
DEBUGGING STATECHARTS MODELS VIA

MODEL-CODE TRACEBILITY

GUO LIANG

(B.Comp, National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48630847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGEMENTS

I would like to thank a lot of people for their guidance and help. I sincerely ac-

knowledge all those whom I mention, and apology to anybody whom I might have

forgotten.

Firstly, I express my sincere thanks to my supervisor, Dr. Abhik Roychoudhury,

for his valuable advice and guidance. I really appreciate his support in both academics

and life during my graduate study, and providing me the opportunity to work with

him in the area of software debugging.

I have special thanks to my parents and family for their love, encouragement and

understanding. They have been very supportive throughout my studies.

I am grateful to my friends for their support and friendship. I thank my friends

Wang Tao, Ju Lei, Wang Fanru, Liu Shanshan, Shen Ren, Huang Wenfan, Liu Yang,

and Li Jia to name a few.

I also thank the administrative staffs in School of Computing, National University

of Singapore for their supports during my study. The work presented in this thesis

was partially supported by a research grant from the Agency of Science, Technology

and Research (A*STAR) under Public Sector Funding.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

SUMMARY . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

2 THE DYNAMIC SLICING TOOL - JSLICE 5

2.1 Dynamic Slicing . 8

2.2 The JSlice Tool . 9

2.3 JSlice Extension . 12

3 BACKGROUND ON STATECHARTS 14

4 STATE-OF-THE-ART IN STATECHART COMPILATION . . . 17

5 MODEL-CODE TRACEBILITY . 23

5.1 Code Generation . 25

5.2 Debugging the Generated Code . 29

6 EXTENSION FOR ADVANCED PROGRAM FEATURES . . . 34

6.1 Concurrent Program Code Generation For Statechart 35

6.2 Slicing with Advanced Features . 38

6.2.1 Exception . 38

6.2.2 Reflection . 40

6.2.3 Multi-threading . 42

7 EXPERIMENTS . 46

7.1 Experimental Setup . 46

7.2 Experimental Results . 49

7.2.1 Code Generation . 49

7.2.2 Dynamic Slicing . 51

iii

7.2.3 Concurrent Dynamic Slicing 53

8 DISCUSSION . 56

iv

SUMMARY

Model-driven software development involves constructing behavioral models

from informal English requirements. These models are then used to guide software

construction. The compilation of behavioral models into software is the topic of

many existing research works. There also exist a number of UML-based modeling

tools which support such model compilation. In this thesis, we show how Statechart

models can be validated/debugged by (a) generating code from the Statechart models,

(b) employing established software debugging methods like program slicing on the

generated code, and (c) relating the program slice back to the Statechart level.

First, our study is presented concretely in terms of dynamic slicing of sequential

Java code produced from Statechart models. The slice produced at the code level is

mapped back to the model level for enhanced design comprehension. We use the open-

source JSlice tool for dynamic slicing of Java programs in our experiments. We present

results on a wide variety of real-life control systems which are modeled as Statecharts

(from the informal English requirements) and debugged using our methodology. We

feel that our debugging methodology fits in well with design flows in model-driven

software development.

The existing dynamic slicing tool JSlice only supports basic features of Java lan-

guages. However, most real programs utilize advanced Java language features in-

cluding exception, reflection, and multi-threading. We further extend JSlice tool to

support full Java language by integrating the above three features into it. Mean-

while, with the support of multi-threading in the concrete code-level analysis tool

JSlice, we enhance our code generation methodology of Statechart models to produce

multi-threaded Java code. Compared to sequential code generated, multi-threaded

v

program lifts the restriction imposed on Statechart behavior where concurrent states

are serialized in sequential programs. With the support of advanced language fea-

tures, both code generation tool and JSlice greatly extend their usability.

vi

LIST OF TABLES

7.1 Statechart models used in our experiment 47

7.2 Summary of experimental results for sequential dynamic slicing. Col-
umn 2 shows the type of bug, 1 - wrong control flow, 2 - wrong action,
and 3 - missing element. The four columns under the heading “Slice
Size” represent average size of code-level slices, total lines of code, aver-
age size of model-level slices, and total number of statechart elements.
The two columns under the heading “Time” show the average dynamic
analysis time, including time to map slice from code level and to build
hierarchical slice. 52

7.3 Summary of Experimental Results for Concurrent Programs. 54

vii

LIST OF FIGURES

2.1 A slicing example. (a) is the program. (b) is the static slice with
variable a at line 11 as criterion. (c) is the dynamic slice with input n
= 2 and variable a at the first occurrence of line 11 as criterion. . . . 6

2.2 The infrastructure of JSlice. Phase 1: Select slicing criteria. Phase 2:
Perform dynamic slicing. Phase 3: Display slicing result. 10

3.1 (a) An example of Statechart; and (b) Statechart model structure.
Suppose we have model M , class C, attribute Attr, method Meth,
Statechart SC, event E, (OR-)state S, AND-state AS, transition T ,
trigger TR, condition CD, and action A; specifically, Aentry and Aexit
are entry and exit actions of state S. * denotes zero or more such
elements can be contained; + denotes one or more such elements can
be contained; and ? denotes the element is optional. 15

4.1 Statechart fragment corresponding to car object. (a) the top-level
Statechart, and (b) the details of composite state Departure. State
Arrival is also a composite state, the details of which is not shown. . 19

4.2 Model-level slices based on the code generated from (a) our tool, (b)
Rhapsody, and (c) Stateflow. A dashed line shows a missing model ele-
ment in the slice resulting from Rhapsody or Stateflow. “E”, “T”, and
“S” appearing in “Element Type” denote “Event”, “Transition”, and
“State”. Model elements for CarHandler and details inside the states
Departure and Arrival of Car are omitted for the ease of understanding. 20

5.1 A brief representation of maintaining the traceability between model
and code. 24

5.2 Class diagram of Java code generated from Statecharts. 25

5.3 A fragment of template used in code generation. 26

5.4 Hierarchical bug report for the example in Figure 4.1. 32

6.1 The event manager in generated concurrent code. 36

6.2 The example of multi-level and multi-callee in reflection invocation. . 42

6.3 An example of events time stamps in multi-threaded dynamic slicing. 43

7.1 Experimental results for sequential code generation. (a) Time to gen-
erate code and build model-code association. It compares the time to
generate code without tag, time to generate code with tag, and time to
generate code/tag and build association; and (b) The number of lines
of code for four models. 50

viii

CHAPTER 1

INTRODUCTION

Model-driven software development is becoming increasingly popular. There exist

many tools which enable design specification in terms of Unified Modeling Language

(UML) diagrams. Subsequently code is generated from these diagrams either semi-

automatically (as in Rhapsody from I-Logix [43] which compiles Statechart models

into C/C++/Java code) or manually using the UML diagrams as guidance. Irre-

spective of whether the code is generated automatically or manually, some of the

testing/dynamic analysis is done at the code level. At the UML level, usually verifi-

cation methods like model checking are employed to check critical properties about

the design.

If the testing/debugging of a piece of model-driven software reveals/explains an

“unexpected program behavior”, how do we reflect it at the model level? This requires

us to maintain associations between model elements and code (which are built during

code generation), and then exploit these associations to highlight the appropriate

model elements which are responsible for the so-called unexpected behavior. We

advocate such a method for debugging model-driven software in this thesis. The

benefits of relating the results of debugging model-driven software to the model level

are obvious — it enables design comprehension and debugging at the model level.

Since most debugging tools work at the code level, this forms an important step in

1

enabling model-driven software development.

To make our study concrete, we fix a modeling langauge and a debugging method

— Statecharts [21] 1 as the modeling language and dynamic slicing [4, 28] as the

debugging method.2 Given a program P and input I, the programmer provides a

slicing criterion of the form (l, V), where l is a control location in the program and V

is a set of program variables referenced at l. The purpose of slicing is to find out the

statements in P which can affect the values of V at l via control/data flow, when P is

executed with input I. Thus, if I is an offending test case (where the programmer is

not happy with values of certain variables that can be observed easily - e.g. through

program output), dynamic slicing can be performed and the resultant slice can be

inspected (at the code level). However, at this stage, it might be important to reflect

the results of slicing at a higher level, say at the model level — to understand the

problem with the design. We address this issue in this thesis.

We consider the situation where the design is modeled using class diagrams and

Statecharts i.e. the behavior of each class is given by a Statechart and these Stat-

echarts are automatically compiled into code in a standard programming language

like Java. We present experimental results on a number of real-life control sys-

tems drawn from various application domains such as avionics, automotive and rail-

transportation. These control systems are designed as Statecharts from which we

automatically generate Java code (into which associations between model elements

1In this thesis we use Statecharts and UML State Diagram interchangeably. In terms of State-
charts definition and behavioral model, we follow the UML Specification 2.0 [35].

2The reason for choosing a dynamic analysis technique such as dynamic slicing as the debugging
method is obvious — it corresponds more closely to program debugging by trying out selected inputs.

2

and lines of code are embedded). Subject to an observable error 3, the generated

Java code is subjected to dynamic slicing. The resultant slice is mapped back to

the model level, while preserving the original Statechart’s structure, orthogonality

(multiple processes executing concurrently) and hierarchy.

One could argue that, if the models are executable and automatic compilation of

models to code is feasible (as is the case for Statecharts) — the debugging should be

done at the model level. Indeed, we could build a dynamic slicing tool directly for

Statecharts.4 However, to popularize such tools for debugging model-driven software

may require a shift in mind-set of programmers who are accustomed to debugging

code written in standard programming languages. More importantly, there exists a

vast wealth of mature algorithms/tools for software debugging, which we would like

to re-use while developing debugging methods for model-driven software.

We choose a dynamic slicing tool JSlice recently developed [45, 11] as the code-level

debugging tool. It executes and performs dynamic slicing analysis on Java programs.

Given the criteria as statements and variables involved, it outputs a list of statements

affecting the criteria. In the first part of the study, we present the effort involved

in generating sequential Java code from Statechart models, performing code-level

dynamic slicing on generated code, and mapping code-level result back to model-level.

In fact, most code-level (semi-)automatic debugging tools do not support advanced

language features like multi-threading, including the dynamic slicing tool JSlice we

3An observable error means the program behaves abnormally - producing incorrect output or
performing unexpected action, which can be identified by programmer. In fact, a programmer only
considers debugging a program if he/she observes an error.

4Static slicing of Statecharts has been studied in [24]. Direct simulation of statecharts (possibly
for debugging) has been discussed in [12].

3

choose. By generating sequential program, we are still able to fully demonstrate our

methodology, and study the feasibility of integrating model-level design tools and

code-level analysis tools. This has been presented in [18].

