an earlier implementation of Java 1.5 to fail in accepting some programs with

F-bounds that were actually type-safe (as first reported in [120]). Subsequent improvements in

Java 1.6 have removed the reported errors, but the decidability of its type system remains an

open problem.

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 119

While the flow-based approach that we advocate also supports recursive flow constraints (if

the inductive mechanism of [157, 195] is used), our pragmatic philosophy is to avoid F-bounds

whenever it is possible to do so.

As an example of F-bound, consider the following definition of the Comparable interface

for Java 1.5:

interface Comparable〈T〉 { int compareTo(T o); }

Here, class parameter T is being used to capture the parameter of the method compareTo. As

this parameter is required to be a subtype of Comparable itself, F-bound of the form

T<:Comparable〈	T〉 is usually needed when Comparable is used, as shown in the next ex-

ample:

class Collections {

〈T extends Comparable〈? super T〉〉

static T max(Collection〈? extends T〉 cl) {· · · } }

In our flow-based approach, the current philosophy is to capture the value flows of each

method independently. Hence, we have chosen to capture the value flow and subtyping relation

directly for each method instead, as shown below for our definition of Comparable:

interface Comparable〈A〉 { Comparable〈�T〉 | int compareTo(T o); }

Based on this definition, we can write the max method, as follows:

class Collections {

static T max(Collection〈⊕T〉 cl) where T<:Comparable〈	T〉 {· · · }}

This alternative is equivalent to the earlier Java 1.5 definition.

We also support a simpler way, to express Comparable interface, as follows:

interface Comparable {

S & Comparable | int compareTo(T o) where T<:Comparable∧T<:S;}

The use of this definition does not require any F-bound, but it is more restrictive than Java 1.5

definition of Comparable interface.

Another potential use of F-bound occurs for recursive fields of class declarations. An exam-

ple is the following recursive List class:

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 120

class List〈A,B〉 extends Object where B<:List〈A,B〉 {

A val;

B next; ... }

This solution uses an F-bound B<:List〈A,B〉 that makes constraint solving more complex

[157]. However, in our system we may choose to avoid the recursive constraint from the in-

variant of the class List by leaving the recursive next field with an incomplete variance �, as

follows:

class List〈A〉 extends Object {

A val;

�List〈A〉 next; ... }

The variance of the next field is incomplete at its declaration site and can be promoted to either

� or ⊕, depending on how its underlying type parameter List〈A〉 is being instantiated at the use

site. This type promotion process is elaborated later in Section 5.4.1, and can be used to avoid

F-bound, where possible.

5.2.4 Avoiding Existential Types Always

It has been generally acknowledged that existential type is useful for describing data types whose

implementation details can be made abstract. This aspect is closely related to the use of bivari-

ant type ~t where the underlying type t is unknown and may be assumed to be of any type.

While no-access is one way to enforce bivariant type, it is also possible to use the open/close

mechanism of an existential type system to describe situations where implementation details

can be made abstract. A typical example is the copy operation on two elements of a vector that

was highlighted in [104], and reproduced below:

void copy(Vector〈~〉 x, int i, int j) {

open x as [Y,y] in y.setElementAt(y.elementAt(i),j) }

The above code opens the bivariant type of x as an object bound to variable y with an abstract

type Y. As all elements of each vector are of the same Y type, we may safely copy a value from

one position of the vector into another position, without knowing the actual underlying type.

The close correspondence between existential type and bivariant type is a primary reason why

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 121

Igarashi and Viroli [104] considered existential type system as the underlying model for their

variant parametric type system.

However, the designers of Java 1.5 considered the open/close mechanism of existential type

system to be somewhat restrictive [194]. They have therefore proposed a relaxation to open each

expression as an existential type by associating it with a global type variable without a corre-

sponding close operation. This use is similar to the flow-based approach where each parameter

(or local variable) is regarded as a location where values may flow in and/or out. Nevertheless,

in the context of existential type system, such relaxation might possibly be unsound since each

existential type may in fact correspond to contradicting type values. This is possibly why cor-

rectness proof is yet to be completed (as of [194]), even though a full-scale implementation for

wildcard type system has already been released for public use.

Furthermore, Java 1.5 relies on a polymorphic (generic) type system for selected methods to

capture situations where invariant type appears necessary, as shown by the following example:

〈T〉 void docopy(Vector〈T〉 x, int i, int j) {

T tmp = x.elementAt(i); x.setElementAt(tmp,j); }

Through a wildcard capture mechanism, it is possible to provide a method with bivariant pa-

rameter, as shown below:

void copy(Vector〈?〉 x, int i, int j) { docopy(x,i,j); }

Note that wildcard type of x has been captured by the global T type variable. Again, the

open/close mechanism is averted, even though the underlying system is still based on bounded

existential type system.

Our current philosophy is to avoid existential type system altogether. To capture the effect

of an unknown abstract type, we have introduced a casting mechanism that is able to capture

the underlying type of an object via a fresh type variable. We refer to this as a cast capture

technique which is elaborated in more details in Section 5.7. The same copy method can be

re-written with a casting of the x parameter from bivariant type Vector〈~〉 to an invariant type

(Vector〈�T〉). In the process, T is used to capture the unknown type, as shown below:

void copy(Vector〈~〉 x, int i, int j) {

Vector〈�S〉 w;

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 122

{w = (Vector〈�T〉) x; w.setElementAt(w.elementAt(i),j) }

}

While this cast capture construct may look like a syntactic sugar for the open/close mechanism,

we stress that it is part of a more general mechanism that can take an arbitrary type as source (in-

stead of a bivariant type) for casting into another arbitrary type as target (instead of an invariant

type). A cast for a c1-object into an invariant type of the form c2〈(�t)∗〉 where c1<:c2 is always

safe since every object is built using an invariant type. Furthermore, cast-capture is a runtime

mechanism while open-close is a type-related operation to expose an obtained type at compile-

time. Our cast capture mechanism using reflection is more general as it can capture type values

at runtime, and also support a mix of cast capture and cast testing. In our formulation of variant

parametric type system, the flow-based approach with casting has therefore avoided the need for

existential type systems altogether.

Some readers may contend that the casting mechanism is the prerogative of programmers

and may be too burdensome to write. While this is so, we believe that there is still scope for

automatic insertion of safe casts to invariant type (in a spirit similar to automatic type coercion)

that is consistent with each user program.

5.3 Variance via Flow Analysis
5.3.1 An Example

A central feature of our proposed approach is the focus on flow analysis. Variance annota-

tions are used to support the analysis of value flows to capture more accurate generic types,

whereby suitable field subtypings (covariance and contravariance) are facilitated where possi-

ble. We highlight the expressiveness of variant parametric types through some more examples

in Figure 5.2.

Apart from a generic Vector〈A〉 class declaration, we provide a number of static methods to

highlight how flow analysis may assist in the formulation of generic types. In the copyVec

method, the elements from a first vector Vector〈⊕X〉 are copied into a second vector Vector〈	Y〉,

while a constraint X<:Y captures the direction of the value flow.

Method copyNestVec copies from a nested vector of type Vector〈⊕Vector〈⊕X〉〉 into a

second vector Vector〈	Y〉 with flow constraint X<:Y. This code remains highly generic as it

uses covariant and contravariant subtypings. The next example shows how we use a special type

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 123

class Vector〈A〉 extends Collection〈A〉 {
Vector〈~〉 | int size() {...}
Vector〈⊕X〉 | X elementAt(int i) {...}
Vector〈	X〉 | void setElementAt(X v, int i) {...}
}

void copyVec(Vector〈⊕X〉 v, Vector〈	Y〉 w, int start) where X<:Y {
for(int i=0;i<v.size()&&i+start<w.size();i++)
w.setElementAt(v.elementAt(i),i+start);

}

void copyNestVec(Vector〈⊕Vector〈⊕X〉〉 v, Vector〈	Y〉 w)where X<:Y{
int pos=0;
for(int i=0; i<v.size();i++) {
Vector〈⊕Z〉 s=v.elementAt(i);
if (pos+s.size()<w.size())
{copyVec(s,w,pos); pos +=s.size(); }

}}

void clearVec(Vector〈	⊥〉 v) {
for(int i=0; i<v.size();i++)
v.setElementAt(null,i);

}

Vector〈�Z〉 merge(Vector〈⊕X〉 v, Vector〈⊕Y〉 w) where X<:Z∧Y<:Z
{...}

Vector〈�Pair〈�X,�Z〉〉 join(Vector〈⊕Pair〈⊕X,⊕Y〉〉 v,
Vector〈⊕Pair〈⊕Y,⊕Z〉〉 w)

{...}

void swap(Pair〈�X,�Y〉 p) where X<:Y∧Y<:X {
T t=p.fst; p.fst=p.snd; p.snd=t;

}

Figure 5.2: Examples with Variant Parametric Types

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 124

⊥ to indicate that null values will be written into the vector. Given that Vector〈	⊥〉 is high up

in the class hierarchy, this method is rather generic as we can supply any vector as its argument.

We also provide method headers for merge and join. From the type annotation of merge,

we can tell that values from the first two vectors are retrieved, and then they flow into a new result

vector. For the joinmethod, we retrieve values from the two vectors Vector〈⊕Pair〈⊕X,⊕Y〉〉

and Vector〈⊕Pair〈⊕Y,⊕Z〉〉 before building a new vector Vector〈�Pair〈�X,�Z〉〉 that is

joined on the Y type. The result’s invariant type offers a strong post-condition with read/write

capability.

For the swap method, the two fields of a Pair object are swapped. Due to both reading and

writing, we require the invariant type Pair〈�X,�Y〉 and the expected value flow: X<:Y∧Y<:X.

Based on the flows from the three assignments of the swap body, we may obtain the follow-

ing constraints: �X<:⊕T, �Y<:⊕X and �T<:⊕Y, where T is a local type variable (using type

rules in Section 5.5.1). These constraints are simplified to obtain the following collected flow

for the method body: X<:T∧Y<:X∧T<:Y. The swap method type checks as the expected flow

implies the collected flow: ∀X,Y.(X<:Y∧Y<:X =⇒ ∃T.(X<:T∧Y<:X∧T<:Y)). Note that the

local type variable T is existentially quantified, while type variables X,Y from method parame-

ters are universally quantified.

5.3.2 Improved Variant Parametric Subtyping

Variant parametric type τ consists of a variance α and a type t. Its grammar is introduced in

Figure 5.4. We use variance annotations �,⊕,	 and ~, which correspond to read-write access,

read-only access, write-only access, and no-access, respectively. These annotations are ordered

by the following relation that is denoted by <:α but abbreviated to <: below:

�<:⊕ �<:	 ⊕<:~ 	<:~

α1<:α2 α2<:α3

α1<:α3
α<:α

A type t is either a type variable vt, a variant parametric class c〈τ1, . . . , τn〉, the bottom type ⊥

or an intersection type t&t. The bottom type is used to hold the null value.

We allow finite intersections of types through the type operator &. Semantically, t1&t2

denotes the set of objects satisfying the interface specification of both t1 and t2. In a lattice

of type values with partial order defined by class inheritance (through extends) and interface

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 125

τ−subtyping

α1<:	 ` t2<:t1⇒ψ
` α1t1<:	 t2⇒ψ

α1<:⊕ ` t1<:t2⇒ψ
` α1t1<:⊕ t2⇒ψ

` t1≡t2⇒ψ
` �t1<:� t2⇒ψ

` τ<:~t⇒true

¬(α1<:⊕)
` α1t1<:⊕ Object⇒true

¬(α1<:)
` α1t1<:	⊥⇒true

t−subtyping

`⊥<:t⇒true `t<:Object⇒true ` t<:t⇒true

` τi<:τ ′i⇒ψi, i = 1..n
`c〈τi〉ni=1<:c〈τ ′i〉

n
i=1⇒

∧n
i=1 ψi

`t1<:t2⇒ψ1 `t2<:t3⇒ψ2

` t1<:t3⇒ψ1∧ψ2

class c1〈Vi〉mi=1 extends ...c2〈τ ′i〉
n
i=1... ρ=[Vi 7→τi]mi=1

c2〈ρτ ′i〉
n
i=1⇒p c2〈ρτ ′′i 〉

n
i=1

` c1〈τi〉mi=1<:c2〈ρτ ′′i 〉
n
i=1⇒true

class c1〈Vi〉mi=1 ...implements ...c2〈τ ′i〉
n
i=1... ρ=[Vi 7→τi]mi=1

c2〈ρτ ′i〉
n
i=1⇒p c2〈ρτ ′′i 〉

n
i=1

` c1〈τi〉mi=1<:c2〈ρτ ′′i 〉
n
i=1⇒true

`t<:t1⇒ψ1 `t<:t2⇒ψ2

`t<:(t1&t2)⇒ψ1∧ψ2

`t1<:t⇒ψ1 `t2<:t⇒ψ2

`(t1&t2)<:t⇒ψ1∨ψ2

t1=vt∨t2=vt
` t1<:t2⇒t1<:t2

` t1<:t2⇒ψ1 ` t2<:t1⇒ψ2

` t1≡t2⇒ψ1∧ψ2

Figure 5.3: Variant Parametric Subtyping

mechanism (through implements), t1&t2 defines the greatest lower bound of t1 and t2. Our

intersection types are similar to the compound types proposed in [27]. Specifically, they can

be of the form [t1&]t2&...&tn[&W], where t1 is a class, t2, ..., tn are interfaces, and W is a type

variable.

In our system, variant parametric types are used to support flow analysis rather than access

controls. As we focus on value flows at each method boundary, we apply variance annotations

primarily to fields. The outermost variance of local variables is always �. For fields, variance

annotations are used to support covariant or contravariant subtyping where possible.

The subtyping relations are denoted by <:τ and <:t, both abbreviated to <: as follows:

` τ1<:τ2⇒ψ ` t1<:t2⇒ψ

The resulting constraints ψ (see Figure 5.4 for their grammar) are kept in a disjunctive normal

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 126

form. Instead of proving each subtyping directly, we collect a set of subtyping constraints ψ via

τ−subtyping and t−subtyping in Figure 5.3.

The first four τ -subtyping rules support contravariance, covariance, invariance and bivari-

ance, respectively. The invariant case generates a constraint from the semantical equivalence of

the two types (t1 ≡ t2). Unlike the subtyping rule of Igarashi and Viroli [103], our improved

mechanism handles two special values in the subtyping hierarchy, namely ⊥ (for type of null)

and Object (for top of class hierarchy). These two types are special in that it is always safe to

write a null (of ⊥ type) into any location (even if it has been marked for read-only access), and

it is safe to read an Object value from any location (even if it has been marked for write-only

access). We may also cast any type τ to either ⊕Object or 	⊥ as it is always safe to read an

object or write a null value. This mechanism is implemented by the last two τ -subtyping rules.

In the second part of Figure 5.3, the first two t-subtyping rules handle the bottom and top

of the hierarchy. Subtyping between types of the same class is decomposed structurally by

the fourth rule. The next two rules describe transitivity and the class inheritance relation. The

class inheritance rule uses type promotion mechanism that is described later in Section 5.4

Intersection types satisfy the subtyping relations as in [151]. Subtyping relations that contain

type variables are not simplified further and preserved in the resulting constraint. Semantic

equality (t1≡t2) is given by the last t-subtyping rule. In summary, from the subtyping relations

between types, we generate a set of subtyping constraints (on type variables). Note that in the

following sections, we will use τ1<:τ2 as an abbreviation for ψ, where ` τ1<:τ2⇒ψ.

5.3.3 Variant Parametric Core-Java Language

We introduce a core language to ease the formulation of static and dynamic semantics. This

language can be viewed as a result of translation from full Java language prior to type checking.

For ease of presentation, we omit features that are related to static methods, exception handling

(exceptions can not have generic types), concurrency and inner classes. (Our implementation

handles all features of the Java language.)

Our core language is named Variant Parametric Core-Java, and summarised in Figure 5.4. We

use the suffix notation y∗ to denote a list of (zero or more) distinct syntactic terms that are

suitably separated. Both class and interface declarations are supported using the same syn-

tactic grammar term def. The interface definitions do not have fields, and are defined using

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 127

Programs

P ::= def∗

def ::= class c〈V ∗〉 extends gc1 implements gc2..gcn where ψinv
{(π f)∗ meth∗}

gc ::= c〈π1, .., πn〉
meth ::= t | t mn((t v)∗)〈v∗t 〉 where ψ {e}
w ::= v | v.f
e ::= null | w | w = e | {t v = e1; e2} | e1 ; e2

| new c〈t∗〉(v∗) | if v then e1 else e2
| while v e | v0.mn(v∗)〈t∗〉
| (t)v | {v1 = (t)v ; e}

Variant Parametric Types

τ ::= αt

t ::= vt | c〈τ1, .., τn〉 | t&t | ⊥
α ::= � | ⊕ | 	 | ~

Incomplete Variant Parametric Types

π ::= V | � s
s ::= c〈π1, .., πn〉 | s&s | ⊥

Subtyping constraints

ψ ::= t1<:t2 | ψ∧ψ | true

Class Invariant

ψinv ::= V <:ic〈τ∗〉 | c〈τ∗〉<:i V | ψinv ∧ ψinv | true

Figure 5.4: Syntax of Variant Parametric Core-Java. Primitive types are discussed in Sec-
tion 5.9, while exceptions can not have generics types.

abstract methods (without body). Furthermore, while we support multiple inheritance, it is of

the same restricted kind as that supported by the Java language. Each class may extend from

only a single superclass but may implement multiple interfaces. In our language, the declaration

class c〈V ∗〉 extends gc1 implements gc2..gcn assumes that gc1 is a class while gc2..gcn are inter-

faces. Each class declaration captures a class invariant ψinv that is expected to hold for all newly

constructed objects of the class. This is being used to specify suitable class lower and/or upper

bounds for type variables. Since our system is based on use-site variance, the class fields types

and the arguments of class inheritance have incomplete variance at declaration-site (denoted by

π and V). Section 5.4 describes the annotations of class declarations with incomplete variant

parametric types.

Each method declaration meth contains a constraint ψ which captures the expected value

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 128

flows for its type variables. It also specifies method type parameters 〈v∗t 〉 in order to support

modular type checking. This set of type variables is automatically inserted by our compiler.

We use an expression-oriented language, where method body is denoted by e. Local variable

declaration is supported by block structure of the form: {t v = e1; e2}, with e2 denoting its result.

Each object is always built with an invariant type c〈�t∗〉 via the construct new c〈t∗〉(v∗). Our core

language also supports a full casting mechanism via (t)v, where t can be an arbitrary variant

parametric type. In addition, we support a novel cast capture mechanism via {v1 = (t)v ; e},

where t is an invariant type with unknown type variables that may be captured at runtime and

used in e. These special features will be described in more detail in Section 5.7.

For simplicity of presentation, our core language represents primitive types (such as void,

bool) by their corresponding classes (such as Void, Bool). In our implementation, we handle

primitive types directly, as elaborated in Section 5.9. For soundness reasons, we treat arrays in

the same way as other classes (unlike Java 1.5, which assumes arrays to be covariant).

In the subtyping constraints, disjunction is supported internally as it may be generated by

subtyping relation for intersection types.

5.4 Class Parameterisation and Inheritance

For class declarations, an important decision is which fields are to be parameterised and how

the class inheritance mechanism is to be supported. In general, each class declaration should be

written in the following manner:

class c1〈V1..Vn〉 extends c2〈π̂1..π̂s〉 where ψinv {

π1 f1;

...

πm fm; ... }

where each {Vi}ni=1 originates either from the fields of the current class {πi}mi=1 or from the

arguments of its superclass, {π̂i}si=1. {Vi}ni=1 are variables corresponding to types with variance.

For instance, the following non-generic declarations of Cell and Pair classes:

class Cell {

Object fst; · · · }

class Pair extends Cell {

Object snd; · · · }

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 129

can be parameterized as:

class Cell〈A〉 {

A fst; · · · }

class Pair〈A,B〉 extends Cell〈A〉 {

B snd; · · · }

The variance of the fields fst and snd is governed by the variables A and B. Given the type

Pair〈⊕Int,	Int〉, the field fst is covariant and the field snd is contravariant.

5.4.1 Type Promotion

There are some situations where the variance of a class field cannot be specified at use site. In

the following example, the variance of the field sndP does not have any correspondence in the

class parameters A,B,C and remains unknown after instantiation of these parameters.

class Triple〈A,B,C〉 extends Cell〈A〉 {

Pair〈B,C〉 sndP; · · · }

The compiler inserts a special variance marker � to represent the unknown variance of field

sndP:

class Triple〈A,B,C〉 extends Cell〈A〉 {

�Pair〈B,C〉 sndP; · · · }

Note that the source program does not contain any variance markers. We use them to explain

how incomplete (or unknown) variance of variant parametric types are computed to either ⊕ or

�. This process is known as type promotion and can be used for incomplete variant parametric

types from field declarations and arguments of class inheritance. The type promotion is defined

using the following relations:

ρ ` π⇒pτ ρ ` s⇒pt

where ρ is a substitution [V 7→ τ] from class declaration parameters V to variant parametric types

τ . The types π and s may contain unknown variance �.

The rules are described in Figure 5.5. The second rule promotes the unknown variance �

to either ⊕ or � depending on the predicate inv(t) where t is the type obtained after substi-

tution. Predicate inv(t) returns true, when all variances from t (if any) are � and false

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 130

ρ ` V⇒p ρV

ρ ` s⇒p t α = if inv(t) then � else ⊕
ρ ` �s⇒p αt

ρ ` πi⇒p τi i = 1, n
ρ ` c〈π1, ..πn〉⇒p c〈τ1, ..τn〉

ρ ` si⇒p ti i = 1, 2
ρ ` s1&s2⇒p t1&t2

inv(�t)=true
α=⊕ | 	 |~
inv(αt)=false

inv(vt) = true

inv(c〈τ1, ..τn〉) =
∧
i=1,n

inv(τi) inv(t1&t2) =
∧
i=1,2

inv(ti)

inv(c〈〉) = true inv(⊥) = true

Figure 5.5: Type Promotion

otherwise. Given Triple〈⊕Int,⊕Int,⊕Int〉, the type of field sndP is computed as fol-

lows: ρ ` �Pair〈B,C〉⇒p⊕Pair〈⊕Int,⊕Int〉 where ρ = [A 7→ ⊕Int,B 7→ ⊕Int,C 7→ ⊕Int].

As another example, given Triple〈⊕Int,�Int,�Int〉, the type of field sndP is computed

as follows: ρ ` �Pair〈B,C〉⇒p�Pair〈�Int,�Int〉 where ρ = [A 7→ ⊕Int,B 7→ �Int,C 7→

�Int].

Another application of type promotion is for recursive fields of a class. The recursive field

next of the class List has an incomplete variance � as follows:

class List〈A〉 extends Object {

A val;

�List〈A〉 next; ... }

The variance of the field next is incomplete at its declaration site and can be promoted to either

� or ⊕, depending on how its underlying type parameter List〈A〉 is being instantiated at the

use site. For example, when A is instantiated to 	X, the variance of the next field will be

promoted to ⊕ via ρ ` �List〈A〉 ⇒p ⊕List〈	X〉, where ρ = [A 7→ 	X]. On the other hand, if

A is instantiated to �X, then ρ = [A 7→ �X] and the variance of the next fields is instantiated to

�X as follows: ρ ` �List〈A〉 ⇒p �List〈�X〉.

Our type promotion is a refinement of that proposed in [103]. First, we allow promotion to

� whenever possible while Igarashi and Viroli considered mainly the promotion of nested types

with ⊕. Second, we consider type promotion for only field access and class inheritance where

the outer variance is dependent on the variance of the underlying type. In contrast, Igarashi and

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 131

Viroli focused on the promotion of nested types of arguments/result for method declarations,

which need not be handled in our approach as these types are fully specified in our method

declarations.

5.4.2 Class Invariant

The class invariant ψinv is used to capture the lower and upper bounds for the parameterised

fields of each newly created object of the class. These bounds are of the form
∧
c1〈τ∗〉<:iV

<:ic2〈τ∗〉. Class invariant may also support F-bounds when variable V occurs in the parameters

of classes c1 and c2. If unspecified, the default lower and upper bounds are ⊥ and Object,

respectively. An upper bound invariant on a write-only field restricts the class of the object that

can be written to the field to be subclasses of the bound, and a lower bound invariant on a read-

only field restricts the class of the object that can be read from the field to be superclass of the

bound.

We use the relation ⇒cinv to reduce bounds from the class invariant to a constraint form:

` [Vi 7→ τi]ψinv⇒cinvψ, where τi are the current variant parametric types for the class fields. The

relation ⇒cinv is defined in Figure 5.6. Note that this relation invokes the subtyping relations

defined in Figure 5.3.

`~t<:it1⇒cinvtrue `t1<:i~t⇒cinvtrue

`t<:t1⇒ψ1 `t1<:t⇒ψ2

`⊕t<:it1⇒cinvψ1∨ψ2

`t<:t1⇒ψ1 `t1<:t⇒ψ2

`t1<:i	t⇒cinvψ1∨ψ2

α=	 | � `t<:t1⇒ψ
`αt<:it1⇒cinvψ

α=⊕ | � `t1<:t⇒ψ
`t1<:iαt⇒cinvψ

` ψiinv⇒cinvψ
i

`
∧
ψiinv⇒cinv

∧
ψi

Figure 5.6: Class Invariant

To illustrate the use of these bounded invariants, consider a class declaration for Cell〈X〉

with an upper bound X<:Num. For declarations of the form Cell〈	Int〉 and Cell〈	T〉, the

relation ⇒cinv generates the Int<:Num and T<:Num, respectively. The first constraint reduces

to true, while the second constraint contains a type variable and will be checked later for sat-

isfiability. As another example, for Cell〈	Object〉 the relation⇒cinv fails as the upper bound

is violated. Correspondingly, for read access, we support Cell〈⊕Int〉 and Cell〈⊕Object〉,

but not Cell〈⊕String〉 since no String objects can be read from the Num-bounded field.

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 132

The class invariant is accumulated recursively from all the superclasses, as shown below:

[CINV]

class c〈Vi〉mi=1extends(ck〈πik〉nk

i=1)sk=1where ψinv {..}∈P

ρ=[Vi 7→τi]mi=1 ρ ` c1〈πi1〉n1
i=1⇒pt ` ρψinv⇒cinvψ

cinv(c1〈τi〉mi=1)=ψ∧cinv(t)

5.5 Variant Parametric Type System

Variance annotations of programs are used to support flow analysis for more accurate generic

types. We verify the flow of values through the following type judgemnt:

Γ;Q ` e :: αt, ψ

This judgment is for type checking, and assumes that Γ (type environment), Q (type variables in

scope) and αt (type with expected variance) are given while ψ is the collected flow constraint.

Figure 5.7 presents the syntax-directed type rules of the above judgment for the various language

constructs.

Our type system is flow-insensitive as every location (variable, parameter and field) is given

a type that never changes. In our type system, each object of type t1 can be placed in a location

of type t2, provided t1<:t2. The type of a location is therefore a particular type view of its object.

This type view of an object may be changed by upcasting (via assignment or parameter passing)

or by downcast operation that is checkable at runtime.

The following rule shows how to type check an assignment expression:

[ASSIGN]

αt=GetType(Γ, w) α<:	 Γ;Q ` e :: ⊕t, ψ
Γ;Q ` w = e :: ⊕Void, ψ

Flow-in or write-only 	 is mandated on the left-hand side (w) while flow-out or read-only ⊕ is

mandated on the right-hand side (e). To highlight how these flows are enforced, we present the

rule for variable and field access (w stands for either v or v.f):

[VAR−FIELD]

τ1=GetType(Γ, w) ` τ1<:τ⇒ψ
Γ;Q ` w :: τ, ψ

To retrieve the types of the variables and class fields, we use the auxiliary [GetType] rules

from Figure 5.7. The current type τ1 of w is retrieved from the type environment Γ. Further,

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 133

the rule checks that τ1 is a subtype of the expected variant parametric type τ . This supports a

flow-out from the variable w.

For object creation, we ensure that each object is constructed with an invariant type using

c〈�ti〉qi=1. A type is said to be invariant if each variance on its immediate fields is marked with

�. Note that the views of nested fields, namely t1, .., tq from c〈�ti〉qi=1, may still be of variant

parametric types. Note that the variance of all class fields (including those which require type

promotion) returned by fields is �.
[NEW]

vars{ti}qi=1⊆Q t0=c〈�ti〉qi=1 (�t′i fi)
p
i=1=fields(t0)

` ⊕t0<:τ⇒ψ0 Γ;Q ` vi :: ⊕t′i, ψi i = 1..p

Γ;Q ` new c〈ti〉qi=1(v1, .., vp) :: τ,
∧p
i=0 ψi∧cinv(t0)

For the purpose of constructing invariant types, the type variables in {ti}qi=1 must be instantiated

from Q. The class invariant cinv(t0) captures the specified upper/lower bounds on fields that

must be satisfied for every object of the class. When such fields are updated, we statically

ensure that their bounds are never violated. Given an instantiated class type, the rule [FIELDS]

returns the variant parametric types of the class fields using type promotion if necessary.

Local variable declaration v is marked for read-write access via v :: �t as shown in the rule

[LOCAL]. The rule for method call [Call] collects the flow-in for receiver and arguments,

flow-out for the result and the method precondition.

5.5.1 Modular Flow Verification

We design a variant parametric type system that can be verified in a modular fashion. Each

method declaration is given suitable variant parametric type annotations for its parameters, result

and receiver. A “may” flow constraint ψ is specified at the header of each method declaration.

This may-flow specification captures all possible flows that may occur in the method’s body e.

