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Abstract

In this thesis, we take an information-theoretic view of the multiple-

terminal wireless network. We investigate achievable rates, in the Shan-

non sense, and study how to achieve them through cooperative coding

and routing. Our work takes an information-theoretic approach, bear-

ing in mind the practical side of the wireless network. First, we find

the best way to route data from the source to the destination if each

relay must fully decode the source message. We design an algorithm

which finds a set of routes, containing a rate-maximizing one, without

needing to optimize the code used by the nodes. Under certain network

topologies, we achieve complete routing and coding separation, i.e., the

optimizations for the route and the code can be totally separated. In

addition, we propose an algorithm with polynomial running time that

finds an optimal route with high probability, without having to optimize

the code. Second, we study the trade-off between the level of node coop-

eration and the achievable rates of a coding strategy. Local cooperation

brings a few practical advantages like simpler code optimization, lower

computational complexity, lesser buffer/memory requirements, and it

does not require the whole network to be synchronized. We find that the

performance of local cooperation is close to that of whole-network co-

operation in the low transmit-power-to-receiver-noise-ratio regime. We

also show that when each node has only a few cooperating neighbors,

adding one node into the cooperation increases the transmission rate

significantly. Last, we investigate achievable rates for networks where

the source data might be correlated, e.g., sensor networks, through

iii



different coding strategies. We study how different coding strategies

perform in different channel settings, i.e., varying node position and

source correlation. For special cases, we show that some coding strate-

gies actually approach the capacity. Overall, our work highlights the

value of cooperation in multiple-terminal wireless networks.
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Chapter 1

Introduction

1.1 Cooperation in Multiple-Terminal Wireless

Networks

Multi-terminal wireless networks have been finding more applications and receiving

much attention recently by both researchers and industry. Common wireless ap-

plications include cellular mobile networks, Wi-Fi networks, ad-hoc networks, and

sensor networks. The main advantage of wireless technology to users is the seam-

less access to the network whenever and wherever they are; to service providers,

easier deployment, as no cable laying is required.

A large amount of research has been carried out recently on various aspects of

wireless networks, including how to achieve power saving for energy limited nodes

(Younis & Fahmy, 2004; Yu et al., 2004), how to route data from the source to

the destination with minimum delay or using minimum power (Fang et al., 2004;

Shakkottai, 2004; Zhao et al., 2003), how to determine the rate per unit distance

supported by the network (Gopala & El Gamal, 2004; Gupta & Kumar, 2003), and

how to ensure that all the nodes are connected, i.e., within communication range

(Shakkottai et al., 2003).

In this thesis, we investigate transmission rates achievable by cooperative rout-

ing and coding for multiple-terminal networks through an information-theoretic

1



1.1 Cooperation in Multiple-Terminal Wireless Networks

approach. High data rate is desirable for many wireless applications, e.g., wireless

Internet access, mobile video conferencing, and mobile TV on buses and trains.

Some of these applications would have been impossible without transmission links

that provide a certain quality of service, in terms of, for example, transmission rate,

delay, and error rate. One way to increase transmission rates is through cooperative

routing and coding.

Wireless networks are inherently broadcast, in that messages sent out by a node

are heard by all nodes listening in the same frequency band and in communication

range. This opens up opportunities for rich forms of cooperation among the wireless

nodes. Instead of the traditional multi-hop data transmission where a node only

forwards data to another node, i.e., from the source to a relay, from the relay to

another relay, and so on until the destination, data transmission in the cooperative

wireless network can be from multiple nodes to multiple nodes. This changes the

way we think of routing (the sequence of nodes in which data propagate from the

source to the destination) and coding (how the nodes encode and decode). We

need a new definition of a route and routing algorithms for cooperative networks.

We also need to re-think coding and construct cooperative coding strategies to tap

the advantage of the multiple-node-to-multiple-node communication.

With an almost unlimited number of ways of interacting and cooperating, an-

alyzing of these multiple-terminal networks is difficult. To date, the capacity of

even the simple three-node channel (van der Meulen, 1971) is not known, except

for special cases, e.g., the multiple-access channel (MAC) (Ahlswede, 1974; Liao,

1972), the degraded relay channel (Cover & El Gamal, 1979), the degraded broad-

cast channel (Bergmans, 1973), and the mesh network (Ong & Motani, 2006a,

2007c). However, this did not hinder research in channels with more nodes. A

deeper understanding of multiple-terminal networks can help us to design more

efficient protocols and algorithms for these networks.
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Figure 1.1: A multiple-terminal network.

1.2 Problem Areas

Now, we identify three problem areas that we will study in this thesis. We use the

wireless network in Fig. 1.1 for illustration. Nodes 1–6 are users in the wireless

network, equipped with transceivers. They can be sources which have data to be

sent, relays which themselves have no data, or destinations where data from sources

are to be decoded at. The nodes are operating in the same frequency range, and

hence every node can receive the transmissions from all other nodes.

1. Cooperative routing : Let node 1 be the source, nodes 2–5 relays, and node

6 the destination. When the nodes cooperate (e.g., node 1 can transmit to

nodes 2–6 simultaneously) to transmit data from the source to the desti-

nation, what do we mean by a route? How do we find an optimal (rate-

maximizing) route?

2. Myopic cooperation: Consider the same setting. What rates are achievable

when the nodes can only cooperate partially (e.g., node 1 knows the presence

of only nodes 2 and 3)? What is the trade-off between partial cooperation

and achievable rates?

3. Correlated sources : Consider only nodes 1–3, and let nodes 1 and 2 be the

sources with correlated messages and node 3 the destination for both the

sources. Since nodes 1 and 2 can receive each other’s transmissions, they are

said to receive feedback from the channel. For this channel, we are interested

in the following: What are the different ways (coding strategies) for the

nodes to cooperate to send correlated data to the destination? What are the

achievable rate regions of these coding strategies?
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These questions will be made more precise in the sequel.

1.3 Motivations and Contributions

Now, we motivate these three problems. We base our analyses on simple networks,

e.g., the single-source single-destination network, as having too many parameters

to analyze in the multiple-source multiple-relay multiple-destination network may

hinder our understanding of the network and may obscure certain observations.

1.3.1 Cooperative Routing

First of all, we study how to optimally route data from the source to the destination

in cooperative multiple-terminal wireless networks, i.e., finding a rate-maximizing

route, through relays, for a source-destination pair.

In multiple-terminal wireless networks, two important factors that determine

the transmission rate are who participate in the cooperation and how they facilitate

data transmission between a source and destination pair. The former leads to the

routing problem and the latter the coding problem. These two problems are often

intertwined, i.e., the choice of code (and hence the transmission rate) depends

on the route chosen. From an information-theoretic view, the problem can be

translated to finding the optimal route and the optimal channel input probability

density function (or input distribution).

With rich forms of cooperation among the nodes to transport data from the

source to the destination, it is difficult to describe data paths using the traditional

notion of a route in which data hops from one node to another. Hence, we pro-

pose a new definition for a route. Unfortunately, routing algorithms designed for

the conventional non-cooperative data transmission are no longer optimal (rate-

maximizing) when the nodes are allowed to cooperate.

A brute force way to determine the optimal route and the optimal input distri-

bution is by finding the rates of all possible routes with all possible input distribu-
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tions, and selecting the pair that gives the highest rate. This combined optimization

is certainly not efficient. These optimizations can be much simplified if they can

be separated.

We investigate if the optimization of the route can be separated from the op-

timization of the input distribution, and how to find an optimal route. As a first

step toward understanding the problem, we consider the single-flow network, mod-

eled by the multiple-relay channel (MRC) (Gupta & Kumar, 2003; Xie & Kumar,

2005), i.e., a single-source single-destination network with many relays. We choose

the MRC to investigate the routing problem as it contains relays through which

different routes can be compared. We study the routing problem for a class of

coding strategies: decode-forward (DF) (Cover & El Gamal, 1979; Xie & Kumar,

2005), which achieves the capacity of the MRC when each relay must fully decode

the source messages.

Our contributions are as follows:

1. We construct an algorithm, the nearest neighbor set algorithm (NNSA) (Ong

& Motani, 2007a,b), which outputs a set of routes that contains an optimal

route for the static Gaussian MRC without having to optimize the input

distribution.

2. We show that a shortest route that can achieve the maximum rate is contained

in at least one of the outputs of the NNSA.

3. We show that the NNSA is optimal in fading channels in the sense that it

finds a route that maximizes the ergodic rate.

4. We construct a heuristic algorithm, the the maximum sum-of-received-power

algorithm (MSPA), which disregards the input distribution and finds near-

optimal routes in polynomial time.

5. We show by numerical calculations that the MSPA is able to find an optimal

route with high probability.
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The advantage of these routing algorithms is two-fold. Firstly, they show that

routing and coding optimizations can be separated under certain conditions, e.g.,

when the NNSA outputs one route or when the MSPA finds an optimal route.

Secondly, the algorithms enable us to find an optimal route without going through

the complex brute force search.

1.3.2 Myopic Cooperation

Secondly, we investigate how to code and what rates are achievable in cooperative

multiple-terminal wireless networks when every node is only allowed to partially

cooperate with only a few nodes.

In the information theoretic literature, limits to transmission rates are found

assuming that all nodes can fully cooperate, in both encoding and decoding. We

term this omniscient coding. We often assume ideal operating conditions, e.g.,

unlimited processing powers at the nodes, perfect synchronization among all trans-

mitters and receivers. This full cooperation makes practical code design in a large

network difficult. Hence, we investigate how much worse (in terms of the trans-

mission rate) if we allow only partial cooperation among the nodes, which we term

myopic coding (Ong & Motani, 2005a,b, 2008).

In terms of code design, utilizing local information leads to a relatively sim-

pler optimization. In terms of operation, myopic coding provides more robustness

to topology changes and does not require the whole network to be synchronized.

It also mitigates the high computational complexity and large buffer/memory re-

quirements of processing under omniscient coding.

We choose the MRC to investigate partial cooperation in multiple-terminal

networks as it contains relays through which we can compare different levels of

cooperation. Our contributions are as follows:

1. We construct random codes for the myopic version of DF (Ong & Motani,

2005a,b, 2008) for the MRC with different levels of cooperation.

2. We derive achievable rates of myopic DF for or the discrete memoryless, the
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static Gaussian, and the fading MRC.

3. We show that including a few nodes into the cooperation increases the trans-

mission rate significantly, often making it close to that under full cooperation.

4. We show that achievable rates of myopic coding may be as large as that of

omniscient coding in the low transmitted-signal-to-noise ratio regime.

5. We show that in the MRC, myopic DF can achieve rates bounded away from

zero even as the network size grows to infinity.

1.3.3 Correlated Sources

Lastly, we investigate how to code and what rates are achievable in cooperative

multiple-terminal wireless networks where the sources have correlated data. One

example of networks with correlated sources is the wireless sensor network, where

multiple sensors measure the environment and send possibly correlated data to

their respective destinations. The sensors’ measurements are possibly correlated

as they are located in close proximity and are measuring the same environment.

To study networks with correlated sources, we need a network with more

than one source. In addition, to study cooperation among the sources, we al-

low them to receives different feedback from the channel. We consider the sim-

plest case, where there are two correlated sources and one destination. We term

this channel the three-node multiple-access channel with feedback and correlated

sources (MACFCS) (Ong & Motani, 2005c, 2006b, 2007d). We construct different

coding strategies for this channel, showing different ways in which the nodes can

cooperate, and explore the pros and cons of these strategies.

Our contributions are as follows:

1. We derive an outer bound on the capacity of the MACFCS (Ong & Motani,

2005c, 2006b, 2007d).

2. We construct two new coding strategies for the MACFCS, where the nodes

cooperate by either fully decoding or compressing each other’s data.
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3. We derive achievable rate regions of these coding strategies for the discrete

memoryless and the static Gaussian MACFCS.

4. We compare achievable rate regions of these strategies to that of existing

strategies, e.g., channel coding for the MAC and the multi-hop strategy, and

discuss the pros and cons of different coding strategies in different channel

conditions.

5. We show that the outer bound on the capacity of the MACFCS is achievable

under certain source correlation structures and channel topologies.
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nications and Networks (SECON 2007), San Diego, California, pages 334–

343, June 18-21 2007.

3. Ong L. & Motani M., “The Multiple Access Channel with Feedback and Cor-

related Sources”, Proceedings of the 2006 IEEE International Symposium on

Information Theory (ISIT 2006), The Westin Seattle, Seattle, Washington,

pages 2129–2133, July 9–14 2006.
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with Feedback and Correlated Sources”, Proceedings of the 43rd Annual Aller-

ton Conference on Communication, Control, and Computing, Allerton House,

the University of Illinois, September 28–30 2005.

5. Ong L. & Motani M., “Myopic Coding in Multiple Relay Channels”, Pro-

ceedings of the 2005 IEEE International Symposium on Information Theory
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1.5 Organization

The structure of this thesis is depicted in Fig. 1.2. In this chapter, we have given

a brief introduction to the three problem areas that we will be investigating and

motivated them. We have also included our main contributions of this thesis in this

chapter. In Chapter 2, we review the definition of the MRC and rates achievable

by DF for the MRC, and define what a route is in the cooperative scenario.

In Chapters 3–5, we present the main findings of this thesis in the following areas

respectively: cooperative routing, myopic cooperation, and correlated sources. In

9



1.5 Organization

Figure 1.2: The structure of this thesis.

Chapter 3, we construct the NNSA to find optimal routes for DF for the static

Gaussian MRC. We show that a shortest rate-maximizing route is contained in one

of the routes output by the NNSA. Under certain conditions, the NNSA outputs

a large set of routes, and this makes the route optimization runs in factorial time.

Hence, we propose a heuristic algorithm, the MSPA that runs in polynomial time

and finds an optimal route with high probability. In Chapter 4, we first define

myopic coding, in which the communication of the nodes is constrained in such a

way that a node communicates with only a few other nodes in the network. We

discuss a few advantages of myopic coding over omniscient coding. We construct

random codes for the myopic version of DF for the MRC with different levels of

cooperation. We derive achievable rates of myopic DF for the discrete memoryless,

the static Gaussian, and the fading MRC. We compare the rates achievable via

different levels of cooperation, and investigate the rates achievable by myopic DF

when the number of nodes in the channel grows large. In Chapter 5, we derive

an outer bound on the capacity of the MACFCS. We then construct a few coding

strategies for the MACFCS and derive achievable rate regions for these coding

strategies. We combine existing coding strategies for other channels and see how

it can be used in the MACFCS. We compare the rate regions of different coding

strategies under different channel conditions and source correlation structures.

We conclude the thesis in Chapter 6.
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Chapter 2

Background

We mentioned in the previous chapter that as analyzing multiple-source multiple-

destination (multiple-flow) networks is difficult, we attempt to understand the prob-

lem better by focusing on simpler networks: the multiple-relay channel (MRC) and

the multiple-access channel with feedback and correlated sources (MACFCS). In

this chapter, we review the definition of the discrete memoryless MRC and the

Gaussian channel, propose a new definition of a route, and review the decode-

forward coding strategy (DF) for the MRC. DF is used to illustrate many concepts

in this thesis. We present the rates achievable by DF for the discrete memoryless

and the static Gaussian MRC in this chapter and extend the concept of DF to the

MACFCS in Chapter 5.

2.1 The Multiple-Relay Channel (MRC)

The single-relay channel (SRC) (first introduced by van der Meulen (1971)) consists

of three nodes: the source, the relay, and the destination. The source sends data

to the destination with the help of the relay. To date, the largest achievable region

for the SRC is due to Cover & El Gamal (1979), who constructed two coding

strategies, commonly referred to as decode-forward (DF) and compress-forward

(CF). Chong et al. (2007) recently introduced a different decoding technique to

give a potentially larger achievable region for the SRC. The SRC was extended to
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Figure 2.1: The T -node MRC.

the MRC by Gupta & Kumar (2003) and Xie & Kumar (2005), who presented an

achievable rate region based on DF. The capacity of the MRC is not known except

for special cases, including the degraded MRC (Xie & Kumar, 2005) (achievable

by DF), the phase fading MRC where the relays are within a certain distance from

the source (Kramer et al., 2005) (achievable by DF), and the mesh network (Ong

& Motani, 2006a, 2007c) (achievable by CF). The terms “coding” and “coding

strategy” are used interchangeably in this thesis.

The MRC captures the single-flow scenario in the multiple-source multiple-

destination network. The relevance of the MRC in multiple-flow networks is as

follows:

1. In a multiple-flow network where the flows are allocated orthogonal channels:

Each flow can be modeled as an independent MRC.

2. In a multiple-flow network with existing flows: If we wish to add a new flow,

this new flow can be modeled by an MRC with the interference from other

flows included in the receiver noise.

2.1.1 The Discrete Memoryless MRC

Now, we review the the definition of MRC. Fig. 2.1 depicts the T -node MRC, with

node 1 being the source and node T the destination. Nodes 2 to T − 1 are purely

relays. Message W is generated at node 1 and is to be sent to node T . A MRC
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can be completely described by the channel distribution

p∗(y2, y3, . . . , yT |x1, x2, . . . , xT−1) (2.1)

on Y2×Y3×· · ·×YT , for each (x1, x2, . . . , xT−1) ∈ X1×X2×· · ·×XT−1. X1,X2, . . . ,

XT−1,Y2,Y3, . . . ,YT are finite sets. In this thesis, we only consider memoryless and

time invariant channels (Kramer et al., 2005), which means

p(y2i, . . . , yT i|xi1, . . . , xiT−1, y
i−1
2 , . . . , yi−1

T ) = p∗(y2i, . . . , yT i|x1i, . . . , x(T−1)i), (2.2)

for all i.

We use the following notation: xi denotes an input from node i into the channel,

xij denotes the j-th input from node i into the channel, yij denotes the j-th output

from the channel to node i, and xit = xt1, xt2, . . . , xti. We denote a block of n

inputs from node i by xi. Similarly, yt is a block of n channel outputs to node t.

In addition, xij and ytj denote the j-th block of inputs from node i and the j-th

block of channel outputs to node t respectively.

We denote the T -node MRC by the tuple

(
X1 × · · · × XT−1, p

∗(y2, . . . , yT |x1, . . . , xT−1),Y2 × · · · × YT

)
. (2.3)

In the MRC, the information source at node 1 emits random letters W , each

taking on values from a finite set of size M , that is w ∈ {1, ...,M} , W. We

consider each n uses of the channel as a block.

Definition 1 A sequence of codes
{
f1, {fti, 2 ≤ t ≤ T −2}ni=1, gT , n

}
for a T -node

MRC comprises of an integer n,

• An encoding function at node 1, f1 : W→ Xn
1 , which maps a source letter to

a codeword of length n.

• Encoding functions at node t, fti : Yi−1
t → Xt, i = 1, 2, . . . , n and t = 2, 3, . . . ,
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T − 1, such that xti = fti(yt1, yt2, . . . , yt(i−1)), which map past received signals

to the signal to be transmitted into the channel.

• A decoding function at the destination, gT : YnT →W, such that ŵ = gT (ynT ),

which maps received signals of length n to a source letter estimate Ŵ .

Definition 2 On the assumption that the source letter W is uniformly distributed

over {1, ...,M}, the average error probability is defined as

Pe = Pr{Ŵ 6= W}. (2.4)

Definition 3 The rate

R ≤ 1

n
logM (2.5)

is achievable if, for any ε > 0, there is at least a sequence of codes
{
f1, {fti, 2 ≤

t ≤ T − 2}ni=1, gT , n
}

such that Pe < ε.

For a set of nodes T = {t1, t2, . . . , t|T|}, we define XT = (Xt1 , Xt2 , . . . , Xt|T|). We

denote the set of all relays in the MRC by R = {2, 3, . . . , T − 1}.

2.2 More Definitions

The following definition and lemma are taken from Cover & Thomas (1991, p. 384

& 386).

Definition 4 Consider a finite collection of random variables (X1, X2, . . . , Xk)

with some fixed joint distribution p(x1, x2, . . . , xk). Let S denote an arbitrarily

ordered subset of these random variables, and consider n independent copies of S.

Pr{S = s} =
n∏
i=1

Pr{Si = si}. (2.6)
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The set An
ε of ε-typical n-sequences (x1,x2, . . . ,xk) is defined as

An
ε (X1, X2, . . . , Xk) =

{
(x1,x2, . . . ,xk) :

∣∣∣∣− 1

n
log p(s)−H(S)

∣∣∣∣ < ε,

∀S ⊆ {X1, X2, . . . , Xk}

}
. (2.7)

Lemma 1 For any ε > 0 and for sufficiently large n, |An
ε (S)| ≤ 2n(H(S)+ε).

2.3 The Gaussian Channel

We consider a flat fading Gaussian channel T with

Yt =
∑

i∈T\{t}

√
λitXi + Zt, (2.8)

where Xi is a random variable with per-block energy constraint, meaning,

1

n

n∑
k=1

E[X2
ik] ≤ Pi. (2.9)

Zt, the receiver noise at node t, is an independent zero-mean Gaussian random

variable with variance Nt, i.e., E[Zt] = 0 and E[Z2
t ] = Nt. λit is the channel gain

from node i to node t. In this thesis, we consider both large scale fading and small

scale fading (Sklar, 1997):

λij = νijhij, (2.10)

where hij are large scale fading components due to signal attenuation or path loss.

We assume that the large scale fading components are constants in the network.

This is applicable when the nodes are stationary. We assume that all hij are known

to all transmitters and receivers. rij =
√
νij ≥ 0 are small scale fading envelopes

due to multi-path. Also, we assume that all r and Z are independent.

Definition 5 We define the received-signal-to-noise ratio (rSNR) of a pair of
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transmitter i and receiver j as

γij =
E[λij]E[X2

i ]

E[Z2
j ]

. (2.11)

Definition 6 We define the transmitted-signal-to-noise ratio (tSNR) of a pair of

transmitter i and receiver j as

ψij =
E[X2

i ]

E[Z2
j ]
. (2.12)

2.3.1 Large Scale Fading Model

Let us now investigate large scale fading. Consider a point-to-point noiseless static

channel from node i to node j, i.e., Nj = 0, and rij = 1. Using Friis free space

path loss model, the channel gain is given by

hij =
Prj
Pi

=
G

(4πfdij)2
, (2.13)

where Prj is the received power, Pi the transmit power, G the antenna gain, f the

carrier frequency, dij the Euclidean distance between the transmitter and the re-

ceiver. In non-free space, different models are used to model the signal propagation

attenuation in different environments. However, in most models, hij is inversely

proportional to d−ηij , where η ranges from 2 to 8. Capturing the main characteristic

of how hij varies with distance, one can simplify these path loss models to the

following standard path loss model for the channel from node i to node j.

hij = κd−ηij , (2.14)

where η is the path loss exponent, and η ≥ 2 with equality for free space transmis-

sion. κ is a positive constant as far as the analyses in this section are concerned. In

this thesis, we set η = 2 and κ = 1. The standard path loss model is a widely ac-
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cepted model and commonly used in the information theoretic literature (Gatspar

& Vetterli, 2005; Gupta & Kumar, 2000; Kramer et al., 2005; Toumpis & Gold-

smith, 2003).

2.3.2 Small Scale Fading Model

In wireless channels, even when the nodes are stationary, the channel gains vary

due to changes in the environment. These are captured in the small scale fading

components. In this thesis, we consider multi-path fading. The received signal at

node j from node i is subject to fading envelope rij =
√
νij ≥ 0. In other words,

the received power at node j from node i is subject to fading power νij. We denote

the average fading power by Ωij = E[νij].

Example 1 For Rayleigh fading, the fading power is a random variable with the

following probability density function (p.d.f.).

p(νij) =


1

Ωij
exp

(
−νij
Ωij

)
, νij ≥ 0

0 , otherwise

. (2.15)

In Section 3.7, we consider fading channels where νij are random variables. In

the rest of the thesis, we consider static channels, i.e., νij are constants. Without

loss of generality, we assume Ωij = E[νij] = 1 for all channels. To model channels

with different fading power, we can always normalize them to 1 by changing dij

accordingly.

2.4 Definition of a Route

Now, we define what we mean by a route in a network. Kurose & Ross (2003) define

a route as “the path taken by a datagram between source and destination”. The

datagram hops from one node to the next node, capturing the scenario in which

a node receives data only from a node behind (or upstream) and forwards data
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only to the node in front (or downstream). However, in the cooperative coding

paradigm, data do not flow from one node to another; rather they “travel” from

many to many in a complex cooperative way. To describe the flow of information

in these new modes of cooperation, we re-define a route as follows.

Definition 7 The route taken by a message from the source to the destination is

an ordered set of nodes involved in encoding/transmitting of the message. The se-

quence of the nodes in the route is determined by the order in which nodes’ transmit

signals first depend on the message. The node that the message is intended for (the

destination), though does not transmit, is the last node in the route.

We define the route with respect to the encoding sequence rather than the de-

coding sequence in order to capture the active participation of the nodes. Consider

a 4-node network with node 1 being the source and node 4 the destination. Node 1

sends a message w. Node 2 and 3 both fully decode the message. But only node 2

forwards the message w to node 4. In this case, the route taken is {1, 2, 4} accord-

ing to our definition, but not {1, 2, 3, 4}. This agrees with our common notion of

a route, as node 3 does not participate in aiding the message forwarding and shall

not be considered as part of the route. However, if node 3 is also a destination of

another flow, then the route for that flow is {1, 3}.

This new definition of a route generalizes the usual notion of a multi-hop route

to the multiple-terminal cooperative scenario, where nodes cooperate intimately

with each other. It is clear that this definition reduces to the usual notion of a

route in the multi-hop case. Note that this definition is applicable in the net-

work coding (Ahlwsede et al., 2000) scenario, where a node forwards functions of

previously received data.

Remark 1 If a group of nodes transmit simultaneously, then they can be ordered

arbitrarily within the group. For example, consider a four-node network, in which

node 1 first broadcasts the message, and then nodes 2 and 3 listen and simul-

taneously transmit to node 4. The route here can be described by {1, 2, 3, 4} or

{1, 3, 2, 4}.
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Refer to Example 2 for a route for DF.

We define the set of all possible routes from the source (node 1) to the desti-

nation (node T ) by Π(T) =
{
{m1,m2, . . . ,m|M|} : m2, . . . ,m|M|−1 are all possible

selections and permutations of the relays (including the empty set), m1 = 1,m|M| =

T
}

.

2.5 The Decode-Forward Coding Strategy (DF)

2.5.1 DF for the Discrete Memoryless MRC

In DF (first introduced for the SRC by Cover & El Gamal (1979)), the source

transmits to all relays and the destination. The relays fully decode the data sent

by the source, and help it to forward the data to the destination. It is also known

as the decode-and-forward strategy. DF for the MRC can achieve rates up to that

given in the following theorem.

Theorem 1 DF for the MRC achieves any rate up to

RDF = max
M∈Π(T)

max
p(x1,...,xT−1)

min
mt∈M\{1}

I(Xm1 , . . . , Xmt−1 ;Ymt|Xmt , . . . , Xm|M| , XMc),

(2.16)

where Mc = T \M.

Proof 1 (Proof of Theorem 1) The DF rate in Theorem 1 follows that by Xie &

Kumar (2005, Thm 3.1) and Kramer et al. (2005, Thm 1) with some modifications.

Achievable rates of DF for the MRC was first derived by Xie & Kumar (2005, Thm

3.1) by assuming that data flow from node 1 to node 2, and so on until node T ,

the destination. Kramer et al. (2005, Thm 1) noted that higher achievable rates

are possible by choosing the best permutation of the nodes through which the data

flow. In this thesis, we argue that the achievable rates can be further increased by

selecting which nodes to participate in data forwarding as well as permutating the

selected nodes, which we call a route. The latter is a more relaxed constraint as it
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2.5 The Decode-Forward Coding Strategy (DF)

(a) Network topology

Route DF Rate
{1, 2, 3, 4, 5} 2.40029
{1, 2, 4, 3, 5} 2.58613
{1, 3, 2, 4, 5} 1.84097
{1, 3, 4, 2, 5} 1.84097
{1, 4, 2, 3, 5} 1.99411
{1, 4, 3, 2, 5} 1.99411
{1, 2, 4, 5} 2.61819

(b) Routes and Rates

Figure 2.2: Comparing DF rates on different routes. Pi = 10, i ∈ M \ {5}, Nj =
1, j ∈M \ {1}, κ = 1 η = 2 and rij = 1, ∀i, j..

Figure 2.3: An example of the DF encoding function.

does not require all relays to be in the route. When |M| < T , the minimization is

taken over a smaller set of nodes, and the maximum DF rate could be higher.

Now, we show by using an example that using forcing all nodes to be in the

route is not optimal. Refer to the Gaussian MRC depicted in Fig. 2.2(a). We

compute DF rates for different routes. The first six routes include all relays and

all possible relay permutations. The last route {1, 2, 4, 5}, which omits node 3,

achieves DF rate higher than any other route that includes all relays.

For DF, the route is also the order for which the messages are decoded at the

relays. By definition, node 1 is the first node in the route. Let us see an example

of a route in the four-node MRC, and the encoding and decoding steps.
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2.5 The Decode-Forward Coding Strategy (DF)

Example 2 Consider DF for the four-node MRC. One way of encoding and de-

coding is as follows (refer Fig. 2.3). We use wi to denote the i-th source message.

1. At the beginning of block 1, node 1 receives the first source message, w1. It

transmits, x1(w1).

2. At the end of block 1, all nodes receive a noisy version of x1(w1). But only

node 2 decodes w1.

3. In block 2, node 2 sends x2(w1). Receiving a new source message w2, node 1

sends x1(w2, w1), which is a function of the new and the old source message.

4. At the end of block 2, node 3 decodes w1 over two blocks of received signal,

i.e., y3,1 in block 1 and y3,2 in block 2.

5. Similarly, node 4 decodes w1 over 3 blocks of received signal.

Looking at how the transmitted signals first depend on w1, the route for this code

is {1, 2, 3, 4}. By definition, node 4 is the last node in the route, though it does not

transmit.

Definition 8 For a certain input distribution p = p(x1, . . . , xT−1), we define the

rate supported by route M as:

RM(p) = min
mt∈M\{1}

Rmt(M, p), (2.17)

where Rmt(M, p) is the reception rate at node mt given by

Rmt(M, p) = I(Xm1 , . . . , Xmt−1 ;Ymt|Xmt , . . . , Xm|M| , XMc). (2.18)

So, the maximum DF rate can also be written as

RDF = max
M∈Π(T)

max
p
RM(p). (2.19)
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2.5 The Decode-Forward Coding Strategy (DF)

2.5.2 DF with Gaussian Inputs for the Static Gaussian

MRC

In DF for the Gaussian channel, a node splits its total transmission power between

sending new information and repeating what the relays in front (or downstream, i.e.,

toward the destination) send. Every node decodes signals from all the nodes behind

(or upstream, i.e., toward the source). At the same time, it cancels interfering

transmissions from all the downstream nodes.

Using DF with jointly Gaussian inputs and route M, node mi transmits

Xmi =

|M|∑
j=i+1

√
αmimjPmiUmj , (2.20)

for
∑|M|

j=i+1 αmimj ≤ 1 and αmimj ≥ 0, ∀i = 1, . . . , |M| − 1. Umj are independent

Gaussian random variables with unit variance. {αmimj |j = i + 1, . . . , |M|} are

the power splits of node mi, allocating portions of its transmit power to transmit

independent sub-codewords Umj .

In the static Gaussian MRC, DF on route M can achieve rates up to

RM(p) = min
mt∈M\{m1}

Rmt(M, p), (2.21)

where Rmt(M, p) is given by

Rmt(M, p) =
1

2
log

1 +
t∑

j=2

(
j−1∑
i=1

√
αmimjγmimt

)2
 . (2.22)

Any Gaussian distribution p can be completely determined by {αmimj} and {Pi}.

Throughout this thesis, logarithm base 2 is used and hence the units of rate are

bits per channel use.

Remark 2 It has been shown by Kramer et al. (2005) that jointly Gaussian inputs
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2.5 The Decode-Forward Coding Strategy (DF)

achieve RDF in the static Gaussian MRC, i.e.,

max
M∈Π(T)

max
p∈PGauss

RM(p) = max
M∈Π(T)

max
p∈PAll

RM(p) = RDF, (2.23)

where PAll is the set of all possible input distributions and PGauss the set of all

jointly Gaussian distributions.

If the nodes transmit independent Gaussian inputs, i.e., we set αmimt = 1,∀mi ∈

M\{1},∀t = i+1 and αmimt = 0,∀t 6= i+1, the reception rate at node mt ∈M\{1}

is

Rmt(M, p′) =
1

2
log

(
1 +

t−1∑
i=1

γmimt

)
. (2.24)

where p′ = p(x1) · · · p(xT−1) and Xi ∼ N(0, Pi). The rate supported by route M is

thus

RM(p′) = min
mt∈M\{1}

Rmt(M, p′). (2.25)

2.5.3 Why DF?

In the chapters on cooperative routing and myopic cooperation, we base our dis-

cussions on DF. In the chapter on correlated sources, we derive a DF-based coding

strategy for the MACFCS. DF is an important coding strategy for the reasons

given below.

1. DF achieves the capacity of the degraded MRC (Xie & Kumar, 2005).

2. DF achieves the capacity of the phase fading MRC when the relays are posi-

tioned within a certain distance from the source (Kramer et al., 2005).

3. DF achieves the capacity of the MRC where all relays must fully decode all

source messages.

4. Rates achievable by DF are lower bounded by that achievable by point-to-

point multi-hop strategy (Ong & Motani, 2007a).
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2.5 The Decode-Forward Coding Strategy (DF)

5. A DF-based coding strategy (derived in this thesis) achieves the capacity of

MACFCS in several conditions.