However, many real models and real programs require multi-threading and other

support. To extend the usability of code generation methodology and JSlice tool, we

further enhance both tools to support many advanced language features. For JSlice,

we add support of exception, reflection, and multi-threading, and thus extend to full

Java language support. Exception and reflection produce “gaps” in the execution in

the point of view of slicing, where the normal execution is suspended and additional

actions are performed making the execution resumes from a (different) point. We

also need to distinguish between threads to perform slicing and to consider the effect

among them. For code generation tool, we also extend it to generate multi-threaded

Java program, which conforms to the Statechart behavior standard more closely, by

removing the constraint imposed during serialization.

In summary, this thesis proposes a methodology for debugging model-driven soft-

ware, in particular, code generated from executable models like Statecharts. Our

proposed methods/tools focus on generating code with tags (to associate models and

code), using existing tools and algorithms to debug the generated code and exploit-

ing the model-code tags to reflect the debugging results at the model level. We feel

that it is important to develop backward links between the three layers in software

development — requirements, models and code. This thesis constitutes a further step

in this direction where we extend both the methodology and underlying code-level

analysis tool to support more advanced features.

4

CHAPTER 2

THE DYNAMIC SLICING TOOL - JSLICE

Testing and debugging is a common activity in program development life cycle, and

most of time it is difficult and time consuming. During testing we identify a program

execution as incorrect by (a) some exception occurs at a statement, or (b) the output

/ intermediate result is incorrect. Usually the above statement where the error occurs

is not the buggy statement. This is true even for some obvious errors. For example, in

the case of a variable v1 referencing to an inaccessible memory address and crashes the

program, the buggy statement could be assigning a wrong value to another variable

v2 at the very beginning, which is involved in calculating the value of v1.

Given a program p, developer tests it using a set of testcases T = {(i, oe)}, where

each pair of (i, oe) is the input i and expected output oe. The program p contains

error if for some input (i, oe), the observed result or is not the same as oe. In order to

debug p, the developer needs to examine p’s states with input i leading to erroneous

observation. Traditionally, the debugging approaches could be:

• Inserting printing function at various locations in p to display the program state

including relevant variables, call stacks, and etc.

• Using conventional debugger (e.g. GDB [15], JDB [16]) to set breakpoints,

execute program in steps, and examine states more easily.

5

Figure 2.1: A slicing example. (a) is the program. (b) is the static slice with variable
a at line 11 as criterion. (c) is the dynamic slice with input n = 2 and variable a at
the first occurrence of line 11 as criterion.

These approaches help developer to hypothesize a subset of program statements

which are likely to be the buggy statements, and then to confirm each statement by

examining its state. However, these conventional approaches only provide mechanism

to examine program states, and still require developer’s manual intervention to locate

the buggy statements. In other word, they cannot make any conclusion further from

program states.

A number of automated debugging techniques are proposed to increase the degree

of automation in debugging. Most of them analyze testing result and program states

to provide a subset of program statements which are suspicious, or a limited number

of statements expected to be buggy statements. Two major techniques out of these

are slicing and test based fault localization.

• Slicing is the technique to reduce the set of program statements by excluding

6

statements that are not relevant to the error [1, 2, 3, 4, 5, 25, 28, 29, 32, 42,

45, 47, 50, 51]. Slicing algorithm requires slicing criteria as the starting point.

A slicing criterion is a variable v at some statement / location l, and is usually

the observed error. Starting from criteria, slicing algorithm searches through

control and data dependence in program dependence graph to include all state-

ments traversed. Slice can be computed backward or forward. Backward slice

contains statements that directly or indirectly affect the criteria; while forward

slice contains statements that are (transitively) dependent on the criteria. Back-

ward slice is usually interested in terms of program debugging. Slicing can also

be performed on static program (static slicing) or on program execution trace

(dynamic slicing). Figure 2.1 shows an example of static and dynamic slicing

performed on the same piece of code, by examining static / dynamic depen-

dencies respectively. Note that static slice is computed w.r.t. all executions

of the program, and dynamic slice is computed w.r.t. a particular execution

with given input. Dynamic slicing is usually more interested to programmers

as it analyzes a particular execution with erroneous output and produces less

statements compared to static slicing.

• Test based fault localization techniques take a different approach. Instead

of examining the program or an execution, these techniques compare the failing

runs (i.e. executions with erroneous behaviors) and successful runs (i.e. execu-

tions without erroneous behaviors) [6, 7, 17, 19, 25, 36, 38, 37, 46, 52, 53]. The

successful runs can be obtained either by selecting some inputs from a test case

7

pool, or by alternating the branch or state of a failing run. The difference diff

in terms of different statements executed, different dependencies, or different

program states are generated. The rational is the diff must be related to the

observed error, as applying diff to failing runs will produce successful runs.

2.1 Dynamic Slicing

In this thesis, we focus on using dynamic slicing as the debugging technique. Generally

dynamic slice includes the closure of dynamic control and data dependencies from

the slicing criterion. Assuming β represents an occurrence of the statement stmt(β),

dynamic control and data dependencies can be defined as follows.

Definition 2.1. Dynamic Control Dependency The statement occurrence β is

dynamically control dependent on an earlier statement occurrence β′ iff

1. stmt(β) is statically control dependent1 on stmt(β′), and

2. @ β′′ between β and β′ where stmt(β) is statically control dependent on stmt(β′′).

Definition 2.2. Dynamic Data Dependency The statement occurrence β is dy-

namically data dependent on an earlier statement occurrence β′ iff

1. β uses a variable v, and

2. β′ defines the same variable v, and

3. the variable v is not defined by any statement occurrence between β and β′.

1Static control dependence is defined in [13] using the notion of post-dominators in the control
flow graph.

8

Dynamic control and data dependencies can be captured by Dynamic Dependence

Graph (DDG) [4]. Each node in DDG represents an occurrence of a statement, while

each edge represents dynamic data / control dependency. Then the dynamic slice can

be defined as follows.

Definition 2.3. Dynamic Slice for slicing criteria consists of all statements whose

occurrence nodes can be reached from the nodes representing the slicing criteria in the

DDG.

2.2 The JSlice Tool

JSlice [11, 45] is a framework to perform dynamic slicing on Java programs, with the

infrastructure showing on Figure 2.2. JSlice framework consists of a front end (GUI)

and a back end. The back end is the core component which collects execution trace

and performs dynamic slicing.

Given a Java program to be debugged (usually a program with unexpected out-

put), the programmer can use JSlice to find out the relevant statements w.r.t. the

unexpected output. As the first step (Phase 1 in Figure 2.2), the programmer selects

the dynamic slicing criteria via GUI, which can be one or multiple Java statements.

Each statement can be further specified whether he/she is interested in the last oc-

currence or all occurrences during program execution. Then (Phase 2 in Figure 2.2)

the programmer invokes JSlice back-end through GUI to perform slicing. It uses the

Java Virtual Machine to execute the program and collect bytecode trace in compact

form, and then performs slicing w.r.t. the criteria specified previously. The resulting

bytecode level slice is then mapped to source code level (statement level) according

9

GUI

InvokeSelect

Java Virtual
Machine

Execute &
Collect

Bytecode
Trace

Slicing
Criteria

Dynamic
Slicing

Dynamic Slice
(bytecode level)

Java
Class File Transform

Dynamic Slice
(source code level)

Back End

Front End

Phase 1 Phase 2 Phase 3

Figure 2.2: The infrastructure of JSlice. Phase 1: Select slicing criteria. Phase 2:
Perform dynamic slicing. Phase 3: Display slicing result.

to the Java class file (Phase 3 in Figure 2.2) and highlighted in GUI.

JSlice (back end) is developed by modifying an existing Java Virtual Machine

(JVM) - Kaffe [26], with the capability of collecting trace and slicing program.

• Trace Collection. The bytecode trace collection is the foundation of JSlice

infrastructure (as in Figure 2.2). For medium to large size programs, the byte-

code trace would be huge. Thus, JSlice compacts bytecode trace on-the-fly

during program execution. First, bytecodes not corresponding to heap memory

10

access and control transfer (e.g. method invocation) are not stored in trace, as

their operands are fixed and can be discovered from Java class file. For byte-

codes to be traced, the sequence of addresses used by them is stored compactly.

Since these addresses typically have highly repeated patterns, JSlice uses a vari-

ant of well-known lossless data compression algorithm SEQUITUR [33] (called

RLESe) to store them in compressed form. Another important advantage of

RLESe is the compressed addresses can be accessed without decompression.

• Slicing Algorithm. JSlice employs a goal-directed backward slicing algorithm,

which analyzes the compact bytecode trace starting from the occurrences of

bytecodes in the slicing criteria. During slicing, it maintains: (a) the dynamic

slice ϕ, (b) a set of variables δ which has been used by bytecode in ϕ but not

been defined in bytecodes traversed, and (c) a set of bytecode occurrences γ ⊆ ϕ

where the bytecode occurrences they dynamically control dependent on are not

traversed yet. Given a slicing criterion as (l, v) (l is a bytecode occurrence and

v is a variable), initially we have ϕ = γ = {l} and δ = {v}. For each bytecode

occurrence β traversed,

– if there exists any bytecode occurrence in γ which is dynamically control

dependent on β, these bytecode occrrences are removed from γ. Then

variables used by β are inserted into δ, and β is inserted into ϕ and γ.

This essentially checks dynamic control dependencies.

– if β defines a variable vβ and vβ ∈ δ, we have vβ removed from δ, and

variables used by β are inserted into δ. β is inserted into ϕ and γ. This

11

finds the locations of variable definitions for variables used at earlier stage

of traversal (later stage of program execution) to resolve dynamic data

dependencies.

During backward traversal, JSlice also simulates stack operations to capture

data dependencies introduced by data access via stack.

2.3 JSlice Extension

JSlice was first developed by Wang et al. [45] at National University of Singapore.

As described above, the first JSlice version extends a Java Virtual Machine (Kaffe) to

provide dynamic slicing function. Given a slicing criteria, it produces dynamic slice

for Java program with basic Java language features. Although many Java programs

are supported by JSlice, it lacks support of more advanced language features including

exception, reflection (with Java Native Interface), and multi-threading.

Most real programs contain these advanced features. Thus it is necessary to

support programs with all Java features. We have extended JSlice to support all

features in Java language 2 including exception, reflection and multi-threading. That

is, the new JSlice is able to collect the trace for programs containing these features,

and to perform slicing w.r.t the trace.

