
  

 
 
 

APPLICATION NETWORKING FOR PERVASIVE 
CONTENT DELIVERY 

 
 
 
 
 
 
 

SU MU 
(B.Eng, M.Eng) HUST, P.R.C 

 
 
 
 
 
 
 
 

A THESIS SUBMITTED  
FOR THE DEGREE OF PHILOSOPHY OF DOCTOR 

DEPARTMENT OF COMPUTER SCIENCE 
SCHOOL OF COMPUTING 

NATIONAL UNIVERSITY OF SINGAPORE 
2008 



 i 

Acknowledgement 

Although this thesis presents my individual work, there are many people who 

contributed to it by their discussion and support. First, I thank Dr. Chi Chi-Hung, my 

former supervisor, whose guidance, motivation and discussion have been invaluable 

throughout my studentship in NUS. I also thank Dr. Sung Wing-Kin, my current 

supervisor, who gave many supports in the last phase of my study. 

I thank Henry Novianus Palit, Hongguang Wang, Choonkeng Chua, Junli Yuan 

for their help and support on my research work. 

I also thank to my family for their love and support: Mom for her care, Dad for 

his advice and motivation, and Brother for his concern. Thanks and life-long memory 

to my grandma. 

In particular, I appreciate my wife, Junxia Zhang. She gave me her largest 

encouragement and support, especially during the thesis revision phase. Without her, I 

could not finish my research. 



 ii  

Contents 

Acknowledgement ..........................................................................................................i 

Contents .........................................................................................................................ii 

List of Figures ..............................................................................................................vii 

List of Tables ................................................................................................................xi 

Summary......................................................................................................................xii 

CHAPTER 1 ..................................................................................................................1 

1.1 Background...............................................................................................1 

1.2 Motivations ...............................................................................................4 

1.2.1 Well-defined Content Service Structure ............................................4 

1.2.2 Content Reuse ....................................................................................5 

1.2.3 Efficient Service Placement...............................................................6 

1.2.4 Wide Framework Adoption ...............................................................7 

1.3 Objectives and Contributions....................................................................8 

1.3.1 Objectives ..........................................................................................8 

1.3.2 Contributions......................................................................................9 

1.4 Thesis Outline .........................................................................................11 

CHAPTER 2 ................................................................................................................12 

2.1 Introduction.............................................................................................12 

2.2 Traditional Web Content Delivery Technologies ...................................12 

2.2.1 Web Caching....................................................................................13 

2.2.2 Web Replication and Content Distribution Networks .....................14 

2.3 Active Web Intermediaries .....................................................................17 

2.3.1 Active Proxy ....................................................................................19 

2.3.2 Collaborative Intermediaries............................................................22 



 iii  

2.3.3 Active CDN .....................................................................................24 

2.4 Adaptive Content Delivery Standards ....................................................26 

2.4.1 Open Pluggable Edge Service..........................................................26 

2.4.2 Callout Protocols..............................................................................28 

2.5 Peer-to-Peer (P2P) Networks..................................................................29 

2.5.1 Centralized P2P Networks ...............................................................29 

2.5.2 Unstructured P2P Networks.............................................................31 

2.5.3 Structured P2P Networks.................................................................32 

2.6 Replication and Caching in the P2P Networks.......................................36 

2.6.1 Replication in the unstructured P2P Networks ................................36 

2.6.2 Replication and Caching in the Structured P2P Networks ..............37 

2.6.3 P2P-based Web Content Caching ....................................................39 

2.7 Active P2P Solutions ..............................................................................41 

2.8 Summary.................................................................................................44 

CHAPTER 3 ................................................................................................................45 

3.1 Motivations .............................................................................................45 

3.2 Framework Overview .............................................................................47 

3.3 Workflow ................................................................................................50 

3.3.1 Workflow Structure .........................................................................50 

3.3.2 Workflow Operations.......................................................................52 

3.3.3 XML Specification...........................................................................55 

3.3.4 Discussion........................................................................................57 

3.4 Metadata based Content Reuse ...............................................................59 

3.4.1 Metadata Specification.....................................................................60 

3.4.2 Content Reuse ..................................................................................63 



 iv 

3.4.3 Discussion........................................................................................64 

3.5 Observation and Summary......................................................................65 

CHAPTER 4 ................................................................................................................67 

4.1 App.Net Architecture..............................................................................67 

4.1.1 Service Preparation Process.............................................................68 

4.1.2 Request Forwarding Process............................................................69 

4.1.3 Server Response Process..................................................................71 

4.1.4 Proxy Response Process ..................................................................73 

4.1.5 System Security ...............................................................................74 

4.2 App.Net Caching Scheme.......................................................................75 

4.2.1 Cache Identifier................................................................................75 

4.2.2 Versioned Response.........................................................................78 

4.2.3 App.Net Caching Scheme................................................................80 

4.3 Performance ............................................................................................82 

4.3.1 Cost Model.......................................................................................82 

4.3.2 Optimization Model .........................................................................84 

4.3.3 Optimization Algorithm...................................................................89 

4.3.4 Performance Modeling for Static Content .......................................93 

4.4 Summary.................................................................................................94 

CHAPTER 5 ................................................................................................................95 

5.1 Implementation .......................................................................................95 

5.1.1 Request Modification.......................................................................96 

5.1.2 Response Transformation ................................................................97 

5.2 Simulation Environment .........................................................................98 

5.3 Simulation for Applications..................................................................100 



 v 

5.3.1 Application Taxonomy ..................................................................100 

5.3.2 SILO Application – Chart Generator.............................................102 

5.3.3 SILO+D Application – Page Assembler........................................104 

5.3.4 LISO+ Application – Watermarking .............................................107 

5.3.5 LISO – Document Trimmer...........................................................108 

5.3.6 Discussion......................................................................................111 

5.4 Simulations for Service Placement .......................................................112 

5.4.1 Overview........................................................................................112 

5.4.2 Simulation on Single Service.........................................................113 

5.4.3 Simulation on Multiple Services for Dynamic Content.................116 

5.4.4 Simulation on Multiple Services for Static Content ......................122 

5.5 Summary...............................................................................................123 

CHAPTER 6 ..............................................................................................................124 

6.1 Motivation.............................................................................................124 

6.2 Methodology.........................................................................................126 

6.2.1 Overview........................................................................................126 

6.2.2 Pastry Network...............................................................................128 

6.2.3 System Operations .........................................................................130 

6.3 Performance Analysis ...........................................................................133 

6.3.1.1 Utility Algorithm .............................................................134 

6.3.1.2 AN.P2P Performance Prediction .....................................139 

6.4 Simulation.............................................................................................141 

6.4.1 Overview........................................................................................141 

6.4.2 Computation Result .......................................................................142 

6.4.3 Simulation Group 1........................................................................143 



 vi 

6.4.4 Simulation Group 2........................................................................146 

6.4.5 Simulation Group 3........................................................................148 

6.4.6 Simulation Group 4........................................................................149 

6.5 Summary...............................................................................................151 

CHAPTER 7 ..............................................................................................................152 

7.1 Overview...............................................................................................152 

7.1.1 Implementation ..............................................................................152 

7.2 Selective Replication ............................................................................155 

7.2.1 Selective GDS Replication Algorithm...........................................156 

7.2.2 Selective LFU Replication Algorithm ...........................................158 

7.2.3 Simulation Results .........................................................................159 

7.3 Partial Service Replication....................................................................162 

7.3.1 Partial Replication Algorithm........................................................162 

7.3.2 Partial Service Caching Scheme ....................................................165 

7.3.3 Simulation Results .........................................................................167 

7.4 Pointers Cache ......................................................................................171 

7.4.1 Simulation Results .........................................................................175 

7.5 Summary...............................................................................................182 

CHAPTER 8 ..............................................................................................................183 

8.1 Contributions.........................................................................................183 

8.2 Future Work ..........................................................................................185 

Reference ............................................................................................................189 

Index 205 



 vii  

List of Figures 

Figure 2.1 Literature Review Organization ..........................................................12 

Figure 2.2 Architecture of RaDaR........................................................................16 

Figure 2.3 Structure of Service Enabled Caching Proxy ......................................20 

Figure 2.4 Structure of the Server-Directed Transcoding System........................21 

Figure 2.5 OPES Architecture ..............................................................................27 

Figure 2.6 An Example DKS network (dots represent network nodes, N=16).....33 

Figure 3.1 A Traditional Content Delivery Framework.......................................45 

Figure 3.2 Application Networking Framework...................................................47 

Figure 3.3 Static and Deliverable Service Tiers ...................................................49 

Figure 3.4 An Example Workflow........................................................................50 

Figure 3.5 Workflow Structure .............................................................................52 

Figure 3.6 an Example Workflow XML Specification.........................................56 

Figure 3.7 Branching Logic in the Workflow.......................................................59 

Figure 3.8 Metadata Specification ........................................................................61 

Figure 3.9 Specification for <AppNetDeliverable> - Entire Workflow...............62 

Figure 3.10 Specification for <Deliverable> - Partial Workflow.........................63 

Figure 4.1 Architecture of App.Net System .........................................................67 

Figure 4.2 App.Net Workflow..............................................................................69 

Figure 4.3 Request Message from Client..............................................................70 

Figure 4.4 Request Message from Proxy..............................................................71 

Figure 4.5 Response Message from Server...........................................................73 

Figure 4.6 Response Message from Proxy ...........................................................74 

Figure 4.7 Example Messages for the RE-URI Header........................................78 

Figure 4.8 Example Messages using VaryByParam.............................................80 



 viii  

Figure 4.9 Model for a Single Application ...........................................................83 

Figure 4.10 An Example Objects-Tree .................................................................85 

Figure 4.11 Request Probabilities of Objects and Sub-Trees ...............................87 

Figure 4.12 Optimization Algorithm ....................................................................90 

Figure 5.1 App.Net Prototype...............................................................................95 

Figure 5.2 Simulation Environment......................................................................99 

Figure 5.3 Application Taxonomy......................................................................101 

Figure 5.4 Transmission Cost .............................................................................103 

Figure 5.5 System Throughput ...........................................................................103 

Figure 5.6 Request Drop Ratio ...........................................................................103 

Figure 5.7 User Perceived Latency.....................................................................103 

Figure 5.8 Transmission Cost .............................................................................106 

Figure 5.9 System Throughput ...........................................................................106 

Figure 5.10 User Perceived Latency...................................................................106 

Figure 5.11 Performance for the Watermarking Application .............................107 

Figure 5.12 Performance of Document Trimmer in Heterogeneous Scenario ...109 

Figure 5.13 Performance of Document Trimmer in Homogeneous Environment

.....................................................................................................................111 

Figure 5.14 Device-Independent Authoring Service Workflow.........................113 

Figure 5.15 Transmission Cost ...........................................................................115 

Figure 5.16 User Perceived Latency...................................................................115 

Figure 5.17 System Throughput .........................................................................116 

Figure 5.18 Server Throughput...........................................................................116 

Figure 5.19 Transmission Cost ...........................................................................118 

Figure 5.20 Cache Hit Ratio ...............................................................................119 



 ix 

Figure 5.21 User Perceived Latency...................................................................120 

Figure 5.22 Transmission Cost under Different Request Patterns......................121 

Figure 5.23 User Perceived Latency under Different Request Patterns .............121 

Figure 5.24 System Performance for Static Contents.........................................122 

Figure 5.25 System Performance under Different Request Patterns ..................123 

Figure 6.1 A Straightforward Content Service Methodology in the P2P Network

.....................................................................................................................125 

Figure 6.2 AN.P2P Methodology in the P2P Networks .....................................126 

Figure 6.3 AN.P2P over the Pastry Network......................................................130 

Figure 6.4 Predicted Query Hops in the Pastry Network....................................139 

Figure 6.5 Computation Results .........................................................................143 

Figure 6.6 Query Hops........................................................................................144 

Figure 6.7 Replica Hit Ratio ...............................................................................144 

Figure 6.8 Retrieval Distance .............................................................................145 

Figure 6.9 Replica Hit Ratio ...............................................................................146 

Figure 6.10 Retrieval Distance ...........................................................................147 

Figure 6.11 Replication Cost ..............................................................................148 

Figure 6.12 Performance Under Different Percentages of AN.P2P Nodes ........149 

Figure 6.13 Query Failure Ratio .........................................................................150 

Figure 6.14 Replica Hit Ratio .............................................................................151 

Figure 6.15 Retrieval Distance ...........................................................................151 

Figure 7.1 AN.P2P Prototype .............................................................................153 

Figure 7.2 AN.P2P’s Basic Query-Response-Replication Process ....................155 

Figure 7.3 isReplicate ( ) for Selective GDS Replication...................................158 

Figure 7.4 isReplicate( ) for Selective LFU Replication ....................................159 



 x 

Figure 7.5 Replication Costs against Different Cache Sizes ..............................160 

Figure 7.6 Replication Costs against the Number of Queries.............................161 

Figure 7.7 Replica Hit Ratio ...............................................................................162 

Figure 7.8 Retrieval Distance .............................................................................162 

Figure 7.9 Partial Replication Message ..............................................................164 

Figure 7.10 Partial Replication Judgment Algorithm.........................................165 

Figure 7.11 Replica Hit Ratio .............................................................................167 

Figure 7.12 Retrieval Distance ...........................................................................168 

Figure 7.13 Replica Hit Ratio .............................................................................169 

Figure 7.14 Retrieval Distance ...........................................................................169 

Figure 7.15 Replication Costs.............................................................................169 

Figure 7.16 Computation Loads .........................................................................170 

Figure 7.17 Operations Flowchart ......................................................................172 

Figure 7.18 Range of the Pointed Nodes (1).......................................................174 

Figure 7.19 Range of the Pointed Nodes (2).......................................................175 

Figure 7.20 Object Cache Hit Ratio....................................................................176 

Figure 7.21 Computation Load ...........................................................................176 

Figure 7.22 System Performance against the Number of Queries......................177 

Figure 7.23 Query Hops......................................................................................178 

Figure 7.24 Retrieval Distance ...........................................................................178 

Figure 7.25 Percentages of Cache-Stale and Cache-Hit .....................................179 

Figure 7.26 Pointer Probe Overheads .................................................................180 

Figure 7.27 Pointers Cache Performance for Different Pointer Numbers ..........181 



 xi 

List of Tables 

Table 2.1 Routing Table of Node 0, (N=16, k=2).................................................34 

Table 4.1 Virtual and Effective Placement Vectors..............................................86 

Table 5.1 Application Taxonomy Details...........................................................102 



 xii  

Summary 

In the past few years, the Web and the peer-to-peer (P2P) based content services 

have witnessed more heterogeneous requests, due to the emergence of diverse user 

devices and network connections, and other personalized requirements. To provide 

the best-fit content for clients, researchers proposed many active content delivery 

systems, which add transformation applications into the content delivery system and 

allow it to transform the relayed content according to client’s requirements. However, 

these systems carry a common weakness – they treat content transformation and 

content delivery as two separate processes. It causes the systems to suffer problems 

like not preserving content’s semantics, poor scalability to adopt applications, and low 

performance due to application placement and content reuse. To address these 

challenges, we propose a novel framework - Application Networking - that integrates 

content delivery and content transformation into a unified service delivery process. 

The research is exploited in three phases: (i) general Application Networking 

framework, (ii) App.Net system for the web context, and (iii) AN.P2P system for the 

P2P context. 

The Application Networking framework defines our content service structure 

and content reuse method. The framework organizes content service as an original 

content object and a workflow that specifies the allowed operation steps to be 

performed on the content. The content service can be delivered to the network nodes, 

which will execute the workflow operations to transform the content for the 

requesting clients. More importantly, the framework can achieve flexible service 

placement by delivering partial workflow in the network, and this flexibility facilitates 

the system to achieve efficient content delivery strategies. Meanwhile, the framework 



 xiii  

defines a metadata based approach to implement the general-purposed and 

service-oriented content reuse. 

The efficacy of our concept is verified by the App.Net system, which applies 

the general framework in the Web content delivery context. The system extends the 

legacy Web system by allowing the Web server to deliver the content service to the 

edge proxy, which will reuse it to serve heterogeneous requests. We also propose 

intelligent service placement algorithm to minimize the server-to-proxy transmission 

cost by delivering partial content services in the optimal ways. The performance 

evaluation results show our App.Net system outperforms the conventional 

server-based and proxy-based solutions significantly. 

This research is further expanded by the AN.P2P system, which applies the 

general framework to the P2P networks by enabling the network to populate both the 

content object and its workflow. Firstly, mathematical analysis is used to show the 

AN.P2P methodology can achieve less search size or query hops than the plain P2P 

methods that share the final content presentations in the network. Then, a detailed 

AN.P2P system on the Pastry network is proposed. It uses dedicated solutions: (i) the 

selective replication method, (ii) the partial replication method and (iii) the pointers 

cache method, to perform cost-effective service replication and efficient content reuse. 

The simulation results show our system achieves much better performance than the 

conventional P2P solution when serving heterogeneous queries. 

 

Keywords: Application Networking, Web, Peer-to-Peer, Pervasive Content 

Delivery, Content Adaptation 



 1 

CHAPTER 1  

INTRODUCTION 

1.1 Background 

Nowadays, content service is one of the most important Internet applications, 

because of people’s intensive desire for acquiring and propagating information. Most 

content delivery systems are built on either Web or peer-to-peer (P2P) technology, to 

allow the content provider to publish and deliver his contents to the global users. 

The main advantage of Web is the simple client-server communication way and 

the rich media presentation. Many efficient Web content delivery solutions were 

proposed to support large numbers of clients that would cause considerable access 

load on the server and significant transmission load on the backbone network. Typical 

solutions are the Web cache [Rau99, WC97, RS98, FCAB00 and BO00], the Web 

replication [KRR01, QPV01], and the content distribution networks (CDN) [Ver02, 

Hul02, RRR98 and RA99]. On the other side, the P2P technology is highly 

autonomous and scalable, and many content delivery systems are built on it, such as 

the file sharing systems [Nap, Kaz], the distributed storage systems [RD01, DKK01], 

and the P2P supported Web delivery systems [PG04, BT]. 

In recent years, content services witness much more heterogeneous 

requirements as never before. Besides the traditional personal computers, many new 

devices, such as PDAs and smart phones, are used as the browsing tools. Meanwhile, 



 2 

with people coming from different parts of the world, Internet is facing a variety of 

users with different network access speeds, language requirements, multimedia 

coding preferences, and so on. Under such conditions, the content services are 

expected to provide the appropriate responses that fit the network, hardware, software 

and other personalized requirements of the clients. 

However, the traditional content delivery systems were designed for contents 

with a single presentation and they become deficient under the new conditions. To fill 

this gap, many “active content delivery” systems are proposed. In general, these 

systems add the content transformation applications into the content delivery path, 

and allow the network nodes to transform content to the appropriate presentations 

according to the clients’ requirements. According to where the transformation 

applications are performed, existing active systems can be divided into three groups: 

(i) the origin-site solutions, (ii) the client-side solutions, and (iii) the intermediary 

solutions. 

The origin-site solutions transform content at the Web server or the origin node 

in the P2P network. When the origin site receives a request, it will transform the 

content according to the requirements in the request. The adapted content is then sent 

to the client. The main drawback of this method is the fully adapted content has very 

poor reusability at the intermediate proxy cache or peer node, since the response is for 

a specific group of clients and cannot be reused for clients with different 

requirements. 

The client-side solutions transform content at the client’s device. Many systems, 

such as CSI [RXD02] and AJAX [Ajax], use the downloaded applications to 

transform and manipulate the response content. Although this solution can better 

understand the capabilities of the client’s device and provides good user interaction, 



 3 

the heterogeneity of client devices restricts its wide usage. More importantly, the 

solution is not flexible enough as transforming content at the client side may not be 

beneficial at all situations. 

Researchers also proposed the active intermediary solutions [Dik04] that let the 

intermediate node fetch the original content from the origin site and transform it for 

different client groups. The solutions only need to install applications at the 

intermediate node but can reuse them for all the connected clients. Thus, it is a 

one-to-many approach.  

Typical active Web intermediary systems are (i) the active proxy [BJA98, 

BH01, STR02 and BCH04], where the content applications are pre-installed on the 

edge proxy; (ii) the active cache [CZB98] and the server-directed transcoding (SDT) 

system [KLM03], which allow the proxy to fetch small applications from the server 

dynamically; and (iii) the Content Service Network (CSN) [MSB01] and the 

Application CDN (ACDN) [RXA03] systems, which put application proxies in the 

network and allow the CDN servers to transform content using these application 

proxies. 

Correspondingly, the active intermediary is also used in the P2P systems, such 

as Tuxedo [SSM03] for content caching and SpiderNet [GDY04] for data streaming. 

Such systems assume some network nodes are installed with the transformation 

applications, and can direct the content to flow through the required application nodes 

to form the final presentation for the client. 

In summary, the history of the “traditional content delivery systems” presents 

the trend - the content moves from the origin site to the intermediate network nodes. 

This kind of content distribution improves the system’s scalability and efficiency to 

serve the homogenous requests that ask for contents with a single presentation. 



 4 

Meanwhile, the invention of the “active content delivery systems” presents a new 

trend - the content applications are added to the intermediate network nodes. This 

scales up the node’s capability to transform the relayed content. This application 

distribution has exhibited its benefits to improve the system’s scalability and 

efficiency to serve the heterogeneous requests for the customized content 

presentation. 

1.2 Motivations 

Although existing solutions can achieve active content delivery to some extent, 

they are not sufficient to construct a comprehensive framework. There are some major 

challenges to be conquered, including (i) how to describe the content service as a 

well-defined structure, (ii) how to reuse the versioned content, (iii) how to perform 

efficient service placement, and (iv) how to apply a general framework to different 

content delivery contexts. 

1.2.1 Well-defined Content Service Structure 

The active content delivery systems allow the intermediate nodes to transform 

the relayed content objects. A complete content transformation process usually 

contains multiple operations. For example, to render a Web page on a PDA, the 

transformation includes document fragmentation, layout customization, and rending 

language selection. To describe these operations, current systems propose some 

methods: (i) the active proxy systems [BJA98 and BH01] use the built-in policies to 

manage the content transformation; (ii) the OPES framework [BCH04] and CSN 

[MSB01] use the configuration rules to trigger the transformation applications; and 

(iii) SDT [KLM03] and ACDN [RXA03] send the server-directed instruction to the 

proxy to notify the required operation and application. 



 5 

Although these methods facilitate active content manipulation to some extent, 

they are still insufficient to describe a complete set of content operations precisely. A 

complete description should include not only the invocation rules, but also the 

execution sequence of operations, the application needed for each operation, and the 

input content and parameters for the application. All these factors are necessary to 

perform precise content transformation. Moreover, the description should also 

describe different versions of content objects generated from the transformation. This 

will facilitate the system to reuse content with high flexibility. 

Thus, we should provide a well-defined “content service” structure, and allow 

the content provider to define the transformation steps for his content. The service 

specification tells the network nodes how to manipulate a piece of content and 

generate the correct content presentation for the client. Besides these descriptive 

functions, the service structure should also be loosely coupled to facilitate the system 

to (i) form a service with the standard and reusable application modules; and (ii) 

implement flexible service placement to the network nodes. 

1.2.2 Content Reuse 

Content transformation will generate different versions of content objects. 

Reusing these versioned contents, especially on the intermediate node, can reduce the 

network traffic and the user perceived latency. Many systems (e.g. [STR02]) leverage 

dedicated applications to retrieve the media properties and reuse content according to 

these properties. Though such type-oriented approach is effective for specific content 

types, we also need more general approach due to the following reasons. 

� Reuse all types of contents: In the open Internet environment, different types of 

contents will be delivered. To reuse these contents, we need a general judgment 



 6 

mechanism that is independent of particular content types. Thus, the system can 

determine the reusability of content without interpreting its data format. 

� Service oriented reuse: In many situations, the content reusability should be 

“service-oriented” instead of type-oriented, which means the reusability is 

decided by the content service’s semantics rather than the content type. For 

example, an advertisement bar can have an image presentation and a text 

presentation, where the former is used for clients with rich multimedia support 

and the latter is for thin clients. In this case, the content reusability should be 

determined by the advertisement service instead of any reuse rule for either 

image or text. 

Thus, we are motivated to provide a general-purposed and service-oriented 

content reuse mechanism. 

1.2.3 Efficient Service Placement 

Another important issue in the active system is how to deploy the service 

applications for high performance content delivery. This issue can be broken into two 

aspects: (i) where to place an application, and (ii) how to place a content service 

containing multiple applications. 

� Where to place an application? 

An application transforms the input content object to one or multiple output 

objects. Since the input and output objects usually have different size and reusability, 

placing and executing the application on different network nodes would result in 

different transmission traffic and user perceived latency. Thus, where to place an 

application directly affects the system performance. 

Many systems install applications either at the fixed nodes or deploy them 

dynamically to the nodes that are fixed at the design phase. However, placing 



 7 

application at such fixed location is not efficient in all situations. For example, if a 

large image is intensively accessed by the clients with different preferences, putting 

the transcoding application on the edge proxy will be beneficial for content reuse. 

However, if the image is occasionally accessed, a better choice is to transcode it at the 

server and only send those few transcoded results. 

Thus, the efficient application placement should be dynamic, considering 

factors as the clients’ request pattern, the content’s size and cacheability, and the 

application’s size and valid period. 

� How to place the content service? 

A complete content service may contain multiple applications. Thus, the second 

issue is how many applications should be deployed to the intermediate node. Some 

solutions, e.g. ACDN [RXA03], treat all applications in a service as an atomic unit 

and deliver them as a whole. This is a coarse placement granularity, because the 

possible choices are to deploy either all applications or none of them. The lack of 

flexibility would restrict the system performance. 

Therefore, an efficient system should supply a flexible service placement 

strategy. It can deploy content service at finer granularity, which means the system 

can place some selected applications in the service to the intermediate network node 

according to the relevant performance gain and delivery cost. Such flexibility enables 

the system to derive more beneficial placement strategy in the dynamic environment. 

1.2.4 Wide Framework Adoption 

Since Web and P2P are two important content delivery scenarios, it is important 

to adopt the proposed active content delivery framework to both contexts to explore 

its general efficacy. In particular, the current active framework studies are mostly 

based on Web systems. It is necessary to expand the study into the P2P systems, 



 8 

where quite different architectural and performance issues are presented. Meanwhile, 

many recent studies [PG04 and BT] proposed the hybrid system that can leverage 

both Web and P2P technologies. Adopting a general framework will enable active 

content delivery for such hybrid systems. 

1.3 Objectives and Contributions 

Intrigued by above motivations, this thesis is targeted to propose a novel 

framework for pervasive content delivery. The thesis focuses on exploring the 

efficacy of our framework in the Web and P2P contexts, rather than designing 

particular content services. The objectives and contributions of this thesis are 

summarized as follow. 

1.3.1 Objectives 

Our research is accomplished in three stages, each with a particular target: 

� A General Framework 

To provide a basis for the concrete systems, we first need a general framework 

for pervasive content delivery. The framework provides a well-defined description for 

the content services. This description should facilitate flexible service placement, 

which means (i) the content applications can be deployed dynamically, and (ii) the 

content services can be delivered in the network at fine granularity. 

Meanwhile, the framework should define a general approach to identify and 

reuse different versions of content objects. Different from the conventional 

type-oriented method, this approach should enable the general-purposed and 

service-oriented content reuse. 

� Adopt the framework to the Web Context  

Our in-depth system study starts from applying the general framework into the 

Web content delivery context. The proposed system should enable the Web server to 



 9 

deliver not only the response content but also the relevant applications to the edge 

proxy. The new system must also be compatible with the legacy Web content delivery 

mechanisms, so that we can deploy it into the actual Web environment. Intelligent 

service placement strategy should also be provided for efficient content delivery. 

� Adopt the framework to the P2P Context  

Next, we will adopt the general framework into the P2P context, which extends 

our study to the network scenario with large numbers of nodes. Firstly, we need the 

fundamental methodology for the representative P2P network. Performance analysis 

will be used to show the widespread benefits of the proposed methodology. Then, we 

will elaborate the methodology into a concrete system with detailed mechanisms for 

efficient service placement and content reuse. 

1.3.2 Contributions 

We believe our research efforts on this thesis will enrich the knowledge base of 

several research areas, particularly on the fields of Web and P2P content delivery. Our 

key contributions are summarized as follow. 

� Application Networking Framework 

We propose the Application Networking framework for pervasive content 

delivery. The framework extends the traditional content delivery frameworks by 

integrating content delivery and content transformation into a unified service delivery 

process. It describes the content transformation operations as a well-defined service 

structure and enables partial service placement which is not provided by the 

conventional frameworks. It proposes a metadata-based method to achieve the 

general-purposed and the service-oriented content reuse. 

� App.Net System 



 10 

We propose the App.Net system that applies the Application Networking 

framework into the Web content delivery context. Our system is proposed in the 

background that the content transformation is either based on the origin server or the 

edge proxy in the conventional Web systems. App.Net enables the server to deliver an 

intermediate response with relevant service applications to the proxy. It not only 

generalizes the conventional architectures, but also provides more flexible content 

delivery and transformation mechanisms. Meanwhile, we extend the HTTP 1.1 

protocol to cache different versions of responses and make the new system compatible 

with the conventional Web systems. 

More importantly, optimal service placement algorithms are constructed to 

minimize the transmission cost in the system. We implemented an App.Net prototype 

on the Jigsaw platform, and performed simulations based on it. The results show the 

App.Net system achieves higher performance than the conventional server-based and 

proxy-based solutions. 

� AN.P2P System 

We also propose the AN.P2P methodology that adopts the Application 

Networking framework to the P2P network. Different from the traditional P2P method 

that only replicates response objects, our method enables the replication of content 

services. A mathematical model is constructed to show the widespread advantage of 

the proposed methodology. Our model is also the first quantitative analysis model for 

the Pastry network. A system prototype is implemented on the Free-Pastry platform, 

and the simulation results show the AN.P2P method outperforms the conventional 

Pastry system significantly. 

Furthermore, we build a detailed AN.P2P system. Our study provides a general 

purposed framework for active content delivery in the P2P network, whereas most 



 11 

existing solutions are based on specific applications. In particular, we propose (i) the 

selective replication method for targeted service replication, (ii) the partial replication 

method for flexible service replication, (iii) and the pointers cache method for 

distributed content reuse. Simulation results show all these mechanisms enhance the 

system performance from different aspects. 

1.4 Thesis Outline 

The thesis is organized as follows. Chapter 2 reviews the traditional and active 

systems for Web and P2P content delivery. Chapter 3 proposes our general research 

framework – Application Networking framework. Chapter 4 proposes the App.Net 

system architecture that applies the general framework into the Web context. 

Performance models and optimal service placement algorithm are also provided. The 

simulations are explained in Chapter 5 to verify the effectiveness of this new 

architecture. In Chapter 6, we propose the AN.P2P methodology that expands our 

framework to the P2P network. Mathematical model is proposed to estimate the 

system performance. Then, a detailed AN.P2P system is discussed in Chapter 7. 

Relevant solutions are provided to achieve efficient service replication and content 

reuse. Finally, we summarize the research and discuss the future work in Chapter 8.



 12 

CHAPTER 2  

LITERATURE REVIEW  

2.1 Introduction 

This chapter reviews the research work related to our thesis. The traditional and 

active Web content delivery systems are first reviewed. Then, we review the P2P 

networks, the replication and caching techniques in the P2P systems, and the active 

P2P solutions. The literature review is organized as in Figure 2.1. 

 
Figure 2.1 Literature Review Organization 

2.2 Traditional Web Content Delivery Technologies 

In the past decade, the Web has become one of the most popular content service 

models in the Internet, due to its simple client-server communication and rich media 

presentations. It has been found that a single Web server cannot manage the load 

caused by the large numbers of users, due to its limited processing capability, network 



 13 

bandwidth, and the connection availability. Thus, many solutions were proposed for 

efficient content delivery by distributing the load to multiple nodes. Two well-known 

solutions are the Web caching and the Web replication. 

2.2.1 Web Caching 

The Web caching method [BO00] allows the intermediate proxy to cache the 

Web objects so that the future users’ requests for these cached objects will be served 

from the proxy directly. [BCF99] claims the Web users’ access pattern to Web 

contents presents the temporal and spatial locality characteristics, where the minority 

of objects is queried most frequently while most others are not queried so frequently. 

Therefore, caching those high utility objects at the proxy can reduce the user 

perceived latency and the traffic on the Internet backbone. Many cooperative caching 

structures [Rau99] were also proposed to explore the collaborative storage of multiple 

caches. Typical structures are the hierarchical cache proxies and the distributed cache 

proxies. 

The hierarchical caching systems [WC97, RS98, and FCAB00] arrange cache 

proxies as a tree structure. A proxy may have its parent proxy and the sibling proxies. 

When receiving a request, the proxy will first look up its local cache. If the cache does 

not store the object, the proxy will query the sibling proxies, any of which with the 

object will reply the query. If none sibling replies, the proxy will forward the request 

to its parent proxy. The hierarchical caching structure enables content reuse between 

different proxies and it can reduce the network bandwidth demand by reducing 

redundant object retrieval at different levels of the network. However, the hierarchical 

caching causes significant disk storage requirement at the high-level proxy, and the 

cache-hit ratios at the high-level proxies are less than those at the low levels due to the 

“trickle-down effect” [DCG01].  



 14 

To overcome the disadvantages of the hierarchical caches, [PH97] proposed the 

distributed cache proxies structure, where only the leaf proxies are responsible for 

caching objects while the higher level proxies only index the objects cached by its 

descent nodes. The inter-proxy query is resolved in the hierarchy, but object is 

transmitted between leaf proxies. Thus, the system avoids the requirement for the 

high-level nodes to maintain large storage space, and exploits the hierarchy for 

quickly locating the cached objects.  

To achieve efficient caching information exchange, [RS98] and [FCA00] 

proposed the “cache digests” and “cache summary” respectively to index the cached 

objects at a proxy. They use a Bloom filter to summary the keys of the cached objects. 

A proxy will propagate its digest to other proxies and keep it updated periodically. 

When a proxy tries to query other proxies, it will check their digests and select one 

proxy that most likely has the object. In addition, CARP [Carp97] provides another 

distributed caching structure, where the proxies are arranged as an array and each 

proxy is responsible for a range of objects. A hash function maps the object’s key to a 

responsible cache proxy. Thus, CARP can provide a deterministic request resolution 

to locate an object in the array of proxies. 

2.2.2 Web Replication and Content Distribution Networks 

The Web replication technology allows the origin server to put replicas of its 

content objects to other servers. The client’s request can be served by either the origin 

server or one of the replica servers. [Rab98] defines two major issues for content 

replication: (i) “request distribution” that redirects a request for a logical object to one 

of the physical object replicas; (ii) “replica placement” that determines how many 

object replicas are to be placed onto which set of replica servers. 



 15 

Replication is intensively used in the Content Distribution Network (CDN) 

[Ver02, Hul02], such as Akamai [Aka] and Digital Island [Dig]. CDN defines a 

well-organized network infrastructure with a large number of proxy servers 

distributed in diverse geographic areas. Dedicated request distribution algorithms are 

used to redirect the requests, and content placement algorithms are used to replicate 

content objects strategically. 

Typical request distribution methods are DNS (Domain Name Service) 

indirection, HTTP redirection, and IP multiplexing. The DNS indirection [RRR98] 

allows the DNS servers to map a host domain name to a set of IP addresses and 

choose one of them for every request. The HTTP redirection [Http] allows the Web 

server to redirect a request using the HTTP redirection message. This method can 

distribute requests at fine granularity, down to individual pages, whereas it is heavy 

weight, needing extra pair of HTTP messages. The IP multiplexing [Ver02] uses a 

multiplexing router to forward the requests to the back-end servers. Both the DNS 

indirection and the HTTP redirection are used for global request distribution, while 

the IP multiplexing is for local request distribution. 

[Rab98] claims there are two replica placement ways: (i) the static placement 

and (ii) the dynamic placement. The static placement assumes rather 

coarse-granularity decisions, based on the observed request characteristics. It cannot 

adapt to the changing environment and is infeasible for a large-scale system. The 

dynamic placement requires the system to constantly monitor the requests to various 

resources and continuously adjust replica sets for all objects. The dynamic placement 

algorithms normally consider the load and proximity factors to provide acceptable 

responsiveness adapting to the changing request patterns. [QPV01] argues finding the 



 16 

optimal replica placement in a CDN is a NP-hard problem. Hence, heuristic 

approaches [KRR01, QPV01] were used in the actual networks. 

To have a general view about the CDN infrastructure, we review the RaDaR 

system [RRR98, RA99], proposed by AT&T. The RaDaR (Replicator and Distributor 

and Redirector) architecture is illustrated in Figure 2.2, where the CDN divides the 

network into multiple management domains. Each domain consists of a Replication 

Service, a Multiplexing Service and multiple hosting servers. The multiplexing 

service distributes requests the hosting servers. The request distribution algorithm 

considers the client- server proximity and the hosting server’s load. A hosting server 

that is nearest to the requesting client and the server’s load is below a watermark will 

be chosen to serve the request. RaDaR allows each hosting server periodically runs 

the replica placement algorithm. The dynamic replica placement algorithm is 

designed to improve the client-server proximity and the load balancing on the hosting 

servers. The RaDaR system can effectively reduce bandwidth consumption and 

latency, remove hot spots from the network and smooth out bursts in bandwidth 

demand, while imposing little network traffic overhead. 

Replication Service Multiplexing Service

Clients

Proxy

Hosting
server

RaDaR

Hosting
server

Hosting
server

Hosting
server

 
Figure 2.2 Architecture of RaDaR 



 17 

2.3 Active Web Intermediaries 

In recent years, the Internet has witnessed the emergence of different user 

devices, such as PCs, PDAs, and smart phones. These devices have wide variations 

among their computation power, display capability, and the associated network 

bandwidth availability. It is a challenge to the content provider with one source to 

offer the best-fit presentations to the global users with different requirements. To 

address these heterogeneous requirements, value-added operations are put into the 

content delivery process to perform content adaptation or service customization. The 

adaptation operations can be performed on the server, the client or the proxy. 

If we perform content adaptation at the origin server, the adapted content will 

be generated at the origin server and sent out from the server. The intermediate proxy 

that relays the response to the client may cache the adapted objects. The server-side 

adaptation lets the content provider customize his own contents to achieve good 

quality for the delivered results. However, the main drawback of this method is the 

considerable low content reuse at the intermediate cache proxy, because the fully 

adapted response for one group of clients cannot be reused for other clients with 

different requirements.  

Content adaptation can also be performed at the client, using the client-side 

scripts (e.g. JavaScript) or applets (e.g. Java applet). Example solutions are CSI 

[RXD02] and AJAX [Ajax]. [RXD02] proposes a client-side inclusion (CSI) method 

that uses JavaScript to compose dynamic Web pages at the client’s browser. It reduces 

the last-mile transmission cost, since the client can reuse the page template so that it 

only needs to retrieve the page fragments for every request. Another technique is 

AJAX [Ajax]. It enables web pages to be more responsive by exchanging small 

amounts of data with the server behind the scenes, so that the entire web page does 



 18 

not have to be reloaded. These client-side methods provide good user interaction and 

flexible presentation transformation, whereas they have some limitations. Firstly, the 

methods cannot deal with the scenario where the operations need to be executed 

before the content is sent to the client. For example, operations like cropping a large 

image to smaller size to shorten the downloading time should be performed in the 

network rather than on the client’s device. Secondly, the methods require the client 

device to interpret the delivered scripts or applets. Nevertheless, it is not easy to find a 

ubiquitous script accepted by a community of the heterogeneous client devices. 