6. There exist many DF-based low-density parity-check (LDPC) codes (Chakrabarti

et al., 2007; Ezri & Gastpar, 2006; Khojastepour et al., 2004; Razaghi & Yu,

2006) and Turbo codes (Zhang et al., 2004; Zhao & Valenti, 2003) which

perform close to the information-theoretic DF rate. Analyses of DF may be

applied directly or indirectly to these codes.
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Chapter 3

Optimal Routing in

Multiple-Relay Channels

Consider the multiple-terminal wireless network in which a node can overhear the

transmissions of all other nodes transmitting in the same frequency band and in

communication range. The nodes can cooperate to send information from sources to

destinations, e.g., via cooperative relaying (Cover & El Gamal, 1979; Kramer et al.,

2005; Xie & Kumar, 2005) and opportunistic routing (Biswas & Morris, 2004). The

gain from cooperation has been shown in information theoretic analyses (Ong &

Motani, 2005a,b, 2008) and demonstrated in practical implementations (Lim et al.,

2006; Sendonaris et al., 2003a,b). As data paths in this cooperative environment

are difficult to describe using the traditional notion of a route, we proposed a new

definition for a route (see Section 2.4). Unfortunately, routing algorithms designed

for conventional non-cooperative multi-hop routing are no longer optimal (rate-

maximizing) when the nodes are allowed to cooperate, e.g., via the decode-forward

coding strategy (DF) (Cover & El Gamal, 1979; Kramer et al., 2005; Xie & Kumar,

2005), which promises a higher transmission rate compared to multi-hop and even

achieves the capacity of a few classes of networks. In this chapter, we propose new

routing algorithms to find rate-maximizing routes for DF.
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3.1 Problem Statement

3.1 Problem Statement

We consider the T -node multiple-relay channel (MRC) (Gupta & Kumar, 2003;

Xie & Kumar, 2005), in which the nodes are restricted to transmit in certain ways,

or more precisely, the input distribution of the nodes are restricted to p ∈ P. The

maximum rate achievable by DF under this restriction is thus

RDF(P) = max
M∈Π(T)

max
p∈P

RM(p), (3.1)

where T is the set of all the nodes in the channel, and Π(T) is the set of all possible

routes from the source to the destination. Recall that the rate supported by route

M = {m1 = 1,m2, . . . ,m|M| = T}, where node 1 is the source and node T is the

destination, is

RM(p) = min
mt∈M\{1}

Rmt(M, p), (3.2)

where Rmt(M, p) is the reception rate at node mt given by

Rmt(M, p) = I(Xm1 , . . . , Xmt−1 ;Ymt|Xmt , . . . , Xm|M| , XMc). (3.3)

Let (M∗, p∗),M∗ ∈ Π(T), p∗ ∈ P be a pair of route and input distribution that

achieves the maximum DF rate. We are interested in the following.

1. How to find M∗, and subsequently RDF(P)?

2. Can M∗ and p∗ be optimized separately?

Definition 9 We define the optimal route set for DF with respect to a set of input

distributions as

QDF(P) ,

{
M∗ ∈ Π(T) : max

p∈P
RM∗(p) = max

M∈Π(T)
max
p′∈P

RM(p′)

}
,

We define the optimal route set because the rate-maximizing route may not

be unique. Then the optimal DF routing problem for a network T is to find an

M∗ ∈ QDF(P).
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We say that the routing and coding optimizations can be completely separated

if we can find an M∗ ∈ QDF(P) without needing to consider the input distribution.

On the other hand, we say that the routing and coding optimizations are partially

separated if we can find a set of routes B, without considering the input distribu-

tion, that contains at least one optimal route, i.e., ∃M∗ ∈ B where M∗ ∈ QDF(P)

and 1 < |B| < |Π(T)|.

It has been noted by Xie & Kumar (2005) and Kramer et al. (2005) that the

DF rate depends on the route selected (known as node order/permutation in the

papers). Besides the degraded case, finding the optimal route is not easy in gen-

eral. We refer to the strategy of testing all possible routes with all possible input

distributions as brute force.

3.2 Contributions

In this chapter, we construct an algorithm, the nearest neighbor set algorithm

(NNSA), to find a set of routes that contains an optimal route for DF, without

needing to optimize the input distribution. From the set of routes, we then optimize

the input distribution for each route to find an optimal route. So, instead of

optimizing the input distribution for all possible routes (i.e., combined routing and

coding using brute force), we only need to search for an optimal route in the set

output by the NNSA. Under certain conditions, the NNSA outputs a single route,

which is an optimal route. In this case, we can completely separate routing and

coding.

However, the NNSA might output a large set of routes. In the worst case, it

outputs all possible routes. This reverts the problem back to combined routing and

coding optimization, which runs in factorial time. To solve this problem, we exploit

the properties of the algorithm to design a heuristic algorithm, the maximum sum-

of-received-power algorithm (MSPA), which disregards the input distribution and

outputs a near optimal (or under certain conditions, optimal) route in polynomial

time. We show, empirically, that the MSPA finds an optimal route with high
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3.2 Contributions

probability. This means, with high probability we can completely separate routing

and coding.

A near-optimal route is useful as follows. Firstly, it can be used to calculate a

lower bound on the maximum DF rate. Secondly, it can be used in a network to

achieve rates close to DF.

We summarize our contributions in this chapter as follows.

1. We construct an algorithm, the nearest neighbor set algorithm (NNSA) (Ong

& Motani, 2007a,b), which outputs a set of routes that contains an optimal

route for the static Gaussian MRC without having to optimize the input

distribution.

2. We show that the optimizations of routing and coding (input distribution)

can be completely separated under certain scenarios, or partially separated.

3. We show that a shortest optimal route is contained in at least one of the

outputs of the NNSA.

4. We show that the NNSA is optimal in fading channels with no delay constraint

in the sense that it finds a route that maximizes the ergodic rate.

5. We show that the NNSA is not optimal in fading channels with delay con-

straints in the sense that it does not always find a route that minimizes the

outage probability.

6. We construct a heuristic algorithm, the maximum sum-of-received-power al-

gorithm (MSPA), which disregards the input distribution and finds near-

optimal routes in polynomial time.

7. We show by numerical calculations that the MSPA finds an optimal route

with high probability.
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3.3 A Few Theorems and Lemmas

3.2.1 Organization

The rest of this chapter is organized as follows. Before jumping into the algorithms,

we derive a few theorems and lemmas in Section 3.3. In Section 3.4, we present

two algorithms that find optimal routes, namely the nearest neighbor algorithm

(NNA) and the NNSA. We discuss a few interesting observations on the NNSA

in Section 3.5. We show that the NNSA contains the shortest optimal route in

Section 3.6, and that NNSA is also optimal in fading channels in the sense that it

maximizes the ergodic rate in Section 3.7. In Section 3.8, we present a heuristic

algorithm that finds an optimal route (with high probability) in polynomial time.

We conclude this chapter in Section 3.9.

In the next section, we derived a few theorems and lemmas which will be used

in the sequel.

3.3 A Few Theorems and Lemmas

First, we study how channel gains affect the mutual information between the chan-

nel inputs and the channel outputs.

Lemma 2 Consider a Gaussian point-to-point channel with interference and noise:

Y2 =
√
λX1 + Z2 + V2, (3.4)

where X1 is the input with power constraint E[X2
1 ] ≤ P1, Z2 an independent zero-

mean Gaussian random variable with power E[Z2
2 ] = N2, V2 an independent and

arbitrarily-distributed interference component with power E[V 2
2 ] = PV , and λ > 0.

Increasing λ does not necessarily increase I(X1;Y2).

Proof 2 (Proof of Lemma 2) Let us consider the case N2 = 0, P1 = 1, PV = 4.
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3.3 A Few Theorems and Lemmas

Let the p.d.f. of X1 and V2 be

p(x1) =


1
2

, if x1 = 1
1
2

, if x1 = −1

0 , otherwise

(3.5a)

p(v2) =


1
2

, if v2 = 2
1
2

, if v2 = −2

0 , otherwise

. (3.5b)

We can show that

If λ = 4, I(X1;Y2) = H(Y2)−H(Y2|X1) = 1.5− 1 = 0.5 bit. (3.6a)

If λ = 1, I(X1;Y2) = H(Y2)−H(Y2|X1) = 2− 1 = 1 bit. (3.6b)

We see, in this example, that increasing λ decreases I(X1;Y2).

Lemma 2 says that for a point-to-point Gaussian channel with non-Gaussian

interference, increasing the channel gain does not necessarily increase the mutual

information between the channel input and the channel output. However, under the

condition described below, we can show that increasing the channel gain increases

the mutual information between the channel input and the channel output.

Definition 10 Consider a function that maps a real number to a real number. We

say that the function is single-peak if the support of the set of local maxima of the

function is a convex set.

Definition 11 Consider a memoryless channel with channel inputs {xi} and chan-

nel outputs {yj}. We say that the single-peak condition (SPC) is satisfied iff the

output p.d.f. p(yj|xi) at every receiver j conditioned on every transmitter i is

single-peak.

Lemma 3 Consider a point-to-point channel with interference and noise:

Y2 =
√
λX1 + Z2 + V2, (3.7)
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where X1 is the input with power constraint E[X2
1 ] ≤ P1, Z2 an independent

and arbitrarily-distributed noise with power E[Z2
2 ] = N2, V2 an independent and

arbitrarily-distributed interference component with power E[V 2
2 ] = PV , and λ > 0.

If the SPC is satisfied, then I(X1;Y2) increases monotonically with λ. Furthermore,

if the SPC is satisfied and if Z2 is zero-mean Gaussian, then I(X1;Y2) increases

strictly with λ. For this channel with one input x1 and one output y2, the SPC is

satisfied iff p(y2|x1) is single-peak.

Proof 3 (Sketch of proof of Lemma 2) See Appendix A.1.

For the rest of this chapter, we assume Gaussian channels and we operate the

networks under the SPC.

For the general T -node Gaussian channel, we have the following theorem.

Theorem 2 Consider a Gaussian channel T. Consider a set of nodes S ⊂ T and

its complement in the network Sc = T \ S. For a pair of nodes j, k ∈ Sc, if

γij ≥ γik,∀i ∈ S, (3.8)

and if the SPC is satisfied, then

I(XS;Yj|XSc) ≥ I(XS;Yk|XSc). (3.9)

Here, γij =
E[λij ]E[X2

i ]

E[Z2
j ]

is the received-signal-to-noise ratio (rSNR) of a pair of trans-

mitter i and receiver j.

Proof 4 (Proof of Theorem 2) See Appendix A.2.

Remark 3 Choosing the input of all nodes to be jointly Gaussian satisfies the SPC.

Now, we derive two lemmas which we will need in the later part of the chapter.

Lemma 4

I(XT, XA;Y |XB) ≥ I(XA;Y |XT, XB). (3.10)
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Proof 5 (Proof for Lemma 4)

I(XT, XA;Y |XB) = H(Y |XB)−H(Y |XT, XA, XB) (3.11a)

≥ H(Y |XT, XB)−H(Y |XT, XA, XB) (3.11b)

= I(XA;Y |XT, XB). (3.11c)

Definition 12 For two routes M1 and M2, M1 ∪M2 means concatenating route

M2 to the end of route M1, while preserving the order of nodes in both routes.

For a route and its extension, we have the following lemma.

Lemma 5 Consider a route M1 and its extension M3 = M1 ∪M2. It follows that

for DF with any input distribution p,

RM1(p) ≥ RM3(p). (3.12)

Proof 6 (Proof of Lemma 5)

RM3(p) = min
i∈M3\{1}

Ri(M3, p) (3.13a)

= min

[
min

i∈M1\{1}
Ri(M3, p), min

j∈M2\{1}
Rj(M3, p)

]
(3.13b)

= min

[
min

i∈M1\{1}
Ri(M1, p), min

j∈M2\{1}
Rj(M3, p)

]
(3.13c)

≤ min
i∈M1\{1}

Ri(M1, p) (3.13d)

= RM1(p) (3.13e)

Now, we are ready to present two algorithms that find optimal routes for DF

for the static Gaussian MRC.

3.4 Finding an Optimal Route

In this section, we present two algorithms to find optimal route(s) for any input

distribution (which satisfies the SPC) on the static Gaussian MRC.
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3.4.1 Nearest Neighbor

First, we define a node (not in M) with the highest received-signal-to-noise ratio

(rSNR) from every node in M.

Definition 13 Node i /∈M is a nearest neighbor with respect to route M iff

γmi ≥ γmj, ∀m ∈M,∀j ∈ T \ (M ∪ {i}). (3.14)

Although the definition does not involve inter-node distance, we use the term near-

est neighbor because for a system where all nodes transmit at the same power and

are subject to the same receiver noise power, the closer two nodes are, the higher

the rSNR between them, i.e., 1
dηij
∝ γij as η ≥ 2. Note that a nearest neighbor with

respect to a route might not be unique, and might not even exist.

3.4.2 The Nearest Neighbor Algorithm

Now, we state the nearest neighbor algorithm (NNA).

Algorithm 1 (NNA)

1. First, start with the source node, M = {m1}.

2. Find the unique nearest neighbor with respect to the current route M. In

other words, pick the unique node i /∈M such that

γmi ≥ γmj, ∀m ∈M,∀j ∈ T \ (M ∪ {i}), (3.15)

with at least one strict inequality.

3. If a unique nearest neighbor exists, append the nearest neighbor of M to the

current M, i.e., M ← M ∪ {i}. Else if a unique nearest neighbor does not

exist, the algorithm terminates prematurely.

4. Steps 2–3 are repeated until the destination, node T , is added into M.

33



3.4 Finding an Optimal Route

The algorithm is said to terminate normally if node T is added to the route. At

any time, if a unique nearest neighbor does not exists, the algorithm is said to

terminate prematurely. If the NNA terminates normally, we have the following

theorem.

Theorem 3 Consider a static Gaussian MRC T, in which node 1 is the source

and node T is the destination. If the NNA terminates normally and outputs route

M∗, then for any input distribution of the form p = p(x1, . . . , xT−1) satisfying the

SPC,

RM∗(p) = max
M∈Π(T)

RM(p) (3.16)

Proof 7 (Proof of Theorem 3) See Appendix A.3.

Remark 4 We note that for the NNA to terminate normally, one unique nearest

neighbor must exist after the addition of each node into the route. In the next

section, we extend the NNA to an algorithm which terminates normally given any

network topology.

3.4.3 Nearest Neighbor Set

Before jumping into the algorithm, we define nearest neighbor set.

Definition 14 The nearest neighbor set N = {n1, n2, . . . , n|N|} with respect to

route M = {m1,m2, . . . ,m|M|} is defined as the smallest non-empty set N where

each n ∈ N ⊆ T \M satisfies the following condition.

γmn ≥ γma, ∀m ∈M,∀a ∈ T \ (M ∪N), (3.17)

with at least one strict inequality for every pair of (n, a) ∈ {(n, a)|n ∈ N, a ∈

T \ (M ∪N)}.

In brief, any node in M must be closer or at least as close to all nodes in N

than it is to all nodes not in M ∪N.
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3.4.4 The Nearest Neighbor Set Algorithm

Having described the nearest neighbor set, we now present the nearest neighbor

set algorithm (NNSA), which terminates normally given any network topology.

Algorithm 2 (NNSA)

1. First, start with the source node, M = {m1}.

2. We find the nearest neighbor set N. Now, each element in N is added to the

end of M to form one new route. The original route M branches out to |N|

routes, shown as follows.

Mi = M ∪ {ni}, i = 1, . . . , |N|. (3.18)

3. For each new route in (3.18), step 2 is repeated until the destination is added

to all the routes.

When the algorithm terminates, we end up with many routes. We term these

routes NNSA candidates and denote the set of all NNSA candidates by NNSA(T).

We calculate the supported rate of each candidate and choose one which gives the

highest supported rate. In Appendix A.4, we show how to find NNSA candidates

in three wireless networks.

The following theorem says that any NNSA candidate that gives the highest

supported rate among all NNSA candidates is an optimal route for DF.

Theorem 4 Consider a static Gaussian MRC T, in which node 1 is the source

and node T the destination. Let the set of NNSA candidates be NNSA(T). Then

for any input distribution of the form p = p(x1, . . . , xT−1) satisfying the SPC,

max
M∈NNSA(T)

RM(p) = max
M′∈Π(T)

RM′(p). (3.19)

In other words, all NNSA candidates that give the highest supported rate among all

the routes in NNSA(T) are optimal routes for DF.
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Proof 8 (Proof of Theorem 4) See Appendix A.5.

Since the NNSA is optimal for any input distribution satisfying the SPC, we

can show the following theorem.

Theorem 5 Consider a static Gaussian MRC T. Let the set of NNSA candidate

set be NNSA(T). For any set of input distributions P, with all p ∈ P satisfying

the SPC, there exists at least one M ∈ NNSA(T) such that M ∈ QDF(P). In other

words, the NNSA candidate set contains an optimal route for DF over any input

distribution set, when all the elements in the set satisfy the SPC.

Proof 9 (Proof of Theorem 5) Recall that QDF(P) , {M ∈ Π(T) : maxp∈P

RM(p) = RDF(P)}. Let M∗ ∈ Π(T) and p∗ ∈ P be a route and an input distribution

for which RM∗(p
∗) = RDF(P). From Theorem 4, we know that there exists an

M′ ∈ NNSA(T) for which RM′(p
∗) = RM∗(p

∗) = RDF(P). Hence, M′ ∈ QDF(P).

We can easily show that an NNSA route is optimal for DF over all input dis-

tributions.

Theorem 6 Consider a static Gaussian MRC T. Let the set of NNSA candidates

be NNSA(T). There exists at least one M ∈ NNSA(T) and some p for which

RM(p) = RDF. In other words, the NNSA candidate set contains an optimal route

for DF over all input distribution set.

Proof 10 (Proof of Theorem 6) From Remark 2, there exist a route M∗ ∈

Π(T) and some p∗ ∈ PGauss for which RM∗(p
∗) = maxM∈Π(T) maxp∈PGauss

RM(p) =

maxM′∈Π(T) maxp′∈PAll
RM′(p

′) = RDF. We can see that the optimal jointly Gaus-

sian input p∗ must satisfies the SPC. So, there exists some M′ ∈ NNSA(T) and

some p∗ ∈ PGauss for which RM′(p
∗) = RM∗(p

∗) = RDF.

3.4.5 Separating Coding and Routing

From (2.16), we see that achievable rates of DF depend on the route selected and

the input distribution. At first sight, the problems of coding (input probability
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density function) and routing seem intertwined. This makes the search for the best

code and the best route (in the sense of maximizing the achievable rate) difficult.

In this section, we have presented an algorithm, NNSA, which outputs an NNSA

candidate set NNSA(T) such that for any P, with all p ∈ P satisfying the SPC,

NNSA(T) contains at least one optimal route in P:

∃M∗ ∈ NNSA(T) s.t. max
p∈P

RM∗(p) = max
M′∈Π(T)

max
p′∈P

RM′(p
′) = RDF(P). (3.20)

So, instead of using brute force to evaluate RM(p) for every M ∈ Π(T) and for

every p ∈ P to find the optimal route, we simply search in NNSA(T).

We see that under certain network topologies, |NNSA(T)| = 1. That means

we are able to find the optimal route without having to evaluate the input distri-

bution. In other words, we have shown that we can achieve complete routing and

coding separation under certain conditions. These are the scenarios when the NNA

terminates normally.

Even if the NNA does not terminate normally for most network topologies,

we could still achieve partial routing and coding separation using the NNSA. The

NNSA candidate set NNSA(T) is obtained independent of the input distribution.

In the next section, we will show that on average |NNSA(T)| is much smaller than

|Π(T)|. This means we can discard “bad” routes without even evaluating codes on

those routes.

3.5 Discussions on the NNSA

In this section, we discuss a few interesting properties of the NNSA.

3.5.1 Search Space Reduction

With the NNSA, we can now search for an optimal route in the NNSA candidate

set NNSA(T), as compared to searching in Π(T) using brute force. The number

of candidates determines the number of routes whose rate we need to optimize in
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Figure 3.1: Two MRCs.

order to find an optimal route. Using brute force, the number of routes we need to

check is

|Π(T)| = 1 +

(
T − 2

1

)
+

(
T − 2

2

)
+ · · ·

(
T − 2

T − 2

)
(3.21a)

= O((T − 1)!), (3.21b)

where T is the total number of nodes in the network and
(
n
k

)
= n×(n−1)×···×1

(n−k)×(n−k−1)×···×1
.

Using the NNSA, the number of possible routes that we need to check, which is

|NNSA(T)|, depends on the network topology.

We consider two extreme cases as shown in Fig. 3.1. Assume that the channels

are static, all nodes transmit at the same power, and all nodes are subject to

the same receiver noise power. In Fig. 3.1(a), the nodes are arranged in linear

topology with the source at one end and the destination at the other end. In this

case, there is only one NNSA candidate which is {1, 2, . . . , T}. This means we

can achieve complete coding and routing separation here. In Fig. 3.1(b), all relays

and the destination are of equi-distance from the source. The NNSA candidates

are {1, T}, {1, 2, T}, {1, 3, T}, . . . , {1, T − 1, T}, {1, 2, 3, T}, . . . . Here, NNSA(T) =

Π(T). This means, we need to evaluate the rate supported by all possible routes to

determine the one that gives the highest rate, i.e., we cannot separate coding and

routing. These two examples give the best case and the worst case scenarios for

the NNSA. We note that the size of the NNSA candidate set might, in the worst

case, equal |Π(T)|.
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More examples of how the NNSA reduces the search space of finding an optimal

route compared to brute force can be found in Appendix A.4. In these examples,

we see that the search space is very much reduced using the NNSA.

Now, we run simulations to obtain the average |NNSA(T)|. For each network

size |T| = T , we randomly generated 10000 networks with nodes uniformly dis-

tributed in a 1m×1m square area. The coordinates of the source, the relays and

the destination were randomly assigned. For each randomly generated network,

we ran the NNSA to find out the number of NNSA candidates. Half the time,

|NNSA(T)| was smaller than 0.715% of |Π(T)| for the 8-node channel and smaller
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than 0.253% for the 11-node channel. Fig. 3.2 shows the probability density func-

tion (p.d.f.) of |NNSA(T)| for the 11-node network.

Fig. 3.3 shows average |NNSA(T)| and |Π(T)| for varying number of nodes in

the network. We see that as the number of nodes increases, the number of routes

increases exponentially for both the NNSA and brute force. However, on average,

we get a 14.6–19.1dB reduction in the number of routes using the NNSA, which

is a one to two order of magnitude reduction. Furthermore, the reduction in the

number of routes using the NNSA increases as the number of nodes in the network

increases. We bear in mind that the average values of |NNSA(T)| can be biased

by extreme points (see Fig. 3.2).

We note that the average size of the NNSA candidate set grows factorially

with the number of nodes in the network. However this does increase the range

of finite size networks for which we can find optimal routes. Furthermore, the

NNSA provides insights for designing heuristic algorithms to find good routes for

DF-based codes.

3.5.2 The NNSA and the Shortest Optimal Route

We note that the total transmit power changes with the length of the route if each

node in the route (except the destination) transmits at the same power. Consider

two routes {1, 4} and {1, 2, 3, 4}, where the latter supports a higher rate. One

might argue that route {1, 4}, though supports a lower rate, is better as only 1/3

power is consumed compared to route {1, 2, 3, 4}. However, we stress that in this

chapter, we find a route that maximizes the transmission rate given that each node

must transmit within a given power constraint (and hence a constraint on the total

power).

However, when two routes achieve the maximum DF rate, the shorter route

might be preferred. This is of interest from a practical view point as it allows

better utilization of the nodes. Nodes that are “redundant” can be put to sleep.

This saves the total transmission power of the network, which may be the second
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metric to be optimized after the rate. We term shortest routes which support the

highest DF rate shortest optimal routes (SOR). In Section 3.6, we show that an

SOR is actually contained in one or more of the NNSA candidates.

3.5.3 Non-Directional Routing

The NNSA is a non-directional routing algorithm, i.e., it does not find a route in

the direction toward the destination. The NNSA builds routes by adding neighbors

with respect to the partial routes. The destination is never in the picture; it only

serves as the stopping criterion – the algorithm stops when all routes terminate at

the destination.

This is counter-intuitive to how routing is commonly done in networking, in

which a route is searched in the direction from the source to the destination. Using

the NNSA, the route might go in the direction opposite to the destination. In

Appendix A.6, we show by an example that routing backward can increase the

transmission rate.

This observation provides insights for designing heuristic algorithms to find

good routes for DF-based codes. In Section 3.8, we propose a heuristic algorithm

that finds potentially good routes in polynomial time.

3.6 Finding a Shortest Optimal Route

Although the NNSA guarantees an optimal route, the algorithm does not attempt

to find the shortest route that achieves the optimal rate. Now we define the shortest

optimal route.

Definition 15 A shortest optimal route (SOR) for an input distribution p is de-

fined as a shortest route that achieves the highest DF rate, i.e.,

MSOR(p) ∈ Q(p), s.t. |MSOR(p)| ≤ |M|,∀M ∈ Q(p). (3.22)
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By definition and from Theorem 4,

RMSOR(p) = max
M′∈Π(T)

RM′(p) = max
M′′∈NNSA(T)

RM′′(p). (3.23)

Next, we define a special subset of NNSA candidates for some input distribution

p as follows.

Definition 16 The optimal NNSA candidate set for input distribution p,

NNSAopt(T, p), contains all NNSA candidates that achieve the highest rate, mean-

ing,

NNSAopt(T, p) ,

{
M′ ∈ NNSA(T) : RM′(p) = max

M∈NNSA(T)
RM(p)

}
. (3.24)

The routes in the optimal NNSA candidate set are called optimal NNSA candidates.

For two routes A and B, A ⊆ B means A is a subset of B and the node order

in A follows that in B. The following theorem says that some optimal NNSA

candidates contain an SOR.

Theorem 7 One (or more) of optimal NNSA candidates contains an (or more)

SOR in the correct order, meaning,

MSOR(p) ⊆M, for some M ∈ NNSAopt(T, p). (3.25)

Example 3 Suppose an SOR for a network is

MSOR(p) = {m∗1,m∗2, . . . ,m∗|MSOR|−1,m
∗
|MSOR|}, (3.26)

for some p that satisfies the SPC, then MSOR will be a subset of at least one optimal

NNSA candidate for p with the same ordering, meaning m∗2 is in front of m∗1, m∗3 is

in front of m∗2, but there might be other nodes in between them. For example, one of

the optimal NNSA candidates might be {m∗1, . . . ,m∗|MSOR|−2, a,m
∗
|MSOR|−1,m

∗
|MSOR|}.

Proof 11 (Proof of Theorem 7) See Appendix A.7.
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With this theorem, we now describe an algorithm to find an SOR for some

input distribution p. We term this algorithm the Nearest Neighbor Set Pruning

Algorithm (NNSPA).

Algorithm 3 (NNSPA)

1. Initialize an optimal sub-route set, OSR = NNSAopt(T, p).

2. For each newly added M ∈ OSR, we prune one node from {m2, . . . ,m|M|−1}

at a time to form |M| − 2 sub-routes.

3. Find the rates supported by all sub-routes. Do the following for all sub-routes:

(a) If the sub-route supports rates lower than the optimal rate, discard the

sub-route.

(b) Else if the sub-route Ms can support the optimal rate, add it into the

optimal sub-route set, i.e., OSR← OSR ∪Ms.

4. For each new sub-route formed in step 3b, repeat steps 2–3.

5. Select the shortest route(s) from OSR.

Theorem 8 The shortest routes in the optimal sub-route set of the NNSPA are

SORs for input distribution p.

Proof 12 (Proof of Theorem 8) Theorem 8 follows from the proof of Theo-

rem 7. In the proof, we note that an SOR is contained in an optimal NNSA

candidate, and removing extra nodes (nodes that are in the optimal NNSA candi-

date but not in the SOR) does not reduce the supported rate. Since the NNSPA

removes nodes one by one from all optimal NNSA candidates, and checks the sup-

ported rate, one of the pruned routes must be an SOR.
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3.7 The NNSA on Fading Channels

3.7 The NNSA on Fading Channels

In previous sections, we have seen that the NNSA is optimal in static channels in

the sense that it finds a set of routes that contains at least one optimal route. Now,

we investigate if the NNSA is optimal in fading channels, where νij are random

variables (see Section 2.3). Without loss of generality, we assume E[νij] = 1,∀i, j,

i.e., the power of the fading processes is unity. For channels where the fading

processes have different power, we can always normalize the power to 1 by adjusting

dij accordingly.

For fading channels, two measures of “rate” are often used, namely the ergodic

rate and the outage probability. In this thesis, we consider cases where:

1. The transmitters are unaware of the fading processes and there is no feedback

from the receivers back to the transmitters about the fading processes. Hence

the codewords cannot be chosen as functions of the fading processes νij (Tse

& Hanly, 1998).

2. The receivers have perfect information regarding the fading processes.

We assume that all transmitters and receivers know the large scale fading com-

ponents hij (see Section 2.3) a priori.

3.7.1 Ergodic Rate

In this section, we consider the ergodic rate of DF for the MRC. We assume that

the fading processes νij are i.i.d. stationary ergodic random processes. When there

is no delay constraint for which the signals from the source must be decoded at

the destination by a certain time, we can use codewords long enough for the fading

processes to reflect their ergodic nature (Biglieri et al., 1998). We can achieve

transmission rates averaged over the fading processes. This is applicable for data

applications that have large delay tolerance.

Since νij are stationary ergodic processes, modifying the results for the point-

to-point channel by Biglieri et al. (1998), the following ergodic rate is achievable
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on the MRC using DF on route M with input distribution p.

RE
M(p) = Eν

[
min

mt∈M\{1}
Rmt(M, p)

]
(3.27a)

= min
mt∈M\{1}

RE
mt(M, p), (3.27b)

where RE
mt(M, p) is the ergodic reception rate at node mt given by

RE
mt(M, p) = EνI(Xm1 , . . . , Xmt−1 ;Ymt|Xmt , . . . , Xm|M| , XMc). (3.28)

We use superscript E to indicate ergodic rate. Eqn. (3.27b) is because the fading

processes are independent. As a result, we can move the expectation operator into

the individual reception rate expression in (3.27a).

We can view ergodic rate as follows. Consider an instance of the fading pro-

cesses. The instantaneous reception rate at node mt is

Rmt(M, p) =

I

(
Xm1 , . . . , Xmt−1 ;

t−1∑
i=1

√
νmimtκd

−η
mimtXmi + Zmt

∣∣∣∣∣Xmt , . . . , Xm|M| , XMc

)
, (3.29)

for some νij ≥ 0. When the codeword length is long enough, we can achieve rate

averaged over the fading processes. Since the fading processes are ergodic, we have

the following ergodic reception rate, which is the average transmission rate over

the fading of the channels.

RE
mt(M, p) (3.30a)

=

∫
· · ·
∫ ∞

0

I

(
Xm1 , . . . , Xmt−1 ;

t−1∑
i=1

√
νmimtκd

−η
mimtXmi + Zmt

∣∣∣∣∣
Xmt , . . . , Xm|M| , XMc

)
×p(νm1mt) · · · p(νmt−1mt) dνm1mt · · · dνmt−1mt (3.30b)

= EνI(Xm1 , . . . , Xmt−1 ;Ymt|Xmt , . . . , Xm|M| , XMc). (3.30c)

45



3.7 The NNSA on Fading Channels

Applying this to all the nodes in the route, we get (3.27a).

Now, we show that all the lemmas in Appendix A.3 for the proof of Theorem 3

hold true for ergodic rate.

Lemma 6 Consider a fading Gaussian MRC where the fading processes for all

node pairs are i.i.d. stationary ergodic processes with unity power. Consider route

M = {m1, . . . ,m|M|} and assume that a unique nearest neighbor, node a∗, exists.

For any input distribution p satisfying the SPC, the ergodic rate supported by the

new route M1 = M ∪ {a∗} is greater or equal to the ergodic rate supported by the

route adding any non-nearest neighbor, or M2 = M ∪ {b}, i.e.,

RE
M∪{a∗}(p) ≥ RE

M∪{b}(p), ∀b ∈ T \ (M ∪ {a∗}). (3.31)

We use superscript ∗ to indicate a nearest neighbor.

Proof 13 (Proof for Lemma 6) Consider the following fading instance: νia∗ =

νib,∀i ∈M. Since

γma∗ ≥ γmb, ∀m ∈M,∀b ∈ T \ (M ∪ {a∗}), (3.32)

we have

γ′ma∗ ≥ γ′mb, ∀m ∈M,∀b ∈ T \ (M ∪ {a∗}), (3.33)

where

γ′ij =
λijE[X2

i ]

E[Z2
j ]

=
νijκd

−η
ij E[X2

i ]

E[Z2
j ]

(3.34)

are the instantaneous rSNRs for a particular instance of the fading processes.

From Lemma 7 (in Appendix A.3), we can show that RM1(p) ≥ RM2(p) for

these fading process realizations. Since the fading processes are i.i.d., p(νia∗) =

p(νib),∀i ∈M. Averaging over the fading processes, we get RE
M1

(p) ≥ RE
M2

(p)

We can apply the same technique to Lemmas 8–10 (in Appendix A.3) and prove

the following theorems.
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Theorem 9 Consider a fading Gaussian MRC T where the fading processes are

i.i.d., stationary, and ergodic. If the NNA terminates normally and outputs route

M∗, then for any input distribution of the form p = p(x1, . . . , xT−1) satisfying the

SPC,

RE
M∗(p) = max

M∈Π(T)
RE

M(p) (3.35)

Theorem 10 Consider a fading Gaussian MRC T where the fading processes are

i.i.d., stationary, and ergodic. Let the set of NNSA candidates be NNSA(T). Then

for any input distribution of the form p = p(x1, . . . , xT−1) satisfying the SPC,

max
M∈NNSA(T)

RE
M(p) = max

M′∈Π(T)
RE

M′(p). (3.36)

In other words, the NNSA candidates that give the highest supported ergodic rate

are optimal routes for DF.

Proof 14 (Proofs of Theorems 9 & 10) We apply the technique in the proof

for Lemma 6 to Lemmas 8–10. Theorems 9 and 10 follow.

Remark 5 In Theorems 9 and 10, all we need is that the fading processes follow

the same type of p.d.f. (e.g., all are Rayleigh fading processes). So, the results

apply to various types of fading channel. As previously mentioned, in cases where

the power of all fading processes E[νij] is different, we can normalized E[νij] to

unity by changing dij accordingly.

3.7.2 Supported Rate versus Outage Probability

In the derivation of ergodic rates, we assume that the fading processes are ergodic

and the delay requirement is long enough to allow the long term rates to be av-

eraged over the fading processes. However, this is not always true in a general

communication system, as many applications are delay sensitive, e.g., telephony.

