APPLICATION NETWORKING FOR PERVASIVE
CONTENT DELIVERY

SU MU
(B.Eng, M.Eng) HUST, P.R.C

ATHESIS SUBMITTED
FOR THE DEGREE OF PHILOSOPHY OF DOCTOR
DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE
2008

Acknowledgement

Although this thesis presents my individual wottkere are many people who
contributed to it by their discussion and suppbrtst, | thank Dr. Chi Chi-Hung, my
former supervisor, whose guidance, motivation asdussion have been invaluable
throughout my studentship in NUS. | also thank Bung Wing-Kin, my current
supervisor, who gave many supports in the lastgpbamy study.

| thank Henry Novianus Palit, Hongguang Wang, Cheoig Chua, Junli Yuan
for their help and support on my research work.

| also thank to my family for their love and suppdviom for her care, Dad for
his advice and motivation, and Brother for his aync Thanks and life-long memory
to my grandma.

In particular, | appreciate my wife, Junxia Zhai@he gave me her largest
encouragement and support, especially during te&ghevision phase. Without her, |

could not finish my research.

Contents

Yo L0V T=To o =T 0 =T o | U PPPPRS i
(O00]] (=] o £ PP PRRPPPPPRPPPRRP ii
IS o) T [Vil
LISt OFf TADIES ...t Xi
YU 1 4= T S Xil
(O o 1 = PP 1
1.1 BacCKgroundoooeeieii s 1
1.2 IMOTIVALIONS ..ot r e e e e e e 4

1.2.1 Well-defined Content Service StruCture e cecceeeeeeeeeeene b

1.2.2 CONENE REUSEeiieiieee e e e e 5
1.2.3 Efficient Service Placement...........cccoeiiiiiiiiiiiiiiiiicc e 6
1.2.4 Wide Framework AdOPLIONcooeiieeii e e 7
1.3 Objectives and ContribUtioNS............oooieeeeieeiiie e 8
1.3. 1 ODJECLVES ..ottt a e e e e 8
1.3.2 CoNtriDULIONS.o e 9
14 TheSIS OULIINGovviiiiiieee e 11
(O e I PP 12
2.1 INEFOTUCTION ... e e e e e e e eeeeennnees 12
2.2 Traditional Web Content Delivery Technologies..............vvvceennnn. 12
221 Web CaChing.......ooooiiiiiiiiiiiii e 13
2.2.2 Web Replication and Content Distribution Networks............... 14
2.3 Active Web INtermMediaries oo 17
2.3 1 ACHVE PrOXY ..ooiiiiiiiiiiiiiiiie e eemmm et 19
2.3.2 Collaborative Intermediaries.ccoouuieeeeeeuiiiiiee e 22

2.3.3 ACHVE CDN ... e e e e e e eeeeaenes 24
2.4 Adaptive Content Delivery Standardscoeeeeeiiiiinnnnnnnennenn. 26

2.4.1 Open Pluggable Edge Service................ e seeeeeeeeeeeeiieeeennnnnn. 26

2.4.2 Callout ProtOCOIS.........uuuuiiiiiiiiiiiiie sttt 28
2.5 Peer-to-Peer (P2P) NEtWOIKS.........uuuuuiiieeeeeeeeiii e 29
2.5.1 Centralized P2P Networksccuuumt e 29
2.5.2 Unstructured P2P NetwOrks..............ouvmimmmmmme e 31
2.5.3 Structured P2P NetWOrKS..........ccoviiiiiii e 32

2.6 Replication and Caching in the P2P Networks................................36

2.6.1 Replication in the unstructured P2P Networks................c.ouu.... 36
2.6.2 Replication and Caching in the Structured P2P Nektgvo............ 37
2.6.3 P2P-based Web Content Cachingccooeeeeeeeeiiiinieeeeeeeeeeeeee, 39
2.7 ACHIVE P2P SOIULIONS ...ttt 41
2.8 SUMIMABIY ..ttt mmmm e e e et e e e e e eeen e e e aennnnneaeaaeees 44
CHAPTER 3 .ot e et e e e e e et e e e e e eenanns 45
3.1 IMOBIVALIONS ... e e e e e 45
3.2 Framework OVEIVIEWeeiiiiiiiiiiiis e 47
3.3 WOTKFIOW ... 50
3.3.1 WOrKfOW STrUCTUIEcoovveieiiieeiie e 50
3.3.2 WOrKflow OpPerationsS...........cceeviieeieeieiiieeeee e 52
3.3.3 XML SPeCifiCatiON.......coiieiiieieeiiiiieeeeteeeme e 55
.34 DISCUSSION ..ceiiiiiiiieeeee e srrmen ettt e e 57
3.4 Metadata based Content REUSEcemmmmem e eciiiiiiee e 59
3.4.1 Metadata SPecCifiCation..........cccoeeeeiiiiiiiieeiieei e 60
3.4.2 CONENEREUSEoveiiiiiiii i ereeeer e 63

3.4.3 DISCUSSION ..cciiiiiiiiieeeeee e eermee ettt 64
3.5 Observation and SUMMAIY...........cooiiiiiiiiiiiiiiiia e eeeeerieeens 65
CHAPTER 4 ..ottt e e eeeeneanns 67
4.1 APP-NEt ArChItECIUIE ... 67
4.1.1 Service Preparation ProCESS........coouviiieememmciiiieeee e 68
4.1.2 Request Forwarding ProCess........coooviiii e 69
4.1.3 Server RESPONSE PrOCESS.......ccoiieiiiimmmm e e et e eeeai e 71
4.1.4 Proxy RESPONSE PrOCESSoiiiiiiiiiiiieeeemii e e e eei e 73
4.1.5 SYSIEM SECUMLY ...uuiiiiiieie ettt 74
4.2 App.Net Caching SCheme ... 75
4.2.1 Cache Identifier. ..o e 75
4.2.2 Versioned RESPONSE.......uuuuuuiiiiiei e eeeeeeeeiaeaaa s e e e e e e e e e e eeeeeeeeenanens 78
4.2.3 App.Net Caching Scheme...........ooooiiiiiiiccecceei 80
4.3 PerfOrManCecooiiiiiiiii e eree e 82
4.3.1 COSEMOAEL.....coiiiiiiiiiiiiiiieii e 82
4.3.2 Optimization MOdel.........oooeeiiiiiiiiiii e 84
4.3.3 Optimization Algorithm ... 89

4.3.4 Performance Modeling for Static Content......eeveeeeeeennnnn.... 93

4.4 SUMIMABIY ...ttt mmmm e e e et e e e e eeeena e e e eeennnneaeaaeees 924
CHAPTER 5 .ottt e e e e e e e e ennanns 95
5.1 IMPIEMENTALION ... e e e e e e e e eeeeeeennees 5.9
5.1.1 Request ModifiCation.............ooooiiiiiiii et 96
5.1.2 Response Transformationooovvivimmmmeemeeiiiiiiiiiiin e 97
5.2 Simulation ENVIFONMENToooiiiiiiiiii sttt e e 98
5.3 Simulation for APPICAtIONS...........uuuiii et 100

5.3.1 Application TAXONOMYccoeeeieeeeiiiieiieieeiiiieiiiiaa e e e e eeeas 100

5.3.2 SILO Application — Chart Generator...........cocceceeeeeeeeeeeeeeeeeeeee. 102
5.3.3 SILO+D Application — Page Assembler.........cccoceeeviivvininn..n. 104
5.3.4 LISO+ Application — Watermarkingceeeeeeeeiiiiiinninninnnns 107
5.3.5 LISO — Document TrMMEr.........cccouuueneet e 108
5.3.6 DISCUSSION ..coeiiiiiiiiieeeeee e eereee ettt 111
5.4 Simulations for Service Placement...........cccceecvvviiiiiiiiiiiiiiiiiiiieeee, 112
5.4 1 OVEIVIEWutiiiiieiiieiie e e e e e e e ettt e e e e e e e e e e e 112
5.4.2 Simulation on Single ServiCe..........ccciiiiiiiiiiiiiiiieee e 113
5.4.3 Simulation on Multiple Services for Dynamic Content........... 116
5.4.4 Simulation on Multiple Services for Static Content................. 122
5.5 SUMIMAIY ..ttt mmme e e et e e e e e e et e e e e eeesn e aaeenees 123
CHAPTER B ..ottt ettt e e e e e mm e e e e eeees 124
6.1 IMOTIVALION ...ttt e e e 124
6.2 MethodoIOgYcceeeiiiiiiiie e 612
B.2.1 OVEIVIBW...eeeiiiiiiiiiieeeee ettt 126
6.2.2 PaSstry NEIWOIK.......cooiiiiiiiiiiiiiiii ettt e e 128
6.2.3 SYStem OPErationNscccooeieiieieiiiiiii e 130
6.3 Performance ANAlYSISuuuuiuiiiiii e 133
6.3.1.1 Utility AlQorithm ... 134
6.3.1.2 AN.P2P Performance Predictionceeeeeeveeennn. 139
6.4 SIMUIALION ... e e 141
B.4.1 OVEIVIBW ...oeiiiiiiiiiiieiee et 141
6.4.2 Computation RESUILuvuiiiiiiiiiieee e 142
6.4.3 SIMUIAtion Group L.......coooiiiiiiiiiiiieiet e e e 143

6.4.4 SIMUIAtioON GrOUP 2.....ccoiiiiiiiiiiiiiiiiie et e e e e 146

6.4.5 SIMulation Group 3.......cooiiiiiiiiiiiiieie e 148
6.4.6 SIMUIAtiON GroUP 4......cooiiiiiieeiiiiieeee et a e 149
6.5 SUMIMAIY ..ttt mmmee e e e e e e e e e eess e e e e ennenneaaeennes 151
CHAPTER 7 .ottt et e e e e e e e e e eenes 152
7.1 OVEIVIEW ...ttt e e e e r et e e e e e e e e e e e e e e e e 152
4% % R [o (=T ¢ g 1T 0] = [0 IR 152
7.2 Selective RepliCatioNcoooveiiiiiiii e 155
7.2.1 Selective GDS Replication Algorithm.........ccceeeeeeiiiiiiiiiiiiiinnns 156
7.2.2 Selective LFU Replication Algorithmcccccoooiiiiiiiiiiiiiiinns 158
7.2.3 SIMUIAtioN RESUILSouiiiiiiiiiiiiiieeee e 159
7.3 Partial Service Replication.................uceeeeeiiiiiiiiiiiii e 162
7.3.1 Partial Replication Algorithmcoommeeeiiiiiiiiiiiiii, 162

7.3.2 Partial Service Caching Scheme...............cmmmmeeveereiiiiiiinnenen... 165

7.3.3 SIMUIAtiON RESUILSuuiiiiiiiiiiiiiieeeceeeeee e 167
7.4 PoINters Cache ... e nz

7.4.1 SIMUIAtion RESUILSuuiiiiiiiiiiiiiieeec et 175
7.5 SUMIMAIY ..ttt mmmee e e et e e e e e eebs e e e e eeneneaaeeeees 182

CHAPTER 8 ..ottt e et e e e e eeeenes 183

8.1 CONEHDULIONS. ... 183
8.2 FULUIE WOTK ...ttt 851
REIEIENCE ... e e e 189
Index 205

vi

List of Figures

Figure 2.1 Literature Review Organizationccc.coovvveeeeveiiiiiiiiiiineeeeeeeeeeeee 12
Figure 2.2 Architecture of RaDaRcoovviiiiiiiiiiiiiiie e 16
Figure 2.3 Structure of Service Enabled CachingyPra........cccceeeeeveiieeinnnnnn. 20
Figure 2.4 Structure of the Server-Directed TradswpSystem.............cc..oee.ee. 21
Figure 2.5 OPES ArChItECIUIEevvvieiiiimmmmmme e e e e e e e 27
Figure 2.6 An Example DKS network (dots represativiork nodesN=16).....33
Figure 3.1 A Traditional Content Delivery Framewark...............cccccevvvvvevnnnnns 45
Figure 3.2 Application Networking Framework. ... ccooeeeeeeeeeeeeeeeeeeeeiiiiiinnns a7
Figure 3.3 Static and Deliverable Service TierS.........cccoveiiiiiiiiiiiiiiiiiceeen, 49
Figure 3.4 An Example WOrkflow..............eieiiiiiiiin 50.
Figure 3.5 WOrkflow StrUCIUIeoooiiiieeeeee e 52
Figure 3.6 an Example Workflow XML Specification............cccceevveeeeeeeeinnnee. 56
Figure 3.7 Branching Logic in the Workflow......ccc....ccooiiiniiiis 59
Figure 3.8 Metadata SPeCifiCatioNo eeeieeeeeeeeiieeieieiiiiiiin e 61
Figure 3.9 Specification for <AppNetDeliverablegntire Workflow............... 62
Figure 3.10 Specification for <Deliverable> - PalriiVorkflow......................... 63
Figure 4.1 Architecture of App.Net SyStemccccooeiiiiiiiiiiiiin 67
Figure 4.2 App.Net WOrKHOWuuuuimiimmmeiiieeeei e 69
Figure 4.3 Request Message from Clent..... . .eeeeeeeiiieeeeeeeeeeeeeeeeeienns 70
Figure 4.4 Request Message from PrOXYcccceeeiiiiieiiiiiiiiiiiiinnneee e 71
Figure 4.5 Response Message from Server......cccoooooiiiiiiiiiiiiiieiiiiiiiceeennn 73
Figure 4.6 Response Message from ProXycccccceeoiiionneieeeeieeeeeeieeiiiiinnnnns 74
Figure 4.7 Example Messages for the RE-URI Header...............ooooeeeiiiiee. 78

Figure 4.8 Example Messages using VaryByParam............ccccceevvvvvevennnn... 80

vii

Figure 4.9 Model for a Single ApplICatioNcc..ooeviieiiiiiiiiiiiieee e 83

Figure 4.10 An Example ODJeCtS-Treeoicoceeeeiiiiiiiiiiieee e 85
Figure 4.11 Request Probabilities of Objects angt B@esccceeeeeeeeeeee. 87
Figure 4.12 Optimization AlgOrithmcocceeeiiiiiiiii 90.
Figure 5.1 App.Net PrototyPe......ccooeeeeiiiiiieieeiiieiiitire e 95
Figure 5.2 Simulation ENVIFONMENT............ucceariiiiiiiiiiiice e 29
Figure 5.3 Application TaXONOMYoi e eeeeeeeeiiiiiiiiaaee e eeeaaeeeeees 0n
Figure 5.4 TransmiSSION COSt........coiiiiii et 103
Figure 5.5 System Throughputeicmoec i 103
Figure 5.6 Request Drop RaAIOccoouiii oo 103
Figure 5.7 User Perceived LatenCyccccecurruuiiiiinineeeeeeeeeeeeeeeeeiininnns 103
Figure 5.8 TransmiSSION COSt........cooiiiii et 106
Figure 5.9 System Throughputeeimmocciiei e 106
Figure 5.10 User Perceived LatenCycccccceevieeiiiiiiiiiiiieeee e 06L
Figure 5.11 Performance for the Watermarking Agglanccccceeeeeenn. 107

Figure 5.12 Performance of Document Trimmer in Hegeneous Scenario ...109

Figure 5.13 Performance of Document Trimmer in Hgereous Environment

... 111
Figure 5.14 Device-Independent Authoring Servicekfow......................... 113
Figure 5.15 TransSmiSSION COSt.......cooiiiiiee e 115
Figure 5.16 User Perceived LatenCycccccciiveeieiiiiiiiiiieeeee e 15
Figure 5.17 System Throughputceeememiiiiiiiiiiee e 116
Figure 5.18 Server TRroUgNPUL..........euuut e e 116
Figure 5.19 TransmiSSION COSt.......cooiiiiiee e 118
Figure 5.20 Cache Hit RAtiOuuuvuuiiiiiieiee e 119

viii

Figure 5.21 User Perceived LatenCycccccciveeeiiiiiiiiiiieeeee e 201

Figure 5.22 Transmission Cost under Different RegBatterns...................... 121
Figure 5.23 User Perceived Latency under DiffeRequest Patterns 121
Figure 5.24 System Performance for Static Contents...........ccccceeeeeeeeeieenne. 122
Figure 5.25 System Performance under Different BegRatterns 123

Figure 6.1 A Straightforward Content Service Metblody in the P2P Network

... 125
Figure 6.2 AN.P2P Methodology in the P2P Networks..............ccceeeeiinnnnn. 126
Figure 6.3 AN.P2P over the Pastry Network......cccc.uuuueiiiiiiiiiiieeiiiiiieeeeiiiies 130
Figure 6.4 Predicted Query Hops in the Pastry NEKWAQ............ccceeeeieeeneenenn. 139
Figure 6.5 Computation RESUILSuuemmmmcc i 143
Figure 6.6 QUETIY HOPS.....cooviiiiiiiiiiiiimcccece ettt e e e e e e e e e e e e eeenes 144
Figure 6.7 Replica Hit RALIOuiiii i 144
Figure 6.8 Retrieval DIStANCEcooo i ieeeeeeiiiicee e 145
Figure 6.9 Replica Hit RALIOuiiii i 146
Figure 6.10 Retrieval DISTanCeooo oo 147
Figure 6.11 Replication COStuuuuuuimiiiiiiieee e 148
Figure 6.12 Performance Under Different Percentagé@dN.P2P Nodes........ 149
Figure 6.13 Query Failure Ratiocoooieeeeeee i 150
Figure 6.14 Replica Hit RALIOo e 151
Figure 6.15 Retrieval DISTanCeooo oo 151
Figure 7.1 AN.P2P ProtOtyPeuuuuuuuiii e 153
Figure 7.2 AN.P2P’s Basic Query-Response-Replind@mcess 155
Figure 7.3 isReplicate () for Selective GDS Regdlmn.............cooovvviiivinnnnnnnnn. 158
Figure 7.4 isReplicate() for Selective LFU Refioaccoevvvvvviiinnnnnns 159

Figure 7.5 Replication Costs against Different @aSlzesccceevvvnnnne 160

Figure 7.6 Replication Costs against the Numbe&pudries...................oooee 161
Figure 7.7 Replica Hit RALIOuiiii i 162
Figure 7.8 Retrieval DIStANCEccooo i ieeeeeeiiieeee e 162
Figure 7.9 Partial Replication MESSAgecceeeeveiiiiiiiiiieiiiiiiire e 416
Figure 7.10 Partial Replication Judgment Algorithm...........ccccoevvieiiiiininnnnn. 165
Figure 7.11 Replica Hit RALIO e 167
Figure 7.12 Retrieval DISTanCeooo oo 168
Figure 7.13 Replica Hit RALIO e 169
Figure 7.14 Retrieval DISTanCeooo i 169
Figure 7.15 Replication COSES............uutummmmmmeeernnaeaaaeeeeeeeeaeeeeeeeeeesnnnnnnnnnas 169
Figure 7.16 Computation LOadsoo oot 170
Figure 7.17 Operations FIOWChArtcoeereemniiiinne e 172
Figure 7.18 Range of the Pointed NOAES (1) cccceeeiiieiiiiiiiiiiiiiiieeeeee e 174
Figure 7.19 Range of the Pointed NOJES (2).cccceeeiiieiiiiiiiiiiiiiiieee e 175
Figure 7.20 Object Cache Hit Ratio..........cccaeaeiiiiiiiiiiieee s 176
Figure 7.21 Computation Loaduuviemmmmmiiiiieeeeeeeeeeeeeeeiii e 176
Figure 7.22 System Performance against the Nunf@ueries...................... 177
Figure 7.23 QUETIY HOPS...cceviiiiiiiiiie s ettt e e e e eeeees 178
Figure 7.24 Retrieval DISTanCeoo oo 178
Figure 7.25 Percentages of Cache-Stale and Cacdhe-Hi............................. 179
Figure 7.26 Pointer Probe Overheads ..o L8
Figure 7.27 Pointers Cache Performance for DiffeReminter Numbers.......... 181

List of Tables

Table 2.1 Routing Table of Node NNF16,k=2)...........ccceevrrrrrrrriiriiiciieen, 34
Table 4.1 Virtual and Effective Placement VeCtorS...........cccoovvvvvvevivivnnnnnnnnnn. 86
Table 5.1 Application Taxonomy DetailS.......ceeeeeeeeeeieiieeeiiiiiiiicineee e 102

Xi

Summary

In the past few years, the Web and the peer-to{f2#) based content services
have witnessed more heterogeneous requests, dihe @mergence of diverse user
devices and network connections, and other pengedatequirements. To provide
the best-fit content for clients, researchers psegdomany active content delivery
systems, which add transformation applications th# content delivery system and
allow it to transform the relayed content accordinglient’s requirements. However,
these systems carry a common weakness — they dosd&¢nt transformation and
content delivery as two separate processes. lesalle systems to suffer problems
like not preserving content’s semantics, poor sukiato adopt applications, and low
performance due to application placement and contense. To address these
challenges, we propose a novel framework - AppboaNetworking - that integrates
content delivery and content transformation intandfied service delivery process.
The research is exploited in three phases: (i) gna&pplication Networking
framework, (i) App.Net system for the web conteattd (iii) AN.P2P system for the

P2P context.

The Application Networking framework defines oumtent service structure
and content reuse method. The framework organiaatent service as an original
content object and a workflow that specifies thioveéd operation steps to be
performed on the content. The content service eaddlivered to the network nodes,
which will execute the workflow operations to trforen the content for the
requesting clients. More importantly, the framewa#&n achieve flexible service
placement by delivering partial workflow in the wetk, and this flexibility facilitates

the system to achieve efficient content delivergitegies. Meanwhile, the framework

Xii

defines a metadata based approach to implement gdreeral-purposed and

service-oriented content reuse.

The efficacy of our concept is verified by the Agpt system, which applies
the general framework in the Web content delivesgtext. The system extends the
legacy Web system by allowing the Web server tavdelthe content service to the
edge proxy, which will reuse it to serve heterogerserequests. We also propose
intelligent service placement algorithm to minimibe server-to-proxy transmission
cost by delivering partial content services in timal ways. The performance
evaluation results show our App.Net system outper$o the conventional

server-based and proxy-based solutions signifigantl

This research is further expanded by the AN.P2Resyswhich applies the
general framework to the P2P networks by enablwegnetwork to populate both the
content object and its workflow. Firstly, mathematianalysis is used to show the
AN.P2P methodology can achieve less search sizieny hops than the plain P2P
methods that share the final content presentatiortte network. Then, a detailed
AN.P2P system on the Pastry network is proposeaasds dedicated solutions: (i) the
selective replication method, (ii) the partial iegtion method and (iii) the pointers
cache method, to perform cost-effective servicdigaion and efficient content reuse.
The simulation results show our system achieveshntatter performance than the

conventional P2P solution when serving heterogengoeries.

Keywords: Application Networking, Web, Peer-to-Peer, PemasContent

Delivery, Content Adaptation

xiii

CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, content service is one of the most inapbrinternet applications,
because of people’s intensive desire for acquiaing propagating information. Most
content delivery systems are built on either Welpesr-to-peer (P2P) technology, to
allow the content provider to publish and deliver ¢ontents to the global users.

The main advantage of Web is the simple clienteecommunication way and
the rich media presentation. Many efficient Web teah delivery solutions were
proposed to support large numbers of clients thaildvcause considerable access
load on the server and significant transmissiod loathe backbone network. Typical
solutions are the Web cache [Rau99, WC97, RS98,880Aand BOO00], the Web
replication [KRRO1, QPV01], and the content digitibn networks (CDN) [Ver02,
Hul02, RRR98 and RA99]. On the other side, the R&€hnology is highly
autonomous and scalable, and many content delsyetems are built on it, such as
the file sharing systems [Nap, Kaz], the distrilbuséorage systems [RD01, DKKO01],
and the P2P supported Web delivery systems [PGDi, B

In recent years, content services witness much mbeterogeneous
requirements as never before. Besides the traditipersonal computers, many new

devices, such as PDAs and smart phones, are ugbd Beowsing tools. Meanwhile,

with people coming from different parts of the vehrinternet is facing a variety of
users with different network access speeds, larguaguirements, multimedia
coding preferences, and so on. Under such condjtitile content services are
expected to provide the appropriate responseditithe network, hardware, software
and other personalized requirements of the clients.

However, the traditional content delivery systemsravdesigned for contents
with a single presentation and they become deficiader the new conditions. To fill
this gap, many &ctive content delivefysystems are proposed. In general, these
systems add the content transformation applicatiotts the content delivery path,
and allow the network nodes to transform contenth&® appropriate presentations
according to the clients’ requirements. Accordirg where the transformation
applications are performed, existing active systearsbe divided into three groups:
(i) the origin-site solutions, (ii) the client-sidlutions, and (iii) the intermediary
solutions.

The origin-site solutions transform content at Web server or the origin node
in the P2P network. When the origin site receiveeqguest, it will transform the
content according to the requirements in the raqié® adapted content is then sent
to the client. The main drawback of this methothes fully adapted content has very
poor reusability at the intermediate proxy cachpeer node, since the response is for
a specific group of clients and cannot be reused dients with different
requirements.

The client-side solutions transform content atdlient’s device. Many systems,
such as CSI [RXD02] and AJAX [Ajax], use the dowaded applications to
transform and manipulate the response content.oAdth this solution can better

understand the capabilities of the client’'s devace provides good user interaction,

the heterogeneity of client devices restricts iisevusage. More importantly, the
solution is not flexible enough as transforming teom at the client side may not be
beneficial at all situations.

Researchers also proposed the active intermedutians [Dik04] that let the
intermediate node fetch the original content frdra origin site and transform it for
different client groups. The solutions only need itstall applications at the
intermediate node but can reuse them for all thenected clients. Thus, it is a
one-to-many approach.

Typical active Web intermediary systems are (i) dutive proxy [BJA9S,
BHO1, STR02 and BCHO04], where the content applbcetiare pre-installed on the
edge proxy; (ii) the active cache [CZB98] and tkever-directed transcoding (SDT)
system [KLMO3], which allow the proxy to fetch smapplications from the server
dynamically; and (iii) the Content Service Netwo(SN) [MSBO1l] and the
Application CDN (ACDN) [RXAO03] systems, which pupplication proxies in the
network and allow the CDN servers to transform enntusing these application
proxies.

Correspondingly, the active intermediary is alsedus the P2P systems, such
as Tuxedo [SSMO03] for content caching and SpideflS&Y04] for data streaming.
Such systems assume some network nodes are idstaile the transformation
applications, and can direct the content to flovatigh the required application nodes
to form the final presentation for the client.

In summary, the history of the “traditional contelglivery systems” presents
the trend - the content moves from the origin ®téhe intermediate network nodes.
This kind ofcontent distributionmproves the system’s scalability and efficienoy t

serve thehomogenous requesthat ask for contents with a single presentation.

Meanwhile, the invention of the “active contentidety systems” presents a new
trend - the content applications are added to mbermediate network nodes. This
scales up the node’s capability to transform tHayesl content. Thigpplication
distribution has exhibited its benefits to improve the systerséalability and
efficiency to serve theheterogeneous requestkr the customized content

presentation.
1.2 Motivations

Although existing solutions can achieve active eahtelivery to some extent,
they are not sufficient to construct a comprehenfi@mework. There are some major
challenges to be conquered, including (i) how tecdbe the content service as a
well-defined structure, (ii) how to reuse the venad content, (iii) how to perform
efficient service placement, and (iv) how to applgeneral framework to different

content delivery contexts.
1.2.1 Well-defined Content Service Structure

The active content delivery systems allow the mestiate nodes to transform
the relayed content objects. A complete contenbhsfaamation process usually
contains multiple operations. For example, to reraleNeb page on a PDA, the
transformation includes document fragmentationpuéycustomization, and rending
language selection. To describe these operatiomgert systems propose some
methods: (i) the active proxy systems [BJA98 anddBHuse the built-in policies to
manage the content transformation; (ii) the OPEgBn&work [BCHO04] and CSN
[MSBO1] use the configuration rules to trigger tin@ensformation applications; and
(i) SDT [KLMO3] and ACDN [RXAO03] send the servelirected instruction to the

proxy to notify the required operation and applmat

Although these methods facilitate active contenhimalation to some extent,
they are still insufficient to describe a complsé&t of content operations precisely. A
complete description should include not only thgosation rules, but also the
execution sequence of operations, the applicatemded for each operation, and the
input content and parameters for the applicatiolh.tifese factors are necessary to
perform precise content transformation. Moreovdre tescription should also
describe different versions of content objects gated from the transformation. This
will facilitate the system to reuse content witlgtnilexibility.

Thus, we should provide a well-defined “contentvem” structure, and allow
the content provider to define the transformatiteps for his content. The service
specification tells the network nodes how to malafmia piece of content and
generate the correct content presentation for tlemtc Besides these descriptive
functions, the service structure should also bedbocoupled to facilitate the system
to (i) form a service with the standard and reusapplication modules; and (ii)

implement flexible service placement to the netwaokies.
1.2.2 Content Reuse

Content transformation will generate different vems of content objects.
Reusing these versioned contents, especially omteenediate node, can reduce the
network traffic and the user perceived latency. Maystems (e.g. [STR02]) leverage
dedicated applications to retrieve the media piiggeand reuse content according to
these properties. Though such type-oriented apprizaeffective for specific content

types, we also need more general approach due foltbwing reasons.

® Reuse all types of contents: In the open Interneirenment, different types of

contents will be delivered. To reuse these contemtsneed a general judgment

mechanism that is independent of particular cortyggs. Thus, the system can

determine the reusability of content without intetpg its data format.

® Service oriented reuse: In many situations, thetesdnreusability should be
“service-oriented” instead of type-oriented, whiameans the reusability is
decided by the content service’s semantics rath@n the content type. For
example, an advertisement bar can have an imageemetion and a text
presentation, where the former is used for clievite rich multimedia support
and the latter is for thin clients. In this cadee tontent reusability should be
determined by the advertisement service insteadngf reuse rule for either
image or text.
Thus, we are motivated to provide a general-pumgbcsmed service-oriented

content reuse mechanism.
1.2.3 Efficient Service Placement

Another important issue in the active system is howdeploy the service
applications for high performance content delivaryis issue can be broken into two
aspects: (i) where to place an application, andh@w to place a content service

containing multiple applications.

® \Where to place an application?

An application transforms the input content objextone or multiple output
objects. Since the input and output objects ususdiye different size and reusability,
placing and executing the application on differaetwork nodes would result in
different transmission traffic and user perceivatemcy. Thus, where to place an
application directly affects the system performance

Many systems install applications either at theedixnodes or deploy them

dynamically to the nodes that are fixed at the gltegphase. However, placing

application at such fixed location is not efficientall situations. For example, if a
large image is intensively accessed by the clieritis different preferences, putting
the transcoding application on the edge proxy Wl beneficial for content reuse.
However, if the image is occasionally accessedtiebchoice is to transcode it at the
server and only send those few transcoded results.

Thus, the efficient application placement should dygamic, considering
factors as the clients’ request pattern, the cdistesize and cacheability, and the

application’s size and valid period.

® How to place the content service?

A complete content service may contain multiplel@ptions. Thus, the second
issue is how many applications should be deplogethé¢ intermediate node. Some
solutions, e.g. ACDN [RXAO03], treat all applicat®in a service as an atomic unit
and deliver them as a whole. This is a coarse plané granularity, because the
possible choices are to deploy either all applcegior none of them. The lack of
flexibility would restrict the system performance.

Therefore, an efficient system should supply aifllex service placement
strategy. It can deploy content service at fineangftarity, which means the system
can place some selected applications in the setwitiee intermediate network node
according to the relevant performance gain andréticost. Such flexibility enables

the system to derive more beneficial placementegiyain the dynamic environment.
1.2.4 Wide Framework Adoption

Since Web and P2P are two important content dgliseenarios, it is important
to adopt the proposed active content delivery fraark to both contexts to explore
its general efficacy. In particular, the currentiae framework studies are mostly

based on Web systems. It is necessary to expandttidg into the P2P systems,

where quite different architectural and performaisseies are presented. Meanwhile,
many recent studies [PG04 and BT] proposed theidhydgystem that can leverage
both Web and P2P technologies. Adopting a geneaahdwork will enable active

content delivery for such hybrid systems.
1.3 Obijectives and Contributions

Intrigued by above motivations, this thesis is ¢id to propose a novel
framework for pervasive content delivery. The thefbcuses on exploring the
efficacy of our framework in the Web and P2P cotgexather than designing
particular content services. The objectives andtrimrtions of this thesis are

summarized as follow.
1.3.1 Objectives

Our research is accomplished in three stages,e#icla particular target:

® A General Framework

To provide a basis for the concrete systems, vg¢ fieed a general framework
for pervasive content delivery. The framework pded a well-defined description for
the content services. This description should itatd flexible service placement,
which means (i) the content applications can bdoyed dynamically, and (ii) the
content services can be delivered in the netwofkatgranularity.

Meanwhile, the framework should define a genergdregach to identify and
reuse different versions of content objects. Ddfer from the conventional
type-oriented method, this approach should enabke general-purposed and
service-oriented content reuse.

® Adopt the framework to the Web Context
Our in-depth system study starts from applyingdbaeral framework into the

Web content delivery context. The proposed systieouls enable the Web server to

deliver not only the response content but alsoréhevant applications to the edge
proxy. The new system must also be compatible thighegacy Web content delivery
mechanisms, so that we can deploy it into the &&eb environment. Intelligent
service placement strategy should also be provioleelfficient content delivery.
® Adopt the framework to the P2P Context

Next, we will adopt the general framework into 2P context, which extends
our study to the network scenario with large nuralmrnodes. Firstly, we need the
fundamental methodology for the representative R@ork. Performance analysis
will be used to show the widespread benefits ofpitegposed methodology. Then, we
will elaborate the methodology into a concrete eystith detailed mechanisms for

efficient service placement and content reuse.
1.3.2 Contributions

We believe our research efforts on this thesis @vilich the knowledge base of
several research areas, particularly on the field&eb and P2P content delivery. Our
key contributions are summarized as follow.

® Application Networking Framework

We propose the Application Networking framework fpervasive content
delivery. The framework extends the traditional teot delivery frameworks by
integrating content delivery and content transfdramainto a unified service delivery
process. It describes the content transformati@ratipns as a well-defined service
structure and enables partial service placementctwhs not provided by the
conventional frameworks. It proposes a metadatacbamethod to achieve the
general-purposed and the service-oriented coneeiser

® App.Net System

We propose the App.Net system that applies the ié@pbn Networking
framework into the Web content delivery context.r@Qystem is proposed in the
background that the content transformation is eibd@sed on the origin server or the
edge proxy in the conventional Web systems. Appedables the server to deliver an
intermediate response with relevant service apydica to the proxy. It not only
generalizes the conventional architectures, bui plevides more flexible content
delivery and transformation mechanisms. Meanwhie, extend the HTTP 1.1
protocol to cache different versions of responsesmake the new system compatible
with the conventional Web systems.

More importantly, optimal service placement aldans are constructed to
minimize the transmission cost in the system. Welémented an App.Net prototype
on the Jigsaw platform, and performed simulatioaseld on it. The results show the
App.Net system achieves higher performance thamahgentional server-based and
proxy-based solutions.

® AN.P2P System

We also propose the AN.P2P methodology that adolpés Application
Networking framework to the P2P network. Differémaim the traditional P2P method
that only replicates response objects, our methmables the replication of content
services. A mathematical model is constructed tmwsthe widespread advantage of
the proposed methodology. Our model is also tis uantitative analysis model for
the Pastry network. A system prototype is implereérdn the Free-Pastry platform,
and the simulation results show the AN.P2P methaihesforms the conventional
Pastry system significantly.

Furthermore, we build a detailed AN.P2P system. €budy provides a general

purposed framework for active content delivery lie P2P network, whereas most

10

existing solutions are based on specific applicetion particular, we propose (i) the
selective replication method for targeted servegication, (ii) the partial replication
method for flexible service replication, (iii) anthe pointers cache method for
distributed content reuse. Simulation results slatiihese mechanisms enhance the

system performance from different aspects.
1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 vevithe traditional and active
systems for Web and P2P content delivery. Chapt@oposes our general research
framework — Application Networking framework. Chap4 proposes the App.Net
system architecture that applies the general framewnto the Web context.
Performance models and optimal service placemegotitim are also provided. The
simulations are explained in Chapter 5 to verife tbffectiveness of this new
architecture. In Chapter 6, we propose the AN.PZ#hadology that expands our
framework to the P2P network. Mathematical modepiisposed to estimate the
system performance. Then, a detailed AN.P2P syssentiscussed in Chapter 7.
Relevant solutions are provided to achieve efficgrvice replication and content

reuse. Finally, we summarize the research and sssihe future work in Chapter 8.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the research work relatedutaleesis. The traditional and
active Web content delivery systems are first nge@ Then, we review the P2P
networks, the replication and caching techniquethanP2P systems, and the active

P2P solutions. The literature review is organizetharigure 2.1.

] Web Cache
Traditional Web <:
/ ‘Web Replication and CDN

Web Content - -
Delivery \7 Active Intermediary
Active Web Collaborative Intermediaries

Standards and Protocols

Literature Review Centralized P2P
P2P Networks % Unstructured P2P
Structured P2P
Replication in Unstructured P2P
p2p Content - p2p Rephc;atlon & Replication in Structured P2P
Delivery Caching
P2P supported Web Cache
Active P2P

Figure 2.1 Literature Review Organization
2.2 Traditional Web Content Delivery Technologies
In the past decade, the Web has become one ofdkepaopular content service
models in the Internet, due to its simple clierm#se communication and rich media

presentations. It has been found that a single Wézber cannot manage the load

caused by the large numbers of users, due tomttell processing capability, network

12

bandwidth, and the connection availability. Thugnmy solutions were proposed for
efficient content delivery by distributing the lotm multiple nodes. Two well-known

solutions are the Web caching and the Web repticati
2.2.1 Web Caching

The Web caching method [BOOO] allows the intermidi@oxy to cache the
Web objects so that the future users’ requestshfese cached objects will be served
from the proxy directly. [BCF99] claims the Web iseaccess pattern to Web
contents presents the temporal and spatial locetigyacteristics, where the minority
of objects is queried most frequently while mostens are not queried so frequently.
Therefore, caching those high utility objects aé tbroxy can reduce the user
perceived latency and the traffic on the Interreetkibone. Many cooperative caching
structures [Rau99] were also proposed to explaethlaborative storage of multiple
caches. Typical structures are the hierarchicdiegroxies and the distributed cache
proxies.

The hierarchical caching systems [WC97, RS98, aBdB00] arrange cache
proxies as a tree structure. A proxy may haveatemt proxy and the sibling proxies.
When receiving a request, the proxy will first log its local cache. If the cache does
not store the object, the proxy will query the isigl proxies, any of which with the
object will reply the query. If none sibling re@iethe proxy will forward the request
to its parent proxy. The hierarchical caching dtites enables content reuse between
different proxies and it can reduce the network dwadth demand by reducing
redundant object retrieval at different levelstod hetwork. However, the hierarchical
caching causes significant disk storage requireraemihe high-level proxy, and the
cache-hit ratios at the high-level proxies are thas those at the low levels due to the

“trickle-down effect” [DCGO1].

13

To overcome the disadvantages of the hierarchazhes, [PHI7] proposed the
distributed cache proxies structure, where only lda¢ proxies are responsible for
caching objects while the higher level proxies oimgex the objects cached by its
descent nodes. The inter-proxy query is resolvedha hierarchy, but object is
transmitted between leaf proxies. Thus, the sysa®oids the requirement for the
high-level nodes to maintain large storage spaod, exploits the hierarchy for
quickly locating the cached objects.

