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SUMMARY 

Lycium barbarum L. (L. barbarum), commonly known as wolfberry, is a well-known 

Chinese herbal medicine with various biological activities, such as hematopoiesis 

promotion, liver protection, and immunity improvement. The latter has been attributed to 

the polysaccharides that form the major component of Lycium fruit. However, the 

mechanisms are not fully elucidated yet. In this present study, we isolated and purified 

polysaccharide-protein complex from Lycium fruit (LBP) and investigated its 

immunomodulatory effects on T cells, macrophages, and dendritic cells (DCs). 

 

L. barbarum fruit was extracted with cold water and precipitated with ethanol, followed 

by removal of protein by Sevag method. The crude LBP obtained was separated by 

DEAE-cellulose chromatography and purified by size exclusion chromatography. Five 

homogeneous fractions, designated as LBPF1, LBPF2, LBPF3, LBPF4, and LBPF5 were 

obtained. The carbohydrate contents of LBPF1-5 were 48.2%, 30.5%, 34.5%, 20.3%, and 

23.5%, respectively. Their protein contents were 1.2%, 4.8%, 4.1%, 13.7%, and 17.3%, 

respectively. Their molecular weights were 151 kDa, 147 kDa, 146 kDa, 150 kDa, and 

290 kDa, respectively. LBP and LBPF1-5 were not contaminated by LPS. LBP was non-

toxic or mildly toxic to mice. 

 

T lymphocytes play central roles in adaptive immunity. The results showed that crude 

LBP, LBPF4, and LBPF5 could significantly stimulate mouse splenocyte proliferation. 

The proliferation proved to be that of T cells, but not B cells. Cell cycle profile analysis 

indicated that crude LBP, LBPF4, and LBPF5 could markedly reduce sub-G1 cells. 
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Crude LBP, LBPF4, and LBPF5 could prompt CD25 expression, inducing IL-2 and IFN-

γ gene transcription and protein secretion. Moreover, crude LBP, LBPF4, and LBPF5 

could activate transcription factors, NFAT and AP-1, but not NF-κB. Administration of 

LBP either by i.p. injection or by oral gavage for 7 days induced mouse T lymphocyte 

proliferation significantly.  

 

Macrophages play crucial roles in innate immunity. The results showed that LBP 

upregulated the expression of CD40, CD80, CD86, and MHC class II molecules on 

peritoneal macrophages. LBP and LBPF1-5 activated transcription factors NF-κB and 

AP-1 by RAW264.7 macrophage cells, induced TNF-α, IL-1-β, and IL-12p40 mRNA 

expressions, and enhanced TNF-α production in a dose-dependent manner. LBP 

improved macrophage capacities in endocytosis and phagocytosis. 

 

DC immunogenicity correlates with its maturation. The results showed that LBP induced 

phenotypic and functional maturation of DCs with strong immunogenicity. LBP 

upregulated the expressions of CD40, CD80, CD86, and MHC class II molecules by 

mouse bone marrow-derived DCs (BMDCs) and splenic DCs, downregulated DC uptake 

of antigen, enhanced DC allostimulatory activity and the production of IL-12p40 and p70 

at gene and protein levels. All its five fractions were active. LBP primed Th1 response in 

vivo. LBP-treated BMDCs enhanced Th1 and Th2 response in vitro and in vivo.  

 

In conclusion, the results showed that LBP is capable of activating macrophages, DCs, 

and T cells, indicating it can enhance both innate and adaptive immunity. The present 
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data provdie scientific evidence on potential use of LBP as supplemental treatment for 

people under poor immune conditions such as cancer, hepatitis, tuberculosis, and aging. 
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CHAPTER 1 

INTRODUCTION 
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1.1 Advances in Lycium barbarum Polysaccharide Research 

Lycium barbarum L., commonly known as wolfberry, is a well-known Chinese herbal 

medicine as well as tonic. Lycium is the genus name derived from the ancient southern 

Anatolian region of Lycia. Barbarum is the species name indicating that the wolfberry 

was of foreign origin outside Anatolia or China where it was first discovered. The end 

abbreviation, L., refers to Linnaeus who described the species in 1753 in Species 

Plantarum. L. barbarum grows mainly in northwestern China, especially in Zhongning 

county, Ningxia province. In traditional Chinese medicine (TCM), L. barbarum fruit 

possesses the functions of nourishing the kidney and replenishing essence, nourishing the 

liver and improving eyesight. It has been used in China for thousands of years to treat 

diseases such as insomnia, liver dysfunction, diabetes, visual degeneration, tuberculosis, 

hypertension, and cancer. Ancient Chinese believed wolfberry fruits had multiple health 

benefits and used them to make tea, soup, stew and wine or chewed them like raisins. L. 

barbarum fruit is also a medicinal nutrient which contains many micronutrients and 

phytochemicals, including 11 essential and 22 trace dietary minerals, 6 essential vitamins, 

18 amino acids, 5 unsaturated fatty acids, beta-carotene, zeaxanthin, and polysaccharides 

(Young et al, 2005; Gross et al, 2006). Polysaccharides are a major constituent of L. 

barbarum fruit, representing up to 31% of pulp weight. Since 1980s, numerous 

researches have been conducted with modern technology to unveil its bioactive 

components, of which polysaccharides have been extensively addressed. This review 

summarizes the isolation and pharmacological properties of L. barbarum polysaccharides 

(LBP). 
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1.1.1 Isolation, Purification and Characterization 

The plant polysaccharides are usually localized in cytoplasmic organelles, plasma 

membranes, and cell walls (Herman and Lamb, 1992). To effectively isolate LBP from 

the Lycium fruit, it is necessary to first disrupt the cells by grinding or homogenization. 

Based on the characteristics that LBP is water-soluble but ethanol-insoluble, it can be 

extracted with water and precipitated with 5 volumes of ethanol. The co-precipitated 

protein can be removed by repeatedly adding the Sevag reagent (chloroform:n-butanol = 

4:1, v:v). Oligosaccharides and other substances with low molecular weight can be 

removed by dialysis against water. The remaining solution is then lyophilized to obtain 

crude LBP. To obtain LBP, crude LBP can be fractionated by Diethylaminoethyl 

(DEAE)-cellulose ion exchange chromatography and purified by size exclusion 

chromatography (SEC). The carbohydrate content of the purified LBP can be determined 

by phenol-sulfuric acid assay and the protein content can be measured by the Bradford 

method. The molecular weight can be determined by sodium dodecyl sulfate (SDS)- 

polyacrylamide gel electrophoresis (PAGE), SEC, or high performance liquid 

chromatography (HPLC). The amino acids can be analyzed by β-elimination method. The 

sugar constituents can be analyzed by gas chromatography and mass spectrometry. Some 

researchers prefer to remove the lipid and pigments of the Lycium fruit by reflux with 

organic chemicals such as acetone and petroleum with 80% ethanol before extraction 

with water (Wang and Chen, 1991; Tian et al, 1995; Luo et al, 1999; Gan et al, 2001; 

Wang et al, 2002). This process can reduce the non-specific precipitates in the subsequent 

ethanol precipitation, but reflux with hot organic chemicals and high concentration of 

ethanol may cause irreversible alteration of the polysaccharide structure. Another 
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approach is to directly extract LBP with water without the preliminary step of removing 

lipid and pigments (Huang et al, 1998; Peng and Tian, 2001). The disadvantage of this 

approach is that it increases the non-specific water-soluble substances. This will make the 

subsequent precipitation and concentration steps more difficult. LBP is commonly 

extracted with hot water (80ºC) (Luo et al, 1999; Gan et al, 2001; Wang et al, 2002). As 

LBP is a polysaccharide-protein complex, hot water may denature the protein and affect 

the bioactivity. Therefore, some researchers prefer to use cold water for extraction (Tian 

et al, 1995; Huang et al, 1998; Peng and Tian, 2001). The disadvantage is that LBP may 

not be completely dissolved in cold water. 

 

While most researchers use crude LBP for studies, a few laboratories have obtained the 

purified fractions. Tian et al (1995) isolated crude LBP and separated it by DEAE-

cellulose chromatography (eluents: 0.05, 0.1, and 0.5 M NaHCO3) into three fractions, 

which were designated as LBP1, LBP2, and LBP3, respectively. LBP1 was further 

purified on Sephadex G-100 column to obtain the homogenous L. barbarum 

glycoconjugates (LbGp) with molecular weight of 88 kDa. It was composed of arabinose, 

galactose, and glucose in a molar ratio of 2.5:1.0:1.0 and 18 amino acids. Structure 

analysis indicated that the linkage between the glycan and the core protein backbone may 

be O-linkage. Five fractions were obtained by changing the elution buffers to H2O, 0.05, 

0.1, 0.25, 0.5 M of NaHCO3 in the step of DEAE-cellulose chromatography, which were 

designated as LBP1, LBP2, LBP3, LBP4, and LBP5, respectively (Huang et al, 1998). 

The latter 3 fractions were further purified by SEC to obtain LbGp3, LbGp4, and LbGp5, 

respectively. It was found that the molecular weights of LbGp3, LbGp4 and LbGp5 were 
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92.5 kDa, 214.8 kDa and 23.7 kDa, respectively. Carbohydrate contents of LbGp3, 

LbGp4 and LbGp5 were 93.6%, 85.6%, 8.6%, respectively. LbGp3 was composed of 

arabinose and galactose in a molar ratio of 1.0:1.0. LbGp4 was composed of arabinose, 

galactose, rhamnose and glucose in molar ratio of 1.5:2.5:0.43:0.23. LbGp5 was 

composed of rhamnose, arabinose, xylose, galactose, mannose and glucose in molar ratio 

of 0.33:0.52:0.42:0.94:0.85:1. The nitrogen contents were 0.83% in LbGp3, 1.72% in 

LbGp4, and 9.58% in LbGp5. The linkage between the glycan and protein may be of O-

linkage in LbGp4 (Huang et al, 1998). LbGp2 was studied by this group later (Peng and 

Tian, 2001), its carbohydrate content was 90.71%. The molecular weight was 68.2 kDa as 

determined by SEC. The glycan possessed a backbone consisting of (1→6)-beta-

galactosyl residues, about fifty percent of which are substituted at C-3 by galactosyl or 

arabinosyl groups and the major non-reducing end being made of arabinose (Peng and 

Tian, 2001). The number of LBP fractions obtained was determined by the concentrations 

of eluent. Four fractions of LBP (LBP-I, -II, -III, -IV) were obtained by successive 

elutions with H2O, 0.05, 0.1, 0.5 M NaCl in the DEAE-cellulose chromatography step 

and further purified on Sephadex G-25 (LBP-I) or Sephacryl S-100 column (LBP-II, -III, 

-IV) (Tian and Wang, 2006). They contained 6 kinds of monosaccharides (rhamnose, 

galactose, glucose, arabinose, mannose, and xylose), galacturonic acid and 18 kinds of 

amino acids with molecular weight of 152.4 kDa (Tian and Wang, 2006). LBP was 

complex polysaccharide consisting of acidic heteropolysaccharides and polypeptide or 

protein with Glycan-O-Ser glycopeptide structures (Tian and Wang, 2006). 
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Another group at Huazhong Agricultural University, China, obtained five fractions of 

LBP by successive elution with H2O, 0.05, 0.1, 0.25, and 0.5 M of NaCl in the DEAE-

cellulose chromatography step. The first fraction was further purified on Sephacryl S-300 

column and designated as LBP-I (He et al, 1996). It was a glycoprotein composed of 

protein and acidic heteropolysaccharide consisting of galacturonic acid and neutral 

saccharides. The neutral saccharides contained galactose, glucose, rhamnose, arabinose, 

mannose, and xylose in molar ratio of 5.17:4.13:3.15:1.00:0.84:0.48 (He et al, 1996). The 

contents of neutral saccharides, galacturonic acid and proteins were 81.37%, 3.69%, 

9.24%, respectively. Its molecular weight was greater than 20 kDa. Infrared spectrum 

analysis showed that the main chain was an α-pyranglycoside linkage (He et al, 1996). 

The second fraction (eluted with 0.05 M NaCl) was purified to LBP2a on a Sephadex-

G200 column (Wang et al, 2002b). It contained neutral sugar (69.3%), galacturonic acid 

(23.8%), and protein (5.3%) with molecular weight of 77.5 kDa. Monosaccharide 

residues included rhamnose, xylose, arabinose, mannose, glucose, and galactose in molar 

ratio of 2.62:42.85:2.13:1.00:4.36:22.80. Linkages between sugars and amino acids were 

glycan-O-Ser (Wang et al, 2002b). The third fraction (eluted with 0.1 M NaCl) was 

further purified to LBP3p on a Sephadex G-200 column (Wang et al, 2002b; Gan et al, 

2003; Gan et al, 2004). It was composed of 63.56% neutral sugars, 24.8% acidic sugars, 

and 7.63% proteins with molecular weight of 157 kDa. The monosaccharides were 

galactose, glucose, rhamnose, arabinose, mannose, xylose in molar ratio of 

1.00:2.12:1.25:1.10:1.95:1.76. The linkage between glycan and protein was through 

glycan-O-Ser as shown by β-elimination method (Wang et al, 2002b; Gan et al, 2003; 

Gan at al 2004). The fourth fraction (eluted with 0.25 M NaCl) was further purified to 
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LBP4 on a Sephadex G-200 column (Zhang et al, 2003a; Zhang et al, 2003b). It was 

composed of 28.72% of neutral sugars, 60.45% of galacturonic acid and 6.01% of protein 

with molecular weight of 156.9 kDa. The monosaccharides were xylose, galactose, 

mannose, glucose, arabinose, and rhamnose in molar ratio of 

2.05:1.20:1.00:0.90:0.85:0.38 (Zhang et al, 2003a; Zhang et al, 2003b). This group also 

studied another fraction of LBP designated as LBP-X, which contained 33.33% of 

galacturonic acid and 8.46% of protein (Luo et al, 1999; Gan et al, 2001; Gan and Zhang, 

2002; Gan and Zhang, 2003). The monosaccharides were rhamnose, galactose, glucose, 

arabinose, mannose, and xylose in molar ratio of 4.22:2.43:1.38:1.00:0.95:0.38. 

 

Unlike the above methods which precipitate LBP with 4-5 volumes of absolute ethanol 

and fractionate with gradient salts (NaHCO3 or NaCl), Zhao et al (1996; 1997) extracted 

LBP with water and successively precipitated with 1, 4, and 7 volumes of 95% ethanol. 

By this method, they obtained three crude fractions designated as LBPA, LBPB, and 

LBPC. The proteins were removed by the Sevag method, dialyzed against water, and 

further purified on DEAE-cellulose column (successively eluted with H2O, Na2B4O7, and 

NaOH) and Sephadex G-50 column to four homogenous fractions, designated as LBPA3 

(from LBPA, eluted with NaOH), LBPB1 (from LBPB, eluted with H2O), LBPC2 (from 

LBPC, eluted with H2O), and LBPC4 (from LBPC, eluted with NaOH). LBPC4 was 

peptidoglycan composed of glycan with molecular weight of 10 kDa. LBPA3, LBPB1, 

and LBPC2 were peptidoglycans composed of heteroglycan with molecular weight of 66, 

18, and 12 kDa, respectively. Qin et al (2001) extracted polysaccharides from the fruit of 

Lycium chinense Mill. with cold and hot water. After separation by DEAE-cellulose 
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chromatography, three main fractions (Cp-1, -2, and -3) were obtained from cold water 

extraction. Another three main fractions (Hp-2, -3, and -4) were also obtained by hot 

water extraction from the residue after cold water extraction. Cp-1 proved to be a mixture 

of 4 kinds of polysaccharides (designated as Cp-1-A, -B, -C, -D), of which Cp-1-A was 

arabinoxylan (Ara:Xyl = 1:1), Cp-1-B was arabinan, and Cp-1-C and Cp-1-D were 

arabinogalactan-protein (AGP) (Qin et al, 2001). Cp-2 and Hp-2 were further purified to 

Cp-2-B and Hp-2-C, respectively. Both of them were AGPs. The average molecular 

weight was 71 kDa for Cp-2-B and 120 kDa for Hp-2-C. The ratio of arabinose to 

galactose was approximately 1:1 in both samples, and the carbohydrate was linked O-

glycosidically to serine in Cp-2-B, and to both serine and threonine residues of the 

protein in Hp-2-C (Qin et al, 2001). Both samples also contained non-reducing terminal 

3-O- and 4-O-substituted galacturonic acids. The ratio of 6-O-substituted galactose 

(linear part) and 3,6-di-O-substituted galactose (branching point) was almost unity in 

both samples (Qin et al, 2001). Different from the common methods in LBP isolation, a 

new approach has been developed (Pan et al, 2002). The procedure included: supercritical 

CO2 extraction, water extraction, electrodialysis, ultra-filtration, reverse osmosis, and 

lyophilization. It was claimed that LBP isolated by this method was more water-soluble 

and bioactive (Qin et al, 2001). 

 

The nomenclature for LBP fractions has not been standardized. They were named LbGp 

(Tian et al, 1995), LbGp2, LbGp3, LbGp4, and LbGp5 (Huang et al, 1998; Peng and Tian, 

2001) by Tian’s group. By contrast, Zhang’s group named them LBP-I (He et al, 1996), 

LBP2a (Wang et al, 2002b), LBP3p (Wang et al, 2002a; Gan et al, 2003; Gan et al, 2004), 
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LBP4 (Zhang et al, 2003), and LBP-X (Luo et al, 1999; Gan et al, 2001; Gan and Zhang, 

2002; Gan and Zhang, 2003). Zhao’s group named them LBPA3, LBPB1, LBPC2 and 

LBPC4 (Zhao et al, 1997). Qin’s group named them Cp-1-A, -B, -C, -D, Cp-2-B, and Hp-

2-C (Qin et al, 2001). While the common conclusions from these groups are that all LBP 

fractions are peptidoglycan and the glycan and protein are linked O-glycosidically, the 

oligosaccharide constituents and their molar ratios and the molecular weights deduced are 

varied among these groups. For example, LbGp4 was 214.8 kDa and composed of 

arabinose, galactose, rhamnose and glucose in a molar ratio of 1.5:2.5:0.43:0.23 by 

Tian’s group (Huang et al, 1998). In contrast, LBP4 was 156.9 kDa composed of xylose, 

galactose, mannose, glucose, arabinose, and rhamnose in molar ratio of 

2.05:1.20:1.00:0.90:0.85:0.38 by Zhang’s group (Zhang et al, 2003a; Zhang et al, 2003b). 

These variances could be due to the difference in extraction conditions used by the two 

groups. Tian’s group used NaHCO3 as eluent while Zhang’s group used NaCl. The ionic 

strength and pH value of the eluents may affect the separation as well. In addition, the 

species and source of L. barbarum and the fruit maturity status may also influence the 

experimental results. 

 

The composition, structure and molecular weight of LBP fractions from different labs are 

summarized in Table 1. 
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Table 1. LBP composition, structure and molecular weight 

Fraction Eleunt Sugar compostion 
and molar ratio 
 

Sugar  
Content 
(%) 

Protein 
content 
(%) 

MW 
(kDa) 

Structure Ref. 

LbGp 0.05M 
NaHCO3

 

Ara:Gal:Glu 
=2.5:1.0:1.0 

 18 
amino 
acids 

 O-linkage Tian et 
al, 
1995 

LbGp2 0.05M 
NaHCO3

Ara:Gal = 4:5 90.7  68.2 Beta-glycan, 
O-linkage 

Peng 
and  
Tian, 
2001 

LbGp3 0.1M 
NaHCO3

Ara:Gal = 1:1 93.6 0.83 92.5  Huang 
et al, 
1998 

LbGp4 0.25M 
NaHCO3

Ara:Gal:Rha:Gal 
= 1.5:2.5:0.43:0.23 

85.6 1.72 214.8 O-linkage Huang 
et al, 
1998 

LbGp5 0.5M 
NaHCO3

Rha:Ara:Xyl:Gal:Man:Glu 
=0.33:0.52:0.42:0.94:0.85:1 

8.6 9.58 23.7  Huang 
et al, 
1998 

LBP-I H2O Gal:Glu:Rha:Ara:Man:Xyl 
=5.17:4.13:3.15:1:0.84:0.48 

81.37 9.24 > 20 α-
pyranglycoside 
linkage 

He et 
al, 
1996 

LBP2a 0.05M 
NaCl 

Rha:Xyl:Ara:Man:Glu:Gal 
=2.62:42.85:2.13:1:4.36:22.8 

69.3 5.3 77.5 Glycan-O-Ser Wang 
et al, 
2002b 

LBP3b 0.1M 
NaCl 

Gal:Glu:Rha:Ara:Man:Xyl  
=1:2.12:1.25:1.1:1.95:1.76 
 

63.56 7.63 157 Glycan-O-Ser Gan et 
al, 
2003 

LBP4 0.25 
NaCl 

Xyl:Gal:Man:Glu:Ara:Rha  
= 2.05:1.2:1:0.9:0.85:0.38 

28.72 6.01 156.9  Zhang 
et al, 
2003a,b 

LBP-X  Rha:Gal:Glu:Ara:Man:Xyl 
= 4.22:2.43:1.38:1:0.95:0.38 

33.33 8.46   Luo et 
al, 
1999 

LBPC2 H2O    12  Zhao et 
al, 
1996 

LBPC4 NaOH    10  Zhao et 
al, 
1996 

LBPA3 NaOH    66  Zhao et 
al, 
1996 

LBPB1 H2O    18  Zhao et 
al, 
1996 
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1.1.2 Pharmacological Functions 

1.1.2.1 Immunomodulation 

1.1.2.1.1 T Lymphocytes 

 A pilot study has shown that LBP could stimulate thymocyte proliferation in a dose-

dependent manner (Geng et al, 1987). In the 3H-thymidine uptake assay, it was found that 

the number of 3H-thymidine-incorporated thymocytes harvested from the mice injected 

with LBP (50-200 mg/kg, i.p., × 7 d) were significantly increased (Geng et al, 1987). The 

dosage of 100 mg/kg showed the best effect. At low dosages (5-10 mg/kg), LBP did not 

have such an effect, but it could increase Con A-induced thymocyte proliferation (Geng 

et al, 1987). In vitro experiments also demonstrated that LBP markedly promoted 

concanavalin A (Con A)-induced thymocyte proliferation (Ma et al, 1996). The amount 

of 3H-thymidine incorporated into the mouse thymocytes stimulated with Con A (3 and 5 

µg/ml) and LBP (156 µg/ml) were significantly more than that with Con A alone (Ma et 

al, 1996). Furthermore, it was found that LBP could promote T lymphocytes release from 

the thymus to the peripheral blood (Geng et al, 1987). T lymphocytes in peripheral blood 

were increased from 65% to 81% in the mice injected with LBP (5-50 mg/kg, i.p., × 7 d) 

(Geng et al, 1987). It was found that LBP has bidirectional regulatory effects on mouse 

splenic T lymphocytes (Qian et al, 1988; Wang et al, 1990). At high concentration (1 

mg/ml), LBP inhibited mouse splenic T lymphocyte proliferation, whereas it promoted 

mouse splenic T lymphocyte proliferation at low concentrations (Qian et al, 1988). These 

results were reproducible in vivo. Wang et al (1990) reported that LBP (5 and 10 mg/kg, 

i.p., × 7 d) significantly improved Con A-induced mouse splenocyte proliferation. The 

cpm values were increased from 28410 ± 3110 to 64870 ± 2571 when mice were injected 
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with 10 mg/kg of LBP, showing a 3-fold increase compared to the control, whereas LBP 

seriously inhibited Con A-induced mouse splenocyte proliferation at 25 and 50 mg/kg. 

Similar results were reported by Gan et al (2004). Mice were treated with LBP3p (5, 10, 

20 mg/kg, p.o., × 10 d). A total of 10 mg/kg dose was more effective than 5 and 20 

mg/kg doses in induction of mouse splenic lymphocyte proliferation (Gan et al, 2004). In 

addition, LBP also has regulatory functions on T lymphocyte subsets. Hu et al (1995) 

reported that while L. barbarum water extract significantly improved phytohemagglutinin 

(PHA) (50 µg/ml)- and phorbol myristate acetate (PMA) (25 ng/ml)-induced human 

tonsil lymphocyte proliferation, it markedly decreased the percentage of the CD4
-CD8

+ 

and CD4
+CD8

+ T cells from 2.51 ± 1.81% and 6.33 ± 2.85% to 0.63 ± 0.62% and 1.57 ± 

1.13%, respectively, and upregulated the CD4
+CD8

- T cells from 39.32 ± 4.10% to 46.55 

± 3.65%. LBP also has effect on cytotoxic T lymphocytes (CTLs) (Wang et al, 1990). 

LBP (5 mg/kg, i.p., × 7 d) improved the CTLs of P815-bearing mice in specific killing of 

P815 target cells from 33% to 67% (Wang et al, 1990). Furthermore, LBP (5 and 10 

mg/kg, i.p.) could antagonize the inhibition of CTLs by cyclophosphamide. CTL 

inhibition was reduced from 51% to 19% (10 mg/kg) and 36% (5 mg/kg) (Wang et al, 

1990). 

 

1.1.2.1.2 Natural Killer Cells  

Wang et al (1990) found that LBP could improve the natural killer (NK) cell function in 

killing target cells. LBP (5 mg/kg, i.p., × 3 d) improved mouse splenic NK cells in killing 

target cells from 12.4% to 17.7%). LBP (5 and 10 mg/kg, i.p., × 3 d) could antagonize the 

inhibition of NK cells by cyclophosphamide. NK cell killing of target cells was increased 

 



Introduction  
 

13

from 9.5% to 15% (5 mg/kg) and 16% (10 mg/kg). LBP could improve the NK cell 

activity in tumor-bearing mice. LBP (10, 20, 50 mg/kg, i.p., × 3 d) increased the NK cell 

killing of target cells from 32.6 ± 5.9% to 48.4 ± 11.6%, 46.7 ± 11.4%, and 54.2 ± 20.2%, 

respectively. 

 

1.1.2.1.3 Macrophages 

Macrophages are key participants in innate immunity to kill pathogenic organisms. They 

perform a variety of complex microbicidal functions, including surveillance, chemotaxis, 

phagocytosis and destruction of targeted organisms (Beutler, 2004). In addition, 

macrophages can function as antigen-presenting cells and interact with T lymphocytes to 

modulate the adaptive immune response (Bryant and Ploegh, 2004). Furthermore, 

macrophages are involved in tissue remodeling during embryogenesis, injury, clearance 

of apoptotic cells and hematopoiesis (Diegelmann and Evans, 2004). Previous studies 

have shown that LBP could activate macrophages. Zhang et al (1994) injected LBP (10, 

100 mg/kg) i.p. to mice daily for 4 days. It was found that in the LBP-injected mice the 

number of peritoneal macrophages and their pseudopods were significantly increased, the 

cellular volume was enlarged and the activity of phagocytosis was enhanced (Zhang et al, 

1994). The contents of intracellular DNA, RNA and glycogen in the peritoneal 

macrophages harvested from the LBP-treated mice were increased as well (Zhang et al, 

1994). The activities of intracellular acid phosphatase (AcPase), triphosphatase (ATPase), 

acid α-naphthyl acetic esterase (ANAE) and succinate dehydrogenase (SDH) were also 

significantly enhanced after LBP treatment (Zhang et al, 1994). These enymes play 

important roles in the process of killing microbes (Zhang et al, 1994). Zhang et al (1989) 
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studied the effects of LBP on mouse peritoneal macrophage inhibition of tumor cell 

growth. The results showed that LBP (40 mg/kg, i.p., × 7 d) could improve the inhibition 

of tumor cell growth by Con A-activated macrophages (Zhang et al, 1989). LBP (100 

mg/kg, i.p.) significantly increased the phagocytic index of mouse peritoneal 

macrophages, indicating that their phagocytic ability were improved (Ma and Zhao, 

2003). Gan and Zhang (2003) gave LBP3p (5, 10, 20 mg/kg) p.o. to S180-bearing mice 

daily for 10 days. The capacity of macrophages to phagocytoze cock red blood cells 

(CRBCs) was markedly improved in the LBP3p-treated mice (Gan and Zhang, 2003). 

