
PRIVACY-PRESERVING QUERY

TRANSFORMATION AND PROCESSING IN

LOCATION BASED SERVICES

GABRIEL GHINITA

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2008

Abstract

The increasing trend of embedding positioning capabilities (e.g., GPS) in

mobile devices has created unprecedented opportunities for the widespread

use of Location Based Services (LBS). Mobile users are able to formulate

spatial queries, such as “find the closest restaurant to my current position”.

For such applications to succeed, privacy and confidentiality are essential.

Commonly, privacy-enhancing techniques rely on encryption to safeguard

communication channels, and on pseudonyms to protect user identities.

Nevertheless, an LBS query contains the current location of the user, which

may be mapped to the user’s identity through a variety of means, such as

signal triangulation, or physical observation. Hiding the user location is a

challenging task, and a primordial requirement for LBS privacy.

This thesis presents a framework for private queries in location-based

services. First, we study in depth the location privacy problem in the context

of spatial K-anonymity (SKA), an extension of the K-anonymity paradigm,

widely used for privacy preservation in relational databases. To enforce

SKA, we adopt a three-tier architecture, with an Anonymizer Service (AS)

that acts as an intermediary between the users and the LBS, and anonymizes

queries by cloaking user locations. We identify the reciprocity property, a

sufficient condition to guarantee privacy for a snapshot of user locations,

and develop two SKA algorithms which provide a trade-off between privacy

requirements and query processing overhead. We also devise algorithms to

process range and nearest-neighbor anonymized queries at the LBS side.

Next, we extend our results by showing how reciprocity can be effectively

and efficiently enforced using hierarchical spatial indices, such as Quad-trees

and R-trees. We also develop a stronger version of reciprocity - frequency-

aware reciprocity - which addresses the scenario when an attacker possesses

additional background knowledge about the relative frequencies of issuing

queries among distinct users.

Most existing work in LBS query privacy assumes a centralized AS, which

must handle the frequent updates of user locations, as well as the overhead

of anonymizing queries. Furthermore, the AS is a single-point-of-attack,

and, if compromised, the privacy of all users is threatened. We address

these limitations by devising a decentralized architecture for LBS anony-

mization: users organize themselves into a P2P network, and cooperate to

anonymize queries. We propose two such P2P systems, which provide a

trade-off between privacy requirements and scalability.

Finally, we take a step further from the SKA paradigm, and propose a

novel LBS privacy approach, based on Private Information Retrieval (PIR).

PIR comprises of a two-party cryptography-based protocol that allows a

client to retrieve the desired information from a server, without the server

learning what information was requested. We show that PIR eliminates the

need to trust a third-party anonymizer, as well as other users. Furthermore,

since location information is encrypted (not just cloaked, as in the case of

spatial K -anonymity), this method is resilient to any type of location-based

attack. For instance, PIR-based privacy protects against correlation attacks

in the case of private continuous queries (i.e., a user asks the same query

from different locations at consecutive timestamps), a problem which has

not been efficiently solved yet within the SKA paradigm. The PIR approach

provides superior privacy, and incurs a reasonable overhead in practice.

Acknowledgments

I would like to thank my supervisor, Dr. Panos Kalnis, for his guidance

and support throughout my Ph.D. studies. I would also like to thank the

members of my examination committee for their interest and time spent

on this PhD dissertation: Dr. Li Mong Lee and Dr. Chee Yong Chan

from National University of Singapore, and Dr. George Kollios (external

reviewer) from Boston University.

I am also grateful for their support and advice, as well as the numerous

interesting research discussions, which represented the source of valuable

ideas, to: Dr. Dimitris Papadias (Hong Kong University of Science and

Technology), Dr. Nikos Mamoulis (Hong Kong University), Dr. Kian-Lee

Tan (National University of Singapore), Dr. Yufei Tao (Chinese University

of Hong Kong), Dr. Cyrus Shahabi (University of Southern California), Dr.