Exception occurs when there is computation error determined by JVM (internal

exception) or executing program (external exception). When an exception is thrown,

if there is exception handler in a method in the call stack, the execution jumps to

the begin of exception handler, and resumes executing the exception handler and

2All Java language features of Java version 1.4 are supported.

12

normal program code follows. In order to reach the exception handler possibly in the

middle of call stack, several methods on top of it must be popped, which leaves an

execution gap compared to normal execution - only one method is popped each time

when its return statement is executed. To support slicing w.r.t exception, we need

to explicitly record the type of exception, methods popped and their operand stacks.

Reflection provides a mechanism to access a variable or execute a method, where

the exact variable or method is only known at runtime. JVM supports reflection

using Java Native Interface, which traps into JVM’s internal structure to locate the

required variable or method. In the case of method invocation with reflection, after

locating the method using native (C) code, the bytecodes of the Java method will

be executed. Thus we have Java code and native code executing alternatively in

reflection. However, since we are tracing Java program execution at JVM level, we

are not able to trace the details of native code. For variable access, we need to

save the variable address; and for method invocation, we need to record the Java

method executed by native code (i.e. to be executed through reflection), and link

their parameters and return values (since these are just passed between the calling

Java method and the callee Java method through native code).

In order to support multi-threading, we need to maintain several call stacks and

operand stacks, one for each thread. We also need to record the relative access

sequence to shared variables among threads. During slicing, we should perform back-

ward traversal along each thread, make sure the order of shared variable accesses

among threads are preserved, and also to identify dependencies between threads.

The detailed JSlice extension is further discussed in Chapter 6.

13

CHAPTER 3

BACKGROUND ON STATECHARTS

Statecharts were originally developed by David Harel for reactive systems [21] and

have subsequently been integrated into UML specification as one of the major behav-

ioral diagram types. Statecharts extend traditional finite state machines with three

main features — hierarchy (OR-states), orthogonality (AND-states) and broadcast

communication. Hierarchy is used to present a large state machine at different levels of

abstraction. Orthogonality allows the different system components as separate state

machines (running concurrently), rather than constructing their concurrent composi-

tion. Finally, broadcast communication is used for modeling event interactions among

concurrent components.

Figure 3.1(a) shows a Statechart example. Initially, the system enters state S1,

and the entry action AEn1 (of S1) is executed. After event TR1 is received, the

system exits state S1 and executes the exit action AEx1 (of S1). Then it enters

state S2 by following the transition on TR1. Since S2 is an orthogonal state with

two AND-states AS1 and AS2, both states S3 and S6 are entered. This means that

there are two concurrently executing components AS1, AS2 — one in state S3 and

the other in state S6. At this point,

• if event TR2 is received, the system leaves both states S3 and S6, and enters

states S4 and S7.

14

S1

entry/AEn1

exit/AEx1

S2

S4

S5

S3

TR3[CD3]/A3

TR2

S7

S8

S6

TR4

TR2

AS1

AS2

TR1

M = {C+}
C = {Attr∗, Meth∗, SC?}

SC = {E∗, S+, T+}
S = {AS∗, Aentry?, Aexit?}

AS = {S+, T+}
T = {TR, CD?, A?}

(a) (b)

Figure 3.1: (a) An example of Statechart; and (b) Statechart model structure. Sup-
pose we have model M , class C, attribute Attr, method Meth, Statechart SC, event
E, (OR-)state S, AND-state AS, transition T , trigger TR, condition CD, and action
A; specifically, Aentry and Aexit are entry and exit actions of state S. * denotes zero
or more such elements can be contained; + denotes one or more such elements can
be contained; and ? denotes the element is optional.

• if event TR3 is received and the condition CD3 evaluates to true, in AS1 state

S3 is exited and the action A3 is executed. Then state S5 is entered. State

S6 in AS2 remains unchanged. Similar semantics apply when event TR4 is

received.

In Figure 3.1(b) we outline the constituent elements of Statecharts. A class C in

the model M may contain a Statechart SC, and each Statechart SC contains some

(OR-)states S, some transitions T , and all possible events E. A simple state has no

AND-state, while a composite state may have one or more AND-states. A composite

state with two or more AND-states is also an orthogonal state, where the AND-states

(AND-components) are running concurrently. Both simple and composite states may

optionally have entry action Aentry and exit action Aexit. An AND-state AS also

contains a set of OR-states S and transitions T . A normal transition T connecting two

15

(OR-)states has a trigger TR specifying which event fires the transition. Optionally,

it may contain a condition CD to guard the firing of the transition and an action

A to execute whenever the transition is fired. The model may also contain special

transitions - join, fork, and choice transitions (see [21] for details).

16

CHAPTER 4

STATE-OF-THE-ART IN STATECHART

COMPILATION

Compilation of Statecharts for generating code has been studied in many research ar-

ticles. Some of these works, specifically those focusing on embedded system designs,

give importance to generating efficient C/SystemC code from State diagrams [34, 49].

Certain other works (e.g., [27] and, to a lesser extent, [23]) generate Java code from

full-fledged UML designs consisting of Class Diagrams, State Diagrams and Collab-

oration Diagrams. None of these works support full-fledged model-code association,

so lines of generated code cannot be easily mapped back to model elements. In fact,

as we illustrate in the following via an example, even the commercial tools for Stat-

echart modeling and code generation do not properly support association between

Statechart models and generated code.

Rhapsody and Stateflow are two of the successful tools released by I-Logix[43]

and MathWorks[44] respectively, which can generate code from Statechart models.

Rhapsody supports all Statechart features and is capable of generating C, C++, and

Java code. Stateflow supports Statechart models as part of a complete embedded

system design. It supports most of the Statecharts’ features, and can generate C

code from Statecharts. Given a Statechart with sufficient details, all three tools

17

(Rhapsody, Stateflow and our tool) are able to generate executable code supporting

AND/OR-states and event broadcasting. Meanwhile, all three tools provide model-

code association to some extent. All tools tag pieces of code with the corresponding

Statechart elements information.

However, tags maintained by Rhapsody and Stateflow are not sufficient for sup-

porting full model-code association. The purpose of tags in Rhapsody is to help users

refer to model elements automatically while editing the generated code. The tags

only associate actions (in transitions and states) and conditions (in transitions). The

code corresponding to events and transition firings is not tagged, and hence there is

no direct association for these elements. Stateflow generates tags on model structure

for reference purpose only. Only state entry and state exit are tagged before and after

each transition firing. There is no association existing for events, transitions, actions

and conditions. When a transition is entering or leaving a composite state, all levels

of states entered/exited are tagged, instead of the target/source (sub-)state only. Al-

though it shows clearly the execution behavior of a composite state, it increases the

difficulty in understanding the triggered transition as well as its source and target

states.

The problem with incomplete tags for model element is, we cannot construct a

complete trace of the Statechart execution, and hence no systematic analysis method

can be applied. After the code is generated, we can perform debugging when an error

is found. To enable a comprehensive understanding of the bug report at model level,

the code-level bug report should be mapped back to model level. In both Rhapsody

and Stateflow, since some model elements are not tagged for model-code association,

18

Idle Standby

Operating

Departure*

Cruising

Arrival

destSelected

setDest

tm

end

end

alert100

(a)

Departure*

waitExit syncExit

waitCruise syncCruise

End

(b)

Figure 4.1: Statechart fragment corresponding to car object. (a) the top-level Stat-
echart, and (b) the details of composite state Departure. State Arrival is also a
composite state, the details of which is not shown.

the model-level bug report becomes incomplete. Our tool is able to build a full

model-code association, and it maps bug report from code-level back to model-level.

In the following, we capture the capabilities of the existing tools as far as maintain-

ing code to model backward associations is concerned. We use the popular Rail-car

example developed by David Harel and Eran Gery in [22] to illustrate the differences.

The example is drawn from the rail-transportation domain and has been widely used

as a case study of UML-based system behavior modeling. In this example, there are

a fixed number of terminals located along a cyclic path. Each adjacent pair of these

terminals is connected by two rail tracks, one of which is for clockwise travel and

another for anti-clockwise travel of the rail cars. There are several (a fixed number

of) rail cars available for transporting passengers between the terminals. There is

a control center which receives, processes and communicates data between various

terminals and railcars. Each terminal has several car handlers to process transactions

19

T_action
E

T_fire
E

T_fire
:
:

S_entry
E

T_fire
E

T_action
T_fire

:
:

S_entry
E

T_action
T_condition

T_fire

initial
destSelected
Idle2Standby

tm
standby2departure

:
:

DepartureEnd
end

departure2cruising
alert100

cruising2arrival
cruising2arrival

:
:

ArrivalEnd
end

arrival2cond
arrival2idle
arrival2idle

T_action

:
:

S_entry

T_action

:
:

S_entry

T_action
T_condition

initial

:
:

DepartureEnd

cruising2arrival

:
:

ArrivalEnd

arrival2cond
arrival2idle

Element
Type

Element
Type

Element
Name

Element
Name

Our Tool Rhapsody

T_fire
:
:

S_entry

T_fire

T_fire
:
:

S_entry

T_fire

standby2departure
:
:

DepartureEnd

departure2cruising

cruising2arrival
:
:

ArrivalEnd

arrival2idle

Element
Type

Element
Name

Stateflow

Figure 4.2: Model-level slices based on the code generated from (a) our tool, (b)
Rhapsody, and (c) Stateflow. A dashed line shows a missing model element in the
slice resulting from Rhapsody or Stateflow. “E”, “T”, and “S” appearing in “Element
Type” denote “Event”, “Transition”, and “State”. Model elements for CarHandler

and details inside the states Departure and Arrival of Car are omitted for the ease
of understanding.

between the terminal and cars. More details about the example along with the class

diagrams and Statecharts for each class appears in [22].

In particular, we consider the Statechart of a car object (shown in Figure 4.1).

Suppose we have a car moving from a terminal to a neighboring terminal (its desti-

nation). In terms of the Statechart behavior, the car object is expected to visit states

Idle, Standby, Departure, Cruising, Arrival, and back to Idle. Here we use slic-

ing as the debugging method to study how the car finally comes back to state Idle.

20

We set the last occurrence of Idle 1 as the slicing criterion and perform slicing based

on the car object. As shown in Figure 4.2, the model-level slice on column (a) is pro-

duced by mapping the code-level slice backward using our approach, while the slices

on column (b) and (c) are from code generated by Rhapsody and Stateflow. Although

code from all three tools have almost identical behavior, our tool is able to produce

a complete model-level slice. More specifically, all events and transition-firings are

missing in the slice resulting from Rhapsody, which contains only a sequence of actions

executed and conditions checked. For example, since the transition between states

Idle and Standby is missing, we have no idea which event - setDest or destSelected

- triggers the car object transiting from Idle to Standby. In the slice resulting from

Stateflow, the transition-firings are only reconstructed from state entry/exit informa-

tion as well as the model structure. Here also, we cannot determine the transition

triggered from state Idle to Standby. Note that the missing event here (setDest or

destSelected) could be broadcast to other objects (running concurrently), thereby

triggering transitions in other objects. Thus, not tracking these events hampers our

understanding of the overall system behavior (and not just the behavior of the car

object in question).