LBP-X was reported having similar effects (Gan et al, 2004). A clinical trial was carried 

out to investigate the effects of LBP on 60 cancer patients on radiotherapy. It was shown 

that the number of white blood cells (WBCs) and the rate of macrophage phagocytosis 

were significantly increased after LBP treatment (Liu et al, 1996). LBP can significantly 

enhance the expression of C3b and Fc receptors on peritoneal macrophages and 

antagonize the inhibition of the expression by hydrocortisone acetate 

(immunosuppressive agent) (Li et al, 1990). Macrophages produce cytotoxic factors after 

activation. Wang et al (1997) reported that LBP could stimulate macrophages to produce 

cytotoxic factors. They found the supernatant harvested from LBP-stimulated 

macrophages could noticeably lyse target cells. Wang et al (1998) stimulated rat 

peritoneal macrophages in vitro with LBP alone or combined with LPS. The result 

showed LBP (0.32-20 µg/ml) enhanced the capacity of  macrophages to phagocytoze 

neutral red dye in a dose-dependent manner. LBP (2.5 µg/ml) increased the phagocytic 

rate 2.6-fold. In addition, LBP (5-100 µg/ml) promoted LPS-activated macrophages to 

produce IL-1 and TNF-α in a dose-dependent manner (Wang et al, 1998). LBP (p.o. or 
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i.p.) significantly increased the amount of nitric oxide (NO) and enhanced the activities 

of intracellular lysozyme (LSZ) and superoxide dismutase (SOD) produced by mouse 

peritoneal resting macrophages (Zhou et al, 2000). Moreover, LBP could stimulate 

thioglycerol (TG)-activated macrophages to produce these parameters to a higher level, 

indicating that LBP has effects on both resting and activated macrophages (Zhou et al, 

2000). Activation of macrophages by LBP may be related to the calcium signaling 

pathway. Qi et al (1999), who treated macrophages with LBP in vitro, found that the 

concentration of free calcium in the cytoplasm of macrophages was rapidly increased 

after LBP stimulation. It was reported that LbGp4 and LbGp4-OL (LbGp4-O-Linkage) 

(10-100 µg/ml) markedly increased the contents of neutral red dye phagocytozed by 

resting macrophages and the CRBC phagocytic index of starch-activated macrophages 

was also elevated (Qi et al, 2005). The levels of NO, IL-1 β and TNF-α produced by 

resting macrophages were also promoted after incubation of resting macrophages with 

LbGp4 or LbGp4-OL (Qi et al, 2005). The biological activities of IL-1β and TNF-α were 

augmented toward L929 cells and mouse thymocyte target cells, respectively (Qi et al, 

2005). These results indicated that LbGp4 and LbGp4-OL could enhance macrophage 

phagocytic functions, suggesting that macrophages are the main immune effective target 

cells of LbGp4 and LbGp4-OL (Qi et al, 2005). 

 

1.1.2.1.4 Lymphokine Activated Killer Cells 

Lymphokine activated killer (LAK) cells are WBCs that help to identify and destroy 

cancer cells in the body, which can be produced by cultivation of peripheral lymphocytes 

with interleukin-2 (IL-2) and used experimentally to shrink malignant tumors (Winter 
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and Fox, 1999). It was shown that LBP could improve the activity of LAK cells (Cao and 

Du, 1993). A single injection (i.p.) of LBP (5, 10 mg/kg) caused splenocytes of adult 

C57BL/6 mice to proliferate significantly more in number than saline control. 

Splenocytes of LBP-treated aged mice were 4 times more than those of the saline control. 

LAK cells were induced by incubation of mouse splenocytes with 125-1000 U/ml of 

recombinant mouse IL-2 (rIL-2) for 4 days in vitro. The LAK cell cytotoxicity was tested 

by the 18 h-[125I]-UdR-release assay. It was found that the cytotoxicity caused by LAK 

cells from the splenocytes of LBP-treated adult mice were 26% and 80% higher 

respectively than that of the saline control. The dose of rIL-2 used to induce LAK cells 

was reduced 50%. The cytolytic activities of LAK cells from the splenocytes of LBP-

treated aged mice were 120% and 200% higher than those of the saline control, and the 

dosage of rIL-2 was reduced more than 75% in vitro (Cao and Du, 1993). This approach 

was applied to a clinical trial later, in which seventy-nine patients with advanced cancers 

were treated with LAK/IL-2 in combination with LBP (1.7 mg/kg, p.o., × 3 m) (Cao et al, 

1995). Initial results of the treatment from seventy-five patients indicated that objective 

regression of cancer was achieved in patients with malignant melanoma, renal cell 

carcinoma, colorectal carcinoma, lung cancer, nasopharyngeal carcinoma, and malignant 

hydrothorax (Cao et al, 1995). The response rate of patients treated with LAK/IL-2 plus 

LBP was 40.9% while that of patients treated with LAK/IL-2 was 16.1% (P < 0.05). The 

mean remission duration in patients treated with LAK/IL-2 plus LBP was also 

significantly longer. This treatment led to a marked increase in NK and LAK cell 

activities than LAK/IL-2 alone. The results indicated that LBP can be used as an adjuvant 

in the biotherapy of cancer (Cao et al, 1995). 

 



Introduction  
 

17

1.1.2.1.5 Humoral Immunity 

Humoral immunity is mediated by secreted antibodies, which are produced by cells of the 

B lymphocyte lineage. Secreted antibodies bind to antigens on the surfaces of invading 

microbes, involving pathogen and toxin neutralization, classical complement activation, 

and opsonin promotion of phagocytosis and pathogen elimination. Previous studies have 

shown that LBP can enhance humoral immunity. Qi et al (2001) reported that crude LBP 

significantly promoted LPS-induced splenoctye proliferation. It was shown that LBP 

(p.o.) not only promoted splenocyte proliferation, but also increased the number of anti-

SRBS plaque-forming cells (PFC) of LACA mouse splenocytes. Furthermore, LBP 

enhanced the level of IgG production by splenocytes of SAM mice, indicating it can 

improve humoral immunity (Qi et al, 2001). Wang et al (1995) studied the effect of LBP2 

(i.p., × 7 d) on the recovery of immune function of the irradiation-damaged mice. The 

result showed that splenocytes harvested from the mice irradiated with 60Co and treated 

with LBP2 responded more strongly to LPS stimulation than those harvested from the 

irradiation control mice. Fu et al (2007) treated 28 sodium fluoride-exposed workers with 

LBP for 7 days. The result showed that the IgG, IgA and IgM contents in the serum were 

significantly increased after treatment, indicating that LBP can enhance the humoral 

immune function. Wolfberry tea has a similar function. It was found to increase 

immunoglobins (especially IgM) and complement in Wistar rats by p.o. administration 

(Xing, 1989). 
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1.1.2.1.6 Cytokines and Their Receptors 

Cytokines are a group of secreted proteins and polypeptides which mediate and regulate 

immunity, inflammation and hematopoiesis. They act by binding to specific membrane 

receptors, which then signal the cell via second messengers, often tyrosine kinases, to 

alter its behavior (gene expression). Responses to cytokines include increasing or 

decreasing expression of membrane proteins, proliferation and secretion of effector 

molecules (Khawli et al, 2008). Researchers found that LBP could regulate the 

production of a number of cytokines such as IL-2, IL-3, IL-6, and TNF-α. Qian et al 

(1988) reported that LBP had bidirectional regulatory effect on IL-2 production. At 10 

µg/ml, it promoted mitogen-induced T and B cell proliferation and IL-2 production, 

whereas at 1 mg/ml, it inhibited IL-2 production. Clinically, it was found that in aged 

people (average age: 54 years) who consumed 20 g of Lycium fruit daily for 3 weeks, the 

T cell transformation rate was increased 3.28-fold while the IL-2 activity was increased 

2.26-fold in more than one third of the cases (Qian et al, 1989). Hu et al (1995) reported 

that L. barbarum water extract significantly promoted IL-2 secretion and IL-2 receptor 

(IL-2R) (α, β) expression by PHA-induced human tonsil lymphocytes. Similar results 

were found when LBP was given to naturally occurring senile mice and D-galactose-

induced senile mice (Chen et al, 2001; Qiu et al, 2001). Gan et al (2003) reported that 

LBP3p (5, 10, 20, 40 µg/ml) significantly upregulated IL-2 and TNF-α mRNA expression 

and protein secretion by human peripheral blood mononuclear cells in a dose-dependent 

manner. IL-2 and TNF-α productions peaked at 12 h and 8 h after stimulation, 

respectively. Another fraction LBP-X prepared by this group also had similar activities 

(Gan and Zhang, 2002). It was found that LBP had bidirectional regulatory effect on IL-3 
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production (Qian et al, 1989). At low concentration (10 µg/ml), LBP promoted IL-3 

production, whereas at high concentration (1 mg/ml) it inhibited IL-3 production (Qian et 

al, 1989). Du et al (1994) used LBP (0.5 µg/ml) alone or plus LPS to stimulate human 

tonsil cells in vitro. After 48 hours the supernatant was harvested and the cytokines, IL-6 

and TNF-α, were tested. It was shown that LBP induced IL-6 production, whereas it 

failed to induce TNF-α production (Du et al, 1994). But LBP could significantly promote 

both IL-6 and TNF-α production by LPS-activated human tonsil cells (Du et al, 1994). 

He et al (2005) treated H22 tumor-bearing mice with LBP (p.o.). After 2 weeks, tumor 

was weighed and the cytokines, vascular endothelial growth factor (VEGF) and 

transforming growth factor beta (TGF-β), in the serum were measured by ELISA. The 

results showed that tumor growth was inhibited and the VEGF and TGF-β secretions 

were significantly down-regulated in the mice treated with LBP, indicating that LBP can 

prevent cancer cells from immune escape and protect the body against cancer (He et al, 

2005). 

 

1.1.2.1.7 Signal Transduction 

Immune cell activation and proliferation and cytokine secretion are all related to signal 

transduction, which is carried out largely by membrane receptors such as G-protein 

couple receptors and receptor tyrosine kinases and second messengers such as cyclic 

adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), 

diacylglycerol (DAG), inositol-1,4,5-trisphosphate (IP3), Ca2+ (Zenner et al, 1995; 

Pawson, 1994; Luttrell et al, 1997). Previous researches have found that LBP can 

influence immune cell signal transduction pathways. Zhang et al (1997b) reported that 
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LBP (50, 400 µg/ml) increased the intracellular levels of cAMP and cGMP in mouse 

lymphocytes. 50 µg/ml of LBP increased the cGMP level of the PMA-activated 

lymphocytes. LBP-X fraction also has similar effects (Du, 2005). Alternatively, LBP 

(100 µg/ml) enhanced the membrane protein kinase C (PKC) activity of the lymphocytes 

activated by Con A. The results suggested that the immunomodulatory mechanism of 

LBP involves cAMP/cGMP system as well as PKC signaling pathways (Zhang et al, 

1997b). This group also found that LBP (100 µg/ml) markedly promoted the membrane 

mobility of rabbit RBCs and enhanced the membrane mobility induced by Con A (10 

µg/ml) (Zhang et al, 1997a). Ca2+ functions as an ubiquitous intracellular messenger and 

plays crucial roles in signal transduction pathways (Feske, 2007). Qi (1999) reported that 

LBP could upregulate free Ca2+ level in mouse lymphocytes rapidly in a dose-dependent 

manner. LBP-X could increase the free Ca2+ concentration in the cytoplasm of mouse 

splenocytes and macrophages within 2-3 minutes (Du, 2005). 

 

1.1.2.2 Anti-aging, Anti-oxidation, and Anti-peroxidation 

Aging is the process of growing older and includes both biological and psychological 

changes. There are more than 300 theories to explain the aging phenomenon. Among all 

the theories, the free radical theory of aging, postulated first by Harman, is the most 

popular and widely tested (Ashok and Ali, 1999). Free radicals are atoms with unpaired 

electrons. The basic concept of the free radical theory includes that radicals damage cells 

in an organism and cause aging (Harman, 1956), and mitochondria, regions of the cell 

that manufacture chemical energy, produce free radicals and are the primary sites for free 

radical damage (Harman, 1972).  
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Previous studies have shown that LBP has anti-aging, anti-oxidation and anti-

peroxidation effects. A model for studying aging is to investigate the life span of 

Drosophila melanogaster (fruit fly). It has been strikingly demonstrated that L. barbarum 

fruit and LBP can significantly prolong the average lifespan of fruit fly (Dai et al, 1994). 

Their study in humans showed that the anti-aging effect of LBP may be related to the 

regulation of some parameters (Dai et al, 1987). They found that L. barbarum fruit 

significantly improved lysozyme activity, IgG and IgA levels, T lymphocyte 

transformation rate, IFN-γ and IL-2 levels, and SOD contents, while dramatically 

reducing the level of lipid peroxidation (LPO) and triglycerides (TG) (Dai et al, 1987). It 

was observed that endogenous lipid peroxidation was increased, while the antioxidant 

activities, as assessed by SOD, catalase (CAT), glutathione peroxidase (GSH-Px) and 

total antioxidant capacity (TAOC), were decreased in aged mice (Li et al, 2007). LBP 

(200, 350 and 500 mg/kg, p.o., × 30 d) could restore these parameters to normal (Li et al, 

2007). One of the experimental models for aging is an injection of D-galactose into rats 

for six to eight weeks (Ho et al, 2003). The metabolism of D-galactose as well as non-

enzymatic glycation on D-galactose will gradually exert oxidative stress to the whole 

body including the brain, bone, liver and the immune system (Ho et al, 2003). LBP could 

inhibit non-enzymatic glycation in D-galactose-induced mouse aging model in vivo 

(Deng et al, 2003). Decreased levels of serum advanced glycated end products (AGE), 

hydroxyproline concentration in mouse skin and spontaneous motor activity in D-

galactose-induced aging mouse were detected after treatment with LBP, while 

lymphocyte proliferation and IL-2 activity, learning and memory abilities, SOD activity 

of erythrocytes, were enhanced (Deng et al, 2003). An in vivo model was to investigate 
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the effect of L. barbarum on hypoxia-induced free radicals in mice. It was found that 

LBP treatment could not prolong mice survival time (P > 0.05), but the activities of SOD, 

CAT and total anti-oxidative capacity were increased as compared with the control group 

(P < 0.05). The study indicated that LBP could not increase hypoxic tolerance, but might 

have a protective effect on free radical injury caused by hypoxia (Li et al, 2002).  

LBP also has effect on skin aging. It (p.o.) significantly increased the water content of 

skin, epidermis and hypodermis thickness, and fibroblast count in the aged skin induced 

by D-galactose, suggesting that it can improve the functioning of the internal organs to 

resist senility (Liang and Zhang, 2007). It was found that LbGp significantly reduced the 

level of matrix metalloproteinase (MMP)-1, but not that of MMP-3 or -13, in the whole 

human skin system, without compromising the viability of the skin (Zhao et al, 2005). 

Consistently, LbGp inhibited skin expansion under mechanical stress. One of L. 

barbarum glycoconjugates, the LbGp5, promoted the survival of human fibroblasts 

cultured in sub-optimal conditions. Furthermore, in the presence of LbGp5, these cultures 

also contained higher levels of the MMP-1 substrate-collagen type I. Together these 

results suggested that L. barbarum glycoconjugates in general, and LbGp5 in particular, 

may have important skin-protective properties (Zhao et al, 2005).  

 

L. barbarum water extract possessed strong inhibition on malondialdehyde (MDA) 

formation in rat liver homogenate, and superoxide anion scavenging and anti-superoxide 

formation activities, suggesting that it is a good source of antioxidants as a daily dietary 

supplement (Wu et al, 2004). An in vitro study found that LBP could clear the free 

radicals and restrain DNA damage caused by the oxidative stress in testicular cells 
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(Huang et al, 2003). Pretreatment with LBP (50, 100, 200, 400 µg/ml) significantly 

decreased the frequencies of cells with tail movement and the tail length of testicular cells 

induced by H2O2 (Huang et al, 2003). The result was replicable using a mouse model 

(Luo et al, 2006). LBP had a dose-dependent protective effect against H2O2-induced 

oxidative damage to the DNA of mouse testicular cells (Luo et al, 2006). In vivo studies 

also showed similar findings (Wu et al, 2006). LBP treatment (10 mg/kg.d) for 4 weeks 

led to decreased levels of blood glucose, MDA and NO in the serum of fasting rats with 

type 2 diabetes mellitus; and to increased serum level of SOD. Furthermore, LBP could 

reduce cellular DNA damage in peripheral lymphocytes of type 2 diabetic rats (Wu et al, 

2006). It was recently demostrated that LBP has protective effect on streptozotocin-

induced oxidative stress in diabetic rats (Li, 2007). Administration of LBP in drinking 

water through oral gavage for 30 days could restore the abnormal oxidative indices in the 

blood, liver and kidney to nearly normal levels (Li, 2007). Aging is the primary risk 

factor for Alzheimer's disease (AD) and other prevalent neurodegenerative disorders 

(Yankner et al, 2007).  

 

Recently it has been shown that LBP has neuroprotective effects. LBP (i.p.) could 

enhance the spontaneous electrical activity of the hippocampus, implying that LBP can 

improve cognitive functions (Peng et al, 2002). β-amyloid (Abeta) peptide is one of the 

toxic factors triggering progressive neuronal loss in AD (Sullivan et al, 2005). It was 

found that extracts from L. barbarum have neuroprotective effects against toxicity of 

fibrillar Abeta (1-42) and Abeta (25-35) fragments (Yu et al, 2005). Primary rat cortical 

neurons exposed to Abeta peptides resulted in apoptosis and necrosis. Pretreatment with 
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extract isolated from L. barbarum significantly reduced the release of lactate 

dehydrogenase (LDH) (Yu et al, 2005; Ho et al, 2007). In addition, it attenuated Abeta 

peptide-activated caspases-3-like activity (Yu et al, 2005; Yu et al, 2007). Pretreatment of 

LBP effectively protected neurons against Abeta-induced apoptosis by reducing the 

activity of both caspase-3 and -2, but not caspase-8 and -9 (Yu et al, 2007). The extract 

elicited a typical dose-dependent neuroprotective effect. Effective dosage of this extract 

was wider than that of a well-known western neuroprotective medicine, lithium chloride 

(Yu et al, 2005). Abeta peptides induce a rapid activation of c-Jun N-terminal kinase 

(JNK) by phosphorylation. Pretreatment of aqueous extract markedly reduced the 

phosphorylation of JNK-1 (Thr183/Tyr185) and its substrates, c-Jun-I (Ser73) and c-Jun-

II (Ser63) (Yu et al, 2005). Glaucoma is one of the major neurological disorders in the 

eye, leading to irreversible blindness in the elderly (Chan et al, 2007). Oral administration 

of L. barbarum in Sprague-Dawley rats (250-280 g) significantly reduced the loss of 

retinal ganglion cells (RGCs), suggesting it may be a potential candidate for the 

development of neuroprotective drug against the loss of RGCs in glaucoma (Chan et al, 

2007). Monoamine oxidase (MAO), consisting of MAO-A and MAO-B subtypes, 

catalyzes the oxidative deamination of biogenic amines accompanied by the release of 

H2O2 (Lin et al, 2003). The regulation of MAO-B activity is important in the treatment of 

neurodegenerative diseases (Lin et al, 2003). It was shown that the water-methanol 

extract of Lycium chinense (same family as L. barbarum) fruit significantly inhibited 

MAO-B activity in rat brain homogenates, indicating it can delay the neurodegeneration 

in neurological disease states (Lin et al, 2003). 
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1.1.2.3 Anticancer 

It has been shown that LBP can inhibit the growth of a number of cancer cells in vitro, 

including leukemia, liver cancer, lung cancer, prostate cancer, and cervical cancer. One 

of the LBP fractions, LBP-X was proved to remarkably inhibit the growth of K562 cells 

after stimulation for 48 h (Cui et al, 2006). K562 cell apoptosis was dose- and time-

dependent. Apoptotic characteristics, such as anomalistic, condensed and fragmented 

nuclei, DNA ladder, apoptotic peaks were observed on K562 cells after LBP-X 

stimulation (Cui et al, 2006). Similarly, LBP-X (20, 100, 500, 1000 µg/ml) inhibited the 

growth of human leukemia HL-60 cells in a dose-dependent manner (Gan et al, 2001). 

HL-60 cells treated with LBP-X underwent apoptosis (Gan et al, 2001). In addition, LBP-

X could decrease the membrane fluidity of HL-60 cells (Gan et al, 2001). Crude LBP 

also possesses such effects. LBP could inhibit the growth of human hepatoma QGY7703 

cells with cycle arrest in S phase. The cells underwent apoptosis after LBP treatment 

(Zhang et al, 2005). It was shown that after LBP treatment, the amount of RNA in cells 

and the concentration of intracellular Ca2+ were increased. Moreover, the distribution of 

calcium in cells was changed, suggesting that the induction of cell cycle arrest and the 

increase of intracellular calcium in apoptotic system may participate in the anti-

proliferative activity of LBP in QGY7703 cells (Zhang et al, 2005). These results were 

reproducible using a lung cancer cell line. LBP could inhibit the growth of human lung 

cancer A549 cells in a dose-dependent manner and induced apoptosis (Xiao et al, 2006). 

The 1evel of intracellular free calcium concentration in LBP-treated A549 cells was 

significantly higher than that of the PBS control, indicating that one of its molecular 
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mechanisms may be associated with the increase in the level of intracellular free calcium 

concentration (Xiao et al, 2006).  

 

LBP has bidirectional effects on the growth of human pulmonary giant cell carcinoma PG 

cells (Lu et al, 2002). At low dose, LBP promoted PG cell growth, whereas at high dose 

it inhibited the growth. Furthermore, LBP induction of PG cell apoptosis was time- and 

dose-dependent (Lu et al, 2002). LBP could significantly inhibit the growth of human 

prostate cancer PC-3 cells. The inhibition rate was up to 87% with about 40% of the cells 

becoming apoptotic (Li et al, 2005; Li et al, 2006; Cui et al, 2006). The ratio of Bcl-

2/Bax protein was decreased significantly after LBP treatment (Li et al, 2005). Bcl-2 can 

inhibit apoptosis while Bax promotes apoptosis. Hot water-extracted crude LBP (2-5 

mg/ml) could inhibit proliferation of hepatocellular carcinoma cells and induce p53-

mediated apoptosis (Chao et al, 2006). LBP could inhibit the growth of cervical 

carcinoma Hela cells in a dose-dependent manner. The inhibition rate was up to 97% and 

the apoptosis rate was 36.8% (Cui, 2006).  

 

LBP also has anticancer effect in vivo, which may be through the activation of immune 

cells such as T cells, macrophages, NK cells, and CTLs to eradicate cancer cells. LBP (10, 

20, 50 mg/kg, i.p., × 7 d) could inhibit the growth of S180 tumor cells in a dose-

dependent manner. T cell proliferation, NK cell activity, and TNF-α secretion were 

recovered in the tumor-bearing mice after LBP treatment, indicating that enhancement of 

the immunity of the tumor-bearing mice is one of its anticancer mechanisms (Liu et al, 

1996). Oral administration of LBP also showed similar effects (Gan et al, 2004). LBP3p 
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(5, 10, 20 mg/kg, p.o., × 10 d) significantly inhibited the growth of transplantable 

sarcoma S180 and improved macrophage’s capacity in phagocytosis, the form of 

antibody secreted by spleen cells, spleen lymphocyte proliferation, CTL activity, IL-2 

mRNA expression level and reduced the lipid peroxidation in S180-bearing mice (Gan et 

al, 2004). LBP (5, 10, 20 mg/kg, p.o., × 14 d) could inhibit the growth of hepatoma H-22 

up to 62.7%. NK cell activity was enhanced up to 35% (Zhu and Zhang, 2006b). SOD 

activity was increased 11 units (Zhu and Zhang, 2006a). LBP (p.o., × 14 d) remarkably 

down-regulated the secretions of immunosuppressive factors VEGF and TGF-β1 in 

hepatoma H-22 bearing mice, indicating that its anticancer effect is related to the 

regulation of VEGF and TGF-β1 production (He et al, 2005; He et al, 2006). LBP has 

synergic effect with cyclophosphamide on tumor inhibition. Cyclophosphamide (25 

mg/kg, s.c., × 2 d) combined with LBP (10 mg/kg, i.p., × 7 d) increased the S180 tumor 

inhibition rate to 47%, whereas the inhibition rate was 31% when cyclophosphamide was 

used alone. Furthermore, the synergic effect was more significant when 

cyclophosphamide was at a low dosage of 12.5 mg/kg. At this dose, the tumor inhibition 

rate was 14%. When combined with LBP, it was increased to 54% (Cao and Du, 1992). 

In an in vivo model of Lewis lung cancer transplanted on C57BL/6 mice to investigate 

the radiosensitizing effects of LBP, it was found that when LBP alone was administered, 

it was not obvious that LBP inhibited the growth of Lewis lung cancer. The significant 

radiosensitizing effects were obtained by combination of LBP and radiation. The mean 

numerical value of the dose modifying factors (DMF) was 2.05 (Lu and Cheng, 1991). In 

a clinical trial, LBP (1.7 mg/kg, p.o.) could improve the effect of LAK/IL-2 therapy for 

advanced-stage cancer patients. The response rate of patients treated with LAK/IL-2 plus 
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LBP was 40.9% while that of patients treated with LAK/IL-2 was 16.1% (P < 0.05) (Cao 

et al, 1995). LBP in combination with allicin (isolated from garlic) could markedly 

improve the general status of tumor-bearing mice, increase the life span of fluid type 

mouse cervical carcinoma U14- and fibrosarcoma S180-bearing mice to 41% and 85%, 

respectively, and inhibit the growth of solid type cervical carcinoma U14 and 

fibrosarcoma S180 up to 81.5% and 73%, respectively (Dong et al, 1997). This treatment 

also significantly inhibited the growth and proliferation of human cervical carcinoma 

Hela cells and human gastric adenocarcinoma MGC-803 cells in vitro (Dong et al, 1997). 

 

1.1.2.4 Reduction of Side-Effects of Chemotherapy and Radiotherapy 

While chemotherapy and radiotherapy are effective in cancer treatment, they often cause 

side effects, such as nausea, diarrhea, fatigue, dry skin, hair loss, and suppression of the 

hematopoietic system and immune system. It has been shown that LBP can reduce the 

side effects of chemotherapy and radiotherapy. A clinical study was done to investigate 

the effect of LBP on 171 radiotherapeutic cancer patients (Liu et al, 1996). The results 

showed that the ratio of CD4+ T cells to CD8+ T cells, lymphocyte transformation rate, 

and macrophage phagocytic activity in the patients treated with LBP were markedly 

improved after radiotherapy. After radiotherapy, the total counts of WBCs and 

lymphocytes, the ratio of CD4+ T cells to CD8+ T cells, the rate of lymphocyte 

transformation, and the macrophage phagocytic activity in the LBP-treated group were 

significantly higher than those in the radiotherapy control group (P < 0.01), indicating 

that LBP can enhance the immunity of radiotherapeutic cancer patients (Liu et al, 1996). 

Another clinical trial was to observe the effect of LBP combined with chemotherapy on 
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treatment of 20 primary liver cancer patients (Gu, 1990). This treatment could reduce the 

side effects, such as suppression of hematopoietic system, nausea, diarrhea, and fatigue 

caused by chemotherapy (Gu, 1990). LBP2 could remarkably restore the immune 

function of 60Co-irradiated mice (Wang et al, 1995). 30 days after irradiation, some 

parameters, including thymus index, splenocyte proliferation, mix lymphocyte reaction, 

and delayed type hypersensitivity (DTH) reaction, were better restored in the LBP-treated 

mice than in the irradiation control mice (Wang et al, 1995). In an in vivo experiment, 

LBP (50, 100, and 200 mg/kg, s.c., × 6 d) significantly ameliorated the decrease of 

peripheral WBCs, RBCs, and platelets in irradiation- or chemotherapy-induced 

myelosuppressed mice (Gong et al, 2005). In an in vitro experiment, LBP markedly 

stimulated human PBMCs to produce granulocyte-colony stimulating factor (G-CSF), 

suggesting that the improvement in peripheral blood parameters may be related to the 

stimulation of G-CSF production (Gong et al, 2005). Similarly, LBP was effective on 

peripheral RBCs and platelet recovery in mitomycin C-induced myelosuppressed mice 

(Hai et al, 2004). 

 

1.1.2.5 Anti-diabetes 

It was found that crude LBP and the purified fraction, LBP-X, could significantly reduce 

blood glucose levels and the concentrations of serum total cholesterol (TC) and TG in 

alloxan-induced diabetic or hyperlipidemic rabbits, and at the same time markedly 

increase high density lipoprotein cholesterol (HDL-c) levels after 10 days treatment in 

tested rabbits, indicating that LBP has substantial hypoglycemic and hypolipidemic 

effects (Luo et al, 2004). The hypoglycemic effect of LBP may be related to improved 
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insulin sensitivity. In a diabetes model induced by high-fat diet and streptozotocin (50 

mg/kg, i.p.), LBP (p.o., × 21 d) significantly reduced the concentration of plasma 

triglyceride and weight in type 2 diabetic rats. Furthermore, LBP markedly decreased the 

plasma cholesterol and fasting plasma insulin levels, as well as the postprandial glucose 

level at 30 min during the oral glucose tolerance test. LBP also significantly increased the 

insulin sensitive index in the type 2 diabetic rats. Under insulin stimulus, cell-surface 

level of glucose transporter 4 (GLUT4) content in plasma membrane in type 2 diabetic 

control rats was significantly lower than that of control (p < 0.01), and GLUT4 content in 

the plasma membrane in LBP-treated diabetic rats was higher than that of diabetic control 

(p < 0.01). These results indicated that LBP can ameliorate insulin resistance, and the 

mechanism may be via increased cell-surface level of GLUT4, improving GLUT4 

trafficking and intracellular insulin signaling (Zhao et al, 2005). The hypoglycemic effect 

of LBP may also be related to its inhibition of α-glucosidase. LBP is a potent α-

glucosidase inhibitor (Tian et al, 2005; Tian et al, 2006). LBP (0.4 mg and 4 mg) could 

inhibit α-glucosidase up to 52% and 88%, respectively (Tian et al, 2006). The mechanism 

is via non-competitive inhibition (Tian et al, 2005; Tian et al, 2006). LBP (20, 40 mg/kg, 

p.o., × 4 w) could reduce fasting blood glucose (FBG) level, increase insulin level, and 

increase the density, nuclear area, and the ratio of nucleus to cytoplasm of islet β cells in 

high fat diet- and streptozotocin-induced type 2 diabetic mice, while the islet α cells were 

reduced (Zhao et al, 2007).  These results suggested that LBP possesses the action of 

lowering blood glucose, improvement of morphogeny and function of pancreatic islet β 

cells and increase of insulin secretion in type 2 diabetic mice (Zhao et al, 2007). In an in 

vitro experiment, it was shown that LBP could protect the alloxan-induced rat pancreatic 
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islet damage (Zhang and Wang, 2005). LBP could restore glucokinase and SOD activity, 

insulin synthesis and secretion inhibited by alloxan, and reduce NO and MDA production 

in alloxan-induced islets, suggesting that LBP could protect glucose-induced insulin 

synthesis and insulin secretion through reducing NO production and maintaining 

glucokinase and SOD activities in pancreatic β cells (Zhang and Wang, 2005). LBP could 

alleviate the oxidative stress of diabetic nephropathy and has protective effect on the 

kidney of diabetic rats (He and Liu, 2006). LBP (250 mg/kg, p.o.) could lower the levels 

of blood glucose, TG, cholesterol, low-density lipoprotein (LDL), blood urea nitrogen, 

serum creatinine, and urine microalbumin of type 2 diabetic rats (He and Liu, 2006). 