Kyriakos Mouratidis (Singapore Management University), Dr. Panagiotis

Karras (University of Zurich), Dr. Spiros Skiadopoulos (University of Pelo-

ponnese), Dr. Man Lung Yiu (Aalborg University) and Mr. Xiaokui Xiao

(Chinese University of Hong Kong).

i

Contents

1 Introduction 1

1.1 Contributions and Thesis Organization 5

2 Related Work 10

2.1 K-anonymity . 10

2.2 Spatial K -anonymity. Assumptions and Goals 12

2.3 Existing SKA Techniques . 16

2.4 Related Spatial Query Processing Techniques 21

2.5 Related P2P Systems . 23

2.6 Private Information Retrieval 24

3 SKA Framework for LBS Privacy 26

3.1 Introduction . 26

3.2 Nearest Neighbor Cloak . 27

3.3 Reciprocity . 28

3.4 Hilbert Cloak . 29

3.5 Location-Based Service Query Processing 32

3.5.1 CkNN - Circular Range kNN 32

3.5.2 R-trees and CkNN . 35

3.6 Experimental Evaluation . 40

3.6.1 Anonymizer Evaluation 40

3.6.2 Location-Based Service Evaluation 44

3.7 Discussion . 51

4 Reciprocal Framework for SKA 52

4.1 Introduction . 52

ii

4.2 Algorithm for Reciprocal Cloaking 52

4.3 Partitioning Methods . 57

4.3.1 Greedy Hilbert Partitioning (GH) 57

4.3.2 Asymmetric R-tree Split (AR) 62

4.3.3 Dynamic Programming Hilbert (DH) 64

4.3.4 Top-Down Clustering (TD) 66

4.3.5 Discussion . 66

4.4 SKA With Variable Query Frequencies 67

4.5 Experimental Evaluation . 70

4.5.1 Evaluation of Partitioning Techniques 70

4.5.2 Comparison with Hilbert Cloak (HC) 76

4.5.3 Variable Query Frequencies 77

4.6 Discussion . 79

5 Decentralized Query Anonymization 80

5.1 Introduction . 80

5.2 Privé . 81

5.2.1 Hilbert Cloak with a B+-tree index 83

5.2.2 Protocol Overview . 84

5.2.3 Protocol Operations 86

5.2.4 Fault Tolerance and Load Balancing 89

5.3 MobiHide . 92

5.3.1 The Correlation Attack 94

5.3.2 Protocol Overview . 95

5.3.3 Protocol Operations 97

5.3.4 Fault-tolerance and Load Balancing 99

5.4 Experimental Evaluation . 102

5.4.1 Privé protocol . 103

5.4.2 MobiHide protocol 111

5.4.3 Privé and MobiHide Comparison 114

5.5 Discussion . 119

6 PIR Framework for LBS 120

6.1 Introduction . 120

iii

6.2 Computational PIR Protocol 121

6.3 PIR and Location-dependent Queries 124

6.4 Approximate Nearest Neighbors 125

6.4.1 Approximate NN using Hilbert ordering 125

6.4.2 Generalization to 2-D partitionings 128

6.5 Exact Nearest Neighbors . 129

6.5.1 Grid Granularity . 132

6.6 Optimizations . 133

6.6.1 Compression . 133

6.6.2 Rectangular vs. Square PIR Matrix 133

6.6.3 Avoiding Redundant Multiplications 135

6.6.4 Parallelism . 138

6.7 Experimental Evaluation . 138

6.7.1 1D and 2D Approximate NN 139

6.7.2 Exact Methods . 141

6.7.3 Execution Time Optimizations 143

6.7.4 User CPU Time . 144

6.7.5 PIR vs. Anonymizer-based Methods 144

6.8 Discussion . 146

7 Conclusions and Future Work 148

7.1 Summary of Contributions . 148

7.2 Directions for Future Research 150

A Analysis of Privacy in Casper and Interval Cloak 159

iv

List of Tables

5.1 Privé Protocol Terminology 86

6.1 Summary of notations . 121

6.2 Grid Granularity for ExactNN 141

v

List of Figures

1.1 Hiding identity with pseudonyms is not sufficient 2

1.2 Example: “Find the nearest hospital”. 3

1.3 Framework for Spatial K -anonymity (SKA) 4

1.4 PIR framework . 7

1.5 Thesis Roadmap . 9

2.1 Distance from MBR center for Center Cloak (K=10) 15

2.2 Example of Interval Cloak and Casper 17

2.3 Location anonymity compromise in the presence of outliers . 19

2.4 Example of Clique Cloak . 19

2.5 Example of continuous NN search 22

3.1 Example of NNC . 27

3.2 K -ASR Reciprocity Example, K=5 28

