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SUMMARY 

 
Background and Purpose—We observed recently that elevated plasma cysteine (Cys) 

levels are associated with poor clinical outcome in acute stroke patients. In a rat stroke 

model, Cys administration increased the infarct volume apparently via its conversion to 

hydrogen sulfide (H2S). We therefore investigated the effects of H2S and the inhibition of 

its formation on stroke. 

Methods—Cerebral ischemia was studied in a rat stroke model created by permanent 

occlusion of the middle cerebral artery (MCAO). The resultant infarct volume was 

measured 24 hours after occlusion. 

Results—Administration of sodium hydrosulfide (NaHS, a H2S donor) significantly 

increased the infarct volume after MCAO. The NaHS-induced increase in infarct volume 

was abolished by the administration of MK-801 (an N-methyl-D-aspartate receptor 

channel blocker). MCAO caused an increase in H2S level in the damaged cortex as well as 

an increase in the H2S synthesizing activity. Administration of 4 different inhibitors of 

H2S synthesis reduced MCAO-induced infarct volume dose dependently. The potency of 

these inhibitors in effecting neuroprotection in vivo appeared to parallel their potency as 

inhibitors of H2S synthesis in vitro. It also appeared that most of the H2S synthesizing 

activity in the cortex results from the action of cystathionine-β-synthase (CBS). 

Conclusions—The present results clearly demonstrate that H2S, produced from Cys in the 

cerebral cortex most probably by CBS, is an important mediator of ischemic damage. H2S 

acts via the NMDA receptor, which has become a prime target for stroke research over the 

past decade. Indeed, some NMDA antagonist and glycine antagonists have shown promise 

in clinical trials. Current evidence suggests that H2S promotes ischemic damage by a 
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direct degenerative effect on cerebral neurons, although effect on cerebral blood flow may 

not be, as yet, excluded. Whatever the mechanism of action, these results suggest, for the 

first time, that inhibition of H2S production using a CBS inhibitor may represent a novel 

therapeutic approach to the treatment of stroke. 
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1 INTRODUCTION 

1.1 Neurotransmitter 

 
Neurotransmitters are the most common class of chemical messengers in the nervous 

system. They have attracted extensive attention because of their multiple roles in 

physiologic and pathophysiologic conditions since the first neurotransmitter， 

acetylcholine was discovered in 1921(1).  The central nervous system (CNS) is a complex 

system with many neurotransmitters working in concert to maintain proper functioning. 

Before a neuroactive substance can be classified as a neurotransmitter, it has to fulfill 

certain criteria as below (2): 

• It must be of neuronal origin and accumulated in presynaptic terminals, from 

where it is released upon depolarization.  

• The released neurotransmitter must induce postsynaptic effects mediated by 

neurotransmitter-specific receptors. 

• The substance must be metabolically inactivated or cleared from the synaptic cleft 

by reuptake mechanisms. 

• Experimental application of the substance to nervous tissue must produce effects 

comparable to those induced by the naturally occurring neurotransmitter.  

Various neurotransmitters are probably involved in synthesizing, transporting and 

recycling in the chemical milieus of CNS which consist of its whole living environment. 

They are used to relay, amplify and modulate electrical signals between a neuron and 

another cell. Within the cells, small-molecule neurotransmitter molecules are usually 

packaged in vesicles and are released from the axon terminal of a presynaptic neuron 
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either by exocytosis. They could travel across the synaptic cleft and bind to specific 

receptors to either excite or inhibit the postsynaptic cell membrane. Neurotransmitters also 

act on “autoreceptors” located on presynaptic membranes to regulate the progress of 

synaptic transmission. 

The three major categories of neurotransmitters are (a) amino acids (primarily 

glutamic acid, GABA, aspartic acid & glycine), (b) monoamines (norepinephrine, 

dopamine & serotonin) plus acetylcholine and (c) neuropeptides (vasopressin, 

somatostatin, neurotensin, etc.). Glutamate(3) and GABA(4) are the major "workhorse" 

neurotransmitters in the brain.  The monoamines and acetylcholine perform specialized 

modulating functions, often confined to specific structures. The neuropeptides perform 

specialized functions in the hypothalamus or act as co-factors elsewhere in the brain(5). It 

is anticipated that future studies will find more potential neurotransmitters and better 

reveal the underlying molecular mechanisms. 

1.2 Gasotransmitters 

 
Among the potential neurotransmitters, nitric oxide (NO), carbon monoxide (CO) and 

hydrogen sulfide (H2S) are distinctive from classical neurotransmitters and hormonal 

factors but sharing common characteristics among themselves. They are small signaling 

molecules with physiological importance, which have been termed as “gasotransmitters” 

as they are endogenous gases.  

In 2002, the criteria for classifying gasotransmitters were first suggested by Wang 

Rui (6). 

• They are small gaseous molecules. 
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• They are freely permeable to membranes. As such, their effects do not rely on the 

cognate membrane receptors, and they can have endocrine, paracrine, and autocrine 

effects.  

• They are endogenously and enzymatically generated and regulated. 

• They have well defined and specific functions at physiologically relevant 

concentrations. 

• Their cellular effects may or may not be mediated by second messengers, but 

should have specific cellular and molecular targets.  

Following the identification of NO and CO as gasotransmitter based on these criteria, 

H2S may be qualified as the third one.  

1.3 H2S, the 3rd putative gasotransmitter 

 
H2S is a well-known toxic gas so that it had been assumed to exist in animal tissues 

only at very low concentrations even though it could be produced endogenously by 

enzymes and non-enzymatic pathways. However, recent studies of have shown that H2S 

level in mammalian tissues is more considerable than first expected. Measured in rat, 

human and bovine brain tissues, the concentrations of H2S were up to 50-160 µmol/l(7;8).  

Abe and Kimura (9) have shown that at concentrations similar to the physiological 

concentrations of H2S, sodium hydrosulfide (10 - 130 μM) selectively enhances N-methyl 

D-aspartate (NMDA) receptor-mediated responses and facilitates the induction of 

hippocampal long-term potentiation (LTP). These findings suggest that endogenous H2S 

functions as a neuromodulator. 
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1.3.1 Physical properties of H2S 

 
H2S is a colorless gas with an odour described as the smell of rotten eggs. It is the 

sulfur analog of water (H2O) with a molecular weight of 34.08 (Fig. 1-1). Relative to 

water, H2S has intermolecular forces and then exist in gaseous form at room temperature 

and pressure. It can be oxidized by a variety of agents to form sulfur dioxide (SO2), 

sulfates such as sulfuric acid and elemental sulfur(10). In the mammalian body, at a 

physiological pH of 7.4, approximately one-third of H2S exists as the un-dissociated form 

and two-thirds as the hydrosulfide anion (HS-)(10) (Formula 1). It can easily penetrate the 

plasma membranes of cells in the undissociated form because of its lipid solubility.  

H2S ↔H+ + HS-↔2H+ + S2- ………………………………………………Formula 1 

1.3.2 Toxicity of H2S  

 
The toxicity of H2S was first described almost 300 years ago(10). Lot of works had 

been done to investigate H2S toxicity by H2S exposure because it is still a pollutant and a 

working hazard in modern society. This toxic gas has often been regarded as a broad-

spectrum toxicant since most organ systems are susceptible to the effects of H2S. The 

early symptoms of H2S exposure include sore throat, dizziness, nausea, and respiratory 

effects attributed to airway irritation. Acute exposure to H2S exhibits a very steep dose-

response relationship with an LD50 of 15 mg/kg (rats), especially for CNS and respiratory 

depression, which is the major cause of death in acute H2S poisoning(8). The primary 

cause of death in H2S poisoning has been attributed to respiratory paralysis as a result of 

the toxic effect of sulfides on the respiratory centers of the brain(11). In addition, 

pulmonary edema has consistently been reported as the single most notable lesion in  
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Fig. 1-1 Structures of H2O and H2S 

H2S has a structure similar to that of water but comparatively weak intermolecular forces 

exist for H2S. 
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autopsies of individuals killed by this gas(12). Mechanistically, it is believed that the H2S 

poisons the mitochondria at low micromolar concentrations via reversible inhibition of 

cytochrome c oxidase (10).  

1.3.3 Endogenous biosynthesis of H2S 

 
In mammalian tissues, H2S is mainly produced from L-cysteine (L-Cys) through 

various pathways.  Two pyridoxal-5’-phosphate (P5P)-dependent enzymes—

cystathionine-β-synthase (CBS, EC 4.2.1.22) and cystathionine-γ-lyase (CSE, EC 

4.4.1.1)—were reported to be responsible for the majority of the endogenous production 

of H2S which could function as an intracellular messenger(13;14). These two key enzymes 

are also involved in the transsulfuration pathway of homocysteine (Hcy) metabolism. The 

pathways of endogenous biosynthesis of H2S are simplified in the following figure (Fig. 

1-2).  

As described in Fig. 1-2, catabolism of L-Cys will release H2S as a final product via 

several desulfuration pathways (13) . Firstly, L-cysteine is hydrolyzed by CBS, producing 

equimolar amounts of H2S and L-serine. In the second pathway, two L-cysteine molecules 

dimerize to form cystine, which is transformed into thiocysteine, pyruvate and ammonia 

(NH3) by CSE. Then the thiocysteine can form H2S via two reactions: the CSE-catalyzed 

reaction of thiocysteine with another thiol compounds (e.g. glutathione or cysteine) to 

form H2S and CysSR, or thiocysteine can form cysteine and H2S enzymatically (by CSE 

activation) or possibly non-enzymatically(15). This figure also shows the role of CBS and 

CSE in Hcy and L-Cys metabolism pathways. CBS catalyzes the condensation of Hcy and 

L-serine to form cystathionine in an irreversible reaction, the cystathionine is then 

hydrolyzed by CSE to form L-Cys, together with α-ketobutyrate plus ammonia (not  
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Fig.1-2 Endogenous biosynthesis of H2S in mammalian.  Catabolism of L-Cys will 

release H2S as final production via few various desulfuration pathways. Two pyridoxal-5’-

phosphate (P5P)-dependent enzymes, cystathionine-β-synthase (CBS, EC 4.2.1.22) and 

cystathionine-γ-lyase (CSE, EC 4.4.1.1), are key enzymes in H2S biosynthesis.  
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shown in figure).  

There are a few other pathways (not shown in Fig. 1-2) that may release H2S from L-

cysteine although these pathway may be subservient to the pathways described above.  As 

reviewed by Julian D. et al(16), L-Cys may react with a ketoacid (e.g. α-ketoglutarate) to 

form 3-mercaptopyruvate and an amino acid (e.g. L-glutamate) by the catalysis of 

cysteine aminotransferase (CAT, EC 2.6.1.3). The 3-mercaptopyruvate can then be 

desulfurated by 3-mercaptopyruvate sulfurtransferase (MPST, EC 2.8.1.2) to form H2S 

and pyruvate.  In addition, CSE also can convert L-cysteine and sulfite to L-cysteate and 

H2S. More recently, Chen X.L. et al(17) suggested a novel mechanism that CBS could 

catalyze the condensation of L-Cys with Hcy to form cystathionine and H2S. Kinetic 

studies demonstrated that the production of H2S by this reaction is more efficient than the 

traditional hydrolysis of L-cys by CBS. Although this finding confirms the ability of CBS 

to produce H2S, further experimental evidence in needed to verify the extent to which it 

occurs in vivo.  

1.3.3.1 Precursors: homocysteine and L-cysteine  

 
Met is an essential amino acid in mammals and thus generally considered as the 

source of all sulfur-containing amino acids. Cys, on the other hand, is non-essential and 

can be synthesized from Met via Hcy (the transsulfuration pathway). The mammalian 

liver regulates its free Cys pool tightly even when dietary source of sulfur-containing 

amino acid varies from sub- to over-requirement(18). This is achieved by regulating the 

synthesis of glutathione, which acts as a reservoir of Cys, and the catabolism of Cys via 

Cys dioxygenase, which converts Cys to Cys sulfinate(19).  The plasma concentration of 

cystine (100 – 200 µM) is about 10 times higher than those of Cys (10 – 20 µM)(20) and 
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Hcy (3 – 15 µM)(21).  Cystine undergoes influx transport across the blood-brain barrier via 

a cystine-Glu exchange transporter (system xc
-)(22). Just as Met and Hcy, Cys may also 

enter the brain via a neutral amino acid transporter such as system L, but the significance 

of this transport in vivo is not certain(23). In the brain, astrocytes constantly release 

glutathione which then reacts extracellularly with cystine transported from blood to form 

Cys and cysteine-glutathione disulfide(24). It appears that neurons rely on this extracellular 

thiol/disulfide exchange reaction for Cys as it is not able to provide thiols by themselves. 

Both Hcy and Cys have recently received greater attention as important risk factors 

for vascular diseases and CNS diseases. Their levels were found to be correlated with age 

in the whole study population(25;26). The elevated plasma total homocysteine (tHcy) and 

cysteine concentration were linked with coronary atherosclerosis(27), stroke(28;29) and 

several neurodegenerative diseases(30;31).  

1.3.3.1.1 Homocysteine  

 
Homocysteine is an intermediate product of methionine metabolism and is 

metabolized by the re-methylation and transsulfuration pathways (see Fig. 1-3).  The re-

methylation pathway, which regenerates methionine, is controlled by the vitamin B12-

dependent methionine synthase (MS)(32) and methylenetetrahydrofolate reductase 

(MTHFR). After re-methylation, methionine can be re-utilized to produce S-

adenosylmethionine (SAM), a methyl donor, which participates in several key metabolic 

pathways, including methylation of DNA and myelin, and synthesis of important 

substances, such as carnitine, coenzyme Q10, creatine, epinephrine and melatonin(33). 

The transsulfuration pathway is important in the synthesis of glutathione which is 

regulated at the substrate level by Cys, which is an important nutrient for cardiac health, 
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Fig. 1-3 Simplified homocysteine metabolic pathways. Homocysteine is an intermediate 

product of methionine metabolism and is metabolized by remethylation and 

transsulfration pathways.  The re-methylation pathway, which regenerates methionine, is 

controlled by vitamin B12-dependent methionine synthase (MS)(32) and 

methylenetetrahydrofolate reductase (MTHFR). The trans-sulfuration pathway of 

homocysteine catabolyzed by CBS produces cystathionine which is the precursor of 

cysteine. After re-methylation, methionine can be re-utilized to produce a methyl donor, 

S-adenosylmethionine (SAM), which can be converted back to homocysteine.  
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hepatic detoxification, cholesterol excretion, bile salt formation. The glutathione level in 

the brain of transgenic mice with homozygous disruption of the CBS gene is reported to 

be decreased by 30%(34). More recently, Vitvitsky et al. (2006)(35) confirmed that 

glutathione depletes quickly in brain slices following inhibition of CSE. Elevated Hcy and 

decreased glutathione are features seen in Alzheimer’s and Parkinson’s disease patients 

indicating impairment of the transsulfuration pathway in these neurodegenerative 

diseases. This pathway depends on an adequate dietary intake and conversion of vitamin 

B6 into its active form, P5P in the liver. In essence, the intermediate metabolite 

homocysteine is located at a critical metabolic crossroad, and therefore impacts on methyl 

and sulfur metabolism in the body directly and indirectly. Reduced activities of the key 

catabolizing enzymes, would result in elevated plasma level of homocysteine, which is 

called hyperhomocysteinemia(36;37). It has been widely accepted that 

hyperhomocysteinemia is an independent risk factor for vascular diseases. Elevated 

homocysteine in serum induced arteriosclerosis-like alterations of the aorta in both 

normotensive and hypertensive rats after loading with high doses of the Hcy precursor, 

methionine(38). Homocysteine appeared to alter the anticoagulant properties of endothelial 

cells to a procoagulant phenotype and mildly increased homocysteine caused dysfunction 

of the vascular endothelium(39).  

In the nervous systems, homocysteine was reported to induce apoptosis and increase 

neuronal vulnerability to excitotoxicity by several mechanisms, including DNA damage, 

associated activation of poly-ADP-ribose polymerase (PARP) and nicotinamide adenine 

dinucleotide (NAD) depletion(40). Chronic experimental hyperhomocysteinemia caused 

cognitive dysfunction in rats and in clinical cases, it may present as mental retardation and 
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other neurological symptoms(41). Clinical evidence and animal experiments also showed 

an association between brain atrophy and increased plasma total Hcy level in chronic 

alcoholism(42). Furthermore, hyperhomocysteinemia is also one of the known risk factors 

for developing Alzheimer’s disease (AD) since it not only sensitizes hippocampal neurons 

to β-amyloid-induced damage in cell cultures but also enhances β-amyloid generation by 

inducing the stress protein Herp through interaction with both presenilin 1 and 2(43). In 

stroke patients, epidemiological studies also linked elevated tHcy with an increased risk of 

ischemic stroke because of its damage to arteries. Large randomized trials showed that 

multivitamin therapy reduced the rate of recurrent stroke and other serious vascular events 

in patients with prior stroke or transient ischemic attack(28;29). 

1.3.3.1.2 L-cysteine 

 
The availability of Cys from dietary sources becomes critical when there is a 

deficiency in the transsulfuration pathway resulting from conditions such as 

prematurity(44;45) or liver disease(46). It is a very important amino acid for the synthesis of 

proteins, coenzyme A, taurine, and GSH which have important physiological functions in 

the body. For example, GSH is the predominant low-molecular-weight thiol in 

mammalian cells and a major cellular antioxidant(47). Although less reactive than Hcy, Cys 

is the most abundant plasma thiol and may function as an extracellular regulating factor of 

thiol/disulfide exchange in order to maintain an adequate redox status. Administration of 

Cys to rats protects against some neurotoxic compounds. For example, Cys can prevent 

the depletion of dopamine and related compounds caused by amphetamine and p-

chloroamphetamine in mouse and rat brains(48). On the other hand, Cys has been found to 

be cytotoxic both in vitro(49) and in vivo(50-53). It is toxic to cultured hepatocytes (4 
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mM)(54), kidney cell lines (4 mM)(55), and primary neurons (1 mM)(56). In in vivo studies, 

water-soluble, chemically defined diets containing Cys (0.92 g/ L) were disastrous to rats; 

the animals died within 3 days(57). Administration of Cys was reported to lead to necrosis 

of the retina and hypothalamus in infant mice(53), brain atrophy in infant rats(51;58), and 

lethargy or convulsions at a dose of 10 mmol/kg in mice(50). Current evidence shows that 

Cys toxicity depends highly on its auto-oxidation rate and on the total amount of Cys 

being oxidized, suggesting that the toxicity can be attributed to free radicals produced 

from auto-oxidation, but not to Cys itself(55). Catalase and pyruvate were found to inhibit 

the production of hydroxyl radicals generated by Cys autoxidation so that they both 

protected primary neurons against Cys toxicity in tissue cultures. This protection is 

attributed to their ability to react with hydrogen peroxide (H2O2), preventing the formation 

of hydroxyl radicals(59).  

