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Summary 

The cardinal role of metabolic engineering in the field of biotechnology is 

increasing day-by-day, as biotechnology has become a vital tool for almost every 

industry, including chemical, pharmaceutical, health care, and food industries. 

Effective genetic manipulation of cell metabolism for performance enhancement is a 

critical step in obtaining low cost and high yield production. Increasingly, 

mathematical models play an important role in this field; examples include 

computational tools for simulation, data evaluation, design of experiments, systems 

analysis, prediction, design, and optimization. The first step in developing a 

comprehensive metabolic model of a microorganism is to identify all the metabolic 

pathways for the organism from available databases (such as KEGG). Often, the 

databases are incomplete which leads to incorrect results when the resulting model is 

simulated. In this work, we present an agent-based modeling and simulation (ABMS) 

approach to analyze metabolic pathways for inconsistencies. In the proposed approach, 

the metabolic system is modeled using three types of agents: Reaction agent, 

Cytoplasm agent, and Scheduler agent. Each metabolic reaction in the system is 

represented by a Reaction agent. The Cytoplasm agent resembles the cellular 

environment and the Scheduler agent regulates the execution of reactions. Starting 

from the substrate (or minimal nutrient condition), reactions are qualitatively executed 

by the Scheduler in a sequential manner. The reachability of the final product indicates 

the completeness of the pathway. In case of an incomplete network, the minimal set of 

reactions necessary to reach the final pathway can also be identified by this approach. 

The proposed approach thus identifies gaps in the network through qualitative 

simulation and would hence serve as a precursor to numerical modeling & simulation. 



    v

We illustrate the approach using a metabolic model of E. coli, that includes Glycolysis, 

Pentose-Phosphate pathway, TCA cycle, Anaplerotic reactions, Pyruvate metabolism, 

Respiration and transport system reactions. We have also extended the same agent-

based framework to perform dynamic simulation when kinetics of metabolic reactions 

are available. Simulation results are presented to illustrate the proposed modeling and 

simulation approach and its effectiveness is evaluated through comparison 

with published literature. 
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Chapter 1 Introduction  

1.1 Introduction to Metabolic Engineering 

Metabolic engineering mainly deals with the analysis and modification of 

metabolic pathways. This field emerged during the past decade as a result of the 

developments in a number of different technologies. Gradually, it is becoming the 

center of research endeavors in biological and biochemical engineering, cellular 

physiology, applied microbiology as well as in bioprocess and biotechnology. 

Although the notion of pathway manipulation for the purpose of endowing 

microorganisms with desirable properties is old, the perception of metabolic 

engineering as defining a discipline was first put forward by Bailey in 1991. Right 

after that, this new field was nurtured by the life science and engineering communities. 

Both these fields have found that this emerging field provides the opportunity to 

capture the potential sequences and other information generated from genomic 

research and usher a novel path for biological researches. 

The focal point of the current practice of metabolic engineering is the 

manipulation of existing pathways or reactions producing a certain metabolite or 

macromolecule, and the introduction of new pathways or reactions into host cells. 

These activities can be classified into five major groups (Cameron and Tong, 1993; 

Stephanopoulos et al., 1998; Lee and Papoutsakis, 1999): (i) enhanced production of 

metabolites and other biologicals already produced by the host organism; (ii) 

production of modified or new metabolites and other biologicals that are new to the 

host organism; (iii) extending the substrate utilization range for cell growth and 

product formation; (iv) designing improved or new metabolic pathways for 

degradation of various chemicals, including xenobiotics; (v) modification of cell 
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properties that facilitate bioprocessing such as enhance fermentation product and 

product recovery.  

As an outcome of extensive research endeavors from the life science and 

engineering communities along with electrifying improvements in genomic research, 

increase in the number of sequenced genomes, and the profound advancements in 

experimental high-throughput analyses, increasing attention has been devoted to 

developing effective computational methods in biology. These methods comprise the 

development of comparative tools and maintenance of databases for the analysis of 

genomics data in the domain of bioinformatics, as well as the construction of models 

for the analysis and integration of the data in terms of the system properties. In the 

domain of metabolic analysis an important asset to such analyses is the reconstruction 

(partial or full genome scale) of cellular networks that includes the collection and 

visualization of all physiologically relevant cellular processes. 

 

1.2 Modeling and Simulation in Metabolic Engineering 

Mathematical modeling is one of the key methodologies of metabolic 

engineering. In order to reach the ambitious goal of development of targeted methods 

to improve the metabolic capabilities of industrially relevant microorganisms, tools 

that assist in the evolutionary process of genetic manipulations of the cell metabolism 

and the improvement of bioprocess conditions are required. From an engineering 

perspective, mathematical modeling is one of the most successful scientific tools 

available for this task. Based on a given metabolic model, different computational 

tools for the simulation, data evaluation, systems analysis, prediction, design and 

optimization of metabolic systems can be developed. From the analytical point of 
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view, the application of such kind of modeling and simulation tools is substantially 

important.  

   

The focus of modeling in cell physiology has always been on the understanding 

of metabolic systems in the sense of the general principles that govern the cellular 

function. The new aspect of modeling in metabolic engineering is the usage of models 

for the targeted direction of metabolic fluxes in the sense of a rational engineering 

design. Following are some potential activities in metabolic engineering where 

modeling and simulation can contribute significantly: 

• Understanding the system: Mathematical models are the quantitative 

representation of knowledge with the ability to have a unique and objective 

interpretation. A model is mainly based on the understanding of the basic 

principles of the system. Comparing the model output with the real system 

output might be helpful explore additional understanding of the system.  Based 

on a given model, mathematical methods can help obtain a better 

understanding of the system’s structure and its qualitative behavior. For 

example, Goldbeter (1996) has modeled the biochemical rhythms and 

oscillation at cellular level and that model threw light on the mechanism of 

periodic behaviour at the molecular and cellular levels and explained how 

enzyme regulation or receptor desensitization can give rise to oscillations. 

• System analysis: Mathematical model is a very easy but effective analytical 

tool for metabolic system. Model could be used to identify the functional units 

in a metabolic system, for the computation of steady state, for the 

determination of parameter sensitivity (Albe and Wright, 1992), for 
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investigation of dynamic behaviors, for computing theoretical limits of the 

systems metabolic capabilities (Edwards and Palsson, 1998), etc.    

• Interpretation and evaluation of data: By analyzing mathematical model, one 

can achieve a better interpretation of the measured data. Reproduction of 

experimental data by mathematical model can provide a fair appreciation of 

the measured data. For example, the characterization of growth, nutrient 

uptake and product formation by macrokinetic models has become a standard 

procedure in bioprocess development (Takors et al., 1997). 

• Simulation: Undoubtedly, the most frequent application of models is the 

exploration of the possible behavior of a system. Simulation scenarios based 

on rather crude mathematical models can help to achieve a rough 

understanding of the system behavior and to reject false hypotheses. Many 

conceptual studies based on more or less simple models belong to this 

category. Several interesting examples are presented by Heinrich and Schuster 

(1996). 

• Design and Prediction: The outcome of future experiments can be predicted 

using a validated mathematical model and the ultimate goal of such tool is to 

provide a means to a rational design process for metabolic pathways.  

• Optimization: Once a valid model with impressive predictive power is 

available, it can be used to handle the problem of optimal metabolic design.   

 

However, the application of a model is always limited to a certain type of 

problem. For example, a stoichiometric network model is suitable for metabolic flux 

analysis but it contains no information about regulatory mechanisms. Thus, it has little 

predictive power with respect to pathway alterations. Likewise, model validation for 



Chapter 1                                                                                                 Introduction 
_____________________________________________________________________ 

          
       
5 

                                                                                                                                          
 

regulatory models is usually done with measured data from a few physiological states 

(e.g. exponential growth in a batch culture).  

1.3 Developing Network Model from Genome Sequence 

Prior to analyzing cellular metabolism, the first step is to develop a network 

model from the genomic databases. This development is not straightforward, it may 

take more than a year to fully delineate a genome-scale model for an organism through 

a iterative process of network characterization and re-annotation. Though the main 

interest of this thesis relates to the analysis of metabolic networks, the basic practice of 

developing any other biological networks like protein-interaction, signaling or 

regulatory network is almost the same. Before a more through discussion of network 

reconstruction, definitions of some important terms are established. 

• Network reconstruction: The objective of reconstruction is to provide a 

detailed description of network components and their interactions. 

• Genome annotation: Genome annotation refers to characterization of an 

organism that includes information regarding function of cellular 

components, their interactions, spatial organization and evolutions, etc.  

• One dimensional genome annotation: It involves the identification of genes 

in the genome and also assigning known or expected functionality to the 

identified gene product. 

• Two dimensional genome annotation: It specifies physical and chemical 

interactions between cellular components. The delineation of characterized 

cellular component basically leads to the reconstruction of networks. 
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• Metabolic pathway: A metabolic pathway is a series of biochemical 

reactions occurring within a cell. In each pathway an essential chemical is 

modified into other essential chemicals by chemical reactions.  

• Metabolic network: It is a collection of metabolic pathways, characterized 

by a complete set of physical and chemical interactions that determine the 

physiological and metabolic characteristics of the cell.   

• Metabolite connectivity: Metabolic connectivity represents the participation 

of a metabolite in different reactions and is equal to the number of reactions 

a metabolite participates in. 

• Dead-end metabolite: Dead-end metabolite is one kind of gap in the 

network. For incomplete networks some metabolites might only be 

produced or consumed. Such metabolite is termed as dead-end metabolite.  

• Blocked reaction: Reactions not connected to the main network are blocked 

reactions. Blocked reaction is usually isolated from the rest of the network. 

• Network gap: Any inconsistencies in the network that stops production of 

essential components are termed as gaps.  

 

There are various approaches towards the reconstruction of a metabolic network, 

which are briefly discussed in the literature review section. As a first step in 

reconstruction, the genes with known or predicted functionality are specified from the 

genome sequence database. 

 In the next step, cellular components, such as gene products are specified and 

characterized in terms of their interactions. This step is very important as it deals with 

the biochemical accuracy of the network model. The metabolic properties of the model 
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depend on these interactions. A systematic guide to this step as prescribed by Reed et 

al (2006) is shown in Figure 1-1. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

  

Figure 1-1: Defining biochemical interactions among metabolites  
 

 

Once the metabolites’ specifications have been completed, a primary network is 

constructed and the next step is to analyze the pathway and check for consistency with 
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the wet-lab experimental outcome. This analysis may involve a biomass production 

capability or external flux measurement or measurement of intermediate metabolite 

concentration. If the results of the analysis differ from the experimental results, that 

indicates the presence of gaps in the network. So, the next two steps are to identify and 

fill those network gaps with the help of metabolic databases. These operations continue 

in an iterative fashion until consistent results with the experimental data are obtained. 

Then the reconstruction of metabolic network is completed and ready for further 

analysis.         

 

1.4 Objective of the Thesis 

The natural network of a living cell is gigantic, making the understanding of the 

full network difficult. It consists of many reactions and a huge number of metabolites 

participating in different pathways. For eukaryotes, even more complexities are added, 

as the cell contains a number of compartments. Furthermore, an organism is affected 

by environmental factors like substrate concentration and temperature. To reveal the 

complexity of biological networks and to interpret the huge Omics data, a clear and 

unambiguous representation is necessary, one that allows a step-wise composition and 

different description levels to build a hierarchical system. Due to the large scale of 

complexity, validation as well as an automatic qualitative and quantitative analysis is 

required.  

 

This thesis strives to explore the potential application of agent-based modeling 

and simulation of cellular metabolic networks that help for static analysis to identify 

network gaps as well as dynamic simulation. 
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1.5 Thesis Overview and Organization 

-Summary of Chapter 2: Prior Art 

Chapter 2 provides a broad overview of the current literature, promises of metabolic 

engineering along with the current practices in this emerging field. It begins with 

Section 2.1, which defines metabolic engineering with a brief description of the 

evolution of this research area. This is then followed by a brief survey of metabolic 

network analysis in Section 2.1.1 and a detailed discussion on the potential 

applications of metabolic engineering approaches in Section 2.1.2. Section 2.2 throws 

some light on the importance of modeling of cellular system for metabolic engineering 

purposes, along with various modeling approaches. This justifies the needs and sets the 

stage for the present work, and explores the applications of a new modeling approach. 