The type checking rule for a method is formalised as follows:

[METHOD]

chkRecv(cn, t0) Γ={vi::⊕ ti}pi=1+{this::⊕ t0}

ψ1=ψ∧
∧p
i=0 cinv(ti)∧cinv(t) ψ1 6=false

Q={V ∗} vars(ψ)⊆Q vars(Γ, t)⊆Q

Γ;Q ` e :: ⊕t, ψ2 VI=vars(ψ2)−Q ψ1 =⇒ ∃VI ·ψ2

cn `meth t0 | t mn((ti vi)pi=1)〈V ∗〉 where ψ {e}

We first construct an initial assumed flow constraint ψ1 that is derived from the declared may-

flow specification ψ, class invariants for each parameter, and result
∧p
i=0cinv(ti)∧cinv(t), The

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 134

[NULL]

Γ;Q ` null :: τ,⊕⊥<:τ

[LOCAL]
Γ′=Γ+{v::�t}

Γ;Q ` e1::⊕t, ψ1 Γ′;Q ` e2::τ, ψ2

Γ;Q ` {t v=e1; e2} :: τ, ψ1∧ψ2

[SEQ]
Γ;Q ` e1::~t, ψ1

Γ;Q ` e2::τ, ψ2

Γ;Q ` e1; e2::τ, ψ1∧ψ2

[COND]
Γ(v)<:⊕ Bool

Γ;Q ` e1 :: τ, ψ1 Γ;Q ` e2 :: τ, ψ2

Γ;Q ` if v then e1 else e2 :: τ, ψ1∧ψ2

[WHILE]
Γ(v)<:⊕ Bool
Γ;Q ` e :: τ, ψ

Γ;Q ` while v e :: ⊕Void, ψ

[PROG]
`def InheritanceOK(defi), i = 1..n

`def defi, i = 1..n
`prg defi=1..n

[CALL]
ρ = [Vj 7→ tj]kj=1 τ ′i=Γ(v′i)

q
i=0

t̂0 | t mn((t̂i vi)qi=1)〈V1..k〉 where ψ..∈τ ′0
ψ1 =

∧q
i=0 τ

′
i<:ρ(⊕t̂i)∧ρ(⊕t)<:τ

Γ;Q ` v′0.mn(v′1, .., v′q)〈t1..k〉 :: τ, ψ1∧ρψ

[CLASS]
c1`methmethi, i=1..q

vars{πi}ni=1∪(vars
⋃s
k=1{π̂ik}

nk
i=1) ⊆ {Xi}mi=1

`def class c1〈Xi〉mi=1 extends (ĉk〈π̂ik〉nk
i=1)sk=1 where ψinv {(πi fi)ni=1 methi=1..q}

[INHC]
def = class c1〈Vi〉pi=1 extends c2〈π̂i〉qi=1..where..{fd∗meth1..p}

(∃meth · meth ∈ c2〈π̂i〉qi=1..∧name(meth)=name(methi))⇒
`OverridesOK(methi,meth) i∈1..p
` InheritanceOK(def)

[OVERRIDE]
meth1 = t0 | t mn((ti vi)

p
i=1)〈V ∗〉 where ψ1 {e1}

meth2 = t̂0 | t mn((ti vi)
p
i=1)〈V ∗〉 where ψ2 {e2}

VL=vars(t̂0)−vars(t0) ` t0<:t̂0⇒ψ ∃VL·(ψ∧ψ1 =⇒ ψ2)
` OverridesOK(meth1,meth2)

[GetType1]
τ=Γ(v)

τ=GetType(Γ, v)

[GetType2]
αt=GetType(Γ, v) t=c〈τi〉ni=1 (τf)∈fields(c〈τi〉ni=1)

τ=GetType(Γ, v.f)

[FIELDS]
class c1〈Vi〉ni=1 extends c2〈π̂i〉ri=1..{(π′i fi)mi=1..}

ρ=[Vi 7→τi]ni=1 ρ ` π′i⇒pτ
′
i , i∈1..m ρ ` π̂i⇒pτ̂

′
i , i∈1..r

fields(c1〈τi〉ni=1) = [(τ ′i fi)]
m
i=1+fields(c2〈τ̂ ′i〉

r
i=1)

Figure 5.7: Variant Parametric Type Rules

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 135

initial assumed flow constraint must be satisfiable, that is, ψ1 6=false. Furthermore, we collect

the flow constraint of the method body using Γ;Q ` e : ⊕t, ψ2, where ψ2 captures all flows that

may occur in the method body e. To prove the correctness of each declared flow constraint,

we perform a subtype entailment on the flow constraint with VI as local type variables using:

ψ1 =⇒ ∃VI ·ψ2. If this entailment holds, we have successfully verified the flow specification of

a given method declaration. We also check if t0, the given type of this, is compatible (no stupid

cast) with the current class via the predicate chkRecv(cn, t0) = cn〈�t∗〉<:t0.

Method overriding is checked by the [Override] rule from Figure 5.7. For safe func-

tion subtyping, we require each overriding method to have weaker or equal flow specification

compared to the overridden method.

5.6 Soundness

The soundness of our type system can be proven by relating to dynamic evaluation semantics of

the form:
〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′]

where Π and $ denote runtime stack and heap, respectively. This evaluation may yield three

possible runtime errors, namely E = Error-Null | Error-Cast | Error-Type. The second error is

due to cast operations guarded by runtime checks inserted by the compiler. The third error

is due to an object of the wrong type being written into a location with some expected static

type. For well-typed programs, this last error can never happen. The progress theorem states

that Error-Type cannot occur while the type preservation theorem shows that the type of an

expression is preserved with each reduction step. We outline the two theorems below. Details

of proof may be found in Appendices B.1, B.2 and B.3.

Theorem 5.1 (Progress). Let Γ be the environment mapping program variables to ground types.

If Γ; Σ;Q ` e :: τ, ψ and Γ; Σ;Q;ψ |= Π, $, then either:

• e is a value, or

• 〈Π, $〉[e] ↪→ Error-Null | Error-Cast, or

• there exist Π′, $′, e′ such that 〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′].

Note that the type rules are extended to include store typing Σ. The relation Γ; Σ;ψ |= Π, $

denotes a consistency relation that relates static and dynamic semantics. The following theorem

states the preservation of type during dynamic evaluation.

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 136

Theorem 5.2 (Preservation). Let Γ be an environment mapping program variables to ground

types. If
Γ; Σ;Q ` e :: τ, ψ

Γ; Σ;Q;ψ |= Π, $

〈Π, $〉[e] ↪→ 〈Π̂, $̂〉[ê]

then there exists Γ̂, Σ̂ and Q̂ such that

Γ− diff(e, ê) = Γ̂− diff(ê, e)

Σ̂ ⊇ Σ

Γ̂; Σ̂; Q̂ ` ê :: τ, ψ̂

Γ̂; Σ̂; Q̂; ψ̂ ∧ ψ |= Π̂, $̂.

Function diff(e, e′) returns a list of local variables that appear in e but not e′.

5.7 Casting and Cast Capture

While a key goal of a generic type system is to provide precise information to eliminate un-

necessary downcasts, there remains always the need for cast operations to support the class

subtyping mechanism. Furthermore, the introduction of generics and variance has complicated

type casting as these operations must handle type variables and nested variant parametric types.

For example, cast operations may target nested types, such as Vector〈�Vector〈⊕Num〉〉, or

those with type variables, such as Vector〈⊕X〉.

However, existing solutions that support casting in Java 1.5 are restricted in that they use cast

checks on the outermost type constructor only [193], and rely on unchecked warnings that may

cause runtime errors (e.g., when a cast to type variable occurs). The only system that supports

cast operations fully (but for parametric types) was proposed by Viroli and Natali [197]. Their

technique can be adapted to handle arbitrary variant parametric types.

In the presence of single inheritance, we can classify each casting relation from t0 to t

into three categories: (1) safe upcast if `t0<:t, (2) downcast with runtime check if `t<:t0, and

(3) stupid cast if ¬(`t0<:t ∨ `t<:t0). However, in the presence of multiple inheritance with

interfaces, a class and an interface may be unrelated but a valid downcast is still possible if the

actual type is a subtype of the two. Though it is possible to identify stupid cast with a more

complex test, namely ¬(∃X·X 6=⊥∧X<:t∧X<:t0), we avoid it for simplicity. Instead, we only

check to ensure that the type variables used in t have come from Q. Our type rule to support a

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 137

variant cast operation is given below:

[CAST]

αt0=Γ(v) α<:⊕ vars(t)⊆Q
Γ;Q ` (t)v :: τ,⊕t<:τ

While casting is used to check a specific type for an object, we often have to deal with objects

of unknown types. For example, we may have an object with a static type List〈	A〉, and we

may be interested to know its actual invariant type List〈�T〉, where T is an unknown type. To

help identify the invariant type of a given object, we introduce a cast capture construct based on

reflection mechanism: {v1 = (t)v ; e}. The following rule shows how to type check the capture

construct:
[CAPTURE]

αc〈τi〉ni=1 = Γ(v) α<:⊕ t=c〈�Vi〉ni=1 {Vi}ni=1 ∩Q={}

Γ;Q ` v1 :: 	t, ψ1 Q1=Q∪{Vi}ni=1 Γ;Q1 ` e :: τ, ψ2

Γ;Q ` {v1 = (t)v; e} :: τ, ψ1∧ψ2

Note that t is an invariant type of the form c〈�Vi〉: c should have the same class type as v, while

the captured type variables Vi stand for unknown types. Each Vi can be used in the expression

e with its flow captured by the collected flow (ψ1∧ψ2).

The flow of captured type variables should not cause additional restriction or generalization

at the method boundary. We next present how the type system ensures the correct use of captured

type variables. The actual type t obtained via reflection is guaranteed to be more precise than

v’s static type, Γ(v). We call this guarantee reflection assumption. For each method, a relation

Γ ` e⇒C VC , ψC collects captured type variables, VC , and their reflection assumptions, ψC as

follows:

αt0=Γ(v) `t<:t0⇒ψ

X=vars(t) Γ ` e⇒CV, ψ1

Γ ` {v1 = (t)v; e} ⇒C V ∪X,ψ∧ψ1

The method judgement is modified to exclude captured type variables VC from the local type

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 138

variables VI . Additionally, the expected flow ψ1 is strengthened with reflection assumptions ψC .

[METHOD−WITH−CAPTURE]

chkRecv(cn, t0) Γ={vi::⊕ ti}pi=1+{this::⊕ t0}

Γ ` e⇒CVC , ψC ψ1=ψ∧
∧p
i=0 cinv(ti)∧cinv(t)∧ψC

Q={V ∗} vars(ψ)⊆Q vars(Γ, t)⊆Q ψ1 6=false

Γ;Q ` e :: ⊕t, ψ2 VI=vars(ψ2)−Q−VC ψ1 =⇒ ∃VI ·ψ2

cn `meth t0 | t mn((ti vi)pi=1)〈V ∗〉 where ψ {e}

The proper flow of captured type variables is then ensured by the entailment from the above

rule.

5.7.1 Cast Capture Examples

The cast capture mechanism can also be viewed as a downcast to the object’s invariant type.

Unknown types that are captured (via reflection) may be used in the program code, as shown in

the example below:

void addNode(List〈	A〉 y, B z) where B<:A {

List〈�S〉 v; List〈�S〉 w;

{v = (List〈�T〉) y; w = new List〈T〉();

w.val = z ; w.next = v.next ; v.next = w; } }

Though we do not know the exact type of y, we can use a cast capture on (List<�T>) to

obtain its invariant type. Correspondingly, the reflection assumption is A<:T. We use the cap-

tured type T to build a List〈�T〉 node, write z to w.val, and also reconstruct pointers for

the linked list in a type-safe and yet generic way. For this example, the initial assumed flow

is ψ1≡(B<:A∧A<:T), whereby B<:A is from the flow specification and A<:T is the reflec-

tion assumption. This initial assumed flow implies the collected flow constraint ∃S·ψ2, where

ψ2≡(S<:T∧T<:S∧B<:S). Hence, modular verification holds for this example.

The same cast capture mechanism may also be used to capture an unknown invariant type,

enabling a swap of elements within the same collection, without knowledge of its type. We

consider:

void swapVec(Vector〈~〉 v,int i, int j) {

Vector〈�S〉 w;

{w = (Vector〈�T〉) v;

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 139

S v1 = w.elementAt(i);

S v2 = w.elementAt(j);

w.setElementAt(v2,i); w.setElementAt(v1,j);} }

Note that input parameter v uses a bivariant type Vector<~>, which can be used to support

an argument of an arbitrary Vector object. The initial assumed flow is ψ1≡true, while the

collected flow is ∃S·ψ2, where ψ2≡(S<:T∧T<:S). Hence, the entailment ψ1 =⇒ ∃S·ψ2 holds.

An example of a method that does not type check is presented below:

Vector〈⊕Y〉 foo1(Vector〈~〉 v){ Vector〈�S〉 w;{w =(Vector〈�T〉) v;w}}

The initial assumed flow is ψ1≡true while the collected flow is ψ2≡T<:Y. Note that neither T

(captured type variable) nor Y (global type variable) are existentially quantified from ψ2. The en-

tailment ψ1 =⇒ ∃S·ψ2 does not hold, since the captured type variable T introduces an additional

flow at method boundary.

As another example, the following definition type checks as the collected flow from the

method’s body (after elimination of the local type variable S) is ψ2≡true:

Vector〈~〉 foo2(Vector〈~〉 v) { Vector〈�S〉 w;{w=(Vector〈�T〉) v;w}}

5.8 Experimental Validation
5.8.1 Implementation

We built a prototype for our variant parametric type system and carried out initial experiments

to validate its feasibility. Our system was built using the Glasgow Haskell compiler [150], with

a constraint solver (for handling subtyping constraints) implemented using Constraint Handling

Rules (CHR) [70].

Our constraint solver employs the following two-step algorithm to prove the non-structural

subtype entailment of the form ∀VG·(ψ1 =⇒ ∃VI ·ψ2). Note that ψ1, ψ2 are conjunctions of sub-

typing constraints , while VG and VI are sets of type variables. Even though the entailment from

the [METHOD] rule may contain disjunctions, it can be reduced to entailments of the above form.

1. We eliminate the local type variables VI (based on their upper and lower bounds) from

ψ2 to obtain ψ′2=
∧n
i=1Xi<:Yi using techniques similar to [157, 195]. To support the lan-

guage’s semantics a local type inference similar to [154, 137] is employed to identify

appropriate instantiated types for local type variables or type parameters.

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 140

2. The resulting entailment ∀VG·(ψ1 =⇒
∧n
i=1Xi<:Yi) is equivalent to∧n

i=1(∀VG·(ψ1 =⇒ Xi<:Yi)). Each entailment can be proven by contradiction using the

falsity of the formula ∀VG·(ψ1∧notsub(Xi, Yi)), where notsub(t1, t2) represents negation of

subtyping relation.

Our constraint solver implements the variant subtyping rules (from Figure 5.3). Its deduction

mechanism detects falsity based on pair of constraints of the form t1<:t2 and notsub(t1, t2).

Our algorithm is a sound approximation of the subtype entailment problem. The deduction

mechanism can be further extended by the techniques of case analysis and inductive proving.

However, from our experience working with large sets of Java library and application codes that

have been annotated and checked with variant parametric types, we have yet to encounter real

examples which require such extensions.

5.8.2 Experiments

To test the utility of our flow-based variant type system, we evaluated our prototype on a set

of Java applications1 as used in [54, 72]. These applications make use of library classes from

package java.util, which we annotated with our variant parametric types. We counted each

method declaration with flow specification, each class declaration with type parameters and

each cast capture as a line of annotation. On average, these annotations constituted about 5.5%

of the source code, which may be considered a reasonable price to pay for better reuse of type

safe generic code. Due to modular type checking, the time needed to verify type-safe generic

code was less than one second for each library code and less than 30 seconds for each application

code. We expect that the time can be reduced by using a specialised constraint solver. Currently,

our prototype is based on a meta constraint handling system written in CHR (which compiled

to a Prolog program under IC-Parc’s ECLiPSe system [12]).

Figures 5.8 and 5.9 show the experimental results for representative classes from the

java.util package and application code (in terms of remaining casts). We counted the num-

ber of casts in Java 1.4 code (non-generic), Java 1.5 (annotated with wildcards) and our system

(VPT - annotated with variant parametric types). The Java 1.5 compiler could not statically

check some operations (especially those related to raw types and casts to type variables), and

1For more details: www.junit.org, www.cs.princeton.edu/ ∼appel/modern/java/JLex/,
www.cs.princeton.edu/ ∼appel/modern/java/CUP/, www.spec.org/osg/jvm98/,
vpoker.sourceforge.net, telnetd.sourceforge.net.

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 141

Library Prog. Java 1.4 Java 1.5 VPT
Lines Casts Casts Warnings Casts Warnings

AbstractList 909 1 1 0 0 0
AbstractSet 162 1 1 0 0 0
ArrayList 623 2 8 9 1 0
HashMap 1103 7 9 20 3 0
HashSet 231 2 4 3 1 0
Hashtable 1154 10 14 31 7 0
LinkedList 814 2 4 5 2 0
Properties 925 8 8 1 0 0
Vector 1062 2 9 9 0 0
Total 6983 35 58 78 14 0

Figure 5.8: Results for Library Code

Application Prog. Java 1.4 Java 1.5 VPT
Lines Casts Casts Warnings Casts Warnings

DB 842 19 1 0 0 0
JUnit 5886 54 30 1 15 0
VPoker 6792 36 8 0 6 0
JLex 7260 69 12 3 0 0
Jess 10639 95 34 0 12 0
TelnetD 11314 46 8 0 6 0
JavaCup 11468 543 98 2 65 0
Total 54201 862 191 6 104 0

Figure 5.9: Results for Application Code

issued unchecked warnings. Therefore, it is the programmer’s responsibility to ensure that all

unchecked operations are in fact safe.

To summarize, our method can eliminate a significant portion (on average 87.9%) of the

casts from non-generic Java 1.4 application code and 45.5% of the casts from wildcard-generic

Java 1.5 application code. We have also made improvements for library code by eliminating

about 60% casts from non-generic Java 1.4 code and about 75.8% casts from the wildcard-

generic Java 1.5 code. Since our system fully supports casting for variant types, we can verify

the unsafe operations for which the Java 1.5 compiler generates unchecked warnings. Note

that Java 1.5 libraries contain more casts than Java 1.4 libraries do, since Java 1.4 containers are

based on Object type instead of generic types. As expected, Java 1.4 application code requires

more downcasts compared to Java 1.5 code.

Figure 5.10 shows a chart that visualises the percentage of remaining casts in each bench-

mark written in Java 1.4, Java 1.5 and our VPT. Java 1.4 which contains the casts from the

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 142

Figure 5.10: Remaining Casts for Application Code

original application code serves as reference.

Note that the casts eliminated using our type system measure the improvement in program

safety. Current Java implementation (which translates parametric programs via type erasure)

would re-introduce casts at the bytecode level. While such re-admitted casts may cause runtime

overheads, they are known to be type safe and will never fail at runtime. Obviously, a better

solution is to support variant parametric type at the bytecode level and we look forward to this

scenario.

5.9 Other Features

In this section, we present some features omitted in the main presentation for brevity.

The hierarchy of primitive types forms a separate lattice from reference types. Furthermore,

it is not the case that ⊥<:p<:Object for each primitive type p. Due to such differences, primitives

are excluded from use as type arguments for generic classes in Java 1.5. Furthermore, the type

erasure algorithm for the parametric program will transform each parametric field into an Object

type for backwards compatibility. This is invalid if primitive types are used as type arguments.

We now show how primitive types can be used as type arguments for generic classes in our

system.

First, we need to add two constraints to distinguish reference and primitive types, as shown

below:
ψ ::= · · · | ref(t) | prim(t)

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 143

As these two families of types are disjoint, we add the following CHR irrevocable rule:

ref(t) ∧ prim(t) ⇔ false

Second, we need to consider primitive types in the new variant subtyping mechanism. In

the new subtyping hierarchy, ~t denotes any type (reference or primitive) while ⊕Object and

	⊥ denote only reference types (that are still equivalent, namely ⊕Object≡	⊥). The subtyping

relation is changed accordingly: ⊕Object<:~t still holds while ~t<:⊕ Object does not hold

anymore. Furthermore, we allow ⊥<:t and t<:Object if and only if t is not a primitive type.

To support these changes, we modify the main variant subtyping rules from Figure 5.3 to the

following:
α 6=~

` αt<:⊕Object⇒ref(t)
α 6=~

` αt<:	⊥⇒ref(t)

α1 6=~ ¬(α1<:⊕) ` Object<:t2⇒ψ
` α1t1<:⊕t2⇒ψ∧ref(t1)

α1 6=~ ¬(α1<:) ` t2<:⊥⇒ψ
` α1t1<:	t2⇒ψ∧ref(t1)

`⊥<:t⇒ref(t) `t<:Object⇒ref(t)

`t<:⊥⇒t<:⊥∧ref(t) `Object<:t⇒Object<:t∧ref(t)

Programmers often make use of the instanceof test on the runtime type of an object prior

to some operations. Due to flow and path insensitivity, the type system is currently unable to

take advantage of such runtime testing of types. To help eliminate more cast operations, our

compiler translates each program fragment of the form:

if v.instanceof(t) then e1 else e2

to use a special program construct with fresh v0 variable:

if v.instanceof(t) then let v0::t=v in [v7→v0]e1 else e2

This construct is part of our core intermediate language, and it is generated prior to type check-

ing. It is valid on the proviso that any assignment into v is a subtype of the more specific t. A

type rule corresponding to the new language construct is shown below:

[LET−INSTANCEOF]

e1 ≡ (let v0 :: t = v in e)

Γ′=Γ+{v0::�t} Γ′;Q ` e::τ, ψ1 Γ;Q ` e2::τ, ψ2

Γ;Q ` if v.instanceof(t) then e1else e2 :: τ, ψ1∧ψ2

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 144

Flow-sensitivity may also cause some loss in type precision (such that some downcasts can-

not be statically verified) when the same local variable is used for objects with different variant

parametric types. To rectify this, we could use Static Single Assignment (SSA) intermediate

form [49] which is known to give better flow-sensitive analysis results. Conversion of programs

to SSA form can be handled in a preprocessing step, prior to type checking.

These techniques for incorporating path and flow sensitivity are quite standard, and were

also explored in [200].

5.10 Related Work

Software reuse has received much research interest for its boost to software development and

maintenance productivities. Recently, generic type has become a main thrust in supporting

software reuse. In reusing Java code, several works have proposed for refactoring legacy Java

programs into those that use generic versions of popular container classes [54, 57, 72, 198].

Other works try to achieve precise Java type inference results in the presence of parametric

polymorphism and data polymorphism in order to reduce the redundant cast operations [156, 3,

200]. The precision typically comes at the price of a whole program analysis. Every time when

an application code is analysed, the reachable library code must also be re-analysed.

Variant parametric types attempt to increase language expressivity and code reuse by intro-

ducing another subtyping scheme, based on the notion of variance. This idea originated from

the structured virtual types proposed by Thorup and Torgersen [186]. Their work is the first

to link access rights and covariant subtyping to the fields of each use of a class rather than the

class itself. Igarashi and Viroli extended this concept to support contra- and bi-variance [103].

They also formalised the variant type system by mapping it into a corresponding existential type

system [103, 104] for Featherweight Java. While Igarashi and Viroli’s design faithfully models

the existential type system, it has been found to be too restrictive by the designers of Java 1.5.

One improvement made in Java 1.5 is to allow each wildcard type to be opened without a corre-

sponding close operation. This provides more flexibility for writing generic code, but weakens

the link to the traditional pack/unpack mechanism of the existential type system. Hence, even

though a full-scale language system has been implemented, the soundness of the wildcard type

system is still under development (as of [194]). Other than Java, a recently developed language

CHAPTER 5. VARIANT PARAMETRIC TYPE SYSTEM 145

Scala [138] supports variance for parametric polymorphism. In contrast with our approach,

Scala uses variance at declaration-site. However, an earlier version of Scala has experimented

with the use-site variance mechanism that is consistent with the original system of Igarashi and

Viroli but without the flexibility of the wildcard capture. This was considered to be too re-

strictive before the authors abandoned the approach. Recently, generic types of C# [61] were

extended with declaration-site variance following the design adopted for the language Scala.

Theoretical foundations of the variance have also been studied in the context of typed λ-

calculi, where type operators are equipped with a polarity property [31, 179, 56]. These foun-

dations have even been extended to handle higher-order functions, but are closer in nature to

declaration-site variance, and have mostly been formalised in only a theoretical setting, without

practical implementations.

We have proposed a new approach based on flow analysis to support the variant paramet-

ric type system. We leverage prior knowledge that has been accumulated for flow analysis and

entailment for non-structural subtyping constraints. Palsberg and O’Keefe [142] show the equiv-

alence of flow analysis and non-structural subtyping. Subtype entailment is known to be hard

even for simple subtyping constraints. Rehof and Henglein determined the complexity of struc-

tural subtype entailment: for simple types, it is coNP-complete [96] and for recursive types it

is PSPACE-complete [97]. Furthermore, they showed that non-structural subtype entailment is

PSPACE-hard and is conjectured PSPACE-complete [97]. Su et al. [183] show the decidability

of the first-order theory of non-structural subtyping with unary function symbols. Algorithms

for non-structural subtype entailment (sound, but incomplete) were developed in Pottier [157],

Trifonov and Smith [195]. While the decidability of non-structural subtype entailment remains

an open problem, we use sound techniques based on these previous algorithms.

PART III

Finale

146

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation we have designed and implemented two advanced type systems for improving

the software quality in the context of a Java-like programming language. More specifically, the

first type system enables an automatic safe compile-time region-based memory management,

while the second type system improves software reusability (also called genericity). We have

used a similar approach to develop both type systems, that consists of two main ingredients,

namely a simple flow analysis and a set of partially-ordered type annotations. Flow analysis

captures type annotations in a flow-insensitive manner through the program code, but summa-

rizes a parameterized flow at each method boundary. Subtyping of annotated types provides

the direction of flows. As a consequence, the type rules generate flow constraints among the

annotated types. We summarize the achievements and prospects for both type systems next.

6.1 Safe Region-Based Memory Management

Our aim was to provide a fully-automatic region inference system for a core subset of Java. We

achieved this by a summary-based flow insensitive analysis and by allowing classes and methods

to be region-polymorphic, with region-polymorphic recursion for methods. The inferred region

lifetime constraints for the classes and the methods form the classes’ invariants and the methods’

preconditions, respectively. We have seen how the region lifetime constraints prevent dangling

references and generate appropriate region instantiations.

We have proven that the result of our region inference is correct with respect to our re-

gion type system. We have also proven that our region type system guarantees that well-typed

programs are region safe and never create dangling references in the store and on the stack.

Region inference has a trivial solution by putting everything in one region. Our analysis aims

for a better solution by putting objects into regions with shorter lifetimes, whenever our system is

able to guarantee that it is safe to do so. In the experiments, we used the degree of memory reuse

to measure the quality of our region inference results. As shown by the examples, different kinds

of the region subtyping can improve the regions lifetime precision. We used a dependency graph

CHAPTER 6. CONCLUSION AND FUTURE WORK 147

to guide the inference process. The complex inter-dependency between classes and methods

may affect the precision and the scalability of our analysis. For example, treating the whole

program as one strongly connected component (SCC) of the dependency graph may have a bad

impact on the precision of the inference for classes due to the monomorphic principle used for

classes.

There remain a number of areas where improvements of our region inference are possible.

Several directions can be taken to improve memory utilization. As an example, component

objects that are owned by another object can be placed in the same region as the latter, since no

references exist from outside the owner. This idea has been explored in [23]. Coupled with alias

(including ownership) annotations that can be automatically inferred, as described in [10], we

believe that ownership information can be derived to make this optimization fully automatic.

Our region type rules are flow-insensitive (within each method) but context-sensitive (across

methods). The latter is due to the use of region polymorphism at method boundaries. Flow-

insensitivity may cause some loss in region lifetime precision when the same local variable is

used for objects with different lifetime requirements. To partially rectify this, we could use Static

Single Assignment (SSA) intermediate form [49] which is known to give better flow-sensitive

analysis results. Conversion of programs to SSA form can be handled in a preprocessing step.

Since the region types are intended more for compilers rather than for programmers, the pro-

grammers are not required to work on the SSA form.

Other direction to further improve the memory utilization is to explore suitable liveness

analysis and restructuring transformations. Effective placement of local variable declarations,

object allocations and expression blocks can affect region placement and the extent to which

memory is effectively reused. A promising approach is to combine the region inference with

a linearity analysis that determines the objects that have become dead [113, 38]. The space of

dead objects may be recycled earlier in a region. The recycling of an entire region (without

deallocating it) was called region resetting and it was studied in the context of ML [190].

Another future direction is to extend our region inference system to all features of a Java-

like programming language. A discussion about the possible extensions is presented in Ap-

pendix A.6. In the context of concurrency, our intention is to adapt the techniques presented in

this dissertation to check and infer the scoped memory areas of scoped-based memory model

proposed by the Real-Time Specification for Java [19].

CHAPTER 6. CONCLUSION AND FUTURE WORK 148

6.2 Better Genericity

Our goal was to strive for type-safe object-oriented programs with better genericity via a modu-

lar flow-based approach to variant parametric type system. We have developed a novel approach

that is practically driven and can give better generic types. Our flow analysis captures value

flows via subtyping constraints. A major benefit of this approach is the considerable knowl-

edge in flow analysis that has been accumulated in the recent past. In particular, to support

modular type-checking, we require non-structural subtype entailment. While the decidability of

non-structural subtype entailment remains an open problem, our work is built on top of sound

but practical approximations. To capture information flow more accurately, we have augmented

our generic type system with intersection types which support Java-like multiple (interface) in-

heritance. We have built a prototype system based on a set of syntax-directed type rules. This

prototype is supported by a constraint-solver for variant subtyping, customized using CHR.

Furthermore, our system supports full casting for variant types. Through a new cast capture

mechanism, we can use reflection to handle objects with unknown types in a type-safe way.

Experimental evaluation indicates that more downcasts can be eliminated by our approach, even

when it is compared against the state-of-the-art type system from Java 1.5.

One future direction is to formulate and implement an inference framework. The experi-

ments done with our flow-based type checker have confirmed the possible improvements over

the current Java generics. Our flow-based approach is another step towards better generic types

for Java. In addition, a good inference mechanism can support faster migration of legacy codes

to variant parametric types, and can improve the productivity of writing new code.

149

BIBLIOGRAPHY

[1] ABADI, M. and CARDELLI, L., “An imperative object calculus (invited paper),” Theory
and Practice of Object Systems (TAPOS), vol. 1, no. 3, pp. 151–166, 1995.

[2] ABADI, M., CARDELLI, L., and VISWANATHAN, R., “An interpretation of objects and
object types,” in ACM Symposium on Principles of Programming Languages (POPL),
pp. 396–409, 1996.

[3] AGESEN, O., “The cartesian product algorithm: Simple and precise type inference of
parametric polymorphism,” in European Conference on Object-Oriented Programming
(ECOOP), pp. 2–26, 1995.

[4] AGESEN, O., FREUND, S. N., and MITCHELL, J. C., “Adding type parameterization
to the java language,” in ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pp. 49–65, 1997.

[5] AHO, A., SETHI, R., and ULLMAN, J., Compilers, Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[6] AIKEN, A., “Introduction to set constraint-based program analysis,” Science of Computer
Programming, vol. 35, pp. 99–111, 1999.

[7] AIKEN, A., FÄHNDRICH, M., and LEVIEN, R., “Better static memory management:
Improving region-based analysis of higher-order languages,” in ACM Conference on Pro-
gramming Language Design and Implementation (PLDI), pp. 174–185, 1995.

[8] AIKEN, A. and WIMMERS, E. L., “Type inclusion constraints and type inference,” in
ACM Conference Conference on Functional Programming Languages and Computer Ar-
chitecture (FPCA), pp. 31–41, 1993.

[9] AIKEN, A., WIMMERS, E. L., and PALSBERG, J., “Optimal representations of poly-
morphic types with subtyping,” Higher-Order and Symbolic Computation, vol. 12, no. 3,
pp. 237–282, 1999.

[10] ALDRICH, J., KOSTADINOV, V., and CHAMBERS, C., “Alias Annotation for Program
Understanding,” in ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pp. 311–330, 2002.

[11] AMADIO, R. M. and CARDELLI, L., “Subtyping recursive types,” in ACM Symposium
on Principles of Programming Languages (POPL), pp. 104–118, 1991.

[12] AT IMPERIAL COLLEGE, I.-P., “ECLiPSe Constraint Logic Programming.”
http://www.icparc.ic.ac.uk/eclipse/.

[13] BEEBEE, W. and RINARD, M., “An Implementation of Scoped Memory for Real-Time
Java,” in International Workshop of Embedded Software (EMSOFT), pp. 289–305, 2001.