In summary, the existing tools do not maintain detailed model-code associations

while generating code from Statecharts. Rhapsody only tags actions (which are exe-

cuted as an effect of states/transitions) and conditions (which serve as the guard of

transitions). Stateflow only tracks the states through which the Statechart moves.

1We assume that the execution of Statechart model can be finished by entering an “End” state
eventually.

21

None of the tools track the events which trigger the transitions and are broadcasted

resulting in non-trivial communication patterns across the different concurrent objects

represented by a Statechart. These events are often responsible for “unexpected be-

haviors”; without considering them in our debugging methods (and bug reports) it

would be impossible to comprehend concurrent system designs represented by State-

charts.

22

CHAPTER 5

MODEL-CODE TRACEBILITY

In this section, we present the methodology to trace design information between

models and code. Specifically, our work consists of the following steps.

• Forward code generation. We automatically generate Java code from Statecharts

while using appropriate tags to store model-code association information. The

Java code can then be used to perform code-level analysis (e.g. debugging via

dynamic slicing).

• Backward code-to-model mapping. With the debugging result (bug report) from

code analysis and the association information obtained, we perform a mapping

to produce a model-level bug report, which is more tightly related to the Stat-

echart and also smaller.

• Hierarchical analysis result. Although the model-level bug report is easier to

understand than code-level report, it may still be large and complex. We utilize

the important features of Statecharts (hierarchy/orthogonality) to re-structure

the model-level bug report. Furthermore, we separate out the flow of different

active objects (from the same class) whose behavior is captured by the same

Statechart.

23

Statechart

Java code
with tag

Code-level
bug report

Model-level
bug report

code
generation

with tag

debugging

backward
mapping

Hierarchical
bug report

hierarchical
processing

(statechart structure
information)

(association
information)

Action
performed

Information
provided

Model-code
association

static
analysis of

tag

Figure 5.1: A brief representation of maintaining the traceability between model and
code.

The whole methodology is summarized in Figure 5.1. When a Statechart model

is available1, we can generate code automatically. Since the code is generated com-

pletely from the model, we know exactly which part of code results from a particular

model element. By tagging this piece of code with the corresponding model element

information, we are able to derive the association between model and code. If we en-

counter an observable error while executing the code, we can use code-level analysis

tools (such as slicing) to debug it. With the debugging result (code-level bug report),

we map the bug report backward to model-level by replacing all statements corre-

sponding to a model element in code-level bug report with the model element. To fully

regain the structure of Statecharts, the model-level bug report can be re-organized.

The re-organized hierarchical bug report maintains both the structure of Statechart

as well as the elements in the original model-level bug report. We now elaborate the

intricacies involved in each of these steps. A preliminary report is presented in [18].

1The states and transitions must be defined, and all appropriate triggers/conditions/actions must
be available — such that the system is executable after generating code.

24

Class Statechart

1 1

ANDStateORState
11..*

1 *

AbstractORState

AbstractANDState

1

*

Figure 5.2: Class diagram of Java code generated from Statecharts.

5.1 Code Generation

First we discuss how we can maintain tags between model elements and generated

code during the process of code generation. In this chapter, we present our method-

ology by translating a Statechart to a single-threaded Java program. Thus, event

communication at the Statechart level gets translated to method calls at the code level.

Translating Statechart to multi-threaded program is discussed in Chapter 6. It is

worthwhile to note that how do we translate Statecharts to code does not affect the

method to build model-code association and to map code-level result to model-level.

For each class of active objects in the system model, the corresponding State-

chart is realized at the software level via several Java classes. As shown in Figure

5.2, a Statechart contains a set of OR-state classes. Meanwhile, an OR-state class

may have several AND-state classes — where each AND-state class corresponds to a

concurrently executing component. Each AND-state class may again contain differ-

ent classes corresponding to the possible (OR-)states in which the system component

(corresponding to the AND-state) can be in. The design of OR-states within an

AND-state follows the State design pattern [14].

25

1. public void trigger(Events event)
2. {
3. switch(event) {
4. <% for each (transition t in current state) { %>
5. case Events.<% transtion t's event %>:
6. <% if (transition t has condition) { %>
7. if(<% transition name %>_Condition()) {
8. <% } %>
9. <% if (transition t has action) { %>
10. <% transition name %>_Action(event);
11. <% } %>
12. <% transition name%>_Fire();
13. <% if(transition t has condition) { %>
14. }
15. <% } %>
16. break;
17. <% } //end for each %>
18. default:
19. for each (AND-State as contained) {
20. as.trigger(event);
21. }
22. }
23. }

24. <% for each (transition t in current state) { %>
25. <% if(transition t has action) { %>
26. /**
27. * @model type=transition_action name=<% transition name %>
28. */
29. private void <% transition name %>_Action(Object parameter) {
30. <% transition t's action %>
31. }
32. <% } %>

33. <% for each (transition t in current state) { %>
34. /**
35. * @model type=transition_fire name=<% transition name %>
36. */
37. private void <% transition name %>_Fire() {
38. Create target state object;
39. make transition;
40. }
41. <% } %>

Figure 5.3: A fragment of template used in code generation.

While generating code from Statechart models, we mark the lines of code corre-

sponding to specific model elements with the model element name and type. The

usual model element types correspond to events, states, transitions, conditions, ac-

tions and etc. Note that while generating Java code, each method only contains code

for at most one model element. These markers or tags are inserted as Javadoc com-

ments in the generated code in the form of:

@model type=type name=name

For example, if a method meth in code corresponds to state S2 in a Statechart model,

we insert the following comment before meth:

/**

*@model type=state name=S2

*/

The code generation mechanism is implemented using Eclipse framework, which

26

is capable of emitting text files w.r.t. a set of templates and inputs to the templates.

Figure 5.3 shows a fragment of a template used in generating an ORState class as in

Figure 5.2, which is writing in pseudo code for ease of understanding. Line 1 - 23

represents the method to dispatch event, and line 24 - 32 and line 33 - 41 represents

two methods for transition’s action and transition firing respectively. Note that text

contained in “<%” and “%>” is to be substitute with the real input - e.g. transition

name, code for transition action, and etc. Other text is emitted as is. Each element is

written as a method. For example, line 30 will be replaced with the code of transition

action during generation. The tag for model element is written in the template as

well, with appropriate names to be substitute. Line 26 - 28 shows such a tag for

transition’s action.

Inserting tags as Javadoc comments at method level serves several purposes:

• instead of inserting tag to every statement related to a model element, we greatly

reduce the space overhead for tags;

• Javadoc is a standard documentation format in Java program, and thus the

generated tags can be easily processed by other design tools for their own anal-

ysis;

• it allows us to incrementally change the code, for minimal changes in the Stat-

echart model.

Note that the tags in the generated code cannot be efficiently used for relating

code-level bug reports to the model level. Indeed this is the main motivation of our

work — debugging model-driven software such that the results of debugging can be

27

shown and communicated to the designers at the model level. Since the tags are

embedded inside the generated code as plain text, relating the lines in bug-reports

to the model-level will involve expensive file accesses. Consequently, we use the

tags in the generated code to build an in-memory representation of the model-code

association. The association consists of tuples of the following form:

(Model element name, Element type, Java class file, Line numbers)

indexed by (element name, type) and (class file, line numbers) separately.

Maintaining the model-code associations in-memory as well as in the file for generated

code allows us to avoid regenerating the code for minor changes in the model.

Effect of incremental changes. The process of maintaining tags during code gen-

eration and building the in-memory model-code association is important for model-

level debugging. Once the bugs are found and fixed at the model level, the changes

need to be propagated to the generated code. This can be done automatically using

the tags, provided the fixes at the model level do not add/remove any model elements.

We note that often the bug-fixes involve correcting a wrong condition or a wrong ac-

tion in the Statechart model. Such changes in the model level only modify model

elements. These changes do not affect the tags, and thus do not require re-generating

code from the modified model. In fact, as long as the structure of the Statechart

model (the structure resulting from states and transitions) is not affected, there is no

need to re-generate code from the Statechart. Instead we can use existing tags, to

directly (and automatically) propagate the changes from the model level to the code

level. The in-memory model-code associations can then be re-built on demand from

28

the modified code.

5.2 Debugging the Generated Code

We now elaborate the method for mapping the debugging results of the generated

code back to the Statechart model level. Most debugging methods report a list of

statements (the bug report) that are potentially related to the observable “error”.

These statements are at the level of the generated code. Recall that our model-code

association stored in-memory contains tuples of the form

(Model element name, Element type, Java class file, Line numbers).

Thus, we can map a set of statements in the generated code to a set of model elements

at the Statechart model level. This constitutes our preliminary model level bug

report. The model-level bug report is smaller and more compact than the code-level

bug report.

Taking the example in Figure 4.1, where the “car” object visited states Idle,

Standby, Departure, Cruising, Arrival, and back to Idle (the states inside com-

posite states are not mentioned here). Suppose we set the last occurrence of Idle

state as the slicing criterion, which is essentially translated to a number of lines in

generated code passed to JSlice. The code-level bug report will consist of a set of

(Java class file, line number) tuples. Apparently, a number of entries in the

bug report corresponds to one model element. By utilizing the model-code associ-

ation, we can get a set of model elements as the model-level bug report. For this

example, we will have:

29

State Idle, Transition Idle → Standby, State Standby, ..., State

waitExit, State syncExit, ...

Note that in the model-level bug report, all related model elements are reported as a

simple set. The hierarchy structure of Statechart is totally disregarded. The designer

cannot figure out those more important (more suspicious) elements quickly from the

element set. Thus, we need to further re-organize the model-level bug report.

Separating flows from different objects in a class We observe that debugging

program generated from Statechart models differs in one significant way from normal

debugging of sequential programs. A Statechart model M for a process class can

capture the communication and control flow of several active objects running con-

currently. This is because there might be several active objects in the class whose

behavior is captured by M . Consequently, in the model-level bug report, it is impor-

tant to separate out the relevant control flows of these different objects — so that

the designer can trace the source of the observable “error”. For example, if a state

S2 appears in the model-level bug report, it might capture the visit of several active

objects of the same class to the state S2 (each possibly multiple times). To separate

out the control flows of the different objects, we can let our code-level debugging

method return a sequence of statement instances rather than a set of statements.