 

1.1.2.6 Cytoprotection 

A study was done to investigate the protective effect of Lycium chinense Miller 

(Solanaceae) fruit (LFE) against CCl4-induced hepatotoxicity in rats and the mechanism 

underlying this protective effect (Ha et al, 2005). Pretreatment of LFE was shown to 

cause a significant protection by lowering the serum aspartate and alanine 

aminotransferase (AST and ALT) and alkaline phosphatase (ALP). This hepatoprotective 

action was confirmed by histological observation (Ha et al, 2005). In addition, pre-

treatment of LFE prevented the elevation of hepatic MDA formation and the depletion of 

reduced glutathione (GSH) content and catalase activity in the liver of CCl4-injected rats. 

LFE also displayed hydroxyl radical scavenging activity in a dose-dependent manner. 

The expression levels of cytochrome P450 2E1 (CYP2E1) mRNA and protein were 

significantly decreased in the liver of LFE-pretreated rats, suggesting that the 

hepatoprotective effects of the LFE might be related to anti-oxidative activity and 
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regulation of CYP2E1 expression (Ha et al, 2005). In an independent experiment to study 

the preventive effects of LBP on the development of alcoholic fatty liver (AFL) in rats 

and its possible mechanisms, LBP was also found to reduce ALT, AST and gamma-

glutamyl transferase (GGT) content in the serum, lower the MDA, H2O2 and CYP2E1 

levels in the liver, while enhancing the activity of SOD and GSH-PX in the liver (Gu et al, 

2007). The prevention of AFL by LBP may be due to its effects in inhibiting hepatocyte 

CYP2E1 expression as well as prevention of lipid peroxidation (Gu et al, 2007). LBP was 

also shown to have a protective effect on doxorubicin-induced cardiotoxicity (Xin et al, 

2007). Pretreatment with LBP significantly prevented the loss of myofibrils and 

improved the heart function of the doxorubicin-treated rats as evidenced from lower 

mortality (13%), normalization of anti-oxidative activity and serum AST and creatine 

kinase, as well as improving arrhythmias and conduction abnormalities (Xin et al, 2007). 

LBP exhibits cytoprotective effects against reducing stress by lowering the dithiothreitol 

(DTT)-induced LDH release and caspase-3 activity (Yu et al, 2006). DTT can trigger 

endoplasmic reticulum (ER) stress leading to PKR-like ER kinase (PERK) activation. It 

was also shown that L. barbarum glycans (LBG) attenuated DTT-induced PERK 

phosphorylation (Yu et al, 2006). LBP provided a protective effect against testicular 

tissue damage induced by heat exposure (Luo et al, 2006). When compared with negative 

control, LBP significantly increased testis and epididymis weight, improved SOD activity, 

and raised sexual hormone levels in the damaged rat testes. LBP had a dose-dependent 

protective effect against DNA oxidative damage of mouse testicular cells induced by 

H2O2 (Luo et al, 2006). 
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1.1.2.7 Promotion of Hematopoiesis 

LBP (10 mg/kg, i.p., × 3 d) could increase the burst forming unit-erythroid (BFU-E) and 

colony forming unit-erythroid (CFU-E) in mouse bone marrow by 342% and 192%, 

respectively (Zhou et al, 1991). The number of peripheral blood reticulocytes was 

increased 218% on day 6 after LBP injection. In addition, LBP could promote mouse 

splenoctyes to secrete colony stimulating factors and improve their activity (Zhou et al, 

1991). LBP could stimulate the spleen colony forming unit (CFU-S) proliferation, 

markedly increase the number of granulocyte-monocyte colony forming unit (CFU-GM), 

and promote them to differentiate toward granulocytes (Zhou, 1991). A model was to 

investigate the therapeutic effects of LBP on irradiation- and chemotherapy-induced 

myelosuppressed mice (Gong et al, 2005). Mice were irradiated with sublethal dose of 

550 cGy X-ray or single injection of carboplatin (125 mg/kg, i.p.) to induce severe 

myelosuppression. It was found that LBP (50, 100, 200 mg/kg, i.p., × 6 d) could 

significantly promote the recovery of peripheral blood, such as WBC, RBC, and platelet 

counts in the myelosuppressed mice (Gong et al, 2005). 

 

1.1.2.8 Hypertension Prevention 

A study showed that LBP could prevent hypertension (Jia et al, 1998). In the study, the 

effects of LBP on endothelial function in the two-kidney, one clip model of hypertension 

were observed. The results showed that the increase of blood pressure in hypertensive 

rats (HR) could be prevented significantly by treatment with 10% LBP. In isolated aortic 

rings of LBP-treated rats, the contraction of phenylephrine (PE) was reduced as 

compared with HR rats. Removal of the endothelium abolished the difference of PE-

 



Introduction  
 

34

induced vasoconstriction among groups. In vitro incubation of aortic rings from LBP-

treated rats with methyl blue (MB) or N-nitro-L-arginine methyl ester (L-NAME) 

increased the magnitude of PE-induced contraction. Meanwhile the response to 

acetylcholine (ACh) was significantly increased in LBP-treated rats, but the response to 

nitroprusside was not significantly different among the different groups. Pretreatment 

with L-arginine partially restored ACh-induced relaxation in HR rats, but had no effect in 

LBP-treated rats. These results suggested that the role of LBP in decreasing 

vasoconstriction to PE may be mediated by increase of endothelium-derived relaxation 

factor (EDRF) production. Increased formation of EDRF by LBP may be related to 

increase in the substrate of EDRF (Jia et al, 1998). 
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1.2 T Cell Activation 

T lymphocytes are a group of white blood cells that play a central role in cell-mediated 

adaptive immunity. They originate from hematopoietic stem cells in the bone marrow and 

migrate to the thymus, where they undergo positive selection, lineage commitment, and 

negative selection, and become mature CD4+ or CD8+ cells (Li, 2006; Ye and Graf, 2007; 

Miosge and Zamoyska, 2007; Chen, 2004). The functionally competent T lymphocytes 

then emigrate to the periphery. T cells consist of two subsets, helper T lymphocytes 

(CD4+) and CTLs (CD8+). When T cells recognize antigens in peripheral lymphoid 

organs or tissues, they are activated and then become effector cells to perform functional 

responses such as cytokine secretion, proliferation, and differentiation. Effector CD4+ T 

cells differentiate into Th1 subset, which produces IFN-γ, Th2 subset, which produces 

IL-4, (Farrar et al, 2002), and Th17 subset, which produces IL-17 (Dong, 2008). CD8+ T 

cells differentiate into functional CTLs. Some of the antigen-stimulated T cells develop 

into memory cells (Khanolkar et al, 2007; Lefrançois, 2006; Foulds et al, 2006). T cell 

activation is composed of a cascade of events, including TCR/CD3 recognition of 

peptide-MHC (I or II) complex, formation of immunological synapse (IS), and triggering 

of multiple signaling pathways. 

 

1.2.1 TCR/CD3 Recognition of Peptide-MHC Complex 

1.2.1.1 T Cell Receptor Complex 

The T cell receptor (TCR) is a clonally distributed receptor which recognizes the peptide-

major histocompatibility complex (MHC) displayed on antigen presenting cells (APCs). 

There are two types of TCRs, αβTCR and γδTCR. Most T cells express αβTCR, which is 
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composed of two covalently linked α and β chains with complementarity-determining 

regions (CDRs) to bind peptide-MHC complexes (Davis et al, 1998). The α and β 

heterodimer is non-covalently associated with the CD3 and ζ chains to form the TCR 

complex. The CD3 chains consist of two heterodimers designated as γε and δε. The ζ 

chain consists of one homodimer ζζ. Both CD3 and ζ chains contain the immunoreceptor 

tyrosine-based activation motif (ITAM), where communication of αβTCR engagement by 

peptide-MHC to the intracellular signaling machinery takes place (Kane et al, 2000). The 

characteristic of the ITAM is a pair of tyrosine residues separated by 9-11 amino acids. 

These tyrosines become rapidly phosphorylated by the Src-family kinase Lck following 

TCR stimulation, a required event for initiating TCR signaling (Huang and Wange, 2004). 

 

1.2.1.2 Role of Costimulators in T Cell Activation 

T cell activation requires engagement of the TCR with the peptide-MHC complex 

presented on the cell surface of APCs (Greenwald et al, 2005). In addition to this antigen-

specific interaction, a second interaction involving costimulatory receptors on T cells and 

their respective ligands on APCs is required for optimal T cell activation (Bhatia et al, 

2006). This pathway consists of two B7 family members, B7-1 (CD80) and B7-2 (CD86), 

both of which are expressed on activated APCs and bind to the same receptor CD28, 

which is constitutively expressed on the surface of T cells (Wang and Chen, 2004). CD28 

is the best understood of the costimulatory molecules, and delineating the pathways by 

which it enhances T-cell activation will be central for the design of T-cell costimulatory 

therapeutics. The most discernible effects of CD28 ligation are observed when this signal 

is given in concert with TCR stimulation. Ligation of CD3 and CD28 (CD3/28 
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costimulation) promotes increases in glucose metabolism, high levels of 

cytokine/chemokine expression including a unique ability to produce very high levels of 

IL-2, resistance to apoptosis, and long-term expansion of T cells (Riley and June, 2005). 

Engagement of CD28 on naïve T cells by either B7-1 or B7-2 ligands on APCs also 

confers critical survival signals to activated T cells through the Bcl-xL pathway (Wang 

and Chen, 2004). 

 

1.2.1.3 TCR Binding of Peptide-MHC Complex 

Clonotypic αβTCRs recognize peptides presented by either class I or class II MHCs. 

Class II MHCs present peptides that originate from proteolysis of extracellular antigens 

in endosomal-type compartments, whereas class I MHCs present peptides primarily 

derived from intracellular degradation of proteins in the cytosol. TCRs that recognize 

these MHCs are found on two distinct cytotoxic and T-helper cell lineages, depending on 

the class of the MHC to which they are restricted (Rudolph et al, 2006). The αβTCRs 

bind peptide-MHC through CDRs present in their variable domains (Davis et al, 1998). 

Like many cell surface receptors that interact with ligands on other cell surfaces, αβTCRs 

bind with generally very low peptide-MHC complexes (about 1-50 µM). This is 99.9-

99.99% weaker than that of most affinity-matured antibodies and reflects the fact that the 

confined space between two cell membranes and polyvalency mandate much lower 

affinities with no apparent loss of specificity (Krogsgaard and Davis, 2005). In addition 

to their cognate TCRs, class I and class II MHCs are recognized by their respective co-

receptors, CD8 and CD4. The CD8αα homodimer binds primarily to the α3 domain of the 

MHC molecule in an antibody-like fashion, with the MHC α3 CD loop wedged between 
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two corresponding CDR-like loops from the CD8αα dimmers (Rudolph et al, 2006). 

While both domains of CD8 cooperate to bind class I MHCs, only one domain (the N-

terminal variable-like region) of CD4 makes contact with the MHC with the second 

tandem CD4 domain being distal to the interface (Rudolph et al, 2006). 

 

1.2.2 Formation of the Immunological Synapse  

Following the initial engagement of TCRs with peptide-MHC complex, several T cell 

surface proteins and intracellular signaling components rapidly cluster at T cell-APC 

contacts. This accumulation of receptors is referred to as an immunological synapse (IS) 

(Irvine and Doh, 2007). In the mature synapse, a central structure called the central 

supramolecular activation cluster (cSMAC) is notable for being enriched with the TCR 

complex (TCR, CD3, and ζ chains) and other signaling molecules (CD4 or CD8 co-

receptors, CD28 costimulatory molecules, CD2, PKCθ, etc) (Bromley et al, 2001; 

Cemerski and Shaw, 2006). Surrounding the cSMAC is the peripheral SMAC (pSMAC), 

which is enriched mainly with leukocyte function-associated antigen 1 (LFA-1), talin, 

very late antigen 4 (VLA-4), adhesion- and degranulation-promoting adaptor protein 

(ADAP) and transferring receptor (Bromley et al, 2001; Cemerski and Shaw, 2006). The 

formation of the IS brings signaling molecules into proximity to one another and to the 

receptors that activate these molecules to initiate and amplify TCR-induced signals. In 

addition, the formation of IS ensures that the molecules that T cells use to communicate 

with APCs are brought close to the target molecules on the APCs. Accumulation of 

fusion proteins at this site is easily and reliably scored and has been productively used as 

an indicator of T cell reactivity (Richie et al, 2002). The IS, although not required for 
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initiating TCR signaling, is required for sustained signaling, IL-2 production, and 

proliferation (Huppa and Davis, 2003). It was proposed that the IS functions as an 

adaptive controller, dampening strong signals and enhancing weak signals (Lee et al, 

2003). 

 

1.2.3 Activation and Recruitment of Kinases and Adaptor Proteins 

Antigen engagement by the TCR results in the recruitment of Src family kinases, Lck and 

Fyn, in the proximity of the IS. Lck and Fyn may be activated by autophosphorylation, 

and in turn phosphorylate the tyrosine residues in the ITAMs of the CD3 and ζ chains 

(Palacios and Weiss, 2004). The phosphorylated tyrosine residues then serve as docking 

sites for the Syk-family kinase (SFR) ZAP-70. SFKs then phosphorylate and activate the 

recruited ZAP-70 (Palacios and Weiss, 2004). Activated ZAP-70 autophosphorylates at 

tyrosines 292, 315, and 319, which serve as docking sites to recruit various positive and 

negative signaling effectors to the TCR complex (Huang and Wange, 2004). In addition 

to serving as a scaffold via self-phosphorylation, ZAP-70 also phosphorylates a restricted 

set of substrates following TCR stimulation, including α-tubulin, Sam-68, Vav-1, VHR, 

Shc, Gab2, LAT, and SLP-76 (Huang and Wange, 2004). The latter two substrates in 

particular have been recognized to play a pivotal role in TCR signaling. The adapter 

protein, LAT, was identified as an integral transmembrane protein of 36-38 kDa (Zhang 

et al, 1998). SLP-76 is a cytosolic protein and refers to SH-2 binding leukocyte 

phosphoprotein of 76 kDa (Clements, 2003). When phosphorylated, both LAT and SLP-

76 act as linker/adapter proteins, leading to the binding with Grb2, Grap, Gads-SLP-76, 

phospholipase Cγ-1 (PLC-γ1), Vav, Cbl and the regulatory subunit of PI-3K. 
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Consequently, upon their binding to LAT, these proteins can themselves be activated by 

tyrosine phosphorylation and find higher concentrations of their substrates in the plasma 

membrane (Aguado et al, 2006). Acting in concert, LAT and SLP-76 regulate the 

activation of PLCγ-1 and the subsequent hydrolysis of PIP2 to generate DAG and IP3, 

second messengers in PKC and Ras activation (via DAG) and calcium mobilization (via 

IP3) (Huang and Wange, 2004). 

 

1.2.4 Activation of Signaling Pathways 

1.2.4.1 Ras-MAP Kinase Signaling Pathway 

The Ras pathway is activated in T cells on TCR clustering, leading to the activation of 

MAP kinases and eventually transcription factors. Ras proteins are molecular switches 

that cycle between inactive, GDP-bound, and active, GTP-bound, forms. Signal-induced 

conversion of the inactive to active state is mediated by guanine nucleotide-exchange 

factors (GEFs) that stimulate the exchange of GDP for GTP (Vetter and Wittinghofer, 

2001). When LAT is phosphorylated, it recruits another adaptor protein Grb-2 through 

binding the SH2 domain, which is then activated by ZAP-70 and serves as the docking 

site for the SH3 domain of the GTP/GDP exchange factor Sos. Sos then converts the 

inactive Ras-GDP to the active Ras-GTP (Zebisch et al, 2007). Once Ras is activated at 

the membrane, it recruits and activates the serine/threonine kinase Raf-1, which then 

phosphorylates and activates MEK (MAPK/Erk kinase), a dual specificity 

tyrosine/threonine kinase, that in turn phosphorylates and activates Erk1 and Erk2. 

Phospho-Erk forms dimers that are transported into the nucleus, where they 

phosphorylate the Ets family of transcription factors, including Elk-1. The 
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phosphorylated Elk-1 stimulates transcription of Fos, a component of the activation 

protein-1 (AP-1) transcription factor (Mor and Philips, 2006). In parallel with Ras-MAP 

pathway is the JNK pathway, which represents one sub-group of MAP kinases that is 

activated primarily by cytokines and exposure to environmental stress (Davis, 2000; 

Weston and Davis, 2002). Besides Grb-2 and Sos, the phosphorylated adaptor LAT also 

recruits and activates a GTP/GDP exchange protein called Vav that acts on another small 

21-kDa guanine nucleotide-binding protein called Rac. The Rac-GTP activates MAP3Ks, 

which then phosphorylate and activate the MAP2K isoforms MKK4 and MKK7, which 

in turn phosphorylate and activate JNK. Activated JNK then phosphorylates c-Jun, the 

second component of AP-1 (Davis, 2000; Weston and Davis, 2002; Weston and Davis, 

2007). 

 

1.2.4.2 Calcium-Dependent Signaling Pathway 

Engagement of TCR leads to the recruitment of adaptor proteins and kinases, resulting in 

tyrosine phosphorylation of PLCγ, a cytosolic enzyme specific for inositol phospholipids 

that is recruited to the plasma membrane by tyrosine phosphorylated LAT (Huang and 

Wange, 2004; Aguado, 2006). Recruited PLCγ is phosphorylated by ZAP-70 and other 

kinases such as the Tec family kinase Itk, resulting in the hydrolysis of PIP2 to the second 

messengers, DAG and IP3 (Savignac et al, 2007). IP3 binds to IP3 receptors in the ER and 

induces the release of Ca2+ into the cytoplasm. Depletion of Ca2+
 from intracellular stores 

triggers the entry of Ca2+ across channels in the plasma membrane (Lewis, 2001). Ca2+ 

influx through these channels elevates the intracellular (Ca2+) ([Ca2+]i) for a period of 

minutes to hours (Quintana et al, 2005). Cytosolic free calcium acts as a signaling 
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molecule by binding to calmodulin, an ubiquitous calcium-dependent regulatory protein. 

Calcium-calmodulin complexes then activate a serine/threonine phosphatase calcineurin, 

which then dephosphorylates the nuclear factor of activated T cells (NFAT). The 

dephosphorylated NFAT then translocates to the nucleus and triggers the expression of 

genes that control activation, proliferation, differentiation, and effector functions of 

activated T lymphocytes (Savignac et al, 2007). 

 

1.2.4.3 Protein Kinase C-Mediated Signaling Pathway 

PKC has several isoforms classified as conventional PKCs (cPKCs; α, β, and γ), which 

are activated by Ca2+ and the second messenger DAG, and the atypical PKCs (aPKCs; ζ 

and λ), which are not activated by Ca2+ or DAG, and novel PKCs (nPKCs; θ, ε, and η), 

which are Ca2+ independent (Hayashi and Altman, 2007). cPKCs, which are activated by 

the PIP2 breakdown product DAG, participate in the generation of active transcription 

factors. Ionomycin (Ca2+ mobilizer) in combination with phorbol esters (PKC activators) 

mimics the signals required for T cell activation, indicating that IP3-induced Ca2+ influx 

and DAG-mediated PKC activation cooperate with each other to mediate T cell activation 

(Macian et al, 2003). Among all of the PKCs, PKCθ plays the most important role in T 

cell activation. This Ca2+ independent serine/threonine kinase is selectively expressed in 

T cells and skeletal muscle and has been revealed in several studies as an essential 

member of the NF-κB activation cascade in T cells (Schmitz et al, 2003). PKCθ is 

indispensable for NF-κB activation and its enzymatic activity depends on recruitment to 

the IS. TCR engagement leads to the activation of PLC-γ1, which hydrolyzes PIP2 to IP3 

and DAG. DAG activates PKCθ, which is then translocated into the IS through a 
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mechanism requiring the activation of PI-3K by the engagement of CD28. Several 

adaptor proteins, including caspase recruitment domain (CARD), membrane-associated 

guanylate kinase (MAGUK), caspase recruitment domain-containing MAGUK protein-1 

(CARMA1, also termed CARD11), B-cell lymphoma-10 (Bcl10) and mucosa-associated 

lymphoid tissue-1 (MALT1), as well as the IκB kinase (IKK) complex, are also recruited 

to the IS (Lin and Wang, 2004; Weil et al, 2004; Hayashi and Altman, 2007). Deletion of 

the CARMA1 gene in mice or in Jurkat T cells results in impaired receptor- and PKC-

mediated T cell proliferation and cytokine production resulting from a selective defect in 

NF-κB and JNK activation (Hara et al, 2004; Jun et al, 2003; Hayashi and Altman, 2007). 

Downstream from PKCθ, the CARD proteins CARD11/CARMA1 and Bcl10 relay T cell 

receptor-derived signals to the IKK complex. A poorly understood mechanism involving 

phosphorylation of IKKb by TAK1 then leads to the activation of the IKK complex 

(Siebenlist et al, 2005). Once activated, the IKK kinases phosphorylate the IκB inhibitors 

of nuclear factor- κB (NF-κB) inducing their ubiquitination and degradation. Following 

this process, NF-κB translocates to the nucleus and activates its target genes (Siebenlist et 

al, 2005). 

 

1.2.5 Activation of Transcription Factors 

1.2.5.1 NFAT 

NFAT protein is a family of transcription factors including NFAT1 (NFATp, NFATc2), 

NFAT2 (NFATc, NFATc1), NFAT3 (NFATc4), NFAT4 (NFATx, NFATc3), and 

NFAT5. The only NFAT protein not regulated by Ca2+, NFAT5, is a transcription factor 

crucial for cellular response to hypertonic stress (Savignac et al, 2007; Lopez-Rodriguez 
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et al, 1999). It was first found as an inducible nuclear factor that could bind the IL-2 

promoter in activated T cells (Shaw et al, 1988). 

 

In resting cells, NFAT proteins are phosphorylated and reside in the cytoplasm. They are 

activated by the Ca2+/calmodulin-dependent phosphatase calcineurin through a rise in 

[Ca2+]i (Chen et al, 1998), the latter depending strictly on Ca2+ influx through calcium-

release-activated calcium (CRAC) channels (Feske et al, 2006). Calcium binds receptor 

calmodulin, which in turn activates calcineurin. Calcineurin-mediated NFAT 

dephosphorylation induces a conformational change in the NFAT molecule that exposes 

its nuclear localization signals (NLS), enabling the import of NFAT into the nucleus and 

the induction of NFAT-mediated gene transcription (Savignac et al, 2007). In addition, 

calcineurin also enhances the nuclear retention of NFAT by masking the nuclear export 

signals (NES) and maintaining NFAT in its dephosphorylated state (Savignac et al, 2007). 

 

The importance of NFAT proteins in T-cell activation is underscored by genetic data 

(Macian, 2005). In two human families, the inability to activate NFAT proteins because 

of a defect in store operated calcium entry was associated with severe immunodeficiency 

(Feske et al, 2000). In mice, deficiency in both NFAT1 and NFAT2 in T cells is 

associated with grossly impaired production of many cytokines, including IL-2, IL-4, IL-

10, IFN-γ, GM-CSF, and TNF. IL-5 expression is also notably diminished, as well as the 

expression of CD40 ligand (CD40L) and CD95 ligand (CD95L) (Peng et al, 2001), which 

confirms that the activation of NFAT proteins is essential for T cells to carry out many of 

their effector functions (Macian, 2005). 
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1.2.5.2 AP-1 

The AP-1 transcription factor is composed of proteins Fos, Jun, and activating 

transcription factor (ATF). While the Fos proteins (Fos, FosB, Fra-1, and Fra-2) can only 

heterodimerize with members of the Jun family, the Jun proteins (Jun, JunB, and JunD) 

can both homodimerize and heterodimerize with Fos members to form transcriptionally 

active complexes (Chinenov and Kerppola, 2001). AP-1 is formed by either Fos-Jun 

heterodimers or by Jun-Jun homodimers. AP-1 converts extracellular signals of T cells 

into changes in the expression of specific target genes, which harbor an AP-1 binding site 

in their promoter or enhancer regions. The activity of AP-1 is modulated by interactions 

with other transcriptional regulators and is further controlled by upstream kinases that 

link AP-1 to various signal transduction pathways (Wagner and Eferl, 2005). Activation 

of AP-1 usually involves synthesis of the Fos protein and phosphorylation of preexisting 

Jun protein. Fos synthesis is controlled by Ras/ERK pathway, while Jun is 

phosphorylated by JNK. 

 

AP-1 and NFAT are the main transcriptional partners during T cell activation. Fos and 

Jun dimers form quaternary complexes with NFAT and DNA on NFAT-AP1 composite 

sites, which contain two adjacent binding motifs for both transcription factors and are 

present in many genes that are induced during T-cell activation (Macian et al, 2001; 

Macian, 2005). These complexes have an extensive network of protein-protein contacts, 

which explains their stability and cooperative nature (Chen et al, 1998; Macian, 2005). 

The ternary NFAT/Fos/Jun complex serves as a signal integrator for crosstalk between 

the Ca2+/calcineurin pathway that activates NFAT and the Ras-MAP kinase pathway that 
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promotes the expression and activation of the Fos and Jun family (Savignac et al, 2007). 

NFAT-AP1 cooperation during T-cell activation is responsible for a specific pattern of 

gene expression, which induces the functional changes that characterize an activated T 

cell (Macian, 2005). The nature of AP-1 is important for the induction of IFN-γ and IL-4 

genes (Savignac et al, 2007). Indeed, JunB is the only Jun family member that is induced 

in Th2 cells. In transgenic mice, elevated JunB levels cause an increased expression of 

the Th2 cytokines IL-4, -5, -6, and -10 (Li et al, 1999). 

 

1.2.5.3 NF-κB 
 
The mammalian NF-κB transcription factor family consists of p50 (NF-κB1), p52 (NF-

κB2), REL (also known as cREL), REL-A (p65) and REL-B, each encoded by a distinct 

locus. These proteins dimerize to form functional NF-κB (Siebenlist et al, 2005). In 

unstimulated T cells, NF-κB is sequestered in the cytoplasm by IκB. T cell activation 

results in phosphorylation and degradation of IκB, leading to translocation of NF-κB to 

the nucleus (Lin et al, 2000). Phosphorylation of IκB is mediated by IKK complex, which 

contains two catalytic subunits, IKKα and IKKβ, and one regulatory subunit, IKK-γ 

(Manicassamy et al, 2006). Activation of NF-κB by a wide array of stimuli, including 

cytokines such as IL-1 and TNF-α, byproducts of bacterial and viral infections, radiation, 

or T cell costimulation, leads to the onset of signaling cascades that ultimately converge 

at the level of the IKK complex (Schmitz et al, 2003). As discussed above, PKC-θ is 

crucial for NF-κB activation upon TCR-mediated stimulation. Primary PKC-θ -/- T cells 

displayed defects in NF-κB activation upon TCR stimulation (Pfeifhofer et al, 2003; Sun 
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et al, 2000). PKC-θ -/- T cells failed to activate IKK complex or degrade IκB (Sun et al, 

2000). 

 

NF-κB regulates the transcription of genes involved in the inflammatory and immune 

responses as well as in some aspects of cell growth, survival and differentiation. Aberrant 

NF-κB activity has been associated with defects in T-cell proliferation, activation and 

cytokine production (IL-2, IL-6, IL-8, GM-CSF, TNF-α and IFN-γ) (Caamano and 

Hunter, 2002; Tak and Firestein, 2001). Genetic evidence obtained from mouse models 

and from NF-κB defects identified in humans demonstrates the importance of NF-κB for 

an effective mounting of the immune response (Li and Verma, 2002). 