[14] BENKE, M., “Some complexity bounds for subtype inequalities,” Theorethical Computer
Science, vol. 212, no. 1-2, pp. 3–27, 1999.

[15] BIERMAN, G., PARKINSON, M., and PITTS, A., “MJ: An imperative core calculus for
Java and Java with effects,” Technical Report, Cambridge University, 2003.

BIBLIOGRAPHY 150

[16] BIRKA, A. and ERNST, M. D., “A practical type system and language for reference
immutability,” in Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA 2004), pp. 35–49, 2004.

[17] BIRKEDAL, L. and TOFTE, M., “A constraint-based region inference algorithm,” Theo-
retical Computer Science, vol. 258, no. 1–2, pp. 299–392, 2001.

[18] BIRKEDAL, L., TOFTE, M., and VEJLSTRUP, M., “From region inference to von Neu-
mann machines via region representation inference,” in ACM Symposium on Principles
of Programming Languages (POPL), pp. 171–183, 1996.

[19] BOLLELLA, G., BROSGOL, B., DIBBLE, P., FURR, S., GOSLING, J., HARDIN, D., and
TURNBULL, M., The Real-Time Specification for Java. Addison-Wesley, 2000.

[20] BOYAPATI, C., LEE, R., and RINARD, M., “Ownership types for safe programming:
Preventing data races and deadlocks,” in ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA), pp. 211–230, 2002.

[21] BOYAPATI, C., LEE, R., and RINARD, M., “Safe runtime downcasts with owner-
ship types,” in ECOOP Workshop on Aliasing, Confinement and Ownership in Object-
Oriented Programming, pp. 1–12, 2003.

[22] BOYAPATI, C., LISKOV, B., and SHRIRA, L., “Ownership Types for Object Encapsula-
tion,” in ACM Symposium on Principles of Programming Languages (POPL), pp. 213–
223, 2003.

[23] BOYAPATI, C., SALCIANU, A., BEEBEE, W., and RINARD, M., “Ownership Types for
Safe Region-Based Memory Management in Real-Time Java,” in ACM Conference on
Programming Language Design and Implementation (PLDI), pp. 324–337, 2003.

[24] BRACHA, G., ODERSKY, M., STOUTAMIRE, D., and WADLER, P., “Making the future
safe for the past: Adding Genericity to the Java Programming Language,” in ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pp. 183–200, 1998.

[25] BRUCE, K. B., “A paradigmatic object-oriented programming language: Design, static
typing and semantics,” Journal of Functional Programming, vol. 4, no. 2, pp. 127–206,
1994.

[26] BRUCE, K., Foundations of Object-Oriented Languages, Types and Semantics. The MIT
Press, 2002.

[27] BUCHI, M. and WECK, W., “Compound types for Java,” in ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), pp. 362–373,
1998.

[28] CALCAGNO, C., “Stratified operational semantics for safety and correctness of the re-
gion calculus,” in ACM Symposium on Principles of Programming Languages (POPL),
pp. 155–165, 2001.

[29] CALCAGNO, C., HELSEN, S., and THIEMANN, P., “Syntactic type soundness results for
the region calculus,” Information and Computation, vol. 173, no. 2, pp. 199–221, 2002.

[30] CANNING, P. S., COOK, W. R., HILL, W. L., OLTHOFF, W. G., and MITCHELL,
J. C., “F-Bounded polymorphism for object-oriented programming,” in ACM Conference
Conference on Functional Programming Languages and Computer Architecture (FPCA),
pp. 273–280, 1989.

BIBLIOGRAPHY 151

[31] CARDELLI, L., “Notes about Fω<:,” 1994. Available at
http://research.microsoft.com/Users/luca/Notes/FwSub.ps.

[32] CARDELLI, L., “Type systems,” in Allen B. Tucker (Ed.): The Computer Science and
Engineering Handbook, vol. 97, CRC Press, 2004.

[33] CARDELLI, L. and WEGNER, P., “On understanding types, data abstraction, and poly-
morphism.,” ACM Computing Surveys, vol. 17, no. 4, pp. 471–522, 1985.

[34] CARLISLE, M. C. and ROGERS, A., “Software caching and computation migration in
Olden,” in ACM Principles and Practice of Paralle Computing, pp. 29–38, 1993.

[35] CARTWRIGHT, R. and JR., G. L. S., “Compatible genericity with run-time types for
the java programming language,” in ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pp. 201–215, 1998.

[36] CASTAGNA, G., “Covariance and contravariance: Conflict without a cause,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 17, no. 3, pp. 431–447,
1995.

[37] CHEREM, S. and RUGINA, R., “Region analysis and transformation for Java programs,”
in International Symposium on Memory Management (ISMM), pp. 85–96, 2004.

[38] CHEREM, S. and RUGINA, R., “Uniqueness inference for compile-time object dealloca-
tion,” in International Symposium on Memory Management (ISMM), pp. 117–128, 2007.

[39] CHIN, W.-N., CRACIUN, F., KHOO, S.-C., and POPEEA, C., “A flow-based approach
for variant parametric types,” in ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), pp. 273–290, 2006.

[40] CHIN, W.-N., CRACIUN, F., QIN, S., and RINARD, M. C., “Region inference for an
object-oriented language,” in ACM Conference on Programming Language Design and
Implementation (PLDI), pp. 243–254, 2004.

[41] CHRISTIANSEN, M. V. and VELSCHOW, P., “Region-Based Memory Management in
Java.” Master’s Thesis, Department of Computer Science (DIKU), University of Copen-
hagen, 1998.

[42] CLARKE, D. G. and DROSSOPOULOU, S., “Ownership, encapsulation and disjointness
of type and effect,” in ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pp. 292–310, 2002.

[43] CLARKE, D. G., POTTER, J. M., and NOBLE, J., “Ownership Types for Flexible Alias
Protection,” in ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pp. 48–64, 1998.

[44] COMPAGNONI, A. B. and PIERCE, B. C., “Higher-order intersection types and multiple
inheritance,” Mathematical Structures in Computer Science, vol. 6, no. 5, pp. 469–501,
1996.

[45] CRACIUN, F., GOH, H. Y., and CHIN, W.-N., “A framework for object-oriented pro-
gram analyses via Core-Java,” in IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP), (Cluj-Napoca, Romania), pp. 197–205, 2006.

[46] CRACIUN, F., GOH, H. Y., POPEEA, C., and CHIN, W.-N., “Core-java: an expression-
oriented Java,” in Companion to ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pp. 639–640, 2006.

BIBLIOGRAPHY 152

[47] CRACIUN, F., QIN, S., and CHIN, W.-N., “A formal soundness proof of region-based
memory management for object-oriented paradigm,” in Formal Methods and Software
Engineering (ICFEM), 2008.

[48] CRARY, K., WALKER, D., and MORRISETT, G., “Typed Memory Management in a
Calculus of Capabilities,” in ACM Symposium on Principles of Programming Languages
(POPL), pp. 262–275, 1999.

[49] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., and ZADECK, F. K.,
“Efficiently computing static single assignment form and the control dependence graph,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 13, no. 4,
pp. 451–490, 1991.

[50] DAVEY, B. A. and PRIESTLEY, H. A., Introduction to Lattices and Order. Cambridge
University Press, 1990.

[51] DETERS, M. and CYTRON, R., “Automated discovery of scoped memory regions for
real-time Java,” in International Symposium on Memory Management (ISMM), pp. 132–
142, 2002.

[52] DEUTSCH, A., “On the complexity of escape analysis,” in ACM Symposium on Principles
of Programming Languages (POPL), pp. 358–371, 1997.

[53] DHURJATI, D., KOWSHIK, S., ADVE, V. S., and LATTNER, C., “Memory safety without
runtime checks or garbage collection,” in ACM Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pp. 69–80, 2003.

[54] DONOVAN, A., KIEZUN, A., TSCHANTZ, M. S., and ERNST, M. D., “Converting Java
programs to use generic libraries,” in ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pp. 15–34, 2004.

[55] DROSSOPOULOU, S., VALKEVYCH, T., and EISENBACH, S., “Java type soundness re-
visited,” technical report, Imperial College, 1999.

[56] DUGGAN, D. and COMPAGNONI, A., “Subtyping for Object Type Constructors,” in
Foundations of Object-Oriented Languages, pp. 1–12, 1999.

[57] DUGGAN, D., “Modular type-based reverse engineering of parameterized types in Java
code.,” in ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pp. 97–113, 1999.

[58] DUSSART, D., HENGLEIN, F., and MOSSIN, C., “Polymorphic recursion and subtype
qualifications: Polymorphic binding-time analysis in polynomial time,” in International
Static Analysis Symposium (SAS), pp. 118–135, 1995.

[59] EIFRIG, J., SMITH, S. F., and TRIFONOV, V., “Type inference for recursively con-
strained types and its application to OOP,” Electronic Notes in Theoretical Computer
Science, vol. 1, 1995.

[60] ELSMAN, M., “Garbage collection safety for region-based memory management,” in The
ACM Workshop on Types in Language Design and Implementation (TLDI), pp. 123–134,
2003.

[61] EMIR, B., KENNEDY, A. J., RUSSO, C., and YU, D., “Variance and generalized con-
straints for C# generics,” in European Conference on Object-Oriented Programming
(ECOOP), pp. 279–303, 2006.

BIBLIOGRAPHY 153

[62] FÄHNDRICH, M. and AIKEN, A., “Making set-constraint program analyses scale,” in
First Workshop on Set Constraints at CP’96, 1996.

[63] FÄHNDRICH, M., FOSTER, J. S., SU, Z., and AIKEN, A., “Partial online cycle elim-
ination in inclusion constraint graphs,” in ACM Conference on Programming Language
Design and Implementation (PLDI), pp. 85–96, 1998.

[64] FÄHNDRICH, M., REHOF, J., and DAS, M., “Scalable context-sensitive flow analysis
using instantiation constraints,” in ACM Conference on Programming Language Design
and Implementation (PLDI), pp. 253–263, 2000.

[65] FÄHNDRICH, M., BANE: A Library for Scalable Constraint-Based Program Analysis.
PhD thesis, University of California, Berkeley, May 1999.

[66] FLANAGAN, C. and FELLEISEN, M., “Componential set-based analysis,” in ACM Con-
ference on Programming Language Design and Implementation (PLDI), pp. 235–248,
1997.

[67] FOSTER, J., Type Qualifiers: Lightweight Specifications to Improve Software Quality.
PhD thesis, University of California, Berkeley, 2002.

[68] FOSTER, J. S., FÄHNDRICH, M., and AIKEN, A., “A theory of type qualifiers,” in ACM
Conference on Programming Language Design and Implementation (PLDI), pp. 192–
203, 1999.

[69] FREY, A., “Satisfying subtype inequalities in polynomial space,” Theorethical Computer
Science, vol. 277, no. 1-2, pp. 105–117, 2002.

[70] FRÜHWIRTH, T. W., “Theory and practice of constraint handling rules,” Journal of Logic
Programming, vol. 37, no. 1-3, pp. 95–138, 1998.

[71] FUH, Y.-C. and MISHRA, P., “Polymorphic subtype inference: Closing the theory-
practice gap,” in Theory and Practice of Software Development, vol. 2, pp. 167–183,
1989.

[72] FUHRER, R., TIP, F., KIEZUN, A., DOLBY, J., and KELLER, M., “Efficiently refactoring
Java applications to use generic libraries,” in European Conference on Object-Oriented
Programming (ECOOP), pp. 71–96, 2005.

[73] GAPEYEV, V., LEVIN, M. Y., and PIERCE, B. C., “Recursive subtyping revealed,” Jour-
nal of Functional Programming, vol. 12, no. 6, pp. 511–548, 2002.

[74] GAY, D., Memory Management with Explicit Regions. PhD thesis, University of Califor-
nia, Berkeley, 2001.

[75] GAY, D. and AIKEN, A., “Memory Management with Explicit Regions,” in ACM Con-
ference on Programming Language Design and Implementation (PLDI), pp. 313–323,
1998.

[76] GAY, D. and AIKEN, A., “Language support for regions,” in ACM Conference on Pro-
gramming Language Design and Implementation (PLDI), pp. 70–80, 2001.

[77] GLYNN, K., STUCKEY, P. J., SULZMANN, M., and SONDERGAARD, H., “Boolean con-
straints for binding-time analysis,” in Workshop on Programs as Data Objects II (PADO),
pp. 39–62, 2001.

[78] GOSLING, J., JOY, B., STEELE, G., and BRACHA, G., The Java Language Specification.
Addison-Wesley, 2005.

BIBLIOGRAPHY 154

[79] GROSSMAN, D., “Type-Safe Multithreading in Cyclone,” in The ACM Workshop on
Types in Language Design and Implementation (TLDI), pp. 13–25, 2003.

[80] GROSSMAN, D., MORRISETT, G., JIM, T., HICKS, M., WANG, Y., and CHENEY, J.,
“Region-Based Memory Management in Cyclone,” in ACM Conference on Programming
Language Design and Implementation (PLDI), pp. 282–293, 2002.

[81] GUSTAVSSON, J. and SVENNINGSSON, J., “Constraint abstractions,” in Workshop on
Programs as Data Objects II (PADO), pp. 63–83, 2001.

[82] HALLENBERG, N., ELSMAN, M., and TOFTE, M., “Combining region inference and
garbage collection,” in ACM Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 141–152, 2002.

[83] HANSON, D. R., “Fast allocation and deallocation of memory based on object lifetimes,”
Software-Practice and Experience, vol. 20, no. 1, pp. 5–12, 1990.

[84] HEINTZE, N. and TARDIEU, O., “Ultra-fast aliasing analysis using cla: A million lines
of c code in a second,” in ACM Conference on Programming Language Design and Im-
plementation (PLDI), pp. 24–34, 2001.

[85] HEINTZE, N., Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
1992.

[86] HEINTZE, N., “Set-based analysis of ML programs,” in ACM Conference on LISP and
Functional Programming, pp. 306–317, 1994.

[87] HEINTZE, N., “Control-flow analysis and type systems,” in International Static Analysis
Symposium (SAS), pp. 189–206, 1995.

[88] HEINTZE, N. and MCALLESTER, D. A., “Linear-time subtransitive control flow analy-
sis,” in ACM Conference on Programming Language Design and Implementation (PLDI),
pp. 261–272, 1997.

[89] HEINTZE, N. and MCALLESTER, D. A., “On the cubic bottleneck in subtyping and flow
analysis,” in Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 342–
351, 1997.

[90] HELSEN, S., Region-Based Program Specialization. PhD thesis, Universität Freiburg,
2002.

[91] HELSEN, S. and THIEMANN, P., “Syntactic type soundness for the region calculus,”
Electronic Notes in Theoretical Computer Science, vol. 41, no. 3, 2000.

[92] HENGLEIN, F., “Type inference with polymorphic recursion,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 15, no. 2, pp. 253–289, 1993.

[93] HENGLEIN, F., MAKHOLM, H., and NISS, H., “A direct approach to control-flow sen-
sitive region-based memory management,” in ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP), pp. 175–186, 2001.

[94] HENGLEIN, F., MAKHOLM, H., and NISS, H., “Effect types and region-based memory
management,” in Advanced Topics in Types And Programming Languages, pp. 87–136,
MIT Press, 2005.

[95] HENGLEIN, F. and MOSSIN, C., “Polymorphic binding-time analysis,” in European
Symposium on Programming (ESOP), pp. 287–301, 1994.

BIBLIOGRAPHY 155

[96] HENGLEIN, F. and REHOF, J., “The complexity of subtype entailment for simple types,”
in Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 352–361, 1997.

[97] HENGLEIN, F. and REHOF, J., “Constraint automata and the complexity of recursive sub-
type entailment for simple type,” in International Colloquium on Automata, Languages
and Programming (ICALP), pp. 616–627, 1998.

[98] HICKS, M., MORRISETT, G., GROSSMAN, D., and JIM, T., “Experience with safe man-
ual memory management in Cyclone,” in International Symposium on Memory Manage-
ment (ISMM), pp. 73–84, 2004.

[99] HIGUERA-TOLEDANO, M. T., ISSARNY, V., BANÂTRE, M., CABILLIC, G., LESOT, J.-
P., and PARAIN, F., “Region-based memory management for real-time java,” in IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing (ISORC),
pp. 387–394, 2001.

[100] HILFINGER, P., BONACHEA, D., DATTA, K., GAY, D., GRAHAM, S., LIBLIT, B., PIKE,
G., SU, J., and YELICK, K., “Titanium Language Reference Manual,” tech. rep., Com-
puter Science Division (EECS), University of California, Berkeley, 2005.

[101] HOANG, M. and MITCHELL, J. C., “Lower bounds on type inference with subtypes,” in
ACM Symposium on Principles of Programming Languages (POPL), pp. 176–185, 1995.

[102] IGARASHI, A., PIERCE, B., and WADLER, P., “Featherweight Java: A Minimal Core
Calculus for Java and GJ,” in ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), pp. 132–146, 1999.

[103] IGARASHI, A. and VIROLI, M., “On variance-based subtyping for parametric types,” in
European Conference on Object-Oriented Programming (ECOOP), pp. 441–469, 2002.

[104] IGARASHI, A. and VIROLI, M., “Variant parametric types: A flexible subtyping scheme
for generics,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 28, no. 5, pp. 795–847, 2006.

[105] JAGANNATHAN, S. and WRIGHT, A. K., “Effective flow analysis for avoiding run-time
checks,” in International Static Analysis Symposium (SAS), pp. 207–224, 1995.

[106] JONES, R. E. and LINS, R. D., Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley, 1996.

[107] KENNEDY, A. and SYME, D., “Design and implementation of generics for the .NET
common language runtime.,” in ACM Conference on Programming Language Design
and Implementation (PLDI), pp. 1–12, 2001.

[108] KFOURY, A. J., TIURYN, J., and URZYCZYN, P., “Type reconstruction in the presence
of polymorphic recursion,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 15, no. 2, pp. 290–311, 1993.

[109] KOZEN, D., PALSBERG, J., and SCHWARTZBACH, M. I., “Efficient inference of partial
types,” Journal of Computer and System Sciences, vol. 49, no. 2, pp. 306–324, 1994.

[110] KOZEN, D., PALSBERG, J., and SCHWARTZBACH, M. I., “Efficient recursive subtyp-
ing,” Mathematical Structures in Computer Science, vol. 5, no. 1, pp. 113–125, 1995.

[111] KUNCAK, V. and RINARD, M., “Structural subtyping of non-recursive types is decid-
able,” in Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 96–107,
2003.

BIBLIOGRAPHY 156

[112] LATTNER, C. and ADVE, V., “Automatic pool allocation: Improving performance by
controlling data structure layout in the heap,” in ACM Conference on Programming Lan-
guage Design and Implementation (PLDI), pp. 129–142, 2005.

[113] LEE, O., YANG, H., and YI, K., “Inserting safe memory reuse commands into ml-like
programs,” in International Static Analysis Symposium (SAS), pp. 171–188, 2003.

[114] LINCOLN, P. and MITCHELL, J. C., “Algorithmic aspects of type inference with sub-
types,” in ACM Symposium on Principles of Programming Languages (POPL), pp. 293–
304, 1992.

[115] LISKOV, B., “Keynote address - data abstraction and hierarchy,” in ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pp. 17–34, ACM, 1987.

[116] LISKOW, B. and WING, J. M., “A behavioral notion of subtyping,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 16, no. 6, pp. 1811–1841, 1994.

[117] LIVSHITS, V. B., WHALEY, J., and LAM, M. S., “Reflection analysis for java,” in Asian
Symposium on Programming Languages and Systems (APLAS), pp. 139–160, 2005.

[118] LOGOZZO, F., Modular Static Analysis of Object-Oriented Languages. PhD thesis, Ecole
Polytechnique, France, 2004.

[119] MAKHOLM, H., A language-independent framework for region inference. PhD thesis,
University of Copenhagen, 2003.

[120] MAZURAK, K. and ZDANCEWIC, S., “Type inference for Java 5: Wildcards, F-Bounds,
and Undecidability,” 2006. A note available at
http://www.cis.upenn.edu/∼stevez/note.html.

[121] MILNER, R., “A theory of type polymorphism,” Journal Computer and System Science,
pp. 348–375, 1978.

[122] MITCHELL, J. C., “Type inference with simple subtypes,” Journal of Functional Pro-
gramming, vol. 1, no. 3, pp. 245–285, 1991.

[123] MITCHELL, J. C. and PLOTKIN, G. D., “Abstract types have existential type.,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 10, no. 3,
pp. 470–502, 1988.

[124] MORRISETT, G., Compiling with Types. PhD thesis, Carnegie Mellon University, 1995.

[125] MORRISETT, J. G., FELLEISEN, M., and HARPER, R., “Abstract Models of Memory
Management,” in ACM Conference Conference on Functional Programming Languages
and Computer Architecture (FPCA), pp. 66–77, 1995.

[126] MOSSIN, C., Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU, 1997.

[127] MYERS, A. C., BANK, J. A., and LISKOV, B., “Parameterized types for java,” in ACM
Symposium on Principles of Programming Languages (POPL), pp. 132–145, 1997.

[128] NAFTALIN, M. and WADLER, P., Java Generics and Collections. OReilly, 2006.

[129] NIEHREN, J. and PRIESNITZ, T., “Entailment of non-structural subtype constraints,” in
Asian Computing Science Conference (ASIAN), pp. 251–265, 1999.

BIBLIOGRAPHY 157

[130] NIEHREN, J. and PRIESNITZ, T., “Non-structural subtype entailment in automata the-
ory,” in Theoretical Aspects of Computer Software (TACS), pp. 360–384, 2001.

[131] NIEHREN, J., PRIESNITZ, T., and SU, Z., “Complexity of subtype satisfiability over
posets,” in European Symposium on Programming (ESOP), pp. 357–373, 2005.

[132] NIELSON, F., NIELSON, H., and HANKIN, C., Principles of Program Analysis.
Springer-Verlag, 1999.

[133] NISS, H., Regions are imperative. Unscoped regions and control-sensitive memory man-
agement. PhD thesis, University of Copenhagen, 2002.

[134] NORDSTROM, B., PETERSSON, K., and SMITH, J. M., Programming in Martin-Lof’s
Type Theory. Oxford University Press, 1990.

[135] ODERSKY, M., SULZMANN, M., and WEHR, M., “Type inference with constrained
types,” Theory and Practice of Object Systems, vol. 5(1), pp. 35–55, 1999.

[136] ODERSKY, M. and WADLER, P., “Pizza into Java: Translating theory into practice,” in
ACM Symposium on Principles of Programming Languages (POPL), pp. 146–159, 1997.

[137] ODERSKY, M., ZENGER, C., and ZENGER, M., “Colored local type inference,” in ACM
Symposium on Principles of Programming Languages (POPL), pp. 41–53, 2001.

[138] ODERSKY, M. and ZENGER, M., “Scalable component abstractions,” in ACM Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pp. 41–57, 2005.

[139] PALSBERG, J., “Closure analysis in constraint form,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 17, no. 1, pp. 47–62, 1995.

[140] PALSBERG, J., “Equality-based flow analysis versus recursive types,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 20, no. 6, pp. 1251–1264, 1998.

[141] PALSBERG, J., “Type-based analysis and applications,” in ACM Workshop on Program
Analysis For Software Tools and Engineering (PASTE), pp. 20–27, 2001.

[142] PALSBERG, J. and O’KEEFE, P., “A type system equivalent to flow analysis,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 17, no. 4,
pp. 576–599, 1995.

[143] PALSBERG, J. and PAVLOPOULOU, C., “From polyvariant flow information to intersec-
tion and union types,” in ACM Symposium on Principles of Programming Languages
(POPL), pp. 197–208, 1998.

[144] PALSBERG, J. and SCHWARTZBACH, M., Object-oriented type systems. John Wiley &
Sons, New York, 1994.

[145] PALSBERG, J. and SCHWARTZBACH, M. I., “Type substitution for object-oriented pro-
gramming,” in Conference on Object-Oriented Programming Systems, Languages, and
Applications / European Conference on Object-Oriented Programming, pp. 151–160,
1990.

[146] PALSBERG, J. and SCHWARTZBACH, M. I., “Static typing for object-oriented program-
ming,” Science of Computer Programming, vol. 23, no. 1, pp. 19–53, 1994.

BIBLIOGRAPHY 158

[147] PALSBERG, J. and SMITH, S. F., “Constrained types and their expressiveness,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 18, no. 5,
pp. 519–527, 1996.

[148] PALSBERG, J., WAND, M., and O’KEEFE, P., “Type inference with non-structural sub-
typing,” Formal Aspects of Computing, vol. 9, no. 1, pp. 49–67, 1997.

[149] PALSBERG, J., ZHAO, T., and JIM, T., “Automatic discovery of covariant read-only
fields,” ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 27,
no. 1, pp. 126–162, 2005.

[150] PEYTON JONES, S. and ET AL., “Glasgow Haskell Compiler.”
http://www.haskell.org/ghc.

[151] PIERCE, B., Types and Programming Languages. The MIT Press, 2002.

[152] PIERCE, B. C., “Bounded quantification is undecidable,” Information and Computation,
vol. 112, no. 1, pp. 131–165, 1994.

[153] PIERCE, B. C. and TURNER, D. N., “Simple type-theoretic foundations for object-
oriented programming,” Journal of Functional Programming, vol. 4, no. 2, pp. 207–247,
1994.

[154] PIERCE, B. C. and TURNER, D. N., “Local type inference.,” in ACM Symposium on
Principles of Programming Languages (POPL), pp. 252–265, 1998.

[155] PIZLO, F., FOX, J. M., HOLMES, D., and VITEK, J., “Real-time java scoped memory:
Design patterns and semantics,” in IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC), pp. 101–110, 2004.

[156] PLEVYAK, J. and CHIEN, A. A., “Precise concrete type inference for object-oriented
languages,” in ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pp. 324–340, 1994.

[157] POTTIER, F., “Simplifying subtyping constraints.,” in ACM International Conference on
Functional Programming (ICFP), pp. 122–133, 1996.

[158] POTTIER, F., Type inference in the presence of subtyping: from theory to practice. PhD
thesis, Universite Paris 7, 1998.

[159] PRATT, V. R. and TIURYN, J., “Satisfiability of inequalities in a poset,” Fundamenta
Informaticae, vol. 28, no. 1-2, pp. 165–182, 1996.

[160] QIAN, F. and HENDREN, L., “An adaptive, region-based allocator for java,” in Interna-
tional Symposium on Memory Management (ISMM), pp. 127 – 138, ACM Press, 2002.

[161] REHOF, J. and FÄHNDRICH, M., “Type-based flow analysis: From polymorphic sub-
typing to cfl reachability,” in ACM Symposium on Principles of Programming Languages
(POPL), pp. 54–66, 2001.

[162] REHOF, J., “The complexity of simple subtyping systems,” Ph.D Thesis, DIKU, 1998.

[163] REHOF, J. and MOGENSEN, T., “Tractable constraints in finite semilattices,” Science of
Computer Programming, vol. 35, no. 2, pp. 191–221, 1999.

[164] REPS, T. W., HORWITZ, S., and SAGIV, S., “Precise interprocedural dataflow analysis
via graph reachability,” in ACM Symposium on Principles of Programming Languages
(POPL), pp. 49–61, 1995.

BIBLIOGRAPHY 159

[165] REYNOLDS, J. C., “Automatic computation of data set definitions,” in International Fed-
eration for Information Processing Congress (1), pp. 456–461, 1968.

[166] RICE, H. G., “Classes of recursively enumerable set and their decision problems,” Trans-
actions of the American Mathematical Society, no. 74, pp. 358–366, 1953.

[167] ROSS, D. T., “The AED free storage package,” Communications of the ACM, vol. 10,
no. 8, pp. 481–492, 1967.

[168] SAGIV, S., REPS, T. W., and HORWITZ, S., “Precise interprocedural dataflow analysis
with applications to constant propagation,” in Theory and Practice of Software Develop-
ment, pp. 651–665, 1995.

[169] SALAGNAC, G., NAKHLI, C., RIPPERT, C., and YOVINE, S., “Efficient region-based
memory management for resource-limited real-time embedded systems,” in International
Workshop on Implementation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems (ICOOOLPS), p. 8, IEEE Computer Society, 2006.

[170] SALAGNAC, G., RIPPERT, C., and YOVINE, S., “Semi-automatic region-based memory
management for real-time java embedded systems,” in IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 73–80,
IEEE Computer Society, 2007.

[171] SCHWARTZ, J. T., “Optimization of very high level languages - part i and part ii,” Com-
puter Languages, 1976.

[172] SESTOFT, P., Analysis and efficient implementation of functional programs. PhD thesis,
DIKU, 1991.

[173] SESTOFT, P., “Replacing function parameters by global variables,” in ACM Conference
Conference on Functional Programming Languages and Computer Architecture (FPCA),
pp. 39–53, 1989.

[174] SHIVERS, O., “Control flow analysis in scheme,” in ACM Conference on Programming
Language Design and Implementation (PLDI), pp. 164–174, 1988.

[175] SHIVERS, O., Control-Flow Analysis of Higher-Order Languages or Taming Lambda.
PhD thesis, Carnegie Mellon University, 1991.

[176] SMITH, S. F. and WANG, T., “Polyvariant flow analysis with constrained types,” in Eu-
ropean Symposium on Programming (ESOP), pp. 382–396, 2000.

[177] SOLBERG, K. L., Annotated Type Systems for Program Analysis. PhD thesis, Aarhus
University, Denmark, 1995.

[178] STEFAN, A., CRACIUN, F., and CHIN, W.-N., “A flow-sensitive region inference for
cli,” in Asian Symposium on Programming Languages and Systems (APLAS), 2008.

[179] STEFFEN, M., Polarized Higher-Order Subtyping. PhD thesis, Universitat Erlangen-
Nurnberg, 1997.

[180] SU, Z., FÄHNDRICH, M., and AIKEN, A., “Projection merging: Reducing redundan-
cies in inclusion constraint graphs,” in ACM Symposium on Principles of Programming
Languages (POPL), pp. 81–95, 2000.

[181] SU, Z., “Algorithms for and the complexity of constraint entailment,” PhD thesis, Uni-
versity of California, Berkeley, 2002.

BIBLIOGRAPHY 160

[182] SU, Z. and AIKEN, A., “Entailment with conditional equality constraints,” in European
Symposium on Programming (ESOP), pp. 170–189, 2001.

[183] SU, Z., AIKEN, A., NIEHREN, J., PRIESNITZ, T., and TREINEN, R., “The first-order
theory of subtyping constraints.,” in ACM Symposium on Principles of Programming
Languages (POPL), pp. 203–216, 2002.

[184] TALPIN, J.-P. and JOUVELOT, P., “Polymorphic Type, Region and Effect Inference,”
Journal of Functional Programming, vol. 2, no. 3, pp. 245–271, 1992.

[185] TERAUCHI, T. and AIKEN, A., “Memory Management with Use-Counted Regions,”
technical report ucb//csd-04-1314, University of California, Berkeley, 2004.

[186] THORUP, K. K. and TORGERSEN, M., “Unifying genericity - combining the benefits of
virtual types and parameterized classes.,” in European Conference on Object-Oriented
Programming (ECOOP), pp. 186–204, 1999.