To overcome the drawbacks in the server-side and client-side methods, many 

researchers propose to perform content adaptation on the intermediate proxies. These 

intermediary-based methods change the traditional network to be the active network. 

Unlike the traditional networks that are just the passive carrier of data, the active 

networks have the capability to inject customized applications into themselves. The 

active network nodes can execute these customized applications to manipulate the 

data flowing through the network. These solutions are called as the “active Web 

intermediary” methods [Dik04]. 

The active Web intermediary methods have several advantages. As the contents 

are transformed on the intermediate proxies, these proxies can reuse the retrieved 

original contents to serve the clients with different requirements. This solves the poor 

content reuse problem for the server-side methods. On the other hand, the active 

intermediary methods execute the installed or downloaded applications at the proxies, 

which can reuse these applications for a community of clients with heterogeneous 

devices. Thus, the intermediary methods are the one-to-many solution and more 

scalable than the client-side methods. 



 19 

Existing active Web intermediary systems into three categories, according to 

their respective emphases: (i) the “active proxy” that focus on the active mechanism 

of a single proxy; (ii) the “collaborative intermediaries” that emphasize the 

cooperation between multiple proxies; and (iii) the “active CDN” systems that adopt 

the active intermediaries into the CDN network. 

2.3.1 Active Proxy 

An early active proxy system is MOWSER [BJA98]. It can perform active 

transcoding for the relayed data to present Web information for the mobile client. On 

receiving a request from the client, the proxy fetches the preferences set by the client 

and transforms the original object to the most suitable format. MOWSER proxy can 

insert appropriate ACCEPT headers into the request to specify the client’s capability 

and preference. The Web server would generate an appropriate version of contents 

according to the ACCEPT header. Meanwhile, the proxy can modify image and video 

objects received from the server before transmitting them to the clients if necessary. 

To support clients with very limited resources and hardware capabilities like PDAs, 

the proxy even parses the HTML stream to remove the active content and tags that 

cannot be handled by the client’s device. With adaptation being done at both request 

and response steps, MOWSER can match the preferences of the clients, while using 

the wired bandwidth in efficient manner. 

An improved active proxy is the Service Enabled Caching Proxy (SECP) 

[BH01]. It provides an open and flexible structure for the active proxy, as shown in 

Figure 2.3. The SECP has three significant features: (i) multiple processing points, (ii) 

the invocation rules, and (iii) the proxylet with the callout server. 



 20 

 
Figure 2.3 Structure of Service Enabled Caching Proxy 

Firstly, the SECP proxy can perform the add-in operations at four “processing 

points”, including the client request point, the proxy request point, the origin server 

response point, and the proxy response point. The usage of multiple processing points 

allows the proxy to perform a wide range of services, such as language translation, 

virus scanning, Web access control and other personalization services. 

Secondly, SECP makes use of the rules to trigger the service modules. The rules 

can be configured by the content providers or the clients. The proxy will trigger 

suitable services to manipulate the request/response on behalf of the content providers 

or the clients. The usage of rules improves the system’s flexibility in that the proxy 

can maintain large numbers of services and execute them correctly according to the 

requirements of different parties. 

Thirdly, SECP allows the adaptation services to be implemented as either the 

local applications or the remote services. The system implements the lightweight 

service as a “proxylet”, which is installed and executed on the proxy locally. However, 

the system places the heavyweight service, such as video transcoding, onto a separate 

application server. The proxy can access the application server through ICAP 

(Internet Content Adaptation Protocol). As the resource consuming computations are 



 21 

offloaded to the application server, the proxy’s service capacity will scale with the 

number of requests rather than the content transformation load. 

In summary, the SECP system can support many kinds of services, perform 

content adaptation for different parties, and offload heavyweight operations to the 

application servers. This structure evolves to be the standard OPES framework. 

In above systems, the service modules are pre-installed on the active proxy. 

This requirement limits the scalability of system in the open Internet environment, 

where a large number of services exist and new services are created continually. 

Therefore, researchers proposed many “dynamic active proxy” systems that allow the 

service modules to be deployed to the proxy dynamically. Typical systems include the 

Application Level Active Network (ALAN) [FG98], the Active Cache [CZB98], and 

the Server-Directed Transcoding (SDT) [KLM03].  

SDT provides a representative structure for the dynamic active proxy. Its 

general operations are shown in Figure 2.4. The system lets the origin server to send 

content transcoding directives to the active proxy along with the response content 

object. The directives specify the properties of the response object and a location from 

which an “applet” can be downloaded. When the proxy receives such response, it will 

download the applet first. Then the proxy executes the applet to transcode the original 

response object according to the client’s preference. Finally, the transcoded content 

presentation is sent to the client. Meanwhile, the proxy caches the response object 

with the applet, and reuses them for subsequent requests. 

 
Figure 2.4 Structure of the Server-Directed Transcoding System 



 22 

[CZB98] indicated the dynamic active proxy can be used for many applications, 

including multimedia transcoding, user access authorization, advertising banner 

rotation, client-specific information distribution, and web page’s delta encoding. 

Compared to the basic active proxy, the dynamic active proxy is more flexible and 

scalable, because new applets can be downloaded to the proxy dynamically. However, 

such dynamic application deployment also causes some security problems. [FG98] 

and [CZB98] mentioned several concerns about the system security: (i) the applet 

should be retrieved from dedicated applet reservoir or the trustable Web servers; (ii) 

the applet should have the controlled interface to access the system resources; and (iii) 

the applet’s resource consumption should be monitored by the system. 

2.3.2 Collaborative Intermediaries 

Many collaborative intermediary systems were also proposed to overcome the 

limited storage and processing capability of a single proxy and enable cooperation 

between multiple proxies. Typical systems have Ninja, CANS, and the collaborative 

hierarchical proxies. 

� Ninja 

Ninja [GWB00] composes an active network with distributed data services and 

active proxies. The data services provide the original contents for clients to request, 

and the active proxies transform the content sent from the service to the client. To 

address the heterogeneous requirements from diverse user devices, Ninja proposes to 

establish a data path dynamically that passes through multiple active proxies to 

compose a complex adaptation service. Within a path, the adaptation is decomposed 

into several steps that are performed sequentially by the active proxies along the path. 

Moreover, [BS01] proposes to place cache along the adaptation path. The objects 

stored by a cache are actually the adapted result from the previous proxy and the input 



 23 

object to the next proxy. This enables the network to fulfill subsequent requests while 

requiring the minimal adaptation costs. However, this paper does not provide 

quantitative study on the effectiveness of this caching method. 

� CANS 

[FSK01, FSA01 and IHA02] propose the Composable Adaptive Network 

Services (CANS) architecture. Different from Ninja that is based on the static services, 

CANS enables service composition and decomposition on multiple active 

intermediaries using mobile agents called “drivers”. In the CANS network, a service 

is composed by the data source, the data path, and the drivers. The drivers can form 

data path from the data source to the client by moving data from their input ports to 

the output ports. After a data flow is sent out from the data source, it passes multiple 

drivers distributed along the data path and finally reaches the client. CANS uses the 

type-based composition method, and it requires that the output data type from the 

previous driver should be compatible to the input data type of the next driver. The 

author provided a mapping algorithm that can automatically generate a data path and 

allocate drivers to proxies while yielding maximum throughput. 

� Collaborative Hierarchical Proxies 

[CYH00] proposes a collaborative Web content transcoding system based on 

the hierarchical proxies. From bottom to top, the proxies inside the hierarchy are 

named as edge proxies, internal proxies, and the root proxy respectively. When an 

edge proxy receives a request, it will check the local cache for a reusable object. If 

none is found, the proxy will forward the request to the higher-level proxies. The 

query forwarding will stop at an internal proxy that has a reusable object in the cache, 

or the root proxy that will retrieve the object from the server. After obtaining the 

object, the proxy will check the client’s preference and transcode the object according 



 24 

to the client’s preference. The system uses three policies to balance the load on 

hierarchical proxies. 

(i) NOINFO policy: it lets the current proxy perform the transcoding without 

considering any load balancing. 

(ii)  Threshold policy: it considers only local load. The proxy decides to delegate to a 

lower-level proxy if the present proxy’s utilization exceeds a given threshold. 

(iii)  Least Loaded policy: it lets the proxy perform object transcoding only if its load 

is the lowest among all lower-level proxies in the request path. 

The simulation results showed that the least loaded policy achieves the least 

response latency. This indicates that global information is useful for balancing load 

between the active proxies. However, this study only considers a single transcoding 

task, whereas the content adaptation may include multiple tasks. How to assign 

multiple transcoding tasks in the hierarchy is a topic to be considered. 

2.3.3 Active CDN 

The active Web intermediary is also adopted into the CDN networks. Typical 

systems are the Content Service Network (CSN) and the Application CDN system 

(ACDN). 

• Content Service Network (CSN) 

[MSB01] proposes the Content Service Network (CSN) system, where some 

application servers, which are installed with service applications, are added to the 

boundary of the CDN network. The CDN servers can trigger the service applications 

on the application servers to do the transcoding work. CSN proposes the “Internet 

Service Delivery Protocol” (ISDP), which allows the system to perform the added 

services on behalf of either the content providers or the clients. 



 25 

When the content provider subscribes a service on an application server, the 

server will issue him a certificate. The certificate includes a rule to trigger the 

subscribed service and the ICAP command to access the service. Upon receiving a 

request, the content provider’s Web server will reply the response object together with 

the certificate to the CDN server, which will parse the certificate’s rule and determine 

whether the content adaptation is needed. If the rule is satisfied, the CDN server will 

forward the object to an application server using the ICAP command in the certificate. 

The application server will process the object and return the transformed object to the 

CDN server, which will send the result to the client.  

On the other hand, when a client subscribes to an application server, he will also 

receive a certificate. The certificate should be attached to the request issued by this 

client. After the CDN server retrieves the response object, it may send the object to an 

application server according to the certificate’s rule. 

Although CSN uses a “redirector” that lets the content provider or the client 

subscribe to a nearby and lightly loaded application server, it does not provide 

solution to handle the changing environment. If an application server becomes 

overloaded or encounters network failure, how will the system adjust the established 

service subscription, and how should the system reallocate the services on the 

application servers under such dynamic conditions? 

• Application CDN 

[RXA03] proposes the Application CDN system (ACDN), based on the RaDaR 

architecture. ACDN extends the conventional CDN by replicating not only content 

objects but also Web applications between network servers. The system proposes a 

placement algorithm to replicate applications automatically. An ACDN server 

replicates applications to other servers for two purposes: (i) increasing the access 



 26 

proximity or (ii) offloading the present server. For the first purpose, each ACDN 

server periodically measures the access traffic for the vicinity servers. If the traffic is 

larger than the application’s size plus the application replica’s update traffic, the 

application will be replicated to that server. Meanwhile, if an application’s utility is 

too low, the server may remove it from the local storage. For the second purpose, if an 

ACDN server detects it is overloaded, it will notify the central replication server to 

choose a lightly loaded server to offload its applications. 

ACDN improves the request distribution algorithm of RaDaR by considering 

the application replication. The algorithm can redirect the requests to different 

application replicas for better access proximity and load balancing. 

However, a key limitation of ACDN is that it organizes the application as an 

atomic unit that is replicated as a whole. This is a coarse granularity of replication, 

which will restrict the system from implementing more efficient application 

deployment. 

2.4 Adaptive Content Delivery Standards 

The industry has defined a set of standards for the active intermediary 

framework. This facilitates the active intermediary components developed by 

different parties to interoperate with each other. This section reviews the OPES 

framework and several callout protocols. 

2.4.1 Open Pluggable Edge Service 

A standard architecture for the Web intermediary system is the Open Pluggable 

Edge Service (OPES) framework [Opes, BBC02, and BCH04], as illustrated in Figure 

2.5. This architecture can be described in three interrelated concepts: (i) the OPES 

intermediaries, the process nodes operating in the network; (ii) the OPES flows, the 



 27 

data flows that are cooperatively realized by the OPES intermediaries; and (iii) the 

OPES rules, which specify when and how to execute the OPES service applications. 

 

Data
provider

application

HTTP

TCP/IP

OPES
service

application

HTTP

TCP/IP

OPES
service

application

HTTP

TCP/IP

Data
consumer
application

HTTP

TCP/IP

Data 
provider

OPES 
processor A

OPES 
processor N

Data 
consumer

OPES flow

 
Figure 2.5 OPES Architecture 

An OPES intermediary operates on a data flow between the data provider 

application and the data consumer application. Each OPES intermediary can be 

divided into two parts: (i) the OPES service application, which analyzes and possibly 

transforms message exchanged between the data provider and the data consumer; (ii) 

the Data dispatcher, which invokes the appropriate service application based on an 

OPES rule set. The OPES rules are specified with the Intermediary Rule Markup 

Language (IRML) [BH01], and they reflect the intents of the content owners or the 

content consumers. Thus, a data flow is cooperatively transmitted and manipulated by 

a data provider, a data consumer, and zero or more OPES intermediaries. 

The OPES defines two ways to trigger the service applications. The first way is 

to invoke the remote services using the OPES Callout Protocol (OCP) [Rou05]. 

Another way is to use the proxylet [Wal01], an API for the local service applications. 

OPES framework adopts the “pre-deployment” policy [YH01], where the rules and 

proxylets are deployed by an administration server to the intermediary servers. The 

rule owner and the proxylet vendor can be different parties. This means the system 



 28 

can get rules from the content provider or the clients, while getting proxylets from the 

third-party application vendors. The active intermediaries will be responsible for 

executing the applications according to the rules. In this way, the OPES framework 

regulates the roles for each party within the system. 

However, the OPES framework does not define the dynamic service 

deployment procedure and the data reuse policy on the intermediaries. 

2.4.2 Callout Protocols 

As some content transformations are resource demanding, many systems 

execute them on the separate application servers. The callout protocols are defined to 

enable the interaction between the Web proxy/server and the application servers. 

A well-known protocol is the Internet Content Adaptation Protocol (ICAP) 

[Icap]. ICAP is a lightweight remote procedure call protocol based on HTTP. It 

allows the proxy (i.e. ICAP clients) to pass HTTP messages to the application server 

(i.e. ICAP servers) for adaptation. The application server processes the transaction 

through performing specific tasks, like image transcoding, page customization, and 

virus scanning. When transaction is finished, the processed HTTP message will be 

sent back to the proxy. 

Some researchers also proposed to use SOAP (Simple Object Access Protocol) 

as a callout protocol. SOAP [Soap] is another lightweight protocol to invoke the 

remote services. It becomes to be a standard for XML-based messages exchange over 

the computer network, with the prevalence of XML Web Services. [MDS03] 

implements an active proxy system, called SEE, which adopts both ICAP and SOAP 

as the callout protocols. The simulation results show little performance variance 

between ICAP and SOAP. However, the authors argue that compared to ICAP, SOAP 



 29 

is more extensible and it facilitates the integration of the content adaptation services 

with the legacy systems. 

OPES proposes the OPES Callout Protocol (OCP) [Ocp, Rou05], which 

marshals application messages from an OPES intermediary to a callout server. 

Compared to ICAP, OCP provides a wider range of messages to describe components 

like connection, application, data, transaction, and service group. These rich 

functioned messages allow the intermediary to manipulate content adaptation 

operations more precisely. However, OCP is still in the development phase. Its wide 

acceptance by the industry is not clear yet. 

2.5 Peer-to-Peer (P2P) Networks 

Recent years, the P2P technology has attracted more and more attention from 

both the research and the industry due to its inherent scalability. In a P2P network, 

each node, called a “servent”, acts as both a client and a server, and the data is 

transmitted directly between the requesting node and the serving node. P2P networks 

can be divided into three categories: (i) the centralized networks, (ii) the distributed 

unstructured networks, and (iii) the distributed structured networks. 

2.5.1 Centralized P2P Networks 

The centralized P2P networks rely on one or a cluster of directory servers to 

index the objects (e.g. data files) shared by each node. Any node searching for an 

object needs to query the directory server. The server will reply the requesting node 

the address of nodes those probably have the queried object. Then, the requesting 

node will ping those nodes to check the object’s availability, and choose one valid 

node to download the object. However, due to the usage of directory server, such 

centralized network scales poorly and has the single points of failures. A successful 

example of the centralized network is the Napster [Nap], except its legal troubles.  



 30 

This section reviews a well-known P2P network – Bit Torrent [BT]. According 

to its working mechanism, the legacy BT system belongs to the centralized network. 

The BT is designed to distribute large amounts of data widely without incurring the 

corresponding consumption in costly server and bandwidth resources. To achieve 

higher data availability and faster data exchange speed, BT partitions one large file 

into many fragments and allows them to be downloaded from many nodes in parallel. 

To share a file, the client first creates a small “torrent” file, which contains an 

“announce” section and an “info” section. The “announce” tells the address of a 

“tracker”, the host that coordinates the file distribution. The “info” contains metadata 

about the shared file, such as the file name and the file length. In addition, the “info” 

section also specifies the size of file fragments, and the SHA-1 hash code for each 

fragment, which lets clients verify the integrity of the received data. 

The torrent file is published on a website, and it can be accessed by the Internet 

users. According to the torrent, the client connects to the tracker, which should notify 

the client a “swarm” of other clients those are currently downloading the same file. 

Initially, there may be no other peers in the swarm, the client will directly connect to 

and request file fragments from the “initial seeder”, the node with the initial copy of 

the file. As more peers enter the swarm, they begin to trade fragments with others, 

instead of downloading directly from the initial seeder. BT peers download fragments 

in a random order, so that the opportunity to exchange fragments between peers can 

be increased. 

Since the original BT system relies on a tracker node to implement peer lookup, 

we categorize it as the centralized P2P network. However, the centralized tracker 

limits the system’s performance and usually becomes the single point of failures. 

Therefore, many tracker-less BT systems were proposed, such as µTorrent [UTor], 



 31 

BitComet [BitC] and KTorrent [KTor]. Such tracker-less systems treat every peer in 

the swarm as a tracker, so that the systems no long need an individual tracker server. 

The tracker-less improves the system scalability, and it makes the new BT systems to 

be the distributed networks. 

2.5.2 Unstructured P2P Networks 

In a distributed and unstructured P2P network, there is neither the centralized 

directory server nor the precise control on the network topology or file placement. A 

typical example is the Gnutella [Gnu]. The network is formed by nodes joining the 

network following some loose rules. To startup, the client must bootstrap and find at 

least one other node (neighbor). This can be achieved using the pre-existing address 

list of possibly working nodes shipped with the software, or using the updated web 

caches of known nodes (called GWebCaches) [GWeb]. After joining the network, any 

user can share files on its own node. To find a file, a node floods the query to all its 

connected neighbors, which will further flood to their own neighbors. The query is 

soon propagated to all neighboring nodes within a certain radius. 

However, such flooding mechanism is not scalable as it generates large loads on 

the peer nodes. The mechanism is also unreliable in the changing network topology. 

The P2P network is usually composed by computers that keep toggling between 

connection and disconnection, so that the network topology is never completely stable. 

Meanwhile, the bandwidth cost of flooding grows exponentially with the number of 

connected nodes, so that the saturating connections often render the nodes with poor 

bandwidth useless. As the result, the search requests would often be dropped, and 

most queries fall in a very small percentage of nodes in the network. 

To solve above problems, [SGL04] proposes a tiered Gnutella system. The 

system treats nodes with limited bandwidth and intermittent connection as “leaf” 



 32 

nodes, which are not responsible for any routing. Meanwhile, the system promotes 

nodes capable of routing messages to be the “ultra-peers”, which will accept leaf 

queries and route them into the network. The tiered structure is helpful to stabilize the 

routing topology and allows propagating searches further through the network. 

[LCC02] proposes two methods to reduce the query overhead in the Gnutella 

network. The first method is called “expanding ring”, which lets the query node 

increase the flooding radius continuously until the object is found. The expanding ring 

achieves the bandwidth savings at the expanse of slight increasing the delay. The 

second method is the “random walking”. Instead of flooding to all neighbors, the 

method forwards the query to a set of randomly chosen neighbors at each step until 

the object is found. “State” information is attached to the query message to record the 

nodes that forwarded this message. This state information can detect the potential 

circled walking or the overlapped walkers, and thus eliminate many duplicated 

messages. By choosing appropriate number of walkers, the random walking method 

can cut down the message overhead significantly by roughly an order of magnitude 

less than the expanding ring method. However, this paper does not supply a 

deterministic way to decide the optimal number of walkers. 

2.5.3 Structured P2P Networks 

The acknowledgement to the drawbacks of the unstructured networks inspires 

the development of the distributed but structured P2P networks. The “structured” 

means (i) the network topology is well controlled and (ii) the files are placed at 

specific locations where the subsequent queries can be easier to satisfy. Most 

structured networks are based on the Distributed Hashing Table (DHT), which 

partitions the ownership of a set of keys among the network nodes and can efficiently 

routes messages to the unique owner of any given key. Typical DHT networks are 



 33 

Chord [SMK01], Pastry [RD01], CAN [RFH01], and DKS(N,k,f) [AAB03]. This 

section reviews the DKS network first, and then briefly goes through the Chord and 

Pastry networks. 

• DKS Network 

DKS uses a uniform hashing function that can map a node to a particular 

identifier. The size of identifier space is assumed to be N, which means the network 

can contain at most N nodes. The nodes are arranged as a circle in the identifier space 

(or id ring). Data objects are also mapped onto this circle, sharing the same identifier 

space as the nodes. The node with the closest matching identifier, which is less than 

or equal to the data’s identifier, is responsible for that piece of data. Figure 2.6 

illustrates a network, where the responsible range for node 1 should be [1, 2, 3, 4]. 

 
Figure 2.6 An Example DKS network (dots represent network nodes, N=16) 

To find a piece of data, the requesting node sends into network a query message, 

which will be routed to a destination node that is responsible for the queried data’s 

identifier. DKS explains this routing process as the “k-ary routing” mechanism. Each 

node maintains a routing table that is divided into  Nklog  levels (i.e. rows) and 

each level contains k intervals (i.e. columns). The entries for the first level are chosen 

by dividing the identifier space into k intervals and keeping pointer to the first node in 

each interval. The succeeding levels are created by repeatedly dividing the first 

interval from the previous level until it cannot be divided anymore. In this way, we 



 34 

can say a routing table arranges its pointers to  Nklog  sets of nodes at 

exponentially increasing distance in the identifier space. For example, Table 2.1 

sketches the routing table for node 0 (Figure 2.6). 

Table 2.1 Routing Table of Node 0, (N=16, k=2) 
Level Intervals Responsible Range Next Hop 

1 1 
2 

[0,8) 
[8,16) 

0 
7 

2 1 
2 

[0,4) 
[4,8) 

0 
1 

3 1 
2 

[0,2) 
[2,4) 

0 
1 

4 1 
2 

[0,1) 
[1,2) 

0 
1 

When a node wants to look up an identifier in the network it checks its routing 

table and firstly finds the interval in the first level the identifier belongs to. If the 

responsible node for that interval is the present node itself, it continues to search in 

the second level and so on until it finds an interval for which the node itself is not 

responsible. Then, the message is routed to that node.  

When a node receives a lookup message, it first checks whether it is responsible 

for that identifier. If not, it starts searching in its routing table and forwards the 

message to the next-hop node. This new node will repeat the same process. However, 

when the new node searches its routing table, it will start searching from the routing 

table level that equals to the routing table level used by the previous node plus one. In 

this hop-by-hop manner, the message is routed to the responsible node. For the 

example in Figure 2.6, if node 0 queries identifier 11, the route should be 970 →→ . 

• Chord Network 

Chord [SMK01] is one of the first DHT networks. It arranges nodes and data 

identifiers in a circle as the DKS system. However, Chord’s routing protocol can be 

viewed as a specific case of DKS’s k-ary routing mechanism, by fixing the value of k 

to 2. It means Chord always divides the identifier space in half, and searches across 

different routing levels like a binary search.  



 35 

A significant difference between Chord and DKS is how they handle the node 

failure and maintain the correctness of routing tables. Chord uses a “stabilization 

protocol” to detect the failures periodically. Each node keeps track of a number of its 

immediate successors. If a failure is detected, the detecting node will remove the 

failed node from the circle. All nodes perform the failure detection periodically to 

make sure that the routing tables are correct and up to date. However, the stabilization 

protocol causes considerable bandwidth consumption, and the out-of-date routing 

information cannot be corrected until the next stabilization period. DKS addresses 

these problems using an alternative approach [AAB03]. It makes use of the level and 

internal information embedded in the lookup message to correct erroneous routing 

entry once it is discovered. When detecting a message is routed incorrectly, the 

receiving node will find a better candidate node from its own routing table and then 

tell the sender about this new candidate. DKS can correct the error routing on the fly, 

and incur much less maintenance traffic. 

• Pastry Network 

Pastry [RD01b] is another DHT network, but it is different from the previous 

two networks at the node’s responsible range. The responsible range for a DKS or 

Chord node starts from the node’s identifier and ends at the successor node’s 

identifier. However, a Pastry node always resides in the middle of its responsible 

range. For instance, in Figure 2.6, the responsible range for node 13 in the Pastry 

network is [11, 12, 13, 14], while it is [13, 14, 15] in the DKS and Chord network. 

Due to this difference, the Pastry routes message to the node whose identifier is 

numerically closest to the query key, but the DKS and Chord networks route message 

to the closest node that is equal to or less than the query key. 



 36 

In addition, Pastry implements the proximity-aware routing, where the system 

always routes messages to nearby nodes. This is achieved by maintaining a 

“neighborhood set” on each node to record a number of physically nearest nodes to 

the current node. Pastry nodes will exchange the neighborhood information when the 

network topology changes, so that each node can use the nearby nodes to fill its 

routing table and implements the proximity-aware routing.  

2.6 Replication and Caching in the P2P Networks 

Content replication and caching technologies bring important benefits to the 

P2P networks. Firstly, the P2P networks are usually composed of transient nodes, 

which constantly join and leave the network, so that replicating content onto multiple 

nodes can improve the data availability. Secondly, replicating popular objects to more 

nodes can balance the load on network nodes and avoid hot spots in the network. 

Thirdly, other benefits like reducing the search size or improving the retrieval 

proximity can also be achieved using replication and caching. This section reviews 

these studies as three sections: (i) replication in the unstructured networks, (ii) 

replication and caching in the structured networks, and (iii) the P2P-suppored Web 

content caching. 

2.6.1 Replication in the unstructured P2P Networks 

[LCC02] introduces several replication methods in the Gnutella-like networks, 

including the uniform replication, the owner replication, the path replication, and the 

random replication. 

The “uniform replication” creates fixed number of replicas for all objects. 

Though this method can improve the data availability to certain extend, it presents 

poor performance in terms of average search size and load balancing.  



 37 

A better method is the “owner replication”, which replicates object to the node 

that requests this object. It results in a proportional distribution of object replicas. E. 

Cohen and S. Shenker [CS02] proved this distribution could achieve the best load 

balancing as the number of replicas is proportional to the popularity of the object.  

The “path replication”, used by Freenet [Free], is an active replication method. 

When a search succeeds, the object is replicated at all nodes along the path from the 

requesting node to the serving node. Although it can generate considerable replication 

cost, E. Cohen and S. Shenker [CS02] indicated the path replication would result in a 

square-root object distribution and this could reduce the average search size compared 

to the uniform replication and the owner replication methods. 

[LCC02] pointes out that the normal path replication method tends to replicate 

objects to nodes that are topologically along the same path. It causes the resulting 

numbers of replicas do not match the precise square-root distribution. The authors 

proposed a “random replication” method that puts objects to the random nodes but the 

number of replicas is still proportional to the number of nodes probed. Simulation 

results show this method results in more precise square-root distribution and it gets 

smaller search size than the normal path replication method. 

2.6.2 Replication and Caching in the Structured P2P Networks 

This section reviews the PAST [RD01], replica enumeration [WHB03] and 

LAR [GSB04] systems, those use replication and caching technologies in the 

structured networks. 

• PAST 

PAST [RD01] is a distributed storage system based on Pastry. It uses three sets 

of data replication and caching methods to achieve high data availability and load 

balancing between nodes. Firstly, PAST lets a home node (i.e. the responsible node 



 38 

for an object) to replicate its object to k numerically closest nodes. These replicas are 

called the “primary replicas”. If the home node is offline, the query messages are still 

likely to be routed to one of these primary replicas. Thus, the system can achieve high 

data availability. Meanwhile, the primary replicas are much likely to be dispersed 

geographically, so that they can improve the data retrieval proximity in the network. 

Secondly, PAST solves the storage load imbalance problem, which may be caused by 

the statistical variation in identifier assignment, the size variance of the inserted files, 

or the storage capacity variance of individual node. A “replica diversion” technique is 

used to balance the remaining free storage space among nodes. If a node cannot 

accommodate a file locally, it considers diverting the file to another node, which is in 

this node’s leaf set but does not contain a primary replica of the file. The origin node 

will keep a pointer to the replica diversion. When it receives a query for that file, the 

node will find the replica diversion through the pointer. Finally, PAST sets a cache on 

each node to minimize the client access latencies, maximize the query throughput, and 

balance the query load in the network. A file that is routed through a node as part of a 

lookup is inserted into the local cache. Due to usage of these techniques, PAST can 

achieve efficient object storage and delivery. 

• Replica Enumeration 

[WHB03] proposes a “replica enumeration” system to achieve the controlled 

object replication in the DHT networks. The system replicates objects to deterministic 

nodes through a hashing function. This facilitates dynamic updates to these replicas 

by enumerating and addressing individual replicas using the same hashing process. 

Meanwhile, the replica enumeration can also improve the overall retrieval proximity. 

To achieve this, the client first enumerates a possible range of replicas using the 

hashing function. The distance between the client and these replicas are measured. 



 39 

Then, the nearest replica will be chosen. Simulation results show the enumeration 

process causes negligible overhead but considerably improves the user latency. 

• LAR 

[GSB04] proposes a lightweight and adaptive replication system, called LAR. 

The paper indicates creating replicas to all nodes on a source-destination path is 

inefficient and can generate considerable overhead. To balance the load, LAR relies 

on node load measurement to choose the replication points precisely. The nodes with 

the least load will be replicated physically, while the system puts onto other nodes the 

“cache pointers” that records the location of the replica. When receiving a query, the 

cache pointer can shortcut the original routing and direct the query to the object 

replica. The simulation results show LAR can achieve reasonable performance while 

incurring negligible replication overhead. 

2.6.3 P2P-based Web Content Caching 

Researchers also proposed the P2P networks, formed by a community of 

computers, to cache the Web objects. Two typical systems are Squirrel [IRD02] and 

the Top-K replication [KRT02]. 

• Squirrel 

Squirrel [IRC02] implements a distributed Web cache based on the Pastry 

network, which is composed of a community of personal computers. When a client 

attempts to access a Web object, the object’s URL is hashed to a Pastry identifier. The 

request is subsequently routed by the Pastry substrate to the “home node” responsible 

for caching this object. If this request is hit in the home node’s cache, it will reply the 

object to the requesting node. Otherwise, the home node will retrieve the object from 

the remote server. The retrieved object is returned to the requesting node, and cached 

by the home node. Compared to a centralized Web cache, Squirrel has several 



 40 

advantages. Firstly, the disk throughput may limit the performance of the centralized 

cache to the disk bound, but distributing the objects across many nodes allows many 

disks to fetch data in parallel, which improves the overall system throughput. 

Secondly, Squirrel pools main memory from many nodes, and this allows more 

objects are served from the main memory rather than from the disk. 

Squirrel is also able to handle node join and leave situations. When a new node 

joins the network, it notifies the leaf set nodes. The two numerically neighboring 

nodes will migrate the relevant objects to the newly joined node. When a node leaves 

the network, it will migrate the cached objects to the left and right neighboring nodes. 

However, Squirrel cannot gracefully handle the node failure. In this situation, the 

cached objects on the failed node will be lost, and subsequent requests to these objects 

need to fetch them from the remote server. 

• Top-K Replication 

[KRT02] implements another distributed Web cache based on the DHT 

substrate. However, it uses a Top-K replication mechanism, which can handle the 

node failure and load balance more gracefully. The system hashes an object’s URL to 

k winning nodes, any of which is possible to cache the object. The requesting node 

will query the winning nodes sequentially. A winning node may serve the object from 

its local cache or by retrieving it from the remote server. If the current winning node 

is detected not active, the next winning node will be probed. The simulation results 

show that by replicating an object to k winning nodes the community’s external 

bandwidth usage can be reduced significantly. In addition, the system also uses a 

rejection mechanism to balance loads between winning nodes. If a winning node is 

overloaded, it can reject the request and the requesting node will query the next 

winning node. However, the Top-K replication can cause much query overhead due to 



 41 

the maximum k round probing. Although the overhead becomes negligible when 

retrieving large objects, it can be perceivable when retrieving small objects (e.g. an 

HTML page). A solution could be choosing the dynamic value of k according to the 

sizes of objects, so that the overall probing overhead can be diminished. 

2.7 Active P2P Solutions 

Recent years, the demand for content adaptation and service customization 

becomes increasingly intensive in the P2P systems, due to the increasing requirements 

from clients with heterogeneous devices and network connections. As a new topic, the 

amount of active P2P systems is incomparable to that of the active Web systems. 

Nevertheless, there are still some pioneer studies, such as (i) the active P2P systems 

for adaptive media streaming, and (ii) the active P2P caching system. 

• Adaptive P2P Streaming Systems 

Many adaptive content delivery studies in the P2P network focus on media 

streaming applications. [CN03] proposes a layered P2P streaming solution. It assumes 

the media content can be divided into several layers. With all layers, the stream 

provides the original quality of content; with some layers, the stream provides media 

content with the reduced quality. The peer nodes can selectively relay partial media 

layers according to their respective bandwidth capability. The receiver can retrieve 

media layers from multiple peers to satisfy its quality requirement. In this way, the 

system provides adaptive media streaming subjecting to peer node’s bandwidth 

capability and client’s quality requirement. 

[GDY04] and [CRK05] propose two similar systems for adaptive media 

streaming in the P2P network. We use SpiderNet [GDY04] as an example to 

introduce their working mechanism. SpiderNet supposes that the transcoding services 

are allocated on some dedicated network nodes, called transcoders. A bounded 



 42 

composition probing protocol (BCP) is proposed to allow the client to compose the 

required transcoders to form a distributed media streaming service. The service 

formation process can be described as a series of probing steps, which start from the 

client and stop at the media source node. Suppose the media streaming service 

requires function-1 and function-2 in sequence. The client first sends a probe message 

to find transcoder nodes providing the last transcoding function. When a transcoder 

node that is qualified to perform function-2 receives the probe message, it will join 

the service and continue to probe another transcoder node that provides the previous 

function in the service. When the transcoder node that is qualified to perform 

function-1 receives the probe message, it will join the service and send a message to 

the data source node. During the probing process, multiple services (paths) can be 

formed, and the data source node will choose the optimal path to stream the media. 

The advantages of BCP are (i) it can choose network nodes according to the 

streaming service’s Qos requirements, (ii) it can compose the optimal service with 

acceptable probing overhead, and (iii) the probing process can find multiple streaming 

paths, so that the system can switch to the backup path in case of sudden node failure 

in the used streaming path. 

• Active P2P Caching System 

W-S Shi proposed the Tuxedo [SSM03], which implements a P2P caching 

system. Tuxedo is different from the Squirrel and Top-K systems, because it not only 

caches the content objects, but also can transcode these objects and cache the 

transcoded results. The system is formed by a set of hierarchical proxies. Every proxy 

maintains a “neighborhood table” for each cached object. Each row in the table tells 

which another proxy is caching the same object and what the latency and bandwidth 

for that proxy is. When the proxies retrieve content objects between each other, they 



 43 

also exchange the neighborhood tables and merge the received tables into their own 

tables. As the result, all proxies form a P2P network, which allows the proxy to 

retrieve content objects from the optimal node with low latency and large bandwidth. 

Meanwhile, Tuxedo allows the proxy to install some transcoding applications. 

The proxy can execute these applications to transform the content objects with respect 

to the client’s requirements. The system uses a “cache digest” to let a proxy 

summarize its installed applications and the stored transcoded objects. The digest will 

be inserted into the neighborhood table for each (original) content object and be 

propagated with the neighborhood table to other proxies. The proxy can perform local 

transcoding or retrieve the transcoded object from another proxy. The decision is 

made by comparing the local transcoding overhead with the remote proxy’s latency 

and bandwidth. As the result, the system can serve client with the diminished latency.  

• Observation 

The above systems can perform active content delivery in the P2P networks. 

However, a key problem is they install the transcoding applications on the network 

nodes statically. Such static application deployment would promise the overall system 

performance in the dynamic environment, where both the clients’ request pattern and 

the network conditions change continuously. A more suitable way should be letting 

the system place the applications dynamically according to the content reuse and 

application utility on the network nodes. 

Meanwhile, these systems are mostly proposed for purpose-specific content 

services, such as media streaming and Web content cache. However, we also need a 

general framework for active content delivery in the P2P networks. This framework 

should provide the generic methods to deliver contents and applications. Specific 

mechanisms can be added to the framework to customize it for specific P2P protocols. 



 44 

2.8 Summary 

In this chapter, we review the work related to our research study. The literature 

review spans from the traditional Web and P2P systems to the active systems. From 

the review we see content delivery systems are changing from propagating content 

data into the network to adding applications into the network, in order to provide 

pervasive content services to the heterogeneous client requests. This trend motivates 

our research to provide a general framework for pervasive content delivery, which can 

be applied to both Web and P2P scenarios.



 45 

CHAPTER 3  

APPLICATION NETWORKING FRAMEWORK 

3.1 Motivations 

In the traditional content delivery system, as illustrated in Figure 3.1, the 

content provider publishes the original content on the “origin site”, such as the Web 

server or a peer node that shares the original copy of content. The clients can request 

the content and retrieve it using HTTP or specific P2P protocols. The requests and the 

response are transmitted through a content delivery channel, such as the Web proxies, 

the CDN network or the P2P network. We call the nodes in the delivery channel as 

the “intermediate nodes”. 

 
Figure 3.1 A Traditional Content Delivery Framework 

The origin site in the traditional content delivery frameworks serves contents 

with a single presentation. However, nowadays, the origin site receives more and 

more requests with heterogeneous requirements, due to the emergence of various user 

devices, different network connections and the other personalized demands. To satisfy 



 46 

such requests, many adaptive solutions were proposed. They can transform the 

original content to appropriate presentations according to the clients’ requirements. 

Example applications include media transcoding, Web page customization, language 

translation, document watermarking, and so on. Though these solutions can achieve 

adaptive content delivery to some extent, there have several key limitations, regarding 

to the content semantics, the service scalability and the system efficiency. 

(i) Existing solutions usually perform content transformation by adding the 

transformation applications into the delivery channel. However, the added 

operations are usually orthogonal to the content provider’s intentions for the 

content’s semantics. As the result, they may manipulate contents inappropriately 

and generate results that do not preserve the content’s semantics. 

(ii)  Many solutions [Opes and MSB01] require the transformation applications to be 

pre-installed on the network nodes. Though the pre-installation approach can be 

applied to those popular applications, it has poor scalability in the open Internet 

context, where huge numbers of applications exist and new applications are 

continuously adopted. 