This is possible for popular debugging methods such as dynamic slicing [28, 4, 45]

and fault localization [19]. The sequence of statement instances (call it σcode) gets

mapped to a sequence of model element instances (call it σmodel) using model-code

associations. These model element instances may come from different objects; we can

30

project σmodel to get the sequences of model element instances for the different active

objects.

Hierarchical Bug reports Even after we project the model-level bug report for

each active object, the bug report for objects are still sets of model elements, which

may be huge compared to the entire model for the designer to inspect. In fact, we

can go beyond the projection of model level bug report for active objects. Since a

Statechart model has a hierarchy structure, the parent-children relationship of states

can be formed as a tree automatically. Nodes in this hierarchy tree correspond to

OR-states in Statechart. Children of a node n are OR-states directly contained by

n’s AND-states. Note that in the hierarchy tree we do not include AND-states.

Usually the model designers are interested in how the model is executed - that is,

how transitions are fired between OR-states. Since all AND-states become active

when their parent OR-state is active, there is no terminology of sequential transitions

between AND-states.

Building hierarchical bug report at code-level is studied in [47]. However, the

organization of code-level hierarchical bug report may not correspond to the structure

of Statechart. Thus, we need to build hierarchical bug report at model-level w.r.t the

Statechart organization.

Given a model-level bug report (as a sequence of model element instances), we first

project the report to get the sequence of model element instances for every object

of class C. This sequence is projected further for each node of the hierarchy tree

of Statechart model M for class C. This leads to a bug report which contains the

31

Standby

Root

Idle

Arrival

Depature

Operating

End

Departure Cruising

End

Arrival

syncCruise

syncExit

Departing End

waitExit syncExit waitCruise syncCruise

...

Level 1

Level 2

Level 3

Level 4

Figure 5.4: Hierarchical bug report for the example in Figure 4.1.

structure of the Statechart model and enables greater design comprehension. Figure

5.4 shows the hierarchical bug report (as a hierarchy tree) of Statechart example

as in Figure 4.1. As the top level states in the statechart are Idle, Standby, and

Operating, we have three nodes representing these three states at Level 1 in Figure

5.4. The node Operating can be further divided into three nodes as in Level 2,

corresponding to the three OR-states contained by state Operating, and so on. At

each level, we shows transitions (in bug reports) across nodes only. That is, transitions

within a composite state is hided for current level, and can be examined by zooming

32

into the composite state. Furthermore, each node (state) may selectively show sub-

states where there exist cross-node transitions connecting them. For example, at

Level 1 in Figure 5.4, we have transition connecting Standby and Departure (in

Operating).

The hierarchical bug report can be constructed as:

1. project model-level bug report to get the sequence of model element instances

for every active object o (object-level bug report Ro);

2. build the hierarchy tree of states To for every active object o;

3. prune the hierarchy tree - for a sub-tree rooted at node n, if all nodes in the

sub-tree are not in Ro, and no transition connecting them, we can prune this

sub-tree in To;

4. connect nodes in To with all transitions in Ro, and expand node to show sub-

states if any transition connects to them. In particular, for each transition

t ∈ Ro, we connect it to two states/nodes s1 and s2, where

• parent(s1) = parent(s2), and

• ancestor(source state(t)) = s1, and

• ancestor(target state(t)) = s2.

By presenting this hierarchical bug report, the model designer can determine

which model state is potentially buggy at higher level, and navigate inside to see the

detailed transitions reported for that state, and so on. This approach is more effective

to designer than being presented a long list of model elements.

33

CHAPTER 6

EXTENSION FOR ADVANCED PROGRAM

FEATURES

In previous chapter we discussed model-code traceability for sequential programs.

That is, by assuming the underlying code-level debugging tool can only process se-

quential program (which is true for many code-level debugging tools), our code gen-

eration tool generates sequential Java program for Statechart. Even if the Statechart

contains AND-states that run concurrently in Statechart models, we manage to se-

rialize the execution of concurrent AND-states by implementing event triggers as

method calls. These method calls are properly arranged such that they follows the

specification of Statechart execution model.

However, the generation of sequential code is only limited by the underlying code-

level debugging tools. There is no obstacle preventing us from generating concurrent

code from Statechart model. As we have extended the JSlice tool with the ability to

analyze multi-threaded Java programs, we can generate concurrent code containing

threads to maximize the code performance. It also means that generated code exposes

the uncertainty of event triggers through threading, which complies with Statechart

execution model exactly. In the following, we will discuss the support of concurrent

code generation and concurrent (and other) extensions to dynamic slicing.

34

6.1 Concurrent Program Code Generation For Stat-

echart

As implied by the characteristic of Statechart, we use threads to realize concurrent

AND-states. When an (OR-)state s containing several AND-states becomes active,

all its AND-states are active. Thus we create a thread for each AND-state, and these

threads terminate when the (OR-)state s becomes inactive 1.

The event triggers are handled through a centralized Event Manager. As shown

in Figure 6.1(a), the event manager is associated with a dispatching table, which

contains the mapping between events and threads (AND-states). All events gener-

ated internally and externally are sent to the event manager, which is responsible to

dispatch the event e to all states containing transitions to be triggered by e. Since

we use threads to implement AND-states, the event manager effectively dispatches e

to a number of threads found in the dispatching table. The event manager also has

the mechanism for threads to register/de-register themselves for an event.

When a thread enters a state s, it registers itself to the event manager with the list

of events E that can trigger transitions at current state s. Then it will wait for event

manager to dispatch an event e ∈ E generated internally or externally. By receiving

an event e, the thread could proceed to make transition to next state. Figure 6.1(b)

shows a fragment of a Statechart. When state s0 becomes active, both its AND-states

as1 and as2 are active and two threads t1 and t2 are created respectively. Note that for

as1 and as2, state s1 and s4 are active. Then t1 registers itself with event {e1, e2} to

1The OR-state and all of its AND-states are active simultaneously. It is impossible that one of
the AND-states become inactive while other AND-states directly contained by the same OR-state
are active.

35

s1

s2

s3

e1
e2

t1(as1)

t2(as2)

s4 s5e2

e3

s6

Event
Manager

... ...

(t0),(t1), t2

t1

Thread

t1, t2
e3

e2

e1

Event{e}

add({e},t) / remove(t)

(a)

(b)

e4

s0

t0(as0)

Figure 6.1: The event manager in generated concurrent code.

event manager, and t2 registers itself with event {e2}, resulting the dispatching table

as in Figure 6.1(a) (first two entries in dispatching table). Suppose event e1 is received

by event manager, it will find t1 to dispatch, where t1 could make the transition to

state s2. After event manager dispatches e1 to t1, it will remove all entries of t1 from

the dispatching table, since t1 will make an transition and invalidate all t1’s entries

in the table.

The dispatching of events by event manager is implemented through semaphore.

36

A semaphore has a counter initially setting to 0, and provides two operations - UP and

DOWN. UP operation increases the counter by 1 atomically; and DOWN operation

decreases the counter by 1 atomically. If the counter is 0 before DOWN operation,

the calling thread is blocked until an UP operation is invoked by another thread.

From thread perspective, a thread t1 can wait (and block) for some event by invoking

DOWN operation. Another thread t2 can signal t1 by invoking UP operation on the

same semaphore. In the context of Statechart code generation, we have a semaphore

for each thread. In the example shown in Figure 6.1, after thread t1 registers to event

manager, it invokes DOWN operation on its semaphore sem1 and is blocked. After

event manager receives e1, it invokes UP operation on sem1, to wake up thread t1 to

make the transition.

Implementation choice of semaphore. When we discuss thread signaling

mechanism, we have several choices. One is to use semaphore, and another is to

use wait/signal mechanism. The most relevant difference between two mechanisms

is: with wait/signal, if a thread is signaled before it waits, the signal is lost and it

will keep on waiting. In our case, a thread waits after it registers to event manager.

However, these two actions are not executed in one atomic step. It is possible that

event manager receives the event and signals the thread between these two actions,

resulting the thread waits without being signaled. Thus, the semaphore makes sure

the thread can always be signaled after it registers to event manager.

If a thread is waiting in a state with only one outgoing transition, the event

manager is just required to signal the thread. However, since a state may have two

or more outgoing transitions, the event manager must provide the actual event to

37

the signaled thread as well, for it to trigger the correct transition. We also need to

make sure when an AND-state triggers transition going out of it, all other AND-states

contained within the same OR-state are deactivated as well. As shown in Figure 6.1,

suppose t2 enters state s5, it will register itself, t1 and their super state t0 with event

e3 in event manager (t0 and t1 in the third row of table is shown in italic indicating

they are registered by other thread). Upon event e3 occurs,

• t1 and t2 execute exit actions (if any) of current states and terminate.

• t0 is woke up from state s0 and enters s6.

6.2 Slicing with Advanced Features

JSlice is capable of producing dynamic slice for Java programs, and it supports major

features of Java programming languages. However, it lacks support of advanced

features - exception, reflection, and multi-threading. We have extended JSlice with

full Java programming language (version 1.4) support by implementing the above

three features. Implementing these features is important as most real programs utilize

one or more of them.

6.2.1 Exception

When a program violates any semantic constraint of the Java programming language,

the Java virtual machine throws an exception to signal this error [53]. Meanwhile, a

Java program may also explicitly throw an exception indicating error encountered to

the program. This exception causes a non-local control transfer from the point where

exception occurred to the exception handler (if any) specified by programmer. During

38

the trace of program execution, we must store this non-local control transfer in order

to simulate it reversely from handler to the point exception occurred during backward

traversal of dynamic slicing. The execution transfer from exception point to handler

may require popping up method invocations from call stack if the handler does not

reside in the same method of exception. The Java Virtual Machine pops methods

from call stack one by one until it finds the appropriate handler, and continues to

execute the handler 2.

To make sure we can traverse backward, for each exception occurred we maintain

a list of methods popped and the type of exception (thrown by JVM or program).

Suppose the exception occurred in method m0 and handled in mh, we keep the method

sequence as meth pop = (m0,m1, . . . ,mh−1,mh), where methods m0 to mh−1 are

popped, and the program counter of mh revises from invocation to mh−1 to the

handler. For each mi, we maintain:

• the class name of mi, and

• the method name of mi, and

• the signature of mi, and

• the last executed bytecode of mi, and

• the size of operand stack of mi before it is popped or revised.

Thus during backward traversal, we could construct the call stack with correct meth-

ods, program counters, and (sizes of) operand stacks, when we reach the beginning

2Java Virtual Machine will exit if an appropriate handler does not present.