[187] TIURYN, J., “Subtype inequalities,” in Annual IEEE Symposium on Logic in Computer
Science (LICS), pp. 308–315, 1992.

[188] TIURYN, J. and WAND, M., “Type reconstruction with recursive types and atomic sub-
typing,” in Theory and Practice of Software Development, pp. 686–701, 1993.

[189] TOFTE, M. and BIRKEDAL, L., “A region inference algorithm,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 20, no. 4, pp. 734–767, 1998.

[190] TOFTE, M., BIRKEDAL, L., ELSMAN, M., HALLENBERG, N., OLESEN, T., and SES-
TOFT, P., Programming with Regions in the ML Kit (for Version 4). The IT University of
Copenhagen, 2001.

[191] TOFTE, M. and TALPIN, J., “Implementing the Call-By-Value λ-calculus Using a Stack
of Regions,” in ACM Symposium on Principles of Programming Languages (POPL),
pp. 188–201, 1994.

[192] TOFTE, M. and TALPIN, J., “Region-based memory management,” Information and
Computation, vol. 132, no. 2, pp. 109–176, 1997.

[193] TORGERSEN, M., ERNST, E., HANSEN, C. P., VON DER AHE, P., BRACHA, G., and
GAFTER, N., “Adding Wildcards to the Java Programming Language,” Journal of Object
Technology, vol. 3, no. 11, pp. 97–116, 2004.

[194] TORGERSEN, M., ERNST, E., and HANSEN, C. P., “Wild FJ,” in Foundations of Object-
Oriented Languages, pp. 1–12, 2005.

[195] TRIFONOV, V. and SMITH, S. F., “Subtyping constrained types.,” in International Static
Analysis Symposium (SAS), pp. 349–365, 1996.

[196] TSCHANTZ, M. S. and ERNST, M. D., “Javari: Adding reference immutability to Java,”
in ACM Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), pp. 211–230, 2005.

[197] VIROLI, M. and NATALI, A., “Parametric polymorphism in java: an approach to transla-
tion based on reflective features.,” in ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pp. 146–165, 2000.

[198] VON DINCKLAGE, D. and DIWAN, A., “Converting Java classes to use generics.,” in
ACM Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), pp. 1–14, 2004.

BIBLIOGRAPHY 161

[199] WALKER, D. and WATKINS, K., “On regions and linear types (extended abstract),” in
ACM International Conference on Functional Programming (ICFP), pp. 181–192, ACM
Press, 2001.

[200] WANG, T. and SMITH, S. F., “Precise constraint-based type inference for Java,” in Eu-
ropean Conference on Object-Oriented Programming (ECOOP), pp. 99–117, 2001.

[201] WELLS, J. B., “Typability and type-checking in the second-order lambda-calculus are
equivalent and undecidable,” in Annual IEEE Symposium on Logic in Computer Science
(LICS), pp. 176–185, 1994.

[202] WHALEY, J. and RINARD, M., “Compositional pointer and escape analysis for java pro-
grams,” in ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pp. 187–206, 1999.

[203] WILSON, P. R., “Uniprocessor garbage collection techniques,” in International Work-
shop on Memory Management (IWMM), pp. 1–42, 1992.

[204] WRIGHT, A. K. and FELLEISEN, M., “A Syntactic Approach to Type Soundness,” In-
formation Computation, vol. 115, no. 1, pp. 38–94, 1994.

[205] ZHAO, T., NOBLE, J., and VITEK, J., “Scoped Types for Real-Time Java,” in IEEE
Real-Time Systems Symposium (RTSS), pp. 241–251, 2004.

162

APPENDIX A

REGION-BASED MEMORY MANAGEMENT

A.1 Dynamic Semantics of Region-Annotated Core-Java

The dynamic rules are listed in Figure A.1 and Figure A.2. Note that the evaluation rules yield

two kinds of errors: nullerr due to a null pointer access and danglingerr due to a possible

dangling reference creation. In the rules [D−ASSGN2], [D−ASSGN3], and [D−LOOP2] the result ()

denotes the singleton value of type void. Note that the type void is assumed to be isomorphic to

type unit. In rule [D−EB], the locally declared variable is assigned, with the help of the function

init, an initial value according to its type as follows:

init(t) =def case t of

boolean → false

int → 0

cn〈r1..n〉 → null

There are five rules which use runtime checks to verify a possible creation of a dangling refer-

ence: [D−ASSGN2], [D−ASSGN3], [D−NEW], [D−RETR2], and [D−INVOKE]. The corresponding

rules [D−ASSGN2−DANGLERR], [D−ASSGN3−DANGLERR], [D−NEW−DANGLERR],

[D−RETR2−DANGLERR], and [D−INVOKE−DANGLERR] generate a danglingerr error due to

the failure of the runtime checks.

Rule [D−ASSGN2] checks whether a location assigned to a variable is live, namely its region

is in the current store. Rule [D−ASSGN3] checks whether the region r1 of the new value δ

outlives the expected region for the object field f . The function fieldregion(cn〈a∗〉, f) returns the

region where the object field f is expected to be stored. Rule [D−NEW] checks whether the class

invariant holds, ord($)⇒ϕinv (mainly whether the fields regions ri:2..n outlive the region r1 of

the object). The initial value of a field is also checked to be in a region that outlives the expected

region of that field r′i�fieldregion(cn〈r1..n〉, fi). The function fieldlist(cn〈r1..n〉) returns all fields

of cn and their region types according to regions r1..n.

Rule [D−RETR2] checks whether the region a is on the top of the store stack. Then it checks

whether a reference to a does not escape neither through the value result δ, nor through the

program variable environment Π, nor through the object values of the store $. When a new

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 163

[D−VAR]
v ∈ dom(Π)

〈$,Π〉[v]↪→〈$,Π〉[Π(v)]

[D−FD]
Π(v)=(r, o) $=$1[r 7→Rgn]$2 Rgn(o)=cn〈a+〉(V)

〈$,Π〉[v.f]↪→〈$,Π〉[V (f)]

[D−ASSGN1]
〈$,Π〉[e]↪→〈$′,Π′〉[e′]

〈$,Π〉[lhs = e]↪→〈$′,Π′〉[lhs = e′]

[D−ASSGN2]
v∈dom(Π) Π′=Π+{v7→δ}
δ=(r1, o1) ∧ r1∈dom($)
〈$,Π〉[v = δ]↪→〈$,Π′〉[()]

[D−ASSGN2−DANGLERR]

v ∈ dom(Π)
δ=(r1, o1) ∧ r1 6∈dom($)
〈$,Π〉[v=δ]↪→danglingerr

[D−ASSGN3]
Π(v)=(a, o) $=$1[a7→Rgn]$2 Rgn(o)=cn〈a+〉(V)

Rgn′=Rgn+{o 7→cn〈a+〉(V+{f 7→δ})} $′=$1[a 7→Rgn′]$2

δ=(r1, o1) ∧ ord($)⇒(r1�fieldregion(cn〈a+〉, f))
〈$,Π〉[v.f = δ]↪→〈$′,Π〉[()]

[D−ASSGN3−DANGLERR]
Π(v)=(a, o) $=$1[a7→Rgn]$2 Rgn(o)=cn〈a+〉(V)
δ=(r1, o1) ∧ ¬ (ord($)⇒(r1�fieldregion(cn〈a+〉, f)))

〈$,Π〉[v.f = δ]↪→danglingerr

[D−NEW]
class cn〈r1..n〉 extends c〈...〉 where ϕinv {...} ∈ P

ord($)⇒ϕinv

$=$1[r1 7→Rgn]$2 V={f1 7→Π(v1), ..., fp 7→Π(vp)} fieldlist(cn〈r1..n〉)=(ti fi)i:1..p
if Π(vi)=(r′i, o

′
i) then ord($)⇒(r′i�fieldregion(cn〈r1..n〉, fi)) i=1..p

o/∈dom(Rgn) Rgn′=Rgn+{o 7→cn〈r1..n〉(V)} $′=$1[r1 7→Rgn′]$2

〈$,Π〉[new cn〈r1..n〉(v1..p)]↪→〈$′,Π〉[(r1, o)]

[D−NEW−DANGLERR]
class cn〈r1..n〉 extends c〈...〉 where ϕinv {...} ∈ P

V={f1 7→Π(v1), ..., fp 7→Π(vp)} fieldlist(cn〈r1..n〉)=(ti fi)i:1..p
¬(ord($)⇒ϕinv) ∨ (∃i∈{1..p} ·Π(vi)=(r′i, o

′
i) ∧

¬(ord($)⇒(r′i�fieldregion(cn〈r1..n〉, fi)))
〈$,Π〉[new cn〈r1..n〉(v1..p)]↪→danglingerr

[D−INVOKE]
{a+, a′+}⊂dom($)

Π(v′0) = (a1, o) $(a1)(o) = cn〈a+〉(V)
(t0 mn〈a+r′+〉((t v)1..p)where ϕ {e}) ∈ cn〈a+〉

ni=fresh() i = 0..p ρ=[r′+ 7→a′+]
Π′=Π+{ni 7→Π(v′i)i:0..p}

e′=ret(n0, ..ret(np, [this 7→n0][vi 7→ni]
p
i:1ρe))

〈$,Π〉[v′0.mn〈a+a′+〉(v′1..p)]↪→〈$,Π′〉[e′]

[D−INVOKE−DANGLERR]
¬(r+∈dom($))

〈$,Π〉[v.mn〈r+〉(v∗)]↪→danglingerr

Figure A.1: Dynamic Semantics for Region-Annotated Core-Java: Part I

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 164

[D−EB]
n=fresh() Π′=Π+{(n7→init(t))} e′=ret(n, e)

〈$,Π〉[{(t v) e}]↪→〈$,Π′〉[e′]

[D−RET1]
〈$,Π〉[e]↪→〈$′,Π′〉[e′]

〈$,Π〉[ret(v, e)]↪→〈$′,Π′〉[ret(v, e′)]

[D−RET2]

〈$,Π〉[ret(v, δ)]↪→〈$,Π−{v}〉[δ]

[D−LETR]
a=fresh()

〈$,Π〉[letreg r in e]↪→〈[a 7→∅]$,Π〉[retr(a, [r7→a]e)]

[D−RETR1]
〈$,Π〉[e]↪→〈$′,Π′〉[e′]

〈$,Π〉[retr(a, e)]↪→〈$′,Π′〉[retr(a, e′)]

[D−RETR2]
(δ=(r, o))⇒(r∈dom($))

∀v∈Π · (Π(v)=(r, o))⇒(r∈dom($))
∀(r1, o)∈location dom($) · ($(r1)(o)=cn〈r1..n〉(V))⇒(r1..n∈dom($)∧

∀f ∈ dom(V) . V(f)=(rf , of) ∧ rf∈dom($))
〈[a 7→Rgn]$,Π〉[retr(a, δ)]↪→〈$,Π〉[δ]

[D−RETR2−DANGLERR]
¬(a=a1)∨

¬((δ=(r, o))⇒(r∈dom($))) ∨ ¬((∀v∈Π · (Π(v)=(r, o))⇒(r∈dom($))))
∨¬(∀(r1, o)∈location dom($) · ($(r1)(o)=cn〈r1..n〉(V))⇒(r1..n∈dom($)∧

∀f ∈ dom(V) . V(f)=(rf , of) ∧ rf∈dom($)))
〈[a7→Rgn]$,Π〉[retr(a1, δ)]↪→danglingerr

[D−IF1]
Π(v)=true

〈$,Π〉[if v then e1 else e2]↪→〈$,Π〉[e1]

[D−IF2]
Π(v)=false

〈$,Π〉[if v then e1 else e2]↪→〈$,Π〉[e2]

[D−LOOP1]
Π(v)=true

〈$,Π〉[while v e]↪→〈$,Π〉[e ; while v e]

[D−LOOP2]
Π(v)=false

〈$,Π〉[while v e]↪→〈$,Π〉[()]

[D−SEQ1]
〈$,Π〉[e1]↪→〈$′,Π′〉[e′1]

〈$,Π〉[e1 ; e2]↪→〈$′,Π′〉[e′1 ; e2]

[D−SEQ2]

〈$,Π〉[δ1 ; e2]↪→〈$,Π〉[e2]

[D−NULLERR1]
Π(v)=null

〈$,Π〉[v.f]↪→nullerr

[D−NULLERR2]
Π(v)=null

〈$,Π〉[v.f = δ]↪→nullerr

[D−NULLERR3]
Π(v)=null

〈$,Π〉[v.mn〈a∗〉(u∗)]↪→nullerr

Figure A.2: Dynamic Semantics for Region-Annotated Core-Java: Part II

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 165

region is allocated, in rule [D−LETR], a fresh region name is used in order to avoid region name

duplication in the store.

Rule [D−INVOKE] checks whether the method’s region arguments are in the current store

and then prepares the variable environment for the method’s body execution.

A.2 Proof Details
A.2.1 Auxiliary Definitions and Lemmas

Lemma A.2.1.1. Suppose P; Γ; R;ϕ; Σ ` e : t. If ρ = [(ri 7→ ai)1..p], and for all i=1..p, either

ai /∈ R or ϕ⇒(ri=ai), then P; ρΓ; ρR; ρϕ; ρΣ ` ρe : ρt.

Proof: By structural induction on e.

Lemma A.2.1.2. Suppose ϕ1 ⇒ ϕ2.

If a /∈ reg(ϕ1 ∧ ϕ2), then

1. (r�a ∧ ϕ1)⇒ (r�a ∧ ϕ2).

2. (a�r ∧ ϕ1)⇒ (a�r ∧ ϕ2).

Proof: By induction on the form of a region constraint.

Definition A.2.1.1. Given a region constraint ϕ=
∧
i(ri�r′i) ∧

∧
j(rj=r

′
j) and a set of regions R,

we define the following notations:

r�r′ ∈ ϕ iff ∃i such that r=ri ∧ r′=r′i

r=r′ ∈ ϕ iff ∃j such that r=rj ∧ r′=r′j

TransClosure(ϕ) =def
∧
i′(ri′�r′i′) ∧

∧
j′(rj′=r

′
j′) such that

i′≥i ∧ j′≥j

∀r1,r2,r3 · r1�r2∈TransClosure(ϕ)∧r3�r1∈TransClosure(ϕ)⇒r3�r2∈TransClosure(ϕ)

∀r1,r2,r3 · r1=r2∈TransClosure(ϕ)∧r3=r1∈TransClosure(ϕ)⇒r3=r2∈TransClosure(ϕ)

ϕ−R or ϕ\R =def ϕ
′ such that

∀r�r′ ∈ TransClosure(ϕ) ∧ r 6∈R ∧ r′ 6∈R⇒ r�r′ ∈ ϕ′

∀r=r′ ∈ TransClosure(ϕ) ∧ r 6∈R ∧ r′ 6∈R⇒ r=r′ ∈ ϕ′

Lemma A.2.1.3. Suppose ϕ1 ⇒ ϕ2 and a region r.

1. ϕ1−{r} ⇒ ϕ2−{r}.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 166

2. If r 6∈ reg(ϕ2), then ϕ1−{r} ⇒ ϕ2.

Proof: By case analysis on ϕ1 and ϕ2.

Lemma A.2.1.4. Suppose P; R;ϕ `type t.

1. If r 6∈ R, then P; R∪{r};ϕ `type t.

2. If ϕ′⇒ϕ, then P; R;ϕ′ `type t.

Proof: By structural induction on the `type derivation.

Lemma A.2.1.5. Suppose P; R;ϕ ` t1<:t2.

1. If r 6∈ R, then P; R∪{r};ϕ ` t1<:t2.

2. If ϕ′⇒ϕ, then P; R;ϕ′ ` t1<:t2.

3. If r ∈ R, r 6∈ reg(t1), and r 6∈ reg(t2), then P; R−{r};ϕ−{r} ` t1<:t2.

Proof: By structural induction on the subtyping derivation using the Lemma A.2.1.4.

Lemma A.2.1.6. Suppose P; Γ; R;ϕ; Σ ` e : t.

1. If v 6∈ dom(Γ), then P; Γ+(v : t1); R;ϕ; Σ ` e : t.

2. If ϕ′⇒ϕ, then P; Γ; R;ϕ′; Σ ` e : t.

3. If r 6∈ R, then P; Γ; R∪{r};ϕ; Σ+r ` e : t.

4. If (r, o) 6∈ Σ and r ∈ R, then P; Γ; R;ϕ; Σ+((r, o) : t1) ` e : t.

Proof: By structural induction on e.

Lemma A.2.1.7. Suppose P; Γ; R;ϕ; Σ ` e : t.

1. If v ∈ dom(Γ) and v 6∈ vars(e), then P; Γ−{v}; R;ϕ; Σ ` e : t.

where vars(e) is defined by Definition 3.7.1.3.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 167

Proof: By structural induction on e.

Lemma A.2.1.8. Suppose P; Γ; R∪{a};ϕ; Σ ` e : t.

1. If a 6∈ reg(Γ), and a 6∈ regs(e), then P; Γ; R;ϕ−a; Σ−a ` e : t.

where regs(e) is defined by Definition 3.7.1.5.

Proof: By structural induction on e.

Lemma A.2.1.9. Suppose an expression e.

1. If retvars(e)=∅ and retregs(e)=∅ then valid(e) holds.

2. If retvars(e)=∅ then lvar(e)=∅.

3. If retregs(e)=∅ then lreg(e)=∅.

Proof: By structural induction on e.

Lemma A.2.1.10. (Canonical Forms)

Suppose P; Γ; R;ϕ; Σ ` δ : t and Γ,R, ϕ,Σ � 〈$,Π〉. Then:

1. if t = void then δ = ().

2. if t = boolean then either δ = true or δ = false.

3. if t = int then δ = i for some integer i.

4. if t = ⊥ then δ = null.

5. if t = cn〈r1..n〉 then

• either the value is a location, δ = (r1, o). The content of that location is an object

value $(r1)(o)=cn〈r1..n〉(V) that is well-typed such that

P; Γ; R;ϕ; Σ`cn〈r1..n〉(V):cn〈r1..n〉 (it contains the fields and the methods of the class

cn according to the program P).

• or the value is δ = null

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 168

Proof: By the definition of values and inspection of type checking rules.

Lemma A.2.1.11. Given any source language Core-Java program, P .

Suppose ` PV P′.

1. If τ 6= Object and `τVt, ϕ, then reg(t) ⊆ reg(ϕ).

2. Given any t ∈ P ′ and t′ ∈ P ′.

If `t<:t′Vϕ, then (reg(t)∪reg(t′)) ⊆ reg(ϕ).

3. Given any source language Core-Java expression, e.

If Γ ` eVe′:t, ϕ, then reg(t) ⊆ (regs(e′)∪reg(Γ)∪reg(ϕ)).

Proof:

1. Since ϕ is the region class invariant of a class type. By induction on the inference rules

[RI−CLASS−1] and [RI−CLASS−2] we can prove that the region class invariant always con-

tain all the regions of a region type. An exception is the region type Object〈r〉 since its

invariant is just true.

2. Using the case (1) we can prove the conclusion for all t and t′ such that t 6= Object〈r〉

and t′ 6= Object〈r〉. However the first region of a region type is always used by the region

constraint ϕ0 of a region subtyping relation `t<:t′, ϕ0 (see rules of Table 3.6). Since the

exceptional case Object〈r〉 contains only one region, the conclusion is proved.

3. By structural induction on e. The proof is straightforward by inspection of the type infer-

ence rules.

A.2.2 Proof of Theorem 3.7.2.1 (Subject Reduction)

By structural induction on e.

Case: v

We let Σ′ = Σ, Γ′ = Γ, R′ = R, ϕ′ = ϕ. The consistency relation is straightforward as

both the static environment and the runtime environment remain unchanged. The type

judgment follows from the consistency relation of the hypothesis, as Π(v) and v have the

same type Γ(v). The validity is straightforward proved.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 169

Case: v.f

We let Σ′ = Σ, Γ′ = Γ, R′ = R, ϕ′ = ϕ. The consistency relation is straightforward as

both the static environment and the runtime environment remain unchanged. From the

operational semantics Π(v) = (r, o). By the consistency relation of the hypothesis (r, o),

v, and $(r)(o) have the same type Σ(r)(o)=cn〈a+〉. Note that the type of a location is the

type of its content (by the rule

[RC−LOCATION]). Using the hypothesis of type rule [RC−OBJ] for $(r)(o), we prove that

the type of V(f) is a subtype of the type of v.f. By subsumption the type judgment is

proved. The validity is straightforward proved.

Case: v = δ

We let Σ′ = Σ, Γ′ = Γ, R′ = R, ϕ′ = ϕ. The type judgment is trivial as the type remains

void as before the evaluation. We only have to prove the consistency relation for the

updated variable environment Π′. By the type rule of the hypothesis the type of δ=Π′(v)

is a subtype of the type of v. Using subsumption, we prove that v and Π′(v) have the same

type. The validity is straightforward proved.

Case: v.f = δ

We let Σ′ = Σ, Γ′ = Γ, R′ = R, ϕ′ = ϕ.

The update on $ preserves the consistency relation except the object value $(r)(o). By

the type rule of the hypothesis the type of value δ = (r1, o1) is a subtype of the type of

the field v.f. Thus the type of V (f) after updating is a subtype of the type of v.f. By

the consistency relation of the hypothesis for the object value $(r)(o) before updating

combined with the previous subtyping relation for the updated field V(f) we can prove that

object value after updating is still well typed. The type judgment is trivial as the type

remains void as before the evaluation. The validity is straightforward proved.

Case: δ ; e2

We let Σ′ = Σ, Γ′ = Γ, R′ = R, ϕ′ = ϕ. By the validity from the hypothesis, valid(δ ; e2)

we get that retvars(e2)=∅ and retregs(e2)=∅. Applying case (1), (2) and (3) of

Lemma A.2.1.9 we prove that valid(e2), lvar(e2)=∅, and lreg(e2)=∅. Note that lloc(δ) = ∅.

Thus the validity relation of the conclusion and the conclusion’s relations between Γ and

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 170

Γ′, Σ and Σ′, R and R′, and ϕ and ϕ′ are proved. The consistency relation is straightfor-

ward as both the static environment and the runtime environment remain unchanged. The

type judgment follows from the type judgment of the hypothesis.

Case: if v then e1 else e2

We let Σ′ = Σ, Γ′ = Γ, R′ = R, ϕ′ = ϕ. By the validity from the hypothesis,

valid(if v then e1 else e2) we get that retvars(e1)=∅, retregs(e1)=∅, retvars(e2)=∅, and

retregs(e2)=∅. Applying case (1), (2) and (3) of Lemma A.2.1.9 we prove that valid(e1),

lvar(e1)=∅, lreg(e1)=∅, valid(e2), lvar(e2)=∅, and lreg(e2)=∅.

Note that lloc(if v then e1 else e2) = ∅. Thus the validity relation of the conclusion and the

conclusion’s relations between Γ and Γ′, Σ and Σ′, R and R′, and ϕ and ϕ′ are proved.

The consistency relation is straightforward as both the static environment and the runtime

environment remain unchanged. The type judgment follows from the type judgment of

the hypothesis and the subsumption.

Case: while v e

We let Σ′ = Σ, Γ′ = Γ, R′ = R, ϕ′ = ϕ. By the validity from the hypothesis,

valid(while v e) we get that retvars(e)=∅, retregs(e)=∅. Applying case (1), (2) and (3) of

Lemma A.2.1.9 we prove that valid(e ; while v e), lvar(e ; while v e)=∅, and

lreg(e ; while v e)=∅. Note that lloc(while v e) = ∅. Thus the validity relation of the con-

clusion and the conclusion’s relations between Γ and Γ′, Σ and Σ′, R and R′, and ϕ and

ϕ′ are proved. The consistency relation is straightforward as both the static environment

and the runtime environment remain unchanged. The type judgment follows from the

type judgment of the hypothesis. The second case of the loop evaluation rule (when the

condition is false) is straightforward proved.

Case: new cn〈r1..n〉(v1..p)

We let Σ′ = Σ + {(r1, o) : cn〈r1..n〉}, Γ′ = Γ, ϕ′ = ϕ, R′ = R.

Note that lloc(new cn〈r1..n〉(v1..p))=(r1, o), while the functions lvar and lreg return ∅ for

both new cn〈r1..n〉(v1..p) and (r1, o). The conclusion’s type judgment is straightforward

proved as the type of new location is given by the Σ′.

The store is extended with one more location (r1, o) and

location dom($′)=location dom($)∪{(r1, o)}=location dom(Σ)∪{(r1, o)}=location dom(Σ′).

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 171

In order to prove the conclusion’s consistency relation we use the case (4) of

Lemma A.2.1.6 to extend the typing relations of the hypothesis and the hypothesis’s con-

sistency relation. The object value from the new location is proved to be well typed by

reconstructing the hypotheses of the type rule [ObjVal] as follows: P; R;ϕ `type cn〈r1..n〉

is proved by the type rule [NEW] from hypothesis; by the evaluation rule V (fi) = Π(vi),

while from the hypothesis consistency relation P; Γ; R;ϕ; Σ ` Π(vi) : Γ(vi); using the hy-

pothesis type judgment [NEW] we get t′i = Γ(vi) and P; R;ϕ ` t′i <: ti. The validity is

straightforward proved,

Case: {(t v) e}

We let Σ′ = Σ, Γ′ = Γ+(v : t), ϕ′ = ϕ, and R′ = R. By the validity from the hypothe-

sis, valid({(t v) e}) we get that retvars(e)=∅ and retregs(e)=∅. Applying the cases (1),

(2) and (3) of Lemma A.2.1.9 we prove that valid(ret(v, e)), lvar(ret(v, e))={v}, and

lreg(ret(v, e))=∅. Note that lloc({(t v) e}) = ∅. By the hypothesis’s type judgment [EB],

the conclusion’s type judgment [RET] is proved. We prove that P; Γ; R;ϕ; Σ ` Π(v) : Γ(v)

as follows: Π(v) = init(t) and the type of init(t) is a subtype of t, while Γ(v) = t. By the

hypothesis’s consistency relation we get that reg(Γ)⊆R. By the hypothesis’s type judg-

ment [EB], we get that P; R;ϕ `type t′, that ensures reg(t)⊆R. Thus reg(Γ+(v : t))⊆R. Then,

by the consistency relation of the hypothesis and by the case (1) of Lemma A.2.1.6 the

rest of the conclusion’s consistency relation is proved.

Case: ret(v, δ)

We let Σ′ = Σ, ϕ′ = ϕ, R′ = R, and Γ′ = Γ−{v}. Note that lvar(ret(v, δ))={v},

lreg(ret(v, δ))=∅, lloc(ret(v, δ)) = ∅, lvar(δ)=∅, and lreg(δ)=∅. The valid relation valid(δ)

holds. By the hypothesis’s type judgment and consistency and the case (1) of

Lemma A.2.1.7 (the variable v is not used neither in δ nor by object values) the type

judgment and the consistency of the conclusion are straightforward proved.

Case: letreg r in e

We use Lemma A.2.1.1 for region substitutions. For simplicity, we consider that the

region substitution is already done both for static and dynamic environment.

We let R′ = R ∪ {a}, Σ′ = Σ+a, Γ′ = Γ, and ϕ′ = (ϕ ∧
∧
r∈R(r � a)). By the hypothesis’s

valid relation valid(letreg r in e) we get that retvars(e)=∅, retregs(e)=∅. Applying the cases

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 172

(1), (2) and (3) of Lemma A.2.1.9 we prove that valid(retr(a, e)), lvar(retr(a, e))=∅,

and lreg(retr(a, e))={a}. Note that lloc(letreg r in e) = ∅. Thus the validity relation of

the conclusion and the conclusion’s relations between Γ and Γ′, Σ and Σ′, R and R′, and

ϕ and ϕ′ are proved. We prove the conclusion’s type judgment P;Γ′;R′;ϕ′;Σ′`retr(a, e):t

as follows: Rt = R; by the hypothesis’s consistency relation we get that reg(Γ)⊆R; by

the hypothesis’s type judgment [LETR] we prove that reg(t) ⊆ R and P; Γ; R′;ϕ′ ` e : t; the

entailment ϕ′⇒
∧
r∈R(r�a) is straightforward. By the hypothesis’s consistency relation,

ord($)⇒ϕ and Lemma A.2.1.2 we prove that ord([a 7→∅]$)⇒ϕ′. The remaining part of

the conclusion’s consistency follows directly from the hypothesis’s consistency using the

cases (3) and (4) of Lemma A.2.1.6.

Case: retr(a, δ)

We let R′ = R−{a}, Γ′ = Γ, ϕ′ = ϕ−a, Σ′ = Σ−{a}. The validity relation of the conclu-

sion and the conclusion’s relations between Γ and Γ′, Σ and Σ′, R and R′, and ϕ and ϕ′

are straightforward proved. By the type judgment of the hypothesis and the case (1) of

Lemma A.2.1.8 the type judgment of the conclusion is proved.

The consistency is proved as follows:

By the hypothesis’s consistency and reg(Γ)⊆R−{a} (from the hypothesis type judgment

[RETR]) the type of each v ∈ Π′ does not contain the region a since that type is given by

Γ(v). But Π(v) is either a location or a constant. Note that the type of a location always

contains the region’s location. Hence vars(Π′(v))⊆R−{a}. Thus we can apply the case (1)

of Lemma A.2.1.8 to prove that Π is well typed when the region a is deallocated. Note

that this means that there are not any references from the program variable environment

to the deallocated region.

By the consistency and type judgment of the hypothesis, each object value of the store $

is well typed. By the type rule [ObjVal], an object value can have references only to regions

older that the region of the current location. We can use the case (1) of Lemma A.2.1.8 to

type the store $. By the consistency of the hypothesis and Lemma A.2.1.3 we can prove

that ord($)⇒ϕ′. As we mentioned before, the hypothesis’s type judgment [RETR] ensures

that reg(Γ)⊆R−{a}.

Case: v′0.mn〈a+〉(v′1..p)

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 173

According to the evaluation rule ([D−INVOKE]), the actual type of the object stored at the

location given by Π(v′0) is cn〈a1..n〉, which is a subtype of the expected type of v′0, say

cn′〈a1..m〉 at compile time.

We let R′ = R, Γ′ = Γ+{(ni : Γ(v′i))i:0..p}, ϕ′ = ϕ∧inv.cn〈a1..n〉, and Σ′ = Σ.

Since P is a valid program, the method’s body e is valid. Hence we get that

valid(ret(n0..p, e)), lreg(ret(n0..p, e)) = ∅ and lvar(ret(n0..p, e)) = {n0..p}.

Note that lloc(ret(n0..p, e)) = ∅. The conclusion’s consistency relation is proved as follows:

Since the hypothesis reg(Γ)⊆R, we get that also reg(Γ+{(ni : Γ(v′i))i:0..p}) holds.

By the consistency of the hypothesis and the cases (1) and (2) of Lemma A.2.1.6, we can

prove that Π′ and $ are well typed (type environment is extended according to the pro-

gram environment extension). In order to prove that ord($)⇒ ϕ′, we have the following

two sub cases to prove: (a) ord($)⇒ ϕ that is true from the hypothesis’s consistency and

(b) ord($)⇒ inv.cn〈a1..n〉 that is true because each object value of the store is well typed:

class invariant is checked at object creation, in the type rule [RC−ObjVal] by the judgment

P; R;ϕ `type cn〈r1..n〉 and from the hypothesis’s consistency R=dom($) and ord($)⇒ ϕ.