To achieve efficient caching information exchan¢@S98] and [FCAOOQ]
proposed the “cache digests” and “cache summasgeetively to index the cached
objects at a proxy. They use a Bloom filter to stamyrthe keys of the cached objects.
A proxy will propagate its digest to other proxi@sd keep it updated periodically.
When a proxy tries to query other proxies, it witleck their digests and select one
proxy that most likely has the object. In additi@ARP [Carp97] provides another
distributed caching structure, where the proxies aranged as an array and each
proxy is responsible for a range of objects. A Hasliction maps the object’s key to a
responsible cache proxy. Thus, CARP can providetarahinistic request resolution

to locate an object in the array of proxies.
2.2.2 \Web Replication and Content Distribution Networks

The Web replication technology allows the origimvee to put replicas of its
content objects to other servers. The client’s estjgan be served by either the origin
server or one of the replica servers. [Rab98] ésfitwo major issues for content
replication: (i) “request distribution” that redats a request for a logical object to one
of the physical object replicas; (ii) “replica ptament” that determines how many

object replicas are to be placed onto which se¢plica servers.

14

Replication is intensively used in the Content fisttion Network (CDN)
[Ver02, Hul02], such as Akamai [Aka] and Digitalldsd [Dig]. CDN defines a
well-organized network infrastructure with a largaimber of proxy servers
distributed in diverse geographic areas. Dedicatgdest distribution algorithms are
used to redirect the requests, and content pladeahgorithms are used to replicate
content objects strategically.

Typical request distribution methods are DNS (Dam&lame Service)
indirection, HTTP redirection, and IP multiplexinfhe DNS indirection [RRR98]
allows the DNS servers to map a host domain nama $et of IP addresses and
choose one of them for every request. The HTTReetion [Http] allows the Web
server to redirect a request using the HTTP retiimeanessage. This method can
distribute requests at fine granularity, down tdiwdual pages, whereas it is heavy
weight, needing extra pair of HTTP messages. ThenlRiplexing [Ver02] uses a
multiplexing router to forward the requests to thexk-end servers. Both the DNS
indirection and the HTTP redirection are used flabgl request distribution, while
the IP multiplexing is for local request distrilmrti

[Rab98] claims there are two replica placement w@yshe static placement
and (i) the dynamic placement. The static placamassumes rather
coarse-granularity decisions, based on the obsereuaest characteristics. It cannot
adapt to the changing environment and is infeadidinea large-scale system. The
dynamic placement requires the system to constamdhyitor the requests to various
resources and continuously adjust replica setalf@mbjects. The dynamic placement
algorithms normally consider the load and proxinfagtors to provide acceptable

responsiveness adapting to the changing requeastipat[QPV01] argues finding the

15

optimal replica placement in a CDN is a NP-hard bpgm. Hence, heuristic
approaches [KRRO1, QPV01] were used in the aceimlaorks.

To have a general view about the CDN infrastrugtwe review the RaDaR
system [RRR98, RA99], proposed by AT&T. The RaD&rglicator and Distributor
and Redirector) architecture is illustrated in Feg2.2, where the CDN divides the
network into multiple management domains. Each domansists of a Replication
Service, a Multiplexing Service and multiple hogtiservers. The multiplexing
service distributes requests the hosting serveng. request distribution algorithm
considers the client- server proximity and the imgsserver’'s load. A hosting server
that is nearest to the requesting client and theess load is below a watermark will
be chosen to serve the request. RaDaR allows ezstingp server periodically runs
the replica placement algorithm. The dynamic repliglacement algorithm is
designed to improve the client-server proximity éimel load balancing on the hosting
servers. The RaDaR system can effectively reducedviadth consumption and
latency, remove hot spots from the network and s$hmaut bursts in bandwidth

demand, while imposing little network traffic ovedd.

Hosting Hosting Hosting Hosting
server server server server

RaDaR

Replication Service Multiplexing Service

Proxy

Clients

Figure 2.2 Architecture of RaDaR

16

2.3 Active Web Intermediaries

In recent years, the Internet has witnessed thergemee of different user
devices, such as PCs, PDAs, and smart phones. Teggses have wide variations
among their computation power, display capabiliépd the associated network
bandwidth availability. It is a challenge to thentent provider with one source to
offer the best-fit presentations to the global sseith different requirements. To
address these heterogeneous requirements, valed-amierations are put into the
content delivery process to perform content adeptair service customization. The
adaptation operations can be performed on the iséheeclient or the proxy.

If we perform content adaptation at the origin sernthe adapted content will
be generated at the origin server and sent out fhenserver. The intermediate proxy
that relays the response to the client may cachadapted objects. The server-side
adaptation lets the content provider customize dvis contents to achieve good
guality for the delivered results. However, the mdrawback of this method is the
considerable low content reuse at the intermediatthe proxy, because the fully
adapted response for one group of clients cannatebsed for other clients with
different requirements.

Content adaptation can also be performed at thtclusing the client-side
scripts (e.g. JavaScript) or applets (e.g. JavdegpExample solutions are CSI
[RXD02] and AJAX [Ajax]. [RXD02] proposes a cliestee inclusion (CSI) method
that uses JavaScript to compose dynamic Web padies elient’s browser. It reduces
the last-mile transmission cost, since the cliemt rruse the page template so that it
only needs to retrieve the page fragments for evequest. Another technique is
AJAX [Ajax]. It enables web pages to be more respan by exchanging small

amounts of data with the server behind the sceswe#hat the entire web page does

17

not have to be reloaded. These client-side metpomisde good user interaction and
flexible presentation transformation, whereas thaye some limitations. Firstly, the

methods cannot deal with the scenario where theatpas need to be executed
before the content is sent to the client. For exapgperations like cropping a large
image to smaller size to shorten the downloadingetshould be performed in the

network rather than on the client's device. Secpnttle methods require the client
device to interpret the delivered scripts or aplbievertheless, it is not easy to find a
ubiquitous script accepted by a community of theetogieneous client devices.

To overcome the drawbacks in the server-side aiedtedide methods, many
researchers propose to perform content adaptatidcheintermediate proxies. These
intermediary-based methods change the traditioe@vark to be the active network.
Unlike the traditional networks that are just thesgive carrier of data, the active
networks have the capability to inject customizeglizations into themselves. The
active network nodes can execute these customigplications to manipulate the
data flowing through the network. These solutions ealled as the “active Web
intermediary” methods [Dik04].

The active Web intermediary methods have severardadges. As the contents
are transformed on the intermediate proxies, tlpegies can reuse the retrieved
original contents to serve the clients with diffgreequirements. This solves the poor
content reuse problem for the server-side meth@us.the other hand, the active
intermediary methods execute the installed or doaahtd applications at the proxies,
which can reuse these applications for a commuoifitglients with heterogeneous
devices. Thus, the intermediary methods are thetmneany solution and more

scalable than the client-side methods.

18

Existing active Web intermediary systems into thce¢egories, according to
their respective emphases: (i) the “active proxéttfocus on the active mechanism
of a single proxy; (i) the “collaborative intermades” that emphasize the
cooperation between multiple proxies; and (iii) taetive CDN” systems that adopt

the active intermediaries into the CDN network.
2.3.1 Active Proxy

An early active proxy system is MOWSER [BJA98].cln perform active
transcoding for the relayed data to present Wedrimdtion for the mobile client. On
receiving a request from the client, the proxyliethe preferences set by the client
and transforms the original object to the mostadlé format. MOWSER proxy can
insert appropriate ACCEPT headers into the requespecify the client’s capability
and preference. The Web server would generate proayate version of contents
according to the ACCEPT header. Meanwhile, the pan modify image and video
objects received from the server before transngittirem to the clients if necessary.
To support clients with very limited resources dradware capabilities like PDAS,
the proxy even parses the HTML stream to removeatiize content and tags that
cannot be handled by the client’s device. With satagm being done at both request
and response steps, MOWSER can match the preferefdbe clients, while using
the wired bandwidth in efficient manner.

An improved active proxy is the Service Enabled iag Proxy (SECP)
[BHO1]. It provides an open and flexible structdioe the active proxy, as shown in
Figure 2.3. The SECP has three significant featresultiple processing points, (ii)

the invocation rules, and (iii) the proxylet withetcallout server.

19

Service Enabled Remote Service

Caching Proxy Execution Server
= Remote
& [*] Remote Callout [*F==Z7===="7 Remote Callout
_ S [Client [i »| Server
Rule Engine 8 Protocol
— i) |' Y
o i
ol B Open AFI
Cache Sl ‘E - :
g = % (st emole Sarvic
- Er Execution Execution
St B 8™ aﬁ Environment Environment
-
@
w
— . ———
& HTTP Service Invocation Remote

d RequestiResponss ConiralMessage Callout Protocel
n Meszage Fiow Flow Datz Flow

Client

Figure 2.3 Structure of Service Enabled Caching Proxy

Firstly, the SECP proxy can perform the add-in apens at four “processing
points”, including the client request point, thexyy request point, the origin server
response point, and the proxy response point. $hgaiof multiple processing points
allows the proxy to perform a wide range of sersjcguch as language translation,
virus scanning, Web access control and other pahzation services.

Secondly, SECP makes use of the rules to triggeséhvice modules. The rules
can be configured by the content providers or thents. The proxy will trigger
suitable services to manipulate the request/regpondehalf of the content providers
or the clients. The usage of rules improves theéegys flexibility in that the proxy
can maintain large numbers of services and exdbeta correctly according to the
requirements of different parties.

Thirdly, SECP allows the adaptation services tarbplemented as either the
local applications or the remote services. Theesgsimplements the lightweight
service as a “proxylet”, which is installed and @xted on the proxy locally. However,
the system places the heavyweight service, sueidase transcoding, onto a separate
application server. The proxy can access the agit server through ICAP

(Internet Content Adaptation Protocol). As the tese consuming computations are

20

offloaded to the application server, the proxy'sve® capacity will scale with the
number of requests rather than the content tramsfoon load.

In summary, the SECP system can support many kohdservices, perform
content adaptation for different parties, and @ffloheavyweight operations to the
application servers. This structure evolves toheestandard OPES framework.

In above systems, the service modules are prelletstan the active proxy.
This requirement limits the scalability of systemthe open Internet environment,
where a large number of services exist and newicgsrvare created continually.
Therefore, researchers proposed many “dynamiceaptioxy” systems that allow the
service modules to be deployed to the proxy dynaltyicTypical systems include the
Application Level Active Network (ALAN) [FG98], théctive Cache [CZB98], and
the Server-Directed Transcoding (SDT) [KLMO3].

SDT provides a representative structure for theadyn active proxy. Its
general operations are shown in Figure 2.4. Theesysets the origin server to send
content transcoding directives to the active pralgng with the response content
object. The directives specify the properties eftbsponse object and a location from
which an “applet” can be downloaded. When the pn@cgives such response, it will
download the applet first. Then the proxy exectitesapplet to transcode the original
response object according to the client’s prefezeianally, the transcoded content
presentation is sent to the client. Meanwhile, phexy caches the response object

with the applet, and reuses them for subsequentsts;

Request Request
+ Param

+ Param
/’,—. \Q
3
O T

Transcoded response |

Response
.+ Directives

Server
;
L
P
’
/

Fetch applet(s)
Figure 2.4 Structure of the Server-Directed Transcoding System

21

[CZB98] indicated the dynamic active proxy can Bedifor many applications,
including multimedia transcoding, user access aigation, advertising banner
rotation, client-specific information distributiorand web page’s delta encoding.
Compared to the basic active proxy, the dynamit/@giroxy is more flexible and
scalable, because new applets can be downloadbd pryoxy dynamically. However,
such dynamic application deployment also causesessecurity problems. [FG98]
and [CZB98] mentioned several concerns about tls¢esy security: (i) the applet
should be retrieved from dedicated applet resemothe trustable Web servers; (ii)
the applet should have the controlled interfacacmess the system resources; and (iii)

the applet’s resource consumption should be madtby the system.
2.3.2 Collaborative Intermediaries

Many collaborative intermediary systems were alsgppsed to overcome the
limited storage and processing capability of a leimgoxy and enable cooperation
between multiple proxies. Typical systems have &igANS, and the collaborative
hierarchical proxies.
® Ninja

Ninja [GWBO00] composes an active network with digited data services and
active proxies. The data services provide the waigcontents for clients to request,
and the active proxies transform the content semh fthe service to the client. To
address the heterogeneous requirements from diusesedevices, Ninja proposes to
establish a data path dynamically that passes ghrauultiple active proxies to
compose a complex adaptation service. Within a,ghthadaptation is decomposed
into several steps that are performed sequentigliyhe active proxies along the path.
Moreover, [BS01] proposes to place cache alongaitteptation path. The objects

stored by a cache are actually the adapted resuit the previous proxy and the input

22

object to the next proxy. This enables the networkulfill subsequent requests while
requiring the minimal adaptation costs. Howevels tpaper does not provide
guantitative study on the effectiveness of thishaag method.
® CANS

[FSKO1, FSAO1 and IHAO2] propose the Composable ptda Network
Services (CANS) architecture. Different from Nitlfeat is based on the static services,
CANS enables service composition and decomposit@n multiple active
intermediaries using mobile agents called “drivetsa”the CANS network, a service
is composed by the data source, the data paththandrivers. The drivers can form
data path from the data source to the client byingpdata from their input ports to
the output ports. After a data flow is sent outrirthe data source, it passes multiple
drivers distributed along the data path and finadigches the client. CANS uses the
type-based composition method, and it requires tiatoutput data type from the
previous driver should be compatible to the inpatadtype of the next driver. The
author provided a mapping algorithm that can autmally generate a data path and
allocate drivers to proxies while yielding maximtinnoughput.
® Collaborative Hierarchical Proxies

[CYHOO] proposes a collaborative Web content tradsty system based on
the hierarchical proxies. From bottom to top, thexpes inside the hierarchy are
named as edge proxies, internal proxies, and tbe pxy respectively. When an
edge proxy receives a request, it will check themallawache for a reusable object. If
none is found, the proxy will forward the requestthe higher-level proxies. The
query forwarding will stop at an internal proxy theas a reusable object in the cache,
or the root proxy that will retrieve the object riiothe server. After obtaining the

object, the proxy will check the client’s prefererand transcode the object according

23

to the client’'s preference. The system uses thadeigs to balance the load on

hierarchical proxies.

(i) NOINFO policy: it lets the current proxy performetitranscoding without
considering any load balancing.

(i) Threshold policy: it considers only local load. Tgrexy decides to delegate to a
lower-level proxy if the present proxy’s utilizati@xceeds a given threshold.

(i) Least Loaded policy: it lets the proxy perform abjganscoding only if its load
is the lowest among all lower-level proxies in thquest path.

The simulation results showed that the least logu@ity achieves the least
response latency. This indicates that global infdrom is useful for balancing load
between the active proxies. However, this study @oinsiders a single transcoding
task, whereas the content adaptation may includ#ipieutasks. How to assign

multiple transcoding tasks in the hierarchy is@ddo be considered.
2.3.3 Active CDN

The active Web intermediary is also adopted into @DN networks. Typical
systems are the Content Service Network (CSN) aedApplication CDN system
(ACDN).

. Content Service Network (CSN)

[MSBO1] proposes the Content Service Network (CShgtem, where some
application servers, which are installed with sesvapplications, are added to the
boundary of the CDN network. The CDN servers caygér the service applications
on the application servers to do the transcodingkw8SN proposes the “Internet
Service Delivery Protocol” (ISDP), which allows tlsgstem to perform the added

services on behalf of either the content providerhe clients.

24

When the content provider subscribes a serviceroapplication server, the
server will issue him a certificate. The certifeaincludes a rule to trigger the
subscribed service and the ICAP command to actessdrvice. Upon receiving a
request, the content provider's Web server willyepe response object together with
the certificate to the CDN server, which will patke certificate’s rule and determine
whether the content adaptation is needed. If theeisusatisfied, the CDN server will
forward the object to an application server ushgICAP command in the certificate.
The application server will process the object setdrn the transformed object to the
CDN server, which will send the result to the dien

On the other hand, when a client subscribes tgphcation server, he will also
receive a certificate. The certificate should bdted to the request issued by this
client. After the CDN server retrieves the respanigiect, it may send the object to an
application server according to the certificateier

Although CSN uses a “redirector” that lets the eomtprovider or the client
subscribe to a nearby and lightly loaded applicats®rver, it does not provide
solution to handle the changing environment. If agpplication server becomes
overloaded or encounters network failure, how wi# system adjust the established
service subscription, and how should the systenioczde the services on the
application servers under such dynamic conditions?

. Application CDN

[RXAO3] proposes the Application CDN system (ACDKased on the RaDaR
architecture. ACDN extends the conventional CDNréplicating not only content
objects but also Web applications between netwerkess. The system proposes a
placement algorithm to replicate applications awttoally. An ACDN server

replicates applications to other servers for twaoppses: (i) increasing the access

25

proximity or (ii) offloading the present server.rFine first purpose, each ACDN
server periodically measures the access traffitHervicinity servers. If the traffic is
larger than the application’s size plus the appibicareplica’s update traffic, the
application will be replicated to that server. Meaile, if an application’s utility is
too low, the server may remove it from the locatagje. For the second purpose, if an
ACDN server detects it is overloaded, it will ngtihe central replication server to
choose a lightly loaded server to offload its agadions.

ACDN improves the request distribution algorithm RéDaR by considering
the application replication. The algorithm can redi the requests to different
application replicas for better access proximitgl &ad balancing.

However, a key limitation of ACDN is that it orgaes the application as an
atomic unit that is replicated as a whole. This isoarse granularity of replication,
which will restrict the system from implementing rao efficient application

deployment.
2.4 Adaptive Content Delivery Standards

The industry has defined a set of standards for @beve intermediary
framework. This facilitates the active intermediacpmponents developed by
different parties to interoperate with each othEhnis section reviews the OPES

framework and several callout protocols.
2.4.1 Open Pluggable Edge Service

A standard architecture for the Web intermediastey is the Open Pluggable
Edge Service (OPES) framework [Opes, BBC02, and ®&Has illustrated in Figure

2.5. This architecture can be described in thréernelated concepts: (i) the OPES

intermediaries, the process nodes operating iméteork; (i) the OPES flows, the

26

data flows that are cooperatively realized by tHeES intermediaries; and (iii) the

OPES rules, which specify when and how to exeth@eXPES service applications.

Data OPES OPES Data
provider processor A processor N consumer
Data OPES OPES Data
provider service service consumer
application application application application
HTTP HTTP HTTP HTTP

TCP/IP TCP/IP |/ TCP/IP TCP/IP

‘ OPES flow

Figure 2.5 OPES Architecture

An OPES intermediary operates on a data flow betwte data provider
application and the data consumer application. EQEES intermediary can be
divided into two parts: (i) the OPES service apmtien, which analyzes and possibly
transforms message exchanged between the datal@rand the data consumer; (ii)
the Data dispatcher, which invokes the approprsateice application based on an
OPES rule set. The OPES rules are specified wighltitermediary Rule Markup
Language (IRML) [BHO1], and they reflect the intertf the content owners or the
content consumers. Thus, a data flow is coopetgtiv@rsmitted and manipulated by
a data provider, a data consumer, and zero or @BEES intermediaries.

The OPES defines two ways to trigger the servigaiegtions. The first way is
to invoke the remote services using the OPES Calryotocol (OCP) [Rou05].
Another way is to use the proxylet [Wal01], an A& the local service applications.
OPES framework adopts the “pre-deployment” poli¥yH01], where the rules and
proxylets are deployed by an administration setwethe intermediary servers. The

rule owner and the proxylet vendor can be diffeqgaties. This means the system

27

can get rules from the content provider or thentiewhile getting proxylets from the
third-party application vendors. The active intedmaeies will be responsible for
executing the applications according to the ruleshis way, the OPES framework
regulates the roles for each party within the syste

However, the OPES framework does not define theanyo service

deployment procedure and the data reuse polich®@mtermediaries.
2.4.2 Callout Protocols

As some content transformations are resource dam@ndnany systems
execute them on the separate application servaescallout protocols are defined to
enable the interaction between the Web proxy/seamdrthe application servers.

A well-known protocol is the Internet Content Adajdn Protocol (ICAP)
[Icap]. ICAP is a lightweight remote procedure cpibtocol based on HTTP. It
allows the proxy (i.e. ICAP clients) to pass HTTRRssages to the application server
(i.e. ICAP servers) for adaptation. The applicatsmmver processes the transaction
through performing specific tasks, like image twing, page customization, and
virus scanning. When transaction is finished, thecessed HTTP message will be
sent back to the proxy.

Some researchers also proposed to use SOAP (Sidipet Access Protocol)
as a callout protocol. SOAP [Soap] is another Wghght protocol to invoke the
remote services. It becomes to be a standard foc-Kdsed messages exchange over
the computer network, with the prevalence of XML W&ervices. [MDS03]
implements an active proxy system, called SEE, Wwhidopts both ICAP and SOAP
as the callout protocols. The simulation resultsvwsHittle performance variance

between ICAP and SOAP. However, the authors atgatecompared to ICAP, SOAP

28

is more extensible and it facilitates the integnatof the content adaptation services
with the legacy systems.

OPES proposes the OPES Callout Protocol (OCP) [(Gum05], which
marshals application messages from an OPES inteangetb a callout server.
Compared to ICAP, OCP provides a wider range ofsagss to describe components
like connection, application, data, transactiond aservice group. These rich
functioned messages allow the intermediary to mdaip content adaptation
operations more precisely. However, OCP is stillhe development phase. Its wide

acceptance by the industry is not clear yet.
2.5 Peer-to-Peer (P2P) Networks

Recent years, the P2P technology has attracted amatanore attention from
both the research and the industry due to its erttescalability. In a P2P network,
each node, called a “servent”, acts as both atched a server, and the data is
transmitted directly between the requesting nodktha serving node. P2P networks
can be divided into three categories: (i) the @ized networks, (ii) the distributed

unstructured networks, and (iii) the distributedistured networks.
2.5.1 Centralized P2P Networks

The centralized P2P networks rely on one or a etust directory servers to
index the objects (e.g. data files) shared by eamde. Any node searching for an
object needs to query the directory server. Theesewill reply the requesting node
the address of nodes those probably have the quebct. Then, the requesting
node will ping those nodes to check the object’ailability, and choose one valid
node to download the object. However, due to thegesof directory server, such
centralized network scales poorly and has the sipgints of failures. A successful

example of the centralized network is the Nap3tiap], except its legal troubles.

29

This section reviews a well-known P2P network —Bitrent [BT]. According
to its working mechanism, the legacy BT system ihgsoto the centralized network.
The BT is designed to distribute large amountsaifdvidely without incurring the
corresponding consumption in costly server and Wwadtti resources. To achieve
higher data availability and faster data exchangged, BT partitions one large file
into many fragments and allows them to be downlddd®mm many nodes in parallel.

To share a file, the client first creates a smadlréent” file, which contains an
“announce” section and an “info” section. The “annce” tells the address of a
“tracker”, the host that coordinates the file disition. The “info” contains metadata
about the shared file, such as the file name aadiléhlength. In addition, the “info”
section also specifies the size of file fragmeats] the SHA-1 hash code for each
fragment, which lets clients verify the integritl/tbe received data.

The torrent file is published on a website, anchit be accessed by the Internet
users. According to the torrent, the client conséatthe tracker, which should notify
the client a “swarm” of other clients those arerently downloading the same file.
Initially, there may be no other peers in the swatm client will directly connect to
and request file fragments from the “initial seédére node with the initial copy of
the file. As more peers enter the swarm, they bé&gitrade fragments with others,
instead of downloading directly from the initialesker. BT peers download fragments
in a random order, so that the opportunity to ergeafragments between peers can
be increased.

Since the original BT system relies on a tracketento implement peer lookup,
we categorize it as the centralized P2P networkweé¥er, the centralized tracker
limits the system’s performance and usually becothessingle point of failures.

Therefore, many tracker-less BT systems were pexhosuch as pTorrent [UTor],

30

BitComet [BitC] and KTorrent [KTor]. Such trackezds systems treat every peer in
the swarm as a tracker, so that the systems norlead an individual tracker server.
The tracker-less improves the system scalabilitg, iamakes the new BT systems to

be the distributed networks.
2.5.2 Unstructured P2P Networks

In a distributed and unstructured P2P network,etherneither the centralized
directory server nor the precise control on thevoekt topology or file placement. A
typical example is the Gnutella [Gnu]. The netw@kormed by nodes joining the
network following some loose rules. To startup, ¢hent must bootstrap and find at
least one other node (neighbor). This can be aeHiesing the pre-existing address
list of possibly working nodes shipped with theta@ire, or using the updated web
caches of known nodes (called GWebCaches) [GWdldr foining the network, any
user can share files on its own node. To finde &l node floods the query to all its
connected neighbors, which will further flood teeithown neighbors. The query is
soon propagated to all neighboring nodes withieréamn radius.

However, such flooding mechanism is not scalabli¢ gesnerates large loads on
the peer nodes. The mechanism is also unreliabilieeithanging network topology.
The P2P network is usually composed by computeas kkep toggling between
connection and disconnection, so that the netwapklbgy is never completely stable.
Meanwhile, the bandwidth cost of flooding grows exentially with the number of
connected nodes, so that the saturating conneabibers render the nodes with poor
bandwidth useless. As the result, the search résjwesuld often be dropped, and
most queries fall in a very small percentage ofesod the network.

To solve above problems, [SGL04] proposes a tigeeditella system. The

system treats nodes with limited bandwidth andrinigéent connection as “leaf”

31

nodes, which are not responsible for any routingaMvhile, the system promotes
nodes capable of routing messages to be the “oéteas”, which will accept leaf
gueries and route them into the network. The tisteatcture is helpful to stabilize the
routing topology and allows propagating searcheéu through the network.
[LCCO02] proposes two methods to reduce the queprlmad in the Gnutella
network. The first method is called “expanding fingihich lets the query node
increase the flooding radius continuously until ¢thxgect is found. The expanding ring
achieves the bandwidth savings at the expanseigift shcreasing the delay. The
second method is the “random walking”. Instead lobding to all neighbors, the
method forwards the query to a set of randomly ehaseighbors at each step until
the object is found. “State” information is attadhe the query message to record the
nodes that forwarded this message. This statenmmafbon can detect the potential
circled walking or the overlapped walkers, and tlalisninate many duplicated
messages. By choosing appropriate number of walkeesrandom walking method
can cut down the message overhead significantlyobghly an order of magnitude
less than the expanding ring method. However, traper does not supply a

deterministic way to decide the optimal number afkers.
2.5.3 Structured P2P Networks

The acknowledgement to the drawbacks of the urtsiret networks inspires
the development of the distributed but structur@iP Petworks. The “structured”
means (i) the network topology is well controlledda(ii) the files are placed at
specific locations where the subsequent queries lmareasier to satisfy. Most
structured networks are based on the Distributedhidg Table (DHT), which
partitions the ownership of a set of keys amongnitevork nodes and can efficiently

routes messages to the unique owner of any givgnTkgical DHT networks are

32

Chord [SMKO01], Pastry [RD0O1], CAN [RFHO01], and DKgk,f) [AABO3]. This
section reviews the DKS network first, and theretlyigoes through the Chord and
Pastry networks.
. DKS Network

DKS uses a uniform hashing function that can mapode to a particular
identifier. The size of identifier space is assun@deN, which means the network
can contain at mo$ nodes. The nodes are arranged as a circle iméméifier space
(or id ring). Data objects are also mapped onts thicle, sharing the same identifier
space as the nodes. The node with the closest imgtictentifier, which is less than
or equal to the data’s identifier, is responsibbe fhat piece of data. Figure 2.6

illustrates a network, where the responsible rdngaeode 1 should be [1, 2, 3, 4].

8

Figure 2.6 An Example DKS network (dots represent network nodes, N=16)

To find a piece of data, the requesting node saridsietwork a query message,
which will be routed to a destination node thatdsponsible for the queried data’s
identifier. DKS explains this routing process as tk-ary routing” mechanism. Each
node maintains a routing table that is divided irﬁtogk N—\ levels (i.e. rows) and
each level containkintervals (i.e. columns). The entries for thetflewel are chosen
by dividing the identifier space intointervals and keeping pointer to the first node in
each interval. The succeeding levels are createdepgatedly dividing the first

interval from the previous level until it cannot b&ided anymore. In this way, we

33

can say a routing table arranges its pointersfltngkN—| sets of nodes at

exponentially increasing distance in the identifgrace. For example, Table 2.1
sketches the routing table for node 0 (Figure 2.6).

Table 2.1 Routing Table of Node 0, (N=16, k=2)

Level Intervals Responsible Range Next Hop
1 1 [0,8) 0
2 [8,16) 7
2 1 [0,4) 0
2 [4,8) 1
3 1 [0,2) 0
2 [2,4) 1
4 1 [0,2) 0
2 [1,2) 1

When a node wants to look up an identifier in teémork it checks its routing
table and firstly finds the interval in the firgvil the identifier belongs to. If the
responsible node for that interval is the presemdenitself, it continues to search in
the second level and so on until it finds an ireéfor which the node itself is not
responsible. Then, the message is routed to tltk. no

When a node receives a lookup message, it firstkshwhether it is responsible
for that identifier. If not, it starts searching its routing table and forwards the
message to the next-hop node. This new node widakethe same process. However,
when the new node searches its routing table,litstart searching from the routing
table level that equals to the routing table lexsdd by the previous node plus one. In
this hop-by-hop manner, the message is routed eorésponsible node. For the
example in Figure 2.6, if node 0 queries identifiér the route should 9e— 7 - 9.

. Chord Network

Chord [SMKO1] is one of the first DHT networks.dtranges nodes and data
identifiers in a circle as the DKS system. Howewe@hnord’s routing protocol can be
viewed as a specific case of DKEsary routing mechanism, by fixing the valuekof
to 2. It means Chord always divides the identifipace in half, and searches across

different routing levels like a binary search.

34

A significant difference between Chord and DKS @svithey handle the node
failure and maintain the correctness of routingeasbChord uses a “stabilization
protocol” to detect the failures periodically. Eaubde keeps track of a number of its
immediate successors. If a failure is detected, ditecting node will remove the
failed node from the circle. All nodes perform tfalure detection periodically to
make sure that the routing tables are correct gt date. However, the stabilization
protocol causes considerable bandwidth consumptod, the out-of-date routing
information cannot be corrected until the next itediion period. DKS addresses
these problems using an alternative approach [AABO®3nakes use of the level and
internal information embedded in the lookup messageorrect erroneous routing
entry once it is discovered. When detecting a nggessa routed incorrectly, the
receiving node will find a better candidate nodarfrits own routing table and then
tell the sender about this new candidate. DKS carect the error routing on the fly,
and incur much less maintenance traffic.

. Pastry Network

Pastry [RDO1b] is another DHT network, but it i$felient from the previous
two networks at the node’s responsible range. Bspansible range for a DKS or
Chord node starts from the node’s identifier andlsemt the successor node’s
identifier. However, a Pastry node always resideshe middle of its responsible
range. For instance, in Figure 2.6, the responsinhge for node 13 in the Pastry
network is [11, 12, 13, 14], while it is [13, 145]lin the DKS and Chord network.
Due to this difference, the Pastry routes messagthdé node whose identifier is
numerically closest to the query key, but the DK8 &€hord networks route message

to the closest node that is equal to or less thamtiery key.

35

In addition, Pastry implements the proximity-awaoating, where the system
always routes messages to nearby nodes. This ievach by maintaining a
“neighborhood set” on each node to record a numb@hysically nearest nodes to
the current node. Pastry nodes will exchange tighbherhood information when the
network topology changes, so that each node canthesaearby nodes to fill its

routing table and implements the proximity-awarngtiray.
2.6 Replication and Caching in the P2P Networks

Content replication and caching technologies bimgortant benefits to the
P2P networks. Firstly, the P2P networks are usuadiyjposed of transient nodes,
which constantly join and leave the network, sd tkalicating content onto multiple
nodes can improve the data availability. Seconm@iglicating popular objects to more
nodes can balance the load on network nodes and &eb spots in the network.
Thirdly, other benefits like reducing the searchkesior improving the retrieval
proximity can also be achieved using replicatiod aaching. This section reviews
these studies as three sections: (i) replicatiorthm unstructured networks, (ii)
replication and caching in the structured netwoeks] (iii) the P2P-suppored Web

content caching.
2.6.1 Replication in the unstructured P2P Networks

[LCCO2] introduces several replication methodsha Gnutella-like networks,
including the uniform replication, the owner replion, the path replication, and the
random replication.

The “uniform replication” creates fixed number daplicas for all objects.
Though this method can improve the data availgbibt certain extend, it presents

poor performance in terms of average search siddoaad balancing.

36

A better method is the “owner replication”, whiakplicates object to the node
that requests this object. It results in a propodl distribution of object replicas. E.
Cohen and S. Shenker [CS02] proved this distribbutould achieve the best load
balancing as the number of replicas is proportiomaéihe popularity of the object.

The “path replication”, used by Freenet [FreeJamsactive replication method.
When a search succeeds, the object is replicatatl mbdes along the path from the
requesting node to the serving node. Althoughntgenerate considerable replication
cost, E. Cohen and S. Shenker [CS02] indicategbalie replication would result in a
square-root object distribution and this could mthe average search size compared
to the uniform replication and the owner replicatroethods.

[LCCO02] pointes out that the normal path replicatroethod tends to replicate
objects to nodes that are topologically along tames path. It causes the resulting
numbers of replicas do not match the precise seuatedistribution. The authors
proposed a “random replication” method that pujeds to the random nodes but the
number of replicas is still proportional to the rhen of nodes probed. Simulation
results show this method results in more precisgrggroot distribution and it gets

smaller search size than the normal path replicatiethod.
2.6.2 Replication and Caching in the Structured P2P Netwiks

This section reviews the PAST [RDO1], replica entatien [WHBO03] and
LAR [GSBO04] systems, those use replication and icacttechnologies in the
structured networks.

« PAST

PAST [RDO01] is a distributed storage system base®astry. It uses three sets

of data replication and caching methods to achiggé data availability and load

balancing between nodes. Firstly, PAST lets a haowe (i.e. the responsible node

37

for an object) to replicate its objectkaumerically closest nodes. These replicas are
called the “primary replicas”. If the home nodeoffline, the query messages are still
likely to be routed to one of these primary re@ichus, the system can achieve high
data availability. Meanwhile, the primary replicase much likely to be dispersed
geographically, so that they can improve the dataewval proximity in the network.
Secondly, PAST solves the storage load imbalanalelgm, which may be caused by
the statistical variation in identifier assignmethie size variance of the inserted files,
or the storage capacity variance of individual ndsléreplica diversion” technique is
used to balance the remaining free storage spacmgmodes. If a node cannot
accommodate a file locally, it considers divertthg file to another node, which is in
this node’s leaf set but does not contain a prinnapjica of the file. The origin node
will keep a pointer to the replica diversion. Whereceives a query for that file, the
node will find the replica diversion through thermer. Finally, PAST sets a cache on
each node to minimize the client access latenmegjmize the query throughput, and
balance the query load in the network. A file tisatouted through a node as part of a
lookup is inserted into the local cache. Due togesaf these techniques, PAST can
achieve efficient object storage and delivery.
. Replica Enumeration

[WHBO03] proposes a “replica enumeration” systemathieve the controlled
object replication in the DHT networks. The systeplicates objects to deterministic
nodes through a hashing function. This facilitalggamic updates to these replicas
by enumerating and addressing individual replicsiagithe same hashing process.
Meanwhile, the replica enumeration can also imprineeoverall retrieval proximity.
To achieve this, the client first enumerates a iptssgange of replicas using the

hashing function. The distance between the cliewt these replicas are measured.

38

Then, the nearest replica will be chosen. Simuatiesults show the enumeration
process causes negligible overhead but consideirablpves the user latency.
. LAR

[GSBO04] proposes a lightweight and adaptive repbcasystem, called LAR.
The paper indicates creating replicas to all noolesa source-destination path is
inefficient and can generate considerable overh€adalance the load, LAR relies
on node load measurement to choose the replicptiorts precisely. The nodes with
the least load will be replicated physically, whife system puts onto other nodes the
“cache pointers” that records the location of teplica. When receiving a query, the
cache pointer can shortcut the original routing aliréct the query to the object
replica. The simulation results show LAR can achiexasonable performance while

incurring negligible replication overhead.
2.6.3 P2P-based Web Content Caching

Researchers also proposed the P2P networks, fobyed community of
computers, to cache the Web objects. Two typicalesys are Squirrel [IRD02] and
the Top-K replication [KRTO02].

. Squirrel

Squirrel [IRC02] implements a distributed Web cadiesed on the Pastry
network, which is composed of a community of pesa@omputers. When a client
attempts to access a Web object, the object’s WRlashed to a Pastry identifier. The
request is subsequently routed by the Pastry subdty the “home node” responsible
for caching this object. If this request is hitle home node’s cache, it will reply the
object to the requesting node. Otherwise, the hoate will retrieve the object from
the remote server. The retrieved object is retutnetie requesting node, and cached

by the home node. Compared to a centralized WehbegaSquirrel has several

39

advantages. Firstly, the disk throughput may lithé performance of the centralized
cache to the disk bound, but distributing the disj@cross many nodes allows many
disks to fetch data in parallel, which improves tbeerall system throughput.
Secondly, Squirrel pools main memory from many odend this allows more
objects are served from the main memory rather fitoan the disk.

Squirrel is also able to handle node join and leatteations. When a new node
joins the network, it notifies the leaf set nod&se two numerically neighboring
nodes will migrate the relevant objects to the iygeined node. When a node leaves
the network, it will migrate the cached objectdhe left and right neighboring nodes.
However, Squirrel cannot gracefully handle the néamtire. In this situation, the
cached objects on the failed node will be lost, sulosequent requests to these objects
need to fetch them from the remote server.

. Top-K Replication

[KRTO2] implements another distributed Web cachesedaon the DHT
substrate. However, it uses a Top-K replication mesm, which can handle the
node failure and load balance more gracefully. 3ystem hashes an object’'s URL to
k winning nodes, any of which is possible to cadie abject. The requesting node
will query the winning nodes sequentially. A winginode may serve the object from
its local cache or by retrieving it from the remstzver. If the current winning node
is detected not active, the next winning node Wl probed. The simulation results
show that by replicating an object ktowinning nodes the community’s external
bandwidth usage can be reduced significantly. Iditemh, the system also uses a
rejection mechanism to balance loads between winnodes. If a winning node is
overloaded, it can reject the request and the sgupgenode will query the next

winning node. However, the Top-K replication cansmmuch query overhead due to

40

the maximumk round probing. Although the overhead becomes gibdgi when
retrieving large objects, it can be perceivable nhetrieving small objects (e.g. an
HTML page). A solution could be choosing the dynawalue ofk according to the

sizes of objects, so that the overall probing ogachcan be diminished.
2.7 Active P2P Solutions

Recent years, the demand for content adaptationsamndce customization
becomes increasingly intensive in the P2P systdoesto the increasing requirements
from clients with heterogeneous devices and networiections. As a new topic, the
amount of active P2P systems is incomparable tb dhahe active Web systems.
Nevertheless, there are still some pioneer studigs) as (i) the active P2P systems
for adaptive media streaming, and (ii) the acti2® Baching system.

. Adaptive P2P Streaming Systems

Many adaptive content delivery studies in the P2Rvark focus on media
streaming applications. [CNO3] proposes a layer@d gtreaming solution. It assumes
the media content can be divided into several fay@/ith all layers, the stream
provides the original quality of content; with sofagers, the stream provides media
content with the reduced quality. The peer nodessedectively relay partial media
layers according to their respective bandwidth bdiy The receiver can retrieve
media layers from multiple peers to satisfy its Iqgaequirement. In this way, the
system provides adaptive media streaming subjediingpeer node’s bandwidth
capability and client’s quality requirement.

[GDY04] and [CRKO5] propose two similar systems fadaptive media
streaming in the P2P network. We use SpiderNet [Gd)Yas an example to
introduce their working mechanism. SpiderNet suppdbat the transcoding services

are allocated on some dedicated network nodesedcdtanscoders. A bounded

41

composition probing protocol (BCP) is proposed ftova the client to compose the
required transcoders to form a distributed medraasting service. The service
formation process can be described as a seriesobing steps, which start from the
client and stop at the media source node. Supgdosemiedia streaming service
requires function-1 and function-2 in sequence. dllent first sends a probe message
to find transcoder nodes providing the last tradstyp function. When a transcoder
node that is qualified to perform function-2 re@svthe probe message, it will join
the service and continue to probe another transaoatke that provides the previous
function in the service. When the transcoder nduat is qualified to perform
function-1 receives the probe message, it will jihie service and send a message to
the data source node. During the probing procesdtipie services (paths) can be
formed, and the data source node will choose thienappath to stream the media.