Agent based modeling is described in detail in Section 2.3.    

 

-Summary of Chapter 3: Agent Based Metabolic Network Analysis 

Chapter 3 provides a detailed description of modeling cellular metabolic network using 

a multi agent system. It begins with the suitability of the agent based approaches in 

designing biological systems as it has the potential to replicate systems at its minimum 

individual components. Then it provides a description of how metabolic networks can 

be modeled as a multi agent system. In Section 3.1 the proposed agent based 

framework is explained by describing the structure and functionality of different 

interacting agents involved in the system. The next section explains the emergence of 

the network structure from the interaction between agents. In Section 3.3 the strategy 

applying the agent based model to detect gaps in metabolic networks is proposed, 

which is demonstrated with the help of the simple network of E. coli’s central 
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metabolism in Section 3.4. Section 3.5 illustrates the method for filling gap resulting 

from missing reactions.  

 

-Summary of Chapter 4: Dynamic Simulation 

 Chapter 4 describes the method of dynamic simulation of metabolism using agent 

based simulation techniques. It starts with a brief introduction of the central 

metabolism of E .coli, including the importance of dynamic analysis of metabolism. In 

Section 4.2 the dynamic model is described in details. The modified structure of the 

agent based framework along with a brief explanation of the dynamic model of 

individual agents is illustrated in Section 4.3. In the next section, the agent based 

simulation result is discussed and validated with experimental results  

 

-Summary of Chapter 5: Summary, Conclusions and Recommendations  

Chapter 5 concludes by justifying the Agent Based Modeling and Simulation (ABMS) 

approach for metabolic engineering purposes, summarizing the expected performance 

and assessing the usefulness of this work to several areas including computing 

technology and computational biology.   
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Chapter 2 Literature Review 

2.1 Metabolic Engineering – An overview  

 Metabolic engineering, also known as molecular breeding (Kellogg et 

al.,1981), in vitro evolution (Timmis et al., 1988), pathway engineering (MacQuitty, 

1988; Tong et al., 1991) and cellular engineering (Nerem, 1991) involves directed 

modification of cellular metabolism and properties through the introduction, deletion 

and/or modification of metabolic pathways by using recombinant DNA and other 

molecular biological techniques (Lee and Papoutsakis, 1999). This field has emerged 

as a result of overwhelming interest in utilization of improved strain of 

microorganisms for medical and industrial purposes. The primary goal of this field is 

to invoke desirable metabolic behavior in living cells.  Recent advances in different 

scientific disciplines including molecular and computational biology, genetics, 

computer technology along with various application tools have led this young field to 

grow fast and become one of the most attractive research areas in the 21 century.  

 

Like other fields of engineering, metabolic engineering also encompasses the 

two defining phases of analysis and synthesis. From the engineering perspective of 

design and analysis, it is very important to have analytical tools such as a mathematical 

or computational model; e.g. a dynamic simulator of metabolism that is based on the 

fundamental physicochemical laws and principles. Such models can be used to 

systematically analyze and thus design a new or redesign an improved strain. The 

methods of recombinant DNA technology, DNA splicing or genetic engineering could 

then be applied to achieve the desired changes in the genotype of the organism of 

interest. On the design side, metabolic engineering focuses on integrated metabolic 
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pathways instead of individual reactions. On the analysis side, it emphasizes on 

metabolic fluxes and their control, thus it implies a holistic examination of the 

complete biochemical reaction network and concerns itself with issues of pathway 

synthesis and thermodynamic feasibility.  

 

2.1.1 Metabolic Network analysis 

Metabolism is considered as the “chemical engine” for keeping the cellular 

system living.  The last two to three decades of research on metabolic analysis has 

illustrated the need to quantify systemic aspects of cell metabolism. There are 

significant motivations for metabolic dynamics study. An extensive analysis and a 

quantitative description of cellular metabolism is not only important to implement 

metabolic changes to achieve specific functionality, but also has great importance to 

our understanding of cell biology. Important applications of metabolic analysis include 

strain design for the production of therapeutics, assessment of the metabolic 

consequences of genetic defects, synthesis of systematic methods to combat infectious 

disease and so forth (Liao, Hou and Chao, 1996).  Quantitative and systematic analysis 

of metabolism is thus of substantial importance.  

The mathematical modeling of metabolic networks dates back to the mid 1960s. 

The study of the genetic control and dynamic simulations of simple metabolic loops 

emerged with the availability of computers and knowledge of metabolic regulation. It 

received further impetus with the invention of modern computational and analytical 

tools and extensive research on cell biology. The systemic nature and the functional 

complexities of metabolism are now apparent. The focus then turned to developing 

methods that could shed light on various metabolic events. Methods for sensitivity 

analysis of metabolic regulation begun in the 1960s (Savageau, 1969) and continued 
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into the 1970s (Heinrich et al., 1977 and Kacser and Burns, 1973) and resulted in the 

biochemical systems theory (BST), flux balance analysis (FBA) and the prominent 

metabolic control analysis (MCA). 

The development of Recombinant DNA technology in early 1970s was of great 

historical significance and it ushered the era of engineering or designing the biological 

components. The first report of bacterial gene splicing appeared in 1972 (Jackson, D. 

A., Symons, R. H., and Berg, P., 1972). Gradually these new techniques of 

recombinant DNA or gene splicing has become very useful and prominent tool for the 

researchers to make changes in underlying cellular determinants and to alter the 

characteristics of industrial strain instead of being content with designing equipment 

and operating strategies. Consequently, various terms representing the potential 

application of recombinant DNA technology towards directed pathway modification 

were coined ( in vitro evolution, cellular engineering, molecular breeding, etc) and the 

field of metabolic engineering emerged. (Bailey, J. E., 1991,  & Stephanopoulos, G. & 

Vallino, J. J., 1991).  

In the early years of metabolic engineering, improvement of cellular processes 

were performed through successive mutagenesis and selecting strains with desirable 

qualities. Despite the success of the approach for a number of cases, it has been found 

that the theoretical yield of the product is not always attainable through random 

mutagenesis and selection procedures. The advent of recombinant DNA technology as 

well as advances in molecular biology and genetic engineering empowers metabolic 

engineers with the increasing ability to create any desired cellular modification.  

From the early stages of metabolic engineering, the intention of the researchers 

were elucidating the systemic behavior of metabolic networks; consequently designing 

and developing a complete kinetic model of cellular metabolism had become the 
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primary scientific goal. This quest to get comprehensive dynamic models of 

metabolism for designing strain with perfectly directed pathways and perfect 

functionality still remains unfulfilled due to the lack of an overall comprehension of in 

vivo metabolic processes. However, with the recent advancement in technology, 

detailed information on metabolic components, in particular strains, is now 

increasingly available. This led us redesign or reconstruct the metabolic networks and 

also ascertain information regarding the structure and stoichiometry of the metabolic 

reaction networks. 

 

2.1.2 Scope of Metabolic Engineering 

Metabolic Engineering is a highly multidisciplinary field. Basic metabolic maps 

and comprehensive information about the mechanisms of biochemical reactions, their 

stoichiometry, regulation, enzyme kinetics are provided by biochemistry. Genetics and 

molecular biology supply necessary tools and knowledge for the construction of well 

characterized genomic database as well as for the studies on flux control. A detailed 

and more integrated picture of cellular metabolism can be gathered from the study of 

cell physiology and thus a comprehensive platform for metabolic rate study and 

physiological state representation. Applications of engineering approaches of 

integration, quantification and analysis to study biological system also can contribute 

to the field of metabolic engineering.  

The primary goal of metabolic engineering is to control the flux 

(Stephanopoulos, G., 1999). Metabolic flux is defined as the rate at which material is 

converted via metabolic reactions and pathways. For flux control, the factors 

influencing the flux must be understood. Since fluxes are a determinant of 

physiological state, the complete understanding of flux control of cellular metabolism 
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will help in explaining the genotype-phenotype relationship of cell. However, the goal 

of metabolic engineering can be classified into several distinct objectives (Cameron, D. 

C., and Tong, I. T., 1993) such as enhance the yield of the host’s natural products or 

adding novel production capacity to the cell (basically addition of new genes), the 

addition of metabolic processes that the cell normally does not possess (Keasling Lab, 

2007), and the general modification of cellular properties to improve the cell’s 

potential utility.  

Production of valuable chemical for therapeutic or industrial purposes applying 

microorganisms is another major application of metabolic engineering. Microbes are 

typically redesigned or modified to produce chemicals that are too expensive to 

produce by chemical synthesis. Examples of such compounds are vitamins like 

riboflavin (Sauer et al., 1997). Sometimes metabolic engineering strategies are 

employed to enhance the cell’s native production (Ikeda et al., 1994) as products like 

acetic acid (Park et al., 1989), ethanol (Ohta, et al., 1991), amino acids (Ikeda, M., and 

Katsumata, R., 1994) and various antibiotics (Henriksen et al 1996), and so on. 

Metabolic engineering has also been used to impart new product production capability. 

Examples are biopolymers (Slater, S., Gallaher, T., and Dennis, D., 1992) , antibiotics 

(Weber et al,. 1991), pigments, etc.  

Designing organisms with added metabolic function is of great importance for 

environmental and bio-pharmaceutical applications. Winter et al., (1989) reported 

utilization of genetically engineered E. coli for effective degradation of 

trichloroethylene. Similarly Martin et al., (2003) used engineered mevalonate pathway 

in E. coli for terpenoids production. Additional metabolic processes can be added such 

that different substrates can be used in an industrial process for the production of 

different metabolites, amino acids, vitamins, antibiotics, etc (Wood and Ingram, 1992). 
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Moreover, metabolic engineering allows alteration in genotype such that the phenotype 

exhibits cellular properties that are beneficial for the organisms utilized in industrial 

processes (Aristidou et al., 1990.,; Yang et al., 1999). Flux control allows redirection 

of metabolic flux away from toxic byproduct to less toxic ones (Aristidou et al., 1995). 

 New and diverse opportunities for metabolic engineering have emerged quickly 

in this genomic era (Alper and Stephanopoulos, 2004). This advancement in genomics 

has led us to a position to study metabolic characteristics as a function of the entire 

genome. However, extensive bioinformatics methods and experimental effort is 

required to reveal the hidden information regarding molecular interaction and genetic 

regulation.  

2.2 Modeling of Metabolic reaction network 

2.2.1 Current Modeling Approaches  

 

  

 

 

 

 

 

 

 

Figure 2-1: Major Metabolic Network Modeling approaches 
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categories, namely topological or structural modeling, stoichiometric modeling and 

kinetic modeling. However, the power of a model strongly depends on its basic 

modeling assumptions, the simplifications made, and the data sources used. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: A simplified representation of Network Structure 
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Hence, it is widely used to describe the stoichiometric analysis of intracellular 

molecular networks and for genome scale metabolic modeling (Papin et al., 2004; 

Price et al., 2004). Figure 2-3 describes how a stoichiometric matrix is formed for a 

simplified metabolic network. As it pertains to genome scale metabolic studies, the 

stoichiometric matrix can be directly constructed from knowledge of an organism’s 

metabolic genotype, which may now be realistically determined from the results of 

genome annotation (Schilling et al., 1999). It describes the topological structure and 

the architecture of the network, and its properties is a must for any simulation of 

biochemical reaction networks (Heinrich and Schuster, 1996).  Stoichiometric model 

has been extensively used for metabolic flux analysis and flux optimization (Varma 

and Palsson, 1994). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3: Stoichiometric Matrix for a simplified Network (source: 
www.cs.technion.ac.il)  
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All the approaches discussed above mainly capture the structural aspects of the 

network without considering the kinetic properties of the enzymatic reactions involved 

in the network. Kinetic models, however, do incorporate enzyme kinetic information.  