In order to prove the type judgment of the conclusion,

P; Γ′; R′;ϕ′; Σ′ ` ret(n0..p, e) : t we have to prove the assumptions of the rule

[RC−METH]. By its definition Γ′ is well formed. By the hypothesis’s type rule

[RC−INVOKE] we get that all regions that annotate the method are inR; ϕ⇒inv.cn′ (the in-

variant of the superclass), and the fact the types of the method arguments are well formed

P; R;ϕ `type tj , j = 0..p. By type judgment of the hypothesis ϕ implies the precondition

of superclass cn′〈a1..m〉 method, ϕ⇒pre.cn′.mn. But adding the subclass invariant to both

sides of the entailment we have the following entailment: ϕ′⇒pre.cn′.mn∧inv.cn〈a1..n〉 By

the soundness of the method overriding:

pre.cn′.mn∧inv.cn〈a1..n〉⇒pre.cn.mn Thus, the region constraint required by rule

[RC−METH] is proved. Using Γ′, R′ and ϕ′ we can typecheck the method body. Type of

the method body is a subtype of the expected type, thus we use the subsumption. We also

used Lemma A.2.1.1 for region substitutions.

Hence both the type judgment and the consistency relation hold.

Case: e1 ; e2

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 174

By induction hypothesis for 〈$,Π〉[e1]↪→〈$′,Π′〉[e′1] there exist Σ̂, Γ̂, R̂, and ϕ̂ such that

valid(e′1), Γ̂, R̂, ϕ̂, Σ̂ � 〈$′,Π′〉, reg(Γ̂) ⊆ R̂,

(Σ̂−(lreg(e′1)−lreg(e1)))−(lloc(e1)−lloc(e′1)) = Σ−(lreg(e1)−lreg(e′1)),

Γ̂−(lvar(e′1)−lvar(e1)) = Γ−(lvar(e1)−lvar(e′1)),

R̂−(lreg(e′1)−lreg(e1)) = R−(lreg(e1)−lreg(e′1)), and

ϕ̂−(lreg(e′1)−lreg(e1))⇒ ϕ−(lreg(e1)−lreg(e′1)).

We let R′ = R̂, Γ′ = Γ̂, ϕ′ = ϕ̂, and Σ′ = Σ̂. From the hypothesis’s valid relation valid(e1; e2)

we get that retregs(e2) = ∅,

retvars(e2) = ∅, retregs(e1) ∩ regs(e2) = ∅, retvars(e1) ∩ vars(e2) = ∅, and valid(e1).

Then, by the Lemma A.2.1.9 we get that valid(e2), lvar(e2) = ∅, and lreg(e2) = ∅. Hence,

the conclusion’s relations between Γ and Γ′, Σ and Σ′, R and R′, and ϕ and ϕ′ are straight-

forward proved. In order to prove that P; Γ′; R′;ϕ′; Σ′ ` e′1; e2 : t2, we have to prove that

P; Γ′; R′;ϕ′; Σ′ ` e2 : t2. Note that the hypothesis contains the type judgment P; Γ; R;ϕ; Σ

` e2 : t2 We also have to prove that valid(e′1; e2) holds. We use a case based analysis on

the expression e1. We discuss only the main sub cases that change either $ or Π (the other

cases are straightforward):

– e1 = retr(a, δ)

R̂ = R−{a}, Γ̂ = Γ, ϕ̂ = ϕ−a, Σ̂ = Σ−{a}. From hypothesis reg(Γ) ⊆ R−{a} and

a 6∈ regs(e2). Applying Lemma A.2.1.8 on P; Γ; R;ϕ; Σ ` e2 : t2 we prove the type

judgment. The valid relation is straightforward.

– e1 = letreg r in e

R̂ = R ∪ {a}, Σ̂ = Σ+a, Γ̂ = Γ, and ϕ̂ = (ϕ ∧
∧
r∈R(r � a)). Note that a is a fresh

region. Applying the cases (2) and (3) of Lemma A.2.1.6 on P; Γ; R;ϕ; Σ ` e2 : t2

we prove the type judgment. The valid relation is straightforward since a is a fresh

region.

– e1 = ret(v, δ)

Σ̂ = Σ, ϕ̂ = ϕ, R̂ = R, and Γ̂ = Γ−{v}.

By the hypothesis’s valid relation we get that retvars(ret(v, δ))∩vars(e2)=∅, hence

v 6∈vars(e2). Applying the case (1) of Lemma A.2.1.7 on P; Γ; R;ϕ; Σ ` e2 : t2 we

prove the type judgment. The valid relation is straightforward.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 175

– e1 = {(t v) e}

Σ̂ = Σ, Γ̂ = Γ+(v : t), ϕ̂ = ϕ, and R̂ = R. Note that v is a fresh variable. Applying

the case (1) of Lemma A.2.1.6 on P; Γ; R;ϕ; Σ ` e2 : t2 we prove the type judgment.

The valid relation is straightforward since v is a fresh variable.

– e1 = new cn〈r1..n〉(v1..p)

Σ̂ = Σ + {(r1, o) : cn〈r1..n〉}, Γ̂ = Γ, ϕ̂ = ϕ, R̂ = R.

Applying the case (4) of Lemma A.2.1.6 on P; Γ; R;ϕ; Σ ` e2 : t2 we prove the type

judgment. The valid relation is straightforward.

– e1 = v′0.mn〈a+〉(v′1..p)

R̂ = R, Γ̂ = Γ+{(ni : Γ(v′i))i:0..p}, ϕ̂ = ϕ∧inv.cn〈a1..n〉, and Σ̂ = Σ. Note that all ni

variables are fresh variables. Applying the cases (1) and (2) of Lemma A.2.1.6 on

P; Γ; R;ϕ; Σ ` e2 : t2 we prove the type judgment. The valid relation is straightfor-

ward since ni are fresh variables and the method body is a valid block expression.

Case: lhs = e

By induction hypothesis for 〈$,Π〉[e]↪→〈$′,Π′〉[e′] there exist Σ̂, Γ̂, R̂, and ϕ̂ such that

valid(e′), Γ̂, R̂, ϕ̂, Σ̂ � 〈$′,Π′〉, reg(Γ̂) ⊆ R̂,

(Σ̂−(lreg(e′)−lreg(e)))−(lloc(e)−lloc(e′)) = Σ−(lreg(e)−lreg(e′)),

Γ̂−(lvar(e′)−lvar(e)) = Γ−(lvar(e)−lvar(e′)),

R̂−(lreg(e′)−lreg(e)) = R−(lreg(e)−lreg(e′)), and

ϕ̂−(lreg(e′)−lreg(e))⇒ ϕ−(lreg(e)−lreg(e′)).

We let R′ = R̂, Γ′ = Γ̂, ϕ′ = ϕ̂, and Σ′ = Σ̂. From the hypothesis’s valid relation

valid(lhs = e) we get that retvars(e) ∩ vars(lhs) = ∅. Hence, the conclusion’s relations

between Γ and Γ′, Σ and Σ′, R and R′, and ϕ and ϕ′ are straightforward proved. In order to

prove that P; Γ′; R′;ϕ′; Σ′ ` lhs=e′ : void, we have to prove that P; Γ′; R′;ϕ′; Σ′`lhs : t and

P; R′;ϕ′`t′<:t, while P; Γ′; R′;ϕ′; Σ′ ` e′ : t′, P; Γ; R;ϕ; Σ ` lhs : t, and P; R;ϕ ` t′ <: t are

given by the induction hypothesis. We also have to prove that valid(lhs = e′) holds. We

use a case based analysis on the expression e. We discuss only the main sub cases that

change either $ or Π (the other cases are straightforward):

– e = retr(a, δ)

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 176

R̂ = R−{a}, Γ̂ = Γ, ϕ̂ = ϕ−a, Σ̂ = Σ−{a}. From hypothesis reg(Γ) ⊆ R−{a}. Since

lhs = v | v.f we get that regs(lhs) = ∅. Applying Lemma A.2.1.8 on

P; Γ; R;ϕ; Σ ` lhs : t we prove the type judgment. Since a 6∈ reg(t) and a 6∈ reg(t′),

applying the case (3) of Lemma A.2.1.5 on P; R;ϕ ` t′ <: t we prove the subtype

judgment. The valid relation is straightforward.

– e = letreg r in e1

R̂ = R ∪ {a}, Σ̂ = Σ+a, Γ̂ = Γ, and ϕ̂ = (ϕ ∧
∧
r∈R(r � a)). Note that a is a fresh

region. Applying the cases (2) and (3) of Lemma A.2.1.6 on P; Γ; R;ϕ; Σ ` lhs : t

we prove the type judgment. Applying the cases (1) and (2) of Lemma A.2.1.5 on

P; R;ϕ ` t′ <: t we prove the subtype judgment. From the hypothesis valid relation

valid(letreg r in e1) we get that retvars(e1) = ∅. By the induction hypothesis we get

that valid(retr(a, e1)). Hence valid(lhs = retr(a, e1)) holds.

– e = ret(v, δ)

Σ̂ = Σ, ϕ̂ = ϕ, R̂ = R, and Γ̂ = Γ−{v}. By the hypothesis’s valid relation

retvars(ret(v, δ)) ∩ vars(lhs) = ∅, hence v 6∈ vars(lhs). Applying the case (1) of

Lemma A.2.1.7 on P; Γ; R;ϕ; Σ ` lhs : t we prove the type judgment. The subtype

judgment is the same as that of the hypothesis. The valid relation is straightforward.

– e = {(t v) e1}

Σ̂ = Σ, Γ̂ = Γ+(v : t), ϕ̂ = ϕ, and R̂ = R. Note that v is a fresh variable. By the hy-

pothesis valid relation we get valid((t v) e1}) and then retvars(e1) = ∅. Since v is a

fresh variable, valid(lhs = ret(v, e1)) holds. Applying the case (1) of Lemma A.2.1.6

on P; Γ; R;ϕ; Σ ` lhs : t we prove the type judgment. The subtype judgment is the

same as that of the hypothesis.

– e = new cn〈r1..n〉(v1..p)

Applying the case (4) of Lemma A.2.1.6 on P; Γ; R;ϕ; Σ ` lhs : t we prove the type

judgment. The valid relation and the subtype judgment are straightforward.

Σ̂ = Σ + {(r1, o) : cn〈r1..n〉}, Γ̂ = Γ, ϕ̂ = ϕ, R̂ = R.

– e = v′0.mn〈a+〉(v′1..p)

R̂ = R, Γ̂ = Γ+{(ni : Γ(v′i))i:0..p}, ϕ̂ = ϕ∧inv.cn〈a1..n〉, and Σ̂ = Σ. Note that all ni

variables are fresh variables. Applying the cases (1) and (2) of Lemma A.2.1.6 on

P; Γ; R;ϕ; Σ ` lhs : t we prove the type judgment. Applying the case (2) of Lemma

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 177

A.2.1.5 on P; R;ϕ ` t′ <: t we prove the subtype judgment. The valid relation is

straightforward since ni are fresh variables and the method body is a valid block

expression.

Case: ret(v, e)

By induction hypothesis for 〈$,Π〉[e]↪→〈$′,Π′〉[e′] there exist Σ̂, Γ̂, R̂, and ϕ̂ such that

valid(e′), Γ̂, R̂, ϕ̂, Σ̂ � 〈$′,Π′〉, reg(Γ̂) ⊆ R̂, P; Γ̂; R̂; ϕ̂; Σ̂ ` e′ : t

(Σ̂−(lreg(e′)−lreg(e)))−(lloc(e)−lloc(e′)) = Σ−(lreg(e)−lreg(e′)),

Γ̂−(lvar(e′)−lvar(e)) = Γ−(lvar(e)−lvar(e′)),

R̂−(lreg(e′)−lreg(e)) = R−(lreg(e)−lreg(e′)), and

ϕ̂−(lreg(e′)−lreg(e))⇒ ϕ−(lreg(e)−lreg(e′)).

We let R′ = R̂, Γ′ = Γ̂, ϕ′ = ϕ̂, and Σ′ = Σ̂. From the hypothesis’s valid relation

valid(ret(v, e)) we get that v 6∈ retvars(e). Hence, the conclusion’s relations between Γ

and Γ′, Σ and Σ′, R and R′, and ϕ and ϕ′ are straightforward proved. By the hypothesis’s

type judgment P; Γ; R;ϕ; Σ ` ret(v, e) : t we get that v ∈ Γ. In order to prove the type

judgment

P; Γ′; R′;ϕ′; Σ′ ` ret(v, e′) : twe only have to prove that v ∈ Γ′, since P; Γ′; R′;ϕ′; Σ′ ` e′ : t

is given by the induction hypothesis. In order to prove the valid relation valid(ret(v, e′))

we have to prove that v 6∈ retvars(e′) since valid(e′) is given by the induction hypothesis.

We use a case based analysis on the expression e. We discuss only the main sub cases that

change Π (the other cases are straightforward):

– e = ret(v′, δ)

Σ̂ = Σ, ϕ̂ = ϕ, R̂ = R, and Γ̂ = Γ−{v′}. From hypothesis v 6∈ retvars(e) holds, hence

v 6= v′. Therefore v ∈ Γ̂ holds since from hypothesis we have that v ∈ Γ.

The relation v 6∈ retvars(δ) is straightforward.

– e = {(t v′) e1}

Σ̂ = Σ, Γ̂ = Γ+(v′ : t), ϕ̂ = ϕ, and R̂ = R. Note that v′ is a fresh variable. The re-

lation v ∈ Γ̂ holds since from hypothesis v ∈ Γ. From hypothesis valid({(t v′) e1})

holds, therefore retvars(e1) = ∅. Since v′ is a fresh variable v 6= v′ holds. Hence the

relation v 6∈ retvars(ret(v′, e1)) holds.

– e = v′0.mn〈a+〉(v′1..p)

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 178

R̂ = R, Γ̂ = Γ+{(ni : Γ(v′i))i:0..p}, ϕ̂ = ϕ∧inv.cn〈a1..n〉, and Σ̂ = Σ. Note that all ni

variables are fresh variables. The relation v ∈ Γ̂ holds since from hypothesis v ∈ Γ.

From hypothesis the method body is a valid block expression, therefore there is not

any ret in the method’s body. Since ni are fresh variables we get that v 6= ni i = 0..p.

Hence the relation v 6∈ retvars(e′) holds.

Case: retr(a, e)

By induction hypothesis for 〈$,Π〉[e]↪→〈$′,Π′〉[e′] there exist Σ̂, Γ̂, R̂, and ϕ̂ such that

valid(e′), Γ̂, R̂, ϕ̂, Σ̂ � 〈$′,Π′〉, reg(Γ̂) ⊆ R̂, P; Γ̂; R̂; ϕ̂; Σ̂ ` e′ : t

(Σ̂−(lreg(e′)−lreg(e)))−(lloc(e)−lloc(e′)) = Σ−(lreg(e)−lreg(e′)),

Γ̂−(lvar(e′)−lvar(e)) = Γ−(lvar(e)−lvar(e′)),

R̂−(lreg(e′)−lreg(e)) = R−(lreg(e)−lreg(e′)), and

ϕ̂−(lreg(e′)−lreg(e))⇒ ϕ−(lreg(e)−lreg(e′)).

We let R′ = R̂, Γ′ = Γ̂, ϕ′ = ϕ̂, and Σ′ = Σ̂. From the hypothesis’s valid relation

valid(retr(a, e)) we get that a 6∈ retregs(e). Hence, the conclusion’s relations between

Γ and Γ′, Σ and Σ′, R and R′, and ϕ and ϕ′ are straightforward proved. In order to

prove the valid relation valid(retr(a, e′)) we have to prove that a 6∈ retregs(e′) since

valid(e′) is given by the induction hypothesis. In order to prove the type judgment

P; Γ′; R′;ϕ′; Σ′ ` retr(a, e′) : t we have to prove that a ∈ R′, reg(t) ⊆ R′ − lreg(e′)− {a},

reg(Γ− lvar(e′)) ⊆ R′ − lreg(e′)− {a}, and ϕ′ ⇒
∧
r∈(R′−lreg(e′)−{a})(r � a),

while P; Γ′; R′;ϕ′; Σ′ ` e′ : t is given by the induction hypothesis. We use a case based

analysis on the expression e. We discuss only the main sub cases that change lreg, lvar

and retregs (the other cases are straightforward):

– e = retr(r, δ) then e′ = δ

R′ = R− r, ϕ′ = ϕ− r, and Γ′ = Γ. From hypothesis a 6∈ retregs(e) holds, therefore

r 6= a. The relation a 6∈ retregs(e′) is straightforward proved. From the hypothesis’s

type judgment we get that a ∈ R, therefore a ∈ R′.

Note that R′−lreg(e′)−{a}=R−lreg(e)−{a}. From the hypothesis’s type judgment

we get that reg(t) ⊆ R−lreg(e)−{a}, therefore reg(t)⊆R′−lreg(e′)−{a}. From the

hypothesis’s type judgment we get that reg(Γ−lvar(e))⊆R−lreg(e)−{a}, therefore

reg(Γ′ − lvar(e′)) ⊆ R′ − lreg(e′)− {a}. From the hypothesis’s type judgment we

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 179

get that ϕ⇒
∧
r∈(R−lreg(e)−{a})(r � a). Applying the case (2) of Lemma A.2.1.3 we

get that ϕ′ ⇒
∧
r∈(R′−lreg(e′)−{a})(r � a).

– e = letreg r in e1 then e′ = retr(r′, e1) and r′ is a fresh region.

R′ = R ∪ {r′}, ϕ′ = (ϕ ∧
∧
r∈R(r � r′)), and Γ′ = Γ. The region r′ is a fresh region,

therefore r′ 6= a. From the hypothesis relation valid(e), we get that retregs(e1) = ∅.

Hence, the relation a 6∈ retregs(e′) is proved. From the hypothesis’s type judgment

we get that a ∈ R, therefore a ∈ R′.

Note that R′−lreg(e′)−{a}=R−lreg(e)−{a}. From the hypothesis’s type judgment

we get that reg(t) ⊆ R−lreg(e)−{a}, therefore reg(t)⊆R′−lreg(e′)−{a}. From the

hypothesis’s type judgment we get that reg(Γ−lvar(e))⊆R−lreg(e)−{a}, therefore

reg(Γ′ − lvar(e′)) ⊆ R′ − lreg(e′)− {a}. From the hypothesis’s type judgment we

get that ϕ⇒
∧
r∈(R−lreg(e)−{a})(r � a). Since ϕ′⇒ϕ we get that

ϕ′⇒
∧
r∈(R′−lreg(e′)−{a})(r�a).

– e = ret(v′, δ) then e′ = δ

R′ = R, ϕ′ = ϕ, and Γ′ = Γ−{v′}. The relation a 6∈ retregs(e′) is straightforward

proved. From the hypothesis’s type judgment we get that a ∈ R, therefore a ∈ R′.

Note that R′−lreg(e′)−{a}=R−lreg(e)−{a}. From the hypothesis’s type judgment

we get that reg(t) ⊆ R−lreg(e)−{a}, therefore reg(t)⊆R′−lreg(e′)−{a}. From the

hypothesis’s type judgment we get that ϕ⇒
∧
r∈(R−lreg(e)−{a})(r�a), therefore

ϕ′⇒
∧
r∈(R′−lreg(e′)−{a})(r�a). From the hypothesis’s type judgment we get that

reg(Γ−lvar(e))⊆R−lreg(e)−{a} therefore reg(Γ′ − lvar(e′)) ⊆ R′ − lreg(e′)− {a}.

– e = {(t v′) e1} then e′ = ret(v1, e1) and v1 is a fresh variable.

Γ′ = Γ+(v1 : t), ϕ′ = ϕ, and R′ = R. From the hypothesis’s valid relation valid(e),

we get that retregs(e1) = ∅ and retvars(e1) = ∅. By the cases (2) and (3) of Lemma

A.2.1.9 we get that lreg(e1) = ∅ and lvar(e1) = ∅. Hence, the relation a 6∈ retregs(e′)

is proved. From the hypothesis’s type judgment we get that a ∈ R, therefore a ∈ R′.

Note that R′−lreg(e′)−{a}=R−lreg(e)−{a}. From the hypothesis’s type judgment

we get that reg(t) ⊆ R−lreg(e)−{a}, therefore reg(t)⊆R′−lreg(e′)−{a}. From the

hypothesis’s type judgment we get that ϕ⇒
∧
r∈(R−lreg(e)−{a})(r � a), therefore

ϕ′ ⇒
∧
r∈(R′−lreg(e′)−{a})(r � a). From the hypothesis’s type judgment we get that

reg(Γ−lvar(e))⊆R−lreg(e)−{a} therefore reg(Γ′−lvar(e′))⊆R′−lreg(e′)−{a}.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 180

– e = v′0.mn〈a+〉(v′1..p) then e′ = ret(n1..p, e1), n1..p are fresh variables, and e1 is a

valid block expression such that retvars(e1) = ∅ and retregs(e1) = ∅.

R′ = R, Γ′ = Γ+{(ni : Γ(v′i))i:0..p}, and ϕ′ = ϕ∧inv.cn〈a1..n〉. By the cases (2) and

(3) of Lemma A.2.1.9 we get that lreg(e1)=∅ and lvar(e1)=∅. Hence, the relation

a6∈retregs(e′) is proved. From the hypothesis’s type judgment we get that a ∈ R,

therefore a ∈ R′. Note that R′−lreg(e′)−{a}=R−lreg(e)−{a}. From the hypothe-

sis’s type judgment we get that reg(t) ⊆ R−lreg(e)−{a}, therefore

reg(t)⊆R′−lreg(e′)−{a}. From the hypothesis’s type judgment we get that

ϕ⇒
∧
r∈(R−lreg(e)−{a})(r � a). Since ϕ′⇒ϕ we get ϕ′⇒

∧
r∈(R′−lreg(e′)−{a})(r�a).

From the hypothesis’s type judgment we get that reg(Γ−lvar(e))⊆R−lreg(e)−{a}

therefore reg(Γ′−lvar(e′))⊆R′−lreg(e′)−{a}.

2

A.2.3 Proof of Theorem 3.7.2.2 (Progress)

By structural induction over the depth of the type derivation for expression e and using the

Lemma A.2.1.10.

Cases: [RC−LOCATION,RC−ObjVal,RC−CONS1,RC−CONS2]

e is a value.

Case: [RC−VAR]

We let $′ = $, Π′ = Π, and e′ = Π(v). By hypothesis we get that (v : t) ∈ Γ and

dom(Γ) = dom(Π), thus the check of the evaluation rule [D−VAR] does not fail.

Case: [RC−FD]

By the type judgment and the consistency of the hypothesis we get that

(v : cn〈r1..n〉) ∈ Γ and Π(v) : Γ(v). According to the Lemma A.2.1.10, there are two cases

for Π(v):

1. Π(v) = null then the rule [D−NULLERR1] generates an error nullerr.

2. Π(v) = (r1, o), $(r1)(o)=cn〈r1..n〉(V), and P; Γ; R;ϕ; Σ`cn〈r1..n〉(V):cn〈r1..n〉.

We let $′ = $, Π′ = Π, and e′ = V(f). Then rule [D−FD] is used.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 181

Case: [RC−ASSGN]

We deal with expression lhs = e. From type judgment of the hypothesis we have

P; Γ; R;ϕ; Σ ` e : t′. By the induction hypothesis, we have the following cases:

1. 〈$,Π〉[e]↪→nullerr,

then the error is propagated as 〈$,Π〉[lhs=e]↪→nullerr

2. 〈$,Π〉[e] ↪→ 〈$̂, Π̂〉[e′].

We let $′ = $̂, Π′ = Π̂, and the new expression is lhs = e′. Then the evaluation rule

[D−ASSGN1] is used.

3. e is a value e = δ.

There are the following two sub cases based on the form of lhs = v | v.f :

SubCase: v = δ

By hypothesis’s type judgment we get that (v:t)∈Γ and dom(Γ)=dom(Π),

thus v∈dom(Π). By the type judgment of the hypothesis, the type of δ is well-

formed and is a subtype of type of v. If δ=(r1,o1) the type rule [RC−LOCATION]

ensures that r1 ∈ R, but from the hypothesis’ consistency dom($) = R. Thus

r1 ∈ dom($). We let $′ = $ and Π′ = Π+{v 7→δ}.

The evaluation rule [D−ASSGN2] can be applied, since we proved that its run-

time checks hold. Note that the rule [D−ASSGN1−DANGLERR] is never used for

a well typed expression.

SubCase: v.f = δ

By the type judgment and the consistency of the hypothesis we get that

(v : cn〈a1..n〉) ∈ Γ and Π(v) : Γ(v). According to the Lemma A.2.1.10, there are

two cases for Π(v):

(a) Π(v) = null then the rule [D−NULLERR2] generates an error nullerr.

(b) Π(v)=(a1,o) and $(a1)(o)=cn〈a1..n〉(V).

By the hypothesis type rule [RC−ASSGN] we get that the type of δ is well-

formed and is a subtype of type of v.f. If δ=(r1, o1), the subtyping rule of

the type rule [RC−ASSGN] and the subtyping judgment [ObjRegSub] ensures

that the first region of type of δ, r1 outlives the first region of type of v.f

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 182

according to the region constraint ϕ. But from the consistency of hypoth-

esis ord($)⇒ϕ holds. Thus the rule [D−ASSGN3] can be applied, since we

proved that its runtime checks hold.

Note that the rule [D−ASSGN3−DANGLERR] is never used for a well typed

expression.

Case: [RC−NEW]

By the consistency of the hypothesis we get that ord($)⇒ϕ and R = dom($). By the

type judgment P; R;ϕ `type cn〈r1..n〉 of the hypothesis we get that ϕ⇒ϕinv. Thus the first

runtime check ord($)⇒ϕinv holds. By the hypothesis’s type judgment the type of each

variable vi is a subtype of the corresponding class field fi type. By the subtyping judg-

ment [ObjRegSub], the first region of the region type of vi outlives the first region of

the region type of fi according to the region constraint ϕ. Thus the runtime check

ord($)⇒(r′i�fieldregion(cn〈r1..n〉, fi)) holds for each object field fi. Thus the rule [D−NEW]

can be applied, since we proved that its runtime checks hold.

Note that the rule [D−NEW−DANGLERR] is never used for a well typed expression.

Case: [RC−EB]

We let $′ = $, Π′ = Π+{n 7→init(t)}, and e′=ret(n, e) where n is a fresh variable. Then

the evaluation rule [D−EB] can be applied.

Case: [RC−RET]

We deal with ret(v, e). Based on the expression e, there are two cases:

1. e is a value and then the rule [D−RET2] can be applied.

2. e is not a value. By the induction hypothesis, there are two sub cases:

(a) 〈$,Π〉[e] ↪→ 〈$̂, Π̂〉[e′].

We let $′ = $̂, Π′ = Π̂, and the new expression is ret(v, e′). The evaluation

rule [D−RET1] can be applied.

(b) 〈$,Π〉[e]↪→nullerr

The error is propagated as 〈$,Π〉[ret(v, e)]↪→nullerr.

Case: [RC−LETR]

We let $′=[a 7→∅]$ and Π′ = Π. The evaluation rule [D−LETR] can be applied.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 183

Case: [RC−RETR]

We deal with retr(a, e). Based on the expression e, there are two sub cases:

1. e is a value such that e=δ.

In order to apply the rule [D−RETR2], we have to prove that its runtime checks

are redundant. Note that lreg(δ) = ∅ and lvar(δ) = ∅. By the type judgment of the

hypothesis we get that a ∈ R, but from the hypothesis’s consistency we get that

R = dom($). Thus a ∈ dom($). In addition, by the hypothesis’s type judgment

we get that ϕ⇒
∧
r∈Rt

(r�a) where Rt=R−{a}. By the hypothesis consistency we

get that ord($)⇒ϕ. Thus, we proved that a is the region on the top of the stack

$ such that $=[a7→Rgn]$′. If δ = (r, o) then its type t contains the region r, but

from the hypothesis’s type judgment we get that reg(t)⊆R−a. Thus we proved

that r ∈ dom($′). By the hypothesis’s type judgment we get that reg(Γ)⊆R−a,

but from the consistency relation dom(Γ) = dom(Π) holds and for each v ∈ Π the

type of Π(v) is Γ(v). Since the type of a location contains the location’s region,

we proved that ∀v∈Π · (Π(v)=(r, o))⇒(r∈dom($′)). By the hypothesis’s consis-

tency relation and the type judgment for an object value [RC−ObjVal] we get the

following relations for each location (r1, o)∈dom($′) with $(r1)(o)=cn〈r1..n〉(V):

ri � r1, i = 2..n and for each field f ∈ dom(V) its type is a subtype of the expected

type given by fieldlist(cn〈r1..n〉) = (ti fi)i:1..p, (that means the regions of its type are

older than r1, .., rn). Since r1 � a holds, we proved the last check (about $′) of the

rule [D−RETR2]. Thus, we can apply the rule [D−RETR2], while the rule

[D−RETR2−DANGLERR] is never used for a well typed program.

2. e is not a value. By the induction hypothesis, there are two sub cases:

(a) 〈$,Π〉[e] ↪→ 〈$̂, Π̂〉[e′].

We let $′ = $̂, Π′ = Π̂, and the new expression is retr(a, e′). The evaluation

rule [D−RETR1] can be applied.

(b) 〈$,Π〉[e]↪→nullerr

The error is propagated as 〈$,Π〉[retr(a, e)]↪→nullerr.

Case: [RC−IF]

By the hypothesis’s type judgment the type of v is boolean. According to the

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 184

Lemma A.2.1.10, there are two cases: either v is true and the rule [D−IF1] is applied, or v

is false and the rule [D−IF2] is applied.

Case: [RC−LOOP]

By the hypothesis’s type judgment the type of v is boolean. According to the

Lemma A.2.1.10, there are two cases: either v is true and the rule [D−LOOP1] is applied,

or v is false and the rule [D−LOOP2] is applied.

Case: [RC−SEQ]

We deal with e1; e2. Based on the expression e1, there are two cases:

1. e1 is a value and then the rule [D−SEQ2] can be applied.

2. e1 is not a value. By the induction hypothesis, there are two sub cases:

(a) 〈$,Π〉[e1] ↪→ 〈$̂, Π̂〉[e′1].

We let $′ = $̂, Π′ = Π̂, and the new expression is e′1; e2. The evaluation rule

[D−SEQ1] can be applied.

(b) 〈$,Π〉[e1]↪→nullerr

The error is propagated as 〈$,Π〉[e1; e2]↪→nullerr.

Case: [RC−INVOKE]

We deal with v′0.mn〈a+a′+〉(v′1..p). By the hypothesis’s type judgment [RC−INVOKE] we

get that the regions {a+a′+} ⊂ R. By the hypothesis’s consistency relation we get that

dom($) = R. Thus the runtime check of [RC−INVOKE] is proved and the rule

[D−INVOKE−DANGLERR] is never used by a well typed program. By the hypothesis’s type

judgment the type of v′0 is cn〈a+〉. By the hypothesis’s consistency dom(Γ) = dom(Π), thus

v′0 ∈ dom(Π). According to the Lemma A.2.1.10, there are two cases:

1. Π(v′0) = null. Then the rule [D−NULLERR3] generates an error nullerr.