The advantages of BCP are (i) it can choose netwodes according to the
streaming service’'s Qos requirements, (ii) it campose the optimal service with
acceptable probing overhead, and (iii) the prolpiragess can find multiple streaming
paths, so that the system can switch to the bapktipin case of sudden node failure
in the used streaming path.
. Active P2P Caching System

W-S Shi proposed the Tuxedo [SSMO3], which impletmem P2P caching
system. Tuxedo is different from the Squirrel arap-K systems, because it not only
caches the content objects, but also can transtivele objects and cache the
transcoded results. The system is formed by afdgerarchical proxies. Every proxy
maintains a “neighborhood table” for each cachgeatbEach row in the table tells
which another proxy is caching the same objectwanat the latency and bandwidth

for that proxy is. When the proxies retrieve coht@njects between each other, they

42

also exchange the neighborhood tables and mergeetieésed tables into their own
tables. As the result, all proxies form a P2P netwavhich allows the proxy to
retrieve content objects from the optimal node Wil latency and large bandwidth.

Meanwhile, Tuxedo allows the proxy to install sotremnscoding applications.
The proxy can execute these applications to tramstbe content objects with respect
to the client's requirements. The system uses ah&adigest” to let a proxy
summarize its installed applications and the sttr@oscoded objects. The digest will
be inserted into the neighborhood table for eadigi(@l) content object and be
propagated with the neighborhood table to othexipso The proxy can perform local
transcoding or retrieve the transcoded object feomther proxy. The decision is
made by comparing the local transcoding overhedld thie remote proxy’s latency
and bandwidth. As the result, the system can sdgimet with the diminished latency.

. Observation

The above systems can perform active content dglivethe P2P networks.
However, a key problem is they install the transogdapplications on the network
nodes statically. Such static application deployihwesuld promise the overall system
performance in the dynamic environment, where Ila¢hclients’ request pattern and
the network conditions change continuously. A meuéable way should be letting
the system place the applications dynamically atingrto the content reuse and
application utility on the network nodes.

Meanwhile, these systems are mostly proposed fopgse-specific content
services, such as media streaming and Web cordehecHowever, we also need a
general framework for active content delivery ie th2P networks. This framework
should provide the generic methods to deliver austend applications. Specific

mechanisms can be added to the framework to custoitiior specific P2P protocols.

43

2.8 Summary

In this chapter, we review the work related to mgearch study. The literature
review spans from the traditional Web and P2P gyst® the active systems. From
the review we see content delivery systems aregihgrfrom propagating content
data into the network to adding applications irtte hetwork, in order to provide
pervasive content services to the heterogeneoestaiequests. This trend motivates
our research to provide a general framework fovgmve content delivery, which can

be applied to both Web and P2P scenarios.

44

CHAPTER 3

APPLICATION NETWORKING FRAMEWORK

3.1 Motivations

In the traditional content delivery system, assiliated in Figure 3.1, the
content provider publishes the original contenttlos “origin site”, such as the Web
server or a peer node that shares the original obpgntent. The clients can request
the content and retrieve it using HTTP or spedP protocols. The requests and the
response are transmitted through a content delisteaypnel, such as the Web proxies,
the CDN network or the P2P network. We call theesonh the delivery channel as

the “intermediate nodes”.

Origin site

node

Intermediate \.W

Client 2

Figure 3.1 A Traditional Content Delivery Framework
The origin site in the traditional content delivdrameworks serves contents
with a single presentation. However, nowadays, dhgin site receives more and
more requests with heterogeneous requirementgodine emergence of various user

devices, different network connections and the gpleesonalized demands. To satisfy

45

such requests, many adaptive solutions were prdpoBeey can transform the

original content to appropriate presentations atiogrto the clients’ requirements.

Example applications include media transcoding, \Wafje customization, language

translation, document watermarking, and so on. ghaiese solutions can achieve

adaptive content delivery to some extent, thereels@veral key limitations, regarding

to the content semantics, the service scalabititytae system efficiency.

(i)

(ii)

(iii)

Existing solutions usually perform content transfation by adding the
transformation applications into the delivery chalnnrHowever, the added
operations are usually orthogonal to the conteovider’s intentions for the
content’s semantics. As the result, they may mdaipicontents inappropriately
and generate results that do not preserve thermgEmantics.

Many solutions [Opes and MSBO01] require the tramsfdion applications to be
pre-installed on the network nodes. Though theipstallation approach can be
applied to those popular applications, it has mmalability in the open Internet
context, where huge numbers of applications exist mew applications are
continuously adopted.

Many solutions execute the transformation apploceti at the fixed network
nodes. However, this static application placemannormally the result of
human judgment base on experiential analysis, amsl mot beneficial in all
situations. The placement cannot adapt to the ¢hgngequest pattern and
network condition to provide efficient content aeliy constantly. Though some
systems, such as ACDN [RXAOQ3], can reallocate appibns dynamically, they
organize the required applications as an atomicand deploy them as a whole.
Such coarse placement granularity lacks of flexipbend it also compromises

the system efficiency.

46

We believea key reason causing the limitations above is tin&t existing
solutions treat the content delivery and the contetaptation as two independent
processesThis makes: (i) the execution of the transformatapplications cannot
preserve the content’s semantics, (ii) the inteiatechodes cannot smoothly scale up
their processing capabilities along with the conhtéelivery process, and (iii) the
placement of applications does not fully considher tesulting system performance. It
motivates us to propose the Application Networkirgmework, which provides an
integrated and fine-grained delivery mechanismtlier content objects as well as the

relevant applications, to achieve pervasive, staland efficient content delivery.
3.2 Framework Overview

The Application Networking framework is illustratea Figure 3.2. Different
from the traditional frameworks that only delivéh® content object, our framework
allows the origin site to deliver both the contefject and the relevant content
service logic to the intermediate network node. T&evice logic defines the
operations to be performed on the content, theiredj@pplication modules, and the
conditions to transform the content. Accordinglte service logic, the intermediate
node can download the relevant applications andstoam the content for the

heterogeneous requests.

Other node

| \
/ Cony
:\ b —

node

Client 1

Client 2

Figure 3.2 Application Networking Framework

47

Through delivering the content service logic, ommnfework integrates the
content transformation process with the contentdp} process. This change enables
the framework to address the content's semanties, dystem scalability and
efficiency issues by means of (i) deliverable canhtservice, (ii) compositional
service formation, and (iii) flexible service deptoent.

(1) Deliverable Content Service

Our framework deems a content object is correctiggsformed if the semantics
of the transformed content accords with the conf@owider’'s original intention,
because we believe the content provider shouldrdete how to present his content.
To achieve this, we let the content provider spethe allowed content processing
logic as a service and publish it with the origioahtent object on the origin site. The
origin site can deliver the content object ands#svice logic to the intermediate
network node, which will use them to serve thentliequests. Since the content
service gives the operations authorized by theectrdrovider, the node will generate
the correct presentations that accord with theasdrgrovider’s intention.

Though our framework proposes to use the deliveragrvice, it does not
require all modules of the content service to bkveiable, because some modules
need to be executed on the origin site due to feeiic execution constrain or
security concern. In actual systems, we can dithdeentire service into two tiers: the
static service tier and the deliverable service, @s illustrated in Figure 3.3. The
static tier performs operations like fetching comiteom disk, querying the database,
and performing the backend business logic. Thevelgble tier accepts the output
content from the static tier and generates theerdngresentations for the clients. The
static tier should be executed on the origin site] the deliverable tier can be sent to

the intermediate network nodes. In the followingcdission, we only focus on the

48

deliverable service tier and call it as the “contsgrvice”, and the content object got

from the static tier is called as the “original tamt object”.

Static Service . |Original Content . | Deliverable
Tier Object Service Tier

This part is the focus of the
Application Networking framework
Figure 3.3 Static and Deliverable Service Tiers
(2) Compositional Service Formation

Our framework also supports compositional servioemftion. Firstly, we
organize the content service as a “workflow” that@mposes the entire service into
multiple sub-operations. This enables us to coostihe service using the standard
and reusable applications, each of which implemangsib-operation in the service.
Secondly, the service workflow specifies addressdsch provides the required
application modules. After the service is deliverth@ intermediate node will be able
to instantiate the service by downloading the néeagplications from the specified
addresses.

Combining above two aspects, we say our servicefoisned in the
compositional way, which improves the system schtalbecause the intermediate
nodes can scale up their capability for contentcgseing along with the content
delivery process.

(3) Flexible Service Deployment

Moreover, our framework provides a flexible servideployment approach,

where the origin site can executes part of theiserand delivers the generated

intermediate response content with the unexecuseiiapservice to the intermediate

node. This extends the traditional content sermeg¢hodologies, which either execute

49

all operations on the origin site or move all operss to the intermediate node. More
importantly, this flexibility facilitates the Appdation Networking system to derive
efficient delivery strategies by considering thdlityt and corresponding delivery
overhead of different partial services.

The rest of this chapter will explain the workflostructure and a metadata
based content reuse method, which form two basmwponents of the Application

Networking framework and will be used in the conei®/eb and P2P systems.

3.3 Workflow

3.3.1 Workflow Structure

The Application Networking framework uses the “wibokv” to describe the
logic of a content service. The workflow is compbsé one or more segments (SEG)
that are linked sequentially. Figure 3.4 presentgxample workflow for the image
provisioning service, where the first segment tfamss the image according to the
display preference of the client’'s device, andgbeond segment inserts a watermark

into the image to identify its recipient.

Image
Presentation 1

Image Image
Original Image Transcoding — Watermarking
Segment Segment

Workflow

Image
Presentation 2

Figure 3.4 An Example Workflow
Each segment consists of several components, as givDefinition 3.1. The
configure rule CR) specifies the conditions to trigger the segmeskt If the rule
conditions are fulfilled, the segment taskSE) should be performed and it will

transform the input objecOBJy) to be the output objecDBL). Otherwise, the task

50

should not be performed, and the input object gllpassed through the segment and
become the output object directly. TA@p element specifies the application that
implements the segment task, and it actually pes/idn address, from which the
network node can download the corresponding agmitanodule. In addition, an
input parameter vectov) and the supplementary data entty4re usually needed for
the execution of application.

Definition 3.1: Segment

SEG: = OB, =TSKR*"OBJ,,v,d)

The application App) is a tool to realize a service workflow. The witoky,
provided by the content provider, is to define “Wtado” on a content object. The
application is chosen by the executor to mateediizow to do” on the content object.
The application can be downloaded from the addsesaded by the workflow or can
be chosen by the executor itself given the newiegibdn is functionally equivalent
to the original one.

For the image transcoding segment shown in Figude i8 has the original
image as the input objedDBJ,), an image transcoding program as the application
(App), and the transformed image as the output ob{@Btl(). The parameterwy) to
the application include the screen size and themed image format of the client’s
device. The configuration rul€R) can be defined as detecting the mismatch between
the original image and the client’s preference ba tlisplay dimensions and the
image format. If any mismatch is found, the tramsecg application will be executed.

A full workflow can contain multiple segments. Theatput object from the
previous segment becomes the input object to thx¢ segment. We rephrase the
segment in a workflow as in the definition 3.2, whéhe entire workflow is formed

by L segments. Varying the parametgrvalues, an original object can generate

51

multiple output objectsOBJ denotes the output object from segm8&G and the
input object to segmer8EG. 1. In a workflow, we nam®BJ, as the original content
object, theOBJ as the final content presentation, and@i&], where %¥i<L-1, as the
intermediate content objects.

Definition 3.2: Segments in a Workflow

SEG :=0BJ =TSK“**"(0OBJ_,,v,,d,), 1<i<L

Based on the discussion above, a workfloMF[can be defined as in definition
3.3, whereWF- denotes the workflow has segments. Feeding the original object
OB to the workflow, we can obtain the final conten¢gentatiorOBJ throughL-1
intermediate objects (fro@BJ, to OBJ).

Definition 3.3: Workflow
WF" :=SEGe®---* SEG+---* SEG = (+), SEG, 1<i <L

Figure 3.5 summarizes the workflow structure.

Workflow (WF)
Segment (SEG) SEG SEG
TSK®*? TSK*P TSK®*?

l 1 1
CR @ CR @ CR ‘

Figure 3.5 Workflow Structure

3.3.2 Workflow Operations

To implement flexible service deployment and instion, we define the
following workflow manipulation operations.

(1) Workflow Partitioning

52

According to the workflow definitions, we can infequations Eq.3.1 and
Eqg.3.2. The former equation indicates that usirggfitstt segments we can generate
an intermediate obje®BJ from the original objecOBY, while the latter equation
denotes feeding the intermediate obj@&J to the real-t segments we can obtain
the final content presentati@»BJ] .

OBJ, = (), SEG(OBJ_,,v,,d.) (Eq.3.1)
OBJ, =(*)-.,SEG(OBJ _,,v,,d,) (Eq.3.2)

Based on these two equations, we define the wavkflartitioning operation as
in definition 3.4. The operatiorF{) divides a workflow YF") into a front part, from
SEG to SEG, and a rear part, froBEG:1 to SEG. The front partial workflow is
executed on the origin site, while the rear pait @ deployed and executed on the

intermediate network node.

Definition 3.4 Workflow Partitioning

F'WF"):=(SEG* -+ SEG) +(SEG,, * --* SEG)
= (*)i2SEG +(*) .. SEG

, Where &t<L

The partitioning operation creates more possibditi®r content service
deployment through dividing the workflow at diffetesegments. The partitioning has
two extreme situations by setting the valué wfL and O respectively. When= L, it
means the entire service is executed at the osg@ which is equivalent to the
traditional content service model where the origite performs all operations and
generates the final content presentations. WherD, the result is equivalent to the
current active proxy solutions, where the origimvee always delivers the original
content to the proxy, which will transform the cemt

More importantly, by setting @<L, our framework can deliver partial service

with intermediate content object in the network,ickhis not provided by the

53

conventional frameworks. Instead of fixing the aggdion deployment locations at
the design time, our framework allows the networddes to choose suitable
deployment strategy dynamically. This decision sially based on judging the
performance gain and the corresponding deploymest for different workflow
partitioning possibilities. This flexibility enaldehe Application Networking systems
to resolve the most efficient service placemeratsgy under different conditions.
Concrete algorithms will be explained in later deap.
(2) Application Substitution

Each workflow segment specifies an applicatiomiplement the segment task.
In the segment specification, a location is progtider fetching this application
module. However, the framework also allows the wekwnode to substitute the
original application module with another one. Swaibstitution operation can be
expressed as in definition 3.5, where the origayaplication App) is replaced by
another applicationXpp).

Definition 3.5 Application Substitution

F P (SEQ = F " (TSKS***(OBJ, ,v,d))
= TSKR*" (OBJ._,v,d)

in s

The purpose of application substitution has sevasgkcts. Firstly, a network
node usually has installed some popular applicationo avoid downloading
redundant applications, we allow the node to ratsséocal applications. Secondly,
the network node may replace the original applcatvith a better-customized one.
For example, an edge proxy can replace the germiakrtisement insertion

application with a customized one that posts tleallped and targeted advertisements

to the clients. Finally, the substitution operatiallows a network node to load a

54

usable application if the original application cahbe accessed, so that the node can
still manipulate content at the expense of saanfjcome operation fidelity.
(3) Appending

Although our framework emphasizes on delivering ¢batent service defined
by the content provider, it also allows the clientsthe third parties to perform
supplementary operations on the content. The adgedations are necessary when
the content provider does not supply sufficienteclives. However, the added
operations may break the content integrity espigongien the content already has the
associated workflow. Suppose the origin site deivae content object with a service
workflow to the intermediate node. If this node fpans some supplementary
operations on the content before executing theraigervice workflow, the result
could be unexpected because the input object fersdrvice workflow has been
altered by applications that are not in the origiwarkflow. To avoid this, our
framework requires the added operations can onlpdréormed after the original
workflow has been executed. Thus, we define thepéafding operation” as in
definition 3.6, where the supplementary segmenmtsmfSEG.; to SEG.) are
appended to the end of the original workflowW- (from SEG to SEG).
Definition 3.6 Appending Operation

Fo 2 (WED) = ()2 SEG) * ((+) 21, SEG)
=(*)i2 SEG

3.3.3 XML Specification

Our framework specifies the workflow using the XNharkup language. The
XML description is platform independent, and it iféates us to apply the
Application Networking framework to different contedelivery systems. Figure 3.6

shows the specification for the example workflowrigure 3.4.

55

(01) <Workflow owner="abc.com”>
(02) <Segment id="transcoding segment”>

(03) <Rule>

(04) “client.display_w < img.display_w OR client.display_h < img.display_h"
(05) </Rule>

(06) <Task id="image-transcoding"/>

(07) <App type="public">

(08) <Codebase url="ftp://abc.com/applications/image-transcoder.class"/>
(09) <Codebase url="http://appnet.opensource.org/image-transcoder.class"/>
(10) </App>

(112) </Task>

(12) </Segment>
(13) <Segment id="watermarking segment”>

(14) <Rule>true</Rule>

(15) <Task id="image-watermarking">

(16) <App type="private">

a7 <Codebase url="ftp://abc.com/applications/image-watermarking.class"/>
(18) </App>

(19) </Task>

(20) </Segment>
(21) </MWorkflow>

Figure 3.6 an Example Workflow XML Specification

The specification is rooted from a <Workflow> elamhewhich has an attribute
called “owner” (line 1) to identify the content pider. The workflow element
includes a list of <Segment> elements, which shdaddwritten in their execution
order. Every segment contains a <Rule> elementaardask> element. The rule
element defines the conditions (line 3-5) to trigte task execution. We leverage the
“p-rule language” [BRO3] to specify the rules. Thasguage was created for content
adaptation, and it provides a set of concise ystm&ive rule declarations, which
satisfy our requirements.

The task element contains a <App> element, whickcifips the required
application in the segment. The <App> element idetuthe <Codebase> elements
that provide the URLs for downloading the applicatmodule. To avoid the single
point of failure, multiple <Codebase> elements ten specified (lines 8-9). The
network node can fetch from any of them. The spmtibn also defines the “type”
attribute for the <App> element, to control whetliee original application can be

substituted. If the value of “type” is “public” (le 7), the intermediate node is allowed

56

to use another application to substitute the oailgiapplication. If the value is
“private” (line 16), it means the content providequires the specified <Codebase> to
be used and the intermediate node should not suties.

In addition, if a workflow is partitioned, partialorkflow will be delivered. In
this situation, the specification elements for éxecuted segments will be removed
from the workflow specification, while the rear pak specification will be delivered

with the generated intermediate content object Fsgeare 3.10).
3.3.4 Discussion

In summary, the Application Networking frameworkpeasses the content
service as the loosely coupled workflow structwieich has several advantages:

() The workflow composes the content service usinginiddependent and stateless
segments. It enables the workflow to be deliverethe intermediate nodes and
instantiated there using the downloaded applicatids the workflow carry the
allowed content operations, the intermediate noale manipulate the content
without violating the content provider’s intentions

(i) Moreover, the delivered service directs the intetiaie nodes to download new
applications and lets these nodes to scale up fineationalities along with the
content delivery process. This improves the systeatability in the open Internet
environment.

(i) The workflow also allows the intermediate node s® uts local applications to
instantiate some segments. The local applicatifumistion should accord with the
specified segment task. Such compositional sefeiceation avoids downloading

the redundant applications.

57

(iv) The loosely coupled workflow structure enablesaigriplement flexible service
deployment by partitioning the workflow in suitaMeays. This flexibility enables
the Application Networking systems to derive efiti content delivery strategies.

We acknowledge there are many other workflow stmest. A typical example
is WS-BPEL [Bpel] that originates from WSFL [LeyOdhd XLANG [ThaO1]. The
WS-BPEL was proposed in the SOA (Service Orientechi#ecture) and it describes
the business process at the orchestration leveké Jpecification provides the
full-featured business process descriptions, inomdervice flow, branching, looping,
transaction, and error handling. In comparison,weankflow is much simpler. This is
because our workflow is used to describe the cordervices, which are usually
expressed as several operation steps. The cordentes are not likely to involve
transactions, so that the transaction conceptti;wluded in our structure.

The loop logic is possible in the content servicesch as an image is
transformed by several rounds to fit the clientsquirements on the image
dimensions, color, resolution and media encodingwéier, we intend to let the
specific application encapsulate such looping lagio its implementation. Thus, we
can keep the workflow loosely coupled, in that esegment is independent with the
others and the execution of all segments are stsellhis facilitates the system to
implement the deliverable service and the compasiteice formation.

In addition, though our workflow arranges all segtsen sequence, the usage
of configuration rules allows us to implement tharizhing logic in the service. This
is achieved by specifying mutually exclusive ruteditions for a group of segments.
Then the sequential execution of these segmenitsemiier the branching effect over

them. This effect is illustrated in Figure 3.7, whéhe right side shows a workflow.

58

Condition =
Cond 1
Yes

Task 1

Condition =
Cond 2
Yes

Task 2

Condition =
Cond 3
Yes

Task 3

Branching Logic Workflow Structure

Branching
Condition = ?

Cond 1 1 Cond 3

Task 1 Task 2 Task 3

Figure 3.7 Branching Logic in the Workflow

Regarding the aspects above, we can concludehbatpplication Networking
workflow provides a simple yet expressive structordescribe most content services.
In addition, in the Application Networking framevkorthe content provider is
responsible for creating the workflow specificatioBesides writing the XML
specification from scratch, a more convenient wayta harness the authoring
software to simplify the specification work, suck providing the graphical user
interface, enabling workflow customizing based emplates, and reusing workflow
for different contents. In this way, we will notuse too much burden on the content

providers.
3.4 Metadata based Content Reuse

Our framework makes different versions of contenbé delivered, including
the original content object, the intermediate contebjects, and the final content

presentations. ldentifying these objects is impurtéor efficient content reuse.

59

Nevertheless, this issue is not well addressedéyraditional frameworks that were
mostly designed for contents with a single presemta Some adaptive solutions,
such as Transquid [MSRO01] and PTC [STRO02], caneacil reuse the specific types
of content. Although such type-oriented approaah aehieve precise data reuse but
also it requires the network node to install deidaapplications to extract the
content’s properties, so that the apporach can lmalgpplied to those popular content
types. Meanwhile, the content reuse judgment ugualolves media decoding
operation, so that it is heavy weight.

Our framework is built to be a general platform,jethneeds to handle different
types of contents. The content identifying and irgischeme should be scalable and
lightweight. To achieve this target, we proposeeaatdata-based approach to identify

and reuse content objects in a systematical way.
3.4.1 Metadata Specification

Our method associates one piece of metadata tocahéent object. The
metadata is the aggregation of the object’s idientdnd zero or more attributes, as
given by definition 3.7. The “id” gives the unigigentifier (e.g. URI) of the content
object. Each attribute entryatfr) consists of the attribute name and value. For
instance, a text document may have an attribu{aguage, “English”) to specify its
presenting language. Different versioned objectthefsame content share the same
identifier, but are differentiated through the iatites in the metadata.

Definition 3.7: Object’'s Metadata
Meta©BJ) : = {id, {attr,, attry, ..., attr;}}, where attr = (name valug

The default metadata for the original content dbgedy contains the identifier

with some initial attributes. When the object iansformed, the transforming

application is responsible for inserting additiorstributes into the metadata or

60

updating the values of the affected attributes. ther workflow in Figure 3.4, we
assume the metadata for the original image incltisesdentifier and the dimensions
of the image. When the transcoding application xecated, it will update the
dimension attribute with the new image size. Finallvhen the watermarking
application is executed, it will append a new httté to declare the content’s
recipient.

The content metadata is specified in the XML fornfat example is shown in
Figure 3.8. The metadata is rooted with the <Mdtaelalement. The “id” attribute of
<Metadata> declares with which content this metdatssociated. The <Metadata>
contains none or multiple <Attr> elements, eaclwbich defines an attribute entry of

the content object.

(01) <Metadata id="http://abc.com/breakingnews.jpeg">
(02) <Attr name="display_w" type="int">352</Attr>
(03) <Attr name="display_h" type="int">188</Attr>
(04) <Attr name="type” type="string">JPEG</Attr>
(05) </Metadata>

Figure 3.8 Metadata Specification

Since our framework can deliver both content and #ssociated service
workflow, a <AppNetDeliverable> element is usecetapsulate the metadata of the
delivered content and its associated workflow dpation. Figure 3.9 shows the
specification for our example workflow in Figure43.The content metadata is
provided in line 2 and the workflow is given ind® 3~23. Note the metadata only
contains the content’s identifier which means tbigyinal content with the entire
service workflow can be reused for all requests tfog content. As an option,
<AppNetDeliverable> can contain a <Payload> elenfiem¢s 24~26) to include the
payload of the delivered content object, wherea&xifip systems can use their own
methods to transmit the content payload, suchasiiirP multipart types [HTTP] or

the message attachments [Soap-a].

61

(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

<AppNetDeliverable>
<Metadata id="http://abc.com/breakingnews.jpeg"/>
<Workflow owner="abc.com”>
<Segment id="transcoding segment”>
<Rule>
“client.display_w < img.display_w OR client.display_h < img.display_h"
</Rule>
<Task id="image-transcoding"/>
<App type="public">
<Codebase url="ftp://abc.com/applications/image-transcoder.class"/>
<Codebase url="http://appnet.opensource.org/image-transcoder.class"/>
</App>
</Task>
</Segment>
<Segment id="watermarking segment”>
<Rule>true</Rule>
<Task id="image-watermarking">
<App type="private">
<Codebase url="ftp://abc.com/applications/image-watermarking.class"/>
</App>
</Task>
</Segment>
</Workflow>
<Payload coding="base64">
Original image payload is included here
</Payload>
</AppNetDeliverable>

Figure 3.9 Specification for <AppNetDeliverable> - Entire Workflow

As mentioned, our framework can also deliver thtermediate content object

with the partial service workflow. In this casegtlspecification for the executed

segments needs to be removed and only the spéafidar the remaining workflow

segments is kept. Figure 3.10 shows an exampledbaseFigure 3.9, where we

assume the transcoding application has resizedrigmal image. The specification

contains the metadata for the resized image (liBeS) with the remaining

watermarking segment (lines 6~15). Note the tradgiscpapplication has added two

metadata attributes for the resized image (lines4)3&he resized image is

encapsulated in the <Payload> element.

62

(01) <AppNetDeliverable>

(02) <Metadata id="http://abc.com/breakingnews.jpeg">
(03) <Attr name="display_w" type="int">352</Attr>
(04) <Attr name="display_h" type="int">188</Attr>
(05) </Metadata>

(06) <Workflow owner="abc.com”>

(07) <Segment id="watermarking segment”>

(08) <Rule>true</Rule>

(09) <Task id="image-watermarking">

(20) <App type="private">

(112) <Codebase url="ftp://abc.com/applications/image-watermarking.class"/>
(12) </App>

(13) </Task>

(14) </Segment>

(15) </Workflow>

(16) <Payload coding="base64">

a7) Resized image payload is included here
(18) </Payload>

(19) </AppNetDeliverable>

Figure 3.10 Specification for <Deliverable> - Partial Workflow
3.4.2 Content Reuse

Our framework supposes the client’s preferences thed relevant request
parameters are carried by the request message. Whaemetwork node receives a
request, it first finds a cached object whose idfientequals to the requested identifier.
Then it needs to determine whether this objectusable for the present request. We
treat an object is “reusable” if it is the exactg@ntation requested by the client, or it
can be transformed to the requested presentatiomy ube associated service
workflow. In the framework, such reusability judgmies based on matching the
content’'s metadata and the request’s attributes.

A possible way for the reusability judgment is tiperfect matching” method,
which demands all attributes of the object’'s metadand all preference entries and
parameters of the request to match exactly. Howethes method is too strict to
achieve good content reuse, as any difference eetwlee request and the stored
content can cause the negative reuse decisiohelogen Internet environment, since

both the content provider and the client may useesattributes that are not used by

63

the counterpart, the perfect matching could cahsentatching process to be over
negative.

To avoid this situation, we adopt an alternativethod — the “best-effort
matching”. This method treats an object is reusédhbddl the “common attributes of
the stored content object and the request matdh eeith other. Suppose a document
object has an attribute of {(language, English)} d@he client’s request contains three
parameters as {(language, English), (display_w,)8@0isplay h, 600)}. In this
situation, the framework will deem the documentb®® reusable, because its sole
attribute (i.e. language) matches the corresponplamgmeter in the request, while the
other parameters (i.e. display w and display _h) igr@red since they are not
presented in the document’s attributes. Using bast-effort matching policy, we
intend to reuse objects to the maximum extent winleiding those attributes with
mismatching values.

According to the previous discussion, when a cdntdxect is processed by
more workflow segments, more attributes will be editb the object’s metadata and
fewer segments will remain in workflow specificatidt implies the content object
with the associated partial service is becomingenard more specific because more
its metadata attributes haven been fixed and th&ents reusability reduces

according to our best-effort matching mechanism.
3.4.3 Discussion

Our metadata based content reuse method has sastesaaitages:

() The metadata is expressed in the XML. Such systeatral format allows a
network node to derive the content’s reusabilitghaut interpreting its data
format or understanding any application-specifianaptics. It makes our

metadata method to be general purposed, applitabliéerent content types.

64

(i) Our metadata method can also implement servicetedecontent reuse. This is
because the content metadata is maintained andeaptdsg the content service
applications, and the content reusability judgmentmade based on such
service-oriented metadata. Thus, we can achieveseéhace-oriented content
reuse, which is not provided by the current type+ded reuse methods.

(i) Our method is also lightweight, as the reuse judgnoaly involves matching
the metadata attributes, without needing to detlbe€ontent payload to extract

the wanted media property.
3.5 Observation and Summary

There are some other intermediary frameworks arel representative is the
Open Pluggable Edge Service (OPES) framework [OG2RES [BCHO04] provides a
general framework that allows the intermediate woetw nodes to perform
value-added operations on the transferred conteté. dOPES proposes many
concepts such as the Proxylet application inter{si¢alO1], the IRML [BHO1] and
the P-language [BRO3] rules to describe the apgdicanvocation conditions, and the
OCP callout protocol to access the remote serRoai(5].

Similar to the OPES framework, our Application Netking framework also
allows the intermediate network nodes to perfornivaccontent services. Our
framework leverages some available results from &RHch as using the P-language
to describe the configuration rules in the workfloand referring the Proxylet
specification to define the application APIs (Cleaipt and Chapter 7). However, our
framework differs from OPES in several key aspects.

The most significant difference is that our framekvintegrates the content
delivery and the application deployment into aregmated process. However, the

OPES framework treats them as two separate prazesdere the pre-deployment

65

strategy [YHO1] is used. Due to this difference,r duamework allows the

intermediate network nodes to scale up their canpeacessing capabilities along
with the content delivery process, by downloadireyvnapplications dynamically.

Moreover, we use the loosely coupled workflow tgress the deliverable service,
which facilitates the system to implement fine-gesl service deployment.

Another difference is that content reuse issueltsessed in our framework, but
not in the OPES framework. We let the network nottesstore and reuse the
versioned content objects with the associated erifihe metadata-based approach is
used to achieve the general-purposed and serviested content reuse.

In summary, the Application Networking frameworkptigh leveraging some
parts from the existing OPES framework, enricheg thctive intermediary
methodology through enabling deliverable contentiise, compositional service
formation, flexible service deployment, and fineiged content reuse. The main
contributions of the framework are (i) it integstehe content delivery and
transformation processes as a unified service e@gliprocess; (ii) it broadens the
content delivery and reuse spectrum by includingomby the original content and its
final presentations but also the intermediate adnibjects.

However, applying the Application Networking framank into the existing
content delivery contexts is an intensive exercideere are many architectural and
performance issues to be considered. In the restiothesis, we will address more
details on building the App.Net system that appiireessframework to the Web system,

and the AN.P2P system that extends the framewaithet®2P networks.

66

CHAPTER 4

APP.NET - APPLICATION NETWORKING ON THE WEB

4.1 App.Net Architecture

This chapter explains our App.Net system, which liappthe Application
Networking framework in the Web content deliveryntaxt. The system architecture
is shown in Figure 4.1, where the App.Net platfaarinstalled on both the origin

server and the edge proxy.

2) Request
‘ Server ‘ (2)Req ‘ Proxy ‘
‘ App. Net Proc ‘ (3) Response Object ‘ App. Net Proc ‘
and Workflow
App.Net = App.Net
Cache ‘ ‘ App. Pool - Cache App. Pool
A1 1]] 1]
esponse (4) Download esponse
data + ANlets Workﬂqw data + ANlets
workflow Applications workflow
App.Net Platform App.Net Platform
(7) Final
Content
resentation
(1) Request (5) Final Content

Presentation
(6) Request

Figure 4.1 Architecture of App.Net System
The App.Net platform has three major components:
(1) App.Net Proc: is the kernel process of the platfoltrhandles the HTTP
requests and replies, and performs necessary aperain them.
(2) App.Net Cache: is to store the HTTP responses, wihiclude the response

content objects and their associated workflow dpations.

67

(3) App Pool: is to store the downloaded or locallytatied application modules.
The detailed system operations can be describédumprocesses: (i) service

preparation, (ii) request forwarding, (iii) servesponse, and (iv) proxy response.
4.1.1 Service Preparation Process

When the content provider publishes the originaiteot on the server, the
App.Net system allows him to attach a content sertd the published content object.
This service is specified as a workflow, as exmdin our framework. Meanwhile,
the server should have the relevant applicationsnfdlement the segment tasks. In
the App.Net system, we define a general interfacAmiet — for the workflow
applications, so that the system can execute diffeapplications through a set of
uniform functions. Since the Web content service/ m@ntain the content generation
step and the content transformation steps, we @itie ANlet interface into two
sub-interfaces: ANlet Handler and ANlet Filter.

ANlet Handler is used for the content generatiopliaption, which should
reside at the beginning of a workflow. In this nidee, we define the
generate_Respondenction, as given by Api.4.1, which allows thephapation to
generate the initial content object. The Handlgliaption functions as the traditional
presentation layer script (e.g. JSP or ASP) thakegdes the dynamic Web contents
by querying the backend database or business tegidt. However, a major feature
of ANlet Handler is that it can be delivered froletserver to the proxy and be
executed there. We can use the Handler applicatommplement the “mobile
presentation tier” of a Web site, which cannot beviged by the traditional
presentation layer scripts.

Api.4.1: ANlet Handler Execution Function

ContentObject generate_RespdihSETPRequest requést

68

ANlet Filter interface is used for the content sEnmmation applications. In this
interface, we define theodify_Responsieinction, as given by Api.4.2, which allows
the application to transform the content objecte Hilter application receives the
content object and the client’s request messagemg, and it will transform the
content object according to the request’s parammeted output the new content object.
For a workflow, multiple Filter applications willebexecuted in sequence, and they
will transform the original object to be the firmntent presentation.

Api.4.2: ANlet Filter Execution Function
ContentObject modify _Respof(BententObject input_ obHTTPRequest, requést

In our system, a workflow can start from a norn@itent object (e.g. a text file
or an image) or a Handler application, as illustlain Figure 4.2. We treat the
Handler application as an active object that ndedse executed to get the content
data. Having this particularity, the following dission will not deliberately
distinguish whether the workflow is started fromamal content object or a Handler
application, unless it is necessary. For conciggession, we just say any workflow

starts from an original content object.

Original Final
Content F/?II‘:];: t] FAiII':]el:: A FAiII':]el:: s Result
Obj Obj

(a) Workflow that starts from a conventional content object

ANlet ANlet ANlet lf ‘“a} t
Filter 1 Filter 2 Filter 3 eSL!
Obj

(b) Workflow that starts from an ANlet Handler application
Figure 4.2 App.Net Workflow

4.1.2 Request Forwarding Process

When a client requests the content on the serlrerrdquest contains not only

the name of the Web resource but also the releneptest parameters, such as the

69

service-specific parameters or the client’s prefeee The App.Net system allows the
request message to carry these parameters in ¢ithequery string or the header
fields of the HTTP message. An example requestasva in Figure 4.3. According to
HTTP 1.1 [Http], “http://abc.com/images/pic.jpgfulmy w=352&display_h=288" is
the Request-URI, where “http://abc.com/image/p&:.jis the Web resource identifier
and “display_w=352&display _h=288"is the query strirAll the following fields,

from line 03 to line 06, are the request headethk®@HTTP message.

(01) GET http://abc.com/images/pic.jpg?display_w=352&display_h=288 HTTP/1.1
(02)

(03) Host: abc.com

(04) Accept: text/*, audio/*, img/png

(05) User.network: ADSL

(06) User.profile.template: www.xyz.com/profile/device.xml

Figure 4.3 Request Message from Client

Using query string to carry the request paramaseastraditional technology. It
lets the content service specify parameters fordient by rewriting the HTML
hyperlinks or the URLs of the embedded objects. Wkiee client clicks these
hyperlinks or fetches the embedded objects, thanpaters will be automatically
included into the HTTP query string.

In the App.Net system, we also allow the browseririsert the client’s
preference into the HTTP request as headers. HTTBritvides some default request
headers, whereas extended headers can also bednderr example, in Figure 4.3,
the message uses the standard “Accept” header4)inte declare the media types
accepted by the client. It also contains two exteindheaders: the first header,
“user.network” (line 05), specifies the client’'stwerk connection type, and the
second header, “user.profile.template” (line 06pvmes the URL for fetching the

profile [Ccpp and Uapr] of the client’s device.

70

When the client’s request reaches the App.Net prithey proxy will insert an
extended HTTP header, “Via-AppNet” into the requ@ste 07 Figure 4.4), and

forward the request to the server.

(01) GET http://abc.com/images/pic.jpg?display_w=352&display_h=288 HTTP/1.1
(02)

(03) Host: abc.com

(04) Accept: text/*, audio/*, img/png

(05) User.network: ADSL

(06) User.profile.template: www.xyz.com/profile/device.xml

(07) Via-AppNet: true

Figure 4.4 Request Message from Proxy
The BNF definition of the Via-AppNet header is given Definition 4.3. It
enables the proxy to declare that the requestrisaimed by an App.Net enabled
proxy, so that the server can deliver workflow e tresponse. If the request is
forwarded by only the conventional proxies, theveemwill not see this header in the
request, and it should fully execute the contemvise and put the final content
presentation in the response. Thus, the usageeoVidAppNet header makes the
App.Net enabled server and proxy to be compatilitle the conventional proxy.
Definition 4.3: Via-AppNet
Via-AppNet = “Via-AppNet: true”

4.1.3 Server Response Process

When the server receives the request, it can genéra response in one of

three operation modes:

(1) Full transformation: the server executes all warnkflapplications associated
with the requested content to generate the finatest presentation for the
client and sends this final presentation to thexyro

(2) Non-transformation: the server directly sends thgimmal content object and

its associated workflow specification to the proxy.

71

(3) Partial transformation: the server partitions therkflow into two parts and
feeds the original content to the applicationshe tront part workflow to
generate an intermediate response object. Then,séimeer returns the
intermediate object and the specification for tearrpart workflow to the
proxy.

According to Chapter 3, any operation mode abowve loa described as a
workflow partitioning possibility. The server shdulletermine how many workflow
segments to be executed and how many segmentsdeligered to the proxy. We
call this judgment process as thsefvice placemehtThe server chooses the service
placement strategies according to the performanpemization and security
enforcement requirements.