From the stoichiometric description of the network, a kinetic model can be constructed 

by supplying the rate equations for all the reactions in the network. A rate equation 

expresses the rate of an enzymatic action in terms of its kinetic parameter and the 

concentrations of its substrates, products and effectors.  For dynamic simulation of the 

system, the network should be characterized by its stoichiometric matrix, 

parameterized rate equations, initial conditions, and specified environment 

(identification of fixed concentrations, inflows and outflows). The state of the network 

is represented by a complete set of concentrations of intermediates. The set of initial 

concentrations of intermediates at the initial time point of the calculation of the 

dynamics of the network is referred to as the initial state of the network. Several 

researchers are trying to combine stoichiometric information with high quality kinetic 

data, whenever available. For example, Covert and Palsson, (2002) and Covert and 

Palsson, (2003) have incorporated the regulation of gene expression to flux balance 

analysis (FBA). Mahadevan et al (2002) have extended FBA (i.e., dFBA) to describe 

the dynamic behavior of metabolic system. Gadkar et al (2005) included kinetic 

expressions in dynamic FBA to optimize the concentration of a targeted product 

molecule. Based on the physicochemical conditions under which cellular reactions take 

place in the organism, the dynamics of the network can then be monitored using 

dynamic simulation techniques.   

Over the past decades, the mathematical and numerical analysis of detailed 

kinetic core models has made numerous significant contributions to elucidate and 

understand the general principles of metabolic regulation and control. Such extensive 
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effort led in the formulation of Metabolic Control Analysis (MCA), a mathematical 

tool to describe the control and regulatory properties of metabolic systems and more 

recently, extensive initiatives have been made to extend this “bottom-up” approach 

towards more comprehensive large scale dynamic model of cellular metabolism (Ishii 

et al, 2004). One example of bottom-up approach is multi agent based modeling and 

simulation approach. 

 

2.2.2 Agent Based Modeling 

Agent based modeling is fast emerging as a new paradigm for engineering 

complex, distributed systems. Agent technology is also suitable for the analysis, 

design, and construction of intelligent systems. Agent can be defined as a computer 

system that is situated in some environment, and that is capable of autonomous action 

in this environment in order to meet its design objectives. Multi-agent systems are 

systems composed of multiple interacting agents.  

 

Wooldridge (1998) has described certain characteristics of an agent. According 

to Wooldridge, an agent, in general, is a system with the following properties  

• Autonomy: agents can make decisions about what to do without direct 

external intervention of other systems. 

• Reactivity: agents are situated in an environment, can perceive it (at least 

to some extent) and are able respond to the changes in it (i.e. are able to 

react). 

• Pro-activeness (or proactivity): agents do not simply react to changes in 

the environment, but are also able to take the initiative. 
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• Social ability: agents can interact with other agents and participate in 

social activities. 

2.2.3 Equation based model vs Agent based model 

 
Various computer simulation models have been developed to better understand 

complex biochemical systems. These include equation-based models (EBM), agent-

based models (ABM), deterministic models, and stochastic models. In 1998, Van Dyke 

Parunak and others compared the effectiveness of EBMs versus ABMs for modeling 

complex systems, and concluded that ABMs were more suitable for this purpose 

because ABMs can model overall behavior of complex systems based on the behavior 

of individual components. Thus, the overall systems behavior emerged from different 

interactions among individuals can be captured in ABMs. 

 

Both ABM and EBM approaches simulate the system by constructing a model 

which is then executed in a computer. The differences are in the form of the model and 

how it is executed. In ABM, the model consists of a set of agents that encapsulate the 

behaviors of the various individuals that make up the system, and execution consists of 

emulating these behaviors. On the other hand, in EBM, the model is a set of equations, 

and execution consists of evaluating them. There are two basic differences between 

these two approaches:  

• Relationships among the entities that are modeled 

• Level of  detail at which ABM and EBM focus their attention 

 

Both these approaches mainly deal with two kind of entities; individuals and 

observables. Observables are measurable characteristics of interest that usually vary 



Chapter 2                                                                                      Literature Review 
_____________________________________________________________________ 

22 
 

over time. They may be associated with individuals or with the collection of 

individuals as a whole.  

EBM begins with a set of equations that express relationships among 

observables. The evaluation of these equations results in the evolution of the 

observables over time. These equations may be algebraic or ordinary differential 

equations with the ability to capture variability over time or partial differential 

equations with the ability to capture variability over time and space. Though those 

relationships result from the interactions of the individuals, but are not represented 

explicitly by EBM.  

   ABM begins not with equations that relates observables to one another, but 

with behaviors through which individuals interact with one another. These behaviors 

may involve multiple individuals directly or indirectly through a shared environment. 

The relationships between individuals and observables can be summarized as follows: 

• Individuals are characterized, separately or in aggregate, by observables, 

and affect the values of these observables by their actions. 

• Observables are related to one another by equations. 

• Individuals interact with one another via their behaviors. 

 

The second fundamental difference between ABM and EBM is the level at 

which the model is focused. EBM tends to make extensive use of system-level 

observables, since it is often easier to formulate convincible closed form equations 

with such quantities. The natural tendency in ABM is to define agent behaviors in 

terms of observables accessible to the individual agent. One agent behavior may 

depend on an observable generated by other individual, but does not directly access the 

representation of those individuals’ behaviors. These fundamental differences in 
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modeling the system impart some significant advantages in application of ABMs for 

complex system modeling. 

• ABMs make it easier to distinguish physical space from interaction space. In 

many applications, physical space helps define which individuals can interact 

with one another. EBM such as ODE method cannot incorporate spatial 

arrangement at all. PDEs provide a parsimonious model of physical space but 

are unable to distinguish it from interaction space (Pogson et al., 2006).  

• ABMs offer an additional level of validation. Both ABMs and EBMs can be 

validated at the system level, by comparing model output with real system 

behavior. In addition ABMs can be validated at the individual level, since the 

behaviors encoded for each agent can be compared with local observations on 

the actual behavior of the individuals.       

• ABMs support more direct experimentation. 

• ABMs are easier to translate back into practice. If the model is expressed and 

modified directly in terms of behaviors, implementing the recommended 

change is very simple and easy. 

• In many cases, ABMs give more realistic results than EBMs, with manageable 

levels of representational details (Parunak et al., 1998).  

 However, one of the major challenges of ABMs is in designing a multi-agent 

model and simulator from actual process description to the large number of parameters 

in the model. 

2.3 Agent Based Modeling and Simulation in Biology 

Multi agent system is not a very widely used technique for modeling biological 

systems. However, currently agent based programming is becoming popular in 
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different fields for modeling complex systems. The concept of using autonomous 

multi-agents to describe cells and cellular behavior was first proposed by Paton, 

(1993). Gonzalez et al., (2003) developed a system named Cellulat. Cellulat represents 

proteins and other components participating in intracellular signaling programmed as 

“internal autonomous agents” where communication with external medium takes place 

through “interface autonomous agents”.   

Alur et al., (2002) described a hybrid system where agents are characterized by a 

continuous state x and a collection of discrete modes. There are two types of agents. 

Process agents or P agents capture the dynamics involved in transcription, translation, 

protein binding, protein –protein interaction, cell growth, etc. System agents or S 

agents describe the accumulation or degradation of proteins, cells, DNA in terms of 

concentration or numbers. Each mode is represented by a set of ODEs and the current 

state. Change of state occurs through the set of ODE s of currently active modes. 

Katare and Venkatasubramanian (2001) applied agent-based approach to study 

the behavior of microbes in a binary substrate environment. Their cellular model 

consists of one Nucleus agent, one environment agent and different types of cellular 

organelle agents.  

Burleigh et al (2003) used swarms, another agent based approach to model the 

regulating process of lac-operon. The random movement of agents lead them to 

interact with other agents and these interactions are governed by simple rules. 

 Taivo Lints (Tallinn University of technology) are trying to implement JAVA 

Agent Development Environment (JADE) to model the mechanism that causes the 

initiation of DNA replication. This model contains four types of agents: Environment, 

Bacterium, DnaA (a protein) Factory and DNA. This simple agent based model was 

reasonably successful in simulating the cell division cycle.  
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2.3.1 Tools available for Agent Based Modeling 

With the intense research in the realm of agent-based modeling under the 

distributed artificial intelligence domain, scores of tools have been developed for 

building ABMs, in particular by making use of object oriented programming like 

JAVA, C++, etc. The development of these ABM tools came up for applications in 

social simulations (Shoham, Y., and Tennenholtz, 1997) and studying complex 

behavior. StarLogo is among the earliest ABM tools and consequently some other 

ABM tools such as the SWARM, StarLogoT (a variant of StarLogo), REPAST, 

ASCAPE, NetLogo, etc came and became very useful tools for the programmer. The 

industrial circuit also has actively taken part in the development of these agent-based 

tools. Notable among them are RAISE and ABLE by International Business Machines 

(IBM) Corporation Limited, JADE by Telecom Italia and the open source project –

ECLIPSE. Jadex is another most recent agent-oriented reasoning engine for writing 

rational agents with XML and the Java programming language. It is developed by the 

Distributed System Group, University of Hamburg, Germany and is an extension to the 

JADETM multi-agent platform. Currently, two mature adapters are available, the first 

adapter is available for JADETM and the second is the Jadex Standalone adapter which 

is a small but fast environment with a minimal memory footprint. (VSIS project web 

site, University of Hamburg, 2007). In this thesis, JADE has been used as the ABM 

platform. 

2.3.2 Introduction to JADE 

JADE (Java Agent DEvelopment Framework) is a software development 

framework for developing multi-agent systems and applications compatible to FIPA 

(The Foundation for Intelligent Physical Agents) standards for intelligent agents. It has 

been written in Java programming language and includes two main basic utilities - a 
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FIPA-compliant agent platform and a package to developed java based agents. JADE 

provides the following features for developing Multi Agent Systems (MAS): 

• Distributed agent platform. The agent platform can be split among several 

hosts executing only one java application in each host. Agents are 

implemented as Java threads and live within Agent Containers that provide the 

run time support to agent execution. 

• Graphical user interface to manage several agents and agent containers from a 

remote host.  

• Built-in debugging tools. 

• Mobility- an agent can be moved from one platform to another (if necessary) 

with its state and code. 

• Jade schedules the agent behaviors (methods) in a non-preemptive manner. Its 

behavior model supports execution of multiple, parallel and concurrent agent 

activities. 

• FIPA-compliant Agent Platform, which includes the AMS (Agent 

Management System), the DF (Directory Facilitator), and the ACC (Agent 

Communication Channel). These components are automatically activated at 

agent start-up. 

• Many FIPA-compliant DFs can be started at the run time in order to 

implement multi-domain applications, where each domain is a logical set a 

agents, whose services are advertised through a common facilitator. Each DF 

inherits a GUI and is capable of registering, deregistering, modifying and 

searching for agent descriptions as well as federating within a network of 

DF’s). 
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• Efficient intra-platform and inter-platform transport of ACL message. 

Messages are transferred as Java objects. When crossing platform boundaries, 

the message is automatically converted to the FIPA compliant syntax, 

encoding, and transport protocol.  

• Support for user defined content languages and ontologies. 

• In process interface to allow external applications to launch autonomous 

agents. 

2.4 Reconstruction of metabolic network model 

The successful application of computational methodology for metabolic network 

analysis depends on the availability of a complete and comprehensive model of the 

metabolic pathway. Metabolic reconstruction provides the opportunity to build such 

complete and comprehensive model. The objective of metabolic reconstruction is to 

provide a detailed description of metabolic network in terms of all the pathways, 

components and their interactions. The activities required for network reconstruction 

are summarized in figure 2-4.  

The first step is to identify all the metabolic pathways for the organism from 

available databases like KEGG, ECOCyc, MetaCyc, etc. However, such reconstruction 

is not flawless as most of the time the available databases are incomplete. A key 

challenge in genome scale reconstruction is to elucidate these gaps and subsequently 

bridge them. Green et al (2004) formalized a bayesian framework to identify missing 

enzymes in a network using sequence homology related metrics. Data based 

approaches are also used to identify candidate genes by measuring similarities with 

metrics such as mRNA co expression data (Kharchenko et al. 2004) or by phylogenetic 

profiles (Chen  and Vitkup, 2006). In addition to phylogenetic profile, Kharchenko et 
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al. (2006) also proposed use of multiple types of combined evidence including 

clustering of genes on the chromosome and protein fusion events.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: Basic steps involved in network reconstruction  
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The common approach of all the methods mentioned above is to postulate a set 

of candidate genes and the evaluate their likelihood that these are present in the 

metabolic network using different scoring metrics. Besides these, Bodik and Rasche 

(2001), Pellegrini et al. (2001), Osterman and Overbeek (2003), and Notebaart et al. 