2. Π(v′0) = (a1, o) that is well-typed. Thus the rule [D−INVOKE] can be applied.

2

A.2.4 Proof of Lemma 4.8.0.2 (Correctness)

1. Based on the form of τ we apply either [RI−CT], or [RI−OBJ], or [RI−PRIM] and we obtain

the region type t and region class invariant ϕ corresponding to τ . We let R = reg(t). The

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 185

judgment P′; R;ϕ `type t is directly verified, namely its two checks referring to the regions

of type t and the class invariant of t. By using the Lemma A.2.1.4 we prove that for all R′

and ϕ′ such that R ⊆ R′ and ϕ′⇒ϕ the judgment P′; R′;ϕ′ `type t holds.

2. By the induction hypothesis using the previous case and the inference rule [RI−SUBTYPE],

we prove that ∀R1, ϕ1 · (reg(t)⊆R1 ∧ ϕ1⇒ϕ) =⇒ P′; R1;ϕ1 `type t and

∀R′1, ϕ′1 · (reg(t′)⊆R′1 ∧ ϕ′1⇒ϕ′) =⇒ P′;R′1;ϕ′1 `type t
′. By the case (2) of Lemma A.2.1.11

and the inference rule [RI−SUBTYPE] we get that reg(t) ∪ reg(t′) ⊆ reg(ϕ0∧ϕ∧ϕ′). The

third check of P′; R;ϕ`t<:t′ verifies the region subtyping constraint `t<:t′, ϕ0. But from

the inference rule [RI−SUBTYPE] we get that (ϕ0 ∧ ϕ ∧ ϕ′)⇒ϕ0. Thus the third check is

proved.

Applying the Lemma A.2.1.5 we prove the conclusion for all R′′ and ϕ′′ such that

R′′⊇reg(ϕ0∧ϕ∧ϕ′) and ϕ′′⇒(ϕ0∧ϕ∧ϕ′).

3. If e is a source language Core-Java expression, then it does not contain any intermediate

expression. Note that the inference algorithm is not defined for the intermediate expres-

sions and it does not produce any intermediate expression. Therefore retvars(e′) = ∅ and

retregs(e′) = ∅ are straightforward proved. We prove the type checking relation by a

structural induction on e as follows:

Cases: k | null | v | v.f

These cases are straightforward proved.

Case: lhs = e1

Note that e′ = (lhs = e′1). By induction on the inference rule [RI−ASSGN] hypotheses

and the case (2) of the current lemma, we get that

∀R1, ϕ1 · (R1 ⊇ (reg(Γ) ∪ regs(lhs))) =⇒ P′; Γ; R1;ϕ1`lhs:t,

∀R2, ϕ2 · (R2 ⊇ (reg(Γ) ∪ reg(ϕ′) ∪ regs(e′1))∧ϕ2⇒ϕ′) =⇒ P′; Γ; R2;ϕ2`e′:t′, and

∀R3, ϕ3 · (R3⊇reg(ϕ) ∧ ϕ3⇒ϕ) =⇒ P′; R3;ϕ3`t<:t′.

Applying the cases (2) and (3) of the Lemma A.2.1.6 and the cases (1) and (2) of

the Lemma A.2.1.5 we prove that the above relations hold for all R and ϕ′′ such that

R⊇(reg(Γ)∪reg(ϕ∧ϕ′)∪regs(e′)) and ϕ′′⇒(ϕ∧ϕ′). Hence, the type checking rule

[RC−ASSGN] is proved.

Case: new cn(vi:1..p)

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 186

Note that e′ = new cn〈x+〉(vi:1..p). By induction on the inference rule [RI−NEW] hy-

potheses and the cases (1) and (2) of the current lemma, we get that

∀R′0, ϕ′0 · (R′0⊇{x+}∧ϕ′0⇒ϕ0) =⇒ P′;R′0;ϕ′0 `type cn〈x+〉, and

∀i : 1..p ∀R′i, ϕ′i ·R′i⊇reg(ϕi) ∧ ϕ′i⇒ϕi ∧ P′; R′i;ϕ
′
i`t′i<:ti. By the definition of regs,

we get that {x+}⊆regs(new cn〈x+〉(vi:1..p)). Applying the cases (1) and (2) of the

Lemma A.2.1.5, the cases (1) and (2) of the Lemma A.2.1.4 we prove that the above

relations hold for all R and ϕ′ such that R⊇(reg(Γ)∪reg(
∧
i:0..pϕi)∪regs(e′)) and

ϕ′⇒(
∧
i:1..pϕi). Hence, the type checking rule [RC−NEW] is proved.

Case: e = {(τ1 v1) e1}

There are two sub cases based on the inference rules:

SubCase: inference rule [RI−EB1]

By induction on the inference rule [RI−EB1] hypotheses and the case (1) of the

current lemma, we get that

∀R′1, ϕ′1 · (reg(τ1〈x∗1〉)⊆R′1 ∧ ϕ′1⇒ϕ1) =⇒ P′; R′1;ϕ′1 `type τ1〈x∗1〉 and

∀R′, ϕ′·((regs(e′1)∪reg(Γ, {v1 : τ1〈x∗1〉})∪reg(ϕ))⊆R′∧ϕ′⇒ϕ)=⇒

P′; Γ; R;ϕ′`e′1:τ〈r∗〉.

By the case (1) of the Lemma A.2.1.11, we get that reg(τ1〈x∗1〉)⊆reg()ϕ1. Ap-

plying the cases (2) and (3) of the Lemma A.2.1.6 and the cases (1) and (2)

of the Lemma A.2.1.4, we prove that the above relations hold for all R and ϕ′′

such that R⊇(reg(Γ)∪reg(ϕ∧ϕ1)∪regs({(τ1〈x∗1〉 v1) e′1})) and ϕ′′⇒(ϕ∧ϕ1). Ap-

plying the Lemma A.2.1.1 for the substitution ρ we prove the type checking

rule [RC−EB].

SubCase: inference rule [RI−EB2]

In order to prove the type checking rule [RC−LETR], we have to prove that:

∀R,ϕ′·((regs(letreg a in ρ′ρ{(τ1〈x∗1〉 v1) e′})∪reg(Γ)∪reg(ρ((ϕ∧ϕ1)\rs)))⊆R

∧ϕ′⇒(ρ((ϕ∧ϕ1)\rs))) =⇒ P′; Γ; R;ϕ′`letreg a in ρ′ρ{(τ1〈x∗1〉 v1) e′}:τ〈ρr∗〉.

Note that by induction on the expression block using the previous subcase for

the inference rule [RI−EB1] and type checking rule [RC−EB], we obtain the fol-

lowing: Γ`{(τ1 v1) e}Vρ {(τ1〈x∗1〉 v1) e′} : τ〈ρ r∗〉, ρ(ϕ∧ϕ1) and

∀Rb, ϕb · ((regs(ρ {(τ1〈x∗1〉 v1) e′})∪reg(Γ)∪reg(ρ(ϕ∧ϕ1)))⊆Rb∧ϕb⇒(ρ(ϕ∧ϕ1)))

=⇒ P′; Γ; Rb;ϕb`ρ {(τ1〈x∗1〉 v1) e′} : τ〈ρ r∗〉.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 187

Based on the checks of the type checking rule [RC−LETR], the proof consists of

three parts:

(a) to prove that the fresh region introduced by the checking rule is not in the

current set of the regions R. This is ensured by the fact that the region is

fresh.

(b) to prove that the check reg(τ〈ρr∗〉) ⊆ R holds, namely we have to prove

that reg(τ〈ρr∗〉) ⊆ (regs(letreg a in ρ′ρ{(τ1〈x∗1〉 v1) e′})∪reg(Γ)

∪reg(ρ((ϕ∧ϕ1)\rs))). Applying the case (3) of the Lemma A.2.1.11 on the

result of the induction on the expression block, we get that

reg(τ〈ρr∗〉) ⊆ (regs(ρ{(τ1〈x∗1〉 v1) e′})∪reg(Γ) ∪reg(ρ(ϕ∧ϕ1))). Note that

the set of regions rs is computed by ors. By the definition of ors(ϕ, s1, s2),

it is straightforward to prove that ∀ϕ · s1∩s2⊆ors(ϕ, s1, s2)

∧∀r∈(s1∩s2) · r 6∈ors(ϕ, s1, s2). Hence, by the definition of rs from the in-

ference rule [RI−EB2] we get that both reg(τ〈ρr∗〉)6∈rs and reg(Γ) 6∈rs hold.

Thus we proved that reg(τ〈ρr∗〉) ⊆ R holds.

(c) to prove that ∀R,ϕ′·(({a}∪(regs(letreg a in ρ′ρ{(τ1〈x∗1〉 v1) e′})∪reg(Γ)

∪reg(ρ((ϕ∧ϕ1)\rs)))⊆R) ∧ ϕ′⇒(ρ((ϕ∧ϕ1)\rs) ∧
∧
r′∈R(r′�a)))

=⇒ P′; Γ; R;ϕ′`ρ′ρ{(τ1〈x∗1〉 v1) e′}:τ〈ρr∗〉. Note that the substitution ρ′ maps

all regions from the set rs to the region a. We do the proof by starting from

the result of the induction on the hypothesis:

∀Rb, ϕb · (((regs(ρ {(τ1〈x∗1〉 v1) e′})∪reg(Γ)∪reg(ρ(ϕ∧ϕ1))))⊆Rb

∧ϕb⇒(ρ(ϕ∧ϕ1))) =⇒ P′; Γ; Rb;ϕb`ρ {(τ1〈x∗1〉 v1) e′} : τ〈ρ r∗〉. Since equal-

ity is the strongest constraint, we get that∧
r∈rs(r=a)∧(ρ(ϕ∧ϕ1))⇒(ρ(ϕ∧ϕ1)). In addition by the definition of

rs = ors(ϕ, s1, s2), the regions of rs do not have longer lifetime than any of

the regions (s1 ∪ s2)\rs. By the instantiation of s1 and s2 in the inference

rule [RI−EB2], we get that the set s1 ∪ s2 denotes all the regions.

Thus we can prove that∧
r′∈R(r′�a))∧

∧
r∈rs(r=a)∧(ρ(ϕ∧ϕ1))⇒

∧
r∈rs(r=a)∧(ρ(ϕ∧ϕ1)). Since the

regions of rs are younger than all other regions and also the regions of rs

are equal between them we can prove that:

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 188

∧
r′∈R(r′�a))∧(ρ((ϕ∧ϕ1)\rs))⇒(ρ(ϕ∧ϕ1)). Applying the case (2) of the

Lemma A.2.1.6 to strengthen ϕb, the Lemma A.2.1.1 to apply the substi-

tution ρ′ corresponding to the regions of rs, and taking into account the

definition of regs for letreg we proved the type checking rule.

Case: v′1.mn(v′2..p)

Note that e′ = v′1.mn〈y+〉(v′2..p).

By induction on the inference rule [RI−INVOKE] hypotheses and the case (2) of the

current lemma, we get that for each j = 2..p

∀Rj , ϕ′j · (Rj⊇reg(ϕj) ∧ ϕ′j⇒ϕj) =⇒ P′; Rj ;ϕ′j`τ ′j〈x′∗j 〉<:τj〈x∗j 〉.

Applying the cases (1) and (2) of the Lemma A.2.1.5 we prove that the above

relations hold for all R and ϕ′′ such that R⊇(reg(Γ)∪reg(ϕ̂∧
∧p
j=1 ϕj)∪{y+}) and

ϕ′′⇒(ϕ̂∧
∧p
j=1 ϕj). Since {x′+1 }⊆{y+} and ϕ′′⇒ϕ1, we use the same proof as for

the case (1) of the current lemma to prove that ∀R,ϕ′′ · P′; R;ϕ′′ `type cn〈x′+1 〉 Since

{y+}⊆R and ϕ′′⇒ϕ̂ we proved the type checking rule [RC−INVOKE].

Case: e1 ; e2

Note that e′ = e′1 ; e′2. By induction on the inference rule [RI−SEQ] hypotheses we get

that ∀R1, ϕ
′
1·((regs(e′1)∪reg(Γ)∪reg(ϕ1))⊆R1 ∧ ϕ′1⇒ϕ1) =⇒ P′; Γ; R1;ϕ′1`e′1:t and

∀R2, ϕ
′
2·((regs(e′2)∪reg(Γ)∪reg(ϕ2))⊆R2 ∧ ϕ′2⇒ϕ2) =⇒ P′; Γ; R2;ϕ′2`e′2:t. Applying

the cases (1) and (2) of the Lemma A.2.1.6 we prove that the above relations hold

for all R and ϕ′′ such that R⊇(reg(Γ)∪reg(ϕ1 ∧ ϕ2)∪regs(e′1 ; e′2)) and ϕ′′⇒(ϕ1 ∧ ϕ2).

Thus we proved the type checking rule [RC−SEQ].

Case: while v e

The proof is straightforward by induction on the inference rule [RC−LOOP] hypoth-

esis.

Case: if v then e1 else e2

Note that e′ = if v then e′1 else e′2.

By induction on the inference rule [RI−IF] hypotheses and the case (2) of the current

lemma we get that

∀R1, ϕ
′′
1 ·((regs(e′1)∪reg(Γ)∪reg(ϕ′1))⊆R1 ∧ ϕ′′1⇒ϕ′1) =⇒ P′; Γ; R1;ϕ′′1`e′1:t1,

∀R2, ϕ
′′
2 ·((regs(e′2)∪reg(Γ)∪reg(ϕ′2))⊆R2 ∧ ϕ′′2⇒ϕ′2) =⇒ P′; Γ; R2;ϕ′′2`e′2:t2,

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 189

∀R3, ϕ
′′
3 · (R3⊇reg(ϕ1) ∧ ϕ′′3⇒ϕ1) =⇒ P′; R3;ϕ′′3`t1<:t, and

∀R4, ϕ
′′
4 · (R4⊇reg(ϕ2) ∧ ϕ′′4⇒ϕ2) =⇒ P′; R4;ϕ′′4`t2<:t.

Applying the cases (1) and (2) of the Lemma A.2.1.6 and the cases (1) and (2) of the

Lemma A.2.1.5, we prove that the above relations hold for all R and ϕ′′ such that

R⊇(reg(Γ)∪reg(ϕ1∧ϕ2∧ϕ′1∧ϕ′2)∪regs(if v then e′1 else e′2)) and ϕ′′⇒(ϕ1∧ϕ2∧ϕ′1∧ϕ′2).

Thus we proved the type checking rule [RC−IF].

4. Note that meth′=τ0〈r∗0〉 mn〈r+, r∗1 , .., r∗p, r∗0〉((τj〈r∗i 〉 vi)i:1..p) where ϕ {e′}

The method meth′ is valid since its body does not contain any intermediate expression.

As can be seen, the inference rules do not introduce any intermediate expression.

By induction on the inference rules [RI−METH−1] and [RI−METH−2] hypotheses and the

case (1), (2) and (3) of the current lemma we get that

for each i = 0..p ∀Ri, ϕ′′i · ({r∗i }⊆Ri ∧ ϕ′′i⇒ϕi) =⇒ P′; Ri;ϕ′′i `type τi〈r∗i 〉,

∀Rs, ϕs · (reg(ϕ′0)⊆Rs ∧ ϕs⇒ϕ′0) =⇒ P′; Rs;ϕs`τ ′0〈x∗0〉<:τ0〈r∗0〉

∀Rb, ϕb·((regs(e′)∪{r+, r∗1 , .., r
∗
p}∪reg(ϕ′))⊆Rb ∧ ϕb⇒ϕ′) =⇒ P′; Γ; Rb;ϕb`e′:τ ′0〈x∗0〉

We let Rg={r+, r∗1 , .., r∗p, r∗0} and ϕg = ϕ∧ϕe. As R and ϕ′ of the type checking rule

[RC−METH], Rg contains only the region parameters of the method, while ϕg consists only

of the receiver class invariant and the method precondition. By the method inference rules

we directly prove that (a) for each i = 0..p {r∗i }⊆Rg and varphig⇒ϕi; (b) ϕg⇒ϕ′0; and

(c) ϕg⇒ϕ′. The first inference rule [RI−METH−1] ensures that there are not regions that

outlive the method region parameters as ((reg(ϕ)∪regs(e′))∩{r+, r∗1 , .., r∗p, r∗0})=∅, while

the second rule [RI−METH−2] ensures by the algorithm to compute nesc that each re-

gion that outlives one of the method region parameters is made equivalent to one or more

suitable method region parameters. Both region inference rules assume that a region lo-

calization was done before for the method body. Using the above considerations we prove

that reg(ϕ′0)⊆Rg and (regs(e′)∪{r+, r∗1 , .., r
∗
p}∪reg(ϕ′))⊆Rg. The fix point analysis always

adds more constraints to the collected region constraint, strengthening ϕg. Thus Rg and

ϕg can be used to instantiate Ri and ϕi, Rs and ϕs and Rb and ϕb in the relations derived

by the induction. Thus the type checking rule [RC−METH] is proved.

5. The validity is directly proved using the previous case of the current lemma that states

that each inferred method is a valid method.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 190

We prove P ′ ` def ′ as follows:

The first check of the type checking rule [RC−CLASS], r1 6∈
⋃p
i=1 reg(fieldi) holds, since

both inference rules [RI−CLASS−1] and [RI−CLASS−2] generate fresh regions (including

the special region for the recursive fields) to annotate the fields. The second check

ϕ⇒ri � r1 i = 2..n holds because (a) both inference rules ensure that the regions of the

non-recursive fields outlive the first region; (b) the second inference rule ensures that the

special region for the recursive fields outlives the first region; and (c) an induction on

the class parent proves that the check also holds for the class parent. The third check

about the methods is proved by applying the case (4) of the current lemma on the hy-

potheses of the current case. The fourth check (about the fields) for non-recursive fields

is proved by applying the case (1) of the current lemma on the inference rules hypotheses

` τiVτi〈r∗i 〉, ϕi. The proof of the fourth check for recursive fields is similar to the proof of

the case (1) of the current lemma. The class invariant of a recursive field is obtained from

the class invariant by replacing the first region with the special region for recursive fields.

Thus the class invariant entails the recursive field class invariant. Thus we proved the type

checking rule [RC−CLASS]. The fixpoint analysis for the mutually recursive classes do not

affect the proof since the fixpoint is strengthening the class invariant and is increasing the

number of the class regions.

We prove P′`InheritanceOK(def′) as follows:

The first check about the relation between the subclass regions and the superclass regions

is validated by both inference rules. The second check about the subclass invariant and the

superclass invariant is directly proved since the superclass invariant is part of the subclass

invariant in both inference rules. The overriding check resolution rules from Figure 4.12

directly ensure the method overriding check.

2

A.2.5 Proof of Theorem 4.8.0.3 (Soundness and Completeness)

1. (Soundness):

Based on the order in which region inference proceeds (that is described in Section 4.7),

we re-organize the declarations in P = def∗ as the following:

{cn∗1, (cn.mn)∗1}, ..., {cn∗p, (cn.mn)∗p}

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 191

Each {cn∗i , (cn.mn)∗i } forms a strongly connected component (SCC) in the global depen-

dency graph. By applying the algorithm described at the end of Section 4.7 and Lemma

4.8.0.2 to these SCCs in accordance with the above order, we get the well-formedness

for all the class and method definitions and well-typedness of the method bodies. Mu-

tual dependency does not pose a problem as we can provide type signature (including

constraint abstraction) ahead of time before the inference is applied simultaneously to

each class and method in the SCC. Notice that our override conflict resolution can only

strengthen the constraint, which preserves the well-typedness due to Lemma A.2.1.5 and

Lemma A.2.1.6. Using the type checking rule for a program, we can conclude that the

region inference result P′ is well-typed with respect to our region type system.

2. (Program Preserving):

The proof is based on Lemma 4.8.0.1.

3. (Completeness):

Applying the inference algorithm according to the order given by a dependency graph,

as it was summarized in Section 4.7 we can obtain a region-annotated program P′ (with

region constraints) for any (well-normal-typed) source program P. The termination of the

inference algorithm can be directly proved, however there are some special situations as

follows:

• fixpoint analysis required by the (mutually-)recursive methods: Fixpoint analysis

always terminates because the finite set of possible constraints is made up from a

bounded set of regions [132].

• overriding check resolution: There is always a solution for those rules, in the worst

case all regions are equal.

• constraint entailment used by region localization rule: The entailment used in our

algorithm is known to be decidable [96, 181].

Moreover, final region constraints collected during the inference process are always sat-

isfiable due to the fact that we only use outlives relation(�). Therefore there is always a

trivial solution where all regions are equal. 2

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 192

se = k | v | v.f | null
Γ ` se d {}, {}

Γ ` e d C,M
Γ ` lhs = e d C,M Γ ` new cn(v∗) d {cn}, {}

Γ, {(v : τ)} ` e d C,M
C ′ = C ∪ {τ | isClassType(τ)}

Γ ` {(τ v) e} d C ′,M
(v0 : cn) ∈ Γ

Γ ` v0.mn(v1, .., vn) d {}, {cn.mn}
Γ ` ei d Ci,Mi, i = 1, 2

Γ ` e1 ; e2 d C1 ∪ C2,M1 ∪M2

Γ ` e d C,M
Γ ` while c e d C,M

Γ ` ei d Ci,Mi, i = 1, 2
Γ ` if v then e1 else e2 d C1 ∪ C2,M1 ∪M2

Figure A.3: Constituent Dependencies Inference for Expressions

A.3 Inference Rules for Dependencies

Given a Core-Java program P, the constituent dependencies, Di’s and the override dependen-

cies, Oi’s can be systematically gathered by the following rule:

P = def1..n P ` defi o Oi ` defi d Di i = 1..n

` P
⋃
i:1..n(Di ∪ Oi)

A.3.1 Inference for Constituent Dependencies

Constituent dependencies are systematically gathered for each class:

def = class cn extends cn′ {(τi fi)i:1..n meth1..m}

{this : cn} ` methi d Di, i = 1..m

D = {(cn→ τi) | i ∈ {1..n} ∧ isClassType(τi)}

D′ = {(cn.mni → cn) | i ∈ {1..m} ∧ mni = name(methi)}
` def d

⋃
i:1..m Di ∪ {cn→ cn′} ∪D ∪D′

The class rule collects the dependencies of the fields, methods and parent class. We define a

method rule to analyse the dependencies from a method body, as follows:

Γ ` mn d C

where Γ is the type environment:

(this : cn) ∈ Γ Γ, {(vi : τi)i:1..n} ` e d C,M

C ′ = C ∪ {τi | i ∈ {0..n} ∧ isClassType(τi)}
Γ ` τ0 mn((τi vi)i:1..n) {e} d {cn.mn→ p | p ∈ C ′ ∪M}

For expressions, we attempt to gather all types and methods that are being used. Given an

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 193

(class cn′ extends cn′′ {...methi:1..p...}) ∈ P (∃i ∈ 1..p methi = meth)
meth = τ0 mn((τi vi)i:1..q)...

O = {cn′.mn→o cn.mn, cn→o cn.mn, cn′.mn→o cn, cn→o cn′.mn}
P, cn, cn′ ` meth o O

(class cn′ extends cn′′ {...methi:1..p...}) ∈ P (∀i ∈ 1..p methi 6= meth)
P, cn, cn′′ ` meth o O
P, cn, cn′ ` meth o O

(class Object {...methi:1..p...}) ∈ P (∀i ∈ 1..p methi 6= meth)
P, cn,Object ` meth o {}

Figure A.4: Override Checks for a Method

expression e and a type environment Γ, we gather a set of used class types C, and a set of

invoked methods M, as follows:

Γ ` e d C,M

The syntax-directed inference rules for expressions are detailed in Figure A.3.

A.3.2 Inference for Override Dependencies

We gather all method override checks by traversing each class declaration in search of every

pair of methods that override:

(def = class cn extends cn′ {field∗ meth1..p}) ∈ P

P, cn, cn′ ` methi o Oi i = 1..p

P ` def o

⋃
i:1..p Oi

For each class, we check each method to see if it overrides a corresponding method in one of its

superclasses. If so, we gather the dependencies of the method overriding check. The rules for

a method are shown in Figure A.4. The search is stopped either when the overridden method is

found or when the top of the class hierarchy is reached. The rules use the predicate methi=meth

to verify if the methods have the same signature (name, result type, and parameters’ types).

A.4 Handling Downcast

One important feature that is still missing from Core-Java is the downcast operation. In general,

this operation may be type unsafe if the object in question is not the subtype that was expected.

In case of region types a downcast may also be unsafe due to the region parameters of the

region types. In [21], a type-passing approach was extended to carry ownership information to

allow this property to be checked at runtime. If a region error is detected at runtime, the blame

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 194

class A〈r1,r2〉 . . .;
class B〈r1,r2,r3〉 extends A〈r1,r2〉 . . .;
class C〈r1,r2,r3〉 extends A〈r1,r2〉 . . .;
class D〈r1,r2,r3,r4〉 extends C〈r1,r2,r3〉 . . .;
class E〈r1,r2,r3,r4,r5〉 extends A〈r1,r2〉 . . .;

:
A〈r1,r2〉 a; A〈r1’,r2’〉 a2;
if .. then

a = lb:new B〈lb1,lb2,lb3〉(..);//B upcast to A
else ..

a = lc:new C〈lc1,lb2,lc3〉(..);//C upcast to A
else ..

a = le:new E〈le1,le2,le3,le4,le5〉(..);//E upcast to A
B〈rb1’,rb2’,rb3’〉 b = lbb:(B〈rb1,rb2,rb3〉)a;//downcast to B
C〈rc1’,rc2’,rc3’〉 c = lcc:(C〈rc1,rc2,rc3〉)a;//downcast to C
D〈rd1’,rd2’,rd3’,rd4’〉 d = ldd:(D〈rd1,rd2,rd3,rd4〉)c;//downcast to D

Figure A.5: Program Fragment with Downcasts

can still be pinned on the programmer for a wrong region annotation. With automatic region

inference, the onus will be on the type inference system to prevent such a situation; moreover at

compile-time. In this section we elaborate how this problem can be solved.

Core-Java is extended with a new construction, that allows downcasting only on variables,

as follows:
e ::= ... | (cn) v

Downcast and upcast represent opposite operations. In our present formulation, regions may

be lost during upcast operations. As a consequence, we are unable to carry out region-safe

downcast, as the lost regions cannot be recovered. To illustrate the problem, consider a program

fragment with the class hierarchy in Figure A.5. For exposition purposes, the new expressions

and the cast expressions are labeled with unique program points. During the upcast operations,

regions lb3,lc3,le3,le4,le5 are lost. These lost regions cannot be recovered when subse-

quent downcast operations are performed, leading to unknown regions rb3,rc3,rd4.

To support region-safe downcasting, a key technique is to preserve the regions that were

supposedly lost during upcasting. We propose two solutions. The first solution is modular but

imprecise, while the second solution is more precise but it requires a nonlocal flow analysis.

Both our solutions are more precise than a solution based on phantom regions from RegJava

[41] (more details are given in Appendix A.7).

The first solution preserves lost regions during upcasting by equating them with the object’s

first region. In this way, downcasting can always be achieved through the object’s first region.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 195

In the following example, the upcast operation forces the region p3 to be equivalent to p1. As a

consequence, the lost region can easily be recovered during a downcast operation from the first

region p3’=p1’, as follows:

A〈ra1,ra2〉 a = new B〈p1,p2,p3〉(..)//p3=p1∧p1�ra1∧p2=ra2

· · ·(B〈p1’,p2’,p3’〉) a· · ·//p3’=p1’∧p1’=ra1∧p2’=ra2

Applying this technique to the program fragment of Figure A.5 results in the following program

(the region constraints are shown as comments):

A〈r1,r2〉 a; A〈r1’,r2’〉 a2;

if .. then

a = new B〈lb1,lb2,lb3〉(..);//lb3=lb1∧lb1�r1∧lb2=r2

else ..

a = new C〈lc1,lc2,lc3〉(..);//lc3=lc1∧lc1�r1∧lc2=r2

else ..

a = new E〈le1,le2,le3,le4,le5〉(..);

//le3=le4=le5=le1∧le1�r1∧le2=r2

B〈rb1’,rb2’,rb3’〉 b = (B〈rb1,rb2,rb3〉)a;

//rb3=rb1∧rb1=r1∧rb2=r2∧rb1�rb1’∧rb2’=rb2∧rb3’=rb3

C〈rc1’,rc2’,rc3’〉 c = (C〈rc1,rc2,rc3〉)a;

//rc3=rc1∧rc1=r1∧rc2=r2∧rc1�rc1’∧rc2’=rc2∧rc3’=rc3

D〈rd1’,rd2’,rd3’,rd4’〉 d = (D〈rd1,rd2,rd3,rd4〉)c;

//rd4=rd1∧rd1=rc1∧rd2=rc2∧rd3=rc3∧rd1�rd1’∧

//rd2’=rd2∧rd3’=rd3∧rd4’=rd4

While this solution is simple to implement, some lifetime precision is lost due to the region

equality constraints imposed during upcasting. These equality constraints force the additional

fields to be stored in the same region as the object itself. Therefore larger regions than necessary

could be generated.

The second solution maintains extra regions during upcasting, if they may be downcast

subsequently. Specifically, all variables to objects that may be downcast (to some subclasses)

must be padded in advance with a sufficient number of extra regions to support region-safe

downcasting later. A flow-based analysis is required to determine the scope in which each

object may be downcast. For each such object, we pad its region-type with a sufficient number

of extra regions to support downcast operations later. In the following example, the region type

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 196

of a is padded with the extra region r since a may be downcast to B later. During the upcast

operation the region p3 is equated with the padded region r. As a consequence, the region p3 is

not lost and the downcast operation can recover it from the padded region, p3’=r, as follows:

A〈ra1,ra2〉[r] a = new B〈p1,p2,p3〉(..)//p3=r∧p1�ra1∧p2=ra2

· · ·(B〈p1’,p2’,p3’〉)a· · ·//p3’=r∧p1’=ra1∧p2’=ra2

Since extra regions of a padded region type correspond to fields, they satisfy the no-dangling

requirement and outlive the first region (e.g. r�ra1). For the program fragment of Figure A.5,

the flow analysis can determine that the object a may be downcast to B,C,D, while the object

c and the cast expression labeled with lcc may be downcast to D. As the subclass D has the

maximum number of regions, their region types are padded with upto four regions, namely

A〈r1,r2〉[r3,r4] for a, C〈rc1’,rc2’,rc3’〉[rc4’] for c, and C〈rc1,rc2,rc3〉[rc4]

for lcc to support region-safe downcast to either B,C or D. Note that [r3,r4], [rc4] and

[rc4’] denote the padded regions for a, lcc and c, respectively. In contrast, object a2 and

b are never downcast, hence we do not impose any extra regions on their region types. The

program fragment of Figure A.5 can now be transformed to the following program (the region

constraints are shown as comments):

A〈r1,r2〉[r3,r4] a; A〈r1’,r2’〉 a2;

if .. then

a = new B〈lb1,lb2,lb3〉(..);//lb3=r3∧lb1�r1∧lb2=r2

else ..

a = new C〈lc1,lc2,lc3〉(..);//lc3=r3∧lc1�r1∧lc2=r2

else ..

a = new E〈le1,le2,le3,le4,le5〉(..);

//le3=r3∧le4=r4∧le5=le1∧le1�r1∧le2=r2

B〈rb1’,rb2’,rb3’〉 b = (B〈rb1,rb2,rb3〉)a;

//rb3=r3∧rb1=r1∧rb2=r2∧rb1�rb1’∧rb2’=rb2∧rb3’=rb3

C〈rc1’,rc2’,rc3’〉[rc4’] c = (C〈rc1,rc2,rc3〉[rc4])a;

//rc3=r3∧rc4=r4∧rc1=r1∧rc2=r2∧rc1�rc1’∧rc2’=rc2∧rc3’=rc3∧rc4’=rc4

D〈rd1’,rd2’,rd3’,rd4’〉 d = (D〈rd1,rd2,rd3,rd4〉)c;

//rd4=rc4’∧rd1=rc1’∧rd2=rc2’∧rd3=rc3’∧rd1�rd1’

//∧rd2’=rd2∧rd3’=rd3∧rd4’=rd4

Take note that a does not have enough padded regions to save the extra regions le3,le4,le5

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 197

of E. Hence, the extra region le5 of E is saved into the first region le1 (as the first solution

does). The reason is that the E class is not in the set to which object a may be downcast.