After getting the response content object, the esewill construct an HTTP
response message to the proxy. An example respsra®wn in Figure 4.5. The
message is tagged with “Content-Type: App-Net-Woik! (line 04) to indicate this
response includes both the content object and thekfow specification. The
response body is coded as XML format, which costdéimmee elements: <Metadata>,
<Workflow> and <Payload>, as explained in Chapter 3

In the actual network, above compositional respenessage may be cached by
the conventional proxy that does not support App.Ndis situation is likely to
happen when the conventional proxy resides betwaempp.Net server and an
App.Net proxy. When this conventional proxy transmihe response from the
App.Net server to the App.Net proxy, it will cactiee response. As this proxy cannot
interpret the response correctly, it would wronglgnd it to the clients or other
conventional proxies, which definitely cannot ursdend the compositional response.

To avoid such situation, the App.Net server insexts/ary header with value

72

“Via-AppNet” into the response (line 06 in FigureS¥ According to the HTTP
protocol, a cache cannot serve a cached respotis@Wary” header unless the new
request contains the same header, which is spkdifighe “Vary” header of the
cached response, as the origin request. BecaugéhenApp.Net proxy will insert the
“Via-AppNet” header into the request, the usagévalry: Via-AppNet” header in the
response makes sure this response can only beéostdm@ App.Net enabled proxies,

even if the response is cached by a conventioalypr

(01) HTTP/1.1 200 OK

(02)

(03) Date: Sun, 25 Apr 2004 06:25:24 GMT

(04) Content-Length: 26012

(05) Content-Type: text/App-Net-Workflow

(06) Vary: Via-AppNet

(07)

(08) <?xml version="1.0" encoding="UTF-8"?>

(09) <IDOCTYPE AppNet SYSTEM *“http://comp.nus.edu.sg/~sumu/AppNet.dtd">
(10) <AppNetContent>

(112) <Metadata id=" http://abc.com/images/pic.jpg">
(12) <Attr name="display_w">352</Attr>

(13) <Attr name="display_h">288</Attr>

(14) </Metadata>

(15) <Workflow owner="abc.com”>

(16) <Segment id="watermarking segment”>

a7 <Rule>true</Rule>

(18) <Task id="image-watermarking”>

(19) <App type="private”>

(20) <Codebase url="ftp://abc.com/applications/image-watermarking.class”/>
(21) </App>

(22) </Task>

(23) </Segment>

(24) </Workflow>

(25) <Payload type="img/jpeg” coding="base64">

(26) The image payload is here, using the base64 coding
(27) </Payload>

(28) </AppNetContent>

Figure 4.5 Response Message from Server
4.1.4 Proxy Response Process

When the proxy receives the response from the satf&st checks the content
type of the response. If the type is not “App-Nevflow”, it means the response

only contains the content object, and the proxy seihd the response to the client

73

directly. However, if the type is “ App-Net-Workild, the proxy will execute the
delivered workflow to generate the final presewotafior the client.

In specific, to perform the workflow tasks, the yyaeeds to load the relevant
applications used by the workflow. As shown in Fegu4.5 line 20, the workflow
specification provides the addresses to downloadAtllet applications. By default,
the proxy will fetch the applications from thesalgtsses. Our system also allows the
proxy to substitute some original applications bging its locally installed
applications that perform the equivalent functiares. After loading all applications,
an instance of workflow is created. Then, the prfeads the response content object
to the instantiated workflow, executes the appiicet with respect to the workflow
specification, and generates the final contentgutagion according to the client’s

parameters. In the end, the proxy sends the resportke client, as in Figure 4.6.

(01) HTTP/1.1 200 OK

(02)

(03) Date: Sun, 25 Apr 2004 06:25:28 GMT
(04) Content-Length: 62920

(05) Content-Type: img/jpg

(06)

(07) The final image payload is here

Figure 4.6 Response Message from Proxy
Meanwhile, the proxy stores the received responsssage into the App.Net
Cache, and stores the downloaded ANlet applicatiotassthe App. Pool. When the
proxy receives a new request, it will search tloal@ache for a reusable response and

serve the new client directly. The cache reuseldetdl be explained later.
4.1.5 System Security
Some restrictions are put on the ANlet to enfoheedecurity of the system.
(1) The system treats the locally installed appilices and the downloaded

applications differently. The local application cawccess most system resources.

However, the downloaded application can only madaieuthe content object passed

74

to it, and it is restricted from accessing the Blstems or executing system-level
commands (e.g. scanning port status, etc).

(2) We restrict the downloaded application from recting to the third-party
site other than the origin server. In this way, dlient’s information will only be
propagated to the original server he requested tlamdetrieved data is solely from
the original server which prevents the applicatitbm inserting unexpected
third-party information into the response content.

Other security mechanism can also be leverageukeidpp.Net system, such as
application sandbox, secured content adaptationY(IR and the distributed

server-proxy authentication. However, they arethetfocus of this thesis.
4.2 App.Net Caching Scheme

Caching and reusing the response objects on they mscan important way to
improve the user perceived latency and reduce #teank backbone traffic. The
traditional Web caching scheme is based on the HTTIP specification [Http].
However, this scheme has limitations to identifg thersioned responses that are
delivered in the App.Net system. In this sectiore fivst examine two aspects of
content caching: (i) cache identifier and (ii) vered response, and then propose the

App.Net caching solution.
4.2.1 Cache Identifier

The traditional caching scheme uses the RequestttJRlentify the response.
An example is “http://website.com/image.jpeg?digpl@=352&display h=288",
where the front part, “http://website.com/imagegpegives the Web resource name
and the rear part, “display_w=352&display h=288&, dalled query string and it
carries the request parameters. The cached respahbe reused if the new request

has the same Request-URI as the cached response.

75

However, in the App.Net system, using Request-URlthee cache identifier
may reduce the reusability of some responses. Aked, the App.Net server can
deliver the final content presentations as wethasoriginal or intermediate responses,
and all of them may be cached by the proxy.

The final presentation is particularly for one gooaf requests with the exactly
same Web resource name and query string parameterthat only the exactly
matched requests can reuse the cached final copteséntations. In this case, the
Request-URI can be used as the cache identifier.

However, the response containing original or inextrate object can be reused
for not only the exactly matched requests but edspiests for the same Web resource
but with different query string parameters. In thesses, using Request-URI as the
cache identifier would improperly reduce the reuggiof such responses, since the
full characters match binds the reusability of treginal or intermediate response
with the query string parameters in the originajuest. For example, an original
request has the Request-URI as “http://website.icoage?display w=352&display
_h=288", where the query string specifies the pretedisplay size for the client who
issued this request. Suppose the server deliversotiginal image and the image
adaptation workflow to the proxy, which caches tl@sponse and identifies it using
the original Request-URI above. Now, another cliguests this image but with a
different display size, and the new Request-URI hip://website.com/image?
display_w=176&display_h=144. In this case, the pramannot reuse the cached
response, as the new Request-URI does not matabritheal Request-URI exactly.
As the result, even though there is a reusableor=sgp the proxy deems it as not

reusable.

76

To solve this problem, our system adopts an extbnelgponse header, RE-URI
(i.e. URI for the Response Entity), to identify tresponse. The value of RE-URI is
usually a string prefix of the Request-URI by remgvsome or all query string
parameters those are irrelevant to specify theeatiresponse. The BNF definition for
RE-URI is given in Definition (4.4).

Definition 4.4: RE-URI
RE-URI="http://"host["*:"port][path[“?"query]]

In our caching scheme, RE-URI takes precedencetbheeRequest-URI as the
response’s identifier. If the response containlR&EAURI header, the App.Net cache
will use it as the identifier; otherwise, the ongl Request-URI will be used. Figure
4.7 shows a pair of request and response, whdrem iequests an image that will be
displayed on his PDA device (figure (a)) and theveedelivers the original image
with the associated workflow (figure (b)) to theopy. The response has an RE-URI
header http://website.com/image, which removesqgtrery string parameters in the
original request. When the proxy receives this oesp, it will use the RE-URI field
to identify the cached response.

When the proxy performs a cache lookup for the neguest, the identifier of
the cached response should exactly match or beriag sprefix of the new
Request-URI. According to this rule, the proxy caunse the cached image object and
its workflow to serve new requests for this image With different display size, such

as http://website.com/image?display_w=176&displaai4.

77

(01) GET http://website.com/image?display_w=352&display_h=288 HTTP/1.1
(02)

(03) Host: website.com

(04) Accept: text/*, audio/*, img/*

(05) Via-AppNet: true

(a) Request Message

(01) HTTP/1.1 200 OK

(02)

(03) Date: Sun, 25 Apr 2004 06:25:24 GMT

(04) Content-Length: 3126012

(05) Content-Type: text/App-Net-Workflow

(06) RE-URI: http://website.com/image

(07)

(08) <?xml version="1.0" encoding="UTF-8"?>
(09) <IDOCTYPE AppNet SYSTEM “http://comp.nus.edu.sg/~sumu/AppNet.dtd">
(10) <AppNetContent>

(11) <Obj type="img/jpeg” encoding="base64">

(12) The image payload is here, using the base64 coding

(13) </Obj>

(14) <Workflow owner="website.com”>

(15) Workflow segments are included, for details see Chapter 3.

(16) </Workflow>
(17) </AppNetContent>

(b) Response Message with RE-URI Header

Figure 4.7 Example Messages for the RE-URI Header
4.2.2 Versioned Response

The traditional caching scheme uses a “Vary” respameader, to distinguish
different versions of response, such as a Web pagdave a Chinese version and an
English version. HTTP 1.1 gives the BNF definitiimm “Vary” as in Definition 4.5.
The protocol specifies the value of Vary headeicaigs the set of request-header
fields that are selected to determine whether dobe is permitted to use the response
to reply to a subsequent request — the cache eule a cached response if all of the
selected request-headers presented in the new stequech the corresponding
headers in the original request.

Definition 4.5: Vary
Vary = “Vary™:”(**"|1#field-name)
For example, if the original request contains he&d8lecept-Language: en” and

the response contains header “Vary: Accept-Landudge cached response can only

78

be reused for the subsequent requests that alsoHeader “Accept-Language: en”.
Supposing a new request carries header “Acceptiagey fr’, the cached response
should not be reused.

However, in the App.Net system, “Vary” is not sai@int to distinguish the
versioned responses in all situations, because seguest parameters may locate in
the query string. Therefore, we propose an exteneggonse header, VaryByParam,
whose BNF definition is given in Definition 4.6. @theader field indicates the set of
parameters, resided in the query string, seleatedéntify a particular version of
response. The cache will reuse a cached resporadetife query string parameters
selected by the VaryByParam header have the salmesvia the new request and the
original request.

Definition 4.6: VaryByParam
VaryByParam="VaryByParam”™:"(“*"|1#para_name)

Figure 4.8 shows a pair of request and response REyuest-URI (Figure 4.8
(@), line 1) is “http://website.com/image?s=bob2d&blay w=352&display h=288",
where the first parameter “s=bob207” gives theisass and the last two parameters
“display_w=352&display_h=288" give the client's peered display sizes. The
session id is normally used for tracing a cliemtésisaction and has no effect on the
image presentation. We suppose the server trangbedwiginal image according to
the client’s display size and put the resized imiagthe response. In the traditional
Web cache, the Request-URI is used as the idemdifie this would result in that the
response has no reusability on the proxy becawsadh-repeatable session id causes
the constant mismatch between the cache ident#iet the new Request-URI.
However, as shown in Figure 4.8 (b), the App.Neteseinserts the RE-URI header

(line 6) to identify the response, and uses the/BgiParam header (line 7) to declare

79

that the query string parameters display_w andlaysih are selected to specify the
version of current response object. Thus, this edatesponse can be reused to a
request like “http://website.com/image?s=alice42Bfthy w=352&display h=288",

where the unselected query string parameter s#4&kes ignored.

(01) GET http://website.com/image?s=bob207&display_w=352&display_h=288 HTTP/1.1
(02)

(03) Host: website.com

(04) Accept: text/*, audio/*, img/*

(05) Via-AppNet: true

(a) Request Message

(01) HTTP/1.1 200 OK

(02)

(03) Date: Sun, 25 Apr 2004 06:25:24 GMT

(04) Content-Length: 3126012

(05) Content-Type: img/jpeg

(06) RE-URI: http://website.com/image

(07) VaryByParam: display_w, display_h

(08)

(09) The image payload is here, using the base64 coding

(b) Response Message with RE-URI and VaryByParam Headers
Figure 4.8 Example Messages using VaryByParam

In summary, through using the standard “Vary” headed the extended
“VaryByParam” header, we can distinguish variousponse versions according to

their HTTP message headers as well as the quang garameters.
4.2.3 App.Net Caching Scheme

The App.Net Cache retrieval policy can be summadrafollows:

(1) When the cache performs a lookup, it firstly chettles identifier of the cached
response. If the identifier is got from the RequédRi of the original request, it
should exactly match the Request-URI of the newest] If the identifier is got
from the RE-URI header of the response, it shoelé Istring prefix of the new
Request-URI.

(2) Once the identifier checking succeeds, the cachHemake sure the cached
response is the reusable version for the curreptest by checking the “Vary”

and “VaryByParam” headers. The cached responseotéenreused unless all

80

of the selected request-headers (or query strirgnpeters) presented in the new

request match the corresponding header fieldsyeryostring parameters) in the

original request.

If all criterions above are satisfied, the App.N&ziche will reuse this cached
response.

In addition, the App.Net cache leverages the cotmweal replacement
algorithms to replace the cached responses. Typlgalithms [CI97] include LRU,
LFU, Greedy-Dual, and so on. Besides replacingaibjdue to the spatial limitation,
the cache also evicts responses when an ancesfmnse object of them is to be
stored, since the evicted objects can be genefaisdthe new response object. This
mechanism can save the limited cache space to istore objects. At the result, the
cache can cover more requests and consequentlpwmpine hit ratio. In particular,
we can determine the new response object is arstamadf a cached response object
through the following steps.

(1) The identifier of the new response object shoulthleesame as or a string prefix
of the identifier of the cached response.

(2) If the new response contains the “Vary” headerthadl selected request-headers
should also exist in the “Vary” header of the cathesponse. Each selected
request-header’s value for the new response shemdl to the corresponding
request-header’s value for the cached response.

(3) If the new response has the “VaryByParam” headethe selected query string
parameters should also exist in the “VaryByParameader of the cached
response. Each selected parameter’s value foraler@sponse should equal to

the corresponding parameter for the cached response

81

If all these criterions are satisfied, we deemrb® response object to be the
ancestor of the stored response object. For exam@esuppose the cache already
stores the response as shown in Figure 4.8. Noewaresponse, as shown in Figure
4.7, is to be stored into the cache. The cachededgrmine the new object is the

ancestor of the cached object based on the judgeniégrions above.
4.3 Performance

A major advantage of the App.Net system is its illkx service placement
mechanism. Such flexibility enables the systemdiaieve efficient content delivery
strategy considering the potential performance gaid the corresponding delivery
cost of content service. In this section, we fuolsfine the cost model for a single
application, and then propose a optimization mddelthe workflow with multiple
applications. Finally, an algorithm to resolve thetimal service placement is

provided.
4.3.1 Cost Model

The Web server and the edge proxy are usually ddcegmotely, so that the
limited network transmission capability mostly a&ffe the overall content delivery
performance. We believe the network transmissiost ahould be a significant
performance factor and it is not easily to be bgpdswhereas other factors like the
computation load could be addressed by enrichiogl loardware resource. In general,
less transmission cost implies less data is tratetniover the network and less
content retrieval delay. Therefore, our model ukes‘transmission cost”, the amount
of content transmission traffic averaged over timef as the performance metric.

Placing and executing an application on the seamdrthe proxy would result in
different system performance. According to the mgbtn in Chapter 3, we can

illustrate the structure of an application as igufe 4.9, where an objegq is inputted

82

to the applicatiori andK distinct object; (1<j<K) are outputted. Each output object
0; has sizes and lifetimet;. In addition, the application may need supplemgritgput
data,d, during execution. We denote the size and lifetohéhe supplementary data

assy andty respectively.

Output Object

Input L
Object Appllcatlor/

[y

o1

02

Optional Input
Data

d

Figure 4.9 Model for a Single Application
Suppose at the proxy the request probability tootltput objecy; is p; and the
total request rate to aK objects isi. Thus, we have Eq.4.1 and Eq.4.2, whagre

denotes the request rate to obmgct
3p =1 (Eq.4.1)

4=A-p; (15j<K) (Eq.4.2)
If we execute applicatioh on the server (server-side placement), the origina

objectop will be transformed at the server and the outfeas will be transmitted to
the proxy. For each object, the transmission costultiplying the object’s size with
the request rate to this object or the object’'sirgx@te whichever is smaller. Thus,
we have the summed transmission cost between thersand proxy as in Eq.4.3.

C= 2{sj xminA, ti)} (Eq.4.3)
On the other hand, i1i_we deliver the; original objegand applicatiorf to the

proxy (proxy-side placement), the transmission tettveen the server and proxy is

83

the summed transmission traffic for objegt applicationf, and the optional datad
The transmission cos€C' can be calculated as in EQ.4.4, whegedenotes the
cumulative request rate to objems, ands andt; denote the size and lifetime of
applicationf.

C'=s, min(Ao,l) +s, min(Ao,ti) +s, min(Ao,ti) (Eq.4.4)

tO f d
K K
where A, =>"2,=> Ap, =2
j=1 j=1
To determine whether to apply the server-side piece or the proxy-side
placement, we can compute the difference betv@andC’, as in Eq.4.5. We should
choose the proxy-side placemenCibstSave0; otherwise, the server-side placement

should be used.

CostSav=C-C'
K (Eq.4.5)
= ;sj min(A; 1/t;) —s, min(A, 1/t;) = s, min(4, 1/t;) —s, min(Ao,E)
K K
where A, =>"2,=> Ap, =4
= =
4.3.2 Optimization Modell |

A workflow involves multiple segments, each of whics mapped to one
application. This section proposes the optimizatioodel for the service workflow
placement.

For each individual service, many versioned objegtsbe generated from the
original object. For simplicity, our discussion agerm “object” to refer any version
of these content objects. To express the relatipnatmong them, we construct an
“Objects-Tree”. The tree is rooted from the origimbject 0. All objects directly
generated from an object are listed as the childw@ies of this object. The final

content presentations are located as the leaf nadkeag the breath-first traversal

method [CLR90], any object in the tree can be imdkeaso;, where &<n and the

84

total number of tree nodes 81. We denote the full objects-tree & and any

sub-tree rooted & asT;. An example objects-tree is shown in Figure 4.10.

Figure 4.10 An Example Objects-Tree

We also defineancestofo;) to be the set of objects that can generate object

as given in Eq.4.6. Obviously, the original objdoesn’t have any ancestor, so that
ancestofo,) = @.
ancestor(o;) ={o, |0, OT(0,)} (Eq.4.6)

Now, the service placement problem can be rephraseglecting some objects
in the objects-tree and placing them with the assed applications to the proxy.
Once objecp; is placed onto the proxy, all its descent obj@ctsub-treeT; can be
generated at the proxy. We name this phenomendhea¥virtual Placement”, and
use vectorX[Xo...%...%n), which is called virtual placement vector, to nregent the
placement of the objects-tree’s nodes on the prexi if objecto; is actually or
virtually placed on the proxy. Otherwisg=0 if object o, is neither actually nor
virtually placed on the proxy.

Correspondingly, we also define the “Effective Riment”, which can be
represented as a vectdfyo...y;...yn], where anyj with y;=1 should satisfy the

condition in Eqg.4.7. It means that if an objeceftectively placed on the proxy, this

85

object should not have any ancestor object to beepl on the proxy. Only these
effectively placed objects will be transmitted be fproxy.

{x; =1 AND Oo, Oanceste(o;) - y,=0}=y, =1 (Eq.4.7)
The effective placement can be drawn from the virtual placemenby setting

elements, which have ancestor objects placed oprthey, to value zero. In general,
we call objecto; is “effectively placed” on the proxy ¥=1 and of course=1; and
objecto; is “virtually placed” on the proxy ik=1 buty,=0. For example in Figure
4.10, if we places, 0s, 07, 03 andog to the proxy, the corresponding virtual placement
X and the effective placeme¥itare shown in Table 4.1. Objects fr@mnto og andog

are effectively placed and objects framy to 014 are virtually placed, while objects
from op to 04 are not placed on the proxy.

Table 4.1 Virtual and Effective Placement Vectors

Obj| 0O 1 2 3 4 5 6 7 8 9 100 13 12 183 14
X 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
Y 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

f denoting the request probability and the requast to object; at the proxy
asp; andy; respectively, we have Eq.4.8 and Eq.4.9, wiiatenotes the total request
rate to the object-tree.

Mol-1) i Eq.4.8
D" p; =1, whereTo| is the number of nodes in trée (Fa.4.8)
i=0

H; =Ap; (Eq.4.9)
To measure how frequently an object is directlyuesged by external nodes or

indirectly requested to generate a descent objextjenote the request probability of
sub-treeT; asq;, which is calculated by summing the request proibas for all
objects inT;, as given by Eq.4.10. Correspondingly, the requagst/;, to the sub-tree
T; can be calculated by Eq.4.11. For the exampleitrdggure 4.10, if the request
probability to each object is shown as in Figurgélda), the request probability of

each object’s sub-tree is calculated as in Figuté(®).

86

q, = Z p, (Eq.4.10)
i,

A =q, A (Eq.4.11)

(a) Request Probabilities of the Objects (b) Request Probabilities of the Sub-Trees
Figure 4.11 Request Probabilities of Objects and Sub-Trees

Based on the cost model for an application, we exgoress the optimization
model for the objects-tree placement as in Eq.4riPEq.4.13. Eq.4.12 indicates that
the optimization problem is to resolve a placenmétitat provides the minimum cost
C(X), the summation of the transmission cogiX) for all objects in the objects-tree
To. Eq.4.13 calculates the server-to-proxy transmimssbstm(X) for objecto;, where
the first term denotes the transmission cost ferdhjecto;, the second term denotes
the transmission cost for the application assodiatiéh o;, and the third term denotes

the transmission cost for the supplementary datagithe application execution.

min(C(X)) = min(mfmj (X)) (Eq.4.12)

I I

. 1
+s](d) [, (X) Iin(A; - 4, ’tT’))

j
To calculate the transmission cost for obgctve usel; as the total request rate
to objecto;. For any object, we deem it is accessed if thjsatbs directly requested

by other nodes, or one of its descent objectsgsested since in this case the descent

87

object needs to be generated from the current bbjdwrefore, the sub-treg’s
request ratg; can correctly reflect how frequently objextis requested directly and
indirectly. In addition,d; denotes the length of path [RRR98] for the praxyetch
objecto; from the server. Firstly, if objed is not placed on the proxy (i.=0 and
definitely y;=0), d; should be 0 because the proxy will never retrigng object under
such placement. Secondly, if the object is effetyiplaced on the proxy (i.g;=1
and definitelyx=1), d; should be 1, denoting the one-hop HTTP retrieVhirdly, if
the object is virtually placed on the proxy (iy=0 butx=1), the object can be
generated from one of its ancestor objects thefféectively placed on the proxy, and
the proxy will fetch that effectively placed objdadm the server. Thus, we should set
di=0 to avoid recounting the transmission costs fier tivo objects. In summary, we
should setj; as a function ofj;, as given in Eq.4.14.

1Lwhen:y, =1
0,when:y; =0 (Eq.4.14)

d; (Y) ={

The second term of Eq.4.13 calculates the transmnisost for the application

associated with objeas, wheres® denotes the application’s siz&® denotes the
length of path to fetch the applicatiaf is the application’s lifetime, angl(X)-;(X)
is the application’s execution rate. The valugffis set as in Eq.4.15. We sif as

a function ofx;, because when a proxy transforms obggcit needs to fetch the

application associated with the object, no mattes object is effectively or virtually

placed on the proxy.

0, if X, =0

Lif ix =1 (Eq.4.15)

d,“’(X)={

The third term of Eq.4.13 calculates the transnaissiost for the supplementary

data fetched during application execution, Wher@rwlsﬁ(d) denotes the size of the

88

data,d;(X) denotes the length of path to fetch the dfajs the lifetime of the data,
and4;(X)-z4(X) is the application’s execution rate.

From above discussion, we can simplify Eq.4.13 a4 H6. Finding the
minimum cost for equations Eq.4.12 and Eq.4.16 meitider us the optimal placement
of content service.

. 1 . 1
m, (X) =s; 0, [nin(A, ,r)+s§f) X, [nin(A,; - 4, "tTf))

J

) (Eq.4.16)
+s§d’ X; Enin(A; — 4 ’t(T'))
i

4.3.3 Optimization Algorithm

This section explains an algorithm to resolve th&neal service placemenx.
The algorithm is executed by the server, and weaspthe server knows the average
size and lifetime of its content objects and therasponding application modules.
Moreover, we suppose the request rate of the cbigjects at the proxy is also
known by the server. This information can be gotéxyuiring the proxy to report to
the server, or allowing the server to derive tlegflencies according to its own access
log. The algorithm is given in Figure 4.12, which based on the dynamic

programming technique [CLR90].

(01) /*the main function to resolve the optimahgment of tre&y*/

(02) Main()

03) {

(04) Allocate two global vectobs andY, which are accessible by all sub-functions
(05) SetY as the effective placement vector 1gy initializing all elements oY to zero
(06) SefX as the virtual placement vector foy; initializing all elements oX to zero
(07) min_cost= Optimal_FuncTy);

(08) Print outY, which is the resolved effectively placemenfgf

(09) Print ouiX, which is the corresponding virtual placemenTof

(20) Print oumin_cost which is the expected minimum cost fr

(11 }

(12)

(13) /* The optimization function */

(14) /* Input: the objects-treg to be resolved */

(15) /* Output: the resolved minimum cost value */

(16) float Optimal_Fundg)

(17)

(18) cost = Cost_FuncT); /* compute the cost givey=1 */

(29) if (0 is a leaf object) {

89

(20) Set; = 1 in vectorY and correspondingl¢=1 in vector X;

(22) returrcost;

(22) }

(23) Setost = 0;

(24) for each child object of { /* compute the minimum cost gives=0 */

(25) cosp += Optimal_Funclciq); /*compute the minimum cost for sub-trégiqy
(26) 1}

(27) if Cost>=cost) {

(28) Set;=0 in vectorY andx=0 in vectorX;

(29) returrcosy;

(30) }else {

(31) Set;=1 in vectorY, andx=1 in vectorX;

(32) For all descent nodes in tigesetx=1 in vectorX andy=0 in vectorY;
(33) returrcost;

(34) 1}

(35 1}

(36)

(37) /* compute the cost of the objects-tigewhen it is placed on the proxy*/
(38) float Cost_Funcrf) {
(39) [*compute cost for the root objext/

(40) Setotal_cost= s, tmin(l) +5(” [ningl, ~4;,~) +s" (nin(l, ~4,

r

1
AOp

(42) for all descent objects of{

_ . 1 - LR

(42) total_cost+= S}d) [in(A; - 4, ,t(—d))+sff) min(A; - 4; 'tT))'
i i

(43) }

(44) returrtotal_cost

45 1}

Figure 4.12 Optimization Algorithm

The algorithm starts from the Main function (ling @hich first initializes the
effective placement vector and the virtual placement vect¥rto the zero vectors
(line 4 ~ line 6). Then it invokes the “Optimal_Firfunction to resolve the optimal
placement for the whole objects-trgg(line 7).

“Optimal_Func” works in a recursive way to resothe minimum cost for the
inputted objects-tre@;. Firstly, it calls the “Cost_Func” function (lir8) to compute
the cost for placing; to the proxy. The computation of “Cost_Func” assanthe
current sub-tree roag; is effectively placed to the proxy, and correspogly all its
descent objects are virtually placed. AccordingEm.4.16, the “Cost_Func” first
calculates the expected transmission costofaas in line 40, givery,=1 andx=1.
Next, it calculates the transmission cost for edelcent object as in lines 41~42,

giveny;=0 andx=1. The summed transmission cost for all objectiéstransmission

90

cost for the sub-tre€, which is returned to function “Optimal_Func” aretorded in
cost (line 18).

If o, is a leaf object (line 19 ~ line 22), the “Optimaunc” function will return
cost directly and se=1 andy;=1, because the final content presentation should
always be delivered to the proxy.

However, if o has children objects, the algorithm needs to cdenghe
minimum cost for all children’s sub-trees, assummug placingo; to the proxy. To
compute the minimum cost for any sub-tré&g,g the algorithm invokes the
“Optimal_Func” function recursively (line 23 ~ li@6). The cumulative cost value
for all children’s sub-trees is storeddnst. Next, the algorithm compares the values
of cost andcosb. If cost >= cost (line 27 ~ line 29), the algorithm determines not
placingo; to the proxy and thus sets0 andy;=0. However, ifcost < cost (line 30 ~
line 33), the algorithm determines placigdo the proxy will be beneficial, and it sets
y;=1 andx=1 (line 31). Meanwhile, the algorithm sets theeefive and virtual
placement for the non-root objects in sub-tigeas y=0 andx=1 (line 32). The
“Optimal_Func” function returns the minimum costuafor sub-tred;. Finally, the
Main function will resolve the optimal placement tbe whole objects-treg,.

To estimate the time complexity of our algorithne assume the objects-tree is
a perfectk-ary tree of depti [CLR90]. At each depth, the number of nodes §?,
where ¥h<H. The total number of nodes is calculated by Eq@.4.1

k" -1 (Eq.4.17)

If denoting the time complexity for resolving theagement from the tree root
(i.e. h=1) asF(1), we can infer Eq.4.18, wheF€2) denotes the time complexity for
resolving a sub-tree rooted at the depth of 2 [i=2). This is because to get the

minimum cost for the whole tree our algorithm netmsompute the minimum costs

91

for all k sub-trees rooted at depth 2 and compare their sdmoost with
“CostFunc(ly)”. Similarly, the time complexity for any sub-tre# depthh can be
recursively resolved by Eqg.4.19. Since the iteratd our algorithm stops at the leaf

objects, we have Eq.4.20.

FO=kIF@)+1 (Eq.4.18)
F(h)=k[F(h+1)+1where:l<h<H -1 (Eq.4.19)
F(H)=1 (Eg.4.20)

Thus, we can infer the time complexity for resofyitme whole objects-tree as
in Eq.4.21. Comparing Eq.4.21 and Eqg.4.17, we Isediine complexity of algorithm
is O(n), wheren is the total number of objects.

kM -1
FO==— (Eq.4.21)

In addition, the execution of algorithm requiresotarrays, each of size to
store the resolved effective and virtual placemaators. The algorithm also needs
two other arrays, each of siketo store the intermediate cost values for thetseds
in two consecutive iteration levels. Thus, the sphatomplexity of our algorithm is
O(2n+2k).

After getting theX and Y vectors, the App.Net server will take the most
beneficial operation manner for each proxy and eamitent object. Supposing the
server receives a request for a particular condéject, it will check theX andY
vectors. If the requested object is to be placetheoproxy effectively, the server will
generate this object and send it with the assatwmatekflow to the proxy. However,
if the requested object is not to be placed topttoey effectively, the server will find
this object’s ancestor that is to be effectivelgqald to the proxy. Then, the server will
generate that object and send it with the assatiatekflow to the proxy, which will

generate the final content presentation at theyprox

92

We let the server execute the placement algoritmefch content service
periodically to adjust the placement strategy ® t¢hanging environment. The server
will use the resolved placement strategy for aqaeuntil the next round of placement

adjustment.
4.3.4 Performance Modeling for Static Content

The performance modeling above assumes the cootgatts have limited
lifetime. However, Web also has large amounts aficstcontents, such as the static
text documents and the photographic images. Thiosesetups the performance
model for the static objects. We suppose both tteccontents and their applications
will not expire in the cache unless they are regdiday other objects.

The expected transmission cost for a content olgesbrmally proportional to
the size §) and request probabilityp) for this object. A rough estimation for the

transmission cost isx p. Meanwhile, considering the existence of cachexrd

an object can be used to generate multiple outpjetts and it has high request rate,
this object should be much likely to be cachedhgygroxy. Combining above aspects,
we propose a “weighted transmission cost” as in4Rg§, and use it as the
performance metric for the static objects. The danator of the formula is a caching
trickle-off factor, wheréW is the number of output objects generated fromothject
under consideration andis the request rate for this object. It meansnifodject is
intensively requested and it can be reused to genenany objects, this object is be
much likely to be cached by the proxy, and this Mopotentially trickle off the

transmission cost.

C= if (Eq.4.22)
w
Consequently, we can formulize the optimization elddr the static contents

in an objects-tree as EQ.4.23. The optimizatioroigesolve a placemerX that

93

provides the minimum weighted transmission costthie equation)Y denotes the
effective placement vectog; denotes the request probability to sub-tffgeandd,
denotes the length of content fetching path. Theniiens and calculations for all
formula elements are the same as in section 414 &.2. In particular, for the leaf
objects W=1.

min(C(X)) = min(rr_ozl_“l[jﬁ

J

:’ [dj $2)) (Eq.4.23)

We can apply the same optimization algorithm aseiction 4.3.3 to resolve the
optimal placement for the static content objectswelver, in this situation, the cost
calculation for the objects-tree (line 37~45 in U¥ig 4.12) should be replaced by

Mol-1 sj qj
2 (8 (1))-

j=0 j

4.4 Summary

This chapter proposes the App.Net system that eppthe Application
Networking framework in the Web content deliveryntaxt. Compared to the
traditional Web systems that fix content applicasido either the original server or
the edge proxy, our system provides more flexiply enabling the server to deliver
the intermediate content object as well as theigdeservice workflow to the proxy.
This difference makes our system to be more scalaht efficient for pervasive
content delivery. Dedicated caching scheme is glsposed, which extends the
HTTP 1.1 protocol to cache different versions ofsp@nses. Furthermore,
Performance model and optimal service placemenorighgn are provided to

minimize the transmission cost between server anxlyp

94

CHAPTER 5

PERFORMANCE EVALUATION IN THE APP.NET SYSTEM

5.1 Implementation

We build the App.Net prototype based on Jigsawsplg, which is a standard
edge server recommended by the WWW Consortium [WBGiding App.Net upon
the Jigsaw platform provides a good reference impl#ation of the Application
Networking framework for Web content delivery. lddition, Jigsaw is based on Java
that supplies good support to mobile code, whialedgiired in our App.Net system.

The prototype structure is illustrated in Figur&,Swhich has three tiers: the

Jigsaw platform tier, the App.Net Proc. tier, and ANlet applications tier.

ANlet Filters
modRequesD—GwdResponse

ANlet Handlers

[

App.Net Proc

ingoingFilter outgoingFilter

A A

. App.Net Web
Jigsaw Platform ppCaEhe ¢

Figure 5.1 App.Net Prototype
The underlying Jigsaw, working either as the Welveseor the Web proxy,
implements the basic HTTP message transmissionaMte show the Web Cache
module as part of Jigsaw but it has been improviéld thhe App.Net caching scheme.

The App.Net Proc tier performs the main procedugssh as processing the

95

workflow, fetching ANlet modules, executing apptioas. The ANlet modules are
downloaded by the App.Net Proc to perform spet#sks in the service workflows.
The App.Net Proc. implements two APIs for Jigsdwe ingoingFilter function
and the outgoingFilter function. When Jigsaw reesgia request or is about to send a
response, it will call these functions to relay tlequest or response to the App.Net
Proc. The App.Net Proc will manipulate the receivedssage and return the new
message to Jigsaw, which will forward the new mgsda the server or the client.
More details are explained in the following two rsaeos: (i) request modification

and (ii) response transformation.
5.1.1 Request Modification

When the Jigsaw platform, usually as a proxy, rexen request, it will call the
ingoingFilter function of the App.Net Proc. The idéion of the ingoingFilter
function is given by APIL.5.1, where the input paeden carries the original request
message. Within the ingoingFilter function, the Aygt Proc first finds a service
workflow responsible for current request; and thetecutes the relevant ANlet
applications through their exposed modRequest iomcas defined in APL.5.2. The
application will accept the original request messagd return the modified request to
the App.Net Proc and finally to Jigsaw as the retfrthe ingoingFilter function.

APL.5.1 ingoingFilter

RequestMessage ingoingFilter(RequestMessage ré@quest

Comment: Exposed by the App.Net Proc., invokebtdyigsaw Platform

API.5.2 modRequest

RequestMessage modRequest(RequestMessage request)

Comment: Exposed by the ANlet Filter, invoked byApp.Net Proc.

96

As an example, we implemented a utility servicetloe App.Net proxy, which
allows the clients to set their preference at ttexyp When the proxy receives the
client’s request, it will invoke the ANlet applican of the utility service to insert this
client’'s preferences into the request message e®xtended HTTP headers. This

utility service enables the client to clarify prefece when his browser cannot do this.
5.1.2 Response Transformation

When the Jigsaw platform, either a server or a yras going to send out a
response message, it will call the outgoingFiltenction exposed by the App.Net
Proc. The definition of the outgoingFilter is givenAPI.5.3, which shows the Jigsaw
platform relays the response together with the estjio the App.Net Proc. The
App.Net Proc will execute the service workflow agated with the response object
and return the new response to the Jigsaw platfadmnch will then send it to the
clients.

API1.5.3 outgoingFilter

ReplyMessage outgoingFilter(RequestMessage regReptyMessage response)

Comment: Exposed by the App.Net Proc, invokedeoyigjsaw platform.

In specific, the App.Net Proc. uses either the nmesfiRnse function or the
genResponse function to invoke the ANlet applicatidepending on the application
is an ANlet Filter or an ANlet Handler. For an ANIEilter, which is used to
transform the response content, the App.Net Protldhinvoke the modResponse
function. The definition of the function is givem IAPI.5.4, where the function
accepts both the request and response messagestpats the transformed response
to the App.Net Proc.

API.5.4 modResponse

ReplyMessage modResponse(RequestMessage requbsi|Besage response)

97

Comment: Exposed by the ANlet Filter, invoked byApp.Net Proc

This is a Jigsaw-based implementation of modi@égpRnse in Api.4.2

For an ANlet Handler, which always locates at tegibning of a workflow and
is used to generate the response content, the AppHoc will invoke the
genResponse function. The definition of the funtti® given in APL.5.5, where the
request message is the only the input. The ANletdtéa application will generate the
response content and return it to the App.Net Proc.

APIL.5.5: genResponse

ReplyMessage genResponse(RequestMessage request)

Comment: Exposed by the ANlet Handler, invokedh&yApp.Net Proc
This is a Jigsaw-based implementation of geneRésponse in Api.4.1

In summary, the App.Net prototype allows us to dulie App.Net server or
proxy through plugging the App.Net Proc onto thgsdiv server or proxy. The
prototype implements most operations in the Appatehitecture, and is used in our

simulation experiments.
5.2 Simulation Environment

We set up a simulation environment to measure ¢npnance of the App.Net
system, as shown in Figure 5.2. The main compors an App.Net server, an
App.Net proxy, and a client-simulator. The cliemhglator is implemented to
emulate massive clients to request and retrieveteats) and it can insert
corresponding request parameters into HTTP requesirding to a request profile. In
simulation, the client-simulator generates the $wis[CB96] distributed requests at

varying rates.

98

Local Network

AppNet | | Client
Proxy Simulator

O T Request
WS- Profile

Figure 5.2 Simulation Environment

——— CBQ simulator

In our simulation, the server, the proxy, and thent-simulator are installed on
three computers respectively, which are all locaté&tiin a local 100Mbps Ethernet
network. Because in the actual Web systems, tkatsliand their connected proxy are
normally located near to each other while the prang the server are usually situated
remotely, we use the CBQ simulator [Cbq0l] to eneuldne remote networking
characters between the proxy and the server. Irh swetwork condition, the
transmission cost between the clients and the pb@cpmes negligible compared to
that between the proxy and the server. Thus, radutie transmission cost between
the proxy and the server will improve the overgitem performance.

Meanwhile, we implemented a wide range of ANletlmagions, and the sizes
of these applications mostly range from 30Kbit @KBit. The applications normally
have rather long lifetimes, so that the App.Netxgr@an store and reuse them
repeatedly. The overhead for transmitting thesdicaions is much likely to be
amortized in their long-term reuse. Hence, our grerince evaluation treats the
transmission cost for the content objects as then rfector, while omitting the
transmission cost for the ANlet applications.