(2006) introduced variety of genome scale analyses to identify missing genes by 

conducting sequence based comparisons of entire genomes and inferring possible 

metabolic functions for different microorganisms. In 2006 Reed et al. identified the 

location of missing metabolic functions in E. coli by observing the difference in 

prediction based on designed genotypic and phenotypic behavior and actual in vivo 

growth.    

2.5 Scope of the thesis 

As discussed in the previous section, the key challenges in developing a 

comprehensive metabolic model from the available databases, is to elucidate the gaps 

in the network and subsequently filling those gaps. This requires extensive iteration 

when attempted. The focus of this work is to develop efficient methods to effectively 

identify any inconsistency in the network as well as to help the researcher fill them 

with minimum effort.  
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Chapter 3 Agent Based Modeling of Metabolic 
Networks 

The promise of understanding the relationship between the genome and the 

physiological functionality of organism is the prime incentive to reconstruct metabolic 

networks as well as to apply developed mathematical or in silico models for biological 

discovery and engineering applications like, system analysis, prediction, design, 

optimization, etc. Various approaches are available for modeling biological systems. 

Due to its inherent complexities, developing complete model of biological systems is 

onerous and the common equation-based modeling approaches are often unable to 

capture emergent properties. Given its ability to capture the emergent properties of 

complex interactive system, agent based modeling is increasingly becoming popular in 

the scientific communities. Our goal is to explore the applicability of agent-based 

techniques to model the metabolic networks. Consequently, a new agent-based model 

has been proposed with the ability to simulate and analyze the metabolic network of 

prokaryotic cell. 

 

  One of the most important and significant feature of ABMs is the ability to 

model any system from the perspective of individual agents. From this perspective, a 

metabolic network could be considered as a network of individual biochemical 

reactions. Each reaction is an individual entity (agent) that interacts with other reaction 

agents based on common metabolites. Each reaction is therefore modeled as an agent 

with interactions via reactants, products, and enzymes – which are hence modeled as 

the agent’s attributes. The interaction among the reaction agents can be modeled as 

occurring sequentially or in parallel. Here, we have adopted the sequential mode of 

interactions where each member among the set of reactions execute one after another 



Chapter 3                       Agent Based Framework for Metabolic Network Analysis 
_____________________________________________________________________ 

31 
 

based on the availability of their respective reactant metabolites and the activity of the 

corresponding enzymes. 

 

The rest of this chapter describes the basic architecture in the agent-based 

modeling of metabolic networks. The next section will cover the details of the ABM 

architecture, agent’ functionalities, and their interactions. Section 3.2 provides an 

illustration of the emergence of the network model from the interaction between the 

agents. The application of the agent-based model to finding gaps in metabolic 

networks is proposed in Section 3.3 and illustrated using several examples in Section 

3.4. Methods for filling gaps are proposed and illustrated in Section 3.5. 

  

3.1 Model Architecture 

The metabolic network of a cell is modeled with three types of agents –   

Cytoplasm agent, Reaction agent, and Scheduler agent. The first two mimic physical 

entities in the cell while the last serves as a enabling entity for analysis and simulation. 

Prior to the description of metabolic network analysis, important features of these 

agents are explained. 

 
3.1.1 Cytoplasm Agent 

 The Cytoplasm agent is a key agent in the ABM and mimics the cytoplasm in 

the cell. It is designed to serve as the intracellular environment and contains 

information regarding the metabolites’ concentration (both intracellular and 

extracellular) as well as enzymes’ activity. The cytoplasm agent communicates with 

the reaction agents to ensure that this information remains up-to-date. During 

simulation, it also bootstraps the whole execution process by initializing itself as well 

as the other agents. Next, we describe the implementation of the Cytoplasm agent.  
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The JADE implementation of the Cytoplasm agent consists of two main 

components – a text file named cytoplasmIni and a Java agent class file named 

CytoplasmAgent. The text file cytoplasmIni contains information about: 

- System summary including the Number of Reactions, Metabolites and 

Enzymes   

- Metabolites including the metabolite ID, Name, and initial Concentration 

- Enzymes including the Enzyme ID, Name, and Activity 

 

Since the Cytoplasm agent serves as the repository of the information regarding 

the state of the system, whenever there is any query regarding metabolite 

concentrations, or enzyme activity or effectors concentrations from any agent, the 

Cytoplasm agent serves that query. The Cytoplasm agent executes its activities using 

two principal behaviors – CytoplasmInitialization and CytoplasmQueryServer. The 

former behavior initializes the whole agent model by instantiating all the reaction 

agents and the scheduler agent via JAVA RMI (remote method invocation). The latter 

behavior serves as the main communication module and provides data storage and data 

updating capabilities. It also serves queries related to the network structure that are 

necessary for gap finding (see Section 3.3). Table 3-1 summarizes these activities of 

the Cytoplasm agent.  
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Table 3-1: Summary of Cytoplasm agent’s activities 
Behavior 

name 
and 

Type 

Component Functionality 

readCytoplasmIniFile Collecting initial condition of the 
cytoplasm from cytoplasmIni.txt file 

createReactionAgents Create and initiate Reaction agents  
initiateScheduler Create and Initiate Scheduler agent 

C
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startExecution Asked the Scheduler agent to trigger 
the first reaction. 

metabolicQueryHandler Serves query regarding metabolites 
eznymeQueryHandler Serves query regarding Enzyme 

reactantUpdateReceiver 
Update concentration of corresponding 
reactant metabolites being informed 
from a reaction agent  

productUpdateReceiver 
Update concentration of corresponding 
product metabolites being informed 
from a reaction agent 

updateScheduler Inform Scheduler agent regarding the 
new metabolites 

printResult 
Print the final Condition of cytoplasm 
in terms of its metabolites’ 
concentrations as a text file. 

printReactionStatus 
Prints the information regarding the 
execution of a reaction whether it is 
executed or not after simulation stops. 

createTriggeredReactionList Makes a list by adding all the reaction 
fired during the simulation. 

metaboliteStatusList 
Serves to distinguish between 
participating and non-participating 
metabolites 

startBacktracking Search root cause of gap start from a 
metabolite defined by the user.  

serviceSearch Search the DF for reactions that 
produce certain metabolite 

C
yt
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sm
Q
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Se
rv

er
 

C
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B
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actionList Reports required action to the user. 
 
3.1.2 Reaction Agent 

The Reaction agents form the core of the model and provide the individual-based 

perspective of the metabolic system. Prior to execution, a reaction agent searches for 

the information regarding the present concentration of its input metabolites (reactants) 
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and output metabolites (product) as well as the activity of corresponding enzymes. If 

all the required metabolites are present and their enzymes active, then the reaction will 

be carried out and the corresponding products produced. Next, the concentrations of 

the metabolites are updated according to the stoichiometry and the extent of 

conversion based on the limiting metabolite as described below: 

Method of calculation: Consider the reaction: 

aA + bB  cC + dD 
 
and let [A]i , [B]i, [C]i, [D]i be the initial concentrations of the metabolites. Assuming, 

γmax as the  conversion of the limiting reactant, the extent of reaction, ξ is calculated as  

ξ = γmax × min 
⎭
⎬
⎫

⎩
⎨
⎧

b
B

a
A ii ][

,
][

  

 
The concentration of the raw materials and products are then updated as: 

     [A] ← [A]in - a× ξ  

 [B] ← [B]in - b× ξ  

[C] ← [C]in + c× ξ  

[D] ← [D]in + d× ξ  

 
The new concentrations are communciated to the Cytoplasm agent.  

Like the Cytoplasm agent, the JADE implementation of the Reaction agent also 

consists of two components – an initialization file and a behaviors file.  

The initialization text file consists of information about: 

- Reactants including the number of reactants, reactants IDs, and their 

stoichiometric coefficients 

- Products including the number of products, Products’ IDs, and their 

stoichiometric coefficient. 

- Enzymes including the number of Enzymes and their IDs 
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The behaviors Java file is used by all the reaction agents as a template for their 

activities. Reaction agents offer two behaviors –  ReactionInilializingBehaviour and 

ReactionSimulationBehaviour as summarized in Table 3-2. 

 

Table 3-2: Summary of Reaction agents’ activities   
Behaviour name and 

Type 
Component Functionality 

readReactionInput Collecting information regarding 
the corresponding reaction. 

ReactionInitialization 
OneShotBehaviour 

registrationWithDF Register with DF agent adding 
reactant metabolites as a service. 

startReaction • Send query to Cytoplasm 
regarding metabolites, 
enzymes.  

• Calculate new concentration 
after the reaction based on the 
stoichiometry  

• Send update information to 
Cytoplasm.  

• It also keep track of whether 
reaction fully executed or not. 

ReactionSimulation 
Behaviour 

informScheduler 
 

After the execution of each 
reaction it sends a message to 
Scheduler agent. 

 

3.1.3 Scheduler Agent 

 The main purpose of the Scheduler agent is to monitor and control the execution 

of the reaction agents. The Scheduler agent monitors the concentrations of all the 

metabolites; when new metabolites are produced, it evaluates if new reactions become 

possible and then triggers them. The process continues until all possible reactions have 

been triggered.  

The Scheduler agent is implemented in JADE using a cyclic behavior, named 

ScheduleManagementBehaviour. The main data structure in this agent is a list, which 

serves as the queue of reactions to be triggered. When the scheduler is initialized, it 

adds all possible reactions into the queue. When new metabolites are produced during 
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the execution of a reaction, new reactions that become possible are included 

dynamically into the Reaction queue. The whole simulation runs while there are 

Reactions in the queue. Table 3-3 shows the basic activities of the Scheduler agent.  

 

Table 3-3: Summary of Scheduler agent’s activities 
Behavior 
name and  

Type 
Component Functionality 

searchAgent 
When informed about the new metabolite it 
search the DF agent for reactions use that 
metabolite as input and updates the Agent queue. 

triggerSimulation 

On information from Reaction agent that the 
previous reaction has completed, or from 
Cytoplasm agent to start the simulation, the next 
available reaction is triggered for execution.  
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requestPrintResult
When the execution of all possible reactions is 
completed, it sends a request to the Cytoplasm 
agent to print the final results. 

 

 

3.1.4 Directory Facilitator 

The Directory Facilitator (DF) agent is an in-built agent in JADE. The DF is a 

centralized registry that associates service-descriptions to agents. It plays a major role 

in the execution of the model. Each reaction agent is registered with DF. Specifically, 

each reaction agent explicates its ability to convert a set of inputs (reactants) to outputs 

(products) as a description. Whenever a metabolite is updated, the Scheduler agent 

queries the DF for agents which provide the service of metabolizing that metabolite. 

The input to the DF is the service description (Service name- <Metabolite-Id> and 

Service type- “metabolite”) and the result from the DF is the details of the agent (as 

AID of the Reaction agents) if any that use that metabolite as input (reactant). The 

Scheduler agent updates the reaction queue by including the reaction agents obtained 
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from the DF query. The DF also helps in gap identification of network as described in 

detail in Section 3.3.1.  

3.1.5 Simulation and Emergence of Metabolic Network using the 

agent-based model  

The entire simulation procedure is divided into two parts: initialization and 

execution. Simulation starts with the Cytoplasm agent.  

1. Cytoplasm agent is initialized and it gets information from the cytoplasmIni.txt 

file. 

2. Based on the information, it creates all the Reaction agents and the Scheduler 

agent.  

3. When created by Cytoplasm agent, each Reaction agent initiates itself by 

getting information from its initialization file. It also registers itself with the DF 

agent.  

4. Then, the Cytoplasm agent sends a message to the Scheduler agent to initiate 

the queue with all available reaction agents.  

When the initialization of the model is completed, it is ready for execution. This 

step also starts with the Cytoplasm agent. 

1. The Cytoplasm agent sends a message to the Scheduler agent to start the 

execution. 

2. The Scheduler agent picks the first element in the Reaction queue and sends a 

request message to that reaction agent to execute.  

3. The Reaction agent then sends metabolite queries using ACLMessage 

QUERY_IF  to the Cytoplasm agent 

4. The Cytoplasm agent serves these queries by INFORM messages. 
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5. Similarly, the Reaction agent sends queries about enzyme activity to the 

Cytoplasm agent and the Cytoplasm replies to these queries.  