 

The T cell activation pathway is dipicted in Figure 1 (Gaffen and Liu, 2004). 

 

Figure 1. T cell activation pathway (Gaffen and Liu, 2004). 
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1.3 Macrophage Activation 

Macrophages are widely distributed immune system cells that play indispensable roles in 

both innate and adaptive immunity. In innate immunity, resident macrophages provide 

immediate defense against foreign pathogens and coordinate leukocyte infiltration 

(Martinez et al, 2008). Macrophages contribute to the balance between antigen 

availability and clearance through phagocytosis and subsequent degradation of apoptotic 

cells, microbes and possibly neoplastic cells (Gordon, 2003). In adaptive immunity, 

macrophages collaborate with T and B cells, through both cell-to-cell interactions and 

fluid phase-mediated mechanisms, based on the release of cytokines, chemokines, 

enzymes, arachidonic acid metabolites, and reactive radicals (Gordon, 2003; Martinez et 

al, 2008). Macrophage activation can be either pro-inflammatory or anti-inflammatory, 

contributing to tissue destruction or regeneration and wound healing. Activated 

macrophages can be broadly classified into two main groups: classically activated 

macrophages (or M1), whose prototypical activating stimuli are IFN-γ and LPS, and 

alternatively activated macrophages (or M2), further subdivided into M2a (after exposure 

to IL-4 or IL-13), M2b (immune complexes in combination with IL-1β or LPS) and M2c 

(IL-10, TGF-β or glucocorticoids) (Martinez et al, 2008). M1 exhibits potent microbicidal 

properties and promotes strong IL-12-mediated Th1 responses, whilst M2 supports Th2-

associated effector functions. Beyond infection, M2-polarized macrophages play a role in 

the resolution of inflammation through high endocytic clearance capacities and trophic 

factor synthesis, accompanied by reduced pro-inflammatory cytokine secretion (Martinez 

et al, 2008). 
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1.3.1 Classical Pathway 

It is generally accepted that classically activated macrophages develop in response to two 

signals. The first signal is IFN-γ and the second signal is provided by what has been 

termed ‘pathogen-associated molecular patterns’ (PAMPs) (Schnare et al, 2000). IFN-γ is 

the sole type II IFN and is recognized by an IFN-γ receptor (IFNGR) consisting of two 

ligand-binding IFNGRα chains associated with two signal-transducing IFNGRβ chains 

(Schroder et al, 2004). IFN-γ is mainly secreted by Th1 and CTLs, NK cells, and 

professional antigen-presenting cells, and to a lesser extent, by B cells and NKT cells 

(Young, 2006). In most descriptions of macrophage activation, the second signal is 

provided by a microbe that expresses one or more PAMPs, which are small molecular 

motifs consistently expressed on pathogens. They are recognized by Toll-like receptors 

(TLRs) and other pattern recognition receptors (PRRs) in plants and animals. PAMPs 

include bacterial LPS, flagellin, lipoteichoic acid, peptidoglycan, and nucleic acid 

variants normally associated with viruses, such as double-stranded RNA (dsRNA) or 

unmethylated CpG motifs. The prototypical PAMPs, which stimulate macrophage 

activation responses, are LPS or LTA from the surface of Gram-negative or -positive 

bacteria, respectively. 

 

1.3.1.1 IFN-γ Signaling 

The most important priming stimulus for macrophages is low-dose IFN-γ. Homodimeric 

IFN-γ binds with two IFNGR ligand-binding α chains. Dimerized α chains associate with 

two signaling IFNGR β chains. IFNGR α and β chains are constitutively associated with 

Janus kinases JAK1 and JAK2, respectively. Ligand binding induces phosphorylation 
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events, which first lead to binding of latent, cytosolic signal transducer and activator of 

transcription-1α (STAT1α) followed by its subsequent activation by phosphorylation. 

Activated STAT1α is released from the IFN-γ /IFNGR complex and forms a homodimer 

known as IFN-γ activation factor (GAF), which translocates to the nucleus and binds to 

gamma activated site (GAS) to initiate transcription (Decker et al, 1997). The primary 

IFN-γ JAK/STAT response is not dependent on de novo synthesis of transcription factors, 

because activation of already available, preexisting components mediates it. Finally, 

subthreshold concentrations of IFN-γ upregulate its own expression in activated NK cells 

and increase the sensitivity of macrophages to a subsequent second stimulus (Ma et al, 

2003). In most cases IFN-γ acts synergistically with TNF in macrophage activation. TNF 

signals mainly through its receptor TNF-R1. Ligand binding causes dimerization of TNF-

R1 and release of silencer of death domain (SODD) proteins from the cytoplasmic part of 

the ligand-receptor complex (Tschopp et al, 1999). This leads to ordered binding of 

several adaptor proteins, including TNF receptor-associated death domain (TRADD), 

receptor interacting protein (RIP), TNF-R-associated factor 2 (TRAF2), and Fas-

associated death domain (FADD). These adapter proteins bind some key enzymes and 

initiate three different signaling arms, including FADD-dependent binding and activation 

of caspase-8 (apoptosis), TRAP2-dependent activation of the JNK pathway, and RIP-

dependent NF-κB, which promotes production of pro-inflammatory mediators and 

protects against apoptosis (Ma et al, 2003). The combination of TNF and IFN-γ results in 

optimal macrophage activation. These classically activated macrophages become strongly 

microbicidal and they are important immune effector cells (van Ginderachter et al, 2006). 
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1.3.1.2 TLR Signaling 

TLRs are a type of PRRs and recognize molecules that are broadly shared by pathogens 

but distinguished from host molecules, collectively referred to as PAMPs. They are type I 

membrane-associated receptors characterized by an extracellular leucine-rich repeat 

signature, a transmembrane cysteine-rich flanking region, and a cytoplasmic domain 

homologous with the IL-1 receptor family referred to as the Toll-IL-1 receptor (TIR) 

(Uematsu and Akira, 2008). To date, 13 TLRs have been identified in mice and 11 in 

humans (Roach et al, 2005). TLRs collectively recognize conserved PAMPs in lipids, 

carbohydrates, peptides, and nucleic acids of microbes. Among them, TLR4 recognizes 

LPS, TLR2 recognizes microbial lipopeptides and peptidoglycans (PGN), TLR3 

recognizes double-stranded RNA, TLR5 recognizes bacterial flagellin, whereas TLR9 

recognizes unmethylated bacterial CpG DNA (Yan and Hansson, 2007). Except for 

TLR3, all TIR domains are conserved and associate with other TIR domain-containing 

molecules, including the adaptors that mediate TLR signaling. The four best-

characterized TIR domains containing activating adaptors include myeloid differentiation 

primary response gene 88 (MyD88), TIR domain-containing adaptor protein 

(TIRAP)/MyD88-adaptor-like (Mal), TIR domain-containing adaptor inducing IFN-β 

(TRIF)/TIR domain-containing adaptor molecule-1 (TICAM-1) and TRIF-related adaptor 

molecule (TRAM) (O'Neill and  Bowie, 2007; Zhang and Mosser, 2008). All of these 

proteins are expressed in myeloid cells and all play important roles in activating innate 

signaling events. MyD88 is the primary adaptor for microbial signaling (Krishnan et al, 

2007). The early production of inflammatory cytokines is largely dependent on the 

presence of MyD88. 
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To initiate efficient signaling, LPS first binds to soluble LPS-binding protein in the blood 

or extracellular fluid, and this complex serves to facilitate binding of LPS to CD14. Once 

LPS binds to CD14, LBP dissociates, and the LPS-CD14 complex physically associates 

with TLR4. Recognition of minute quantities of LPS by TLR4 requires an additional 

extracellular accessory protein called MD-2, which is expressed as a dimer with TLR4 on 

the surface of immune cells (Zhang and Mosser, 2008). Ligand binding to TLRs results in 

the immediate recruitment of MyD88, which also contains a death domain homologous to 

TNF receptor family signaling molecules. Subsequently a second protein with similar 

death domain called IL-1 receptor-associated kinase (IRAK) is recruited to the signaling 

complex and phosphorylated. Once activated, IRAK dissociates from MyD88 and 

activates TNF-R-associated factor 6 (TRAF-6), which in turn ubiquitinates TGF-β-

activated kinase (TAK)-1. TAK-1 then serves as a branch point, leading to the activation 

of both NF-κB and MAPK signaling pathways (Krishnan et al, 2007; Zhang and Mosser, 

2008). 

 

1.3.2 Alternative Pathway 

Macrophages activated via alternative pathways are termed M2 cells, which play a 

critical role in type II inflammation and in the resolution and tissue repair phase (van 

Ginderachter, 2006). M2 cells are  subdivided to M2a or alternatively activated 

macrophages, which are elicited by type II cytokines IL-4 or IL-13; M2b, corresponding 

to type II activated macrophages, obtained by triggering of Fcγ receptors in the presence 

of a Toll receptor stimulus; and M2c which includes deactivation programs elicited by 

glucocorticoids, IL-10 or TGF-β (van Ginderachter, 2006; Martinez et al, 2008). 
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1.3.2.1 M2a Activation 

M2a activation is triggered in the presence of IL-4 and IL-13, signaling to macrophages 

in part through a common receptor chain, IL-4Rα (Ma et al, 2003). A number of 

molecules are regulated upon IL-4 and IL-13 signaling. Actions of IL-4 and IL-13 on 

macrophages could down-regulate the production of pro-inflammatory mediators such as 

IL-1β, TNF-α, IL-6, IL-8, IL-12, GM-CSF, IFN-γ, CCL2/MCP-1, and superoxide anions 

(Martinez et al, 2008). IL-4/IL-13 also regulate molecules such as MHC-II, β2 integrins, 

the chemokines CCL22/MDC (Mantovani et al, 2002) and CCL18/AMAC-1, tissue-type 

plasminogen activator and metalloproteinase 1 (Hart et al, 1989; Chizzolini et al, 2000). 

IL-4/IL-13 also downregulate caspase 1, which is responsible for the proteolytic cleavage 

of pro-IL-1β into its active mature form (Cerretti et al, 1992) and affects the IL-1β system 

by enhancing the production of IL-1R receptor antagonist (IL-1ra) and the decoy IL-1β 

type II receptor (IL-1RII) (Mosser, 2003). In addition, IL-4 decreases CD14 and CCR5 

expression (Wang et al, 1998) and was recently found to upregulate several scavenger 

receptors and C-type membrane lectins, such as MRC1, SR-A, Dectin-1, DC-SIGN, 

DCIR (CLECSF6), DCL-1, and CLECSF13 (Martinez et al, 2006). M2a cells do not 

express iNOS in rodents, but express high levels of arginase 1 (ARG1), which skews the 

metabolic pathway of NO to the production of proline. Consequently, these cells fail to 

produce NO and are significantly compromised in their microbicidal ability for 

intracellular pathogens, but they synthesise polyamine and proline that stimulate cell 

growth, collagen formation and tissue repair (Hesse et al, 2001). 
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1.3.2.2 M2b Activation 

M2b activation is characterized by LPS or IL-1β stimulation through TLR4 or IL-1R and 

immune complexes recognized by Fcγ receptor (FcγR) (Bowie and O'Neill, 2000). M2b 

cells produce low IL-12 and high IL-10, favoring the development of type II adaptive 

immune responses (Anderson and Mosser, 2002a). M2b are distinct from M2a since they 

produce much higher levels of IL-10, but also produce significant amounts of TNF-α, IL-

1β, and IL-6, indicating that these cells are not anti-inflammatory per se (Martinez et al, 

2008). In terms of B cell responses, M2b cells efficiently sustain antibody production, the 

majority of which are of the IgG1 isotype, consistently with a type II IgG class switch 

(Anderson and Mosser, 2002b). 

 

1.3.2.3 M2c Activation 

M2c cells represent deactivated macrophages after stimulation with IL-10, TGF-β, or 

glucocorticoids. Their recognition occurs in the nucleus by the gluococorticoid receptor, 

resulting in strong repression of proinflammatory cytokines such as TNF-α, IL-4, IL-5, 

IL-1, IL-6, IL-8, and IL-12 (Martinez et al, 2008). In contrast, the expression of IL-10 

and other molecules with anti-inflammatory functions such as the scavenger receptor 

CD163 are increased. Gluococorticoid finally downregulate a great variety of genes 

known to be upregulated by IFN-γ, such as the chemokines CXCL10/Ip-10, CXCL11/I-

TAC, CCL5/RANTES and CCL24/eotaxin 2, and the chemokine receptor CX3CR1 

(Ehrchen et al, 2007). 
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1.4 Dendritic Cell Maturation and Immunogenicity 

Dendritic cells (DCs) consist of a heterogenous population of professional antigen 

presenting cells, which are derived from multiple lineages from bone marrow with 

distinctive stages of cell development, activation and maturation and may be 

immunogenic and tolerogenic (Banchereau and Steinman, 1998; Steinman et al, 2003; 

Morelli and Thomson, 2007). DCs can be categorized into conventional DCs (cDCs) and 

precursor DCs (pre-DCs). cDCs already have DC form and function and can be 

subdivided into migratory DCs (Langerhans cells and dermal DCs), which act as 

sentinels in peripheral tissues, migrate to the lymph nodes through the lymphatics, 

bearing antigens from the periphery and presenting these antigens to T cells in the lymph 

nodes, and lymphoid-tissue-resident DCs (thymic cDCs and splenic cDCs), which are 

restricted to one lymphoid organ and collect and present foreign and self-antigens there 

(Shortman and Naik, 2007). In mice, these DCs can be separated into CD8+ cDCs that 

express high levels of CD8α on the cell surface, and CD8- cDCs that lack this marker 

(Vremec et al, 2000). Pre-DCs are cells without immediate dendritic form and DC 

function, but with a capacity to develop into DCs in response to an inflammatory or 

microbial stimulus. Different types of pre-DC give rise to different DC subtypes. 

Examples include interferon-producing plasmacytoid DCs (pDCs) and monocyte-derived 

inflammatory DCs (Shortman and Naik, 2007). 

 

1.4.1 DC Maturation 

The term DC maturation was first proposed by Steinman and colleagues (Schuler and 

Steinman, 1985) in a seminal study, which described that Langerhans cells (LCs) 
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extracted from the skin epidermis underwent dramatic phenotypic and functional changes 

during culture in vitro. They discovered that freshly purified LCs expressed low levels of 

MHC and T-cell costimulatory molecules, but after culture in vitro the expressions of 

these molecules were increased dramatically and their capacity to stimulate T cell 

proliferation was markedly enhanced. Compared with freshly isolated LCs, cultured LCs 

express lower levels of receptors involved in antigen uptake (such as FcγRs) but higher 

levels of molecules necessary for T-cell priming (including MHC molecules, the integrin 

lymphocyte function-associated antigen 1 (LFA1), and the costimulatory molecules 

CD80 and CD86) (Larsen et al, 1992; Inaba et al, 1994). These phenotypic distinctions 

have since been extended to other mouse and human DCs, and high levels of MHC, 

adhesion and costimulatory molecules are now widely considered to be markers of DC 

maturation (Reis e Sousa, 2006). Immature DCs are well-equipped with a series of 

receptors for PAMPs and for secondary inflammatory compounds, such as TLRs 

nucleotide-binding oligomerization domain (NOD) proteins, RIG-I-like receptors, C-type 

lectin receptors, cytokine receptors and chemokine receptors. Signaling through these 

receptors triggers DC migration towards the secondary lymphoid organs and results in 

maturation (Villadangos and Schnorre, 2007). For example, TLR signaling is linked to 

MyD88-dependent and TRIF-dependent signaling pathways that regulate the activation 

of different transcription factors, such as NF-κB. Activation of NF-κB in turn results in 

enhanced inflammatory cytokine responses and induction of DC maturation (CD80, 

CD83, CD86 up-regulation) (van Vliet et al, 2007). A variety of stimuli including CD40L, 

TNF-α, and calcium ionophores, can trigger these receptor-mediated signaling pathways 

and lead to DC maturation (Osada et al, 2006). Currently, most clinical trials utilize TNF-
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α, or a cytokine cocktail that includes IL-1β, IL-6, TNF-α, and PGE2, as maturation 

reagents (de Vries et al, 2003; Schuler-Thurner et al, 2002). The cytokine cocktail was 

selected based on the observation that it enhanced HLA-DR, CD83, and CD86 expression 

by DCs and induced greater levels of allogeneic T-cell proliferation (Jonuleit et al, 1997). 

TLR agonists, such as LPS, double-stranded RNA, polyinosinic:polycytidylic acid, and 

CpG oligodeoxynucleotides, have the ability to promote DC maturation in the absence of 

other inflammatory agents and may thus warrant further investigation into their potential 

clinical application (Osada et al, 2006). 

 

1.4.2 DC Immunogenicity Correlates with its Phenotypic Maturation 

An immunogenic DC possesses the capacity to induce T-cell clonal expansion, 

differentiation into effector cells and a long-term increase in precursor frequency 

(‘memory’) (Reis e Sousa, 2006). To activate naïve T cells, signal 1, signal 2, and signal 

3 are all needed to be delivered by an APC. Signal 1 is delivered through the TCR when 

it engages an appropriate peptide-MHC complex. Signal 1 alone is thought to promote 

naïve T-cell inactivation by anergy, deletion or co-option into a regulatory cell fate, 

thereby leading to ‘tolerance’ (Reis e Sousa, 2006). Signal 2 is referred to as ‘co-

stimulation’ and is taken to mean an accessory signal(s) that, together with signal 1, 

induces ‘immunity’, which is often equated with signaling through CD28 when it 

engages CD80 and/or CD86 (Keir and Sharpe, 2005). Signal 3 refers to signals delivered 

from the APC to the T cell that determine its differentiation into an effector cell (Reis e 

Sousa, 2006). IL-12 is an example of a mediator that delivers a signal 3 that can promote 

Th1-cell or CTL development (Trinchieri, 2003). The signal 3 for Th2-cell development 
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could be a Notch ligand (Tu et al, 2005). Therefore, an immunogenic DC must be 

phenotypically mature, expressing high levels of MHC classs II and costimulatory 

molecules CD80 and CD86, and producing IL-12 or Notch ligand. 

 

1.4.3 Phenotypically Mature DCs May Not Be Immunogenic 

However, phenotypically mature DCs may not necessarily be immunogenic. Recently it 

was found that phenotypically mature DCs induce tolerance (Albert et al, 2001) or else 

do not induce immunity (Sporri and Reis e Sousa, 2005), even though they stimulated 

naïve T cells. DCs in the steady state, that is, in the absence of deliberate exposure to 

maturation signals, can tolerate peripheral CD4+ and CD8+ T cells by inducing deletion, 

anergy or regulation, depending on the model system studied (Reis e Sousa, 2006). 

Immature DCs in the steady state are thought to mature spontaneously and acquire the 

capacity to induce T cell tolerance (van Vliet et al, 2007). What is not yet known is the 

range of maturation signals available to immature DCs and whether the different lineages 

of maturing DCs contribute to functional diversity (van Vliet et al, 2007). There is 

accumulating evidence that antigen processing and tolerogenic cross-presentation of 

apoptotic material requires maturation of DCs (Niimi et al, 2001). Pulmonary DCs pulsed 

with antigen by intranasal ovalbumin (OVA) application induced tolerance and appeared 

as mature DCs after reaching the draining lymph nodes (Hayamizu et al, 1998). Self-

antigen transport, processing and presentation for tolerance induction by steady-state 

migrating DCs require maturation, including the upregulation of MHC and costimulatory 

molecules (Groux et al, 2004). However, in the absence of microbial or inflammatory 

stimulation these DCs are not presumed to produce IL-12 or other pro-inflammatory 
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cytokines and their maturation process is obviously different from pro-inflammatory DCs 

(Groux et al, 2004). 

 

1.4.4 Tolerogenic DC Subset? 

It is currently unclear whether a distinct subset of DCs exists which is solely dedicated to 

the induction and maintenance of peripheral tolerance. It was found that a subset of DCs 

isolated from Peyer’s patches, lungs, or the anterior chamber of the eye display a mature 

phenotype, secrete IL-10 but not IL-12, and drive the development of IL-10-producing 

regulatory T (Treg) cells (Hayamizu et al, 1998; Corcoran et al, 2003; Rutella et al, 2006). 

It was recently suggested that CD11clowCD45RBhigh DCs represent a population of DCs 

that have matured to display a stable tolerogenic phenotype with a unique molecular 

design by the downregulation of T cell activation partners (Groux et al, 2004). Under 

steady-state conditions, these cells, loaded with self- and commonly encountered antigens, 

are driven to lymphoid organs by endogenous factors to induce the differentiation of Treg 

cells and tolerance (Groux et al, 2004). It has been shown that IL-10 is a key factor for 

the differentiation of TDC in vitro and in vivo (Groux et al, 2004). DCs from peripheral 

tissues are surrounded by stromal fibroblasts and epithelial cells that are sources of PGE2; 

TGF-β1 and IL-10 (Groux et al, 2004). 

 

1.4.5 Process of Tolerogenic DC Induction of Tolerance  

In the steady state, CD8- and CD8α+ DCs remain quiescent after capturing and processing 

exogenous antigen (through the internalization of apoptotic cells, vesicles and/or soluble 

molecules. These quiescent (semi-mature) DCs express low levels of costimulatory 

molecules and therefore induce deficient activation of naive T cells, and induce T-cell 
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apoptosis or anergy and probably the generation and/or expansion of regulatory T cells. 

The interaction of surface CD80/CD86 on both splenic DC subsets with cytotoxic T-

lymphocyte antigen 4 (CTLA4) enhances the synthesis of functional indoleamine 2,3-

dioxygenase (IDO), which is an enzyme that catalyzes the depletion of the essential 

amino acid tryptophan, resulting in the inhibition of T-cell proliferation, and produces 

tryptophan-derived metabolites that promote T-cell apoptosis (Morelli and Thomson, 

2007). 

 



Introduction  
 

61

1.5 Scope of Present Study 

From the literature review, LBP appears to possess immunomodulatory properties. 

However, the mechanisms of immunomodulation have not been fully elucidated yet. For 

example, although LBP was found to stimulate lymphocyte proliferation and cytokines 

such as IL-2 secretion, indicating it can activate T cells, the complete cytokine profile and 

the mechanism of T cell activation stimulated by LBP, have not been reported. While 

previous studies have shown that LBP can activate macrophages, more insightful pieces 

of evidence to show its effects on innate immunity need to be demonstrated. Furthermore, 

the effects of LBP on DCs have seldom been addressed. In addition, although LBP has 

been successfully isolated from L. barbarum fruit and purified to several fractions, the 

structure, constituents, and molecular weights of LBP fractions obtained from different 

laboratories are not consistent. We hypothesize that LBP has effects on T cells, 

macrophages, and DCs. 

 

The objectives of this study thus includes the following: 

1. To isolate, purify and characterize LBP and its fractions; 

2. To elucidate the mechanism of T cell activation by LBP; 

3. To investigate the mechanism of macrophage activation by LBP; 

4. To investigate whether LBP can induce immunogenic DCs. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1 Materials 

2.1.1 Reagents 

The following reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA): 

RPMI-1640 medium, DMEM medium, fetal bovine serum (FBS), L-Glutamine, 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), sodium pyruvate, penicillin, 

streptomycin, bovine serum albumin, Triton X-100, sodium azide, sodium chloride, 

ammonium chloride, potassium chloride, potassium dihydrgen orthophsosphate, 

propidium iodide, disodium hydrogen orthophosphate, Tris (hydroxy methyl) 

aminomethane, paraformaldehyde, glycine, bromophenol blue, Coomassie brilliant blue, 

2-mercaptoethanol, chloroform, butanol, ethanol, sodium hydroxide, phenol, sulfuric acid, 

DEAE-cellulose, D-glucose, blue dextran, T-dextran standards, including T-25000, T-

80000, T-270000, and T-670000, concavalin A (Con A), lipopolysaccharide (LPS), 

mitomycin C, phorbol myristate acetate (PMA), ionomycin, protease, E-TOXATE® kit, 

collagenase A, Histodenz, RNase, DNase I, ovalbumin (OVA), FITC-dextran, and FITC-

Staphylococcus aureus. 

 

The following reagents were purchased from BD Biosciences (San Diego, CA, USA): 

Mouse IL-2, IL-4, IFN-γ, and TNF-α, IL-1β, IL-12p40 and p70 OptiEIATM sets, mouse 

IL-2, IL-4, and IFN-γ ELISPOT sets, luciferase reporter plasmids NFAT-luc, AP-1-luc, 

and NF-κB-luc, and the following antibodies, including rat anti-mouse CD3 (IgG2b, 

FITC, 17A2), rat anti-mouse CD19 (IgG2a, PE, 1D3), rat anti-mouse CD25 (IgG1, 

purified, PC61), goat anti-rat IgG (FITC, H + L), rat anti-mouse CD11b (IgG2b, APC, 

M1/70), American hamster anti-mouse CD11c (IgG1, APC, HL3), rat anti-mouse CD40 
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(IgG2a, FITC, 3/23), American hamster anti-mouse CD80 (IgG2, FITC, 16-10A1), rat 

anti-mouse CD86 (IgG2a, FITC, GL1), rat anti-mouse I-A/I-E (IgG2a, FITC, 2G9), 

isotype controls American hamster IgG1 (APC, G235-2356), American hamster IgG2 

(FITC, B81-3), rat IgG1 (purified, R3-34), rat IgG2a (FITC, R35-95), rat IgG2a (PE, 

R35-95), rat IgG2b (FITC, A95-1), rat IgG2b (APC, A95-1). 

 

The following reagents were purchased from companies as indicated: 

Sodium dodecyl sulfate (SDS), bisacrylamide, acrylamide, ammonium persulfate, N, N, 

N’, N’-tetramethylethylenediamine (TEMED), protein assay kit, protein standards (Bio-

Rad, Hercules, CA, USA), PCR primers and fluorogenic probes for the genes TNF-α, IL-

1β, IL-12p40, and β-actin and TaqMan® Gene Expression Assay kit (Applied 

Biosystems Incorporation, Foster, CA, USA); Dynal mouse T cell and B cell isolation 

kits, lipofectamine, Opti-MEM® I reduced serum medium, SuperScriptTM first-strand 

synthesis kit (Invitrogen, Carlsbad, CA, USA); XK column (2.6 × 40 cm), HiPrep 26/60 

Sephacryl S-300 HR column, 3H-thymidine (GE Healthcare, Buckinghamshire, UK), 

luciferase assay system (Promega, Madison, WI, USA); rmGM-CSF, rmIL-4, dialysis 

tubing (MWCO: 10,000 kDa) (Pierce, Rockford, IL, USA), RNeasy Mini Kit (QIAGEN, 

Hilden, Germany); Anti-mouse CD11c microbeads (Miltenyi Biotec, Bergisch Gladbach, 

Germany); L. barbarum dried fruit (Eu Yan Sang Chinese medicine store, Singapore. The 

fruit was produced in Ningxia province, China). 
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2.1.2 Animals 

Female C57BL/6 and BALB/c mice, 6-week old, were obtained from the Singapore 

Laboratory Animal Centre. All animals were housed at 22  2°C on a 12-h light/dark 

cycle (lights on at 07:00 h) with 45-55% relative humidity in the Animal Holding Facility 

(AHU) at the National University of Singapore (NUS). Food and water were provided ad 

libitum. All procedures were performed in accordance with the Singapore Guidelines on 

the Care and Use of Animals for Scientific Purpose and were approved by the 

Institutional Animal Care and Use Committee (IACUC) of NUS. 

 

2.1.3 Cell Lines 

Jurkat T cell line and RAW264.7 murine macrophage cell line were purchased from 

American Type Culture Collection (ATCC, TIB-71 and TIB-152, respectively). Jurkat 

cells were cultured in RPMI-1640 medium and RAW264.7 cells were maintained in 

DMEM medium at 37°C in a 5% CO2 humidified incubator. Both media were 

supplemented with 10% FBS, 2 mM L-glutamine, 4.5 g/L glucose, 10 mM HEPES, and 

1.0 mM sodium pyruvate, and antibiotics (100 U/ml of penicillin and 100 µg/ml of 

streptomycin). 
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2.2 Methods 

2.2.1 Isolation of Crude LBP 

500 g dried fruit of L. barbarum were homogenized and then soaked in 6 L of Milli-Q 

water at 4ºC overnight. The water extract was filtered by filter cloth followed by 

centrifugation at 10,000 ×g to remove tiny solid particles. The supernatant was 

concentrated to 800 ml under reduced pressure and then precipitated with 5 volumes of 

absolute ethanol. The precipitate was dissolved in 100 ml of Milli-Q water. One fifth 

volume of the Sevag reagent (CHCl3:n-BuOH4 = 4:1) was added 5× to remove free 

proteins. The aqueous phase was then dialyzed against water for 96 h and lyophilized by 

freeze dryer. For use in bioassays, LBP was dissolved in PBS or normal saline (for in 

vivo experiments), filtered through a 0.22-µm filter, and stored at 4ºC. The five fractions 

LBPF1-5 that were obtained were similarly treated. 