However this padded region solution requires alias analysis for downcasting on the object

fields. Moreover, the region types of the object fields also need to be padded in advance with

extra regions. The fields’ padded regions may lead to a tree-like structure of the types’ region

annotations. In order to avoid these problems and to keep the region annotations simpler (list-

like structure), we propose the following mixed solution: the first solution (that uses first region)

for downcasting on object fields and the second solution (that uses padded regions) for down-

casting on objects. We illustrate our mixed solution on the program fragment of Figure A.6.

Our flow analysis attempts to determine the possible downcasts for each object from the pro-

gram. In order to avoid the complexity of alias analysis, our flow analysis does not trace the

downcasts for the fields and through the fields. For the previous program fragment, the analy-

sis can determine that object v3 may be downcast to Pair,Cell, while the object v1 may be

downcast to Cell. The region types of these objects are padded with extra regions, v3 upto

three regions and v1 upto two regions, respectively. The result is Object〈rv3〉[p1,p2] for v3

and Object〈rv1〉[p3] for v1. Note that the downcasts for the fields a.fst and b.fst are not

captured. Since v1 flows into v3 through the field fst, the downcast of v1 to Pair also cannot

be determined. Downcasts that are not captured by the flow analysis are resolved using the first

region. The program fragment of Figure A.6 can be transformed into the following program

(the region constraints and the region subtyping rules of Figure A.7 are shown as comments):

Pair〈ra1,ra2,ra3〉 a;

Pair〈rb1,rb2,rb3〉 b;

Object〈rv1〉[p3] v1;

if .. then

v1=new Pair〈l1,l2,l3〉(..);//l1�rv1∧l2=p3∧l3=l1(Rule[PadSubClass-3])

else ..

v1 = new Cell〈l1’,l2’〉(..);//l1’�rv1∧l2’=p3 (Rule [PadSubClass-1])

a=b;//rb1�ra1∧rb2=ra2∧rb3=ra3

b.fst = v1;//rv1�rb2∧p3=rv1 (Rule [PadRegSub-2])

Object〈rv3〉[p1,p2] v3 = a.fst;//ra2�rv3 (Rule [PadRegSub-3])

Pair〈rc1’,rc2’,rc3’〉 c = (Pair〈rc1,rc2,rc3〉) v3; //(Rule [RegEqual-2])

//rc1=rv3∧rc2=p1∧rc3=p2∧rc1�rc1’∧rc2=rc2’∧rc3=rc3’

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 198

class Cell〈r1,r2〉 extends Object〈r1〉 ...;
class Pair〈r1,r2,r3〉 extends Object〈r1〉 {

Object〈r2〉 fst;
Object〈r3〉 snd; ... }

:
Pair〈ra1,ra2,ra3〉 a;
Pair〈rb1,rb2,rb3〉 b;
Object〈rv1〉 v1;
if .. then

v1 = lp:new Pair〈l1,l2,l3〉(..);//Pair upcast to Object
else ..

v1 = lc:new Cell〈l1’,l2’〉(..);//Cell upcast to Object
a=b;//two aliases are created
b.fst = v1;// flow into a field
Object〈rv3〉 v3 = a.fst;//flow from a field
Pair〈rc1’,rc2’,rc3’〉 c = lcc:(Pair〈rc1,rc2,rc3〉) v3;//downcast to Pair
v1=v3;//two aliases are created
Cell〈rd1’,rd2’〉 d = ldd:(Cell〈rd1,rd2〉) v1;//downcast to Cell

Figure A.6: Program Fragment with Downcasts

v1=v3;//rv3�rv1∧p3=p1∧p2=rv3 (Rule [PadRegSub-1])

Cell〈rd1’,rd2’〉 d = (Cell〈rd1,rd2〉) v1; //(Rule [RegEqual-2])

//rd1=rv1∧rd2=p3∧rd1�rd1’∧rd2=rd2’

Figure A.7 contains the additional region subtyping rules that support downcasting. The first

three rules [PadSubClass−1], [PadSubClass−2], and [PadSubClass−3] extend to padded region types

the class subtyping rule [SubClass] of Figure 3.6. The extra regions of the subtype are saved either

into the padded regions of the supertype or into the first region of the subtype. These rules can

be used by the mixed solution. When the first solution is applied alone (all padded region types

have zero extra regions), we use only the rule [PadSubClass−2] by making n equal to zero. Next

three rules [PadRegSub−1], [PadRegSub−2], and [PadRegSub−3] define the region subtyping for the

padded region types. When both types are padded region types, the supertype cannot have more

padded regions than the subtype due to the downcast flow propagation rules.

The last two rules of Figure A.7 are used for the downcast expressions. They define the

equality relation ∼=r between the regions of the target type (written on the left hand side) and

the regions of the type to be cast (written on the right hand side). The first solution ([RegEqual1])

equates the additional regions of the target type with its first region. In case of the mixed

solution, the target type and the type to be cast have the same number of regions ([RegEqual2]).

The backward flow analysis that computes in advance the number of the padded regions is

formulated as a global analysis in the next section.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 199

[PadSubClass−1]
0<p 0≤q 0≤k 0≤n p+q+k≤p+q+k+n

class cn〈x1..(p+q+k)〉 extends cn′〈x1..(p+q)〉...∈P′

ϕ′=
∧k
i=1(r(p+q+i)=r′(p+q+i))

` cn′〈r1..(p+q)〉<:cn′′〈r′1..p〉[r′(p+1)..(p+q)], ϕ

` cn〈r1..(p+q+k)〉<:cn′′〈r′1..p〉[r′(p+1)..(p+q+k+n)], ϕ∧ϕ′

[PadSubClass−2]
0<p 0≤q 0≤k 0≤n≤q p+q>p+n

class cn〈x1..(p+q+k)〉 extends cn′〈x1..(p+q)〉...∈P′

ϕ′=
∧k
i=1(r(p+q+i)=r1)

` cn′〈r1..(p+q)〉<:cn′′〈r′1..p〉[r′(p+1)..(p+n)], ϕ

` cn〈r1..(p+q+k)〉<:cn′′〈r′1..p〉[r′(p+1)..(p+n)], ϕ∧ϕ′

[PadSubClass−3]
0<p 0≤q 0≤k 0<n<k p+q+k>p+q+n

class cn〈x1..(p+q+k)〉 extends cn′〈x1..(p+q)〉...∈P′

ϕ′=
∧n
i=1(r(p+q+i)=r′(p+q+i)) ∧

∧k−n
i=1 (r(p+q+n+i)=r1)

` cn′〈r1..(p+q)〉<:cn′′〈r′1..p〉[r′(p+1)..(p+q)], ϕ

` cn〈r1..(p+q+k)〉<:cn′′〈r′1..p〉[r′(p+1)..(p+q+n)], ϕ∧ϕ′

[PadRegSub−1]
0<m 0≤k 0≤p 0≤q 0<p+q m+k+p+q≥m+k+p
ϕ′=

∧q
i=1(r(m+k+p+i)=r1) ∧

∧p
i=1(r(m+k+i)=r′m+k+i)

` cn〈r1..(m+k)〉<:cn′〈r′1..m〉[r′(m+1)..(m+k)], ϕ

` cn〈r1..(m+k)〉[r(m+k+1)..(m+k+p+q)]<:cn′〈r′1..m〉[r′(m+1)..(m+k+p)], ϕ∧ϕ′

[PadRegSub−2]
0<m 0≤k 0<p 0≤n≤k m+k+p>m+n

ϕ′=
∧p
i=1(r(m+k+i)=r1)

` cn〈r1..(m+k)〉<:cn′〈r′1..m〉[r′(m+1)..(m+n)], ϕ

` cn〈r1..(m+k)〉[r(m+k+1)..(m+k+p)]<:cn′〈r′1..m〉[r′(m+1)..(m+n)], ϕ∧ϕ′

[PadRegSub−3]
` cn〈r1..m〉<:cn〈r′1..m〉, ϕ

` cn〈r1..m〉<:cn〈r′1..m〉[r′(m+1)..(m+p)], ϕ

[RegEqual−1]
ϕ=

∧m
i=1(ri=r′i)∧

∧p
i=1(r(m+i)=r1)

` cn〈r1..(m+p)〉∼=rcn′〈r′1..m〉, ϕ

[RegEqual−2]

ϕ =
∧(m+p+q)
i=1 (ri=r′i)

` cn〈r1..(m+p)〉[r(m+p+1)..(m+p+q)]∼=rcn′〈r′1..m〉[r′(m+1)..(m+p+q)], ϕ

Figure A.7: Region Subtyping Rules for Downcast

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 200

A.4.1 Backward Flow Analysis

We introduce a backward flow analysis that attempts to analyse downcast operations which may

be subsequently performed for the objects of a given program. In the interest of simplicity, our

analysis is flow-insensitive and context-insensitive. It also does not trace the downcasts for the

object fields and through the object fields.

Moreover it is a global analysis for which each program point is represented uniquely. The

parameters v∗ and the receiver of each instance method mn of a class cn are represented by

cn.mn.v∗ and cn.mn.this, while its result is represented by cn.mn. Every new expression

is labeled with a unique program point using l:new cn(..), and similarly for each block

l:{(t v) e}. The purpose of labeling the former is to identify its source location, while the

label for block is to allow local variables to be uniquely renamed. Specifically, we rename

v by l.v in l:{(t v) e} to make all variable declarations unique. We also attach a label

to cast expression l:(t)v in order to determine the possible subsequently downcasts of the

intermediate value of type t.

The purpose of this flow analysis is to identify the set of classes to which the object at a

program point may be downcast later. The algorithm consists of two steps: first it gathers the

flows to build the flow graph and then propagates the backward flows through the graph until a

fixpoint is reached.

The new inference rule to gather the set of backward flows is defined as:

Γ, x ` e,C

where x is a receiver that may capture the result of e under the type environment Γ. The receiver

can be a variable, a method parameter, a method receiver or a method result. The output C

denotes the set of backward flows that occur in e and its receiver x. For convenience, we omit Γ

in the rules and assume that it is properly maintained with the set of live variables and their types

at each scope. Each backward flow is represented using either v1 99Kv2 or v1−D→v2, where the

arrows indicate that v1 captures a value from v2. In addition, the second arrow is annotated with

a D-class to indicate that its source, namely v2, may be subjected to a downcast-to-D operation.

The rule for downcast operation itself is defined as follows:

x ` l : (D) v, {x−D→v, x99K l}

where the backward flow x−D→v denotes that the value of v may flow into its outer receiver

x and be subjected to a downcast operation, while the backward flow x99K l denotes that the

intermediate value (of type D) of cast expression may flow into its outer receiver x.

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 201

The next few rules show the backward flows of variables, object fields and primitives:

C = if isPrimType(v) then {} else {x99Kv}
x ` v,C

e = null | v.f | k
x ` e, {}

Take note that we only capture the flows of object values and ignore those from object fields and

primitive values, including null.

The next few rules are due to various expressions. Note that the flow into fields is ignored.

Both branches of a conditional flow into its outer receiver. For expression block, the local

variable is made unique with the help of label l. In the case of the new c(v1..p) constructor, the

created object denoted by l flows into the outer receiver.

v ` e,C
x ` v = e,C

x ` v.f = e, {} x ` e1,C1 x ` e2,C2

x ` if v then e1 else e2,C1 ∪ C2

x ` e,C
x ` while v e,C

fresh w w ` e1,C1 x ` e2,C2

x ` e1;e2,C1 ∪ C2

x ` [v 7→ l.v]e,C
x ` l : {(τ v) e},C

x ` l : new c(v∗), {x99K l}

To gather the set of backward flows that occur within each method mn of the class cn, we intro-

duce the relation: cn ` meth,R; W; C, where R and W denote the sets of parameters that are being

used as source (covariant via read) and destination (contravariant via write), respectively:

cn.mn ` [(v 7→ cn.mn.v)∗, this 7→ cn.mn.this] {e},C V = [cn.mn.this, cn.mn.v∗]
cn ` τ0 mn((τ v)∗) {e}, readSet(C,V); writeSet(C,V); C

Some parameters are used as both read and write, and they appear twice. Others may not appear

in either set, if they are of primitive types or only their fields are used in the method body. The

following functions classify the parameters based on the directions of value flow, as follows:

readSet(C, v1..n) = {(vi, i) | i ∈ 1..n ∧ (w99Kvi) ∈ C}

writeSet(C, v1..n) = {(vi, i) | i ∈ 1..n ∧ (vi 99Kw) ∈ C}

The function link, connects up the current arguments w1..n of a method with its formal parame-

ters using the sets, R and W , for reading and writing.

link(w1..n, R,W) = {v99Kwi | (v, i) ∈ R} ∪ {wi 99Kv | (v, i) ∈ W}

In the case of a method invocation, the result of the method flows into outer receiver x. Due

to method overriding and inheritance, each method invocation may have to deal with a set of

methods at compile-time. To handle this, we provide bidirectional flows for each of the non-

primitive parameters, as shown below:

(w1 : cn) ∈ Γ C = {cn.mn.vi 99Kwi,wi 99Kcn.mn.vi, | i ∈ 2..n ∧ ¬isPrimType(wi)}
x ` w1.mn(w2..n),C ∪ {w1 99Kcn.mn.this, x99Kcn.mn}

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 202

The backward flows for the entire program are captured by the next two rules:

` defi,Ci i = 1, .., n

` def1..n,
⋃

1..n Ci

I = {(meth, cn′′) | cn′′ ∈ supclass(cn) ∧ meth ∈D cn′′ ∧ meth ∈ cn}

CI={link(cn.mn.v∗, R,W)∪{cn.mn99Kcn′′.mn} | (meth, cn′′)∈I∧cn′′ ` meth, R,W, }

O={(methi, cn′′)|i∈1..m∧cn′′∈subclass(cn)∧∃meth′i∈Dcn′′·name(methi)=name(meth′i)}

CO={link(cn.mn.v∗, R,W)∪{cn.mn99Kcn′′.mn} | (meth, cn′′)∈O∧cn′′ ` meth, R,W, }

cn ` methi, , ,Ci, i = 1, ..,m

` class cn extends cn′ {(τ f)∗, meth1..m},
⋃

1..m Ci ∪ CI ∪ CO

The flow analysis for classes is complicated by both method inheritance and method overriding.

The set CI captures the flows that are induced by inheritance for each method that is declared in

a superclass and inherited in the present class. Note that ∈D captures direct membership within

a given class, while ∈ denotes membership with inheritance. The flow set CO captures the flows

that might occur for all overridden methods that exist in the subclasses of cn. The linking is

based on the read/write flow set for each instance method. Note that supclass(cn) returns all

superclasses of cn, while subclass(cn) returns all subclasses of cn.

A.4.1.1 Transitive Closure of Flows

After the entire set of backward flows is generated, we can proceed to perform a transitive

closure to gather all program points that could be downcast. The goal of our analysis is to find

a set of classes that could be subsequently downcast for each object at a given program point.

For each variable, v we associate a set of casts, D, written as v[D]. Take note that labels l are

also permitted in place of v. These sets are initially empty, with the first elements obtained by

converting each arrow with downcast, as follows:

v−D→w ∧ w[S] ⇒ v99Kw ∧ w[S ∪ {D}]

Once this rule is applied to all arrows with downcasts, we can proceed to perform the closure of

downcast flow analysis using the following rule:

v[S1] ∧ w[S2] ∧ v99Kw ∧ S1 * S2 ⇒ w[S1 ∪ S2]

This rule is repeatedly applied until a fixpoint is reached. Closure of downcast terminates as

there is a finite number of classes for each program. Consider the earlier program fragment of

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 203

Figure A.5, the gathered set of flows is:

{a99K lb, a99K lc, a99K le, b−B→a, b99K lbb, c−C→a, c99K lcc, d−D→c, d99K ldd}

The arrows with downcasts are initially converted as follows:

a[B,C]∧c[D]∧{a99K lb, a99K lc, a99K le, b99Ka, b99K lbb, c99Ka, c99K lcc, d99Kc, d99K ldd}

Applying the downcast closure rule we obtain the following result:

a[B,C,D], c[D], lcc[D], lb[B,C,D], lc[B,C,D], le[B,C,D]

This outcome guides the padding of extra regions for each variable declaration, object creation

site or target type of a cast expression.

Considering the program fragment of Figure A.6, the gathered set of flows does not contain

the flow from/to fields:

{v199K lp, v199K lc, a99Kb, c−Pair→v3, c99K lcc, v199Kv3, d−Cell→v1, d99K ldd}

Converting the arrows with downcasts and then applying the downcast closure rule we obtain

the following result:

v1[Cell], v3[Cell,Pair], lp[Cell], lc[Cell]

A.5 Runtime regions

In this section we present two analyses on region-annotated programs which are done before

code generation. The first analysis, called region coalescing, minimizes (where possible) the

number of method’s region parameters which are used in the method’s body. Using the result of

the region coalescing, the second analysis generates the region handles which may need to be

passed to each method at its call sites at runtime.

A.5.1 Region Coalescing

Each method takes a set of region parameters. In the context of the method’s precondition, some

of the method region parameters may be equivalent denoting regions with the same lifetime.

The equivalent method’s region parameters may be coalesced together to minimize the number

of region parameters which are used in the method’s body. This simplification helps the next

region handles analysis to reduce the number of the region parameters that have to be passed to

the methods’ call sites at runtime. For instance, given the following method with three region

parameters and the following precondition:

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 204

[RCO−Class]
ϕ, {this : cn〈r1..n〉} ` methi ↪→ meth′i, i = 1..q

` class cn〈r1..n〉 extends cn′〈r1..l〉whereϕ {fdi:1..p methi:1..q}
↪→ class cn〈r1..n〉 extends cn′〈r1..l〉whereϕ {fdi:1..p meth′i:1..q}

[RCO−Meth]
R=reg(Γ)∪{r+} ρ=buildeq({}, R, ϕ∧ϕ′) e′ = ρ e

ϕ, Γ ` τ0〈x∗0〉 mn〈r+〉((τj〈x∗j 〉 vj)j:2..p) whereϕ′ {e}
↪→ τ0〈x∗0〉 mn〈r+〉((τj〈x∗j 〉 vj)j:2..p) whereϕ′ {e′}

buildeq(S, [], ϕ) =def []
¬(∃s ∈ S · ϕ⇒ (r=s))

buildeq(S, {r}∪R,ϕ) =def buildeq(S∪{r}, R, ϕ)

∃s ∈ S · ϕ⇒ (r=s)
buildeq(S, {r}∪R,ϕ) =def [r 7→s]∪buildeq(S,R, ϕ)

ρ e region substitution on an expression
reg(Γ) computes the region variables of a type environment types (see Figure 4.6)

Figure A.8: Region Coalescing Analysis

τ0 mn〈r1,r2,r3〉(τ1,..,τk) where r2=r3 {e}

The method’s body can use either the region r2 or r3, as both are equivalent. Thus the substi-

tution ρ=[r27→r3] can be applied on the method’s body as follows:

τ0 mn〈r1,r2,r3〉(τ1,..,τk) where r2=r3 {ρe}

Region coalescing rules are shown in Figure A.8. The first two rules collect the receiver’s

class invariant and the method’s precondition for each method. The last three rules describe the

function buildeq, that derives a substitution to map equivalent regions together. The body of each

method is then subjected to its corresponding region identity substitution.

A.5.2 Region Handles

In a region-annotated program, all regions of parameters (including receiver) and results are

passed into each method. These regions may be accessed for reading, updating or creation of

the objects. However, in the final code, we are only required to have access to the handles

of regions that may be allocated with new objects. Therefore we perform a transformation to

generate a corresponding program with such region handles. Our analysis is isomorphic to get-

region dropping from [18]. For each expression, we generate a corresponding expression with

a minimal set of required region handles, namely those that may be allocated with new objects.

We use the following inference rule:

Γ ` e ↪→ e′ # W

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 205

se = k | v | v.f | null
Γ ` se ↪→ se # {}

Γ ` e ↪→ e′ # W
Γ ` lhs=e ↪→ lhs=e′ # W

Γ ` ei ↪→ e′i # Wi i=1, 2
Γ ` e1;e2 ↪→ e′1 ; e′2 # W1∪W2

Γ ` new cn〈r1..n〉(v1..vm) ↪→ new cn(v1..vm)@r1 # {r1}
Γ ` ei ↪→ e′i # Wi i=1, 2

Γ ` if v then e1 else e2 ↪→ if v then e′1 else e′2 # W1 ∪W2

Γ, {(v : t)} ` e ↪→ e′ # W τ ′=erase(t)
Γ ` {(t v) e} ↪→ {(τ ′ v) e′} # W

Γ ` e ↪→ e′ # W r ∈ W
Γ ` letreg r in e ↪→ letreg r in e′ # W \ r

Γ ` e ↪→ e′ # W r 6∈ W
Γ ` letreg r in e ↪→ e′ # W

(v′1 : cn〈x′+1 〉)∈Γ (τ0 mn〈x′+1 , y∗ # W〉((tj vj)j:2..p) {e})∈cn〈x′+1 〉 W′=[y∗ 7→y′∗]W
Γ ` v′1.mn〈x′+1 , y′∗〉(v′2, ..., v′p) ↪→ v′1.mn〈W′〉(v′2, ..., v′p) # W′

Figure A.9: Region Handles Analysis for Expressions

where Γ is the region type environment, e is a well-typed region annotated expression, e′ is

the expression with region handles and W is the set of regions that may be allocated with new

objects. Note that region types are erased in the target program. The syntax-directed inference

rules for expressions are detailed in Figure A.9.

Γ, {(vj : τj〈x∗j 〉)}j:1..p ` e ↪→ e′ # W (this : cn〈r+〉) ∈ Γ {y+}={r+}∪{z∗}
Γ ` (τ0〈x∗0〉 mn〈y+〉((τj〈x∗j 〉 vj)j:1..p) whereϕ {e})

↪→ (τ0 mn〈r+, z∗ # W〉((τj vj)j:1..p) {e′})

({this : cn〈r1..n〉} ` methi ↪→ meth′i)i:1..q (fd′i = erase(fdi))i:1..p
` class cn〈r1..l, rl+1..n〉 extends cn′〈r1..l〉where ϕ {fdi:1..p methi:1..q}

↪→ class cn extends cn′ {fd′i:1..p meth′i:1..q}

meth1=t0 mn〈r1..p, z1..n#W1〉((τ v)1..m){e1}
meth2=t0 mn〈r′1..p, z′1..n#W2〉((τ v)1..m){e2}

ρ = [r1..p 7→ r′1..p][z1..n 7→ z′1..n] W=(ρW1)∪W2

meth′1=t0 mn〈r′1..p, z′1..n#W〉((τ v)1..m){ρe1}
meth′2=t0 mn〈r′1..p, z′1..n#W〉((τ v)1..m){e2}

P ` Overrides(meth1,meth2) ↪→ Overrides(meth′1,meth′2)

Figure A.10: Region Handles Analysis for Methods

The transformation rules for each method and class are shown in Figure A.10. The rule for

the method declaration decomposes the list of the region parameters into three components: the

receiver’s regions r+, the regions of the method’s parameters and result z∗, and the regions W that

may be allocated in the method body. Only the regions of W are required at runtime. The other

two annotations, r+ and z∗ are used by the current analysis for the method call expression and to

solve the overriding. Overrides(meth1,meth2) relation computes the minimal union set of all the

regions that may be allocated either by the overridden method or by the overriding method, or

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 206

by both methods.

A.6 Discussion of Other Java Features

In this section we discuss other features of Java that may be handled in our approach to region

inference.

Arithmetic, Logic, and Comparison Operations

In order to simplify the semantics and the inference rules, our translator translates all Java (arith-

metic, logic, and comparison) operations into corresponding methods of a special class.

Pass-by-reference mechanism

Our Core-Java language can be extended to support in-out parameters for methods. The region

subtyping rule [InvRegSub] from Figure 3.6 can be used to support those flows that are based

on pass-by-reference semantics.

Statements

In order to support statements and exceptions we can extend Core-Java with new language

constructs, as follows:

e ::= ... | return [v] | throw [v] | try e [catch (τ v e)]∗ | break | continue

Unstructured control flow statements of Java are translated in Core-Java using conditional state-

ments. Translation of Java to Core-Java is done automatically by our translator. Although our

region inference is a flow-insensitive analysis, it has to take into account the different ways to

escape from the method body. The statements break and continue can be directly handled by

our region inference rules, because they can only change the local flow. However for return and

throw statements, we propose a new inference judgment, based on the (normal type, return type,

exception type) tuple from [55]:

Γ ` eVe e
′ : t#tr#{ti:1..m}, ϕ

where t is the normal type that characterizes normal execution of the expression without any

return or throw statement, tr is the return type that denotes the return type of the current method,

and {ti:1..m} is the set of exception types denoting the types of all uncaught exceptions thrown

during the execution of e. The types of the return statements from expression e are subtypes of tr

and the generated constraints are collected into ϕ. Note that the collected constraint ϕ consists

of all region constraints referring to all three kinds of types. The above judgment allows the

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 207

localization into regions of the exceptions which are caught by the catch clauses of try-catch

mechanism.

Exception mechanism

The treatment of exceptions raises two issues in the context of region inference.

First, when an exception occurs, the exception object being thrown may escape non-lexically

through the run-time call stack before it is caught by an exception handler. As a result, excep-

tions themselves are harder to be placed into regions. One simple solution is to place them into

a special region that lives forever (like heap). A more precise solution is to localize exceptions

using the new inference judgmentVe proposed above.

Second, if a method terminates abruptly with an exception, the program must reclaim all of

the local regions that are still live. The number of regions to deallocate is not known at compile

time. A simple solution relies on run-time support. For example, Cyclone [80] stores region

handles and exception handlers in an integrated list that operates in a last-in-first-out manner.

When an exception is thrown, the list is traversed deallocating regions until an exception handler

is met. In this fashion, a region is always deallocated when control returns. We propose a similar

solution. The letreg expression is compiled as try-finally mechanism that deallocates the current

region in the finally clause.

Static fields and methods

Static class fields may also be added to Core-Java. As they must persist throughout the entire

program execution, objects created here must be placed in a special region that lives forever

(like heap). Static methods are treated in a similar fashion as instance methods, except that they

cannot be overwritten and do not have a receiver.

Interfaces

An interface produces a completely abstract class without any method definition nor fields. A

major unknown is the number of region parameters that we should allocate for each interface in

order to support region-safe upcast and downcast operations (Appendix A.4). A simple solution

(similar to the first solution for downcast) is to automatically provide each interface I with

three regions, for example I〈ri1,ri2,ri3〉, where ri1 is the region for the instance object,

ri2 is the region for non-recursive fields and ri3 is the region for recursive fields. With this,

any upcast (or downcast) from a class into its interface would map its non-recursive fields into

the second region and the recursive fields into the third region of the interface. The classes

themselves can have as any many region parameters in accordance with inference technique

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 208

of Section 4.2 for classes. The mapping of regions only occur during upcast and downcast

operations. The following program shows how regions of classes with interfaces are inferred:

interface I〈ri1,ri2,ri3〉 {...}

class A〈ra1,ra2〉...implements I

{...A〈ra2,ra2〉 fld;...}//one recursive field

class B〈rb1,rb2,rb3〉...implements I {...} //no recursive fields

:

I〈r1,r2,r3〉 i;

Pair〈r4,r5,r6〉 pp;

if ... then ...

i= new A〈r7,r8〉(...);//r7�r1∧r8=r3

else ...

i= new B〈r9,r10,r11〉(...);//r9�r1∧r10=r11=r2

:

...(A〈r12,r13〉)i...//r12=r1∧r13=r3

Since an interface is a superclass of all classes that implement it, the interface class invariant

has to satisfy the class subtyping check and each interface method has to satisfy the method

overriding check. The interface class invariant is always true such that the class subtyping

check is enforced by default. The precondition of an interface method has to be stronger than

all the preconditions of the methods which implement that interface method. We start with the

interface method precondition set to true and then for each method that implements the interface

method we strengthen the interface method precondition according to the method overriding

resolution from Section 4.6. After each step the current interface method precondition is a

strengthening of the previous precondition, therefore the previous overriding checks still hold.

Arrays

We separate the array and its components in different regions. Thus, the region type of an array

consists of two parts: the first region is for the array itself and the rest of the regions correspond

to the region type of the array’s components. Due to no-dangling requirement all regions of the

array’s components outlive the region where the array itself is stored.

Multi-threading

Multi-threading in Java is used to support concurrency. Each thread may have its own execution

lifetime that is synchronized by access to shared objects. Correspondingly, regions may also be

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 209

shared amongst a group of threads. The lifetime of regions must outlive the last use amongst

its thread clients. This can be guaranteed via a reference counting mechanism on the shared

region, but stack-like behavior is partially lost, so each region may only be deleted after all

processes which use it have released access. SafeJava [23] and an extension of Cyclone [79]

extend region types to multithreaded programs by allowing explicit memory management for

objects shared between threads. They allow threads to communicate through objects in shared

regions in addition to the heap. A shared region is deleted when all threads exit the region.

A similar solution may also be adopted though such regions may have longer lifetimes due

to the need to wait for concurrent processes to release the shared region. There are a couple

of solutions to avoid the potential for memory leaks. One solution proposed by SafeJava [23]

is to use subregions that can be recycled and reallocated, while its parent region remains live.

Another solution is to use linearity analysis to determine objects that have become dead and thus

may have their space recycled [113]. We prefer the latter solution as it is closer to the approach

of automatic region inference.

Generic types

At present, although each class in Core-Java is region polymorphic, the base type is still monomor-

phic. There have been several recent proposals [24, 193] to add generic types to Java. Such

extensions can help reduce the number of downcast operations, and could be used to improve

on the lifetimes of the regions. To support genericity, we have to modify the region type system

to support polymorphic region variables. A polymorphic region variable denotes a set of regions

like the original work in ML [191] and can be instantiated, similar to techniques proposed in

[77].