Our simulation adopts the following metrics to asséhe system performance:
(i) Transmission cost: the volume of network traffic fesponse transmission,

averaged by the simulation time.

99

(i) System throughput: the amount of requests thaswaeeessfully finished within
certain time interval.

(i) Server throughput: the amount of requests thatsaceessfully replied by the
server within certain time interval. It reflectetlioad on the server.

(iv) User perceived latency: the time elapsed from wtherclient issues the request
to when the response is fully received by him.

(v) Request drop ratio: the percentage of requests ¢aamnot be served

successfully.
5.3 Simulation for Applications

The first group of simulations measures the syspmrformance for some
representative Web applications. We emphasize anpaang the difference of
placing the application on the server and the pregythat the potential advantages of
the App.Net system for these applications can hoesd. Because of this purpose,

this part of simulation does not apply the seryaEement algorithm.
5.3.1 Application Taxonomy

In order to study the performance of existing Wepligations in a systematic
way, we divide them into several categories. Fartheeategory, a representative
application is chosen and implemented. Our simutatiare performed upon these
applications to explore the potential performaneadiits of the App.Net system for
each category of applications.

According to our performance model, the executibaroapplication needs an
input content objectdbji,) and optionally needs supplementary input ddtaand the
output is the transformed content obje@bf,,). As our performance model evaluates
the content transmission cost, we classify theiegiibns according to the sizes of the

input and output for the application, as showniguFe 5.3.

100

Sout=Sin

A
2" quadrant 1" quadrant
SILO SILO+D
Sd
LISO+ -
LISO LISO+D
3" quadrant 4" quadrant

Figure 5.3 Application Taxonomy

The x-axis $y) represents the size of the supplementary daty,esmbd the
negative section of the axis represents the apgicaoes not require supplementary
data. The y-axiss{urSn) represents the size difference between the oatpdtinput
content objects. As a result, the two axes formr fquadrants. We name the
applications in the second quadrant as SILO (Srmut and Large Output)
applications and those in the third quadrant asOL(Barge Input and Small Output)
applications. In the first and fourth quadrants Hpplications need supplementary
data during execution. We name the applicationghenfirst quadrant as SILO+D
(SILO with supplementary Data) applications andsthan the fourth quadrant as
LISO+D (LISO with supplementary Data) applications. particular, there is one
group of LISO+D applications is rather popular amgaxisting Web applications.
The group is called LISO+, which needs supplemgrdata during execution, but the
size of the supplementary data is much smaller thanof the input or output content
objects. Table 5.1 summarizes the classificationdition for each category of
applications in the taxonomy, together with the regke applications for each

category. Our simulation will be based on thesdiegjpons.

101

Table 5.1 Application Taxonomy Details

Type Condition Example
SILO sizebji,)<sizeObj,y),size@)=0 Stock Chart Generator
Document Rendering
LISO sizebjin)>sizeObjouy,sized)=0 Image Distillation;
Doc Trimmer;
Advertisement Rotator
SILO+D sizeQbji,)+size@)<size Objou) Page Assembler
LISO+ sizeQbjin)=sizeObjou)>>sizef)>0 Image Watermarking;
Video Encryption

5.3.2 SILO Application — Chart Generator

Many stock websites, such as NYSE (http://www.ny@®), generate price
charts at the server. Because the size of the pataset is normally much smaller
than that of the generated chart, if deploying ¢hart generation application to the
proxy, the transmission traffic between the searet the proxy will be reduced.

We implemented a chart generation ANlet, which ganerate the chart image
according to the input price dataset. Our simutatiteasures the performance of the
conventional server-side chart generation methatitha App.Net method that puts
the application to the proxy and generates thet ¢thare. According to NYSE, we set
the average size for the price dataset and thet ¢hmge to 4KB and 10KB
respectively, and none object is cacheable. Thees#n-proxy bandwidth is set to
1Mbps, and the simulation results are as follow.

Figure 5.4 presents the transmission cost for bu#thods. The App.Net
method causes much less transmission cost thasetkier-side method, as the size of
the transmitted price dataset is much smaller thahof the generated chart image.
When the request rate exceeds 13/sec, the sedeerrsthod saturates the network
bandwidth.

Figure 5.5 shows the system throughput for bothhous. The throughput of

the App.Net method enhances continuously with tha@elase of request rate. In

102

contrast, the server-side method reaches the maxithtoughput when the request
rate is 13/sec, afterwards the system starts tp deguests due to the network
saturation as shown in Figure 5.6.

We also compare the user perceived latency for bmthods, as shown in
Figure 5.7. The result indicates the App.Net metlodperforms the server-side
method significantly. In particular, the latency fine App.Net method keeps low
until the request rate arrives 25/sec. Afterwatis,latency of this method increases
considerably, because (i) the proxy reaches itsiitmam computation capability due
to the ANlet execution and (ii) the bandwidth isirgp to be saturated by the

transmission of price dataset.

1200 Transmission Cost 35 - System Throughput
[%]
Y . = 30
g 1000 - .'.' = '-'] .I..‘l.-. [¥y 8
P £ 25
S 800 =}
© 5 20
5 600- 2
= 600 S 15 -]
= BginpgSgigSgasw
g 400 E 101 . L]] []
& T
£ 200
0 0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1 6 11 16 21 26 1 6 1 16 21 26
Request Rate (1/sec) Request Rate (1/sec)
---m--- server-side chart generatier—— App.Net solution ---m--- server-side chart generatier—-o— App.Net solution

Figure 5.4 Transmission Cost Figure 5.5 System Throughput

Request Drop Ratio User Perceived Latency
60% .-
[2 25004 \ [T 1]
2 50%- - g anmmmaman
@ . T 2000 b
o 40% - o o — N
g ' T 1500 .
S 30% " >3 ?
g -* S E :
3 20% K £ =1000
o k a
& 10%- "s 5 500 :
; © o) an"
0%7 0 m LI A O N Y B |
1 6 11 16 21 26 1 6 11 16 21 26
Request Rate (U/sec) Request Rate (1/sec)
---m--- server-side chart generatiea—— App.Net solution ---m--- server-side chart generatieR— App.Net solution

Figure 5.6 Request Drop Ratio

Figure 5.7 User Perceived Latency

103

The simulation results indicate the App.Net metiodnore efficient than the
conventional server-side method, because transqittie source dataset causes less
network traffic than transmitting the generatedrthiaage. Moreover, the results
suggest that in the App.Net system deploying th€&{ind applications to the proxy
can reduce the transmission cost, increase themmuaxisystem throughput, and

improve the user perceived latency.
5.3.3 SILO+D Application — Page Assembler

Delivering dynamic contents is a challenging tofac many Web systems.
Traditional technology generates the dynamic Wetpepaon the server. However,
these pages usually have poor cacheability, ang rtieke the traditional method to
be inefficient. Many researchers [DHR97 and SCK08hd that a significant portion
of the dynamic page is usually static content, gttile remaining parts are composed
of contents that are more dynamic. According te thservation, we designed a page
assembler ANlet, which is associated to a temaige that contains the essential
layout, the static information of the Web page #rmallinks to the dynamic fragments.
To form the final page, the ANlet will fetch the rdymic fragments from the server
and compose them into the template page. Thusg ifl&liver the template page and
the assembler ANlet to the proxy, the proxy wiltlsa and reuse them to generate the
dynamic pages.

Compared to some existing assembly markup languageh as the Edge Side
Inclusion [Esi] and the HPP [DHR97], our assemiiBliet solution is more flexible
from some perspectives. Firstly, the markup langusgjutions require the proxy to
install a language processor. However, not all ipoinstalled those processors. Even
for those installed proxies, they may use differenbcessors, which causes the

template page created using one language cannatdrvpreted by the proxy with a

104

different language processor. We implement thecbasige assembly logic in a
dynamic application, which enables the proxy to dimad it whenever necessary.
Secondly, the markup language only implements @@mgembly functions, whereas
our solution can implement advanced functions & ANlet, such as the specific
purpose computation, the client interaction logicg the session management. These
added functions make the ANlet to be more flexibleandling dynamic content.

A challenge for executing the assembler ANlet aploxy is it needs to fetch
page fragments from the server during each exatutiow will this overhead affect
the system performance? We performed a set of atook to measure the
performance gain and the corresponding overheatthelisimulation, the size and the
TTL of the template page are 6KB and 5 secondsntisiely. The template requires
two fragments, each is of size 2KB and non-cacleablcompose the final page. The
final page is of size 10KB and non-cacheable. Téees-to-proxy bandwidth is
512Kbps. Our simulation compares the server-sidge @ssembling method and the
App.Net method using the assembler ANlet. The st results are as follow.

Figure 5.8 presents the transmission cost for lmogthods. The server-side
method causes significant transmission cost becthgsédelivered final page has no
cacheability at the proxy. In contrast, the App.Neethod causes much less
transmission cost due to the reuse of page temg@atkafter the request rate reaches
14/sec the network starts to be saturated by #msmnission of the page fragments.

Figure 5.9 shows the system throughput for bothhods. The result indicates
the App.Net method achieves higher maximum throughpan the server-side
method. For the server-side method, when the régatesexceeds 13/sec, all requests

are dropped due to serious traffic congestion.

105

We also measure the user perceived latency, assimokigure 5.10. The result

indicates that the App.Net method can achieve lolatancy than the server-side

method. This is because the App.Net proxy only se@dtransmit the document

fragments for each request, while the server-sigéhad needs to transmit the full

page for each request and consequently prolongsetlag. In addition, our assembler

ANlet is designed to fetch the page fragments denmeously, so that the data

fetching overhead is diminished.

Transmssion Cost

)

D

o

o
|

5001 gt

4004

300
2004

Transmission Cost (Kbps

100 g

0 e e e e e e L e e M
1 6 11 16 21 26

Request Rate (Usec)
---®--- server-side page assembly—<— App.Net solution

System Throughput
o 147
[}
(2]
2
5
£ 8
S
S 67
e
4
£
2 24
[
@ 01
21 6 1 16 21 26

Request Rate (1/sec)
---m--- server-side page assembly<— App.Net solution

Figure 5.8 Transmission Cost

Figure 5.9 System Throughput

4500+
4000
3500
3000 .
2500 :
2000
1500
1000
500 |

Latencies (ms)

User Perceived Latency

1 6 1

Request Rate (U/sec)
---m-- - server-side page assembly —<o— App.Net solution

16 21 26

Figure 5.10 User Perceived Latency

In summary, the simulation results show that assiemldynamic pages on the

proxy is more efficient than the traditional sergate assembling method. Moreover,

the results suggest deploying the SILO+D kind ajapions to the proxy could be

106

more efficient if we can reuse the input objecttts# proxy and reduce the data

fetching overhead through parallelizing fetchinggass.
5.3.4 LISO+ Application — Watermarking

Similar to the SILO+D applications, the system parfance can be improved if
deploying the LISO+ applications to the proxy givie input object can be reused
for multiple requests. We implemented a watermaykiiNlet that can insert
watermark into the image object. For each executiba ANlet needs to fetch a
certificate key from the server.

We measure the performance for the server-sidermat&ing method and the
App.Net method that runs the ANlet on the proxytha simulation, the sizes of the
image and the key are set to 10KB and 1KB respalgtiihe original image has TTL
of 10 seconds, while the watermarked image is rammeable. In addition, the
bandwidth between the server and the proxy iss&Mbps. The simulation results
are summarized in Figure 5.11, which shows the Wep.method achieves less
transmission cost, higher system throughput, an@édaser latency. Since the results
present the same trend as that of the SILO+D agijdit, we do not repeat the

explanation here.

Transmission Cost System Throughput

@ 700 Py
o n g
g 600 . k)
o : 2
a 500 - [=
© 400 " £

. (=]
o [=
7 300 K =4
2 - =
£ 2009 - £
5 100 5
IS 1. @
S 1004 2

0 a0 EESEESEEESEES S,
1 6 11 16 21 26 1 6 11 16 21 26
Request Rate (1/sec) Request Rate (1/sec)
---m--- server-side watermarking—o— App.Net solution ---m--- server-side watermarking—o— App.Net solution

(a) Transmission Cost (b) System Throughput
Figure 5.11 Performance for the Watermarking Application

107

5.3.5LISO — Document Trimmer

In this section, we use the Web document trimmipgliaation as an example
to study the performance of the LISO applicatioN@wadays, the services for
adapting Web pages to display on handheld devieesising up. A popular method
is to trim the original page into small fragmentsdadisplay them one by one
according to the client’'s demand. Many solution& (99, CZS01 and CMZ03] were
proposed to perform such document trimming opemadio the proxy, which needs to
retrieve the original page from the server. We ttadim the proxy-side method in the
following discussion.

Different from the previous scenarios, in which thexy-side method has
significant advantages over the server-side metliogl, simulation results in this
section will show that, for the LISO applicatiorte proxy-side method does not
always get better performance than server-sideadeifhe selection between the two
methods should be dynamic according to the requagtrn of clients.

To show the advantages and disadvantages of therssde and proxy-side
methods, we performed simulations to measure tiespective performance under
different request scenarios. We implemented a deoairtrimmer ANlet, which is
associated with a web page that will be partitiomed 20 fragments. The original
page and the fragments are of size 10KB and 3KpBexs/ely, and all of them have
the TTL of 2 seconds. Our simulation also consedidhe heterogeneous and the
homogeneous request scenarios by varying the adleeptest probabilities over the
output fragments. For the heterogeneous scen&gaequests are evenly distributed
over all fragments. However, for the homogeneo@naiGo, the requests are highly
skewed, where we let 90% of the requests targenéfragment and the other 10%

requests scatter over the rest fragments. We exd¢satANlet on the server and the

108

proxy respectively to simulate the server-side anaxy-side document trimming
methods.

The simulation results for the heterogeneous saeaae shown in Figure 5.12.
Figure 5.12(a) shows the proxy-side method causeshriess transmission cost than
the server-side method, because the former methodreuse the original page to
serve the clients’ requests for different fragmehktgthermore, Figure 5.12(b) shows
when the request rate reaches 23/sec, the sedeerysethod approaches the
maximum system throughput, and afterwards the dirput drops sharply due to
bandwidth saturation. However, the system througfgruthe proxy-side method can

enhance with the increase of request rate dueeddathr transmission cost of this

method.
Transmission Cost System Throughput
- 2007 2 30
2 Aug L4
< 160- gt < 25
B Lt a
o w 2 20+
O 1204 'l' =)
S . 3 151
2 80 X F
g . c 10
@ R 5]
g 40 fWW 3 5
= D)
0 0
1 6 " 16 21 26 1 6 11 16 21 26
Request Rate (1/sec) . I'?eq.uest Rate CL/SEC? o
---m--- server-side doc trimming—o— proxy-side doc trimming ---m--- server-side doc trimming—o— proxy-side doc trimming
(a) Transmission Cost (b) System Throughput

User Perceived Latency

Latency (ms)
N
o

- !
104 = Tanngtifg "aSgty

0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1 3 5 7 9 1113 1517 19 21 23 25 27 29

Request Rate (1/sec)

---m--- server-side doc trimming—o— proxy-side doc trimming

(c) User Perceived Latency

Figure 5.12 Performance of Document Trimmer in Heterogeneous Scenario

109

In addition, Figure 5.12(c) shows both methods hdnesimilar user latency
when the request rate is low. However when the esiquate exceeds 23/sec, the
latency for the server-side method increases gredle to the bandwidth saturation.
In particular, we notice that the latency of thexy-side method is around 5ms larger
than that of the server-side method before the wathl is saturated. This is due to
the overhead of ANlet execution on the proxy. Far server-side method, the proxy
caches the final page fragments. Thus, when theypexeives the client’s request, it
can reply the cached fragment directly. However, tfee proxy-side method, the
proxy caches the original page and it needs toutgethe trimmer ANlet for each
request. This makes the proxy-side method to caligbtly longer delay than the
server-side method. For the document trimming appbn, this minor computation
overhead seems to be negligible compared to thafisent improvement on the
transmission delay. However, the overhead may becamnificant for some
computation demanding applications. A solution as d@low the cache to store
multiple versions of content objects to reduce dlierage computation time at the
expense of consuming more storage space. Howeaudr,ceaching management is not
the focus of our App.Net study.

Figure 5.13 shows the simulation results for thenbgeneous scenario, and it
presents quite different trends from those in thtelogeneous environment. Figure
5.13(a) shows under the homogeneous environmenpritvey-side method causes
more transmission cost than the server-side metiteeh the request rate is low. It
means transmitting the original page results insaerable overhead, and under low
request rate the original page cannot be fully edu®r generating different page
fragments. However, with the increase of the regras, this situation is changed in

that the transmission cost of the server-side nek#rwhances quickly and finally

110

exceeds that of the proxy-side method. The reswicates in the homogeneous
request scenario, the proxy-side method is onlyet@al when the request rate is
high enough so that the transmission cost savimgtaueusing the original page can
counteract the retrieval overhead for the origpede. Figure 5.13(b) shows the user
perceived latency for both methods. The figure gmés the similar trend as in the
heterogeneous environment, in that the proxy-sid¢hod causes slightly longer

latency due to the overhead of ANlet execution.

Transmission Cost User Perceived Latency

80

N
o
I

=
2]

Latency (ms)
S

2]
I

Transmission Cost (Kbps)

L0 e e e e e e e e e e s

o

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 35 7 9 1113 1517 19 21 23 25 27 29
Request Rate (1/sec) Request Rate (1/sec)
---m--- server-side doc trimming—o— proxy-side doc trimming ---m--- server-side doc trimming—o— proxy-side doc trimming
(a) Transmission Cost (b) User Perceived Latency

Figure 5.13 Performance of Document Trimmer in Homogeneous Environment

In summary, from the simulation results we can ¢est for the LISO
application it is error-prone to apply either thetis server-side or the static
proxy-side method. We need to adopt an adaptivatesly that can resolve the

suitable application placement policy accordingi#® changing request pattern.
5.3.6 Discussion

Using the representative applications, we haveuawetl the performance for
each category of applications in the taxonomy. Sineulation results suggest many

existing Web applications can be deployed to thexyrto achieve higher content

delivery performance.

111

« For the SILO applications, deploying them to thexyrcan reduce the content
transmission cost and improve the user perceivedds.

* The SILO+D applications and LISO+ applications bandeployed to the proxy
to improve the content delivery performance througising the input object to
generate multiple output objects. However, the iappbns should be designed
to reduce the data fetching overhead.

 The deployment of the LISO applications should aters more factors,
including the request rate to the content, andrélgeests’ distribution over the
output objects. To achieve beneficial strategyifferent conditions, we need to
apply the service placement algorithm, which wid bxamined in the next

section.

5.4 Simulations for Service Placement

5.4.1 Overview

The second group of simulations evaluates the Agipd)yistem’s effectiveness
on handling content services. Our evaluation isettagn the “device-independent
authoring service” (DIA), which is to provide propmontent presentations on diverse
client devices. The DIA service usually consistsrany functions [HMO04], such as
layout adaptation, language rendering, navigatioasigh, user interaction
customization, and so on. Although many server-sit@ proxy-side solutions have
been proposed, current research has not given aitehtion to the content delivery
performance of the DIA systems. To fill this gape wlesigned a DIA service
workflow, which contains two ANlet applications, silsown in Figure 5.14. The first
is a document trimmer ANlet, which partitions thiégmal document into particular
deck fragments. Each deck fragment [Wap0O0] is astrassion unit and to be

displayed on the client’s device separately. Tloosé is a language rendering ANlet

112

that generates the final web page using one oétlerdering languages accepted by
the client’'s device. The other functions, such tes tavigation and user interaction
customization, have no direct impact on the contiefivery performance, so that they

are not included in our workflow.

. Trimmed
Doc Trim Rendering
ANlet | ™ Deck ANlet —» Deck Pages
Fragment

Figure 5.14 Device-Independent Authoring Service Workflow

Original
Document

To show how the App.Net system can deliver such Befvice efficiently, we
conducted a series of simulations. These simulatawa arranged in three sets: (i) we
first evaluate the system performance for a sisglwice with dynamic content; (ii)
then we evaluate the performance for multiple sewwith the dynamic content; and

finally (i) we evaluate the performance for muléservices with static content.
5.4.2 Simulation on Single Service

The simulations in this section examine the optipcement algorithm
applied to a single DIA service. We constructecegample document that is of size
15KB. This original document can be trimmed by reanmer ANlet to 10 deck
fragments, each of which is of size 4KB. The aversige of fragments is larger than
1/10 of the original document’s size, because thgnients contain some add-in parts
such as (i) the header and footer, which provideegd information about the
document, and (ii) the fragments index, which ftatiés the client to browse between
different fragments. The Rendering ANlet can transf any deck fragment into the
final deck page by selecting one of three renddanguages, and the average size of
the final page is set to 6KB. The average sizédeffinal deck page is larger than the
corresponding fragment, because the Rendering AMleinsert markup tags into the

fragment and make it a presentable Web page. lti@idwe set all objects have the

113

TTL of 2 seconds. In the simulation, the clientguest all final deck pages randomly.
Our simulation compares three methods: (i) theeseside method that provides the
DIA service on the sever; (ii) the proxy-side methbat provides the DIA service at
the proxy; and (iii) the App.Net method that appliee service placement algorithm.
The simulation results are as follow.

Figure 5.15 shows the transmission costs betweesdtver and the proxy. The
result shows the App.Net method achieves the mimmntuansmission cost. In
particular, when the request rate is less tharséc8the App.Net method causes less
transmission cost than the other two methods. iBhiecause the optimal placement
algorithm resolves to deliver the intermediate dédgments and the language
rendering ANlet to the proxy, whereas the traddioserver-side or proxy-side
methods cannot perform such delivery strategy. Whemequest rate exceeds 2.1/sec
the App.Net method achieves the same transmissisinas the proxy-side method. It
is because in this situation the placement algorittelivers the original document
with the full workflow to the proxy, so that the pfNet method becomes equivalent
to the proxy-side method.

Figure 5.16 shows the user perceived latencies.AfipeNet method achieves
the least latency because it can get the leassrmgsion cost. In contrast, the
server-side method causes the longest user lat&bgn the request rate exceeds
1.5/sec, the latency for this method increasestlgrehie to the massive transmission

of the final deck pages.

114

Transmission Cost

Measured Transmission Cost User Perceived Latency

03 06 09 12 15 18 21 24 27 3
Request Rate (1/sec)

03 06 09 12 15 18 21 24 27 3
Request Rate (1/sec)

C—App.Net ---m--- sever-side method —= App.Net -..m--- server-side method
—o— proxy-side method —o— proxy-side method
Figure 5.15 Transmission Cost Figure 5.16 User Perceived Latency

Moreover, we extend the request rate to 30/secxmme the system’s
processing capacity, where the server-to-proxy walttl is set to 160Kbps. The
simulation results are as follow.

Figure 5.17 shows the system throughput, where stever-side method
achieves the lowest system throughput. When theestqgrate reaches 5/sec, the
server-side method reaches its maximum througtgmat,afterwards more and more
requests are dropped due to the saturation of metwo contrast, the App.Net
method and the proxy-side method can achieve migttehsystem throughput, up to
26/sec. Afterwards, both methods start to drop estg) because the proxy reaches its
maximum computation capability.

In addition, we also measure the server throughgmitshown in Figure 5.18.
The server-side method causes the highest serveugiput, because using this
method all final deck pages have to be fetched fitoenserver. After the request rate
exceeds 7/sec, the server drops most request® cetviork congestion. In contrast,
the proxy-side method causes the lowest serveugimuut as the proxy only retrieves
the original documents from the server. The App.Method causes higher server
throughput than the proxy-side method when theestrate is less than 3/sec. This is

because in the request rate scope from 0 to 4lsplacement algorithm delivers the

115

intermediate deck fragments to the proxy. Howewdren the request rate continues
to increase, the algorithm changes to deliver tihgiral document to the proxy. As
the result, the App.Net method achieves the samversthroughput as the proxy-side

method.

System Throughput Server Throughput

w
o
1
w
()]

)
3]
T
Y
=
w
L]

[N}
o
'
X
%
(7/

=
o

Throughput (1/sec)
&
Throughput (1/sec)

(&)

Request Rate (I/sec) Request Rate (1/sec)
C——1App.Net ---m--- server-side method C— App.Net ---m--- server-side method
—o— proxy-side method —o— proxy-side method
Figure 5.17 System Throughput Figure 5.18 Server Throughput

In summary, the simulation results indicate thahgighe service placement
algorithm the App.Net system can achieve bettdop@ance than the server-side and
proxy-side methods, which place the content serdcéhe server and the proxy
statically. In the next two sections, we will examithe performance of the App.Net

system when handling multiple services.
5.4.3 Simulation on Multiple Services for Dynamic Content

This section evaluates the App.Net system perfocemdar handling multiple
services, which start from dynamic content obje¥ts. published 200 documents on
the server. Every document is associated with the Wworkflow to form a distinct
DIA service. For each service, the number of theegated content objects and the
average size of these objects are the same as ipréiwious section. We assume all
content objects for all services have the sam@rfeof 60 seconds. In the simulation,

the clients’ requests to different services follthe Zipf distribution [BCF99], where

116

A,.. = 0.7. Meanwhile, we set the size of the proxy cachBO@KB, which is 1/6 to

zipf
the size of the simulated working set. The cachpliep the LRU replacement
algorithm. Our simulations compare the performavicihe App.Net method with the
conventional server-side and proxy-side DIA methddse simulation results are as
follow.

Figure 5.19 shows the transmission cost, whereApiNet method achieves
considerably less transmission cost than the dthermethods. For instance, at the
request rate of 10/sec, the transmission coste®ip.Net method is around 1/2 of
the server-side method and 1/3 of the proxy-sidéhatk This suggests our service
placement algorithm can resolve efficient placenfentmultiple services. Although
the algorithm resolves the placement for differsetvices independently, for each
service, it can obtain the optimal placement foroljects in the objects-tree. As the
result, for all services, we can reduce the overafismission cost to the reasonable
extent.

Moreover, the figure shows that along the increa$erequest rate the
transmission cost increment for the App.Net metlsotbwer than that of the other
two methods. This is because our method can auiwatgt adjust the service
placement according to the changing request ratke ke other two methods apply
the static service placement.

The figure also shows the proxy-side method catisedighest transmission
cost. This is because the request probabilitiesafbr200 different services vary
according to the Zipf distribution. Given a fixeotdl request rate, only those most
frequently requested services are suitable to I glaced to the proxy, whereas for

the other services, fully placing them to the praesynot beneficial. Therefore, the

117

proxy-side method, which strictly places all seeado the proxy, actually causes

quite a lot of transmission overhead.

Transmission Cost

100 r
90 -
80
70
60
50 -
40
30
20
10

Transmission Cost (Kbps)

5 7.5 10 12.5
Request Rate (1/sec)

—>— App.Net —o—proxy-side- - -m-- - server-side

Figure 5.19 Transmission Cost

Figure 5.20 displays the cache-hit ratio at thexyprorhe hit ratio for the
server-side method is extremely low, because theshad delivers the final deck
pages, which have poor reusability at the proxy.tmother hand, the proxy-side
method has the highest hit ratio, as it deliveesdhginal documents to the proxy so
that the cached items are likely to cover more estgi Nevertheless, such high hit
ratio is at the expense of high content transmissast as have been shown in Figure
5.19. In addition, the hit ratio for the App.Net timad is lower than the proxy-side
method. This is because our method allows manynrddiate objects to be delivered
to the proxy. Consequently, it decreases the cgeeraf the cached items.
Furthermore, from the figure we see that the cdtheatio of the App.Net method
enhances with the increase of request rate. ltetsalse the placement algorithm
adjusts the service placement under the increasengest rate by placing more
numbers of original objects to the proxy. It causies hit ratio enhances quickly.
However, for the other two methods, the cachedtibrdoes not change due to their

static placement policy.

118

Cache Hit Ratio
60% r

500 0 —m . O °
40% /
30% |

20% |-

Cache Hit Ratio

10% r

0%

5 75 10 125
Request Rate (1/sec)

—>— App.Net —o— proxy-side- - -®- - - server-side

Figure 5.20 Cache Hit Ratio

Our simulation also measures the user-perceivemdgt as shown in Figure
5.21. The server-side method causes the longesichasince this method generates at
the server the final deck pages, which have pooesaiglity on the proxy. It causes
massive content retrieval between the server aerdptioxy, and correspondingly
enlarges the user latency. The figure also showsnvthe request rate is 5/sec the
proxy-side method has slightly smaller latency thlhe App.Net method. This is
because when the request rate is low, the placeatgorithm in the App.Net method
delivers the intermediate deck fragments to thexypréo ensure the lowest
transmission cost. In contrast, for the proxy-siethod, the proxy only needs to
retrieve the original document for each servicettfesresult, in the App.Net method,
the proxy needs to issue more requests to thersiiae in the proxy-side method and
causes more TCP connection delay and request mbpagdelay, which finally
prolongs the user perceived latency.

However, the simulation result also shows that whthincrease of request rate,
the user latency for the App.Net method reduceshti, compared to the latency
increase of the proxy-side and server-side methdds is because our algorithm

adjusts the service placement to keep the tranemissst as low as possible. With

119

the increase of request rate, more original-docusnare placed to the proxy, and the
new placement makes the proxy to issue fewer régji@she server. Consequently,
the cumulative TCP connection and request propagawerheads within the system

are reduced, and this contributes to the reductidhe user latency.

User Perceived Latency

160
140
120
100
80
60
40
20

Latency (ms)

5 75 10 125
Request Rate (1/sec)

—>— App.Net —o— proxy-side- - -m- - - server-side

Figure 5.21 User Perceived Latency

Moreover, we also measure the system performanderudifferent request
patterns, including a heterogeneous requesting asicerand a homogeneous
requesting scenario. In the heterogeneous scerthgoglients request for different
deck fragments and different rending languages wittiorm probabilities. In the
homogeneous scenario, 85% of the requests to eacites target to one main deck
fragment and one major rendering language, whéer¢imaining 15% of the requests
are scattered over the rest deck fragments andnghahguages. To achieve such
varying request patterns, we prepare two requedilgs for both scenarios. The
client simulator first issues requests accordinght® heterogeneous profile for 30
minutes, and then requests according to the honeogmsnprofile for another 30
minutes. In both scenarios, the request distributieer different services follows the

Zipf law (A, . = 0.7), and the request rate is 10/sec. The simulageults are shown

zipf

in Figure 5.22 and Figure 5.23.

120

Transmission Cost User Perceived Latency
100

90 [x 400
80 %ok X >€“x 53 R X x"x % }‘ 350 x x
70 &%”%%W&W &W”%W

300 |
250

60 -
50 © .
200 x x

40
x XX * x x ¥ X X x x X
30 % 10 [x * P x g% xx
R X K g{?‘ R >>$<$5< X
20 100 X S SO

X X,
10 + (.

Latency (ms)
%

Transmission Cost (KBps)
XX

50
0

0
1 101 "
Time 1 101 ‘
——App.Net server-side x proxy-side — App.Net server-side x pfOXY'Sidglme
Figure 5.22 Transmission Cost under Figure 5.23 User Perceived Latency
Different Request Patterns under Different Request Patterns

Figure 5.22 displays the transmission cost undgerdint request scenarios,
where the first half period is the heterogeneowmnado and the rear half is the
homogeneous scenario. The App.Net method achidwedetst transmission cost
under both scenarios. When the request patterngeBamur method can adjust the
placement accordingly. In contrast, the proxy-sr#thod presents poor adaptation to
the changing environment, as it always delivers dhginal content objects to the
proxy without considering whether this is beneficldleanwhile, the transmission
cost for the server-side method resides betweerotier two methods. When the
request pattern changes, the transmission costceésdaorrespondingly. This is
because when the requests become homogeneou®iyegpmore efficient to cache
those popular objects and the transmission treffreduced naturally.

Figure 5.23 shows the user perceived latency urdierent scenarios.
Similarly, we see the App.Net method achieves #estl latency in both scenarios.
The proxy-side method causes much longer latency #re latency jitters
significantly during the simulation period. It swgggs transmitting the original object
for all services to the proxy is wasteful in thiation and it compromises the overall

system performance. In addition, the latency fersbrver-side method falls between

121

the former two methods, and the latency reduceswhe request pattern changes
from heterogeneous to homogeneous due to the reduat transmission cost as
explained above.

In summary, the simulation results indicate the Algh system can perform
efficient placement for multiple services, and @rifies the effectiveness of our

performance model for dynamic content service aedptimal placement algorithm.
5.4.4 Simulation on Multiple Services for Static Content

This section evaluates the App.Net system perfooadar handling multiple
services, which start from static content objetse simulation is still based on the
DIA service while the published 200 documents dlrstatic content. The simulation
results are summarized in Figure 5.24. We also umeathe system performance
under the heterogeneous and homogeneous requeséngrios, as shown in Figure
5.25, where the first half of simulation periodthe heterogeneous scenario and the
rear half is the homogeneous scenario. The sinonlaisults show the same trend as
our previous simulations for the dynamic contentvises, and it verifies the
effectiveness of our performance model for theistintent services. The detailed

explanation will not be repeated here.

Transmission Cost User Perceived Latency

120
<3
g 100 300
2 g0t 250 -
O @°
§ 60 g < £ 20
8 VREIEE S) 3 150 |
£ 4 _xem T 3
c - E 100 .
[-
= 20

50 -

0
10 12 14 16 18 0
10 12 14 16 18
Request Rate (1/s)
. . Request Rate (1/sec)
—-X--App.Net---m--. server-side—o— proxy-side
—-X--App.Net---m--- server-side—o— proxy-side
(a) Transmission Cost (b) User Perceived Latency

Figure 5.24 System Performance for Static Contents

122

Transmission Cost User Perceived Latency
160
‘g 140 t N . 900 1
Q W X X X x 800
élzoz’*ww"%x%%% o X% R 8% x x
g w;;‘x&’& xxw’%ﬁ% %W%& 700 [~ x xxx x X X * x XX
0100' XY XA NAINK) X x 7”\600*% X% x xx)§‘>$< %x x"g? x X x
% x5 x X% X ¥ %
c £ *)&x)e?“ XX XxoX &x X nEX x T x XORX
o 801 > 500 [< e, x . x % XXX o XX x
8 60 { %400’ xxx xxxxxx yxgx% X % Xxxxxx
£ = X x x x XX x
S 40 — 300 x| x| ok x
= X
F ool 200 & AW x
[x Xy I X x
o 100 i
1 101 Time 0 1 1;)1 Time
—— App.Net server-side x proxy-side —— App.Net server-side x proxy-side
(a) Transmission Cost (b) User Perceived Latency
Figure 5.25 System Performance under Different Request Patterns
5.5 Summary

This chapter explains our system implementation dhd performance
simulations. Our simulations are organized as t®pss The first set of simulations is
based on some representative Web applicationsanafiplication taxonomy. The
results indicate our App.Net mechanism has poteatlaantages to a wide range of
Web applications. The second set of simulationduetes the effectiveness of the
App.Net system when dealing with content serviddse results show our system
outperforms the traditional server-side and proxlg-gnethods, due to the usage of
the optimal service placement algorithm. From tkeefggmance evaluation, we can
conclude that the App.Net system can achieve higkeiormance than the existing
active Web systems, because it can deliver intelateed¢ontent and partial service
according to the performance requirement, whedgasatdvantage is not provided by

the conventional frameworks.

123

CHAPTER 6

APPLICATION NETWORKING METHODOLOGY IN

PEER-TO-PEER NETWORK

6.1 Motivation

P2P networks provide scalable data sharing andyquechanisms, which are
helpful to implement the efficient content deliveaystems. Typical systems have the
file sharing systems [DKKO01, RD01, Kaz, BitC], tReP based Web content delivery
systems [IRD02], and the multicast systems [CDK®&jwever, recently, these P2P
systems witness more user-customized queries,altieetemergence of diverse user
devices and network connections, and the additigmabonalized demands. For
instance, a peer node residing on a PDA may ptefeatrieve an image cropped to fit
its small screen.

Such heterogeneous requirement motivates the P2nsy to render the
customizable content services to provide the hestdntent. A straightforward
method is shown in Figure 6.1. In this method, ¢batent provider publishes the
content service, which contains the original cohtebject and its transformation
applications, at the home node. When the home rexmves a query, it will execute

the service applications to transform the origioahtent for the client. The system

124

will deliver the customized response object to thient, and at the same time

replicate this object in the P2P network.

Content Content Content ﬂ

Service 1 Service 2 Service 3 Client

e i

Peer-to-Peer Substrate -+ Peer-to-Peer Substrate

Peer-to-peer network

Figure 6.1 A Straightforward Content Service Methodology in the P2P Network

However, the main drawback of this method is ti&t ¢ustomized response
objects can only achieve limited peer sharing & rietwork, since it is not reusable
for other user groups with different requiremeiitse low peer-sharing capability will
compromise the system performance from severactspe

(1) The low peer-sharing capability causes more nodelet involved to find the
correct version of content for a query. The enldrgaery scope naturally causes
longer query latency or even the failure of query.

(2) In the proximity-aware networks, where the querprspagated from the nearby
to remote nodes, the enlarged query scope resultisat the found destination
node locates distantly from the requesting nodethrsdnormally implies larger
content transmission cost and longer retrievahlate

(3) The reduced peer-sharing capability causes morgeguevhich cannot find the
sharing peer, to be served by the home node otdnéent service. This will
burden the home nodes especially those publishdpelar content services.

To address above drawbacks, we propose to applippkcation Networking
framework in the P2P network. To render the custalrle content service and at the
same time improve the peer-sharing capability, se the P2P network to propagate

not only the response objects but also the condentices. The content service

125

includes the original content data, the servicekilow, and the relevant applications.
By reusing these components, the recipient nod#sberiable to serve clients with
heterogeneous requirements. We name this method@e®gAN.P2P. This chapter
emphasizes on explaining the methodology, whiletaittd AN.P2P system will be

studied in the next chapter.

6.2 Methodology

6.2.1 Overview

The general architecture of AN.P2P is shown in fagai2, where the AN.P2P
platform performs as a middle tier between the uppentent services and the
underlying P2P substrate. The P2P substrate i®megpe for content delivery, and
the content service is responsible for generathey dorrect response object. The
AN.P2P platform is responsible service executioth @plication, and it integrates the

content delivery process with the content transédiom process.

Content Content Content %

Service 1 Service 2 Service 3 Client

A
\ / Peer-to-peer network i

AN .P2P Platform

AN .P2P Platform

Peer-to-Peer Substrate Peer-to-Peer Substrate

Figure 6.2 AN.P2P Methodology in the P2P Networks
The AN.P2P platform describes the content servica workflow, as defined in
Chapter 3. Feeding the original content objecthi workflow applications, we can
generate the customized response object for thatclThe platform provides storage
space for the published content service and renthersuntime for executing its

applications. The platform also uses some spamedpacache the replicas of content

126

services populated from other nodes. When the R2Rtmte receives a query

message from the network, it will relay the queryhe AN.P2P platform, which will

find out whether the present node publishes thiteru service or stores a replica of
the service. In either situation, the platform Wahd the service components from the
local storage and execute them to serve the query.

Our research uses Pastry, a representative DHTonletas the P2P substrate.
This is due to the following reasons:

(1) The Pastry network is intensively studied by redeans. A lot of Pastry based
systems have been or are being developed, sucASiE [RDO01] for file sharing,
Squirrel [IRD02] for distributed Web caching, anpli§stream [CDKO03] for data
multicast. The recent puTorrent [Utor], BitComet B}, and BitSpirit [BitS]
systems also use Bamboo DHT [Bam], a revised Ppsbitpcol, to implement the
tracker-less Bit-Torrent [BT] system. Thus, our R8P study based on Pastry
will have a widespread effect to these contentesyst

(2) The Pastry routing is based on an identifier prafgorithm and the routing table
is constructed using the node’s proximity awaren€hsse features are helpful to
implement efficient content service replicatiorthe network.

(3) The open source for Pastry is Free-Pastry [Pastyigh is developed using Java
that provides well support for loading and exeaytime dynamic ANlet modules.
Hence, our prototype system is implemented upori-the-Pastry platform.