(iii)  Many solutions execute the transformation applications at the fixed network 

nodes. However, this static application placement is normally the result of 

human judgment base on experiential analysis, and it is not beneficial in all 

situations. The placement cannot adapt to the changing request pattern and 

network condition to provide efficient content delivery constantly. Though some 

systems, such as ACDN [RXA03], can reallocate applications dynamically, they 

organize the required applications as an atomic unit and deploy them as a whole. 

Such coarse placement granularity lacks of flexibility and it also compromises 

the system efficiency. 



 47 

We believe a key reason causing the limitations above is that the existing 

solutions treat the content delivery and the content adaptation as two independent 

processes. This makes: (i) the execution of the transformation applications cannot 

preserve the content’s semantics, (ii) the intermediate nodes cannot smoothly scale up 

their processing capabilities along with the content delivery process, and (iii) the 

placement of applications does not fully consider the resulting system performance. It 

motivates us to propose the Application Networking framework, which provides an 

integrated and fine-grained delivery mechanism for the content objects as well as the 

relevant applications, to achieve pervasive, scalable, and efficient content delivery. 

3.2 Framework Overview 

The Application Networking framework is illustrated in Figure 3.2. Different 

from the traditional frameworks that only delivers the content object, our framework 

allows the origin site to deliver both the content object and the relevant content 

service logic to the intermediate network node. The service logic defines the 

operations to be performed on the content, the required application modules, and the 

conditions to transform the content. According to the service logic, the intermediate 

node can download the relevant applications and transform the content for the 

heterogeneous requests.  

Presentations 2

A
pplications

 
Figure 3.2 Application Networking Framework 



 48 

Through delivering the content service logic, our framework integrates the 

content transformation process with the content delivery process. This change enables 

the framework to address the content’s semantics, the system scalability and 

efficiency issues by means of (i) deliverable content service, (ii) compositional 

service formation, and (iii) flexible service deployment. 

(1) Deliverable Content Service 

Our framework deems a content object is correctly transformed if the semantics 

of the transformed content accords with the content provider’s original intention, 

because we believe the content provider should determine how to present his content. 

To achieve this, we let the content provider specify the allowed content processing 

logic as a service and publish it with the original content object on the origin site. The 

origin site can deliver the content object and its service logic to the intermediate 

network node, which will use them to serve the client requests. Since the content 

service gives the operations authorized by the content provider, the node will generate 

the correct presentations that accord with the content provider’s intention. 

Though our framework proposes to use the deliverable service, it does not 

require all modules of the content service to be deliverable, because some modules 

need to be executed on the origin site due to the specific execution constrain or 

security concern. In actual systems, we can divide the entire service into two tiers: the 

static service tier and the deliverable service tier, as illustrated in Figure 3.3. The 

static tier performs operations like fetching content from disk, querying the database, 

and performing the backend business logic. The deliverable tier accepts the output 

content from the static tier and generates the content presentations for the clients. The 

static tier should be executed on the origin site, and the deliverable tier can be sent to 

the intermediate network nodes. In the following discussion, we only focus on the 



 49 

deliverable service tier and call it as the “content service”, and the content object got 

from the static tier is called as the “original content object”. 

 
Figure 3.3 Static and Deliverable Service Tiers 

(2) Compositional Service Formation 

Our framework also supports compositional service formation. Firstly, we 

organize the content service as a “workflow” that decomposes the entire service into 

multiple sub-operations. This enables us to construct the service using the standard 

and reusable applications, each of which implements a sub-operation in the service. 

Secondly, the service workflow specifies addresses, which provides the required 

application modules. After the service is delivered, the intermediate node will be able 

to instantiate the service by downloading the needed applications from the specified 

addresses. 

Combining above two aspects, we say our service is formed in the 

compositional way, which improves the system scalability because the intermediate 

nodes can scale up their capability for content processing along with the content 

delivery process. 

(3) Flexible Service Deployment 

Moreover, our framework provides a flexible service deployment approach, 

where the origin site can executes part of the service and delivers the generated 

intermediate response content with the unexecuted partial service to the intermediate 

node. This extends the traditional content service methodologies, which either execute 



 50 

all operations on the origin site or move all operations to the intermediate node. More 

importantly, this flexibility facilitates the Application Networking system to derive 

efficient delivery strategies by considering the utility and corresponding delivery 

overhead of different partial services. 

The rest of this chapter will explain the workflow structure and a metadata 

based content reuse method, which form two basic components of the Application 

Networking framework and will be used in the concrete Web and P2P systems. 

3.3 Workflow 

3.3.1 Workflow Structure 

The Application Networking framework uses the “workflow” to describe the 

logic of a content service. The workflow is composed of one or more segments (SEG) 

that are linked sequentially. Figure 3.4 presents an example workflow for the image 

provisioning service, where the first segment transforms the image according to the 

display preference of the client’s device, and the second segment inserts a watermark 

into the image to identify its recipient. 

 
Figure 3.4 An Example Workflow 

Each segment consists of several components, as given in Definition 3.1. The 

configure rule (CR) specifies the conditions to trigger the segment task. If the rule 

conditions are fulfilled, the segment task (TSK) should be performed and it will 

transform the input object (OBJin) to be the output object (OBJout). Otherwise, the task 



 51 

should not be performed, and the input object will be passed through the segment and 

become the output object directly. The App element specifies the application that 

implements the segment task, and it actually provides an address, from which the 

network node can download the corresponding application module. In addition, an 

input parameter vector (v) and the supplementary data entry (d) are usually needed for 

the execution of application. 

Definition 3.1: Segment 

SEG : = OBJout=TSKCR,App(OBJin,v,d) 

The application (App) is a tool to realize a service workflow. The workflow, 

provided by the content provider, is to define “What to do” on a content object. The 

application is chosen by the executor to materialize “How to do” on the content object. 

The application can be downloaded from the address provided by the workflow or can 

be chosen by the executor itself given the new application is functionally equivalent 

to the original one. 

For the image transcoding segment shown in Figure 3.4, it has the original 

image as the input object (OBJin), an image transcoding program as the application 

(App), and the transformed image as the output object (OBJout). The parameters (v) to 

the application include the screen size and the accepted image format of the client’s 

device. The configuration rule (CR) can be defined as detecting the mismatch between 

the original image and the client’s preference on the display dimensions and the 

image format. If any mismatch is found, the transcoding application will be executed. 

A full workflow can contain multiple segments. The output object from the 

previous segment becomes the input object to the next segment. We rephrase the 

segment in a workflow as in the definition 3.2, where the entire workflow is formed 

by L segments. Varying the parameter vi values, an original object can generate 



 52 

multiple output objects. OBJi denotes the output object from segment SEGi and the 

input object to segment SEGi+1. In a workflow, we name OBJ0 as the original content 

object, the OBJL as the final content presentation, and the OBJi, where 1≤i≤L-1, as the 

intermediate content objects. 

Definition 3.2: Segments in a Workflow 

),,(: 1
,

iii
AppCR

iii dvOBJTSKOBJSEG ii

−== , 1≤i≤L 

Based on the discussion above, a workflow (WF) can be defined as in definition 

3.3, where WFL denotes the workflow has L segments. Feeding the original object 

OBJ0 to the workflow, we can obtain the final content presentation OBJL through L-1 

intermediate objects (from OBJ1 to OBJL-1). 

Definition 3.3: Workflow 

i
L
iLi

L SEGSEGSEGSEGWF 11 )(: =•=••••= LL , 1≤i ≤L 

Figure 3.5 summarizes the workflow structure. 

 

Figure 3.5 Workflow Structure 

3.3.2 Workflow Operations 

To implement flexible service deployment and instantiation, we define the 

following workflow manipulation operations. 

(1) Workflow Partitioning 



 53 

According to the workflow definitions, we can infer equations Eq.3.1 and 

Eq.3.2. The former equation indicates that using the first t segments we can generate 

an intermediate object OBJt from the original object OBJ0, while the latter equation 

denotes feeding the intermediate object OBJt to the rear L-t segments we can obtain 

the final content presentation OBJL.  

),,()( 11 iiii
t
it dvOBJSEGOBJ −=•=  (Eq.3.1) 

),,()( 11 iiii
L

tiL dvOBJSEGOBJ −+=•=  (Eq.3.2) 

Based on these two equations, we define the workflow partitioning operation as 

in definition 3.4. The operation (Ft) divides a workflow (WFL) into a front part, from 

SEG1 to SEGt, and a rear part, from SEGt+1 to SEGL. The front partial workflow is 

executed on the origin site, while the rear part will be deployed and executed on the 

intermediate network node. 

Definition 3.4 Workflow Partitioning 

j
L

tji
t
i

Ltt
Lt

SEGSEG

SEGSEGSEGSEGWFF

11

11

)()(

)()(:)(

+==

+

•+•=

••+••= LL
, where 0≤t≤L 

The partitioning operation creates more possibilities for content service 

deployment through dividing the workflow at different segments. The partitioning has 

two extreme situations by setting the value of t to L and 0 respectively. When t = L, it 

means the entire service is executed at the origin site, which is equivalent to the 

traditional content service model where the origin site performs all operations and 

generates the final content presentations. When t = 0, the result is equivalent to the 

current active proxy solutions, where the origin server always delivers the original 

content to the proxy, which will transform the content.  

More importantly, by setting 0<t<L, our framework can deliver partial service 

with intermediate content object in the network, which is not provided by the 



 54 

conventional frameworks. Instead of fixing the application deployment locations at 

the design time, our framework allows the network nodes to choose suitable 

deployment strategy dynamically. This decision is usually based on judging the 

performance gain and the corresponding deployment cost for different workflow 

partitioning possibilities. This flexibility enables the Application Networking systems 

to resolve the most efficient service placement strategy under different conditions. 

Concrete algorithms will be explained in later chapters. 

(2) Application Substitution 

Each workflow segment specifies an application to implement the segment task. 

In the segment specification, a location is provided for fetching this application 

module. However, the framework also allows the network node to substitute the 

original application module with another one. Such substitution operation can be 

expressed as in definition 3.5, where the original application (App) is replaced by 

another application (App’). 

Definition 3.5 Application Substitution 

),,(:

)),,(()(
',

,''

dvOBJTSK

dvOBJTSKFSEGF

in
AppCR

in
AppCRAppApp

=

=
 

The purpose of application substitution has several aspects. Firstly, a network 

node usually has installed some popular applications. To avoid downloading 

redundant applications, we allow the node to reuse its local applications. Secondly, 

the network node may replace the original application with a better-customized one. 

For example, an edge proxy can replace the general advertisement insertion 

application with a customized one that posts the localized and targeted advertisements 

to the clients. Finally, the substitution operation allows a network node to load a 



 55 

usable application if the original application cannot be accessed, so that the node can 

still manipulate content at the expense of sacrificing some operation fidelity. 

(3) Appending 

Although our framework emphasizes on delivering the content service defined 

by the content provider, it also allows the clients or the third parties to perform 

supplementary operations on the content. The added operations are necessary when 

the content provider does not supply sufficient directives. However, the added 

operations may break the content integrity especially when the content already has the 

associated workflow. Suppose the origin site delivers a content object with a service 

workflow to the intermediate node. If this node performs some supplementary 

operations on the content before executing the original service workflow, the result 

could be unexpected because the input object for the service workflow has been 

altered by applications that are not in the original workflow. To avoid this, our 

framework requires the added operations can only be performed after the original 

workflow has been executed. Thus, we define the “appending operation” as in 

definition 3.6, where the supplementary segments (from SEGL+1 to SEGL+t) are 

appended to the end of the original workflow WFL (from SEG1 to SEGL). 

Definition 3.6 Appending Operation 

i
tL

i

j
tL
Lji

L
i

LtLL

SEG

SEGSEGWFF
+

=

+
+==

+→

•=

•••=

1

11

)(

))(())((:)(
 

3.3.3 XML Specification 

Our framework specifies the workflow using the XML markup language. The 

XML description is platform independent, and it facilitates us to apply the 

Application Networking framework to different content delivery systems. Figure 3.6 

shows the specification for the example workflow in Figure 3.4. 



 56 

(01)  <Workflow owner=”abc.com”> 
(02)    <Segment id=”transcoding segment”> 
(03)      <Rule> 
(04)        “client.display_w < img.display_w OR client.display_h < img.display_h” 
(05)      </Rule> 
(06)      <Task id="image-transcoding"/> 
(07)        <App type="public"> 
(08)          <Codebase url="ftp://abc.com/applications/image-transcoder.class"/> 
(09)          <Codebase url=”http://appnet.opensource.org/image-transcoder.class”/> 
(10)        </App> 
(11)       </Task> 
(12)    </Segment> 
(13)    <Segment id=”watermarking segment”> 
(14)      <Rule>true</Rule> 
(15)      <Task id="image-watermarking"> 
(16)        <App type="private"> 
(17)          <Codebase url="ftp://abc.com/applications/image-watermarking.class"/> 
(18)        </App> 
(19)      </Task> 
(20)    </Segment> 
(21)  </Workflow> 

Figure 3.6 an Example Workflow XML Specification 

The specification is rooted from a <Workflow> element, which has an attribute 

called “owner” (line 1) to identify the content provider. The workflow element 

includes a list of <Segment> elements, which should be written in their execution 

order. Every segment contains a <Rule> element and a <Task> element. The rule 

element defines the conditions (line 3-5) to trigger the task execution. We leverage the 

“p-rule language” [BR03] to specify the rules. This language was created for content 

adaptation, and it provides a set of concise yet descriptive rule declarations, which 

satisfy our requirements. 

The task element contains a <App> element, which specifies the required 

application in the segment. The <App> element includes the <Codebase> elements 

that provide the URLs for downloading the application module. To avoid the single 

point of failure, multiple <Codebase> elements can be specified (lines 8-9). The 

network node can fetch from any of them. The specification also defines the “type” 

attribute for the <App> element, to control whether the original application can be 

substituted. If the value of “type” is “public” (line 7), the intermediate node is allowed 



 57 

to use another application to substitute the original application. If the value is 

“private” (line 16), it means the content provider requires the specified <Codebase> to 

be used and the intermediate node should not substitute it. 

In addition, if a workflow is partitioned, partial workflow will be delivered. In 

this situation, the specification elements for the executed segments will be removed 

from the workflow specification, while the rear partial specification will be delivered 

with the generated intermediate content object (see Figure 3.10). 

3.3.4 Discussion 

In summary, the Application Networking framework expresses the content 

service as the loosely coupled workflow structure, which has several advantages: 

(i) The workflow composes the content service using the independent and stateless 

segments. It enables the workflow to be delivered to the intermediate nodes and 

instantiated there using the downloaded applications. As the workflow carry the 

allowed content operations, the intermediate node can manipulate the content 

without violating the content provider’s intentions.  

(ii)  Moreover, the delivered service directs the intermediate nodes to download new 

applications and lets these nodes to scale up their functionalities along with the 

content delivery process. This improves the system scalability in the open Internet 

environment. 

(iii)  The workflow also allows the intermediate node to use its local applications to 

instantiate some segments. The local application’s function should accord with the 

specified segment task. Such compositional service formation avoids downloading 

the redundant applications. 



 58 

(iv) The loosely coupled workflow structure enables us to implement flexible service 

deployment by partitioning the workflow in suitable ways. This flexibility enables 

the Application Networking systems to derive efficient content delivery strategies. 

We acknowledge there are many other workflow structures. A typical example 

is WS-BPEL [Bpel] that originates from WSFL [Ley01] and XLANG [Tha01]. The 

WS-BPEL was proposed in the SOA (Service Oriented Architecture) and it describes 

the business process at the orchestration level. The specification provides the 

full-featured business process descriptions, including service flow, branching, looping, 

transaction, and error handling. In comparison, our workflow is much simpler. This is 

because our workflow is used to describe the content services, which are usually 

expressed as several operation steps. The content services are not likely to involve 

transactions, so that the transaction concept is not included in our structure. 

The loop logic is possible in the content services, such as an image is 

transformed by several rounds to fit the client’s requirements on the image 

dimensions, color, resolution and media encoding. However, we intend to let the 

specific application encapsulate such looping logic into its implementation. Thus, we 

can keep the workflow loosely coupled, in that each segment is independent with the 

others and the execution of all segments are stateless. This facilitates the system to 

implement the deliverable service and the composite service formation. 

In addition, though our workflow arranges all segments in sequence, the usage 

of configuration rules allows us to implement the branching logic in the service. This 

is achieved by specifying mutually exclusive rule conditions for a group of segments. 

Then the sequential execution of these segments will render the branching effect over 

them. This effect is illustrated in Figure 3.7, where the right side shows a workflow.  



 59 

 
Branching Logic Workflow Structure 

Figure 3.7 Branching Logic in the Workflow 

Regarding the aspects above, we can conclude that the Application Networking 

workflow provides a simple yet expressive structure to describe most content services. 

In addition, in the Application Networking framework, the content provider is 

responsible for creating the workflow specification. Besides writing the XML 

specification from scratch, a more convenient way is to harness the authoring 

software to simplify the specification work, such as providing the graphical user 

interface, enabling workflow customizing based on templates, and reusing workflow 

for different contents. In this way, we will not cause too much burden on the content 

providers. 

3.4 Metadata based Content Reuse 

Our framework makes different versions of content to be delivered, including 

the original content object, the intermediate content objects, and the final content 

presentations. Identifying these objects is important for efficient content reuse. 



 60 

Nevertheless, this issue is not well addressed by the traditional frameworks that were 

mostly designed for contents with a single presentation. Some adaptive solutions, 

such as Transquid [MSR01] and PTC [STR02], can cache and reuse the specific types 

of content. Although such type-oriented approach can achieve precise data reuse but 

also it requires the network node to install dedicated applications to extract the 

content’s properties, so that the apporach can only be applied to those popular content 

types. Meanwhile, the content reuse judgment usually involves media decoding 

operation, so that it is heavy weight. 

Our framework is built to be a general platform, which needs to handle different 

types of contents. The content identifying and reusing scheme should be scalable and 

lightweight. To achieve this target, we propose a metadata-based approach to identify 

and reuse content objects in a systematical way. 

3.4.1 Metadata Specification 

Our method associates one piece of metadata to the content object. The 

metadata is the aggregation of the object’s identifier and zero or more attributes, as 

given by definition 3.7. The “id” gives the unique identifier (e.g. URI) of the content 

object. Each attribute entry (attr) consists of the attribute name and value. For 

instance, a text document may have an attribute as (language, “English”) to specify its 

presenting language. Different versioned objects of the same content share the same 

identifier, but are differentiated through the attributes in the metadata. 

Definition 3.7: Object’s Metadata 

Meta(OBJ) : = {id, {attr1, attr2, …, attrj}}, where attr = (name, value) 

The default metadata for the original content object only contains the identifier 

with some initial attributes. When the object is transformed, the transforming 

application is responsible for inserting additional attributes into the metadata or 



 61 

updating the values of the affected attributes. For the workflow in Figure 3.4, we 

assume the metadata for the original image includes the identifier and the dimensions 

of the image. When the transcoding application is executed, it will update the 

dimension attribute with the new image size. Finally, when the watermarking 

application is executed, it will append a new attribute to declare the content’s 

recipient. 

The content metadata is specified in the XML format. An example is shown in 

Figure 3.8. The metadata is rooted with the <Metadata> element. The “id” attribute of 

<Metadata> declares with which content this metadata is associated. The <Metadata> 

contains none or multiple <Attr> elements, each of which defines an attribute entry of 

the content object. 

(01)  <Metadata id="http://abc.com/breakingnews.jpeg"> 
(02)    <Attr name="display_w" type=”int”>352</Attr> 
(03)    <Attr name="display_h" type=”int”>188</Attr> 
(04)    <Attr name=”type” type=”string”>JPEG</Attr> 
(05)  </Metadata> 

Figure 3.8 Metadata Specification 

Since our framework can deliver both content and the associated service 

workflow, a <AppNetDeliverable> element is used to encapsulate the metadata of the 

delivered content and its associated workflow specification. Figure 3.9 shows the 

specification for our example workflow in Figure 3.4. The content metadata is 

provided in line 2 and the workflow is given in lines 3~23. Note the metadata only 

contains the content’s identifier which means this original content with the entire 

service workflow can be reused for all requests for the content. As an option, 

<AppNetDeliverable> can contain a <Payload> element (lines 24~26) to include the 

payload of the delivered content object, whereas specific systems can use their own 

methods to transmit the content payload, such as the HTTP multipart types [HTTP] or 

the message attachments [Soap-a]. 



 62 

(01)  <AppNetDeliverable> 
(02)    <Metadata id="http://abc.com/breakingnews.jpeg"/> 
(03)    <Workflow owner=”abc.com”> 
(04)      <Segment id=”transcoding segment”> 
(05)        <Rule> 
(06)          “client.display_w < img.display_w OR client.display_h < img.display_h” 
(07)        </Rule> 
(08)        <Task id="image-transcoding"/> 
(09)          <App type="public"> 
(10)            <Codebase url="ftp://abc.com/applications/image-transcoder.class"/> 
(11)            <Codebase url=”http://appnet.opensource.org/image-transcoder.class”/> 
(12)          </App> 
(13)         </Task> 
(14)      </Segment> 
(15)      <Segment id=”watermarking segment”> 
(16)        <Rule>true</Rule> 
(17)        <Task id="image-watermarking"> 
(18)          <App type="private"> 
(19)            <Codebase url="ftp://abc.com/applications/image-watermarking.class"/> 
(20)          </App> 
(21)        </Task> 
(22)      </Segment> 
(23)    </Workflow> 
(24)    <Payload coding=”base64”> 
(25)      Original image payload is included here 
(26)    </Payload> 
(27)  </AppNetDeliverable> 

Figure 3.9 Specification for <AppNetDeliverable> - Entire Workflow 

As mentioned, our framework can also deliver the intermediate content object 

with the partial service workflow. In this case, the specification for the executed 

segments needs to be removed and only the specification for the remaining workflow 

segments is kept. Figure 3.10 shows an example based on Figure 3.9, where we 

assume the transcoding application has resized the original image. The specification 

contains the metadata for the resized image (lines 2~5) with the remaining 

watermarking segment (lines 6~15). Note the transcoding application has added two 

metadata attributes for the resized image (lines 3&4). The resized image is 

encapsulated in the <Payload> element. 

 

 

 

 



 63 

(01)  <AppNetDeliverable> 
(02)    <Metadata id="http://abc.com/breakingnews.jpeg"> 
(03)      <Attr name="display_w" type=”int”>352</Attr> 
(04)      <Attr name="display_h" type=”int”>188</Attr> 
(05)    </Metadata> 
(06)    <Workflow owner=”abc.com”> 
(07)      <Segment id=”watermarking segment”> 
(08)        <Rule>true</Rule> 
(09)        <Task id="image-watermarking"> 
(10)          <App type="private"> 
(11)            <Codebase url="ftp://abc.com/applications/image-watermarking.class"/> 
(12)          </App> 
(13)        </Task> 
(14)      </Segment> 
(15)    </Workflow> 
(16)    <Payload coding=”base64”> 
(17)      Resized image payload is included here 
(18)    </Payload> 
(19)  </AppNetDeliverable> 

Figure 3.10 Specification for <Deliverable> - Partial Workflow 

3.4.2 Content Reuse 

Our framework supposes the client’s preferences and the relevant request 

parameters are carried by the request message. When the network node receives a 

request, it first finds a cached object whose identifier equals to the requested identifier. 

Then it needs to determine whether this object is reusable for the present request. We 

treat an object is “reusable” if it is the exact presentation requested by the client, or it 

can be transformed to the requested presentation using the associated service 

workflow. In the framework, such reusability judgment is based on matching the 

content’s metadata and the request’s attributes. 

A possible way for the reusability judgment is the “perfect matching” method, 

which demands all attributes of the object’s metadata and all preference entries and 

parameters of the request to match exactly. However, this method is too strict to 

achieve good content reuse, as any difference between the request and the stored 

content can cause the negative reuse decision. In the open Internet environment, since 

both the content provider and the client may use some attributes that are not used by 



 64 

the counterpart, the perfect matching could cause the matching process to be over 

negative.  

To avoid this situation, we adopt an alternative method – the “best-effort 

matching”. This method treats an object is reusable if all the “common” attributes of 

the stored content object and the request match with each other. Suppose a document 

object has an attribute of {(language, English)} and the client’s request contains three 

parameters as {(language, English), (display_w, 800), (display_h, 600)}. In this 

situation, the framework will deem the document to be reusable, because its sole 

attribute (i.e. language) matches the corresponding parameter in the request, while the 

other parameters (i.e. display_w and display_h) are ignored since they are not 

presented in the document’s attributes. Using this best-effort matching policy, we 

intend to reuse objects to the maximum extent while avoiding those attributes with 

mismatching values. 

According to the previous discussion, when a content object is processed by 

more workflow segments, more attributes will be added to the object’s metadata and 

fewer segments will remain in workflow specification. It implies the content object 

with the associated partial service is becoming more and more specific because more 

its metadata attributes haven been fixed and the content’s reusability reduces 

according to our best-effort matching mechanism. 

3.4.3 Discussion 

Our metadata based content reuse method has several advantages: 

(i) The metadata is expressed in the XML. Such system neutral format allows a 

network node to derive the content’s reusability without interpreting its data 

format or understanding any application-specific semantics. It makes our 

metadata method to be general purposed, applicable to different content types. 



 65 

(ii)  Our metadata method can also implement service-oriented content reuse. This is 

because the content metadata is maintained and updated by the content service 

applications, and the content reusability judgment is made based on such 

service-oriented metadata. Thus, we can achieve the service-oriented content 

reuse, which is not provided by the current type-oriented reuse methods. 

(iii)  Our method is also lightweight, as the reuse judgment only involves matching 

the metadata attributes, without needing to decode the content payload to extract 

the wanted media property. 

3.5 Observation and Summary 

There are some other intermediary frameworks and one representative is the 

Open Pluggable Edge Service (OPES) framework [Opes]. OPES [BCH04] provides a 

general framework that allows the intermediate network nodes to perform 

value-added operations on the transferred content data. OPES proposes many 

concepts such as the Proxylet application interface [Wal01], the IRML [BH01] and 

the P-language [BR03] rules to describe the application invocation conditions, and the 

OCP callout protocol to access the remote service [Rou05].  

Similar to the OPES framework, our Application Networking framework also 

allows the intermediate network nodes to perform active content services. Our 

framework leverages some available results from OPES, such as using the P-language 

to describe the configuration rules in the workflow, and referring the Proxylet 

specification to define the application APIs (Chapter 4 and Chapter 7). However, our 

framework differs from OPES in several key aspects. 

The most significant difference is that our framework integrates the content 

delivery and the application deployment into an integrated process. However, the 

OPES framework treats them as two separate processes, where the pre-deployment 



 66 

strategy [YH01] is used. Due to this difference, our framework allows the 

intermediate network nodes to scale up their content processing capabilities along 

with the content delivery process, by downloading new applications dynamically. 

Moreover, we use the loosely coupled workflow to express the deliverable service, 

which facilitates the system to implement fine-grained service deployment. 

Another difference is that content reuse issue is addressed in our framework, but 

not in the OPES framework. We let the network nodes to store and reuse the 

versioned content objects with the associated service. The metadata-based approach is 

used to achieve the general-purposed and service-oriented content reuse. 

In summary, the Application Networking framework, though leveraging some 

parts from the existing OPES framework, enriches the active intermediary 

methodology through enabling deliverable content service, compositional service 

formation, flexible service deployment, and fine-grained content reuse. The main 

contributions of the framework are (i) it integrates the content delivery and 

transformation processes as a unified service delivery process; (ii) it broadens the 

content delivery and reuse spectrum by including not only the original content and its 

final presentations but also the intermediate content objects. 

However, applying the Application Networking framework into the existing 

content delivery contexts is an intensive exercise. There are many architectural and 

performance issues to be considered. In the rest of this thesis, we will address more 

details on building the App.Net system that applies the framework to the Web system, 

and the AN.P2P system that extends the framework to the P2P networks.



 67 

CHAPTER 4  

APP.NET - APPLICATION NETWORKING ON THE WEB 

4.1 App.Net Architecture 

This chapter explains our App.Net system, which applies the Application 

Networking framework in the Web content delivery context. The system architecture 

is shown in Figure 4.1, where the App.Net platform is installed on both the origin 

server and the edge proxy.  

 
Figure 4.1 Architecture of App.Net System 

The App.Net platform has three major components: 

(1) App.Net Proc: is the kernel process of the platform. It handles the HTTP 

requests and replies, and performs necessary operations on them. 

(2) App.Net Cache: is to store the HTTP responses, which include the response 

content objects and their associated workflow specifications. 



 68 

(3) App Pool: is to store the downloaded or locally installed application modules. 

The detailed system operations can be described in four processes: (i) service 

preparation, (ii) request forwarding, (iii) server response, and (iv) proxy response. 

4.1.1 Service Preparation Process 

When the content provider publishes the original content on the server, the 

App.Net system allows him to attach a content service to the published content object. 

This service is specified as a workflow, as explained in our framework. Meanwhile, 

the server should have the relevant applications to implement the segment tasks. In 

the App.Net system, we define a general interface – Anlet – for the workflow 

applications, so that the system can execute different applications through a set of 

uniform functions. Since the Web content service may contain the content generation 

step and the content transformation steps, we divide the ANlet interface into two 

sub-interfaces: ANlet Handler and ANlet Filter. 

ANlet Handler is used for the content generation application, which should 

reside at the beginning of a workflow. In this interface, we define the 

generate_Response function, as given by Api.4.1, which allows the application to 

generate the initial content object. The Handler application functions as the traditional 

presentation layer script (e.g. JSP or ASP) that generates the dynamic Web contents 

by querying the backend database or business logic result. However, a major feature 

of ANlet Handler is that it can be delivered from the server to the proxy and be 

executed there. We can use the Handler application to implement the “mobile 

presentation tier” of a Web site, which cannot be provided by the traditional 

presentation layer scripts. 

Api.4.1: ANlet Handler Execution Function 

ContentObject generate_Response(HTTPRequest request) 



 69 

ANlet Filter interface is used for the content transformation applications. In this 

interface, we define the modify_Response function, as given by Api.4.2, which allows 

the application to transform the content object. The Filter application receives the 

content object and the client’s request message as input, and it will transform the 

content object according to the request’s parameters and output the new content object. 

For a workflow, multiple Filter applications will be executed in sequence, and they 

will transform the original object to be the final content presentation. 

Api.4.2: ANlet Filter Execution Function 

ContentObject modify_Response(ContentObject input_obj, HTTPRequest, request) 

In our system, a workflow can start from a normal content object (e.g. a text file 

or an image) or a Handler application, as illustrated in Figure 4.2. We treat the 

Handler application as an active object that needs to be executed to get the content 

data. Having this particularity, the following discussion will not deliberately 

distinguish whether the workflow is started from a normal content object or a Handler 

application, unless it is necessary. For concise expression, we just say any workflow 

starts from an original content object. 

 
(a) Workflow that starts from a conventional content object 

 
(b) Workflow that starts from an ANlet Handler application 

Figure 4.2 App.Net Workflow 

4.1.2 Request Forwarding Process 

When a client requests the content on the server, the request contains not only 

the name of the Web resource but also the relevant request parameters, such as the 



 70 

service-specific parameters or the client’s preference. The App.Net system allows the 

request message to carry these parameters in either the query string or the header 

fields of the HTTP message. An example request is shown in Figure 4.3. According to 

HTTP 1.1 [Http], “http://abc.com/images/pic.jpg?display_w=352&display_h=288” is 

the Request-URI, where “http://abc.com/image/pic.jpg” is the Web resource identifier 

and “display_w=352&display_h=288”is the query string. All the following fields, 

from line 03 to line 06, are the request headers of the HTTP message. 

(01)  GET http://abc.com/images/pic.jpg?display_w=352&display_h=288 HTTP/1.1 
(02)   
(03)  Host: abc.com 
(04)  Accept: text/*, audio/*, img/png 
(05)  User.network: ADSL 
(06)  User.profile.template: www.xyz.com/profile/device.xml 

Figure 4.3 Request Message from Client 

Using query string to carry the request parameters is a traditional technology. It 

lets the content service specify parameters for the client by rewriting the HTML 

hyperlinks or the URLs of the embedded objects. When the client clicks these 

hyperlinks or fetches the embedded objects, the parameters will be automatically 

included into the HTTP query string. 

In the App.Net system, we also allow the browser to insert the client’s 

preference into the HTTP request as headers. HTTP 1.1 provides some default request 

headers, whereas extended headers can also be inserted. For example, in Figure 4.3, 

the message uses the standard “Accept” header (line 4) to declare the media types 

accepted by the client. It also contains two extended headers: the first header, 

“user.network” (line 05), specifies the client’s network connection type, and the 

second header, “user.profile.template” (line 06), provides the URL for fetching the 

profile [Ccpp and Uapr] of the client’s device. 



 71 

When the client’s request reaches the App.Net proxy, the proxy will insert an 

extended HTTP header, “Via-AppNet” into the request (line 07 Figure 4.4), and 

forward the request to the server. 

(01)  GET http://abc.com/images/pic.jpg?display_w=352&display_h=288 HTTP/1.1 
(02)   
(03)  Host: abc.com 
(04)  Accept: text/*, audio/*, img/png 
(05)  User.network: ADSL 
(06)  User.profile.template: www.xyz.com/profile/device.xml 
(07)  Via-AppNet: true 

Figure 4.4 Request Message from Proxy 

The BNF definition of the Via-AppNet header is given in Definition 4.3. It 

enables the proxy to declare that the request is forwarded by an App.Net enabled 

proxy, so that the server can deliver workflow in the response. If the request is 

forwarded by only the conventional proxies, the server will not see this header in the 

request, and it should fully execute the content service and put the final content 

presentation in the response. Thus, the usage of the Via-AppNet header makes the 

App.Net enabled server and proxy to be compatible with the conventional proxy. 

Definition 4.3: Via-AppNet 

Via-AppNet = “Via-AppNet: true” 

4.1.3 Server Response Process 

When the server receives the request, it can generate the response in one of 

three operation modes: 

(1) Full transformation: the server executes all workflow applications associated 

with the requested content to generate the final content presentation for the 

client and sends this final presentation to the proxy. 

(2) Non-transformation: the server directly sends the original content object and 

its associated workflow specification to the proxy. 



 72 

(3) Partial transformation: the server partitions the workflow into two parts and 

feeds the original content to the applications of the front part workflow to 

generate an intermediate response object. Then, the server returns the 

intermediate object and the specification for the rear part workflow to the 

proxy. 

According to Chapter 3, any operation mode above can be described as a 

workflow partitioning possibility. The server should determine how many workflow 

segments to be executed and how many segments to be delivered to the proxy. We 

call this judgment process as the “service placement”. The server chooses the service 

placement strategies according to the performance optimization and security 

enforcement requirements. 

After getting the response content object, the server will construct an HTTP 

response message to the proxy. An example response is shown in Figure 4.5. The 

message is tagged with “Content-Type: App-Net-Workflow” (line 04) to indicate this 

response includes both the content object and the workflow specification. The 

response body is coded as XML format, which contains three elements: <Metadata>, 

<Workflow> and <Payload>, as explained in Chapter 3. 

In the actual network, above compositional response message may be cached by 

the conventional proxy that does not support App.Net. This situation is likely to 

happen when the conventional proxy resides between an App.Net server and an 

App.Net proxy. When this conventional proxy transmits the response from the 

App.Net server to the App.Net proxy, it will cache the response. As this proxy cannot 

interpret the response correctly, it would wrongly send it to the clients or other 

conventional proxies, which definitely cannot understand the compositional response. 

To avoid such situation, the App.Net server inserts a Vary header with value 



 73 

“Via-AppNet” into the response (line 06 in Figure 4.5). According to the HTTP 

protocol, a cache cannot serve a cached response with a “Vary” header unless the new 

request contains the same header, which is specified in the “Vary” header of the 

cached response, as the origin request. Because only the App.Net proxy will insert the 

“Via-AppNet” header into the request, the usage of “Vary: Via-AppNet” header in the 

response makes sure this response can only be sent to the App.Net enabled proxies, 

even if the response is cached by a conventional proxy. 

(01)  HTTP/1.1 200 OK 
(02)   
(03)  Date: Sun, 25 Apr 2004 06:25:24 GMT 
(04)  Content-Length: 26012 
(05)  Content-Type: text/App-Net-Workflow 
(06)  Vary: Via-AppNet 
(07)   
(08)  <?xml version=”1.0” encoding=”UTF-8”?> 
(09)  <!DOCTYPE AppNet SYSTEM “http://comp.nus.edu.sg/~sumu/AppNet.dtd”> 
(10)  <AppNetContent> 
(11)    <Metadata id=” http://abc.com/images/pic.jpg”> 
(12)      <Attr name=”display_w”>352</Attr> 
(13)      <Attr name=”display_h”>288</Attr> 
(14)    </Metadata> 
(15)    <Workflow owner=”abc.com”> 
(16)      <Segment id=”watermarking segment”> 
(17)        <Rule>true</Rule> 
(18)        <Task id=”image-watermarking”> 
(19)          <App type=”private”> 
(20)            <Codebase url=”ftp://abc.com/applications/image-watermarking.class”/> 
(21)          </App> 
(22)        </Task> 
(23)      </Segment> 
(24)    </Workflow> 
(25)    <Payload type=”img/jpeg” coding=”base64”> 
(26)      The image payload is here, using the base64 coding 
(27)    </Payload> 
(28)  </AppNetContent> 

Figure 4.5 Response Message from Server 

4.1.4 Proxy Response Process 

When the proxy receives the response from the server, it first checks the content 

type of the response. If the type is not “App-Net-Workflow”, it means the response 

only contains the content object, and the proxy will send the response to the client 



 74 

directly. However, if the type is “ App-Net-Workflow”, the proxy will execute the 

delivered workflow to generate the final presentation for the client. 

In specific, to perform the workflow tasks, the proxy needs to load the relevant 

applications used by the workflow. As shown in Figure 4.5 line 20, the workflow 

specification provides the addresses to download the ANlet applications. By default, 

the proxy will fetch the applications from these addresses. Our system also allows the 

proxy to substitute some original applications by using its locally installed 

applications that perform the equivalent functionalities. After loading all applications, 

an instance of workflow is created. Then, the proxy feeds the response content object 

to the instantiated workflow, executes the applications with respect to the workflow 

specification, and generates the final content presentation according to the client’s 

parameters. In the end, the proxy sends the response to the client, as in Figure 4.6. 

(01)  HTTP/1.1 200 OK 
(02)   
(03)  Date: Sun, 25 Apr 2004 06:25:28 GMT 
(04)  Content-Length: 62920 
(05)  Content-Type: img/jpg 
(06)   
(07)  The final image payload is here 

Figure 4.6 Response Message from Proxy 

Meanwhile, the proxy stores the received response message into the App.Net 

Cache, and stores the downloaded ANlet applications into the App. Pool. When the 

proxy receives a new request, it will search the local cache for a reusable response and 

serve the new client directly. The cache reuse details will be explained later. 

4.1.5 System Security 

Some restrictions are put on the ANlet to enforce the security of the system. 

(1) The system treats the locally installed applications and the downloaded 

applications differently. The local application can access most system resources. 

However, the downloaded application can only manipulate the content object passed 



 75 

to it, and it is restricted from accessing the file systems or executing system-level 

commands (e.g. scanning port status, etc). 