In this section, we consider any of the following scenarios:

47



3.7 The NNSA on Fading Channels

1. There is a stringent requirement on the delay constraint such that codewords

cannot be chosen long enough to average the fading processes. Hence, the fad-

ing processes cannot reflect their ergodic behavior during data transmission,

or

2. The fading processes are not ergodic.

We model these scenarios by letting all νij be chosen at the beginning of time and

be held fixed for all channel uses (Telatar, 1999). This model is also termed quasi-

static fading (Kramer et al., 2005). In this case, for any non-zero transmission

rate chosen, there is a non-zero probability that the realization of νij is not able to

support it, and the achievable rate in the Shannon sense is zero. So, we investigate

the probability that a given transmission rate cannot be supported (using some

coding strategy), or supported rate versus outage probability. The definition follows

that for the capacity versus outage by Ozarow et al. (1994).

Since νij,∀i, j, are random variables, for a given route M and input distribution

p, the reception rate at node mt is a random variable. Recall that

Rmt(M, p) =

I

Xm1 , . . . , Xmt−1 ;
i=t−1∑
i=1
i 6=t

√
νmimtκd

−η
mimtXmi + Zmt

∣∣∣∣∣∣∣Xmt , . . . , Xm|M| , XMc

 .

(3.37)

We denote the outage probability at some transmission rate R by Pout(M, p, R).

We note that

Pout(M, p, R) , Pr

(
min

mt∈M\{1}
Rmt(M, p) ≤ R

)
(3.38a)

= 1− Pr
(
Rmt(M, p) > R,∀mt ∈M \ {1}

)
(3.38b)

= 1− Πmt∈M\{1} Pr (Rmt(M, p) > R) . (3.38c)

In (3.38c), we assume that the fading processes are independent.
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Under quasi-static fading, an optimal route is one which gives the lowest outage

probability at all transmission rates. We can show that the NNSA is not optimal

for DF under quasi-static fading, as given by the following theorem.

Theorem 11 Consider a quasi-static fading Gaussian MRC, the NNSA does not

always output routes that minimize the outage probability at all rates.

Proof 15 (Proof of Theorem 11) Consider a three-node Gaussian MRC with

Raleigh fading, i.e.,

p(νij) =


1

Ωij
exp

(
−νij
Ωij

)
, νij ≥ 0

0 , otherwise

i = 1, 2, j = 2, 3, (3.39)

where Ωij = E[νij] is the fading power.

Suppose that the inter-node distances are d12 = 0.9, d23 = 1.5, d13 = 1. We

consider the following parameters: node 1 and 2 send independent Gaussian code-

words with power P1 = 5 and P2 = 5 respectively, N2 = N3 = 1, κ = 1, η = 2,

Ωij = 1,∀i, j. The NNSA route is M1 = {1, 2, 3}, and a non-NNSA route is

M2 = {1, 3}.

The outage probabilities at transmission rate R on the routes are

Pout(M1, p, R) = 1− Pr({R2(M1, p) > R} AND {R3(M1, p) > R}) (3.40a)

= 1− Pr(R2(M1, p) > R)× Pr(R3(M1, p) > R), (3.40b)

Pout(M2, p, R) = 1− Pr(R3(M2, p) > R), (3.40c)

where p here denotes a Gaussian input distribution with independent x1 and x2,

with variances P1 and P2 respectively.

Fig. 3.4 shows supported rate versus outage probability for M1 and M2. We see

that for a large range of R, i.e., 0.5 < R < 2.5, Pout(M1, p, R) > Pout(M2, p, R).

Hence, the NNSA route does not always give a lower outage probability.

Remark 6 In the three-node example, we note that the NNSA route {1, 2, 3} gives
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Figure 3.4: Supported rate versus outage probability for two routes.

a higher outage probability (at a certain supported rate) compared to the direct

transmission {1, 3} because we need to ensure that this rate is supported at each

relay and the destination. See (3.40a) that there are more probability terms com-

pared to (3.40c), and this increases the overall outage probability. Hence, when

we consider the supported rate versus outage probability, the route length plays an

important part besides rSNR. A longer route is likely to result in a higher outage

probability.

3.8 A Heuristic Algorithm for Routing

3.8.1 The Maximum Sum-of-Received-Power Algorithm

Using the NNSA, a route is constructed by adding the “next hop” node one by one

to the partial route. The node to be added is from the nearest neighbor set. If the

nearest neighbor set contains more than one node, the current route branches to

more than one route, leading to a possibly large NNSA candidate set size. In this

case, we will not be able to completely separate the optimizations of routing and

coding, and a large NNSA candidate set size complicates the process of finding an

optimal route.
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To avoid searching for an optimal route in a large set of candidate routes, we

consider a heuristic approach that starts from the source node and repeatedly adds

only one “good” node to the partial until the destination is reached. For the choice

of the next hop node, we consider the node that receives the largest sum of received

power from all the nodes in the partial route. We call this the maximum sum-of-

received-power algorithm (MSPA). By choosing only one node to be added to the

partial route, we prevent the algorithm from branching out to multiple routes.

This heuristic approach yields only one route, regardless of the network size and

topology. We now explicitly describe the MSPA.

Algorithm 4 (MSPA)

1. First, start with the source node, M = {m1}.

2. For every node t ∈ T \M, find the sum of received power from all nodes in

M to t,
∑

i∈M γit.

3. Let a∗ be any node with the highest sum of received power, i.e.,
∑

i∈M γia∗ ≥∑
j∈M γjt,∀t ∈ T \M. Append node a∗ to the route: M←M ∪ {a∗}.

4. Repeat steps 2–3 until the destination is added to the route.

Remark 7 Assuming that the value of the previous sum-of-received-power compu-

tations are cached, the complexity of step 2 in MSPA is O(T ) because there are at

most (T −1) nodes not in the route. The complexity of the comparisons in step 3 is

O(T ). Steps 2–3 are repeated at most (T −1) times, giving a worst case complexity

of the MSPA of O(T 2).

3.8.2 Performance of the MSPA

It turns out that the MSPA is optimal if the nodes are restricted to sending inde-

pendent codewords, as proven in the following theorem.
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Table 3.1: Performance of the MSPA.

T Average maxp∈PGauss
RMMSPA

(p)/RDF Pr{MMSPA is optimal}
3 1 1
4 0.9999951 0.99883
5 0.9999520 0.99557
6 0.9999168 0.99307

Theorem 12 In a static Gaussian MRC, in which the nodes send independent

Gaussian codewords, the MSPA route is optimal for DF.

Proof 16 (Proof of Theorem 12) See Appendix A.8.

However, unlike the NNA and the NNSA, the MSPA might not output an

optimal route when the nodes are allowed to send arbitrarily correlated codewords.

We show this by the following example.

Example 4 Consider a static four-node Gaussian MRC with node coordinates

1(0,0), 2(0.418,0), 3(0.209,0.6755), and 4(0.995,0), in which the nodes send ar-

bitrarily correlated Gaussian signals. Assume Pi = 1, Ni = 1, κ = 1, η = 2. The

MSPA route is M1 = {1, 2, 4}. The NNSA outputs M1 and M2 = {1, 2, 3, 4}. It

is easy to compute that maxp∈PGauss
RM1(p) = 1.30826 and maxp∈PGauss

RM2(p) =

1.31576.

We now investigate how well the MSPA route MMSPA performs compared to the

optimal route in the Gaussian MRC. Due to the complexity involved in optimizing

the power splits, we only simulate MRCs up to 6 nodes, i.e., T ≤ 6. For each T , we

randomly place T nodes in a network area of size (T −1)m× (T −1)m. The source

and the destination are randomly chosen. We run the NNSA to find the optimal

rate RDF, and run the MSPA to find maxp∈PGauss
RMMSPA

(p). The results are shown

in Table 3.1. With high probability, the MSPA is able to find an optimal route.

Also, maxp∈PGauss
RMMSPA

(p) is a good indicator of RDF.

Although the MSPA does not always guarantee an optimal route, we have shown

that it is able to finds an optimal route with high probability. This means we can
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completely separate routing and coding in many more cases, in addition to those

where the NNA terminates normally.

Remark 8 As argued earlier, the MSPA might not be useful when we want to

calculate the exact value of RDF(P). However, the algorithm can be used to find

a route that can support transmission rate close to RDF(P). This is of practical

interest when we want to choose a “good” route to implement DF in a network.

3.9 Conclusion

In this chapter, we presented an algorithm, the NNSA, that finds a set of routes

that contains at least an optimal DF route, without having to consider the input

distribution. This algorithm simplifies the process of finding the maximum DF

rate and an optimal route that achieves the rate, without resorting to brute force.

Through this algorithm, we showed that that optimizations of route and code can

be separated under certain network topologies.

We also showed that the NNSA outputs route which contains the shortest op-

timal route. In addition, we found that the NNSA is optimal in fading channels in

the sense that an NNSA route maximizes the ergodic rate.

However, under certain network topologies, the NNSA might output a large

set of routes, which makes the search for an optimal route complicated. To tackle

this, we constructed a heuristic algorithm that outputs an optimal route for DF

with high probability, without having to consider the input distribution. This adds

to the number of scenarios in which the optimizations for route and code can be

totally separated.

53



Chapter 4

Myopic Coding in Multiple-Relay

Channels

4.1 Introduction

Since the wireless medium is broadcast in nature, the transmission of one node

can be received by all other nodes listening in the same frequency band. The

simplest way of data transmission is for the source to transmit directly to the des-

tination. However, direct transmission from the source to a far-situated destination

may require high transmission power (due to the path loss of electromagnetic wave

propagation). High-power transmission is not suitable for energy-limited nodes and

it creates undesirable interference to other users. Transmitting data via interme-

diate relays, using multi-hop routing or cooperative relaying, can help to decrease

the transmit power and reduce multi-user interference.

4.1.1 Point-to-Point Coding

A common approach to data transmission is to abstract the wireless network into a

communication graph, with an edge connecting two nodes if they can communicate.

Data communication happens by identifying a route, which is a sequence of nodes

that connect the source to the destination. Each node sends data to the next node
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in the route and decodes data from the previous node in the route. Transmissions

of other nodes are treated as noise. We call this coding strategy point-to-point

coding in a multi-terminal network. This way of transmitting data from the source

to the destination is commonly called multi-hop routing in the communications

and networking literature.

4.1.2 Omniscient Coding

Point-to-point coding ignores the inherent broadcast nature of the wireless channel,

i.e., that a node can hear the transmissions meant for other nodes, and thus it can

act as a relay for them. Clearly, the best thing to do is for all the nodes to cooperate,

helping the source to send its data to the destination. This requires every node to

be aware of the presence of other nodes and to have knowledge of the processing

they do. We refer to coding strategies that utilize the global view and complete

cooperation as omniscient coding. In the literature, omniscient coding strategies

were investigated for multiple-terminal networks, e.g., the multiple-access relay

channel, the broadcast relay channel (Kramer & Wijngaarden, 2000; Kramer et al.,

2004), and the multiple-relay channel (MRC) (Gupta & Kumar, 2003; Kramer

et al., 2005; Xie & Kumar, 2005). While the rates achievable by omniscient coding

strategies are higher than that by point-to-point coding strategies in these channels,

there are a number of practical difficulties in implementing complete cooperation,

e.g., (i) designing codes based on omniscient coding is more difficult as it involves

the optimization of the whole network, (ii) the failure of one node affects the

decoding of all other nodes, and (iii) all nodes need to be synchronized (for some

coding strategies).

4.1.3 Myopic Coding

In view of these practical issues, we investigate myopic coding, coding strategies

with constrained communications, e.g., node have a local view of the network,

and limited cooperation. Myopic coding positions itself between point-to-point
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coding and omniscient coding. In myopic coding, communications of the nodes are

constrained in such a way that a node communicates with more than two nodes

(as opposed to point-to-point coding) but not with all the nodes (as opposed to

omniscient coding) in the network. Myopic coding incorporates local cooperation.

It allows cooperation among neighboring nodes to increase the transmission rate

compared to point-to-point coding. On the other hand, it partially solves the

practical difficulties encountered in omniscient coding.

Now, we define myopic coding (Ong & Motani, 2005a,b, 2008). This is an

informal definition which will be made more precise later in the chapter

Informal Definition 1 A myopic X coding strategy is a constrained version of

the corresponding omniscient X coding strategy. The constraint in myopic coding is

such that every node cooperates with only a few other nodes. This cooperation can be

in the form of transmitting to another node, processing (e.g., decoding, amplifying,

quantizing) or canceling the transmissions from another node.

We note that a myopic coding strategy is defined with respect to an omniscient

coding strategy. Though there is no fixed way of constraining an omniscient coding

strategy, the idea is to limit the processing at the nodes by limiting the number

of neighbors a node communicates and cooperates with. Myopic coding aims to

achieve practical advantages, e.g., lower computational complexity, robustness to

topology changes, and fewer storage/buffer requirements.

4.1.4 Problem Statement

We ask the following questions which we will partially answer in this chapter:

1. What rate regions are achievable in the MRC in which every node has only

a localized or myopic view of the network?

2. What is the value of cooperation? In other words, what is the impact on the

performance, in terms of transmission rates, when communications among

the nodes are constrained compared to the case when it is unconstrained?
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4.2 Contributions

We investigate myopic coding in the MRC based on the decode-forward coding

strategy (DF) (Xie & Kumar, 2005). Answering the above questions leads to the

main contributions of this chapter, which are:

1. We construct random codes for myopic DF (Ong & Motani, 2005a,b, 2008),

i.e., DF with myopic outlook, for the MRC.

2. We derive achievable rates of DF for the discrete memoryless, the static

Gaussian, and the fading MRC, with different levels of cooperation.

3. Comparing myopic DF and omniscient DF for the Gaussian MRC, we show

that including a few nodes into the cooperation increases the transmission

rate significantly, often making it close to that under full cooperation. In

other words, sometimes more cooperation yields diminishing returns.

4. We show that achievable rates of myopic DF for the Gaussian MRC may be

as large as that of omniscient DF in the low transmitted-signal-to-noise ratio

(tSNR) regime.

5. We show that in the MRC, myopic DF can achieve rates bounded away from

zero as the network size grows to infinity.

4.2.1 Organization

The rest of the chapter is organized as follows. In Section 4.3, we define myopic

coding and give examples of two myopic coding strategies. We present advantages

of myopic coding compared to omniscient coding in Section 4.4. In Section 4.5,

we investigate myopic coding in the MRC, where we derive achievable rates of

two-hop myopic DF. We then compare achievable rates of one-hop myopic DF,

two-hop myopic DF, and omniscient DF for the Gaussian MRC in Section 4.6. In

Section 4.7, we extend the code construction and achievable rate analyses to the

general k-hop myopic coding for the T -node multiple-relay channel, where k can
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Figure 4.1: Omniscient DF for the five-
node Gaussian MRC.

Figure 4.2: Two-hop myopic DF for the
five-node Gaussian MRC.

be any positive integer from 1 to T −1 and T is the number of nodes (including the

source, the relays, and the destination) in the channel. We briefly discuss myopic

coding in the fading channel in Section 4.8. In Section 4.9, we investigate myopic

coding in a large network, meaning that we see what happens to the achievable

rates when the number of nodes grows to infinity. We conclude the chapter in

Section 4.10.

4.3 Examples of Myopic Coding Strategies

Now, we discuss two myopic coding strategies for the MRC, namely myopic DF and

myopic amplify-forward (AF). This illustrates that myopic coding is not restricted

to only DF.

4.3.1 Myopic DF for the MRC

Let us consider DF for the MRC by Xie & Kumar (2005). In the five-node Gaussian

MRC (see Section 2.5.2), a node transmits to all the downstream nodes. Fig. 4.1

depicts the transmissions of the nodes. Let all Ui, i = 1, 2, 3, 4, be independent

random variables. When node 4 transmits U4 to node 5, node 3 splits its power,

transmitting new information (U3) to node 4 and helping node 4 to transmit another

copy of what node 4 transmits (U4) to node 5. Similarly, nodes 1–3 split their power

to transmit new information and old information (the same information of what

the downstream nodes transmit). In decoding, a node decodes the transmissions

from all the upstream nodes. For example, node 5 decodes all transmissions from
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nodes 1–4. In addition, a node cancels the transmissions from the downstream

nodes when it decodes. For example, when node 2 decodes U1 from node 1, it

cancels U3 and U4 from node 3, U4 from node 4, as well as U2, U3, and U4 from

node 1. Here, we see how each node cooperates with all other nodes in omniscient

DF.

Now, we consider a myopic version of DF in which the nodes are limited in how

much information they can store and process. We define k-hop myopic DF for the

MRC as follows.

Definition 17 k-hop myopic DF for the MRC is a constrained version of omni-

scient DF by Xie & Kumar (2005), and the constraints are as follows.

• In encoding, a node can transmit messages that it has decoded from only the

past k blocks of received signal.

• In decoding, a node must decode one message using at most k blocks of received

signal.

• A node can store a decoded message in its memory over at most k blocks.

At first glance, the above constraints for myopic DF do not seem to include the

view of a node or how many other nodes a node can communicate with. However,

these are embedded in the definition itself. The constraints automatically restrict

the number of nodes a node can cooperate with. Furthermore, the restrictions stem

from practical advantages of having fewer processing and storage requirements at

the nodes, which are the motivations behind myopic coding.

Now, let us consider two-hop myopic DF. The encoding and the decoding pro-

cesses at the nodes in the five-node MRC are as follows (refer to Fig. 4.2)

• Node 1 transmits U1 and U2, node 2 transmits U2 and U3, etc.

• Node 5 decodes U3 and U4, node 4 decodes U2 and U3, etc.

• During decoding, node 2 cancels U2 and U3, node 3 cancels U3 and U4, etc.
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We note that this encoding technique is different from that by Gupta & Kumar

(2003, Fig. 1), in which the source and the relay transmit independent signals

(hence no coherent combining is possible) while the relays and the destination

decode the transmissions from all upstream nodes, possibly over a large number

of blocks. The decoding technique by Gupta & Kumar is only possible under

omniscient coding.

For myopic DF for the MRC, we use the concept of regular block Markov en-

coding and sliding window decoding. However, the encoding and the decoding

techniques differ from that found in the literature as the nodes have limited views.

It is noted that myopic coding captures point-to-point coding and omniscient cod-

ing as special cases. In particular, k-hop myopic DF for the MRC where k = 1 is

point-to-point (multi-hop) coding and k = T − 1 (T is the number of nodes in the

channel) omniscient DF.

The reader is reminded that the term “hop” used here does not carry the same

meaning as it does in multi-hop routing. The term hop is best understood by

looking at the sequence in which messages are decoded, e.g., if the source messages

are decoded by node i followed by node j, then node j is node i’s next hop.

Definition 18 We say that a set of nodes V are in the view of node i if node i

processes (e.g., decodes, amplifies, or quantizes) or cancels the transmissions from

all the nodes in V.

4.3.2 Myopic AF for the MRC

Next, let us consider AF for the MRC by Yuksel & Erkip (2003). We will use

the one-source two-relay one-destination network as an example. Consider the

“S+R1(S)+R2(S,R1)” scheme (Yuksel & Erkip, 2003, Table I). In this scheme, the

transmissions are split into three blocks. In block 1, the source transmits to both

relays and the destination (hence the notation S). In block 2, relay 1 normalizes

its received signal from the source in block 1 and forwards the normalized received

signal to relay 2 and the destination (hence the notation R1(S)). Relay 2 combines
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the signals that it has received in blocks 1 and 2, normalizes to its own power

value, and transmits the combined signal in block 3 (hence the notation R2(S,R1)).

The destination then decodes using the three blocks of received signal (hence the

notation S +R1(S) +R2(S,R1)). We term this coding strategy omniscient AF, as

each node cooperates with all other nodes.

Now, let us consider myopic AF for the MRC. Yuksel & Erkip noted that relay

2 can choose to listen to only relay 1 (which transmits in block 2) and forwards

only this received signal to the destination (the notation used is R2(R1)). Instead

of decoding over three blocks, the destination can choose to decode only from relay

2 (which transmits in block 3). We see that in this scheme, a node listens to only

one node and forwards to another node. Hence, we term this strategy one-hop

myopic AF. One can similarly construct two-hop myopic AF, and so on.

4.4 Practical Advantages of Myopic Coding

In this section, we discuss a few practical advantages of myopic coding compared

to omniscient coding. These include simpler code design, increased robustness, re-

duced computation and memory requirements, and local synchronization. Though

the analyses of myopic coding in this thesis are based on information-theoretic

achievable rates (in Shannon’s sense), the practical advantages here are relevant

to codes designs based on these strategies (myopic or omniscient, decode-forward

or amplify-forward, etc.). That researchers are interested in practical implemen-

tations of information-theoretic cooperative strategies is apparent in the recent

work that has been proposed in this direction. There are various codes designed

based on omniscient decode-forward for the single-relay channel (Chakrabarti et al.,

2007; Ezri & Gastpar, 2006; Khojastepour et al., 2004; Razaghi & Yu, 2006) and

the multiple-relay channel (Ong & Motani, 2007a,b; Yu, 2006). One may design

myopic versions of these codes to tap the practical advantages discussed in this

section.

Looking closely at the LDPC codes using parity forwarding (based on omni-
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scient DF) for the MRC (Yu, 2006), we see that the complexity of designing codes

grows with the number of relays. This means that constructing codes in which all

nodes cooperate can be more difficult compared to designing codes in which nodes

only cooperate with neighboring nodes. This technique of utilizing local knowl-

edge (or limited cooperation) is prevalent in other wireless network problems, e.g.,

cluster-based routing (Jiang & Li, 1999), whereby nodes are split into clusters, and

routes are optimized locally.

Myopic coding schemes are more robust to topology changes than the corre-

sponding omniscient coding schemes. For example, consider cancellation of the

interference from downstream nodes. In omniscient coding, a node needs to have

the knowledge or an estimate of what every downstream node transmits in order to

cancel it. Any error in the cancellation (due to topology changes or node failures

not known to the decoder) will affect the decoding and thus the rate. In myopic

coding, nodes only cancel the interference from a few neighboring nodes. This

means that topology changes or node failures beyond a node’s view are less likely

to affect its decoding. In Appendix B.1, we give another example to show how

node failures affect more nodes in myopic coding than in omniscient coding.

In addition, the encoding and decoding computations at each node under my-

opic coding can be less. Since a node only needs to transmit to and decode from

a few nodes, the node encodes fewer data for its transmissions and decodes fewer

data from the received signals.

Furthermore, since the nodes need to buffer fewer data for encoding, interference

cancellation, and decoding, less memory is required for buffering and codebook

storage. Consider the five-node Gaussian MRC. Using omniscient DF, node 1

encodes a message four times over four blocks, using different power splits. Node 5

buffers four blocks of its received signal to decode one message. The buffer grows

as the number of nodes in the network increases. On the other hand, using myopic

DF, the nodes buffer fewer blocks of received signal, and the buffer size for each

node is independent of the number of nodes in the network.
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Myopic coding mitigates the need for synchronization of the entire network.

Under omniscient DF, all the nodes might need to be synchronized. On the other

hand, under myopic coding, a node only needs to synchronize with a few neighbor-

ing nodes. Hence, synchronization can be done locally.

In brief, myopic coding can increase the robustness and scalability of the net-

work. In the next section, we analyze the performance of myopic coding in the

MRC using DF.

4.5 Achievable Rates of Myopic and Omniscient

DF for the MRC

In this section, we construct random codes and derive achievable rates of myopic

DF for the MRC. We include omniscient DF here for comparison.

4.5.1 Omniscient Coding

First, we recall that omniscient DF for the MRC achieves rates up to (see Sec-

tion 2.5)

Romniscient = max
M∈Π(T)

max
p(x1,...,xT−1)

min
mt∈M\{1}

I(Xm1 , . . . , Xmt−1 ;Ymt |Xmt , . . . , Xm|M| , XMc).

(4.1)

Here, M is the route, T = {1, 2, . . . , T} the set of all nodes where node 1 is the

source and node T the destination, and Π(T) the set of all possible routes from the

source to the destination.

Next, we investigate achievable rates of myopic DF. We note that using DF,

all relays must fully decode the messages. We assume that the relays decode the

messages sequentially.
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4.5.2 One-Hop Myopic Coding (Point-to-Point Coding)

Under one-hop myopic DF, a relay node transmits what it has decoded from one

block of received signal. This means a node transmits to only the node in the

next hop. In decoding, a node decodes one message using one block of received

signal. This means a node decodes from only one node behind. A node keeps

its decoded message for one block, and it uses the last decoded message to cancel

the effect of its own transmission. Using random coding (Shannon, 1948) on route

M = {m1 = 1,m2, . . . ,m|M| = T}, node mt can reliably decode data up to the rate

Rmt = I(Xmt−1 ;Ymt |Xmt), (4.2)

for some p(x1)p(x2) · · · p(xT−1), t ∈ {2, . . . , T}, and XmT = 0. Since all messages

must pass through all the nodes in M in order to reach the destination, one-hop

myopic DF can achieve rates up to

R1-hop = min
mt∈M\{1}

Rmt . (4.3)

Noting that the message can flow through the relays in any order (Kramer et al.,

2003) and maximizing over all input distributions, we have the following result.

Theorem 13 Let

(
X1 × · · · × XT−1, p

∗(y2, . . . , yT |x1, . . . , xT−1),Y2 × · · · × YT

)

be a memoryless MRC. One-hop myopic DF or point-to-point coding achieves rates

up to

R1-hop = max
M∈Π(T)

max
p(·)

min
mt∈M\{1}

I(Xmt−1 ;Ymt |Xmt). (4.4)

The outer maximization is over all possible routes and the inner maximization is

taken over all joint distributions of the form

p(x1, . . . , xT−1, y2, . . . , yT ) = p(x1)p(x2) · · · p(xT−1)p∗(y2, . . . , yT |x1, . . . , xT−1).
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4.5.3 Two-Hop Myopic Coding

Instead of just transmitting to only its immediate neighbor, a node might want to

help the neighboring node to transmit to the neighbor’s neighbor. Under two-hop

myopic DF, a node can transmit messages that it has decoded in the past two

blocks of received signals. That means in block i, a node transmits data that it

has decoded in blocks i − 1 and i − 2. In decoding, it decodes one message using

only two blocks of received signals. Two-hop myopic DF can achieve up to the rate

given in the following theorem.

Theorem 14 Let

(
X1 × · · · × XT−1, p

∗(y2, . . . , yT |x1, . . . , xT−1),Y2 × · · · × YT

)

be a T -node memoryless MRC. Two-hop myopic DF achieves rates up to

R2-hop = max
M∈Π(T)

max
p(·)

min
mt∈M\{1}

I(Umt−2 , Umt−1 ;Ymt |Umt , Umt+1), (4.5)

where Um0 = UmT = UmT+1
= 0, for m0 = 0 and mT+1 = T + 1. The outer

maximization is over all possible routes and the inner maximization is taken over

all joint distributions of the form

p(x1, x2 . . . , xT−1, u1, u2 . . . , uT−1, y2, y3 . . . , yT )

= p(um1)p(um2) · · · p(umT−1
)p(xm1|um1 , um2)p(xm2|um2 , um3) · · ·

p(xmT−1
|umT−1

)p∗(y2, . . . , yT |x1, . . . , xT−1).

Proof 17 (Proof of Theorem 14) See Appendix B.2.

4.6 Performance Comparison

In this section, we compare the achievable rates of two myopic DF and omniscient

DF for the static Gaussian MRC. We first fix the route for all comparison. For
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simplicity, we select M = {1, 2, . . . , T}.

In all analyses in this section, we use the following parameters: the channel

input from node i, Xi, is a Gaussian random variable with fixed average power

E[X2
i ] = Pi, the noise power at node j, j = 2, . . . , T − 1, is Nj = N = 1W,

κ = 1, η = 2, and νij = 1.

We consider the Gaussian MRC with fixed average transmit power at the source

and at all relays. We note that using DF under omniscient coding, having a

maximum average power constraint on individual nodes is equivalent to having

a fixed average transmit power constraint on each node, as the overall rate is a

non-decreasing function of the average transmit power at any node, keeping the

rest of the transmit powers constant. This is because a node decodes the transmis-

sions from all nodes behind and cancels the transmissions from all nodes in front.

So, the transmissions of all nodes are either used in decoding or canceled but are

never treated as noise. However, under myopic coding, lowering the transmit power

at certain nodes may help to reduce the interference at other nodes and increase the

overall rate. Hence the achievable rate of the myopic DF with maximum average

power constraints on individual nodes is lower bounded by that with fixed average

powers.

The achievable rates of one-hop myopic DF and two-hop myopic DF for the

Gaussian MRC can be found in Appendix B.3

We define the following efficiency term to benchmark the performance of k-hop

myopic coding.

ρk =
Rk−hop

Romniscient

, (4.7)

where k ∈ {1, 2, . . . , T − 1}. It is the ratio of the maximum achievable rate of

a k-hop myopic coding strategy to that of the corresponding omniscient coding

strategy.

Figs. 4.3 and 4.4 show achievable rates for the five-node and six-node MRCs

respectively, using DF under omniscient coding, two-hop myopic coding, and one-

hop myopic coding.
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The maximum rate achievable by myopic coding can never exceed that by the

corresponding omniscient coding. This is because under myopic coding, every node

treats transmissions from the nodes outside its view as noise. In addition, a node

can only transmit limited messages. On the other hand, under omniscient coding, a

node can decode the signals from all the nodes behind and cancel the transmissions

of all the nodes in front. A node can also possibly transmit all previously decoded

messages.

In Fig. 4.3, we see a seemingly strange result that the maximum achievable rate

of two-hop myopic DF is as high as that of omniscient DF. This can happen in

a five-node channel under certain circumstances. Using either omniscient DF or

two-hop myopic DF, node 3 in the five-node MRC can communicate with all other

nodes, i.e., it decodes from nodes 1 and 2, and cancels transmissions from node

4. So, when the overall transmission rates is constrained by R3, the maximum

achievable rate of the two-hop myopic coding is the same as that of the omniscient

coding. This explains why ρ2 = 1 at low transmitted-signal-to-noise ratio (tSNR)

in Fig. 4.3. tSNR for a pair of transmitter i and receiver j is Pi/Nj.

However, as the number of relays increases, we expect achievable rates of the

two-hop myopic coding to be strictly less than that of the corresponding omniscient

coding because each node communicates with fewer neighbors in the former. We

see that this is indeed the case from Fig. 4.4, in which ρ2 is strictly less than 1.

Comparing achievable rates of one-hop myopic DF and two-hop myopic DF,

the rates improve significantly when one more node is added into the nodes’ view.

This suggests that in a large network with many relays, k-hop myopic DF, where

k need not be large, could achieve rates close to that of omniscient DF.

Furthermore, ρ1 and ρ2 are high in the low tSNR regime. The efficiency drops

as the tSNR increases. To understand this phenomenon, we consider different types

of noise, i.e., receiver noise and interference. The nodes in both omniscient coding

and myopic coding experience the same receiver noise. So, in the low tSNR regime

where the receiver noise is dominant, myopic coding performs close to omniscient
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Figure 4.3: Achievable rates of different coding strategies for a
five-node MRC.
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Figure 4.4: Achievable rates of different coding strategies for a
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coding, and the efficiency is higher. On the other hand, in the high tSNR regime,

the interference (which a node cannot cancel in myopic coding but can in omniscient

coding) is dominant. So, the efficiency of myopic coding drops.

4.7 Extending to k-Hop Myopic Coding

Now, we generalize two-hop myopic DF to k-hop myopic DF where k ∈ {1, . . . , T −

1} and have the following theorem.
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4.8 On the Fading Gaussian MRC

Theorem 15 Let

(
X1 × · · · × XT−1, p

∗(y2, . . . , yT |x1, . . . , xT−1),Y2 × · · · × YT

)

be a T -node memoryless MRC. k-hop DF achieves rates up to

Rk-hop = max
M∈Π(T)

max
p(·)

min
mt∈M\{1}

I(Umt−k , . . . , Umt−1 ;Ymt |Umt , . . . , Umt+k−1
). (4.8)

Here, Umj = 0, for all j = 2 − k, 3 − k, . . . , 0, T, T + 1, . . . , T + k − 1. The outer

maximization is over all routes and the inner maximization is taken over all joint

distributions of the form

p(x1, x2 . . . , xT−1, u1, u2 . . . , uT−1, y2, y3 . . . , yT )

= p(um1)p(um2) · · · p(umT−1
)

× p(xmT−1
|umT−1

)p(xmT−2
|umT−2

, umT−1
) · · · p(xmT−k |umT−k , umT−k+1

. . . , umT−1
)

× p(xmT−k−1
|umT−k−1

, umT−k . . . , umT−2
) · · · p(xm1|um1 , um2 , . . . , umk)

× p∗(y2, . . . , yT |x1, . . . , xT−1).

The proof can be found in Appendix B.4. In the extreme case where k = T −1,

we end up with omniscient DF.

4.8 On the Fading Gaussian MRC

In the analyses so far, we compared the performance of myopic coding in static

Gaussian channels, i.e., without fading. Now, we explain how myopic coding is

done in the Gaussian channel with phase fading or Rayleigh fading.

It has been shown by Kramer et al. (2005, Theorem 8) that under phase fading

or Rayleigh fading, the maximum omniscient DF rate can be achieved by indepen-

dent Gaussian input distributions. In this case, Xi, i = 1, . . . , T−1, are independent

Gaussian random variables. Under omniscient DF, node t decodes from all nodes
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i, i < j, and cancels the transmissions of nodes l, l ≥ j. In k-hop myopic DF, the

nodes transmit independent Gaussian signals as they would under omniscient DF.

However, in the decoding, node t decodes the signals only from k nodes behind,

i.e., nodes i, i = max{1, t− k}, . . . , t− 1. It cancels the transmissions from only k

nodes in front (including itself), i.e., nodes l, l = t, . . . ,min{t + k − 1, T − 1}. It

treats the rest of the transmissions as noise. The following theorem characterizes

the performance of k-hop myopic DF in the Gaussian MRC with phase fading or

Rayleigh fading.