 

2.2.2 DEAE-Cellulose Ion Exchange Chromatography 

40 g of DEAE-cellulose was washed with 0.1 M NaOH/ 0.5 M NaCl, followed by 0.1 M 

HCl/ 0.5 M NaCl. The pH was adjusted to 7.8. Then the DEAE-cellulose was packed into 

XK column (2.6 × 40 cm). The column was equilibrated with Milli-Q water for 24 h. 0.5 

g of crude LBP was dissolved in 20 ml of Milli-Q water and applied onto the column, 

which was sucessively eluted with 500 ml of water, followed by 500 ml of 0.05 M, 0.1 M, 

0.2 M, and 0.5 M NaCl, respectively, at a flow rate of 0.8 ml/min. The fractions were 

collected at 10 ml/tube. The absorbance value at 280 nm was measured to monitor the 

protein level. The polysaccharide level was tested for in every other tube by phenol-

sulfuric acid method, as described below. The fractions which produced a peak at 490 nm 
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were collected, concentrated under reduced pressure, dialyzed against water to remove 

salt, and lyophilized by freeze dryer. 

 

2.2.3 Size Exclusion Chromatography 

Fractions obtained from DEAE-cellulose ion exchange chromatography were dissolved 

in 5 ml of Milli-Q water and applied onto Sephacryl S-300 HR pre-packed column (2.6 × 

60 cm). The column was eluted with 400 ml of water at a flow rate of 1.3 ml/min. The 

eluted solution was collected at 9 ml/tube. Absorbance values at 280 nm and 490 nm 

were monitored as above to test protein and polysaccharide levels, respectively. The 

fractions producing a peak at 490 nm were collected, concentrated under reduced 

pressure, and lyophilized by freeze dryer. 

 

2.2.4 Carbohydrate Content Test 

Carbohydrate content was determined by phenol-sulfuric acid method. Briefly, five LBP 

fractions, designated as LBPF1-5, were dissolved in Milli-Q water at 100 µg/ml. Glucose 

was dissolved in Milli-Q water at 1 mg/ml and further diluted to 320, 160, 80, 40, 20, and 

10 µg/ml. 0.4 ml of standards or samples was added into a glass tube, followed by 0.2 ml 

of 5% phenol and 1 ml of concentrated sulfuric acid. The ratio of polysaccharide solution, 

phenol, sulfuric acid was 2:1:5 (V:V:V). The reaction system was heated at 100ºC for 10 

min. The absorbance value was measured at 490 nm with a spectrometer (BioMate). The 

carbohydrate content was calculated by the linear regression equation deduced from the 

glucose standard curve. 
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2.2.5 Protein Content Test 

Protein content was determined by the Bradford method. Briefly, BSA standards, 

including 25, 15, 10, 7.5, and 5 µg/ml, were prepared. LBPF1-5 was dissolved in Milli-Q 

water at 100 µg/ml. 800 µl of standards or samples were mixed with 200 µl of dye 

reagent concentrate and incubated at RT for 10 min. The absorbance value was read at 

595 nm by a spectrometer (BioMate). The protein content was calculated by the linear 

regression equation deduced from the BSA standard curve. 

 

2.2.6 Molecular Weight Measurement 

The molecular weights of LBPF1-4 were determined by SDS-PAGE. Briefly, 2 mg of 

LPBF1-4 was dissolved in 200 µl of distilled water and mixed with 50 µl of 5× sample 

buffer (10% SDS, 10 mM β-mercaptoethanol, 20% v/v glycerol, 0.2 M Tris-HCl, pH 6.8, 

0.05% bromophenol blue). The mixture was boiled for 10 min to denature protein. 25 µl 

of the mixture was loaded onto the well of the SDS-polyacrylamide gel consisting of 

stacking and running gel. The gel was run for 2 h and stained with Coomassie brilliant 

blue. The migration distances of protein standards, bromophenol blue, and sample on the 

gel were measured. Rf, which is the ratio of the distance migrated by the molecule to that 

migrated by bromophenol blue-front, was calculated. The molecular weights of LBPF1-4 

were calculated by the linear regression equation (lg MW against Rf) deduced from 

protein standards. 

 

The molecular weight of LBPF5 was determined by gel filtration. Sephacryl S-300 HR 

pre-packed column (2.6 × 60 cm) was equilibrated with 0.1 M KCl at 1.3 ml/min for 24 h. 
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LBPF5, T-dextran standards with different molecular masses, including 25000, 80000, 

270000, and 670000 kDa, and blue dextran (MW: 2000000 kDa, used to measured the 

exclusion volume/void volume) were dissolved in 0.1 M KCl at 1 mg/ml and applied 

onto the Sephacryl S-300 HR pre-packed column, which was eluted with 0.1 M KCl at a 

flow rate of 1.3 ml/min. The eluted solution was collected at 5.2 ml/tube. The elution 

volume (Ve) and the void volume (Vo) were determined by measuring the peaks at 490 

nm, which was monitored by phenol-sulfuric acid assay. The molecular weight of LBPF5 

was calculated by the linear regression equation (lg MW against (1-Vo/Ve)) deduced 

from dextran standards. 

 

2.2.7 Test of LPS Contamination 

LPS contamination was tested by the Limulus amebocytes lysate (LAL) assay using E-

TOXATE® kit and by B cell proliferation assay. For LAL assay, crude LBP and LBPF1-5 

were dissolved in endotoxin-free water at 10 mg/ml. The endotoxin standard was 

reconstituted with 1 ml of endotoxin-free water to make 4000 EU/ml stock solution, 

which was serially further diluted to working standard solutions, including 0.5, 0.25, 

0.125, 0.06, 0.03, and 0.015 EU/ml. Limulus amebocyte lysate was reconstituted with 5 

ml of endotoxin-free water. 100 µl of samples, standards, or endotoxin-free water 

(negative control) was mixed with 100 µl of LAL in a microcentrifuge tube. The mixed 

content was incubated at 37°C in water bath for 1 h and observed for gelation while 

inverting the tubes 180° slowly. A positive test is the formation of hard gel that permits 

complete inversion of the tube or vial without disruption of the gel. All other results (soft 

gels, turbidity, increase in viscosity, or clear liquid) are considered negative. B cell 
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proliferation was described as below in the proliferation assay. 2×105 B cells were 

stimulated with 5 µg/ml of LPS, or 100 µg/ml of LBP, LBPF1-5 at 37ºC in a 5% CO2 

humidified incubator for 72 h. 

 

2.2.8 In vitro Cytotoxicity Assay 

Mouse splenocytes (prepared as below) were treated with LBP at serial concentrations, 

including 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 µg/ml at 37ºC in a 5% CO2 

humidified incubator for 72 h and pulsed with 3H-thymidine (0.5 µCi/well) for the last 18 

h. The cells were harvested and the amount of 3H-thymidine uptake by the cells was 

determined as described below in the proliferation assay. 

 

2.2.9 Acute Toxicity Assay  

BALB/c mice were administered p.o. or i.p. with a single dose of 20 mg of LBP (1 g/kg). 

Mice were observed for mortality, body weight, and clinical symptoms such as breathing, 

walking behavior, fur erection, feces, and urine, for 14 days. 

 

2.2.10 Splenocyte Preparation  

C57BL/6 or BALB/c mice were sacrificed by CO2 inhalation. Spleen was aseptically 

removed from the abdominal cavity and minced through a 40-µm nylon cell strainer (BD 

Falcon) with a 5-ml syringe core in 10-ml of RPMI-1640 medium. Red blood cells were 

depleted with Tris-NH4Cl lysis buffer (0.144 M NH4Cl, 0.017 M Tris-HCl). Splenocytes 

were washed with PBS three times and maintained in RPMI-1640 medium, supplemented 
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with 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin at 37°C in a 5% CO2 

humidified incubator. 

 

2.2.11 T and B Cell Purification 

T and B cells were purified from mouse splenocytes using Dynal mouse T and B cell 

isolation kits (Invitrogen) according to the manufacturer’s instructions. Briefly, 

splenocytes were washed twice with PBS and re-suspended in PBS/ 0.1% BSA to 

1×108/ml. The desired number of splenocytes was transferred to a tube. 20 µl of FBS and 

20 µl of Antibody Mix for T or B cell isolation were added to per 1×107 cells. After 

incubation at 4ºC for 20 min, the cells were washed with 2 ml of PBS/ 0.1% BSA and re-

suspended in 800 µl of PBS/ 0.1% BSA. 200 µl of pre-washed Mouse Depletion 

Dynabeads were added. After incubation for 15 min at room temperature with gentle 

tilting and rotation, the cells were resuspended and the tube was placed in the magnet for 

approximately 2 min. The supernatant, which contains the negatively isolated mouse T or 

B cells, was transferred to a new tube. To determine the purities of T and B cells, 1×106 T, 

B cells, or splenocytes were suspended in 50 µl of PBS/ 0.1% NaN3/ 1.0% FBS. The cells 

were treated with 50 µl of rat anti-mouse FITC-CD3 mAb (20 µg/ml) and rat anti-mouse 

PE-CD19 mAb (20 µg/ml) at 4ºC for 40 min in the dark. After incubation, the cells were 

washed twice with PBS/ 0.1% NaN3/ 1.0% FBS. The cells were resuspended in 0.5 ml of 

PBS/ 2% paraformaldehyde and analyzed by flow cytometry (Beckman Coulter). 
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2.2.12 Proliferation Assay 

2×105 splenocytes were stimulated with crude LBP or LBPF1-5 at serial concentrations, 

including 1, 3, 10, 30, 100, and 300 µg/ml. 2×105 T or B cells were stimulated with 100 

µg/ml of LBP, LBPF4, or LBPF5. Con A (3 µg/ml) (Staska et al, 2005) and LPS (5 µg/ml) 

(Brian, 1988) were positive controls for T and B cell proliferation, respectively. The cells 

were cultured in RPMI 1640 medium, supplemented with 10% FBS, 100 U/ml penicillin 

and 100 µg/ml streptomycin at 37°C in a 5% CO2 humidified incubator for 72 h and were 

pulsed with 0.5 µCi/well of 3H-thymidine for the last 18 h. The cells were harvested on 

glass fiber filters using a Filtermate cell harvester (Packard). The amount of 3H-

thymidine incorporated into cells was measured using a β-scintillation counter (TopCount, 

Packard). The results are expressed as stimulation index (S.I.), as calculated by dividing 

cpm of stimulated cells with cpm of unstimulated cells. 

 

2.2.13 Protease Digestion  

Protein contained in LBP was destroyed by incubation with protease. Briefly, 20 mg of 

crude LBP, LBPF4, or LBPF5 was dissolved in 10 ml of 0.2% SDS/ 10 mM EDTA 

solution. Protease was added to 1 mg/ml. The reaction mixture was incubated at 37ºC in a 

water bath overnight, followed by dialysis against Milli-Q water for 3 days and 

lyophilization. Splenocytes were stimulated with 100 µg/ml of protease-digested LBP, 

LBPF4, or LBPF5 for 72 h. Cell proliferation was determined by 3H-thymidine uptake 

assay. 
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2.2.14 Cell Cycle Profile Analysis 

Cells were harvested and washed with cold PBS twice. The cells were then fixed in 1 ml 

of 70% ethanol at 4ºC overnight. The cells were washed twice with PBS and re-

suspended in 0.5 ml of staining solution (100 µg/ml of RNase, 40 µg/ml of propidium 

iodide, 0.1% Triton X-100 in PBS) for 30 min at RT. Cell cycle profile was analyzed by 

flow cytometry (Beckman Coulter). 

 

2.2.15 Flow Cytometric Analysis 

Cells were washed with cold wash buffer (PBS/ 0.1% NaN3/ 1.0% FBS). For analysis of 

CD25 expression, 106 splenocytes were treated with 0.5 µg of monoclonal rat anti-mouse 

CD25 (10 µg/ml) at 4ºC for 40 min, washed, followed by addition of 100 µl of 10 µg/ml 

FITC-conjugated goat anti-rat IgG and incubation at 4ºC for 40 min in the dark. For 

analysis of the expressions of MHC class II and costimulatory molecules on macrophages 

or dendritic cells (DCs), 106 cells were stained with 0.5 µg of APC-conjugated anti-

mouse CD11b (for macrophages) or APC-conjugated anti-mouse CD11c (for DCs) and 

0.5 µg of FITC-conjugated anti-mouse CD40, CD80, CD86, I-A/I-E, or isotype controls 

in 100 µl at 4ºC for 40 min. After incubation, the cells were washed, resuspended in 1 ml 

of PBS/ 2% paraformaldehyde, and analyzed by flow cytometry (Dako Cytomation). 

 

2.2.16 RNA Extraction 

Total RNA was extracted from splenocytes or RAW264.7 cells using RNeasy Mini Kit 

(QIAGEN) according to the manufacturer’s instruction. Briefly, cells were harvested, 

washed, and disrupted with 350 µl of Buffer RLT. 1 volume of 70% ethanol was added to 
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the homogenized lysate, which was mixed by pipetting, applied to an RNeasy mini 

column placed in a 2-ml collection tube, and centrifuged for 15 s at 10000 ×g. The flow-

through was discarded. 700 µl of Buffer RW1 was added to the column, which was 

centrifuged for 15 s at 10000 ×g. The column was transferred to a new 2-ml collection 

tube and washed with Buffer RPE twice by centrifuging for 2 min at 10000 ×g. Finally, 

the RNA was eluted with 30 µl of RNase-free water by centrifuging for 1 min at 10000 

×g. 

 

2.2.17 First-strand cDNA Synthesis 

A total of 5 µg of total RNA was reverse transcribed to cDNA using SuperScripTM First-

Strand Synthesis System (Invitrogen) according to the manufacturer’s instruction. In brief, 

total RNA (5 µg), oligo(dT)20 (50 µM), and dNTP mix (10 mM) were mixed and the 

volume was brought to 10 µl in a 0.5-ml tube. The mixture was then incubated for 5 min 

at 65ºC and placed on ice for 1 min. cDNA Sythesis Mix (10 µl), comprising 10× RT 

buffer (2 µl), 25 mM MgCl2 (4 µl), 0.1 M DTT (1 µl), RNaseOUT (1 µl), and SuperScript 

III RT (1 µl), were added and the tube was incubated for 50 min at 50ºC. The reaction 

was terminated at 85ºC for 5 min. RNA was removed by adding 1 µl of RNase H for 20 

min at 37ºC. 

 

2.2.18 Quantitative Real-time Reverse Transcription PCR 

PCR primers and fluorogenic probes for all of the target genes (IL-2, IL-4, IFN-γ, TNF-α, 

IL-1β, IL-12p40) and endogenous control (β-actin) were purchased as TaqMan® Gene 

Expression Assays (ABI, Foster City, CA), which consists of 20× mixed PCR primers 
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and TaqMan minor groove binder 6-FAM dye-labeled probes with a nonfluorescent 

quencher at the 3´ end of the probe. The product numbers for the target genes and 

endogenous control (β-actin) were as follows: Mm00434256_m1 (IL-2), 

Mm00445259_m1 (IL-4), Mm00801778_m1 (IFN-γ), Mm99999068_m1 (TNF-α), 

Mm00434228_m1 (IL-1β), Mm00434174_m1 (IL-12p40), Mm00607939_s1 (β-actin). 

The PCR volume was 20 µl, composed of 1 µl of 20× mixed primers and probe, 10 µl of 

2× TaqMan® Fast Universal PCR Master Mix, and 9 µl of cDNA template (500 ng 

diluted in RNase-free water). PCR was performed in an optical 96-well reaction plate on 

the ABI 7500 Fast Real-time PCR System. Each sample was run in triplicate. The 

thermal cycle conditions were 20-s hold at 95ºC, followed by 50 cycles of 1 s at 95ºC 

(denaturation) and 20 s at 60ºC (annealing/extension). 

 

The relative quantification of the target gene expression was calculated by comparative 

CT (∆∆CT) method using the machine software (SDS 1.3.1). In this method, the threshold 

cycle (CT) is the fractional cycle number at which the fluorescence passes the threshold, 

which level is set to be above the baseline and sufficiently low to be within the 

exponential growth region of the amplification curve. The amount of target gene 

expressed is normalized to an endogenous reference (β-actin) and is relative to a 

calibrator (negative control, i.e. untreated cells). The target CT and endogenous reference 

CT is calculated for each sample. The CT of the endogenous reference is then subtracted 

from the CT of the target gene. This value is known as ∆CT. The ∆CT of each sample is 

then subtracted from the ∆CT of the calibrator, and this value is known as ∆∆CT. 
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2.2.19 ELISA 

Cytokines, including IL-2, IL-4, IFN-γ, TNF-α, IL-1β, IL-12p40, and IL-12p70 were 

quantified by sandwich ELISA using BD Biosciences OptiEIATM Set (San Diego, CA), 

according to the manufacturer’s instructions. Briefly, Maxisorp plates (Nunc, Roskidle, 

Denmark) were coated with 100 µl of purified anti-mouse IL-2, IL-4, IFN-γ, TNF-α IL-

1β, IL-12p40, or IL-12p70 monoclonal antibodies, sealed, and incubated at 4ºC overnight. 

The wells were aspirated and washed with 300 µl/well wash buffer (PBS with 0.05% 

Tween-20) for three times. The wells were blocked with 200 µl of assay diluent (PBS 

with 10% FBS) for 1 h at RT. The plates were washed 3 times with wash buffer. 100 µl 

of supernatant from cell culture, as well as serially diluted recombinant mouse IL-2, IL-4, 

IFN-γ, TNF-α, IL-1β, IL-12p40, or IL-12p70 standards, were added to the plates. The 

plates were sealed and incubated at RT for 2 h. After incubation, the contents of the wells 

were aspirated and washed five times with wash buffer. Then 100 µl of working detector 

(biotinylated anti-mouse IL-2, IL-4, IFN-γ, TNF-α, IL-1β, IL-12p40, or IL-12p70 + 

streptavidin-HRP conjugate) were added and the plates were incubated for 1 hour at room 

temperature with plate sealer. The plates were washed seven times with wash buffer. 

Finally, the plates were incubated with 100 µl of one step substrate reagent for 30 min at 

RT and the color development was stopped by adding 50 µl of stop solution. The 

absorbance was measured at 450 nm with a reference wavelength of 570 nm with a 

spectrometer (TeCan Sunrise). 
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2.2.20 Transfection 

Jurkat cells or RAW264.7 cells were transiently transfected by using lipofectamine 

transfection reagent. Briefly, 8.0 µg of luciferase reporter plasmid NFAT-luc, AP-1-luc, 

or NF-κB-luc DNA was diluted in 0.5 ml of Opti-MEM® I reduced serum media 

(Invitrogen). 20 µl of lipofectamine (Invitrogen) was diluted in 0.5 ml of Opti-MEM® I 

reduced serum media. The DNA solution was then mixed gently with the lipofectamine 

solution and incubated at room temperature for 20 min. The mixed solution was added 

dropwise to 8×106 Jurkat cells or RAW264.7 cells in 5 ml of Opti-MEM® I reduced 

serum media in a 60-mm Petri dish. The cells were incubated at 37°C in a 5% CO2 

incubator for 48 h. 

 

2.2.21 Luciferase Assay 

At the end of the culture, cells were harvested, washed with PBS, and adjusted to 

2×106/ml. 100 µl of cells were applied to each well of a 96-well tissue culture plate. The 

cells were stimulated with 100 µg/ml of LBP or LBPF1-5 for 6 h. PMA (20 ng/ml) plus 

ionomycin (0.5 µg/ml) was positive control for Jurkat cells. LPS (1 µg/ml) was positive 

control for RAW264.7 cells. At the end of the stimulation, the cells were harvested and 

lysed with 20 µl of lysis buffer (25 mM Tris-phosphate, 8 mM MgCl2, 2 mM DTT, 1% 

Triton X-100, and 10% glycerol, 2 mM 1,2-diaminocyclohexane-N,N,N,N-tetraacetic 

acid). 100 µl of the luciferase assay reagent (Promega) was dispensed into a luminometer 

tube. 20 µl of cell lysate was added into the tube and mixed with the reagent. Luciferase 

activity was measured by a luminometer (Biotrace). The background obtained with the 
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lysis buffer was subtracted from each experimental value, and the specific trans-

activation was expressed as the fold induction over untreated cells. 

 

2.2.22 In vivo Activation of T Lymphocytes by LBP 

LBP was given to BALB/c mice daily by i.p. injection at doses of 0.5, 1.5, 5, 15, or 50 

mg/kg or by oral gavage at doses of 5, 15, or 50 mg/kg for 7 days. Each group consisted 

of 4 mice. Normal saline was negative control. Mice were sacrificed on day 8 by CO2 

inhalation. Spleen cells were harvested. Splenocyte proliferation was determined by 3H-

thymidine incorporation assay in the presence or absence of 1 µg/ml of Con A. 

 

2.2.23 In vivo Endocytosis and Phagocytosis Assay 

BALB/c mice were administered with LBP (50 mg/kg, i.p., × 7 d). 30 min prior to 

sacrifice, mice were i.p. injected with 1 ml of FITC-dextran (endocytosis assay) (1 mg/ml) 

or 1 ml of FITC-Staphylococcus aureus (phagocytosis assay) (1 mg/ml). Peritoneal cells 

were harvested, washed twice, and resuspended in DMEM medium supplemented with 

10% FBS. The cells were applied to 24-well tissue culture plates with a microscope glass 

cover slip in each well at 37ºC in a 5% CO2 humidified incubator for 6 h. The cover slip 

with adherent cells was picked up and mounted with DABCO-glycerol media. Cells were 

observed and photographed under a fluorescent microscope (Olympus BX-60, 

magnification ×40). 
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2.2.24 DC Culture and Activation 

Bone marrow-derived DCs (BMDCs) were prepared as previously described (Inaba et al, 

1992; Lutz et al, 1999), with some modifications. Briefly, bone marrow cells from the 

femurs and tibias of BALB/c mice were collected and filtered through a nylon mesh. 

After lysis of RBCs with the Tris-NH4Cl lysis buffer, cells were seeded in 6-well plates at 

106 cells/ml (3 ml/well) in RPMI-1640 medium supplemented with 5% FBS, 50 µM of 2-

mercaptoethanol, 10 mM of HEPES, 100 U/ml of penicillin, and 100 µg/ml of 

streptomycin. 10 ng/ml of rmGM-CSF and 10 ng/ml of rmIL-4 were added. On day 3, 

floating cells and loosely adherent cells were harvested and cultured in fresh medium 

containing GM-CSF and IL-4. On day 6, non-adherent cells were collected and cultured 

in 60-mm petri dishes at 106 cells/ml (5 ml/dish). The cells were stimulated with LPS 

(0.1-1 µg/ml), LBP (100 µg/ml), or LBPF1-5 (100 µg/ml) for 24 - 48 h and then analyzed. 

 

2.2.25 Splenic DC Purification 

BALB/c mouse spleens were removed aseptically and minced in Mg2+ and Ca2+ free 

HBSS supplemented with 5% FBS. The homogenate was incubated with 1 mg/ml of 

collagenase A and 0.2 mg/ml of DNase I for 35 min at 37ºC. The reaction was stopped by 

addition of EDTA (20 mM). The cells were incubated for 5 min at RT, passed through a 

70-µm cell restrainer (BD Biosciences), layered over a Histodenz gradient (RPMI-1640/ 

10% FBS/ 14.5%), and centrifuged for 20 min at 450 ×g at RT. Cells at the gradient 

interface were collected, washed, incubated with anti-CD11c microbeads for 15 min at 

4ºC, and positively selected on a column using a MACS separator. The resulting DC 

preparations were routinely ≥ 85% positive for CD11c as determined by flow cytometry. 
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2.2.26 Mixed Leukocytes Reaction 

Responder T cells were purified from C57BL/6 mice spleen cells using Dynal mouse T 

cell isolation kit according to the manufacturer’s instruction. Day 6 BMDCs from 

BALB/c mice were stimulated with LBP or LBPF1-5 (100 µg/ml), or LPS (1 µg/ml) for 

24 h, and then incubated with mitomycin C (50 µg/ml) for 1 h. After wash, DCs (5×104) 

were incubated with allogeneic T cells (2×105) in round-bottomed 96-well plates at 37°C 

in a 5% CO2 humidified incubator. After 54 h, the cells were pulsed with 3H-thymidine 

(0.5 µCi/well) for 18 h. The cells were harvested onto glass fiber filters using the 

Filtermate cell harvester (Packard) and cell incorporated-3H-thymidine was measured 

using a β-scintillation counter (Packard TopCount). 

 

2.2.27 In vitro Endocytosis Assay 

Day 6 BMDCs (106 cells/ml) were incubated with 1 mg/ml of FITC-dextran (42 kDa) for 

1 h at 37°C. The cells were washed, stained with APC-conjugated anti-mouse CD11c, 

and analyzed by flow cytometry. As controls, experiments were performed at 4°C. 

 

2.2.28 DC Presentation of OVA Antigen in vitro  

Day 6 BMDCs (106 cells/ml) were pulsed with OVA (100 µg/ml) for 2 h and then 

stimulated with 100 µg/ml of LBP for 24 h. The cells were washed and 5×104 DCs were 

incubated with 2×105 T cells isolated from BALB/c mouse splenocytes in ELISPOT 

plates which had been pre-coated with anti-IL-4 or anti-IFN-γ mAb. The cells were 

cultured for 48 h at 37°C in a 5% CO2 humidified incubator. IL-4- and IFN-γ-producing 

cells were measured by the ELISPOT assay. 
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2.2.29 DC Presentation of OVA Antigen in vivo 

Day 6 BMDCs (106 cells/ml) were pulsed with OVA (100 µg/ml) for 2 h and then 

activated with LBP (100 µg/ml) for 24 h. After wash, 5×105 cells were subcutaneously 

injected into each BALB/c mouse. Saline, BMDCs without stimulation or stimulated with 

OVA or LBP alone were controls. Each group consisted of 4 mice, which were sacrificed 

on day 8. Splenocytes were harvested and re-stimulated with OVA (10 µg/ml) in the 

ELISPOT assay measuring IL-4 and IFN-γ producing cells. 

 

2.2.30 DC Stimulation with LBP in vivo 

BALB/c mice were administered with a single dose of LBP (20 mg/kg, s.c., i.p., or p.o.). 

Naïve mice without LBP injection were used as control. Each group consisted of 4 mice. 

Mice were sacrificed after 24 h. Splenic DCs were purified and examined for the 

expression of CD40, CD80, CD86, and I-A/I-E by flow cytometry. 

 

2.2.31 Helper T Cell Response to OVA Plus LBP in vivo 

BALB/c mice were injected s.c. with OVA (100 µg) for 3 times at one week intervals and 

also given LBP (20 mg/kg) s.c., i.p., or p.o. daily. Naïve mice were used as control. Each 

group consisted of 4 mice. After 21 days, splenocytes were harvested and re-stimulated 

with OVA (10 µg/ml) in the ELISPOT plates pre-coated with anti-IL-4 or anti-IFN-γ 

antibodies. The cells were cultured at 37ºC in a 5% CO2 humidified incubator for 48 h. 

IL-4- and IFN-γ-producing cells were determined by ELISPOT assay. 
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2.2.32 ELISPOT Assay 

ELISPOT plates (Millipore) were coated with capture antibody (anti-IL-2, anti-IL-4, or 

anti-IFN-γ) at 4ºC overnight. The plates were washed and blocked with RPMI-1640/ 10% 

FBS. 2×105 splenocytes or T cells were seeded into each well of the plates and incubated 

at 37°C in a 5% CO2 humidified incubator for 48 h in the presence of 10 µg/ml of OVA 

(or 5×104 DCs in some assays). Cells were decanted at the end of culture. The plates were 

washed and incubated with biotinylated detection antibody followed by streptavidin-HRP 

conjugate. IL-2, IL-4, and IFN-γ spots were developed by adding AEC substrate for 10 - 

60 min. The development of spots were stopped by adding distilled water. After drying, 

the spots were counted using an automated ELISPOT plate reader (BIOREADER 2000, 

BioSys, Karben, Germany). Results are expressed as the number of cytokine-producing 

cells per 2×105 cells. 

 

 2.2.33 Statistical Analysis 

Data are presented as mean ± SD, except for the RQ of cytokine mRNA, which was 

presented as 95% of confidence interval. Each experiment was repeated at least three 

times. Differences were analyzed for significance using the Student’s unpaired, two-

tailed t-test when LBP or LBPF1-5 were compared with negative control, or One Way 

ANOVA when the efficacy among LBP, LBPF1-5 were compared. A p value less than 

0.05 was used as the threshold for significance. 
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CHAPTER 3 

RESULTS AND SECTIONAL DISCUSSIONS 
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3.1 Isolation, Purification and Characterization of LBP 

3.1.1 Aim of Study 

It has been known that the bioactive component of L. barbarum is a polysaccharide-

protein complex and to date five fractions have been isolated and purified from the raw 

fruit (Huang et al, 1998; Peng and Tian, 2001; Zhao et al, 1997). However, the structure, 

constituent, and molecular weight of the L. barbarum polysaccharide-protein complex 

fractions obtained from different laboratories are not consistent (Huang et al, 1998; Peng 

and Tian, 2001; Zhao et al, 1997; Wang et al, 2002). These variations made it necessary 

for us to isolate, purify and characterize L. barbarum polysaccharide-protein complex 

(LBP) used for further functional studies. 