 Although Cys lacks the omega carboxyl group required for excitotoxic actions 

through direct activation of the excitatory amino acid receptors, it nevertheless evokes 

NMDA-like excitotoxic neuronal death and potentiates the Ca2+ influx evoked by NMDA. 

There are a number of possible mechanisms as reviewed by Janaky et al. (2000)(60). 

Briefly, NMDA receptor activity may be up-regulated by increases in extracellular 

glutamate through increased release or inhibition of reuptake, removal of Zn2+-induced 

inhibition on the NMDA receptor and/or direct interaction at the redox site. The 

generation of toxic Cys derivatives, including cysteine α-carbamate, cysteine sulfinate, S-

nitrosocysteine and 5-S-cysteinyl-3, 4-dihydroxyphenylacetate, and free radicals as 

described above may also be contributing mechanisms. The formation of H2S from Cys is 

yet another possibility. 



 
----------------------------------------------------INTRODUCTION-------------------------------------------------- 

  

  

30  

1.3.3.2 Key enzymes of H2S biosynthesis  

Significant amount of H2S is produced by mammalian cells, and this substance was 

measured in blood, isolated tissues and cells(9;61;62). As previously described, two 

pyridoxal-5’-phosphate-dependent enzymes, cystathionine β-synthase (CBS, EC 4.2.1.22) 

and cystathionine γ-lyase (CSE EC 4.4.1.1), are responsible for the majority of the 

endogenous production of H2S in mammalian tissues, where L-cysteine in used as the 

main substrate. CBS and CSE are also the first enzymes in the transsulfuration and reverse 

transsulfuration pathways, respectively. 

1.3.3.2.1 CBS 

 
In eukaryotes, CBS is directly involved in the homocysteine removal and biosynthesis 

of cysteine and H2S. In these complex pathways, CBS was reported to have a much higher 

Km for L-cysteine (36mM) than for its natural substrates, L-serine (2–8 mM) and L-

homocysteine (0.1–9 mM)(63). It is activated approximately two-fold by the allosteric 

regulator, S-adenosylmethionine (SAM). 

CBS is a cytosolic enzyme firstly purified from vertebrate liver(64). The primary 

translational product of both the human and the rat CBS gene is a precursor protein with a 

molecular weight of 63 kDa(65) that forms tetramers or higher oligomers. Proteolysis of the 

precursor protein yields the active enzyme of CBS (amino acid residues 40-413)(66;67).  

The reduction in size is accompanied by a significant increase in the specific activity of 

the enzyme and change from a tetramer to a dimer(68;69). The purified CBS firmly bound 

with pyridoxal 5'-phosphate (P5P), which is necessary for its activity(70-72). CBS is also 

continuously produced at an especially high level in the neural and cardiac systems(73). 

CBS activity has been measured in various regions of the developing rat brain. CBS 
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activity gradually increases during development at almost the same rate in each region, 

until the adult level is reached at week 4 (about 4-fold increase)(74). The level of CBS gene 

expression was studied during early human embryogenesis by in situ hybridization and in 

fetal and adult tissues by northern-blot analysis. Studies on the mutagenesis of CBS(75) 

showed that CBS is involved in the production of H2S in the brain. Endogenous H2S could 

not be detected in CBS knock-out mice and intermediate levels were detected in 

heterozygous mice(76). These observations are in agreement with the inhibition of in vitro 

H2S production from L-cysteine by brain homogenate in the presence of CBS inhibitors, 

such as hydroxylamine (HA) and aminooxyacetate (AOAA)(9). 

Activity of CBS is believed to be highly regulated(77), tissue-specific(78) which present 

in brain and adipose tissue, absent in heart lung, testes, adrenal and spleen and 

compartmentalized in the endoplasmic reticulum(79). These characteristics strongly suggest 

that any alterations in production, dissemination or consumption of the enzyme, products 

or substrates could have potentially damaging outcomes. CBS deficiency is an inherited 

metabolic disease characterized by lens dislocation, skeletal problems, vascular disease 

and mental retardation, etc. based on a clinical description of CBS deficiency in 629 

patients in 1985(80), some of the most important clinical aspects of CBS deficiency are 

discussed below. Lens dislocation is one of the typical features of CBS deficiency, and the 

most common sign leading to diagnosis(81;82). Numerous skeletal abnormalities may be 

observed in patients with CBS deficiency both by clinical and X-ray examinations. The 

most remarkable abnormalities included scoliosis/kyphosis, dolichostenomelia (long and 

thin extremities), decreased upper/lower segment ratio and arachnodactyly. Vascular 

disorders are another peculiar feature of this disease.  Generally, they can be 
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characterized as a thrombotic diathesis that may manifest in the venous or arterial system 

and/or as accelerated atherosclerosis. In CNS, mental retardation is a frequent finding in 

CBS deficient patients.  In an international survey, quantitative data from 284 patients 

showed a median IQ of 78 and 56 for the pyridoxine responders and non-responders, 

respectively(83). 

1.3.3.2.2 CSE 

 
CSE, another P5P-dependent enzyme, involves in the biosynthesis of H2S

(13) as 

previously described in Fig. 1-2. The purification of CSE also has been done in rats, mice 

and human. CSE activity is significantly lower in the liver of 24-month-old mice but it is 

about 10-times higher in the rat liver than in the liver of full-term human infants and over 

four times higher than in the adult human liver(84). CSE activity is lower in guinea pig 

tissues than in rat tissues: five-fold lower in the liver and 18-fold lower in the kidney(85). 

In the rat liver, the activity is low during fetal development, but increases rapidly during 

the last three days of gestation(86). As rats mature, total CSE activity in the liver increases, 

peaking at 24 months of age and then decreasing to the same level found in five-week-old 

rats(87). In contrast, CSE mRNA can be detected from the 19th gestational week onwards 

and the mRNA levels are similar to those of adult liver samples(88). The most plausible 

explanation for this discrepancy is the post-transcriptional regulation of CSE gene 

expression. A very low level of activity has been described in the rat brain compared to in 

other tissues(89). Same as CBS, CSE activity also has been measured in various regions of 

the developing rat brain. CSE activity increases during development, reaching the adult 

level in postnatal week 2. However, increases enzyme activity clearly increases less in the 

cerebellum (about 1.8-fold) than in the other regions (about 4-fold). The CSE content in 
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various regions of the 3-week-old rat brain estimated by immunoblotting is consistent 

with the enzyme activity; the enzyme level is lower in the cerebellum than in the other 

regions(90). Small amounts of CSE mRNA have been detected in the brain(91). In contrast 

to the liver and kidney, H2S production in brain seems to be unrelated to cystathionase 

activity. CSE inhibitors, D, L-propargylglycine (PAG) and β-cyano-L-alanine (β-CNA), 

do not suppress the production of H2S in the brain(9) although they effectively suppress 

H2S production in the liver and kidney(13). However, the effect of treating tissue 

homogenates with SAM, a specific activator of CBS, did not suggest that CBS plays a 

greater relative role in the catalysis of cysteine desulfhydration in the kidney than in the 

liver(13). The subcellular distribution of CSE has been studied in the rat liver and kidney(92) 

which was mainly detected in the cytosolic fractions in the both tissues. 

1.3.4 Physiological roles of H2S and underlying mechanisms 

 
Although H2S was looked at as a toxic gas without any physiological function for 

quite long time, the possibility of H2S as a physiological factor cannot be ignored since it 

has been found and present in mammalian tissues at relatively high level and 

biosynthesized by endogenous enzymes. Recent studies have contributed significantly to 

our understanding of the physiological roles of H2S in the cardiovascular and nervous 

systems. In addition, H2S may have a proinflammatory role in some forms of 

inflammation(93;94) , such as experimental pancreatitis and associated lung injury. Studies 

of mRNA signal and prophylactic CSE blockage suggested that CSE but not CBS was 

involved in this proinflammatory pathway although the mechanism is still unclear(95).  

H2S was firstly identified as a vasodilator because of its relaxant effect on smooth 

muscle. Notably in tissue studies, the activity and expression of CBS were found lacking 
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in human internal mammary arteries, saphenous veins, coronary arteries and aortic arteries 

but CSE mRNA expression in the ileum, portal vein, and thoracic aorta.(96). These studies 

suggested that CSE but not CBS may play a major role in generating H2S in 

cardiovascular tissues under physiological conditions. Further studies on inhibitors further 

confirmed that the production of H2S in portal vein and thoracic aorta was catalyzed by 

CSE, whereas that in ileum was catalyzed by both CSE and CBS. In rat aortic tissues, 

rabbit ileum, and rabbit vas deferens, the relaxation mediating by H2S occurred in a dose-

related manner(97;98). Zhao et al.(99) demonstrated in rats  that H2S decreased blood 

pressure and relaxed aortic tissues by directly opening KATP channels in vascular smooth 

muscle cells.  

In nervous system, the first and most important evidence for the physiological role of 

H2S came from the measurement of endogenous sulfide levels in rats, mice and human 

brain samples(100). The study by Awata et al. in 1995(101) provided the enzymatic 

mechanisms for this endogenous H2S in rat brain: activities of CBS and CSE were 

detected in six different brain regions. Data showed that the activity of CBS was about 30-

fold greater than that of CSE. The transcriptional expression of CBS in rat brain 

(hippocampus, cerebellum, cerebral cortex, and brainstem) was later confirmed using 

Northern blot analysis but CSE mRNA was undetected(9). The reduced H2S production 

after the inhibition of CBS further pinpointed CBS to be the major endogenous enzyme 

for H2S production in brain, in contrast to the cardiovascular system.  

Several recent publications explored the mechanism(s) by which H2S formation by 

brain CBS can be controlled. It is now clear that brain CBS (like NOS) activity is both Ca 

2+ and calmodulin dependent(102).  This enzyme might be achieved by the influx of Ca 2+ 
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following depolarization to control neuronal H2S production. Such “short-term” control 

mechanism suggests that H2S, like NO, might act as a neurotransmitter. On the other 

hand, CBS activity is probably regulated by S-adenosyl-L-methionine (SAM) in a 

“longer-term” manner since changes on brain SAM levels also affect brain H2S formation. 

For example, recent studies showed that female mouse brain contained less H2S than 

brains from male, age-matched animals, which perhaps implies a role for sex hormones in 

the control of central H2S formation(103). Furthermore, castration of mice decreased the 

levels of testosterone, SAM and H2S in the brain whereas a single injection of testosterone 

in female mice increased brain levels of SAM and H2S to those found in male animals. 

Together, these results suggest that testosterone can manipulate brain H2S levels indirectly 

by regulating the local concentration of SAM.  

At physiological concentrations, H2S was found to induce long-term potentiation 

(LTP) in the hippocampus(9;104). Mechanistic studies have revealed that H2S increases 

cAMP levels in neuronal and glial cell lines and primary neuron cultures and also 

hyperpolarizes CA1 and dorsal raphe neurons most probably by activating KATP channels. 

In addition, H2S interferes with glutamate-mediated neurotransmission by an action on the 

NMDA receptor. For example, both direct electrical stimulation and glutamate application 

increase H2S production from mouse cerebral cells and NaHS (H2S donor) facilitates 

hippocampal LTP by increasing the sensitivity of NMDA receptors following a rise in 

intracellular cAMP. 

The mechanisms underlying H2S signaling are still unclear. Putative mechanisms are 

summarized in Fig. 1-4 ( see review by Moore PK in 2003)(94).  The first possible target of 

H2S signaling is Ca 2+ -dependent KATP channel(105). The vasorelaxant property of H2S on 
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Fig. 1-4 Putative mechanisms underlying H2S physiological functions.  

H2S may act as a gasotransmitter by (1) opening Ca 2+ -dependent KATP channel, (2) 

activation of NMDA receptor or (3) regulating Tyrosine kinase and/or G protein. A lot of 

studies have done to investigating the role of H2S and further studies are necessary for 

clearance.   



 
----------------------------------------------------INTRODUCTION-------------------------------------------------- 

  

  

37  

the rat aorta tissues was attenuated by Ca 2+-dependent-K+ channel blockers or in Ca 2+ 

free bath solution(106). Additionally, as potential H2S donors, both sodium hydrosulfide 

(NaHS) and L-Cys produced significant dose-dependent decreases in isolated uterine 

spontaneous contractility(107). In addition, CBS contains a calmodulin-binding sequence in 

its C-terminal domain, and it appears that this sequence suppresses desulfhydration 

activity in the absence of Ca 2+/calmodulin. Furthermore, NaHS induced a dose –

dependent hyperpolarization and reduced input resistance of CA1 neurons or dorsal raphe 

neurons. Changes in K+ ion flux were identified to be the main ionic basis for these effects 

of NaHS, and KATP channels in neurons were speculated as the specific targets.   

N-methyl-D-aspartate (NMDA) receptors may be another target of H2S signaling. 

Physiological concentrations of H2S specifically potentiate the activity of the N-methyl-D-

aspartate receptor, and induce long-term potentiation in the hippocampus(9;104). In the 

presence of a weak tetanic stimulation, NaHS at 10-120 µM facilitated the induction of 

long-term potentiation in rat hippocampal slices by enhancing the NMDA-induced inward 

current. Activation of the cAMP-dependent protein kinase pathway is likely to mediate the 

interaction of H2S and NMDA receptors. The 3rd putative mechanism of H2S signaling 

was mentioned by a few studies: H2S may change the activity of MAP kinase by 

regulating Tyrosine kinase and/or G protein, which may be involved in cell growth, 

proliferation or transformation(9;94).  

1.3.5 Roles of endogenous H2S in CNS diseases 

 
Recent publications help us to notice the role of H2S in CNS diseases. That H2S 

promotes glutamate-mediated transmission via NMDA receptors might also have 

implications for neurodegenerative diseases in which excessive activation of NMDA 



 
----------------------------------------------------INTRODUCTION-------------------------------------------------- 

  

  

38  

receptors is involved(108).  

In the brain of Alzheimer’s disease patients(109), reduced CBS activity, elevated Hcy, 

and a reduced level of SAM were found when compared with the brains of age-matched 

normal individuals(110). These observations on patients with Alzheimer’s disease are 

consistent with a role of CBS in H2S production. Reduced brain H2S concentration can 

reflect a higher turnover perhaps by binding to and enhancing glutamate-mediated 

transmission via NMDA receptors. In this way, H2S might contribute to the neuronal loss 

associated with this disease. H2S also was reported to modulate hypothalamo-pituitary-

adrenal axis function: given NaHS dose-dependently decreased KCl-stimulated 

corticotrophin-releasing hormone (CRH) in isolated rat hypothalami; SAM inhibited 

stress-related glucocorticoid increase in vivo(111). The possibility that H2S can induce LTP 

is also very important because this event is fundamental for several physiological 

processes including both memory and hyperalgesia(112).  

1.4 Stroke research 

 
Stroke is caused by an acute loss of focal cerebral functions due to either spontaneous 

hemorrhage or inadequate cerebral blood supply to a part of the brain as a result of low 

blood flow, thrombosis, or embolism associated with diseases of the blood vessels, heart, 

or blood. The recommended standard WHO stroke definition is: a focal (or at times 

global) neurological impairment of sudden onset, and lasting more than 24 hours (or 

leading to death) and of presumed vascular origin.  Clinically, signs of a stroke vary, but 

often include the abrupt onset of weakness or numbness in the face or the limbs on the left 

or right side of the body, loss of vision, acute headache, difficulty producing or 

understanding speech, physical instability, and dizziness. 
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1.4.1 Epidemiology 

 
As shown in WHO report of 2006, stroke is the 3rd leading causes of death after 

cancer and heart disease. On average, every 45 seconds someone in the United States has 

a stroke; each year about 700,000 people experience a new or recurrent stroke (American 

Heart & Stroke Association, Stroke fact 2006). These trends will remain so in the future 

both in developing and developed countries. As strokes are considered as a significant 

cause of death especially in elderly populations, hypoxic ischemia is also a common cause 

of damage to the fetal and neonatal brain. Neonatal stroke occurred in approximately 1 in 

4,000 to 1 in 10,000 newborns, and more than 80% involve the vascular territory supplied 

by the middle cerebral artery(113).  

In addition to its life-threatening properties, stroke is also a major cause of disability 

in the elderly and often requires long-term institutionalization. According to WHO 

estimates, 15 million people worldwide suffer a stroke annually; 5 million are left 

permanently disabled, which is placing a burden on both family and modern society. Such 

stroke burden is projected to rise from around 38 million dollars globally in 1990 to 61 

million dollars in 2020 (Atlas of heart disease and stroke, WHO, Sept. 2004). 

Unfortunately, no effective stroke therapy exists beyond thrombolysis, which is safe and 

effective for only a limited population of stroke patients. Therefore, any success in stroke 

research is more pronounced and meaningful not only to researches but also to human 

beings.  

1.4.2 Classification 

 
Normally, stroke can be classified into ischemic and hemorrhagic based on major 

mechanisms causing brain damage. Cerebral ischemia is characterized as cessation of 
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blood flow resulting in insufficient oxygen and glucose delivery to affected areas. The 

effects of ischemia are fairly rapid because the brain does not store glucose, the chief 

energy substrate and is incapable of anaerobic metabolism.
  There are several superficially 

defined subgroups and types of brain ischemia characterizing a broad spectrum of 

ischemic conditions in clinical and experimental situations. Clinically, 80% of the stroke 

cases are ischemic resulting either from atherothrombotic brain infarctions (ABI) or 

emboli of the cerebral vasculature. Additionally, global ischemia, an important type of 

ischemic brain insult resulting from the collapse of systemic circulation after cardiac 

arrest, leads to transitory hypoperfusion of the brain and brain damage at various brain 

areas(114). Finally, perinatal asphyxia can cause cerebral hypoxic/ischemic injury, which 

results in severe neurological sequelae and death(115). Non-traumatic intracerebral and 

subarachnoidal hemorrhage represents approximately 10% to 15% of all strokes. 

Intracerebral hemorrhage normally originates from deep penetrating vessels and induces 

injury to brain tissue by disrupting connecting pathways and causing local pressure injury. 

In either ischemia or hemorrhage, destructive biochemical substances released from a 

variety of sources play an important role in brain tissue damage, including various 

neurotransmitters.  

1.4.3 Risk factors 

 
Risk factors are traits and lifestyle habits that increase the risk of disease. Numerous 

epidemiological studies have identified that hypertension, coexisting cardiac diseases, 

diabetes and hyperlipidemia are among the most important biological risk factors for 

stroke. Elevated plasma levels of homocysteine or circulating fibrinogen, obesity and 

recent infection also could be minor risk for stroke. Likewise, there is compelling 
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evidence that lifestyle factors including smoking, alcohol consumption and lack of 

physical activity are significant factors for stroke risk. Most of them can be modified, 

treated or controlled but some cannot. Non-modifiable risk factors for stroke are age, race, 

sex, genetic factors and geography(116;117). Randomized trials have established the 

effectiveness of treatments target modifiable risk factors in stroke prevention. These 

strategies include anti-hypertension, carotid surgery, glucose control, treatment of 

hyperlipidemia, anti-thrombotic and anti-platelet therapy, and cessation of tobacco 

smoking(118). 