Theorem 16 Consider a T -node Gaussian MRC with phase fading or Rayleigh

fading. Using k-hop DF, the rate in equation (4.8) is achievable, by setting Xi =

Ui, xi = ui,∀i = 1, 2, . . . , T − 1.

The proof for the above theorem is straight forward given that the nodes trans-

mit independent signals in the fading channel.

4.9 Myopic Coding on Large MRCs

One potential problem of myopic coding is whether the rate vanishes when the

number of nodes in the network grows. This concern arises because in myopic DF,

a node treats transmissions of nodes beyond its view as pure noise. As the number

of transmitting nodes grows to infinity and each decoding node only has a limited

view, the noise power might sum to infinity. The noise might overpower the signal

power and drive the transmission rate to zero.

In this section, we scrutinize achievable rates of two-hop myopic DF for the

T -node MRC when T grows to infinity. The rationale of studying the two-hop

myopic coding is that we can always achieve higher transmission rates using k-hop

myopic DF with k > 2.

Theorem 17 Achievable rates of k-hop myopic DF for the T -node Gaussian MRC

are bounded away from zero, for any T ≥ 3.
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4.9 Myopic Coding on Large MRCs

Figure 4.5: Power allocations for two-hop myopic DF for the Gaussian MRC.

Now, we prove Theorem 17. Using two-hop myopic DF on route M = {1, 2, . . . , T}

in the T -node Gaussian MRC (we shall extend T to infinity later), the transmission

of each node is as follows.

• Node t, t = 1, 2, . . . , T − 2, sends Xt =
√
αtPtUt+1 +

√
(1− αt)PtUt.

• Node T − 1 sends XT−1 =
√
PT−1UT−1.

where Ui, i = 1, 2, . . . , T − 1, are independent Gaussian random variables with unit

variances and 0 ≤ αi ≤ 1. The transmissions of the nodes around node t are

depicted in Fig. 4.5.

Assume that all the nodes are equally spaced at 1m apart and transmit at power

P . Consider the received signal power at node t, we can always find a non-empty

set {(α1, . . . , αT−2) : 0 ≤ αi ≤ 1, i = 1, . . . , T − 2} such that

Psig(t) =
(√

3−ηαt−3κP +
√

2−η(1− αt−2)κP
)2

+
(√

2−ηαt−2κP +
√

1−η(1− αt−1)κP
)2

(4.10a)

=
(√

3−ηαt−3κP +
√

2−η(1− αt−2)κP
)2

+
(√

2−ηαt−2κP +
√

1−η(1− αt−1)κP
)2

(4.10b)

> 0, (4.10c)
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for t ≥ 4, and

Psig(2) = (1− α1)κP > 0 (4.11a)

Psig(3) = 2−η(1− α1)κP +
(√

2−ηα1κP +
√

1−η(1− α2)κP
)2

> 0. (4.11b)

Now we consider nodes 4 ≤ t ≤ T − 3, the noise power is Pnoise(t) = Nt < ∞,

and the interference power is given by

Pint(t) =
(√

3−η(1− αt−3)κP +
√

4−ηαt−4κP
)2

+
(√

4−η(1− αt−4)κP +
√

5−ηαt−5κP
)2

+ · · ·

+
(√

(t− 2)−η(1− α2)κP +
√

(t− 1)−ηα1κP
)2

+ (t− 1)−η(1− α1)κP

+
(√

1−ηαt+1κP +
√

2−η(1− αt+2)κP
)2

+
(√

2−ηαt+2κP +
√

3−η(1− αt+3)κP
)2

+ · · ·

+
(√

(T − t− 3)−ηαT−3κP +
√

(T − t− 2)−η(1− αT−2)κP
)2

+
(√

(T − t− 2)−ηαT−2κP +
√

(T − t− 1)−ηκP
)2

, (4.12a)

Pint(t)

κP
= 3−ηαt−3 + 4−η + 5−η + · · ·+ (t− 1)−η + 2

√
3−η4−η(1− αt−3)αt−4

+ 2
√

4−η5−η(1− αt−4)αt−5 + · · ·+ 2
√

(t− 2)−η(t− 1)−η(1− α2)α1

+ 1−ηαt+1 + 2−η + 3−η + · · ·+ (T − t− 1)−η + 2
√

1−η2−ηαt+1(1− αt+2)

+ 2
√

2−η3−ηαt+2(1− αt+3) + · · ·

+ 2
√

(T − t− 3)−η(T − t− 2)−ηαT−3(1− αT−2). (4.13a)
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Simplifying, we get

Pint(t)

κP
= 3−ηαt−3 +

t−1∑
j=4

1

jη
+ 1−ηαt+1 +

T−t−1∑
j=2

1

jη
+ 2

t−2∑
j=3

√
(1− αt−j)αt−(j+1)

jη(j + 1)η

+ 2
T−t−3∑
j=1

√
αt+j(1− αt+j+1)

jη(j + 1)η
(4.14a)

<

t−1∑
j=3

1

jη
+

T−t−1∑
j=1

1

jη
+ 2

t−2∑
j=3

1

jη
+ 2

T−t−3∑
j=1

1

jη
(4.14b)

< 6
T∑
j=1

1

jη
< 6ζ(η). (4.14c)

Here ζ(η) =
∑∞

j=1
1
jη

is the Riemann zeta function. It has been calculated that

ζ(2) = π2

6
, ζ(3) = 1.202057... etc. It is easily seen that the Riemann zeta function

is a decreasing function of η. Since, η ≥ 2, Pint(t) < π2κP for 4 ≤ t ≤ T − 3. We

can also show that Pint(t)/(κP ) for t = 2, 3, T − 2, T − 1, T are bounded. Hence,

we can always find a non-empty set {(α1, . . . , αT−2)} such that the reception rate

at every node t, ∀t ∈ {2, 3, . . . , T}, is

Rt =
1

2
log

[
1 +

Psig(t)

Pint(t) +Nt

]
> 0, (4.15)

which is bounded away from zero. This means the maximum achievable rate

R2-hop = max
{α1,...,αT−2}

min
t∈{2,3,...,T}

Rt > 0 (4.16)

is bounded away from zero.

When more nodes are included in the view in the myopic coding, Psig increases

and Pint decreases. In general, assuming that the nodes are roughly equally spaced,

the maximum achievable rate of myopic DF is bounded away from zero even when

the network size grows to infinity.

73



4.10 Conclusion

4.10 Conclusion

In this chapter, we compared achievable rates of myopic DF and omniscient DF

for the MRC.

We have shown that in the low tSNR regime, achievable rates of two-hop myopic

DF are as large as that of omniscient DF in a five-node MRC, and close to that of

the omniscient coding in a six-node MRC. Comparing the one-hop myopic coding

and the two-hop myopic coding, we see that adding a node into the nodes’ view

improves the achievable rate significantly.
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Chapter 5

Achievable Rate Regions for the

Multiple-Access Channel with

Feedback and Correlated Sources

In this chapter, we study achievable rates for the multiple-access channel with

feedback and correlated sources (MACFCS) (Ong & Motani, 2005c, 2006b, 2007d).

The MACFCS is a combination of the multiple access channel with correlated

sources (MACCS) and the multiple access channel with feedback (MACF). The

MACFCS serves as a model for the wireless sensor network in which multiple

sources send possibly correlated data to a single destination. At the same time,

each source receives feedback from the channel and we allow each node to receive

different feedback. First of all, we define the MACFCS.

5.1 Introduction

5.1.1 The MACFCS

Fig. 5.1 depicts the three-node MACFCS, with nodes {1, 2, 3}. Nodes 1 and 2 are

the sources (which can also act as relays), and node 3 the destination. Message

w1 ∈ W1 and w2 ∈ W2 are generated at nodes 1 and 2 respectively, and are
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Figure 5.1: The three-node MACFCS.

to be sent to node 3. They are drawn from some discrete bivariate distribution

p(s1, s2), meaning that the source messages can be arbitrarily correlated. The

three-node discrete memoryless MACFCS can be completely described by
(
W1 ×

W2, p(w1, w2),X1×X2, p
∗(y1, y2, y3|x1, x2),Y1×Y2×Y3

)
. W1,W2,X1,X2,Y1,Y2, and

Y3 are seven finite sets. p∗(y1, y2, y3|x1, x2) defines the channel transition probability

on Y1×Y2×Y3 for each (x1, x2) ∈ X1×X2. x1 and x2 are the inputs into the channel

from nodes 1 and 2 respectively. y1, y2, and y3 are the channel outputs to nodes 1,

2, and 3 (the destination) respectively. We consider memoryless channels, i.e., the

current outputs (y1i, y2i, y3i) depend on the past inputs (xi1, x
i
2) only through the

current transmitted symbols (x1i, x2i).

Definition 19 A sequence of codes
{
{f1i, f2i}ni=1, g, n

}
for the three-node MACFCS

comprises of an integer n, two sets of encoding functions {f1i, f2i}ni=1 at nodes 1

and 2, where

x1i = f1i(w
n
1 , y11, y12, . . . , y1(i−1)) (5.1a)

x2i = f2i(w
n
2 , y21, y22, . . . , y2(i−1)), (5.1b)

and a decoding function at node 3, g3 : Yn3 →Wn
1 ×Wn

2 , such that

(ŵn1 , ŵ
n
2 ) = g3(yn3 ) (5.2)

where ŵn1 and ŵn2 are estimates of wn1 and wn2 respectively.
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5.1 Introduction

Without loss of generality, we assume that each encoder knows all n source

messages before the encoding of each block. We can also think of the n source

messages as one combined message from the source at the beginning of each block

of the encoding. Hence, for any choice of codes, the joint probability density

function (p.d.f.) on (Wn
1 ,W

n
2 ,X

n
1 ,X

n
2 ,Y

n
1 ,Y

n
2 ,Y

n
3 ) is given by

p(wn1 , w
n
2 , x

n
1 , x

n
2 , y

n
1 , y

n
2 , y

n
3 ) =

n∏
i=1

p(w1i, w2i)
n∏
i=1

p(x1i|wn1 , y11, y12, . . . , y1i−1)

· p(x2i|wn1 , y21, y22, . . . , y2i−1) · p∗(y1i, y2i, y3i|x1i, x2i).

(5.3a)

Definition 20 The error probability is defined as

Pe = Pr{(Ŵ n
1 , Ŵ

n
2 ) 6= (W n

1 ,W
n
2 )} (5.4a)

=
∑

(wn1 ,w
n
2 )∈Wn

1×Wn
2

p(wn1 , w
n
2 ) Pr{(Ŵ n

1 , Ŵ
n
2 ) 6= (wn1 , w

n
2 )|(W n

1 ,W
n
2 ) = (wn1 , w

n
2 )}.

(5.4b)

Definition 21 We say that (W1,W2) can be reliably transmitted to the destina-

tion per channel use if for any ε > 0, there exists a sequence of block codes{
{f1i, f2i}ni=1, g, n

}
such that Pe < ε.

We define an achievable region of the MACFCS as a set of triplets [H(W1|W2),

H(W2|W1), H(W1,W2)] for which we can reliably send (W1,W2) to the destination

per channel use, for some p∗(y1, y2, y3|x1, x2). The capacity region is the closure of

the set of all achievable regions.

In Section 5.7, where we compare different strategies for the static three-node

Gaussian MACFCS, we use an alternative but useful definition of achievable region.

The reason is that regions in the three dimensional space are difficult to plot and

compare. Hence we use the following version of achievable region for the static

Gaussian MACFCS. With a fixed correlation structure H(W1|W2), H(W2|W1), and

H(W1,W2), and node positions, an achievable region is the set of average transmit
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power pairs [P1, P2] for which we can reliably send (W1,W2) to the destination.

Similarly, the capacity is defined as the closure of the convex hull of the set of all

achievable regions. Note that we can convert an achievable region for the discrete

memoryless MACFCS to that for the Gaussian MACFCS.

5.1.2 Problem Statement

For the three-node MACFCS, we are interested in investigating:

1. What is the tightest upper bound on the capacity of the MACFCS?

2. What are the achievable regions of various coding strategies for the MACFCS?

3. What are the characteristics of different coding strategies for the MACFCS?

4. How well do the coding strategies perform under different channel settings?

5. How does the study of the MACFCS help us to better understand coding and

cooperation in sensor networks?

5.2 Related Work

The MACFCS is a combination of the multiple-access channel with correlated

sources (MACCS) and the multiple-access channel with feedback (MACF). One

practical setup of the MACFCS is the sensor network.

The MACCS (with a common part) was studied by Slepian & Wolf (1973b), who

derived an achievable region. In their paper, separate source coding and channel

coding are used, where the source coding is first performed to remove the correlation

among the sources. The channel coding for the multiple-access channel (MAC) with

independent sources is then employed. The MACCS (with possibly no common

part) was considered by Cover et al. (1980). They showed, by using a simple

example, that separating source and channel coding is not optimal. They derived an

achievable region for the MACCS using a combined source-channel coding strategy
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to preserve the correlation among the channel inputs. Outer bounds on the capacity

of the MACCS were derived with infinite letter characterization by Cover et al. and

later improved by Kang & Ulukus (2006) to finite-letter expressions. While Slepian

& Wolf (1973b) assumes a certain structure for the correlation among the sources,

we study arbitrarily correlated sources in this thesis.

The MACF (with independent sources) was investigated by Cover & Leung

(1981), who derived an achievable region assuming all nodes receive common feed-

back. Ozarow (1984) found the capacity of the Gaussian MACF with common

feedback and derived a capacity outer bound for the discrete memoryless MACF

with common feedback. King (1978) investigated the MACF with all sources re-

ceiving common feedback, which is possibly different from what the destination

receives, and derived an achievable region for the channel. Willems (1982) and

Carleial (1982) further generalized the MACF with common channel feedback to

the case where each node receives possibly different channel feedback, and de-

rived achievable regions of the channel. Sendonaris et al. (2003a,b) considered

the Gaussian MACF with different feedback to different nodes. They derived an

information theoretic achievable region based on cooperation among the source

nodes, and showed how the cooperation scheme can be implemented in a practical

code-division multiple-access system.

Combining the MACF and the MACCS, we arrive at the MACFCS. One prac-

tical system modeled by the MACFCS is a sensor network in which every sensor

is capable of transmitting as well as receiving, and each sensor collects data and

aims to send them to a single destination. We note that the data collected by the

sensor nodes might be correlated, e.g., if they are located close to one another.

Applying coding strategies designed for the MACF or the MACCS might be

suboptimal for the MACFCS. Coding strategies for the MACF ignore the correla-

tion among the sources, while coding strategies for the MACCS ignore the feedback

from the channel to the sources. Taking both these extra pieces of information into

account can help to enlarge the achievable region.
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Murugan et al. (2004) investigated the Gaussian MACFCS with a total av-

erage power constraint on the sources. Their coding approach is based on time

division multiple-access with the nodes operating in half-duplex. Our work dif-

fers from Murugan et al. in that we consider a general MACFCS (including both

discrete memoryless channels and Gaussian channels) with full-duplex nodes, in

which the source nodes can transmit and receive simultaneously. For the Gaussian

case, we impose average power constraints on individual sources, rather than a

total average power constraint. King (1978) considered the MACFCS with each

source observing an independent private message, all sources observing a common

message, and all nodes (all sources and the destination) receiving the same feed-

back. In this thesis, we consider arbitrary source correlation and possibly different

feedback to all nodes.

5.3 Contributions

Our main contributions in this chapter are:

1. We derive an outer bound on the capacity of the MACFCS, which turns out

to be the cut-set bound (Gastpar, 2003, 2004).

2. We construct a new coding strategy for the MACFCS, where the source

nodes first exchange information and then cooperate to send full information

to the destination. We term this strategy full decoding at sources with DF

channel coding (FDS-DF) (Ong & Motani, 2005c, 2006b, 2007d). We derive

an achievable region using this strategy.

3. We construct a CF-based coding strategy for the MACF, with each node

receiving possibly different channel feedback. King (1978) derived an achiev-

able region for the MACF with all sources receiving common feedback using

combined DF and CF coding strategies.

4. We combine source coding for correlated sources (Slepian & Wolf, 1973b)
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and our newly constructed CF for the MACF, and arrive at a new achievable

region for the MACFCS. We term this strategy source coding for correlated

sources and CF channel coding for the MACF (SC-CF).

5. We combine existing schemes, i.e., source coding for correlated sources (Slepian

& Wolf, 1973b) with the MAC channel coding (Ahlswede, 1974; Liao, 1972) to

arrive at another achievable region for the MACFCS. We term this strategy

source coding for correlated sources and MAC channel coding (SC-MAC).

6. We find another achievable region of the MACFCS using a multi-hop coding

strategy.

7. We compute achievable regions of the different strategies on the Gaussian

MACFCS.

8. We show that certain strategies perform better under certain source corre-

lation structures and channel topologies. More specifically, we observe the

following for the symmetrical MACFCS (where the sources are of equi-distant

from the destination, and they have the same amount of private information

to send):

(a) When the inter-source links get better than the source-destination links,

FDS-DF approaches the capacity outer bound.

(b) When the correlation among the sources gets higher, FDS-DF approaches

the capacity outer bound.

When one source is far away from the destination and another source is closer

to the destination, SC-CF gives a better performance compared to FDS-DF

and SC-MAC.

9. By comparing different coding strategies for the MACFCS, we show the value

of cooperation in the multiple-source single-sink sensor network.
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5.3.1 Organization

The rest of the chapter is organized as follows. In Section 5.4, we briefly mention

the coding strategies for the MACFCS discussed in this thesis. In Section 5.5, we

derive a capacity outer bound for the MACFCS. These will serve as benchmarks

for the coding strategies constructed in Section 5.6. We compare the performance

of different coding strategies on the Gaussian MACFCS in Section 5.7. This is

followed by a discussion of the results in Section 5.8 and conclusions in Section 5.9.

Now, we briefly describe the different coding strategies investigated for the

MACFCS.

5.4 Coding Strategies for the MACFCS

There are numerous coding strategies which we can apply to the MACFCS. The

aim of this thesis is not to list all of them, but to compare different strategies and

to study their strengths and weaknesses. In this chapter, we study the following

coding strategies for the MACFCS.

1. Full Decoding at Sources with Decode-Forward Channel Coding (FDS-DF):

In FDS-DF, the general idea is for the sources to communicate so that every

source has the complete data of the other sources. They then cooperate to

send the combined data to the destination. Since the data of different nodes

are correlated, a node does not need to send all its data to other nodes for

them to fully decode the data.

2. Source Coding for Correlated Sources and Compress-Forward Channel Coding

for the MACF (SC-CF): Source coding for correlated sources (Slepian &

Wolf, 1973b) is first performed at every source node to remove the correlation

among the sources. At this point, we have turned the problem into that of

channel coding for the MACF with independent sources. We then construct

a coding strategy for the MACF based on CF to transport the independent

data to the destination.
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3. Source Coding for Correlated Sources and MAC Channel Coding (SC-MAC):

Source coding with correlated sources is performed at individual nodes. Then

we use channel coding for the MAC (Ahlswede, 1974; Liao, 1972) to send the

independent data to the destination. In this case, we disregard the feedback

from the channel to the source nodes.

4. Multi-Hop Coding with Data Aggregation (MH-DA): The nodes are sequenced

(with the last node being the destination) to form a route. Each node (except

the first node) decodes the data from the previous node in the route, combines

it with its own data, and forwards all data (data that it decodes from the

previous node, plus its own data, less the correlated part of the data which

the next node already has) to the next node in the route. This continues

until the second last node sends all aggregated data to the destination.

Remark 9 The first two strategies, i.e., FDS-DF and SC-CF, use coding ideas for

the relay channel, in which the relay helps the source to send data to the destination.

These two strategies exploit the fact that there is an embedded relay channel in the

MACFCS.

Remark 10 In SC-MAC, the sources ignore feedback from the channel. Feedback

certainly has the potential to increase rates, but taking it into account carries with

it a certain amount of complexity, both from a hardware and processing viewpoint.

This is the motivation for SC-MAC and we find that this simple strategy can actu-

ally be better under certain topologies.

Remark 11 The first three strategies mentioned above involve multi-user coding

(e.g., multi-point-to-multi-point), which requires a certain amount of coordination

for synchronization and cooperation. In MH-DA, all transmissions are single-point-

to-single-point, i.e., a node only decodes from a node behind it, treating all other

transmissions as noise. We note that there are many practical coding schemes

available for single-point-to-single-point communication. Through MH-DA, we can
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study the loss in performance of single-point-to-single-point coding in a multiple-

terminal network.

Remark 12 Barros & Servetto (2006) consider the problem of communicating cor-

related sources over a network of independent point-to-point links. The strategy

by Barros & Servetto includes MH-DA as a special case and can be used for the

MACFCS with appropriate modifications.

5.4.1 The Value of Cooperation in the MACFCS

In the wireless channel, which is broadcast in nature, every node hears the trans-

missions of other nodes. It can treat the transmissions as pure noise, or make use

of the received transmissions for cooperation. In the coding strategies described

above, the nodes cooperate in the encoding and decoding of the data. Across the

strategies, we find different levels of cooperation.

In all the strategies, we see nodes cooperate in the source coding, i.e., a node

takes into account of other nodes (their data or correlation structure) during its

data encoding. In FDS-DF, all the nodes send cooperative data (of all sources) to

the destination. In SC-CF and SC-MAC, source coding for correlated sources is

performed prior to channel coding. We can view this as a form of cooperation in

the encoding. In MH-DA, a node receives data from the previous node, combines

them with its own data, and sends the aggregated data to the next node. Again,

we see cooperation in the encoding of data.

Now, we see how the nodes cooperate in the channel coding, e.g., multiple nodes

decode the transmission of a node, and a node decodes the transmissions of multiple

nodes. In FDS-DF, when the sources are exchanging data, the destination, over-

hearing these transmissions, makes use of the transmissions to aid its decoding of

the data. In SC-CF, each source hears the transmissions of other sources, quantizes

them, bins them, and sends them to the destination. In SC-MAC, though the

sources ignore the transmissions of other nodes, the destination listens to all the

source nodes. The coding strategies above involve channel coding for multiple
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users. In contrast, MH-DA only considers node pairs, i.e., point-to-point coding.

Encoding and decoding are done only for two nodes. Each node only transmits to

one node (down the route) and each node only decodes from one node, ignoring all

other transmissions. Hence, we see minimum cooperation in MH-DA.

5.5 Capacity Outer Bound

In this section, we derive an outer bound on the capacity of the MACFCS.

Theorem 18 (Cut-Set Outer Bound) Let
(
W1 ×W2, p(w1, w2),X1 × X2,

p∗(y1, y2, y3|x1, x2),Y1×Y2×Y3

)
be a discrete memoryless three-node MACFCS. The

source symbols (W1,W2) can be reliably transmitted to the destination per channel

use only if

[H(W1|W2), H(W2|W1), H(W1,W2)] ∈ R, (5.5)

where

R =

[R1, R2, R3] :


R1 ≤ I(X1;Y2, Y3|X2)

R2 ≤ I(X2;Y1, Y3|X1)

R3 ≤ I(X1, X2;Y3)



 , (5.6)

for some

p(x1, x2). (5.7)

In other words, an outer bound on the capacity of the MACFCS is given by ROB =⋃
P R, where P is the set of all distributions satisfying (5.7), and

⋃
is the union

of sets operator.

Proof 18 (Proof of Theorem 18) See Appendix C.1.

Remark 13 We call the above outer bound the cut-set outer bound (CS-OB) as

it turns out to be a special case of the cut-set argument by Gastpar (2003, 2004).

Now, we start with the cut-set argument and see how it simplifies to the CS-OB.

We partition the network into two sets, with a cut separating the sets. We as-

sume that all nodes in each set can fully cooperate. We obtain bounds by as-
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sociating each cut with a corresponding point-to-point system. Consider the cut

separating the sets {1} and {2, 3}. The transmission rate from node 1 to nodes

2 and 3 is bounded by the corresponding point-to-point system X1 → (Y2, Y3)|X2

(using the notation by Gastpar (2003)). In this point-to-point channel, node 3 re-

ceives side information W2 from node 2. For node 3 to reliably decode W1, node 1

needs to transmit at least H(W1|W2) bits across the cut, to node 3. Hence we get

H(W1|W2) ≤ maxp(x1,x2) I(X1;Y2, Y3|X2) (cf. Gastpar (2003, eq. (3.9))). Applying

this argument to the cut separating {2} and {1, 3}, we obtain the second inequality

in (5.6). Consider the cut separating {1, 2} and {3}. We need to transmit (W1,W2)

across the cut, and the transmission rate is bounded by the corresponding point-to-

point system (X1, X2)→ (Y3). Hence we get H(W1,W2) ≤ maxp(x1,x2) I(X1, X2;Y3)

(cf. Gastpar (2003, eq. (3.2))). Note that for the point-to-point system, feedback

does not increase the capacity, and can be ignored.

Remark 14 In the Gaussian MACFCS, ROB can be found by considering only

jointly Gaussian input distributions. We can show that choosing Gaussian in-

put distributions maximizes every mutual information expression in (5.6) (Kramer

et al., 2005, Proposition 2). Hence, in the Gaussian MACFCS,
⋃
p(x1,x2) R =⋃

jointly Gaussian x1,x2
R.

5.6 Achievability

Now, we present four achievable regions for the three-node MACFCS using four

different coding strategies.

5.6.1 Full Decoding at Sources with Decode-Forward Chan-

nel Coding (FDS-DF)

In this strategy, every node decodes the data from all other nodes, and all nodes

cooperate to send combined data to the destination. We note that for the nodes to
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cooperate, they must first agree on the data to be sent. In order to do this, each

of them must first decode the data from all other nodes.

In brief, this strategy does the following. Since W1 and W2 are correlated,

using the method by Slepian & Wolf (1973a, Theorem 2), node 1 only needs to

send H(W1|W2) compressed bits to node 2 for it to decode W1. Node 2 does the

same. Now, both nodes have W1 and W2. They then cooperate to transmit the

full information, i.e., (W1,W2), to the destination. At the same time, nodes 1 and

2 send the next (new) message to each other.

Murugan et al. (2004) proposed a similar coding scheme where the transmissions

are split into two phases. In the first phase, the source nodes communicate with

each other using time division multiple-access. At the end of the first phase, each

source has the data of all nodes. In the second phase, all sources cooperate to

transmit to the destination. In this thesis, we offer a more general coding scheme.

Each source node transmits cooperative information of the previous block (data

that it decodes from other nodes together with its own data) and new information

(which is to be decoded by other sources and the destination) simultaneously.

Since all nodes agree on the same fully decoded information of the previous block,

coherent combining can be achieved in the Gaussian channel. We show that the

coding strategy proposed by Murugan et al. is a special case of ours.

Using FDS-DF, we can show that the region given in the following theorem is

achievable.

Theorem 19 (FDS-DF) Let
(
W1×W2, p(w1, w2),X1×X2, p

∗(y1, y2, y3|x1, x2),Y1

×Y2×Y3

)
be a discrete memoryless three-node MACFCS. (W1,W2) can be reliably
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transmitted to the destination per channel use if the following conditions hold.

H(W1|W2) < min[I(X1;Y2|Q, V0, V1, V2, X2), I(V1;Y3|Q, V0, V2)

+ I(X1;Y3|Q, V0, V1, V2, X2)], (5.8a)

H(W2|W1) < min[I(X2;Y1|Q, V0, V1, V2, X1), I(V2;Y3|Q, V0, V1)

+ I(X2;Y3|Q, V0, V1, V2, X1)], (5.8b)

I(W1;W2) < I(V0;Y3|Q, V1, V2), (5.8c)

H(W1) < I(V0, V1;Y3|Q, V2) + I(X1;Y3|Q, V0, V1, V2, X2), (5.8d)

H(W2) < I(V0, V2;Y3|Q, V1) + I(X2;Y3|Q, V0, V1, V2, X1), (5.8e)

H(W1|W2) +H(W2|W1) < I(V1, V2;Y3|Q, V0) + I(X1, X2;Y3|Q, V0, V1, V2), (5.8f)

H(W1,W2) < I(X1, X2;Y3|Q), (5.8g)

where

p(q, x1, x2, y1, y2, y3, v0, v1, v2) = p(q)p(v0|q)p(v1|q)p(v2|q)p(x1|q, v0, v1, v2)

· p(x2|q, v0, v1, v2)p∗(y1, y2, y3|x1, x2, x3). (5.9a)

V0 ∈ V0, V1 ∈ V1 and V2 ∈ V2 are auxiliary random variables with cardinali-

ties |V0| × |V1| × |V2| ≤ min{|X1| × |X2|, |Y1|, |Y2|, |Y3|}. Q ∈ Q is a time shar-

ing variable which determines the portion of time we use a particular distribu-

tion p1(x1, x2, y1, y2, y3, v0, v1, v2), p2(x1, x2, y1, y2, y3, v0, v1, v2) and so on. Here,

|Q| ≤ 3.

Remark 15 We note that by setting

Q = 0 : V0 = 0, V1 = 0, V2 = 0, X2 = 0, (5.10a)

Q = 1 : V0 = 0, V1 = 0, V2 = 0, X1 = 0, (5.10b)

Q = 2 : X1 = f(V0, V1, V2), X2 = f(V0, V1, V2), (5.10c)

for some deterministic function f(·), we end up with the half-duplex coding scheme

88



5.6 Achievability

proposed by Murugan et al. (2004). At time Q = 0, node 1 transmits, and at time

Q = 1, node 2 transmits. After both nodes fully decode the messages from each

other, they coherently transmit at time Q = 2. However, in the coding scheme

by Murugan et al., the destination only decodes at time Q = 2. In other words,

the terms I(· · · ;Y3|Q = i, · · · ) for i = 1, 2 are excluded. In Theorem 19, the

destination decodes at all Q = 0, 1, 2 and hence the achievable region can be larger.

Proof 19 (Outline of the proof of Theorem 19) Now, we present an outline

of the proof of Theorem 19. The complete proof can be found in Appendix C.2. We

ignore Q in the following discussion to simplify the expressions.

The codebook generation is as follows:

1. Fix the p.d.f. p(v0), p(v1), p(v2), p(x1|v0, v1, v2), and p(x2|v0, v1, v2).

2. Generate 2n[I(W1;W2)+ε] i.i.d. sequences v0 according to
∏n

i=1 p(v0i). Index

them v0(i), i ∈
{

1, 2, . . . , 2n[I(W1;W2)+ε]
}

.

3. Generate 2n[H(W1|W2)+ε] i.i.d. sequences v1 according to
∏n

i=1 p(v1i). Index

them v1(j), j ∈
{

1, 2, . . . , 2n[H(W1|W2)+ε]
}

.

4. Generate 2n[H(W2|W1)+ε] i.i.d. sequences v2 according to
∏n

i=1 p(v2i). Index

them v2(k), k ∈
{

1, 2, . . . , 2n[H(W2|W1)+ε]
}

.

5. Define h′ = (i′, j′, k′). For each (v0(i′),v1(j′),v2(k′)), generate 2n[H(W1|W2)+ε]

sequences x1 according to
∏n

i=1 p(x1i|v0i(i
′), v1i(j

′), v2i(k
′)). Index them

x1(j, h′), j ∈
{

1, 2, . . . , 2n[H(W1|W2)+ε]
}

.

6. Again for each (v0(i′),v1(j′),v2(k′)), independently generate 2n[H(W2|W1)+ε]

sequences x2 according to
∏n

i=1 p(x2i|v0i(i
′), v1i(j

′), v2i(k
′)). Index them

x2(k, h′), k ∈
{

1, 2, . . . , 2n[H(W2|W1)+ε]
}

.

The encoding steps (refer to Fig. 5.2) are as follows:

1. Slepian & Wolf (1973b, Theorem 2) showed that when node 1 only knows

w1 and node 2 knows w2, node 1 can encode w1 using n[H(W1|W2) + ε] bits
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Figure 5.2: The encoding of FDS-DF.

(indexed by j) and it can be decoded by node 2. Similarly, node 2 can use

n[H(W2|W1)+ε] bits (indexed by k) to encode w2. Node 1 transmits x1(j, h′),

and node 2 transmits x2(k, h′), where h′ is the cooperative information from

the previous block. We use prime to indicate the index from the previous

block.

2. At the beginning of the new block, assume that node 1 correctly estimates k′

sent by node 2. Using w′1, it can decode w′2. Node 2 does likewise to decode

w′1.

3. Both sources now compress (w′1,w
′
2) down to n[H(W1,W2)+3ε] bits and index

it by h′ ∈ {1, . . . , 2n[H(W1,W2)+3ε]}. Now, create 2n[H(W1|W2)+H(W2|W1)+2ε] bins

and index each bin by a unique (j′, k′). Assign h′ to the bins so that each bin

contains 2n[I(W1;W2)+ε] entries. Index the entries i′ ∈ {1, . . . , 2n[I(W1;W2)+ε]}.

Hence, each h′ can be represented by a unique triplet (i′, j′, k′).

4. In the new block, node 1 sends x1(j, i′, j′, k′) and node 2 sends x2(k, i′, j′, k′).
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The decoding steps are as follows:

1. Upon observing the sequence y1, node 1 declares k̂ has been sent by node 2 if

there exists a unique k̂ such that
(
x1(j, h′),v0(i′),v1(j′),v2(k′),x2(k̂, h′),y1

)
∈ Aε. We use hat to indicate the estimate. Here, Aε is the set of jointly

typical sequences (Cover & Thomas, 1991, pg. 195). We note that node 1

knows h′ = (i′, j′, k′), which is the full information from the previous block,

and its own information j. It can determine the correct k with diminishing

error probability if

H(W2|W1) < I(X2;Y1|V0, V1, V2, X1). (5.11)

2. Similarly, observing the sequence y2, node 2 declares ĵ has been sent by node 1

if there exists a unique ĵ such that
(
x1(ĵ, h′),v0(i′),v1(j′),v2(k′)x2(k, h′),y2

)
∈ Aε. Node 2 can determine the correct j with diminishing error probability

if

H(W1|W2) < I(X1;Y2|V0, V1, V2, X2). (5.12)

3. Node 3 decodes (̂i, ĵ, k̂) over two blocks. In the first block, assuming that it

has already correctly decoded h′ = (i′, j′, k′) from the previous block, it finds

a set of (ĵ, k̂) ∈ L1 where
(
x1(ĵ, h′),x2(k̂, h′),v0(i′),v1(j′),v2(k′),y3

)
∈ Aε.