6. Then, based on the reactant and the enzyme information, the Reaction agent 

calculates new concentration for the reactant and product metabolites 

7. The Reaction agent sends the updated product and reactant information to the 

Cytoplasm agent and informs the Scheduler that it has completed its execution. 

8. The Cytoplasm agent informs Scheduler agent of the new metabolites created 

by the Reaction agent.  

9. The Scheduler agent identifies the reactions where these new metabolites 

participate and updates the Reaction queue with these. 

10. When informed by the reaction agent that it has finished its execution, the 

Scheduler agent triggers the next reaction in the Reaction queue.  

11. The above steps in the execution repeat until the Reaction queue is empty. 

Then Scheduler informs the Cytoplasm agent to print the final result and the 

reaction agents to print their status (whether executed or not).  

 Figure 3-1 and 3-2 demonstrate some of the information exchange between the 

agents during execution. Figure 3-3 shows the sequence of message transfer among 

various agents. 
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     (a)         (b) 
Figure 3-1: Inter agent interactions via ACLMessage Protocol : (a) Reaction agent – CytoplasmAgent, (b) Cytoplasm agent– Scheduler agent  
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(a)          (b) 
Figure 3-2: Inter agent interactions via ACLMessage Protocol : (a) Reaction agent –Scheduler Agent, (b) DF– Scheduler agent 
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       Figure 3-3: Sequence of interactions among agents using message exchange 
 
 
 
3.2 Illustration of Agent-based Execution of Metabolic Network  

 

Next, we illustrate with an example how the above procedure leads to the 

emergence of the network structure. Consider a set of 11 metabolic reactions. Details 

of the raw materials, products and enzymes for each of the reactions is depicted in 

Figure 3-4.  

 

1. The process starts with the substrate, glucose. Since, only glucose is available 

at that moment the scheduler agent initializes the reaction queue only with 

reaction glk – the only reaction that uses GLC as reactant. 

 

 

1. Metabolite Query 

3. Enzyme Query 

5. Metabolite Update 

2. Query Reply 

4. Query Reply 

Reaction Agent 
 

 

Cytoplasm Agent 

Scheduler Agent 7. Inform reaction 
execution 

9. Print 
Request 

6. Update queue 8. Start 
Request 

10. Print reaction 
status 



Chapter 3                       Agent Based Framework for Metabolic Network Analysis 
_____________________________________________________________________ 

42 
 

 

 
 

  Figure 3-4: A simple metabolic network 
 

2. The Scheduler then requests the Reaction glk agent to execute. Reaction glk 

occurs according to the procedure described earlier and some of GLC is 

converted to G6P as product of that reaction. This change is reported to the 

Cytoplasm, which in turn informs the Scheduler agent of the presence of the 

new metabolite (G6P). The Scheduler agent queries the DF and identifies 

reaction pgi, where G6P participates. This reaction is then inserted in the 

scheduler queue as shown in Figure 3-5. 

3. Next, the Scheduler agent triggers the reaction agent pgi which in turn produces 

F6P. Again, the Cytoplasm agent informs the Scheduler agent regarding the 

new metabolite produced. Scheduler agent consequently updates the queue 

with reaction pfkAB. Figure 3-4 illustrates the status of the queue during the 

course of the emergence of the network structure.   

G6P pgi F6P

pfkAB F6P FDP

gapAT3P1 13DPG

glk GLC G6P 

13DPG 3PGpgk 

pgml 3PG 2PG

eno 2PG PEP PEP pykFA PYR

FDP aldo T3P2 
T3P1 

tpiT3P1 T3P2

fbpFDP F6P 
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Figure 3-5: Evolution of the agent queue during the emergence of the Metabolic 
network 

 

 
4. The interactions among different reaction agents continue thorough their inputs 

(reactants)-outputs (products) relationship. The execution of one reaction 

results in triggering other reactions by producing the necessary precursors. 

Finally, the network shown in Figure 3-6 emerges as a consequence of all the 

interactions.  
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Figure 3-6: Emergent Reaction Network for Example  
 

3.3 Application of Agent-based Model to Identifying network gaps 

The agent-based model and the simulation strategy can also be directly extended 

to identifying gaps in the network. As discussed in the previous chapter, the recent 

trends in large-scale sequencing projects has resulted in the accumulation of complete 

genome sequence information for a number of species, and integrated pathway 

databases such as KEGG allow us to analyze organism-specific connectivity maps of 

metabolites based on the annotation of the genomes. Often times, such network model 

is incomplete in terms of enzyme activity or missing reactions; such inconsistencies 

are termed as a gap in the network. These inconsistencies may lead to the erroneous 

prediction of genetic interventions for targeted overproduction or the elucidation of 

misleading organizational principles and fallacious properties of the metabolic 

network. Therefore, identifying networks gaps and subsequently bridging them has 

become a major challenge for the modelers. It is difficult to implement automation in 

gap identification and filling by conventional equation-based approaches.  

tpi T3P1 T3P2

glkGLC G6P G6P pgi F6P pfkAB FDP 
fbp

FDP aldo 

T3P2gapA13DPG3PG pgk 

pgml 2PG eno2PG PEP pykFA PYR 
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    Figure 3-7: Activities required for finding and filling the network gap  

 
 

An effective gap detection and filling methodology have been implemented 

using the proposed agent-based model. Figure 3-7 summarizes the major steps. The 

basic idea for identification of inconsistencies is to simulate the network model and 

qualitatively predict the final product of the pathway as well as the essential 

intermediates. When compared with the experimental results, if the model is successful 

in predicting the final product and the intermediates, it means the model is consistent; 

otherwise, there must be some gaps in the model. Inconsistencies might arise from (1) 

enzyme inactivity, (2) insufficient metabolites, or (3) due to missing reactions. For a 

complex network with numerous interactions like many metabolic pathways, a single 
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gap may propagate through the network and create several inconsistencies. Our goal is 

to find the root cause(s) for the inconsistencies  and fill them to develop complete 

network.  

Procedure 
1. Collect experimental data for various cellular products for a minimal substrate 

condition. 

2. Develop a model based on the understanding of the system, relying on 

literature and metabolic databases. Identify the required substrate, co-enzymes, 

and set of essential reactions. 

3. Encode the information by creating text files for initializing Cytoplasm and 

Reaction agents.  

4. Starting from the substrates, execute the agent-based model. This results in the 

final set of metabolites (initial and newly formed ones) and a list of executed 

and non-executed reactions. 

5. Evaluate if the model is producing the same products as the experiment. If not, 

there are some missing elements in the model. 

6. From the results, evaluate  if (a) the enzyme for a reaction is not active, (b) the 

reactants (metabolites) for a reaction insufficient, or (c) the model is 

incomplete and does not include one or more essential reactions.  

If gaps have been identified, putative missing elements can be generated through 

search. An efficient search method that exploits the agent structure is proposed, as 

explained in detail next. 

3.3.1 Search-based Method for Identifying Gaps 

Prior to explaining the detailed search method, some basic features relevant to 

the search algorithm are explained. The search strategy mines the information 

produced during simulation to identify gaps. As mentioned above, this information 
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includes all the inconsistencies identified during simulation including unexecuted 

reactions and non-participating metabolites. First, we explain how the relevant data is 

extracted. A key requirement for network gap identification is tracking the execution 

status of the reaction agents. We therefore introduce a new attribute to each Reaction 

agent, called is_executed. When a reaction is executed during the course of qualitative 

simulation, its is_executed attribute is set to TRUE. Two lists are also created in the 

Cytoplasm, which is the repository of information, to store information regarding 

(un)executed reactions – unTriggeredReactionList and triggeredReactionList.; Each 

executed reaction is also included in the triggeredReactionList. At the end of 

execution, all reactions whose is_executed status is false are put into an 

unTriggeredReactionList. Similarly, we introduce an attribute for metabolites called 

“touched” to represent the participation status of the metabolites. Again, two lists are 

created to store metabolites based on their status, touchedMetaboliteList and 

unTouchedMetaboliteList. Four other lists have been created in the Cytoplasm. The 

purpose of the metaboliteList and subsidiaryMetaboliteList is to keep track of the 

potential root metabolite that leads to the gap(s). Similarly, reactionList keeps track of 

the search in terms of reactions. The actionList is used to store the necessary actions to 

bridge the gaps. Next, we report the detailed search algorithm.  

 

Algorithm: 

1. The required information for gap-search is initialized during the course of 

generating the network structure thorough qualitative simulation. The 

touchedMetaboliteList, the unTouchedMetaboliteList and the 

triggeredReactionList are also populated in this stage. 
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2. Before search begins, the desired final product of the network, is identified  by 

querying the user. If this metabolite is in the unTouchedMetaboliteList, a 

network gap is flagged. 

 

3. The metabolite is then included into the metaboliteList and the 

subsidiaryMetaboliteList. 

 

4. Next, the system picks the first element from the metaboliteList and searches 

for the reactions producing that particular metabolite as product. 

  

5. Then the resulting reactions are checked with the triggeredReactionList. If the 

triggeredReactionList does not contain the specified reaction, the reaction 

would be included into the reactionList. If the reaction search results null, 

that indicates that the metabolite is not produced in the system and a 

necessary reaction is missing. 

 

6. In the next step, the first element of the reactionList is selected and checked for 

its precursor (reactant metabolite). Once the information regarding the reactant 

is available, their presence in the untouchedMetaboliteList and 

subsidiaryMetaboliteList is then checked. 

 

7. If the reactant metabolite is non-participating and not included into the 

subsidiaryMetaboliteList then the metabolite is put in both the metaboliteList 

and subsidiaryMetaboliteList. That indicates that the product metabolite is not 

the root cause and the system removes it from the metaboliteList. If none of the 

reactant metabolite is non-participating then there might be two possible 
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reasons, either the enzyme is not active or the product metabolite is not 

produced sufficiently in the system.   

 

8. In the next step, the system will check for the enzyme information of the 

corresponding reaction. If enzymes are not active then the enzyme name is 

included into the actionList. If enzymes are active, then it means that the 

product is not produced sufficiently in the system. 

 

9. If multiple reactions are identified in step 5, the system would pick the next 

element and repeat Steps 6-8 above. 

 

Thus, the search propagates backward along the pathway to identify all the root 

causes for the gap. Figure 3-8 describes this overall backtracking strategy for gap 

identification. We illustrate this next using a case study.  
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             Figure 3-8: Strategy for back tracking from the desired product to find gap 
 

3.4 Case study: Finding gap in central metabolic model of E. coli 

For this case study, a small model of E. coli central metabolism with 74 reactions 

and 66 metabolites has been selected. Different types of gaps were created in the 
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glycolysis pathway – originating from enzyme inactivity, a dead-end metabolite, and 

due to reactions.  Each is described in detail next.  

Example 1: Gap due to inactive enzymes in linear pathway  

As a first demonstration, we choose the glycolysis pathway, where glucose is 

converted to final product pyruvate. If there are no inconsistencies in the network, for 

minimal substrate condition the model can be used to predict the final product of the 

pathway through qualitative simulation. In forward propagation, starting from the 

substrate glucose, the network structure evolves as the consequence of the interactions 

between the reactions agents as shown in Figure 3-9.  

 

 

 

 

 

 

 

  

 

Figure 3-9: Emergent Reaction Network for Example after deactivating enzyme for 
aldolase reaction. 

 

When the qualitative simulation is conducted with the enzyme for the Aldoase  

reaction inactive, the simulation results summarized in Table 3-4 are produced. For, 

the network analysis value of γmax is set to 0.5. Since, the analysis works qualitatively 

to identify the connection among different metabolites, any positive value will ensure 

that all possible reactions involved a particular metabolite can occur at that very 

tpi T3P2

glkGLC G6P G6P pgi F6P pfkAB FDP 
fbp

FDP aldo 

T3P2T3P1 gapA13DPG3PG pgk 
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Triggered reactions 
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moment. Example 1 on page 51 has been repeated using two different value of γmax 

(i.e. γmax = 0.2 and γmax = 0.8). In each case the results are coincide. Table 3.5 

summarized the simulation result for both γmax =0.2 and γmax =0.8. 