Our following discussion calls the node that puidis the original content
service as the “home node”, the node initiatingghery as the “requesting node”, all
nodes forwarding the query message as the “inteateedodes”, and the node that
finally serves the query as the “serving node”the AN.P2P system, the serving

node can be the home node of the queried contents®r an intermediate node that

127

stores a replica of the service. To distinguistséhevo possibilities, we call them as

the “home serving node” and the “intermediate sgyviode” respectively.
6.2.2 Pastry Network

Pastry network assigns each nodenabit identifier (id), wherem=128. The
node ids are generated using a uniform hashingitmcso that the resulting set of
ids is uniformly distributed in then-bit identifier space. Moreover, the Pastry routing
protocol represents eathbits in id as one digit, so that the id can bensaenm/b
digits, with base 2 in sequence. We cdllas the “id-base”. Meanwhile, the data’s id
is organized in the same way as the node id, astthites the same identifier space.

To employ the Pastry routing protocol, each nodentais a routing tabl&, a
leaf setL, and a neighborhood skt The leaf set. containsll| nodes whose ids are
numerically closest to the present node’s id. Thighborhood seM contains M|
nodes that are physically closest to the preseté.ribypical value ofL| and M| is 2
or 1. Supposing the whole network contaiNsnodes, the routing table would

contain|_log2b N |rows with 2-1 entries in each row. Each entry at rovefers to a

node whose id shares the present node’s id initstd digits, but whosé+1th digit
has one of the"2L possible values other than theth digit in the present node’s id.
Pastry provides a mechanism, making use the neibbbd set of local node or
propagated from other nodes, to enable each nodid its routing table with the
nodes that are physically close to the present.node

Each Pastry message contains a key (i.e. id oy,datd the network will route
the message to the node whose id is numericalestao the given key. The routing
process is accomplished in a hop-by-hop manneeath hop, the node first checks
whether the key is covered by the node’s leafltst, the message will be sent to the

numerically closest node in the leaf set. Otherwtise node will look up its routing

128

table. The next-hop node’s id should share withkiae a prefix that is at least one
digit longer than the prefix that the key sharethwie present node’s id. Such a node
should exist on row=shlk,d)+1 of the routing table, where skifl) denotes the
length of the prefix shared between the key andpitesent node’s id. Then, the
algorithm chooses from the selected row the negt#mde, whosét1th digit equals

to thel+1th digit of the key. If no such a node is foutits message will be forwarded
to a node whose id shares a prefix with the kelp@g as the present node’s id, but is
numerically closer to the key. Supposing the adeurauting information and no

recent node failure, the message should reachdstndtion node withiﬁlogzb N

hops.

In the Pastry network, the expected distance tealvby a message during each
successive routing hop is exponentially increasiige reason is that any entry in the
routing table’s rowl is chosen from a node set with si&2”, which decreases
exponentially by rows. Given the random and unifahisiribution of node id in the
network, the expected physical distance from thesgmt node to the nodes referred
by each successive row of the routing table widréase exponentially.

The Pastry network also provides replication meigmarthat allows a node to
replicate its data tk numerically closest nodes, whéres a configurable variable and

its value usually satisfiek <| L |. These data replicas are mainly used for improving

the data availability in case the home nodes lgheenetwork. The replicas can
distribute the queries over several nodes, so tti@t can achieve somewhat load
balance in the network. However, such load balaneiifect is quite limited, because
the replica placement is static and the numbeeplicgas cannot reflect the popularity
of the data. Therefore, some Pastry systems (6A&TP[RDO01]) replicates the

delivered contents along the query path. Theseiceeplwill be reused to the

129

subsequent queries with the same key. As a rabidtmore frequently a content
object is queried, the more its replicas will bepplated. Such system level
replication can achieve much better load balanea ttihe preliminary replication
provided by the Pastry network. However, as expldjrpopulating the customized
content objects is not efficient to serve querié Wweterogeneous requirements. This

issue will be addressed by our AN.P2P methodology.
6.2.3 System Operations

The system operations for the AN.P2P methodologyllstrated in Figure 6.3.
In the figure, we suppose nodgiP the home node for a content service, and ngde P
is a requesting node that requests the conteniceeon B. The figure also shows
nodes B, P, P, P; and B form a query path, and the length of this path,ig term

of routing hops.

quer\y msg
\

\
ANlet |
downloading ,'

response

msg

-aﬁé'w s

Figure 6.3 AN.P2P over the Pastry Network
When a content service is published by the corgemtider, it is assigned with
a unigue id. The service is organized as a workflowluding the original content
object, the workflow specification, and the relevakNlet modules. All these
components are stored at the home node. We asduime laeginning only the home

node stores the content service.

130

The Pastry network will route the first few querteshe home node. When the
home node (e.g.4Preceives the query, its Pastry substrate relagsquery to the
upper AN.P2P platform. The AN.P2P platform willdietthe queried content service
from the local storage, and execute the servicéicapions to transform the original
content into the customized response object wipeet to the query parameters. The
response object will be sent to the requesting rfedg R).

Meanwhile, the home node can replicate the queradent service to other
nodes. Some Pastry systems, like PAST [RDO01],cafdicontents to all intermediate
nodes in the query path (e.g. P1, P2 and P3). HenvevAN.P2P, we choose the last
intermediate node in the query path (e.g. P3) piiaate the content service, because
of the following reasons.

1) Since a content service involves one original aantebject and multiple
applications, significant replication overhead viaél caused if replicating them to
all intermediate nodes in the query path.

2) According to Pastry routing protocol, the potenteglica reuse rate will decrease
about 2 times per hop, from the rear (e.g) Bo the beginning (e.g.oPof the
query path. Therefore, replicating service to tast intermediate node will be
much more beneficial than the previous nodes irgtlery path.

3) In the Pastry network, the distance traveled byeasage during each successive
routing step is exponentially increasing. Therefaeplicating service to the last
intermediate node can most significantly improve tlontent retrieval proximity
because this node (e.gs)Hs usually dispersed to the home node (eq. P
However, the improvement for replicating to thentronodes (e.g. Pand R)

becomes insignificant.

131

Therefore, we use the so-called “last-hop replcdtimethod in AN.P2P. To
accomplish the service replication, the home noeleds a replication message,
containing the original content object and the Jlok specification, to the
replication node (e.g.3P When that node receives the replication messtgPastry
substrate will relay the message to the upper AR.patform, which will store the
content object and its workflow specification irtee local cache. Meanwhile, the
node also downloads the required applications dawgr to the workflow
specification. After the replication node downlodldsse applications and stores them
into the local cache, the content service is fuélplicated on the node. Any node
maintains the replicated services in an autononmasner. It can evict low utility
service replicas while retaining the high utilitpes. We can leverage the existing
cache replacement algorithms [CI97] to perform iserveplacement.

When the AN.P2P node (e.g)Peceives a query message, it first determines if
it is responsible for the queried key. If it isathmeans this node is the home node for
the queried service and it will serve the querydssussed above. However, if the
node is not responsible for the key, it will seaticé local cache to check if there has
a replica of the queried service. If there is nalica, the node will forward the query
through the Pastry substrate. However, if ther® igplica hit, the node will perform
as the “intermediate serving node” for this quétryvill load the service applications,
generate the response object, and send it bable tetjuesting node.

Meanwhile, this node will replicate the queried @ service to the last
intermediate node. It means that every time theiceis queried, it will be replicated
by the serving node. Through such process, theenbskrvice is propagated within
the network. It makes the frequently queried sewito have more replicas than those

rarely queried services. Such distribution is hdlpd improve the load balance and

132

content delivery efficiency in the whole networknce the numbers of service

replicas are proportional to the popularities @&fsth services.

6.3 Performance Analysis

This section evaluates the performance of the AR.FP2ethodology. We
assume the network hadsnodes andV distinct content services. Each node has the
probability o of being down, including the graceful leave anel timexpected failure.

Supposing the Pastry hashing function can diseibléseN nodes uniformly on the

id ring, the approximate numerical distance betwsem adjacent nodes i2" /N ,
wheremis the length of id bit.

We denote content service @q1<i<M), and suppose the service can generate
w response content objects,(1<j<w). Let Sx andS, denote the average size of the
content services and the response objects reselctilet 4; denote the request
probability to objecto;, and/; denote the request probability to servigeAs we
consider the heterogeneous environment, where |t requests are distributed
over different output objects, we have EQ.6.1, whtre requests to all response

objects form the entire requests set.

M w
S =1 and A, = =4 (Eq.6.1)
i=1 j=1 N
We choose the performance metric for the Pastryorét as the “number of
query hops” (QH), which is the number of nodes Ined in the query-forwarding
path. Our analysis starts from providing a utikgorithm to calculate the expected
guery hops for one piece of data. Based on thigyugilgorithm, we will compute the

expected query hops for the service replicationhottand the object replication

method respectively.

133

6.3.1.1Utility Algorithm

In this section, we calculate the expected quepstfor a piece of data, which
hasr replicas in the network. Given a requesting nattk arandomly generated key,
let the random variablél denote the number of query hops needed to reazh th
serving node. LeT be the random variable that is the clockwise distain term of
the number of nodes, from the requesting nodeddtime node for the key, so that

0<T <N-1 and the probabiliti?(T =n) :%.

Let E/(H) denote the expected hops for querying a pieaat withr replicas
in the network. We can calculai(H) through equation Eqg.6.2, which means that the
calculation on the values d& (H[T=n) suffices to compute the findt,(H). To
simplify the notation, we udg(n) to represeni,(H[T=n).

Note that h, (0) =0, as shown in Eq.6.3, since a loop-back query godbe
local node directly. In addition, a query to thegent node’s leaf set, which is of size

|L|=2°, can reach the responsible node in one hop, sombidave Eq.6.4, where

2’ IL]

l<n< . refers to the7 nodes those are numerically closest to and withela

2° |L]

id than the present node, arN—E <n< N-1 refers to the7 nodes those are

numerically closest to and with smaller id than phesent node.

E,(H)= Y P(T =n)E,(H |T =n)

(Eq.6.2)
1 N-1
=—> E(H[T=n)
N n=0
N-1
=13 h ()
N n=0
h (0)=0 (Eq.6.3)

134

b b Eq.6.4
hr(n):l,wherelsns% or N—%snsN—l (Fa64)

The Pastry routing process can be described amdjritie correct row in the
routing table and the correct column in that rodwe Pprocess of selecting the correct
row can be described as choosing a best strideuding in the id ring. The possible

strides can be divided intoyb levels. Each stride level, denoted Ibgorresponds

to one row of the routing table. The minimum strigle2”, which corresponds to the

m/bth row of the routing table, and this is the filstel of strides (i.e.l =1). The

m

: 2 . ,
maximum stride |s?, which corresponds to the first row of the routtable, and

this is the nybth level of strides (i.el = nyb). The stride increases bg" times for
each pair of successive rows from thebth row to the first row. Let, denote the

best stride level to forward the message, wheeen< N — . Thk “best” means the
chosen stride should go to a node that is numéyicldsest to the query key among

all the m/b possibilities. Therefore, we can resollg as in Eq.6.5, and the
m .
E_I” +1th row is the selected row.

h=max @) <20, and 1s1s) (E.6.5)
Then, the node needs to determine the next hop flodethe 2 columns in

this row. As the entry whose id shares the ﬁrbrgt—ln +1 digits with the key will be

chosen, we can calculate the best columnas in Eq.6.6, wherej, is the space

between the columns occupied by the present nadléharchosen column.

jo =max{j|jo2")" <%,and 0<j<2% (Eq.6.6)

135

byl,
If this best node is available, the query will adiea {%1 0j, nodes on the

id ring. However, if this best node happens to berrd a sub-optimal node will be
chosen from thej, — Icolumns between the best column and the columopoed

by the present node. If the sub-optimal node isfoat the Aj th adjacent column to

byl,
the best column, the query will advanFeéi/—)N—lmjn —/Aj) nodes on the id ring,
where 1<sAj<j, -1

However, if the node cannot find the next hop ntdden above steps, it will

b

choose from the leaf set. In average, the queryaditance nodes, a quarter

m

of the leaf set’s width.
Supposing there arereplicas of the queried data in the network, therg will
be served if the next hop node has a replica. @eriag all possibilities above, we

can computeh, (n) asin EqQ.6.7.

h.(n) =1+ iqn(Aj)(l- p, (ny)h(ny) +a,(L)A- p, (N)h, (n,)
o b-1 b-1 (Eq.6.7)
where 2°"<n<s N -2,

@
Ny =N lrzm/N—‘llJn 4j),

b
and n;_ = n_j

n, denotes the new value of variablé the message is forwarded to the node
at the Aj th adjacent column. Meanwhiley, denotes the new value of varialoléf
the message is forwarded to a node from the leaEge6.7 shows the computation of

h, (n) can be reduced to the computation oflaj(n'Aj) and h.(n_) values.

136

In Eq.6.7, g, (4]) denotes the probability that th&j th column is chosen as
the next hop. The value of|,(A] ¢an be calculated by Eq.6.8, whede denotes
the probability a node is down. In addition, lgf(L dgnote the possibility that the

next hop node is chosen from the leaf set. Theevafug, (L) should bed’, as in

Eq.6.9, which means all nodes of fheolumns in the chosen row are down.

d,(4j) = 0% (L-9) (Eq.6.8)

g,(L)=a" (Eq.6.9)
In addition, pr(n'Aj) in EQ.6.7, denotes the probability that thl th
sub-optimal node has a data replica, apdn, denotes the probability the chosen
leaf set node has a data replica. We calculate vhkies as the following steps.

Pastry is a sparse network, whele<< 2™. Thus, the routing table, which can
contain at mosiwb rows, is usually not fully filled. Only the firgf, rows are used,

wherety is calculated by Eq.6.10.
t, =min(|(2°)' > N) (Eq.6.10)
According to the Pastry algorithm, the replica misttion p,(n) should
follow trend p, (2") = 2° [p, (2°*Y), where 1<1 <t — 1 This is because a node,
whose numerical distance to the query key is28f™ <n< 2", is likely 2° times

being queried for this key than a node in scapfé<n<2°? . Considering

p,(n) <1, we have EQq.6.11, whepeis a probability factor to be resolved.

137

m

p, when2"™° < n% < 2P)

2

min(2° p.1), when2® " <n : (Eq.6.11)

< 2t —l)b)

p. () = .
min(2"2° p 1), wher(2" < n% < 2%)

min(2*™° p 1), when(0 < nZI\T <2

To resolve Eq.6.11, we omit constram(n) <1 first, and resolve the initial
value ofp by Eq.6.12. Then, the initial valuesm(n) for all scopes can be calculated.
For those scopes, whogpgn)>1, we fix theirp,(n)=1, which means each node in
these scopes has one replica of data. Then, walvs¢® Eq.6.12 to get the ngw
value for the remaining unresolved scopes. Suchtite is convergent as each time

there are less unresolved scopes left, and it sttyes thep,(n) for all scopes are not

greater than one. These firp(n) values provide thep(n’Aj) and p(n_) in Eq.6.7.

r= tz p 24P [— 2l-1b) (Eq.6.12)
i=1
Combining the results above, we can calculatehalh¢n) values in Eq.6.7 and
finally the value of E, (H) in Eq.6.2.

® Example Computation

Figure 6.4 shows the computégdH) values in a Pastry network with 10,000
nodes, where=3. The curves plot thie,(H) values under five node-down rat&gH)
reduces with more data replicas are populatedam#twork, and enhances with the

increase of node-down rate.

138

10,000 Nodes

E(H)

0 500 1000 1500 2000 250

Number of Replicas (r)

Figure 6.4 Predicted Query Hops in the Pastry Network
6.3.1.2AN.P2P Performance Prediction

Based on the utility algorithm, this section congsuthe expected query hops,
E(QH), for the service replication method and the dbjeplication method. We
supposeM content services are in the network and each emergtew response
objects. Each service or response object would haspecific number of replicas) (
For concise presentatiok;(H) is written as~(r) in the following discussion, which
means the number of query hops for the considesrdce or object is a function of
its replica number. Our discussion considers tlseenarios: (i) the conventional
Pastry network, (ii) the AN.P2P network, and (the hybrid network with both the
AN.P2P enabled nodes and the conventional nodes.

In the conventional Pastry network, the contenviees are executed at their

home nodes and the response objects are poputated network. Let; denote the

number of replicas for objedi;, and we haver; =, % where /; is the query

probability foro;, Sris the total network storage size, aé®dis the average size of

response objects. TH&€QH) for the whole network is calculated by Eq.6.15.

139

E,(QH) = ii[/‘ij F(rij)]

i;l j;l S, (Eq.6.15)
= ZZ[AU F(/]ij g)]

In the AN.P2P network, the content services ardicaied. Letr; denote the

S,

number of replicas for serviag, and we haver, = A, S where A, is the query
X

probability to servicen;, S is the average size of service. TBEH) for the whole

network is calculated by Eq.6.16.
M
E,(QH) = Z/]iF(ri)
i=1

= UG AN FQ A, B0

izl j=1

(Eq.6.16)

M w
- ZZ{A” F(w i)}
i=1 j=1 Sx
Considering F(r) is a decreasing function of variable if condition
wS, > S, is satisfied, we can infer thaE, (QH) > E,(QH). This means in the

heterogeneous environment, where the clients’ geesre scattered over different
content objects, if the cumulative size of the oese objects is larger than the size of
the content service, replicating the content sesiwill be more beneficial than

replicating the response objects, in term of regyithe number of query hops in the

network. In actual situation, conditiowS, > S, can be satisfied by many content

services that reuse an original content to genaratry response objects. In most
cases, the total size of the output objects is ntaicfer than the summed size of the
original object with the service applications. Thwe can see that for a wide range of
content services our AN.P2P method is more efficthan the conventional Pastry

systems to serve the heterogeneous queries.

140

Finally, we consider a hybrid network with both t@ventional nodes and the
AN.P2P nodes. In this scenario, the response abjaceé propagated on the
conventional nodes and the content services aralgtepo on the AN.P2P nodes. Let
Sy denote the total storage size of all AN.P2P nodasd, correspondingly the total
storage size of all conventional nodesSisSr-Sy. Since a query can be served if it

reaches a replica of service or a replica of thetedobject, we can compu£QH)

for the whole network as in Eq.6.17. Supposi;z’higzi and wS§, >S,, we can
w

infer that the value dE3(QH) will reduce fromE;(QH) to Ex(QH), whenS; enhances
from O to S;. This conclusion means with more nodes are AN.B@&bled, the

average number of query hops in the network wilue correspondingly.

E;(QH) :iZW:Aij F(r +rij)
_~ g Sk, S~ Sy
_;j:l[AijF(;/]il S, +A s,)]

(Eq.6.17)

w

6.4 Simulation

6.4.1 Overview

We performed a set of simulation experiments tdaepthe advantages of the
AN.P2P methodology. Our simulation is based an RR.Brototype implemented on
the Free-Pastry platform [Pastry]. The simulatisesithe pervasive image provision
as the sample service. The service workflow isioaiggd from a Jpeg image and
contains two workflow ANlet applications. The firétNlet can resize the original
image to 5 different dimensions, including the oréd dimension, to fit the display
size of the clients’ devices. The second ANlet tamscode the image from Jpeg
format to Gif and BMP formats. One of these threeniats will be chosen according

to the client’s preference.

141

As the P2P overlay is generated by the network logyo emulator of
Free-Pastry, to lessen the impact on the simulaésults due to the topology change,
we performed each set of simulations repeatedly cligécted the average results.
The simulation network has 5000 nodes and 5000 Jmeges. Each image is
associated with the service workflow to form a pi@f image service. The sizes of
the original images follow the Pareto distributig@B96], where a = 125 and the
minimum and maximum sizes are 500KB and 10MB respeg. The requesting
nodes are randomly chosen in the network, and taegomly query an image
presentation with specific dimension and format.e Tiequest probabilities over
different image services follow the Zipf distriboi [BCF99], whereAd = 0.7

Our simulations compare the AN.P2P method withpllagn P2P method, which
executes the content service at the home node gmalgies the response objects in

the network.
6.4.2 Computation Result

Before giving the simulation results, we presem ¢omputation results, using
our mathematical model, as in Figure 6.5. Figujep(ats the values oE;(QH) and
E>(QH) under different node cache sizes. The resultisatel the Pastry network with
only the AN.P2P node£§(QH)) achieves less query hops than the network witia o
the conventional node&{(QH)). Figure (b) plots thé&3(QH) under differentSy/Sr
ratios, where&s4=0 means the network consists of only the conveatinodes and the
$=Sr means the network only contains the AN.P2P nobles.result shows that with
more AN.P2P nodes join the network the averageygteps reduce accordingly.
Figure (c) presents thEz(QH) under different node-down ratés where the node
cache size is 40MB. The results show higher failate causes larg&(QH) value.

The network with only the AN.P2P nodes (right eridlee curve) outperforms the

142

network with only the conventional nodes (left eridhe curve) under all node failure
rates. The advantage of the AN.P2P method becongsficant under high

node-down rate.

3.2
3.4
§
i
3t X
. 0\"\0\0\0 ug,_ 2.8 A
2 28} I
> >26f
T 26 g —o—5MB
& .4l —m—10MB
2.4
—o—E1(QH) —A—20MB
22 E2(QH) 2.2 - —x—40MB
—x— 80MB
2 - 2 L L L L
5 10 20 40 80 0 0.2 0.4 0.6 0.8 1
Cache Size on Each Node (MB) SH/ST

(a) Query Hops under Different Storage (b) Query Hops under Different SH/ST
Capacities Ratios

M % e=08

—x—e=0.6

[En
o

g8 7t A e=04
T 6l ~m - e=02
§ —o—e=0
&

N w R ol (o)) ~ (o] (o]
/

0 0.2 0.4 0.6 0.8 1
SH/ST

(c) Query Hops under Different Node Failure Rates

Figure 6.5 Computation Results

6.4.3 Simulation Group 1

The first group of simulations compares the genpeformance difference
between the AN.P2P method and the plain Pastry adetm the simulation, we

varied the cache size on each node from 5MB to 80{ieries are issued into the

143

network till the service or object replicas satarall node caches, by then the network

becomes stable and the system performance is neglagine results are as follow.
Figure 6.6 illustrates the average query hops & two methods. In the

simulation, we seb=3, so that the queries can be routed to the hoate rn

log, 5000= 4 hops. However, due to the replication of servic®lgect, the figure

shows both methods can achieve less than 4 hopsn Veger caches are applied, the
number of query hops reduces, as more replicasliamgbuted in the network. The

figure also shows the AN.P2P method gets less gheps than the plain Pastry
method. When larger caches are applied, the diféerebetween the two methods
becomes more significant.

Figure 6.7 shows the replica-hit ratio, which isucted as the percentage of
gueries served by the intermediate nodes that teglieas of the queried services (for
the AN.P2P method) or the wanted response objémtshe plain Pastry method).
The AN.P2P method achieves about 20% higher repiicatio than the plain Pastry
method. It means more queries can be served byntbemediate nodes using the
AN.P2P method than the plain Pastry method, bediesenage services have higher
reusability than the customized image presentatitfmeover, with larger caches

being applied, the advantage of the AN.P2P metleadines more significant.

w
i
S o
~N ©

o
=)
T

05

Replica Hit Ratio
o
S

—o—nplain 02

2279 | ---m--anp2p Cu 01t ---m--anp2p

5 10 20 40 80 5 10 20 40 80
Cache Size (MB) Cache Size (MB)

Figure 6.6 Query Hops Figure 6.7 Replica Hit Ratio

144

Figure 6.8 shows the content retrieval distanceachvis a ratio obtained from
dividing the physical distance between the requogstiode and the serving node by
the distance between the requesting node and thieess home node. The value of
retrieval distance should range from O to 1, rdiitgcthe content retrieval proximity
within the system, where smaller retrieval distamoplies better content retrieval
proximity. The result shows the AN.P2P method adtsesmaller retrieval distance
than the plain Pastry method. It suggests thani.P2P enabled Pastry network
the requesting nodes are more likely to get contemh the nearby nodes. In the
actual network, such better retrieval proximity alby implies less transmission

traffic and shorter content download delay.

0.9
o 08
c
8
807}
g
206 ‘.
E .
05 .
—o—plain
0.4 | |
---m---anp2p
0.3
5 10 20 40 80

Cache Size (MB)

Figure 6.8 Retrieval Distance

This result is due to the co-effect of the AN.P2Retmd and the
proximity-aware routing of Pastry. On one hand,ANeP2P method can improve the
replica reuse through replicating the content ses/ziHence, the requesting node can
find the serving node with less query hops. Ondtieer hand, the proximity aware
routing mechanism of Pastry can make sure the messdorwarded from the nearby
nodes to the remote nodes. It means with more bepsy involved the message

always arrives a node that is farther to the retugsiode than the previous node in

145

the query path. Combining these two aspects, asAM®&2P method reduces the
number of query hops, the physical distance betwbenrequesting node and the

serving node should reduce accordingly.
6.4.4 Simulation Group 2

The second group of simulations measures the chahggstem performance
along the time. We continuously issued queries thi network and measured the
system performance for every 1000 queries. In itmelation, the cache size on each
node was fixed to 20MB, and the results are asvioll

Figure 6.9 shows the replica hit ratio for both noets. The results indicate the
replica hit ratio for the AN.P2P method increasascimfaster than the plain Pastry
method. The figure also shows the hit ratio for1Bamost frequently queried services,
which count for 10% of all queries. For the AN.P2iethod the hit ratio increases
sharply at the beginning of simulation, and aft€,000 queries nearly all the
subsequent queries to the top 10 services areséywehe intermediate nodes. In
contrast, the plain Pastry method cannot achiewvepaoable hit ratio. The result
indicates our AN.P2P method can offload the butsrigs in short period of time,
and this is important for those popular contenvises to distribute the bursting load

as fast as possible.

Replica Hit Ratio
o
w

—&—anp2p
— — — -plain(top10)
anp2p(top1q

0 10 20 30 40 50
Queries (thousand)

Figure 6.9 Replica Hit Ratio

146

Figure 6.10 presents the content retrieval distane the beginning of
simulation, the retrieval distances for both methedual to one, which means the
gueries at this stage retrieve the contents fre@rhttme nodes. With more queries are
issued, the retrieval distance for the AN.P2P netmps much faster than the plain
Pastry method. The figure also presents the retrigigtance for the top 10 services.
The retrieval distance for the AN.P2P method drsiparply to 20% of the original
distance after 10,000 queries are issued, wheheagistance decrement for the plain
method is much slower. This result enforces ouument that the AN.P2P method
can distribute the burst queries to the intermedreides much faster than the plain

Pastry method.

1

09 |

0.8 [

0.7 |

0.6 [

05 |

04

Retrieval Distanc

03 |
0.2 |

01 L —>— plain —a—anp2p
— — — —plain (top10) anp2p (top10)

0

0 10 20 30 40 50
Queries (thousand)

Figure 6.10 Retrieval Distance

Figure 6.11 presents the two methods’ replicatiost,cwhich is calculated by
multiplying the size of the replicated data witle tthistance between the serving node
and the replication node. For the AN.P2P methaoel réiplication size is the total size
of the original content and the service applicatjaand the replication node is the last
intermediate node. For the plain Pastry methodyépécation size is the size of the
response object, and the replication nodes anatelimediate nodes along the query

path. The result shows the AN.P2P method causeh tass replication cost than the

147

plain Pastry method, as the latter method repkceteall intermediate nodes while the
former only replicates to the last intermediateanod

Moreover, the replication cost for the plain Pagtigthod fluctuates greatly
during the simulation period, compared to the dgidaeduction of the AN.P2P’s the
replication cost. This is because the responsectshjeeplicated by the plain method,
have poor reusability at the intermediate nodesressilt, these objects are likely to
be replicated, evicted and re-replicated. Such litapthrash” phenomenon is the
main reason for the fluctuation of the replicatamst. However, the AN.P2P method
causes much smoother replication cost during timeulstion period, since the
replicated services have better reusability onititermediate nodes so that replica
thrash effect is not significant. The graceful retthn of the replication cost is
because, according to the proximity routing, thdyeeeplications happen between

distant nodes while the later replications happetwben nearby nodes.

30

Billions

——plain

Replicate Co:

0 10 20 30 40 50
Queries (thousand)

Figure 6.11 Replication Cost
6.4.5 Simulation Group 3

In the third group of simulations, we continuouséduced the percentage of
AN.P2P nodes in the whole network. The system padnce was measured for
different percentages of AN.P2P nodes remaininghan network. The results are

given in Figure 6.12, where the cache size on eade is 20MB. The figure shows

148

with the dropping percentage of AN.P2P nodes, {fstem performance (replica hit
ratio and retrieval distance) declines accordingfilhen no AN.P2P node is in the
network, the whole system degrades to be a cororaitPastry network. The results
suggest we can deploy the AN.P2P nodes into tretiegiPastry network. With more

AN.P2P nodes join, the overall system performanitiemprove gradually.

0.5 0.9

0.45 4 0.8

0.4 + 107
(0]
g 035 {068
S G
x 03¢+ =
= 4 0.5 o
T o5) b=
8 {04g
g_ 0.2 - =
[0
2 015 | 108¢

01 L —=— Replica Hit Ratio | 1 0.2

0.05 - —e— Retrieval Distance | 1 0-1

0 0
0% 25% 50% 75% 100%
Ratio of the AN.P2P Enabled Node

Figure 6.12 Performance Under Different Percentages of AN.P2P Nodes
6.4.6 Simulation Group 4

The last group of simulations compares the two outhperformance under
different node down rates. To observe the querluriai we disabled the initial
replication function of Pastry. Hence, all servioedy have one original copy at the
beginning of simulation. If the home node happenigave the network, those queries
that cannot find suitable replicas will fail. Thiensilation results are as follow.

Figure 6.13 presents the percentages of the fgikedies under node down rate
of 5% and 20%. The figure shows that more queadsuhder high node down rate.
This phenomenon is significant at the beginningsohulation, because the early
gueries have to retrieve content from the home si0@lbe absence of these nodes
directly causes the query to fail. With more quereeing issued, the failure ratio
reduces, because many of these queries can bealdgribe intermediate replication

nodes those are active in network. In particulag tesult indicates the AN.P2P

149

method gets lower query failure than the plain iyastethod. This is because the
AN.P2P method can achieve more effective replicgeghrough service replication,
so that more queries can hit the nodes those heplizas of services and are still
active in the network. As the result, the down ofme node would not affect the

AN.P2P method so significantly as the plain Pasteghod.

0.2
018 |-
0.16 |
014 |
012 |
01
008 |
006 [_
0.04 P/ o X Bl
oo2f O °F

Failure Ratio

0 10 20 30 40 50
) Queries (thousand)
—>— plain-5% —8—anp2p-5%

- —+ — plain-20% anp2p-20%

Figure 6.13 Query Failure Ratio

Finally, Figure 6.14 and Figure 6.15 present thpglica hit ratio and the
retrieval distance for both methods. In generag thsults show that the overall
system performance for both methods declines wighdr node down rate. This is
because the node failure or recent node leave gatgke information in the routing
table. It makes the messages to be routed to theimal nodes. Thus, the length of
query path will be prolonged, so as the contentiensl| distance (Figure 6.15).
Meanwhile, as shown in Figure 6.14, the increaseoole down rate also reduces the
replica hit ratio for both methods, because thergmvnodes store replicas of service
or object, which otherwise could be reused forrdgiesting nodes.

Moreover, the results show our AN.P2P method ofdp®is the plain Pastry
method under all node-down rates. In particulag, &N.P2P method at the node

down rate of 20% even achieves better performamae the plain Pastry method at

150

the node down rate of 5%. This suggests the AN.B@pported system is more

resistant to the node down, in virtue of servigdication.

This chapter proposes the AN.P2P methodology, wapgiies the Application

0.7
plain-5%
06 || —=—anp2p-5% 1
- —+ - plain-20%
—X— anp2p-20%

05
2 Se X 5 % >
E 04t o0
T = $
] S
2 E B >

L
02 b P P m oy
MINALAE I
y G
0.1 % \ Ry +
0 L
0 10 20 30 40 50
Queries (thousand)
Figure 6.14 Replica Hit Ratio
6.5 Summary

Retrieval Distanc

09 F

0.8

0.7

0.6

0.5

plain-5% —&— anp2p-5%

- —+ - plain-20% —<— anp2p-20%

10 20 30 40
Queries (throusand)

50

Figure 6.15 Retrieval Distance

Networking framework into the P2P network. The noetimproves the conventional

P2P network, which was used for sharing the contdmécts, by allowing it to

populating the content services. We build matherahtmodel to estimate the

performance of the AN.P2P methodology, and the yarmlresults indicate our

method can be applied to a wide range of contewmicas to gain overall performance

improvement in the heterogeneous query environnkenally, our simulation results

show the AN.P2P method is more efficient than tbaventional P2P method at

different aspects.

151

CHAPTER 7

AN AN.P2P SYSTEM OVER THE PASTRY NETWORK

7.1 Overview

In the fundamental AN.P2P methodology, the replcatiprocess does not
consider the potential utility and storage overhefthe content service. It causes the
system performance to be suboptimal. The basic adetbgy neither reuses the
response content objects fully, so that it needsexecute the content services
repeatedly. In this chapter, we propose a condk&td’2P system, which provides
three specific mechanisms to solve above limitation
(i) Selective Replication: It utilizes the Pastry ragtiinformation to replicate

service only to the nodes with high service rease.r

(i) Partial Replication: It extends the selective mdion by allowing replicating
service workflow partially to improve the replicani flexibility.

(i) Pointers Cache Scheme: It reuses the responsekbjesugh propagating the
soft-state pointers to these objects, so thatahgpatation load can be reduced.
This chapter first explains our system implementatn Free-Pastry, and then

discusses the three mechanisms followed by thelaiion results. All simulations are

based on the same content service and the netwenoement as in Chapter 6.
7.1.1 Implementation

We implemented the AN.P2P system based on theRrasty platform [Pastry].

The system structure is shown in Figure 7.1. Tretesy is composed of the Pastry

152

substrate, the AN.P2P platform, the content sesyiaed the client. Besides the basic
storage space for the content services publisheétdeopresent node, the platform also
maintains three caches: (i) the service cacheth{@)response cache, and (iii) the
pointers cache. The service cache is to store wbservices replicated from other
nodes, while the response cache and the pointetsecaill be explained in the

pointers-cache mechanism.

. ie .
Client Interface Service
e e \, T -~ ~Interface

/
.’ i |
||: ModResponse :
\ A

|
N D S IN___T____ /
Service Cache
AN.P2P Platform Response Cache
Pointers Cache
__________________________ \
|
< Forvat_>_beiver_|
|
__________________________ , Common
Overlay API

Free-Pastry Substrate

Figure 7.1 AN.P2P Prototype

The system components communicate with each ofireugh the standard
client interface, service interface, and P2P sabstmterface. The usage of these
standard interfaces facilitates adopting the AN.R#&form onto different P2P
substrates and supplying various content servivesigh the AN.P2P platform.

The “client interface” enables the client softwaoeinteract with the AN.P2P
platform, through two API functions: “insert” andobkup”. The former function
allows the content provider to publish the contsetvice, and the latter function

allows the client to initiate a content query itte Pastry network.

153

The AN.P2P platform interacts with the content smw through the ANlet API,
as defined in Chapter 4, whereas the HTTP requektesponse are replaced by the
Pastry query and response messages.

The “substrate interface” enables the AN.P2P platfto communicate with the
Pastry substrate through the “common overlay ABIZID03]. The Pastry substrate
exports a “route” function to the AN.P2P platformhich can send messages to the
P2P network by calling this function. In the oppeslirection, the AN.P2P platform
exports two functions, “forward” and “deliver”. Theastry substrate will pass the
relayed messages to AN.P2P through calling the dorfunction, and deliver the
guery to the AN.P2P platform for service executimough the latter function.

A basic query-response-replication process is shiowkigure 7.2, where node
1 is the requesting node, nodeis the serving node, and nodel is the last
intermediate node. When the client queries a cordervice, the requesting node
sends a query into the network (step 1 ~ step 3eMan intermediate node receives
this query, it will check whether it is the homedeofor the queried id. If not, the
query will be passed to the AN.P2P platform of thade through the “forward”
function (step 4). The AN.P2P platform checks whethreusable service is stored in
local service cache. If none, the platform notifilee Pastry substrate to forward the
guery to next hop node. The forwarding procesgpeated until the query reaches a
node that is the home node of the service or vinghservice replica (step 5~6). This
serving node’s Pastry substrate calls the “delivierriction, asking the AN.P2P
platform to execute content service (step 7~8) aedd the generated response
content to the requesting node (step 9~11). Medawthie serving node replicates the

content service to the last intermediate node (522{14).

154

-~
\

/ \ o

| | | !
: : : ModResponse :
\ ! \ |
101 RO

AN.P2P Platform AN.P2P Platform AN.P2P Platform

Pastry Node 1 Pastry Node n-1 Pastry Node »
Y Y
L @ J 1@@replication mng
query msg query msg@i
response msg@

Figure 7.2 AN.P2P’s Basic Query-Response-Replication Process
7.2 Selective Replication

In the basic AN.P2P process, the serving node aweplicates the service to
the last intermediate node. However, without judgine performance enhancement
and the corresponding replication overhead, thiaigditforward method is not
beneficial in all situations. Inappropriate reptioa could put the service to a node
that rarely receives queries for this service, @ralso wastes the replication node’s
storage space that otherwise would be more udedtdring higher utility services.

In the Pastry network, the effectiveness of servegdication depends on three
factors: (i) the numerical distance between thdigafion node’s id and the content
service’s id; (ii) the physical distance betweea Herving node and the replication
node; and (iii) the size and request rate of theice Firstly, a node, whose id is
numerically close to the id of the content servisejery likely to be involved into the
guery path to this service. Thus, the potentiabeetate of the service replica should
reduce with the increasing numerical distance betwthe service’'s id and the

replication node’s id. Secondly, distributing seevreplicas to the physically remote

155

nodes will be more beneficial than putting thenthe adjacent nodes, because with
the dispersed service replicas the requesting nadesmore likely to retrieve content
from a nearby replica. Last yet importantly, reglion algorithm should give priority
to service with small size but high request rate.

Considering these factors, we propose the selectypdication method. It
requires the serving node to encapsulate the méiemation about the content
service to be replicated into the replication mgesaand send it to the last
intermediate node. The information includes thevisets id, the components of the
service, and the total size of these componentnUceiving the replication
message, the node will judge whether to replicai® gervice or how to replace the
cached services if necessary. We proposed thetiseleGreedyDual-Size (GDS)
replication algorithm and the selective LFU reiica algorithm to perform the

replication judgment.
7.2.1 Selective GDS Replication Algorithm

The selective GDS replication algorithm is basedhenGreedyDual-Size (GDS)
caching algorithm [CI97], which incorporates thecliag locality with the data’s
retrieval cost and storage size concerns. Therai@sDS algorithm assigns the data
to be stored an initial cost as in EQ.7.1. Sinceneed to consider the numerical and
physical distance of replication, our selective G&l§orithm assigns the initial cost
for a content service as in EqQ.7.2.

Cost=1/ Sizeof(data) (Eq.7.1)

(2b)shl(service_id Jocal _id) x diSt(SerVing |Oca|)
Sizeof(service

Cost=

(Eq.7.2)

In the equation,shli(service id,local _id)denotes the length of the shared

prefix between the service’s id and the id of thplication node. According to the

156

Pastry algorithm, the likelihood that the nodensalved in the query path to the

_id)

service is proportional to the value qR°)shseviceidlocalid) = \yhich reflects the

proximity of the node and the content service ire thd ring. Meanwhile,
dist(servinglocal) denotes the physical distance between the senodg and the
present node (the replication node).