(2) We restrict the downloaded application from connecting to the third-party 

site other than the origin server. In this way, the client’s information will only be 

propagated to the original server he requested, and the retrieved data is solely from 

the original server which prevents the application from inserting unexpected 

third-party information into the response content. 

Other security mechanism can also be leveraged in the App.Net system, such as 

application sandbox, secured content adaptation [LRY02], and the distributed 

server-proxy authentication. However, they are not the focus of this thesis. 

4.2 App.Net Caching Scheme 

Caching and reusing the response objects on the proxy is an important way to 

improve the user perceived latency and reduce the network backbone traffic. The 

traditional Web caching scheme is based on the HTTP 1.1 specification [Http]. 

However, this scheme has limitations to identify the versioned responses that are 

delivered in the App.Net system. In this section, we first examine two aspects of 

content caching: (i) cache identifier and (ii) versioned response, and then propose the 

App.Net caching solution. 

4.2.1 Cache Identifier 

The traditional caching scheme uses the Request-URI to identify the response. 

An example is “http://website.com/image.jpeg?display_w=352&display_h=288”, 

where the front part, “http://website.com/image.jpeg”, gives the Web resource name 

and the rear part, “display_w=352&display_h=288”, is called query string and it 

carries the request parameters. The cached response will be reused if the new request 

has the same Request-URI as the cached response. 



 76 

However, in the App.Net system, using Request-URI as the cache identifier 

may reduce the reusability of some responses. As explained, the App.Net server can 

deliver the final content presentations as well as the original or intermediate responses, 

and all of them may be cached by the proxy. 

The final presentation is particularly for one group of requests with the exactly 

same Web resource name and query string parameters, so that only the exactly 

matched requests can reuse the cached final content presentations. In this case, the 

Request-URI can be used as the cache identifier. 

However, the response containing original or intermediate object can be reused 

for not only the exactly matched requests but also requests for the same Web resource 

but with different query string parameters. In these cases, using Request-URI as the 

cache identifier would improperly reduce the reusability of such responses, since the 

full characters match binds the reusability of the original or intermediate response 

with the query string parameters in the original request. For example, an original 

request has the Request-URI as “http://website.com/image?display_w=352&display 

_h=288”, where the query string specifies the preferred display size for the client who 

issued this request. Suppose the server delivers the original image and the image 

adaptation workflow to the proxy, which caches this response and identifies it using 

the original Request-URI above. Now, another client requests this image but with a 

different display size, and the new Request-URI is http://website.com/image? 

display_w=176&display_h=144. In this case, the proxy cannot reuse the cached 

response, as the new Request-URI does not match the original Request-URI exactly. 

As the result, even though there is a reusable response, the proxy deems it as not 

reusable. 



 77 

To solve this problem, our system adopts an extended response header, RE-URI 

(i.e. URI for the Response Entity), to identify the response. The value of RE-URI is 

usually a string prefix of the Request-URI by removing some or all query string 

parameters those are irrelevant to specify the current response. The BNF definition for 

RE-URI is given in Definition (4.4). 

Definition 4.4: RE-URI 

RE-URI=“http://”host[“:”port][path[“?”query]] 

In our caching scheme, RE-URI takes precedence over the Request-URI as the 

response’s identifier. If the response contains an RE-URI header, the App.Net cache 

will use it as the identifier; otherwise, the original Request-URI will be used. Figure 

4.7 shows a pair of request and response, where a client requests an image that will be 

displayed on his PDA device (figure (a)) and the server delivers the original image 

with the associated workflow (figure (b)) to the proxy. The response has an RE-URI 

header http://website.com/image, which removes the query string parameters in the 

original request. When the proxy receives this response, it will use the RE-URI field 

to identify the cached response. 

When the proxy performs a cache lookup for the new request, the identifier of 

the cached response should exactly match or be a string prefix of the new 

Request-URI. According to this rule, the proxy can reuse the cached image object and 

its workflow to serve new requests for this image but with different display size, such 

as http://website.com/image?display_w=176&display_h=144. 

 

 

 

 



 78 

(01)  GET http://website.com/image?display_w=352&display_h=288 HTTP/1.1 
(02)   
(03)  Host: website.com 
(04)  Accept: text/*, audio/*, img/* 
(05)  Via-AppNet: true 

(a) Request Message 

(01)  HTTP/1.1 200 OK 
(02)   
(03)  Date: Sun, 25 Apr 2004 06:25:24 GMT 
(04)  Content-Length: 3126012 
(05)  Content-Type: text/App-Net-Workflow 
(06)  RE-URI: http://website.com/image 
(07)   
(08)  <?xml version=”1.0” encoding=”UTF-8”?> 
(09)  <!DOCTYPE AppNet SYSTEM “http://comp.nus.edu.sg/~sumu/AppNet.dtd”> 
(10)  <AppNetContent> 
(11)    <Obj type=”img/jpeg” encoding=”base64”> 
(12)      The image payload is here, using the base64 coding 
(13)    </Obj> 
(14)    <Workflow owner=”website.com”> 
(15)      Workflow segments are included, for details see Chapter 3. 
(16)    </Workflow> 
(17)  </AppNetContent> 

(b) Response Message with RE-URI Header 

Figure 4.7 Example Messages for the RE-URI Header 

4.2.2 Versioned Response 

The traditional caching scheme uses a “Vary” response header, to distinguish 

different versions of response, such as a Web page can have a Chinese version and an 

English version. HTTP 1.1 gives the BNF definition for “Vary” as in Definition 4.5. 

The protocol specifies the value of Vary header indicates the set of request-header 

fields that are selected to determine whether the cache is permitted to use the response 

to reply to a subsequent request – the cache will reuse a cached response if all of the 

selected request-headers presented in the new request match the corresponding 

headers in the original request. 

Definition 4.5: Vary 

Vary = “Vary”“:”(“*”|1#field-name) 

For example, if the original request contains header “Accept-Language: en” and 

the response contains header “Vary: Accept-Language”, the cached response can only 



 79 

be reused for the subsequent requests that also have header “Accept-Language: en”. 

Supposing a new request carries header “Accept-Language: fr”, the cached response 

should not be reused. 

However, in the App.Net system, “Vary” is not sufficient to distinguish the 

versioned responses in all situations, because some request parameters may locate in 

the query string. Therefore, we propose an extended response header, VaryByParam, 

whose BNF definition is given in Definition 4.6. The header field indicates the set of 

parameters, resided in the query string, selected to identify a particular version of 

response. The cache will reuse a cached response if all the query string parameters 

selected by the VaryByParam header have the same values in the new request and the 

original request. 

Definition 4.6: VaryByParam 

VaryByParam=“VaryByParam”“:”(“*”|1#para_name) 

Figure 4.8 shows a pair of request and response. The Request-URI (Figure 4.8 

(a), line 1) is “http://website.com/image?s=bob207&display_w=352&display_h=288”, 

where the first parameter “s=bob207” gives the session id and the last two parameters 

“display_w=352&display_h=288” give the client’s preferred display sizes. The 

session id is normally used for tracing a client’s transaction and has no effect on the 

image presentation. We suppose the server transcode the original image according to 

the client’s display size and put the resized image in the response. In the traditional 

Web cache, the Request-URI is used as the identifier and this would result in that the 

response has no reusability on the proxy because the non-repeatable session id causes 

the constant mismatch between the cache identifier and the new Request-URI. 

However, as shown in Figure 4.8 (b), the App.Net server inserts the RE-URI header 

(line 6) to identify the response, and uses the VaryByParam header (line 7) to declare 



 80 

that the query string parameters display_w and display_h are selected to specify the 

version of current response object. Thus, this cached response can be reused to a 

request like “http://website.com/image?s=alice422&display_w=352&display_h=288”, 

where the unselected query string parameter s=alice422 is ignored. 

(01)  GET http://website.com/image?s=bob207&display_w=352&display_h=288 HTTP/1.1 
(02)   
(03)  Host: website.com 
(04)  Accept: text/*, audio/*, img/* 
(05)  Via-AppNet: true 

(a) Request Message 

(01)  HTTP/1.1 200 OK 
(02)   
(03)  Date: Sun, 25 Apr 2004 06:25:24 GMT 
(04)  Content-Length: 3126012 
(05)  Content-Type: img/jpeg 
(06)  RE-URI: http://website.com/image 
(07)  VaryByParam: display_w, display_h 
(08)   
(09)   The image payload is here, using the base64 coding 

(b) Response Message with RE-URI and VaryByParam Headers 

Figure 4.8 Example Messages using VaryByParam 

In summary, through using the standard “Vary” header and the extended 

“VaryByParam” header, we can distinguish various response versions according to 

their HTTP message headers as well as the query string parameters. 

4.2.3 App.Net Caching Scheme 

The App.Net Cache retrieval policy can be summarized as follows: 

(1) When the cache performs a lookup, it firstly checks the identifier of the cached 

response. If the identifier is got from the Request-URI of the original request, it 

should exactly match the Request-URI of the new request. If the identifier is got 

from the RE-URI header of the response, it should be a string prefix of the new 

Request-URI. 

(2) Once the identifier checking succeeds, the cache will make sure the cached 

response is the reusable version for the current request by checking the “Vary” 

and “VaryByParam” headers. The cached response cannot be reused unless all 



 81 

of the selected request-headers (or query string parameters) presented in the new 

request match the corresponding header fields (or query string parameters) in the 

original request. 

If all criterions above are satisfied, the App.Net Cache will reuse this cached 

response. 

In addition, the App.Net cache leverages the conventional replacement 

algorithms to replace the cached responses. Typical algorithms [CI97] include LRU, 

LFU, Greedy-Dual, and so on. Besides replacing objects due to the spatial limitation, 

the cache also evicts responses when an ancestor response object of them is to be 

stored, since the evicted objects can be generated from the new response object. This 

mechanism can save the limited cache space to store more objects. At the result, the 

cache can cover more requests and consequently improve the hit ratio. In particular, 

we can determine the new response object is an ancestor of a cached response object 

through the following steps. 

(1) The identifier of the new response object should be the same as or a string prefix 

of the identifier of the cached response.  

(2) If the new response contains the “Vary” header, all the selected request-headers 

should also exist in the “Vary” header of the cached response. Each selected 

request-header’s value for the new response should equal to the corresponding 

request-header’s value for the cached response.  

(3) If the new response has the “VaryByParam” header, all the selected query string 

parameters should also exist in the “VaryByParam” header of the cached 

response. Each selected parameter’s value for the new response should equal to 

the corresponding parameter for the cached response. 



 82 

If all these criterions are satisfied, we deem the new response object to be the 

ancestor of the stored response object. For example, we suppose the cache already 

stores the response as shown in Figure 4.8. Now a new response, as shown in Figure 

4.7, is to be stored into the cache. The cache can determine the new object is the 

ancestor of the cached object based on the judgment criterions above. 

4.3 Performance 

A major advantage of the App.Net system is its flexible service placement 

mechanism. Such flexibility enables the system to achieve efficient content delivery 

strategy considering the potential performance gain and the corresponding delivery 

cost of content service. In this section, we first define the cost model for a single 

application, and then propose a optimization model for the workflow with multiple 

applications. Finally, an algorithm to resolve the optimal service placement is 

provided. 

4.3.1 Cost Model 

The Web server and the edge proxy are usually located remotely, so that the 

limited network transmission capability mostly affects the overall content delivery 

performance. We believe the network transmission cost should be a significant 

performance factor and it is not easily to be bypassed, whereas other factors like the 

computation load could be addressed by enriching local hardware resource. In general, 

less transmission cost implies less data is transmitted over the network and less 

content retrieval delay. Therefore, our model uses the “transmission cost”, the amount 

of content transmission traffic averaged over the time, as the performance metric. 

Placing and executing an application on the server and the proxy would result in 

different system performance. According to the definition in Chapter 3, we can 

illustrate the structure of an application as in Figure 4.9, where an object o0 is inputted 



 83 

to the application f and K distinct objects oj (1≤j≤K) are outputted. Each output object 

oj has size sj and lifetime tj. In addition, the application may need supplementary input 

data, d, during execution. We denote the size and lifetime of the supplementary data 

as sd and td respectively. 

 
Figure 4.9 Model for a Single Application 

Suppose at the proxy the request probability to the output object oj is pj and the 

total request rate to all K objects is λ. Thus, we have Eq.4.1 and Eq.4.2, where λj 

denotes the request rate to object oj. 

∑
=

=
K

j
jp

1

1 (Eq.4.1) 

λj=λּpj (1≤j≤K) (Eq.4.2) 

If we execute application f on the server (server-side placement), the original 

object o0 will be transformed at the server and the output objects will be transmitted to 

the proxy. For each object, the transmission cost is multiplying the object’s size with 

the request rate to this object or the object’s expiry rate whichever is smaller. Thus, 

we have the summed transmission cost between the server and proxy as in Eq.4.3.  

∑
= 











×=
K

j j
jj t

sC
1

)
1

,min(λ  (Eq.4.3) 

On the other hand, if we deliver the original object o0 and application f to the 

proxy (proxy-side placement), the transmission cost between the server and proxy is 



 84 

the summed transmission traffic for object o0, application f, and the optional data d. 

The transmission cost 'C  can be calculated as in Eq.4.4, where λ0 denotes the 

cumulative request rate to object o0, and sf and tf denote the size and lifetime of 

application f. 

)
1

,min()
1

,min()
1

,min(' 00
0

00
d

d
f

f t
s

t
s

t
sC λλλ ++=  

where λλλλ =⋅== ∑∑
==

K

j
j

K

j
j p

11
0  

(Eq.4.4) 

To determine whether to apply the server-side placement or the proxy-side 

placement, we can compute the difference between C and C’, as in Eq.4.5. We should 

choose the proxy-side placement if CostSave>0; otherwise, the server-side placement 

should be used. 

)
1

,min()/1,min()/1,min()/1,min(

'

00000
1 d

dff

K

j
jjj t

stststs

CCCostSave

λλλλ −−−=

−=

∑
=

 

where λλλλ =⋅== ∑∑
==

K

j
j

K

j
j p

11
0  

(Eq.4.5) 

4.3.2 Optimization Model 

A workflow involves multiple segments, each of which is mapped to one 

application. This section proposes the optimization model for the service workflow 

placement. 

For each individual service, many versioned objects will be generated from the 

original object. For simplicity, our discussion uses term “object” to refer any version 

of these content objects. To express the relationship among them, we construct an 

“Objects-Tree”. The tree is rooted from the original object o0. All objects directly 

generated from an object are listed as the children nodes of this object. The final 

content presentations are located as the leaf nodes. Using the breath-first traversal 

method [CLR90], any object in the tree can be indexed as oj, where 0≤j≤n and the 



 85 

total number of tree nodes is n+1. We denote the full objects-tree as T0, and any 

sub-tree rooted at oj as Tj. An example objects-tree is shown in Figure 4.10. 

 
Figure 4.10 An Example Objects-Tree 

We also define )( joancestor  to be the set of objects that can generate object oj, 

as given in Eq.4.6. Obviously, the original object doesn’t have any ancestor, so that 

φ=)( 0oancestor . 

)}(|{)( ajaj oToooancestor ∈=  (Eq.4.6) 

Now, the service placement problem can be rephrased as selecting some objects 

in the objects-tree and placing them with the associated applications to the proxy. 

Once object oj is placed onto the proxy, all its descent objects in sub-tree Tj can be 

generated at the proxy. We name this phenomenon as the “Virtual Placement”, and 

use vector X[x0…xj…xn], which is called virtual placement vector, to represent the 

placement of the objects-tree’s nodes on the proxy. xj=1 if object oj is actually or 

virtually placed on the proxy. Otherwise, xj=0 if object oj is neither actually nor 

virtually placed on the proxy. 

Correspondingly, we also define the “Effective Placement”, which can be 

represented as a vector Y[y0…yj…yn], where any j with yj=1 should satisfy the 

condition in Eq.4.7. It means that if an object is effectively placed on the proxy, this 



 86 

object should not have any ancestor object to be placed on the proxy. Only these 

effectively placed objects will be transmitted to the proxy. 

{ 1=jx  AND 0)( =→∈∀ aja yoancestero } 1=⇒ jy  (Eq.4.7) 

The effective placement Y can be drawn from the virtual placement X by setting 

elements, which have ancestor objects placed on the proxy, to value zero. In general, 

we call object oj is “effectively placed” on the proxy if yj=1 and of course xj=1; and 

object oj is “virtually placed” on the proxy if xj=1 but yj=0. For example in Figure 

4.10, if we place o5, o6, o7, o8 and o9 to the proxy, the corresponding virtual placement 

X and the effective placement Y are shown in Table 4.1. Objects from o5 to o8 and o9 

are effectively placed and objects from o10 to o14 are virtually placed, while objects 

from o0 to o4 are not placed on the proxy. 

Table 4.1 Virtual and Effective Placement Vectors 
Obj 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
X 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
Y 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 

If denoting the request probability and the request rate to object oj at the proxy 

as pj and µj respectively, we have Eq.4.8 and Eq.4.9, where λ denotes the total request 

rate to the object-tree. 

1
1||

0

0

=∑
−

=

T

j
jp , where |T0| is the number of nodes in tree T0 

(Eq.4.8) 

jj p⋅= λµ  (Eq.4.9) 

To measure how frequently an object is directly requested by external nodes or 

indirectly requested to generate a descent object, we denote the request probability of 

sub-tree Tj as qj, which is calculated by summing the request probabilities for all 

objects in Tj, as given by Eq.4.10. Correspondingly, the request rate, λj, to the sub-tree 

Tj can be calculated by Eq.4.11. For the example tree in Figure 4.10, if the request 

probability to each object is shown as in Figure 4.11(a), the request probability of 

each object’s sub-tree is calculated as in Figure 4.11(b). 



 87 

∑
∈

=
jTi

ij pq  (Eq.4.10) 

λλ ⋅= jj q  (Eq.4.11) 

  
(a) Request Probabilities of the Objects (b) Request Probabilities of the Sub-Trees 

Figure 4.11 Request Probabilities of Objects and Sub-Trees 

Based on the cost model for an application, we can express the optimization 

model for the objects-tree placement as in Eq.4.12 and Eq.4.13. Eq.4.12 indicates that 

the optimization problem is to resolve a placement X that provides the minimum cost 

C(X), the summation of the transmission cost mj(X) for all objects in the objects-tree 

T0. Eq.4.13 calculates the server-to-proxy transmission cost mj(X) for object oj, where 

the first term denotes the transmission cost for the object oj, the second term denotes 

the transmission cost for the application associated with oj, and the third term denotes 

the transmission cost for the supplementary data during the application execution. 

))(min())(min(
1||

0

0

∑
−

=

=
T

j
j XmXC  (Eq.4.12) 

)
1

,min()(

)
1

,min()()
1

,min()()(

)(

)(

)(

)()(

d
j

jjj
d

j

f
j

jj
f

j
f

j
j

jjjj

t
Xds

t
Xds

t
YdsXm

µλ

µλλ

−⋅⋅+

−⋅⋅+⋅⋅=
 

 
(Eq.4.13) 

To calculate the transmission cost for object oj, we use λj as the total request rate 

to object oj. For any object, we deem it is accessed if this object is directly requested 

by other nodes, or one of its descent objects is requested since in this case the descent 



 88 

object needs to be generated from the current object. Therefore, the sub-tree Tj’s 

request rate λj can correctly reflect how frequently object oj is requested directly and 

indirectly. In addition, dj denotes the length of path [RRR98] for the proxy to fetch 

object oj from the server. Firstly, if object oj is not placed on the proxy (i.e. xj=0 and 

definitely yj=0), dj should be 0 because the proxy will never retrieve this object under 

such placement. Secondly, if the object is effectively placed on the proxy (i.e. yj=1 

and definitely xj=1), dj should be 1, denoting the one-hop HTTP retrieval. Thirdly, if 

the object is virtually placed on the proxy (i.e. yj=0 but xj=1), the object can be 

generated from one of its ancestor objects that is effectively placed on the proxy, and 

the proxy will fetch that effectively placed object from the server. Thus, we should set 

dj=0 to avoid recounting the transmission costs for the two objects. In summary, we 

should set dj as a function of yj, as given in Eq.4.14. 





=
=

=
0:,0

1:,1
)(

j

j

j ywhen

ywhen
Yd  

(Eq.4.14) 

The second term of Eq.4.13 calculates the transmission cost for the application 

associated with object oj, where sj
(f) denotes the application’s size, dj

(f) denotes the 

length of path to fetch the application, tj
(f) is the application’s lifetime, and λj(X)-µj(X) 

is the application’s execution rate. The value of dj
(f) is set as in Eq.4.15. We set dj

(f) as 

a function of xj, because when a proxy transforms object oj it needs to fetch the 

application associated with the object, no matter this object is effectively or virtually 

placed on the proxy. 





=
=

=
1:,1

0:,0
)()(

j

jf
j xif

xif
Xd  (Eq.4.15) 

The third term of Eq.4.13 calculates the transmission cost for the supplementary 

data fetched during application execution, where where sj
(d) denotes the size of the 



 89 

data, dj(X) denotes the length of path to fetch the data, tj
(d) is the lifetime of the data, 

and λj(X)-µj(X) is the application’s execution rate. 

From above discussion, we can simplify Eq.4.13 as Eq.4.16. Finding the 

minimum cost for equations Eq.4.12 and Eq.4.16 will render us the optimal placement 

of content service. 

)
1

,min(

)
1

,min()
1

,min()(

)(

)(

)(

)(

d
j

jjj
d

j

f
j

jjj
f

j
j

jjjj

t
xs

t
xs

t
ysXm

µλ

µλλ

−⋅⋅+

−⋅⋅+⋅⋅=
 

 

(Eq.4.16) 

4.3.3 Optimization Algorithm 

This section explains an algorithm to resolve the optimal service placement X. 

The algorithm is executed by the server, and we suppose the server knows the average 

size and lifetime of its content objects and the corresponding application modules. 

Moreover, we suppose the request rate of the content objects at the proxy is also 

known by the server. This information can be got by requiring the proxy to report to 

the server, or allowing the server to derive the frequencies according to its own access 

log. The algorithm is given in Figure 4.12, which is based on the dynamic 

programming technique [CLR90]. 

(01)  /*the main function to resolve the optimal placement of tree T0*/ 
(02)  Main()  
(03)  { 
(04)    Allocate two global vectors X and Y, which are accessible by all sub-functions 
(05)    Set Y as the effective placement vector for T0, initializing all elements of Y to zero 
(06)    Set X as the virtual placement vector for T0, initializing all elements of X to zero 
(07)    min_cost = Optimal_Func(T0); 
(08)    Print out Y, which is the resolved effectively placement of T0 
(09)    Print out X, which is the corresponding virtual placement of T0 
(10)    Print out min_cost, which is the expected minimum cost for T0 
(11)  } 
(12) 
(13)  /* The optimization function */ 
(14)  /* Input: the objects-tree Tj to be resolved */ 
(15)  /* Output: the resolved minimum cost value */ 
(16)  float Optimal_Func(Tj) 
(17)  { 
(18)    cost1 = Cost_Func(Tj); /* compute the cost given yj=1 */ 
(19)    if (oj is a leaf object) { 



 90 

(20)      Set yj = 1 in vector Y and correspondingly xj=1 in vector X; 
(21)      return cost1; 
(22)     } 
(23)    Set cost2 = 0; 
(24)    for each child object of oj { /* compute the minimum cost given yj=0 */ 
(25)      cost2 += Optimal_Func(Tchild); /*compute the minimum cost for sub-tree Tchild 
(26)    } 
(27)    if (cost1>=cost2) { 
(28)      Set yj=0 in vector Y and xj=0 in vector X; 
(29)      return cost2; 
(30)    } else { 
(31)      Set yj=1 in vector Y, and xj=1 in vector X; 
(32)      For all descent nodes in tree Tj, set x=1 in vector X and y=0 in vector Y; 
(33)       return cost1; 
(34)    } 
(35)  } 
(36) 
(37)   /* compute the cost of the objects-tree Tr, when it is placed on the proxy*/  
(38)   float Cost_Func (Tr) { 
(39)    /*compute cost for the root object or*/ 

(40)    Set total_cost = )
1

,min()
1

,min()
1

,min(
)(

)(

)(

)(

f
r

rr
f

rd
r

rr
d

r
r

rr
t

s
t

s
t

s µλµλλ −⋅+−⋅+⋅  

(41)    for all descent objects of or {  

(42)      total_cost += )
1

,min()
1

,min(
)(

)(

)(

)(

f
j

jj
f

jd
j

jj
d

j
t

s
t

s µλµλ −⋅+−⋅ ; 

(43)    } 
(44)    return total_cost; 
(45)  } 

Figure 4.12 Optimization Algorithm 

The algorithm starts from the Main function (line 2), which first initializes the 

effective placement vector Y and the virtual placement vector X to the zero vectors 

(line 4 ~ line 6). Then it invokes the “Optimal_Func” function to resolve the optimal 

placement for the whole objects-tree T0 (line 7).  

“Optimal_Func” works in a recursive way to resolve the minimum cost for the 

inputted objects-tree Tj. Firstly, it calls the “Cost_Func” function (line 18) to compute 

the cost for placing Tj to the proxy. The computation of “Cost_Func” assumes the 

current sub-tree root or is effectively placed to the proxy, and correspondingly all its 

descent objects are virtually placed. According to Eq.4.16, the “Cost_Func” first 

calculates the expected transmission cost for or as in line 40, given yr=1 and xr=1. 

Next, it calculates the transmission cost for each descent object as in lines 41~42, 

given yj=0 and xj=1. The summed transmission cost for all objects is the transmission 



 91 

cost for the sub-tree Tr, which is returned to function “Optimal_Func” and recorded in 

cost1 (line 18). 

If oj is a leaf object (line 19 ~ line 22), the “Optimal_Func” function will return 

cost1 directly and set xj=1 and yj=1, because the final content presentation should 

always be delivered to the proxy. 

However, if oj has children objects, the algorithm needs to compute the 

minimum cost for all children’s sub-trees, assuming not placing oj to the proxy. To 

compute the minimum cost for any sub-tree Tchild, the algorithm invokes the 

“Optimal_Func” function recursively (line 23 ~ line 26). The cumulative cost value 

for all children’s sub-trees is stored in cost2. Next, the algorithm compares the values 

of cost1 and cost2. If cost1 >= cost2 (line 27 ~ line 29), the algorithm determines not 

placing oj to the proxy and thus sets xj=0 and yj=0. However, if cost1 < cost2 (line 30 ~ 

line 33), the algorithm determines placing oj to the proxy will be beneficial, and it sets 

yj=1 and xj=1 (line 31). Meanwhile, the algorithm sets the effective and virtual 

placement for the non-root objects in sub-tree Tj as y=0 and x=1 (line 32). The 

“Optimal_Func” function returns the minimum cost value for sub-tree Tj. Finally, the 

Main function will resolve the optimal placement for the whole objects-tree T0. 

To estimate the time complexity of our algorithm, we assume the objects-tree is 

a perfect k-ary tree of depth H [CLR90]. At each depth h, the number of nodes is kh-1, 

where 1≤h≤H. The total number of nodes is calculated by Eq.4.17. 

1

1

−
−=

k

k
n

H

 
(Eq.4.17) 

If denoting the time complexity for resolving the placement from the tree root 

(i.e. h=1) as F(1), we can infer Eq.4.18, where F(2) denotes the time complexity for 

resolving a sub-tree rooted at the depth of 2 (i.e. h=2). This is because to get the 

minimum cost for the whole tree our algorithm needs to compute the minimum costs 



 92 

for all k sub-trees rooted at depth 2 and compare their summed cost with 

“CostFunc(T0)”. Similarly, the time complexity for any sub-tree at depth h can be 

recursively resolved by Eq.4.19. Since the iteration of our algorithm stops at the leaf 

objects, we have Eq.4.20. 

1)2()1( +⋅= FkF  (Eq.4.18) 
11:,1)1()( −≤≤++⋅= HhwherehFkhF  (Eq.4.19) 

F(H)=1 (Eq.4.20) 

Thus, we can infer the time complexity for resolving the whole objects-tree as 

in Eq.4.21. Comparing Eq.4.21 and Eq.4.17, we see the time complexity of algorithm 

is O(n), where n is the total number of objects. 

1

1
)1(

−
−=

k

k
F

H

 (Eq.4.21) 

In addition, the execution of algorithm requires two arrays, each of size n, to 

store the resolved effective and virtual placement vectors. The algorithm also needs 

two other arrays, each of size k, to store the intermediate cost values for the sub-trees 

in two consecutive iteration levels. Thus, the spatial complexity of our algorithm is 

O(2n+2k). 

After getting the X and Y vectors, the App.Net server will take the most 

beneficial operation manner for each proxy and each content object. Supposing the 

server receives a request for a particular content object, it will check the X and Y 

vectors. If the requested object is to be placed to the proxy effectively, the server will 

generate this object and send it with the associated workflow to the proxy. However, 

if the requested object is not to be placed to the proxy effectively, the server will find 

this object’s ancestor that is to be effectively placed to the proxy. Then, the server will 

generate that object and send it with the associated workflow to the proxy, which will 

generate the final content presentation at the proxy. 



 93 

We let the server execute the placement algorithm for each content service 

periodically to adjust the placement strategy to the changing environment. The server 

will use the resolved placement strategy for a period until the next round of placement 

adjustment. 

4.3.4 Performance Modeling for Static Content 

The performance modeling above assumes the content objects have limited 

lifetime. However, Web also has large amounts of static contents, such as the static 

text documents and the photographic images. This section setups the performance 

model for the static objects. We suppose both the static contents and their applications 

will not expire in the cache unless they are replaced by other objects. 

The expected transmission cost for a content object is normally proportional to 

the size (s) and request probability (p) for this object. A rough estimation for the 

transmission cost is ps× . Meanwhile, considering the existence of cache proxy, if 

an object can be used to generate multiple output objects and it has high request rate, 

this object should be much likely to be cached by the proxy. Combining above aspects, 

we propose a “weighted transmission cost” as in Eq.4.22, and use it as the 

performance metric for the static objects. The denominator of the formula is a caching 

trickle-off factor, where W is the number of output objects generated from the object 

under consideration and λ is the request rate for this object. It means if an object is 

intensively requested and it can be reused to generate many objects, this object is be 

much likely to be cached by the proxy, and this would potentially trickle off the 

transmission cost. 

λW

ps
C

⋅=  (Eq.4.22) 

Consequently, we can formulize the optimization model for the static contents 

in an objects-tree as Eq.4.23. The optimization is to resolve a placement X that 



 94 

provides the minimum weighted transmission cost. In the equation, Y denotes the 

effective placement vector, qj denotes the request probability to sub-tree Tj, and dj 

denotes the length of content fetching path. The definitions and calculations for all 

formula elements are the same as in section 4.3.1 and 4.3.2. In particular, for the leaf 

objects, Wj=1. 

))]([min())(min(
1||

0

0

∑
−

=

⋅=
T

j
j

j

jj Yd
W

qs
XC

jλ
 (Eq.4.23) 

We can apply the same optimization algorithm as in section 4.3.3 to resolve the 

optimal placement for the static content objects. However, in this situation, the cost 

calculation for the objects-tree (line 37~45 in Figure 4.12) should be replaced by 

∑
−

=

⋅
1||

0

0

))((
T

j
j

j

jj Yd
W

qs
jλ

.  

4.4 Summary 

This chapter proposes the App.Net system that applies the Application 

Networking framework in the Web content delivery context. Compared to the 

traditional Web systems that fix content applications to either the original server or 

the edge proxy, our system provides more flexibility by enabling the server to deliver 

the intermediate content object as well as the partial service workflow to the proxy. 

This difference makes our system to be more scalable and efficient for pervasive 

content delivery. Dedicated caching scheme is also proposed, which extends the 

HTTP 1.1 protocol to cache different versions of responses. Furthermore, 

Performance model and optimal service placement algorithm are provided to 

minimize the transmission cost between server and proxy. 



 95 

CHAPTER 5  

PERFORMANCE EVALUATION IN THE APP.NET SYSTEM 

5.1 Implementation 

We build the App.Net prototype based on Jigsaw [Jigsaw], which is a standard 

edge server recommended by the WWW Consortium [W3C]. Building App.Net upon 

the Jigsaw platform provides a good reference implementation of the Application 

Networking framework for Web content delivery. In addition, Jigsaw is based on Java 

that supplies good support to mobile code, which is required in our App.Net system. 

The prototype structure is illustrated in Figure 5.1, which has three tiers: the 

Jigsaw platform tier, the App.Net Proc. tier, and the ANlet applications tier. 

 
Figure 5.1 App.Net Prototype  

The underlying Jigsaw, working either as the Web server or the Web proxy, 

implements the basic HTTP message transmission. We also show the Web Cache 

module as part of Jigsaw but it has been improved with the App.Net caching scheme. 

The App.Net Proc tier performs the main procedures, such as processing the 



 96 

workflow, fetching ANlet modules, executing applications. The ANlet modules are 

downloaded by the App.Net Proc to perform specific tasks in the service workflows. 

The App.Net Proc. implements two APIs for Jigsaw, the ingoingFilter function 

and the outgoingFilter function. When Jigsaw receives a request or is about to send a 

response, it will call these functions to relay the request or response to the App.Net 

Proc. The App.Net Proc will manipulate the received message and return the new 

message to Jigsaw, which will forward the new message to the server or the client. 

More details are explained in the following two scenarios: (i) request modification 

and (ii) response transformation. 

5.1.1 Request Modification 

When the Jigsaw platform, usually as a proxy, receives a request, it will call the 

ingoingFilter function of the App.Net Proc. The definition of the ingoingFilter 

function is given by API.5.1, where the input parameter carries the original request 

message. Within the ingoingFilter function, the App.Net Proc first finds a service 

workflow responsible for current request; and then executes the relevant ANlet 

applications through their exposed modRequest function, as defined in API.5.2. The 

application will accept the original request message and return the modified request to 

the App.Net Proc and finally to Jigsaw as the return of the ingoingFilter function. 

API.5.1 ingoingFilter 

RequestMessage ingoingFilter(RequestMessage request) 

Comment: Exposed by the App.Net Proc., invoked by the Jigsaw Platform 

API.5.2 modRequest 

RequestMessage modRequest(RequestMessage request) 

Comment: Exposed by the ANlet Filter, invoked by the App.Net Proc. 



 97 

As an example, we implemented a utility service on the App.Net proxy, which 

allows the clients to set their preference at the proxy. When the proxy receives the 

client’s request, it will invoke the ANlet application of the utility service to insert this 

client’s preferences into the request message as the extended HTTP headers. This 

utility service enables the client to clarify preference when his browser cannot do this. 

5.1.2 Response Transformation 

When the Jigsaw platform, either a server or a proxy, is going to send out a 

response message, it will call the outgoingFilter function exposed by the App.Net 

Proc. The definition of the outgoingFilter is given in API.5.3, which shows the Jigsaw 

platform relays the response together with the request to the App.Net Proc. The 

App.Net Proc will execute the service workflow associated with the response object 

and return the new response to the Jigsaw platform, which will then send it to the 

clients. 

API.5.3 outgoingFilter 

ReplyMessage outgoingFilter(RequestMessage request, ReplyMessage response) 

Comment: Exposed by the App.Net Proc, invoked by the Jigsaw platform. 

In specific, the App.Net Proc. uses either the modResponse function or the 

genResponse function to invoke the ANlet application, depending on the application 

is an ANlet Filter or an ANlet Handler. For an ANlet Filter, which is used to 

transform the response content, the App.Net Proc should invoke the modResponse 

function. The definition of the function is given in API.5.4, where the function 

accepts both the request and response messages and outputs the transformed response 

to the App.Net Proc. 

API.5.4 modResponse 

ReplyMessage modResponse(RequestMessage request,ReplyMessage response) 



 98 

Comment: Exposed by the ANlet Filter, invoked by the App.Net Proc 

  This is a Jigsaw-based implementation of modify_Response in Api.4.2 

For an ANlet Handler, which always locates at the beginning of a workflow and 

is used to generate the response content, the App.Net Proc will invoke the 

genResponse function. The definition of the function is given in API.5.5, where the 

request message is the only the input. The ANlet Handler application will generate the 

response content and return it to the App.Net Proc. 

API.5.5: genResponse 

ReplyMessage genResponse(RequestMessage request) 

Comment: Exposed by the ANlet Handler, invoked by the App.Net Proc 

  This is a Jigsaw-based implementation of generate_Response in Api.4.1 

In summary, the App.Net prototype allows us to build the App.Net server or 

proxy through plugging the App.Net Proc onto the Jigsaw server or proxy. The 

prototype implements most operations in the App.Net architecture, and is used in our 

simulation experiments. 

5.2 Simulation Environment 

We set up a simulation environment to measure the performance of the App.Net 

system, as shown in Figure 5.2. The main components have an App.Net server, an 

App.Net proxy, and a client-simulator. The client-simulator is implemented to 

emulate massive clients to request and retrieve contents, and it can insert 

corresponding request parameters into HTTP request according to a request profile. In 

simulation, the client-simulator generates the Poisson [CB96] distributed requests at 

varying rates. 



 99 

 
Figure 5.2 Simulation Environment 

In our simulation, the server, the proxy, and the client-simulator are installed on 

three computers respectively, which are all located within a local 100Mbps Ethernet 

network. Because in the actual Web systems, the clients and their connected proxy are 

normally located near to each other while the proxy and the server are usually situated 

remotely, we use the CBQ simulator [Cbq01] to emulate the remote networking 

characters between the proxy and the server. In such network condition, the 

transmission cost between the clients and the proxy becomes negligible compared to 

that between the proxy and the server. Thus, reducing the transmission cost between 

the proxy and the server will improve the overall system performance. 

Meanwhile, we implemented a wide range of ANlet applications, and the sizes 

of these applications mostly range from 30Kbit to 70Kbit. The applications normally 

have rather long lifetimes, so that the App.Net proxy can store and reuse them 

repeatedly. The overhead for transmitting these applications is much likely to be 

amortized in their long-term reuse. Hence, our performance evaluation treats the 

transmission cost for the content objects as the main factor, while omitting the 

transmission cost for the ANlet applications. 

Our simulation adopts the following metrics to assess the system performance: 

(i) Transmission cost: the volume of network traffic for response transmission, 

averaged by the simulation time. 



 100

(ii)  System throughput: the amount of requests that are successfully finished within 

certain time interval. 

(iii)  Server throughput: the amount of requests that are successfully replied by the 

server within certain time interval. It reflects the load on the server. 

(iv) User perceived latency: the time elapsed from when the client issues the request 

to when the response is fully received by him. 

(v) Request drop ratio: the percentage of requests that cannot be served 

successfully. 

5.3 Simulation for Applications 

The first group of simulations measures the system performance for some 

representative Web applications. We emphasize on comparing the difference of 

placing the application on the server and the proxy, so that the potential advantages of 

the App.Net system for these applications can be explored. Because of this purpose, 

this part of simulation does not apply the service placement algorithm. 

5.3.1 Application Taxonomy 

In order to study the performance of existing Web applications in a systematic 

way, we divide them into several categories. For each category, a representative 

application is chosen and implemented. Our simulations are performed upon these 

applications to explore the potential performance benefits of the App.Net system for 

each category of applications. 

According to our performance model, the execution of an application needs an 

input content object (Objin) and optionally needs supplementary input data (d), and the 

output is the transformed content object (Objout). As our performance model evaluates 

the content transmission cost, we classify the applications according to the sizes of the 

input and output for the application, as shown in Figure 5.3. 