 

Table 3-4: Summary of the result for finding gap due to inactive enzyme 
Triggered 
Reactions 

Un-triggered 
Reactions 

Nonparticipating 
metabolites 

Final result 

Glk Aldo 13DPG 
Pgi Tpi 2PG 
pfkAB gapA 3PG 
Fbp Pgk T3P1 
 pgml T3P2 
 Eno PEP 
 pykFA PYR 

Fructose_bisphosphate_aldolase
_class_II is not active 
check forE_coli_rx4 

 

Table 3-5: Simulation results for γmax =0.2 and γmax =0.8 
γmax =0.2 γmax =0.8 

Triggered 
Reactions 

Final result Triggered 
Reactions 

Final result 

Glk glk 
Pgi pgi 
pfkAB pfkAB 
Fbp 

Fructose_bisphosphate_ald
olase_class_II is not active 

check forE_coli_rx4 
fbp 

Fructose_bisphosphate_ald
olase_class_II is not active 

check forE_coli_rx4 

 

For finding this gap, the automated search begins with the final product pyruvate 

(PYR). When the DF is queried for reactions producing pyruvate, only one reaction – 

pykFA is identified. The algorithm will then check whether the enzyme for the 

reaction is active. If enzyme is not active then it will put the enzyme name in to action 

list. It then moves on to the next step  to identify the reactants (in this case PEP) for the 

reaction and check whether they are participating or not. If the reactants are 

nonparticipating, then system will store them into a subsidiaryMetabolite list and 

remove pyruvate from that list. Then PEP is picked and the search repeated for the 

reactions producing PEP. Reaction eno (in Figure 3-8) is the only candidate available. 

The algorithm then puts eno into the reactionlist and searches for its reactants. Thus the 
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search continues following the same strategy and identifies T3P1 is not produced in the 

system. T3P1 is a product from reaction aldolase (aldo) and FDP is the precursor for 

that reaction. Since FDP is participating metabolite, so the aldo reaction is shortlisted. 

Finally, the inconsistency is identified to be the enzyme Fructose bisphosphate 

aldolase class II being inactive. Figure 3-10 summarizes the steps as the search 

continues towards gap identification.  

Figure 3-10: Summary of system status during gap identification in example 1 

 
Example 2:  Gap due to inactive enzymes in Branched pathway 

 

To demonstrate the performance of the strategy for successful identification of gap in a 

connected pathway, the Phosphate Pentose Pathway (PPP) is considered along with the 

glycolysis pathway, where glucose is converted to final product pyruvate. Figure 3-11 

shows the branched network consisting of glycolysis and PPP pathways. This time two 

different enzymes are made inactive. The system successfully identified the specified 

gaps as summarized in Table 3-6. 
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Figure 3-11: Metabolic network consisting of glycolysis and PPP pathways  

 
Table 3-6: Summary of the result for finding gaps in branched network 
Triggered 
Reactions 

Un-triggered 
Reactions 

Nonparticipating 
metabolites 

Final result 

Glk pgk 2PG 
Pgi pgml 3PG 
pfkAB eno T3P1 
Fbp pykFA T3P2 
tpiA edd PEP 
gapA eda PYR 
Zwf  2KD6PG 
Pgl   
Gnd   
rpiA   
Rpe   
tktAB   
talAB   
tktA, 
tktB 

  

Phosphogluconate_dehydratase is 
not active 

Check for E_coli_rx7 
Phosphoglycerate_kinase is not 

active 
Check for E_coli_rx19 

 

eda
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Example 3: Gap due to Missing reaction 

To illustrate the performance of the proposed framework in identifying gaps due 

to missing reactions, Reaction rpiA is intentionally removed from the network shown 

in Figure 3-11. As shown in the Figure 3-12, metabolite ribose 5-phosphate (R5P) is 

produced only by reaction rpiA. If the network does not include this reaction, then R5P 

cannot be produced; as a result, reaction tktAB cannot proceed and hence S7P is not 

produced. Since S7P is a precursor, reaction talAB cannot execute due to lack of 

reactant. As a result there is no production of E4P in the system, which in turns 

prevents the execution of reactions tktA, tktB and so on. Figure 3-12 summarizes the 

effect of the missing reactions and Table 3-7 summarizes the results. 

 

 

 
Figure 3-12: Effect of missing reaction rpiA 
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Table 3-7: Summarized result for identifying gaps due to missing reaction 
Triggered 
Reactions 

Un-triggered 
Reactions 

Nonparticipating 
metabolites 

Final result 

Glk tktAB R5P 
Pgi talAB S7P 
pfkAB tktA, tktB E4P 
Fbp   
tpiA   
gapA   
Pgk   
Pgml   
Eno   
pykFA   
Zwf   
Pgl   
Gnd   
Edd   
Rpe   
Eda   
Eda   

R5P not produced 
Search databases for reaction 

 

Here, a simple case involving a single missing reaction has been demonstrated 

using the strategy described above. The same backtracking strategy can also be 

extended in the future for the case of multiple missing reactions. Once gaps have been 

identified, they need to be filled. A suitable strategy is described next.  

 

3.5 Strategy for Filling Gaps using the Agent-based Model  

For filling gaps, a master list of reactions that contains all reactions possible in 

the organism is required. That can be developed from metabolic databases and 

literature.  

First, the proposed strategy for filling gaps is illustrated using the example 

metabolic network shown in Figure 3-13. Three reactions are deemed to be missing in 

the original model and needed to be identified from a master list containing these and 

many other (irrelevant) reactions.  
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Figure 3-13: Illustration of gap due to the missing reactions 
 

In Figure 3-13, the final product is the output of reaction J. To fill the gap 

reaction G must be triggered. Thus, the inputs for reaction G are required. Gap has 

been identified after reaction C. Our objective is to find the shortest possible path from 

reaction C to reaction G.  

Filling the metabolic gap involves search for the proper reaction sequence to produce 

the desired product. Implementation of the search algorithm needs maximum allowable 

gap size to limit the search. Let the maximum allowable gap size for the above 

example be 3. This small value of allowable gap size has been selected to facilitate the 

search for the shortest possible path to fill that gap. Usually, biochemical reaction 

network is highly interacting system and the targeted metabolite may be produced 

from different pathways. Selection of a small number (as 3 in the example) will ensure 

the quick finding of the shortest possible reaction path to get the desired product from 
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the substrate. If the selected gap size is too small to find a possible path, the gap size 

can be increased and the search repeated. 

1. After finding the gap in the network using the strategy described in Section 3.4, 

we need to search the master list for all possible reaction sequences that would 

be able to complete the gap. In the above example, three possible paths from 

reaction C to reaction G can be identified from the master list: E, F and D. We 

next apply breadth-first search to find the shortest possible sequence.  

2. Once a complete sequence of reactions have been found within the specified 

gap size, these missing reactions can be examined by the user and included in 

to the model. 

The breadth-first algorithm is explained in detail next. 

Breadth-first search 

 

 

 

 

 

 

 

 

                     Figure 3-14 : Breadth-first search tree   
 

The main concept of breadth-first search is to explore the root node first, then all 

the nodes generated by the root node then their successors, and so on (Russell & 

Norvig, 1995). In general, all the nodes in generation n in the search tree should be 

explored before the nodes of generation n+1.  
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1. Reaction C is the root node for the search. The algorithm takes the product as 

input and searches the master reaction list for reactions using the product of 

reaction C as inputs (reactants). 

2. The resulting reactions form the next layer (1st generation in the search tree) of 

the search tree. In the example above, D, E and F are the 1st generation nodes.  

3. Next these child reactions are checked to see if any of them is the same as any 

of the existing reactions in the network (for example G). If so, the search stops, 

otherwise it continues to the next generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
 

Figure 3-15: Steps involved in the breadth-first search 
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4. Next, all the nodes at the 1st generation are explored in a similar fashion as the 

root node, by repeating steps 1 and 2. This results in the 2nd generation nodes. 

In the Figure 3-14, the 2nd generation reactions are E11, E12, F11, F12, D11, 

and D12. Step 3 is repeated for all these candidates.  

 
5. Thus, the search will continue until the the required reaction is found or the 

maximum allowable gap size is reached. For the example problem, the required 

reaction (reaction G) is found in the 2nd generation nodes.  

6. Next, by tracing the ancestors from G, the shortest possible path to fill the gap 

in the network is identified as C-E-G. 

We illustrate the proposed algorithm using an example.  

Example of filling a gap in the metabolic network 

The Glycolysis pathway, where final product pyruvate is produced from the 

substrate, glucose, is considered as an example. To illustrate the above gap filling 

strategy, reactions pgi, pfkAB and aldo are not included in the metabolic model. As 

shown in Figure 3-16, T3P1 cannot be produced from G6P due to this gap which in 

turn stops the production of PYR (pyruvate). Following the above strategy with a 

Master List containing a total of 11 reactions, ROUTE 1 and ROUTE 2 in Figure 3-16, 

are identified as the two possible routes to produce T3P1. Table 3-8 summarizes the 

results obtained for the gap filling scheme.  
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Figure 3-16: Alternative routes for the production of T3P1    
 
Table 3-8:  Result for identifying and filling gaps with missing reactions 
Target 
Node 

Starting 
Node 

1st 
generation 

2nd 
generation 

3rd 
generation 

Final result 

T3P2 
F6P FDP 

T3P1 
T3P1 G6P 

D6PGL D6PGC RL5P 

T3P1 is not produced  
Check for additional 

path from Master 
Reaction List 
Add following 

reactions to the model: 
E_coli_rx3 
E_coli_rx2 
E_coli_rx1 
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3.6 Concluding remarks 

Metabolic reconstruction of microbial as well as of eukaryotic organisms using 

bioinformatics based techniques with experimental evidence is one of the major 

elements of metabolic engineering. Techniques that enable researchers to ensure 

complete and comprehensive model of organisms are necessary. In this chapter, an 

agent-based modeling approach has been proposed to analyze metabolic pathways. 

This framework consists of three major classes of agents – Cytoplasm agent, Reaction 

agent, and Scheduler agent. The basic structure of the agent based model is described 

along with the individual agent functionalities and inter-agent interactions. The key 

benefit of this agent-based model is that it enables one to identify inconsistencies in 

metabolic network through qualitative simulation. Efficient methods for gap 

identification and gap filling have been proposed and demonstrated using various case 

studies.  
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Chapter 4 Dynamic Simulation of E. coli 
central metabolism using ABS  

 

In previous chapter, the detailed architecture of the new agent based framework 

has been described and the performance of this proposed framework has been 

demonstrated in terms of its ability to identify different kind of gaps in any metabolic 

network model. The work presented in this chapter will show the applicability of the 

same agent based framework to emulate the kinetic behavior of cellular metabolome. 

 The metabolic system selected for the simulation is the central carbon 

metabolism of E. coli. Section 4.1 includes a brief description of the carbon 

metabolism in E. coli. Section 4.2 provides the details of the kinetic model that 

includes mainly the Glycolysis and PPP. Some modification is implemented into the 

basic architechture to capture the dynamic properties of the system. The modified 

architecture is described with necessary illustration in section 4.3. Simulation results 

are discussed and illustrated in section 4.4. 

4.1 Central Metabolism of E. coli 

E. coli is the most studied prokaryotic model microorganism. Because of its long 

history of laboratory culture and ease of manipulation, E. coli also plays an important 

role in modern biological engineering and industrial microbiology. In the case of E. 

coli, metabolic engineering studies have primarily focused on the central metabolic 

pathways that are active during growth on glucose as the sole carbon source: the 

Embden–Meyerhof (EM) pathways, the pentose phosphate pathway (PPP) and the 

tricarboxylic acid cycle (TCA). These pathways are the main components of the 
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central metabolism. Figure 4-1 briefly describes the fundamental activities of the 

central metabolism in E. coli.  

 
 

Figure 4-1: A brief representation of activities encompassed in central metabolism  
 

The substrate that supplies carbon skeletons for the biosynthesis of the building 

blocks is usually called the carbon source. The most frequently used substrates in 

industrial processes are different kinds of sugars like glucose, sucrose, fructose, 

galactose, and lactose. The sugar is transported into the cell where it is first 

phosphorylated and then enters the hexose monophosphate pool consisting of hexose 

monophosphates, glucose 1-phosphate (G1P), glucose 6-phosphate (G6P) and fructose 

6-phosphate (F6P). Phosphorylation may occur independently or in concomitance with 

the transport process. The hexose monophosphates undergo glycolytic reactions, the 

end product of which is pyruvate. Pyruvate in turn, may be further converted by 

different routes depending on the energetic state of the cells. Under  oxygen enriched 

condition, most of the pyruvate enters the TCA cycle where it is oxidized completely 
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to carbon dioxide and water in oxidative phosphorylation. However, under oxygen 

limiting condition or in anaerobic organisms, pyruvate may be converted into 

metabolic products like lactic acid, acetic acid, and ethanol via fermentative pathways. 