3.3 Hilbert Curve (left: 4× 4, right: 8× 8) 30

3.4 Example of Hilbert Cloak . 31

3.5 The 1-NNs of C are p1 and p2 33

3.6 CkNN example: perpendicular bisector does not intersect C . 34

3.7 The perpendicular bisector intersects C 35

3.8 Find the 1-NNs of a circular range C 36

3.9 Check if E may contain qualifying objects 37

3.10 The MBR and the MER of C 38

3.11 North-America (NA) dataset 40

3.12 Area of rectangular K -ASR 41

3.13 K -ASR generation time . 42

3.14 Rectangular vs SA K -ASR, Nearest Neighbor Cloak 43

vi

3.15 center-of-ASR attack, K= 50 44

3.16 kNN queries, varying k, N = 50, 000, K = 80 45

3.17 kNN queries, varying K , k = 2 neighbors, N = 50, 000 46

3.18 kNN queries, varying N , k = 2, K = 80 47

3.19 Range queries, N = 50, 000, varying K 48

3.20 NNC , rectangular vs SA K -ASR, k = 2, N = 50, 000 49

3.21 NNC , rectangular vs SA K -ASR, k = 2, K = 80 50

4.1 Reciprocal Cloaking . 53

4.2 Partitioning with a Quad-tree 55

4.3 GH partitioning for (leaf) level 1 58

4.4 GH partitioning for level 2 . 59

4.5 Greedy Hilbert - general method 61

4.6 R*-tree split vs AR . 63

4.7 Asymmetric R-tree Split (AR) 64

4.8 GH and DH partitions for K=4 65

4.9 Reciprocal Cloaking Change for Variable Frequency 68

4.10 FQGH partitioning, K=2 . 69

4.11 R-tree Cloak (RC). Partitioning methods versus K 71

4.12 Quad-tree Cloak (QC). Partitioning methods versus K 72

4.13 RC versus page size . 73

4.14 QC versus page size . 74

4.15 RC-GH and RC-AR versus HC 76

4.16 PN overhead for variable query frequency 77

4.17 RC-FQGH versus HCf . 78

5.1 Architecture of Privé . 82

5.2 Hilbert Cloak with Annotated B+-tree 84

5.3 Distributed Index Structure, α=2 85

5.4 User Join and Relocation, α=2 87

5.5 User Relocation Pseudocode 88

5.6 K -request, α=2, K=6 . 89

5.7 K -request . 90

5.8 Load Balancing Mechanism 91

vii

5.9 Hilbert sequence ring . 92

5.10 K -ASR construction in MobiHide 93

5.11 MobiHide implementation over Chord 96

5.12 Join and Split, α=2 . 98

5.13 Pseudocode for K -Request . 99

5.14 Leader Election Protocol . 100

5.15 Dataset . 102

5.16 Privé Join/Leave Operation 103

5.17 Privé K-request Operation 104

5.18 Privé K-request Operation 105

5.19 Privé Percentage of users involved in query 106

5.20 Privé Relocation . 107

5.21 Privé Relocation Level . 108

5.22 Privé Failure Recovery . 108

5.23 Privé Load Balancing . 109

5.24 MobiHide Join . 111

5.25 MobiHide K -Request Operation 112

5.26 MobiHide Load Balancing 113

5.27 MobiHide Fault Tolerance 114

5.28 Anonymity Strength . 116

5.29 K -ASR Area . 117

5.30 Scalability, K = 40 . 118

6.1 PIR example. u requests X10 123

6.2 9 POIs on a 8× 8 Hilbert curve 126

6.3 Approximate NN using Hilbert 127

6.4 Protocol for approximate NN 127

6.5 2-D approximate NN . 129

6.6 Exact nearest neighbor . 130

6.7 Protocol for exact NN . 131

6.8 Finding the optimal grid granularity 132

6.9 Rectangular PIR matrix M 134

6.10 Pre-compiled optimized execution plan 135

6.11 Execution plan for one row 136

viii

6.12 PIR Optimizer Architecture 138

6.13 Variable k, Sequoia set (62K POI) 140

6.14 Variable data size, k = 768 bits 140

6.15 Approximation Error . 141

6.16 Variable k, Sequoia set (62K POI) 142

6.17 Variable data size, k = 768 bits 142

6.18 DM Optimization, Sequoia set 143

6.19 Parallel execution, Sequoia set 144

6.20 User CPU time . 145

6.21 PIR vs. K-anonymity, Sequoia set 145

A.1 Examples of Casper ASRs . 161

ix

Chapter 1

Introduction

In recent years, mobile devices with positioning capabilities (e.g., GPS) have

gained tremendous popularity. Navigation systems are already widespread