In the second block, it then finds another set of (ĵ, k̂) ∈ L2 and a unique î

where
(
v0(̂i),v1(ĵ),v2(k̂),y3

)
∈ Aε. Li, i = 1, 2, contains node 3’s roughly

estimates of (ĵ, k̂) from the i-th block of received signals. It declares (̂i, ĵ, k̂)

has been sent if there is a unique î and a unique pair of (ĵ, k̂) in L1 ∩ L2.
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This can be done with diminishing error probability if

I(W1;W2) < I(V0;Y3|V1, V2), (5.13a)

H(W1|W2) < I(V1;Y3|V0, V2) + I(X1;Y3|V0, V1, V2, X2), (5.13b)

H(W2|W1) < I(V2;Y3|V0, V1) + I(X2;Y3|V0, V1, V2, X1), (5.13c)

H(W1) < I(V0, V1;Y3|V2) + I(X1;Y3|V0, V1, V2, X2), (5.13d)

H(W2) < I(V0, V2;Y3|V1) + I(X2;Y3|V0, V1, V2, X1), (5.13e)

H(W1|W2) +H(W2|W1) < I(V1, V2;Y3|V0) + I(X1, X2;Y3|V0, V1, V2),

(5.13f)

H(W1,W2) < I(X1, X2;Y3). (5.13g)

We consider all possible error combinations. Assuming that (i, j, k) were sent,

(5.13a) guarantees that the Pr(̂i 6= i, ĵ = j, k̂ = k) < ε for any ε > 0. (5.13b)

guarantees that Pr(̂i = i, ĵ 6= j, k̂ = k) < ε, (5.13c) guarantees that Pr(̂i =

i, ĵ = j, k̂ 6= k) < ε, (5.13d) guarantees that Pr(̂i 6= i, ĵ 6= j, k̂ = k) < ε,

(5.13e) guarantees that Pr(̂i 6= i, ĵ = j, k̂ 6= k) < ε, (5.13f) guarantees that

Pr(̂i = i, ĵ 6= j, k̂ 6= k) < ε, and (5.13g) guarantees that Pr(̂i 6= i, ĵ 6= j, k̂ 6=

k) < ε.

4. With (̂i, ĵ, k̂), node 3 can determine ĥ and decode (ŵ1, ŵ2).

The total probability of error can be bounded, for large n, if (5.11), (5.12), and

(5.13a)–(5.13g) hold.

For the cardinality of the auxiliary random variables, using the method by Salehi

(1999), we can show that |V0|× |V1|× |V2| ≤ min{|X1|× |X2|, |Y1|, |Y2|, |Y3|}. Since

the achievable region of FDS-DF can be plotted in the 3-dimensional space, |Q| ≤ 3

is sufficient.

Hence, we have Theorem 19.

The probability error analysis can be found in Appendix C.2. The achievable

region of FDS-DF on the Gaussian MACFCS can be found in Appendix C.3.
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Remark 16 In FDS-DF, the sources only need to exchange nH(W1|W2)

+nH(W2|W1) bits in order for them to know the full information (w1,w2). When

both sources know the full information, they then cooperate (achieving coherent

combining in the Gaussian channel) to send the full information to the destination.

Under certain channel conditions, that all nodes fully decode the data of all

other nodes might not be desirable. One example is when node 1 is far from the

destination and node 2 is close to the destination. In this case, it is not necessary

for node 1 to decode all of node 2’s data. We note that if the sources only exchange

partial information, they are not able to cooperate to send the full information to

the destination. They can only cooperate to send the data that they exchange (in

contrast with FDS-DF in which the sources can cooperate to send more information

than what they exchange). Without full decoding at the sources, we study a few

other types of coding strategies where full decoding of all messages (w1, w2) only

occurs at the destination. We use the following method. First, source coding is

performed at each individual source node to remove the correlation among the

sources (see Section 5.6.2). At this point, we have turned the problem into that

of channel coding for the MACF with independent sources. Then we apply a

channel coding strategy for the MACF to transmit independent information to the

destination.

5.6.2 Source Coding for Correlated Sources

Source coding for correlated sources is first performed at every source node. This

removes correlation between the sources. This does not require physical commu-

nication among the sources. Each source node forms independent inputs to its

channel encoder.

Recall that nodes 1 and 2 receive w1 and w2 from their respective sources.

The data are correlated and drawn according to p(w1, w2). First, we consider a

noiseless channel. With node 1 knowing only w1 and node 2 knowing only w2, the

destination can reconstruct (w1, w2) reliably if node 1 encodes w1 with rate R1 and
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node 2 encodes w2 with rate R2 (Slepian & Wolf, 1973b), where

R1 ≥ H(W1|W2), (5.14a)

R2 ≥ H(W2|W1), (5.14b)

R1 +R2 ≥ H(W1,W2). (5.14c)

Figure 5.3 shows independent data (j, k) after source coding. After receiving n

source messages, w1, encoder 1 encodes the data to j ∈ {1, 2, . . . , 2nR1}. Encoder

2 receives w2 and encodes the data to k ∈ {1, 2, . . . , 2nR2}. R1 and R2 are within

the constraints (5.14a)–(5.14c).

Now, we consider an unreliable channel and explore how channel coding can

help the destination to recover j and k. With these, it can recover w1 and w2.

5.6.3 Source Coding for Correlated Sources and Compress-

Forward Channel Coding for the MACF (SC-CF)

In this section, we derive an achievable region for the MACF based on CF. Combin-

ing this with the source coding rate constraints in Section 5.6.2, we derive another

achievable region for the MACFCS. We term this coding strategy source coding for

correlated sources and CF channel coding for the MACF (SC-CF). To the best of

our knowledge, CF has not been studied on the MACF where each node receives

possibly different channel feedback. CF was first introduced by Cover & El Gamal

(1979) for the single relay channel. It was subsequently extended to the MRC by

Kramer et al. (2005) in which the strategy is termed the compress-and-forward

strategy. King (1978) derived an achievable region for the MACF, with all sources

receiving common feedback, using combined DF and CF coding strategies. In this

thesis, we construct a CF for the MACF with possibly different feedback to every

node. Here, we do not combine CF with DF as we want to compare the perfor-

mance of different strategies. With the different strategies described in this thesis,

we can easily pick and combine different strategies to get another achievable region.
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Figure 5.3: The encoding of SC-CF.

Remark 17 It has been shown by Kramer et al. (2005) that in relay channels

with different topologies, DF or CF can achieve higher rates. For the Gaussian

relay channel, a rough guide is that when the relay is closer to the source, DF

achieves higher rates; while when the relay is closer to the destination, CF achieves

higher rates. This suggests that SC-CF might give larger achievable regions on the

MACFCS compared to FDS-DF under different topologies.

Using CF, each node transmits independent information as well as a quantized

and binned version of its received signal. Referring to Figure 5.3, j and k are

independent information after performing source coding on a block of n correlated

source messages (w1,w2). Consider node 1 as an example first. From the received

signal y1, it produces a quantized version ỹ1. It then bins ỹ1 to u1. In the next

block, it sends new information j as well as u1. We can view this as node 1 helping

node 2 to send a noisy, quantized, and binned version of node 2’s signal, k, without

needing to fully decode k. Node 2 does likewise.

Using SC-CF, we show that the following region is achievable.

Theorem 20 (SC-CF) Let
(
W1×W2, p(w1, w2),X1×X2, p

∗(y1, y2, y3|x1, x2),Y1×

Y2 × Y3

)
be a discrete memoryless three-node MACFCS. The source messages
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(W1,W2) can be reliably transmitted to the destination per channel use if

H(W1|W2) < I(X1; Ỹ1, Ỹ2, Y3|Q,U1, U2, X2), (5.15a)

H(W2|W1) < I(X2; Ỹ1, Ỹ2, Y3|Q,U1, U2, X1), (5.15b)

H(W1,W2) < I(X1, X2; Ỹ1, Ỹ2, Y3|Q,U1, U2), (5.15c)

where the mutual information is taken over all joint p.d.f.

p(q, u1, u2, x1, x2, ỹ1, ỹ2, y1, y2, y3) = p(q)p(u1|q)p(x1|q, u1)p(u2|q)p(x2|q, u2)

· p(ỹ1|q, y1, x1, u1)p(ỹ2|q, y2, x2, u2)

· p∗(y1, y2, y3|x1, x2), (5.16a)

subject to the following constraints

I(U1;Y3|Q,U2) > I(Ỹ1;Y1|Q,X1, U1)− I(Ỹ1;Y3|Q, Ỹ2, U1, U2), (5.17a)

I(U2;Y3|Q,U1) > I(Ỹ2;Y2|Q,X2, U2)− I(Ỹ2;Y3|Q, Ỹ1, U1, U2), (5.17b)

I(U1, U2;Y3|Q) > I(Ỹ1;Y1|Q,X1, U1) + I(Ỹ2;Y2|Q,X2, U2)− I(Ỹ1, Ỹ2;Y3|Q,U1, U2).

(5.17c)

Here, U1 ∈ U1, U2 ∈ U2, Ỹ1 ∈ Ỹ1, and Ỹ2 ∈ Ỹ2 are auxiliary random variables.

|U1| × |U2| ≤ min{|X1| × |X2|, |Y3|}, |Ỹ1| and |Ỹ2| are finite. Q ∈ Q is the time

sharing variable, and |Q| ≤ 3.

Proof 20 (Outline of the proof of Theorem 20) Now, we give a brief outline

of the proof of Theorem 20. The error probability analysis can be found in Ap-

pendix C.4. We ignore Q in the following discussion to simplify the expressions.

Figure 5.3 shows independent data (j, k) after source coding. Channel encoder 1

receives j ∈ {1, 2, . . . , 2nR1} and channel encoder 2 receives k ∈ {1, 2, . . . , 2nR2} for

every n source messages. Now, we study a channel coding scheme to ensure that the

independent data after source coding can be reliably transmitted to the destination.

The codebook generation is as follows.
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1. Fix p(u1), p(x1|u1), p(u2), p(x2|u2), p(ỹ1|y1, x1, u1) and p(ỹ2|y2, x2, u2).

2. Generate 2nR
′
1 i.i.d. sequences u1 according to

∏n
i=1 p(u1i). Index them

u1(p), p ∈
{

1, . . . , 2nR
′
1

}
. Generate 2nR

′
2 i.i.d. sequences u2 according to∏n

i=1 p(u2i). Index them u2(q), q ∈
{

1, . . . , 2nR
′
2

}
.

3. For each u1(p′), generate 2nR1 sequences x1 according to
∏n

i=1 p(x1i|u1i(p
′)).

Index them x1(j, p′), j ∈
{

1, . . . , 2nR1

}
. For each u2(q′), generate 2nR2 se-

quences x2 according to
∏n

i=1 p(x2i|u2i(q
′)). Index them x2(k, q′), k ∈

{
1, . . . ,

2nR2

}
.

4. For each u1(p′), generate 2nR̃1 sequences ỹ1 according to
∏n

i=1 p(ỹ1i|u1i(p
′)).

We define

p(ỹ1|u1) =

∑
u2,x1,x2,ỹ2,y1,y2,y3

p(u1, u2, x1, x2, ỹ1, ỹ2, y1, y2, y3)∑
u2,x1,x2,ỹ1,ỹ2,y1,y2,y3

p(u1, u2, x1, x2, ỹ1, ỹ2, y1, y2, y3)
, (5.18a)

where p(u1, u2, x1, x2, ỹ1, ỹ2, y1, y2, y3) is defined in (5.16). Index them ỹ1(r|p′),

v ∈
{

1, . . . , 2nR̃1

}
.

5. Similarly, for each u2(q′), generate 2nR̃2 sequences ỹ2 according to
∏n

i=1 p(ỹ2i|

u2i(q
′)). We define

p(ỹ2|u2) =

∑
u1,x1,x2,ỹ1,y1,y2,y3

p(u1, u2, x1, x2, ỹ1, ỹ2, y1, y2, y3)∑
u1,x1,x2,ỹ1,ỹ2,y1,y2,y3

p(u1, u2, x1, x2, ỹ1, ỹ2, y1, y2, y3)
. (5.19a)

Index them ỹ2(s|q′), w ∈
{

1, . . . , 2nR̃2

}
.

6. Randomly partition the set {1, 2, . . . , 2nR̃1} into 2nR
′
1 cells Sp, p ∈ {1, . . . , 2nR

′
1};

and partition the set {1, . . . , 2nR̃2} into 2nR
′
2 cells Sq, q ∈ {1, . . . , 2nR

′
2}.

The encoding steps are as follows. Basically, node 1 quantizes its received signal

from the previous block and bins it. It sends the binned information together with

new information from the source in the new block. Node 2 does likewise.

1. In the beginning of block t+1, remembering its previous transmission in block

t, x1(jt, qt−1) and u1(qt−1), and observing its received signal in block t, y1(t),
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it finds a unique rt for which (x1(jt, pt−1),u1(pt−1),y1(t),

ỹ1(rt|pt−1)) ∈ Aε. Berger (1977, Lemma 2.1.3) showed that node 1 can find

such a rt−1 with probability tending to 1, with a large enough n, if

R̃1 > I(Ỹ1;Y1|X1, U1). (5.20)

Here, rt is the quantized version of y1(t).

2. Now, node 1 bins rt to pt. It finds pt for which rt ∈ Spt. It then sends

x1(jt+1, pt) in block t + 1, where jt+1 is the new message from the source.

Here, pt is to be decoded and used by the destination to estimate rt. We see

here that node 1 helps node 2 to send a noisy, quantized, and binned version

of node 2’s signal to the destination.

3. In block t + 1, node 2 quantizes y2(t) to st. It can find a unique st with

probability tending to 1 if

R̃2 > I(Ỹ2;Y2|X2, U2). (5.21)

It bins st to qt, where st ∈ Sqt. It then sends x2(kt+1, qt) in block t, where

kt+1 is the new information.

The decoding steps are as follows. The destination first decodes the quantized

and binned information from nodes 1 and 2. It then estimates the quantized in-

formation. Using its received signal and the estimated quantized information, it

decodes the messages from nodes 1 and 2.

1. At the end of block t+ 1, the destination receives y3(t+ 1). It declares (p̂t, q̂t)

were sent by nodes 1 and 2 if it can find a unique pair of (p̂t, q̂t) for which

(u1(p̂t),u2(q̂t),y3(t+ 1)) ∈ Aε. This can be done with an arbitrarily small
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error probability if the following inequalities hold.

R′1 < I(U1;Y3|U2), (5.22a)

R′2 < I(U2;Y3|U1), (5.22b)

R′1 +R′2 < I(U1, U2;Y3). (5.22c)

2. At the end of block t + 1, assume that the destination has correctly decoded

(pt−1, qt−1) and (pt, qt). It uses its received signal in block t to find a set L(t)

of (rt, st) such that
(
ỹ1(rt|pt−1), ỹ2(st|qt−1),u1(pt−1),u2(qt−1),y3(t)

)
∈ Aε. It

declares that (r̂t, ŝt) were sent if it can find a unique (r̂t, ŝt) ∈ {(r̂t, ŝt) : r̂t ∈

Spt and ŝt ∈ Sqt} ∩ L(t). This can be done reliably if

R̃1 < I(Ỹ1;Y3|Ỹ2, U1, U2) +R′1, (5.23a)

R̃2 < I(Ỹ2;Y3|Ỹ1, U1, U2) +R′2, (5.23b)

R̃1 + R̃2 < I(Ỹ1, Ỹ2;Y3|U1, U2) +R′1 +R′2. (5.23c)

3. At the end of block t + 1, assume that the destination has correctly decoded

(rt, st) and (pt−1, qt−1). It uses ỹ1(rt|pt−1), ỹ2(st|qt−1), and y3(t). It declares

(ĵt, k̂t) were sent if
(
x1(ĵt, pt−1),x2(k̂t, qt−1),u1(pt−1),u2(qt−1),

ỹ1(rt|pt−1), ỹ2(ŝt|qt−1),y3(t)
)
∈ Aε. This can be done with diminishing error

probability if

R1 < I(X1; Ỹ1, Ỹ2, Y3|U1, U2, X2), (5.24a)

R2 < I(X2; Ỹ1, Ỹ2, Y3|U1, U2, X1), (5.24b)

R1 +R2 < I(X1, X2; Ỹ1, Ỹ2, Y3|U1, U2). (5.24c)

We see that node 3 decodes (jt, kt) at the end of block t+ 1.

Combining these rate constraints for the MACF using CF and the constraints

for the source coding, (5.14a)-(5.14c), we get Theorem 20.
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The probability error analysis can be found in Appendix C.4. The achievable

region of the Gaussian MACFCS using SC-CF can be found in Appendix C.5.

5.6.4 Source Coding for Correlated Sources and the MAC

Channel Coding (SC-MAC)

Now, we consider a coding strategy for the MACF that ignores the feedback from

the channel to the source nodes. Each source now simply sends independent mes-

sages as it would in the MAC. We call this strategy SC-MAC, and we will see later

that it actually does well in certain network topologies. A coding strategy that

achieves the capacity of the MAC was found by Liao (1972) and Ahlswede (1974).

Combining source coding for correlated sources and this channel coding for the

MAC, we have the following theorem.

Theorem 21 (SC-MAC) Let
(
W1×W2, p(w1, w2),X1×X2, p

∗(y1, y2, y3|x1, x2),Y1

×Y2 × Y3

)
be a discrete memoryless three-node MACFCS. The source messages

(W1,W2) can be reliably transmitted to the destination per channel use if the fol-

lowing inequalities hold.

H(W1|W2) ≤ I(X1;Y3|X2), (5.25a)

H(W2|W1) ≤ I(X2;Y3|X1), (5.25b)

H(W1,W2) ≤ I(X1, X2;Y3), (5.25c)

where p(x1, x2) = p(x1)p(x2).

5.6.5 Combination of Other Strategies

There is a multitude of ways which we can combine a coding strategy for the

MACCS with that for the MACF to arrive at a coding strategy for the MACFCS.

The aim of this thesis is not to list all of them. In this section, we briefly mention

a few combinations.
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1. Combining source coding for correlated sources and the partial DF channel

coding for the MACF by Carleial (1982, Theorem 1): After source coding,

each source node has independent data. Each source now exchanges part

of their data with other source nodes. They then cooperate to send the

exchanged data to the destination. We call that partial DF as every source

only decodes part of the data of other sources. An achievable region for

the MACFCS can be derived by combining the source coding constraints

for correlated sources (constraint (5.14a)–(5.14c) in Section 5.6.2) and the

channel coding constraints of the partial DF for the MACF (Carleial, 1982,

constraints (3a), (3b), (7a)–(7q)).

2. Combining source coding for correlated sources and the partial DF channel

coding for the MACF by Willems (1982, Theorem 7.1): Similar to that by

Carleial (1982), the sources exchange part of their data through the channel

feedback link. They then cooperate to send the exchanged data to the desti-

nation. An achievable region for the MACFCS can be derived by combining

the source coding constraints for correlated sources (constraint (5.14a)-(5.14c)

in Section 5.6.2) and the channel coding constraints of the partial DF for the

MACF (Willems, 1982, Theorem 7.1).

3. Combining coding strategy for MACCS without common part by Cover et al.

(1980, constraints (3)) and CF for the MACF (that we derived in Sec-

tion 5.6.3): Each node sends information encoded directly from the source

(so that correlation is preserved among the transmitted signals) as well as the

received (via the feedback links), quantized, and binned signals from other

nodes.

4. Combining coding strategy MACCS without common part by Cover et al.

(1980, constraints (3)) and the partial DF by Carleial (1982, Theorem 1) or

Willems (1982, Theorem 7.1): Each node sends information encoded directly

from the source (so that correlation is preserved among the transmitted sig-

101



5.6 Achievability

nals). At the same time, the source nodes partially decode the data from

other nodes, and cooperate to send the exchanged data to the destination.

Remark 18 The strategy mentioned in (i) above (in Section 5.6.5) is different

from FDS-DF (in Theorem 19). In the former, the channel encoders at nodes 1

and 2 receive independent data stream, after performing source coding for correlated

sources. Then, Carleial’s technique for MACF is applied directly. Hence, if we

want the nodes to cooperatively send the full information, (W n
1 ,W

n
2 ), they must

exchange at least nH(W1,W2) bits. In FDS-DF, however, the channel encoders

receives correlated data from the sources (so, we do not apply Carleial’s technique

directly here), and so they only need to exchange nH(W1|W2) +nH(W2|W1) bits to

be able to cooperatively send the full information.

Remark 19 We note that FDS-DF, SC-CF, SC-MAC, and strategies (i) and (ii)

in Section 5.6.5 are based on separate source and channel coding. Strategies (iii)

and (iv) in Section 5.6.5 are based on combined source and channel coding. Evalu-

ating the performance of the combined source and channel coding strategies in the

Gaussian channel is difficult as it involves discrete and continuous variables.

Remark 20 The achievable regions for FDS-DF, SC-CF, and SC-MAC are de-

rived assuming that the number of source symbols received per unit time equals

the number of channel transmissions per unit time. However, using these separate

source and channel coding strategies, we can easily match the source symbol rate

to the channel usage rate, without re-deriving the coding strategies. Considering

a general case when we wish to send k pairs of source symbols using n channel

transmissions, the achievable regions can be found by simply replacing the mutual

information expressions by kH(·) ≤ nI(·). In this way, the achievability question

for a particular MACFCS is no longer just “ whether we can reliably transmit a

pair of (W1,W2) per channel use”, but more generally, “ at what rate, k/n, we can

reliably transmit k pairs of (W1,W2) per n channel uses”. However, using com-

bined source and channel coding strategies, we need to modify the coding strategies
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such that the probability distributions involve k source symbols and n channel input

symbols (e.g., see Cover et al. (1980, equation (87)). Doing so, the achievable

region will no longer be a single letter characterization.

In Sections 5.6.1 to 5.6.5, we investigated coding strategies for the MACFCS

where the nodes exploit the broadcast/multiple-access nature of the channel. They

cooperate in the sense that either the transmission from a node is decoded/processed

by more than one node (broadcast nature) or a node decodes/processes the trans-

missions from more than one node (multiple-access nature). In the following sec-

tion, we study a strategy in which the network is abstracted to a set of point-to-

points links. A collection of links forms a route, and data are then passed down

the route from the source to the destination using point-to-point coding.

5.6.6 Multi-Hop Coding with Data Aggregation (MH-DA)

In the multi-hop coding with data aggregation strategy (MH-DA), data are passed

from a node to another, until they reach the destination. First, we number the

nodes in a sequence, which we call a route. The last node in the route is the

destination. We consider a combine-forward multi-hop coding where each node

decodes the data from the previous node in the route, combines that with its own

data, and forwards the aggregated data (those that it decodes from the previous

node, plus its own data, less the correlated part with the data at the next node)

to the next node in the route. In the three-node MACFCS, assuming that node

1 receives w1 from its source and node 2 receives w2 from its source, they do the

following:

1. Node 1 compresses w1 down to nH(W1|W2) bits, indexes it by j ∈ {1, . . . ,

2nH(W1|W2)}, and sends it to node 2.

2. We know that upon receiving j, node 2 can decode w1.

3. Node 2 compresses (w1,w2) to k ∈ {1, . . . , 2nH(W1,W2)}, using nH(W1,W2)

bits, and sends it to the destination.
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In this multi-hop coding scheme, a node only decodes from the node behind in

the route. The achievable region of the MACFCS using MH-DA is given in the

following theorem.

Theorem 22 (MH-DA) Let
(
W1×W2, p(w1, w2),X1×X2, p

∗(y1, y2, y3|x1, x2),Y1×

Y2 × Y3

)
be a discrete memoryless three-node MACFCS. (W1,W2) can be reliably

transmitted to the destination per channel use if the following holds.

H(W1|W2) < I(X1;Y2|X2, Q), (5.26a)

H(W1,W2) < I(X2;Y3|Q), (5.26b)

where

p(q, x1, x2, y1, y2, y3) = p(q)p(x2|q)p(x1|x2, q)p
∗(y1, y2, y3|x1, x2). (5.27)

Q ∈ Q is the time sharing variable and |Q| ≤ 2.

The proof of Theorem 22 is straightforward and is omitted.

Now we consider a time division MH-DA for the three-node Gaussian MACFCS.

By time division, we mean that only one source transmits at a time, i.e., for fraction

(1 − f) of the time (0 < f < 1), node 1 transmits and node 2 does not transmit;

for fraction f of the time, node 2 transmits and node 1 does not transmit. This

might be done to reduce interference among the nodes.

The achievable region of the Gaussian MACFCS using time division MH-DA is

H(W1|W2) <
1− f

2
log

(
1 +

λ12P1

(1− f)N2

)
, (5.28a)

H(W1,W2) <
f

2
log

(
1 +

λ23P2

fN3

)
. (5.28b)

We have presented four achievable regions for the MACFCS using different cod-

ing strategies, and suggested a few coding strategies for the MACFCS by combining
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coding strategies for the MACCS and the MACF. In the next section, we compare

the four achievable regions to the CS-OB.

5.7 Comparison of Coding Strategies

In this section, we plot and compare achievable regions for the different strategies in

the three-node static Gaussian MACFCS. We consider symmetrical topologies, i.e.,

both sources are of equi-distant from the destination, and also linear asymmetrical

topologies where the three nodes form a straight line, with node 2 placed in between

node 1 and the destination. Although Gaussian input distributions may not be

optimal, we choose X1, X2, and the auxiliary random variables to be Gaussian

for the sake of comparison. We use the following parameters: κ = 1, η = 2, and

νij = 1.

5.7.1 Design Methodology

We perform numerical calculations to compare the achievable regions of different

coding strategies and the CS-OB to gain insights into how node position and data

correlation affect performance. First, we study the effect of node position. For this

analysis, we assume symmetrical source data, meaning H(W1|W2) = H(W2|W1).

This is a reasonable assumption for sensor networks when homogeneous sensors

are deployed, and each sensor is sensing the environment at the same rate. For

the computations, we fix H(W1|W2) = 0.5, H(W2|W1) = 0.5, and I(W1;W2) = 0.5.

Although there are many combinations of node positions that one can study, we

group them into three main categories:

1. Symmetrical topology with the sources closer to the destination than they

are to one another.

2. Symmetrical topology with the sources closer to one another than they are

to the destination.
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3. Asymmetrical topology. Without loss of generality, we assume that node 1 is

further away from the destination than node 2 is from the destination. For

simplicity, we study linear topologies where the three nodes form a straight

line.

Taking a closer look at MH-DA, we note that this strategy is more suitable

for asymmetrical topologies. This is because in symmetrical topologies, there is

no reason why we would arrange the nodes in a route and “load” the node at the

end of route. This strategy makes sense in the asymmetrical topology where some

nodes are nearer to the destination. Hence we analyze the performance of MH-DA

only in the asymmetrical topology.

After investigating the effect of node position, we study the effect of varying the

correlation between the sources on the performance of the various coding strategies.

As rationalized above, we still keep the source data symmetrical, i.e. H(W1|W2) =

H(W2|W1). We vary I(W1;W2) while keeping one of the following constant:

1. The information of each source, H(W1) and H(W2), is constant.

2. The total information H(W1,W2) is constant.

5.7.2 The Effect of Node Position

Figs. 5.4 and 5.5 show the minimum average transmit powers (energy per channel

use) required for nodes 1 and 2 to reliably transmit a pair of (W1,W2) to the

destination per channel use. The achievable region is the region above the line.

Note that we plot average transmit powers on both axes. So, if the nodes transmit

with an average power pair in the achievable region, the nodes can reliably send

(W1,W1) to the destination per channel use. We denote the average power of nodes

1 and 2 by P1 and P2 respectively.

We consider symmetrical source data with the following values: H(W1|W2) =

0.5, H(W2|W1) = 0.5, and I(W1;W2) = 0.5. First, we compare the two symmet-

rical topologies: (1) when the sources are further away from each other than they
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(a) Network topology
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Figure 5.4: Minimum power required to transmit (W1,W2) to the destination per
channel use, with weak inter-source link.

are from the destination, and (2) when the sources are further away from the des-

tination than they are from each other. The first setup studies the case where the

source-destination links are better than the inter-source link while the second setup

studies the case where the inter-source link is better than the source-destination

links.

When the inter-source link is weak, Fig. 5.4 shows that SC-CF and SC-MAC

perform better than FDS-DF, i.e., the achievable regions for the SC-CF and SC-

MAC contain that of FDS-DF. FDS-DF performs worst among the three strategies

as the strategy requires each source node to get all the data from other nodes.

This imposes an extra constraint on the average transmit power of the source

nodes. When the source-destination link is stronger, a better strategy is to send

the signals directly to the destination than to seek help from other sources.

On the other hand, when the inter-source link is strong, Fig. 5.5 shows that

FDS-DF performs better than SC-CF and SC-MAC. The transmission bottleneck

is now at the source-destination link. A good inter-source link lets each source node

fully decode the messages from other nodes using little transmit power. In FDS-

DF, the sources then use most of the transmit power to send the full information
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(a) Network topology
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Figure 5.5: Minimum power required to transmit (W1,W2) to the destination per
channel use, with weak source-destination links.

coherently to the destination. Coherent combining makes a significant gain in

transmission rate on the source-destination link. Also, we see that the achievable

region of FDS-DF comes very close to the CS-OB when the inter-source link is

much better than the source-destination link.

Remark 21 In these two scenarios, we consider symmetrical topologies (d13 = d23)

and symmetrical source data (H(W1|W2) = H(W2|W1)). We term the channel

with symmetrical topology and symmetrical source data, symmetrical MACFCS.

In the symmetrical MACFCS, using FDS-DF, the total average transmit power is

minimized when the nodes transmit at the same average power. In other words, it

is more efficient for the nodes to share the load in transmitting data than for one

to transmit at higher power. We can see this from the non-linearity in the coherent

combining term in (C.40), or from Figs. 5.4 and 5.5 that the power curves are

convex. However, for SC-CF and SC-MAC, there is a range for which individual

source nodes can vary their transmit power while maintaining the minimum total
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average transmit power. We can see this from the mutual information expression

in (C.58), (C.59), and (C.63a) that the relationship between P1 and P2 is linear,

keeping P1 + P2 constant, or from Figs. 5.4 and 5.5 that there are portions of the

SC-CF and SC-MAC curves where the slope is -1.

Remark 22 The staircase behavior of the FDS-DF curve in Fig. 5.4 is caused

by the optimization involving different inequalities in Theorem 19 and the finite

step size of {αij} in (C.34a) and (C.34b). {αij} are the power splits of node i

used to carry different messages. The definition can be found in Appendix C.3.

With time sharing, reliable transmission can be achieved using an average transmit

power above the dotted line. Hence time sharing enlarges the achievable region of

FDS-DF. This explains why the time sharing random variable Q is included in

Theorem 19.

Remark 23 In the symmetrical MACFCS, SC-MAC performs better than SC-CF.

This means after we remove the correlation among the sources, using the feedback

of the channel via CF is worse than not using the feedback at all. This can be

explained as follows. When the nodes are of same distance from the destination

and have same amount of information to send, it is better for each of them to send

their own message to the destination directly. It does not help when they try to

help other nodes by sending a noisy, compressed, and binned version of what they

received. The power can be better used to send their own uncorrupted data.

That SC-MAC always outperforms SC-CF is no longer true in the asymmetrical

topology. Fig. 5.6 shows the minimum power curves without time sharing. For

illustration, we choose d12 = 2, d23 = 0.5, and d13 = 2.5. We note that choosing

node 2 close to node 1 resembles a symmetrical topology. From the graph, we

see that using SC-MAC, the minimum power required at node 1 is 6.25W. Using

FDS-DF, the minimum power required at node 1 is 4.1W. We can further reduce

the power at node 1 to 3.35W by increasing the power at node 2 by using SC-CF.

Using SC-MAC, we ignore the feedback in the channel. Hence, node 1 needs to

transmit at least H(W1|W2) bits to the destination, which is situated 2.5m away.
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(a) Network topology
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Figure 5.6: Minimum power required to transmit (W1,W2) to the destination per
channel use, in a linear topology.

Note that without using feedback, there is no way node 2 can help in sending this

portion of the message. However, we can reduce node 1’s transmit power by using

FDS-DF. Now, node 1 needs to send at least H(W1|W2) bits to node 2, which is

2m away. Node 2, which is nearer to the destination can help node 1 to relay the

message to the destination. If we wish to further reduce the transmission power of

node 1, we use SC-CF. Using this strategy, node 2 does not need to fully decode

W1. Node 2 acts as an additional (but noisy) antenna for the destination. Hence

this further enhances the “reception” of node 1’s message. So node 1 needs to send

at least H(W1|W2) bits to the destination, equipped with an additional (noisy)

antenna at node 2.

Remark 24 From Fig. 5.6, we see the staircase behavior of the SC-CF curve. It

shows that time sharing increases the achievability region of SC-CF. This accounts

for the use of the time sharing auxiliary random variable Q in Theorem 20.

5.7.3 The Effect of Source Correlation

Now, we study how correlation among the source data affects the different coding

strategies for the MACFCS. We consider symmetrical topologies. Figs. 5.7 and

110



5.7 Comparison of Coding Strategies

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
1,

P
2

I(W1;W2)

d12=1, d23=d13=0.7, H(W1)=H(W2)=1

FDS-DF (no time-sharing)
SC-CF

SC-MAC
CS-OB

Figure 5.7: Minimum power required to transmit (W1,W2) to the destination per
channel use, with different message correlation but constant H(W1) and H(W2).

5.8 depict achievable regions of the different coding strategies. We plot the equal

power point for different correlation values.

From both graphs, we see that all three strategies perform either better or do

not change when the data are more correlated. This make sense since if each node

knows a larger portion of other nodes’ data, it is easier for the nodes to cooperate.

When the nodes transmit at equal power, the achievable regions of SC-CF

and SC-MAC do not vary with the correlation as long as the total information

H(W1,W2) remains constant and the correlation is symmetrical (Fig. 5.8). This

is because using these two strategies, source coding is first performed. After that,

the nodes send independent data to the destination. We know that the minimum

total rate (R1 +R2 in (5.14c)) for which the nodes must transmit remains constant

if H(W1,W2) is constant.