 

3.1.2 Results 

3.1.2.1 Isolation of LBP 

500 g of L. barbarum dried fruit produced 2 g of crude LBP after water extraction, 

ethanol precipitation, removal of free protein, and dialysis. The yield was 0.4%. The 

crude LBP was a dark-brown substance and is water-soluble. Five intermediary fractions, 

designated as LBP1, LBP2, LBP3, LBP4, and LBP5, were separated from crude LBP by 

DEAE-cellulose ion exchange chromatography after successive elution with water, 0.05, 

0.1, 0.2, and 0.5 M NaCl. The elution profile is shown in Figure 2. The amounts of 

LBP1-5 from 0.5 g of crude LBP were 72 mg, 76 mg, 30 mg, 45 mg, and 40 mg, 

respectively. 
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3.1.2.2 Purification of LBP 

To further purify LBP1-5 by size exclusion chromatography, LBP1-5 were applied onto 

Sephacryl S-300 HR column and eluted with water, respectively. The elution profiles are 

shown in Figure 3 (A-E). Five homogenous fractions, designated as LBPF1, LBPF2 

LBPF3, LBPF4, and LBPF5, were obtained from LBP1-5, respectively. The yields were 

as follows: 20 mg of LBPF1 from LBP1; 30 mg of LBPF2 from LBP2; 19 mg of LBPF3 

from LBP3; 29 mg of LBPF4 from LBP4, and 20 mg of LBPF5 from LBP5. LBPF1 was 

a white solid; LBPF2 and LBPF3 were light yellow solids; LBPF4 and LBPF5 were 

brown solids. All fractions were water-soluble. 

 

3.1.2.3 Characterization of LBP on Carbohydrate and Protein Content and 

Molecular Weight 

The carbohydrate and protein contents and molecular weights of LBPF1-5 were 

determined by the phenol-sulfuric acid method, the Bradford method, and SDS-PAGE, 

respectively. As shown in Figure 4 and Table 2, LBPF1 had the highest percentage of 

carbohydrate content (based on glucose), followed by LBPF3, LBPF2, LBPF5, and 

LBPF4. LBPF5 had the highest percentage in protein content, followed by LBPF4, 

LBPF2, LBPF3, and LBPF1. The molecular weights of LBPF1-4 were about 150 kDa. 

The molecular weight of LBPF5 was undetectable by SDS-PAGE. It was 290 kDa when 

determined by size exclusion chromatography (Figure 4E). 
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3.1.3 Discussion 

During the last three decades, many polysaccharides and polysaccharide-protein 

complexes have been isolated from mushrooms, fungi, yeasts, algae, lichens and plants. 

The biological activities of these polysaccharides have attracted more attention recently 

in biomedical and medical fields because of their immunomodulatory and antitumor 

effects (Ooi and Liu, 2000). Based on the characteristic that polysaccharides are soluble 

in water but only slightly soluble in ethanol, they can be isolated by water extraction 

followed by ethanol precipitation. Currently there are mainly two approaches used in 

different laboratories for LBP isolation. One is to use organic chemicals such as acetone 

and petroleum to remove lipids and pigments, considering that polysaccharides are within 

plant cells that are covered by lipid membranes. Then oligosaccharides and saponins are 

removed by refluxing with 80% ethanol. Finally polysaccharides are extracted by hot 

water (Wang et al, 2002). Another is to directly extract LBP with water (Huang et al, 

1998; Peng and Tian, 2001). Meng et al (1999) compared these two methods and found 

the LBP production rate was almost the same. As reflux by hot organic reagents may 

destroy the structure of the glycoconjugates, we prefer to directly isolate LBP with water. 

 

Through water extraction, ethanol precipitation, ion exchange chromatography and gel 

filtration, five fractions of L. barbarum polysaccharide-protein complex (LBPF1-5) were 

obtained. All of them contain both carbohydrates and proteins, as determined by the 

phenol-sulfuric acid method and the Bradford method, respectively. Single peak was 

detected at absorbance 490 nm after passing LBP1-5 through Sephacryl S-300 column. 

This indicates that LBPF1-5 are homogenous. The polysaccharide component of LBP 
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consists of six monosaccharides, including rhamnose, xylose, arabinose, mannose, 

glucose, and galactose (Huang et al, 1998; Wang et al, 2002b). The protein part of LBP is 

composed of most of the amino acids (Huang et al, 1998; Zhao et al, 1997). The structure 

of LBP possesses a backbone consisting of (1→6)-β-galactosyl residues, about fifty 

percent of which are substituted at C-3 by galactosyl or arabinosyl groups and the major 

non-reducing end being made of arabinose (Peng et al, 1998). 

 

Although it is well accepted that LBPs are polysaccharide and protein complex, their 

constituents, structures, and molecular weights vary from one laboratory to another 

(Huang et al, 1998; Peng and Tian, 2001; Zhao et al, 1997; Wang et al, 2002b). These 

variations could be due to the difference in the raw materials and the maturity status of 

fruit (Wang et al, 2002b). They could also be due to isolation approaches, and especially 

the different gels and eluents used in ion exchange chromoatography and size exclusion 

chromatography (Meng et al, 1999). 
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Figure 2. Elution profile of LBP on DEAE-cellulose column (OH-). LBP (0.5 g) 

was loaded onto a DEAE-cellulose-packed column (2.6 × 40 cm), which was 

successively eluted with H2O and 0.05, 0.1, 0.2, 0.5 M NaCl solution at a flow rate of 

0.8 ml/min. Fractions were collected at 10 ml/tube. Absorbance values at 490 nm and 

280 nm were monitored for evaluation of the carbohydrate and protein contents, 

respectively. Five fractions, designated as LBP1, LBP2, LBP3, LBP4, and LBP5, were 

eluted as indicated. 
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Figure 3. Elution profile of LBP1-5 on Sephacryl S-300 column. Samples were 

loaded onto Sephacryl S-300 column (2.6 × 60 cm), which was eluted with H2O at a 

flow rate of 1.3 ml/min. Fractions were collected at 9 ml/tube. Absorbance values at 

490 nm and 280 nm were monitored for evaluation of the carbohydrate and protein 

contents, respectively. Five fractions were eluted, designated as: A. LBPF1, B. LBPF2, 

C. LBPF3, D. LBPF4, and E. LBPF5. 
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Figure 4. Characterization of LBPF1-5 on 
lar weights.  

A. Standard curve of glucose. Glucose was used as standard to determine the 
carbohydrate content of LBPF1-5 by phenol-sulfuric acid method. Absorbance value was 
measured at 490 nm. B. Standard curve of BSA. BSA was used as reference to determine 
the protein content of LBPF1-5 by the Bradford method. Absorbance value was measured 
at 595 nm. C. Plot of lg MW of protein standards against their Rf, the ratio of the 
distance migrated by the molecule to that migrated by bromophenol blue-front on SDS-
PAGE. D. SDS-PAGE of LBPF1-5. Samples were loaded onto 10% SDS-PAGE and run 
for 2 h. The gel was stained with Coomassie brilliant blue. Lane 1: LBPF1; 2. LBPF2; 3. 
LBPF3; 4. LBPF4; 5. LBPF5. E. Plot of (1-Vo/Ve) of dextrans and LBPF5 on Sephacryl 
S-300 column against their lgMW. T-dextran series, blue dextran, and LBPF5 were 
loaded onto Sephacryl S-300 column (2.6 × 60 cm), which was eluted with 0.1 M KCl at 
a flow rate of 1.3 ml/min. Fractions were collected at 5.2 ml/tube. The elution volume 
(Ve) and the void volume (Vo) were determined by the absorbance peak at 490 nm. 1. T-
670 (670 kDa); 2. T-270 (270 kDa); 3. T-80 (80 kDa); 4. T-25 (25 kDa). LBPF5 position 
was indicated. 
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Table 2. Carbohydrate and protein contents and molecular weights of LBPF1-5 

      LBPF1 LBPF2 LBPF3 LBPF4 LBPF5 

Carbohydrate (%) 48.2 30.5 34.5 20.3 23.2 

Protein content (%) 1.2 4.8 4.1 13.7 17.3 

Molecular weight (KDa) 151 147 146 150 290 
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3.2 Test of LPS Contamination and Evaluation of Toxicity 

embrane of various Gram-negative bacteria, 

ulator of immune cells, such as macrophages, DCs and B cells. LPS can 

ind to LPS binding protein, which transfers it to bind to CD14 and associates with 

daptor MD2. This complex then binds to TLR and subsequently triggers the signaling 

ascades and leads to cell activation. During the process of isolation and purification, it is 

ossible that LBP is contaminated by Gram-negative bacteria with cell walls that consist 

tion 

was to rule out LPS contamin d t te t ity b logic es 

were conducted to investigate the immunom atory properties of LBP.  

 

.2.2 Results 

3.2.2.1 LBP is Free of LPS Contamination 

LPS contamination was tested by Limulus amoebocyte lysate (LAL) assay. The principle 

is LAL will form hard gel in the presence of a moiety of LPS. Table 3 shows that LAL 

did not form hard gel in the presence of LBP or LBPF1-5. In contrast, it did when 

incubated with ≥0.03 EU/mg LPS. The result indicates that the quantity of endotoxin in 

crude LBP and LBPF1-5 was less than 0.015 EU/mg (negative) (Table 3). The result was 

further confirmed by B cell proliferation assay, as LPS is a strong stimulator of B cell 

proliferation. B cells were isolated from mouse spleen and stimulated with LPS, LBP, or 

LBPF1-5 and the cell proliferation was measured by 3H-thymidine uptake assay. As 

3.2.1 Aim of Study 
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shown in Figure 5, LPS stimulated strong B cell proliferation, whereas LBP and LBPF1-

uggests there was no LPS in LBP and LBPF1-5. 

oxicity 

B/c mice were administered with a single 

three days after the injection. The average body weight was also reduced 1.5 g (7.5% of 

5 did not. The result s

 

3.2.2.2 In vitro Cytotoxicity 

To evaluate the cytotoxicity of LBP in vitro, mouse splenocytes were incubated with LBP 

at serial concentrations, including 10, 20, 40, 80, 160, 320, 640, 1280, 2560 µg/ml, for 72 

h. The cell viability was determined by 3H-thymidine incorporation assay. The result 

showed that LBP promoted splenoctye growth at certain concentrations (≤ 320 µg/ml), 

whereas at concentrations higher than 320 µg/ml, it inhibited splenocyte growth. At 1260 

and 2560 µg/ml of LBP, the growth of splenocytes was almost completely inhibited 

(Figure 6). 

 

3.2.2.3 Acute T

To evaluate the acute toxicity of LBP, BAL

dose of LBP (1 g/kg, p.o. or i.p.). Mice were observed for mortality, body weight, and 

clinical symptoms such as breathing, walking behavior, fur erection, feces, and urine, for 

14 days. The results showed that none of the mice died after p.o. or i.p. administration 

with LBP. The body weight was not reduced and no abnormal clinical signs were 

observed in the mice administered p.o. with LBP. In the mice that were administered i.p. 

20 mg of LBP, abnormal clinical symptoms were observed, including depression, 

reluctance to move, fur erection, shallow rapid breathing, reduced feed, diarrhea, and 

bright yellow urine. These clinical signs appeared 4 h after LBP injection but subsided 
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the body weight) on the first day after LBP injection but became normal by the fourth day 

after the injection (Figure 7). 

 

3.2.3 Discussion 

Endotoxin (LPS) is a known immunomodulator and is often a contaminant in biological 

preparations. Thus, one of the principal concerns is that the immune stimulating 

properties of botanical polysaccharides might be due to contamination from bacterial 

endotoxin (Schepetkin and Quinn, 2006). Probably, the most common approach to 

detecting LPS contamination involves the use of LAL assay (Hase et al, 1997; Sanzen et 

al, 2001). Therefore, we tested whether LBP and its five fractions were contaminated 

with LPS by LAL assay. The result showed that the samples were not contaminated with 

PS, as was further supported by the fact that crude LBP and LBPF1-5 could not 

ation. If the samples were contaminated with LPS, they would 

L

stimulate B cell prolifer

stimulate B cell proliferation. 

 

LBP was non-toxic in vitro at certain concentrations (≤ 320 µg/ml). At extremely high 

concentrations (i.e. 1 mg/ml), it caused cell death. This could be because LBP is a 

substance with high molecular weight. At high concentrations, LBP may have a higher 

osmotic pressure that the cell interior, and consequently its hypertonicity causes cells to 

shrink, and subsequently death. The negative charge of LBP may aslo cause cytotoxic 

stress and affect its viability. 
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The data showed that LBP was non-toxic at a high dose of 1 g/kg by p.o. administration. 

Although it showed some acute toxicities at this dosage by i.p. adminitration, no 

ortality was detected. These results indicate that LBP is safe for in vivo studies. m
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Table 3. Test of LPS contamination of LBP by Limulus assay 

Standards/Samples Hard Gel Formation 

Endotoxin standard (EU/ml)  

0.5 + 

0.25 + 

0.125 + 

0.06 + 

0.03 + 

0.015 - 

Sample (10 mg/ml)  

Crude LBP - 

LBPF1 - 

LBPF2 - 

LBPF3 - 

LBPF4 - 

LBPF5 - 
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Figure 5. PS contamination by B cell proliferation assay. B cells were 

purified f LB/c mice by magnetic bead negative selection. The purified B cells 

were stim ith LBP (100 µg/ml), LBPF1-5 (100 µg/ml), or LPS (5 µg/ml) for 72 h. 

B cell proliferation was measured by 3H-thymidine incorporation assay. Values are 

represented as m ± SD of four replicates. 
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Figure 6. In vitro cytotoxicity of LBP. Mouse splenocytes were treated with LBP (10 - 

2560 µg/ml) for 72 h. 3H-thymidine (0.5 µCi/well) was  added for the last 18 h. The cells 

were harvested and the incorporated 3H-thymidine was measured. Values are represented 

as mean (CPM) ± SD of four replicates.  

 

Figure 7. Mouse body weight changes after LBP administration. Mice were 

administered p.o. or i.p. with a single dose of 20 mg of LBP (1 g/kg) at day 0. The body 

weight was measured before LBP administration and daily for 14 days after LBP 

administration. Values are mean ± SD of 6 mice.   
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3.3 Activation of T Cells by LBP 

.3.1 Aim of 

T lym hocytes are thymus-derived lymphocytes that play a central role in the generation 

and regulation of immune response to protein antigens. Although LBP was found to 

stimulate lymphocyte proliferation and cytokines such as IL-2 secretion (Qian et al, 1988; 

Hu et al, 1995; Ma et al, 1996; Qi et al, 1999; Liu et al, 2000; Wang et al, 1990; Gan et al, 

2003; Gan et al, 2004), indicating it can activate T cells, the complete cytokine profile 

and the mechanism of T cell activation by LBP, have not been reported yet. In this 

.3.2 Results 

3.3.2.1 Effects of LBP on Splenocyte, T and B Cell Proliferation 

To screen the immunomodulatory function of LBP and its five fractions, mouse 

splenocytes were stimulated with LBP or LBPF1-5 at serial concentrations from 1 to 300 

µg/ml for 72 h. Cell proliferation was measured by 3H-thymidine uptake assay. As shown 

in Figure 9A, crude LBP, LBPF4, and LBPF5 could induce splenocyte proliferation in a 

dose-dependent manner. 300 µg/ml of LBP significantly enhanced splenocyte 

proliferation by about 4.5-fold. In contrast, LBPF1, LBPF2, and LBPF3 could not 

 cells were purified from splenocytes 

3 Study 

p

section, we investigated whether LBP was able to  stimulate T cell proliferation, activate 

CD25, activate NFAT and AP-1 transcription factors, as well as induce IL-2 and IFN-γ 

production at mRNA and protein level. 

 

3

stimulate splenocyte proliferation. The proliferative effects of LBPF4 and LBPF5 were 

not higher than that of crude LBP. As splenocytes contain both T and B lymphocytes, to 

study which subset is stimulated by LBP, T and B
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by negative selection technique using magnetic beads. More than 85% and 60% of the 

e T and B cells, respectively, as determined by flow cytometry 

.3.2.2 Effects of LBP on Cell Cycle Progression 

 stimulate T cell proliferation, it might promote cells to enter S and G2/M 

ined with propidium 

remaining cells wer

(Figure 8). The purified T or B cells were stimulated with 100 µg/ml of LBP, LBPF4, or 

LBPF5 for 72 h and cell proliferation was measured. The results showed that LBP, 

LBPF4, and LBPF5 activated T cells but not B cells (Figure 9B). As positive control, 

Con A (3 µg/ml) stimulated T cell proliferation by 80-fold while of LPS (5 µg/ml) 

stimulated B cell proliferation by 13-fold (data not shown). To further investigate 

whether the protein part of LBP contributes such effects, LBP, LBPF4, and LBPF5 were 

digested with protease to destroy protein. The lymphocyte proliferative activities of LBP, 

LBPF4, and LBPF5 were significantly reduced after treatment with protease (Figure 9C). 

 

3

As LBP could

phases of the cell cycle. To test this hypothesis, splenocytes were sta

iodide after LBP stimulation and cell cycle profile was analyzed by flow cytometry. The 

result showed that the percentage of cells in S and G2/M phases did not increase after 

treatment with LBP and LBPF1-5 (Figure 10). However, crude LBP, LBPF4, and LBPF5 

could reduce the percentage of apoptotic cells. Up to 67% of untreated primary 

splenocytes underwent apoptosis after in vitro culture for 48 h. In contrast, the percentage 

of apoptotic cells was lowered to 38%, 47%, and 44% in the presence of crude LBP, 

LBPF4, and LBPF5, respectively. LBPF1, LBPF2, and LBPF3 again did not have such 

an effect. 
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3.3.2.3 Activation of CD25 by LBP  

To investigate whether LBP could enhance the expression of T cell activation marker 

CD25, mouse splenocytes were stimulated with 100 µg/ml of LBP or LBPF1-5 for 48 h. 

CD25 expression was determined by flow cytometry (Figure 11). 4.3% of resting T cells 

expressed CD25. After stimulation with crude LBP, LBPF4, and LBPF5, CD25 

expression was increased to 12.5%, 18.7%, and 10.9% of the cells, respectively. LBPF1, 

LBPF2, and LBPF3 failed to induce CD25 expression. The positive control, Con A 

enhanced the expression of CD25 in up to 42.5% of the cells. The result demonstrated 

that LBP, LBPF4 and LBPF5 can induce CD25 expression. 

 

3.3.2.4 Induction o mRNA Expression by LBP 

actions could induce cytokine gene 

d LBPF5 was due to its extremely low expression in the untreated cells. TNF-

 mRNA expression was enhanced 6-, 5-, and 2-fold after stimulation with LBP, LBPF4, 

f Cytokine 

To investigate whether crude LBP and its five fr

expression, mouse splenocytes were stimulated with 100 µg/ml of crude LBP, LBPF1, 

LBPF2, LBPF3, LBPF4, or LBPF5 for 48 h. Cytokine gene expression, including IL-2, 

IL-4, IFN-γ, and TNF-α gene, were quantified by real-time PCR. As shown in Figures 

12A and 13A, IL-2 mRNA expression was enhanced 2-, 9-, and 1.5-fold after stimulation 

with LBP, LBPF4, and LBPF5, respectively. IL-4 mRNA expression was enhanced 5-, 4-, 

and 24-fold after simulation with LBP, LBPF4, and LBPF5, respectively (Figures 12B 

and 13B). IFN-γ mRNA expression was enhanced 200000-, 120000-, and 1700-fold after 

stimulation with LBP, LBPF4, and LBPF5, respectively (Figures 12C and 13C). It is 

noted that the high levels of IFN-γ mRNA relative expression after stimulation with LBP, 

LBPF4, an

α
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and LBPF5, respectively (Figures 12D and 13D). In contrast, LBPF1, LBPF2, and 

 ELISA. As shown in Figure 

4, crude LBP, LBPF4, and LBPF5 significantly induced IL-2 and IFN-γ production in 

LBPF2, and LBPF3 did not 

LBPF3 could not induce the mRNA expression of these cytokine genes. As positive 

control, Con A could enhance IL-2, IL-4, IFN-γ, and TNF-α mRNA expression 21-, 636-, 

188000-, and 8-fold, respectively. 

 

3.3.2.5 Induction of Cytokine Production by LBP 

To study whether LBP could induce cytokine production, mouse splenocytes were treated 

with LBP or LBPF1-5 at serial dosages and different time points. Secreted cytokines, 

including IL-2, IL-4, IFN-γ, and TNF-α, were measured by

1

dose-dependent and time-dependent manners, while LBPF1, 

have such functions. 30 µg/ml to 100 µg/ml of crude LBP, LBPF4, or LBPF5 

significantly induced IL-2 and IFN-γ production (Figures 14A and 14C, P < 0.01-0.001). 

Both IL-2 and IFN-γ productions peaked at 48 h after stimulation (Figures 14B and 14D). 

This was consistent with the proliferation result. However, IL-4 and TNF-α were 

undetectable by ELISA after stimulation with LBP, LBPF4, and LBPF5. 
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3.3.2.6 Activation of NFAT and AP-1, but not NF-κB by LBP 

Transcription factors NFAT, AP-1, and NF-κB play important roles in T cell activation. 

Once activated, they can enter the nucleus and bind to the promoter or enhancer of 

cytokine genes, triggering their mRNA transcription. To investigate whether induction of 

ytokine mRNA expression and cytokine production by LBP was due to the activation of 

 transfected with luciferase reporter 

roliferation was 

easured in the presence or absence of Con A. The result showed that splenocytes 

harvested from the mice injected with LBP had stronger proliferative activity than those 

from the mice injected with normal saline after culture in vitro for 72 h in the presence or 

absence of Con A (Figure 16). The effect was visible at a low dose of 0.5 mg/kg of LBP 

and was significantly different at 15 and 50 mg/kg of LBP. Similar effects were found 

when LBP was administered p.o. to mice (Figure 17). The results were consistent with 

the in vitro data. 

c

transcription factors, Jurkat T cells were transiently

plasmid NFAT-luc, AP-1-luc, or NF-κB-luc. The transfected cells were then stimulated 

with 100 µg/ml of LBP or LBPF1-5 for 6 h. Luciferase activity was measured by 

luciferase assay. As shown in Figure 15, crude LBP, LBPF4 and LBPF5 could activate 

NFAT 4- to 6-fold, and AP-1 2- to 3-fold compared to that of untreated cells. In contrast, 

NF-κB was not activated by LBP. As positive control, PMA in combination with 

ionomycin activated NFAT and AP-1 50- and 80-fold, respectively (data not shown). 

 

3.3.2.7 Activation of T Lymphocytes in vivo by LBP 

To verify whether LBP could activate T cells in vivo, we first administered LBP to 

BALB/c mice by i.p. injection. Splenocytes were harvested and cell p

m
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3.3.3 Discussion 

In this section, investigation of the biological functions of LBP was launched by 

proliferation assay using mouse spleen lymphocytes. We found that crude LBP, LBPF4 

and LBPF5 could stimulate splenocyte proliferation, but LPBF1, LBPF2, and LBPF3 

could not. The proliferation effect was specific to T cells, but not B cells, as confirmed by 

the finding that crude LBP, LBPF4, and LBPF5 stimulated T cell proliferation and 

activated T cell activation marker CD25. Polysaccharides represent a structurally diverse 

class of macromolecules and this structural variability can profoundly affect their cell-

type specificity, especially with respect to B and T lymphocytes (Han et al, 2003). For 

example, β (1→3)-glucans were found to be T cell stimulators, but did not accelerate B 

cell antibody formation (Borchers et al, 1999), whereas polysaccharides from Phellinus. 

linteus activated both B and T cells (Kim et al, 1996). Poylsaccharides from 

canthopanax koreanum actiavted B cells (Han et al, 2003). As T lymphocytes play 

mphocytes by LBP suggests that 

nd LBPF5 did not display markedly higher immunostimulating activity 

A

central roles in adaptive immunity, activation of T ly

LBP may be involved in augmenting the response on adaptive immunity to eradicate 

endogenous infection. In the previous phase I clinical trial investigating the effect of L. 

barbarum on Epstein-Barr virus (EBV), it was showed that L. barbarum reduced serum 

EBV DNA copies in subjects with elevated serum IgA anti-EBV (data not shown). It 

could be because LBP helps to activate T cells such as CTLs to control EBV replication. 

Digestion of LBP with protease resulted in a decrease in the immunoactivity. This is not 

surprising as protein antigen is generally needed to activate T cells. Similar findings were 

observed previously (Kralovec et al, 2006). Interestingly, materials with higher purity 

such as LBPF4 a
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than the crude parental LBP (Figure 9C). Crude LBP may contain other active 

components but these may have been removed during the processes of ion exchange 

chromatography and size exclusion chromatography. 

 

Cytokines play pivotal roles in immune cell differentiation and proliferation. IL-2 is the 

essential cytokine for T lymphocyte growth. IL-2-induced proliferation occurs via pro-

proliferative signals through the proto-oncogenes c-myc and c-fos, in combination with 

anti-apoptotic signals through Bcl-2 family members (Miyazaki et al, 1995). IFN-γ 

promotes the differentiation of Th1 cells and therefore a predominantly cell-based 

immune response. It functions predominantly on macrophages to enhance antimicrobial 

properties (Decker et al, 2005). IL-4 is crucial for the differentiation of naïve T helper 

cells into the Th2 cells that promote humoral immunity and provide protection against 

intestinal helminthes. It also has a central role in the pathogenesis of allergic 

inflammation (Weber and Krammer, 2003). Upon stimulation with antigen, CD4+ T cells 

can differentiate in a highly polarized manner into Th1 or Th2 subsets (Jankovic et al, 

2001). ELISA and real-time PCR data showed that crude LBP, LBPF4, and LBPF5 could 

activate T cells to produce IL-2 and IFN-γ at both protein and mRNA levels. However, 

IL-4 and TNF-α were undetectable by ELISA, although their genes were transcribed after 

stimulation with LBP, LBPF4 and LBPF5. This could be because IL-4 mRNA expression 

was low and the protein amount translated from the mRNA might not be enough to be 

measured by ELISA, or the IL-4 secreted in the supernatant had been fully utilized. The 

reason for the absence of TNF-α secretion could be that it is mainly produced by 
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macrophages, with T cells producing only some. There may not be sufficient 

macrophages to secrete TNF-α measurable by ELISA in the stimulated 2×106 splenocytes. 

Cytokine gene transcription needs to be initiated with the participation of transcription 

ctors, of which NFAT, AP-1, and NF-κB are three key factors. NFAT was initially fa

identified as an inducible nuclear factor that could bind the IL-2 promoter in activated T 

cells (Shaw et al, 1988). AP-1 proteins are the main transcriptional partners of NFAT 

during T-cell activation (Shaw et al, 2001; Jain et al, 1992). NF-κB is triggered by pro-

inflammatory stimuli and genotoxic stress, including the following: cytokines, such as 

TNF and IL-1; bacterial cell-wall components, such as LPS; viruses; and DNA-damaging 

agents (Karin and Greten, 2005). Our data showed that LBP, LBPF4, and LBPF5 

activated NFAT and AP-1 transcription factors using Jurkat T cells, but not NF-κB. This 

is understandable as activation of NF-κB needs TNF and IL-1β, both of which are mainly 

produced by macrophages. 

 

In animal models and clinical situations, wolfberry is used as supportive treatment for a 

number of conditions such as cancer, hepatitis, tuberculosis, and aging (He et al, 1993; 

Bian et al, 1996; Song et al, 2002; Luo et al, 1997; Luo et al, 2004; Liu et al, 1996a; Liu 

et al, 1996b; Cao et al, 1994). One of the common characteristics of these diseases is that 

the immunity may be low or suppressed. Our data showed that administration of LBP to 

mice either by i.p. injection or by oral gavage for 7 days induced T lymphocyte 

proliferation significantly after in vitro culture for 72 h in the presence or absence of Con 

A, indicating that LBP could activate T lymphocytes in vivo. Although such activation is 
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non-specific, it may enhance the immunity and therefore is beneficial to patients with 

such conditions.  

 

In summary, the results presented in this section suggest that LBP enhances immunity by 

activating T cells. The active fractions appear to be LBPF4 and LBPF5. Crude LBP, 

LBPF4 and LBPF5 could activate transcription factors NFAT and AP-1, inducing IL-2 

and IFN-γ gene transcription and protein production. We conclude that the activation of T 

lymphocytes by LBP may contribute to its known immuno-enhancement function. 
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Figure 8. Purification of T and B cells from mouse splenocytes. 

T and B cells were purified from mouse splenocytes by negative selection using magnetic 

bead. Cells were stained with anti-mouse CD3-FITC and CD19-PE and analyzed by flow 

cytometry. A. Double negative control; B. CD3-FITC control; C. CD19-PE control; D. 

Before purification; E. Purified T cells; F. Purified B cells. 
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ell proliferation. 

ase digested-LBP, LBPF4, or 

LBPF5 for 72 h. Cells were pulsed with 3H-thymidine (0.5 µCi/well) for the last 18 h. 