in the automobile industry and, together with wireless communications, fa-

cilitate exciting new applications. General Motor’s OnStar system, for ex-

ample, supports on-line rerouting to avoid traffic jams and automatically

alerts the authorities in case of an accident. More applications based on the

users’ location are expected to emerge with the arrival of the latest gadgets

(e.g., iPAQ hw6515, Mio A701), which combine the functionality of a mo-

bile phone, PDA and GPS receiver. For such applications to succeed, the

privacy and confidentiality issues are of paramount importance.

Consider the example in Figure 1.1: Bob uses his GPS-enabled mobile

phone to find the nearest betting office. This query can be answered by a

Location Based Service (LBS) in a publicly available web server (e.g., Google

Maps). Since Bob does not want to disclose to Eve (an eavesdropper) his

gambling habits, instead of directly sending the query to the LBS, he uses

a pseudonym1 service, which is a trusted server (services for anonymous

web surfing are commonly available nowadays). He establishes a secure

connection (e.g., SSL) with the pseudonym service, which removes the user

id and forwards the query to the LBS. The answer from the LBS is also

routed to Bob through the pseudonym service.

Nevertheless, the query itself unintentionally reveals sensitive informa-
1http://www.torproject.org/

1

Figure 1.1: Hiding identity with pseudonyms is not sufficient

tion. In our example, the LBS requires the coordinates of the user in order to

process the nearest neighbor (NN) query. Since the LBS is not trusted, Eve

can collaborate with the LBS and acquire the location of Bob and his query

result (i.e., betting office). The next step is to relate the coordinates to a

specific user. Eve may choose from a variety of techniques such as physical

observation of Bob, triangulating his mobile phone’s signal2, or consulting

publicly available databases. If, for instance, Bob uses his phone within his

residence, Eve can easily convert the coordinates to a street address (most

on-line maps provide this service) and relate the address to Bob by accessing

an on-line white pages service.

A broad discussion on the risks of revealing sensitive information in

location-based services can be found in [16]. In practice, users would be

reluctant to access a service that may disclose their political/religious af-

filiations or alternative lifestyles. Furthermore, given that the LBS is not

trusted, users might be hesitant to ask innocuous queries such as “find the

closest gas station” or “which are the restaurants in my vicinity” since,

once their identity is revealed, they may face unsolicited advertisements,

e-coupons, etc.

To address these privacy threats, most existing solutions rely on the K -

anonymity [53, 58] paradigm, which has been used for publishing census

data and hospital records. A dataset is said to be K-anonymized, if each
2Phone companies can estimate the location of the user within 50-300 meters, as re-

quired by the US authorities (E911).

2

h1 h2

h3u1

u3

h4

h5

h1 h2

h3u1 u2

u3

h4

h5

K-ASR

h3u1 u2

u3

Figure 1.2: Example: “Find the nearest hospital”.

record is indistinguishable from at least K − 1 other records with respect to

certain identifying attributes. In location based services, the corresponding

Spatial K-anonymity (SKA) concept translates as follows: given a query,

guarantee that an attack based on the query location cannot identify the

query source with probability larger than 1/K, among other K − 1 users.