Our algorithm uses atsReplicat€¢) function, as shown in Figure 7.3, to
determine whether the present node should replecatntent service. The algorithm
first computes the initial GDS cost for the senfliee 03~04). Then, it examines the
free space in the service cache. If there is safftcspace, the node will replicate this
service (line 05~07). However, if the cache doesshawe enough space, some stored
services “may” be evicted. To make a decision, dalgerithm continuously chooses
the cached service with the least GDS cost, umtiltotal size of these services plus
the free cache space is larger than the size afigheservice (line 08~14). Then the
algorithm compares the cost of the new servicehéorhaximum cost of the chosen
services. If the stored service has larger cose ([i5~16), the new service is not
beneficial enough and should not be replicated. él@w, if the new service has larger
cost (line 17~18), it will be replicated and thesan services will be evicted from the
cache.

According to the GDS algorithm, when a cache repiaent is performed, the
cost value of all remaining services should be ceduby the maximum cost of the
evicted services. In addition, when a service geased, its cost will be restored to the
initial value. Through above adjustment, the sawiwith high utility will be restored
to the initial cost frequently, while the costs the low utility services will decrease

gradually.

157

(01) Boolean isReplicat&\(fObj;, ANlet, ANlet,..., ANIet))
02) {

(03) SizeofServicg = Sizeo{Obj,) + Zf: Sizeo{ ANlet)

e B (2b)shl(service_id,local_id) X diSt(Serving |Oca|)

Sizeofservicé
(05) AvailableSize= Cache.Free _Sizg);
(06) if (Sizeof(Servicg < AvailableSize
(07) return TRUE;
(08) ReplaceSet J;
(09) MaxCost= 0;

(04) Cosf{(Servic

(10) do {

(11) ReplaceService Cache.Least_Cost_Servitg
(12) AvailableSizetr= Sizeof(ReplaceServige

(13) MaxCost= CacheCost(ReplaceServige

(14) } while Sizeof(Servicé > AvailableSiz
(15) if (Cost(Servicg < MaxCos}

(16) return FALSE;
a7 else

(18) return TRUE;
19 1}

Figure 7.3 isReplicate () for Selective GDS Replication
7.2.2 Selective LFU Replication Algorithm
The selective LFU replication algorithm is basedtlo& LFU algorithm, and it

assigns a cost value for each service as in EqQwh&e thecounterrecords the times

the service has been accessed since its replic&ipeofservicg denotes the size of
service, ang2”)sh(servieeidlocal_id) - qangtes the numerical proximity of the replication
node and the service, andist(servinglocal) denotes the physical distance between
the replication node and the serving node.

_ counterx (2°)"(seveeidlosal 1) i dist(serving local) (Eq.7.3)
Sizeof(servicg

Cost

The algorithm also uses asReplicaté) function, as shown in Figure 7.4, to
determine whether the node should replicate a sriihe algorithm first computes
the storage size and the initial cost for the newise (line 03~04), where the initial
value of counter is set to one. If the service edaas sufficient free space, the node
will replicate the service directly (line 05~07)oWever, if the cache does not have

enough free space, the algorithm continuously cé®dbe cached service with the

158

least cost until the total size of these servidas fhe free cache space is larger than
the size of the new service (line 08~14). Thenalgerithm compares the total cost of

the chosen services with the cost of the new serlithe new service has larger cost,

the node should replicate the new service and #éwiste chosen services (line 15~16).
However, if the cost of the new service is smallenvill not be replicated (line

17~18).

(01) Boolean isReplicat&\(fObj;, ANlet, ANlet,..., ANIet))
02) {

f

(03) Sizeof(Servicg = SizeofObj,) + Z Sizeof ANlet)
i=1

)shl(service_id,local_id) X diSt(SerVing Iocal)

Sizeof(servicg

(05) AvailableSize= Cache.Free _Size();

(06) if(Sizeof(Servicg < AvailableSizg

(07) return TRUE;

(08) ReplaceSet J;

(09) TotalCost= 0;

counterx (2°

(04) Cost=

(10) do {

(11) ReplaceService Cache.Least _Cost_Service();
(12) AvailableSizer= Sizeof(ReplaceServige

(13) TotalCost+= CacheCost(ReplaceServige

(24) } while Sizeof(Servicé > AvailableSizE
(15) if(TotalCost< Cost(Servicg)

(16) return TRUE;
a7 else

(18) return FALSE;
(19) }

Figure 7.4 isReplicate() for Selective LFU Replication

7.2.3 Simulation Results

Our simulation compares the selective GDS and Lé&lication methods with
the normal GDS and LFU replication methods in ANPPZhe simulation results are
as follow, where the result for the normal LRU regiion is also given to ease
readers to refer the results in Chapter 6.

Figure 7.5 shows the replication costs for all mdth The selective replication
methods achieve much less replication cost thamoheal replication methods. This

is because the selective methods only populateicesnto nodes with sufficient

159

service reuse rate, whereas the normal replicahethods replicate service for all
gueries. The three normal methods cause comparapleation costs. The costs
firstly increase and then drop with the increaseawfhe size, and the reason for such
trend is as follows. When the cache size is smdilan 10MB (the largest size of
original images), some large services cannot bleceded due to the size limitation of
cache. With the increase of cache size, more ssan be replicated and the system
replication cost increases accordingly. When theheasize exceeds 10MB, all
services can be replicated and the cache size ienger the determinant for the
replication cost. With large caches being applidtt service penetration in the
network should increase correspondingly, which redke final replications are more
likely to happen between nearby nodes. It resulthé measured replication cost to
decrease. In contrast, the replication costs fersilective methods enhance slowly
with the increase of cache size, because the s&aeplication keeps the replication
cost low and it naturally increases with the insieg cache size as more services will

be replicated.

» 9
3
= 8 ; A
@ 71 4 A
T +
g E
5 4
5 —B a
T 4 =
£ _
g 3
o
24 3
1
<
0 . .
5 10 15 20
Cache Size (MB)
—«&— selective-Ifu — o5 selective-gds—x— Ifu
~—+--1Iru —a—gds

Figure 7.5 Replication Costs against Different Cache Sizes
Figure 7.6 shows the replication costs againstnimmber of queries issued,

where the cache sizes of all nodes are 20MB andetiiecation cost is measured for

160

every 4,000 queries. At the beginning, all methoalsse the similar replication cost,
because most caches are empty and ready to be. fAliker 50,000 queries, the

replication costs for the normal methods stabilzéhe constant values, which are the
final replication thrash traffic for these methotfs.contrast, the replication costs for
the selective methods reduce continuously in thauksition period. This is because
the selective methods can replicate services to bidity nodes and it makes better
service distribution in the network. Thus, the regtion thrash traffic is much lower

than that of the normal methods, and it reducels mibre queries are issued.

v 127x
5 —e—selective-Ifu
= —a8— selective-gds
@ 10 - Ifu
~—+--lIru
—x—gds
%) 8
o
O
c
S 6
@
L
8
o 44
2
0 T T T 1
0 50 100 150 200
Queries (thousand)

Figure 7.6 Replication Costs against the Number of Queries
We also measured the service replica hit ratiothadcontent retrieval distance
for different methods, as shown in Figure 7.7 arguie 7.8. The results show the
two selective methods improve the overall perforcgamore significantly than the
normal methods. It is because the selective rdmitanethods can replicate services
to the selected nodes with high reuse rate, scthieatesulting service distribution in
the network is more beneficial to efficient contdetivery. The two figures also show

that the selective LFU method outperforms the $ele&GDS method.

161

Replica Hit Ratio

0.8 0.6

—— selective-ifu
—a— selective-gd

0.75 1 055 %

0.7
0.5+

0.65
0.45 4

Retrieval Distance

0.6

/ 0.4
0.55

0.35 T T T T T

30 60 90 120 150 180 30 60 90 120 150 180
Queries (thousand) Queries (thousand)
Figure 7.7 Replica Hit Ratio Figure 7.8 Retrieval Distance

In summary, the simulation results indicate thag¢ thelective replication
algorithms have two advantages: (i) they allowgihstem to avoid some unbeneficial
service replications so that the overall replicattost can be reduced; (ii) they make
all services to be replicated to the nodes witthiguse rate, so that the resulting
content delivery performance can be improved. kiitaah, the results also show that
the selective LFU method outperforms the selecB&&S method by achieving less
replication cost, higher replica hit ratio and lowetrieval distance. It suggests that
through directly counting the query frequency aivgm, the selective LFU method is

more effective to estimate the service utility thile selective GDS method.

7.3 Partial Service Replication

7.3.1 Partial Replication Algorithm

The previous replication methods treat contentiseras an atomic unit and
replicate it as a whole. As explained, the AN.P3Btesn organizes each content
service as a workflow. Different sub-sets of sexweorkflow, which starts from a
particular version of content object and passeeutjit the subsequent workflow
segments, usually have different reusability anplication overhead at different

network nodes. If we can replicate the partial eohtservices according to their

162

specific reusability and replication overhead, #d.P2P system will be able to
achieve cost-effective service replication and beremadaptive to the changing
environment.

Due to the changing characters of the P2P netwbik, infeasible to find a
well-defined solution to resolve the optimal pdrsarvice replication in the whole
network. Even for a comparatively stable netwohe huge numbers of nodes and
content services also make this optimization pmobl@atractable. Therefore, we
propose a partial service replication algorithnt therives the replication strategy in
the best-effort manner. The algorithm is perfornmetependently at any node, and
allow it to replicate as many workflow segmentgpassible given they are beneficial
enough.

The algorithm requires the serving node, the senfleeplication message, to
put the meta-information about the service workfloto the replication message.
The meta-information is specified as a sequendxouks, each refers to a segment in
the workflow. The blocks are listed in the sameeorass the corresponding segments
in the workflow. Each block specifies the servide the attributes of the segment’s
input content object, the size of the input objaai] the id and size for the segment’s
application.

In the AN.P2P system, a serving node always inténdseplicate a content
service when it replies a query. A natural way ampose the replication message is
to include the meta-information for the service kilmw used and the content objects
generated for the just query. An example is givefigure 7.9, where we suppose a
node stores a service that starts frofn; and contains two application&Nlet and
ANleb. (Note T: as the service can be partially replicated, the kflow we discuss

may not be the full original service workflpwWwhen the node serves a query, it

163

executes this workflow to generate an intermedudject Obj, and a final response
object Objs. In this situation, the replication message shouhtlude the
meta-information folObj;, Obj,, Objs, ANlet, andANIlet. If we express an ANlet with
its input object as a segment, the resulting repbao message is shown as in the bold
square in the figure, and the shaded squares ddmot@eta-information blocks for

segment$Seg, Seg, andSeg respectively.

Seg) Seg, Segs
Id(Service) ‘ 1d(Service) Id(Service)
Attrs(Obj,) > Attrs(Obj,) Attrs(Objs)

Sizeof(Obj +ANlet,) ‘ ‘ Sizeof(Obj,+ANlet,) ‘ Sizeof(Obj3)

Meta-information is sent to the candidate replication node in a Partial Replication Message

Figure 7.9 Partial Replication Message
The replication node has four possibilities to iegik the service above:
() ReplicateSeg—~>Seg—~>Seg: the replication node needs to fettbj; and
applicationsANlet andANlet from the sender of the replication message.
(i) ReplicateSeg—>Seg: the replication node needs to fetch the interadedi
objectObj, and the second applicatidiNIet.
(iiReplicateSeg: the replication node only fetches the respongecb®bjs.
(iv) None: the replication node does not replicate angth
Our partial replication algorithm is shown in Figu7.10, which directs the
replication node to decide how many workflow segtada be replicated. The input
to the algorithm is the meta-information for theriftow to be replicated. We skip
lines 03~04 first. The algorithm starts from exaimgnthe entire workflowWf(ODbj,,
ANlet;, Obj,, ANlet,..., Obj.1,Anlet1,0bj). The partial replication algorithm relies on

the selective replication algorithm to judge whetttereplicate a specific workflow.

164

Thus, the “isReplicate” function (line 08~09) iopided by the selective replication
algorithm used, such as Figure 7.3 or Figure 7#.4hd workflow is eligible to be
replicated, the algorithm returns the present wovrkf(line 10~11) to the local node,
which will fetch the corresponding workflow compaone from the network and store
them locally. However, if the current workflow imeligible for replication, the
algorithm will remove the first segment (i@bj; andANlet) and form a partitioned
workflow Wf(ODbj,, ANleb,..., Obj.1, Anlets, Obj) (line 12~13). Then, the algorithm
reevaluates the new workflow. Such iteration wdhtnue until an eligible partial

workflow is found or no more segments left in therkflow.

(01) Partial-Replication-Judgmem{Obj;, ANlet, Obj,, ANlet,..., Obj.i,Anlet 1,0bj))
02) {

(03) if (CacheisRedundantWorkflowf) == TRUE)

(04) return FALSE;

(05) idx = 1;

(06) while({dx <=f)

07 |

(08) Candidate_W£E WH(Obijigy, ANletyy, ..., Obj.1, Anlet., Objy);
(09) result= isReplicate Candidate_Wf

(20) iffesuld

(11) returrCandidate_Wf

(12) else

(13) idx =idx + 1;

(14) }

(15) return NULL;

(16) }

Figure 7.10 Partial Replication Judgment Algorithm
7.3.2 Partial Service Caching Scheme

The partial replication causes different versiohshe same content service to
be stored in the service cache, and it is impottaidentify and manage these content
services. As each content service starts from queninput object, we can identify a
content service through identifying its input olijec

Our method is based the metadata approach proposgapter 3. We assign
each service a “service metadata”, which includesservice’s id and the attributes

for the input object to this service. Each attrdoabmposes of the attribute’s name

165

and the attribute’s value. The metadata is createtimanipulated by the workflow
applications, and is carried by the partial replaramessage. For the example image
service in Chapter 6, the metadata for the origseaVice only contains the service’s
id. For the partial service starting from the setéiNlet while the first ANlet already
being executed to resize the original image, theadaa contains the service id and
the dimensions for the resized image, e.g. {idd{tyi 800), (height, 600)}.

Using the service metadata, the service cacheindrafreusable service replica
by matching the replica’s metadata and the quehge Tatching service replica
should have the same id as the queried id, anti@ltommon metadata attributes of
the cached service and the query parameters shmaitth with each other.

To cover more queries, the service cache doestor@ edundant services, one
of which can be generated from the other one. @uigh-service checking criterion
deems service A to be a partial service of serBidethe metadata for B is subsumed
by the metadata for A, and at the same time, thvfleav segments of A is subsumed
by the workflow segments of B. For the example iguFe 7.9, for service
Obj, — ANlet, — ANlet,, the attribute is {id, att@bj;)} and the workflow is feq,
Seg}; for service Obj, — ANlet, the attribute is {id, att@bj;), attr©bj,)} and the
workflow is {Seg}. We can infer the latter service is a partialvssg of the former,
as {id, attr(Obj,), attr(Obj,)} CI{id,attr(Obj,)} and {Seg} U{Seq,Seg}.

When the service cache determines whether to atomw service, it checks if
the new service is a partial service of one sertheeis already cached. If so, the new
service should not be replicated. This is why #@ication algorithm in Figure 7.10
performs a pre-checking in lines 03~04. In additiafter the cache determines to
store a new service, it will evict the cached smrsithat are the partial service of the

new service.

166

7.3.3 Simulation Results

Our simulation compares the partial replication hods with their
corresponding selective and normal replication imesh The results are as follow.

Figure 7.11 and Figure 7.12 show the service ragiit ratio and the content
retrieval distance, and we present the resultsHerGDS-based and the LFU-based
methods in separate figures. The results show thagach category, the partial
replication method outperforms the selective methwat in turn outperforms the
normal method. It indicates the partial replicatimethods can further improve the
system performance through fine-grained servickcagmon.

Moreover, the advantage of the partial replicatimethods is particularly
significant when the cache size is small. This esduse when the small cache is
applied, the selective method and normal methodaareplicate many large services,
whereas these services can be partially repliaagedy the partial replication method.
This advantage also implies the usage of partilic&tion method can reduce the
system’s requirement for large sized cache butezehtomparable performance with

the selective and normal replication methods vétiyeé cache used.

90% 90%
80% - 80%
) 8
g 70% | T 70% |
o @
£ I 1
T 60% - < 60%
Q Q
° o
S 50% & 50%
o gds Selective-I
. 40% A —x— selective-Ify
40% < —X— Sgﬁicatliygedgds 0 —= partial-ifu
30% ‘ ‘ 30% ‘ ‘
5 10 15 20 5 10 15 20
Cache Size (MB) Cache Size (MB)
(a) GDS-based Replication Methods (b) LFU-based Replication Methods

Figure 7.11 Replica Hit Ratio

167

70% 70%
65% —o—gds 65% —o—lfu
—x— selective-gds —x— selective-If
§ 60% - —a— partial-gds § 60% + —m— partial-ifu
i o 55%-
@) o
= < 50% -
= =
= S 45% |
[] j0)
@ @ 40% | x
35% .\I\T
30% ‘ ; !
5 10 15 20 5 10 15 20
Cache Size (MB) Cache Size (MB)
(a) GDS-based Replication Methods (b) LFU-based Replication Methods

Figure 7.12 Retrieval Distance

The results also show that the partial LFU methoigberforms the partial GDS
method. This further supports our previous arguntiesut the LFU algorithm is more
effective than the GDS algorithm for service region in the Pastry network. More
results about the LFU-based replication methodskosvn in Figure 7.13 and Figure
7.14, where the node’s cache size is set to 5SMBhAtbeginning of simulation all
methods achieve similar performance, because mesieg are served by the home
nodes in this period. After 50,000 queries areadsipoth the selective method and
the normal method reach the maximum performancegreds the system
performance of the partial replication method ammis to improve. This is because,
in the rear phase of simulation, the partial regglan methods can still replicate many
partial services in the network, so that the sysfgrformance can continue to

improve.

168

Replica Hit Rati

80%
70% ~
60%
50% ~
40% ~
30% ~
20% ~

—Ifu

—a— partial-Ifu

—x— selective-Ifu

100%
90% :
80% -
70%
60%

Retrieval Distanc

50%
40%

10%

50 100 150
Queries (thousand)

30%

——Ifu

—X%— selective-Ifu
—s— partial-Ifu

200 0 50

~ 100 150 200
Queries (thousand)

Figure 7.13 Replica Hit Ratio

Figure 7.14 Retrieval Distance

Figure 7.15 shows the replication costs of the W&ded replication methods.

The partial and selective methods cause signifigdotver replication cost than the

normal method, because both methods replicategio hiility nodes and cause less

thrash replication traffic. In specific, the re@lion cost for the partial method is

slightly higher than that of the selective methbdcause it can partially replicate

some services, which are unbeneficial as a whaler@jected to be replicated by the

selective method.

Billions
[{e]
L

Replication Cost

Ifu

—x— selective-Ifu
—s=— partial-ifu

100 150

Queries (thousand)

Figure 7.15 Replication Costs

Finally, Figure 7.16 presents the computation loddss the two partial

replication methods and the other replication me&sh@ncluding the normal and

selective replication methods). In our simulatiomvieonment, the actual system

169

computation load cannot be got directly. Therefave, count the times the ANlet

applications are executed by all nodes to estithetesystem computation load. Since
we count the average computation load for everY@,queries and our service
workflow contains 2 ANlets, the figure shows thia¢ imeasured computation load for
the normal and selective replication methods igtstr8,000. It means there is no
computation saving for using these methods. In @mepn, the two partial

replication methods achieve less computation loadabse some queries can be
served by the partial service that starts fromitibermediate object. Furthermore, the
computation loads of the partial replication methe@dduce continuously. It means
that, with more queries being issued, more numbepartial services are populated,

so that the overall computation load is reducea@togly.

8200

8000

7800

7600

7400

Computation Load

7200 —+— other

—o— partial-gds

7000 -

—a— partial-lfu

6800

0 50 100 150 200

Queries (thousand)

Figure 7.16 Computation Loads
In summary, the simulation results show that thetigdaeplication methods are
effective to improve the overall performance throutdexible service replication.
They introduce slightly higher replication costrihiie selective replication method,
but the significant improvement on the contentiegtll distance, the replica hit ratio,

and the computation load. The partial replicatioethnods exhibit particularly good

170

performance when small service cache is applied,itasuggests these methods can

reduce the system’s requirement on the cache size.
7.4 Pointers Cache

This section discusses another important issuadrsystem: how to store and
reuse the response objects. This can avoid soneategp service executions and
reduce the computation load in the system. A ditbagvard method is to use the
“reverse cache”. This method requires each nodetainia reverse cache to store the
execution results of local services. When this neaeives a new query for the same
content object, it can reuse the cached objecerdttan executing the service again.
However, the drawback of this method is that thedb stored in one reverse cache
can only be reused by the local node. This linhes dverall object reuse rate in the
network.

We propose the “pointers cache” method that enafole®use the response
objects from distributed nodes. The method requeee node to maintain a response
cache to store the retrieved response objectsnggke requesting nodes to store the
response objects is because: (i) these nodesearathral places to store the response
objects; (ii) letting the content consumer to shewene of its resource is helpful to
efficient resource utilization in the P2P network.

Now, the problem is how to reuse these objectsezhoin the distributed nodes.
Because the requesting nodes are randomly disdbint the id ring, storing the
response objects on them will result in the randistribution of objects within the id
ring. According to the Pastry routing protocol, suandom object distribution can
only achieve very limited replica reuse. To solkés tproblem, our method lets all
nodes also maintain a “pointers cache”, which stareet of pointers, each tells which

node is probably caching what object. When a rdqm@gesode retrieves a response

171

object, it stores the object in the response cacliesends an ACK message into the
network. The ACK message carries the same id asetheved response object. The

message also includes the attributes about thewvett object and the address of this
requesting node. As the ACK message has the saras te corresponding query

message that fetched the object, it will pass thinotlhe same intermediate nodes as
the corresponding query message and finally reheh same serving node that

generated the response object. When these nodasadbe ACK message, each of

them will create a pointer in the local pointerstea The pointer information includes

the id and the attributes of the referred contdméa, and the address of the ACK

message sender.

When a node receives a query message, it shouldtepaccording to the
flowchart in Figure 7.17. It first checks if theckl response cache stores the queried
object. If the query hits the response cache, thecbis sent back to the requesting
node directly. Otherwise, the node searches imptieters cache to see whether other
nodes are probably caching the objects. If the ygimtis the pointers cache, it is
forwarded to that pointed node. However, if no painis useful, the node will
continue the normal AN.P2P process — it servesqtery using the local service

replica or routes the query to another node.

Check response cache

Send the response
object

Forward to the
pointed node

Execute the service,
and send the
generated response

Forward the query to
another node

Figure 7.17 Operations Flowchart

172

As each node can only provide limited space toestibe response objects, the
formerly retrieved objects could be replaced by teeently retrieved objects.
Meanwhile, any node may leave the network due taowua reasons. These two
aspects cause the pointers in the pointers cadbhectume stale. Hence, before a node
forwards a query to the pointed node, it needetal @ probe message to the pointed
node, asking whether this node is stilling storihg claimed object. If getting the
positive response, the node will forward the queryhe pointed node. However, if
the pointed node is no longer active or returnggative reply, the node will remove
the stale pointer and try other pointers.

An important issue about the pointers cache methdww this method would
affect the final content retrieval distance. Weuarthat, even though this method may
introduce an additional query hop, it will not enba the content retrieval distance
significantly and actually can reduce it in martyations.

Figure 7.18 shows a Pastry network, where npgdesends a query that is
forwarded to nodep, andps. We suppos@s; has a service replica and it also keeps
pointers to nodeps, ps andpg for the queried content. fif; receives the query, it will
forward the query to any @i, ps andps, rather than executing the local service. iLet
denote the distance betwepnandps. In the Pastry network, the expected distance
traveled by a message during each successive gostep is exponentially increasing

with base 2 Thus, the nodes pointed Ipg should reside in a circle of radium

o b
r':li_m(r+ibr +%r+-~-+ %.r): b2 r and centered aps. Given the
i=1 2 (2) (2)l 2° -1

default value ofb is 4, we haver':i—gr. Thus, in the worse case the maximum

distance between the pointed node pns r +r'= f—;r . Hence, we can conclude the

173

usage of pointers would not increase the conteaneval distance greatly. In actual
implementation, we can choose a node that is theeseto the requesting node (e.g.
nodeps in the figure), by using the distance measurerhendtion of Pastry. This can

significantly reduce the retrieval distance.

- 2%)]t >

The likely range of the

Cached Q ps pointed node

response

SCI‘V.ICC ps/
replica g

Cached
response

Cached é
response

Ps
Figure 7.18 Range of the Pointed Nodes (1)
Moreover, as the ACK message are populated toodks in the path, it makes
some guery messages to be forwarded to the ponudd before it reaches a node
with the service replica. An example is shown igufe 7.19, where onlg; stores the

service replica angb; keeps pointers for the queried content. In thisecps can

directly determine a node to reply, and the distance betweeg with the pointed

b
nodeisr'=

——I . However, without using the pointers, the queryldde routed
2

to p7, and the distance betwepnandp; is r"=2°r . Givenb = 4, we haver':i—gr

and r"'=16r. As r'<<r", it indicates that the content retrieval distarmam be

greatly reduced.

174

- D>

The likely range of the

Cached Q Ds pointed nde

response

p7

Service
replica

Cached
response

v
Cached O
response

Figure 7.19 Range of the Pointed Nodes (2)
7.4.1 Simulation Results

Our simulation compares the pointers cache methatl the reverse cache
method. For precise comparison, we used the setetfirU method to replicate
services, so that all computation load reductiodus to the usage of the compared
two methods. The simulation results are as follow.

For simplicity, we call the reverse cache and #sponse cache as the “object
cache”. The hit ratio for object cache denotespreentages of queries served by the
stored response objects instead of executing theegbservices. Figure 7.20 shows
the object cache hit ratio for the two methods, @nihdicates the pointers cache
method achieves higher hit ratio than the reveasbe method. This is because, in the
pointers cache method, the propagated pointers thakebjects cached at a node to
be reused by other nodes, whereas the reverse osthed can only reuse objects
locally.

Figure 7.21 shows the system computation load. fEselts indicate both

methods can continuously reduce the computatiod e#h the increase of object

175

cache size. The pointers cache method outperfdrenseterse cache method, because

this method achieves higher object reuse thanetherse cache method.

40% 95%
35% —e— pointers cache
o 90% —&— reverse cache
2 30%
x 3
= o | o
= 25% S a5 |
5 20% %
o >
S 15% 4 g 80%
= S
O 10% | ©
—e— pointer-cache 75% |
5% -
—e— reverse-cache
0% . . . 20%
0.5 1 2 4 05 1 2 4
Object Cache Size (MB) Object Cache Size (MB)
Figure 7.20 Object Cache Hit Ratio Figure 7.21 Computation Load

Figure 7.22 (a) and (b) respectively present theablcache hit ratio and the
system computation load against the number of gserit the beginning, both
methods achieve similar performance. With more igsebeing issued, the pointers
cache method outperforms the reverse cache meffiud. is because after some
amounts of queries are issued, the system adofitegpointers cache method has
propagated sufficient numbers of pointers in thisvoek. Therefore, the reuse rate of
the response objects is improved greatly. In agllittcomparing Figure 7.22 (b) and
Figure 7.16, we see that the computation load temlucue to using the partial
replication methods is much lower than using thentees cache method. This
suggests even if the partial replication methoapiglied, the proposed pointers cache

method can still contribute to the major reductwdrromputation load.

176

50% 100%

95% |+ pointer-cachge

40% - | AN Y AN YA N o o e reverse-cache
90% |

80%

20% 75%

Obiject Cache Hit Ratio
Compuation Load

0,
10% + pointer-cach 70%

————— reverse-cach 65% |
0% ! 60%
0 20 40 60 80 100 0 20 40 60 80 100

™ @

Queries (thousand) Queries (thousand)

(a) Object Cache Hit Ratio (b) Computation Load
Figure 7.22 System Performance against the Number of Queries

We also measured the system’s content delivergiefity, such as the average
guery hops and the content retrieval distance.rébelts are as follow.

Figure 7.23 presents the average query hops. Asieed, the pointers cache
method may introduce an additional hop to forwdre tjuery to the pointed node.
This fact is shown in the figure that, at the begig of simulation, the number of
query hops for the pointers cache method is shghiggher than that of the reverse
cache method. However, after 20,000 queries anedsshe number of query hops for
the pointers cache method becomes lower than fliaeaeverse cache method. This
is because, in the rear phase of simulation, latgebers of pointers are propagated,
so that many queries can be served before thep i@aervice replica. At the result,
the pointers cache method gets less query hopdlieareverse cache method.

Figure 7.24 shows the similar trend on the contemieval distance. At the
beginning of simulation, the retrieval distance tbe pointers cache method is
slightly larger than that of the reverse cache wethrhis shows that the pointers
cache method would not prolong the retrieval distasignificantly. After 20,000

gueries are issued, the retrieval distance foipthiaters cache method becomes less

177

than that of the reverse cache method, because quares can be served from the

nearby object replicas before they reach the semdplicas.

Query Hops

3.8 1

as | pointer-cache pointer-cache

-~ — - reverse-cache 09

fffff reverse-cach

[0)

34 +

0.8
3.2 +

Retreival Distance

28 0.6 |-

2.6 -
05

24 +

0.4

2.2

0 20 40 60 80 100 0 20 40 60 80 10¢

Queries (thousand)

Queries (thousand)

Figure 7.23 Query Hops Figure 7.24 Retrieval Distance

The following part of simulation looks into the pters cache method for more
details. When a query is received the node seartiheegeusable pointers in its
pointers cache. There are three search possifiltache miss, cache stale, and cache
hit. If the pointers cache does not have the matchbinter, we call this situation as
“cache miss”. However, if the node finds the matghpointers, this situation is called
“cache found”. But, the found pointers could befuker useless, depending on the
probing results. The found pointer may be stale aedcall this situation “cache
stale”. If the found pointer carries the up-to-datrmation, this situation is called
“cache hit”. For the pointers cache method, théraf cache-stale and cache-hit
reflects the quality of the stored pointers. Figut5 displays the measured
percentages of cache-stale and cache-hit in thieedacind situation. With larger
response cache being applied, the pointers cadhmé’'satio will improve, and
accordingly the cache-stale ratio will drop. Ithecause with large response cache,
more response objects can be stored, so that theeoare more likely to point to
the valid object replicas. Thus, enhancing the sizeesponse cache can improve the

validity of the stored pointers.

178

@ p-stalg
@ p-hit

Percentage

0.5 1 2 4
Object Cache Size (MB)

Figure 7.25 Percentages of Cache-Stale and Cache-Hit

Figure 7.26 presents the number of probe messageded to find a valid
pointer, where curve “probe-average” denotes thenbmr of probe messages
averaged over the total number of queries, whiletprobe-found” denotes the
number of probe messages averaged over the nurhtier cache found queries. The
values of “probe-found” are around 1.1, and it nse@hen a node finds the matching
pointers it needs in average 1.1 probe messagas. |Gl value is because our
pointers cache always probes from the newest poiatel such node is much likely
still caching the announced object. Thus, in matyasons, we can find the valid
pointer in the first probe. Meanwhile, the valués'mrobe-average” are around 0.6,
and it means for every query the system only nézfise around 0.6 probe messages.
The results indicate the pointers cache methodesanegligible numbers of probe

messages in the network.

179

12

04 |

Pointer Probe Overheads

—e— probe-found
0.2

—=—probe-average

0.5 1 2 4
Object Cache Size (MB)

Figure 7.26 Pointer Probe Overheads

Finally, Figure 7.27 shows the system performanicera/we varied the number
of pointers kept by each node from 8 to 1000. Fagu@) and (b) show that keeping
more pointers is helpful to reduce the computatead and improve the hit ratio of
the response cache. When the number of pointégssghan 100, the system perform
improves at the beginning but drops quickly withrenqueries being issued. This is
because, at the beginning of simulation, both tbtprs caches and the response
caches are not filled yet. Thus, the first few ammaed pointers are all pointing to the
valid object replicas, so that the system computakbad reduces sharply due to the
usage of these valid pointers. However, with mouerigd being issued, more
response caches are saturated and the old respgjeses are replaced by the recently
downloaded objects. In this situation, if the catyaof the pointers cache is small, the
node cannot get sufficient number of pointers &éxkrthe object replicas, and those
few pointers kept are likely pointing to the stateglicas. As the result, the cache hit
ratio drops and the computation load increasesrdmgly. However, if each node
can maintain larger numbers of pointers, the systamefficiently track the object
replicas and be more tolerant to the staled repli€nce the pointer is a piece of
soft-state information, maintaining over 1,000 peia should not cause much storage

overhead on the node. Figure (c) shows that keepioigg pointers would not cause

180

the number of probe messages to increase conshgetdénce, the results show

keeping more pointers on each node is a feasiblg twaimprove the system

performance.
100% 50%
95% -
S 40% -
g 90% &
o =
- 85%{% T 30% |
c ¥ [}
RS o
g 80%-]
3 O 20% -
e 75%- 3] i
Q =
O Qo
70% O 10% 4
65%
0% ‘ ‘ T T
60% | ‘ ‘ ‘ 0 20 40 60 80 100
0 20 40 60 80 100 .
Queries (thousand) . Queries (thousand) .
. . ——x—— 8 pointers —85— 40 pointers
——x—— 8 pointers —8— 40 pointers))
200 pointers - 1000 pointers 200 pointers - 1000 pointers
(a) Computation Load (b) Object Cache Hit Ratio
1.2
. ’/_—o—o
2 1l
Q
<
S 08+
(e}
32
S 0.6 +
a
& 047
£
g 021 —e— p-found
’ —o— p-found-average
0 f f f
8 40 200 1000
Number of Pointers

(c) Probe Overhead
Figure 7.27 Pointers Cache Performance for Different Pointer Numbers

In summary, the simulation results show the posmteiche method is effective
to reuse the response objects cached by the digtdinodes. This method is more
efficient than the reverse cache method becausekies use of the shared storage
space on different nodes whereas the reverse cadheises the local storage space.
Furthermore, the results indicate that (i) maintajnlarge numbers of pointers can

achieve higher system performance without enhandimg probing overhead

181

considerably, and (ii) applying large response eacdin improve the validity of the

stored pointers.
7.5 Summary

This chapter explains the detailed structure for AN.P2P system. Three
mechanisms are proposed to achieve high systerorpenhce. Firstly, we propose to
use the Pastry routing information to perform dékecservice replication. The
simulation results indicate such selective replicat method can reduce the
replication cost significantly and increase theteys performance, such as the
replica-hit ratio and the content retrieval disen8econdly, we propose to replicate
partial service according to the service’s utibityd the relevant replication overhead.
The simulation results show such fine-grained ogpion strategy can further improve
the system performance and make the system perbarticularly well with small
caches applied. Finally, we propose the pointeche&anethod to avoid repeated
service execution. The simulation results show rmethod can leverage the shared
storage space on different nodes and reduce thralbeemputation load considerably,

but generating negligible overhead.

182

CHAPTER 8

CONCLUSIONS

8.1 Contributions

This thesis reports our study on the Applicationtvideking framework for
pervasive content delivery. The general framewsrkirstly proposed, followed by
in-depth study on two concrete systems, App.Net ANIP2P, that apply the
framework into the Web and P2P content deliverytexs. The main contributions of
our research work are summarized as follow.

(1) Application Networking Framework

Observing the common drawback of existing conteglivedry systems, we
propose the Application Networking framework toemgtate the content delivery and
content transformation processes as the unifiedcgedelivery process. Due to this
change, our framework can achieve some advant&g¢sate not provided by the
conventional frameworks. These include preservmggdontent semantics, improving
the system scalability on adopting new applicatiarsl achieving efficient content
delivery through fine-grained service deployment.

Our framework uses workflow to organize the contdérdnsformation
operations as a well-defined service. The workflewa loosely coupled structure,
which enables the framework to deliver an interragdiresponse object with the
partial service. It generalizes the traditional teom delivery methodologies that are

based on either the original content or the finahtent presentation. More

183

importantly, this flexibility allows the system axhieve efficient content delivery by
sending different responses in the most benefieag/s.

Our framework also proposes a metadata-based méthedable the general
purposed as well as service-oriented content rewbesh is not provided by the
conventional type-oriented reuse methods.

(2) App.Net System

Our research proposes the App.Net system, whichieapthe Application
Networking framework in the Web context. The systextends the HTTP 1.1
protocol and provides new caching mechanism to lenabching and reusing
different versions of response on the Web proxy. &l& propose performance
models for both dynamic and static content servi@ssed on them, the service
placement algorithm is provided to obtain the optieervice placement with the
minimum server-to-proxy transmission cost.

The efficacy of our system is verified through aeseof simulations. The first
group of simulations divides the existing Web apgions into several categories,
and chooses a representative from each categaegttoThe results show our system
can gain considerable performance improvement f@ida range of applications. The
second group of simulations measures the effeas®if our placement algorithms
based on a sample workflow. The results show thp.)gt system can resolve the
optimal service placement, and it makes our sydtemutperform the conventional
server-based and proxy-based solutions.

(3) AN.P2P System

We also extend our framework to the P2P netword,tha research is explored

in two phases: the general AN.P2P methodology ataharete AN.P2P system.

184

The AN.P2P methodology explains how to apply servieplication in the
Pastry network and shows the advantage of this adetiver the traditional system
that replicates the response objects. A mathenhaticalel is built for the Pastry
network, and the quantitative analysis indicates, the heterogeneous query
environment, service replication is more benefiti@n the object replication in term
of reducing the overall query hops number. Moreaatlvges of our methodology are
explored in the simulation, such as reducing thdenaal distance, smoothing the
replication traffic, and being tolerant to the nddiure.

The second phase of research proposes a detaildé2RNsystem, which uses
dedicated mechanisms to implement cost effectiveicge replication and content
reuse: (i) the selective replication method carlicate services to nodes with high
reuse rate; (ii) the partial replication method l®@esa fine-grained service replication
according to the utility and delivery overhead dfedlent service segments; and (ii)
the pointers cache method enables efficient conude among distributed nodes,
but incurring negligible overhead. The simulatiesults show that the usage of these
mechanisms further pushes up the system performande makes AN.P2P an

efficient P2P platform for pervasive content defywe
8.2 Future Work

This research focuses on presenting the efficacy afficiency of the
Application Networking framework. However, thereeamany other topics to be
further explored, such as: (i) the metadata andisgation languages, (ii) the system
security, (iii) further performance study, and (il content grid architecture.

(1) Metadata and Specification Languages

Metadata and the relevant specification languageshe essential approaches

to regulate the content reuse, service delivergl, @mtent transformation operations

185

in the framework. Our current study leverages semisting specification languages.
However, there would be more work to be done tovige the full-featured
specifications.

The p-language [BR03], used for describing the igométion rules, should be
extended to fit more requirements of the framew@uitrent p-language provides the
basic vocabulary to represent the system entitnestheir relevant properties. This
vocabulary should be extended to a wider range¢habthe framework can identify
more aspects about the content’s properties, fbkatd requirements, and the other
network and system conditions. Moreover, the rategiage should be able to define
multi-choice operations, each with a specific ptyorso that the processing nodes can
choose an appropriate option from them. In addjtibre ruling language should
provide utilities to detect and handle the condliahd errors in the rules.

It is worthy to provide the well-defined metadata describe the content’s
properties and the client’'s requirements. The nagtadvocabulary should be
extensible so that new properties and requiremegmisbe added. In addition, it is
important to construct a mapping mechanism betwberclient’'s requirements and
the content properties, so that the system carogmertcorrect content reuse and
transformation.

It is also worthy to provide the metadata for tipplecation. It should describe
the application’s functionality and the relevanattges. The functionality metadata
helps the node to perform correct application seagcand reuse. In addition, other
relevant specifications are wanted to describeajhgication’s requirements to the
system, such as the peak execution load and thagstcsize. Such information

facilitates the network node to manage the syst=ource efficiently.

186

Finally, but importantly, it is worthy to improveheé workflow structure to
include some complex logics, such as looping. Pteserkflow intends to put such
complicated logics inside of the application impétation, whereas moving them
into the workflow would make the content manipuwatiand service placement more
flexible.