Cell proliferation was measured by 3H-thymidine incorporation assay. Results are 

expressed as stimulation index (S.I.), which is calculated by dividing the cpm of 

stimulated cells with the cpm of unstimulated cells. Values are mean ± SD of four 

replicates. * P < 0.05, ** P < 0.01, *** P < 0.001, compared to medium (0), or protease 

digestion. 
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Figure 9. Effects of LBP and LBPF1-5 on splenocyte, T, and B c

A. 2×105 splenocytes in 200 µl were stimulated with 1, 3, 10, 30, 100, or 300 µg/ml of 

crude LBP or LBPF1-5 for 72 h. B. 2×105 T or B cells purified from mouse splenocytes 

in 200 µl were treated with 100 µg/ml of LBP, LBPF4, or LBPF5 for 72 h. C. 2×105 

splenocytes in 200 µl were treated with 100 µg/ml of prote
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Figure 10. Effects of LBP and LBPF1-5 on cell cycle progression. 

Mouse splenocytes were stimulated with LBP (100 µg/ml) or LBPF1-5 (100 µg/ml) for 

48 h. Con A (3 µg/ml) was positive control. The cells were stained by propidium iodide 

and the cell cycle profile was analyzed by flow cytometry. The percentage of apoptotic 

cells and cells entering S and G2/M phases are indicated. Results are representative of 

three independent experiments. 
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Figure 11. Effects of LBP and LBPF1-5 on CD25 expression. 

Mouse splenocytes were stimulated with LBP (100 µg/ml) or LBPF1-5 (100 µg/ml) for 

48 h. Con A (3 µg/ml) was positive control. CD25 expression was determined by flow 

cytometry. Results are representative of three independent experiments. 
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µg/ml) was positive control. RNA was extracted 

and reverse transcribed to cDNA. Gene expression was measured by real-time RT-PCR. 

The relative mRNA expression was normalized to the endogenous control gene β-actin 

and calibrated by untreated cells. Results are represented as 95% confidence interval (CI) 

of triplicate as determined by the ABI RQ software. A. IL-2; B. IL-4; C. IFN-γ; D. TNF-

α. 

 

 

Figure 12. Relative quantification of cytokine mRNA upon treatment of LBP or 

LBPF1-5.  

2×106 splenocytes were stimulated with 100 µg/ml LBP, LBPF1, LBPF2, LBPF3, 
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Figure 13. Amplification plot of cytokine mRNA by real-time PCR. 

A. IL-2; B. IL-4; C. IFN-γ; D. TNF-α. 

 

C D 
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Figure 14. Dose-dependence and kinetics of cytokine production upon treatment 

with LBP or LBPF1-5. 

×106 mouse splenocytes were stimulated with 1, 3, 10, 30, 100 µg/ml of LBP, or 

ented as mean ± SD of four replicates. * P < 

ed to untreated cells. A. Dose-dependence of IL-

2 production; B. Kinetics of IL-2 production; C. Dose-dependence of IFN-γ production; 

D. Kinetics of IFN-γ production. 
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LBPF1-5 for 48 h in dose response assays, or with 100 µg/ml of LBP, LBPF1-5 for 6, 12, 

24, 48, 72 h in kinetic response assays. Cytokines secreted into the culture supernatant 

were measured by ELISA. Values are repres
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 of relative light units (RLU) of treated cells over that of 

 

 

 

 

 

Figure 15.  Activation of transcript
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line was used as negative control (0). Mice were sacrificed on day 8. 

d and cultured in 5% CO2 at 37ºC for 72 h in the presence or 

absence of 1 µg/ml of Con A. Cell proliferation was determined by 3H-thymidine 

incorporation assay. Values are mean ± SD of 4 mice. * P < 0.05, compared to normal 

saline. A. Without Con A; B. With Con A. 

 

 

 

 

Figure 16. LBP activates T lymphocytes in vivo by i.p. injection.  

BALB/c mice were administered i.p.with LBP at 0.5, 1.5, 5, 15, or 50 mg/kg daily for 7 

days. Normal sa
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Figure 17. LBP activates T lymphocytes in vivo by oral gavage.  

BALB/c mice were administered p.o. with LBP at 5, 15, or 50 mg/kg daily for 7 days. 

Normal saline was used as negative control (0). Mice were sacrificed on day 8. 

Splenocytes were harvested and cultured in 5% CO2 at 37ºC for 72 h in the presence or 

absence of 1 µg/ml of Con A. Cell proliferation was determined by 3H-thymidine 

incorporation assay. Values are mean ± SD of 4 mice. * P < 0.05, ** P < 0.01, compared 

to normal saline. A. Without Con A; B. With Con A. 
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3.4 Activation of Macrophages by LBP 

.4.1 Aim of Study 

acrophages play a major role in host defense against infection. Macrophages as well as 

eutrophils are the key participants in phagocytosis of microbes. Macrophages express a 

road range of pattern recognition receptors (PRRs) to bind the conserved structures of 

athogens, ingest bound microbes into vesicles, and produce reactive oxygen 

intermediates (ROIs) and reactive nitrogen intermediates (mainly nitric oxide) to destroy 

microbes (Aderrm and Underhill, 1999; Taylor et al, 2005). Activated macrophages also 

okines to induce inflammatory reactions to 

icrobes (Pylkkänen et al, 2004). In addition, macrophages can present antigen to T cells 

adaptive immune responses (Watford et al, 

ore, macrophages are involved in tissue remodeling after infections and 

atopoiesis (Tsirogianni et al, 2006; Krysko et 

P targets C3b and Fc receptors on peritoneal 

 

3

M

n

b

p

secrete cytokines TNF and IL-1, and chem

m

and produce IL-12 to coordinate innate and 

2003). Furtherm

injury, clearance of apoptotic cells, and hem

al, 2006). 

 

Previous studies have demonstrated that LB

macrophages (Li et al, 1990), whereas more insightful evidences to show its effects on 

innate immunity have not been reported yet. In this section, we investigated whether LBP 

and its five fractions LBPF1-5 could upregulate the expression of costimulatory 

molecules on macrophages, induce cytokine production, and enhance the capacities in 

endocytosis, and phagocytosis. 
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3.4.2 Results 

3.4.2.1 Effects of LBP on the Expressions of CD40, CD80, CD86, and MHC Class II 

86, and MHC class II after LBP treatment were upregulated from 18.3%, 

4.5%, and 64.5% to 94.1%, 90.4%, and 96.9%, respectively. 

kines TNF and IL-1β mRNA transcription. Therefore, we 

tudied the effects of LBP on transcription factors NFAT, AP-1, and NF-κB on 

acrophages. We transfected RAW264.7 cells with the three corresponding plasmids 

Molecules on Macrophages. 

Macrophages are types of antigen presenting cells which enhance their antigen presenting 

ability by up-regulating the expressions of MHC class II molecules and co-stimulators 

such as CD40, CD80, and CD86 (Hancock et al, 1996). To investigate whether LBP 

upregulates the expressions of such molecules on macrophages, we injected LBP i.p. to 

mice and harvested the peritoneal macrophages 7 days later. Expressions of CD40, CD80, 

CD86, and MHC Class II molecules were analyzed by flow cytometry. The result showed 

that LBP remarkably upregulated the expressions of CD40, CD80, CD86, and MHC class 

II molecules on peritoneal macrophages by i.p. injection. As shown in Figure 18, 3.9% of 

peritoneal cells in the mice injected with saline expressed CD40. In contrast, the 

expression was increased to 74.1% in the mice with LBP. Similarly, the expressions of 

CD80, CD

1

 

3.4.2.2 Effects of LBP and LBPF1-5 on the Activation of Transcription Factors 

Transcription factors are critical for macrophage activation. Transcriptional signaling is 

necessary for inducible expressions of a suite of genes required to initiate inflammation 

and eliminate pathogens (Guha and Mackman, 2001). For example, NF-κB and AP-1 are 

necessary for inflammatory cyto

s

m
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containing the luciferase reporter gene, stimulated the transfected cells with LBP and 

ly activated AP-1 and NF-κB (P < 0.01 to P < 0.05, 

s increased 1600- to 4700-

ld (Figure 20B), and IL-12p40 was increased 1360000- to 6810000-fold (Figure 20C). 

LBP 

LBPF1-5, and tested the luciferase activities by luciferase assay. As shown in Figure 19, 

LBP and LBP1-5 significant

compared to those of untreated cells). The luciferase activities were increased 1.5- to 2.5-

folds. In contrast, NFAT was almost completely suppressed by LBP, LBPF1-5, and LPS 

(0.01-0.03 compared to medium control).  

 

3.4.2.3 LBP and LBPF1-5 Enhance TNF-α, IL-1-β, and IL-12p40 mRNA Expression 

As activation of transcription factors initiate gene transcription, we next investigated 

whether LBP induces TNF-α, IL-1-β, and IL-12p40 mRNA expression. TNF-α and IL-1-

β are inflammatory cytokines which can attract neutrophils and monocytes to sites of 

infection. Production of IL-12 can enhance macrophage antigen presentation. The result 

shows that fter RAW264.7 cells were treated with LBP or LBPF1-5 for 48 h, TNF-α, IL-

1β, and IL-12p40 mRNA expressions were strikingly increased, of which TNF-α mRNA 

was increased 1.5- to 2.7-fold (Figure 20A), IL-1β mRNA wa

fo

The extremely high levels of relative expression of IL-12p40 and IL-1β mRNA after 

stimulation were because of the very low level of those untreated cells’, whose CT values 

was 50 and 35, respectively (data not shown). 

 

3.4.2.4 LBP and LBPF1-5 Enhance TNF-α Production 

We then conducted a dose-response assay to test the effects of LBP and LBPF1-5 on 

cytokine production, as measured by ELISA. RAW264.7 cells were stimulated with LBP 
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or LBPF1-5 at various concentrations, including 1, 10, 100, and 500 µg/ml for 48 h. We 

found that LBP and LBPF-5 enhanced TNF-α production by RAW264.7 cells in a dose-

dependent manner (Figure 21). The effects were visible at 1 µg/ml, and 100 µg/ml of 

LBP and LBP1-5 induced 7.6 to 19.3 ng/ml of TNF-α by RAW264.7 cells. In contrast, 

RAW264.7 cells did not produce any IL-1β and IL-12p40 detectable by ELISA after LBP 

and LBPF1-5 stimulation. 

 

3.4.2.5 LBP Enhances Endocytosis and Phagocytosis in vivo 

Endocytosis and phagocytosis are the main functions of macrophages. Macrophages 

engulf large molecules by endocytosis while destroying microbes by phagocytosis. We 

then set up an animal model to investigate whether LBP enhanced such macrophage 

functions. Mice were injected with LBP (50 mg/kg, i.p., × 7 d) and 30 min prior to 

sacrifice were injected with FITC-dextran for endocytosis assay or FITC-Staphylococcus 

aureus for phagocytosis assay. The result showed that the FITC-dextran endocytosed by 

the peritoneal macrophages harvested from the LBP-treated mice (Figure 22B) was much 

more intensive than that endocytosed by the peritoneal macrophages from the saline 

control mice (Figure 22A). Peritoneal macrophages of LBP-treated mice became bigger, 

irregular, spreading, and strongly adherent, whereas peritoneal macrophages of saline 

control mice were round, small, and loosely adherent. Similarly, phagocytosis assay 

howed that fluorescence in the peritoneal macrophages harvested from LBP-treated mice 

 than that in the peritoneal 

s

(Figure 22D) was much brighter and more intensive

macrophages from saline control mice (Figure 22C), indicating much more bacteria were 

phagocytozed by macrophages after LBP administration. After phagocytozing bacteria, 
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macrophage subsequently underwent apoptosis characterized as cell shrinking, blebbing, 

and fragmentation (Figures 22C and 22D). 

 

3.4.3 Discussion 

In this section, we demonstrated that LBP is capable of activating macrophages. LBP 

enhanced the expressions of CD40, CD80, CD86, and MHC class II molecules on mouse 

eritoneal macrophages. LBP and LBPF1-5 activated transcription factors NF-κB and 

n, and enhanced TNF-α 

p

AP-1, induced TNF-α, IL-1β, and IL-12p40 mRNA expressio

production by RAW264.7 macrophage cells. Peritoneal macrophages of mice treated with 

LBP were very active in endocytosis and phagocytosis. 

 

LBP markedly upregulated the expressions of CD40, CD80, CD86, and MHC class II 

molecules on primary macrophages. For an APC, upregulation of the expression of  such 

molecules means enhanced capacity in antigen presentation. Therefore, our results 

indicate that LBP enhances the capacity of primary macrophages to present antigens to T 

cells and subsequently augments immune response. 

 

LBP and LBPF1-5 manifestly activated transcription factors AP-1 and NF-κB in the 

RAW264.7 macrophage cell line. In contrast, NFAT was completely inhibited. The 

reason that NFAT induction is supressed after LBP treatment is not known, probably 

because it mainly participates in the regulation of T-cell function and development 

(Macian, 2005). Unlike NFAT, NF-κB plays crucial roles in macrophage activation. NF-

κB induction is essential for the expression of a wide variety of immune-response genes, 
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including pro-inflammatory cytokines, chemokines, and adhesion molecules (Beinke and 

Ley, 2004). Stimulation of the respective receptors of the pro-inflammatory cytokines 

NF-α and IL-1, which in turn strongly activates NF-κB, amplifying and extending the 

nate immune response (O'Neill and Dinarello, 2000; Wallach et al, 

 activation of some intracellular 

dapter proteins such as MyD88. The success of TLRs functioning as major sensors of 

e TLR4 recognizes LPS from Gram-

egative bacteria and TLR9 recognizes bacterial and viral CpG DNA motifs (Miggin and 

T

duration of the in

1999). AP-1 proteins have been implicated in invasive cell growth and matrix 

metalloprotease production and in cell line models, have been suggested to mediate 

induction of inflammatory genes such as TNF-α. But evidence for an inflammatory role 

of AP-1 proteins in the responses of primary cells to physiological or microbial factors is 

sparse (Hu et al, 2007). The upstream of NF-κB and AP-1 signaling pathway is initiated 

by binding ligands to respective TLRs and involved in

a

invading pathogens is attributed to their ability to identify a range of conserved microbial 

motifs termed 'pathogen-associated molecular patterns' (PAMPs) (McCoy and O'Neill, 

2008). To date, 11 human TLRs and 13 mouse TLRs have been identified. TLR1, -2, and 

-6 recognize microbial lipopeptides, TLR3 recognizes double-stranded (ds) RNA 

produced from many viruses during replication, whil

n

O'Neill, 2006). It can be hypothesized that LBP activates NF-κB and AP-1 signaling 

pathway by binding to TLRs; and it will be interesting to identify the LBP corresponding 

receptors in the future. 

 

As expected, activation of NF-κB and AP-1 induced TNF-α, IL-1β, and IL-12p40 mRNA 

expression. However, only TNF-α production was detected by ELISA, and RAW264.7 
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cells constitutively secreted substantial levels of TNF-α. Lack of IL-1β and IL-12p40 

production could be because their absolute mRNA expression was low. As the principal 

physiological function of TNF-α is to stimulate the recruitment of neutrophils and 

monocytes to sites of infection and to activate these cells to eradicate microbes, LBP 

enhancement of TNF-α production is beneficial to host defense. Activated macrophages 

also convert molecular oxygen into ROIs and produce NO to destroy microbes (Aderrm 

and Underhill, 1999; Taylor et al, 2005). It is intriguing to investigate whether LBP 

enhances the activities of phagocyte oxidase and nitric oxide synthase and subsequently 

upregulates ROIs and NO production. 

 

Macrophages recognize pathogens through PRRs, which include scavenger receptors 

(SRs), mannose receptor, TLRs, Dectin-1, and complement receptor type 3 (CR3) 

(Underhill and Ozinsky, 2002). SRs are originally defined as molecules that bind and 

internalize modified lipoproteins such as oxidized or acetylated LDL particles that can no 

longer interact with the conventional LDL receptor (Plüddemann et al, 2007). The 

mannose receptor is a macrophage lectin that recognizes a range of carbohydrates with 

mannose and fucose residues present on the surface and cell walls of micro-organisms 

(Apostolopoulos and McKenzie, 2001). Dectin-1 is the beta-glucan receptor involved in 

innate immune responses to fungal pathogens (Brown, 2006; Dennehy and Brown, 2007). 

Macrophage activation by plant polysaccharides is thought to be mediated primarily 

rough the recognition of polysaccharide polymers by specific receptors, which are th

known to be pattern recognition molecules like those for microbes, such as SRs, mannose 

receptor, TLRs, and Dectin-1 (Schepetkin and Quinn, 2006). Our results clearly 
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demonstrated that i.p. injection of LBP extraordinarily enhanced the endocytosis and 

phagocytosis of primary macrophages, indicating that those macrophages have been 

activated. Besides TLRs as discussed above, the receptors for LBP may include mannose 

receptor and Dectin-1, as LBP is composed of mannose, galactose, rhamnose, xylose, 

arabinose, and glucose and is a glycan that possesses a backbone consisting of (1→6)-β-

galactosyl residues (Huang et al, 1998; Peng and Tian, 2001). However, clarification of 

the structure-function relationship of polysaccharide BRMs is still challenging due to the 

complexity of monosaccharide compositions and glycosidic linkages (Leung et al, 2006). 
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Figure 18. Effects of LBP on the expressions of CD40, CD80, CD86, and MHC class 

II molecules on macrophages. BALB/c mice were administered with LBP (50 mg/kg, 

i.p., × 7 d). Peritoneal macrophages were harvested, stained with APC-conjugated anti-

CD11b and FITC-conjugated anti-CD40, CD80, CD86, or I-A/I-E, and analyzed by flow 

cytometry. Results are representative of three independent experiments. 
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igure 19. Effects of LBP and LBPF1-5 on the activation of transcription factors.  

AW264.7 cells were transiently transfected with luciferase reporter plasmid NFAT-luc, 
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F

R

AP-1-luc, or NF-κB-luc for 48 h. Transfected cells were stimulated with 100 µg/ml of 

LBP or LBPF1-5 for 6 h. Luciferase activity was measured by luciferase assay. Results 

are expressed as fold induction of relative light units (RLU) of treated cells over that of 

untreated cells. Values are mean ± SD of triplicate. * P < 0.05, ** P < 0.01, compared to 

untreated cells. 
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Figure 20. LBP and LBPF1-5 enhance TNF-α, IL-1β, IL-12p40 mRNA expressions. 

5×105 RAW264.7 cells were stimulated with 100 µg/ml of LBP, LBPF1-5, or 1 µg/ml of 

LPS for 48 h. Cytokine mRNA expression was quantified by RT-PCR relative to that of 

untreated cells using β-actin gene as endogenous control gene. Results are represented as 

95% confidence interval of triplicate, compared to medium control (untreated cells). A. 

TNF-α; B. IL-1β; C. IL-12p40. 
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5×105 RAW264.7 cells were stim µg/ml 

of LPS for 48 h. TNF- easured by ELISA. 

Values are mean ± SD of trip  control (untreated 

cells). 
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ml of 1 mg/ml FITC-dextran (A, B) or 1 ml of 1 mg/ml FITC-Staphylococcus 

ureus (C, D). Peritoneal cells were harvested, washed, and incubated in 24-well tissue 

culture plates with a microscope glass cover slip in each well for 6 h. The cover slips with 

adherent cells were observed and photographed under a fluorescent microscope 

(Olympus BX-60, magnification × 40). A. Saline + dextran; B. LBP + dextran; C. Saline 

+ Staphylococcus aureus; D. LBP + Staphylococcus aureus. 

 

 

 

Figure 22. LBP enhances endocytosis and phagocytosis in vivo. 

BALB/c mice were injected with LBP (50 mg/kg, i.p., × 7 d). Normal saline was negative 

control. Mice were sacrificed on day 8. 30 min prior to sacrifice, mice were i.p. injected 

with 1 

C 

A B

D

a
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3.5 LBP Is a Novel Stimulus of Dendritic Cell Immunogenicity 

.5.1 Aim of Study 

professional antigen-presenting cells that 

eau et al, 2000). DCs take up antigen in 

lymphoid organs where they become mature 

 to T lymphocytes, thus initiating antigen-specific 

lerance (Guermonprez et al, 2002). DC 

its functionally mature state, which is characterized by 

co ulatory molecules, acute decrease in 

antigen uptake, and the ability to present antigens captured in the periphery to T cells 

(Wilson and Villadangos, 2005). DC maturation can be induced by microbial products 

(such as LPS) or inflammatory cytokines (such as TNF) (Sallusto and Lanzavecchia, 

994; Winzler et al, 1997; Roake et al, 1995 ediators are potent stimuli 

r DC maturation, they are toxic and have limited applications. In this regard, non-toxic 

 of LBP and its fractions 

LBPF1-5 on the expressions of CD40, CD80, CD86, and MHC class II molecules, DC 

3

DCs represent a heterogeneous population of 

initiate primary immune response (Bancher

peripheral tissues and migrate to secondary 

and competent to present antigens

immune responses, or immunological to

immunogenicity correlates with 

high levels of expression of MHC and T-cell stim

1 ). While these m

fo

vehicles that are able to induce DC maturation and immunogenetics are useful. 

 

While the immunostimulating activities of LBP have been generally attributed to its 

induction of lymphocyte proliferation (Du et al, 2004; Gan et al, 2004) and cytokine 

production (Gan et al, 2003; Du et al, 2004), little is known about its effects on dendritic 

cells (DCs). In this section, we investigated whether LBP could induce DC maturation 

and enhance DC immunogenicity. We studied the effects
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allostimulatory activity, DC productions of IL-12p40 and p70, and DC presentation of 

h2 cells. 

c., i.p., or 

.o. given to BALB/c mice, and after 24 h, splenic DCs were isolated. As shown in 

antigen to Th1 and T

 

3.5.2 Results 

3.5.2.1 LBP Induces DC Maturation in vitro and in vivo 

To determine whether LBP induces DC maturation, we generated DCs from BALB/c 

mouse bone marrow and stimulated the BMDCs with LBP or its five fractions LBPF1-5. 

The cells were analyzed for the expression of CD40, CD80, CD86, and MHC class II 

molecules. As shown in Figure 23A, after treatment with LBP or LBPF1-5 for 24 h, the 

expression of all these molecules was upregulated. The most pronounced upregulation 

was seen for CD40 and CD86, with more than 10% increase on average after stimulation. 

Immature DCs express high level of MHC class II (30.3%) and this was further increased 

by LBP and its fractions. None of the LBP fractions showed greater activities than crude 

LBP. These results indicate that LBP promotes DCs to the phenotypically mature stage in 

vitro. We next tested whether these results were applicable in vivo. LBP was s.

p

Figure 23B, the expression of CD40, CD80, CD86, and MHC class II on splenic DCs 

was increased in LBP-treated mice, as compared to that of naïve mice. LBP 

administration p.o. seemed to be the best route, followed by s.c. and i.p. administration. 

These results demonstrate that LBP is capable of inducing DC maturation in vivo. 
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3.5.2.2 LBP Strengthens DC Allostimulatory Activity 

One of the characteristics of DCs is that they are potent stimulators of allogeneic T cells 

 mixed leukocytes reaction (MLR) (Steinman and Witmer, 1978). We next performed 

ted DCs MLR using spleen T cells. We used 5×104 BALB/c mouse DCs 

ne marrow cells were used as 

 

 

 

in

the LBP-activa

to stimulate 2×105 C57BL/6 mouse splenic T cells. Fresh bo

control which induced a 10-fold increase in allogeneic T cell proliferation. Immature DCs 

induced a 26-fold increase (Figure 24). After activation with LBP or LBPF1-5, DCs 

induced allogeneic T cell proliferation by 32- to 45-fold, which was significantly higher 

than that increased by immature DCs (P < 0.01 to P < 0.05). This was consistent with the 

increased CD40, CD80, CD86, and MHC class II expressions, suggesting that mature 

DCs induce stronger mixed leukocytes reaction than immature DCs. 

 

3.5.2.3 LBP Downregulates DC Endocytosis 

Efficient antigen uptake is a specific attribute of immature DCs, which is reduced upon 

DC maturation (Sallusto and Lanzavecchia, 1994). In this experiment, LBP- and LBPF1-

5-activated DCs were incubated with soluble FITC-dextran for 1 h at 37ºC. As controls, 

immature DCs were used. LBP- and LBPF1-5-treated DCs also showed decrease in 

soluble dextran uptake (Figure 25). Parallel experiments were also performed at 4ºC to 

determine non-specific FITC-dextran binding to the cells, which detected a small 

percentage of DCs (5-8%) engulfing FITC-dextran at 4ºC (Figure 25). 

 



Results and Sectional Discussions  
 

134

3.5.2.4 LBP Induces IL-12 Production from DCs 

IL-12 is a disulfide-linked heterodimer of p35 and p40 subunits, and the bioactive IL-12 

has an apparent molecular mass of 70 kDa (p70) (Kobayashi et al, 1989). mRNA for p35 

is constitutively expressed in many cell types, whereas the expression of the p40 mRNA 

is highly restricted and appears to be expressed only by cells that produce heterodimeric 

IL-12 (Kubin et al, 1994; Macatonia et al, 1995). To examine whether LBP induces IL-12 

from DCs, BMDCs were stimulated with LBP or LBPF1-5 for 48 h. IL-12p40 mRNA 

expression was determined by quantitative RT-PCR. The result shows that LBP induced 

IL-12p40 mRNA expression in BMDCs in a dose-dependent manner (Figure 26A). At 

100 µg/ml, LBP increased p40 mRNA expression 2.6-fold. At 1 mg/ml, it increased 10-

fold. Consistently with the RT-PCR results, LBP also induced IL-12p40 and p70 

cretion from BMDCs in a dose-dependent manner (Figures 27A and 27B, respectively). 

oduce 8.6 ng/ml of IL-12p40 and 355.6 

o investigate whether LBP-activated DCs exhibit augmented capacity in antigen 

resentation, BMDCs were pulsed with OVA antigen and then activated with LBP and 

BPF1-5. These cells were then co-cultured with CD3+ splenic T cells and examined for 

se

At 100 µg/ml, LBP stimulated BMDCs to pr

pg/ml of IL-12p70. This was highly significant compared with immature BMDCs (P < 

0.01). All five LBP fractions induced these cytokines. At 100 µg/ml, LBPF1-5 

significantly enhanced IL-12p40 mRNA expression, and also IL-12p40 and p70 

production (P < 0.001 to P < 0.05, Figures 26B, 27C, 27D, respectively). LBPF3 was 

most potent whereas LBPF5 was the least potent fraction. 

  

3.5.2.5 LBP Promotes Th1 and Th2 Response in vitro 

T

p

L
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Th1 and Th2 stimulation as measured by the production of IFN-γ and IL-4, respectively, 

cytes from mice injected with 

Cs alone, LBP-stimulated DCs, or OVA-pulsed DCs induced 250 to 400 IFN-γ and IL-

 injected with OVA-pulsed and 

using ELISPOT assay. As shown in Figure 28, more IFN-γ- and IL-4-producing cells 

were detected in wells where T cells were co-cultured with LBP- or LBPF1-5-stimulated 

DCs compared with wells in which T cells were co-cultured with immature DCs. 

However, there was no difference in the number of IL-2-producing cells among these 

wells. IFN-γ and IL-4 are characteristic of Th1 and Th2 cells, respectively. Therefore, 

DCs activation by LBP in vitro augmented T cell differentiation to both Th1 and Th2 

cells. 

 

3.5.2.6 DCs Activated by LBP in vitro Enhance Th1 and Th2 Response in vivo 

We next used an ex vivo approach to investigate the immunogenicity of the LBP 

stimulated-DCs. BMDCs were pulsed with OVA and activated with LBP in vitro and 

then injected s.c. into mice. After 7 days, spleen cells were isolated and examined for 

IFN-γ and IL-4 production by ELISPOT assay. As shown in Figure 29, splenocytes from 

mice injected with OVA-pulsed and LBP-stimulated DCs produced more IFN-γ and IL-4 

spots than those from mice injected with normal saline, OVA, DCs, LBP-stimulated DCs, 

or OVA-pulsed DCs. Splenocytes from mice injected with saline and OVA did not 

produce IFN-γ and IL-4 spots (less than 10). 2×105 spleno

D

4 spots, which were increased to about 500 in the mice

LBP-stimulated DCs. 
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3.5.2.7 LBP Primes Th1 Response in vivo 

Since LBP was shown to induce DC maturation in vivo, we examined whether it 

enhances DC immunogenicity in vivo. This was tested using two animal models. First, we 

administered LBP s.c., i.p., or p.o. to mice. After 24 h, splenic DCs were purified and co-

cultured with primary CD3+ T cells from naïve mice. As shown in Figures 30 A and 30B, 

primary T cells from naïve mice co-cultured with DCs from mice administered with LBP 

produced significantly more IFN-γ spots than those co-cultured with DCs from naïve 

mice (P < 0.001). Few IL-4-producing cells were detected. Second, we injected OVA s.c. 

to mice for three times at one week intervals and gave the mice LBP daily via s.c., i.p., 

s that 

m called maturation when receiving signals from pathogens 

uermonprez et al, 2002). Mature DCs undergo phenotypic change, expressing high 

ell-surface levels of MHC molecules, CD40, CD80, CD83, and CD86 (Wilson and 

in

or p.o. routes. Splenic cells were examined by ELISPOT assay. The result show

splenocytes from mice administered with LBP produced more IFN-γ spots than those 

from the OVA control. 2×105 splenocytes from mice injected with OVA produced about 

120 IFN-γ spots, which were increased to about 170 in the mice administered with OVA 

plus LBP. Again, few IL-4-producing cells were detected (Figures 30C and 30D). 