 101

 
Figure 5.3 Application Taxonomy 

The x-axis (sd) represents the size of the supplementary data entry, and the 

negative section of the axis represents the application does not require supplementary 

data. The y-axis (sout-sin) represents the size difference between the output and input 

content objects. As a result, the two axes form four quadrants. We name the 

applications in the second quadrant as SILO (Small Input and Large Output) 

applications and those in the third quadrant as LISO (Large Input and Small Output) 

applications. In the first and fourth quadrants, the applications need supplementary 

data during execution. We name the applications in the first quadrant as SILO+D 

(SILO with supplementary Data) applications and those in the fourth quadrant as 

LISO+D (LISO with supplementary Data) applications. In particular, there is one 

group of LISO+D applications is rather popular among existing Web applications. 

The group is called LISO+, which needs supplementary data during execution, but the 

size of the supplementary data is much smaller than that of the input or output content 

objects. Table 5.1 summarizes the classification condition for each category of 

applications in the taxonomy, together with the example applications for each 

category. Our simulation will be based on these applications. 

 



 102

Table 5.1 Application Taxonomy Details 
Type Condition Example 
SILO size(Objin)<size(Objout),size(d)=0 Stock Chart Generator 

Document Rendering 
LISO size(Objin)≥size(Objout),size(d)=0 Image Distillation; 

Doc Trimmer; 
Advertisement Rotator 

SILO+D size(Objin)+size(d)≤size(Objout) Page Assembler 
LISO+ size(Objin)≈size(Objout)>>size(d)>0 Image Watermarking; 

Video Encryption 
 

5.3.2 SILO Application – Chart Generator 

Many stock websites, such as NYSE (http://www.nyse.com), generate price 

charts at the server. Because the size of the price dataset is normally much smaller 

than that of the generated chart, if deploying the chart generation application to the 

proxy, the transmission traffic between the server and the proxy will be reduced.  

We implemented a chart generation ANlet, which can generate the chart image 

according to the input price dataset. Our simulation measures the performance of the 

conventional server-side chart generation method and the App.Net method that puts 

the application to the proxy and generates the chart there. According to NYSE, we set 

the average size for the price dataset and the chart image to 4KB and 10KB 

respectively, and none object is cacheable. The server-to-proxy bandwidth is set to 

1Mbps, and the simulation results are as follow. 

Figure 5.4 presents the transmission cost for both methods. The App.Net 

method causes much less transmission cost than the server-side method, as the size of 

the transmitted price dataset is much smaller than that of the generated chart image. 

When the request rate exceeds 13/sec, the server-side method saturates the network 

bandwidth. 

Figure 5.5 shows the system throughput for both methods. The throughput of 

the App.Net method enhances continuously with the increase of request rate. In 



 103

contrast, the server-side method reaches the maximum throughput when the request 

rate is 13/sec, afterwards the system starts to drop requests due to the network 

saturation as shown in Figure 5.6. 

We also compare the user perceived latency for both methods, as shown in 

Figure 5.7. The result indicates the App.Net method outperforms the server-side 

method significantly. In particular, the latency for the App.Net method keeps low 

until the request rate arrives 25/sec. Afterwards, the latency of this method increases 

considerably, because (i) the proxy reaches its maximum computation capability due 

to the ANlet execution and (ii) the bandwidth is going to be saturated by the 

transmission of price dataset. 

Transmission Cost

0

200

400

600

800

1000

1200

1 6 11 16 21 26

Request Rate (1/sec)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

K
b

p
s)

server-side chart generation App.Net solution
 

System Throughput

0

5

10

15

20

25

30

35

1 6 11 16 21 26

Request Rate (1/sec)

T
h

ro
u

g
h

p
u

t (
1

/s
e

c)

server-side chart generation App.Net solution
 

Figure 5.4 Transmission Cost Figure 5.5 System Throughput 

Request Drop Ratio

0%

10%

20%

30%

40%

50%

60%

1 6 11 16 21 26

Request Rate (1/sec)

R
e

q
u

e
st

 D
ro

p
 R

a
ti

o

server-side chart generation App.Net solution
 

 User Perceived Latency

0

500

1000

1500

2000

2500

1 6 11 16 21 26

Request Rate (1/sec)

U
se

r 
P

er
ce

iv
ed

 L
at

en
cy

(m
s)

server-side chart generation App.Net solution
 

Figure 5.6 Request Drop Ratio Figure 5.7 User Perceived Latency 



 104

The simulation results indicate the App.Net method is more efficient than the 

conventional server-side method, because transmitting the source dataset causes less 

network traffic than transmitting the generated chart image. Moreover, the results 

suggest that in the App.Net system deploying the SILO kind applications to the proxy 

can reduce the transmission cost, increase the maximum system throughput, and 

improve the user perceived latency. 

5.3.3 SILO+D Application – Page Assembler 

Delivering dynamic contents is a challenging topic for many Web systems. 

Traditional technology generates the dynamic Web pages on the server. However, 

these pages usually have poor cacheability, and they make the traditional method to 

be inefficient. Many researchers [DHR97 and SCK03] found that a significant portion 

of the dynamic page is usually static content, while the remaining parts are composed 

of contents that are more dynamic. According to this observation, we designed a page 

assembler ANlet, which is associated to a template page that contains the essential 

layout, the static information of the Web page and the links to the dynamic fragments. 

To form the final page, the ANlet will fetch the dynamic fragments from the server 

and compose them into the template page. Thus, if we deliver the template page and 

the assembler ANlet to the proxy, the proxy will cache and reuse them to generate the 

dynamic pages. 

Compared to some existing assembly markup languages, such as the Edge Side 

Inclusion [Esi] and the HPP [DHR97], our assembler ANlet solution is more flexible 

from some perspectives. Firstly, the markup language solutions require the proxy to 

install a language processor. However, not all proxies installed those processors. Even 

for those installed proxies, they may use different processors, which causes the 

template page created using one language cannot be interpreted by the proxy with a 



 105

different language processor. We implement the basic page assembly logic in a 

dynamic application, which enables the proxy to download it whenever necessary. 

Secondly, the markup language only implements page assembly functions, whereas 

our solution can implement advanced functions in the ANlet, such as the specific 

purpose computation, the client interaction logic, and the session management. These 

added functions make the ANlet to be more flexible in handling dynamic content. 

A challenge for executing the assembler ANlet on the proxy is it needs to fetch 

page fragments from the server during each execution. How will this overhead affect 

the system performance? We performed a set of simulations to measure the 

performance gain and the corresponding overhead. In the simulation, the size and the 

TTL of the template page are 6KB and 5 seconds respectively. The template requires 

two fragments, each is of size 2KB and non-cacheable, to compose the final page. The 

final page is of size 10KB and non-cacheable. The server-to-proxy bandwidth is 

512Kbps. Our simulation compares the server-side page assembling method and the 

App.Net method using the assembler ANlet. The simulation results are as follow. 

Figure 5.8 presents the transmission cost for both methods. The server-side 

method causes significant transmission cost because the delivered final page has no 

cacheability at the proxy. In contrast, the App.Net method causes much less 

transmission cost due to the reuse of page template, and after the request rate reaches 

14/sec the network starts to be saturated by the transmission of the page fragments. 

Figure 5.9 shows the system throughput for both methods. The result indicates 

the App.Net method achieves higher maximum throughput than the server-side 

method. For the server-side method, when the request rate exceeds 13/sec, all requests 

are dropped due to serious traffic congestion. 



 106

We also measure the user perceived latency, as shown in Figure 5.10. The result 

indicates that the App.Net method can achieve lower latency than the server-side 

method. This is because the App.Net proxy only needs to transmit the document 

fragments for each request, while the server-side method needs to transmit the full 

page for each request and consequently prolongs the delay. In addition, our assembler 

ANlet is designed to fetch the page fragments simultaneously, so that the data 

fetching overhead is diminished. 

Transmssion Cost

0

100

200

300

400

500

600

1 6 11 16 21 26

Request Rate (1/sec)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

K
b

p
s)

server-side page assembly App.Net solution
 

System Throughput

-2

0

2

4

6

8

10

12

14

1 6 11 16 21 26

Request Rate (1/sec)

S
ys

te
m

 T
h

ro
u

g
h

p
u

t 
(1

/s
e

c)

server-side page assembly App.Net solution
 

Figure 5.8 Transmission Cost Figure 5.9 System Throughput 

User Perceived Latency

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 6 11 16 21 26

Request Rate (1/sec)

La
te

n
ci

e
s 

(m
s)

server-side page assembly App.Net solution
 

Figure 5.10 User Perceived Latency 

In summary, the simulation results show that assembling dynamic pages on the 

proxy is more efficient than the traditional server-side assembling method. Moreover, 

the results suggest deploying the SILO+D kind applications to the proxy could be 



 107

more efficient if we can reuse the input object at the proxy and reduce the data 

fetching overhead through parallelizing fetching process. 

5.3.4 LISO+ Application – Watermarking 

Similar to the SILO+D applications, the system performance can be improved if 

deploying the LISO+ applications to the proxy given the input object can be reused 

for multiple requests. We implemented a watermarking ANlet that can insert 

watermark into the image object. For each execution, the ANlet needs to fetch a 

certificate key from the server. 

We measure the performance for the server-side watermarking method and the 

App.Net method that runs the ANlet on the proxy. In the simulation, the sizes of the 

image and the key are set to 10KB and 1KB respectively. The original image has TTL 

of 10 seconds, while the watermarked image is non-cacheable. In addition, the 

bandwidth between the server and the proxy is set to 1Mbps. The simulation results 

are summarized in Figure 5.11, which shows the App.Net method achieves less 

transmission cost, higher system throughput, and lower user latency. Since the results 

present the same trend as that of the SILO+D application, we do not repeat the 

explanation here. 

Transmission Cost

0

100

200

300

400

500

600

700

1 6 11 16 21 26

Request Rate (1/sec)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

K
b

p
s)

server-side watermarking App.Net solution
 

System Throughput

0

5

10

15

20

25

30

35

1 6 11 16 21 26

Request Rate (1/sec)

S
ys

te
m

 T
h

ro
u

g
h

p
u

t 
(1

/s
e

c)

server-side watermarking App.Net solution
 

(a) Transmission Cost (b) System Throughput 

Figure 5.11 Performance for the Watermarking Application 



 108

5.3.5 LISO – Document Trimmer 

In this section, we use the Web document trimming application as an example 

to study the performance of the LISO applications. Nowadays, the services for 

adapting Web pages to display on handheld devices are rising up. A popular method 

is to trim the original page into small fragments and display them one by one 

according to the client’s demand. Many solutions [HKO99, CZS01 and CMZ03] were 

proposed to perform such document trimming operation on the proxy, which needs to 

retrieve the original page from the server. We call them the proxy-side method in the 

following discussion. 

Different from the previous scenarios, in which the proxy-side method has 

significant advantages over the server-side method, the simulation results in this 

section will show that, for the LISO applications, the proxy-side method does not 

always get better performance than server-side method. The selection between the two 

methods should be dynamic according to the request pattern of clients. 

To show the advantages and disadvantages of the server-side and proxy-side 

methods, we performed simulations to measure their respective performance under 

different request scenarios. We implemented a document trimmer ANlet, which is 

associated with a web page that will be partitioned into 20 fragments. The original 

page and the fragments are of size 10KB and 3KB respectively, and all of them have 

the TTL of 2 seconds. Our simulation also constructed the heterogeneous and the 

homogeneous request scenarios by varying the client request probabilities over the 

output fragments. For the heterogeneous scenario, the requests are evenly distributed 

over all fragments. However, for the homogeneous scenario, the requests are highly 

skewed, where we let 90% of the requests target to one fragment and the other 10% 

requests scatter over the rest fragments. We execute the ANlet on the server and the 



 109

proxy respectively to simulate the server-side and proxy-side document trimming 

methods. 

The simulation results for the heterogeneous scenario are shown in Figure 5.12. 

Figure 5.12(a) shows the proxy-side method causes much less transmission cost than 

the server-side method, because the former method can reuse the original page to 

serve the clients’ requests for different fragments. Furthermore, Figure 5.12(b) shows 

when the request rate reaches 23/sec, the server-side method approaches the 

maximum system throughput, and afterwards the throughput drops sharply due to 

bandwidth saturation. However, the system throughput for the proxy-side method can 

enhance with the increase of request rate due to the low transmission cost of this 

method. 

Transmission Cost

0

40

80

120

160

200

1 6 11 16 21 26

Request Rate (1/sec)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

K
b

p
s)

server-side doc trimming proxy-side doc trimming
 

System Throughput

0

5

10

15

20

25

30

1 6 11 16 21 26

Request Rate (1/sec)

S
ys

te
m

 T
h

ro
u

g
h

p
u

t (
1

/s
e

c)

server-side doc trimming proxy-side doc trimming

(a) Transmission Cost (b) System Throughput 

User Perceived Latency

0
5

10
15
20
25
30
35
40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Request Rate (1/sec)

La
te

n
cy

 (
m

s)

server-side doc trimming proxy-side doc trimming
 

(c) User Perceived Latency 

Figure 5.12 Performance of Document Trimmer in Heterogeneous Scenario 



 110 

In addition, Figure 5.12(c) shows both methods have the similar user latency 

when the request rate is low. However when the request rate exceeds 23/sec, the 

latency for the server-side method increases greatly, due to the bandwidth saturation. 

In particular, we notice that the latency of the proxy-side method is around 5ms larger 

than that of the server-side method before the bandwidth is saturated. This is due to 

the overhead of ANlet execution on the proxy. For the server-side method, the proxy 

caches the final page fragments. Thus, when the proxy receives the client’s request, it 

can reply the cached fragment directly. However, for the proxy-side method, the 

proxy caches the original page and it needs to execute the trimmer ANlet for each 

request. This makes the proxy-side method to cause slightly longer delay than the 

server-side method. For the document trimming application, this minor computation 

overhead seems to be negligible compared to the significant improvement on the 

transmission delay. However, the overhead may become significant for some 

computation demanding applications. A solution is to allow the cache to store 

multiple versions of content objects to reduce the average computation time at the 

expense of consuming more storage space. However, such caching management is not 

the focus of our App.Net study. 

Figure 5.13 shows the simulation results for the homogeneous scenario, and it 

presents quite different trends from those in the heterogeneous environment. Figure 

5.13(a) shows under the homogeneous environment the proxy-side method causes 

more transmission cost than the server-side method when the request rate is low. It 

means transmitting the original page results in considerable overhead, and under low 

request rate the original page cannot be fully reused for generating different page 

fragments. However, with the increase of the request rate, this situation is changed in 

that the transmission cost of the server-side method enhances quickly and finally 



 111 

exceeds that of the proxy-side method. The result indicates in the homogeneous 

request scenario, the proxy-side method is only beneficial when the request rate is 

high enough so that the transmission cost saving due to reusing the original page can 

counteract the retrieval overhead for the original page. Figure 5.13(b) shows the user 

perceived latency for both methods. The figure presents the similar trend as in the 

heterogeneous environment, in that the proxy-side method causes slightly longer 

latency due to the overhead of ANlet execution. 

Transmission Cost

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Request Rate (1/sec)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

K
b

p
s)

server-side doc trimming proxy-side doc trimming
 

User Perceived Latency

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Request Rate (1/sec)

La
te

n
cy

 (m
s)

server-side doc trimming proxy-side doc trimming
 

(a) Transmission Cost (b) User Perceived Latency 

Figure 5.13 Performance of Document Trimmer in Homogeneous Environment 

In summary, from the simulation results we can see that for the LISO 

application it is error-prone to apply either the static server-side or the static 

proxy-side method. We need to adopt an adaptive strategy that can resolve the 

suitable application placement policy according to the changing request pattern. 

5.3.6 Discussion 

Using the representative applications, we have evaluated the performance for 

each category of applications in the taxonomy. The simulation results suggest many 

existing Web applications can be deployed to the proxy to achieve higher content 

delivery performance. 



 112 

• For the SILO applications, deploying them to the proxy can reduce the content 

transmission cost and improve the user perceived latency. 

• The SILO+D applications and LISO+ applications can be deployed to the proxy 

to improve the content delivery performance through reusing the input object to 

generate multiple output objects. However, the applications should be designed 

to reduce the data fetching overhead. 

• The deployment of the LISO applications should consider more factors, 

including the request rate to the content, and the requests’ distribution over the 

output objects. To achieve beneficial strategy in different conditions, we need to 

apply the service placement algorithm, which will be examined in the next 

section. 

5.4 Simulations for Service Placement 

5.4.1 Overview 

The second group of simulations evaluates the App.Net system’s effectiveness 

on handling content services. Our evaluation is based on the “device-independent 

authoring service” (DIA), which is to provide proper content presentations on diverse 

client devices. The DIA service usually consists of many functions [HM04], such as 

layout adaptation, language rendering, navigation design, user interaction 

customization, and so on. Although many server-side and proxy-side solutions have 

been proposed, current research has not given much attention to the content delivery 

performance of the DIA systems. To fill this gap, we designed a DIA service 

workflow, which contains two ANlet applications, as shown in Figure 5.14. The first 

is a document trimmer ANlet, which partitions the original document into particular 

deck fragments. Each deck fragment [Wap00] is a transmission unit and to be 

displayed on the client’s device separately. The second is a language rendering ANlet 



 113 

that generates the final web page using one of three rendering languages accepted by 

the client’s device. The other functions, such as the navigation and user interaction 

customization, have no direct impact on the content delivery performance, so that they 

are not included in our workflow. 

 
Figure 5.14 Device-Independent Authoring Service Workflow 

To show how the App.Net system can deliver such DIA service efficiently, we 

conducted a series of simulations. These simulations are arranged in three sets: (i) we 

first evaluate the system performance for a single service with dynamic content; (ii) 

then we evaluate the performance for multiple services with the dynamic content; and 

finally (ii) we evaluate the performance for multiple services with static content. 

5.4.2 Simulation on Single Service 

The simulations in this section examine the optimal placement algorithm 

applied to a single DIA service. We constructed an example document that is of size 

15KB. This original document can be trimmed by the Trimmer ANlet to 10 deck 

fragments, each of which is of size 4KB. The average size of fragments is larger than 

1/10 of the original document’s size, because the fragments contain some add-in parts 

such as (i) the header and footer, which provide general information about the 

document, and (ii) the fragments index, which facilitates the client to browse between 

different fragments. The Rendering ANlet can transform any deck fragment into the 

final deck page by selecting one of three rendering languages, and the average size of 

the final page is set to 6KB. The average size of the final deck page is larger than the 

corresponding fragment, because the Rendering ANlet will insert markup tags into the 

fragment and make it a presentable Web page. In addition, we set all objects have the 



 114 

TTL of 2 seconds. In the simulation, the clients request all final deck pages randomly. 

Our simulation compares three methods: (i) the server-side method that provides the 

DIA service on the sever; (ii) the proxy-side method that provides the DIA service at 

the proxy; and (iii) the App.Net method that applies the service placement algorithm. 

The simulation results are as follow. 

Figure 5.15 shows the transmission costs between the server and the proxy. The 

result shows the App.Net method achieves the minimum transmission cost. In 

particular, when the request rate is less than 1.8/sec the App.Net method causes less 

transmission cost than the other two methods. This is because the optimal placement 

algorithm resolves to deliver the intermediate deck fragments and the language 

rendering ANlet to the proxy, whereas the traditional server-side or proxy-side 

methods cannot perform such delivery strategy. When the request rate exceeds 2.1/sec 

the App.Net method achieves the same transmission cost as the proxy-side method. It 

is because in this situation the placement algorithm delivers the original document 

with the full workflow to the proxy, so that the App.Net method becomes equivalent 

to the proxy-side method. 

Figure 5.16 shows the user perceived latencies. The App.Net method achieves 

the least latency because it can get the least transmission cost. In contrast, the 

server-side method causes the longest user latency. When the request rate exceeds 

1.5/sec, the latency for this method increases greatly, due to the massive transmission 

of the final deck pages. 



 115 

Measured Transmission Cost

0

20

40

60

80

100

120

140

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

Request Rate (1/sec)

T
ra

n
sm

is
si

o
n

 C
o

st
(K

b
p

s)

App.Net sever-side method
proxy-side method  

User Perceived Latency

0

100

200

300

400

500

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

Request Rate (1/sec)

L
a

te
n

cy
 (

m
s)

App.Net server-side method
proxy-side method

 
Figure 5.15 Transmission Cost Figure 5.16 User Perceived Latency 

Moreover, we extend the request rate to 30/sec to examine the system’s 

processing capacity, where the server-to-proxy bandwidth is set to 160Kbps. The 

simulation results are as follow.  

Figure 5.17 shows the system throughput, where the server-side method 

achieves the lowest system throughput. When the request rate reaches 5/sec, the 

server-side method reaches its maximum throughput, and afterwards more and more 

requests are dropped due to the saturation of network. In contrast, the App.Net 

method and the proxy-side method can achieve much higher system throughput, up to 

26/sec. Afterwards, both methods start to drop requests, because the proxy reaches its 

maximum computation capability. 

In addition, we also measure the server throughput, as shown in Figure 5.18. 

The server-side method causes the highest server throughput, because using this 

method all final deck pages have to be fetched from the server. After the request rate 

exceeds 7/sec, the server drops most requests due to network congestion. In contrast, 

the proxy-side method causes the lowest server throughput as the proxy only retrieves 

the original documents from the server. The App.Net method causes higher server 

throughput than the proxy-side method when the request rate is less than 3/sec. This is 

because in the request rate scope from 0 to 4/sec, the placement algorithm delivers the 



 116 

intermediate deck fragments to the proxy. However, when the request rate continues 

to increase, the algorithm changes to deliver the original document to the proxy. As 

the result, the App.Net method achieves the same server throughput as the proxy-side 

method. 

System Throughput

0

5

10

15

20

25

30

1 6 11 16 21 26

Request Rate (1/sec)

T
h

ro
u

g
h

p
u

t 
(1

/s
e

c)

App.Net server-side method
proxy-side method

 

Server Throughput

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13
Request Rate (1/sec)

T
h

ro
u

g
h

p
u

t 
(1

/s
e

c)
App.Net server-side method
proxy-side method

 
Figure 5.17 System Throughput Figure 5.18 Server Throughput 

In summary, the simulation results indicate that using the service placement 

algorithm the App.Net system can achieve better performance than the server-side and 

proxy-side methods, which place the content service at the server and the proxy 

statically. In the next two sections, we will examine the performance of the App.Net 

system when handling multiple services. 

5.4.3 Simulation on Multiple Services for Dynamic Content 

This section evaluates the App.Net system performance for handling multiple 

services, which start from dynamic content objects. We published 200 documents on 

the server. Every document is associated with the DIA workflow to form a distinct 

DIA service. For each service, the number of the generated content objects and the 

average size of these objects are the same as in the previous section. We assume all 

content objects for all services have the same lifetime of 60 seconds. In the simulation, 

the clients’ requests to different services follow the Zipf distribution [BCF99], where 



 117 

7.0=zipfλ . Meanwhile, we set the size of the proxy cache to 500KB, which is 1/6 to 

the size of the simulated working set. The cache applies the LRU replacement 

algorithm. Our simulations compare the performance of the App.Net method with the 

conventional server-side and proxy-side DIA methods. The simulation results are as 

follow. 

Figure 5.19 shows the transmission cost, where the App.Net method achieves 

considerably less transmission cost than the other two methods. For instance, at the 

request rate of 10/sec, the transmission cost of the App.Net method is around 1/2 of 

the server-side method and 1/3 of the proxy-side method. This suggests our service 

placement algorithm can resolve efficient placement for multiple services. Although 

the algorithm resolves the placement for different services independently, for each 

service, it can obtain the optimal placement for all objects in the objects-tree. As the 

result, for all services, we can reduce the overall transmission cost to the reasonable 

extent. 

Moreover, the figure shows that along the increase of request rate the 

transmission cost increment for the App.Net method is lower than that of the other 

two methods. This is because our method can automatically adjust the service 

placement according to the changing request rate while the other two methods apply 

the static service placement. 

The figure also shows the proxy-side method causes the highest transmission 

cost. This is because the request probabilities for all 200 different services vary 

according to the Zipf distribution. Given a fixed total request rate, only those most 

frequently requested services are suitable to be fully placed to the proxy, whereas for 

the other services, fully placing them to the proxy is not beneficial. Therefore, the 



 118 

proxy-side method, which strictly places all services to the proxy, actually causes 

quite a lot of transmission overhead.  

Transmission Cost

0
10
20
30
40
50
60
70
80
90

100

5 7.5 10 12.5
Request Rate (1/sec)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

K
b

p
s)

App.Net proxy-side server-side
 

Figure 5.19 Transmission Cost 

Figure 5.20 displays the cache-hit ratio at the proxy. The hit ratio for the 

server-side method is extremely low, because this method delivers the final deck 

pages, which have poor reusability at the proxy. On the other hand, the proxy-side 

method has the highest hit ratio, as it delivers the original documents to the proxy so 

that the cached items are likely to cover more requests. Nevertheless, such high hit 

ratio is at the expense of high content transmission cost as have been shown in Figure 

5.19. In addition, the hit ratio for the App.Net method is lower than the proxy-side 

method. This is because our method allows many intermediate objects to be delivered 

to the proxy. Consequently, it decreases the coverage of the cached items. 

Furthermore, from the figure we see that the cache-hit ratio of the App.Net method 

enhances with the increase of request rate. It is because the placement algorithm 

adjusts the service placement under the increasing request rate by placing more 

numbers of original objects to the proxy. It causes the hit ratio enhances quickly. 

However, for the other two methods, the cache-hit ratio does not change due to their 

static placement policy. 



 119 

Cache Hit Ratio

0%

10%

20%

30%

40%

50%

60%

5 7.5 10 12.5
Request Rate (1/sec)

C
a

ch
e

 H
it 

R
a

tio

App.Net proxy-side server-side
 

Figure 5.20 Cache Hit Ratio 

Our simulation also measures the user-perceived latency, as shown in Figure 

5.21. The server-side method causes the longest latency since this method generates at 

the server the final deck pages, which have poor reusability on the proxy. It causes 

massive content retrieval between the server and the proxy, and correspondingly 

enlarges the user latency. The figure also shows when the request rate is 5/sec the 

proxy-side method has slightly smaller latency than the App.Net method. This is 

because when the request rate is low, the placement algorithm in the App.Net method 

delivers the intermediate deck fragments to the proxy to ensure the lowest 

transmission cost. In contrast, for the proxy-side method, the proxy only needs to 

retrieve the original document for each service. As the result, in the App.Net method, 

the proxy needs to issue more requests to the server than in the proxy-side method and 

causes more TCP connection delay and request propagation delay, which finally 

prolongs the user perceived latency.  

However, the simulation result also shows that with the increase of request rate, 

the user latency for the App.Net method reduces slightly, compared to the latency 

increase of the proxy-side and server-side methods. This is because our algorithm 

adjusts the service placement to keep the transmission cost as low as possible. With 



 120

the increase of request rate, more original-documents are placed to the proxy, and the 

new placement makes the proxy to issue fewer requests to the server. Consequently, 

the cumulative TCP connection and request propagation overheads within the system 

are reduced, and this contributes to the reduction of the user latency. 

User Perceived Latency

0

20

40

60

80

100

120

140

160

5 7.5 10 12.5
Request Rate (1/sec)

L
a

te
n

cy
 (m

s)

App.Net proxy-side server-side
 

Figure 5.21 User Perceived Latency 

Moreover, we also measure the system performance under different request 

patterns, including a heterogeneous requesting scenario and a homogeneous 

requesting scenario. In the heterogeneous scenario, the clients request for different 

deck fragments and different rending languages with uniform probabilities. In the 

homogeneous scenario, 85% of the requests to each service target to one main deck 

fragment and one major rendering language, while the remaining 15% of the requests 

are scattered over the rest deck fragments and rending languages. To achieve such 

varying request patterns, we prepare two request profiles for both scenarios. The 

client simulator first issues requests according to the heterogeneous profile for 30 

minutes, and then requests according to the homogeneous profile for another 30 

minutes. In both scenarios, the request distribution over different services follows the 

Zipf law ( 7.0=zipfλ ), and the request rate is 10/sec. The simulation results are shown 

in Figure 5.22 and Figure 5.23. 



 121

Transmission Cost

0

10

20
30

40

50

60

70
80

90

100

1 101 Time

T
ra

n
sm

is
si

o
n

 C
o

st
 (

K
B

p
s)

App.Net server-side proxy-side
 

User Perceived Latency

0

50

100

150

200

250

300

350

400

1 101
Time

L
a

te
n

cy
 (

m
s)

App.Net server-side proxy-side
 

Figure 5.22 Transmission Cost under 

Different Request Patterns 

Figure 5.23 User Perceived Latency 

under Different Request Patterns 

Figure 5.22 displays the transmission cost under different request scenarios, 

where the first half period is the heterogeneous scenario and the rear half is the 

homogeneous scenario. The App.Net method achieves the least transmission cost 

under both scenarios. When the request pattern changes, our method can adjust the 

placement accordingly. In contrast, the proxy-side method presents poor adaptation to 

the changing environment, as it always delivers the original content objects to the 

proxy without considering whether this is beneficial. Meanwhile, the transmission 

cost for the server-side method resides between the other two methods. When the 

request pattern changes, the transmission cost reduces correspondingly. This is 

because when the requests become homogeneous the proxy is more efficient to cache 

those popular objects and the transmission traffic is reduced naturally. 

Figure 5.23 shows the user perceived latency under different scenarios. 

Similarly, we see the App.Net method achieves the least latency in both scenarios. 

The proxy-side method causes much longer latency and the latency jitters 

significantly during the simulation period. It suggests transmitting the original object 

for all services to the proxy is wasteful in this situation and it compromises the overall 

system performance. In addition, the latency for the server-side method falls between 



 122

the former two methods, and the latency reduces when the request pattern changes 

from heterogeneous to homogeneous due to the reduction of transmission cost as 

explained above. 

In summary, the simulation results indicate the App.Net system can perform 

efficient placement for multiple services, and it verifies the effectiveness of our 

performance model for dynamic content service and the optimal placement algorithm. 

5.4.4 Simulation on Multiple Services for Static Content 

This section evaluates the App.Net system performance for handling multiple 

services, which start from static content objects. The simulation is still based on the 

DIA service while the published 200 documents are all static content. The simulation 

results are summarized in Figure 5.24. We also measure the system performance 

under the heterogeneous and homogeneous requesting scenarios, as shown in Figure 

5.25, where the first half of simulation period is the heterogeneous scenario and the 

rear half is the homogeneous scenario. The simulation results show the same trend as 

our previous simulations for the dynamic content services, and it verifies the 

effectiveness of our performance model for the static content services. The detailed 

explanation will not be repeated here. 

Transmission Cost

0

20

40

60

80

100

120

10 12 14 16 18

Request Rate (1/s)

T
ra

n
sm

is
si

o
n

 C
o

st
 (

kB
p

s)

App.Net server-side proxy-side
 

User Perceived Latency

0

50

100

150

200

250

300

10 12 14 16 18

Request Rate (1/sec)

La
te

n
cy

 (
m

s)

App.Net server-side proxy-side
 

(a) Transmission Cost (b) User Perceived Latency 

Figure 5.24 System Performance for Static Contents 



 123

Transmission Cost

0

20

40

60

80

100

120

140

160

1 101 Time

T
ra

n
sm

is
si

o
n

 C
o

st
 (

K
B

p
s)

App.Net server-side proxy-side
 

User Perceived Latency

0

100

200

300

400

500

600

700

800

900

1 101 Time

L
a

te
n

cy
 (

m
s)

App.Net server-side proxy-side
 

(a) Transmission Cost (b) User Perceived Latency 

Figure 5.25 System Performance under Different Request Patterns 

5.5 Summary 

This chapter explains our system implementation and the performance 

simulations. Our simulations are organized as two steps. The first set of simulations is 

based on some representative Web applications in the application taxonomy. The 

results indicate our App.Net mechanism has potential advantages to a wide range of 

Web applications. The second set of simulations evaluates the effectiveness of the 

App.Net system when dealing with content services. The results show our system 

outperforms the traditional server-side and proxy-side methods, due to the usage of 

the optimal service placement algorithm. From the performance evaluation, we can 

conclude that the App.Net system can achieve higher performance than the existing 

active Web systems, because it can deliver intermediate content and partial service 

according to the performance requirement, whereas this advantage is not provided by 

the conventional frameworks.



 124 

CHAPTER 6  

APPLICATION NETWORKING METHODOLOGY IN 

PEER-TO-PEER NETWORK 

6.1 Motivation 

P2P networks provide scalable data sharing and query mechanisms, which are 

helpful to implement the efficient content delivery systems. Typical systems have the 

file sharing systems [DKK01, RD01, Kaz, BitC], the P2P based Web content delivery 

systems [IRD02], and the multicast systems [CDK03]. However, recently, these P2P 

systems witness more user-customized queries, due to the emergence of diverse user 

devices and network connections, and the additional personalized demands. For 

instance, a peer node residing on a PDA may prefer to retrieve an image cropped to fit 

its small screen. 

Such heterogeneous requirement motivates the P2P systems to render the 

customizable content services to provide the best-fit content. A straightforward 

method is shown in Figure 6.1. In this method, the content provider publishes the 

content service, which contains the original content object and its transformation 

applications, at the home node. When the home node receives a query, it will execute 

the service applications to transform the original content for the client. The system 



 125 

will deliver the customized response object to the client, and at the same time 

replicate this object in the P2P network. 

 
Figure 6.1 A Straightforward Content Service Methodology in the P2P Network  

However, the main drawback of this method is that the customized response 

objects can only achieve limited peer sharing in the network, since it is not reusable 

for other user groups with different requirements. The low peer-sharing capability will 

compromise the system performance from several aspects: 

(1) The low peer-sharing capability causes more nodes to be involved to find the 

correct version of content for a query. The enlarged query scope naturally causes 

longer query latency or even the failure of query. 

(2) In the proximity-aware networks, where the query is propagated from the nearby 

to remote nodes, the enlarged query scope results in that the found destination 

node locates distantly from the requesting node and this normally implies larger 

content transmission cost and longer retrieval latency.  

(3) The reduced peer-sharing capability causes more queries, which cannot find the 

sharing peer, to be served by the home node of the content service. This will 

burden the home nodes especially those publish the popular content services.  

To address above drawbacks, we propose to apply the Application Networking 

framework in the P2P network. To render the customizable content service and at the 

same time improve the peer-sharing capability, we use the P2P network to propagate 

not only the response objects but also the content services. The content service 



 126 

includes the original content data, the service workflow, and the relevant applications. 

By reusing these components, the recipient nodes will be able to serve clients with 

heterogeneous requirements. We name this methodology as AN.P2P. This chapter 

emphasizes on explaining the methodology, while a detailed AN.P2P system will be 

studied in the next chapter.  

6.2 Methodology 

6.2.1 Overview 

The general architecture of AN.P2P is shown in Figure 6.2, where the AN.P2P 

platform performs as a middle tier between the upper content services and the 

underlying P2P substrate. The P2P substrate is responsible for content delivery, and 

the content service is responsible for generating the correct response object. The 

AN.P2P platform is responsible service execution and replication, and it integrates the 

content delivery process with the content transformation process. 

 
Figure 6.2 AN.P2P Methodology in the P2P Networks 

The AN.P2P platform describes the content service as a workflow, as defined in 

Chapter 3. Feeding the original content object to the workflow applications, we can 

generate the customized response object for the client. The platform provides storage 

space for the published content service and renders the runtime for executing its 

applications. The platform also uses some spare space to cache the replicas of content 



 127 

services populated from other nodes. When the P2P substrate receives a query 

message from the network, it will relay the query to the AN.P2P platform, which will 

find out whether the present node publishes this content service or stores a replica of 

the service. In either situation, the platform will load the service components from the 

local storage and execute them to serve the query. 

Our research uses Pastry, a representative DHT network, as the P2P substrate. 

This is due to the following reasons: 

(1) The Pastry network is intensively studied by researchers. A lot of Pastry based 

systems have been or are being developed, such as PAST [RD01] for file sharing, 

Squirrel [IRD02] for distributed Web caching, and SplitStream [CDK03] for data 

multicast. The recent µTorrent [Utor], BitComet [BitC], and BitSpirit [BitS] 

systems also use Bamboo DHT [Bam], a revised Pastry protocol, to implement the 

tracker-less Bit-Torrent [BT] system. Thus, our AN.P2P study based on Pastry 

will have a widespread effect to these content systems.  

(2) The Pastry routing is based on an identifier prefix algorithm and the routing table 

is constructed using the node’s proximity awareness. These features are helpful to 

implement efficient content service replication in the network. 

(3) The open source for Pastry is Free-Pastry [Pastry], which is developed using Java 

that provides well support for loading and executing the dynamic ANlet modules. 

Hence, our prototype system is implemented upon the Free-Pastry platform.  

Our following discussion calls the node that publishes the original content 

service as the “home node”, the node initiating the query as the “requesting node”, all 

nodes forwarding the query message as the “intermediate nodes”, and the node that 

finally serves the query as the “serving node”. In the AN.P2P system, the serving 

node can be the home node of the queried content service or an intermediate node that 



 128 

stores a replica of the service. To distinguish these two possibilities, we call them as 

the “home serving node” and the “intermediate serving node” respectively. 

6.2.2 Pastry Network 

Pastry network assigns each node an m bit identifier (id), where m=128. The 

node ids are generated using a uniform hashing function, so that the resulting set of 

ids is uniformly distributed in the m-bit identifier space. Moreover, the Pastry routing 

protocol represents each b bits in id as one digit, so that the id can be seen as m/b 

digits, with base 2b, in sequence. We call b as the “id-base”. Meanwhile, the data’s id 

is organized in the same way as the node id, and it shares the same identifier space. 

To employ the Pastry routing protocol, each node maintains a routing table R, a 

leaf set L, and a neighborhood set M. The leaf set L contains |L| nodes whose ids are 

numerically closest to the present node’s id. The neighborhood set M contains |M| 

nodes that are physically closest to the present node. Typical value of |L| and |M| is 2b 

or 2b+1. Supposing the whole network contains N nodes, the routing table would 

contain  Nb2
log  rows with 2b-1 entries in each row. Each entry at row l refers to a 

node whose id shares the present node’s id in the first l digits, but whose l+1th digit 

has one of the 2b-1 possible values other than the l+1th digit in the present node’s id. 

Pastry provides a mechanism, making use the neighborhood set of local node or 

propagated from other nodes, to enable each node to fill its routing table with the 

nodes that are physically close to the present node. 

Each Pastry message contains a key (i.e. id of data), and the network will route 

the message to the node whose id is numerically closest to the given key. The routing 

process is accomplished in a hop-by-hop manner. In each hop, the node first checks 

whether the key is covered by the node’s leaf set. If so, the message will be sent to the 

numerically closest node in the leaf set. Otherwise, the node will look up its routing 



 129 

table. The next-hop node’s id should share with the key a prefix that is at least one 

digit longer than the prefix that the key shares with the present node’s id. Such a node 

should exist on row l=shl(k,id)+1 of the routing table, where shl(k,id) denotes the 

length of the prefix shared between the key and the present node’s id. Then, the 

algorithm chooses from the selected row the next-hop node, whose l+1th digit equals 

to the l+1th digit of the key. If no such a node is found, the message will be forwarded 

to a node whose id shares a prefix with the key as long as the present node’s id, but is 

numerically closer to the key. Supposing the accurate routing information and no 

recent node failure, the message should reach the destination node within  Nb2
log  

hops. 