1.4.4 Therapeutic strategies 

 
The two fundamental approaches to acute stroke therapy are recovering blood 

perfusion and neuroprotection. Intravenous recombinant tissue plasminogen activator 

(rtPA) initiated within 3 hours of stroke onset remains the only approved and validated 

therapy for acute ischemic stroke, and combined use of intravenous/intra-arterial 

thrombolysis, mechanical thrombolysis, anticoagulant, and anti-platelet to maximize 

reperfusion are potentially attractive approaches(119). Neuroprotective agents are being 

developed targeting many aspects of the ischemic cascade in an attempt to prolong the 

viability of neurons subjected to ischemia. Any approach on neuroprotection will depend 

on the intensive understanding of pathophysiological event happening after stroke.  Anti-

edema agents, glutamate/NMDA receptor antagonists, calcium/sodium channel 

antagonists, free radical scavenging, and anti-inflammatory agents are all at various stages 

of clinical development (Clinical Pharmacology of Cerebral Ischemia 1997, edit by G.J. 

ter Horst & J. Korf). However, clinical trials of neuroprotective therapies shown to be 

effective in animal models have to date been uniformly negative, probably because of the 
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complexity of the disease or inadequacies of trial design(120).   

1.4.5 Research failures 

 
Although the success of rt-PA has revolutionized acute stroke management and 

proved that stroke is a treatable disease and numerous neuroprotective agents have been 

found to reduce infarct size in animal models, translation of neuroprotective benefits from 

the laboratory bench to the emergency room has not been successful. Early success in the 

preclinical studies may have prematurely pushed numerous agents into clinical trials. 

Translating bench success to the proof of clinical efficacy and safety has been frustrating. 

Lack of satisfactory animal models resembling the human disease, and discrepancies 

between preclinical studies and clinical trials have proven costly. Reasons for the failures 

have led to intense discussion for the last several years. The discrepancies between 

preclinical studies and clinical trials may be the cause of some of the problems 

encountered previously, including (1) outcome measures, (2) functional assessment, (3) 

pre-morbid conditions , (4) therapeutic windows and (5) drug-dosing schedules(121). These 

problems may limit the success of neuroprotective trail but give lessons for the future 

works. By learning from our past mistakes, we may be able to have more successful 

studies in the future.  

1.5 Cerebral ischemia 

 
There are three main well-accepted mechanisms causing ischemic strokes: (1) 

thrombosis, (2) embolism and (3) global ischemia (hypotensive) stroke. All are 

characterized as insufficient oxygen and glucose delivery to brain tissues and cells 

because of cessation of blood flow. Ischemic conditions challenge brain tissues in several 
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ways. Even a short lasting obstruction of cerebral arteries or hypoperfusion of the brain 

may cause quickly irreversible brain damage. However, brain damage may further evolve 

for a relatively long period after acute insult. The concept of “penumbra”, salvageable 

tissues surrounding the center of the irreversibly damaged brain tissues in experimental 

settings has fueled extensive research aimed to establish a mechanism or mechanisms 

behind ischemic brain pathology and to find potential treatments for stroke. Indeed, 

several targets for neuroprotection including excitatory amino acid, calcium overload, 

enzymes, free radicals, gene expression, apoptosis and inflammation have been 

explored(122).  

Considerable experimental evidence and recent discoveries involving the biochemical 

cascade of events that occurs during cerebral ischemia have resulted in an improved 

understanding of the pathogenesis of ischemic stroke. These discoveries point to the 

pathophysiological role of an intricate common pathway of neuronal injury that involves 

overactivation of excitatory amino acid receptors, inordinate intracellular calcium fluxes, 

activation of catabolic enzymes, and production of free radicals. According to the time 

course of ischemic cascade, cellular and molecular events can roughly be divided to acute 

and delayed cascades; both contribute to the final outcome. However, both cascades may 

share some features and therefore have some overlapping temporally and spatially. For 

example, inflammation was supposed to contribute to both early brain injury but also to 

the delayed cascades of brain injury after stroke. In addition, inflammation has been 

recognized not only as a detrimental response following stroke but also as a course of 

action involved in the brain recovery following ischemic insult(123). Altogether, all of these 

cascades comprise of a vast array of functional and morphological events that take place 
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in the brain immediately or even months after the ischemic insult.  These processes are 

influenced by a variety of neurotransmitters, neuromodulators, growth factors, and 

alterations in gene expression(124).   

1.5.1 Vulnerability of brain tissues to ischemia 

 
Brain represents only about 2.5% of human body weight but it consumes 15% of 

energy generated in the body. Moreover, brain is particularly susceptible to ischemia 

compared with other organs. Complete interruption of blood flow to the brain for only 5 

minutes triggers the death of vulnerable neurons in several brain regions, whereas 20–40 

minutes of ischemia is required to trigger death of cells in heart or kidney. The prominent 

vulnerability of brain tissues to ischemic damage relates to its high metabolic rate and its 

exclusive dependence on glucose as an energy source. Most energy utilized in the brain is 

used by neurons to maintain ionic gradients, which are important for normal cellular 

function. The brain’s heightened vulnerability to ischemia may involve other mechanism 

in addition to energetic considerations. Normal intrinsic cell-cell and intracellular 

signaling mechanisms, responsible for information processing may become harmful under 

ischemic conditions. These processes may hasten energy failure and enhance the final 

pathways underlying ischemic cell death in all tissues.  

1.5.2 Mechanisms underlying the acute brain ischemia 

 
Once acute brain ischemia happening, very complex events will induce the brain 

damage. Several mechanisms were well accepted as contributors to the damage after acute 

brain ischemia. These cascades were simply summarized by Dirnagl U. (125)(1999) in Fig. 

1-5; the details of events will be described here. 
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Fig. 1-5 Simplified overview of pathophysiologic mechanisms in the focally ischaemic 

brain (cited from Dirnagl U. 1999).  

Energy failure leads to the depolarization of neurons. Activation of specific glutamate receptors 

dramatically increases intracellular Ca 2+, Na+, Cl- levels while K+ is released into the extracellular 

space. Diffusion of glutamate (Glu) and K
+
 in the extracellular space can propagate a series of 

spreading waves of depolarization (peri-infarct depolarization). Water shifts to the intracellular 

space via osmotic gradients and cells swell (edema). The universal intracellular messenger Ca 
2+ 

over-activates numerous enzyme systems (proteases, lipases, endonucleases, etc.). Free radicals 

are generated, which damage membranes (lipolysis), mitochondria and DNA, in turn triggering 

caspase-mediated cell death (apoptosis). Free radicals also induce the formation of inflammatory 

mediators, which activate microglia and lead to the invasion of blood-borne inflammatory cells 

(leukocyte infiltration) via up-regulation of endothelial adhesion molecules. 
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1.5.2.1 Depolarization and energy breakdown  

 
The responds of brain tissue to acute energy breakdown are various temporally and 

spatially. Within seconds of cerebral ischemia, local cortical activity ceases which were 

detected by electroencephalography (EEG). This massive shutdown of neural activity is 

induced by K+ efflux from neurons, mediated by the opening of voltage-dependent K+ 

channels initially and by ATP-dependent K+ channels later; overall leading to transient 

plasma membrane hyperpolarization. A few minutes later, despite this energy sparing 

response, an abrupt and dramatic redistribution of ions occurs across the plasma 

membrane, associated with membrane depolarization (efflux of K+ and influx of Na+, Cl–, 

and Ca2+). This “anoxic depolarization” results in the excessive release of 

neurotransmitters, simultaneously, the energy consuming processes such as reuptake of 

excitatory amino acids are compromised leading to accumulation of excitatory 

transmitters, in particular, glutamate, which promotes spatial spread of cellular 

depolarization further, depletion of energy stores, and advancement of injury cascades.  

This region of the brain is often referred as ischemic core, which cannot be saved by 

any pharmacological interventions. However, the area surrounding the ischemic core, 

often referred as the penumbra, is also suffering from reduced blood flow to 20%-60% of 

its normal perfusion level,  and is at very high risk of tissue damage(126). ATP levels are 

maintained at near-normal level but electrical neuronal functions are interrupted. The 

neuronal dysfunction is manifested by decreased voltage leading to abnormal EEG finding 

and failure to detect sensory evoked potentials even though ionic gradients and membrane 

pumps are generally maintained and functional. As a result, cells composing the penumbra 
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are at this point viable but at a high risk to death. Also, post-ischemic glucose utilization 

in the forebrain, except in the hippocampus, was depressed below control values and 

either remained low (neocortex, striatum) or gradually rose to normal (white matter) by 48 

hr after the insult.  

Acute breakdown in energy metabolism also results in disturbed protein metabolism 

and has been observed in response to decreased cerebral blood flow in animal models. For 

example, it has been shown that protein synthesis decreases in response to even slight 

reductions in CBF(127;128) in the rodent brain.  In the fetal brain, protein synthesis was 

found to recover faster than adult brain from hypoxic/ischemic insults suggesting 

developmental differences in response to hypoxic/ischemic insults(129). It should be noted, 

however, that hypoxic or ischemic conditions do not inhibit all protein synthesis. 

Increased production of several transcription factors and heat shock protein can be 

observed during reperfusion(130). Interestingly, inhibitors of protein synthesis, such as 

cycloheximide(131) and anisomycin(132) have been found to protect neurons from ischemia, 

suggesting the involvement of newly synthesized “killer proteins”.  

1.5.2.2 Excitotoxicity 

 
Excitotoxicity is a phenomenon in which prolonged activation of excitatory amino 

acid receptors leads to cell death. The excessive release of glutamate activates glutamate 

receptors, which can be divided functionally into two subgroups: ionotropic and 

metabotropic receptors. Ionotropic receptors are directly coupled to ion channels whereas 

metabotropic glutamate receptors are coupled to more complex intermediary compounds, 

such as G-protein and phospholipase C (PLC) which modulate intracellular second 

messengers, such as inositol-1, 4, 5-trisphosphate (IP3), calcium and cyclic 
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nucleotides(133;134). The directly coupled ionotropic receptors can be further divided to 

three subtypes named by their selective chemical agonists: N-methyl-D-aspartate 

(NMDA), α-amino-3-hydroxy-5-methyl-isoxazolepropionate (AMPA) and kainate (KA).  

Metabotropic glutamate receptor (mGluR) are classified according to their amino acid 

sequence homology(135). Class I receptors are positively coupled to PLC and thereby 

regulate Ca2+ release form IP3-sensitive internal stores and via diacylglycerol (DAG) and 

IP3
(136). Class II and III mGluR are, on the other hand, negatively, coupled to adenylyl 

cyclase regulating decreasing the level of cAMP(137). Metabotropic glutamate receptors are 

found pre-and post synaptically and they may modulate the toxicity of ionotropic 

glutamate receptors, for example during excitotoxicity(138;139). However, direct stimulation 

of mGluRs with the selective agonist 1-aminocyclopentane-1, 3-dicarboxylic acid 

(ACPD) does not result in neurotoxicity(140).  

AMPA receptors belong to the class of ionotropic glutamate receptors. They are as 

widespread in the CNS as NMDA receptors, have fast gating kinetics, and are involved in 

the generation of the fast component of excitatory postsynaptic potentials. Structurally, 

AMPA receptors are composed of subunits termed GluR1-GluR4(141). All subunits have 

characteristics of a 900 amino acid long polypeptide chain and are subject to alternative 

splicing(142). This alternative splicing allows different expression profiles of different 

AMPA receptors in mature and developing brain, also splicing directed channel 

modifications may also explain the functional differences and cell specific distribution of 

different AMPA receptors. Although most neuronal AMPA receptors show small Ca 2+ 

permeability upon glutamate stimulation(143-145), they may modulate Ca 2+ influx due to 

AMPA receptor mediated Na+-dependent depolarization and the subsequent opening of 
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voltage activated calcium channels (VACCs) leading to release of Mg 2+ blockade and 

NMDA receptor activation(146;147).  

NMDA ionotropic receptors have an essential role in many functions of CNS, and 

have been suggested to be involved in glutamate mediated processes such as memory 

acquisition, cognitive processes and learning(148). These receptors are also crucial for 

excitotoxicity, where excessive release of synaptic glutamate and inability of neurons to 

respond properly, leads to neuronal death(149). NMDA receptors (NR) are heteromeric 

structures composed of two subunit types, NR 1 subunit and one of four NR 2 subunits 

(NR2A-NR2D)(150). The NMDA receptor channels have fundamental differences 

compared to AMPA and kainite receptor channels, which is related to their physiological 

role. NMDA receptors have a high single channel conductance, high Ca 2+ /Na+ 

permeability ratio, a voltage dependent Mg 2+ block and high affinity for glutamate (The 

NMDA receptor, 2nd edition by Collinridge and Watkins 1994, New York, Oxford 

University Press).  

The least studied glutamate receptor is the ionotropic kainite receptor. Kainite 

receptors are difficult to distinguish from AMPA receptors pharmacologically since 

selective agonists and antagonists are not available(151). Therefore, kainite/AMPA 

receptors are often referred together as non-NMDA receptors. Also, even though AMPA 

and KA receptors share a considerable amount to sequence homology, 

immunoprecipitation studies do not support the hypothesis that KA and AMPA receptors 

are composed of the same subunits(152). Indeed, molecular cloning has revealed that KA 

receptors are composed of high affinity KA1 and KA2 subunits and low affinity GluR5, 

GluR6 and GluR7 subunits, which may form functional ion channels(153). 
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Several brain insults elicit a pronounced release of glutamate characteristic to 

excitotoxicity(154-156). Reduction in blood flow and strong membrane depolarization, for 

example in cerebral ischemia, increase the opening of voltage-dependent ion channels and 

activation of glutamate receptors in neurons. Excessive glutamate release from the 

presynaptic membrane leads to excessive accumulation of postsynaptic intracellular 

calcium. Post-synaptically, NMDA receptors are mainly responsible of the influx of Ca 2+. 

Also, some types of AMPA and KA receptors may also contribute to Ca 2+ influx, as their 

coupled ion channels are partially permeable to calcium. Excessive neurotransmitter 

release leading to Ca 2+ overload triggers cascades that activate potentially detrimental 

enzymes, DNA fragmentation, proteolysis and lipolysis(157). As an example, Ca 2+ 

overload leads to activation of phospholipase A which produces free fatty acids including 

arachidonic acid and platelet-activating factor. Arachidonic acid inhibits glutamate 

reuptake from the synaptic cleft, which in turn leads to further activation of glutamate 

receptors, Ca 2+ accumulation, and further arachidonic acid formation(158). In addition, 

platelet-activating factor (PAF) increases the glutamate release from the presynaptic 

membrane(159). Arachidonic acid is also a substrate for cyclooxygenase-2 (COX-2) which 

in induced by ischemia and plays a significant role in the development of delayed 

ischemic brain damage and brain inflammation(160-162). Other neurotoxic cascades 

triggered by excitotoxicity include depolarization of mitochondria, calcium overload of 

mitochondria, and production of reactive oxygen species (ROS)(163).  

Blockade of glutamate receptors has been extensively studied as a treatment for brain 

ischemia, In cat, the selective NMDA receptor antagonist, MK-801, significantly reduced 

the ischemic infarct size, supporting the important role of NMDA receptors in mediating 
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brain tissue injury(164;165). Similar reports have been obtained from rats even if MK-801 is 

given early after the insult(166). Also, several AMPA receptor antagonists have been found 

to provide protection against ischemic insults(167-169). Moreover, voltage gated ion channel 

antagonists, such as phenytoin, carbamazepine and lamotrigine for Na+ channels(170) and 

nicarpidine(171) for Ca 2+ channels have been found protective in focal ischemia as well as 

brain lesion models induced by electric convulsions. However, although therapeutic 

approaches aimed against excitotoxicity have been shown to protect in experimental brain 

ischemia models, the narrow therapeutic time-window, together with severe side effects 

eliminate the use of currently available glutamate receptor antagonists in humans(172).  

1.5.2.3 Necrosis  

 
Necrosis means mortification of tissue. It is a passive pathological event arising from 

the spontaneous insults such as trauma or ischemia. Microscopically it is characterized by 

cell, organelle and mitochondrial swelling or dilatation, cytoplasmic vacuolation, breaking 

of cell membranes, disintegration of organelles, and finally cell bursting(173-175).  

Defects in membrane permeability and ion transport proteins as well as impairments 

in oxidative phosphorylation and depletion of high-energy phosphates are early, causal 

mechanisms for cellular necrosis. The mitochondria undergo a complex sequence of 

changes that involves contraction or condensation of the inner membrane and dissipation 

of metrical granules, inner membrane swelling and cristaeolysis, formation of flocculent 

aggregates, and then disintegration. Evolution of mitochondrial abnormalities has been 

demonstrated in various forms of cellular necrosis(176).  

In necrotic cells, ribosomes are dispersed from the rough endoplasmic reticulum and 

polyribosomes disassociated, resulting in many monomeric ribosomes that are found 
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“free” in the cytoplasm, causing the cytoplasmic matrix to appear dense and granular. 

Also cisterns of the endoplasmic reticulum and Golgi apparatus have been found to dilate, 

fragment, and vesiculate, and the plasma membrane can undergo a process called 

blebbing(177). Because cellular necrosis results in the liberation of antigenically active 

denatured intracellular debris, it is accompanied by an inflammatory response, which 

includes leukocytic infiltration, tissue edema, and ultimately a gross change in the overall 

histology of the focus of tissue damage due to the formation of a “scar”.  

Du and colleagues (1996)(178) have reported that 90-min transient focal ischemia in 

rats caused substantial cortical infarction within 6 h and was fully developed 1 day after 

the insult. They found also in their study that the majority of the cell death in severe 

ischemia was necrotic, whereas in a mild (30 min) transient focal ischemia model, 

characteristics of delayed, apoptotic cell death was more evident(179). Excitotoxicity 

caused necrosis of neurons in less than 24 h(180). In addition, global cerebral ischemia 

causes acute necrosis of principal striatal neurons in 24 h(181), but delayed degeneration of 

hippocampal CA1 neurons 2-4 days later(182-184). In the hippocampus, this neuronal death 

has been called post-ischemic “delayed neuronal death” by Kirino (1982)(185), as distinct 

from necrotic death.  

1.5.2.4 Reactive oxygen species (ROS) 

 
Oxygen-free radicals have been suggested to be involved in the pathogenesis of 

cerebral ischemia and reperfusion injury(186). On reperfusion after an ischemic insult, 

several molecular events, such as phospholipase activation, lipid peroxidation and 

dysfunction of the mitochondrial respiratory chain, have been shown to lead to production 

of free radicals and oxidative stress(187).  
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Oxidative stress is defined as an increase in intracellular ROS such as H2O2, 

superoxide anion (O 2- ), or hydroxyl radical (.OH). Among the oxygen-free radicals, 

superoxide (O 2- ) is a sample which is directly toxic to neurons(188). Importantly, oxygen-

free radicals may cause oxidation of proteins and DNA damage, both of which are 

hallmarks of ischemic injuries. In addition, there are several lines of evidence suggesting 

that superoxide (O 2- ) contributes indirectly to tissue damage by enhancing vasogenic 

edema and blood brain barrier (BBB) disruption after brain ischemia. The role of 

superoxide (O 2- ) in compromised BBB is supported by the fact that endothelial cells are 

the cellular constituents of BBB, but also the major source of superoxide (O 2- ) 

production(189). This way endothelial cells damage themselves in a self-inflicting manner. 