 

3.5.3 Discussion 

DCs are heterogeneous and can be mainly categorized into conventional DCs (cDCs) and 

plasmacytoid DCs (pDCs) (Villadangos and Schnorrer, 2007). The cDCs can be further 

divided into migratory cDCs and lymphoid-tissue-resident cDCs (Shortman and Naik, 

2007). These DCs are usually in the steady state (Shortman and Naik, 2007). They enter a 

developmental progra

(G

c
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Villadangos, 2005). In this study, we demonstrated that LBP and its five homogeneous 

 rather 

an immunity (Spörri and Reis e Sousa, 2005). Expressions of CD80 and CD86 by 

for delivering the costimulatory signals through CD28 that promote T-

fractions LBPF1-5 upregulated the expressions of MHC class II molecules, CD40, CD80, 

and CD86 on BMDCs, suggesting that LBP induces phenotypically mature DCs.  

Surprisingly, the result was reproducible in vivo. S.c., i.p. or p.o. administration of LBP 

induced splenic DC phenotypic maturation. DC pheonotypic maturation is related to its 

immunogenicity. Priming of T-cells needs peptide-MHC complex to bind TCR and CD80 

and CD86 to bind CD28 on T cells (Kapsenberg, 2003). CD40 ligation is necessary and 

sufficient to drive the maturation of DCs and confer on them the ability to prime CD8+ T 

cells (Guermonprez, 2002). LBP substantially upregulated CD40 expression on DCs, 

indicating it may mimic the function of CD40L to prime cytotoxic T lymphocytes 

mediated by DCs. 

 

However, while immunogenic DCs must be phenotypically mature, phenotypically 

mature DCs are not necessarily immunogenic. Instead, they may induce tolerance

th

APCs are crucial 

cell survival, metabolic competence, cell-cycle progression and IL-2 mRNA stabilization. 

The same molecules engage cytotoxic T-lymphocyte antigen 4 (CTLA4), a negative 

regulator of T-cell activation (Reis e Sousa, 2006). In these cases, DCs are tolerogenic. 

Therefore, other experimental models need to be set up to evaluate whether LBP-induced 

DCs are immunogenic. It is noted that functionally mature DCs have an acute decrease in 

antigen uptake (Winzler et al, 1997). We found that BMDCs dramatically reduced 

dextran uptake after LBP and LBPF1-5 treatment, suggesting that LBP induces 
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functionally mature DCs. Receptor-mediated endocytosis allows the uptake of 

macromolecules through specialized regions of the plasma membrane termed coated pits. 

Immature DCs selectively express a large number of endocytic receptors, such as Fc, 

complement, heat shock proteins, and scavenger receptors, most of which decrease 

during DC maturation (Guermonprez, 2002). It is possible that LBP reduces DC 

endocytosis through downregulating the expressions of these antigen receptors. 

 

IL-12 is a functional DC maturation marker with a molecular mass of 70 kDa composed 

of two subunits p35 and p40. Neither p40 nor p35 alone appears to be bioactive; only a 

combination of soluble p40 with soluble p35 to form the heterodimeric p70 exhibits 

bioactivity (Gubler et al, 1991). Mature DCs are marked with high levels of IL-12 

roduction (Langenkamp et al, 2000). We found that LBP and LBPF1-5 significantly p

enhanced the inducible IL-12p40 mRNA expression and protein production, and the 

functional p70 production by BMDCs. Both IL-12p40 and p70 protein levels were 

consistent with the levels of p40 mRNA. It is noted that the concentration of IL-12p70 

was about 20 times lower than that of p40, indicating that most p40 is free and does not 

combine with the p35 subunit to form the heterodimeric p70. This is in accordance with 

the previous findings (Segura et al, 2007). Cells that secrete bioactive IL-12p70 usually 

also secrete free p40 chains in approximately 10-fold excess, though secretion of 

significant amounts of p35 in the absence of p40 has not been found (Robertson and Ritz, 

1996). IL-12 production is regulated through multiple signal transductions, such as NF-

κB, p38MAPK, cAMP-modulating molecules, cell membrane ion channels and pumps, 
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NO, and receptors (Kang et al, 2005). LBP may target these signaling pathways on DCs 

to induce IL-12 production. 

 

Immunogenic DCs can induce Th1-cell differentiation, Th2-cell differentiation and/or 

CTL priming, depending on the nature of the maturation signal they received, as well as 

the constraints imposed by ontogeny and/or environmental modifiers (Reis e Sousa, 

006). Our data indicate that LBP primes Th1-cell response in vivo. Primary T cells co-

functional maturation of DCs with strong immunogenicity. Our study provides scientific 

2

cultured with LBP-matured splenic DCs and the OVA-restimulated splenocytes harvested 

from mice administered with LBP and OVA differentiated to a large quantity of IFN-γ-

producing cells. This is consistent with the IL-12 data. IL-12 is the most potent known 

stimulus that induces IFN-γ production by resting and activated T cells and NK cells, 

favoring the polarization of Th1 cells or CTL development (Trinchieri, 2003). However, 

our in vitro data showed that DCs treated with LBP enhanced both Th1 and Th2 

responses. Primary T cells co-cultured with OVA-pulsed and LBP-treated BMDCs 

differentiated to both IL-4- and IFN-γ-producing cells. The results were further 

confirmed by s.c. injection of these BMDCs into mice, whose splenocytes also 

differentiated to both IL-4- and IFN-γ-producing cells after in vitro re-stimulation with 

OVA. One possibility is that BMDCs contain both CD8α+ and CD8α- DC subsets. It has 

been found that s.c. injection of antigen-loaded CD8α+ DCs primed Th1 responses, 

whereas CD8α- DCs favored Th2 responses (Maldonado-López et al, 1999). 

 

In conclusion, the data presented in this study show that LBP induced phenotypic and 
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support and rationale for using LBP in various clinical conditions with poor immunity, 

especially for the design of DC-based vaccines in the future. 
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Figure 23. LBP induces DC maturation both in vitro and in vivo.  

A. LBP induces DC maturation in vitro. Day 6 BMDCs were stimulated with 100 µg /ml 

LBP, LBPF1-5, or 0.1 µg /ml LPS for 24 h. B. LBP induces DC maturation in vivo. 

BALB/c mice were s.c., i.p., or p.o. administered with 20 mg/kg of LBP for 24 h. Splenic 

DCs were purified. BMDCs and splenic DCs were stained with APC-conjugated anti-

CD11c and FITC-conjugated anti-CD40, CD80, CD86, or I-A/I-E, and analyzed by flow 

cytometry. Results are representative of three independent experiments. 
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Figure 24. LBP strengthens DC allostimulatory activity. 

Day 6 BMDCs from BALB/c mice were stimulated with 100 µg/ml of LBP, LBPF1-5, or 

1 µg/ml of LPS for 24 h. Cells were harvested, washed, and 5×104 DCs were incubated 

with 2×105 T cells isolated from C57BL/6 mice for 72 h. T cell proliferation was 

measured by 3H-thymidine incorporation assay. Values are mean ±  SD of four 

plicates. FBMC: fresh bone marrow cells from BALB/c mice; iDC: immature DC. * P 

< 0.05; ** P < 0.01, compared to iDCs. 
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igure 25. LBP reduces DC endocytosis.  
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Day 6 BMDCs were stimulated with 100 µg/ml of LBP, LB

24 h followed by incubation with 1 mg/ml of FITC-dextran at 4ºC or 37ºC for 1 h. Cells 

that expressed CD11c and endocytosed FITC-dextran were analyzed by flow cytometry. 

Results are representative of three independent experiments. 
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Figure 26. LBP enhances IL-12p40 mRNA expression by DCs.  

A. Dose response of LBP on IL-12p40 mRNA expression. Day 6 BMDCs were 

stimulated with LBP at serial concentrations as indicated for 48 h. B. Effects of LBP and 

LBPF1-5 on IL-12p40 mRNA expression. Day 6 BMDCs were stimulated with 100 

µg/ml of LBP or LBPF1-5, or 1 µg/ml of LPS for 48 h. IL-12p40 mRNA expression 

expression was quantified by real-time RT-PCR relative to iDCs (untreated DCs) using 

β-actin as endogenous control. Values are represented as 95% confidence level of 

triplicate. 
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Figure 27. LBP enhances IL-12p40 and p70 productions by DCs. 
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µg/ml of LBPF1-5, or 1 µg/ml of LPS for 48 h. (A, B). Dose res

12p40 and p70 productions, respectively. (C, D). Effects of LBP and LBPF1-5 on IL-

12p40 and p70 productions, respectively. IL-12p40 and p70 productions were measured 

by ELISA. Values are mean ± SD of triplicate. * P < 0.05, ** P < 0.01, *** P < 0.001, 

compared to medium control (untreated DCs). 
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Figure 28. LBP and LBPF1-5 enhance Th1 and Th2 response in vitro.  

Day 6 BMDCs were pulsed with 100 µg/ml of OVA for 2 h followed by further 

stimulation with 100 µg/ml of LBP, LBPF1-5, or 1 µg/ml of LPS for 48 h. Cells were 

harvested, washed, and  5×104 DCs were incubated with 2×105 T cells purified from 

BALB/c mouse splenocytes for 48 h in capture antibody (anti-IL-2, IL-4, IFN-γ)-coated 

icro-well plates. IL-2, IL-4, and IFN-γ spot forming cells (SFC) were 

determined by ELISPOT assay. Values are mean ±  SD of triplicate. * P < 0.05, 

compared to medium control. A. Spot number. B. Spot image. 
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igure 29. DCs matured by LBP in vitro enhance Th1 and Th2 response in vivo.  
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Day 6 BMDCs were pulsed with 100 µg/ml of OVA for 2 h followed by sti
6100 µg/ml of LBP for 24 h. Cells were harvested, washed, and 1×10  cells were s.c. 

injected into each BALB/c mouse. Normal saline, OVA (100 µg/mouse), DCs without 

OVA pulse and/or LBP stimulation were controls. 7 days later, mice were sacrificed and 

splenocytes were harvested. 2x105 splenocytes were re-stimulated with 10 µg/ml of OVA 

in ELISPOT plates for 48 h. IL-4 and IFN-γ SFCs were determined by ELISPOT assay. 

Values are mean ± SD of 4 mice. A. Spot number. B. Spot image. 
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igure 30. LBP primes Th1 response in vivo. 

) DCs matured by LBP in vivo prime Th1 response. BALB/c mice were s.c., i.p., or 

p.o. administered with 20 mg/kg of LBP for 24 h. Splenic DCs were purified. T cells 
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D of 4 mice. A, C. Spot number. B, D. Spot image. 
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were purified from naïve BALB/c mice 5×104 DCs were incubated with 2×105 T cell

ELISPOT plates for 48 h. IL-4 and IFN-γ spot forming cells (SFC) were determined by 

ELISPOT assay. Values are mean ± SD of five replicates. *** P < 0.001, compared to 

naïve control. (C, D) LBP enhances Th1 response either by s.c., i.p., or p.o. 

administration. BALB/c mice were s.c. injected with 100 µg of OVA at weekly intervals 

3 weeks. Meanwhile, mice were given 20 mg/kg of LBP (s.c., i.p., or p.o.) daily. Naïve 

mice were control. Mice were sacrificed on day 21. Splenocytes were harvested and 

restimulated with 10 µg/ml of OVA in ELISPOT plates for 48 h. V
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CHAPTER 4 
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4.1 General Discussion 

L. barbarum, commonly known as wolfberry, is a well-known Chinese herbal medicine 

with various biological activities, such as hematopoiesis promotion, liver protection, and 

immunity improvement. The latter has been attributed to the polysaccharides, the major 

component of Lycium fruit. In this study, we have demonstrated that polysaccharide-

protein complex isolated from L. barbarum fruit was able to enhance immunity in various 

aspects, including activation of macrophages, DCs, and T cells. Our results provide a 

clear profile of LBP as an active stimulus that can improve both innate and adaptive 

immunities. 

 

Keeping in mind that there are varia onstituents, and molecular weights 

of LBP fractions obtained from different laboratories, we isolated and purified LBP from 

L. barbarum fruit on our own. The fruit we used for LBP isolation was produced in 

Zhongning county, Ningxia province, China, which is the best region for L. barbarum 

growth (Gross et al, 2006). The fruit produced in this area is always bigger and contains a 

higher percentage of sugar than those of other places (Gross et al, 2006). By using 

standard techniques, such as water extraction, ethanol precipitation, DEAE-cellulose 

chromatography, and size exclusion chromatography, five fractions of LBP (LBPF1-5) 

were obtained. The molecular weights of LBPF1-4 we purified were around 150 kDa, 

which was similar to those obtained by Gan et al (2003), but differed from other groups. 

These variations could be due to the difference in the raw materials and the state of 

maturity of the fruit (Wang et al, 2002). They could also be due to the difference in 

nces in structure, c
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isolation procedures, and especially the difference in gels and eluents used in ion 

 was found that LBP could activate T cells, but not B cells. The active fractions were 

produced from Th2 cells (Murphy and Reiner, 2002). It is remarkable that the in vitro 

exchange chromatography and size exclusion chromatography (Meng et al, 1999). 

 

We ruled out the possibility of LPS contamination during the isolation and purification 

processes, clearly demonstrating that there was no LPS existence in LBP by LAL assay 

and B cell proliferation assay. This is very important in that LPS is a potent stimulus of 

immune cells such as macrophages, B cells, and DCs. We also proved that LBP was non-

toxic or of low toxicity both in vitro and in vivo. 

 

It

LBPF4 and LBPF5, but not LBPF1, LBPF2, and LBPF3. This could be because LBPF4 

and LBPF5 contained a higher percentage of protein than the other three fractions. It is 

known that protein antigen is needed to activate T cells. This was further supported by 

the finding that T cell proliferation stimulated by crude LBP, LBPF4, and LBPF5 was 

affected when the protein was digested by protease. The mechanism of T cell activation 

by LBP, LBPF4, and LBP5 may invovle activation of CD25 and transcription factors 

NFAT and AP-1, which may in turn initiate IL-2 gene transcription and subsequently 

result in IL-2 protein production. IL-2 can bind to its receptor and cause T cell clonal 

expansion. The expanded T cells continue to secrete IL-2 and produce a positive 

feedback. LBP, LBPF4, and LBPF5 seemed to induce Th1 differentiation, as supported 

by the fact that they induced IFN-γ production instead of IL-4, although IL-4 mRNA was 

transcribed. It has been known that IFN-γ is produced by Th1 cells and that IL-4 is 
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results were further supported by in vivo experiments. LBP (p.o. or i.p.) was also able to 

stimulate T cell proliferation. 

 

The current study also demonstrated that LBP was capable of activating macrophages. 

Administration of LBP i.p. significantly upregulated the expressions of CD40, CD80, 

CD86 and MHC class II molecules on mouse peritoneal macrophages. As these 

molecules are very important in antigen presentation and T cell activation, this result 

indicates that LBP can enhance the macrophage ability of presenting antigens to T cells. 

y using RAW264.7 cells, it was showed that LBP and LBPF1-5 could activate B

transcription factors NF-κB and AP-1 and induce TNF-α gene transcription and 

subsequently protein production in a dose-dependent manner. Although IL-1β and IL-12 

mRNA were expressed after LBP and LBPF1-5 stimulation, there was no protein 

production. It could be that the mRNA amount was too low to translate enough protein 

detectable by ELISA. It is also possible that RAW264.7 cells have lost the capacity to 

produce such cytokines. TNF-α is principally responsible for attracting neutrophils and 

monocytes to sites of infection and to activate these cells to eradicate microbes (Taylor et 

al, 2005). Therefore, LBP is good for the host to defend invading pathogens. More 

amazingly, LBP could activate macrophages in vivo. LBP (i.p.) significantly improved 

the capacity of mouse peritoneal macrophages to kill bacteria. 

 

DC immunogenicity correlates with its maturation. However, while immunogenic DCs 

must be phenotypically mature, DCs with phenotypic maturation may not necessarily be 

immunogenic. They can induce T cell tolerance when the maturation markers CD80 and 
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CD86 bind to CTLA4 on T cells (Spörri and Reis e Sousa, 2005; Reis e Sousa, 2006). 

Nevertheless, to investigate whether LBP induces immunogenic DCs, we must first look 

t whether it can induce DC maturation. LBP and LBPF1-5 could upregulate the 

ferent types of cells were 

ifferent. Only LBPF4 and LBPF5 could activate T cells, whereas all of the fractions 

a

expressions of CD40, CD80, CD86 and MHC class II molecules on BMDCs. 

Furthermore, we found that crude LBP (p.o., i.p., or s.c.) upregulated the expressions of 

these molecules on mouse splenic DCs. These results indicate that LBP is capable of 

inducing DC phenotypic maturation. In addition, DCs matured by LBP were 

accompanied by increase of allostimulatory activity and downregulation of antigen 

uptake. More strikingly, LBP and LBPF1-5 induced IL-12 production by BMDCs at gene 

and protein levels in a dose-dependent manner, indicating that they can activate the third 

signal necessary for activating T cells. Secondly, to evaluate whether the LBP-induced 

phenotypically mature DCs are immunogenic, we tested their antigen presentation 

capacity. The result shows that LBP-stimulated DCs had enhanced antigen presenting 

ability, as characterized by increases in IL-4 and IFN-γ production by ELISPOT assay. 

These results were reproducible by using in vivo animal models, indicating that LBP can 

induce immunogenic DCs. 

 

While LBP was able to activate T cells, macrophages, and DCs, indicating it has multiple 

targets on the immune system, the activation profiles of dif

d

were able to activate macrophages and DCs, although LBPF5 was weaker than other 

fractions in macrophage and DC activation. We have known that LBPF1, LBPF2, and 

LBPF3 contained more carbohydrate but less protein than LBPF4 and LBPF5. It is 
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possible that the carbohydrate component is responsible for macrophage and DC 

activation while the protein part is mainly involved in T cell activation. In comparison, 

LBP showed stronger activities on DCs and macrophages than on T cells. T cell 

activation by LBP was relatively low. IL-2 production from mouse splenocytes induced 

by LBP was only around 15 pg/ml. It appears that LBP is more inclined to target DCs and 

macrophages than T cells. In addition, various experiments showed that the pure fractions 

of LBP did not show significantly stronger activities than the crude one. It could be that 

crude LBP contained other bioactive components which were removed during the process 

of purification. If so, it would be adequate to use the crude extract in future studies. This 

study provides profiles on transcription factor activation and downstream cytokine 

induction by LBP. In the future, it would be interesting to identify the LBP receptors on 

DCs, macrophages, and T cells and elucidate the early stages that occur upon LBP 

binding to immune cells. 

 

All in all, LBP is able to activate DCs, macrophages, and T cells, indicating it can 

enhance both innate and adaptive immunity. Unlike the strong immune cell stimuli, such 

s LPS, Con A, and PHA, the immuno-enhancement ability of LBP is generally mild, but a

on the other hand, this property may be good for the host, as those strong stimuli may 

cause inflammation and are harmful. Our study provides sceintific evidence on using it as 

valuable supplement to immprove immunity. This will extremely benefit those people 

under poor immune conditions such as cancer, hepatitis, tuberculosis, and aging. Indeed, 

wolfberry supplement is becoming more and more popular nowadays. 
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4.2 Conclusion 

From the present study, the following conclusions can be drawn: 

 

1. LBP can activate T cells. The mechanism may involve activation of CD25 and 

transcription factors NFAT and AP-1. The active fractions are LBPF4 and LBPF5. 

T cells activated by LBP produce IL-2 and IFN-γ. 

 

2. LBP and LBPF1-5 are able to activate macrophages. The mechanism may involve 

activation of transcripion factors NF-κB and AP-1 and induction of TNF-α gene 

transcription and protein production, Macrophages activated by LBP upregulate 

the expression of costimulatory and MHC class II molecules and improve 

phagocytic and endocytic capacities. 

 

3. LBP and LBPF1-5 are able to induce immunogenic DCs characterized by 

phenotypic maturation and enhancement in antigen presentation ability. 

 

4.3 Future Directions 

Although this study showed that LBP can activate T cells, macrophages, and DCs, its 

corresponding receptors on these cells have not been addressed yet. Therefore, it will 

interesting to indentify LBP binding receptors on these cells in the future.  
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Appendix I: Buffers and Solutions 

The general format of this section is as such: 

Chemicals required; Working concentration; Amount used.  

Autoclaving for buffers and solutions was done at 121ºC for 15 min. 

 

Buffers and Solutions for LBP Isolation and Characterization 

Sevag Reagent 

CHCl3 160 ml 

n-BuOH 40 ml 

 

1 M NaCl 

NaCl  

Milli-Q water Make up to 1000 ml 

 

1 M KCl 

KCl  74.55  g  

Milli-Q water Make up to 1000 ml 

 

5% Phenol 

Phenol 5.0 g 

Milli-Q water Make up to 100 ml 

 

 

 

 

58.5 g  
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Protease Digestion Buffer  

SDS 0.2 % 

× Sample Loading Buffer 

ol 10 mM 

Glycerol 20% (v/v) 

l H6.8 

nol Blue 

amide Solution 

ide 10 

illi-Q water Make up to 100 ml 

 

8× Non-denaturing Stacking Gel Buffer (pH 6.8) 

EMED 0.46 ml 

The pH was adjusted to 6.8 with 1M H3PO4 and made up to 100 ml. 

 

ring Resolving Gel Buffer (p

ris Base 1.5 M (18.2 g) 

EMED 0.23 ml 

The pH was adjusted to 8.9 with 1M HCl and made up to 100 ml. 

 

EDTA 10 mM 

 

5

SDS 10% 

β-mercaptoethan

Tris-HC 0.2 M, p

Bromophe 0.05% 

 

10% Acryl

Acrylam g 

Bisacrylamide 2.5 g 

M

Tris Base 0.47 M (5.7 g) 

T

4× Non-denatu H 8.9) 

T

T
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10% APS 

Ammonium Persulfate 

 water  to 1 ml 

The solution was filtered and stored at 4ºC no longer than 2 weeks 

 

Coomassie Blue Staining Solution 

50 

etic Acid 

l 

cid 

250 mM 

1.92 M 144 g 

RO H2O Make up to 1000 ml 

250 mM 

1.92 M 144 g 

0.1 g 

Milli-Q Make up

Coomassie Blue R2 0.6 g 

Methanol 250 ml 

Glacial Ac 50 ml 

RO H2O 200 ml 

 

Destaining Solution 

Methanol 400 m

Glacial Acetic A 80 ml 

RO H2O 200 ml 

 

10× Tris-Glycine SDS-PAGE Runing Buffer 

Tris Base 30.3 g 

Glycine 

SDS 10% 10 g 

 

10× Tris-Glycine Buffer 

Tris Base 30.3 g 

Glycine 

RO H2O Make up to 1000 ml, pH 8.3 
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10× Non-Denaturing Gel Running Buffer (pH 8.3) 

50 mM 6.06 g 

384 mM .8 g 

ure

Tris base 

Glycine 28

RO H2O Make up to 1000 ml, pH 8.3 

 

Buffers and Solutions for Cell Cult  

0 medium powder  

yruvic acid sodium salt 1.1 g 

10 g 

NaHCO3 20 g 

t of RPMI-1640 powder was dis n 5 L of ddH2O followed by the 

f HEPES, L-glutamine, pyruvic acid sodium salt, and glucose. NaHCO3 was 

dded and the pH was adjusted to 7.20. The final volume was brought to 10 L. The 

iquoted, and stored at 4ºC. 

edium 

edium powder et 

EPES 37.5 g 

L-glutamine 3 g 

1.1 g 

10 g 

20 g 

et of DMEM mediu  L of ddH2O followed by the 

ddition of HEPES, L-glutamine, pyruvic acid sodium salt, and glucose. NaHCO3 was 

RPMI-1640 Medium 

RPMI-164 1 packet

HEPES 37.5 g 

L-glutamine 3 g 

P

Glucose 

One packe solved i

addition o

a

medium was filtered through a 0.22-µm filter, al

 

DMEM M

DMEM m 1 pack

H

Pyruvic acid sodium salt 

Glucose 

NaHCO3

One pack m powder was dissolved in 5

a
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added and the pH was adjusted to 7.20. The final volume was brought to 10 L. The 

as filtered through a 0.22-µm filter, aliquoted, and t 4ºC. 

BS (Fetal Bovine Serum)  

as thawed in a water bath at 37 ºC followed by 

 for 30 min. The heat-inactivated FBS was then aliquoted, and 

eptomycin Stock Solution (100

  units/ml 

ycin 10 /ml 

PMI-1640 (or DMEM)  Make up to 100 ml 

l 

medium w stored a

 

F

500 ml of fetal bovine serum (1 bottle) w

heat inactivated at 56ºC

stored at 4ºC. 

 

Penicillin-Str ×) 

penicillin 10000

streptom mg

 

Complete Growth Medium 

Penicillin-Streptomycin stock 1 ml 

FBS 10 ml 

R

 

Freezing Medium 

FBS 10 ml 

DMSO 10 m

RPMI-1640 (or DMEM) 80 ml 

 

 

 



Appendices  
 

185

10× PBS 

NaCl 800 g 

KCl 20 g 

Na2HPO4 115 g 

20 g 

olutions for Flow Cytometery

KH2PO4

ddH2O Make up to 10 L 

 

Buffers and S  

ACS PBS (pH 7.4) 

KCl 0.2 g 

% FBS 10 ml 

1 g 

l 

The pH was adjusted to 7.4 and the final volume was brought to 1000 ml with ddH2O. 

The solution was filtered through 0.22-µm filter and stored at 4ºC. 

 

2% Paraformaldehyde 

2 g of paraformaldehyde was added into 80 ml FACS PBS (pH 7.4). The mixture was 

 56ºC until dissolved. The final volu  brought to 100 ml. The solution was 

ilter and stored at 4

F

NaCl 8 g 

Na2HPO4 1.44 g 

KH2PO4 0.24 g 

1

Sodium Azide 

ddH2O 900 m

heated to me was

filtered through 0.22-µm f ºC. 
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PI Staining Solution 

ium Iodide  

e 

00 

 up to 10 ml 

uffers and Solutions for RT-PCR

Propid 0.4 mg

RNas 1 mg 

Triton X-1 1 ml 

PBS Make

 

B  

 2 mM 30 µl 

(100 mM) stock 2 mM 30 µl 

 (100 mM) stock 2 mM 30 µl 

0 mM) stock 2 mM 30 µl 

ure was made up to 1.5 ml with 3 mM Cl (pH 7.0) and 0.1 mM EDTA. 

 was stored at -20ºC.  

10× dNTP Stock Solution 

dATP (100 mM) stock

dTTP 

dCTP

dGTP (10

The mixt  Tris-H

The stock

 

Buffers and Solutions for Luciferase Assay 

Lysis Buffer 

Tris-phosphate 25 mM 

8 mM 

DTT 2 mM 

 2 mM 

 

 

MgCl2

Triton X-100 1 % 

Glycerol 10 % 

1,2-diaminocyclohexane-N,N,N,N-tetraacetic acid
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Buffers and Solutions for ELISA 

H 6.5) 

4  

 

l 

900 ml 

100 ml 

 7.0 an lution was stored at 4ºC

999.5 ml 

Tween-20 0.5 ml 

Coating Buffer (p

Na2HPO 11.8 g

NaH2PO4 16.1 g

ddH2O Make up to 1000 m

 

Assay Diluent 

PBS 

FBS 

The pH was adjusted to d the so .  

 

Wash Buffer 

PBS 
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Appendix II: Publications 

 

International Journal Papers 

en Z, Tan BK, Chan SH. Activation of T lymphocytes by polysaccharide-
tein complex from Lycium barbaru t Immunopharmacol. 2008;8:1663-

2. Chen Z, Soo MY, Srinivasan N, Tan BK, Chan SH. Lycium barbarum 
polysaccharide-protein complex is a potent stimulus of macrophage activation. 

d. 
 

 Chen Z, Lu J, Srinivasan N,  Tan BK H. Polysaccharide-protein complex 
from Lycium barbarum L. is a novel s f dendritic cell immunogenicity. In 
revision (J Immunol). 

 
onference Papers 

 
Z, Tan BK, Tay SW, Chan SH. Activation of T lymphocytes by 

polysaccharide-protein complex from a Chinese medicinal nutrient, Lycium 
barbarum L. Exp Biol. (abstract & oral presentation). 2008. San Diego, U.S.A. 

n Z, Soo MY, Srinivasan N, Tan BK, Chan SH. Lycium barbarum 
polysaccharide-protein complex enhances innate immunity by activating 
macrophages. 1st Int Sin Symp Immunol. (abstract & poster). 2008. Singapore. 

1. Ch
pro m L. In
71. 

 

Submitte

3. , Chan S
timulus o

 

C

1. Chen 

 
2. Che

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