In the Pastry network, the expected distance traveled by a message during each 

successive routing hop is exponentially increasing. The reason is that any entry in the 

routing table’s row l is chosen from a node set with size N/2bl, which decreases 

exponentially by rows. Given the random and uniform distribution of node id in the 

network, the expected physical distance from the present node to the nodes referred 

by each successive row of the routing table will increase exponentially. 

The Pastry network also provides replication mechanism that allows a node to 

replicate its data to k numerically closest nodes, where k is a configurable variable and 

its value usually satisfies || Lk ≤ . These data replicas are mainly used for improving 

the data availability in case the home nodes leave the network. The replicas can 

distribute the queries over several nodes, so that they can achieve somewhat load 

balance in the network. However, such load balancing effect is quite limited, because 

the replica placement is static and the number of replicas cannot reflect the popularity 

of the data. Therefore, some Pastry systems (e.g. PAST [RD01]) replicates the 

delivered contents along the query path. These replicas will be reused to the 



 130 

subsequent queries with the same key. As a result, the more frequently a content 

object is queried, the more its replicas will be populated. Such system level 

replication can achieve much better load balance than the preliminary replication 

provided by the Pastry network. However, as explained, populating the customized 

content objects is not efficient to serve queries with heterogeneous requirements. This 

issue will be addressed by our AN.P2P methodology. 

6.2.3 System Operations 

The system operations for the AN.P2P methodology are illustrated in Figure 6.3. 

In the figure, we suppose node P4 is the home node for a content service, and node P0 

is a requesting node that requests the content service on P4. The figure also shows 

nodes P0, P1, P2, P3 and P4 form a query path, and the length of this path is 4, in term 

of routing hops. 

 
Figure 6.3 AN.P2P over the Pastry Network 

When a content service is published by the content provider, it is assigned with 

a unique id. The service is organized as a workflow, including the original content 

object, the workflow specification, and the relevant ANlet modules. All these 

components are stored at the home node. We assume at the beginning only the home 

node stores the content service. 



 131 

The Pastry network will route the first few queries to the home node. When the 

home node (e.g. P4) receives the query, its Pastry substrate relays the query to the 

upper AN.P2P platform. The AN.P2P platform will fetch the queried content service 

from the local storage, and execute the service applications to transform the original 

content into the customized response object with respect to the query parameters. The 

response object will be sent to the requesting node (e.g. P0). 

Meanwhile, the home node can replicate the queried content service to other 

nodes. Some Pastry systems, like PAST [RD01], replicate contents to all intermediate 

nodes in the query path (e.g. P1, P2 and P3). However, in AN.P2P, we choose the last 

intermediate node in the query path (e.g. P3) to replicate the content service, because 

of the following reasons. 

1) Since a content service involves one original content object and multiple 

applications, significant replication overhead will be caused if replicating them to 

all intermediate nodes in the query path. 

2) According to Pastry routing protocol, the potential replica reuse rate will decrease 

about 2b times per hop, from the rear (e.g. P3) to the beginning (e.g. P0) of the 

query path. Therefore, replicating service to the last intermediate node will be 

much more beneficial than the previous nodes in the query path. 

3) In the Pastry network, the distance traveled by a message during each successive 

routing step is exponentially increasing. Therefore, replicating service to the last 

intermediate node can most significantly improve the content retrieval proximity 

because this node (e.g. P3) is usually dispersed to the home node (e.g. P4). 

However, the improvement for replicating to the front nodes (e.g. P2 and P1) 

becomes insignificant.  



 132 

Therefore, we use the so-called “last-hop replication” method in AN.P2P. To 

accomplish the service replication, the home node sends a replication message, 

containing the original content object and the workflow specification, to the 

replication node (e.g. P3). When that node receives the replication message, its Pastry 

substrate will relay the message to the upper AN.P2P platform, which will store the 

content object and its workflow specification into the local cache. Meanwhile, the 

node also downloads the required applications according to the workflow 

specification. After the replication node downloads those applications and stores them 

into the local cache, the content service is fully replicated on the node. Any node 

maintains the replicated services in an autonomous manner. It can evict low utility 

service replicas while retaining the high utility ones. We can leverage the existing 

cache replacement algorithms [CI97] to perform service replacement. 

When the AN.P2P node (e.g. P3) receives a query message, it first determines if 

it is responsible for the queried key. If it is, that means this node is the home node for 

the queried service and it will serve the query as discussed above. However, if the 

node is not responsible for the key, it will search the local cache to check if there has 

a replica of the queried service. If there is no replica, the node will forward the query 

through the Pastry substrate. However, if there is a replica hit, the node will perform 

as the “intermediate serving node” for this query. It will load the service applications, 

generate the response object, and send it back to the requesting node.  

Meanwhile, this node will replicate the queried content service to the last 

intermediate node. It means that every time the service is queried, it will be replicated 

by the serving node. Through such process, the content service is propagated within 

the network. It makes the frequently queried services to have more replicas than those 

rarely queried services. Such distribution is helpful to improve the load balance and 



 133 

content delivery efficiency in the whole network, since the numbers of service 

replicas are proportional to the popularities of these services. 

6.3 Performance Analysis 

This section evaluates the performance of the AN.P2P methodology. We 

assume the network has N nodes and M distinct content services. Each node has the 

probability δ of being down, including the graceful leave and the unexpected failure. 

Supposing the Pastry hashing function can distribute these N nodes uniformly on the 

id ring, the approximate numerical distance between two adjacent nodes is Nm /2 , 

where m is the length of id bit.  

We denote content service as oi (1≤i≤M), and suppose the service can generate 

w response content objects, oij (1≤j≤w). Let SX and SY denote the average size of the 

content services and the response objects respectively. Let λij denote the request 

probability to object oij, and λi denote the request probability to service oi. As we 

consider the heterogeneous environment, where the clients’ requests are distributed 

over different output objects, we have Eq.6.1, where the requests to all response 

objects form the entire requests set. 

1
1 1

=∑∑
= =

M

i

w

j
ijλ  and iij w

λλ 1=  (Eq.6.1) 

We choose the performance metric for the Pastry network as the “number of 

query hops” (QH), which is the number of nodes involved in the query-forwarding 

path. Our analysis starts from providing a utility algorithm to calculate the expected 

query hops for one piece of data. Based on the utility algorithm, we will compute the 

expected query hops for the service replication method and the object replication 

method respectively. 



 134 

6.3.1.1 Utility Algorithm 

In this section, we calculate the expected query hops for a piece of data, which 

has r replicas in the network. Given a requesting node and a randomly generated key, 

let the random variable H denote the number of query hops needed to reach the 

serving node. Let T be the random variable that is the clockwise distance, in term of 

the number of nodes, from the requesting node to the home node for the key, so that 

10 −≤≤ NT  and the probability
N

nTP
1

)( == . 

Let Er(H) denote the expected hops for querying a piece of data with r replicas 

in the network. We can calculate Er(H) through equation Eq.6.2, which means that the 

calculation on the values of Er(H|T=n) suffices to compute the final Er(H). To 

simplify the notation, we use hr(n) to represent Er(H|T=n). 

Note that 0)0( =rh , as shown in Eq.6.3, since a loop-back query goes to the 

local node directly. In addition, a query to the present node’s leaf set, which is of size 

bL 2|| = , can reach the responsible node in one hop, so that we have Eq.6.4, where 

2

2
1

b

n ≤≤  refers to the 
2

|| L
 nodes those are numerically closest to and with larger 

id than the present node, and 1
2

2 −≤≤− NnN
b

 refers to the 
2

|| L
 nodes those are 

numerically closest to and with smaller id than the present node. 

∑

∑

∑

−

=

−

=

−

=

=

==

===

1

0

1

0

1

0

)(
1

)|(
1

)|()()(

N

n
r

N

n
r

N

n
rr

nh
N

nTHE
N

nTHEnTPHE

 

 

(Eq.6.2) 

0)0( =rh  (Eq.6.3) 



 135 

1)( =nhr , where 
2

2
1

b

n ≤≤  or 1
2

2 −≤≤− NnN
b

 
(Eq.6.4) 

The Pastry routing process can be described as finding the correct row in the 

routing table and the correct column in that row. The process of selecting the correct 

row can be described as choosing a best stride of routing in the id ring. The possible 

strides can be divided into bm  levels. Each stride level, denoted by l, corresponds 

to one row of the routing table. The minimum stride is b2 , which corresponds to the 

bm th row of the routing table, and this is the first level of strides (i.e. 1=l ). The 

maximum stride is 
b

m

2

2
, which corresponds to the first row of the routing table, and 

this is the bm th level of strides (i.e. bml = ). The stride increases by b2  times for 

each pair of successive rows from the bm th row to the first row. Let ln denote the 

best stride level to forward the message, where 10 −≤≤ Nn . The “best” means the 

chosen stride should go to a node that is numerically closest to the query key among 

all the bm  possibilities. Therefore, we can resolve nl  as in Eq.6.5, and the 

1+− nlb

m
th row is the selected row. 

}1,
2

)2(|max{
b

m
land

N

n
ll

m
lb

n ≤≤<=  (Eq.6.5) 

Then, the node needs to determine the next hop node from the 2b columns in 

this row. As the entry whose id shares the first 1+− nlb

m
 digits with the key will be 

chosen, we can calculate the best column nj  as in Eq.6.6, where nj  is the space 

between the columns occupied by the present node and the chosen column. 

}20,
2

)2(|max{ b
m

lb
n jand

N

n
jjj n ≤≤<⋅=  (Eq.6.6) 



 136 

If this best node is available, the query will advance nm

lb

j
N

n

⋅








/2

)2(
 nodes on the 

id ring. However, if this best node happens to be down, a sub-optimal node will be 

chosen from the 1−nj  columns between the best column and the column occupied 

by the present node. If the sub-optimal node is found at the j∆ th adjacent column to 

the best column, the query will advance )(
/2

)2(
jj

N nm

lb n

∆−⋅







 nodes on the id ring, 

where 11 −≤∆≤ njj . 

However, if the node cannot find the next hop node from above steps, it will 

choose from the leaf set. In average, the query will advance 
Nm

b

/2

4/2
 nodes, a quarter 

of the leaf set’s width. 

Supposing there are r replicas of the queried data in the network, the query will 

be served if the next hop node has a replica. Considering all possibilities above, we 

can compute )(nhr  as in Eq.6.7. 

)())(1)(()())(1)((1)( ''
1

0

''
LrLrn

j

j
jjrnr nhnpLqnhnpjqnh

n

−+−∆+= ∑
−

=∆
∆∆  

where 11 22 −− −≤< bb Nn , 

)(
/2

)2(' jj
N

nn nm

lb

j

n

∆−⋅







−=∆ , 

and 
4

2'
b

L nn −=  

 
 
(Eq.6.7) 

'
jn∆  denotes the new value of variable n if the message is forwarded to the node 

at the j∆ th adjacent column. Meanwhile, 'Ln  denotes the new value of variable n if 

the message is forwarded to a node from the leaf set. Eq.6.7 shows the computation of 

)(nhr  can be reduced to the computation of all )( '
jr nh ∆  and )( '

Lr nh  values. 



 137 

In Eq.6.7, )( jqn ∆  denotes the probability that the j∆ th column is chosen as 

the next hop. The value of )( jqn ∆  can be calculated by Eq.6.8, where δ  denotes 

the probability a node is down. In addition, let )(Lqn  denote the possibility that the 

next hop node is chosen from the leaf set. The value of )(Lqn  should be njδ , as in 

Eq.6.9, which means all nodes of the jn columns in the chosen row are down. 

)1()( δδ −=∆ ∆j
n jq  (Eq.6.8) 

nj
n Lq δ=)(  (Eq.6.9) 

In addition, )( '
jr np ∆  in Eq.6.7, denotes the probability that the j∆ th 

sub-optimal node has a data replica, and )( '
Lr np  denotes the probability the chosen 

leaf set node has a data replica. We calculate their values as the following steps. 

Pastry is a sparse network, where mN 2<< . Thus, the routing table, which can 

contain at most m/b rows, is usually not fully filled. Only the first tN rows are used, 

where tN is calculated by Eq.6.10. 

))2(|min( Ntt tb
N >=  (Eq.6.10) 

According to the Pastry algorithm, the replica distribution )(npr  should 

follow trend )2(2)2( )1( +⋅≈ lb
r

bbl
r pp , where 11 −≤≤ Ntl . This is because a node, 

whose numerical distance to the query key is of bllb n 22 )1( ≤<− , is likely b2  times 

being queried for this key than a node in scope )1(22 +≤< lbbl n . Considering 

1)( ≤npr , we have Eq.6.11, where p is a probability factor to be resolved. 



 138 


















≤<

≤<

≤<

≤<

=

−

−

−−

−

)2
2

0(),1,2min(

)2
2

2(),1,2min(

)2
2

2(),1,2min(

)2
2

2(,

)(

)1(

2)2(

)1()2(

)1(

b
m

bt

b
m

bbt

bt
m

btb

bt
m

bt

r

N
nwhenp

N
nwhenp

N
nwhenp

N
nwhenp

np

N

N

NN

NN

L
 

 
 
(Eq.6.11) 

To resolve Eq.6.11, we omit constraint 1)( ≤npr  first, and resolve the initial 

value of p by Eq.6.12. Then, the initial values of pr(n) for all scopes can be calculated. 

For those scopes, whose pr(n)>1, we fix their pr(n)=1, which means each node in 

these scopes has one replica of data. Then, we reevaluate Eq.6.12 to get the new p 

value for the remaining unresolved scopes. Such iteration is convergent as each time 

there are less unresolved scopes left, and it stops when the pr(n) for all scopes are not 

greater than one. These final pr(n) values provide the )( '
jnp ∆  and )( '

Lnp  in Eq.6.7. 

∑
=

−− −⋅⋅=
n

N

t

i

biibbitpr
1

)1()( )22(2  (Eq.6.12) 

Combining the results above, we can calculate all the h(n) values in Eq.6.7 and 

finally the value of )(HEr  in Eq.6.2.  

� Example Computation 

Figure 6.4 shows the computed Er(H) values in a Pastry network with 10,000 

nodes, where b=3. The curves plot the Er(H) values under five node-down rates. Er(H) 

reduces with more data replicas are populated in the network, and enhances with the 

increase of node-down rate. 



 139 

10,000 Nodes

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

Number of Replicas (r)

E
(H

)

e=0.8
e=0.6
e=0.4
e=0.2
e=0

 
Figure 6.4 Predicted Query Hops in the Pastry Network 

6.3.1.2 AN.P2P Performance Prediction 

Based on the utility algorithm, this section computes the expected query hops, 

E(QH), for the service replication method and the object replication method. We 

suppose M content services are in the network and each can generate w response 

objects. Each service or response object would have a specific number of replicas (r). 

For concise presentation, Er(H) is written as F(r) in the following discussion, which 

means the number of query hops for the considered service or object is a function of 

its replica number. Our discussion considers three scenarios: (i) the conventional 

Pastry network, (ii) the AN.P2P network, and (iii) the hybrid network with both the 

AN.P2P enabled nodes and the conventional nodes. 

In the conventional Pastry network, the content services are executed at their 

home nodes and the response objects are populated in the network. Let r ij denote the 

number of replicas for object oij, and we have 
Y

T
ijij S

S
r λ= , where ijλ  is the query 

probability for oij, ST is the total network storage size, and SY is the average size of 

response objects. The E(QH) for the whole network is calculated by Eq.6.15. 



 140 

∑∑

∑∑

= =

= =

=

=

M

i

w

j Y

T
ijij

M

i

w

j
ijij

S

S
F

rFQHE

1 1

1 1
1

)]([

)]([)(

λλ

λ

 

 

(Eq.6.15) 

In the AN.P2P network, the content services are replicated. Let r i denote the 

number of replicas for service oi, and we have 
X

T
ii S

S
r λ= , where iλ  is the query 

probability to service oi, SX is the average size of service. The E(QH) for the whole 

network is calculated by Eq.6.16.  

∑∑

∑ ∑ ∑

∑

= =

= = =

=









=

⋅⋅=

=

M

i

w

j X

T
ijij

M

i

w

j X

T
w

l
ilij

M

i
ii

S

S
wF

S

S
F

rFQHE

1 1

1 1 1

1
2

)(

)]()[(

)()(

λλ

λλ

λ

 

 
 
(Eq.6.16) 

Considering )(rF  is a decreasing function of variable r, if condition 

XY SwS >  is satisfied, we can infer that )()( 21 QHEQHE > . This means in the 

heterogeneous environment, where the clients’ queries are scattered over different 

content objects, if the cumulative size of the response objects is larger than the size of 

the content service, replicating the content services will be more beneficial than 

replicating the response objects, in term of reducing the number of query hops in the 

network.  In actual situation, condition XY SwS >  can be satisfied by many content 

services that reuse an original content to generate many response objects. In most 

cases, the total size of the output objects is much larger than the summed size of the 

original object with the service applications. Thus, we can see that for a wide range of 

content services our AN.P2P method is more efficient than the conventional Pastry 

systems to serve the heterogeneous queries. 



 141 

Finally, we consider a hybrid network with both the conventional nodes and the 

AN.P2P nodes. In this scenario, the response objects are propagated on the 

conventional nodes and the content services are populated on the AN.P2P nodes. Let 

SH denote the total storage size of all AN.P2P nodes, and correspondingly the total 

storage size of all conventional nodes is SL=ST-SH. Since a query can be served if it 

reaches a replica of service or a replica of the wanted object, we can compute E(QH) 

for the whole network as in Eq.6.17. Supposing 
w

i
ij

λλ ≈  and XY SwS > , we can 

infer that the value of E3(QH) will reduce from E1(QH) to E2(QH), when SH enhances 

from 0 to ST. This conclusion means with more nodes are AN.P2P enabled, the 

average number of query hops in the network will reduce correspondingly. 

∑∑ ∑

∑∑

= = =

= =

−
+=

+=

M

i

w

j Y

HT
ij

X

H
w

l
ilij

M

i

w

j
ijiij

S

SS

S

S
F

rrFQHE

1 1 1

1 1
3

)]([

)()(

λλλ

λ
 

 
 
(Eq.6.17) 

6.4 Simulation 

6.4.1 Overview 

We performed a set of simulation experiments to explore the advantages of the 

AN.P2P methodology. Our simulation is based an AN.P2P prototype implemented on 

the Free-Pastry platform [Pastry]. The simulation uses the pervasive image provision 

as the sample service. The service workflow is originated from a Jpeg image and 

contains two workflow ANlet applications. The first ANlet can resize the original 

image to 5 different dimensions, including the original dimension, to fit the display 

size of the clients’ devices. The second ANlet can transcode the image from Jpeg 

format to Gif and BMP formats. One of these three formats will be chosen according 

to the client’s preference. 



 142 

As the P2P overlay is generated by the network topology emulator of 

Free-Pastry, to lessen the impact on the simulation results due to the topology change, 

we performed each set of simulations repeatedly and collected the average results. 

The simulation network has 5000 nodes and 5000 Jpeg images. Each image is 

associated with the service workflow to form a piece of image service. The sizes of 

the original images follow the Pareto distribution [CB96], where 25.1=α  and the 

minimum and maximum sizes are 500KB and 10MB respectively. The requesting 

nodes are randomly chosen in the network, and they randomly query an image 

presentation with specific dimension and format. The request probabilities over 

different image services follow the Zipf distribution [BCF99], where 7.0=λ . 

Our simulations compare the AN.P2P method with the plain P2P method, which 

executes the content service at the home node and populates the response objects in 

the network.  

6.4.2 Computation Result 

Before giving the simulation results, we present the computation results, using 

our mathematical model, as in Figure 6.5. Figure (a) plots the values of E1(QH) and 

E2(QH) under different node cache sizes. The results indicate the Pastry network with 

only the AN.P2P nodes (E2(QH)) achieves less query hops than the network with only 

the conventional nodes (E1(QH)). Figure (b) plots the E3(QH) under different SH/ST 

ratios, where SH=0 means the network consists of only the conventional nodes and the 

SH=ST means the network only contains the AN.P2P nodes. The result shows that with 

more AN.P2P nodes join the network the average query hops reduce accordingly. 

Figure (c) presents the E3(QH) under different node-down rates δ, where the node 

cache size is 40MB. The results show higher failure rate causes larger E(QH) value. 

The network with only the AN.P2P nodes (right end of the curve) outperforms the 



 143 

network with only the conventional nodes (left end of the curve) under all node failure 

rates. The advantage of the AN.P2P method becomes significant under high 

node-down rate. 

2

2.2

2.4

2.6

2.8

3

3.2

3.4

5 10 20 40 80

Cache Size on Each Node (MB)

Q
ue

ry
 H

op
s

E1(QH)

E2(QH)

 

2

2.2

2.4

2.6

2.8

3

3.2

0 0.2 0.4 0.6 0.8 1

SH/ST

Q
u

er
y 

H
o

p
s

5MB

10MB
20MB

40MB
80MB

 
(a) Query Hops under Different Storage 

Capacities 
(b) Query Hops under Different SH/ST 

Ratios 

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

SH/ST

Q
u

er
y 

H
op

s

e=0.8

e=0.6

e=0.4

e=0.2

e=0

 
(c) Query Hops under Different Node Failure Rates 

Figure 6.5 Computation Results 

6.4.3 Simulation Group 1 

The first group of simulations compares the general performance difference 

between the AN.P2P method and the plain Pastry method. In the simulation, we 

varied the cache size on each node from 5MB to 80MB. Queries are issued into the 



 144 

network till the service or object replicas saturate all node caches, by then the network 

becomes stable and the system performance is measured. The results are as follow. 

Figure 6.6 illustrates the average query hops for the two methods. In the 

simulation, we set b=3, so that the queries can be routed to the home node in 

45000log8 ≈  hops. However, due to the replication of service or object, the figure 

shows both methods can achieve less than 4 hops. When larger caches are applied, the 

number of query hops reduces, as more replicas are distributed in the network. The 

figure also shows the AN.P2P method gets less query hops than the plain Pastry 

method. When larger caches are applied, the difference between the two methods 

becomes more significant. 

Figure 6.7 shows the replica-hit ratio, which is counted as the percentage of 

queries served by the intermediate nodes that have replicas of the queried services (for 

the AN.P2P method) or the wanted response objects (for the plain Pastry method). 

The AN.P2P method achieves about 20% higher replica-hit ratio than the plain Pastry 

method. It means more queries can be served by the intermediate nodes using the 

AN.P2P method than the plain Pastry method, because the image services have higher 

reusability than the customized image presentations. Moreover, with larger caches 

being applied, the advantage of the AN.P2P method becomes more significant. 

2

2.2

2.4

2.6

2.8

3

3.2

3.4

5 10 20 40 80

Cache Size (MB)

H
o

p
s

plain

anp2p

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 20 40 80

Cache Size (MB)

R
ep

lic
a 

H
it 

R
at

io

plain

anp2p

 
Figure 6.6 Query Hops Figure 6.7 Replica Hit Ratio 



 145 

 
Figure 6.8 shows the content retrieval distance, which is a ratio obtained from 

dividing the physical distance between the requesting node and the serving node by 

the distance between the requesting node and the service’s home node. The value of 

retrieval distance should range from 0 to 1, reflecting the content retrieval proximity 

within the system, where smaller retrieval distance implies better content retrieval 

proximity. The result shows the AN.P2P method achieves smaller retrieval distance 

than the plain Pastry method. It suggests that in an AN.P2P enabled Pastry network 

the requesting nodes are more likely to get content from the nearby nodes. In the 

actual network, such better retrieval proximity usually implies less transmission 

traffic and shorter content download delay. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 20 40 80
Cache Size (MB)

R
e

tr
ie

va
l D

is
ta

n
ce

plain

anp2p

 
Figure 6.8 Retrieval Distance 

This result is due to the co-effect of the AN.P2P method and the 

proximity-aware routing of Pastry. On one hand, the AN.P2P method can improve the 

replica reuse through replicating the content services. Hence, the requesting node can 

find the serving node with less query hops. On the other hand, the proximity aware 

routing mechanism of Pastry can make sure the message is forwarded from the nearby 

nodes to the remote nodes. It means with more hops being involved the message 

always arrives a node that is farther to the requesting node than the previous node in 



 146 

the query path. Combining these two aspects, as the AN.P2P method reduces the 

number of query hops, the physical distance between the requesting node and the 

serving node should reduce accordingly. 

6.4.4 Simulation Group 2 

The second group of simulations measures the change of system performance 

along the time. We continuously issued queries into the network and measured the 

system performance for every 1000 queries. In the simulation, the cache size on each 

node was fixed to 20MB, and the results are as follow. 

Figure 6.9 shows the replica hit ratio for both methods. The results indicate the 

replica hit ratio for the AN.P2P method increases much faster than the plain Pastry 

method. The figure also shows the hit ratio for the 10 most frequently queried services, 

which count for 10% of all queries. For the AN.P2P method the hit ratio increases 

sharply at the beginning of simulation, and after 10,000 queries nearly all the 

subsequent queries to the top 10 services are served by the intermediate nodes. In 

contrast, the plain Pastry method cannot achieve comparable hit ratio. The result 

indicates our AN.P2P method can offload the burst queries in short period of time, 

and this is important for those popular content services to distribute the bursting load 

as fast as possible. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Queries (thousand)

R
ep

lic
a 

H
it 

R
at

io

plain
anp2p
plain(top10)
anp2p(top10)

 
Figure 6.9 Replica Hit Ratio 



 147 

Figure 6.10 presents the content retrieval distance. At the beginning of 

simulation, the retrieval distances for both methods equal to one, which means the 

queries at this stage retrieve the contents from the home nodes. With more queries are 

issued, the retrieval distance for the AN.P2P method drops much faster than the plain 

Pastry method. The figure also presents the retrieval distance for the top 10 services. 

The retrieval distance for the AN.P2P method drops sharply to 20% of the original 

distance after 10,000 queries are issued, whereas the distance decrement for the plain 

method is much slower. This result enforces our argument that the AN.P2P method 

can distribute the burst queries to the intermediate nodes much faster than the plain 

Pastry method. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
Queries (thousand)

R
e

tr
ie

va
l D

is
ta

n
ce

plain anp2p

plain (top10) anp2p (top10)

 
Figure 6.10 Retrieval Distance 

Figure 6.11 presents the two methods’ replication cost, which is calculated by 

multiplying the size of the replicated data with the distance between the serving node 

and the replication node. For the AN.P2P method, the replication size is the total size 

of the original content and the service applications; and the replication node is the last 

intermediate node. For the plain Pastry method, the replication size is the size of the 

response object, and the replication nodes are all intermediate nodes along the query 

path. The result shows the AN.P2P method causes much less replication cost than the 



 148 

plain Pastry method, as the latter method replicates to all intermediate nodes while the 

former only replicates to the last intermediate node. 

Moreover, the replication cost for the plain Pastry method fluctuates greatly 

during the simulation period, compared to the graceful reduction of the AN.P2P’s the 

replication cost. This is because the response objects, replicated by the plain method, 

have poor reusability at the intermediate nodes. As result, these objects are likely to 

be replicated, evicted and re-replicated. Such “replica thrash” phenomenon is the 

main reason for the fluctuation of the replication cost. However, the AN.P2P method 

causes much smoother replication cost during the simulation period, since the 

replicated services have better reusability on the intermediate nodes so that replica 

thrash effect is not significant. The graceful reduction of the replication cost is 

because, according to the proximity routing, the early replications happen between 

distant nodes while the later replications happen between nearby nodes. 

0

5

10

15

20

25

30

0 10 20 30 40 50

B
ill

io
n

s

Queries (thousand)

R
e

p
lic

a
te

 C
o

st

plain

anp2p

 
Figure 6.11 Replication Cost 

6.4.5 Simulation Group 3 

In the third group of simulations, we continuously reduced the percentage of 

AN.P2P nodes in the whole network. The system performance was measured for 

different percentages of AN.P2P nodes remaining in the network. The results are 

given in Figure 6.12, where the cache size on each node is 20MB. The figure shows 



 149 

with the dropping percentage of AN.P2P nodes, the system performance (replica hit 

ratio and retrieval distance) declines accordingly. When no AN.P2P node is in the 

network, the whole system degrades to be a conventional Pastry network. The results 

suggest we can deploy the AN.P2P nodes into the existing Pastry network. With more 

AN.P2P nodes join, the overall system performance will improve gradually. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0% 25% 50% 75% 100%

Ratio of the AN.P2P Enabled Node

R
ep

lic
a 

H
it 

R
at

io

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
et

rie
va

l D
is

ta
nc

e

Replica Hit Ratio

Retrieval Distance

 
Figure 6.12 Performance Under Different Percentages of AN.P2P Nodes 

6.4.6 Simulation Group 4 

The last group of simulations compares the two methods’ performance under 

different node down rates. To observe the query failure, we disabled the initial 

replication function of Pastry. Hence, all services only have one original copy at the 

beginning of simulation. If the home node happens to leave the network, those queries 

that cannot find suitable replicas will fail. The simulation results are as follow. 

Figure 6.13 presents the percentages of the failed queries under node down rate 

of 5% and 20%. The figure shows that more queries fail under high node down rate. 

This phenomenon is significant at the beginning of simulation, because the early 

queries have to retrieve content from the home nodes. The absence of these nodes 

directly causes the query to fail. With more queries being issued, the failure ratio 

reduces, because many of these queries can be served by the intermediate replication 

nodes those are active in network. In particular, the result indicates the AN.P2P 



 150 

method gets lower query failure than the plain Pastry method. This is because the 

AN.P2P method can achieve more effective replica reuse through service replication, 

so that more queries can hit the nodes those have replicas of services and are still 

active in the network. As the result, the down of home node would not affect the 

AN.P2P method so significantly as the plain Pastry method. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50
Queries (thousand)

F
ai

lu
re

 R
at

io

plain-5% anp2p-5%
plain-20% anp2p-20%

 
Figure 6.13 Query Failure Ratio 

Finally, Figure 6.14 and Figure 6.15 present the replica hit ratio and the 

retrieval distance for both methods. In general, the results show that the overall 

system performance for both methods declines with higher node down rate. This is 

because the node failure or recent node leave causes stale information in the routing 

table. It makes the messages to be routed to the sub-optimal nodes. Thus, the length of 

query path will be prolonged, so as the content retrieval distance (Figure 6.15). 

Meanwhile, as shown in Figure 6.14, the increase of node down rate also reduces the 

replica hit ratio for both methods, because the downed nodes store replicas of service 

or object, which otherwise could be reused for the requesting nodes. 

Moreover, the results show our AN.P2P method outperforms the plain Pastry 

method under all node-down rates. In particular, the AN.P2P method at the node 

down rate of 20% even achieves better performance than the plain Pastry method at 



 151 

the node down rate of 5%. This suggests the AN.P2P supported system is more 

resistant to the node down, in virtue of service replication. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50
Queries (thousand)

R
ep

lic
a 

H
it 

R
at

io

plain-5%
anp2p-5%
plain-20%
anp2p-20%

 

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
Queries (throusand)

R
e

tr
ie

va
l D

is
ta

n
ce

plain-5% anp2p-5%
plain-20% anp2p-20%

 
Figure 6.14 Replica Hit Ratio Figure 6.15 Retrieval Distance 

6.5 Summary 

This chapter proposes the AN.P2P methodology, which applies the Application 

Networking framework into the P2P network. The method improves the conventional 

P2P network, which was used for sharing the content objects, by allowing it to 

populating the content services. We build mathematical model to estimate the 

performance of the AN.P2P methodology, and the analysis results indicate our 

method can be applied to a wide range of content services to gain overall performance 

improvement in the heterogeneous query environment. Finally, our simulation results 

show the AN.P2P method is more efficient than the conventional P2P method at 

different aspects.



 152 

CHAPTER 7  

AN AN.P2P SYSTEM OVER THE PASTRY NETWORK 

7.1 Overview 

In the fundamental AN.P2P methodology, the replication process does not 

consider the potential utility and storage overhead of the content service. It causes the 

system performance to be suboptimal. The basic methodology neither reuses the 

response content objects fully, so that it needs to execute the content services 

repeatedly. In this chapter, we propose a concrete AN.P2P system, which provides 

three specific mechanisms to solve above limitations: 

(i) Selective Replication: It utilizes the Pastry routing information to replicate 

service only to the nodes with high service reuse rate.  

(ii)  Partial Replication: It extends the selective replication by allowing replicating 

service workflow partially to improve the replication flexibility. 

(iii)  Pointers Cache Scheme: It reuses the response objects through propagating the 

soft-state pointers to these objects, so that the computation load can be reduced. 

This chapter first explains our system implementation on Free-Pastry, and then 

discusses the three mechanisms followed by the simulation results. All simulations are 

based on the same content service and the network environment as in Chapter 6. 

7.1.1 Implementation 

We implemented the AN.P2P system based on the Free-Pastry platform [Pastry]. 

The system structure is shown in Figure 7.1. The system is composed of the Pastry 



 153 

substrate, the AN.P2P platform, the content services, and the client. Besides the basic 

storage space for the content services published on the present node, the platform also 

maintains three caches: (i) the service cache, (ii) the response cache, and (iii) the 

pointers cache. The service cache is to store content services replicated from other 

nodes, while the response cache and the pointers cache will be explained in the 

pointers-cache mechanism. 

 
Figure 7.1 AN.P2P Prototype 

The system components communicate with each other through the standard 

client interface, service interface, and P2P substrate interface. The usage of these 

standard interfaces facilitates adopting the AN.P2P platform onto different P2P 

substrates and supplying various content services through the AN.P2P platform.  

The “client interface” enables the client software to interact with the AN.P2P 

platform, through two API functions: “insert” and “lookup”. The former function 

allows the content provider to publish the content service, and the latter function 

allows the client to initiate a content query into the Pastry network. 



 154 

The AN.P2P platform interacts with the content services through the ANlet API, 

as defined in Chapter 4, whereas the HTTP request and response are replaced by the 

Pastry query and response messages. 

The “substrate interface” enables the AN.P2P platform to communicate with the 

Pastry substrate through the “common overlay API” [DZD03]. The Pastry substrate 

exports a “route” function to the AN.P2P platform, which can send messages to the 

P2P network by calling this function. In the opposite direction, the AN.P2P platform 

exports two functions, “forward” and “deliver”. The Pastry substrate will pass the 

relayed messages to AN.P2P through calling the former function, and deliver the 

query to the AN.P2P platform for service execution through the latter function. 

A basic query-response-replication process is shown in Figure 7.2, where node 

1 is the requesting node, node n is the serving node, and node n-1 is the last 

intermediate node. When the client queries a content service, the requesting node 

sends a query into the network (step 1 ~ step 3). When an intermediate node receives 

this query, it will check whether it is the home node for the queried id. If not, the 

query will be passed to the AN.P2P platform of this node through the “forward” 

function (step 4). The AN.P2P platform checks whether a reusable service is stored in 

local service cache. If none, the platform notifies the Pastry substrate to forward the 

query to next hop node. The forwarding process is repeated until the query reaches a 

node that is the home node of the service or with the service replica (step 5~6). This 

serving node’s Pastry substrate calls the “deliver” function, asking the AN.P2P 

platform to execute content service (step 7~8) and send the generated response 

content to the requesting node (step 9~11). Meanwhile, the serving node replicates the 

content service to the last intermediate node (step 12~14). 



 155 

 
Figure 7.2 AN.P2P’s Basic Query-Response-Replication Process 

7.2 Selective Replication 

In the basic AN.P2P process, the serving node always replicates the service to 

the last intermediate node. However, without judging the performance enhancement 

and the corresponding replication overhead, this straightforward method is not 

beneficial in all situations. Inappropriate replication could put the service to a node 

that rarely receives queries for this service, and it also wastes the replication node’s 

storage space that otherwise would be more useful if storing higher utility services. 

In the Pastry network, the effectiveness of service replication depends on three 

factors: (i) the numerical distance between the replication node’s id and the content 

service’s id; (ii) the physical distance between the serving node and the replication 

node; and (iii) the size and request rate of the service. Firstly, a node, whose id is 

numerically close to the id of the content service, is very likely to be involved into the 

query path to this service. Thus, the potential reuse rate of the service replica should 

reduce with the increasing numerical distance between the service’s id and the 

replication node’s id. Secondly, distributing service replicas to the physically remote 



 156 

nodes will be more beneficial than putting them to the adjacent nodes, because with 

the dispersed service replicas the requesting nodes are more likely to retrieve content 

from a nearby replica. Last yet importantly, replication algorithm should give priority 

to service with small size but high request rate. 

Considering these factors, we propose the selective replication method. It 

requires the serving node to encapsulate the meta-information about the content 

service to be replicated into the replication message, and send it to the last 

intermediate node. The information includes the service’s id, the components of the 

service, and the total size of these components. Upon receiving the replication 

message, the node will judge whether to replicate this service or how to replace the 

cached services if necessary. We proposed the selective GreedyDual-Size (GDS) 

replication algorithm and the selective LFU replication algorithm to perform the 

replication judgment. 

7.2.1 Selective GDS Replication Algorithm 

The selective GDS replication algorithm is based on the GreedyDual-Size (GDS) 

caching algorithm [CI97], which incorporates the caching locality with the data’s 

retrieval cost and storage size concerns. The original GDS algorithm assigns the data 

to be stored an initial cost as in Eq.7.1. Since we need to consider the numerical and 

physical distance of replication, our selective GDS algorithm assigns the initial cost 

for a content service as in Eq.7.2. 

)(/1 dataSizeofCost=  (Eq.7.1) 

)(

),()2( )_,_(

serviceSizeof

localservingdist
Cost

idlocalidserviceshlb ×=  (Eq.7.2) 

In the equation, )_,_( idlocalidserviceshl  denotes the length of the shared 

prefix between the service’s id and the id of the replication node. According to the 



 157 

Pastry algorithm, the likelihood that the node is involved in the query path to the 

service is proportional to the value of )_,_()2( idlocalidserviceshlb , which reflects the 

proximity of the node and the content service in the id ring. Meanwhile, 

),( localservingdist  denotes the physical distance between the serving node and the 

present node (the replication node). 

Our algorithm uses an isReplicate() function, as shown in Figure 7.3, to 

determine whether the present node should replicate a content service. The algorithm 

first computes the initial GDS cost for the service (line 03~04). Then, it examines the 

free space in the service cache. If there is sufficient space, the node will replicate this 

service (line 05~07). However, if the cache does not have enough space, some stored 

services “may” be evicted. To make a decision, the algorithm continuously chooses 

the cached service with the least GDS cost, until the total size of these services plus 

the free cache space is larger than the size of the new service (line 08~14). Then the 

algorithm compares the cost of the new service to the maximum cost of the chosen 

services. If the stored service has larger cost (line 15~16), the new service is not 

beneficial enough and should not be replicated. However, if the new service has larger 

cost (line 17~18), it will be replicated and the chosen services will be evicted from the 

cache. 

According to the GDS algorithm, when a cache replacement is performed, the 

cost value of all remaining services should be reduced by the maximum cost of the 

evicted services. In addition, when a service is accessed, its cost will be restored to the 

initial value. Through above adjustment, the services with high utility will be restored 

to the initial cost frequently, while the costs for the low utility services will decrease 

gradually. 