Moreover, reperfusion-induced oxidative stress (ROS) increases phagocytic activity of 

infiltrating peripheral leukocytes (neutrophils and macrophages)(190;191) and resident brain 

microglial cells after ischemia(192).  

Oxidative stress and especially ROS are important activators of certain transcription 

factors, which control the expression of several stress related genes. Activating protein-1 

(AP-1) and nuclear factor kappa-B (NF-κB) are among the most well described(193). 

Importantly, these cytokines play an important role in the pathogenesis of brain ischemia 

and post ischemic inflammation in the brain. Ultimately, early oxidative stress and ROS 

production not only predisposes delayed mechanisms of brain injury such as disruption of 

the BBB, vasogenic edema, gene expression and inflammation, but also form a link 

between acute and delayed mechanisms contributing to brain injury.  

1.5.2.5 Brain edema after ischemia 

 
During brain ischemia, a fall in ATP or phosphocreatine levels as a compromise to 
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energy production from glucose and oxygen in the mitochondria. Since brain tissue 

mainly relies on oxidative energy production, anaerobic energy production that ensues 

from ischemia leads to production of lactic acid and pH value falling. Increases of lactic 

acid and H+ content attract water and cause following cerebral edema, even though most 

of the cell edema is thought to develop by a leakage of extracellular Na+ inside the cells 

and due to a compromised pumping activity of ATP driven Na+/K+ ATPase(194). The 

resulting edema can further decrease perfusion in the brain and lead to some detrimental 

effects, such as increase in intracranial pressure, vascular compression and herniation. 

Meaningfully, brain edema is one of the most important determinants for whether a 

patient could survive the first few hours after a stroke in clinical cases(195). 

1.5.3 Delayed mechanisms contributing to brain damage 

 
Although a fall in energy homeostasis contributes to acute necrotic cell death during 

the early phases of ischemia, delayed and selective neuronal death also occurs. This is 

supported by the observation that restoration of cerebral blood flow can rapidly normalize 

the ionic disturbances and ATP levels in the brain but delayed cell death cannot be 

prevented. The classic example of the delayed effects of ischemia is the selective neuronal 

cell death in the vulnerable CA1 area of the hippocampus, which occurs several days after 

the ischemic insult(196). It has been suggested that transient energy depletion and loss of 

ionic homeostasis trigger the delayed or secondary damaging cellular events that 

eventually kill vulnerable cells.  

1.5.3.1 Apoptosis 
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Apoptosis is an active, energy consuming process of self-destruction of cells or 

damaged cells are eliminated. It can be also considered as an intrinsic suicidal program of 

the cell triggered by a wide array of stimuli. Therefore, apoptosis is physiologically an 

important way to maintain homeostasis of the organism and apoptotic machinery is 

evolutionarily conserved(173;197).  

Cell death by apoptosis is carried out by several facilitating receptors or factors. 

These include apoptosis inducing or death receptors (e.g. Apo-1/Fas, Apaf-1), apoptosis 

initiating factors (AIFs), members of the Bcl-2 protein family and cysteine proteases of 

the caspase/calpain family(198;199). The various apoptotic pathways and mechanisms can be 

roughly divided to caspase-dependent and caspase-independent mechanisms.  

Caspases have been widely recognized as the key apoptotic molecules(200;201). 

Caspases are cysteine containing enzymes having a pentapeptide motif Gln-Ala-Cys-X-

gly, where X is Arg, Gln or Gly(202). This family of proteases is synthesized as zymogens 

and various apoptotic upstream signals mediate maturation of these precursors to mature 

proteases. Upon activation these proteases are cleaved to small (10kD) and large (20kD) 

subunits from pro-caspase to yield active enzymes, which consists of two small and two 

large subunits as heterotetramers(203). Caspases can be divided into 2 categories: initiator 

caspases (caspase-1,-2,-4,-5,-8,-9,-10 and -14), which are activated by oligomerization-

induced autoprocessing, while effector caspases (caspase-3, -6, -7) are activated by 

initiator caspases or other proteases. Two major pathways have been recognized according 

to their initiator caspase: death receptor mediated apoptosis involving caspase-8 and 

mitochondrial pathway where various signals can trigger the release of harmful proteins 

by mitochondria, especially cytochrome c into the cytoplasm which further promotes 
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aggregation caspase-9, Apaf-1 and cytochrome c to form the apoptosome. The 

apoptosome instead cleaves and activates procaspase-3 into active caspase-3, the key 

effector caspase involved in caspase-mediated apoptosis(204;205).  

Although caspase inhibition has been shown to prevent apoptosis, cell death with 

apoptotic morphology still occurs suggesting caspase-independent apoptosis(206;207). Cell 

death by caspase-independent mechanisms has been shown to involve activation of other 

proteases such as calpain(208), proteasome(209) and serine proteases(210), apoptosis initiating 

factor (AIF)(211) endonuclease G (EndoG)(212) or Bax mediated apoptosis without caspase 

activation(213).  

The basic apoptosis mechanisms in neurons and other brain cells is the same as in all 

other cell types. However, apoptosis occurring as a physiological event (i.e. 

developmentally regulated) can be triggered by mechanisms distinct from those that 

trigger pathological event. Several lines of evidence have suggested the involvement of 

apoptosis in cerebral ischemia, although acute cell death in ischemia has been traditionally 

considered necrotic. Apoptotic neurons are predominantly located within the surrounding 

tissue (penumbra), and not in the ischemic core. Indeed, many experimental studies of 

transient cerebral ischemia and cerebral hypoxia/ischemia have demonstrated that neurons 

in the border zone of infarcts, scattered neurons in the cerebral cortex and striatum, and in 

the vulnerable CA1 area of the hippocampus become susceptible to TUNEL-staining(214-

218), a commonly used indicator of apoptosis.  

Ischemia induced apoptotic cell death has been suggested to involve activation of 

caspases, which has been supported by several studies(219). Caspase-3 activity and its 

cleavage from its precursor has been detected in adult rats subjected to cerebral 
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ischemia(220) as well as in neonatal hypoxia/ischemia model(221;222). Caspase-3 is a well 

known effector caspase and its inhibition has been found to prevent caspase activated 

deoxiribonuclease (CAD) activity and subsequent DNA cleavage(223). Moreover, 

inhibitors of caspase activity have been found neuroprotective in transient and permanent 

focal ischemia models in adult animals(224-228) as well as neonates(229). In focal ischemia, 

caspase cleavage products and TUNEL staining have been found to co-localized in 

neurons starting very early 1-2 hours after severe and 9-12 hours after mild 

ischemia(230;231). In global ischemia models, expression of caspase-3 mRNA have been 

found to be up-regulated(232). Importantly, there are also indications of increase neuronal 

procaspase-3 levels in clinical atherothrombotic stroke, although this increase is not 

associated with activated caspase-3 or cleavage of poly (ADP-ribose) polymerase 

(PARP)(233). however clinical cases of cardiac arrest show activated caspase-3 and 

cleavage product of PARP in cortical neurons as well as macrophages and microglia 

during 6-9 days after the insult(234).  

In addition to caspase-3, several other caspases have been found to be activated or up-

regulated in response to ischemic insults. For example, caspase-1 or interleukin-1 

converting enzyme (ICE) mRNA has been shown to be up-regulated in response to 

ischemic insults(235;236). Importantly, increased expression of caspase-1 substrate pro-

interleukin-1 β (pro-IL-1β) and its product IL-1β have been widely established in ischemia 

models. The important role of caspase-1 in ischemic cell death is supported by the 

protective effects of dominant negative mutation of caspase-1 in mice after ischemia(237). 

Alternatively, mice with knock out caspase-1 show reduced brain damage after ischemic 

insults(238).  
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Apoptosis can also occur without caspase activation. Ischemic and excitotoxic insults 

have been reported to involve caspase-independent apoptotic mechanisms(239;240). Most of 

these mechanisms are yet to be established in brain disease models, although their 

existence has been shown in several other experimental settings.  

1.6 Experimental models for cerebral ischemia 

 
A lot of literatures describe different approaches used to study cerebral ischemia in 

which many experimental models were designed to describe the cellular and molecular 

events that take place in the brain after ischemic insults.  

Primary cultures, co-cultures, cell lines and tissue cultures are widely used methods to 

study ischemia at cellular level. These in vitro models are relatively simple but powerful 

tools to study elements in brain ischemia in a highly controlled environment. In vivo 

animal models have mainly employed mammals such as rodents, gerbils, canines and 

primates. The most widely used rodent cerebral ischemia models are reviewed further.  

1.6.1 in vivo models 

 
The testing of potential therapeutic agents in animal disease models is essential prior 

to launching any clinical trials. Animal model of cerebral ischemia should satisfy the 

following criteria (241):  

1. The lesion that causes the ischemic injury should be highly reproducible.   

2. Monitoring and maintenance of physiological stability should be readily 

achievable. 

3. The cost involved in inducing the stroke and determining biological outcome 

should be reasonable and valuable. 
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4. Biological endpoints should be clearly defined and rigorously measured.  

5. The occlusive process and physiologic response should mimic human stroke. 

6. It should be devoid of or have minimal complicating side effects.  

An animal model for stroke is a living experimental system that contains most of the 

necessary elements: neurons, glia, brain vasculature and the whole complex physiology of 

the animal. The four most widely used animal models of cerebral ischemia are global 

ischemia, transient or permanent focal ischemia, and hypoxic ischemia in neonates(242).  

1.6.1.1 Global ischemia 

 
Global brain ischemia is induced by cardiac arrest, which results in cessation of 

systemic blood circulation, hypotension and hypoperfusion of the brain. Transient global 

ischemia induces selective ischemic cell damage, but not infarct(243). In contrast, ischemic 

stroke in the human often results in infarct. Thus, global models may not provide 

information completely applicable to most naturally occurring human ischemic stroke. 

However, global models are useful in investigating specific biochemical and physiologic 

responses of transient events of low cerebral blood flow, as well as mechanisms 

associated with the process of selective ischemic cell damage(244). 

This animal model has been applied in several mammal species such as gerbils(245;246),  

rats(247), cats(248), and primates(249). There are several ways to produce global cerebral 

ischemia, but the most common methods employ the occlusion of the common cerebral 

arteries and vertebral arteries for 5-30 minutes. Gerbils have been acknowledged to have 

ideal vasculature for the global forebrain ischemia studies and the simplest and most 

popular global ischemia model for screening novel neuroprotectants(250). It is mainly due 

to absence of anastomosis between the vertebral and internal carotid arteries which is 
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necessary to complete the Willis circle. So that bilateral occlusion of the common carotids 

in this model is sufficient to produce severe global forebrain ischemia(251;252).  This widely 

used method provides a highly reproducible model to study delayed neuronal cell death in 

the hippocampus(253). Delayed neuronal cell death occurs selectively in highly vulnerable 

brain regions such as the neocortical layers (layers 3, 5 and 6), dorsomedial striatum and, 

perhaps most importantly, in the CA1 region of the hippocampus(254-256). 

In the rat, the 4-vessel (common carotid arteries and anterior vertebral arteries) 

occlusion model(257) is a more difficult surgical procedure than the 2-vessel (common 

carotid arteries, CCA) occlusion with hypotension(258), but associated with less variability. 

Other global ischemia models employ occlusion of the CCAs bilaterally combined with 

increase in intracranial pressure(259), or controlled asphyxiation(260). 

1.6.1.2 Focal models 

 
The focal model is a closer approximation to human thromboembolic stroke(261) and 

produces a heterogeneous pathology that includes a necrotic core and salvageable 

penumbra, as well as normal, undamaged tissue in both ipsilateral and contralateral 

hemispheres(262). In the necrotic core, the area at the center of the ischemic territory, both 

neurons and glia die mostly through necrosis. The penumbra surrounding the core is the 

area said to be “at risk” but can be saved if appropriate interventions are given. It has 

received the most attention because it is then the most important area in the development 

of effective stroke therapies.  

Focal ischemia induced by physically occluding the middle cerebral artery has been 

performed in several species, including mouse(263), rat(264), rabbit(265), cat(266), dog(267), and 
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some primates(268). Non-human primates are clearly the species most similar to human; 

however, primate models of middle cerebral artery occlusion (MCAO) are not appropriate 

for initial testing because of high cost and insufficient reproducibility. Rat is currently the 

best species to perform MCAO, because it is relatively inexpensive, its cerebrovascular 

anatomy and physiology resemble that of higher species, and physiologic parameters can 

be easily monitored. There are several varieties of focal models in rat, many of which are 

variants of middle cerebral artery occlusion based on various methods of occlusion, 

including clip(269) (transient), coated or bare thread(270) (permanent or transient), 

cauterization(271) or clot(272) (permanent), and photothrombosis(273) or endothelin-1(274) 

(permanent, though some degree of reperfusion occurs).  

1.6.1.2.1 Permanent MCAO model 

 
The transcranial approach requires careful removal of a section of the skull and the 

underlying dura. This allows occlusion of the middle cerebral artery (MCA) with the aid 

of a microscope. Tamura et al. (1981)(264) developed a subtemporal approach of proximal 

MCAO at a point near the origin of the lateral striate arteries, which produced infarction 

of both the cortex and the caudate putamen(264). The original technique, however, was very 

invasive and the rats survived only for a few hours. Subsequent modifications preserving 

the zygoma and the masseter muscle improved the postoperative survival for several days 

and eventually the subtemporal approach emerged as the standard technique of focal 

cortical ischemia in rats(275-277). Berderson et al. (278) observed that occlusion of the MCA 

from its origin medial to the olfactory bulb to its junction with the inferior cerebral vein 

resulted in a 100% infarction of the frontoparietal cortex. Menzies et al. (279) further 

expanded and refined the Bederson modification by extending the thermocoagulatory 
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occlusion to a greater length of the main MCA trunk and to all major branches of the 

MCA from near its origin to beyond its distal junction with the inferior cerebral vein. So 

that larger and more uniform and reproducible lesions were obtained, probably related to 

the effective compromise of the distal cortical interarterial anastomoses.  Transcranial 

procedure involveds the opening of the skull, it thus affects the intracranial pressure and 

may reduce the edema that an intact skull would otherwise cause. Less invasive 

alternative noncraniectomy models are the suture model(280), thrombus model(281), 

endothelin model(282), and photothrombotic model(283). The occlusion of the MCA is 

caused either by filaments, heterologous or autologous clots, or endothelin administrated 

via the common carotid artery. The photosensitive dye excited by light at a specific 

wavelength injures the endothelium of blood vessels, which set up a nidus for thrombosis. 

Importantly, in this model no reperfusion or blood reflow occurs to the core of the infarct 

after the occlusion of the MCA, which is not the case in the transient focal ischemia 

model. A permanent model of ischemia may also be of clinical significance since it has 

been reported that a considerable proportion of the human stroke case are not associated 

with reperfusion during the first 24 hours after clinical stroke(284). 

1.6.1.2.2 Transient MCAO model 

 
The transient occlusion models have all the features of the permanent models, as well 

as the additional complication of reperfusion injury. Recirculation was accomplished by 

removing the clip(269) or pulling the thread out of the artery(285). Reperfused ischemic 

tissues are tissues at risk and best represents stroke in man after spontaneous or 

therapeutic thrombolysis. The clip models are transcranial and require removal of part of 

the skull and dura which may affect the intracranial pressure and edema formation. The 
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intraluminal thread (coated/uncoated) models are less invasive, but experimenters need to 

visualize the position of the filament either in situ postmortem or by staining of 

endothelium after transient occlusions.  

Transient middle cerebral artery occlusion (TMCAO) in rodents has been used 

routinely to model transient focal cerebral ischemia. The essential feature of this model is 

the temporary reduction of local blood flow in a defined area of the brain. The TMCAO 

model has received wide popularity, since it is a simple technique and it produces 

consistent MCA occlusion and recanalization without craniectomy. In this model (Fig.1-

6), a (nylon) thread is inserted to the internal carotid artery via common carotid artery 

(CCA) or external carotid artery (ECA)(286) and advanced so that MCA, anterior cerebral 

artery (ACA) and posterior cerebral artery (PCA) are blocked. In this model, the severity 

of the insult is controlled by varying the occlusion time. Another essential feature of this 

model is that ischemic damage, rather paradoxically, progresses for days and even weeks 

after restoration of blood flow. This phenomenon called “reperfusion injury: is well 

characterized and is characteristic of this model.  

1.7 Objectives 

 
Although the physiological functions of H2S have been identified in cardiovascular 

and nervous systems, its role in stroke is not known.  This project is mainly based on our 

recently finding that elevated plasma cysteine (endogenous precursor of H2S) levels are 

associated with poor clinical outcome in acute stroke patients(287). Combining the 

knowledge from previous studies on the H2S signaling mechanism, it is reasonable to 
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propose our hypothesis: H2S plays an important role in mediating cell damage in cerebral 

 

Fig. 1-6 Transient MCAO model by thread occlusion. 

 In this model, a (nylon) thread is inserted to the internal carotid artery via common 

carotid artery (CCA) or external carotid artery (ECA) and advanced so that MCA, anterior 

cerebral artery (ACA) and posterior cerebral artery (PCA) are blocked. 
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ischemia, via NMDA-receptor activation, which induces excitotoxicity in cells. Therefore 

we investigated the effects of H2S and the inhibition of its formation on stroke. Cerebral 

ischemia was studied in a rat stroke model created by permanent MCAO. The resultant 

infarct volume, H2S level changes, acitivity and expression of biosynthesis enzymes were 

measured 24 h after occlusion. The effects of H2S were investigated by using its 

endogenous precursors, exogenous donor and inhibitors of key enzymes for H2S 

production.  NMDA blocker was also used to investigate if NMDA receptors were 

involved in this process. This project not only contributes to further understanding on H2S 

and also identified a novel therapeutic tharget for the treatment of acute stroke.  
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2 MATERIALS AND METHODS 

2.1 Animals 

 
For in vivo experiments, male Wistar rats (250-280 g) were obtained from University 

Laboratory Animal Center and housed in groups of 4. All animals were under diurnal 

lighting conditions and allowed food and water ad libitum. All experimental procedures 

were approved by IACUC (Institutional Animal Care and Use Committee)  and performed 

in accordance with the guidelines set by the National University of Singapore (adapted 

from Howard-Jones, 1985)(288) and all efforts were made to minimize suffering and the 

number of rats used.  