In the same graph, although the total information H(W1,W2) stays constant,

increasing the correlation of the data enlarges the achievable region of FDS-DF.

The reason is that when the correlation is higher, more power can be used for

coherent transmission. The nodes need less power for inter-source communication.

When the sources are fully correlated, i.e., H(W1|W2) and H(W2|W1) approach

zero, the achievable region of FDS-DF approaches the CS-OB. This does not come
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as a surprise as when H(W1|W2) = H(W2|W1) = 0, every source node has complete

knowledge of other nodes’ data. They can cooperate to form a multiple-transmit

antenna without wasting any power to exchange data. Hence it achieves the CS-

OB.

The achievable regions of all the three strategies are far from the CS-OB when

the inter-source distance is large compared to the source-destination distance and

the correlation between the sources are low. To achieve the CS-OB, all sources

need to cooperate to send full information. When the correlation is low and the

inter-source link is weak, the sources “waste” a larger portion of the transmit power

to communicate among themselves in FDS-DF. For SC-CF and SC-MAC, as no

coherent combining is possible, the achievable regions are far from the CS-OB. This

highlights the value of cooperation in the MACFCS.

Remark 25 We notice that in Figs. 5.7 and 5.8, the FDS-DF curves are zig-

zag. This is because we plot the equal power point (P1 = P2) for the non-time-

sharing FDS-DF. As can be seen from Fig. 5.4, time sharing might improve the

FDS-DF region at the equal power point. The non-time-sharing FDS-DF curve in

Fig. 5.4 coincides with the time-sharing curve at equal power point only at certain

correlation levels. Hence the deviation from the time-sharing line for different
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correlation levels accounts for the zig-zag behavior of the FDS-DF curve in Figs. 5.7

and 5.8 when we change the correlation level.

5.7.4 Comparing MH-DA with other strategies

Figs. 5.9 and 5.10 compare MH-DA with other strategies in a three-node Gaussian

MACFCS. As explained in Section 5.7.1, we will only consider the linear topology

when comparing MH-DA with other strategies. We consider the cases when node

2 is closer to node 1 and when node 2 is closer to the destination. We show that in

both cases, we can always find a strategy with multi-user coding (FDS-DF, SC-CF,

or SC-MAC) that outperforms MH-DA.

Using MH-DA, we penalize the nodes toward the end of the route as they need

to send more information. In this example, node 2 needs to send full information,

which is at least H(W1,W2) bits, “alone” to the destination as the destination only

decodes from node 2. Hence the minimum required P2 is high. In other strategies,

node 1 helps node 2 to transmit to the destination and hence a lower P2 is possible.

An exception is FDS-DF when node 2 is closer to the destination. Here, node 2

needs to transmit at high power to ensure that node 1 (which is situated further

away) can fully decode its transmission.
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Table 5.1: Node positioning, correlation, and coding strategies for the symmetrical
Gaussian MACFCS.

Inter-source] link Low correlation High correlation
Good FDS-DF approaches CS-OB FDS-DF approaches
Poor FDS-DF, SC-CF, SC-MAC far from CS-OB CS-OB

]Relative to the source-destination links.

Nodes in the beginning of the route benefit from MH-DA, but only when the

“next hop” is near. From Fig. 5.9, we see that P1 can be low when node 2 is closer

to node 1. When node 2 is further away (Fig. 5.10), node 1 suffers. FDS-DF and

SC-CF help node 1 to lower its transmit power as both node 2 and the destination

are listening.

5.8 Reflections

The analyses of the different coding strategies for the Gaussian MACFCS help

us to understand better how sensor nodes can cooperate in a network given node

positions and correlation structures. We summarize the results from the numerical

computations for the symmetrical Gaussian MACFCS in Table 5.1.

Remark 26 When every source node can fully decode from other sources using

little power (i.e., when the inter-source link is good or when the data are highly
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correlated), FDS-DF is a good choice of coding strategy. The sources can coherently

transmit to the destination with little inter-node communication.

Remark 27 For the symmetrical topology when the inter-sources links are poor

(e.g., when sources surround the destination), SC-MAC proves to be useful. A

complicated scheme like SC-CF does not improve the achievable region.

Remark 28 For the asymmetrical topology, we note that SC-CF gives a better

performance compared to FDS-DF and SC-MAC. SC-CF allows the furthest node

to transmit at lower power as other source nodes now act as additional antennas

for the destination.

Remark 29 For the linear asymmetrical topology with symmetrical source data,

Figs. 5.9 and 5.10 show that we can always find a multi-user coding strategy that

outperforms MH-DA. The problem with MH-DA is that it uses point-to-point coding

and unfairly loads nodes nearer the end of the route. Multi-user coding strategies

mitigate this by allowing richer forms of cooperation between nodes. This highlights

the value of cooperative coding in a multiple-source network.

Remark 30 We investigated the three-node MACFCS in this chapter. This simple

example enabled us to demonstrate the characteristics of different coding strategies.

Consider a sensor network. The correlation between the measured data often de-

pends on the inter-sensor positions. A shorter inter-sensor distance usually results

in a higher correlation between the data of the two sensors. Hence, the upper right

cell and the lower left cell in Table 5.1 are of greater interest. If the sensors are

closer to one another than they are from the sink, which normally results in a high

correlation among the data, they should fully decode the data from all sensors and

transmit coherently to the sink. This can be done by using FDS-DF based coding

schemes. If the sensors are scattered around the sink, which normally results in a

lower correlation among the data, a simple coding strategy like SC-MAC might be

sufficient.
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Remark 31 In a network with more nodes, mixed coding strategies can be used.

Here, we give an example of how the results in this thesis could help us to design a

coding scheme for sensor network with more nodes. If there is a group of sensors

situated further away from the destination and another group closer to the desti-

nation, we suggest that sensors that are further from the destination form a group

and fully decode the data from each other. They, as a group, then cooperate with

sensors nearer to the destination via SC-CF.

5.9 Conclusion

In this chapter, we presented four achievable regions for the MACFCS. In addition,

we derived an outer bound on the capacity of the MACFCS, which turned out to

be the cut-set bound. Using Gaussian channels as examples, we compared the

achievable regions of different strategies to the cut-set outer bound. We showed

that FDS-DF, SC-CF, and SC-MAC can each give superior performance in certain

channel settings. From the comparison, we found that when the inter-source links

are better than the source-destination links, the achievable region of FDS-DF ap-

proaches the cut-set outer bound as the inter-source link gets better. The same

strategy also approaches the cut-set outer bound when the correlation between the

sources gets higher. In symmetrical topologies when the inter-source links are weak

but the source-destination links are good, SC-MAC proves to be useful. In asym-

metrical topologies, SC-CF can give better performance compared to the other

strategies.
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Chapter 6

Conclusion

The analyses in this thesis help us to understand cooperative coding and routing

in multiple-terminal wireless networks better. We investigated three areas with

practical interest, namely cooperative routing, myopic cooperation, and correlated

sources.

From an information-theoretic view point, we presented algorithms to find opti-

mal routes for DF for the MRC potentially without needing to optimize the channel

input probability density functions. This saves computations in finding the optimal

(rate maximizing) route for DF and calculating the maximum rate achievable by

DF for an MRC. We derived achievable rates of DF for the MRC with different

levels of cooperation, and showed that rates bounded away from zero are achievable

with partial cooperation among the nodes even on large networks with the number

of nodes growing infinitely large. We derived new achievable rate regions for the

multiple-access channel with feedback and correlated sources using different types

of cooperative coding strategies. We found the capacity of certain classes of the

multiple-access channel with feedback and correlated sources.

From a practical view point, our routing algorithms can be used to find a

rate-maximizing route (using the optimal routing algorithm) or to find a rate-

maximizing route with high probability (using the heuristic routing algorithm) on

which DF-based codes can be designed. The analyses and comparison on different

cooperative coding strategies in this thesis help us to determine which form of
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cooperation is useful for a particular network setting. Our work on myopic coding

showed that we can even do a localized version of these codes, which reduces

the complexity of the communication system, without compromising much on the

transmission rates.

The cooperative (in the information-theoretic sense) relaying strategies dis-

cussed in this thesis provide a framework on which practical codes can be designed

for multiple-terminal networks. A point to note is that these rates are derived based

on information-theoretic calculations using codes with possibly infinitely long block

length. It is for future research to design practical codes that can achieve rates. In

fact, a few recent code designs were based on various information-theoretic coding

strategies (see Razaghi & Yu (2006) for decode-forward and Hu & Li (2006) for

compress-forward). These practical codes are able to push the transmission rates

closer to those promised by the respective information-theoretic limits.
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Appendix A

Appendices to Chapter 3

A.1 Sketch of Proof for Lemma 3

First, we investigate how p(y2) determines how I(X1;Y2) varies with λ. We know

that I(X1;Y2) = H(Y2) − H(Y2|X1). For Gaussian channels in the form Y2 =
√
λX1 +Z2 +V2, and λ known to node 2, H(Y2|X1) = H(Z2)+H(V2) is a constant.

So, H(Y2|X1) does not depend on λ. H(Y2) depends on λ, as λ controls the spread

of p(y2). The spread of p(y2) is indicative of the level of randomness, i.e., the

entropy H(Y2), of Y2. The more p(y2) is spread, the higher H(Y2) is, and so the

higher I(X1;Y2) is.

Let P1 = 1, PV = 1, and the p.d.f. of X1 and V2 be

p(x1) =



1
2

, if x1 = 1

1
2

, if x1 = −1

0 , otherwise

(A.1a)

p(v2) =



1
2

, if v2 = 1

1
2

, if v2 = −1

0 , otherwise

. (A.1b)

Let Z2 be zero-mean Gaussian.
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Figure A.1: Conditional channel output distribution for low receiver noise, N2 =
0.1.

Let us consider low noise power case, N2 = 0.1. Refer to Figs. A.1(a)–(c).

When λ = 0.3 and λ = 4, H(Y2) is large as p(y2) are well spread. However, when

λ = 0.9, p(y2|x1 = 1) and p(y2|x = −1) overlap more and hence H(Y2) is low.

As summarized in Fig. A.3, we see that increasing λ does not necessarily increase

I(X1;Y2) when the noise power is small. We see here that p(y2|x1) have multiple

peaks, and when we increase λ to a certain value, some peaks of p(y2|x1 = 1) and

p(y2|x = −1) overlap.

However, when the noise power is higher at N2 = 1, Figs. A.2(a)–(b) show that

the distribution of p(y2|x1) is approximately Gaussian, which is single-peak. In this

case, increasing λ always increases the spread of p(y2), leading to a higher H(Y2).
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Figure A.2: Conditional channel output distribution for higher receiver noise, N2 =
1.
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Fig. A.3 shows that increasing λ will only increase I(X1;Y2).

The sketch of the proof for Lemma 3 is as follows. As
√
λx1 is added to (z2 +v2)

to form y2, p(y2|x1 = i) for all i have the same shape. If p(y2|x1) is single-peak,

when we increase λ, the peaks of p(y2|x1 = i) for all i are further away from each

other, i.e., less overlapping. Let p(y2) and p′(y′2) correspond to the output p.d.f. for

λ and λ′ respectively, where λ < λ′. For all y2 where p(y2) > 0, we can always find

a one-to-one mapping from y2 to y′2 with p(y2) ≥ p′(y′2). Hence H(Y ′2) ≥ H(Y2)

and I(X1;Y ′2) ≥ I(X1;Y2). Furthermore, if p(y2|x1) is single-peak and if Z2 is

Gaussian, then p(y2|x1 = i) > 0, ∀y2, i. So, an increase in λ will always reduce the

overlapping of p(y2|x1 = i) and increase I(X1;Y2).

121



A.2 Proof of Theorem 2

A.2 Proof of Theorem 2

Without loss of generality, let T = {1, 2, . . . , |T|} and assume E[Z2
j ] = E[Z2

k ].

Hence, λij ≥ λik, ∀i ∈ T,

I(XT;Yk|XTc) (A.2a)

= I(X1, . . . , X|T|;
√
λ1kX1 + · · ·+

√
λ|T|kX|T| + Zk|XTc) (A.2b)

= I(X1;
√
λ1kX1 + · · ·+

√
λ|T|kX|T| + Zk|XTc)

+ I(X2, . . . , X|T|;
√
λ1kX1 + · · ·+

√
λ|T|kX|T| + Zk|X1, XTc) (A.2c)

= I(X1;
√
λ1kX1 + · · ·+

√
λ|T|kX|T| + Zk|XTc)

+ I(X2, . . . , X|T|;
√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|X1, XTc) (A.2d)

≤ I(X1;
√
λ1jX1 +

√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|XTc)

+ I(X2, . . . , X|T|;
√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|X1, XTc) (A.2e)

= I(X1;
√
λ1jX1 +

√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|XTc)

+ I(X2, . . . , X|T|;
√
λ1jX1 +

√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|X1, XTc) (A.2f)

= I(X1, . . . , X|T|;
√
λ1jX1 +

√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|XTc) (A.2g)

= I(X2;
√
λ1jX1 +

√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|XTc)

+ I(X1, X3 . . . , X|T|;
√
λ1jX1 +

√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|X2, XTc)

(A.2h)

= I(X2;
√
λ1jX1 +

√
λ2kX2 + · · ·+

√
λ|T|kX|T| + Zk|XTc)

+ I(X1, X3 . . . , X|T|;
√
λ1jX1 +

√
λ3kX3 + · · ·+

√
λ|T|kX|T| + Zk|X2, XTc)

(A.2i)

≤ I(X2;
√
λ1jX1 +

√
λ2jX2 + +

√
λ3kX3 + · · ·+

√
λ|T|kX|T| + Zk|XTc)

+ I(X1, X3 . . . , X|T|;
√
λ1jX1 +

√
λ3kX3 + · · ·+

√
λ|T|kX|T| + Zk|X2, XTc)

(A.2j)

I(X1, . . . , X|T|;
√
λ1jX1 + λ2jX2 +

√
λ3kX3 + · · ·+

√
λ|T|kX|T| + Zk|XTc)

(A.2k)
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Applying the same technique down the route, we get

I(XT;Yk|XTc) (A.3a)

≤ I(X1, . . . , X|T|;
√
λ1jX1 + · · ·+

√
λ(T−1)jXT−1 +

√
λ|T|kX|T| + Zk|XTc)

(A.3b)

= I(X|T|;
√
λ1jX1 + · · ·+

√
λ(|T|−1)jX|T|−1 +

√
λ|T|kX|T| + Zk|XTc)

+ I(X2, . . . , X|T|−1;
√
λ1jX1 + · · ·+

√
λ(|T|−1)jX|T|−1 + Zk|X|T|, XTc) (A.3c)

≤ I(X|T|;
√
λ1jX1 + · · ·+

√
λ(|T|−1)jX|T|−1 +

√
λ|T|jX|T| + Zk|XTc)

+ I(X2, . . . , X|T|−1;
√
λ1jX1 + · · ·+

√
λ(|T|−1)jX|T|−1 + Zk|X|T|, XTc) (A.3d)

= I(X1, . . . , X|T|;
√
λ1jX1 + · · ·+

√
λ|T|jX|T| + Zk|XTc) (A.3e)

= I(X1, . . . , X|T|;
√
λ1jX1 + · · ·+

√
λ|T|jX|T| + Zj|XTc) (A.3f)

= I(XT;Yj|XTc) (A.3g)

Eqns. (A.2e), (A.2j) and (A.3d) are due to Lemma 3 and when the SPC is satisfied.

A.3 Proof of Theorem 3

To prove Theorem 3, we need the following few lemmas.

Lemma 7 Consider route M = {m1, . . . ,m|M|} and assume that a unique nearest

neighbor, node a∗, exists. For any input distribution p satisfying the SPC, the

rate supported by the new route M1 = M ∪ {a∗} is greater or equal than the rate

supported by the route adding any non-nearest neighbor, or M2 = M ∪ {b}, i.e.,

RM∪{a∗}(p) ≥ RM∪{b}(p), ∀b ∈ T \ (M ∪ {a∗}). (A.4)

We use superscript ∗ to indicate a nearest neighbor.

Proof 21 (Proof for Lemma 7) Since a∗ is the unique nearest neighbor with
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A.3 Proof of Theorem 3

respect to M, by definition,

γma∗ ≥ γmb, ∀m ∈M,∀b ∈ T \ (M ∪ {a∗}). (A.5)

From Theorem 2, it follows that ∀b ∈ T \ (M ∪ {a∗}),

Ra∗(M1, p) = I(XM;Ya∗|XT\M) (A.6a)

≥ I(XM;Yb|XT\M) (A.6b)

= Rb(M2, p). (A.6c)

In addition, for the first |M| elements in both routes less the source, i.e., 2 ≤

i ≤ |M|,

Rmi(M1, p) = I(Xm1 , . . . , Xmi−1
;Ymi |Xmi , . . . , Xm|M| , XT\M) (A.7a)

= Rmi(M2, p). (A.7b)

Hence,

RM1(p) = min
j∈M1\{1}

Rj(M1, p) (A.8a)

≥ min
j∈M2\{1}

Rj(M2, p) (A.8b)

= RM2(p) (A.8c)

We have proven that at any point of time during the NNA, in order to maximize

the rate supported by the route, we must choose the nearest neighbor (assuming

that it exists). Next, we show that choosing the nearest neighbor will not harm

the rate supported by the route even when more nodes are added.

Lemma 8 Let route M, with all nodes chosen using the NNA, be

M = {a∗1, a∗2, . . . , a∗|M|}. (A.9)
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A.3 Proof of Theorem 3

Every node that has been added to route is the nearest neighbor with respect to the

original route. Now, we arbitrarily add K nodes to M. The first node b1 is not a

nearest neighbor and the rest may or may not be nearest neighbors, i.e.,

M1 = {a∗1, a∗2, . . . , a∗|M|, b1, b2, . . . , bK}, (A.10)

where b1 is not a nearest neighbor with respect to M. We can always replace b1 by

the nearest neighbor a∗|M|+1 (assuming that it exists) to obtain

M2 =

 {a
∗
1, . . . , a

∗
|M|, a

∗
|M|+1, b1, . . . , bK−1}, if a∗|M|+1 /∈ {b1, . . . , bK−1}

{a∗1, . . . , a∗|M|, a∗|M|+1, b1, . . . , bk−1, bk+1, . . . , bK}, if a∗|M|+1 = bk,

(A.11)

for some bk ∈ {b1, . . . , bK−1}, and show that for any p satisfying the SPC,

RM2(p) ≥ RM1(p). (A.12)

Proof 22 (Proof for Lemma 8) First, we prove the case when a∗|M|+1 /∈ {b1, . . . ,

bK−1}. Lemma 7, it follows that

Ra∗|M|+1
(M2, p) ≥ Rb1(M1, p). (A.13)

Now, for nodes bi, 1 ≤ i ≤ K − 1,

Rbi(M2, p) = I(XM, Xm∗|M|+1
, Xb1 . . . , Xbi−1

;Ybi |Xbi , . . . , XbK−1
, XT\M2) (A.14a)

≥ I(XM, Xb1 . . . , Xbi−1
;Ybi|Xbi , . . . , XbK−1

, Xm∗|M|+1
, XT\M2) (A.14b)

= I(XM, Xb1 . . . , Xbi−1
;Ybi |Xbi , . . . , XbK−1

, XbK , XT\M1) (A.14c)

= Rbi(M1, p). (A.14d)

Eqn (A.14b) is due to Lemma 4.

125



A.3 Proof of Theorem 3

Clearly, for all nodes m ∈M \ {1},

Rm(M2, p) = Rm(M1, p). (A.15)

Hence,

RM2(p) ≥ RM1(p). (A.16)

Now, we study the case when a∗|M|+1 = bk for some bk ∈ {b1, . . . , bK−1}. Similar

to the first case, Rbi(M2, p) ≥ Rbi(M1, p) for 1 ≤ i ≤ k − 1 and Ra∗|M|+1
(M2, p) ≥

Rb1(M1, p). It is easy to show that for any m ∈ {a∗2, a∗3 . . . , a∗|M|, bk, bk+1, . . . , bK},

Rm(M2, p) = Rm(M1, p). Hence, RM2(p) ≥ RM1(p).

This proves Lemma 8.

Lemma 9 For a route in which all nodes are formed by the NNA, the supported

rate is always higher or equal to a route, of the same length, with one or more

non-nearest neighbors in it.

Proof 23 (Proof for Lemma 9) Lemma 9 can be proven by applying Lemma 8

recursively. Starting from the second node onward, we replace the first non-nearest

neighbor with a nearest neighbor. We remove the last node if the resulting route is

longer. In each step, the supported rate can only increase. We do that until the

entire route is replaced by nearest neighbor nodes. Hence, we get Lemma 9.

Now we consider routes of different lengths but that end on the same node,

which is the destination, T .

Lemma 10 Consider an arbitrary route M1 from the source, node 1, to the desti-

nation m|M1| = T :

M1 = {m∗1,m2, . . . ,m|M1|}. (A.17)

Here, one or more nodes in {m2, . . . ,m|M1|} are not nearest neighbors. Consider

the NNA route, assuming that the NNA terminates normally:

M2 = {m∗1,m∗2, . . . ,m∗|M2|}, (A.18)
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where m∗|M2| = T and |M1| not necessarily equals |M2|. It follows that, with any

input distribution p,

RM2(p) ≥ RM1(p). (A.19)

Proof 24 (Proof for Lemma 10) First of all, we consider the case |M1| = |M2|.

The results follows immediately from Lemma 9.

Second, we consider the case |M1| > |M2|. We consider first |M2| nodes in M1,

i.e.,

M′
1 = {m∗1,m2, . . . ,m|M2|}. (A.20)

From Lemma 5, RM′(p) ≥ RM1(p). From Lemma 9, RM2(p) ≥ RM′(p). Hence,

RM2(p) ≥ RM1(p).

Lastly, consider the case |M2| > |M1|. We replace all the nodes in M1 except

the last node, with nearest neighbors, and obtain

M3 = {m∗1,m∗2, . . . ,m∗|M1|−1,m|M1| = T}. (A.21)

Note that the first |M1| − 1 nodes of routes M2 and M3 are the same,

Note that m|M1| = T might not be the nearest neighbor with respect to M3 \{T}.

Clearly, using Lemma 8 recursively,

RM3(p) ≥ RM1(p). (A.22)

Since M2 is the output of the NNA, the following conditions are necessary.

γma ≥ γmT , ∀m ∈ {m∗1, . . . ,m∗|M1|−1},∀a ∈ {m∗|M1|, . . . ,m
∗
|M2|−1}. (A.23)
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Optimal Route

Figure A.4: A five-node MRC.

So, for |M1| ≤ i ≤ |M2|,

Rm∗i
(M2, p) = I(Xm∗1

, . . . , Xm∗i−1
;Ym∗i |Xm∗i

, . . . , Xm∗|M2|
, XT\M2) (A.24a)

≥ I(Xm∗1
, . . . , Xm∗|M1|−1

;Ym∗i |Xm∗|M1|
, Xm∗|M1|+1

, . . . , Xm∗|M2|
, XT\M2)

(A.24b)

≥ I(Xm∗1
, . . . , Xm∗|M1|−1

;YT |Xm∗|M1|
, Xm∗|M1|+1

, . . . , Xm∗|M2|
, XT\M2)

(A.24c)

= RT (M3, p). (A.24d)

Eqn (A.24b) is due to Lemma 4, and (A.24c) is due to (A.23) and m∗|M2| = T .

Clearly, for the first |M1|−1 nodes, i.e., m ∈ {m∗2,m∗3, . . . ,m∗|M1|−1}, Rm(M2, p) =

Rm(M3, p). Hence, RM2(p) ≥ RM3(p) ≥ RM1(p).

Hence, we have Lemma 10.

From Lemma 10, we know that if the NNSA terminates normally, i.e., the

nearest neighbor exists from the source to the destination, the route formed using

the NNA can support transmission rates as high as any other route. In other words,

the NNA finds a route that supports the highest achievable rate. Theorem 3 follows.
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Optimal Route

Figure A.5: Different topologies of the five-node MRC.

A.4 Examples of How the NNSA Reduces the

Search Space for an Optimal Route

Now we provide an example to show that the search space of an optimum route

can be very much reduced by using the NNSA.

We use the setup in Fig. A.4. We assume that Pi = P, ∀i = 1, 2, 3, 4, Nj =

N,∀j = 2, 3, 4, 5, rij = 1, κ = 1, η = 2. So, γij ∝ 1
dij

. We find the NNSA

candidates for different three different d, as depicted in Figs. A.5(a)–(c).

Using brute force search,

|Π(T)| = 1 +

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 16, (A.25)

for all the three topologies.

For d = 0m, starting with M = {1}, the nearest neighbor set contains only

node 2. Adding node 2 to the transmitting set, we have M = {1, 2}. We find that

after the addition of a node to the route, the nearest neighbor set contains only

one node. Hence, the NNSA outputs only one route:

{1} → {1, 2} → {1, 2, 3} → {1, 2, 3, 4} → {1, 2, 3, 4, 5}. (A.26)

Hence an optimal route for DF is {1, 2, 3, 4, 5}.

For d = 0.8m, starting with M = {1}, the nearest neighbor is again node 2. At
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this point, M = {1, 2}. Now, node 3 is closer to node 1 than node 4 is to node

1. But node 4 is closer to node 2 than node 3 is to node 2. Node 5 is further

away from node 1 (and 2) compared to 3 (and 4). We form a nearest neighbor set

N = {3, 4}. The transmitting set is split into two paths, i.e. {1, 2, 3} and {1, 2, 4}.

For route {1, 2, 3} and nearest neighbor set is {4, 5}; and for route {1, 2, 4}, the

nearest neighbor set is {3, 5}. In summary the NNSA yields the following NNSA

candidates

{1} → {1, 2} → {1, 2, 3} → {1, 2, 3, 4} → {1, 2, 3, 4, 5} (A.27a)

{1} → {1, 2} → {1, 2, 3} → {1, 2, 3, 5} (A.27b)

{1} → {1, 2} → {1, 2, 4} → {1, 2, 4, 3} → {1, 2, 4, 3, 5} (A.27c)

{1} → {1, 2} → {1, 2, 4} → {1, 2, 4, 5}. (A.27d)

An optimal route is the one that supports the highest rate among these four NNSA

candidates. Instead of finding the rates of all the 16 routes found by the brute force

search, we only need to optimize the input distribution for these four routes to find

the maximum DF rate.

For d = 1.9m, we start with M = {1}. Adding the only node in the nearest

neighbor set, node 2, we get M = {1, 2}. Now, the nearest neighbor set is N =

{3, 4, 5}. {1, 2, 5} is an NNSA candidate. From route {1, 2, 3}, we get the following

NNSA candidates: {1, 2, 3, 5} and {1, 2, 3, 4, 5}. From route {1, 2, 4}, the nearest

neighbor set contains only node 5. So, we get {1, 2, 4, 5}. So, there are four NNSA

candidates.

A.5 Proof of Theorem 4

The complete proof is very similar to that for Theorem 3 and will hence be omitted.

Using the technique used in the proof of Theorem 3, we can show that adding a

node that does not belong to the nearest neighbor set can only be suboptimal. We

can always replace that node with one from the nearest neighbor set and obtain
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Transmission Rates

Figure A.6: An example to show that the NNSA routes backward.

an equal or higher rate. In other words, we can show that the supported rate of

M1 = {m∗1,m2, . . . ,m|M1|}, (A.28)

where m∗1 = 1 is the source, m|M1| = T is the destination, and one or more nodes

in {m2, . . . ,m|M1|} are not from the nearest neighbor set, is lower or equal to the

supported rate of

M2 = {m∗1,m∗2, . . . ,m∗|M2|}, (A.29)

where m∗|M2| = T and all nodes in M2 are added according to the NNSA. In other

words, for any input distribution p,

RM2(p) ≥ RM1(p). (A.30)

The NNSA algorithm finds all routes for which every node that is added to an

route is from the nearest neighbor set. Hence one or more of the NNSA candidates

must achieve the highest rate. With this, we have Theorem 4.

A.6 An Example Showing Routing Backward Can

Improve Transmission Rates

We use the topology depicted in Fig. A.6 to show that routing backward can be

desirable as it can improve the transmission rate. In this setting, nodes 2, 3, and

4 are each dm away from the source (node 1). The destination (node 5) is 1m
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from the source. Clearly, the NNSA, which always add nearest neighbors, will add

nodes 2, 3, and 4 before adding 5 when d is less than 1m. One NNSA candidate

is M1 = {1, 2, 3, 4, 5}. However, it might not be intuitive that routing the data

to node 4, which is “behind” node 1 can help in the transmission rate. We will

compare the optimal rate on M1 with that on M2 = {1, 2, 3, 5}, which only routes

data forward (to nodes nearer to the destination).

Table A.1: Achievable rates for different routes.

d maxp∈PAll
RM1(p) maxp∈PAll

RM2(p)
0.1 3.646 3.299
0.2 3.589 3.287
0.3 3.394 3.240
0.4 2.994 2.994
0.5 2.679 2.679

Table A.1 compares the rate of two routes M1 and M2 using DF, maximized over

all input distributions. The second route chooses not to route the data backward.

When d is small (0.1–0.3), the bottleneck of the transmission is the reception of node

5. Hence, adding node 4 into the route helps to increase the overall transmission

rate. However, when d increases (≥ 0.4), the bottleneck shifts to the reception rate

of nodes 2 and 3. Under this condition, adding node 4 to the route does not help

in the overall transmission rate. However, adding node 4 does not harm the rate

either.

A.7 Proof of Theorem 7

First, we show what an SOR is contained in at least one of the NNSA candidates.

Lemma 11 If

M = {m∗1,m∗2, . . . ,m∗|M|−1,m
∗
|M|} (A.31)

is an SOR for some p, then

γam∗|M|−1
≥ γam∗|M| (A.32)

for at least one a ∈ {m∗1,m∗2, . . . ,m∗|M|−2}.
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Proof 25 (Proof of Lemma 11) We prove this by contradiction. If

γam∗|M|−1
< γam∗|M| , ∀a ∈ {m∗1,m∗2, . . . ,m∗|M|−2} (A.33)

then from Lemma 7, for any p,

RM1(p) ≥ RM(p), (A.34)

where

M1 = {m∗1,m∗2, . . . ,m∗|M|−2,m
∗
|M|}. (A.35)

In this case, M1 a shorter route and can support rate as high as M. So, the latter

cannot be an SOR. Contradiction!

Lemma 11 says that the rSNR at the second last node from at least one of the

first |M| − 2 nodes must be higher than (or equal to) the rSNR at the last node.

It does not mean that the second last node must be the from the nearest neighbor

set with respect to the first |M| − 2 nodes. However, when the partial route is

{m∗1, . . . ,m∗|M|−2}, the NNSA will eventually include m∗|M|−1 in one or more of of

the NNSA candidates before it includes m∗|M|.

We now extend Lemma 11 to the third last node. Using a similar argument,

we can show that

γam∗|M|−2
≥ γam∗|M| , (A.36)

for some a ∈ {m∗1,m∗2, . . . ,m∗|M|−3}. It then follows that if the partial route is

{m∗1, . . . ,m∗|M|−3}, the NNSA will definitely include m∗|M|−2 in one or more of the

NNSA candidates before it includes m∗|M|.

We have shown that the NNSA will include m∗|M|−2 and m∗|M|−1 before m∗|M| in

one or more of its NNSA candidates. This does not guarantee that there exists an

NNSA candidate that includes m∗|M|−2,m
∗
|M|−1,m

∗
|M| in that order. For instance, if

γam∗|M|−1
> γam∗|M|−2

, ∀a ∈ {m∗1, . . . ,m∗|M|−3}, (A.37)
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then none of the NNSA candidate will contain M with the same order, but some

will contain

M′ = {m∗1,m∗2, . . . ,m∗|M|−3,m
∗
|M|−1,m

∗
|M|−2,m

∗
|M|}, (A.38)

However, in this case, RM′(p) ≥ RM(p) and hence M′ is also an SOR.

This can be further extended to all nodes in M. We can show that if M is an

SOR, all the nodes in M must be in some NNSA candidates. If an NNSA candidate

contains M′ (which is M in a different order) but no NNSA candidate contains M,

then M′ is also an SOR. This can be summarized in the following lemma.

Lemma 12 One or more NNSA candidates contain an SOR, with the same node

order as in the SOR.

This means if M = {m∗1,m∗2, . . . ,m∗|M|−1,m
∗
|M|} is the SOR contained in one of

the NNSA candidates, then m∗2 comes after m∗1, m∗3 comes after m∗2, etc, in the

NNSA candidate. But there might be other nodes in between them. For example,

the NNSA candidate might be {m∗1, . . . ,m∗|M|−2, a,m
∗
|M|−1,m

∗
|M|}. Now, we will go

further and prove that an SOR, MSOR(p) is contained in one or more of the optimal

NNSA candidates, NNSAopt(T, p) , not just the NNSA candidates, NNSA(T).

Consider an SOR

M∗ = {m∗1,m∗2, . . . ,m∗K ,m∗K+1, . . . ,m
∗
|M|−1,m

∗
|M|}, (A.39)

and an NNSA candidate

M1 = {m∗1,m∗2, . . . ,m∗K , a,m∗K+1, . . . ,m
∗
|M|−1,m

∗
|M|}, (A.40)

This is possible since M1 contains M∗ in the correct order.

We term the set of the first K nodes M′
1, i.e.,

M′
1 = {m∗1, . . . ,m∗K}. (A.41)
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Since M1 is formed by the NNSA algorithm, amust be from the nearest neighbor

set with respect to M′
1, and m∗K+1 must belong to one of these three cases:

1. m∗K+1 is not from the nearest neighbor set with respect to M′
1.

2. (a,m∗K+1,m
∗
K+2, . . . ,m

∗
K+i) are from the nearest neighbor set with respect to

M′
1, and m∗K+i 6= m∗|M|.

3. (a,m∗K+1,m
∗
K+2, . . . ,m

∗
M) are from the nearest neighbor set with respect to

M′
1.