 



 158 

(01)  Boolean isReplicate (Wf(Obj1, ANlet1, ANlet2,…, ANletf)) 
(02)  { 

(03)    ∑
=

+=
f

i
iANletSizeofObjSizeofServiceSizeof

1
1 )()()(  

(04)    
)(

),()2(
)(

)_,_(

serviceSizeof

localservingdist
ServiceCost

idlocalidserviceshlb ×=  

(05)    AvailableSize = Cache.Free _Size ( ); 
(06)    if (Sizeof (Service) < AvailableSize) 
(07)      return TRUE; 
(08)    ReplaceSet = Ø; 
(09)    MaxCost = 0; 
(10)    do { 
(11)       ReplaceService = Cache.Least_Cost_Service ( ); 
(12)       AvailableSize += Sizeof (ReplaceService); 
(13)       MaxCost = Cache.Cost (ReplaceService); 
(14)    } while (Sizeof (Service) > AvailableSize); 
(15)    if (Cost (Service) < MaxCost) 
(16)      return FALSE; 
(17)    else 
(18)      return TRUE; 
(19)  } 

Figure 7.3 isReplicate ( ) for Selective GDS Replication 

7.2.2 Selective LFU Replication Algorithm 

The selective LFU replication algorithm is based on the LFU algorithm, and it 

assigns a cost value for each service as in Eq.7.3, where the counter records the times 

the service has been accessed since its replication, Sizeof(service) denotes the size of 

service, and )_,_()2( idlocalidserviceshlb  denotes the numerical proximity of the replication 

node and the service, and ),( localservingdist  denotes the physical distance between 

the replication node and the serving node. 

)(

),()2( )_,_(

serviceSizeof

localservingdistcounter
Cost

idlocalidserviceshlb ××=  (Eq.7.3) 

The algorithm also uses an isReplicate() function, as shown in Figure 7.4, to 

determine whether the node should replicate a service. The algorithm first computes 

the storage size and the initial cost for the new service (line 03~04), where the initial 

value of counter is set to one. If the service cache has sufficient free space, the node 

will replicate the service directly (line 05~07). However, if the cache does not have 

enough free space, the algorithm continuously chooses the cached service with the 



 159 

least cost until the total size of these services plus the free cache space is larger than 

the size of the new service (line 08~14). Then the algorithm compares the total cost of 

the chosen services with the cost of the new service. If the new service has larger cost, 

the node should replicate the new service and evict those chosen services (line 15~16). 

However, if the cost of the new service is smaller, it will not be replicated (line 

17~18). 

(01)  Boolean isReplicate (Wf(Obj1, ANlet1, ANlet2,…, ANletf)) 
(02)  { 

(03)    ∑
=

+=
f

i
iANletSizeofObjSizeofServiceSizeof

1
1 )()()(  

(04)    
)(

),()2( )_,_(

serviceSizeof

localservingdistcounter
Cost

idlocalidserviceshlb ××=  

(05)    AvailableSize = Cache.Free _Size( ); 
(06)    if(Sizeof (Service) < AvailableSize) 
(07)      return TRUE; 
(08)    ReplaceSet = Ø; 
(09)    TotalCost = 0; 
(10)    do { 
(11)       ReplaceService = Cache.Least_Cost_Service( ); 
(12)       AvailableSize += Sizeof (ReplaceService); 
(13)       TotalCost += Cache.Cost (ReplaceService); 
(14)    } while (Sizeof (Service) > AvailableSize); 
(15)    if( TotalCost < Cost (Service)) 
(16)      return TRUE; 
(17)    else 
(18)      return FALSE; 
(19)  } 

Figure 7.4 isReplicate( ) for Selective LFU Replication 

7.2.3 Simulation Results 

Our simulation compares the selective GDS and LFU replication methods with 

the normal GDS and LFU replication methods in AN.P2P. The simulation results are 

as follow, where the result for the normal LRU replication is also given to ease 

readers to refer the results in Chapter 6. 

Figure 7.5 shows the replication costs for all methods. The selective replication 

methods achieve much less replication cost than the normal replication methods. This 

is because the selective methods only populate services to nodes with sufficient 



 160 

service reuse rate, whereas the normal replication methods replicate service for all 

queries. The three normal methods cause comparable replication costs. The costs 

firstly increase and then drop with the increase of cache size, and the reason for such 

trend is as follows. When the cache size is smaller than 10MB (the largest size of 

original images), some large services cannot be replicated due to the size limitation of 

cache. With the increase of cache size, more services can be replicated and the system 

replication cost increases accordingly. When the cache size exceeds 10MB, all 

services can be replicated and the cache size is no longer the determinant for the 

replication cost. With large caches being applied, the service penetration in the 

network should increase correspondingly, which makes the final replications are more 

likely to happen between nearby nodes. It results in the measured replication cost to 

decrease. In contrast, the replication costs for the selective methods enhance slowly 

with the increase of cache size, because the selective replication keeps the replication 

cost low and it naturally increases with the increasing cache size as more services will 

be replicated. 

0

1

2

3

4

5

6

7

8

9

5 10 15 20

B
ill

io
n

s

Cache Size (MB)

R
e

p
lic

a
tio

n
 C

o
st

selective-lfu selective-gds lfu

lru gds
 

Figure 7.5 Replication Costs against Different Cache Sizes 

Figure 7.6 shows the replication costs against the number of queries issued, 

where the cache sizes of all nodes are 20MB and the replication cost is measured for 



 161 

every 4,000 queries. At the beginning, all methods cause the similar replication cost, 

because most caches are empty and ready to be filled. After 50,000 queries, the 

replication costs for the normal methods stabilize to the constant values, which are the 

final replication thrash traffic for these methods. In contrast, the replication costs for 

the selective methods reduce continuously in the simulation period. This is because 

the selective methods can replicate services to high utility nodes and it makes better 

service distribution in the network. Thus, the replication thrash traffic is much lower 

than that of the normal methods, and it reduces with more queries are issued. 

0

2

4

6

8

10

12

0 50 100 150 200

B
ill

io
n

s

Queries (thousand)

R
ep

lic
at

io
n 

C
os

t

selective-lfu
selective-gds
lfu
lru
gds

 
Figure 7.6 Replication Costs against the Number of Queries 

We also measured the service replica hit ratio and the content retrieval distance 

for different methods, as shown in Figure 7.7 and Figure 7.8. The results show the 

two selective methods improve the overall performance more significantly than the 

normal methods. It is because the selective replication methods can replicate services 

to the selected nodes with high reuse rate, so that the resulting service distribution in 

the network is more beneficial to efficient content delivery. The two figures also show 

that the selective LFU method outperforms the selective GDS method. 



 162 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

30 60 90 120 150 180

Queries (thousand)

R
ep

lic
a 

H
it 

R
at

io

selective-lfu
selective-gds
lfu
lru
gds

 

0.35

0.4

0.45

0.5

0.55

0.6

30 60 90 120 150 180

Queries (thousand)

R
et

rie
va

l D
is

ta
nc

e

selective-lfu
selective-gds
lfu
lru
gds

 
Figure 7.7 Replica Hit Ratio Figure 7.8 Retrieval Distance 

In summary, the simulation results indicate that the selective replication 

algorithms have two advantages: (i) they allow the system to avoid some unbeneficial 

service replications so that the overall replication cost can be reduced; (ii) they make 

all services to be replicated to the nodes with high reuse rate, so that the resulting 

content delivery performance can be improved. In addition, the results also show that 

the selective LFU method outperforms the selective GDS method by achieving less 

replication cost, higher replica hit ratio and lower retrieval distance. It suggests that 

through directly counting the query frequency of service, the selective LFU method is 

more effective to estimate the service utility than the selective GDS method. 

7.3 Partial Service Replication 

7.3.1 Partial Replication Algorithm 

The previous replication methods treat content service as an atomic unit and 

replicate it as a whole. As explained, the AN.P2P system organizes each content 

service as a workflow. Different sub-sets of service workflow, which starts from a 

particular version of content object and passes through the subsequent workflow 

segments, usually have different reusability and replication overhead at different 

network nodes. If we can replicate the partial content services according to their 



 163 

specific reusability and replication overhead, the AN.P2P system will be able to 

achieve cost-effective service replication and be more adaptive to the changing 

environment. 

Due to the changing characters of the P2P network, it is infeasible to find a 

well-defined solution to resolve the optimal partial service replication in the whole 

network. Even for a comparatively stable network, the huge numbers of nodes and 

content services also make this optimization problem intractable. Therefore, we 

propose a partial service replication algorithm that derives the replication strategy in 

the best-effort manner. The algorithm is performed independently at any node, and 

allow it to replicate as many workflow segments as possible given they are beneficial 

enough. 

The algorithm requires the serving node, the sender of replication message, to 

put the meta-information about the service workflow into the replication message. 

The meta-information is specified as a sequence of blocks, each refers to a segment in 

the workflow. The blocks are listed in the same order as the corresponding segments 

in the workflow. Each block specifies the service id, the attributes of the segment’s 

input content object, the size of the input object, and the id and size for the segment’s 

application. 

In the AN.P2P system, a serving node always intends to replicate a content 

service when it replies a query. A natural way to compose the replication message is 

to include the meta-information for the service workflow used and the content objects 

generated for the just query. An example is given in Figure 7.9, where we suppose a 

node stores a service that starts from Obj1 and contains two applications: ANlet1 and 

ANlet2. (Note †: as the service can be partially replicated, the workflow we discuss 

may not be the full original service workflow) When the node serves a query, it 



 164 

executes this workflow to generate an intermediate object Obj2 and a final response 

object Obj3. In this situation, the replication message should include the 

meta-information for Obj1, Obj2, Obj3, ANlet1 and ANlet2. If we express an ANlet with 

its input object as a segment, the resulting replication message is shown as in the bold 

square in the figure, and the shaded squares denote the meta-information blocks for 

segments Seg1, Seg2, and Seg3 respectively. 

 
Figure 7.9 Partial Replication Message 

The replication node has four possibilities to replicate the service above: 

(i) Replicate Seg1�Seg2�Seg3: the replication node needs to fetch Obj1 and 

applications ANlet1 and ANlet2 from the sender of the replication message. 

(ii)  Replicate Seg2�Seg3: the replication node needs to fetch the intermediate 

object Obj2 and the second application ANlet2. 

(iii)Replicate Seg3: the replication node only fetches the response object Obj3. 

(iv) None: the replication node does not replicate anything. 

Our partial replication algorithm is shown in Figure 7.10, which directs the 

replication node to decide how many workflow segments to be replicated. The input 

to the algorithm is the meta-information for the workflow to be replicated. We skip 

lines 03~04 first. The algorithm starts from examining the entire workflow, Wf(Obj1, 

ANlet1, Obj2, ANlet2,…, Objf-1,Anletf-1,Objf). The partial replication algorithm relies on 

the selective replication algorithm to judge whether to replicate a specific workflow. 



 165 

Thus, the “isReplicate” function (line 08~09) is provided by the selective replication 

algorithm used, such as Figure 7.3 or Figure 7.4. If the workflow is eligible to be 

replicated, the algorithm returns the present workflow (line 10~11) to the local node, 

which will fetch the corresponding workflow components from the network and store 

them locally. However, if the current workflow is not eligible for replication, the 

algorithm will remove the first segment (i.e. Obj1 and ANlet1) and form a partitioned 

workflow Wf(Obj2, ANlet2,…, Objf-1, Anletf-1, Objf) (line 12~13). Then, the algorithm 

reevaluates the new workflow. Such iteration will continue until an eligible partial 

workflow is found or no more segments left in the workflow. 

(01)  Partial-Replication-Judgment (Wf(Obj1, ANlet1, Obj2, ANlet2,…, Objf-1,Anletf-1,Objf)) 
(02)  { 
(03)    if ( Cache.isRedundantWorkflow (Wf) == TRUE) 
(04)      return FALSE; 
(05)    idx = 1; 
(06)    while(idx <= f) 
(07)    { 
(08)      Candidate_Wf = Wf(Objidx, ANletidx,…, Objf-1, Anletf-1, Objf); 
(09)      result = isReplicate (Candidate_Wf); 
(10)      if(result) 
(11)        return Candidate_Wf; 
(12)      else 
(13)        idx = idx + 1; 
(14)    } 
(15)    return NULL; 
(16)  } 

Figure 7.10 Partial Replication Judgment Algorithm 

7.3.2 Partial Service Caching Scheme 

The partial replication causes different versions of the same content service to 

be stored in the service cache, and it is important to identify and manage these content 

services. As each content service starts from a unique input object, we can identify a 

content service through identifying its input object. 

Our method is based the metadata approach proposed in Chapter 3. We assign 

each service a “service metadata”, which includes the service’s id and the attributes 

for the input object to this service. Each attribute composes of the attribute’s name 



 166 

and the attribute’s value. The metadata is created and manipulated by the workflow 

applications, and is carried by the partial replication message. For the example image 

service in Chapter 6, the metadata for the original service only contains the service’s 

id. For the partial service starting from the second ANlet while the first ANlet already 

being executed to resize the original image, the metadata contains the service id and 

the dimensions for the resized image, e.g. {id, (width, 800), (height, 600)}. 

Using the service metadata, the service cache can find a reusable service replica 

by matching the replica’s metadata and the query. The matching service replica 

should have the same id as the queried id, and all the common metadata attributes of 

the cached service and the query parameters should match with each other.  

To cover more queries, the service cache does not store redundant services, one 

of which can be generated from the other one. Our partial-service checking criterion 

deems service A to be a partial service of service B if the metadata for B is subsumed 

by the metadata for A, and at the same time, the workflow segments of A is subsumed 

by the workflow segments of B. For the example in Figure 7.9, for service 

211 ANletANletObj →→ , the attribute is {id, attr(Obj1)} and the workflow is {Seg1, 

Seg2}; for service 22 ANletObj →  the attribute is {id, attr(Obj1), attr(Obj2)} and the 

workflow is {Seg2}. We can infer the latter service is a partial service of the former, 

as )}(,{)}(),(,{ 121 ObjattridObjattrObjattrid ⊃  and },{}{ 212 SegSegSeg ⊂ . 

When the service cache determines whether to store a new service, it checks if 

the new service is a partial service of one service that is already cached. If so, the new 

service should not be replicated. This is why the replication algorithm in Figure 7.10 

performs a pre-checking in lines 03~04. In addition, after the cache determines to 

store a new service, it will evict the cached services that are the partial service of the 

new service. 



 167 

7.3.3 Simulation Results 

Our simulation compares the partial replication methods with their 

corresponding selective and normal replication methods. The results are as follow. 

Figure 7.11 and Figure 7.12 show the service replica hit ratio and the content 

retrieval distance, and we present the results for the GDS-based and the LFU-based 

methods in separate figures. The results show that, in each category, the partial 

replication method outperforms the selective method that in turn outperforms the 

normal method. It indicates the partial replication methods can further improve the 

system performance through fine-grained service replication. 

Moreover, the advantage of the partial replication methods is particularly 

significant when the cache size is small. This is because when the small cache is 

applied, the selective method and normal method cannot replicate many large services, 

whereas these services can be partially replicated using the partial replication method. 

This advantage also implies the usage of partial replication method can reduce the 

system’s requirement for large sized cache but achieve comparable performance with 

the selective and normal replication methods with large cache used. 

30%

40%

50%

60%

70%

80%

90%

5 10 15 20

Cache Size (MB)

R
ep

lic
a 

H
it 

R
at

io

gds
selective-gds
partial-gds

 

30%

40%

50%

60%

70%

80%

90%

5 10 15 20

Cache Size (MB)

R
ep

lic
a 

H
it 

R
at

io

lfu
selective-lfu
partial-lfu

 
(a) GDS-based Replication Methods (b) LFU-based Replication Methods 

Figure 7.11 Replica Hit Ratio 



 168 

30%

35%

40%

45%

50%

55%

60%

65%

70%

5 10 15 20

Cache Size (MB)

R
et

rie
va

l D
is

ta
nc

e
gds
selective-gds
partial-gds

30%

35%

40%

45%

50%

55%

60%

65%

70%

5 10 15 20

Cache Size (MB)

R
et

re
iv

al
 D

is
ta

n
ce

lfu
selective-lfu
partial-lfu

 
(a) GDS-based Replication Methods (b) LFU-based Replication Methods 

Figure 7.12 Retrieval Distance 

The results also show that the partial LFU method outperforms the partial GDS 

method. This further supports our previous argument that the LFU algorithm is more 

effective than the GDS algorithm for service replication in the Pastry network. More 

results about the LFU-based replication methods are shown in Figure 7.13 and Figure 

7.14, where the node’s cache size is set to 5MB. At the beginning of simulation all 

methods achieve similar performance, because most queries are served by the home 

nodes in this period. After 50,000 queries are issued, both the selective method and 

the normal method reach the maximum performance, whereas the system 

performance of the partial replication method continues to improve. This is because, 

in the rear phase of simulation, the partial replication methods can still replicate many 

partial services in the network, so that the system performance can continue to 

improve. 



 169 

10%

20%

30%

40%

50%

60%

70%

80%

0 50 100 150 200
Queries (thousand)

R
e

p
lic

a
 H

it
 R

a
ti

o

lfu
selective-lfu
partial-lfu

 

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200
Queries (thousand)

R
e

tr
ie

va
l D

is
ta

n
ce

lfu
selective-lfu
partial-lfu

 
Figure 7.13 Replica Hit Ratio Figure 7.14 Retrieval Distance 

Figure 7.15 shows the replication costs of the LFU-based replication methods. 

The partial and selective methods cause significantly lower replication cost than the 

normal method, because both methods replicate to high utility nodes and cause less 

thrash replication traffic. In specific, the replication cost for the partial method is 

slightly higher than that of the selective method, because it can partially replicate 

some services, which are unbeneficial as a whole and rejected to be replicated by the 

selective method. 

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200

B
ill

io
ns

Queries (thousand)

R
ep

lic
at

io
n 

C
os

t

lfu
selective-lfu
partial-lfu

 
Figure 7.15 Replication Costs 

Finally, Figure 7.16 presents the computation loads for the two partial 

replication methods and the other replication methods (including the normal and 

selective replication methods). In our simulation environment, the actual system 



 170 

computation load cannot be got directly. Therefore, we count the times the ANlet 

applications are executed by all nodes to estimate the system computation load. Since 

we count the average computation load for every 4,000 queries and our service 

workflow contains 2 ANlets, the figure shows that the measured computation load for 

the normal and selective replication methods is strictly 8,000. It means there is no 

computation saving for using these methods. In comparison, the two partial 

replication methods achieve less computation load because some queries can be 

served by the partial service that starts from the intermediate object. Furthermore, the 

computation loads of the partial replication methods reduce continuously. It means 

that, with more queries being issued, more numbers of partial services are populated, 

so that the overall computation load is reduced accordingly. 

6800

7000

7200

7400

7600

7800

8000

8200

0 50 100 150 200

Queries (thousand)

C
o

m
pu

ta
tio

n
 L

o
ad

other

partial-gds

partial-lfu

 
Figure 7.16 Computation Loads 

In summary, the simulation results show that the partial replication methods are 

effective to improve the overall performance through flexible service replication. 

They introduce slightly higher replication cost than the selective replication method, 

but the significant improvement on the content retrieval distance, the replica hit ratio, 

and the computation load. The partial replication methods exhibit particularly good 



 171 

performance when small service cache is applied, and it suggests these methods can 

reduce the system’s requirement on the cache size. 

7.4 Pointers Cache 

This section discusses another important issue in the system: how to store and 

reuse the response objects. This can avoid some repeated service executions and 

reduce the computation load in the system. A straightforward method is to use the 

“reverse cache”. This method requires each node maintain a reverse cache to store the 

execution results of local services. When this node receives a new query for the same 

content object, it can reuse the cached object rather than executing the service again. 

However, the drawback of this method is that the objects stored in one reverse cache 

can only be reused by the local node. This limits the overall object reuse rate in the 

network. 

We propose the “pointers cache” method that enables to reuse the response 

objects from distributed nodes. The method requires each node to maintain a response 

cache to store the retrieved response objects. Asking the requesting nodes to store the 

response objects is because: (i) these nodes are the natural places to store the response 

objects; (ii) letting the content consumer to share some of its resource is helpful to 

efficient resource utilization in the P2P network. 

Now, the problem is how to reuse these objects cached on the distributed nodes. 

Because the requesting nodes are randomly distributed in the id ring, storing the 

response objects on them will result in the random distribution of objects within the id 

ring. According to the Pastry routing protocol, such random object distribution can 

only achieve very limited replica reuse. To solve this problem, our method lets all 

nodes also maintain a “pointers cache”, which stores a set of pointers, each tells which 

node is probably caching what object. When a requesting node retrieves a response 



 172 

object, it stores the object in the response cache and sends an ACK message into the 

network. The ACK message carries the same id as the retrieved response object. The 

message also includes the attributes about the retrieved object and the address of this 

requesting node. As the ACK message has the same id as the corresponding query 

message that fetched the object, it will pass through the same intermediate nodes as 

the corresponding query message and finally reach the same serving node that 

generated the response object. When these nodes receive the ACK message, each of 

them will create a pointer in the local pointers cache. The pointer information includes 

the id and the attributes of the referred content object, and the address of the ACK 

message sender. 

When a node receives a query message, it should operate according to the 

flowchart in Figure 7.17. It first checks if the local response cache stores the queried 

object. If the query hits the response cache, the object is sent back to the requesting 

node directly. Otherwise, the node searches in the pointers cache to see whether other 

nodes are probably caching the objects. If the query hits the pointers cache, it is 

forwarded to that pointed node. However, if no pointer is useful, the node will 

continue the normal AN.P2P process – it serves the query using the local service 

replica or routes the query to another node. 

 
Figure 7.17 Operations Flowchart 



 173 

As each node can only provide limited space to store the response objects, the 

formerly retrieved objects could be replaced by the recently retrieved objects. 

Meanwhile, any node may leave the network due to various reasons. These two 

aspects cause the pointers in the pointers cache to become stale. Hence, before a node 

forwards a query to the pointed node, it needs to send a probe message to the pointed 

node, asking whether this node is stilling storing the claimed object. If getting the 

positive response, the node will forward the query to the pointed node. However, if 

the pointed node is no longer active or returns a negative reply, the node will remove 

the stale pointer and try other pointers. 

An important issue about the pointers cache method is how this method would 

affect the final content retrieval distance. We argue that, even though this method may 

introduce an additional query hop, it will not enhance the content retrieval distance 

significantly and actually can reduce it in many situations.  

Figure 7.18 shows a Pastry network, where node p1 sends a query that is 

forwarded to nodes p2 and p3. We suppose p3 has a service replica and it also keeps 

pointers to nodes p4, p5 and p6 for the queried content. If p3 receives the query, it will 

forward the query to any of p4, p5 and p6, rather than executing the local service. Let r 

denote the distance between p2 and p3. In the Pastry network, the expected distance 

traveled by a message during each successive routing step is exponentially increasing 

with base 2b. Thus, the nodes pointed by p3 should reside in a circle of radium 

rrrrrr
b

b

ibbbi 12

2
)

)2(

1

)2(

1

2

1
(lim'

21 −
=++++=

∞

=
L  and centered at p3. Given the 

default value of b is 4, we have rr
15

16
'= . Thus, in the worse case the maximum 

distance between the pointed node and p2 is rrr
15

31
'=+ . Hence, we can conclude the 



 174 

usage of pointers would not increase the content retrieval distance greatly. In actual 

implementation, we can choose a node that is the nearest to the requesting node (e.g. 

node p6 in the figure), by using the distance measurement function of Pastry. This can 

significantly reduce the retrieval distance. 

 
Figure 7.18 Range of the Pointed Nodes (1) 

Moreover, as the ACK message are populated to all nodes in the path, it makes 

some query messages to be forwarded to the pointed node before it reaches a node 

with the service replica. An example is shown in Figure 7.19, where only p7 stores the 

service replica and p3 keeps pointers for the queried content. In this case, p3 can 

directly determine a node to reply p1, and the distance between p3 with the pointed 

node is rr
b

b

12

2
'

−
= . However, without using the pointers, the query would be routed 

to p7, and the distance between p3 and p7 is rr b2"= . Given b = 4, we have rr
15

16
'=  

and rr 16"= . As "' rr << , it indicates that the content retrieval distance can be 

greatly reduced. 



 175 

 
Figure 7.19 Range of the Pointed Nodes (2) 

7.4.1 Simulation Results 

Our simulation compares the pointers cache method and the reverse cache 

method. For precise comparison, we used the selective LFU method to replicate 

services, so that all computation load reduction is due to the usage of the compared 

two methods. The simulation results are as follow. 

For simplicity, we call the reverse cache and the response cache as the “object 

cache”. The hit ratio for object cache denotes the percentages of queries served by the 

stored response objects instead of executing the content services. Figure 7.20 shows 

the object cache hit ratio for the two methods, and it indicates the pointers cache 

method achieves higher hit ratio than the reverse cache method. This is because, in the 

pointers cache method, the propagated pointers make the objects cached at a node to 

be reused by other nodes, whereas the reverse cache method can only reuse objects 

locally. 

Figure 7.21 shows the system computation load. The results indicate both 

methods can continuously reduce the computation load with the increase of object 



 176 

cache size. The pointers cache method outperforms the reverse cache method, because 

this method achieves higher object reuse than the reverse cache method. 

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.5 1 2 4

Object Cache Size (MB)

O
bj

ec
t C

ac
h

e 
H

it 
R

at
io

pointer-cache

reverse-cache

70%

75%

80%

85%

90%

95%

0.5 1 2 4

Object Cache Size (MB)

C
om

p
ut

at
io

n 
Lo

ad

pointers cache

reverse cache

Figure 7.20 Object Cache Hit Ratio Figure 7.21 Computation Load 

Figure 7.22 (a) and (b) respectively present the object cache hit ratio and the 

system computation load against the number of queries. At the beginning, both 

methods achieve similar performance. With more queries being issued, the pointers 

cache method outperforms the reverse cache method. This is because after some 

amounts of queries are issued, the system adopting the pointers cache method has 

propagated sufficient numbers of pointers in the network. Therefore, the reuse rate of 

the response objects is improved greatly. In addition, comparing Figure 7.22 (b) and 

Figure 7.16, we see that the computation load reduction due to using the partial 

replication methods is much lower than using the pointers cache method. This 

suggests even if the partial replication method is applied, the proposed pointers cache 

method can still contribute to the major reduction of computation load. 



 177 

0%

10%

20%

30%

40%

50%

0 20 40 60 80 100

Queries (thousand)

O
b

je
ct

 C
ac

h
e 

H
it 

R
at

io

pointer-cache

reverse-cache

 

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 20 40 60 80 100

Queries (thousand)

C
o

m
p

u
at

io
n

 L
oa

d

pointer-cache
reverse-cache

 
(a) Object Cache Hit Ratio  (b) Computation Load 

Figure 7.22 System Performance against the Number of Queries 

We also measured the system’s content delivery efficiency, such as the average 

query hops and the content retrieval distance. The results are as follow. 

Figure 7.23 presents the average query hops. As explained, the pointers cache 

method may introduce an additional hop to forward the query to the pointed node. 

This fact is shown in the figure that, at the beginning of simulation, the number of 

query hops for the pointers cache method is slightly higher than that of the reverse 

cache method. However, after 20,000 queries are issued, the number of query hops for 

the pointers cache method becomes lower than that of the reverse cache method. This 

is because, in the rear phase of simulation, large numbers of pointers are propagated, 

so that many queries can be served before they reach a service replica. At the result, 

the pointers cache method gets less query hops than the reverse cache method. 

Figure 7.24 shows the similar trend on the content retrieval distance. At the 

beginning of simulation, the retrieval distance for the pointers cache method is 

slightly larger than that of the reverse cache method. This shows that the pointers 

cache method would not prolong the retrieval distance significantly. After 20,000 

queries are issued, the retrieval distance for the pointers cache method becomes less 



 178 

than that of the reverse cache method, because many queries can be served from the 

nearby object replicas before they reach the service replicas. 

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

0 20 40 60 80 100

Queries (thousand)

Q
ue

ry
 H

op
s

pointer-cache

reverse-cache

 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Queries (thousand)

R
et

re
iv

al
 D

is
ta

nc
e

pointer-cache

reverse-cache

 
Figure 7.23 Query Hops Figure 7.24 Retrieval Distance 

The following part of simulation looks into the pointers cache method for more 

details. When a query is received the node searches the reusable pointers in its 

pointers cache. There are three search possibilities: cache miss, cache stale, and cache 

hit. If the pointers cache does not have the matching pointer, we call this situation as 

“cache miss”. However, if the node finds the matching pointers, this situation is called 

“cache found”. But, the found pointers could be useful or useless, depending on the 

probing results. The found pointer may be stale and we call this situation “cache 

stale”. If the found pointer carries the up-to-date information, this situation is called 

“cache hit”. For the pointers cache method, the ratio of cache-stale and cache-hit 

reflects the quality of the stored pointers. Figure 7.25 displays the measured 

percentages of cache-stale and cache-hit in the cache-found situation. With larger 

response cache being applied, the pointers cache’s hit ratio will improve, and 

accordingly the cache-stale ratio will drop. It is because with large response cache, 

more response objects can be stored, so that the pointers are more likely to point to 

the valid object replicas. Thus, enhancing the size of response cache can improve the 

validity of the stored pointers. 



 179 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 2 4

Object Cache Size (MB)

P
e

rc
e

n
ta

g
e

p-stale

p-hit

 
Figure 7.25 Percentages of Cache-Stale and Cache-Hit  

Figure 7.26 presents the number of probe messages needed to find a valid 

pointer, where curve “probe-average” denotes the number of probe messages 

averaged over the total number of queries, while curve “probe-found” denotes the 

number of probe messages averaged over the number of the cache found queries. The 

values of “probe-found” are around 1.1, and it means when a node finds the matching 

pointers it needs in average 1.1 probe messages. This low value is because our 

pointers cache always probes from the newest pointer, and such node is much likely 

still caching the announced object. Thus, in many situations, we can find the valid 

pointer in the first probe. Meanwhile, the values of “probe-average” are around 0.6, 

and it means for every query the system only needs to fire around 0.6 probe messages. 

The results indicate the pointers cache method causes negligible numbers of probe 

messages in the network. 



 180 

0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 2 4

Object Cache Size (MB)

P
o

in
te

r 
P

ro
b

e
 O

ve
rh

e
a

d
s

probe-found

probe-average

 
Figure 7.26 Pointer Probe Overheads 

Finally, Figure 7.27 shows the system performance where we varied the number 

of pointers kept by each node from 8 to 1000. Figures (a) and (b) show that keeping 

more pointers is helpful to reduce the computation load and improve the hit ratio of 

the response cache. When the number of pointers is less than 100, the system perform 

improves at the beginning but drops quickly with more queries being issued. This is 

because, at the beginning of simulation, both the pointers caches and the response 

caches are not filled yet. Thus, the first few announced pointers are all pointing to the 

valid object replicas, so that the system computation load reduces sharply due to the 

usage of these valid pointers. However, with more queried being issued, more 

response caches are saturated and the old response objects are replaced by the recently 

downloaded objects. In this situation, if the capacity of the pointers cache is small, the 

node cannot get sufficient number of pointers to track the object replicas, and those 

few pointers kept are likely pointing to the staled replicas. As the result, the cache hit 

ratio drops and the computation load increases accordingly. However, if each node 

can maintain larger numbers of pointers, the system can efficiently track the object 

replicas and be more tolerant to the staled replicas. Since the pointer is a piece of 

soft-state information, maintaining over 1,000 pointers should not cause much storage 

overhead on the node. Figure (c) shows that keeping more pointers would not cause 



 181 

the number of probe messages to increase considerably. Hence, the results show 

keeping more pointers on each node is a feasible way to improve the system 

performance. 

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 20 40 60 80 100
Queries (thousand)

C
o

m
p

u
ta

tio
n

 L
o

a
d

8 pointers 40 pointers
200 pointers 1000 pointers

 

0%

10%

20%

30%

40%

50%

0 20 40 60 80 100

Queries (thousand)
O

b
je

ct
 C

ac
h

e 
H

it 
R

at
io

8 pointers 40 pointers

200 pointers 1000 pointers
 

(a) Computation Load (b) Object Cache Hit Ratio 

0

0.2

0.4

0.6

0.8

1

1.2

8 40 200 1000

Number of Pointers

P
o

in
te

r 
P

ro
b

e 
O

ve
rh

ea
d

s

p -found

p-found-average

 
(c) Probe Overhead 

Figure 7.27 Pointers Cache Performance for Different Pointer Numbers 

In summary, the simulation results show the pointers cache method is effective 

to reuse the response objects cached by the distributed nodes. This method is more 

efficient than the reverse cache method because it makes use of the shared storage 

space on different nodes whereas the reverse cache only uses the local storage space. 

Furthermore, the results indicate that (i) maintaining large numbers of pointers can 

achieve higher system performance without enhancing the probing overhead 



 182 

considerably, and (ii) applying large response cache can improve the validity of the 

stored pointers. 

7.5 Summary 

This chapter explains the detailed structure for our AN.P2P system. Three 

mechanisms are proposed to achieve high system performance. Firstly, we propose to 

use the Pastry routing information to perform selective service replication. The 

simulation results indicate such selective replication method can reduce the 

replication cost significantly and increase the system performance, such as the 

replica-hit ratio and the content retrieval distance. Secondly, we propose to replicate 

partial service according to the service’s utility and the relevant replication overhead. 

The simulation results show such fine-grained replication strategy can further improve 

the system performance and make the system perform particularly well with small 

caches applied. Finally, we propose the pointers cache method to avoid repeated 

service execution. The simulation results show our method can leverage the shared 

storage space on different nodes and reduce the overall computation load considerably, 

but generating negligible overhead. 



 183 

CHAPTER 8  

CONCLUSIONS 

8.1 Contributions 

This thesis reports our study on the Application Networking framework for 

pervasive content delivery. The general framework is firstly proposed, followed by 

in-depth study on two concrete systems, App.Net and AN.P2P, that apply the 

framework into the Web and P2P content delivery contexts. The main contributions of 

our research work are summarized as follow. 

(1) Application Networking Framework 

Observing the common drawback of existing content delivery systems, we 

propose the Application Networking framework to integrate the content delivery and 

content transformation processes as the unified service delivery process. Due to this 

change, our framework can achieve some advantages that are not provided by the 

conventional frameworks. These include preserving the content semantics, improving 

the system scalability on adopting new applications, and achieving efficient content 

delivery through fine-grained service deployment. 

Our framework uses workflow to organize the content transformation 

operations as a well-defined service. The workflow is a loosely coupled structure, 

which enables the framework to deliver an intermediate response object with the 

partial service. It generalizes the traditional content delivery methodologies that are 

based on either the original content or the final content presentation. More 



 184 

importantly, this flexibility allows the system to achieve efficient content delivery by 

sending different responses in the most beneficial ways. 

Our framework also proposes a metadata-based method to enable the general 

purposed as well as service-oriented content reuse, which is not provided by the 

conventional type-oriented reuse methods. 

(2) App.Net System 

Our research proposes the App.Net system, which applies the Application 

Networking framework in the Web context. The system extends the HTTP 1.1 

protocol and provides new caching mechanism to enable caching and reusing 

different versions of response on the Web proxy. We also propose performance 

models for both dynamic and static content services. Based on them, the service 

placement algorithm is provided to obtain the optimal service placement with the 

minimum server-to-proxy transmission cost. 

The efficacy of our system is verified through a series of simulations. The first 

group of simulations divides the existing Web applications into several categories, 

and chooses a representative from each category to test. The results show our system 

can gain considerable performance improvement for a wide range of applications. The 

second group of simulations measures the effectiveness of our placement algorithms 

based on a sample workflow. The results show the App.Net system can resolve the 

optimal service placement, and it makes our system to outperform the conventional 

server-based and proxy-based solutions. 

(3) AN.P2P System 

We also extend our framework to the P2P network, and the research is explored 

in two phases: the general AN.P2P methodology and a concrete AN.P2P system. 



 185 

The AN.P2P methodology explains how to apply service replication in the 

Pastry network and shows the advantage of this method over the traditional system 

that replicates the response objects. A mathematical model is built for the Pastry 

network, and the quantitative analysis indicates, in the heterogeneous query 

environment, service replication is more beneficial than the object replication in term 

of reducing the overall query hops number. More advantages of our methodology are 

explored in the simulation, such as reducing the retrieval distance, smoothing the 

replication traffic, and being tolerant to the node failure. 

The second phase of research proposes a detailed AN.P2P system, which uses 

dedicated mechanisms to implement cost effective service replication and content 

reuse: (i) the selective replication method can replicate services to nodes with high 

reuse rate; (ii) the partial replication method enables fine-grained service replication 

according to the utility and delivery overhead of different service segments; and (iii) 

the pointers cache method enables efficient content reuse among distributed nodes, 

but incurring negligible overhead. The simulation results show that the usage of these 

mechanisms further pushes up the system performance and makes AN.P2P an 

efficient P2P platform for pervasive content delivery. 

8.2 Future Work 

This research focuses on presenting the efficacy and efficiency of the 

Application Networking framework. However, there are many other topics to be 

further explored, such as: (i) the metadata and specification languages, (ii) the system 

security, (iii) further performance study, and (iv) the content grid architecture.  

(1) Metadata and Specification Languages 

Metadata and the relevant specification languages are the essential approaches 

to regulate the content reuse, service delivery, and content transformation operations 



 186 

in the framework. Our current study leverages some existing specification languages. 

However, there would be more work to be done to provide the full-featured 

specifications. 

The p-language [BR03], used for describing the configuration rules, should be 

extended to fit more requirements of the framework. Current p-language provides the 

basic vocabulary to represent the system entities and their relevant properties. This 

vocabulary should be extended to a wider range, so that the framework can identify 

more aspects about the content’s properties, the client’s requirements, and the other 

network and system conditions. Moreover, the rule language should be able to define 

multi-choice operations, each with a specific priority, so that the processing nodes can 

choose an appropriate option from them. In addition, the ruling language should 

provide utilities to detect and handle the conflicts and errors in the rules. 

It is worthy to provide the well-defined metadata to describe the content’s 

properties and the client’s requirements. The metadata vocabulary should be 

extensible so that new properties and requirements can be added. In addition, it is 

important to construct a mapping mechanism between the client’s requirements and 

the content properties, so that the system can perform correct content reuse and 

transformation. 

It is also worthy to provide the metadata for the application. It should describe 

the application’s functionality and the relevant features. The functionality metadata 

helps the node to perform correct application searching and reuse. In addition, other 

relevant specifications are wanted to describe the application’s requirements to the 

system, such as the peak execution load and the storage size. Such information 

facilitates the network node to manage the system resource efficiently. 



 187 

Finally, but importantly, it is worthy to improve the workflow structure to 

include some complex logics, such as looping. Present workflow intends to put such 

complicated logics inside of the application implementation, whereas moving them 

into the workflow would make the content manipulation and service placement more 

flexible. 

(2) System Security 

In order to achieve a secure framework, we need to study the security issues 

related to the content integrity, the authentication for the execution nodes and the 

applications, and the protection of client privacy. 