Some of the intermediates in glycolysis and the TCA cycle serve as precursor 

metabolites for the biosynthesis of building blocks like various amino acids, and 

polysaccharides. These building blocks are polymerized into macromolecules, which 

are finally assembled into different cellular structures.  

   

Central metabolic pathways are the source of precursor compounds for all other 

pathways, and also the significant energy source and reducing power for cellular 

processes. The active pathways and the production of essential metabolite in central 

carbon metabolism are critical components of a multidimensional physiological 

representation of the organism, since this central backbone of metabolism provides 

energy, cofactor regeneration, and building blocks for biomass synthesis and controls 

the extent and nature of by-product excretion. It serves three important purposes: 

firstly, it generates Gibbs free energy, in the form of ATP, that help to fuel other 

cellular reactions; secondly, it produces reducing agent in the form of cofactor like 

NADPH, required in biosynthetic reactions; and thirdly, it produces precursor 

metabolites required in the biosynthesis of building blocks. It is therefore no surprise 

that central carbon metabolism has been and continues to be the primary target of basic 

studies and metabolic engineering efforts. Metabolic engineering of the central carbon 

metabolism is required to improve the productivity and yield of native compounds, in 

addition to producing novel products not expressed in the natural hosts.  
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4.2 Case study: Dynamic model of Glycolysis and PPP in E. coli 

The dynamic model of carbon metabolism described by Chassagnole et al., 

(2002) is used here to validate the proposed agent based dynamic simulation of cellular 

metabolism. The dynamic responses of intracellular metabolites to a pulse of glucose 

were experimentally measured for E. coli K-12 strain W3110 culture.  

 

The model includes glucose transport system, glycolysis, biosynthetic and 

anaplerotic reactions and pentose-phosphate pathway consisting 30 metabolic 

reactions. The stoichiometry of these reactions was taken from the EcoCyc database, 

and from Neidhardt et al., (1996). The structural model of central carbon metabolism is 

shown in Figure 4-2. Table 4-1 provides the kinetic description of different enzymatic 

reactions and the kinetic expressions for these reactions are presented in Table 4-2. 

These kinetics are based on various published literature resulting from in vitro 

investigations with purified enzymes. The kinetic expressions used for the dynamic 

simulation are same as published in the work of Chassagnole et al., (2002).  
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Figure 4-2: Structural model of Glycolysis and pentose phosphate pathways. 
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Table 4-1: Kinetic description of different enzymatic reactions 
 

Reactions Kinetic Description Kinetic type 
PTS Transferase A 
PGI Reversible Michaelis-

Menten B 

PFK Allosteric C 
ALDO Ordered uni-bi 

mechanism D 

TIS Reversible Michaelis-
Menten E 

GAPDH F 
PGK 

Two substrate 
reversible Michaelis-

Menten F 

PGM E 
ENO 

Reversible Michaelis-
Menten E 

PK Allosteric G 
PDH Hill equation H 
PEPCxylase Two substrate equation 

with allosteric I 

PGLM Reversible Michaelis-
Menten E 

G1PAT Allosteric J 
RPPK H 
G3PDH H 
Serine 
Synthesis 
SERS 
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Michaelis-Menten 
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DAHPS Hill equation K 
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PGDH 
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irreversible Michaelis-

Menten M 

RU5P N 
R5PI N 
TKA O 
TKB O 
TA 

Reversible mass action 
Kinetics 

O 
Mureine 
Synthesis 
MURS 

P 

Tryptophan 
synthesis 
TRPS 

P 

Methionine 
synthesis 
METS 

Constant level 
corresponding to the 
steady state condition 
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For substrate (here mainly sugar) transport system, equation of balance depends 

on the dynamic of the transport system. One very common example is 

phosphotransferase system, for which the balance equation is taken from Liao et al. 

(1996) and expressed as: 

   
x

reactiontransportxlarextracellu
glc

feed
glc

larextracellu
glc rC

CCD
T

C
ρ

  )( −−=
Δ

Δ
 

where, feed
glcC is the glucose (sugar) concentration in the feed, larextracellu

glcC  is the 

extracellular glucose concentration, xC   is the biomass concentration and, xρ  is the 

specific weight of the biomass. 

 

The dynamic behaviors of co-metabolites such as ATP, ADP, NAD, and NADP 

are also represented by analytical functions shown in Table 4-3. These have been taken 

from Chassangole et al, (2002) and Rizzi et al. (1997) corrected for typographical 

errors. 
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   Table 4-3: Analytical function for co-metabolites 
Analytical function for co-metabolites proposed by Chassagnole et al. 
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Steady state concentrations for some of the metabolites are available from direct 

measurement of intracellular metabolites. The remaining concentrations were 

estimated using thermodynamic relations such as near equilibrium assumptions or 

relation from published literature (Chassagnole et al., 2002). All measured and 

estimated steady state concentrations are listed in Table 4-4. 

 

4.2.1 Glucose pulse experiment 

To validate the model, an experiment was carried out using standard stirred-tank 

bioreactor with an E. coli culture under glucose limitation growth condition. Starting 

from steady state conditions at D =0.1 ± 0.002 h-1 with a extracellular glucose 

concentration of 12 ± 1.5 mg/L,  3ml sterilized solution of glucose was injected to 
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conduct the pulse experiment. After injection, samples were collected every 3 s. 

Chassagnole et al. (2002) reported the results shown in Figure 4-3. 

 

Table 4-4: Estimated and Measured Steady-state concentrations of Metabolites  
 

Metabolite Type Concentration 
mM 

2PG Estimated 0.399 
3PG Estimated 2.13 
6PG Measured 0.808 
ADP Measured 0.595 
AMP Measured 0.955 
ATP Measured 4.27 
DHAP Estimated 0.167 
E4P Estimated 0.098 
F6P Measured 0.60 
FDP Measured 0.272 
G1P Measured 0.653 
G6P Measured 3.48 
GAP Measured 0.218 
Glucose (extracellular) Measured 0.0556 
NAD Measured 1.47 
NADH Measured 0.1 
NADP Measured 0.195 
NADPH Measured 0.062 
PEP Measured 2.67 
PGP Estimated 0.008 
PYR Measured 2.67 
RIB5P Estimated 0.398 
RIBU5P Estimated 0.111 
SED7P Estimated 0.276 
XYL5P Estimated 0.138 
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Figure 4-3:  Comparison between experimental data and model predictions (Source: 
Chassagnole et al. 2002) 

 

4.3 Dynamic Simulation using Agent-based model  

The main purpose of a dynamic model is to describe the variation of the internal 

metabolome due to the continuously changing cellular state quantitatively in terms of 

metabolite concentration. The critical part of developing precise dynamic model is 

greatly related with incorporating characteristic kinetic information on the cellular 

dynamics, especially on different enzymatic reaction kinetics. The same agent-based 

framework can be extended to perform dynamic simulation provided the kinetics of 

metabolic reactions are available. 

The process dynamic simulation is mainly based on the execution of reactions 

involved in the system. Like the stoichiometric agent model, here also the execution of 

reaction is designed to occur in a sequential manner. The response of the cell internal 
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metabolome due to the dynamic system excitation is used to identify the dynamic 

system behavior by a stepwise internalization of metabolites. A group of reactions 

executed one after another based on the availability of their reactant metabolites and 

the corresponding enzymes activity. Prior to execution, a reaction agent search for the 

information regarding the present concentration of its input metabolites (reactants) and 

output metabolites (product) as well as the activity of corresponding enzymes. If all the 

required metabolites are present and enzyme is active, then the reaction will carried out 

to produce corresponding products. It updates the present concentrations of metabolites 

according to the stoichiometry and reaction kinetics and reports this change to the 

storage system. Thus all the reactions possible at that moment are executed in a 

sequential manner and information storage system is updated with the new values of 

metabolites. The change represents the total change of cellular metabolic system for 

that small time period. Another system is keeping the time and tracking the reactions’ 

execution. Based on the updated information of metabolites a new set of reactions are 

now ready to be executed at the next time step. The process continues until the desired 

time set for the simulation.  

The basic architecture for agent-based dynamic simulation followed the same 

framework as in the qualitative simulation described in Chapter 3. The same basic 

agents namely the Cytoplasm agent, Reaction agent, and Scheduler agent were used. In 

the following we describe modifications required to the Reaction and Scheduler agent 

in order to provide the dynamic simulation capability.  

4.3.1 Reaction Agent  

In order to capture the dynamics, the Reaction agents were embedded with 

additional attributes relating to effectors, the number of effectors and their kinetic 

parameters. Further, changes were made to reflect changes in cellular metabolome 
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according to the kinetics. Specifically, the rate of reaction was determined using the 

kinetic expression of corresponding enzymatic reaction. In general, the rate of 

enzymatic reaction j is given by: 

 ),(r max
j jjjj KCfr =     

where Kj is the kinetic parameter vector and Cj is the concentration vector of 

metabolites and effectors involved in the reaction. Typical example of ),( jjj KCf are 

Michaelis-Menten equation, Hill equation, etc. For reversible reactions, the direction 

of reaction is determined based on the sign of reaction rate, rj calculated using kinetic 

expressions. If rj is positive, reaction j will occur in forward direction, if rj is zero 

reaction, j will not proceed and if negative, it will proceed in reverse direction. 

The rate of change in internal metabolome in terms of metabolic concentration 

due to reaction j for a small time ΔT is given by: 

jij
ij rv

T
C

±=
Δ

Δ
  

 where, jr is the rate of reaction j, ijv  is the stoichiometric coefficient of 

metabolite i in reaction j and  ‘-’ sign is for reactants and ‘+’ sign is for products So, 

concentration of metabolite i at time T, after reaction j has completed is given by: 

 TrvTCTTC jijii Δ×±=Δ+ )()(  

 

The agent based simulation can also directly implement the analytical functions for 

the co-metabolites.  
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4.3.2 Other Agents 

Modifications were also required for the scheduler agent in order to simulate the 

dynamics. The sequential execution of reactions is controlled by the Scheduler agent. 

Specifically, it was extended to keep track of time during simulation time. 

An additional agent (Injection agent) was added to emulate the glucose injection 

in the experimental study. The Injection agent informs the Scheduler agent regarding 

the time of injection. Being informed from the Scheduler agent at the specified time, 

Injection agent performs injection pulse by changing the glucose concentration inside 

the cytoplasm. Figure 4-4 illustrates the message exchange between the Injection 

agent, the Scheduler, and Cytoplasm agents.  

 

 

 

 

 

                 

                        Figure 4-4 Message exchange for Injection Agent 
 
4.3.3 Steps in Agent-based Dynamic simulation 

In summary, the steps involved in the agent-based dynamic simulation are as follows: 
1. At time T = 0, the simulation begins with the cytoplasm agent. Cytoplasm 

agent initiates itself by reading information regarding the initial condition of 

the system. Next, it uses JADE agent container to activate other agents in the 

system.  

2. Scheduler agent initiates itself by filling the agent queue with all the reactions 

involved in the system.   

Injection 
Agent 

 

 

Agent: Scheduler 
Message: Inject 

Agent: Scheduler 
Message: Injection time 

Agent: Cytoplasm 
Message: update glucose 

Message inputs (From) Shortest possible path 
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3. Then Cytoplasm agent sends a message to scheduler to start triggering the 

reactions and at that time point, Scheduler agent triggers the first reaction agent 

from the agent queue.  

4. The reaction agent sends the queries regarding the reactants, products, 

enzymes, and effectors and received the query replies from the Cytoplasm 

agent. 

5. Reaction agent executed based on the kinetics of the reaction. 

6. Reaction agent sends message to Cytoplasm agent to update metabolite 

concentrations of the system and confirm Scheduler agent about the completion 

of reaction. 