2.2 Drug treatments 

 
Homocysteine (Hcy), L-cysteine (L-cys), propargylglycine (PAG), aminooxyacetic 

acid (AOAA), sodium hydrosulfide (NaHS), hydroxylamine (HA), β-cyanoalanine (β-

CNA)(9) and MK-801(289) were obtained from Sigma, USA.  All drugs were dissolved in 

saline and administered by intraperitoneal (i.p.) injection at the time points stated in Table 

2-1.  Each compound was administrated with varying dosages at the beginning for 

optimization. Control rats received corresponding volume of saline only.  
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Table 2-1 Drugs in using  

Drug Effect Injection Time point 

Hcy H2S precursor 50 min before MCAO 

L-cys H2S precursor 50 min before MCAO 

NaHS H2S donor 10 min before MCAO 

AOAA CBS inhibitor 60 min before MCAO 

HA CBS inhibitor 60 min before MCAO 

PAG CSE inhibitor 60 min before MCAO 

β-CNA CSE inhibitor 60 min before MCAO 

MK 801 NMDA-receptor blocker 60 min before MCAO 
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2.3 Permanent MCAO model 

 
Permanent focal ischemia was induced by irreversible occlusion of the left middle 

cerebral artery using a sub-temporal approach based on the model by Chimon & Wong 

(1998)(269) with modifications. Briefly, rats were anesthetized with chloral hydrate 

(350mg/kg, i.p., Sigma) and anesthesia was subsequently maintained with a reduced dose 

(150mg/kg) when necessary. A 2cm skin incision was made at the midline of the left ear 

and orbit (Fig. 2-1 (A)). The underlying skin was separated with membranes and retracted 

to expose the temporal muscle. The muscle was removed from skull surface and retracted 

to expose the squamosal bone, especially the point where the zygoma fuses to the 

squamosal bone. Zygoma was removed with clearance of muscle and tissue and the 

underside of the temporal bone was exposed by opening with spring-loaded retractors 

(Fig. 2-1 (B)). Under an Olympus stereo zoom microscope; a 2.0-2.5mm diameter hole 

was created on the squamosal bone by gentle grinding with a dental drill (Fig. 2-1 (C)). 

The dura mater over the MCA was carefully opened and retracted by the tip of a 27-gauge 

needle (Fig. 2-1 (D)). The left MCA thus appeared clearly under the microscope (Fig. 2-1 

(E)). Fig. 2-2 shows the typical branching pattern of MCA and the relationship to 

surrounding anatomical landmarks including the inferior cerebral vein (ICV) and the 

olfactory tract (OT). The MCA was then occluded by electro-cauterization from the point 

proximal to its origin and at the point where it intersects the ICV. All branches of the 

MCA between these 2 points were also cauterized and the artery was then detached to 

ensure definitive blood flow interruption. The temporal muscle and surrounding soft 

tissues were put back to original place, and the incision was sutured (Fig. 2-1 (F)). During 

surgery, rectal temperature was maintained at 37± 0.5ºC by means of a rectal probe  
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A         B   
 

C         D   
 

E                                                                         F  
 
Fig. 2-1 Surgery processes for MCAO model: 

(A) Skin incision: expose temporal muscle 

(B) Surgery window  

(C) Craniectomy window 

(D) MCA (middle cerebral artery) under microscope 

(E) Open the dura mater over MCA (under microscope: appears blurred because it is 

covered by saline 

(F) After surgery: incision was sutured. 

MCA 
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(thermocouple) connected to a heating blanket via an electronic temperature controller. 

After surgery, the rat was kept warm on the blanket until recovery from anesthesia. Sham-

operated control rats under the same surgical procedures only without the occlusion of 

MCA.  

2.4 Measurement of infarct volume 

 
Infarct volume is one of the common indexes for assessing the extent of ischemic 

brain injury following focal cerebral ischemia. 2, 3, 5-triphenyltetrazolium chloride (TTC, 

Sigma, USA) staining is a widely used method in quantification of infarct volume in 

experimental stroke models (290). It is a rapid, convenient, inexpensive and reliable method 

at 24 h after the onset of ischemia(291) and it corresponds closely with other histological 

methods, such as cresyl violet(292).  

TTC,  which gives a faint yellow when dissolved in solution, is reduced by 

dehydrogenase of functioning mitochondria to yield a formazan which is  purple in colour 

(293). As infarct brain tissues lacking of dehydrognase, they remain unstained (white) while 

normal tissues are stained purple, providing visually identification without microscopic 

examination. A stock solution of 0.4% TTC was prepared by dissolving 0.4g of 

tetrazolium blue chloride powder (Sigma, USA) in 5ml dimethyl sulphoxide (DMSO) 

(Sigma, USA) followed by 95ml distilled water, then the suspension was sonicated until 

the powder had completely dissolved to produce a clear pale-yellow stock solution. The 

final staining solution was prepared by adding 100ml of the stock solution to 300ml 

solution buffer (pH7.4) which contained 0.2M Na2HPO4, 0.2M NaH2PO4 and 8mM 

MgCl2. This 0.1 % TTC solution could be stored at 4ºC for not more than 3 months. 
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Fig. 2-2 Location of MCA and the surrounding anatomical landmarks.  

Inferior cerebral vein (ICV) and the olfactory tract (OT, white). Rectangle highlights the 

area that usually can be seen through a craniectomy window. 
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Rats were sacrificed at 24 h after the onset of ischemia. For staining brain sections, 

the rat brain was quickly removed after decapitation and all of overlying membranes were 

cleared using a fine forceps. The cerebrum was sectioned into eight 2-mm thick coronal 

slices using a brain-sectioning block (Zivic Miller, USA) and stained with 0.1% TTC 

solution at 37ºC for 30 minutes,  followed by fixation in a 4% phosphate buffered 

formaldehyde solution. The fixed coronal slices were arranged in sequence and scanned 

into computer with 600dpi resolution (Fig. 2-3). The infarct volume was measured by 

using digital imaging software (Olympus Micro Image Lite 4.0 system. Fig. 2-4).  

The true infarct volume (IV) was calculated by correcting for brain edema  and 

contraction of infarcted tissues (equations 1 and 2)(294). The measured infarct volume 

could also be converted by integration to the percentage of true infarct volume of ischemic 

damage in the contralateral hemisphere (equations 3). 

IV (mm3) = Σ [IA / (1+ASF)] * Thickness ----------------------------------equation 1 

(Thickness = 2 mm) 

ASF (Average swelling factor) = (IH-NIH) / (IH+NIH) / N -------------equation 2  

(N is the number of slides from one brain, N=8 in this project) 

Percentage of infarct volume = Σ IV / Σ (NIH* Thickness) * 100%---equation 3 

2.5 Neurological evaluation after MCAO 

 
Neurological evaluation by movement behavior is another well-used index for 

assessing the extent of ischemic brain injury after focal cerebral ischemia. Neurological 

scores were assessed at 24 h, 72 h and on the 7th day after MCAO surgery by a blinded 

observer. A scale of 0 to 4 (295-297) were used to assess the behavioral changes in the  
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Fig. 2-3 Scanned images of TTC-stained coronal section of a rat brain.  

Normal tissue uniformly stained by TTC (right hemisphere, purple). An area of infarction 

(white area) demonstrated by absence of TTC staining is observed in the left hemisphere 

at 24 hr after left middle cerebral artery occlusion.  
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Fig. 2-4 Measure infarct volumes with digital imaging software (Olympus Micro 

Image Lite 4.0 system).  
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animal after the MCAO surgery (Table 2-2 and Fig. 2-5: A-D). A higher score indicates 

poorer neurological status. At each time point, the highest score out of three consecutive 

trials was recorded and the interval between consecutive trials was more than 5 min to 

avoid animals’ boredom. The test consisted of the following maneuvers: firstly, rats were 

held by the tail 50cm above the ground and their forelimb posture was noted.  Normal 

animals extended both forelimbs toward the floor and were assigned a score of 0. When 

the forelimb contralateral to the side of the MCAO was consistently flexed when 

suspended by its tail, the rat was scored 1. Rats were then placed on ground and they were 

gently held by the tail. Rats that moved spontaneously in all directions but established a 

mono-directional circling toward the paretic side when given a light jerk of the tail were 

scored 2. Rats that showed a persistent spontaneous contralateral circling were scored 3. 

Rats that were inactive but walked only when gently pushed were scored 4. 
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Fig. 2-5 Neurological evaluation after MCAO surgery 

(A) animal extended both forelimbs toward the floor and were assigned a score of 0; (B) 

animal’s forelimb contralateral to the side of the MCAO was consistently flexed during 

the suspension and there was no other abnormality, the rat was scored 1; (C) Spontaneous 

movement in all directions; contralateral circling only if pulled by tail; (D) Spontaneous 

contralateral circling. 
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Table 2-2 Neurological evaluation of rats after MCAO 

Score Neurological Evaluation 

0 No apparent deficit (Figure 2-5:A) 

1 Failure to extend contralateral forepaw fully (Figure 2-5:B) 

2 Spontaneous movement in all directions; contralateral circling only 

if pulled by tail (Figure 2-5: C) 

3 Spontaneous contralateral circling (Figure 2-5: D) 

4 Inactive, walks only when stimulated 
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2.6 Measurement of blood pressure 

 
To evaluate if drugs used alter blood pressure, we measure conscious rat blood 

pressure after loading with the highest dosage used of each drug by a modified tail-cuff 

method(298)
. Briefly, an AD Instruments ML125 NIBP system was used for systolic blood 

pressure (SBP) measurement and it is a computerized non-invasive (indirect) tail-cuff 

system (Chart v4.1/Scope v3.6.8 for Windows, AD Instruments) (Fig. 2-6: A). Its aim is 

to record the first appearance of the pulse when it re-enters the tail artery during the 

deflation cycle of the proximal occlusion cuff. The rat was first kept in a warming cage at 

37 ± 1ºC for 5 to 10 minutes. It was then held in a restrainer (Fig. 2-6: B) and the tail-cuff 

was put in place for SBP measurement. The preset maximum cuff pressure for Wistar rats 

was 200mmHg. Pulse sensor was placed distal to the occluding cuff. Once the pulse had 

been established, the cuff was inflated to the maximum cuff pressure and then drops 

gradually back to 40mmHg. The return and increase of the pulse signal could be observed 

when the pressure dropped to the SBP point. SBP was the pressure at the time when the 

pulse signal returned to 5% of normal (Fig. 2-7: A-B). The measurement was repeated 3 

times for each animal and the mean value was recorded.      

2.7 Histology 

 
Twenty-four hours after MCAO surgery, rat brain tissues were collected and fixed in 

10% neutral formalin, and subsequently processed and embedded in paraffin wax. The 

specimens were then cut into 5 μm sections, fixed upon the slides, and stained with H & E 

(Sigma) as a standard method(299). Briefly, slides were deparaffinized with HistoClear 

(National Diagnostics), and hydrated by sequential passage through 100% ethanol, 90%  
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Fig. 2-6 Facilities for rat blood pressure (BP) measurement 

(A) AD Instruments ML125 NIBP system was used for systolic blood pressure (SBP) 

measurement and it is a computerized non-invasive (indirect) tail-cuff system (Chart 

v4.1/Scope v3.6.8 for Windows, AD Instruments) (B) Rat restrictor: rats were held in this 

restrictor after warming up.  
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Fig. 2-7 Blood pressure (BP) measuring draft 

(A) Computerized recording chart showing the pulse, pressure and heart rate. The pressure 

(channel 2) begins to drop when the maximum cuff pressure is reached, and continues to 

drop until it reaches about 40mmHg. The return and increase of the pulse signal (channel 

1) can be observed when the pressure dropped to the systolic BP point (indicated with 

arrow). Heart rate is calculated and showed in channel 3. (B) Pulse signal was observed at 

the SBP point.  
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ethanol, 70% ethanol, and distilled water. The sections were then stained with Harris 

Haematoxylin for 5 min and washed with deionized water before differentiated in 0.1% 

acid alcohol solution. The stained slides were then washed in tap water for 5 min and 

counter stained with Eosin (Sigma) for 1 min. Slides were then dehydrated by sequential 

passage through 70% ethanol, 90% ethanol, 100% ethanol, and finally cleaned with 

HistoClear. Once dry, the slides were mounted with HistoMount (National Diagnostics).        

2.8 Reverse transcription-polymerase chain reaction (RT-PCR) 

 
RT-PCR is a wide-used semi-quantification method to detect the target gene 

expression.  

2.8.1 Total RNA extraction 

 
After decapitation, the ipsilateral cortex was dissected from the rest of the brain on an 

ice pad. It was weighted and homogenized immediately in 10 volumes (w/v) of ice-cold 

Trizol reagent (Gibco, BRL) with a Polytron (Janke & Kunkel) and then total RNA was 

extracted according to manufacturer’s instructions. The isolated precipitated RNA was 

dissolved in diethyl pyrocarbonate (DEPC)-treated water. Total RNA yield was quantified 

by UV spectrophotometer (UV-1601, Shimadzu) at 260nm wavelength. RNA could be 

aliquoted and stored at -80ºC.  

2.8.2 RT 

 
Total RNA (5 μg) from the cerebral cortex was added to 1 μl of 0.5μg/ul oligo(dT)12 

and diluted with DEPC-treated water to a final volume of 12 μl. The RNA solution was 

incubated at 70ºC for 10min and quenched on ice for at least 1 min. 7 μl of the master 
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mixture was then added to the RNA primer mixture. The master mixture was prepared by 

adding 2 μl of 10×PCR buffer (M1665, Promega), 2 μl of 25mM MgCl2, 2 μl of 0.1M 

dithiothreitol (dTT) and 1 μl of 10 mM deoxynucleotide 5’-triphosphate (dNTPs) in the 

indicated order. Finally, 1 μl (20 U/μl) of AMV reverse transcriptase (Promega) was 

added to the tube and the mixture was incubated at 42 ºC for 50min. The resulting RT 

products, complementary DNA (cDNAs), could be stored at -20ºC.  

2.8.3 PCR 

 
PCR in exponential phase was performed to allow comparative analysis of the cDNA 

samples. The PCR was carried out in a total volume of 100 μl containing 50 μl of 2×PCR 

master mix buffer (M7505, Promega), 1 μl of each primer (20μM), 4 μl of cDNA from the 

RT reaction, and 44 μl DEPC water. The expression of the housekeeping gene, β-actin, 

was used as an internal control. The primer sequences and programs used were shown in 

Table 2-3 and Table 2-4, respectively.   

2.8.4 Gel analysis 

 
The PCR amplification products were electrophoresed on a 1.5% TAE agarose gel at 

100V for 20min (BIO-RAD, PowerPac 300). Both PCR products of CBS or CSE and β-

actin of the same sample were run on the same gel simultaneously. 1 KB DNA ladder was 

used to mark the gene size in each gel. The image was analyzed and quantified by Multi 

Genius Bio Imaging System (SynGene). The ratio between the target gene and internal 

control was calculated using the equation below to show the relative expression of target 

gene in rat brain cortex:  



 
-----------------------------------------MATERIALS AND METHODS-------------------------------------------- 

  

  

83  

Ratio= BD* of CBS (or CSE)/BD of β-actin---------------------------------equation 4 

*BD means band density 

2.9 In vitro production of H2S by plasma and cortical homogenate 

 
In vitro production of H2S was measured by a modified method which was first 

introduced by Abe K. et al in 1996(9). The protocol was modified based on our laboratory 

condition and optimization in both rat plasma samples and cortical samples. H2S produced 

in this assay was trapped in zinc actate solution. The resultant zinc sulfide (Zn (HS) 2) can 

be quantified by adding a special dye, N, N-DPD (N, N-dimethyl-p-phenylenediamine 

sulfate) in the presence of Fe2+ ion.  

All assays were done in duplicate. The calibration curve of absorbance versus sulfide 

concentration was made by using defined concentrations of sodium hydrosulfide (NaHS) 

solution.  

2.9.1 Measurement of H2S level in rat plasma 

 
Blood samples were collected with heparin-pretreated syringe from heart before 

animals were decapitated. After being centrifuged at speed of 40,000 g for 5 min, plasma 

sample was removed as supernant to a fresh tube which could be store at -80 ºC. Each 

reaction tube contained 75 µl plasma sample mixed with 425 µl dH2O and 250 µl of 1% 

zinc actate solution. After adding 10 % TCA (trichloroacetic acid) 250 µl, the reaction 

solution was incubated in room temperature for 10 min. after incubation, the reaction 

solution was centrifuged at speed of 14000g for 10 min; the supernate was then 

transferred to a new tube. The supernate was incubated with 133 µl N, N-DPD (20 mM in 

7.2 M HCl) and 133 µl FeCl3 solutions (30 mM in 1.2 M HCl) at room temperature for 15  
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Table 2-3. Primers for RT-PCR 

Gene   Sequence Product 

sense 5’- ATCTGGCACCACACCTTCTACAATGAGCTGCG -3’ 
β-actin 

antisense 5’- CGTCATACTCCTGCTTGCTGATCCACATCTGC -3’ 
870 bp 

sense 5’- ATGCTGCAGAAAGGCTTCAT -3’ 
CBS 

antisense 5’- GTGGAAACCAGTCGGTGTCT -3’ 
559 bp 

sense 5’- CGCACAAATTGTCCACAAAC -3’ 
CSE 

antisense 5’- GCTCTGTCCTTCTCAGGCAC -3’ 
579 bp 

 

Table 2-4. Programs used for PCR 

 
Name 

 

 
Step 1 

 
Step 2 

 
Step 3 

 
cycles 

 
β-actin 

 

 
94ºC*30sec 

 
60ºC*2min 

 
72ºC*1min 

 
29 

 
CBS 

 

 
94ºC*30sec 

 
58ºC*2min 

 

 
72ºC*1min 

 
32 

 
CSE 

 
94ºC*30sec 

 
58ºC*2min 

 
72ºC*1min 

 
32 
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min. The absorbance of the resulting solution at 670 nm was measured with a micro plate 

reader (SUNRISE).  

2.9.2 Measurement of H2S production in cortex 

 
Briefly, the whole cerebral cortex was isolated from adult rats and homogenized in 

ice-cold 50mM potassium phosphate buffer, pH 8.0, with a Ploytron homogenizer 

(Heidolph DIAX 900). For each reaction, 1 ml of assay mixture contained: 10 mM L-

cysteine, 2mM PDP, 100mM potassium phosphate buffer, pH 8.0, and 12 %( w/v) brain 

homogenate. Inhibitors (PAG/AOAA/HA/β -CNA) were incubated with tissue 

homogenates before the enzyme reaction at 37ºC for 5-10 min. Incubations for the 

enzyme reactions were performed in a transparent plastic bottle with a central tube inside. 

Center tube were filled with 0.3 ml of 1% (w/v) zinc acetate and a Whatman No. 1 filter 

paper (about 1.5cm*0.5cm) for trapping evolved H2S as zinc sulfide. Each bottle was 

flushed with N2 for 20 sec and the capped tightly. The reactions were initiated by 

transferring the flasks from an ice bath to a 37ºC shaking water bath. After 90 min at 

37ºC, reactions were stopped by injecting 0.5 ml of 50% (w/v) TCA. Bottles were 

incubated in the shaking water bath at 37ºC for an additional 60 min to complete trapping 

of H2S.  After that, to each central tube, 50 µl of 20mM N, N-dimethyl-p-

phenylenediamine sulfate (N, N-DPD in 7.2 M HCl) was added, immediately followed by 

50 µl of 30 mM FeCl3 in 1.2 M HCl. After 20 min of incubation at room temperature, the 

absorbance of the resulting solution at 670 mm was measured with a microplate reader 

(SUNAISE).  All assays were done in duplicate. The calibration curve of absorbance 

versus sulfide concentration was made by using defined concentrations of sodium 

hydrosulfide (NaHS) solution. A stock solution of NaHS (100 mM) was freshly prepared 
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by dissolving NaHS compensated with the ratio of NaHS/H2O immediately before use. 