(2) System Security

In order to achieve a secure framework, we neestudy the security issues
related to the content integrity, the authenticatior the execution nodes and the
applications, and the protection of client privacy.

It is worthy to protect the content integrity whetre content is transformed by
the intermediate nodes. Although the workflow sfiesithe wanted operations, the
framework needs to guarantee that all network nattefollow those directives so
that the integrity of the final content can be ntaimed. Moreover, it iS necessary to
establish the authentication between the origm &itd the intermediate nodes. Based
on such authenticity, the framework can make soeecbntent services are received
from or delivered to the trusted parties. In aadifiit is important to consider the
security issues related to the dynamic applicagoecution, such as how many local
resources can be accessed and which third-partgsnodn be contacted by the
downloaded applications. Finally, it is also worttoy protect the client’s privacy
especially when a downloaded application is to s&€dhe client’'s personal profile.
Our future framework should include these secustytions.

(3) Further Performance Study

The present App.Net and AN.P2P studies treat theank transmission cost as
the major performance metric. However, other faciie the computation load are

also important. It would be significant to considlee computation factor in the future

187

study. Relevant load balancing and off-loading na@c$ms should be provided.
Furthermore, the system should be able to tradbesffeen the network transmission
cost and the system computation load for bettelitgjud service and user experience.

It is also worthy to strengthen the service placgnmeechanism by enabling to
deliver the service to a cluster of nodes that wawkaboratively. In specific, the
performance study would address how to clustengterork nodes dynamically, how
to distribute the service segments within the elystow to propagate the request or
P2P search to the correct cluster, and how to mmairthe robust service that is
tolerable to node failure in the cluster.

(4) Content Grid Infrastructure

We are exploring a new infrastructure to provide timified Application
Networking mechanism over dissimilar content delwsystems, including Web
proxy, CDN and P2P. The new infrastructure is namgdhe Content Grid (CG),
which is aimed to leverage the respective advastafjthe composing sub-systems to
perform content delivery and service placement.

There are several key challenges in the CG sydtast, we need to define a set
of full-featured system protocols to implement tingified content query, request
distribution and service placement mechanisms dker dissimilar sub-systems.
Secondly, a service subscription protocol is alseded, allowing the network nodes
to join the grid and use its shared resource. Thide need to find out how to
construct the grid architecture to make it compatibith the contemporary Service
Oriented Architecture (SOA). In addition, the lolaalancing and service placement
algorithms are to be built in the system. We haveedsome studies on the content
grid, and the preliminary results are reportedun papers at SCC’06 and SKG'06. It

is of our great research interest to strengthenstoidy in the future.

188

[AABO3]

[Ajax]

[Aka]

[AR9S]

[AS04]

[B02]

[Bam]
[BBCO2]

[BBGOO]

[BCF99]

[BCHO4]

[BCZ97]

Reference

L. Alimal, S. El-Ansary, P. Brand,S. HaridDKS(N, k, f): a family of
low communication, scalable and fault-tolerantastructures for P2P
applications”, Proceedings of the 3rd IEEE/ACM mitional
Symposium on Cluster Computing and the Grid, 2003.
Asynchronous JavaScript and XML (Ajax), [ame],
http://en.wikipedia.org/wiki/Ajax_(programming)

Akami, [online], http://www.akami.com.

A. Arrarwal, M. Rabinovich, “Performance Blynamic Replication
Schemes for an Internet Hosting Service”, TechriRggort, AT&T Labs,
October 1998.

M. Amnefelt, J. Svenningsson, “Keso - A Sddé, Reliable and Secure
Read/write Peer-to-peer File System”, Master Thédey 2004.

V. Berstis, “Fundamentals of Grid Computingtip://www.globus.org.
Bamboo-DHT Website, http://bamboo-dht.org/

A. Barbir, E. Burger, R. Chen, “OPES Uses€aand Deployment
Scenarios”,
http://www.ietf.org/internet-drafts/draft-ietf-opessenarios-01.txt, Aug.
2002.

G. Banavar, J. Beck, E. Gluzberg, J. MunsbrSussman, D. Zukowski,
“Challenges: An Application Model for Pervasive Qmuiting”,
Proceedings of the 6th Annual ACM/IEEE Internaticd@anference on
Mobile Computing and Networking, 2000.

L. Breslau, P. Cao, L. Fan, G. PhillipsShenker, Web Caching and
Zipf-like Distributions: Evidence and ImplicationyFOCOM,1999.

A. Barbir, R. Chen, M. Hofmann, etc., “Anréhitecture for Open
Pluggable Edge Services”, www.ietf.org/
internet-drafts/draft-ietf-opes-architecture-04.txt

S. Bhattacharjee, K. Calvert and E. Zegtia, Architecture for Active
Networking”, Proceedings of High Performance Netung (HPN'97),
White Plains, NY, April 1997.

189

[BHO8]

[BHO1]

[BitC]
[BitS]
[BJA9S]

[BKO1]

[BOOO]

[BRO3]

[Bpel]

[BPHO4]

[BPTO3]

[BSO01]

[BT]
[C99]

P. Bhagwat, R. Han, R. etc. “Dynamic Adajmatin an Image
Transcoding Proxy for Mobile Web Browsing”, Procees of IEEE
Personal Communication, 1998.

A. Beck, M. Hofmann, “IRML: A Rule Specifitn Language for
Intermediary Services”,
http://standards.nortelnetworks.com/opes/non-wdéiatt-beck-opes-irm
[-02.txt, 2001.

“Bit Comet”, http://www.bitcomet.com/

“Bit Spirit”, http://www.167bt.com/intl/

H. Bharadvaj, A. Joshi, S. Auephanwiriyah#in Active Transcoding
Proxy to Support Mobile Web Access”, Proceedingle®fE Symposium
on Reliable Distributed Systems”, 1998.

S F Bush, A B Kulkarni. Active Networks ardttive Network
Management — A Proactive Management Framework. Bfukcademic
/Plenum Publishers. 2002.

G. Barish, K. Obraczka, World Wide Web CaxthiTrends and
Techniques, IEEE Comm Magazine. Vol.38 Iss.5 May®0

A. Beck, A. Rousskov, “P: Message Processiagguage”,
http://tools.ietf.org/html/draft-ietf-opes-rulesgz, 2003.

“Business Process Execution Language for \®etvices version 1.17,
http://www-128.ibm.com/developerworks/library/sdextion/ws-bpel/
A. Butt, S. Patro, Y. C. Hu, “On the Equieace of Forward and Reverse
Query Caching in Peer-to-Peer Overlay NetworksdcBedings of the 9th
International Workshop on Web Content Caching arsdribution, 2004.
F. Bagci, J. Petzold, W. Trumler, T. Ungef®&biquitous Mobile Agent
System in a P2P Network”, Proceedings of the Ub\&gskshop at the
Fifth Annual Conference on Ubiquitous Computingd20

S. Buchholz, A. Schill, “Web Caching in arasive Computing World”,
Proceedings of the 7th ACM/IEEE International Coafiee on Mobile
Computing and Networking, 2001.

Bit Torrent, [online], http://bittorrent.com.

P. Chen, “On the Study of Watermarking Apation in WWW —

Modeling, Performance Analysis and Application®adital Image

190

[Carp97]

[CB96]

[CCO02]

[Ccpp]

[CDKO3]

[CPO5]

[CI97]

[CIWO0]

[CLROO]

[CMI99]

[CMZ03]

Watermarking Systems”, Master Thesis of Dept of H&tjonal Tsing
Hua Unv., 1999.

“Cache Array Routing Protocol (CARP) ancciMsoft Proxy Server 2.0”,
http:// www.microsoft.com/technet/archive/proxy/paxp.mspx

M. E. Crovella, A. Bestavros, “Self-Similgyriin World Wide Web Traffic:

Evidence and Possible Causes”, Proceedings of @i hternational
Conference on Measurement and Modeling of Com&ygstems, 1996.
C-H. Chi, Y. Cao, “Pervasive Web Contentiaty with Efficient Data
Reuse”, Proceedings of 7th International Workshop\eeb Content
Caching and Distribution, 2002.

Composite Capabilities/Preference Profiles,
http://www.w3.org/Mobile/CCPP/.

M. Castro, P. Druschel, A-M. Kermarrec, Randi, A. Rowstron, A.
Singh, “SplitStream: High-bandwidth Multicast irCaoperative
Environment”, Proceedings of Symposium of OperaSygtems
Principles, New York, October 2003.

C-H. Chi, H. N. Palit, “Modulation for Scale Multimedia Content
Delivery”, Proceedings of the 6th International @wance on Web-Age
Information Management, 2005.

P. Cao, S. Irani, “Cost-Aware WWW Proxy CauhAlgorithms”,
Proceedings of USENIX Symposium on Internet Teobgiels and
Systems, 1997.

J. Challenger, A. lyengar, K. Witting, “AuBlishing System for
Efficiently Creating Dynamic Web Content”, Procaggs of INFOCOM,
2000.

T. H. Cormen, C. E. Leiserson, R. L. Rivégttroduction to Algorithms”,
MIT Press, 1990.

S. Chandrasekaran, S. Madden, M. loneslinja Paths: An Architecture
for Composing Services Over Wide Area Networks”,
http://ninja.cs.berkeley.edu/dist/papers/path.ps.gz

Y. Chen, W. Ma, H. Zhang, “Detecting WebgesStructure for Adaptive
Viewing on Small Form Factor Devices”, Proceediaf$2th
International World Wide Web Conference, May 2003.

191

[CNO3]

[Com]

[Corba]

[CRBO3]

[CRKO5]

[CYO3]

[CYHOO]

[CS02]

[CZB98]

[CZS03]

[HO6]

[DBO4]

[DCGO1]

Y. Cui, K. Nahrsdedt, “Layered Peer-to-P8&eaming”, Proceedings of
the 13th ACM International Workshop on Network &perating Systems
Supports for Digital Audio and Video (NOSSDAV’'02003.

Component Object Model Techniques,
http://www.microsoft.com/com/default.mspx

OMG’s CORBA website, http://www.corba.org/.

Y. Chawathe, S. Ratnasamy, L. Breslau,HfenRer, "Making
Gnutella-like P2P Systems Scalable”, In Proceednfigse ACM
SIGCOMM, August 2003.

F. Chen, T. Repantis, V. Kalogeraki, “Comi@ted Media Streaming and
Transcoding in Peer-to-Peer Systems”, Proceeding8tb International
Parallel and Distributed Processing Symposium, 2005

R. Y. Chen, B. Yeager, “Java Mobile AgentsProject JXTA
Peer-to-Peer Platform”, Proceedings of the 36th &ialnternational
Conference on System Sciences (HICSS’03), 2003.

V. Cardellini, P. S. Yu, Y. Huang, “Collabative Proxy System for
Distributed Web Content Transcoding”, Proceedingbe 9th
International Conference on Information and Knowledlanagement.
p.520-527, Nov, 2000.

E. Cohen, S. Shenker, “Replication StrategédJnstructured Peer-to-peer
Networks”, Proceedings of SIGCOMM Conference, 2002.

P. Cao, J. Zhang, K. Beach, “Active Cadiaching Dynamic Contents on
the Web”, Proceedings of IFIP International Comf.[istributed Systems
Platforms and Open Distributed Processing, Se@8.19

J. Chen, B. Zhou, J. Shi, H-J. Zhang, ki, @tunction-based Object
Model towards Website Adaptation”, Proceedings@hlnternational
WWW Conference, 2001.

P. Howard, “SOA and Information Services”oBl Research Report.
2006.

G. Ding, B. Bhargava, “Peer-to-Peer File-Ging over Mobile Ad Hoc
Networks”, Proceedings of 2nd IEEE Annual Confeszan Pervasive
Computing and Communications Workshops, 2004.

R. P. Doyle, J. S. Chase, S. Gadde, A. Bhdat, “The Trickle-Down
Effect: Web Caching and Server Request DistributiBnoceedings of 6th

192

[DDT02]

[DHR97]

[Dig]
[Dik04]

[DKKO1]

[Dom]
[Dou04]

[DZD03]

[ECO03]

[Erl05]

[Esi]

[FB96]

[FCAO0]

International Workshop on Web Caching and Conteastribution, USA,
2001.

A. Datta, K. Dutta, H. Thomas, etc., “A Rgebased Approach for
Dynamic Content Acceleration on the WWW?”, Proceegdifrourth IEEE
International Workshop on Advanced Issues of E-Cenoeand
Web-Based Information Systems, 2002.

F. Douglis, A. Haro, M. Rabinovich, “HPPTIML Macro-Preprocessing
to Support Dynamic Document Caching”, ProceedirfddSENIX
Symposium on Internetworking Technologies and Systel 997.

Digital Island, http://www.digitalisland.coz#

M. Dikaiakos, “Intermediary Infrastructurésr the WWW”, Proceedings
of Computer Networks: The International JournaCofmputer and
Telecommunications Networking, Volume 45, Issuéuly, 2004.

F. Dabek, M. F. Kaashoek, D. Karger, “Wideea Cooperative Storage
with CFS”, Proceedings of Symposium of Operatiost&y Principles,
2001.

W3C Document Object Model, http://www.w3.cigm.

B. Dournaee, “Introduction to ebXML”,
http://dev2dev.bea.com/pub/a/2004/12/ebXML.html

F. Dabek, B. Zhao, P. Druschel, I. Stoi€Bgwards a Common API for
Structured Peer-to-Peer Overlays”, Proceedingsdfl@ternational
Workshop on Peer-to-Peer Systems, 2003.

J. Elson, A. Cerpa, “Internet Content AdéiptaProtocol (ICAP)”,
http://www.i-cap.org/spec/rfc3507.txt, 2003.

T. Erl, “Service-Oriented Architecture: Caapts, Technology, and
Design”, Prentice Hall PTR, Aug 2005.

Edge Side Includes, http://www.esi.org.

A. Fox, E. A. Brewser, “Reducing WWW Latenagd Bandwidth
Requirements by Real-time Distillations”, Procegdir 5th International
WWW Conference, May, 1996.

L. Fan, P. Cao, J. Almeida, A. Z. Brodesummary Cache: A Scalable
Wide-area Web Cache Sharing Protocol”, Procee®htfSEE/ACM

Transactions on Networking, Vol. 8, No. 3, June®00

193

[Free]

[FGO8]

[FGCO8]

[FKNO2]

[FSAO1]

[FSKO1]

[GDHO1]

[GDNO3]

[GDS03]

[GFTP]
[GKBO5]

[Glo]
[Gnu]

The Free Network Project — Wiring the Intgrrjonline],
http://freenet.sourceforge.net/

M. Fry, A. Ghosh, “Application Level Actividetworking”, Proceedings
of Computer Networks, 1998.

A. Fox, S. D. Gribble, Y. Chawathe, “Adaygito Network and Client
Variation Using Active Proxies: Lesson and Pergpest, Proceedings in
a special issue of IEEE Personal Communication dapfation, 1998.

I. Foster, C. Kesselman, J. M. Nick, S. ke, “The Physiology of the
Grid - an Open Grid Services Architecture for Dimited System
Integration”, http://www.globus.org/research/papagsa.pdf.

X. Fu, W-S Shi, M. Allen, V. Karamcheti, ANS: Composable, Adaptive
Network Services Infrastructure”, Proceedings oBEN®X on Internet,
2001.

X. Fu, W-S. Shi, V. Karamcheti, “Automatieployment of Transcoding
Components for Ubiquitous, Network-Aware Accesinternet Services”,
Tech Report, 2001.

R. Grimm, J. Bavis, B. Hendrickson, E. Leyna. Beth, S. Swanson, T.
Anderson, B. Bershad, G. Borriello, S. Gribble Vietherall, “System
Directions for Pervasive Computing”, Proceedingthef8th Workshop on
Hot Topics in Operating Systems, Germany, May 2001.

L. Gao, M. Dahlin, A. Nayate, J. Zheng, ‘Blcation Specific Data
Replication for Edge Services”, Proceedings ofrimaéonal WWW
Conference, 2003.

K. P. Gummad, R.J. Dunn, S. Saroiu, “Measwent, Modeling, and
Analysis of a Peer-to-peer File-Sharing Worklodefoceedings of
SOSP'03, 2003.

GridFTP, http://www.globus.org/grid_softwatata/gridftp.php.

Shen Tat Goh, P. Kalnis, S. Bakiras, KiagelLTan, “Real Datasets for
File-sharing Peer-to-peer Systems”, Proceedingiseointernational
Conference on Database Systems for Advanced Apipinsa 2005.
Globus Toolkit, www.globus.org.

Gnutella, [online], www.gnutella.com.

194

[GNY04]

[GROS]

[GSBO4]

[GWeb]

[HGV02]

[HIRO1]

[HKO99]

[HMO4]

[Http]

[HUl02]

[HWO4]

[IAUSO03]

[Icap]

X. Gu, K. Nahrstedt, B. Yu, “SpiderNet: Integrated Peer-to-Peer Service
Composition Framework”, Proceedings of the IEEErnational
Symposium on High Performance Distributed Compuytip4.

C. Gkantsidis, P. Rodriguez, “Network CodfogLarge Scale Content
Distribution”, Proceedings of IEEE/INFOCOM 2005, &hi. March 2005.
V. Gopalakrishnan, B. Silaghi, B. Bhattagbe, P. Kelenher, “Adaptive
Replication in Peer-to-Peer Systems”, Proceedih@gih Inter. Conf. on
Distributed Computing System, 2004.

“Gnutella Web Caching System?”, [online],
http://www.gnucleus.com/gwebcache/newgwc.html.

T. Horozov, A. Grama, V. Vasudevan, S. LendMOBY - A Mobile
Peer-to-Peer Service and Data Network”, Proceedhgsernational
Conference on Parallel Processing, 2002.

K. Henricksen, J. Indulska, A. Rakotonirgjriinfrastructure for Pervasive
Computing: Challenges”, Proceedings of Workshopervasive
Computing and Information Logistics, 2001.

M. Hori, G, Kondoh, K. Ono, S. Hirose, Sn§hal, “Annotation-Based
Web Content Transcoding”, Proceedings of 9th Iraeomal World Wide
Web Conference, 1999.

R. Hanrahan, R. Merrick, “Authoring Techniegifor Device
Independence”, http://www.w3.0rg.

HTTP/1.1, http://www.w3.org/protoc- ols/rfé26/.

S. Hull, “Content Delivery Networks : Welw&ching For Security,
Availability, and Speed”, Berkeley, Calif. ; London
Osborne/McGraw-Hill, 2002.

R. Hsiao, S-D Wang. “Jelly: A Dynamic Hiechical P2P Overlay
Network with Load Balance and Locality”, Proceedird the 24th
International Conference on Distributed Computinggt&ms Workshops
(ICDCSW'04), 2004.

T. lwata, T. Abe, K. Ueda, H. Sunaga, “ARDI System Suitable for P2P
Content Delivery and the Study on its Implementdti@roceeding of the
9th Asia-Pacific Conference on Communication, V,o22-24, pp.806-811,
2003.

ICAP, http://www.i-cap.org/home.html.

195

[1C97]

[IHAO2]

[IRDO2]

[Jigsaw]

[JJKO1]

[JLHO1]

[Kaz]
[KCO04]

[KLMO2]

[KLMO3]

[KRRO1]

[KRSO00]

[KRTO2]

A. lyengar, J. Challenger, “Improving Webr&er Performance by
Caching Dynamic Data”, Proceedings of the USEND&OBgsium on
Internet Technologies and Systems, 1997.

A. lvan, V. Karamcheti, “Partitionable Seces: A Framework for
Seamless Adapting Distributed Application to Hetenoeous
Environments”, Proceedings of 11th IEEE Internagld@ymposium on
High Performance Distributed Computing, 2002.

S. lyer, A. Rowstron, P. Drusche, “SquirralDecentralized Peer-to-peer
Web Cache”, Proceedings of the 21st ACM SymposiarRrnciples of
Distributed Computing, July 2002.

Jigsaw - W3C's Server, http://www.w3.orgsaw/

S. Jamin, C. Jin, A. R. Kurc, D. Raz, Y a8itt, “Constrained Mirror
Placement on the Internet”, Proceedings of IEEEORPBM, 2001.

X. Jia, D. Li, X. Hu, D. Du, “Optimal Plaogent of Web Proxies for
Replicated Web Servers in the Internet”, Proceedofghe Computer
Journal, Vol. 44, No. 5, 2001.

Kazaa, www.kazaa.com.

W. Ku, C-H. Chi, “Survey on the technolodi@spects of Digital Rights
Management”, Proceeding of the 7th Information $igcConference,
2004.

B. Knutsson, H. Lu, J. Mogul, “Architecturand pragmatics of
Server-directed Transcoding”, Proceedings of 7tarirational workshop
on Web content caching and distribution, 2002.

B. Knutsson, H. Lu, J. Mogul, “Architecturand Performance of
Server-directed Transcoding”, Proceedings of ACnBaction on
Internet Tech., Vol.3 Iss.4, 2003, pp. 392-424.

J. Kangasharju, J. Roberts, K. W. Ross g@biReplication Strategies in
Content Distribution Networks, Proceedings of therkghop of Web
Content Caching and Distribution, 2001.

P. Krishnan, D. Raz, Y. Shavitt, “The Cadlozation Problem”,
Proceedings of IEEE/ACM Transaction on Networki2gQo.

J. Kangasharju, K. W. Ross, D. A. Turnekdaptive Content
Management in Structured P2P Communities”, Proogsddf 21st ACM
Symposium on Principles of Distributed Computing02.

196

[KTor]
[KW02]

[KWV05]

[KWZ03]

[LCCO2]

[LGI99]

[LeyO1]

[LHPO4]

[LHS04]

[LMO1]

[LYRO2]

[MCO0]

KTorrent, [online], http://ktorrent.org/

B. Krishnamurthy, C. E. Wills, “Improving WePerformance by Client
Characterization Driven Server Adaptation”, Procegsl of the World
Wide Web Conference, 2002.

N. Kotilainen, M. Weber, M. Vapa, J. VuofiMobile Chedar - A
Peer-to-Peer Middleware for Mobile Devices”, Pratings of the 4th
Annual IEEE International Conference on Pervasigenuting and
Communications, 2005.

B. Krishnamurthy, C. E. Wills, Y. Zhang, K/ishwanath, “Design,
Implementation, and Evaluation of a Client Chanazé¢ion Driven Web
Server”, Proceedings of the World Wide Web Confeeg2003.

Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenk&egarch and Replication in
Unstructured Peer-to-peer Networks”, Proceedinp@fl6th Int. Conf. on
Supercomputing, 2002.

B. Li, M. J. Golin, G. F. Italiano, X. Dend. Sohraby, “On the Optimal
Placement of Web Proxies in the Internet”, Proaegsiof IEEE
INFOCOM, 1999.

F. Leymann, “Web Services Flow Language §A3.0),
http://www-306.ibm.com/software/solutions/webseegpdf/WSFL.pdf
W-S Li, W-P. Hsiung, K. Hino, K. S. Canddd, Agrawal, “Challenges
and Practices in Deploying Web Acceleration Sohgiéor Distributed
Enterprise Systems”, Proceedings of Internation®/W conference,
2004.

B. T. Loo, R. Huebsch, I. Stoica, J. M. ldedtein, “The Case for a Hybrid
P2P Search Infrastructure”, Proceedings of thdr@ednational Workshop
on Peer-to-Peer Systems (IPTPS’04), 2004.

Q. Li, B. Moon, “Distributed Cooperative Aphe Web Server”,
Proceedings of 10th International World Wide Wemfeécence, 2001.

J. Li, M. Yarvis, P. Reiher, “Securing Digiuted Adaptation”, Proceeding
of Computer Networks, Vol. 38, pp. 347-371, 2002.

M. Metter, R. Colomb, “WAP Enabling ExistitdTML Application”,
Proceedings of the 1st Australasian User Inter@meference, 2000.

197

[MDS03] V. Mastoli, V. Desai, W-S. Shi, “SEE: A S&te Execution Environment

[MF99]

[Mime]

[MSBO1]

[MSRO01]

[Nap]
[001]

[Ocp]
[Opes]
[Pastry]
[PCO5]

[PCLO6]

[PCPO3]

[PD99]

for Edge Services”, Proceedings of the 3rd IEEE K&lbop on Internet
Applications, p. 61, 2003.

G. McGraw, E.W. Felten, “Securing Java: @ejtDown to Business with
Mobile code”, Wiley, 1999.

MIME (Multipurpose Internet Mail Extension®art One: Mechanisms for
Specifying and Describing the Format of Internetskige Bodies,
http://www.fags.org/rfcs/rfc1521.html.

W. Ma, B. Shen, J. Brassil, “Content Seead\etwork: The Architecture
and Protocols”, Proceedings of 6th Internationark8bop on Web
Caching and Content Distribution, June 2001.

A. Maheshwari, A. Sharma, K. Ramamritham$SRenoy, “TranSquid:
Transcoding and Caching Proxy for Heterogenous Ex@erce
Environments”, Proceedings of 12th IEEE WorkshofRessearch Issues
in Data Engineering, 2001.

Napster, http://www.napster.com.

H. K. Orman, “Data Integrity for Mildly Actig Content”,
http://doi.ieeecomputersociety.org/10.1109/AMS.2008722

OPES Callout Protocol, http://www.ietf.orgiffc4037.txt.

Open Pluggable Edge Services, http:// wvifsapes.org.

Free-Pastry platform, http://research.osoft.com/~antr/Pastry/

H. N. Palit, C-H. Chi, “Modulation for Scale Multimedia Content
Delivery”, Proceedings of the 6th International @wance for Advances
in Web-Age Information Management, China, 2005.

H. N. Palit, C-H. Chi, L. Liu, “Proxy-Basdeervasive Multimedia Content
Delivery”, Proceedings of 30th Annual Internatio@amputer Software
and Applications Conference, USA, 2006.

V. S. Pai, A. L. Cox, V. S. Pai, W. Zwaeoebl “A Flexible and Efficient
Application Programming Interface (API) for a Cusiaation Proxy
Cache”, Proceedings of the 4th USENIX Symposiuninternet
Technologies and Systems, 2003.

C. Parris, B. Dennis, “Transformation Pr&ypport for Thin-Clients”,
http:// citeseer.ist.psu.edu/58739.html

198

[PGO4]

[PHI7]

[PSO01]

[PS02]

[PS03]

[PSB02]

[PSTO02]

[QPVO01]

[Rab9sg]

[RA99]

[Rau99]

[RDO1]

J. Patel, I. Gupta, “Overhaul: Extending HPTtb Combat Flash Crowds”,
9th International Workshop on Web Content Cachimgdj Ristribution,
Beijing, 2004.

D. Povey and J. Harrison, “A Distributeddmet Cache”, Proceedings of
the 20th Australasian Computer Science Conferdrelaruary 1997.

G. Pierre, M. v. Steen, “Globule: a PlatfdonSelf-Replicating Web
Documents”, Proceedings of the 6th Internationaif€e@nce on Protocols
for Multimedia Systems, Oct. 2001.

M. Papadopouli, H. Schulzrinne, “Design &mglementation of a
Peer-to-Peer Data Dissemination and Prefetchind fdodobile Users”,
Proceedings of the 1st New York Metro Area NetwagkiWorkshop,
2002.

G. Pierre, M. v. Steen, “Design and Impletagon of a User-Centered
Content Distribution Network”, Proceedings of thrd EEEE Workshop on
Internet Applications, 2003.

T. Phan, G. Zorpas, R. Bagrodia, “An Exiielesand Scalable Content
Adaptation Pipeline Architecture to Support Hetenogous Clients”,
Proceedings of the 22nd International ConferencBistributed
Computing Systems, 2002.

G. Pierre, M. v. Steen, A. S. Tanenbaunyrf@mically Selecting Optimal
Distribution Strategies for Web Documents”, Pro¢egsl of the IEEE
Transactions on Computers, Vol.51 (6): 637-751e,J2002.

L. Qiu, V. N. Padmanabhan, G. M. Voelkedr'the Placement of Web
Server Replicas”, Proceedings of the IEEE INFOCQDM)1.

M. Rabinovich, “Issues in Web Content Regtiion”,
http://citeseer.ist.psu.edu/rabinovich98issues.html

M. Rabinovich, A. Aggarwal, “RaDaR: A ScalabArchitecture for A
Global Web Hosting Service”, Proceedings of Comphietworks,
Amsterdam, Netherlands, 1999.

M. S. Raunak, “A Survey of Cooperative Gagh
http://citeseer.ist.psu.edu/raunak99survey.html

A. Rowstron, P. Druschel, “Pastry: Scalable¢entralized object location

and routing for large-scale peer-to-peer systeind?roceedings of the

199

18th IFIP/ACM International Conference of DistribdtSystems
Platforms, Nov. 2001.

[RDO1b] A. Rowstron, P. Druschel, “Pastry: Scalalllecentralized Object
Location and Routing for Large-scale Peer-to-pgstedns”, Proceedings
of the 18th IFIP/ACM International Conference osBibuted Systems
Platforms, Nov. 2001.

[RFHO1] S. Ratnasamy, P. Francis, M. Handley, RpK&. Shenker, “A Scalable
Content-Addressable Network”, Proceedings of ACK3SOMM
Conference, 2001

[RG98] A.D. Rubin, E.E. Greer, “Mobile Code Setyiti Proceedings of IEEE
Internet Computing, Nov. 1998.

[RGKO5] S. Rhea, B. Godfrey, B. Karp, J. Kubiatoryi§. Ratnasamy, S. Shenker, I.
Stoica, and H. Yu, “OpenDHT: A Public DHT Serviaaddts Uses”,
Proceedings of ACM SIGCOMM 2005, August 2005.

[Rou05] A. Rousskov, “Open Pluggable Edge ServiGd3ES) Callout Protocol
(OCP) Core”, http://lwww.ietf.org/rfc/rfc4037.txt

[RRR98] M. Rabinovich, I. Rabinovich, R. Rajaramédbynamic Replication on
the Internet Work Project No. 3116-17-7006", AT&alis Research
Report, 1998.

[RS98] A. Rousskov, D. Wessels, “Cache Digests'm@oter Networks and
ISDN Systems, 1998

[RSB0O1] P. Rodriguez, C. Spanner, E. W. Biersagkgdlysis of Web Caching
Architectures: Hierarchical and Distributed Cachjrigyoceedings of
IEEE/ACM Transactions on Networking, August 2001.

[RXA03] M. Rabinovich, Z. Xiao, A. Aggarwal, “Comping on the Edge: A
Platform for Replicating Internet Applications”,deeedings of 8th
International Workshop on Web Caching and Contestribution, Sept.
2003.

[RXD02] M. Rabinovich, Z. Xiao, F. Douglis, “Movingdge-Side Includes to the
Real Edge - the Clients”,
http://www.research.att.com/~misha/otherPubs/c&i.pd

[RV0O3] P.Reynolds, A. Vahdat. “Efficient Peer-teqy Keyword Searching”,

Proceedings of Middleware Conference. 2003.

200

[SAPO5]

[SCKO3]

[SJS00]

[SKO1]

[SMKO1]

[Soap]

[Soap-a]

[SPS04]

[Sau]

[Smi]

[Soap]

[Sona]

[SP02]

S. Sivasubramanian, G. Alonso, G. PierraalNtn van Steen, “GlobeDB:
Autonomic Data Replication for Web Applicationstoeedings of the
International World Wide Web Conference, 2005.

W-S. Shi, E. Collins, V. Karamcheti, “Modt&l) Object Characteristics of
Dynamic Web Content”, Proceedings of Journal oaferand
Distributed Computing (JPDC), special issue onaalal Internet services
and architecture, Vol. 63, No. 10, pages 963-981,2003.

B. Schwartz, A.\W. Jackson, W.T. Strayer2Ahbu, R.D. Rockwell, and C.
Partridge. "Smart Packets: Applying Active NetwotsNetwork
Management". ACM Transactions on Computer Systé®4,):67--88,
2000.

W-S. Shi, V. Karamcheti, “CONCA: An Architeae for Consistent
Nomadic Content Access”, Proceedings of Workshogache,
Coherence, and Consistency, 2001.

I. Stoica, R. Morris, D. Karger, M. F. Kdasek, H. Balakrishnan, “Chord:
A Scalable Peer-to-peer Lookup Service for InteAmtlications”,
Proceedings of the ACM SIGCOMM Conference, 2001.

“Simple Object Access Protocol. version 1.2”
http://www.w3.org/TR/soap!/.

“SOAP Messages with Attachments”,
http://www.w3.0rg/TR/SOAP-attachments.

S. Sivasubramanian, G. Pierre, M. v. Stéeplicating Web
Applications On-Demand”, Proceedings of Servicemfaating, 2004
IEEE International Conference on (SCC'04) pp. 236;2004.

Squid Web Proxy Cache, http://www.squid-cacttg.

Smith, et. al. “SwitchWare: Towards a 21sn@ey Network

Infrastructure”, http://www.cis.upenn.edu/~gunteplieee.ps.Z.

Simple Object Access Protocol. version htth://www.w3.org/TR/soap/
Cisco Service-Oriented Network Architecture,
www.cisco.com/application/pdf/en/us/guest/netsdiifiydc643/cdccont_09
00aecd8039b324.pdf
J. Steinberg, J. Pasquale, “A Web Middlewahitecture for Dynamic
Customization of Content for Wireless Clients”, &¥edings of 11th

International World Wide Web conference, 2002.

201

[SSMO3]

[STRO2]

[ThaO1]

[Tpc]
[TWO6]

[TWJO1]

[Walo1]

[W3C]

[Wap]

[WapO00]

[WCO7]

[WGTO8]

[WHBO3]

[Ws]
[Wsa]

W-S. Shi, K. Shah, Y Mao, V. Chaudhary, X€do: A Peer-to-Peer
Caching System”, Proceedings of International Caamfee on Parallel and
Distributed Processing Techniques and Applicatidnae 2003.

A. Singh, A. Trivedi, K. Ramamritham, P.e®loy, “PTC: Proxies that
Transcode and Cache in Heterogeneous Web Clientdanvents”,
Proceedings of 3rd International Conference on Wdrmation System
Engineering, Singapore, 2002.

S. Thatte, “XLANG Web Services for Businésscess Design”,
http://www.gotdotnet.com/team/xml_wsspecs/xlangetadlt.ntm
Transaction Processing Performance Counttp, www.tpc.org.

D. L. Tennenhouse, D. J. Wetherall, “TowaasisActive Network
Architecture”, http://tns-www.lcs.mit.edu/publicatis/ccr96.html

M. Tsimelzon, B. Weihl, L. Jacobs, “ESI lgarage Specification 1.0”,
www.esi.org, 2001.

A. Walker, “Proxylet Local Execution Envinment Java Binding VO0.1",
http://www.ietf-opes.org/documents/draft-walker-sg@oxylet-java-bindi
ng-01.txt, Aug. 2001.

World Wide Web Consortium, “http://www.w3.6tg

Wireless Application Protocol,
http://www.wapforum.org/what/technical.htm.

Wireless Application Protocol - Wireless idap Language Specification,
www.openmobilealliance.org/release_program/docsiBnog/\V2_1-2005
0614-C/WAP-191-WML-20000219-a.pdf, 2000.

D. Wessels and K Claffy, "ICP and the sqweb cache."
http://citeseer.nj.nec.com/wessels97icp.html

D. J. Wetherall, J. Guttag, D. L. Tennenb®U'ANTS: A Tool kit for
building and dynamically deploying network prota&plProceedings of
IEEE OPENARCH'"98, 1998.

M. Waldvogel, P. Hurley, D. Bauer, “Dynanfeplica Management in
Distributed Hash Tables”, IBM Research Report, 2A093.

Web Services, http://www.w3.0rg/2002/ws/.

Web Service Addressing (WS-Addressing),

http://www.w3.org/Submission/ws-addressing/

202

[Wsdd]

[Wsdl]

[Wsel]

[Wsp]

[WVS99]

[Uddi]
[Uapr]
[Uiml]
[Utor]
[Ver02]

[Xsl{]

[YCZ03]

[YHO1]

[YHZO3]

Web Service Dynamic Discovery (WS-Discovery)
http://schemas.xmlsoap.org/ws/2005/04/discovery/

“Web Service Description Language. Versioh’l
http://www.w3.org/TR/wsdl

“Web Service Endpoint Language”,
http://www.service-architecture.com/web-servicasibas/web_services_e
ndpoint_language_wsel.html

“Web Service Policy Framework”,
http://www-128.ibm.com/developerworks/webservidbsdry/specificatio
n/ws-polfram/

A. Wolman, G. M. Voelker, N. Sharma, et@rf the Scale and
Performance of Cooperative Web Proxy Caching”, @edmngs of 17th
Symposium on Operating Systems Principles, 1999.

“Universal Description, Discovery and Integion Specification”,
http://www.uddi.org/specification.html

“User Agent Profiles”, http://w3developmede/rdf/uaprof_repository/.
“User Interface Markup Language”, www.uimign

puTorrent, [online], http://www.utorrent.com/

D. C. Verma. “Content distribution networks engineering approach”,
New York : J. Wiley, 2002.

“XSL Transformations (XSLT) Version 1.0. W3Recommendation”,
http://www.w3.0rg/TR/xslt.

C. Yuan, Y. Chen, Z. Zhang, “Evaluationtedge Caching/Offloading for
Dynamic Content Delivery”, Proceedings of Interoatl World Wide
Web conference, 2003.

L. Yang, M. Hofmann, “OPES Architecture fRule Processing and
Service Execution”,
http://www.ietf-opes.org/documents/draft-yang-opeale-processing-servi
ce-execution-00.txt, Aug. 2001.

C. Yuan, Z. Hua, Z. Zhang, “Proxy+: SimpgPeoxy Augment for Dynamic
Content Processing”, Proceedings of Web ContenhiGgand
Distribution, 2003.

203

[YS96]

[ZFJ97]

[ZWL02]

Yemini, da Silva, “Towards Programmable Netis”, Proceedings of
IFIP/IEEE International Workshop on Distributed &yss: Operations
and Management, 1996.

L. Zhang, S. Floyd, and V. Jacobson. “AdapWeb Caching”,
Proceedings of the NLANR Web Cache Workshop, J@% 1

http://citeseer.nj.nec.com/zhang97adaptive.html

L. Zhuo, C-L. Wang, F. C. M. Lau, “Load Balcing in Distributed Web

Server Systems with Partial Document Replicatiéhigceedings of the

International Conference on Parallel Processing220

204

Index

ACDN Application Content Distribution Network
AJAX Asynchronous JavaScript and XML

APP Application

BPEL Business Process Execution Language
BT Bit Torrent

CAN Content Addressable Network

CANS Composable Adaptive Network Services
CC/PP Composite Capabilities/Preferences Profile
CDN Content Distribution Network

CR Configuration Rule

CSl Client Side Inclusion

CSN Content Service Network

DHT Distributed Hash Table

DIA Device Independent Authoring Service
ESI Edge Side Inclusion

HTTP Hyper Text Transfer Protocol

LFU Least Frequently Used

ICAP Internet Content Adaptation Protocol
IRML Intermediary Rule Markup Language
LISO Large Input Small Output

LISO+D LISO application with additional Data
LRU Least Recently Used

oBJ Content Object

OCP OPES Callout Protocol

OPES Open Pluggable Edge Service

P2P Peer to Peer

PAST Pastry-based distributed Storage system
PC Personal Computer

PDA Personal Digital Assistant

PTC Proxy for Transcoding and Caching

205

RaDaR Replicator and Distributor and RedirectoedaSDN System
SDT Server-Directed Transcoding

SECP Service Enabled Caching Proxy

SEG Segment

SILO Small Input Large Output

SILO+D SILO application with additional Data
SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SONA Service Oriented Network Architecture
TSK Task

Transquid Transcoding Squid

TTL Time To Live

UAPTrof User Agent Profile

URI Uniform Resource Identifier

URL Uniform Resource Location

WF Workflow

WS-BPEL Web Service for Business Process Execliimguage
WSFL Web Service Flow Language

www World Wide Web

XML Extensible Markup Language

XSLT XML Transformation

206