7. Scheduler agent then triggers the next reaction in the queue.  

8. Thus at a certain time point Scheduler agent sequentially triggers all the 

reactions possible at that time point. 

9.  When the reaction queue became empty the scheduler update the time of the 

process as T + ΔT. Again all the reactions involved in the model are added to 

the reaction queue and simulation continues.      

4.4 Simulation Results 

4.4.1 Steady state Simulation  

The agent-based simulation was used to estimate the steady-state concentrations 

for intermediate metabolites. Starting from arbitrary conditions close to the reported 

steady state value, the ABS is able to reach the same Steady state conditions as 

described in the literature. Figure 4-5 (a) and (b) show the concentration profile of the 

intracellular metabolites in the course of reaching the steady state.  
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Figure 4-5: System reaching Steady-State for metabolites: (top): glcext, fdp, g1p, g6p,  
pep, pyr, f6p, gap and 6pg , (bottom): 2pg, 3pg, dhap, e4p, pgp, rib5p, ribu5p, sed7p, 

xyl5p 
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The resulting steady state values are used as the initial condition for the 

simulation of dynamic response of intracellular metabolites in glucose pulse 

experiment. Table 4-5 includes the steady state values of the metabolites as generated 

from the simulation along with the value reported by Chassagnole et al. (2002). 

Table 4-5: Steady state concentration of the metabolites 
 

Concentration mM Metabolite 

    Literature        Simulation 
2PG 0.399 0.398 
3PG 2.13 2.131 
6PG 0.808 0.808 
ADP 0.595 0.595 
AMP 0.955 0.955 
ATP 4.27 4.27 
DHAP 0.167 0.167 
E4P 0.098 0.098 
F6P 0.60 0.60 
FDP 0.272 0.272 
G1P 0.653 0.653 
G6P 3.48 3.481 
GAP 0.218 0.218 
Glucose (extracellular) 0.0556 0.0556 
NAD 1.47 1.47 
NADH 0.1 0.1 
NADP 0.195 0.195 
NADPH 0.062 0.062 
PEP 2.67 2.672 
PGP 0.008 0.008 
PYR 2.67 2.669 
RIB5P 0.398 0.398 
RIBU5P 0.111 0.111 
SED7P 0.276 0.276 
XYL5P 0.138 0.138 
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4.4.2 Dynamic Simulation  

4.4.2.1 Selecting step size  

As stated earlier, a set of reactions occurred at a particular point of time in an iterative 

manner for a small time period, ΔT. The optimum step size for ΔT is a major concern 

to capture the dynamics of biochemical reactions as they are usually not very fast. 

Starting from arbitrary initial condition, for different size of ΔT, we have plotted 

concentrations against time profile of various intermediates and noticed that below ΔT 

= 0.0001s, the effect of ΔT on the concentration profile become insignificant. So, ΔT 

=0.0001s has been taken for the simulation. To demonstrate the effect of ΔT on 

simulation result, concentration profile of metabolite g6p, pep, pyr and f6p are plotted 

for ΔT = 0.001s, 0.0001s and 0.00001s. For each case the simulation is run for 35 

simulation second. For  ΔT = 0.001 s, 0.0001s and 0.00001s, it takes roughly 19 

minutes, 238 minutes and 2790 minutes respectively. Figure 4-6 to figure 4-8 

illustrates the effect of step size on capturing the system dynamics. The profiles for ΔT 

=0.0001s and ΔT = 0.00001s are identical to each other. While in case of ΔT = 0.0001s 

the simulation is more than 10 times faster compared to the case for ΔT = 0.00001s. 

This implies that ΔT =0.0001s is sufficient to capture the dynamic responses of the 

system.  
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Figure 4-6: Effect of ΔT on Concentration (ΔT =0.001s)  
 

    
             Figure 4-7: Effect of ΔT on Concentration (ΔT =0.0001s) 
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                  Figure 4-8: Effect of ΔT on Concentration (ΔT =0.00001s) 

4.4.2.2 Validation of Simulation results 

The time course of the co-metabolite concentrations resulting from the functional 

expression are verified with experimental data.  

The simulation results fit the observed trends for most metabolites collected by 

manual sampling after the pulse of glucose into the bioreactor as reported by 

Chassagnole et al. (2002). Figure 4-10 compares the current simulation with the 

experimental results reported in Chassagnole’s work. The same model has been 

simulated using MATLAB ode45 solver. Figure 4-11 shows the results of the 

MATLAB simulation. Table 4-6 includes the performance of agent-based simulation 

and simulation using MATLAB. 
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Figure 4-9: Time course for the co-metabolites  
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Figure 4-10: Comparison between experimental data (red dots) and model simulations (blue lines) in response to a glucose pulse at time zero in 

steady state culture. 



Chapter 4                                         Dynamic simulation of Metabolism Using ABS 
_____________________________________________________________________ 

                                

89 
 

-10 0 10 20 30 40
0

1

2

3

glucoseext

-10 0 10 20 30 40
0

1

2

3
fdp

-10 0 10 20 30 40
0

1

2

3
g1p

-10 0 10 20 30 40
0

2

4

6

co
nc

en
tra

tio
n 

m
M

g6p

-10 0 10 20 30 40
0

2

4

6

pep

-10 0 10 20 30 40
0

2

4

6

pyr

-10 0 10 20 30 40
0

0.4

0.8

1.2
1.4

f6p

-10 0 10 20 30 40
0

0.4

0.8

1.2
1.4

time s

gap

-10 0 10 20 30 40
0

0.4

0.8

1.2
1.4

6pg

Simulation
Experiment

 
 

Figure 4-11: Comparison between experimental data (red dots) and model simulations by MATLAB (blue lines) in response to a glucose pulse at 
time zero in steady state culture.
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Table 4-6: Comparison between Agent-based simulation and MATLAB Simulation 
 
Metabolite Gluext fdp g1p G6p pep pyr f6p gap 6pg 

Agent-Based Simulation 
% error 1.04 19.69 17.93 6.99 5.28 15.07 19.44 15.0 5.50 
Simulation Time 50 sec simulation need 6792 sec of  computational time 
MATLAB Simulation using ode45 solver 
% error 1.70 67.72 15.71 6.78 16.73 18.82 19.41 15.30 6.18 
Simulation Time 50 sec simulation need 211 sec of  computational time 

 

The agent based simulation was able to reproduce the same results capturing 

both the experimental data and Chassagnole et al. (2002) model predictions. 

Chassagnole et al. (2002) discussed the reasons for the discrepancy between the model 

and the experimental observations and concluded that these occurred due to well 

known difficulties in assessing the actual kinetic phenomena that governs the dynamic 

behavior of the complex system like metabolic network. The mechanistic rate 

expressions used for the model developed based on limited understanding of the 

dynamics of the reactions. The discrepancy also demonstrates the sensitivity of the 

complex interacting system with respect to uncertainties in its detailed structure, which 

is very difficult to capture by parameter fitting.  

4.5 Concluding remarks 

In this chapter, the agent-based model of the metabolic network proposed in the 

previous chapter was also used for dynamic simulation. As case study, the central 

metabolic pathways of E. coli were selected. The agent-based framework was extended 

by incorporating kinetics in the Reaction agent. The scheduler agent was also extended 

by incorporating time factors. Experimental data from literature, where a glucose pulse 

had been injected into a steady state culture and dynamic response of metabolites 

recorded, served as the gold standard. The target was to re-create the experimental 

observations using dynamic simulation techniques. Simulation results confirmed the 
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effectiveness the proposed modeling and simulation approach as it successfully 

captured the dynamics of the system and reproduced the same results as reported in 

literature. This study also shows the flexibility and extendibility of the agent based 

framework. 
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Chapter 5 Conclusions and Recommendations 

Computational biology or in silico biology will be increasingly important as the 

scientific community is faced with the challenge of establishing the link between the 

genome scale model and the physiological functions of an organism. The computational 

analysis of genome sequence data is proving very useful; for example, 40 to 80% of the 

Open Reading Frames identified in the fully sequenced organisms have been assigned a 

putative function. The next step is to derive thorough understanding of the genotype-

phenotype relationship of the organism. When the results from genome sequencing 

projects are combined with bioinformatics analysis, a comprehensive metabolic model 

can be developed. The reconstruction and simulation of the overall cellular functions 

based on high throughput experimental data can pave the way to designing organisms to 

produce high-value metabolites. Current methods for reconstructing and simulating 

metabolic models are stymied by inconsistent and incomplete information of the 

metabolic network. A key challenge is to elucidate these inconsistencies and bridge them 

efficiently. In this work, a new agent based modeling and simulation approach has been 

proposed to analyze metabolic pathways.  

In contrast to monolithic mathematical models of metabolism, the current work is 

centered around an individual based modeling paradigm. This paradigm, where the 

behavior of a complex system emerges from the interactions of simple individuals, each 

with its own resources and goals, has been successfully applied in other domains; to our 

knowledge this is the first such proposal in the metabolic engineering domain. To 

represent the metabolic activities of a single compartment organism, the proposed 

architecture uses three different classes of interacting agents, namely Cytoplasm agent, 
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Scheduler agent and Reaction agents. Each model typically includes many instances of 

Reaction agents, each modeling the metabolite uptake and production of a metabolic 

reaction. Reaction agents interact with each other based on shared metabolites; the 

structural and the dynamic properties of the entire network emerges from these local 

interactions. We have shown that this distributed modeling architecture is specifically 

suited for indentifying network inconsistencies. A qualitative simulation based approach 

for identifying network gaps and a search based method for filling gaps have been 

proposed. Using the central metabolism of E. coli as a model system, the developed 

framework has demonstrated to effectively identify and fill gaps in both linear and 

branched networks. With minimum modification, the same framework has also been 

extended to emulate the dynamic behavior of metabolic networks using quantitative 

kinetic models of the reactions. This dynamic simulation has also been demonstrated on 

the central metabolism of E. coli. The results were to found to match well with those 

reported in literature.  

 

While developing the agent based approach for metabolic network model, several 

attractive features of the modeling paradigm become apparent. Firstly, ABMS has the 

ability to capture emergent properties of highly interactive systems. The local interactions 

of individuals in highly networked systems gives rise to global consequences, which 

cannot be attributed to any single individual in the system. This ‘‘emergent property’’, a 

characteristic of the system as a whole with no significance at the individual level, 

distinguishes a complex system from an ordinary one. Secondly, the key aspect of an 

agent-based modeling framework is the interaction of an agent with other fellow agents 
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and its immediate environment, which is very much appropriate to model the metabolic 

activities inside the cell cytoplasm. Thirdly, the natural modularity as evident in this 

framework helps one to exploit all the advantages characteristic of an object-oriented 

paradigm. Any new component, activities, or experimental arrangement can be modeled 

as an individual agent or object with unique functionality, without affecting the basic 

architecture of the system. For example, during the dynamic simulation of E. coli, the 

injection pulse experimental technique was easily designed as an additional agent and 

effectively implemented into the main structure.    

 

The current work is, to our knowledge, the first agent-based model of metabolic 

networks. It can be further extended in several ways. The data structure used in the 

proposed framework is not directly suited for use with SBML (System Biology Markup 

Language) supported databases. SBML is now become the global data format for 

representing models of biochemical reaction networks, like metabolic network, cell 

signaling networks, etc. Currently, manual conversion of online available databases into 

the compatible format for the proposed structure is required. This limitation could be 

resolved by developing a parser module, which is able to access the online databases and 

convert them to a compatible version for the proposed agent framework. Furthermore, for 

the dynamic simulation, the operation is sequential and iterative, hence comparatively 

slow in generating results compared to traditional differential equation solvers. Some 

effort is required to come up with an efficient algorithm for distributed dynamic 

simulation. 
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We see agent based modeling approach as a new and potential tool for modeling 

the complex organization in the cell. Though the developed agent based framework is 

designed for a single compartment (where all reactions occur in cytoplasm) prokaryotic 

organism modeling, the same approach could be extended to model eukaryotes with 

multiple compartments. The agent-based approach is very suitable for capturing the effect 

of spatial arrangement of intercellular compartment. Agent-based model can potentially 

be applied to capture the emergent properties of eukaryotes arising from intra-organelle 

interactions. We hope that agent-based modeling and simulation (ABMS) along with 

other artificial intelligence techniques will help to reveal the complexities of intra and 

inter cellular processes.         
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