It is worthy to protect the content integrity when the content is transformed by 

the intermediate nodes. Although the workflow specifies the wanted operations, the 

framework needs to guarantee that all network nodes do follow those directives so 

that the integrity of the final content can be maintained. Moreover, it is necessary to 

establish the authentication between the origin site and the intermediate nodes. Based 

on such authenticity, the framework can make sure the content services are received 

from or delivered to the trusted parties. In addition, it is important to consider the 

security issues related to the dynamic application execution, such as how many local 

resources can be accessed and which third-party nodes can be contacted by the 

downloaded applications. Finally, it is also worthy to protect the client’s privacy 

especially when a downloaded application is to access the client’s personal profile. 

Our future framework should include these security solutions. 

(3) Further Performance Study 

The present App.Net and AN.P2P studies treat the network transmission cost as 

the major performance metric. However, other factors like the computation load are 

also important. It would be significant to consider the computation factor in the future 



 188 

study. Relevant load balancing and off-loading mechanisms should be provided. 

Furthermore, the system should be able to trade off between the network transmission 

cost and the system computation load for better quality of service and user experience. 

It is also worthy to strengthen the service placement mechanism by enabling to 

deliver the service to a cluster of nodes that work collaboratively. In specific, the 

performance study would address how to cluster the network nodes dynamically, how 

to distribute the service segments within the cluster, how to propagate the request or 

P2P search to the correct cluster, and how to maintain the robust service that is 

tolerable to node failure in the cluster. 

(4) Content Grid Infrastructure 

We are exploring a new infrastructure to provide the unified Application 

Networking mechanism over dissimilar content delivery systems, including Web 

proxy, CDN and P2P. The new infrastructure is named as the Content Grid (CG), 

which is aimed to leverage the respective advantages of the composing sub-systems to 

perform content delivery and service placement. 

There are several key challenges in the CG system. First, we need to define a set 

of full-featured system protocols to implement the unified content query, request 

distribution and service placement mechanisms over the dissimilar sub-systems. 

Secondly, a service subscription protocol is also needed, allowing the network nodes 

to join the grid and use its shared resource. Thirdly, we need to find out how to 

construct the grid architecture to make it compatible with the contemporary Service 

Oriented Architecture (SOA). In addition, the load balancing and service placement 

algorithms are to be built in the system. We have done some studies on the content 

grid, and the preliminary results are reported in our papers at SCC’06 and SKG’06. It 

is of our great research interest to strengthen this study in the future.



 189 

Reference 

[AAB03] L. Alimal, S. El-Ansary, P. Brand,S. Haridi, “DKS(N, k, f): a family of 

low communication, scalable and fault-tolerant infrastructures for P2P 

applications”, Proceedings of the 3rd IEEE/ACM International 

Symposium on Cluster Computing and the Grid, 2003. 

[Ajax] Asynchronous JavaScript and XML (Ajax), [online], 

http://en.wikipedia.org/wiki/Ajax_(programming) 

[Aka] Akami, [online], http://www.akami.com. 

[AR98] A. Arrarwal, M. Rabinovich, “Performance of Dynamic Replication 

Schemes for an Internet Hosting Service”, Technical Report, AT&T Labs, 

October 1998. 

[AS04] M. Amnefelt, J. Svenningsson, “Keso - A Scalable, Reliable and Secure 

Read/write Peer-to-peer File System”, Master Thesis, May 2004. 

[B02] V. Berstis, “Fundamentals of Grid Computing”, http://www.globus.org. 

[Bam] Bamboo-DHT Website, http://bamboo-dht.org/ 

[BBC02] A. Barbir, E. Burger, R. Chen, “OPES Use Cases and Deployment 

Scenarios”, 

http://www.ietf.org/internet-drafts/draft-ietf-opes-scenarios-01.txt, Aug. 

2002. 

[BBG00] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, D. Zukowski, 

“Challenges: An Application Model for Pervasive Computing”, 

Proceedings of the 6th Annual ACM/IEEE International Conference on 

Mobile Computing and Networking, 2000. 

[BCF99] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web Caching and 

Zipf-like Distributions: Evidence and Implications, INFOCOM,1999.  

[BCH04] A. Barbir, R. Chen, M. Hofmann, etc., “An Architecture for Open 

Pluggable Edge Services”, www.ietf.org/ 

internet-drafts/draft-ietf-opes-architecture-04.txt.  

[BCZ97] S. Bhattacharjee, K. Calvert and E. Zegura, “An Architecture for Active 

Networking”, Proceedings of High Performance Networking (HPN'97), 

White Plains, NY, April 1997. 



 190 

[BH98] P. Bhagwat, R. Han, R. etc. “Dynamic Adaptation in an Image 

Transcoding Proxy for Mobile Web Browsing”, Proceedings of IEEE 

Personal Communication, 1998. 

[BH01] A. Beck, M. Hofmann, “IRML: A Rule Specification Language for 

Intermediary Services”, 

http://standards.nortelnetworks.com/opes/non-wg-doc/draft-beck-opes-irm

l-02.txt, 2001. 

[BitC] “Bit Comet”, http://www.bitcomet.com/ 

[BitS] “Bit Spirit”, http://www.167bt.com/intl/ 

[BJA98] H. Bharadvaj, A. Joshi, S. Auephanwiriyahul, “An Active Transcoding 

Proxy to Support Mobile Web Access”, Proceedings of IEEE Symposium 

on Reliable Distributed Systems”, 1998. 

[BK01] S F Bush, A B Kulkarni. Active Networks and Active Network 

Management – A Proactive Management Framework. Kluwer Academic 

/Plenum Publishers. 2002. 

[BO00] G. Barish, K. Obraczka, World Wide Web Caching: Trends and 

Techniques, IEEE Comm Magazine. Vol.38 Iss.5 May 2000. 

[BR03] A. Beck, A. Rousskov, “P: Message Processing Language”, 

http://tools.ietf.org/html/draft-ietf-opes-rules-p-02, 2003. 

[Bpel] “Business Process Execution Language for Web Services version 1.1”, 

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/ 

[BPH04] A. Butt, S. Patro, Y. C. Hu, “On the Equivalence of Forward and Reverse 

Query Caching in Peer-to-Peer Overlay Networks”, Proceedings of the 9th 

International Workshop on Web Content Caching and Distribution, 2004. 

[BPT03] F. Bagci, J. Petzold, W. Trumler, T. Ungerer, “Ubiquitous Mobile Agent 

System in a P2P Network”, Proceedings of the UbiSys Workshop at the 

Fifth Annual Conference on Ubiquitous Computing, 2003. 

[BS01] S. Buchholz, A. Schill, “Web Caching in a Pervasive Computing World”, 

Proceedings of the 7th ACM/IEEE International Conference on Mobile 

Computing and Networking, 2001. 

[BT] Bit Torrent, [online], http://bittorrent.com. 

[C99] P. Chen, “On the Study of Watermarking Application in WWW – 

Modeling, Performance Analysis and Applications of Digital Image 



 191 

Watermarking Systems”, Master Thesis of Dept of EE, National Tsing 

Hua Unv., 1999. 

[Carp97] “Cache Array Routing Protocol (CARP) and Microsoft Proxy Server 2.0”, 

http:// www.microsoft.com/technet/archive/proxy/prxcarp.mspx 

[CB96] M. E. Crovella, A. Bestavros, “Self-Similarity in World Wide Web Traffic: 

Evidence and Possible Causes”, Proceedings of the ACM International 

Conference on Measurement and Modeling of Computer Systems, 1996. 

[CC02] C-H. Chi, Y. Cao, “Pervasive Web Content Delivery with Efficient Data 

Reuse”, Proceedings of 7th International Workshop on Web Content 

Caching and Distribution, 2002. 

[Ccpp] Composite Capabilities/Preference Profiles, 

http://www.w3.org/Mobile/CCPP/. 

[CDK03] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron, A. 

Singh, “SplitStream: High-bandwidth Multicast in a Cooperative 

Environment”, Proceedings of Symposium of Operating Systems 

Principles, New York, October 2003. 

[CP05] C-H. Chi, H. N. Palit, “Modulation for Scalable Multimedia Content 

Delivery”, Proceedings of the 6th International Conference on Web-Age 

Information Management, 2005. 

[CI97] P. Cao, S. Irani, “Cost-Aware WWW Proxy Caching Algorithms”, 

Proceedings of USENIX Symposium on Internet Technologies and 

Systems, 1997. 

[CIW00] J. Challenger, A. Iyengar, K. Witting, “A Publishing System for 

Efficiently Creating Dynamic Web Content”, Proceedings of INFOCOM, 

2000. 

[CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms”, 

MIT Press, 1990. 

[CMI99] S. Chandrasekaran, S. Madden, M. Ionescu, “Ninja Paths: An Architecture 

for Composing Services Over Wide Area Networks”, 

http://ninja.cs.berkeley.edu/dist/papers/path.ps.gz. 

[CMZ03] Y. Chen, W. Ma, H. Zhang, “Detecting Web Page Structure for Adaptive 

Viewing on Small Form Factor Devices”, Proceedings of 12th 

International World Wide Web Conference, May 2003. 



 192 

[CN03] Y. Cui, K. Nahrsdedt, “Layered Peer-to-Peer Streaming”, Proceedings of 

the 13th ACM International Workshop on Network and Operating Systems 

Supports for Digital Audio and Video (NOSSDAV’03), 2003. 

[Com] Component Object Model Techniques, 

http://www.microsoft.com/com/default.mspx 

[Corba] OMG’s CORBA website, http://www.corba.org/. 

[CRB03] Y. Chawathe, S. Ratnasamy, L. Breslau, S. Shenker, "Making 

Gnutella-like P2P Systems Scalable", In Proceedings of the ACM 

SIGCOMM, August 2003. 

[CRK05] F. Chen, T. Repantis, V. Kalogeraki, “Coordinated Media Streaming and 

Transcoding in Peer-to-Peer Systems”, Proceedings of 19th International 

Parallel and Distributed Processing Symposium, 2005. 

[CY03] R. Y. Chen, B. Yeager, “Java Mobile Agents on Project JXTA 

Peer-to-Peer Platform”, Proceedings of the 36th Hawaii International 

Conference on System Sciences (HICSS’03), 2003. 

[CYH00] V. Cardellini, P. S. Yu, Y. Huang, “Collaborative Proxy System for 

Distributed Web Content Transcoding”, Proceedings of the 9th 

International Conference on Information and Knowledge Management. 

p.520-527, Nov, 2000. 

[CS02] E. Cohen, S. Shenker, “Replication Strategies in Unstructured Peer-to-peer 

Networks”, Proceedings of SIGCOMM Conference, 2002. 

[CZB98] P. Cao, J. Zhang, K. Beach, “Active Cache: Caching Dynamic Contents on 

the Web”, Proceedings of IFIP International Conf. on Distributed Systems 

Platforms and Open Distributed Processing, Sept. 1998.  

[CZS03] J. Chen, B. Zhou, J. Shi, H-J. Zhang, F. Qiu, “Function-based Object 

Model towards Website Adaptation”, Proceedings of 10th International 

WWW Conference, 2001. 

[H06] P. Howard, “SOA and Information Services”, Bloor Research Report. 

2006. 

[DB04] G. Ding, B. Bhargava, “Peer-to-Peer File-Sharing over Mobile Ad Hoc 

Networks”, Proceedings of 2nd IEEE Annual Conference on Pervasive 

Computing and Communications Workshops, 2004. 

[DCG01] R. P. Doyle, J. S. Chase, S. Gadde, A. M. Vahdat, “The Trickle-Down 

Effect: Web Caching and Server Request Distribution”, Proceedings of 6th 



 193 

International Workshop on Web Caching and Content Distribution, USA, 

2001. 

[DDT02] A. Datta, K. Dutta, H. Thomas, etc., “A Proxy-based Approach for 

Dynamic Content Acceleration on the WWW”, Proceedings Fourth IEEE 

International Workshop on Advanced Issues of E-Commerce and 

Web-Based Information Systems, 2002. 

[DHR97] F. Douglis, A. Haro, M. Rabinovich, “HPP: HTML Macro-Preprocessing 

to Support Dynamic Document Caching”, Proceedings of USENIX 

Symposium on Internetworking Technologies and Systems, 1997. 

[Dig] Digital Island, http://www.digitalisland.co.nz/ 

[Dik04] M. Dikaiakos, “Intermediary Infrastructures for the WWW”, Proceedings 

of Computer Networks: The International Journal of Computer and 

Telecommunications Networking, Volume 45, Issue 4, July, 2004. 

[DKK01] F. Dabek, M. F. Kaashoek, D. Karger, “Wide-area Cooperative Storage 

with CFS”, Proceedings of Symposium of Operation System Principles, 

2001. 

[Dom] W3C Document Object Model, http://www.w3.org/dom. 

[Dou04] B. Dournaee, “Introduction to ebXML”, 

http://dev2dev.bea.com/pub/a/2004/12/ebXML.html 

[DZD03] F. Dabek, B. Zhao, P. Druschel, I. Stoica, “Towards a Common API for 

Structured Peer-to-Peer Overlays”, Proceedings of 2nd International 

Workshop on Peer-to-Peer Systems, 2003. 

[EC03] J. Elson, A. Cerpa, “Internet Content Adaptation Protocol (ICAP)”, 

http://www.i-cap.org/spec/rfc3507.txt, 2003. 

[Erl05] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and 

Design”, Prentice Hall PTR, Aug 2005. 

[Esi] Edge Side Includes, http://www.esi.org. 

[FB96] A. Fox, E. A. Brewser, “Reducing WWW Latency and Bandwidth 

Requirements by Real-time Distillations”, Proceeding of 5th International 

WWW Conference, May, 1996. 

[FCA00] L. Fan, P. Cao, J. Almeida, A. Z. Broder, “Summary Cache: A Scalable 

Wide-area Web Cache Sharing Protocol”, Proceedings of IEEE/ACM 

Transactions on Networking, Vol. 8, No. 3, June 2000. 



 194 

[Free] The Free Network Project – Wiring the Internet, [online], 

http://freenet.sourceforge.net/ 

[FG98] M. Fry, A. Ghosh, “Application Level Active Networking”, Proceedings 

of Computer Networks, 1998. 

[FGC98] A. Fox, S. D. Gribble, Y. Chawathe, “Adapting to Network and Client 

Variation Using Active Proxies: Lesson and Perspectives”, Proceedings in 

a special issue of IEEE Personal Communication on Adaptation, 1998. 

[FKN02] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, “The Physiology of the 

Grid - an Open Grid Services Architecture for Distributed System 

Integration”, http://www.globus.org/research/papers/ogsa.pdf. 

[FSA01] X. Fu, W-S Shi, M. Allen, V. Karamcheti, “CANS: Composable, Adaptive 

Network Services Infrastructure”, Proceedings of USENIX on Internet, 

2001. 

[FSK01] X. Fu, W-S. Shi, V. Karamcheti, “Automatic Deployment of Transcoding 

Components for Ubiquitous, Network-Aware Access to Internet Services”, 

Tech Report, 2001. 

[GDH01] R. Grimm, J. Bavis, B. Hendrickson, E. Lemar, A. Beth, S. Swanson, T. 

Anderson, B. Bershad, G. Borriello, S. Gribble, D. Wetherall, “System 

Directions for Pervasive Computing”, Proceedings of the 8th Workshop on 

Hot Topics in Operating Systems, Germany, May 2001. 

[GDN03] L. Gao, M. Dahlin, A. Nayate, J. Zheng, “Application Specific Data 

Replication for Edge Services”, Proceedings of International WWW 

Conference, 2003. 

[GDS03] K. P. Gummad, R.J. Dunn, S. Saroiu, “Measurement, Modeling, and 

Analysis of a Peer-to-peer File-Sharing Workload”, Proceedings of 

SOSP'03, 2003. 

[GFTP] GridFTP, http://www.globus.org/grid_software/data/gridftp.php. 

[GKB05] Shen Tat Goh, P. Kalnis, S. Bakiras, Kian-Lee Tan, “Real Datasets for 

File-sharing Peer-to-peer Systems”, Proceedings of the International 

Conference on Database Systems for Advanced Applications, 2005. 

[Glo] Globus Toolkit, www.globus.org. 

[Gnu] Gnutella, [online], www.gnutella.com. 



 195 

[GNY04] X. Gu, K. Nahrstedt, B. Yu, “SpiderNet: In Integrated Peer-to-Peer Service 

Composition Framework”, Proceedings of the IEEE International 

Symposium on High Performance Distributed Computing, 2004. 

[GR05] C. Gkantsidis, P. Rodriguez, “Network Coding for Large Scale Content 

Distribution”, Proceedings of IEEE/INFOCOM 2005, Miami. March 2005. 

[GSB04] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, P. Kelenher, “Adaptive 

Replication in Peer-to-Peer Systems”, Proceedings of 24th Inter. Conf. on 

Distributed Computing System, 2004. 

[GWeb] “Gnutella Web Caching System”, [online], 

http://www.gnucleus.com/gwebcache/newgwc.html. 

[HGV02] T. Horozov, A. Grama, V. Vasudevan, S. Landis, “MOBY - A Mobile 

Peer-to-Peer Service and Data Network”, Proceedings of International 

Conference on Parallel Processing, 2002. 

[HIR01] K. Henricksen, J. Indulska, A. Rakotonirainy, “Infrastructure for Pervasive 

Computing: Challenges”, Proceedings of Workshop on Pervasive 

Computing and Information Logistics, 2001. 

[HKO99] M. Hori, G, Kondoh, K. Ono, S. Hirose, S. Singhal, “Annotation-Based 

Web Content Transcoding”, Proceedings of 9th International World Wide 

Web Conference, 1999. 

[HM04] R. Hanrahan, R. Merrick, “Authoring Techniques for Device 

Independence”, http://www.w3.org. 

[Http] HTTP/1.1, http://www.w3.org/protoc- ols/rfc2616/. 

[Hul02] S. Hull, “Content Delivery Networks : Web Switching For Security, 

Availability, and Speed”, Berkeley, Calif. ; London : 

Osborne/McGraw-Hill, 2002. 

[HW04] R. Hsiao, S-D Wang. “Jelly: A Dynamic Hierarchical P2P Overlay 

Network with Load Balance and Locality”, Proceedings of the 24th 

International Conference on Distributed Computing Systems Workshops 

(ICDCSW'04), 2004. 

[IAUS03] T. Iwata, T. Abe, K. Ueda, H. Sunaga, “A DRM System Suitable for P2P 

Content Delivery and the Study on its Implementation”, Proceeding of the 

9th Asia-Pacific Conference on Communication, Vol.2, 21-24, pp.806-811, 

2003. 

[Icap] ICAP, http://www.i-cap.org/home.html. 



 196 

[IC97] A. Iyengar, J. Challenger, “Improving Web Server Performance by 

Caching Dynamic Data”, Proceedings of the USENIX Symposium on 

Internet Technologies and Systems, 1997. 

[IHA02] A. Ivan, V. Karamcheti, “Partitionable Services: A Framework for 

Seamless Adapting Distributed Application to Heterogeneous 

Environments”, Proceedings of 11th IEEE International Symposium on 

High Performance Distributed Computing, 2002. 

[IRD02] S. Iyer, A. Rowstron, P. Drusche, “Squirrel: A Decentralized Peer-to-peer 

Web Cache”, Proceedings of the 21st ACM Symposium on Principles of 

Distributed Computing, July 2002. 

[Jigsaw] Jigsaw - W3C’s Server, http://www.w3.org/Jigsaw/ 

[JJK01] S. Jamin, C. Jin, A. R. Kurc, D. Raz, Y. Shavitt, “Constrained Mirror 

Placement on the Internet”, Proceedings of IEEE INFOCOM, 2001. 

[JLH01] X. Jia, D. Li, X. Hu, D. Du, “Optimal Placement of Web Proxies for 

Replicated Web Servers in the Internet”, Proceedings of the Computer 

Journal, Vol. 44, No. 5, 2001. 

[Kaz] Kazaa, www.kazaa.com. 

[KC04] W. Ku, C-H. Chi, “Survey on the technological aspects of Digital Rights 

Management”, Proceeding of the 7th Information Security Conference, 

2004. 

[KLM02] B. Knutsson, H. Lu, J. Mogul, “Architecture and pragmatics of 

Server-directed Transcoding”, Proceedings of 7th International workshop 

on Web content caching and distribution, 2002. 

[KLM03] B. Knutsson, H. Lu, J. Mogul, “Architecture and Performance of 

Server-directed Transcoding”, Proceedings of ACM Transaction on 

Internet Tech., Vol.3 Iss.4, 2003, pp. 392-424.  

[KRR01] J. Kangasharju, J. Roberts, K. W. Ross, Object Replication Strategies in 

Content Distribution Networks, Proceedings of the Workshop of Web 

Content Caching and Distribution, 2001. 

[KRS00] P. Krishnan, D. Raz, Y. Shavitt, “The Cache Location Problem”, 

Proceedings of IEEE/ACM Transaction on Networking, 2000. 

[KRT02] J. Kangasharju, K. W. Ross, D. A. Turner, “Adaptive Content 

Management in Structured P2P Communities”, Proceedings of 21st ACM 

Symposium on Principles of Distributed Computing, 2002. 



 197 

[KTor] KTorrent, [online], http://ktorrent.org/ 

[KW02] B. Krishnamurthy, C. E. Wills, “Improving Web Performance by Client 

Characterization Driven Server Adaptation”, Proceedings of the World 

Wide Web Conference, 2002. 

[KWV05] N. Kotilainen, M. Weber, M. Vapa, J. Vuori, “Mobile Chedar - A 

Peer-to-Peer Middleware for Mobile Devices”, Proceedings of the 4th 

Annual IEEE International Conference on Pervasive Computing and 

Communications, 2005. 

[KWZ03] B. Krishnamurthy, C. E. Wills, Y. Zhang, K. Vishwanath, “Design, 

Implementation, and Evaluation of a Client Characterization Driven Web 

Server”, Proceedings of the World Wide Web Conference, 2003. 

[LCC02] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and Replication in 

Unstructured Peer-to-peer Networks”, Proceeding of the 16th Int. Conf. on 

Supercomputing, 2002. 

[LGI99] B. Li, M. J. Golin, G. F. Italiano, X. Deng, K. Sohraby, “On the Optimal 

Placement of Web Proxies in the Internet”, Proceedings of IEEE 

INFOCOM, 1999. 

[Ley01] F. Leymann, “Web Services Flow Language (WSFL 1.0), 

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf 

[LHP04] W-S Li, W-P. Hsiung, K. Hino, K. S. Candan, D. Agrawal, “Challenges 

and Practices in Deploying Web Acceleration Solutions for Distributed 

Enterprise Systems”, Proceedings of International WWW conference, 

2004. 

[LHS04] B. T. Loo, R. Huebsch, I. Stoica, J. M. Hellerstein, “The Case for a Hybrid 

P2P Search Infrastructure”, Proceedings of the 3rd International Workshop 

on Peer-to-Peer Systems (IPTPS’04), 2004. 

[LM01] Q. Li, B. Moon, “Distributed Cooperative Apache Web Server”, 

Proceedings of 10th International World Wide Web Conference, 2001. 

[LYR02] J. Li, M. Yarvis, P. Reiher, “Securing Distributed Adaptation”, Proceeding 

of Computer Networks, Vol. 38, pp. 347-371, 2002. 

[MC00] M. Metter, R. Colomb, “WAP Enabling Existing HTML Application”, 

Proceedings of the 1st Australasian User Interface Conference, 2000. 



 198 

[MDS03] V. Mastoli, V. Desai, W-S. Shi, “SEE: A Service Execution Environment 

for Edge Services”, Proceedings of the 3rd IEEE Workshop on Internet 

Applications, p. 61, 2003. 

[MF99] G. McGraw, E.W. Felten, “Securing Java: Getting Down to Business with 

Mobile code”, Wiley, 1999. 

[Mime] MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for 

Specifying and Describing the Format of Internet Message Bodies, 

http://www.faqs.org/rfcs/rfc1521.html. 

[MSB01] W. Ma, B. Shen, J. Brassil, “Content Services Network: The Architecture 

and Protocols”, Proceedings of 6th International Workshop on Web 

Caching and Content Distribution, June 2001.  

[MSR01] A. Maheshwari, A. Sharma, K. Ramamritham, P. Shenoy, “TranSquid: 

Transcoding and Caching Proxy for Heterogenous E-Commerce 

Environments”, Proceedings of 12th IEEE Workshop on Research Issues 

in Data Engineering, 2001.  

[Nap] Napster, http://www.napster.com. 

[O01] H. K. Orman, “Data Integrity for Mildly Active Content”, 

http://doi.ieeecomputersociety.org/10.1109/AMS.2001.993722 

[Ocp] OPES Callout Protocol, http://www.ietf.org/rfc/rfc4037.txt. 

[Opes] Open Pluggable Edge Services, http:// www.ietf-opes.org. 

[Pastry] Free-Pastry platform, http://research.microsoft.com/~antr/Pastry/ 

[PC05] H. N. Palit, C-H. Chi, “Modulation for Scalable Multimedia Content 

Delivery”, Proceedings of the 6th International Conference for Advances 

in Web-Age Information Management, China, 2005. 

[PCL06] H. N. Palit, C-H. Chi, L. Liu, “Proxy-Based Pervasive Multimedia Content 

Delivery”, Proceedings of 30th Annual International Computer Software 

and Applications Conference, USA, 2006. 

[PCP03] V. S. Pai, A. L. Cox, V. S. Pai, W. Zwaenepoel, “A Flexible and Efficient 

Application Programming Interface (API) for a Customization Proxy 

Cache”, Proceedings of the 4th USENIX Symposium on Internet 

Technologies and Systems, 2003. 

[PD99] C. Parris, B. Dennis, “Transformation Proxy Support for Thin-Clients”, 

http:// citeseer.ist.psu.edu/58739.html 



 199 

[PG04] J. Patel, I. Gupta, “Overhaul: Extending HTTP to Combat Flash Crowds”, 

9th International Workshop on Web Content Caching and Distribution, 

Beijing, 2004. 

[PH97] D. Povey and J. Harrison, “A Distributed Internet Cache”, Proceedings of 

the 20th Australasian Computer Science Conference, February 1997. 

[PS01] G. Pierre, M. v. Steen, “Globule: a Platform for Self-Replicating Web 

Documents”, Proceedings of the 6th International Conference on Protocols 

for Multimedia Systems, Oct. 2001. 

[PS02] M. Papadopouli, H. Schulzrinne, “Design and Implementation of a 

Peer-to-Peer Data Dissemination and Prefetching Tool for Mobile Users”, 

Proceedings of the 1st New York Metro Area Networking Workshop, 

2002. 

[PS03] G. Pierre, M. v. Steen, “Design and Implementation of a User-Centered 

Content Distribution Network”, Proceedings of the 3rd IEEE Workshop on 

Internet Applications, 2003. 

[PSB02] T. Phan, G. Zorpas, R. Bagrodia, “An Extensible and Scalable Content 

Adaptation Pipeline Architecture to Support Heterogeneous Clients”, 

Proceedings of the 22nd International Conference on Distributed 

Computing Systems, 2002. 

[PST02] G. Pierre, M. v. Steen, A. S. Tanenbaum, “Dynamically Selecting Optimal 

Distribution Strategies for Web Documents”, Proceedings of the IEEE 

Transactions on Computers, Vol.51 (6): 637-751, June, 2002. 

[QPV01] L. Qiu, V. N. Padmanabhan, G. M. Voelker, “On the Placement of Web 

Server Replicas”, Proceedings of the IEEE INFOCOM, 2001. 

[Rab98] M. Rabinovich, “Issues in Web Content Replication”, 

http://citeseer.ist.psu.edu/rabinovich98issues.html. 

[RA99] M. Rabinovich, A. Aggarwal, “RaDaR: A Scalable Architecture for A 

Global Web Hosting Service”, Proceedings of Computer Networks, 

Amsterdam, Netherlands, 1999. 

[Rau99] M. S. Raunak, “A Survey of Cooperative Caching”, 

http://citeseer.ist.psu.edu/raunak99survey.html 

[RD01] A. Rowstron, P. Druschel, “Pastry: Scalable, decentralized object location 

and routing for large-scale peer-to-peer systems”, In Proceedings of the 



 200 

18th IFIP/ACM International Conference of Distributed Systems 

Platforms, Nov. 2001. 

[RD01b] A. Rowstron, P. Druschel, “Pastry: Scalable, Decentralized Object 

Location and Routing for Large-scale Peer-to-peer Systems”, Proceedings 

of the 18th IFIP/ACM International Conference of Distributed Systems 

Platforms, Nov. 2001. 

[RFH01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A Scalable 

Content-Addressable Network”, Proceedings of ACM SIGCOMM 

Conference, 2001 

[RG98] A. D. Rubin, E.E. Greer, “Mobile Code Security”, Proceedings of IEEE 

Internet Computing, Nov. 1998. 

[RGK05] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. 

Stoica, and H. Yu, “OpenDHT: A Public DHT Service and Its Uses”, 

Proceedings of ACM SIGCOMM 2005, August 2005. 

[Rou05] A. Rousskov, “Open Pluggable Edge Services (OPES) Callout Protocol 

(OCP) Core”, http://www.ietf.org/rfc/rfc4037.txt 

[RRR98] M. Rabinovich, I. Rabinovich, R. Rajaraman, “Dynamic Replication on 

the Internet Work Project No. 3116-17-7006”, AT&T Labs Research 

Report, 1998. 

[RS98] A. Rousskov, D. Wessels, “Cache Digests”, Computer Networks and 

ISDN Systems, 1998 

[RSB01] P. Rodriguez, C. Spanner, E. W. Biersack, “Analysis of Web Caching 

Architectures: Hierarchical and Distributed Caching”, Proceedings of 

IEEE/ACM Transactions on Networking, August 2001. 

[RXA03] M. Rabinovich, Z. Xiao, A. Aggarwal, “Computing on the Edge: A 

Platform for Replicating Internet Applications”, Proceedings of 8th 

International Workshop on Web Caching and Content Distribution, Sept. 

2003. 

[RXD02] M. Rabinovich, Z. Xiao, F. Douglis, “Moving Edge-Side Includes to the 

Real Edge - the Clients”, 

http://www.research.att.com/~misha/otherPubs/csi.pdf. 

[RV03] P. Reynolds, A. Vahdat. “Efficient Peer-to-peer Keyword Searching”, 

Proceedings of Middleware Conference. 2003. 



 201 

[SAP05] S. Sivasubramanian, G. Alonso, G. Pierre, Maarten van Steen, “GlobeDB: 

Autonomic Data Replication for Web Applications”, Proceedings of the 

International World Wide Web Conference, 2005. 

[SCK03] W-S. Shi, E. Collins, V. Karamcheti, “Modeling Object Characteristics of 

Dynamic Web Content”, Proceedings of Journal of Parallel and 

Distributed Computing (JPDC), special issue on scalable Internet services 

and architecture, Vol. 63, No. 10, pages 963-980, Oct.2003. 

[SJS00] B. Schwartz, A.W. Jackson, W.T. Strayer, W. Zhou, R.D. Rockwell, and C. 

Partridge. "Smart Packets: Applying Active Networks to Network 

Management". ACM Transactions on Computer Systems, 18(1):67--88, 

2000. 

[SK01] W-S. Shi, V. Karamcheti, “CONCA: An Architecture for Consistent 

Nomadic Content Access”, Proceedings of Workshop on Cache, 

Coherence, and Consistency, 2001. 

[SMK01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, “Chord: 

A Scalable Peer-to-peer Lookup Service for Internet Applications”, 

Proceedings of the ACM SIGCOMM Conference, 2001. 

[Soap] “Simple Object Access Protocol. version 1.2”, 

http://www.w3.org/TR/soap/. 

[Soap-a] “SOAP Messages with Attachments”, 

http://www.w3.org/TR/SOAP-attachments. 

[SPS04] S. Sivasubramanian, G. Pierre, M. v. Steen, “Replicating Web 

Applications On-Demand”, Proceedings of Services Computing, 2004 

IEEE International Conference on (SCC'04) pp. 227-236, 2004. 

[Squ] Squid Web Proxy Cache, http://www.squid-cache.org/. 

[Smi] Smith, et. al. “SwitchWare: Towards a 21st Century Network 

Infrastructure”, http://www.cis.upenn.edu/~gunter/wip/ieee.ps.Z. 

[Soap] Simple Object Access Protocol. version 1.2, http://www.w3.org/TR/soap/ 

[Sona] Cisco Service-Oriented Network Architecture, 

www.cisco.com/application/pdf/en/us/guest/netsol/ns477/c643/cdccont_09

00aecd8039b324.pdf 

[SP02] J. Steinberg, J. Pasquale, “A Web Middleware Architecture for Dynamic 

Customization of Content for Wireless Clients”, Proceedings of 11th 

International World Wide Web conference, 2002. 



 202 

[SSM03] W-S. Shi, K. Shah, Y Mao, V. Chaudhary, “Tuxedo: A Peer-to-Peer 

Caching System”, Proceedings of International Conference on Parallel and 

Distributed Processing Techniques and Applications, June 2003. 

[STR02] A. Singh, A. Trivedi, K. Ramamritham, P. Shenoy, “PTC: Proxies that 

Transcode and Cache in Heterogeneous Web Client Environments”, 

Proceedings of 3rd International Conference on Web Information System 

Engineering, Singapore, 2002. 

[Tha01] S. Thatte, “XLANG Web Services for Business Process Design”, 

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm 

[Tpc] Transaction Processing Performance Council, http://www.tpc.org. 

[TW96] D. L. Tennenhouse, D. J. Wetherall, “Towards an Active Network 

Architecture”, http://tns-www.lcs.mit.edu/publications/ccr96.html 

[TWJ01] M. Tsimelzon, B. Weihl, L. Jacobs, “ESI Language Specification 1.0”, 

www.esi.org, 2001. 

[Wal01] A. Walker, “Proxylet Local Execution Environment Java Binding V0.1”, 

http://www.ietf-opes.org/documents/draft-walker-opes-proxylet-java-bindi

ng-01.txt, Aug. 2001. 

[W3C] World Wide Web Consortium, “http://www.w3.org”. 

[Wap] Wireless Application Protocol, 

http://www.wapforum.org/what/technical.htm. 

[Wap00] Wireless Application Protocol - Wireless Markup Language Specification, 

www.openmobilealliance.org/release_program/docs/Browsing/V2_1-2005

0614-C/WAP-191-WML-20000219-a.pdf, 2000. 

[WC97] D. Wessels and K Claffy, "ICP and the squid web cache." 

http://citeseer.nj.nec.com/wessels97icp.html 

[WGT98] D. J. Wetherall, J. Guttag, D. L. Tennenhouse, “ANTS: A Tool kit for 

building and dynamically deploying network protocols”, Proceedings of 

IEEE OPENARCH'98, 1998. 

[WHB03] M. Waldvogel, P. Hurley, D. Bauer, “Dynamic Replica Management in 

Distributed Hash Tables”, IBM Research Report, July 2003. 

[Ws] Web Services, http://www.w3.org/2002/ws/. 

[Wsa] Web Service Addressing (WS-Addressing), 

http://www.w3.org/Submission/ws-addressing/ 



 203 

[Wsdd] Web Service Dynamic Discovery (WS-Discovery), 

http://schemas.xmlsoap.org/ws/2005/04/discovery/ 

[Wsdl] “Web Service Description Language. Version 1.1”, 

http://www.w3.org/TR/wsdl  

[Wsel] “Web Service Endpoint Language”, 

http://www.service-architecture.com/web-services/articles/web_services_e

ndpoint_language_wsel.html 

[Wsp] “Web Service Policy Framework”, 

http://www-128.ibm.com/developerworks/webservices/library/specificatio

n/ws-polfram/ 

[WVS99] A. Wolman, G. M. Voelker, N. Sharma, etc. “On the Scale and 

Performance of Cooperative Web Proxy Caching”, Proceedings of 17th 

Symposium on Operating Systems Principles, 1999. 

[Uddi] “Universal Description, Discovery and Integration Specification”, 

http://www.uddi.org/specification.html 

[Uapr] “User Agent Profiles”, http://w3development.de/rdf/uaprof_repository/. 

[Uiml] “User Interface Markup Language”, www.uiml.org. 

[Utor] µTorrent, [online], http://www.utorrent.com/ 

[Ver02] D. C. Verma. “Content distribution networks: an engineering approach”, 

New York : J. Wiley, 2002. 

[Xslt] “XSL Transformations (XSLT) Version 1.0. W3C Recommendation”, 

http://www.w3.org/TR/xslt. 

[YCZ03] C. Yuan, Y. Chen, Z. Zhang, “Evaluation of Edge Caching/Offloading for 

Dynamic Content Delivery”, Proceedings of International World Wide 

Web conference, 2003. 

[YH01] L. Yang, M. Hofmann, “OPES Architecture for Rule Processing and 

Service Execution”, 

http://www.ietf-opes.org/documents/draft-yang-opes-rule-processing-servi

ce-execution-00.txt, Aug. 2001. 

[YHZ03] C. Yuan, Z. Hua, Z. Zhang, “Proxy+: Simple Proxy Augment for Dynamic 

Content Processing”, Proceedings of Web Content Caching and 

Distribution, 2003. 



 204 

[YS96] Yemini, da Silva, “Towards Programmable Networks”, Proceedings of 

IFIP/IEEE International Workshop on Distributed Systems: Operations 

and Management, 1996. 

[ZFJ97] L. Zhang, S. Floyd, and V. Jacobson. “Adaptive Web Caching”, 

Proceedings of the NLANR Web Cache Workshop, June 1997. 

http://citeseer.nj.nec.com/zhang97adaptive.html 

[ZWL02] L. Zhuo, C-L. Wang, F. C. M. Lau, “Load Balancing in Distributed Web 

Server Systems with Partial Document Replication”, Proceedings of the 

International Conference on Parallel Processing, 2002. 



 205 

Index 

ACDN Application Content Distribution Network 

AJAX Asynchronous JavaScript and XML 

APP Application 

BPEL Business Process Execution Language 

BT Bit Torrent 

CAN Content Addressable Network 

CANS Composable Adaptive Network Services 

CC/PP Composite Capabilities/Preferences Profile 

CDN Content Distribution Network 

CR Configuration Rule 

CSI Client Side Inclusion 

CSN Content Service Network 

DHT Distributed Hash Table 

DIA Device Independent Authoring Service 

ESI Edge Side Inclusion 

HTTP Hyper Text Transfer Protocol 

LFU Least Frequently Used 

ICAP Internet Content Adaptation Protocol 

IRML Intermediary Rule Markup Language 

LISO Large Input Small Output 

LISO+D LISO application with additional Data 

LRU Least Recently Used 

OBJ Content Object 

OCP OPES Callout Protocol 

OPES Open Pluggable Edge Service 

P2P Peer to Peer 

PAST Pastry-based distributed Storage system 

PC Personal Computer 

PDA Personal Digital Assistant 

PTC Proxy for Transcoding and Caching 



 206 

RaDaR Replicator and Distributor and Redirector based CDN System 

SDT Server-Directed Transcoding 

SECP Service Enabled Caching Proxy 

SEG Segment 

SILO Small Input Large Output 

SILO+D SILO application with additional Data 

SOA Service Oriented Architecture 

SOAP Simple Object Access Protocol 

SONA Service Oriented Network Architecture 

TSK Task 

Transquid Transcoding Squid 

TTL Time To Live 

UAProf User Agent Profile 

URI Uniform Resource Identifier 

URL Uniform Resource Location 

WF Workflow 

WS-BPEL Web Service for Business Process Execution Language 

WSFL Web Service Flow Language 

WWW World Wide Web 

XML Extensible Markup Language 

XSLT XML Transformation 

 