Typically, users ask Range or Nearest-Neighbor (NN) queries with re-

spect to their location. For example, user u1 in Figure 1.2(left) (users are

shown as black dots), may ask: “Find the nearest hospital to my present

location” (the answer is h2). In order not to reveal his exact location, u1

employs the use of an Anonymizer Service (AS), which hides user locations.

Commonly, the three-tier architecture of Figure 1.3 is employed, where the

AS acts as an intermediate tier between the users and the LBS. Users send

their locations and queries to the centralized AS, through a secure connec-

tion. In our case, u1 sends to AS the query content (i.e. “find the closest

hospital”), and the required degree of anonymity K (note that, K is based

on individual privacy criteria, and may vary among queries). For each re-

ceived query, the anonymizer removes the id of the user, and constructs an

Anonymizing Spatial Region (ASR or K-ASR), which is an area that en-

closes the query source, as well as at least K − 1 other users. Continuing

the running example in Figure 1.2(right), upon receiving the query request

from u1, the AS identifies a set of additional two users (i.e., u2 and u3) and

3

LBS

location actual
results

actual position
 query

Anonymizer
candidate results

K-ASR

Anonymous
 Client

insecure connection

secure connection

Data Object

Figure 1.3: Framework for Spatial K -anonymity (SKA)

assembles the corresponding ASR.

The anonymizer then sends the ASR to the LBS, which cannot know

which of the enclosed users is the query source. The LBS returns to the

anonymizer a set of candidate results that satisfy the query condition for

any possible point in the ASR. This set includes all hospitals inside the ASR

(e.g., h3), as well as the NN of any point on the ASR perimeter [35]. In the

example, the result set consists of h2, h3 and h4. Note that, the number of

returned results, as well as the processing cost at the LBS, is dependent on

the spatial extent of the ASR; therefore, small ASRs are preferred.

The LBS may be compromised, or it may be malicious itself. Therefore,

in the worst case, an adversary may have complete knowledge of all K -

ASRs received by the LBS. An SKA method should provide privacy under

this scenario, as well.

Existing methods for spatial K -anonymity (reviewed in Chapter 2) have

at least one of the following shortcomings: (i) They compromise the query

issuer’s identity for certain user location distributions. In most cases, the

privacy of outliers is exposed. (ii) They sacrifice quality of service (QoS),

i.e., some queries must be delayed or dropped, in order to preserve user

privacy. (iii) They are ineffective, i.e., they generate large ASRs, resulting

in high query processing cost, and increased communication to transfer a

large number of candidate results from the LBS back to the AS. (iv) They

focus exclusively on cloaking mechanisms, and lack algorithms for query

processing at the LBS. We address all of these limitations, as described

next.

4

1.1 Contributions and Thesis Organization

The remainder of this dissertation is organized as follows: In Chapter 2, we

give a background on LBS query privacy, and survey the related work in the

area. Subsequently, we introduce our specific contributions:

• In Chapter 3, we adopt the centralized anonymizer service architecture

of Figure 1.3, and address the LBS query privacy problem through a

comprehensive set of techniques. Specifically, we identify an important

property of ASRs, reciprocity, which is a sufficient condition to guar-

antee query privacy for a snapshot of user locations. Intuitively, reci-

procity requires that whenever user ui includes uj in its corresponding

ASR, uj also includes ui in its ASR when it issues a query. We propose

two cloaking algorithms: Nearest Neighbor Cloak and Hilbert Cloak .

Nearest Neighbor Cloak builds K -ASRs based on user proximity, and

significantly outperforms existing techniques in terms of K -ASR size.

On the other hand, Hilbert Cloak builds upon the reciprocity property,

and never reveals the query source, regardless of the user location dis-

tribution. Note that, Hilbert Cloak is the first technique in literature

to provide privacy guarantees for LBS queries.

Moreover, we address the issue of anonymized query processing at the

LBS. Specifically, we adopt an existing algorithm [35] to compute the k

nearest neighbors3 (kNN) of rectangular regions, as opposed to points.

We also investigate the use of K -ASRs with non-rectangular shape. In

particular, we consider circular-shape K -ASRs, and we develop a novel

algorithm to compute the kNN of circular regions. Our experiments

reveal that circular K -ASRs reduce the number of redundant results,

hence the communication cost between the anonymizer and the LBS.