39

of exception handler.

Exception introduces dynamic control and/or data dependencies between the byte-

code throwing the exception and the exception handler catching it. [41]

• There is dynamic control dependency since the execution of handler is depen-

dent on the occurrence of exception (i.e. the bytecode throwing exception).

• There could also be data dependency if the exception is explicitly thrown by

program using “throw” statement. This is because it will push an exception

object to be thrown into the operand stack which could be used by the handler.

Thus we need to record the type of exception, and if it is thrown by program, we

maintain the proper data dependency w.r.t the exception object by pushing it

into the operand stack of method throwing exception during backward traversal.

6.2.2 Reflection

Reflection enables Java program to: (a) access class structure and object fields of a

selected class/object at runtime, (b) create a runtime-specified object, and (c) invoke

a runtime-selected method. Most of these capabilities are implemented by calling

native methods (written in C) in JVM. In general, JSlice which works at JVM level

cannot trace within native methods, and thus we cannot support slicing on native

method. However, we can support reflections in JSlice as we can get the object fields

to be accessed, or the Java method to be invoked by native method.

Accessing class structure and object fields. These reflection methods do not

call native method but access the internal structure of JVM. Thus we can trace these

accesses similar to bytecode tracing. For example, for object field access, we can find

40

the object and the field from the parameter of reflection call, and record them for

data dependencies analysis involving the field.

Create runtime-specified objects and invoke runtime-selected methods.

These reflection calls first invoke certain native methods, which further invoke corre-

sponding Java object constructor / Java method. Furthermore, the parameters for the

Java method together with the method name are passed to the native calls as param-

eters. Although we cannot trace native method, we can map between the parameters

passed to native method and parameters passed to subsequent Java method. The

return value (if any) are mapped as well. These mapping of parameters and return

values is to trace data dependencies across reflection calls.

Note that in normal method invocation, we do not need to explicitly record the

callee method, as this information has been compiled into Java class file. However

for reflection call, the information is not available statically, so we need to record

the indirect Java callee (class name, method name, and method signature) through

native method, and attach this information to method invocation bytecode in caller.

It is common that the reflection method is invoked several times, and in each

invocation the intermediate native method calls several Java methods in sequence.

During tracing, we use a stack to trace the bytecode instances in Java method calling

native method, and for each Java method called by the native method, attach its

information to the bytecode instance on top of the stack. For example, as shown in

Figure 6.2(a), we have a reflection call to invoke callee method A.f(), which further

uses reflection call to invoke another callee B.f(). Note that invokeMethod() and

invoke() in both occurrences refer to the same Java/native method. Figure 6.2(b)

41

invokeMethod(A.f) [Java]

invoke(A.f) [native]

A.f() [Java]

invokeMethod(B.f) [Java]

invoke(B.f) [native]

B.f() [Java]

someMethod() [Java]

someMethod() [Java]

invokeMethod(A.f)

invokeMethod(B.f)

someMethod()

A.f()

someMethod()

B.f()Stack

(a) (b)

Figure 6.2: The example of multi-level and multi-callee in reflection invocation.

shows how we record reflection calls using stack. After we enters A.f(), we have

invokeMethod(A.f) in the stack pointing to the list of callees (someMethod() and

A.f()). Right after we enters B.f(), we have the stack shown as 6.2(b). After the

reflection calls finished, the two invocation lists are attached to the bytecode bi calling

invoke() in invokeMethod(). During slicing both times we reach the bytecode bi,

we push both someMethod() and X.f() to the call stack. So that we can simulate

backward traversal covering all Java methods executed.

6.2.3 Multi-threading

We also extend JSlice to support multi-threaded Java programs. The trace collection

for multi-threaded Java program is similar to single-threaded program. For single

threaded tracing, each bytecode executed has its control and data flow trace stored

compactly. In multi-threading tracing, we still store a bytecode’s control / data

trace for all threads in that bytecode, in order to reduce the overhead introduced

42

t1 t2

1

2

3

4

1

3

4

5

The order of occurrence of two events
accessing the same shared object

Figure 6.3: An example of events time stamps in multi-threaded dynamic slicing.

for maintaining separate trace for each thread. The difference is we maintain one

call stack and one operand stack for each thread separately. However, threads often

communicate with each other through inter-thread events, such as shared variable

access, wait/notify, mutex and semaphore. The order of these events is required for

dynamic slicing to detect dynamic dependencies between threads.

We use a method similar to [31] (Levrouw et al.) to trace the inter-thread events,

which is based on the Lamport Clocks [30]. In Levrouw’s approach, each thread t has

a scalar time stamp ct and each object o has a scalar time stamp co. When a thread t

accesses a shared object o, this event is recorded with time stamp ce = max(ct, co)+1,

where max returns the maximum value of the two inputs. The time stamp ct and co

for t and o respectively are also set to ce. This imposes a partial order on any two

inter-thread events accessing the same shared object. For two such events ei and ej, if

ei occurs before ej (ei < ej), we have ei < ej ⇒ cei
< cej

. Figure 6.3 shows an example

43

of recorded time stamps for events occurred in two threads t1 and t2. The numbers

are recorded time stamps, and the arrow indicates the order of two events accessing

the same shared object. For two events connected by arrow, we must maintain their

relative order during backward traversal. These orders can be captured by comparing

their time stamps.

During backward traversal, we can retain the order of inter-thread events using

time stamps recorded. That is, for any two inter-thread events ei and ej with ci < cj,

we enforce ej to occur before ei as in backward traversal. Note that this may introduce

additional event order constraints. It is possible that even if ci < cj, the execution

order of corresponding events ei and ej are not constrained (e.g. these two events do

not access the same shared object). However, these additional orders will not cause

any deadlock in the backward traversal. As in Figure 6.3, although the events e3t1 and

e4t2 are not ordered, we will still force e4t2 occurring before e3t1 in backward traversal.

It can be further optimized to reduce the trace size. Levrouw et al. show that it is

not necessary to trace all time stamps to record the partial order. In particular, for an

event e of thread t accessing object o, we only need to trace the increment of ct before

and after the event e, if ct < co. In other cases, we do not need to record the time

stamp as ct and co increments by 1 which is default. During backward traversal, if an

event do not have traced time stamp, we can obtain its time stamp by decrementing

ct by 1. Otherwise, we decrement ct by the recorded value.

The dynamic slicing algorithm for multi-threaded programs is similar to that

for single-threaded programs as well. However there are several differences. The

algorithm maintains operand stack and call stack for each traced thread. Although

44

the bytecode trace is recorded during execution w.r.t. multiple threads, the slice is

computed in a single thread (the last thread finishing execution). At any specific

time, only one traced thread with its operand stack and call stack is active. At

the beginning of backward traversal, we first activate a thread (the main thread)

and traverse it backward. During the traversal, we check the recorded time stamp

for every bytecode accessing object (potential inter-thread event). When we cannot

continue traversing the active thread due to time stamp constraints, we switch to

another thread where traversal is not blocked by time stamp constraints. That is, we

stop traversing a thread if there are inter-thread events (bytecodes) from other threads

with bigger time stamps. Meanwhile, besides dynamic control and data dependencies,

we also consider inter-thread dependencies, such as dependencies due to wait/notify

calls.

Handling of System.exit(). Java Virtual Machine provides a system-level

method System.exit() which terminates the program execution and exits JVM im-

mediately. When this method is invoked by a program, we need to terminate its

execution, and perform slicing before JVM exits. With concurrent programs, there is

one more step - we should also terminate other threads immediately beside the thread

calling exit(), since this is the expected behavior without slicing. When exit() is

called by a thread t:

1. thread t informs all other threads that they should terminate;

2. all threads stop executions and clean up;

3. the last stopping thread performs slicing.

45

CHAPTER 7

EXPERIMENTS

7.1 Experimental Setup

In order to experimentally evaluate our methodology, we adopt and construct four

Statechart models for the evaluation of sequential code generation and bug report

backward association. These models used are shown in Table 7.1. The third column

shows the number of elements in the Statechart model, counting OR-states, AND-

states, transitions, actions, and conditions. Except for the RailCar example discussed

in Chapter 4, the other three models are based on real-life systems. The automated

shuttle system [40] consists of several shuttles running on a railway network. They bid

to transport passengers between two stations and earn money upon the completion

of the transportation; meanwhile, the shuttles have to pay for the rail network us-

age. The weather control system is part of the Center TRACON Automation System

(CTAS) [9] developed by NASA. It is used to control the air traffic at large airports.

The weather controller contains a weather control panel dispatching weather status, a

communication manager, and several clients receiving weather information. Such an

update may succeed or fail and clients must respond with correct actions. The Media

Oriented Systems Transport (MOST) [8] is a networking standard for multi-media

devices (such as CD player) communicating in a car network. The network may con-

tain up to 64 nodes, and each node corresponds to a multimedia device. These nodes

46

Statechart Description # model
elements

RailCar A rail car system from [22] 121
ShuttleSystem Shuttles transporting passengers between stations [40] 117
WeatherControl Updating weather status to clients [9] 202
MOST Networking standard of multimedia system in cars [8] 277

Table 7.1: Statechart models used in our experiment

are known as Network Slaves in MOST terminology. There is a special node called

Network Master responsible for maintaining the network information in a central reg-

istry. The Network Master scans the whole network upon a change in the network

status. Network Slaves may reply with valid or invalid information and further action

must be performed (e.g. a re-scan). The MOST standard is currently maintained by

the “MOST Cooperation”, an umbrella organization consisting of various automotive

companies and component manufacturers like BMW, Daimler-Chrysler and Audi.

For each of the above four models, we manually inject four to five bugs, resulting

in four to five buggy versions (from each of which code is subsequently generated).

These bugs can be categorized as follows.

• Wrong control flow - The bug affects states visited, including transition pointing

to a wrong state, a condition is tightened or relaxed, or the event trigger of a

transition is wrong. These correspond to “branch errors” in the generated code.

• Wrong action - The assignment to a variable in the action corresponding to a

Statechart state/transition may be wrong. These correspond to “assignment

errors” in the generated code.

47

• Missing element - The bug results from a missing transition, condition, or ac-

tion. These correspond to “code missing errors” in the generated code. For bugs

of this type, we define the bug in terms of elements existing in the Statechart

model. Thus, if a condition or action is missing we mark the corresponding

transition as buggy, and so on.

For each buggy version, we manually construct five to ten test cases which are failing

runs with observable errors. In other words, the executions of these test cases are

different w.r.t the correct version and the buggy version.