Consider the first case, it means

γba ≥ γbm∗K+1
, ∀b ∈M′

1, (A.42)

with at least one inequality. For any input distribution p,

Rm∗n (M1, p) = Rm∗n (M∗, p) , for n = 2, 3, . . . , K (A.43a)

Ra (M1, p) ≥ Rm∗K+1
(M∗, p) (A.43b)

Rm∗n (M1, p) ≥ Rm∗n (M∗, p) , for n = K + 1, K + 2, . . . , |M|. (A.43c)

So, RM1(p) ≥ RM∗(p) = maxM∈Π(T) RM(p), and hence M1 ∈ NNSAopt(T, p).

Consider the second case, since (a,m∗K+1,m
∗
K+2, . . . ,m

∗
K+i) are from the nearest

neighbor set with respect to M′
1, it follows that

M2 = {m∗1,m∗2, . . . ,m∗K ,m∗K+1, . . . ,m
∗
K+i, a,m

∗
K+i+1, . . . ,m

∗
M} (A.44)

is also an NNSA candidate. This is because the NNSA tries all permutations of the

nodes in the nearest neighbor set. Now, consider M′
2 = {m∗1,m∗2, . . . ,m∗K ,m∗K+1, . . . ,

m∗K+i}.

If

γba ≥ γbm∗K+i+1
, ∀b ∈M′

2, (A.45)
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with at least one inequality, meaning a is the unique nearest neighbor of M′
2,

then using the same argument for case (i) above, we can show that for any p,

RM2(p) ≥ RM∗(p) = maxM∈Π(T) RM(p). So, M2 ∈ NNSAopt(T, p). We have shown

that M∗ is contained in another optimal NNSA candidate, i.e., M2.

Else if (a,m∗K+i+1,m
∗
K+i+j) are the nearest neighbors with respect to M′

2, we

rearrange and notice that

M3 = {m∗1,m∗2, . . . ,m∗K+i+j, a,m
∗
K+i+j+1, . . . ,m

∗
M} (A.46)

is also an NNSA candidate. We check if a is the unique nearest neighbor with

respect to the nodes behind. We stop when node a is the only nearest neighbor.

This is equivalent to case (i), i.e., we can show that M′ is contained in an optimal

NNSA candidate with the same nodes order. If a is not the unique nearest neighbor,

we continue to “push” node a backwards until a is in the nearest neighbor set that

includes the destination, which is case (iii).

Now, consider case (iii). (a,m∗K+1,m
∗
K+2, . . . ,m

∗
M) are from the nearest neigh-

bor set with respect to M′
1. Since the NNSA tries all possible permutations of nodes

in the nearest neighbor set, omitting node a also yields an NNSA candidates. So,

M∗ ∈ NNSA(T). Since RM∗(p) = maxM∈Π(T) RM(p), M∗ ∈ NNSAopt(T, p).

Earlier, we have shown that an SOR, say M∗, must be contained in some NNSA

candidate. Let M1 be that NNSA candidate that contain M∗. If M1 has more

nodes compared to M∗, we can use the above method to “push” the extra nodes

backwards in the route until they are the only nearest neighbors. Let M2 be this

new route. We can show that M2 is also an NNSA candidate, which contains M∗.

We have shown that the rate supported by M2 cannot be lower than the SOR and

hence it must achieve the optimal rate. Hence M∗ is contained in an optimal NNSA

candidate.

So, we have Theorem 7.
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A.8 Proof of Theorem 12

Recall that when all nodes are constrained to transmitting independent Gaussian

codewords, the reception rate at node mt ∈M \ {1} is

Rmt(M, p) =
1

2
log

(
1 +

t−1∑
i=1

γmimt

)
. (A.47)

where p = p(x1) · · · p(xT−1) and Xi ∼ N(0, Pi). The rate supported by route M is

thus

RM(p) = min
mt∈M\{1}

Rmt(M, p). (A.48)

Consider an optimal route M1 = {m∗1,m∗2, . . . ,m∗k,m∗k+1, . . . ,m
∗
|M|}. Suppose

that the first k nodes of the MSPA route are the same as this optimal route but the

(k + 1)-th node is different, i.e., the MSPA route is M2 = {m∗1,m∗2, . . . ,m∗k, a, . . . }

where a 6= m∗k+1. The rest of the nodes in the MSPA might or might not be the

same as the optimal route.

Since a is added to the route by MSPA, a necessary condition is
∑k

i=1 γm∗i a ≥∑k
j=1 γm∗jm∗k+1

. So,

Ra(M2, p) ≥ Rm∗k+1
(M1, p). (A.49)

Now, we will change the (k + 1)-th node in M1 by node a, and show that the

rate of the new route is still optimal. There are two cases to be considered.

First, consider the case where a 6= m∗i ,∀i = k + 2, . . . , |M|. We add a to M1

and obtain M3 = {m∗1,m∗2, . . . ,m∗k, a,m∗k+1, . . . ,m
∗
|M|}. Then,

Rm∗i
(M3, p) = Rm∗i

(M1, p), i = 2, . . . , k (A.50a)

Ra(M3, p) ≥ Rm∗k+1
(M1, p) (A.50b)

Rm∗i
(M3, p) > Rm∗i

(M1, p), i = k + 1, . . . , |M|. (A.50c)

So, RM3(p) ≥ RM1(p).

Second, suppose a = m∗n, for some n ∈ {k+2, . . . , |M|}. We change the position

137



A.8 Proof of Theorem 12

of a and obtain M4 = {m∗1,m∗2, . . . ,m∗k, a,m∗k+1, . . . ,m
∗
n−1,m

∗
n+1,m

∗
|M|}. Then,

Rm∗i
(M4, p) = Rm∗i

(M1, p), i = 2, . . . , k, n+ 1, . . . , |M| (A.51a)

Ra(M4, p) ≥ Rm∗k+1
(M1, p) (A.51b)

Rm∗i
(M4, p) > Rm∗i

(M1, p), i = k + 1, . . . , n− 1. (A.51c)

So, RM4(p) ≥ RM1(p).

In summary, we choose an optimal route. Starting from the second node, we

compare the optimal route with the MSPA route. If the i-th position in the optimal

route is different from that in the MSPA route, we insert the i-th node in the MSPA

route to the i-th position in the optimal route (and remove the node if it appears

in the optimal route at another position). Now, the first i nodes in both route are

the same. From above, we know that the rate of the modified optimal route does

not change. We move on to the (i+ 1)-th position and so on until the destination.

We can show that the MSPA route achieves the highest DF rate, i.e., that of an

optimal route. So, we have Theorem 12.

138



Appendix B

Appendices to Chapter 4

B.1 An Example to Show that Myopic Coding is

More Robust

To illustrate the robustness of myopic coding, we consider DF in the seven-node

Gaussian MRC in which node 4 fails. This means the signal contributed by node

4 will stop. We consider the following scenarios in myopic and omniscient coding:

1. Two-hop myopic DF:

(a) When the overall transmission rate is not affected: Node 2 decodes

only from node 1, and cancels the interference only from itself (echo

cancellation) and node 3. So, the failure of node 4 does not affect the

decoding at node 2. Node 7 will also not be affected as it decodes only

from nodes 5 and 6. In brief, the failure of node t only affects nodes

t− 1, t+ 1, and t+ 2 in two-hop myopic DF.

(b) When the overall transmission rate is affected: Suppose that upon node

4’s failure, the overall transmission rate is lowered due to the change in

the reception rate of node 5. Additional re-configuration at the source

is required. Now, the source will have to transmit at a lower rate. One

way of doing this is to use the existing code, but pad the lower rate
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messages with zeros. With zero-padding, the encoding and decoding at

nodes 2 and 7 need not be changed as the supported rates at these nodes

are not affected.

2. Omniscient DF: Nodes 2 and 3, who presume that node 4 is still transmitting

and attempt to cancel its transmissions, will introduce more noise to their

decoders. Nodes 5 to 7, who use node 4’s signal contribution in the decoding,

will experience a lower rSNR. Hence the supported rates at these nodes will

be lowered.

Using omniscient DF, any topology change in the network (e.g., node failure or

relocation) requires re-configuration of more nodes compared to using myopic cod-

ing.

B.2 Proof of Theorem 14

In this appendix, we describe the encoding and decoding schemes, and prove the

achievable rates of two-hop myopic DF for the MRC. We consider the route M =

{1, 2, . . . , T}. We consider B + T − 2 transmission blocks, each of n uses of the

channel. A sequence of independent B indices, wb ∈ {1, 2, . . . , 2nR}, b = 1, 2, . . . , B

are sent over n(B + T − 2) uses of the channel. As B →∞, the rate RnB/n(B +

T − 2)→ R for any n.

Note: We use w and z to represent the source message. The notation wj

denotes the information which the source outputs at the j-th block. This means

the source emits w1, w2, . . . in blocks 1, 2, . . . respectively. The notation zt denotes

the new information which node t transmits. Since each node transmits codewords

derived from the last two decoded messages, node 2 always transmits (z2, z3). These

different notations are used at different instances for better illustration.

B.2.1 Codebook Generation

In this section, we see how the codebook at each node is generated.
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• First, fix the p.d.f.

p(u1, u2, . . . , uT−1, x1, x2, . . . , xT−1) =

p(u1)p(u2) · · · p(uT−1)p(x1|u1, u2)p(x2|u2, u3) · · · p(xT−1|uT−1)

for each ui ∈ Ui.

• For each t ∈ {1, . . . , T − 1}, generate 2nR independent and identically dis-

tributed (i.i.d.) n-sequences in Un
t , each drawn according to p(ut) =∏n

i=1 p(uti). Index them as ut(zt), zt ∈ {1, . . . , 2nR}.

• Define xT−1(zT−1) = uT−1(zT−1).

• For each t ∈ {1, . . . , T−2}, define a deterministic function that maps (ut,ut+1)

to xt:

xt(zt, zt+1) = ft
(
ut(zt),ut+1(zt+1)

)
. (B.1)

• Repeat the above steps to generate a new independent codebook (Xie & Ku-

mar, 2005). These two codebooks are used in alternate block of transmission.

The reason for using two independent codebooks will be clear in the error

probability analysis section.

We see that in each transmission block, node t, t ∈ {1, . . . , T − 2}, sends

messages of two blocks: zt (new data) and zt+1 (old data). In the same block, node

t + 1 sends messages zt+1 and zt+2. Note that a node cooperates with the node

in the next hop by repeating the transmission zt+1. We will see this clearer in the

next section.

B.2.2 Encoding

Fig. B.1 shows the encoding process for two-hop myopic DF. The encoding steps

are as follows:
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Figure B.1: The encoding scheme for two-hop myopic DF for the MRC.

• In the beginning of block 1, the source emits the first source letter w1. Note

that there is no new information after B blocks. We define wB+1 = wB+2 =

· · · = wB+T−2 = 1.

• In block 1, node 1 transmits x1(w1, w0). Since the rest of the nodes have

not received any information, they send dummy symbols xi(w2−i, w1−i), i ∈

{2, . . . , T − 1}. We define wb = 1, for b ≤ 0. In block 1, z1 = w1, z2 = w0, . . .

• At the end of block 1, assume that node 2 correctly decodes the first signal

w1.

• In block 2, node 2 transmits x2(w1, w0). Node 1 transmits x1(w2, w1). It

helps node 2 to re-transmit w1 and sends w2 (new information) at the same

time. In block 2, z1 = w2, z2 = w1, z3 = w0, . . .

• Generalizing, in block b ∈ {1, . . . , B + T − 2}, node t, t ∈ {1, . . . , T − 1}, has

data (w1, w2, . . . , wb−t+1). Under two-hop myopic DF, it sends xt(wb−t+1, wb−t).

• We see that a node sends messages that it has decoded in the past two blocks.

This adheres to the constraints of two-hop myopic DF.

B.2.3 Decoding

• Under the two-hop myopic DF constraints, a node can store a decoded mes-

sage no longer than two blocks and can use two blocks of received signal to

decode one message.
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• Node 2’s decoding is slightly different from the other nodes as there is only

one upstream node. So it decodes every message using one block of received

signal. We illustrate the decoding of message w4 at node 2. At the end

of block 4, assuming that node 2 has already decoded messages (w1, w2, w3)

correctly. However, due to the myopic coding constraint, it only has w2

and w3 in its memory. This is because w1 was decoded at the end of block

1 and would have to be discarded at the end of block 3. So, it finds the

a unique u1(w4) which is jointly typical with u3(w2),u2(w3), and y2,4 (the

received signal at node 2 in block 4). We write y2,4 instead of y24 to avoid the

confusion with the received signal of node 24. An error is declared if there is

no such w4 or more than one unique w4.

• Nodes 3 to T decode a message using two blocks of received signal. Consider

node 3. At the end of block 4, assuming that node 3 has already decoded

w1 (decoded at the end of block 2) and w2 (decoded at the end of block 3)

correctly. Assume that it now correctly decodes w3 using signals from blocks

3 and 4. At the end of block 4, it finds a set of u1(w4) which is jointly typical

with u4(w1),u3(w2),u2(w3), and y3,4. We call this set L1(w4). Since it can

only keep messages decoded over two blocks, it keeps w2 and w3 and discard

w1. At the end of block 5, node 3 finds a set of u2(w4) that is jointly typical

with u4(w2),u3(w3), and y3,5. We call this set L2(w4). It finds a unique

w4 that belong to both sets, that is ŵ4 ∈ L1(w4) ∩ L2(w4). Here ∩ denotes

intersection of sets. An error is declared when the intersection contains more

than one index or the sets do not intersect.

• We now generalize the decoding process. Refer to Fig. B.2, at the end of

block b− 1, assuming that node t has correctly decoded (w1, . . . , wb−t). Due

to the myopic coding constraint, it has in its memory wb−t−1 and wb−t. It

decodes wb−t+1. It then finds a set of ut−2(wb−t+2) that is jointly typical

with (ut−1(wb−t+1), ut(wb−t),ut+1(wb−t−1),yt(b−1)). Call this set L1(wb−t+2).

It discards wb−t−1 from its memory. At the end of block b, it finds the set
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Figure B.2: Decoding at node t of message wb−t+2.

of ut−1(wb−t+2) that is jointly typical with (ut(wb−t+1),ut+1(wb−t),ytb). Call

this set L2(wb−t+2). It declare ŵb−t+2 if there is one and only one index in

L1(wb−t+2) ∩ L2(wb−t+2).

B.2.4 Achievable Rates and Probability of Error Analysis

In the previous section, we said that node t decodes message wb−t+2 in block b. We

denote the event that no decoding error is made at all nodes in the first b block,

1 ≤ b ≤ B + T − 2, by

C(b) , {ŵt(k−t+2) = wk−t+2 : ∀t ∈ [2, T ] and k ∈ [1, b]} (B.2)

where ŵt(b) is node t’s estimate of the message wb. This means in the first b blocks,

node 2 will have correctly decoded (w1, w2, . . . , wb), node 3 will have correctly

decoded (w0, w1, . . . , wb−1), and so on. We set wk = 1 for k ≤ 0. They are the

dummy signals sent by the nodes.

We denote the probability that there is no decoding error up to block b as

Pc(b) , Pr{C(b)} (B.3)
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and Pc(0) , 1. The probability that one or more error occurs during block b ∈

[1, B + T − 2] at some node t ∈ [2, T ], given that there is no error in decoding at

all nodes in all blocks up to b− 1, is

Pe(b) , Pr
{
ŵt(b−t+2) 6= wb−t+2 : for some t ∈ {2, . . . , T}

∣∣∣C(b− 1)
}

≤
T∑
t=2

Pr
{
ŵt(b−t+2) 6= wb−t+2|C(b− 1)

}
(B.4a)

,
T∑
t=2

Pet(b) (B.4b)

where Pet(b) , Pr
{
ŵt(b−t+2) 6= wb−t+2|C(b− 1)

}
, which is the probability that node

t wrongly decodes the latest letter wb−t+2 in block b, given that it has correctly

decoded the past letters.

Now, we need to compute the error probability Pet(b). As mentioned in the

decoding section, the decoding of a message spans over two blocks. For example,

let us look at the decoding of message wb−t+2 at node t, as depicted in Fig. B.2.

The message to be decoded is boxed and the messages that node t has correctly

decoded are marked with X. In block b− 1, node t find a set of wb−t+2 for which

(
ut−2(wb−t+2),ut−1(wb−t+1),ut(wb−t),ut+1(wb−t−1),yt(b−1)

)
∈

An
ε (Ut−2, Ut−1, Ut, Ut+1, Yt) , A1. (B.5)

In block b, node t finds a set of wb−t+2 for which

(ut−1(wb−t+2),ut(wb−t+1),ut+1(wb−t),ytb) ∈ An
ε (Ut−1, Ut, Ut+1, Yt) , A2. (B.6)

Node t then finds the intersection of the two sets to determine the value of wb−t+2.

Assuming that node t has correctly decoded wb−t−1, wb−t, and wb−t+1, we define
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the following error events:

E1 ,
(
ut−2(wb−t+2),ut−1(wb−t+1),ut(wb−t),ut+1(wb−t−1),yt(b−1)

)
/∈ A1 (B.7a)

E2 ,
(
ut−2(v),ut−1(wb−t+1),ut(wb−t),ut+1(wb−t−1),yt(b−1)

)
∈ A1 (B.7b)

E3 ,
(
ut−1(wb−t+2),ut(wb−t+1),ut+1(wb−t),ytb

)
/∈ A2 (B.7c)

E4 ,
(
ut−1(v),ut(wb−t+1),ut+1(wb−t),ytb

)
∈ A2 (B.7d)

for some v ∈
{
v ∈ [1, . . . , 2nR] : v 6= wb−t+2

}
, and

E5 , E2 ∩ E4. (B.8)

E5 is the event where v 6= wb−t+2 is found in the intersection of the decoding sets

and is, therefore, wrongly decoded as the transmitted message. An error occurs

during the decoding in block b at node t if events E1, E3, or E5 occurs. Now, we

can rewrite

Pet(b) = Pr{E1 ∪ E3 ∪ E5} ≤ Pr{E1}+ Pr{E3}+ Pr{E5}. (B.9)

The last equation is due to the union bound of events.

From the definition of jointly typical sequences (see Definition 4), we know that

Pr{E1} ≤ ε (B.10a)

Pr{E3} ≤ ε, (B.10b)

for sufficiently large n.

Using Lemma 1, we derive the probability of a particular v 6= wb−t+2 that
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satisfies (B.7b):

Pr

{
(ut−2(v),ut−1(wb−t+1),ut(wb−t),ut+1(wb−t−1),yt(b−1)) ∈ A1

}
=

∑
(ut−2,ut−1,ut,ut+1,yt)∈A1

p(ut−2)p(ut−1,ut,ut+1,yt) (B.11a)

≤ |A1|2−n(H(Ut−2)−ε)2−n(H(Ut−1,Ut,Ut+1,Yt)−ε) (B.11b)

≤ 2n(H(Ut−2,Ut−1,Ut,Ut+1,Yt)+ε)2−n(H(Ut−2)−ε)×

2−n(H(Ut−1,Ut,Ut+1,Yt)−ε) (B.11c)

= 2−n(H(Ut−2)−H(Ut−2|Yt,Ut−1,Ut,Ut+1)−3ε) (B.11d)

≤ 2−n(I(Ut−2;Yt|Ut−1,Ut,Ut+1)−3ε). (B.11e)

The last equation is because H(Ut−2) ≥ H(Ut−2|Ut−1, Ut, Ut+1).

By a similar method, we can calculate the probability of a particular v ∈ {v ∈

{1, . . . , 2nR} : v 6= wb−t+2} satisfies (B.7d):

Pr {(ut−1(v2),ut(wb−t+1),ut+1(wb−t),ytb) ∈ A2} ≤ 2−n(I(Ut−1;Yt|Ut,Ut+1)−3ε). (B.12)

Combining these two probabilities, we find the probability that node t wrongly

decodes wb−t+2 to any v ∈ {v ∈ {1, . . . , 2nR] : v 6= wb−t+2} to be

Pr{E5} =
∑

v∈{1,...,2nR}
v 6=wb−t+2

Pr{v satisfies (B.8)} (B.13a)

=
∑

v∈{1,...,2nR}
v 6=wb−t+2

Pr{v satisfies (B.7b)}Pr{v satisfies (B.7d)} (B.13b)

≤
(
2nR − 1

)
× 2−n(I(Ut−2;Yt|Ut−1,Ut,Ut+1)−3ε) × 2−n(I(Ut−1;Yt|Ut,Ut+1)−3ε)

(B.13c)

< 2−n(I(Ut−2,Ut−1;Yt|Ut,Ut+1)−6ε−R) (B.13d)

≤ ε. (B.13e)

Here, (B.13b) is due to the use of independent codebooks for each alternating block.

147



B.3 Achievable Rates of Myopic DF for the Gaussian MRC

The last equation is made possible for sufficiently large n and if

R < I(Ut−2, Ut−1;Yt|Ut, Ut+1)− 6ε. (B.14)

With this rate constraint and large n, we see that the probability of error is

Pe(b) =
T∑
t=2

Pet(b) (B.15a)

≤
T∑
t=2

[Pr{E1}+ Pr{E3}+ Pr{E5}] (B.15b)

≤ (T − 1)3ε, (B.15c)

which can be made arbitrarily small. Hence, the rate in (B.14) is achievable.

Equation (B.14) is only the rate constraint at one node. In two-hop myopic

DF, each message must be fully decoded at each node, hence the overall rate is

constrained by

R2-hop = min
t∈{2,...,T}

Rt (B.16)

where

Rt = I(Ut−2, Ut−1;Yt|Ut, Ut+1) (B.17)

and U0 = UT = UT+1 = 0. Hence we arrive at Theorem 14.

B.3 Achievable Rates of Myopic DF for the Gaus-

sian MRC

B.3.1 One-Hop Myopic DF

In one-hop myopic DF, node t transmits only to node t + 1. Let us first consider

node 1. It sends X1 to node 2. Node 2 receives

Y2 =

√
κd−η12 X1 +

√
κd−η32 X3 +

√
κd−η42 X4 + Z2. (B.18)
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Node 2 decodes new messages from node 1’s transmission. From (4.2), the reception

rate at node 2 is

R2 = I(X1;Y2|X2)

=
1

2
log 2πe

[
κd−η12 P1 + κd−η23 P3 + κd−η24 P4 +N2

]
− 1

2
log 2πe

[
κd−η23 P3 + κd−η24 P4 +N2

]
(B.19a)

=
1

2
log

[
1 +

d−2
12 P1

1 + d−2
23 P3 + d−2

24 P4

]
. (B.19b)

Here, we have substituted κ = 1, η = 2, and N2 = 1W. The reception rates at

nodes 3, 4, and 5 can be computed in similar way. One-hop myopic DF achieves

rates up to

R1-hop = min
t∈{2,3,4,5}

Rt. (B.20)

B.3.2 Two-Hop Myopic DF

In two-hop myopic DF, node t, t = 1, 2, 3, allocates αt of its power to transmit to

node t + 2 and (1 − αt) of its power to node t + 1. Since there is only one node

in front of node 4, it transmits only to node 5. The transmission by each node is

listed as follows:

• Node 4 sends X4 =
√
P4U4.

• Node 3 sends X3 =
√
α3P3U4 +

√
(1− α3)P3U3.

• Node 2 sends X2 =
√
α2P2U3 +

√
(1− α2)P2U2.

• Node 1 sends X1 =
√
α1P1U2 +

√
(1− α1)P1U1.

Here, Ui, i = 1, 2, 3, 4 are independent Gaussian random variables, each with unit

variance, and 0 ≤ α1, α2, α3 ≤ 1.
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From (B.17), for fixed {α1, α2, α3}, the reception rate at node 2 is

R2 = I(U1;Y2|U2, U3) (B.21a)

=
1

2
log 2πe

[
κd−η12 (1− α1)P1 +

(√
κd−η23 α3P3 +

√
κd−η24 P4

)2

+N2

]

− 1

2
log 2πe

[(√
κd−η23 α3P3 +

√
κd−η24 P4

)2

+N2

]
(B.21b)

=
1

2
log

1 +
d−2

12 (1− α1)P1

1 +
(√

d−2
23 α3P3 +

√
d−2

24 P4

)2

 . (B.21c)

Here, we have substituted κ = 1, η = 2, and N2 = 1W. The reception rates at

nodes 3, 4, and 5 can be computed in a similar way.

Minimizing over all reception rates and maximizing over all possible power splits

on route M, two-hop myopic DF achieves rates up to

R2-hop = max
{α1,α2,α3}

min
t∈{2,3,4,5}

Rt. (B.22)

B.4 Proof of Theorem 15

Now, we prove Theorem 15. We start by describing the codebook generation. We

send B blocks of information over B + T − 2 blocks of channel use.

B.4.1 Codebook Generation

The codebook generation for k-hop myopic DF for the MRC is as follows.

• Fix the p.d.f.

p(u1, u2, . . . , uT−1, x1, x2, . . . , xT−1)

= p(u1)p(u2) · · · p(uT−1)p(xT−1|uT−1)

× p(xT−2|uT−2, uT−1) · · · × p(xT−k|uT−k, uT−k+1 . . . , uT−1)

× p(xT−k−1|uT−k−1, uT−k . . . , uT−2) · · · × p(x1|u1, u2, . . . , uk). (B.23a)
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• For each t ∈ {1, . . . , T − 1}, generate 2nR independent and identically dis-

tributed (i.i.d.) n-sequences in Un
t , each drawn according to p(ut) =

∏n
i=1 p(uti).

Index them as ut(zt), zt ∈ {1, . . . , 2nR}.

• Define xT−1(zT−1) = uT−1(zT−1).

• For each t ∈ [T − k, T − 2], define a deterministic function that maps

(ut,ut+1, . . . ,uT−1) to xt:

xt(zt, zt+1, . . . , zT−1) = ft
(
ut(zt),ut+1(zt+1), . . . ,uT−1(zT−1)

)
. (B.24)

• For each t ∈ [1, T −k−1], define a deterministic function that maps (ut,ut+1,

. . . ,ut+k−1) to xt:

xt(zt, zt+1, . . . , zt+k−1) = ft
(
ut(zt),ut+1(zt+1), . . . ,ut+k−1(zt+k−1)

)
. (B.25)

• Repeat the above steps to generate k− 1 new independent sets of codebook.

These k codebooks are used in cycle and reused after k blocks of n transmis-

sions.

For the sake of illustration, we denote the code of node t, t ∈ {1, . . . , T − 1} by

xt(zt, zt+1, . . . , zt+k−1) where zj = 1 for j ≥ T . These are dummy symbols that do

not affect the encoding process.

B.4.2 Encoding

We now describe the encoding process for k-hop myopic DF. It is depicted in

Fig. B.3.

• In the beginning of block 1, the information source emits the first source letter

w1. Note that there is no new information in blocks b for B+1 ≤ b ≤ B+T−2.

We assume that wB+1 = wB+2 = · · · = wB+T−2 = 1.
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Figure B.3: The encoding scheme for k-hop myopic DF.

• In block 1, node 1 transmits x1(w1, w0, . . . , w2−k). Since the rest of the nodes

have not received any information, they send dummy symbols xi(w2−i, w1−i,

. . . , w3−k−i), i ∈ {2, . . . , T − 1}. We define wb = 1, for b ≤ 0.

• At the end of block b − 1, b ≥ 2, we assume that node t has correctly

decoded messages up to wb−t+1. Under the k-hop myopic constraints, a node

can encode with at most k previously decoded messages in each block of

transmission. So, in block b, node t encode min{k, T − t} previously decoded

messages, i.e., it sends xt(wb−t+1, wb−t, . . . , wb−t−k+2). We note that there

are only T − t nodes in front of node t. For the case of T − t < k, node

t sends xt(wb−t+1, wb−t, . . . , wb−T+2, 1, . . . , 1). This means, it sets wi = 1 for

i ≥ b−T +1, which is equivalent to sending dummy symbols. This is because

at the end of block b− 1, node T will have already correctly decoded signals

up to wb−T+1. As this is the last node in the network, all other nodes will

have had decoded those signals. Hence no node needs to transmit wi = 1

for i ≥ b− T + 1 again. The dummy symbols are included so that the same

transmit notation can be used for all the nodes.
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Figure B.4: The decoding scheme for k-hop myopic DF. Underlined symbols are
those that has been decoded by node t prior to block b.

B.4.3 Decoding and Achievable Rates

We look at how node t, for t ≥ k+1, decodes wb−t+2 at the end of block b. Fig. B.4

shows what the nodes transmit.

• During block b, there are k nodes that encode wb−t+2 in their transmission.

These are nodes {t − k, . . . , t − 1}. Nodes {1, . . . , t − k − 1} do not encode

wb−t+2 in their transmission in block b as they have to discard the message

due to the buffering constraint of k-hop myopic DF.

• At the end of block b, node t finds L1(ŵb−t+2) in which

(
ut−1(ŵb−t+2),ut(wb−t+1), . . . ,ut+k−1(wb−t−k+2),ytb

)
∈ An

ε . (B.26)

Here, we note that node t can store k old messages. Hence, during the

decoding at the end of block b, it knows (ut(wb−t+1), . . . ,ut+k−1(wb−t−k+2)).

The rate contribution from (B.26) is

R
(1)
t = I(Ut−1;Yt|Ut, . . . , Ut+k−1). (B.27)

• Moving back one block, at the end block b−1, node t has messages
(
ut(wb−t),

. . . ,ut+k−1(wb−t−k+1)
)

in its storage. After decoding ut−1(wb−t+1), it then
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forms the set L2(ŵb−t+2) which

(
ut−2(ŵb−t+2),ut−1(wb−t+1), . . . ,ut+k−1(wb−t−k+1),yt(b−1)

)
∈ An

ε . (B.28)

The rate contribution from this is

R
(2)
t = I(Ut−2;Yt|Ut−1, . . . , Ut+k−1). (B.29)

• Repeating this for blocks (b− i+1), 3 ≤ i ≤ k, node t find the set Li(ŵb−t+2),

and the rate contribution is

R
(i)
t = I(Ut−i;Yt|Ut−i+1, . . . , Ut+k−1). (B.30)

The proof is similar to that for two-hop myopic DF and will be omitted here.

• Finally, node t finds ŵb−t+2 ∈
⋂k
i=1 Li(ŵb−t+2), where

⋂
denotes the intersec-

tion of sets. A unique ŵb−t+2 can be found if the reception rate at node t is

not more than

Rt =
k∑
i=1

R
(i)
t = I(Ut−k, . . . , Ut−1;Yt|Ut, . . . , Ut+k−1). (B.31)

• Since all data must pass through every node, the overall rate is constrained

by the node which has the lowest reception rate, that is

Rk-hop = min
t∈{2,...,T}

Rt. (B.32)

With this, we have Theorem 15.
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Appendix C

Appendices to Chapter 5

C.1 Proof of Theorem 18

Given any code
{
{f1i, f2i}ni=1, g

}
for the MACFCS, the p.d.f. on the joint ensemble

W n
1 ,W

n
2 , X

n
1 , X

n
2 , Y

n
1 , Y

n
2 , Y

n
3 is given by

p(wn1 , w
n
2 , x

n
1 , x

n
2 , y

n
1 , y

n
2 , y

n
3 ) =

n∏
i=1

p(w1i, w2i)

×
n∏
i=1

p(x1i|wn1 , y11, y12, . . . , y1i−1)

· p(x2i|wn1 , y21, y22, . . . , y2i−1) · p∗(y1i, y2i, y3i|x1i, x2i). (C.1a)

By Fano’s inequality (Cover & Thomas, 1991),

H(W n
1 ,W

n
2 |Y n

3 ) ≤ n log2 |W1 ×W2|Pe + 1 , nδn. (C.2)

Now, we consider H(W1|W2).

nH(W1|W2) = H(W n
1 |W n

2 ) (C.3a)

= I(W n
1 ;Y n

3 |W n
2 ) +H(W n

1 |Y n
3 ,W

n
2 ) (C.3b)

≤ I(W n
1 ;Y n

3 |W n
2 ) +H(W n

1 ,W
n
2 |Y n

3 ) (C.3c)

≤ I(W n
1 ;Y n

3 |W n
2 ) + nδn. (C.3d)
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C.1 Proof of Theorem 18

Now,

I(W n
1 ;Y n

3 |W n
2 )

= H(Y n
3 |W n

2 )−H(Y n
3 |W n

1 ,W
n
2 ) (C.4a)

=
n∑
i=1

[
H(Y3i|W n

2 , Y
i−1

3 )−H(Y3i|W n
1 ,W

n
2 , Y

i−1
3 )

]
(C.4b)

≤
n∑
i=1

[
H(Y3i)−H(Y3i|X1i, X2i,W

n
1 ,W

n
2 , Y

i−1
3 )

]
(C.4c)

=
n∑
i=1

[H(Y3i)−H(Y3i|X1i, X2i)] (C.4d)

=
n∑
i=1

I(X1i, X2i;Y3i), (C.4e)

where

• (C.4b) and (C.4e) are by the chain rule.

• (C.4c) is because conditioning reduces entropy.

• (C.4d) is because of the memoryless channel, Y3i and (Y i−1
3 ,W n

1 ,W
n
2 ) are

independent given (X1i, X2i).
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C.1 Proof of Theorem 18

Also,

I(W n
1 ;Y n

3 |W n
2 )

≤ I(W n
1 ;Y n

2 , Y
n

3 |W n
2 ) (C.5a)

=
n∑
i=1

I(W n
1 ;Y2i, Y3i|W n

2 , Y
i−1

2 , Y i−1
3 ) (C.5b)

=
n∑
i=1

I(Y2i, Y3i;W
n
1 |X2i,W

n
2 , Y

i−1
2 , Y i−1

3 ) (C.5c)

=
n∑
i=1

[
H(Y2i, Y3i|X2i,W

n
2 , Y

i−1
2 , Y i−1

3 )−H(Y2i, Y3i|X2i,W
n
1 ,W

n
2 , Y

i−1
2 , Y i−1

3 )
]

(C.5d)

≤
n∑
i=1

[
H(Y2i, Y3i|X2i)−H(Y2i, Y3i|X1i, X2i,W

n
1 ,W

n
2 , Y

i−1
2 , Y i−1

3 )
]

(C.5e)

=
n∑
i=1

[H(Y2i, Y3i|X2i)−H(Y2i, Y3i|X1i, X2i)] (C.5f)

=
n∑
i=1

I(X1i;Y2i, Y3i|X2i), (C.5g)

where

• (C.5b) is by the chain rule and the memoryless nature of the channel.