• Existing work on LBS query privacy assumes that the attacker does not

have any prior knowledge on the frequency of issuing queries among

various users. However, this is not the case in practice. Users with

certain occupations may have a considerably higher frequency of is-
3Note that k, the number of nearest neighbors, is different from K , the degree of

anonymity.

5

suing queries. For instance, a taxi driver, or a real estate agent, are

likely to issue many more daily queries than an office worker.

Revisiting the example of Figure 1.2, consider the 3−ASR enclosing

u1, u2 and u3 . If the attacker knows that the frequency of u1 issuing a

query is 2 times larger than that of either u2 or u3, then the probability

of identifying u1 as query source becomes 2/4 = 1/2 > 1/K for K =

3. Therefore, the privacy requirement of u1 is no longer met. In

Chapter 4, we address this scenario: we extend the reciprocity property

to account for variable query frequencies among users, and we propose

algorithms that preserve privacy even if the attacker possesses query

frequency knowledge.

Moreover, we give a general methodology to enforce the reciprocity

property (and its frequency-aware counterpart) using a generic spatial

index. Specifically, we propose methods to achieve reciprocity with

Quad-trees and R-trees. Such methods allow seamless integration of

query-privacy services with already existing applications, facilitating

the adoption of privacy-aware LBS.

• So far, we have focused on the centralized anonymizer service archi-

tecture. Nevertheless, such an approach has several shortcomings: the

centralized anonymizer is a bottleneck due to handling query requests,

frequent updates of user locations and result post-processing. Further-

more, the anonymizer represents a single point of attack: the complete

knowledge of the locations and queries of all users is a serious privacy

threat, if the anonymizer is compromised. Even if there is no attack,

the centralized anonymizer may be subject to governmental control,

and may be banned or forced to disclose sensitive user information

(similar to the legal case of the Napster file-sharing service).

In Chapter 5, we consider a distributed architecture for anonymous

location-based queries, which addresses the above-mentioned limita-

tions. Mobile users self-organize into a fault-tolerant, P2P overlay

network, and cooperate to assemble K -ASRs. We propose two such

protocols: (i) The Privé protocol implements the Hilbert Cloak ano-

nymization technique in a decentralized fashion. The structure of the

6

B o b

Client Server
(LBS)

i

Xi
r(X,q(i))

q(i)

X1

Xn

X2

...
X=

Figure 1.4: PIR framework

network resembles a distributed B+-tree (each mobile user corresponds

to a data point), with additional annotation to support efficiently the

Hilbert-based K -ASR construction. Privé avoids the single point

of attack of the centralized AS, since the state of the system is dis-

tributed in numerous users. However, it may incur slow response time

at the high levels of the network tree, during peak load. (ii) Mo-

biHide is a scalable P2P anonymization system based on the Chord

[57] DHT. It uses a randomized version of Hilbert Cloak, which pre-

vents any hotspots in the system. MobiHide does not offer the same

theoretical privacy guarantees as Privé, but it does provide strong

privacy in practice. Therefore, we propose two alternative solutions,

representing a clear trade-off between privacy and scalability.

• Finally, we move one step beyond the SKA paradigm, and devise a Pri-

vate Information Retrieval (PIR)-based solution to LBS query privacy.

SKA assumes the existence of a trusted third party anonymizer service,

as well as a large number of cooperating LBS users, who are willing

to constantly report their location to the AS. Furthermore, users are

assumed to be non-malicious, i.e. they do not collude against a target

user. Our proposed PIR framework relies on cryptographic techniques,

and relinquishes these assumptions: no trusted third-party (either AS

or mobile users) is required. Furthermore, no expensive maintenance

of locations for a large population of subscribed users is necessary.

Recent research on PIR [19, 42] resulted in protocols that allow a

client to privately retrieve information from a database, without the

7

database server learning what particular information the client has re-

quested. Most techniques are expressed in a theoretical setting, where

the database is an n-bit binary string X (see Figure 1.4). The client

wants to find the value of the ith bit of X (i.e., Xi). To preserve

privacy, the client sends an encrypted request q(i) to the server. The

server responds with a value r(X, q(i)), which allows the client to com-

pute Xi. We focus on computational PIR, which relies on the fact that

it is computationally intractable for an attacker to find the value of i,

given q(i). Furthermore, the client can easily determine the value of

Xi based on the server’s response r(X, q(i)).