2.10 Protein detection of key enzymes for H2S endogenous 
biosynthesis 

 
For investigating the possible changes and locations of 2 key enzymes which are 

involved in the endogenous pathway of H2S production, Western blotting and 

immunohistochemisty were used in this project.  

2.10.1 Primary antibody of CBS or CSE 

 
Unfortunately, there are no commercial primary antibodies which are specific to both 

rat CBS and CSE enzymes. Our collaborator, Dr. Zhu Yi Zhun supplied us polyclonal 

antibodies which obtained from rabbit serum at 3 months after CBS/CSE protein 

injection. But their purification and specification did not get any confirmation before 

which may limit our result of protein expression. Anyway, protein detection test should be 

done if commercial primary antibodies are available someday. The antigens were 

synthesized by BioGenes, Germany; peptides sequences as the following:  

• CSE 41-55:   C-SLATTFKQDSPGQSS 

• CBS 314-328: C-RAVVDRWFKSNDDDS  

2.10.2 Western blotting  

 
To examine the expression of CBS and CSE in brain tissue, Western blot analysis for 

these 2 key enzymes were conducted. Brain tissues were homogenized in ice-cold lysis 

buffer (75 mM Tris-HCl, pH 7.4; 150 mM NaCl; 1% Triton X-100; 10% glycerol; 2 mM 

Na
3
VO

4
; 10 μg/ml aprotinin; 10 μg/ml leupeptin; 20 mM NaF; 5 mM PMSF). Lysates 

were incubated on ice for 30 min before centrifugation (10,000 g at 4°C for 10 min) and 
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the supernatants were then assayed for protein concentrations using the Biorad protein 

assay (Bio-Rad, Hercules, CA) according to manufacturer’s instructions.. The 

supernatants were then mixed with sample buffer (125 mM Tris-HCl pH 6.8; 20% 

glycerol; 10% 2-mercaptoethanol; 4% SDS; 0.025% bromophenol blue) and boiled for 5 

min. Proteins (10 μg) were separated by SDS-PAGE and then transferred onto a PVDF 

(polyvinylidene difluoride) membrane (Bio-Rad, Hercules, CA) using a semi-dry 

transblotter (ATTO Corp., Tokyo, Japan). The membrane was blocked with 5% non-fat 

milk solution in Tween 20-Tris-buffered saline (TTBS) (1 M Tris-HCl pH 7.5, 0.9% 

NaCl, 0.05% Tween 20) for 1.5 hour at room temperature and probed with anti-CBS/anti-

CSE polyclonal antibody for another 2 hours. The membrane was then incubated with 

alkaline phosphatase (AP)-conjugated secondary antibody for 1.5 hour at room 

temperature, and finally visualized colorimetrically by EGL system for 1 min and exposed 

to KODAK film.  

2.10.3 Immunohistochemistry  

 
Target antigens could be localized in tissue sections by using labeled antibodies as 

specific reagents through antigen-antibody interactions. This is the principle of 

immunhistochemistry method to detect specific protein expression.  

Rats are perfused transcardially with 4% paraformaldehyde (PFA) in phosphate buffer 

at 50 mmol/L concentration under deep anesthesia until the color of liver turned from red 

to pale. After perfusion, the brains were removed, cut into coronal sections, and 

immediately immersion-fixed in 4% PFA. Coronal sections (30 µm thick) were cut on a 

vibratome. The brain sections were incubated with a primary antibody diluted with 

TBS/0.1% Triton X-100 at 4°C overnight. After being washed in TBS/0.1% Triton X-100, 
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the sections were incubated with a biotinylated secondary antibody for 1 hour at room 

temperature. They were washed and further incubated with a streptavidin-biotin-

peroxidase complex (Vector Laboratories). The peroxidase reaction was carried out via 

incubation with diaminobenzidine and hydrogen peroxide. Stained brain slides were 

observed and taken picture under microscope at different amplification lens.  

2.11 Statistical analysis 

 
All comparisons were performed by one-way ANOVA followed by post hoc analysis 

with Bonferroni correction using statistical software SPSS 11.5 for Windows. Data are 

expressed as mean±SEM. The critical P level set for significance is <0.05. 
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3 RESULTS 

3.1 Measurement of infarct volume after MCAO 

 
Infarct volume is one of the common indexes for assessing the extent of ischemic 

brain injury following focal cerebral ischemia. All animals were decapitated at 24 h after 

MCAO surgery for infarct volume measurement. MCAO causes widespread tissue 

infarction predominantly in the cortex of the occluded side of the brain.  

3.1.1 Dose-dependent enlargement of lesion by H2S precursors 

 
As the precursors of H2S, Hcy and L-Cys were preloaded intraperitoneally 50 min 

before the occlusion of middle cerebral artery. The measurement of infarct volumes 

showed that both of Hcy (Fig. 3-1 A) and L-Cys (Fig. 3-1 B) exacerbated brain tissue 

damages after MCAO surgery by the dose-dependent manner. The mean infarct volume ( 

N=5) was 197±11.5 mm3 for control rats which receiving saline only. Compared with the 

control group, 2 mmol/kg of Hcy significantly increased the infarct volume by 

approximately 45% which mean infarct volume (N=5) was 287±16.6 mm3.  Respectively, 

10 mmol/kg of L-Cys significantly increased the infarct volume by approximately 34% 

which mean infarct volume (N=5) was 264.5±8.6 mm3. Higher dosages of Hcy (5 

mmol/kg) and L-Cys (20 mmol/kg) also were tested but the results could not be used since 

the mortalities of animals were significantly increased to 80% and 100% respectively.  So 

that 10 mmol/kg of L-cys was used in the following in vivo experiments.  

3.1.2 Enlargement of infarct volume by a donor of H2S, NaHS 
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Fig. 3-1 Dose-dependent enlargement of lesion by H2S precursors loading 

The mean infarct volume (N=5) was 197±11.5 mm3 for control group which receiving 

saline only. (A) Compared with the control group, 2 mmol/kg of Hcy significantly 

increased the infarct volume by approximately 45% which means infarct volume (N=5) 

was 287±16.6 mm3, **P<0.001.  (B) Respectively, at dosage of 10 mmol/kg, L-Cys 

significantly increased the infarct volume by approximately 34% which means infarct 

volume (N=5) was 264.5±8.6 mm3, **P<0.001. 
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As a well-known donor of H2S, NaHS was injected intraperitoneally 10 minutes 

before MCAO. Administration of NaHS at 0.09 mmol/kg (i.p.) before MCAO had no 

significant effect on the infarct volume; but at 0.18 mmol/kg, the mean infarct volume 

(N=5) was 273.3±22.7 mm3, significantly increased to ~150% of control, 197±11.5 mm3 

(Fig. 3-2). NaHS was administered at a sublethal dose(300;301), and no increase in mortality 

was observed in this group of rats. So that 0.018 mmol/kg of NaHS was used in the 

following in vivo experiments.  

3.1.3 Blockage of MK-801 on enlargement of lesion by L-cys or 
NaHS loading 

 
For further investigating if NMDA receptor is involved in the neurotoxic effects of L-

Cys on brain tissue during cerebral ischemia, the NMDA receptor channel blocker MK-

801 was injected intraperitoneally 10 minutes before L-cys administration (Fig. 3-3). 

Coadministration of MK-801 (3 μmol/kg) significantly reduced the proinfarct effect of L-

cys at dosage of 10 mmol/kg from 264.5±8.6 mm3 to 198.4±13.6 mm3 (N=5). Meanwhile, 

coadministration of the NMDA receptor channel blocker MK-801 (3 μmol/kg) completely 

abolished the proinfarct effect of NaHS at dosage of 0.18 mmol/kg, the mean infarct 

volume of this group (N=5) was 200.9±14.3 mm3.  These results implied that activation of 

NMDA receptors may be involved in the ischemic cell damage mechanism caused by L-

cys or NaHS loading.  

3.1.4 Effect of inhibitors of CBS 

 
As the inhibitors of CBS, various dosages of AOAA and HA were administrated 

intraperitoneally 60 min before the occlusion of middle cerebral artery. Both of them 

showed ability to reduce infarct volumes in a dosa-dependent manner (Fig. 3-4). Notably,  
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Fig. 3-2 Enlargement of infarct volume by donor of H2S, NaHS.   
 
The mean infarct volume (N=5) was 197±11.5 mm3 for control rats which receiving saline 

only. Administration of NaHS at 0.09 mmol/kg (i.p.) before MCAO had no significant 

effect on the infarct volume. But at the dosage of 0.18 mmol/kg, NaHS significantly 

increased the infarct volume to 273.3±22.7 mm3 (N=5), **P<0.005. 
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Fig. 3-3 Blockage of MK 801 on enlargement of lesion by L-cys or NaHS loading 

Coadministration of MK-801 (3 μmol/kg) significantly reduced the proinfarct effect of L-

cys at dosage of 10 mmol/kg from 264.5±8.6 mm3 to 198.4±13.6 mm3 (N=5). Meanwhile, 

coadministration of the NMDA receptor channel blocker MK-801 (3 μmol/kg) completely 

abolished the proinfarct effect of NaHS at dosage of 0.18 mmol/kg, the mean infarct 

volume of this group (N=5) was 200.9±14.3 mm3.  These results implied that NMDA 

receptor may be involved in the neurotoxic effect of H2S on brain tissue during cerebral 

ischemia. (**P<0.005 when compared with control group; #P<0.05 when compared with 

only preloaded with L-cys or NaHS group)  
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administration of AOAA at 0.025 mmol/kg (i.p.) before MCAO had no significant effect 

on the infarct volume; but at 0.05 mmol/kg, the mean infarct volume (N=5) was 124.99± 

9.68 mm3, significantly reduced when compared with control group, 197±11.5 mm3. It is 

interesting to note that AOAA was not effective at higher doses (ie, 0.1 and 0.5 mmol/kg) 

which might be because of its toxicity to animals(302;303). So that 0.05 mmol/kg of AOAA 

was used in the following in vivo experiments.  Similarly, another CBS inhibitor HA was 

effective at 0.5 to 1.0 mmol/kg. Administration of HA significantly reduced the infarct 

volume to 133.21±5.0 mm3 at 0.5 mmol/kg and to 112.54±5.67 mm3 at 1.0 mmol/kg, 

respectively. The effects of CBS inhibitors on the ischemic lesion suggested the 

involvement of CBS activity during the cerebral ischemia.  

3.1.5 Effect of inhibitors of CSE  

 
Administration of β-CNA and PAG as inhibitors of CSE to rats at 60min before 

MCAO revealed that both of them were also able to reduce infarct volume in a dose-

dependent manner (Fig. 3-5). At dosage of 0.5 mmol/kg, intraperitoneal administration of 

PAG significantly reduced the infarct volume to 164.33±4.62 mm3, compared with the 

control group (P<0.05). At higher dosages, 1 mmol/kg and 2 mmol/kg of PAG further 

reduced the infarct volume to 134.96±6.13 mm3 and 90.24±3.02 mm3, respectively 

(P<0.005). Similarly, another CSE inhibitor, β-CNA also significantly reduced the infarct 

volume in a dose-dependent manner but it was effective at higher dosages: no effect at 0.5 

mmol/kg, 162.97±10.41 mm3 at 1 mmol/kg and 147.82±6.99 mm3 at 2 mmol/kg. . 

Notably, β-CNA and PAG were effective at much higher doses of 1 or 2 mmol/kg and 

PAG appeared to be more effective in reducing infarct volume relative to β-CNA than its 

potency in inhibiting H2S production suggested in in vitro experiments. 
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Fig. 3-4 Inhibitors of CBS reduced infarct tissue damages 

Both of AOAA and HA were able to reduce infarct volumes in a dosa-dependent manner. 

Notably, administration of AOAA at 0.025 mmol/kg (i.p.) before MCAO had no 

significant effect on the infarct volume; but at 0.05 mmol/kg, the mean infarct volume 

(N=5) was 124.99± 9.68 mm3, significantly reduced when compared with control group, 

197±11.5 mm3, **P<0.005. Similarly, another CBS inhibitor HA was effective at 0.5 to 

1.0 mmol/kg. Administration of HA significantly reduced the infarct volume to 

133.21±5.0 mm3 at 0.5 mmol/kg and to 112.54±5.67 mm3 at 1.0 mmol/kg, respectively 

(N=5, **P<0.005). It is interesting to note that AOAA was not effective at higher doses 

(0.1 and 0.5 mmol/kg).  
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Fig. 3-5 Inhibitors of CSE reduced the ischemic damages in a dose-dependent 

manner.  

At dosage of 0.5 mmol/kg, intraperitoneal administration of PAG significantly reduced 

the infarct volume to 164.33±4.62 mm3, compared with the control group (*P<0.05, N=5). 

At higher dosages, 1 mmol/kg and 2 mmol/kg of PAG further reduced the infarct volume 

to 134.96±6.13 mm3 and 90.24±3.02 mm3, respectively (**P<0.005, N=5). Similarly, 

another CSE inhibitor, β-CNA also significantly reduced the infarct volume in a dose-

dependent manner but it was effective at higher dosages: no effect at 0.5 mmol/kg, 

162.97±10.41 mm3 (*P<0.05, N=5) at 1 mmol/kg and 147.82±6.99 mm3 (**P<0.005, 

N=5) at 2 mmol/kg. .  
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3.1.6 Enlargement of lesion by L-cys loading required the 
conversion of L-cys to H2S 

 
For further confirming the involvement of H2S during cerebral ischemia, L-cys was 

coadministrated with either CBS inhibitor (AOAA) or CSE inhibitor (PAG) at their 

effective dosages before occlusion of MCA (Fig. 3-6). Compared with the L-cys loading 

group which mean infarct volume was 264.57±6.69 mm3, preloading of 0.05 mmol/kg of 

AOAA significantly reduced the tissue lesion caused by L-cys loading to 183.08±10.72 

mm3 whereas preloading of 1 mmol/kg of PAG significantly reduced the tissue lesion to 

158.44±9.1 mm3 as well.  

Moreover, the combinatorial effects of AOAA and PAG were also tested in cerebral 

ischemia rats which were preloaded with L-cys or NaHS (Fig. 3-7). Co-loading of AOAA 

(0.05 mmol/kg) and PAG (1 mmol/kg) significantly reduced the ischemic lesion caused 

by preloading of L-cys (10mmol/kg) from 264.57±6.69 mm3 to 126.32±2.19 mm3 (N=5, 

**P<0.005). But compared with NaHS pretreated group which mean infarct volume is 

273.33±17.57 mm3, preloading of AOAA and PAG had no significant effect on ischemic 

lesion (251.88±21.87 mm3). These results further confirmed that the conversion of L-cys 

to H2S was required in the enlargement of lesion by L-cys loading.  

3.2 Neurological evaluation after MCAO 

 
Neurological evaluation by movement behavior is another well-used index which is 

supposed to reflect the extent of ischemic brain injury after focal cerebral ischemia. But its 

value is a little limited by 2 main reasons: first, animal’s behavior may be affected by 

some unquatitized complex factors such as the health of animal; secondly, the standard 

score used in this study was commonly used but it only has 5 scores (0-4). Neurological  
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Fig. 3-6 Enlargement of ischemic lesion by L-cys loading requires the conversion of 

Cys to H2S.  

At their effective dosages, both inhibitors of CBS (AOAA) and CSE (PAG) can 

significantly decreased lesions caused by L-cys loading in cerebral ischemia. The mean 

infarct volume (N=5) was 197±11.5 mm3 for control group which receiving saline only. 

As previously described, preloading of 10 mmol/kg L-cys significantly increased the 

infarct volume by approximately 34% which mean infarct volume (N=5) was 264.5±8.6 

mm3, **P<0.001. Pre-treatment of 1 mmol/kg PAG could significantly reduce such 

enlargement of ischemic lesion to 158.44±9.10 mm3 (##P<0.001) and 0.05 mmol/kg of 

AOAA also significantly reduce such enlargement to 183.07±10.72 mm3 (##P<0.001). 

These results clued that the requirement of conversion of L-cys to H2S during cerebral 

ischemia.  
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Fig. 3-7 Effects of coadministration of CBS and CSE inhibitors 

Co-loading of AOAA (0.05 mmol/kg) and PAG (1 mmol/kg) significantly reduced the 

ischemic lesion caused by preloading of L-cys (10mmol/kg) from 264.57±6.69 mm3 to 

126.32±2.19 mm3 (N=5, **P<0.005). But compared with NaHS pretreated group which 

mean infarct volume is 273.33±17.57 mm3, preloading of AOAA and PAG had no 

significant effect on ischemic lesion (251.88±21.87 mm3).  
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scores were examined at 24 h, 72 h, 1 week, 2 weeks and 4 weeks after MCAO surgery by 

a trained and blinded observer. The results of neurological scores of groups were shown at 

Mean±SEM in Table 3-1. As expected, the results showed that neurological scores were 

parallel with the severity of stroke (infarct volume results). None of the sham-operated 

animals showed any motor-behavioral abnormalities and the scores were 0 during the 

assessment (data not shown). Within every group, all animals’ behavior was affected by 

the ischemic lesion after MCAO surgery and developed some of features upon recovery 

during 4 weeks time (Fig. 3-8). Among all groups, the animals preloaded with L-cys 

showed the highest scores all the time. The animals preloaded with NaHS also showed the 

highest scores at 24 h after MCAO but their recoveries were faster. The result was in line 

with the previous infarct volume results, which confirmed that preloaded with either H2S 

precursor (L-cys) or donor (NaHS) exacerbated the ischemic brain damages and the 

inhibitors of CBS and CSE could alleviate such exacerbation.  

3.3 Body weight changing 

 
Body weight was another general parameter for animal health that should be related 

with damage grade. In this study, animals’ body weight was recorded synchronously as 

neurological evaluation, at the day of MCAO surgery, 24 h, 72 h, 1 week, 2 weeks and 4 

weeks after MCAO surgery respectively and the results were shown in Table 3-2 as 

Mean±SEM (N=4 or 5). Within each group except sham group, body weight only reduced 

significantly at 24 h after MCAO and then increased steadily from ~280g to ~400g over 

the 4-week period. There were no significant differences among all groups at any time 

point (Fig. 3-9).  
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Fig. 3-8 Neurological evaluation after experimental cerebral ischemia 
 
Neurological scores were examined at 24 h, 72 h, 1 week, 2 weeks and 4 weeks after 

MCAO surgery by a trained and blinded observer. None of the sham-operated animals 

showed any motor-behavioral abnormalities and the scores were 0 during the assessment 

(data not shown). Within every group (N=5), all animals’ behavior was affected by the 

ischemic lesion after MCAO surgery and developed some of features upon recovery 

during 4 weeks time. Among all groups, the animals preloaded with L-cys showed the 

highest scores all the time. The animals preloaded with NaHS also showed the highest 

scores at 24 h after MCAO but their recoveries were faster.  The result was in line with the 

previous infarct volume results, which confirmed that preloaded with either H2S precursor 

(L-cys) or donor (NaHS) exacerbated the ischemic brain damages and the inhibitors of 

CBS and CSE could alleviate such exacerbation.  
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Table 3-1 Neurological scores after MCAO (Mean±SE, N=5) 
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Fig. 3-9 Changing of animals’ body weight after MCAO surgery.   