• (C.5c) is because X2i is a function of (W n
2 , Y

i−1
2 ).

• (C.5e) is because conditioning reduces entropy.

• (C.5f) is because (Y2i, Y3i) and (W n
1 ,W

n
2 , Y

i−1
2 , Y i−1

3 ) are independent given

(X1i, X2i).

In addition,

nH(W1,W2) = H(W n
1 ,W

n
2 ) (C.6a)

= I(W n
1 ,W

n
2 ;Y n

3 ) +H(W n
1 ,W

n
2 |Y n

3 ) (C.6b)

≤ I(W n
1 ,W

n
2 ;Y n

3 ) + nδn. (C.6c)
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Consider I(W n
1 ,W

n
2 ;Y n

3 ),

I(W n
1 ,W

n
2 ;Y n

3 )

=
n∑
i=1

I(W n
1 ,W

n
2 ;Y3i|Y i−1

3 ) (C.7a)

=
n∑
i=1

[
H(Y3i|Y i−1

3 )−H(Y3i|W n
1 ,W

n
2 , Y

i−1
3 )

]
(C.7b)

≤
n∑
i=1

[
H(Y3i)−H(Y3i|X1i, X2i,W

n
1 ,W

n
2 , Y

i−1
3 )

]
(C.7c)

=
n∑
i=1

[H(Y3i)−H(Y3i|X1i, X2i)] (C.7d)

=
n∑
i=1

I(X1i, X2i;Y3i). (C.7e)

Now we introduce a new variable Q independent of W n
1 ,W

n
2 , X1, X2, Y1, Y2, Y3

(Cover & El Gamal, 1979) that takes values in the set {1, 2, . . . , n} with probability

Pr{Q = i} =
1

n
, i ∈ {1, 2, . . . , n}, (C.8)

and such that

Q→ (W n
1 ,W

n
2 )→ (X1Q, X2Q)→ (Y1Q, Y2Q, Y3Q) (C.9)

forms a Markov chain. We set

X1 , X1Q, X2 , X2Q, Y1 , Y1Q, Y2 , Y2Q, Y3 , Y3Q. (C.10)

Now, (C.4e) becomes

n∑
i=1

I(X1i, X2i;Y3i) =
n∑
i=1

I(X1Q, X2Q;Y3Q|, Q = i) (C.11a)

= nI(X1, X2;Y3|Q) (C.11b)

≤ nI(X1, X2;Y3). (C.11c)
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Similarly,
n∑
i=1

I(X1i;Y2i, Y3i|X2i) ≤ nI(X1;Y2, Y3|X2). (C.12)

Taking the limit as n→∞ and Pe → 0, and combining (C.3d), (C.4e), (C.5g),

(C.11c), and (C.12), we have

H(W1|W2) ≤ min{I(X1, X2;Y3), I(X1;Y2, Y3|X2)}. (C.13)

By symmetry we can show that

H(W2|W1) ≤ min{I(X2, X1;Y3), I(X2;Y1, Y3|X1)}. (C.14)

Combining (C.6c), (C.7e), and (C.11c), we have

H(W1,W2) ≤ I(X1, X2;Y3). (C.15)

Equation (C.15) guarantees

H(W1|W2) ≤ I(X1, X2;Y3) (C.16a)

H(W2|W1) ≤ I(X1, X2;Y3). (C.16b)

Hence, we have Theorem 18.

C.2 Proof of Theorem 19

In this section, we prove Theorem 19. We calculate the error probabilities and

show that they diminish when certain conditions are satisfied.

In each block, node 1 encodes w1 to j. Similarly, node 2 encodes w2 to k.

Assuming noiseless channel, node 1 receives k correctly and node 2 receives j
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C.2 Proof of Theorem 19

correctly. We define the following source coding error events.

E0a , {node 2 wrongly decodes w1}, (C.17a)

E0b , {node 1 wrongly decodes w2}, (C.17b)

E0 , E0a ∪ E0b. (C.17c)

Using the results by Slepian & Wolf (1973b, Theorem 2), Pr(E0a) and Pr(E0b) can

be bounded by ε if j is encoded with no less than n[H(W1|W2) + ε] bits and k is

encoded in no less than n[H(W2|W1) + ε] bits. Hence

Pr(E0) ≤ Pr(E0a) + Pr(E0b) < 2ε. (C.18)

Now, both sources have (j, k,w1,w2). They compress (w1,w2) to h ∈ {1, . . . ,

2nH(W1,W2)}. We know that the destination can correctly decode (w1,w2) from h

if h is at least nH(W1,W2) bits. Now, create 2n[H(W1|W2)+H(W2|W1)] bins and index

each bin by a unique (j, k). Assign h to the bins so that each bin contains 2nI(W1;W2)

entries. Index the entries i ∈ {1, . . . , 2nI(W1;W2)}. Hence, each h can be represented

by a unique triplet (i, j, k).

Assume that in the beginning of block t, nodes 1 and 2 have correctly received

(jt−1, kt−1) and determined it−1. They send x1(jt|ht−1) and x2(kt|ht−1) respectively,

where ht−1 = (it−1, jt−1, kt−1). At the end of block t, nodes 1 and 2 received y1(t)

and y2(t) respectively. We define the following error events at nodes 1 and 2.

E1 ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(jt|ht−1),x2(kt|ht−1),y1(t)

}
/∈ Aε, (C.19a)

E2 ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(jt|ht−1),x2(k|ht−1),y1(t)

}
∈ Aε, (C.19b)

E3 ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(jt|ht−1),x2(kt|ht−1),y2(t)

}
/∈ Aε, (C.19c)

E4 ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(j|ht−1),x2(kt|ht−1),y2(t)

}
∈ Aε, (C.19d)

for all j ∈ {1, 2, . . . , 2n[H(W1|W2)+ε]} \ {jt} and k ∈ {1, 2, . . . , 2n[H(W2|W1)+ε]} \ {kt}.
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C.2 Proof of Theorem 19

By the AEP, for sufficiently large n,

Pr(E1) < ε, (C.20a)

Pr(E3) < ε. (C.20b)

The probability that error event E2 occurs for all k 6= kt is given by

Pr(E2) =
∑
k 6=kt

∑
{v0,v1,v2,x1,x2,y1}∈Aε

p(x2|v0,v1,v2)p(v0,v1,v2,x1,y1) (C.21a)

< 2n[H(W1|W2)+ε]2n[H(V0,V1,V2,X1,X2,Y1)+ε]2−n[H(X2|V0,V1,V2)−ε]2−n[H(V0,V1,V2,X1,Y1)−ε]

(C.21b)

= 2n[H(W2|W1)+H(X2|V0,V1,V2,X1,Y1)−H(X2|V0,V1,V2)+4ε] (C.21c)

= 2n[H(W2|W1)+H(X2|V0,V1,V2,X1,Y1)−H(X2|V0,V1,V2,X1)+4ε] (C.21d)

= 2n[H(W2|W1)−I(X2;Y1|V0,V1,V2,X1)+4ε]. (C.21e)

This can be made arbitrarily small if

H(W2|W1) < I(X2;Y1|V0, V1, V2, X1)− 4ε (C.22)

holds and n is sufficiently large. Similarly, we can show that Pr(E4) can be made

small if

H(W1|W2) < I(X1;Y2|V0, V1, V2, X2)− 4ε. (C.23)

Now we look at the error probability at the destination. Assume that nodes

1 and 2 send x1(jt|ht−1) and x2(kt|ht−1) respectively in block t; and x1(jt+1|ht)

and x2(kt+1|ht) respectively in block t + 1. Assume that the destination has cor-

rectly decoded ht−1 = (it−1, jt−1, kt−1). We define the following error events at the
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C.2 Proof of Theorem 19

destination.

E5a ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(jt|ht−1),x2(kt|ht−1),y3(t)

}
/∈ Aε, (C.24a)

E5b ,
{
v0(it),v1(jt),v2(kt),y3(t+ 1)

}
/∈ Aε, (C.24b)

E5 , E5a ∩ E5b, (C.24c)

E6 ,
{
v0(i),v1(jt),v2(kt),y3(t+ 1)

}
∈ Aε, (C.24d)

E7a ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(j|ht−1),x2(kt|ht−1),y3(t)

}
∈ Aε, (C.24e)

E7b ,
{
v0(it),v1(j),v2(kt),y3(t+ 1)

}
∈ Aε, (C.24f)

E7 , E7a ∩ E7b, (C.24g)

E8a ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(jt|ht−1),x2(k|ht−1),y3(t)

}
∈ Aε, (C.24h)

E8b ,
{
v0(it),v1(jt),v2(k),y3(t+ 1)

}
∈ Aε, (C.24i)

E8 , E8a ∩ E8b, (C.24j)

E9a ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(j|ht−1),x2(kt|ht−1),y3(t)

}
∈ Aε, (C.24k)

E9b ,
{
v0(i),v1(j),v2(kt),y3(t+ 1)

}
∈ Aε, (C.24l)

E9 , E9a ∩ E9b, (C.24m)

E10a ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(jt|ht−1),x2(k|ht−1),y3(t)

}
∈ Aε, (C.24n)

E10b ,
{
v0(i),v1(jt),v2(k),y3(t+ 1)

}
∈ Aε, (C.24o)

E10 , E10a ∩ E10b, (C.24p)

E11a ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(j|ht−1),x2(k|ht−1),y3(t)

}
∈ Aε, (C.24q)

E11b ,
{
v0(it),v1(j),v2(k),y3(t+ 1)

}
∈ Aε, (C.24r)

E11 , E11a ∩ E11b, (C.24s)

E12a ,
{
v0(it−1),v1(jt−1),v2(kt−1),x1(j|ht−1),x2(k|ht−1),y3(t)

}
∈ Aε, (C.24t)

E12b , {v0(i),v1(j),v2(k),y3(t+ 1)} ∈ Aε, (C.24u)

E12 , E12a ∩ E12b, (C.24v)

for all i 6= it+1, j 6= jt+1, and k 6= kt+1.

By the AEP and for sufficiently large n, Pr(E5a) < ε and Pr(E5b) < ε. Hence,
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Pr(E5) ≤ Pr(E5a) Pr(E5b) < ε2.

Pr(E6) =
∑
i 6=it

∑
{v0,v1,v2,y3}∈Aε

p(v0)p(v1,v2,y3) (C.25a)

< 2n[I(W1;W2)+ε]2n[H(V0,V1,V2,Y3)+ε]2−n[H(V0)−ε]2−n[H(V1,V2,Y3)−ε] (C.25b)

= 2n[I(W1;W2)+ε]2−n[H(V0|V1,V2)−ε]2n[H(V0|V1,V2,Y3)−ε] (C.25c)

= 2n[I(W1;W2)−I(V0;Y3|V1,V2)+4ε]. (C.25d)

Hence Pr(E6) can be made small if

I(W1;W2) < I(V0;Y3|V1, V2)− 4ε (C.26)

holds and n is sufficiently large.

Pr(E7) =
∑
j 6=jt

[ ∑
{v0,v1,v2,x1,x2,y3}∈Aε

p(x1|v0,v1,v2)p(v0,v1,v2,x2,y3)×

∑
{v0,v1,v2,y3}∈Aε

p(v1)p(v0,v2,y3)

]
(C.27a)

< 2n[H(W1|W2)+ε]2−n[I(X1;Y3|V0,V1,V2,X2)−3ε]2−n[I(V1;Y3|V0,V2)−3ε] (C.27b)

= 2n[H(W1|W2)−I(X1;Y3|V0,V1,V2,X2)−I(V1;Y3|V0,V2)+7ε]. (C.27c)

Hence Pr(E7) can be made small if

H(W1|W2) < I(V1;Y3|V0, V2) + I(X1;Y3|V0, V1, V2, X2)− 7ε (C.28)

holds and n is sufficiently large.

Similarly, Pr(E8) be made arbitrarily small if

H(W2|W1) < I(V2;Y3|V0, V1) + I(X2;Y3|V0, V1, V2, X1)− 7ε. (C.29)
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Pr(E9) =
∑

(i,j)6=(it,jt)

[ ∑
{v0,v1,v2,x1,x2,y3}∈Aε

p(x1|v0,v1,v2)p(v0,v1,v2,x2,y3)×

∑
{v0,v1,v2,y3}∈Aε

p(v0,v1)p(v2,y3)

]
(C.30a)

< 2n[I(W1;W2)+ε+H(W1|W2)+ε]2−n[I(X1;Y3|V0,V1,V2,X2)−3ε]2−n[I(V0,V1;Y3|V2)−3ε]

(C.30b)

= 2n[H(W1)−I(X1;Y3|V0,V1,V2,X2)−I(V0,V1;Y3|V2)+8ε]. (C.30c)

Hence Pr(E9) can be made small if

H(W1) < I(V0, V1;Y3|V2) + I(X1;Y3|V0, V1, V2, X2)− 8ε (C.31)

holds and n is sufficiently large.

Similarly, Pr(E10), Pr(E11), and Pr(E12) be made arbitrarily small if

H(W2) < I(V0, V2;Y3|V1) + I(X2;Y3|V0, V1, V2, X1)− 8ε,

(C.32a)

H(W1|W2) +H(W2|W1) < I(V1, V2;Y3|V0) + I(X1, X2;Y3|V0, V1, V2)− 8ε,

(C.32b)

H(W1,W2) < I(X1, X2;Y3)− 9ε, (C.32c)

hold respectively.

If all these constraints are satisfied and if n is large enough, the total probability

of error can be bounded by

Pe =
12⋃
i=0

Pr(Ei) <
12∑
i=0

Pr(Ei) < 12ε+ ε2, (C.33)

for any ε > 0.

Combining these rate constraints and adding the time sharing random variable
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Q, we get Theorem 19.

C.3 Achievable Region of FDS-DF for the Gaus-

sian MACFCS

On the static Gaussian channel, using FDS-DF, nodes 1 and 2 send the following

respectively.

X1 =
√
α10P1V0 +

√
α11P1V1 +

√
α12P1V2 +

√
α13P1U1, (C.34a)

X2 =
√
α20P2V0 +

√
α21P2V1 +

√
α22P2V2 +

√
α23P2U2, (C.34b)

where Vi and Uj are independent Gaussian random variables with unit power

E[V 2
i ] = [U2

j ] = 1, ∀i = 0, 1, 2 and ∀j = 1, 2. 0 ≤
∑3

k=0 αjk ≤ 1 for j = 1, 2.

Recall that the channel outputs are

Y1 =

√
κd−η21 X2 + Z1 =

√
κd−η21 P1(

√
α10V0 +

√
α11V1 +

√
α12V2 +

√
α13U1) + Z1,

(C.35a)

Y2 =

√
κd−η12 X1 + Z2 =

√
κd−η12 P2(

√
α20V0 +

√
α21V1 +

√
α22V2 +

√
α23U2) + Z2,

(C.35b)

Y3 =

√
κd−η13 X1 +

√
κd−η23 X2 + Z3 (C.35c)

=

[√
κd−η13 α10P1 +

√
κd−η23 α20P2

]
V0 +

[√
κd−η13 α11P1 +

√
κd−η23 α21P2

]
V1

+

[√
κd−η13 α12P1 +

√
κd−η23 α22P2

]
V2 +

√
κd−η13 α13P1U1 +

√
κd−η23 α23P2U2 + Z3.

(C.35d)

Now, we calculate the mutual information terms in Theorem 19.

I(X1;Y2|V0, V1, V2, X2) =
1

2
log

(
1 +

κd−η12 α13P1

N2

)
, (C.36a)

I(X2;Y1|V0, V1, V2, X1) =
1

2
log

(
1 +

κd−η21 α23P2

N1

)
, (C.36b)
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C.4 Proof of Theorem 20

For (a, b, c) ∈ {{0, 1, 2}3 : a 6= b 6= c},

I(Va;Y3|Vb, Vc) =
1

2
log

1 +

κ

[√
d−η13 α1aP1 +

√
d−η23 α2aP2

]2

κd−η13 α13P1 + κd−η23 α23P2 +N3

 , (C.37a)

I(Va, Vb;Y3|Vc) =
1

2
log

(
1 +

κ

[√
d−η13 α1aP1 +

√
d−η23 α2aP2

]2

κd−η13 α13P1 + κd−η23 α23P2 +N3

+

κ

[√
d−η13 α1bP1

√
d−η23 α2bP2

]2

κd−η13 α13P1 + κd−η23 α23P2 +N3

)
. (C.37b)

Also, for (a, b) ∈ {{1, 2}2 : a 6= b}

I(Xa;Y3|V0, V1, V2, Xb) =
1

2
log

(
1 +

κd−ηa3 αa3Pa
N3

)
, (C.38)

and,

I(X1, X2;Y3|V0, V1, V2) =
1

2
log

(
1 +

κd−η13 α13P1 + κd−η23 α23P2

N3

)
. (C.39)

Finally,

I(X1, X2;Y3) =

1

2
log

1 +

∑2
i=0 κ

[√
d−η13 α1iP1 +

√
d−η23 α2iP2

]2

+ κd−η13 α13P1 + κd−η23 α23P2

N3

 .

(C.40)

C.4 Proof of Theorem 20

In this section, we prove Theorem 20. Node 1 receives y1(t) in block t. It knows

x1(jt, pt−1) and u1(pt−1). It finds rt such that (ỹ1(rt|pt−1),y1(t),x1(jt, pt−1),

u1(pt−1)) ∈ Aε. Berger (1977, Lemma 2.1.3) showed that node 1 can find such a rt
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with probability tends to 1 as n→∞ if

R̃1 > I(Ỹ1;Y1|X1, U1). (C.41)

By similar argument, node 2 can find st with probability tends to 1 as n→∞ such

that
(
ỹ2(st|qt−1),y2(t),x2(kt, qt−1),u2(qt−1)

)
∈ Aε if

R̃2 > I(Ỹ2;Y2|X2, U2). (C.42)

Suppose that nodes 1 and 2 send x1(jt+1, pt) and x2(kt+1, qt) respectively in

block t+ 1. Define the following event where the destination wrongly decodes the

quantized and binned signal pt or qt.

E1 ,
(
u1(pt),u2(qt),y3(t+ 1)

)
/∈ Aε, (C.43a)

E2 ,
(
u1(p),u2(qt),y3(t+ 1)

)
∈ Aε, (C.43b)

E3 ,
(
u1(pt),u2(q),y3(t+ 1)

)
∈ Aε, (C.43c)

E4 , (u1(p),u2(q),y3(t+ 1)) ∈ Aε, (C.43d)

for all p ∈ {1, 2, . . . , 2nR′1} \ {pt} and q ∈ {1, 2, . . . , 2nR′2} \ {qt}.

By the AEP, Pr(E1) < ε for large n. We can show that Pr(E2),Pr(E3), and

Pr(E4) can be bounded by ε for large n if the following holds.

R′1 < I(U1;Y3|U2)− 3ε, (C.44a)

R′2 < I(U2;Y3|U1)− 3ε, (C.44b)

R′1 +R′2 < I(U1, U2;Y3)− 3ε. (C.44c)

At the end of block t, assume that the destination has already correctly decoded

the quantized and binned signals pt, qt, pt−1, and qt−1. Suppose that rt and st are

the quantized values of nodes 1 and 2 respectively. We define the following events

where the destination decodes the estimates wrongly, for all r ∈ {1, 2, . . . , 2nR̃1} \
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{rt} and s ∈ {1, 2, . . . , 2nR̃2} \ {st}.

E5 ,
(
ỹ1(rt|pt−1), ỹ2(st|qt−1),u1(pt−1),u2(qt−1),y3(t)

)
/∈ Aε, (C.45a)

E6a ,
(
ỹ1(r|pt−1), ỹ2(st|qt−1),u1(pt−1),u2(qt−1),y3(t)

)
∈ Aε, (C.45b)

E6 , E6a ∩ {r ∈ Spt}, (C.45c)

E7a ,
(
ỹ1(rt|pt−1), ỹ2(s|qt−1),u1(pt−1),u2(qt−1),y3(t)

)
∈ Aε, (C.45d)

E7 , E7a ∩ {s ∈ Sqt}, (C.45e)

E8a ,
(
ỹ1(r|pt−1), ỹ2(s|qt−1),u1(pt−1),u2(qt−1),y3(t)

)
∈ Aε, (C.45f)

E8 , E8a ∩ {r ∈ Spt} ∩ {s ∈ Sqt}. (C.45g)

By the AEP, Pr(E5) < ε for large n. The probability of the event E6 is as

follows.

Pr(E6) = Pr (E6a ∩ {r ∈ Spt}) (C.46a)

=
∑
r 6=rt
r∈Spt

∑
(ỹ1,ỹ2,u1,u2,y3)∈Aε

p(ỹ1|ỹ2,u1,u2)p(ỹ2,u1,u2,y3) (C.46b)

< 2n(R̃1−R′1) × 2n[H(Ỹ1,Ỹ2,U1,U2,Y3)+ε] × 2−n[H(Ỹ1|Ỹ2,U1,U2)−ε] × 2−n[H(Ỹ2,U1,U2,Y3)−ε]

(C.46c)

= 2n(R̃1−R′1) × 2−n(I(Ỹ1;Y3|Ỹ2,U1,U2)−3ε). (C.46d)

This can be made small, for a large n, if

R̃1 < I(Ỹ1;Y3|Ỹ2, U1, U2) +R′1 − 3ε. (C.47)

Similarly Pr(E7) < ε and Pr(E8) < ε for large n if

R̃2 < I(Ỹ2;Y3|Ỹ1, U1, U2)) +R′2 − 3ε, (C.48a)

R̃1 + R̃2 < I(Ỹ1, Ỹ2;Y3|U1, U2) +R′1 +R′2 − 3ε. (C.48b)
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Now, supposed that nodes 1 and 2 send x1(jt, pt−1) and x2(kt, qt−1) respectively

in block t. Assume that the destination has correctly estimated rt, st, pt−1, and

qt−1. It decodes (jt, kt) using ỹ1, ỹ2, as well as its received symbol y3(t). The error

events, where the destination wrongly decodes the source signal(s), are as follows.

E9 ,
(
x1(jt, pt−1),x2(kt, qt−1),u1(pt−1),u2(qt−1), ỹ1(rt|pt−1), ỹ2(st|qt−1),y3(t)

)
/∈ Aε, (C.49a)

E10 ,
(
x1(j, pt−1),x2(kt, qt−1),u1(pt−1),u2(qt−1), ỹ1(rt|pt−1), ỹ2(st|qt−1),y3(t)

)
∈ Aε, (C.49b)

E11 ,
(
x1(jt, pt−1),x2(k, qt−1),u1(pt−1),u2(qt−1), ỹ1(rt|pt−1), ỹ2(st|qt−1),y3(t)

)
∈ Aε, (C.49c)

E12 ,
(
x1(j, pt−1),x2(k, qt−1),u1(pt−1),u2(qt−1), ỹ1(rt|pt−1), ỹ2(st|qt−1),y3(t)

)
∈ Aε.

(C.49d)

By the AEP, Pr(E9) < ε for large n. Now,

Pr(E10)

=
∑
j 6=jt

∑
(x1,x2,u1,u2,ỹ1,ỹ2,y3)∈Aε

p(x1|u1)p(x2,u1,u2, ỹ1, ỹ2,y3) (C.50a)

< 2nR1

∑
(x1,x2,u1,u2,ỹ1,ỹ2,y3)∈Aε

p(x1|u1)p(x2,u1,u2)p(ỹ1, ỹ2,y3|u1,u2,x2) (C.50b)

= 2nR12n[H(U1,U2,X1,X2,Ỹ1,Ỹ2,Y3)+ε]2−n[H(X1|U1)−ε]2−n[H(U1,U2,X2)−ε]

× 2−n[H(Ỹ1,Ỹ2,Y3|U1,U2,X2)−ε] (C.50c)

= 2n[R1+H(X1,Ỹ1,Ỹ2,Y3|U1,U2,X2)−H(X1|U1,U2,X2)−H(Ỹ1,Ỹ2,Y3|U1,U2,X2)+4ε] (C.50d)

= 2n[R1−I(X1;Ỹ1,Ỹ2,Y3|U1,U2,X2)+4ε]. (C.50e)

Pr(E10) can be made small if

R1 < I(X1; Ỹ1, Ỹ2, Y3|U1, U2, X2)− 4ε. (C.51)
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Similarly, Pr({E11) and Pr(E12) can be bounded if

R2 < I(X2; Ỹ1, Ỹ2, Y3|U1, U2, X1)− 4ε, (C.52a)

R1 +R2 < I(X1, X2; Ỹ1, Ỹ2, Y3|U1, U2)− 4ε (C.52b)

hold respectively.

Combining these rate constraints for the MACF using CF and the constraints

for the source coding, (5.14a)-(5.14c), and adding the time sharing random variable

Q, we get Theorem 20.

C.5 Achievable Region of SC-CF for the Gaus-

sian MACFCS

On the static Gaussian channel, using SC-CF, nodes 1 and 2 send X1 = U1 + V1

and X2 = U2 + V2 respectively. Here U1 (quantized and binned information of the

previous block from Y1), V1 (new information from source 1), U2 (old quantized

and binned information of the previous block from Y2), and V2 (new information

from source 2) are independent Gaussian random variables with power constraints

E[U2
1 ] ≤ PU1, E[V 2

1 ] ≤ PV 1 E[U2
2 ] ≤ PU2, and E[V 2

2 ] ≤ PV 2 respectively. We note

that P1 = PU1 + PV 1 and P2 = PU2 + PV 2.

The nodes receive

Y1 =

√
κd−η21 X2 + Z1 =

√
κd−η21 (U2 + V2) + Z1 (C.53a)

Y2 =

√
κd−η12 X1 + Z2 =

√
κd−η12 (U1 + V1) + Z2 (C.53b)

Y3 =

√
κd−η13 (U1 + V1) +

√
κd−η23 (U2 + V2) + Z3, (C.53c)

where Z1 ∼ N(0, N1), Z2 ∼ N(0, N2), and Z3 ∼ N(0, N3) are independent noise.
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The quantized signals are

Ỹ1 = Y1 + Z̃1 =

√
κd−η21 X2 + Z1 =

√
κd−η21 (U2 + V2) + Z1 + Z̃1 (C.54a)

Ỹ2 = Y2 + Z̃2 =

√
κd−η12 X1 + Z2 =

√
κd−η12 (U1 + V1) + Z2 + Z̃2, (C.54b)

where Z̃1 ∼ N(0, Ñ1) and Z̃2 ∼ N(0, Ñ2) are independent quantization noise.

Now,

I(X1; Ỹ1, Ỹ2, Y3|U1, U2, X2)

= H(Ỹ1, Ỹ2, Y3|U1, U2, X2)−H(Ỹ2, Y3|U1, U2, X1, X2) (C.55a)

= H
(√

κd−η21 (U2 + V2) + Z1 + Z̃1,

√
κd−η12 (U1 + V1) + Z2 + Z̃2,

√
κd−η13 (U1 + V1)

+

√
κd−η23 (U2 + V2) + Z3| U1, U2, U2 + V2

)
−H

(√
κd−η21 (U2 + V2) + Z1 + Z̃1,√

κd−η12 (U1 + V1) + Z2 + Z̃2,

√
κd−η13 (U1 + V1) +

√
κd−η23 (U2 + V2) + Z3|

U1, U2, U1 + V1, U2 + V2

)
(C.55b)

= H

(
Z1 + Z̃1,

√
κd−η12 V1 + Z2 + Z̃2,

√
κd−η13 V1 + Z3

)
−H

(
Z1 + Z̃1, Z2 + Z̃2, Z3

)
.

(C.55c)

The first term is

H

(
Z1 + Z̃1,

√
κd−η12 V1 + Z2 + Z̃2,

√
κd−η13 V1 + Z3

)

=
1

2
log(2πe)3

∣∣∣∣∣∣∣∣∣∣
N1 + Ñ1 0 0

0 κd−η12 PV 1 +N2 + Ñ2 κ
√
d−η12 d

−η
13 PV 1

0 κ
√
d−η12 d

−η
13 PV 1 κd−η13 PV 1 +N3

∣∣∣∣∣∣∣∣∣∣
(C.56a)

=
1

2
log(2πe)3

[
N1 + Ñ1

] [
N3(N2 + Ñ2) + (κd−η12 N3 + κd−η13 (N2 + Ñ2))PV 1

]
.

(C.56b)

The second term is

H
(
Z1 + Z̃1, Z2 + Z̃2, Z3

)
=

1

2
log(2πe)3

[
(N1 + Ñ1)(N2 + Ñ2)N3

]
. (C.57a)
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Thus,

I(X1; Ỹ1, Ỹ2, Y3|U1, U2, X2) =
1

2
log

[
1 +

κd−η12 PV 1

N2 + Ñ2

+
κd−η13 PV 1

N3

]
. (C.58)

Similarly, we can show that

I(X2; Ỹ1, Ỹ2, Y3|U1, U2, X1) =
1

2
log

[
1 +

κd−η21 PV 2

N1 + Ñ1

+
κd−η23 PV 2

N3

]
. (C.59)

Now, we evaluate

I(X1, X2; Ỹ1, Ỹ2, Y3|U1, U2) = H(Ỹ1, Ỹ2, Y3|U1, U2)−H(Ỹ1, Ỹ2, Y3|U1, U2, X1, X2).

(C.60)

The first term is

H(Ỹ1, Ỹ2, Y3|U1, U2)

=
1

2
log(2πe)3

∣∣∣∣∣∣∣∣∣∣
κd−η21 PV 2 +N1 + Ñ1 0 κ

√
dη21d

−η
23 PV 2

0 κd−η12 PV 1 +N2 + Ñ2 κ
√
d−η12 d

−η
13 PV 1

κ
√
dη21d

−η
23 PV 2 κ

√
d−η12 d

−η
13 PV 1 κd−η13 PV 1 + κd−η23 PV 2 +N3

∣∣∣∣∣∣∣∣∣∣
(C.61a)

=
1

2
log(2πe)3

[
κd−η12 PV 1N3(N1 + Ñ1) + κd−η21 PV 2N3(N2 + Ñ2)

+ κd−η13 PV 1(N1 + Ñ1)(N2 + Ñ2) + κd−η23 PV 2(N1 + Ñ1)(N2 + Ñ2)

+ κ2d−η12 d
−η
21 PV 1PV 2N3κ

2d−η21 d
−η
13 PV 1PV 2(N2 + Ñ2) + κ2d−η12 d

−η
23 PV 1PV 2(N1 + Ñ1)

+ (N1 + Ñ1)(N2 + Ñ2)N3

]
(C.61b)

,
1

2
log(2πe)3B1, (C.61c)

and the second term is

H(Ỹ1, Ỹ2, Y3|U1, U2, X1, X2) =
1

2
log(2πe)3(N1 + Ñ1)(N2 + Ñ2)N3. (C.62)
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Hence,

I(X1, X2; Ỹ1, Ỹ2, Y3|U1, U2)

=
1

2
log

[
1 +

κd−η12 PV 1

N2 + Ñ2

+
κd−η21 PV 2

N1 + Ñ1

+
κd−η13 PV 1

N3

+
κd−η23 PV 2

N3

+
κ2d−η12 d

−η
21 PV 1PV 2

(N1 + Ñ1)(N2 + Ñ2)

+
κ2d−η21 d

−η
13 PV 1PV 2

(N1 + Ñ1)N3

+
κ2d−η12 d

−η
23 PV 1PV 2

(N2 + Ñ2)N3

]
. (C.63a)

We can show that

I(U1, Y3|U2) =
1

2
log

[
1 +

C1

B2

]
, (C.64a)

I(U2, Y3|U1) =
1

2
log

[
1 +

C2

B2

]
, (C.64b)

I(U1, U2, Y3) =
1

2
log

[
1 +

C1 + C2

B2

]
. (C.64c)

where B2 , κd−η13 PV 1 + κd−η23 PV 2 + N3, C1 , κd−η13 PU1 = κd−η13 (P1 − PV 1), and

C2 , κd−η23 PU2 = κd−η23 (P2 − PV 2). Also,

I(Ỹ1;Y1|X1, U1) =
1

2
log

[
1 +

κd−η21 P2 +N1

Ñ1

]
,

1

2
log

[
1 +

D1

Ñ1

]
(C.65a)

I(Ỹ2;Y2|X2, U2) =
1

2
log

[
1 +

κd−η12 P1 +N2

Ñ2

]
,

1

2
log

[
1 +

D2

Ñ2

]
. (C.65b)

(C.65c)

We write I(Ỹ1;Y3|Ỹ2, U1, U2) = H(Y3|Ỹ2, U1, U2) − H(Y3|Ỹ1, Ỹ2, U1, U2). Evalu-

ating and simplifying, we get

I(Ỹ1;Y3|Ỹ2, U1, U2) =
1

2
log

[
1 +

κ2d−η23 d
−η
21 P

2
V 2(κd12PV 1 +N2 + Ñ2)

B1

]
. (C.66a)

So, constraint (5.17a) becomes

(
1 +

D1

Ñ1

)
<

(
1 +

C3

B1

)(
1 +

C1

B2

)
, (C.67)
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where C3 , κ2d−η23 d
−η
21 P

2
V 2(κd−η12 PV 1 + N2 + Ñ2). Similarly, constraint (5.17b) be-

comes (
1 +

D2

Ñ2

)
<

(
1 +

C4

B1

)(
1 +

C2

B2

)
, (C.68)

where C4 , κ2d−η13 d
−η
12 P

2
V 1(κd−η21 PV 2 +N1 + Ñ1). Lastly, constraint (5.17c) becomes

(
1 +

D1

Ñ1

)(
1 +

D2

Ñ2

)
<

(
1 +

C3 + C4

B1

)(
1 +

C1 + C2

B2

)
. (C.69)

We note that the achievability derived in Theorem 20 makes use of the Markov

lemma (Berger, 1977, Lemma 4.1), which requires strong typicality. Though strong

typicality does not extend to continuous random variables, we can generalize the

Markov lemma for Gaussian inputs and thus show that the rate governed by (C.58),

(C.59), and (C.63a) is achievable (Kramer et al., 2005).
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