Reflection

Reflection mechanism in Java allows the programmer to perform runtime actions given the

descriptions of the objects involved: one can create objects given their class names, access

objects fields given their name, and call methods by their name. A common usage pattern for

object creation using the reflection APIs is shown below:

String className = ...;//class name is provided at run time

Class c = Class.forName(className);//returns a class given its name

Object o = c.newInstance();//creates an instance of the class c

A t = (A) o; //cast to an appropriate type A

Using the class name, Class.forName creates a Class object and then newInstance creates

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 210

a new instance of that class. The new instance is upcast to Object and then is downcast to an

appropriate type. The appropriate type is either the same or a superclass of the class whose name

was given by the string className. Based on the explicit cast operation, our region inference

algorithm can use the same approaches as those used for downcasting in Appendix A.4. For

instance, we assume that the region type that corresponds to class A is A〈r1,r2〉. Using the

modular solution based on the first region we obtain the following result. Note that a region

handle is passed to newInstance such that the new instance is allocated in that region.

Object〈r1〉 obj = c.newInstance〈r1〉();

A〈r1,r1〉 t = (A〈r1,r1〉) obj;

In case of the dynamic loading we can use techniques from [117] to estimate all possible classes

for which newInstance may create a new instance.

A.7 Our Approach vs. Phantom Region Based Approach

In RegJava [41], all classes within the same class hierarchy have the same set of region pa-

rameters. As a result many phantom regions may be introduced for superclasses. The main

advantage of this approach is that it can provide immediate support to both method overriding

and downcast. However, phantom regions may pose a number of problems for region inference.

For example, if we have to patch up the Object class with the two extra regions r2,r3 from

Pair, we have several more issues to consider, including:

• Is the outlive relation, namely r2�r1 ∧ r3�r1, required on the phantom regions for

the Object class?

• What specific regions should be used for the Object fields that are found in other classes,

such as the Pair class itself?

• How should the extra regions from the other sub-classes of Object be handled? Must

phantom regions be propagated mutually across the sub-classes, via their common super-

class, as done in [41]?

The last requirement greatly increases the number of regions needed. In addition, the total

set of regions for each class is only known after all the classes have been defined, requiring a

closed-world assumption for region compilation.

Apart from these issues, phantom regions may also cause a loss in lifetime precision. This

may sound surprising but a closer look at an example will reveal why. Assume we were to add

two phantom regions (from the Pair sub-class) to Object, as follows:

APPENDIX A. REGION-BASED MEMORY MANAGEMENT 211

class Object〈r1,r2,r3〉 where ...

class Pair〈r1,r2,r3〉 extends Object〈r1,r2,r3〉 where r2�r1∧r3�r1 {

Object〈r2,r2,r3〉 fst

Object〈r3,r2,r3〉 snd ... }

This inclusion of phantom regions forces all connected Pair objects to have the same region

for their fst field, and another region for snd. For instance, we consider a simple program, as

follows:

Pair〈ra1,ra2,ra3〉 pa;//ra2�ra1 ∧ ra3�ra1

Pair〈rb1,rb2,rb3〉 pb;//rb2�rb1 ∧ rb3�rb1

Pair〈rc1,rc2,rc3〉 pc;//rc2�rc1 ∧ rc3�rc1

pa.fst = pb; //rb1�ra2 ∧ rb2=ra2 ∧ rb3=ra3

pa.snd = pc; //rc1�ra3 ∧ rc2=ra2 ∧ rc3=ra3

Solving the constraints we obtain the following types:

Pair〈ra1,ra2,ra3〉 pa;

Pair〈ra2,ra2,ra3〉 pb;

Pair〈ra3,ra2,ra3〉 pc;

In the case of the example of Figure 4.1, the phantom regions force objects p2,p4 to be in

the same region, and similarly for objects p3,p4. A consequence is that p2,p3,p4 are now in

one region, while p1 is in a separate region. This is undesirable as the p3 object cannot be freed

earlier, as it is in the same region as p2 and p4, even though p3 is already dead after this code

fragment. This example shows that phantom regions can add extra region constraints that cause

loss in lifetime precision.

As a comparison, the padded regions used by of our region-safe downcast solution are dif-

ferent from phantom regions. As shown in the examples of Appendix A.4, we selectively attach

padded regions to superclasses only when relevant downcast operations may occur subsequently.

212

APPENDIX B

BETTER GENERICITY

B.1 Dynamic Semantics of Variant Parametric Core-Java

The operational semantics of Variant Parametric Core-Java is described in small steps. Notations

used are defined as follows.

Locations : ι ∈ Location

Primitives : k ∈ prim = int] bool] float] null] void

Values : δ, ν ∈ Value = (TyPrim× prim)] Location

Subs : µ, ρ ∈ Subs = TVar ⇀fin Type

Store : $ ∈ Store = Location ⇀fin ObjVal

Variable Env : Π ∈ VEnv = Var ⇀fin Value

Object values : η ∈ ObjVal = Type× (Fd⇀fin Value)

Type : t ∈ Type

TyPrim consists of primitive types. A type t maintained at run-time does not contain any variant

information. If need be, it will be treated as one with invariant annotation �. A runtime envi-

ronment Π is a finite map from program variables to their associated values. A value can be a

location referencing an object or a pair containing a primitive value and a primitive type.

A runtime store $ is a finite map from locations to object values. An object value is com-

prised of its type and its field values. We write η.f to denote the value of the field f of an object

η. When the object is referred by its location ι, we also write ι.f to refer to the value of its field

f .

We overload the function type to accept (1) primitive value and return the primitive type; (2)

location and return the type of the dereferenced object; (3) object and return the object type; and

(4) object field and return the field type.

The variable environment Π is such a stackable mapping. We write Π[ν/v] to denote an

update of the value of the latest variable v in Π to ν. We write Π + {v 7→ ν} to denote an

extension of Π to include a binding of ν to v, while Π− {v∗} removes a subset of the mappings.

APPENDIX B. BETTER GENERICITY 213

[D−Const]
k has type t

〈Π, $〉[k] ↪→ 〈Π, $〉[(t, k)]

[D−Var−FD]
w = v|v.f ν = read(Π, $,w)
〈Π, $〉[w] ↪→ 〈Π, $〉[ν]

[D−Assign−1]
〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′]

〈Π, $〉[w = e] ↪→ 〈Π′, $′〉[w = e′]

[D−Assign−2]
(Π′, $′) = upd(Π, $,w, ν)

〈Π, $〉[w = ν] ↪→ 〈Π′, $′〉[(void, ())]

[D−If−false]
Π(v) = (Bool, false)

〈Π, $〉[if v then e1 else e2] ↪→ 〈Π, $〉[e2]

[D−If−true]
Π(v) = (Bool, true)

〈Π, $〉[if v then e1 else e2] ↪→ 〈Π, $〉[e1]

[D−Blk−1]
〈Π, $〉[e1] ↪→ 〈Π′, $′〉[e′1]

〈Π, $〉[{t v=e1; e2}]↪→〈Π′, $′〉[{t v=e′1; e2}]

[D−Blk−2]
subType(type(ν), t) Π′ = Π + {v 7→ ν}
〈Π, $〉[{t v = ν; e2}] ↪→ 〈Π′, $〉[retd(v, e2)]

[D−While−true]
Π(v) = (Bool, true)

〈Π, $〉[while v do e] ↪→ 〈Π, $〉[e ; while v do e]

[D−While−false]
Π(v) = (Bool, false)

〈Π, $〉[while v do e] ↪→ 〈Π, $〉[(void, ())]

[D−Ret−d−1]
〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′]

〈Π, $〉[retd(v∗, e)] ↪→ 〈Π′, $′〉[retd(v∗, e′)]

[D−Ret−d−2]
Π′ = Π− (v∗)

〈Π, $〉[retd(v∗, ν)] ↪→ 〈Π′, $〉[ν]

[D−Ret−m−1]
〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′]

〈Π, $〉[retm(Q, v∗, t, e)]↪→〈Π′, $′〉[retm(Q, v∗, t, e′)]

[D−Ret−m−2]
subType(type(ν), t) Π′ = Π−(v∗)
〈Π, $〉[retm(Q, v∗, t, ν)]↪→〈Π′, $〉[ν]

[D−Seq−1]
〈Π, $〉[e1]↪→〈Π′, $′〉[e′1]

〈Π, $〉[e1; e2]↪→〈Π′, $′〉[e′1; e2]

[D−Seq−2]

〈Π, $〉[δ; e2]↪→〈Π, $〉[e2]

[D−Cast]
〈Π, $〉[v] ↪→ 〈Π, $〉[ν]

chkCast(type(ν), t)
〈Π, $〉[(t) v] ↪→ 〈Π, $〉[ν]

[D−Capture]
〈Π, $〉[v] ↪→ 〈Π, $〉[ν] t0 = type(ν)

ρ=match(t, t0) (Π′, $′)=upd(Π, $, v1, ν)
〈Π, $〉[{v1 = (t) v; e}]↪→〈Π′, $′〉[ρ(e)]

[D−New]
class c〈Xi〉qi=1..where ψ {..}∈P ι=fresh()
µ=[ti/Xi]

q
i=1 νi = read(Π, $, vi) ∀i ∈ {1..p}

chk(µ(ψ)) t′i = type(νi) ∀i ∈ {1..p}
subType(c〈t′i〉

q
i=1, c〈ti〉

q
i=1)

η=(c〈ti〉qi=1, {fi 7→νi}
p
i=1) $′=$+{ι 7→η}

〈Π, $〉[new c〈ti〉qi=1(v1..p)] ↪→ 〈Π, $′〉[ι]

[D−Call]
νi = Π(v′i) ∀i ∈ {0..q} c〈t′i〉mi=1 = type(ν0)

t0 | t mn((ti vi)i=1..q)〈V ∗〉 where ψ eb ∈ mtds(c)
µ = [t∗/V ∗] chk(µ(ψ)) Π′ = Π + [ν0/this][νi/vi]

q
i=1

subType(type(νi), µ(ti)) ∀i ∈ {0..q}
V ′ = {this} ∪ {vi}qi=1 e = retm(V ∗, V ′, µ(t), µ(eb))

〈Π, $〉[v′0.mn(v′1, .., v
′
q)〈t∗〉]↪→〈Π′, $〉[e]

Figure B.1: Dynamic Semantics for Variant Parametric Core-Java: Part I

APPENDIX B. BETTER GENERICITY 214

Similar notations are used for the update and enhancement of object values and stores. In

the case of store, we also provide an abbreviated notation $[ν/ι.f] =def let (t, ξ) = $(ι) in

$[(t, ξ[ν/f])/ι]. Given an object value, η = (t, ξ), we have Flds(η) =def ξ.

We require some intermediate expressions for the dynamic semantics to follow through. Our

syntax is thus extended from the original expression syntax as follows:

e ::= · · · | η | ι | ν | retd(v∗, e) | retm(Q, v∗, τ, e)

The expression retd(v∗, e) is used to capture the result of evaluating a local block, and

retm(Q, v∗, τ, e) captures the result of method invocation. The set of variables v∗ occurring

in both result structures contain the local names and method parameters when entering local

body and method body respectively. They are dropped at the end of the local/method body’s

evaluation. The type τ captures the type of the result of method invocation, whereas Q captures

the set of type variables declared in the method header. Q is an instrument used to facilitate our

soundness proof.

The dynamic evaluation rules are of the following form:

〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′]

The rules are formulated using an exception-style semantics with three possible errors, namely

E = Error-Null | Error-Cast | Error-Type.

Whenever one such error is raised, the evaluation aborts. This error occurrence can be stated us-

ing 〈Π, $〉[e] ↪→ E. The small-step dynamic call-by-name semantics is formalised in Figure B.1,

together with some auxiliary functions in Figure B.2.

B.2 Soundness of Variant Type System

Before formulating the soundness, we extend the static semantics of the language to include

those intermediate expressions introduced in Appendix B.1. In the process, we require intro-

duction of a store typing to describe the type of each location. This ensures that objects created

in the store during run-time are type-wise consistent with that captured by the static seman-

tics. Store typing is conventionally used to link static and dynamic semantics. In our case, it is

denoted by:

Σ ∈ StoreType = Location ⇀fin Type

Judgements in the static semantics will be extended with store typing, as follows:

Γ; Σ;Q ` e :: τ, ψ.

APPENDIX B. BETTER GENERICITY 215

read(Π, $, v) = Π(v);
read(Π, $, v.f) =

ι = Π(v);
if $(ι) = null throw Error-Null;
$(ι).f ;

chk(φ) =
if ¬(` φ) throw Error-Type;
true;

chkCast(t1, t2) =
if ¬(` t1<:t2) throw Error-Cast;
true;

upd(Π, $, v, νs) =
ν = Π(v);
if ¬(` type(νs) <: type(ν))

throw Error-Type;
(Π[νs/v], $);

upd(Π, $, v.f, νs) =
ι = Π(v);
if $(ι) = null throw Error-Null;
νf = $(ι).f ;
if ¬(` type(νs) <: type(νf)) throw Error-Type;
(Π, $[νs/$(ι).f]);

subType(t1, t2) =
if ¬(` t1<:t2) throw Error-Type;
true;

match(tv, t) = [t/tv];
match(c〈t∗v〉, c〈t∗〉) = [t∗/t∗v];
match(t′, t) = throw Error-Type;

Figure B.2: Dynamic Semantics for Variant Parametric Core-Java: Part II

The static semantics for these intermediate expressions is shown in Figure B.3.

The soundness of our static semantics relies on the following consistency relationship be-

tween the static and dynamic semantics, defined as follows:

dom(Π) = dom(Γ) dom($) = dom(Σ) VL = vars(ψ)−Q

∀v ∈ dom(Π) · ∀ρ1 ∈ Subs · ∃ρL ∈ Subs · (dom(ρL) = VL ∧ ρ = ρ1 ◦ ρL ∧ (ρ(ψ)⇒

(Π(v) ∈ prim⇒ type(Π(v))<:ρ(Γ(v))) ∧ (Π(v) ∈ Location⇒ type($(Π(v)))<:ρ(Γ(v)))))

Γ; Σ;Q;ψ |= Π, $

In the above relation, ρL is a ground substitution of local type variables occurring in the con-

straint ψ, and the composition of substitutions is recursively defined as: (ρ1 ◦ ρ2)(v) = if (v ∈ dom)

then ρ2(v) else ρ1(v).

The following theorem states the progress of well-typed expressions:

THEOREM 5.1 (PROGRESS) Let Γ be an environment mapping program variables to ground

types. If Γ; Σ;Q ` e :: τ, ψ and Γ; Σ;Q;ψ |= Π, $, then either

• e is a value, or

• 〈Π, $〉[e] ↪→ Error-Null | Error-Cast, or

APPENDIX B. BETTER GENERICITY 216

[ELFm]
v∗ ⊆ dom(Γ) Q′ ⊆ Q
Γ; Σ;Q ` e :: τ, ψ ` τ<:τ1⇒ψ1

Γ; Σ;Q ` retm(Q′, v∗, τ, e) :: τ1, ψ ∧ ψ1

[ELFd]
Γ; Σ;Q ` e :: τ, ψ

Γ; Σ;Q ` retd(v∗, e) :: τ, ψ

[LOC]
τ = Σ(ι) ` τ<:τ1⇒ψ

Γ; Σ;Q ` ι :: τ1, ψ

[OBJ]
(t, ξ) = η ` � t<:τ⇒ψ

Γ; Σ;Q ` η :: τ, ψ

[VALUE]
` � t<:τ⇒ψ

Γ; Σ;Q ` (t, δ) :: τ, ψ

Figure B.3: Type Rules for Intermediates

• there exist Π′, $′, e′ such that 〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′].

A proof of Theorem 5.1 can be found in Appendix B.3.1.

The next theorem states that each well-typed expression preserves its type under reduction

with a runtime environment and a store which are consistent with the compile-time counterparts:

THEOREM 5.2 (PRESERVATION) Let Γ be an environment mapping program variables to ground

types. If
Γ; Σ;Q ` e :: τ, ψ

Γ; Σ;Q;ψ |= Π, $

〈Π, $〉[e] ↪→ 〈Π̂, $̂〉[ê]

then there exists Γ̂, Σ̂ and Q̂ such that

Γ− diff(e, ê) = Γ̂− diff(ê, e)

Σ̂ ⊇ Σ

Γ̂; Σ̂; Q̂ ` ê :: τ, ψ̂

Γ̂; Σ̂; Q̂; ψ̂ ∧ ψ |= Π̂, $̂.

Function diff(e, e′) returns a list of local variables that appears in e but not e′:

diff(e, e′) =def let lst = local(e)

lst1 = local(e′)

n = length(lst)− length(lst1)

in (take(n, lst) � n ≥ 0 � [])

take(n, lst) =def ([] � n ≤ 0 � [head(lst)]++take(n− 1, tail(lst)))

x� b� y =def if b then x else y

APPENDIX B. BETTER GENERICITY 217

Function local(e) returns a list of sets of local variables. It is defined as follows:

local(e) =def case e of

retm(Q, v∗, τ, e) → local(e)++ [{v∗}]

retd(v∗, e) → local(e)++ [{v∗}]

w = e → local(e)

(t v = e1; e2) → local(e1)

otherwise → ∅

Note that Γ− [] =def Γ, Γ− ([s]++ S) =def (Γ− s)− S. A proof of Theorem 5.2 can be found

in Appendix B.3.2.

B.3 Proofs of Theorems
B.3.1 Proof of Theorem 5.1 (Progress)

By induction over the depth of type derivation for expression e.

Cases [NULL,VOID,VALUE, LOC,OBJ]. Trivial.

Case [VAR−FIELD]. We deal with expression w. As w = v | v.f is well-typed, the evalution

rule [D−Var−FD] is followed, the evaluation either reports an Error-Null or advances one

step yielding a value.

Case [ASSIGN]. We deal with expressionw = e. From type rule, we have Γ; Σ;Q ` e :: ⊕ t, ψ.

By induction hypothesis, either (i) e is a value ν, or (ii) 〈Π, $〉[e] ↪→ Error, or (iii)

〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′].

Subcase (i): Let the runtime type of ν be t̂, and that of w be t1. Then, we have � t̂<:⊕ t

and � t1<: 	 t, which implies t̂<: t <: t1. Hence, the upd function at [D−Assign−2]

will not throw Error-Type exception, and proceed to update the runtime environment Π

or the runtime store, as described in [D−Assign−2].

Subcase (ii): This will result in the execution of 〈Π, $〉[w = e] aborted with Error.

Subcase (iii): This will result in the execution of the assignment to reach 〈Π, $〉[w = e′],

via [D−Assign−1].

Case [SEQ]. We have Γ; Σ;Q ` e1 :: ~ t, ψ. By induction hypothesis, either (i) e1 is a value ν,

or (ii) 〈Π, $〉[e1] ↪→ Error, or (iii) 〈Π, $〉[e1] ↪→ 〈Π′, $′〉[e′1].

APPENDIX B. BETTER GENERICITY 218

Subcase (i): The execution proceeds to reach 〈Π, $〉[e2] unconditionally, according to

[D−Seq−2].

Subcase (ii): The execution will be aborted with Error exception.

Subcase (iii): The execution proceeds to reach 〈Π′, $′〉[e′1; e2], according to [D−Seq−1].

Case [LOCAL]. Given that Γ; Σ;Q ` {t v = e1 ; e2} :: τ, ψ1 ∧ ψ2. We have Γ; Σ;Q ` e1 ::

⊕ t, ψ1. By induction hypothesis, either (i) e1 is a value ν, or (ii) 〈Π, $〉[e1] ↪→ Error, or

(iii) 〈Π, $〉[e1] ↪→ 〈Π′, $′〉[e′1].

Subcase (i): Let the runtime type of ν be t̂0 and the runtime type of v be t̂. As the consis-

tency relation holds between the static and the dynamic semantics, we have for all ground

substitution ρ, ` ρ(ψ1)⇒ t̂ = ρ(t). Since ` ρ(ψ1)⇒ �t̂0<:⊕ t, subType(type(ν), t̂) =

subType(t̂0, t̂) = true. Hence, the execution will proceed to the state 〈Π′, $〉[retd(v, e2)]

according to [D−Blk−2].

Subcase (ii). The execution will throw the corresponding Error exception.

Subcase (iii). The execution will proceed to 〈Π′, $′〉[{t v = e′1; e2}] according to

[D−Blk−1].

Case [NEW]. Given Γ; Σ;Q ` new c〈ti〉qi=1(v1, .., vp) :: τ, ψ, let t̂i (for all i = 1..q) and t̂vi

(for all i = 1..p) be the runtime types of type arguments and value arguments to new.

Then we have, for all ground substitution ρ, ` ρ(ψ) ⇒ ∧qi=1(t̂i=ρ(ti)) and ` ρ(ψ) ⇒

∧pi=1(t̂vi<:ρ(Γ(vi))). Furthermore, ` ρ(ψ) ⇒ ρ(Γ(vi))<:t′i, for all i. Hence, both

calls to chk and subType at runtime do not fail, and the execution proceeds to the state

〈Π, $′〉[ι], where ι is the location referencing the new object.

Case [COND]. Given Γ; Σ;Q ` if v then e1 else e2 :: τ, ψ and Γ(v)<:⊕ Bool, the runtime

value of v will either be true, false, or null (). In the first two subcases, the execution

proceeds to next state according to the rules [D−If−true] and [D−If−false] respectively. In

the last subcase, there is no corresponding dynamic rule, and exception Error-Null will

be thrown.

Case [WHILE]. Given Γ; Σ;Q ` while v do e :: τ, ψ and Γ(v)<:⊕ Bool, the runtime value

of v will either be true, false, or null (). In the first two subcases, the execution proceeds

to next state according to the rules [D−While−true] and [D−While−false] respectively. In

APPENDIX B. BETTER GENERICITY 219

the last subcase, there is no corresponding dynamic rule, and exception Error-Null will

be thrown.

Case [ELFd,ELFm]. We have Γ; Σ;Q ` e :: τ, ψ as the premise of the static semantics. By

induction hypothesis, either (i) e is a value ν, or (ii) 〈Π, $〉[e] produces Error, or (iii)

〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′].

Subcase (i): Let the runtime type of ν be t̂ν and that of return value be t̂ then for all

ground substitution ρwe have ` ρ(ψ)⇒ ρ(τ) = �t̂. Also, we have ` ρ(ψ)⇒ t̂ν<:ρ(τ).

Hence, the call to subType in the rule [D−Ret−2] returns true, and the execution proceeds

to 〈Π′, $〉[ν] accordingly.

Subcase (ii): The execution will throw the corresponding Error exception, as no rule

applies.

Subcase (iii): The execution step to the new state following rule [D−Ret−1].

Case [CAST]. Any type mismatch during cast will be captured by chkCast and Error-Cast

exception will be thrown. Otherwise, casting will succeeds and the execution proceeds to

the next state 〈Π, $〉[(t, ι)].

Case [CAPTURE]. We have Γ; Σ;Q ` {v1 = (t)v; e} :: τ, ψ1 ∧ψ2. From its premise, we have

t = c〈� Vi〉ni=1. Executing the expression v either yields an Error exception or returns a

value ν. We consider the case where ν is returned. Let t0 be the type of ν as declared in the

runtime environment. The use of flow symbol � in t implies that match(t, t0) succeeds

and produces ρ only when ρ(t) = t0. Hence, by rule [D−Capture], the execution proceeds

to the state 〈Π′, $′〉[ρe]. Updating of v1 does not fail, similar with [ASSIGN].

Case [CALL]. Given Γ; Σ;Q ` v′0.mn(v′1, .., v
′
q)〈t∗〉 : τ, ψ. Let the runtime type arguments be

〈t̂∗〉 and the value arguments have type t̂v′i for i = 0..q. Also, the ground substitution µ

in [D−Call] is an instance of ρ in [CALL], which makes ψ true. Thus, we have, ` µ(ψ)⇒

t̂v′i<:µ(τ ′i), i = 0..q, and ` t̂0<:µ(t0). Hence, the call to subType in [D−Call] yields true,

and the execution proceeds to the state 〈Π, $〉[e] according to [D−Call]. ut

B.3.2 Proof of Theorem 5.2 (Preservation)

The proof for Theorem 5.2 requires several lemmas.

APPENDIX B. BETTER GENERICITY 220

Lemma B.1 (Type Substitution). If Γ; Σ;Q ` e :: τ, ψ, then for all substitution ρ such that

` ρ(ψ), we have ρ(Γ); ρ(Σ);Q ` ρ(e) :: ρ(τ), ρ(ψ).

The proof is by induction on a derivation of Γ; Σ;Q ` e :: τ, ψ.

The next lemma, called assumption weakening lemma, states that the static judgment re-

mains valid despite a variation of its assumption. This assumes the store type Σ to have un-

bounded mapping of locations to types. However, the type environment Γ takes the form of

stackable mapping between variables and types, and is allowed to grow (by pushing in new map-

pings) and shrink (by popping out mappings from stack). The lemma states that such change to

type environment preserves the type judgment, if the change are properly constrained.

Lemma B.2 (Assumption Weakening). Given that the following judgment holds:

Γ; Σ;Q ` e :: τ, ψ

Let Γ̂, Σ̂ and Q̂ be such that:

vars(e) ⊆ dom(Γ) ∩ dom(Γ̂)

Q ⊆ Q̂ ∨ Q̂ ⊆ Q

vars(ψ)−Q = vars(ψ)− Q̂

∃v∗ · (Γ− {v∗} = Γ̂) ∨ (Γ̂− {v∗} = Γ)

Σ̂ ⊇ Σ
Then, there exists ψ̂ such that ` ψ̂ ⇔ ψ and

Γ̂; Σ̂; Q̂ ` e :: τ, ψ̂

The call vars(e) returns all program variables occurring in e, whereas vars(ψ) returns all (type)

variables occurring in ψ.

Proof of Lemma B.2: By structural induction on the static semantics of the form Γ; Σ;Q

` e :: τ, ψ. For any Γ̂, Σ̂ and Q̂, we say that they satisfy the premises of the Lemma if the

following holds:

vars(e) ⊆ dom(Γ) ∩ dom(Γ̂)

Q ⊆ Q̂ ∨ Q̂ ⊆ Q

vars(ψ)−Q = vars(ψ)− Q̂

∃v∗ · (Γ− {v∗} = Γ̂) ∨ (Γ̂− {v∗} = Γ)

Σ̂ ⊇ Σ

Cases [NULL,VOID, LOC,OBJ,VALUE]. Trivial.

APPENDIX B. BETTER GENERICITY 221

Case [VAR−FIELD]. We deal with expression w, where w = v | v.f . For any Γ̂, Σ̂ and Q̂

satisfying the premise of the lemma, we see that Γ(v) = Γ̂(v). Hence, Γ̂; Σ̂; Q̂ ` w : τ, ψ.

Case [ASSIGN]. We deal with expression w = e. We have Γ̂; Σ̂; Q̂ ` e :: ⊕t, ψ̂

for αt=GetType(Γ̂, w)=GetType(Γ, w). The desired result is then derived by induction

hypothesis.

Cases [LOCAL, SEQ,COND,WHILE,CAST,CAPTURE,ELFd,ELFm]. By induction hypothe-

sis.

Case [NEW]. The result holds because Γ(vi) = Γ̂(vi), for all i = 1..p.

Cases [CALL]. The result holds because Γ(v′i) = Γ̂(v′i) for all i = 1..q. ut

Proof of Theorem 5.2: This can be proven by induction over the depth of type derivation of

expression e.

Cases [NULL,VOID, LOC,OBJ,VALUE]. Vacuously true.

Case [VAR−FD]. This can be proven by setting Γ̂, Σ̂ and Q̂ to Γ, Σ and Q respectively.

Case [ASSIGN]. There are two rules by which one-step derivation can be applied:

Subcase [D−Assign−1]: By induction hypothesis, there exists Γ′, Σ′ and Q′ such that

Γ′; Σ′;Q′ ` e′ :: ⊕ t′, ψ′ and which satisfies the premise of the theorem. Since⊕ t′<:⊕ t,

we thus have Γ′; Σ′;Q′ ` e′ :: ⊕ t, ψ′ ∧ ψ′′, where ` ⊕ t′<: ⊕ t ⇒ ψ′′. The desired

result can then be proven by setting Γ̂, Σ̂ and Q̂ to Γ′, Σ′ and Q′ respectively.

Subcase [D−Assign−2]: Consider the assignment to a variable v. Given that upd(Π, $,w, ν)

returns successfully (Π′, $′), it must be the case that type(ν) <:type(Π′(v)). The desired

result can then be proven by setting Γ̂, Σ̂ and Q̂ to Γ, Σ and Q respectively. Similar

argument applies to the assignment to a field.

Case [SEQ]. There are two rules by which one-step derivation can be applied:

Subcase [D−Seq−1]: By induction hypothesis, there exists Γ′, Σ′ and Q′ that establishes

the consistency relation at the hypothesis. We elect Γ̂, Σ̂ and Q̂ to be Γ′, Σ′ and Q′

respectively to obtain the desired result.

Subcase [D−Seq−2]: By setting Γ̂, Σ̂ and Q̂ to be Γ, Σ and Q respectively.

APPENDIX B. BETTER GENERICITY 222

Case [COND]. There are two rules by which one-step derivation can be applied: [D−If−True],

[D−If−False]. Both can be proven by setting Γ̂, Σ̂ and Q̂ to Γ, Σ and Q respectively.

Case [WHILE]. Similar as the argument for case [COND].

Case [LOCAL]. There are two rules to consider:

Subcase [D−Blk−1]: By induction hypothesis.

Subcase [D−Blk−2]: Since subType(type(ν), t), Γ′ and Σ used in [LOCAL] remain consis-

tent with Π′ and $ in this subcase. We let Γ̂, Σ̂ and Q̂ to Γ′, Σ and Q respectively.

Case [CAST]. This can be proven by setting Γ̂, Σ̂ and Q̂ to Γ, Σ and Q respectively.

Case [CAPTURE]. The argument for one-step derivation [D−Capture] is similar to that for case

[D−Assign−2], except for the assignment of runtime type information of ν to the type

variables occurring in t. This assignment proceeds successfully because of the premise

of [CAPTURE]. We let Γ̂, Σ̂ and Q̂ to Γ, Σ and Q respectively. It suffices to show that

Γ̂; Σ̂; Q̂ ` ρ(e) :: τ, ψ̂.This is true by applying Type Substitution Lemma to the following

premise of

[CAPTURE]: Γ; Σ;Q ` e :: τ, ψ2.

Case [NEW]. We let Γ̂ = Γ, Σ̂ = Σ + {ι 7→ � c〈� ti〉qi=1} and Q̂ = Q.

Case [CALL]. The fact that τ̂ , as obtained from [ELFm], is a subtype of τ obtained from [CALL],

is established from the result of [ELFm] and the constraint ρ(⊕ t) <:τ occurred in ψ in

the premise of [CALL]. Finally, by assumption weakening rule, we let

Γ̂ = Γ + {vi :: ⊕t̂i}qi=1 + {this :: ⊕t̂0, Σ̂ = Σ, Q̂ = Q ∪ {V ∗}.

Case [ELFd,ELFm]. There are two subcases for consideration:

Subcase [D−Ret−d−1,D−Ret−m−1]: By induction hypothesis.

Subcase [D−Ret−d−2,D−Ret−m−2]: By induction hypothesis and the Assumption Weak-

ening Lemma. ut