All animals lost weight significantly at 24 h after surgery except sham group (N=5, 

**P<0.005) and then increased steadily from ~280g to ~400g over the 4-week period. 

There were no significant differences among all groups at any time point (refer to the data 

in Table 3-2).  

Table 3-2 Body weight (g) changing (Mean±SE) after MCAO (N=5) 
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3.4 Blood pressures (BP) measurement 

 
To exclude complicated effects of physiological parameters on rats during cerebral 

ischemia, highest doses of each compound were loaded and blood pressure were recorded 

at different time points after MCAO surgery which will be described as following: BP was 

recorded immediately before and after compounds loading, immediately after MCAO 

surgery, 1 week and 4 weeks after MCAO surgery respectively. There was a rapid and 

transit reduction of systolic BP after MCAO in all groups except sham group, and the 

reduction were most significant at one day after MCAO. As rats recovered 1 week after 

MCAO, their systolic BP returned to the similar or a little lower level as before. The 

results also told that loading of each compound did not significantly affect the blood 

pressure so that their effects on infarct brain tissue had little relationship with blood 

pressure (Table 3-3).  

3.5 Histology 

 
Rats pretreated with saline or Cys (3 per group) were killed 24 hours after MCAO 

and intracardiac perfusion with 10% formalin was performed. The brains were then 

removed and processed for conventional histological analysis using the standard 

hematoxylin & eosin staining.  Consistently, histological studies demonstrated extensive 

primary infarct and edema (note the partial obliteration of the lateral ventricles) in the 

ipsilateral cerebrum of Cys-pretreated rats (Fig. 3-10 B). The ischemic penumbra 

extended further dorsally in the cortex to include the primary somatosensory cortex (S1) 

(Fig. 3-10 B). Damage in the septodiencephalic region appeared to be most severe, where 

much of the ipsilateral caudate–putamen nucleus was affected (Fig. 3-10 B&D). In the  
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Table 3-3 Blood pressure (mmHg) measurement (Mean±SE, N=5) 

 
Before 

injection 
30min after 

injection 
After MCAO 

24 h after 
MCAO 

Control 139.3±14.1 142.3±8.0 134.9±12.6 140.3±8.5 

L-cys 136.8±8.1 140.6±9.8 135.5±7.0 142.1±6.4 

NaHS 138.6±8.6 135.5±7.4 139.1±10.2 137.0±7.6 

AOAA 140.8±8.5 139.2±6.8 138.5±5.4 142.9±7.6 

HA 140.3±8.5 143.4±10.7 139.6±8.8 138.5±8.3 

PAG 141.5±8.9 142.2±8.2 141.0±9.5 136.2±6.6 

Β-CNA 140.1±10.1 141.5±10.0 142.7±7.1 143.5±7.9 
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Fig. 3-10 Histology of brain slides after MCAO 

Representative brain photomicrographs of rats at the level of septodiencephalic region 

after middle cerebral artery occlusion with hematoxylin & eosin staining. (A) Saline-

pretreated and (B) cysteine pretreated (10 mmol/kg intraperitoneally), panels (C) and (D) 

are high magnification views of the window indicated in (A) and (B), respectively. (B) 

Asterisks indicate ischemic penumbra extending to the primary somatosensory cortex (S1) 

as well as the caudate putamen nucleus (CPu) in the cysteine-pretreated brain. LV=lateral 

ventricle; VDB=vertical diagonal band; cc=corpus callosum. Scale bars = (A, B) 1 mm; 

(C, D) 100 mm. 
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saline-pretreated control rats, the ischemic penumbra extended rostrocaudally from the 

septodiencephalic to the caudal diencephalic regions of the cerebrum, similar to that 

observed in the Cys-pretreated group, but the depth of damage and edema were much less, 

i.e. the caudate–putamen was only marginally involved. Under high magnification, it 

could be clearly observed that neurons appeared normal, retaining most of the typical 

histological features (Fig. 3-10 C), in contrast to the shrunken and hyperchromatic 

neurons observed in the Cys-pretreated caudate putamen (Fig. 3-10 D). 

3.6 Gene detection 

 
All results of in vivo experiments clued to H2S was involved the brain tissue damage 

during cerebral ischemia.  However, when the cortical gene expression of CBS and CSE 

were investigated using RT-PCR, no significant difference was observed between sham-

operated and MCAO rats (Fig. 3-11).  

It has been reported that CSE is not expressed at detectable levels or expressed at a 

barely detectable level in the rat and mouse brain by Northern or Western blot analysis. 

However in this study, it has to be noted that the expression of CSE mRNA (by RT-PCR) 

is apparently higher than that of CBS, which is in stark contrast to the data obtained in the 

in vitro assay. It is possible that CSE is expressed at the mRNA level but not at the protein 

level. More conclusive studies can be made only when antibodies to both CBS and CSE 

become available. 

3.7 Assessment of H2S in vitro 

 
The enzyme activity is critical to production in a biological reaction. In this study, the 

acitivity of two key enzymes, CBS and CSE were assessed via an indirect method which  
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Fig. 3-11 Cortical expression of CBS and CSE mRNA in sham-operated and MCAO 

rats.  

RT-PCR was performed as described in the Methods. No significant difference in 

expression of either enzyme was detected between sham-operated and MCAO rats 

(independent sample t test). N=3. Inset is representative bands for CBS, CSE, and β-actin 

RT-PCR products obtained by gel electrophoresis. 
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was described by Abe(9).  

3.7.1 Endogenous production of H2S in rat cortex 

 
The endogenous level of H2S in the cerebral cortex almost doubled in the damaged 

cortex after MCAO (19.37±0.587 nmol/g tissue) when compared with sham-operated 

controls (10.57±0.956 nmol/g tissue). H2S levels increased further to 24.66±1.268 nmol/g 

tissue after L-cys preloading (Fig. 3-12). In addition, the H2S synthesizing activity in 

cortical homogenates also increased ~147% (2.788±0.28 µM [HS]/g/min) after MCAO 

when compared with sham-operated group (1.879±0.124 µM [HS]/g/min) (Fig. 3-13). 

These in vitro results confirmed the changing levels of endogenous H2S after the cerebral 

ischemia.  

3.7.2 Inhibition on H2S production by CBS and CSE inhibitors 

 
To gain further insight into the role played by H2S in this stroke model, the inhibitory 

effects of two CBS inhibitors (AOAA and HA) and two CSE inhibitors (β-CNA and 

PAG) on the H2S synthesizing activity in cortical homogenate was studied. All 4 

inhibitors inhibited H2S production in vitro in a dose-dependent manner (Fig. 3-14). 

AOAA exhibited the greatest potency with an IC50 value of 12.6 µmol/L, reaching 98% 

inhibition at a concentration of 0.5 mmol/L (data not show in this figure). The IC50 values 

for the other inhibitors are 0.5 mmol/L (HA), 2.5 mmol/L (β-CNA), and 7.1 mmol/ L 

(PAG). In addition, the CSE inhibitors achieved only 70% (β-CNA) and 55% (PAG) 

inhibition at the highest concentration used (10 mmol/L). 

AOAA inhibited H2S production effectively with an IC50 value of 12.6 µmol/L and 

caused almost complete inhibition of H2S production at 0.5 mmol/L. In contrast, PAG, a  
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Fig. 3-12 H2S levels in cortical tissues 24 hours after MCAO with or without Cys 

loading.  

Cys (10 mmol/kg) was injected intraperitoneally 50 minutes before MCAO. N=4. One-

way ANOVA: *P<0.001 against the shamoperated control group and **P<0.02 against 

MCAO group by post hoc analysis with Bonferroni correction. 
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Fig. 3-13 H2S synthesizing activity in rat cortex tissues.  

H2S synthesizing activity in cortical homogenates also increased ~147% (45.10±2.981 

nmol/g/min) after MCAO when compared with sham-operated group (66.91±6.711 

nmol/g/min). N=4, **P<0.001 against sham-operated control rats by independent sample t 

test.  
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Fig. 3-14 Inhibition of H2S synthesizing activity in cortical homogenate by inhibitors: 

[AOAA (▲), HA (■), β-CNA (♦) and PAG (●)]. The H2S assay was performed as 

described in the Methods. Each point represents the mean±SEM of 3 independent 

experiments determined in duplicate. The calculated IC50 values were 12.6 µmol/L 

(AOAA), 0.5 mmol/L (HA), 2.5 mmol/L (β-CNA), and 7.1 mmol/L (PAG). 
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potent CSE inhibitor, inhibited cortical H2S production with an IC50 value of 7.1 mmol/L, 

suggesting that PAG may be acting as a low-affinity inhibitor of CBS in this instance 

rather than as an inhibitor of CSE. 

As previously described, all 4 inhibitors reduced the enlargement of MCAO-induced 

infarct volume by L-cys loading in a dose-dependent manner (Fig. 3-4 & Fig. 3-5). The 

rank order of potency was AOAA, HA, PAG, β-CNA (Fig. 3-14). Significantly, the 

observed potencies of the compounds as H2S synthesis inhibitors in vitro paralleled their 

effectiveness in reducing MCAO infarct size in vivo. AOAA, as the most potent inhibitor, 

significantly reduced infarct volume at a dose of 0.05 mmol/kg. Interestingly, at higher 

doses, AOAA no longer exhibited any protective effects, probably indicating over 

inhibition of H2S formation, leading to detrimental effects, supporting an important 

neuromodulator role for H2S in the brain. It was further noted that at doses 0.5 mmol/kg, 

rats showed an unacceptably high mortality rate (data not shown). 

3.8 Protein detection of key enzymes in rat brain 

 
Endogenous production of H2S in mammalian tissues is mainly dependent on two key 

enzymes, CBS and CSE. Both acitivity and expression level are important to H2S 

synthesis. In this study, the enzymes expressions on protein level were detected by 

western blotting and immunohistochemistry.  

3.8.1 Western blotting 

 
Although no commercial antibodies for both of rat CBS and CSE are available yet, 

the protein level of CBS and CSE were tested via western blotting with the polyclonal 

antibodies as a gift from Dr. Zhu Yizhun (Department of Pharmacology, National 
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University of Singapore). These antibodies were rabbit’s serum products at three months 

after antigens injection. The antigens were synthesized by BioGenes, Germany; peptides 

sequences as the following:  

• CSE 41-55:   C-SLATTFKQDSPGQSS 

• CBS 314-328: C-RAVVDRWFKSNDDDS  

Unfortunately, the results showed that these antibodies were not specific for both rat 

CBS and CSE proteins because of high level of background and multiple protein bands 

shown.  Therefore, we could not confirm our results of in vivo experiments at protein 

levels.  

3.8.2 Immunohistochemistry 

 
In this study, I tried to locate the protein expression of CBS and CSE in rat brain via 

immunohistochemisty with the same antibodies above. Expression of both CBS and CSE 

were detected almost everywhere in the brain sections which might because of nonspecific 

properties of antibodies (Fig. 3-15 A-D). Limited with this technological reason, we 

cannot tell the expression of these two key enzymes and cannot compare the possible 

changing in normal rat brain with infracted brain. But further works should be finished for 

testify our hypothesis if the reliable antibodies are available in the future. It would be an 

important evidence to confirm the role of endogenous H2S during experimental cerebral 

ischemia.  
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Fig. 3-15 Immunohistochemisty pictures of brain section 

(A) CSE antibody (1:2000) under 10X4 magnification 

(B) CSE antibody (1:2000) under 10X10 magnification 

(C) CBS antibody (1:2000) under 10X4 magnification 

(D) CBS antibody (1:2000) under 10X10 magnification 
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4 Discussions 

 
H2S is the most potential candidate for next gasotransmitter since its biological 

functions have been noticed in the nearest decade. This study was designed to clarify the 

potential role of H2S as a mediator via NMDA-receptor activation in experimental 

ischemic model. The results showed that H2S level was increased in ischemic brain tissue 

and these increases could be inhibited significantly by the blockers of H2S endogenerate 

enzymes. Both of precursors and donor of H2S exacerbated cerebral ischemic damages 

and these exacerbations were decreased by NMDA-receptor blocker. This study aimed at 

providing further evidence on the role of H2S as the next potential gasotransmitter after 

NO and CO. Moreover, this study also provided a new therapy method for the cerebral 

ischemia.  

4.1 The physiological functions of H2S 

 
Gasotransmitter is a novel concept which is defined as small molecule of endogenous 

gas with important physiological functions(304). The production and metabolism of 

gasotransmitters are enzymatically regulated, and their effects are not dependent on 

specific membrane receptors. Following the identification of NO and CO as 

gasotransmitters, H2S may be qualified as the third gasotransmitter.  

H2S was looked as only a toxic gas until the detectable levels of H2S were measured 

in the circulation and in specific tissues. H2S is produced endogenously in mammalian 

tissues from L-cysteine mainly by two pyrodixal-5’-phosphated-dependent enzymes, CBS 

and CSE. Moreover, the genes that code for specific enzymes responsible for endogenous 
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H2S production were determinated and the specific cellular and membrane targets of H2S 

were identificated(305).  

The physiological functions of H2S were first noticed in the cardiovascular system. 

H2S has been shown to exhibit potent vasodilator activity both in vitro and in vivo(306). 

Recent studies have shown that H2S is generated from vascular smooth muscle cells 

(SMCs), catalyzed by specific H2S-generating enzyme(307;308). At physiologically relevant 

concentrations, H2S relaxes vascular tissues; an effect mediated by the activation of ATP-

sensitive K+ (KATP) channels in vascular SMCs. H2S directly alters the activity of KATP 

channels without the involvement of second messengers(309;310). At much lower 

concentrations, H2S greatly enhanced the smooth muscle relaxation induced by NO in the 

thoracic aorta which suggested the synergy of H2S with NO. Another study by Bian et 

al.(311) suggested that endogenous H2S contributed to cardioprotection induced by 

ischemic preconditioning, which effect may involve protein kinase C and KATP channels.  

Besides of the physiological functions in the cardiovascular system, H2S also may 

have a potential role in inflammation. Increased plasma H2S levels were detected in both 

humans with septic shock and mice with lipopolysaccharied-induced inflammation. The 

donor of H2S resulted in marked histological signs of inflammation but the CSE inhibitor 

exhibited marked anti-inflammatory activity(312). These finding suggested the enhanced 

formation of H2S contributed to the pathophysiology of the organ injury in 

endotoxemia(313;314). Moreover, Bhatia and colleagues suggested the important 

proinflammatory role of H2S  because that the CSE inhibitor significantly reduced the 

severity of pancreatitis and associated lung injury(315).  
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4.2 The effects of H2S in central nerve system 

 

4.2.1 Neurons 

 
Much progress has been made in the past decade in elucidating the roles of H2S at 

physiological and pathological conditions at the cellular level.  H2S, at physiological 

levels, was first shown to selectively stimulate NMDA receptor-mediated currents. This 

stimulation facilitates the induction of hippocampal LTP, but only in the presence of a 

weak titanic stimulation. H2S alone does not induce LTP thus suggesting that H2S mainly 

facilitates LTP in active synapses(9;104). The underlying mechanism by which H2S 

potentiates NMDA receptor function remains unknown, though one plausible route may 

be through redox modulation of thiol groups scattered along the extracellular domains of 

neuronal NMDA receptors, which are sensitive to oxidizing/reducing agents. There are 

many endogenous (e.g. pyrroloquinoline quinine, lipoic acid, reactive free radical oxygen 

species, glutathione, dihydrolipoic acid) as well as exogenous molecules (cyanide, 

flupirtine) that are capable of oxidizing and reducing NMDA receptor(316) leading to the 

attenuation and potentiation, respectively, of receptor responses. Therefore, H2S may 

activate NMDA receptor by virtue of its reducing property. One plausible redox 

modulatory site is the Cys pair (Cys744 and Cys798) located on the extracellular domains 

of the NR1 subunit(317).  

Intracellularly, H2S enhances NMDA receptor-mediated response via cAMP 

production. Exogenous H2S increases the production of cAMP in primary cultures of rat 

cerebral and cerebellar neurons, or in some neuronal and glial cell lines(104). cAMP 

activates cAMP-dependent protein kinase (PKA) during the initiation and late phase of 

LTP(318;319). The activated PKA may, in turn, phosphorylate NMDA receptor subunits 
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NR1, NR2A and NR2B at specific site so as to enhance NMDA currents which is 

essential for LTP induction(320;321). As such, cAMP may regulate LTP by phosphorylation 

of NMDA receptors. Besides this, H2S also decreases the time required to respond to 

NMDA, i.e. increases the sensitivity of NMDA receptor to its ligand, in a dose-dependent 

manner via the cAMP pathway. 

More recently, it has also been shown that H2S upregulates γ-aminobutyric acid 

(GABA) B receptor (GABABR), a G protein-coupled receptor located at pre- and post-

synaptic sites(322). Stimulation of the post-synaptic receptors generates long-lasting 

inhibitory post-synaptic potentials, which result in the increase of K+ conductance and are 

important for the fine-tuning of inhibitory neurotransmission. H2S has been shown to 

hyperpolarize neurons in the CA1 and dorsal raphe nucleus by increasing K+ efflux 

probably via ATP-dependent K+ (KATP) channels(10). At pre-synaptic sites, GABABR 

regulates the release of neurotransmitters, such as GABA and Glu, by inhibiting the 

voltage-sensitive Ca2+ channels. Upregulation of GABABR expression by H2S implies that 

H2S may play a part in maintaining the excitation/inhibition balance in brain. 

 In addition to its mediator role, H2S has been shown to protect the neurons from 

oxidative stress in both extracellular and intracellular microenvironment. It is well 

established that reduced GSH is an important antioxidant defense in the brain. It protects 

the brain by scavenging free radicals and other reactive species, removing hydrogen 

peroxide and lipid peroxides, preventing oxidation of biomolecules(323). H2S shares similar 

neuroprotective properties with GSH with a comparable potency in vitro. This has been 

demonstrated by the ability of H2S in (i) inhibiting hypochlorous acid-mediated oxidative 

damage(324); and (ii) inhibiting peroxynitrite-mediated protein nitration and 
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cytotoxicity(325). In addition, H2S readily scavenges H2O2, an important source of 

oxidative stress in most cells in vitro(326). Although intracellular GSH levels in neurons 

(and glia) are in the mM concentration range, its extracellular levels in the brain is 

virtually zero(324;327;328). Thus, the extracellular environment has a high dependency on 

other homeostatically regulated non-glutathione antioxidants, such as ascorbic acid, to 

scavenge free-radicals(329). As such, H2S may serve as another important candidate of 

endogenous antioxidant in the brain extracellular microenvironment due to its high 

endogenous production, readily diffusible property and high antioxidant potency 

comparable to that of GSH.  