We choose dynamic slicing [4, 28] as the debugging method to produce code-

level bug reports and perform backward mapping to model-level. Given a program

P , input I, line of code l and set of variables V — dynamic slicing can find the

statements/statement-instances of P which (directly or transitively via control or

data flow) affect the value of V at l in the execution trace corresponding to I.

We exploit the dynamic Java slicing tool JSlice [11, 48] from our previous work

[45] to produce code-level slices. As discussed in earlier chapter, JSlice is an open-

source tool which performs backward dynamic slicing of sequential Java programs.

Since backward slicing requires storing of the execution trace, JSlice performs online

compression during trace collection. The compressed trace representation is traversed

without decompression during slicing. The program slices produced by JSlice are

mapped back to model elements using the association between model entities and the

generated code. The model-level slice is then further processed to produce hierarchical

slices which correspond to the structure of the Statechart.

48

In addition, we also choose 2 smaller Statechart examples to evaluate concurrent

dynamic slicing. We do not report experimental results for concurrent code generation

and association as we will work on the full implementation of concurrent code gen-

eration in next stage. One Statechart example is Airline Tickets Issuing and another

one is Bank Account Simulation, consisting of 56 and 41 model elements respectively.

These two are adopted from the concurrent benchmark suite from IBM Research [39].

The Airline Tickets Issuing example simulates several agents selling a fixed number

of air tickets for a flight. Every agent checks if there is available ticket and sells one

repeatedly. Since all agents sell concurrently, proper locking is expected to make sure

the number of tickets sold does not exceed total number of tickets available. The

Bank Account Simulation example has similar behavior where several people access

their accounts concurrently with deposit, withdraw and transfer operations. For each

model, we manually inject two bugs to evaluate the effectiveness of dynamic slicing.

7.2 Experimental Results

For experiment on sequential code generation, we employ our tool on nineteen buggy

program versions (for the four Statecharts in Table 7.1) to evaluate the efficiency

and effectiveness of the methodology. We first consider the efficiency of generating

sequential code with tags.

7.2.1 Code Generation

Given a Statchart model, we automatically generate a single-threaded Java program.

While generating code from Statechart model, we also insert tags in generated Java

49

0.00
0.20
0.40
0.60
0.80
1.00

Shuttle Railcar Weather MOST
Statechart models

P
ro

ce
ss

in
g

tim
e

(s
ec

s)

Generate code without tag
Generate code with tag
Generate code/tag & build association

0
500

1000
1500
2000
2500
3000

Shuttle Railcar Weather MOST
Statechart models

N
um

be
r o

f l
in

es
 o

f c
od

e

Without tag With tag

(a) (b)

Figure 7.1: Experimental results for sequential code generation. (a) Time to gen-
erate code and build model-code association. It compares the time to generate code
without tag, time to generate code with tag, and time to generate code/tag and build
association; and (b) The number of lines of code for four models.

files. The tags are processed to construct an in-memory structure representing asso-

ciation between model and code. Thus it is important to make sure the overhead of

tags and building the in-memory association is small enough.

Figure 7.1(a) shows the time to generate code for the four models. For each

model, it shows the time to generate code without tags, the time to generate code

and tags, and the time to generate tagged code as well as the in-memory model-code

association. The time overhead of tags in code generation is mainly for emitting

into files (and writing to disk) and is largely system dependent. Among all models,

the time required to generate code with tags increases 3% - 13%, compared with

generating code without tag. From the figure, the time for generating code and tags

is 34% - 45% of the total time. The remaining time is spent in building the in-memory

associations. We recall that modifications to Statecharts which only modify model

elements do not require re-generation of code. Thus, the overhead of code generation

is usually incurred only once across several runs of debugging.

50

The size of generated code is shown in Figure 7.1(b). The increase in code size

due to tags is low — 15% - 22%.

7.2.2 Dynamic Slicing

After we have the Java code and the model-code association information, we per-

form dynamic slicing on each of the nineteen buggy programs (corresponding to the

four Statechart models). At the model level, we specify the slicing criterion as the

last “wrong” state visited by a particular object (which gives the observable “er-

ror”). Since we actually perform slicing at code level, we specify the criterion as the

corresponding state entry point (not necessarily the state entry action) in the code.

As mentioned earlier, each Statechart model has several buggy versions, and in

each buggy version the slicing criterion is set based on the observable error. However,

for dynamic slicing, apart from the slicing criterion, we also need inputs which exhibit

the observable error in question. Hence corresponding to each buggy version, (at least)

five test cases are chosen. The experimental results (shown in Table 7.2) report all

quantities corresponding to a buggy version as the average over all the test cases for

that buggy version. The goal for choosing different inputs for the slicing was to get

rid of (or at least reduce) the influence of any specific program input on the overall

results. Furthermore, the same bug may manifest itself as different observable errors

for different inputs (leading to different slicing criteria). In the following, we discuss

only the average slice size and times for each buggy version. This is particularly so,

because we did not find significant differences in slice size and times across different

inputs of a buggy program version.

51

Model Bug
Type

Slice Size Time (secs)
Code-level

Slice LOC Model-level
Slice

Total
Elements

Map from
Code-level

Build
Hierarchy Slice

Shuttle
System

1 316.2

1167

42.7

117

0.046 0.691
1 334.8 43.5 0.039 0.609
3 331.8 43.5 0.036 0.604
2 282.0 37.5 0.027 0.591
1 286.3 37.7 0.031 0.599

Railcar

2 412.8

1389

49.2

121

0.053 0.639
3 405.3 47.0 0.044 0.613
1 411.9 49.0 0.053 0.620
1 414.0 48.4 0.045 0.607

Weather
Control

1 353.7

1889

89.7

202

0.092 0.963
1 324.8 78.2 0.090 0.985
3 338.8 84.0 0.094 1.018
1 376.4 94.6 0.097 1.016
2 356.5 88.8 0.099 0.996

MOST

1 447.0

2440

74.3

277

0.118 1.009
3 454.0 76.8 0.113 0.985
1 491.1 92.0 0.194 1.058
2 494.6 85.8 0.172 1.037
1 466.0 81.3 0.133 1.028

Table 7.2: Summary of experimental results for sequential dynamic slicing. Column
2 shows the type of bug, 1 - wrong control flow, 2 - wrong action, and 3 - missing
element. The four columns under the heading “Slice Size” represent average size
of code-level slices, total lines of code, average size of model-level slices, and total
number of statechart elements. The two columns under the heading “Time” show
the average dynamic analysis time, including time to map slice from code level and
to build hierarchical slice.

The columns with heading “Slice Size” in Table 7.2 show the comparison of slice

sizes. The slice size for code-level bug report is the number of statements contained;

while the slice size of model-level bug report is the number of model elements con-

tained. For all the buggy versions, the size of model-level slice is 12% to 25% of

corresponding code-level slice. This is not surprising since a single model element

may require a couple of lines of code to implement. The model-level slice is 27%

to 47% compared with the total number of model elements, while the corresponding

ratio for code-level slices is 17% to 30%. The larger ratio for model-level slices (as

compared to code-level slices) is due to the same reason as above - when an element

52

is included in the model-level slice, it is common that only a portion of corresponding

code appears in the code-level slice.

The time to map code-level slice to model-level is shown in the first column under

the heading “Time” in Table 7.2. We did not find significant differences across buggy

versions of the same model. The average time to build hierarchical slice is shown

in the second column under the heading “Time” in Table 7.2. It includes analyzing

and constructing hierarchy tree for the Statechart and projecting the dynamic slice

corresponding to the different nodes of the hierarchy tree. The time is almost same

for each model, because reading the Statechart structure and constructing the tree

needs a large amount of time.

Note that not all bugs can be found in dynamic slices. In our experiment, three

of the nineteen buggy program versions had slices that do not contain the bug. For

example, none of the dynamic slices contained the bug for the second buggy version

of Shuttle System. Here, the condition of a choice transition was wrong and the

corresponding transition never got fired. Although the condition can be included in

dynamic slice, this is misleading as the reason why the model behaves incorrectly is due

to the transition guarded by that condition is not fired. Thus, the error here occurred

due to some portion of the model not being executed. Such errors cannot be found in

dynamic slicing, and we need to employ techniques such as “relevant slicing” [20, 45].

7.2.3 Concurrent Dynamic Slicing

We also perform dynamic slicing on the two concurrent examples. We first manually

construct corresponding Java code following the methodology described in Chapter

53

2 171.5 19.0 0.771
167.0Bank

Account
1

526
0.746

41
18.0

2 237.0 0.98525.0
1 0.912

683
210.5Airline

Ticket 56
22.0

Model-level
Slice

Total
Elements

Code-level
Slice LOC Sequential

Slice Size
Bug
TypeModel

1.018
1.000
1.326
1.231

Concurrent

Slicing Time (secs)

Table 7.3: Summary of Experimental Results for Concurrent Programs.

6. We expect the time to generate concurrent code and build model-code association

will be a little larger compared to sequential code generation, since there will be extra

code generated for event manager and threads handling. The manually written Java

programs for the two examples have 683 and 526 LOC.

Similarly, we specify slicing criterion as the last “wrong” state visited by an object,

with corresponding code level statement as criterion input to JSlice. We employ the

same methodology to choose criteria and program input as in the experiment for

sequential dynamic slicing. For each buggy version, we apply two test cases leading

to failing executions (execution with unexpected result).

The experiment results are shown in Table 7.3. It also reports quantities as average

over all test cases for each buggy version, since there is no significant difference across

test cases. The columns with heading “Slice Size” show the comparison of slice sizes

on code-level and model-level. Compared with sequential programs, they have similar

ratio w.r.t (a) the size of code-level slice over LOC, and (b) the size of model-level

slice over number of model elements. No matter we generate sequential code or

concurrent code (from the same model), we generate a piece of code for every model

element. Meanwhile, the generated programs have same operational behavior, since

54

both follows the Statechart behavior model. Thus, the slice size is mainly dependent

on (a) program, (b) program input, and (c) slicing criterion.

The time to produce dynamic slicing is shown under “Slicing Time”. Quantities

under “Sequential” are obtained by using JSlice without concurrent extension to slice

sequential code generated from models; while “Concurrent” shows the time required

for JSlice with concurrent extension to slice concurrent code. For concurrent pro-

grams, since we need to record the event time stamps in tracing and check them in

slicing, the time overhead has been increased around 34% compared to sequential

code. For large concurrent program, we expect a slightly higher overhead increment.

55

CHAPTER 8

DISCUSSION

More and more software is not being produced in a hand-written manner. Indeed, in

certain safety-critical domains such as avionics, the developers are strongly encour-

aged to generate code from behavioral models. Consequently, we need new software

debugging and comprehension methodologies. In this thesis, we have suggested the

use of well-established software debugging methods (such as dynamic slicing) on the

code generated from behavioral models. The bug-report is then played back at the

model level by exploiting the associations between program fragments and model

elements.