H2S increases the production of reduced GSH(330) in neurons. NaHS treatment alone 

is able to increase the amount of GSH by enhancing the activity of γ-glutamylcysteine 

synthetase (γ-GCS) and up-regulating Cys (rate-limiting substrate of GSH synthesis) 

transport. This increase in glutathione content was shown to protect neurons from 

oxytosis, a form of programmed cell death caused by oxidative stress, triggered by high 

concentrations of Glu. H2S also protects cells of an immortalized mouse hippocampal cell 

line from oxidative Glu toxicity by activating ATP-dependent K+ (KATP) and Cl- channels, 

in addition to increasing the levels of glutathione. Through these two mechanisms, H2S is 

able to provide complete protection against Glu-induced cell death in different types of 

nerve cells, increasing cell viability to a level similar to neurons not treated with Glu 

(331;332).  

4.2.2 Glia 

 
H2S serves an important neuromodulator role in glia cells. Astrocytes, a major type of 

glia cells, play an important role in maintaining neuronal excitability, regulating brain pH 
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homeostasis, and uptaking various neurotransmitters, including Glu around its 

synapses(333). More importantly, a sufficiently large increase in [Ca2+]i in an astrocyte is 

capable of inducing and propagating a spreading wave of increased intracellular calcium 

termed “calcium wave” in adjacent astrocytes(334). In contrast to neurons which transmit 

signals via generating action potential, astrocytes and other glial cells communicate with 

each other via calcium signaling(335). It provides a basis for astrocytes to act as a 

syncytium for possibly modulating neuronal and vascular function, suggesting the integral 

modulatory role of glia cells in synaptic transmission(333;335). Exogenous H2S elicits 

calcium waves in primary cultures of astrocytes and hippocampal slices(336). This calcium 

wave triggered by H2S is also preceded by an increase in intracellular calcium 

concentration ([Ca2+]i) which occurs via calcium influx through calcium channels on the 

plasma membrane and to a lesser extent via calcium release from intracellular calcium 

store. In brain slices, this increase in [Ca2+]i caused by H2S spreads to the neighbouring 

astrocyte population and triggers a calcium wave.  

In contrast to astrocytes, microglial cells serve as the local macrophage population 

which could be activated upon foreign challenge in a similar analogy as peripheral 

macrophages(337). Microglia has been proposed to play a role in the progression of 

neuronal diseases such as Alzheimer’s disease (AD)(338) and Parkinson’s disease(339).  We 

recently found that exogenous H2S application has been shown to increase [Ca2+]i of 

microglia reversibly in a dose-dependent manner(340). Exogenous H2S triggers a calcium 

influx via plasma membrane and calcium release from intracellular store. This influx is 

partly dependent on activation of adenylyl cyclase and independent of the phospholipase 

C – protein kinase C – inositol triphosphate pathway. Moreover, inhibiting the synthesis 
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of endogenous H2S significantly decreased [Ca2+]i, suggesting that endogenous H2S may 

have a positive tonic influence on [Ca2+]i homeostasis. Besides its role as a second 

messenger, calcium ions serve as an integrator to control microglial behavior under resting 

and activated conditions, with elevated basal calcium concentration being a characteristic 

of activated microglia cells after lipopolysaccharide (LPS) challenge(341). With the readily 

diffusible property of H2S, it would be logical to anticipate that H2S might play a role in 

activating neighboring microglial cells by elevating their basal calcium level.  

Despite evidences showing the neuroprotective role of H2S on neurons, no study has 

been conducted on the protective effect of H2S on glial population to date. Various studies 

have demonstrated that GSH is localized preferentially in glia(342;343), with average 

intracellular levels of 4 mM in glia and 2.5 mM in neurons(344). In view of the effect of 

H2S in increasing GSH content in neurons, H2S might exert a similar or even more potent 

effect on glial cells to increase antioxidative GSH. 

Based on the known actions of H2S described above, the potential physiological 

functions of H2S in the brain may include calcium homeostasis, potentiation of LTP, 

suppression of oxidative stress, and modulation of neurotransmission, which has been 

summarized in Fig. 4-1. 

4.2.3 CNS diseases 

 
Up to date, only two CNS diseases characterized by alterations of H2S metabolism 

were described: firstly, H2S levels were found to be decreased by 55% in brains of 13 

patients with Alzheimer’s disease, compared with controls(345). Interestingly, no change in 

brain L-cysteine concentration or in CBS expression was detected in the patients with 

Alzheimer’s disease. However, the concentration of SAM in brains from Alzheimer’s  



 
----------------------------------------------------DISCUSSIONS---------------------------------------------------- 

  

  

123  

 

Fig. 4-1 Physiological functions of H2S in CNS (Reviewed by Qu K et al. 2007, accepted) 

Potential physiological functions of H2S in the brain may include calcium homeostasis, potentiation of LTP, 

suppression of oxidative stress, and modulation of neurotransmission. 
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disease sufferers was also less (reduced by 70%) compared with controls, which suggests 

that a deficiency in SAM might underlie the lack of H2S in these samples. Reduced brain 

H2S concentration can reflect a higher turnover perhaps by binding to and enhancing 

glutamate-mediated transmission via NMDA receptors. In this way, H2Smight contribute 

to the neuronal loss associated with this disease. 

The second central nerver system disease related to H2S level is Down syndrome. a 

metabolite of H2S, urinary thiosulfate and erythrocyte sulfhaemoglobin levels were both 

significantly increased in subjects with Down syndrome when compared with diet-

matched controls(346). The significance of this observation remains to be determined but 

again is suggestive of a role for this gas in CNS disease. 

4.3 The role of H2S as a mediator in cerebral ischemia 

 
Although several recent publications demonstrated the role of H2S in CNS, no study 

focused the cerebral ischemia yet. This study is the continuous work following the clinical 

findings that high level of plasma cysteine indicated poor clinical outcome in acute stroke 

patients. Cysteine is known to cause neuronal cell death and has been reported to be 

elevated in brain ischemia but it was first time to correlate plasma levels of cysteine with 

long-term clinical outcome at 3 months in acute stroke(299). In this clinical cases study, 36 

patients were assessed at 24 to 48 hours for early deterioration from stroke progression or 

complications (secondary outcome measure) and at 90 days after stroke onset using the 

modified Rankin scale (primary outcome measure). A significant association was found 

between plasma cysteine levels and patient outcome, with lowest levels in patients who 

had good outcome, intermediate levels in patients with poor outcome but were alive, and 

highest levels in deceased patients. Meanwhile, other excitatory amino acids such as 
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methionine, glutamate, aspartate, and glycine levels did not show any such association. 

These were consistent with the failures of clinical trials of a variety of NMDA receptor 

antagonists or modulators of the NMDA receptor to stroke patients to date (347). In 

contrast, long-term clinical outcome appeared to be related to the plasma levels of 

cysteine. Further more, multiple regression analysis showed that cysteine remained an 

independent predictor of outcome since elevation on cysteine levels did not correlate with 

baseline NIHSS scores or with stroke subtypes. Thus, cysteine may provide additional 

prognostic information to physical examination. The observed increase in cysteine levels 

in patients who had poorer outcome might be the result of increased release after the 

stroke. If so, the present findings raise the possibility that these amino acids are involved 

in the pathophysiology of acute stroke. On the other hand, it is entirely possible that the 

cysteine levels were raised because of other comorbidities that may be present even before 

the stroke. Although raised homecystein levels may in principle lead to increased cysteine 

levels, it has been reported that plasma Cys remained unchanged in some patients with 

stroke with hyperhomocysteinemia(348). Those clinical findings encouraged us to 

investigate the role and the mechanism of cysteine during stroke brain damage. The 

following works were finished on rat permanent cerebral ischemia model.  

In this study, dose-dependent administration of both cysteine and its precursor, 

homocysteine increased the infarct volume by approximately 45% and 34% respectively 

in a rat experimental cerebral ischemia model (Fig. 3-1 A&B).  Furthermore, the effect of 

cysteine was abolished by inhibitors of the enzyme cystathionine b-synthase (CBS) and 

cystathionine gamma-lyase (CSE) that convert cysteine to hydrogen sulfide (H2S), 

indicating that this novel neuromodulators may be acting as a mediator of ischemic brain 
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damage (Fig. 3-4 & Fig. 3-5). Raised plasma cysteine in patients with stroke may reflect 

increased production of H2S in the brain and thus predispose to poor outcome in clinical 

stroke. Inhibition of H2S formation may therefore be a novel approach in acute stroke 

therapy. In the animal study, the plasma concentration of Cys achieved at the Cys loading 

dose used (10 mmol/kg) was likely to be much higher than that obtained in patient plasma, 

approximately 60 to 80 mmol/L. However, cross-species extrapolation is not meaningful 

here. For many drugs, it is known that human requires a much lower dose (on a unit body 

weight basis) than rats for the same effect. 

Cysteine is known to be toxic to neurons. It causes neuronal death when given orally 

to infant mice(349) and has also been shown to be important in the pathology of brain injury 

in immature animals after hypoxic–ischemic brain injury(350). Using a rat hippocampal 

slice preparation, Cys was shown to be innocuous under normal conditions but causes 

toxicity to neurons deprived of glucose, oxygen, or both(351). Extracellular levels of Cys 

have also been found to be markedly elevated after ischemic brain injury caused by 

carotid artery ligation in Mongolian gerbils(352). Thus, elevation in extracellular Cys may 

occur during brain ischemia and contribute to the pathophysiology of ischemic brain 

injury. Our animal model data support this view and suggest that elevated plasma cysteine 

may be responsible for worse outcome in clinical stroke. In addition, homocysteine, 

another precursor of H2S, is also strongly linked with increased risk of acute stroke. 

Homocysteine may be converted by the action of cystathionine b-synthase (CBS, EC 

4.2.1.22) to cystathionine, which, in turn, is acted on by cystathionine g-lyase (CSE, EC 

4.4.1.1) to form Cys. Thus, increased homocysteine may lead to increased Cys and H2S 

production. Moreover, it has been reported that CBS may condense Cys and homocysteine 
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to form cystathionine and H2S
(17). These strongly suggest a possible association and 

interaction of the actions of Cys and homocysteine in stroke through the production of 

H2S. 

The toxicity of Cys has been shown to be mediated through the NMDA receptor and 

can be blocked by various NMDA antagonists(60;353), although Cys is not an agonist on the 

NMDA receptors. Interestingly, Cys is the precursor of H2S, a novel neuromodulator(9) 

that can enhance NMDA receptor function(104). It is, therefore, possible that high Cys may 

be translated into increased production of H2S, which mediates tissue injuries through the 

NMDA receptors. This is strongly supported by the present observation that inhibition of 

the conversion from Cys to H2S, the proinfarct effect of Cys, was completely abolished 

(Fig. 3-4 & Fig. 3-5). Cys has been shown previously to increase infarct volume after 

MCAO in a dose-dependent manner(299). This effect of Cys was abolished by AOAA, a 

CBS inhibitor, suggesting that Cys exerts its effect after conversion to H2S via the action 

of CBS in the brain. We show here that NaHS, an H2S donor, is also able to enhance the 

destructive effects of cerebral ischemia, leading to a marked increase in the extent of 

tissue damage. At a dose of 0.18 mmol/kg of NaHS (Fig 3-2), the effective dose of H2S is 

about 0.06 mmol/kg based on a yield of approximately 30%(354); this is equivalent to only 

0.6% of the effective dose of Cys at 10 mmol/kg. This is therefore consistent with the 

possibility that Cys increased the cerebral infarct by production of H2S. 

Moreover, the effects of both Cys and NaHS were abolished by MK-801 pretreatment 

(Fig. 3-3), confirming that H2S acts most likely by an effect via NMDA receptors. It has 

been reported previously that physiological concentrations of H2S enhances NMDA 

receptor function through activation of adenylyl cyclase. Increased production of cAMP, 



 
----------------------------------------------------DISCUSSIONS---------------------------------------------------- 

  

  

128  

observed in primary cultures of both neuronal and glial cells, may lead to phosphorylation 

of the NMDA receptor subunits at specific sites by protein kinase A, resulting in the 

activation of NMDA receptor-mediated excitatory postsynaptic current(104). Thus, in 

cerebral ischemia, H2S may enhance the NMDA receptor mediated excitotoxicity of 

glutamate. Together with the observed increase in the endogenous level of both H2S and 

H2S synthesizing activity in the MCAO damaged cortex (Fig. 3-12 & Fig. 3-13), these 

various observations strongly suggest that H2S plays an important role in tissue damage in 

the ischemic brain, possibly through enhancement of NMDA receptor-mediated calcium 

overload. Another possibility is that H2S influences the ischemic infarction by altering 

cerebral blood flow. However, because H2S causes vasodilation and vasodilators are 

generally cerebroprotective, leading to reduced infarct size(355); this possible mechanism is 

much less likely. The ability of cortical tissue to increase production of H2S very quickly 

after MCAO or Cys loading suggests that the enzyme responsible for this conversion is 

not saturated by its substrate in vivo. Abe and Kimura(9) noted that CBS inhibitors 

including AOAA completely inhibited the production of H2S in rat whole brain 

homogenates, whereas CSE inhibitors, including PAG, were ineffective at a concentration 

of 2 mmol/L. Abe and Kimura also concluded that CBS is the predominant enzyme 

responsible for H2S production in the brain. It has also been reported that CBS is localized 

in most areas of the adult mouse brain but predominantly in the cell bodies and neuronal 

processes of Purkinje cells and Ammon’s horn neurons(356). Consistently, our present 

results (Fig. 3-14) also suggest a predominantly CBS-catalyzed production of H2S in the 

cerebral cortex. AOAA inhibited H2S production effectively with an IC50 value of 12.6 

μmol/L and caused almost complete inhibition of H2S production at 0.5 mmol/L. In 
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contrast, PAG, a potent CSE inhibitor, inhibited cortical H2S production with an IC50 

value of 7.1 mmol/L, suggesting that PAG may be acting as a low-affinity inhibitor of 

CBS in this instance rather than as an inhibitor of CSE. It has been reported that CSE is 

not expressed at detectable levels or expressed at a barely detectable level in the rat and 

mouse brain by Northern or Western blot analysis. However, it has to be noted that the 

expression of CSE mRNA (by RT-PCR) is apparently higher than that of CBS (Fig. 3-11), 

which is in stark contrast to the data obtained in the in vitro assay. It is possible that CSE 

is expressed at the mRNA level but not at the protein level. More conclusive studies can 

be made only when antibodies to both CBS and CSE become available. 

All 4 inhibitors used reduced the MCAO-induced infarct volume in a dose-dependent 

manner. Significantly, the observed potencies of the compounds as H2S synthesis 

inhibitors in vitro paralleled their effectiveness in reducing MCAO infarct size in vivo. 

AOAA, as the most potent inhibitor, significantly reduced infarct volume at a dose of 0.05 

mmol/kg. Interestingly, at higher doses, AOAA no longer exhibited any protective effects, 

probably indicating over inhibition of H2S formation, leading to detrimental effects, 

supporting an important neuromodulator role for H2S in the brain. It was further noted that 

at doses 0.5 mmol/kg, rats showed an unacceptably high mortality rate. The toxicity of 

higher dosages of AOAA was consistent with other studies which mentioned that AOAA 

might result selective neuronal loss in the rat cortex(357) and AOAA may produce 

excitotoxic lesion by impairment of intracellular energy metabolism and its ability to 

block the mitochondrial malate-aspartate shunt(358).  

In the mammalian CNS, H2S is formed from the amino acid cysteine by the action of 

cystathionine β-synthase (CBS) with serine as the by-product.  Based on both in vivo and 
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in vitro works in this study, it is first time but reasonable to consider the role of H2S as a 

mediator during experimental cerebral ischemia. It provided further knowledge on the 

effects of H2S in CNS. The results suggested endogenous synthase of H2S in the brain is 

mainly catalyzed by CBS, which is consistent with the previous works. Combined with 

recent publications which probed that the mechanism(s) by which H2S formation by brain 

CBS can be controlled. Such work can provide important clues to the potential biological 

roles of this gas in the CNS. It is now clear that brain CBS activity is both Ca2+ and 

calmodulin dependent, suggesting that ‘short-term’ control of neuronal H2S production by 

this enzyme might be achieved by the influx of Ca2+ following depolarization. The 

existence of such a control mechanism suggests that H2S, like NO, might act as a 

neurotransmitter.  

4.4 Conclusion and prospect 

 
It is first time to suggest the possible role of H2S during cerebral ischemia and the 

underlying mechanism via present results. Inhibition of H2S synthesis should be 

investigated further for its potential as a novel neuroprotective stroke therapy. It is also a 

development to further understand the role of H2S as a potential gasotransmitter in central 

nerve system.  

The value of this study was limited by the disappointing results of gene expression 

and protein expression of CBS and CSE in brain tissues. Besides of the technological 

limitation, it was also because of the complexity of endogenous biosynthesis and 

metabolism of H2S in mammalian. A lot of potential factors may be involved but 

unknown and this blank is still waiting to be filled. It will be more valuable if we could 

investigate the protein level changes of two key enzymes for H2S biosynthesis during the 
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cerebral ischemia. In addition, as CBS is a calcium and calmodulin dependent enzyme, the 

biosynthesis of H2S should be acutely controlled by the intracellular concentration of 

calcium. Further works should be finished in in vitro hypoxia model to investigate the 

possible effect of H2S to various cell types in central nerve system and the underlying 

molecular mechanisms. The calcium levels and NMDA receptor’s involvement should be 

noticed in in vitro experiments. It will tell a complete story about the role of H2S during 

cerebral ischemia.   

Sufficient evidence has accumulated in support of H2S acting as a signaling molecule 

in the mammalian CNS. This field is still in its infancy and much will be learnt in the near 

future about the central roles play by H2S in health and disease as interest on this molecule 

grows among neuroscientists. One area that is of particular interest concerns the crosstalk 

between H2S and NO in the CNS. It is obvious that the two systems have much in 

common. For instance, it is well established that NMDA receptor activation leads to Ca2+ 

influx and the increase in [Ca]i stimulates neuronal NOS activity to produce NO(359). In 

addition, it has been shown that the cytoplasmic domain of NR1 subunit of NMDA 

receptor is physically associated with neuronal NOS via the postsynaptic density protein 

PSD95(360). NMDA receptor activity can also be downregulated when NO modifies the 

thiol group of a critical Cys residue located on the extracellular domain of NR2A subunit 

via S-nitrosylation(361). Adding H2S to this picture would no doubt multiply the level of 

complexity with regard to the regulation of NMDA receptor function by many-fold. 

Perhaps, H2S is a key to fully understand NO functions in the CNS, and vice versa.
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