Currently, we have developed a prototype for model-code associations in the con-

text of Statecharts and Java. Dynamic slicing of the Java code results in a slice of

the Statechart model being highlighted to the designer. In terms of future work, we

can think of many avenues. First of all, we can complete the full implementation

of generating multi-threaded programs from Statecharts, and perform comprehen-

sive evaluations of it together with multi-threaded dynamic slicing. Since Statechart

models support concurrent execution of processes, generating sequential code only

captures a subset of the behaviors allowed by the Statechart model. By analyzing

sequential code, if we find any bugs, they amount to bugs in the Statechart model.

56

However, we may not be able to find certain bugs in the Statechart model by ana-

lyzing sequential code, simply because those buggy behaviors are not even captured

in the sequential code. As future work, with the full implementation of concurrent

code generation, we can generate multi-threaded code from Statecharts and slice the

multi-threaded code.

Secondly, one can try out model debugging using debugging methods other than

dynamic slicing (such as relevant slicing or fault localization).

Additionally, we can examine whether our approach for debugging Statecharts can

be extended to debug full-fledged UML models. Usage of our model-code associations

for debugging of code generated from full-fledged UML descriptions and relating back

the bug report to the UML level — remains a possible next step.

Finally, a similar approach can be adopted to build association between informal

requirements and formal models. Given a requirement to a system, if it is informally

stated in English, the problem of relating models to requirements can be harder. Sim-

ilar to the spirit of this thesis, one could try to see whether the results of model-based

testing (where the test-cases are obtained by exploring formal executable models)

can be reflected back to the English language requirements. Even though this sounds

like an impossible task, we note that in many application domains (such as avionics)

the English language requirements are well-structured. They are given as “rules” on

event ordering of the form “if x happens then y,z,w eventually happen” (see [9] for

an example of such a requirements document.) Clearly such rules in English can be

seen as temporal properties or even as specifications in executable visual formalisms

like Live Sequence Charts [10]. This makes the task of backward association between

57

design models (possibly given as Statecharts) and the informal requirements (which

can be visualized as Live Sequence Charts) more achievable.

58

REFERENCES

[1] Agrawal, H., Towards Automatic Debugging of Computer Programs. PhD

thesis, Purdue University, 1991.

[2] Agrawal, H., DeMillo, R. A., and Spafford, E. H., “Dynamic slicing in

the presence of unconstrained pointers,” in Proceedings of the ACM Symposium

on Testing, pp. 60–73, 1991.

[3] Agrawal, H., DeMillo, R. A., and Spafford, E. H., “Debugging with

dynamic slicing and backtracking,” Software - Practice and Experience (SPE),

vol. 23, pp. 589–616, 1993.

[4] Agrawal, H. and Horgan, J., “Dynamic program slicing,” in ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI),

1990.

[5] Agrawal, H., Horgan, J., Krauser, E., and London, S., “Incremental re-

gression testing,” in International Conference on Software Maintenance (ICSM),

pp. 348–357, 1993.

[6] Choi, J.-D. and Zeller, A., “Isolating failure-inducing thread schedules,”

in Proceedings of International Symposium on Software Testing and Analysis

(ISSTA), 2002.

59

[7] Cleve, H. and Zeller, A., “Locating causes of program failures,” in

ACM/IEEE International Conference on Software Engineering (ICSE), 2005.

[8] Cooperation, M. http://www.mostcooperation.com.

[9] CTAS, “Center TRACON automation system.” http://www.ctas.arc.nasa.

gov.

[10] Damm, W. and Harel, D., “LSCs: Breathing life into message sequence

charts,” Formal Methods in System Design, 2001.

[11] dynamic slicing tool for Java, J., “T. Wang and A. Roychoudhury

and L. Guo, National University of Singapore.” website: http://jslice.

sourceforge.net.

[12] Feldman, Y. and Schneider, H., “Simulating reactive systems by deduction,”

ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 2,

no. 2, 1993.

[13] Ferrante, J., Ottenstein, K., and Warren, J., “The program depen-

dence graph and its use in optimization,” ACM Transactions on Programming

Languages and Systems, vol. 9, no. 3, pp. 319–349, 1987.

[14] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns.

Addison-Wesley, 1995.

[15] “The gnu project debugger.” website: http://www.gnu.org/software/gdb/

gdb.html.

60

[16] “The java debugger.” website: http://java.sun.com/.

[17] Groce, A. and Visser, W., “What went wrong: Explaining counterexamples,”

in SPIN Workshop on Model Checking of Software, pp. 121–135, 2003.

[18] Guo, L. and Roychoudhury, A., “Software model backward association,” in

Asian Working Conference on Verified Software (AWCVS), 2006.

[19] Guo, L., Roychoudhury, A., and Wang, T., “Accurately choosing execution

runs for software fault localization,” in Compiler Construction (CC), 2006.

[20] Gyimóthy, T., Beszédes, A., and Forgács, I., “An efficient relevant slicing

method for debugging,” in 7th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pp. 303–321, 1999.

[21] Harel, D., “Statecharts: A visual formalism for complex systems,” Science of

Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[22] Harel, D. and Gery, E., “Executable object modeling with statecharts,”

IEEE Computer, vol. 30, no. 7, 1997.

[23] Harrison, W., Barton, C., and Raghavachari, M., “Mapping UML de-

signs to Java,” in Intl. Conf. on Object-oriented Prog. Sys. and Languages (OOP-

SLA), 2000.

[24] Heimdahl, M. and Whalen, M., “Reduction and slicing of hierarchical state

machines,” in Intl. Symp. on Foundations of Software Engineering (FSE), 1997.

61

[25] Jones, J. A., Harrold, M. J., and Stasko, J., “Visualization of test infor-

mation to assist fault localization,” in ACM/IEEE International Conference on

Software Engineering (ICSE), pp. 467–477, 2002.

[26] “The kaffe Java virtual machine.” website: http://www.kaffe.org.

[27] Kohler, H. J., Nickel, U., Niere, J., and Zundorf, A., “Integrating UML

diagrams for production control systems,” in Intl. Conf. on Software engineering

(ICSE), 2000.

[28] Korel, B. and Laski, J. W., “Dynamic program slicing,” Information Pro-

cessing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[29] Korel, B. and Rilling, J., “Application of dynamic slicing in program de-

bugging,” in International Workshop on Automatic Debugging, 1997.

[30] Lamport, L., “Time, clocks, and the ordering of events in a distributed system,”

Communications of the ACM, vol. 21, pp. 558–565, 1997.

[31] Levrouw, L. J., Audenaert, K. M. R., and Campenhout, J. M., “A new

trace and replay system for shared memory programs based on lamport clocks,”

in Euromicro Workshop on Parallel and Distributed Processing, pp. 471–478,

1994.

[32] Lucia, A. D., “Program slicing: Methods and applications,” in IEEE Interna-

tional Workshop on Source Code Analysis and Manipulation, pp. 142–149, 2001.

62

[33] Nevill-Manning, C. G. and Witten, I. H., “Linear-time, incremental hi-

erarchy inference for compression,” in Data Commpression Conference (DCC),

pp. 3–11, 1997.

[34] Nguyen, K., Sun, Z., Thiagarajan, P., and Wong, W.-F., “Model-driven

SoC design via executable UML to systemc,” in IEEE Real-time Systems Symp.

(RTSS), 2004.

[35] Object Management Group, Inc, “UML Specification.” http://www.uml.

org.

[36] Pytlik, B., Renieris, M., Krishnamurthi, S., and Reiss, S. P., “Auto-

mated fault localization using potential invariants,” CoRR, vol. cs.SE/0310040,

Oct, 2003.

[37] Renieris, M. and Reiss, S. P., “Fault localization with nearest neighbor

queries,” in Automated Software Engineering (ASE), pp. 30–39, 2003.

[38] Reps, T. W., Ball, T., Das, M., and Larus, J. R., “The use of program

profiling for software maintenance with applications to the year 2000 problem,”

in ACM SIGSOFT Symp. on the Foundations of Software Engg. (FSE), 1997.

[39] Research, I., “Concurrent benchmark.” website: https://qp.research.ibm.

com/concurrency_testing.

[40] Shuttle Control System, “New rail-technology Paderborn.” http://

wwwcs.uni-paderborn.de/cs/ag-schaefer/CaseStudies/ShuttleSystem.

63

[41] Sinha, S. and Harrold, M., “Analysis and testing or programs with exception

handling constructs,” IEEE Transactions on Software Engineering, vol. 26, no. 9,

pp. 849–871, 2000.

[42] Tip, F., “A survey of program slicing techniques,” Journal of Programming

Languages, vol. 3, no. 3, pp. 121–189, 1995.

[43] tool, R., “I-logix, inc..” website: http://www.ilogix.com.

[44] tool, S., “The MathWorks, inc..” website: http://www.mathworks.com.

[45] Wang, T. and Roychoudhury, A., “Using compressed bytecode traces for

slicing Java programs,” in Intl. Conf. on Software Engineering (ICSE), 2004.

[46] Wang, T. and Roychoudhury, A., “Automated path generation for soft-

ware fault localization,” in ACM/IEEE International Conference on Automated

Software Engineering (ASE), Short Paper, 2005.

[47] Wang, T. and Roychoudhury, A., “Hierarchical dynamic slicing,” in Inter-

national Symposium on Software Testing and Analysis (ISSTA), 2007.

[48] Wang, T. and Roychoudhury, A., “Dynamic slicing on Java byte-

code traces,” ACM Transactions on Programming Languages and Systems

(TOPLAS), To appear.

[49] Wasowski, A., “On efficient program synthesis from statecharts,” in Intl. Conf.

on Languages, Compilers and Tools for Embedded Systems (LCTES), 2003.

64

[50] Weiser, M., “Program slicing,” IEEE Transactions on Software Engineering,

vol. 10, no. 4, pp. 352–357, 1984.

[51] Xu, B., Chen, Z., and Yang, H., “Dynamic slicing object-oriented programs

for debugging,” in IEEE International Workshop on Source Code Analysis and

Manipulation, 2002.

[52] Zeller, A., “Isolating cause-effect chains from computer programs,” in ACM

SIGSOFT Symposium on the Foundations of Software Engineering (FSE), pp. 1–

10, 2002.

[53] Zeller, A. and Hildebrandt, R., “Simplifying and isolating failure-inducing

input,” IEEE Transactions on Software Engineering, vol. 28, 2002.

65