In Chapter 6, we extend existing PIR protocols for binary data to the

LBS domain, and we propose approximate and exact techniques to

privately answer NN queries. As opposed to SKA techniques, where

the user location is cloaked, but some location-information is still re-

vealed (i.e., the K -ASR area which encloses the query source), the PIR

approach does not disclose any spatial information whatsoever, since

location data is encrypted. Hence, the PIR method is resilient against

any type of location-based attack, including correlation attacks, which

can be staged when a user issues continuous queries (i.e. the same

query is asked at consecutive timestamps, from distinct locations).

Figure 1.5 provides a roadmap of the thesis.

This thesis contains work already accepted for publication, as well as

work currently under review. Specifically, Chapter 3 is based on the IEEE

TKDE article in [39]. The work in Chapter 4 is currently under review with

the VLDB Journal. The Privé and MobiHide P2P systems presented

in Chapter 5 have been published in the proceedings of the International

World Wide Web Conference (WWW) [29] and International Symposium

on Spatial and Temporal Databases (SSTD) [28], respectively. The work

in Chapter 6 is currently under review with the SIGMOD 2008 conference.

Furthermore, our research on LBS privacy has provided us with important

insights on the related problem of privacy in relational databases, resulting

in two other research papers (not included in this thesis, as their focus is not

on LBS privacy): a VLDB 2007 paper [30] which uses multi-to-1D mapping

8

Figure 1.5: Thesis Roadmap

to anonymize relational data, and an ICDE 2008 paper [31], which addresses

privacy-preserving publication of transaction (or “market-basket”) data.

9

Chapter 2

Related Work

This chapter provides background on the LBS query privacy problem, and

surveys existing LBS privacy techniques. In Section 2.1, we briefly discuss

the K -anonymity paradigm in relational databases, while in 2.2 we present

Spatial K -anonymity, and introduce its assumptions and objectives. In Sec-

tion 2.3, we survey existing SKA techniques, and highlight their limitations.

Section 2.4 focuses on processing of anonymized queries (i.e., ASRs) at the

LBS. In Section 2.5, we survey P2P techniques that are relevant to our dis-

tributed anonymization architecture of Chapter 5, whereas related work on

Private Information Retrieval is overviewed in Section 2.6.

2.1 K-anonymity

Extensive research efforts have focused on privacy-preserving publishing of

relational data. In this context, released microdata (e.g. detailed census

or medical records) should not be linked to specific individuals. Adam

and Wortmann [3] survey methods for computing aggregate functions (e.g.,

sum, count) under the condition that the results do not reveal any specific

record. Agrawal and Srikant [9] employ random perturbation to prevent re-

identification of records, by adding noise to the data. In [36], it is shown that

an attacker could filter the random noise, and hence breach data privacy,

unless the noise is correlated with the data. However, randomly perturbed

data is not “truthful” [45], in the sense that it contains records which do not

10

exist in the original data. Furthermore, random perturbation may expose

privacy of outliers when an attacker has access to external knowledge.

Published microdata may contain quasi-identifier attributes (QID), such

as age, or zipcode, which may be joined with public databases (e.g. vot-

ing registration lists) to re-identify individual records. To address this

threat, Samarati and Sweeney [53, 58] introduced K -anonymity, a privacy-

preserving paradigm which requires each record to be indistinguishable among

at least K−1 other records with respect to the set of QID attributes. Records

with identical QID values form an equivalence class, or anonymized group.

K -anonymity can be achieved through generalization, which maps detailed

attribute values to value ranges, and suppression, which removes certain

attribute values or records from the microdata. The process of data anony-

mization is called recoding, and it inadvertently results in information loss.

Several privacy-preserving techniques have been proposed, which attempt

to minimize information loss, i.e. maximize utility of the data.

Meyerson et al [48] proposed an approximate algorithm that minimizes

the number of suppressed quasi-identifier values; the approximation bound

is O(K · logK). Aggarwal et al [6] improved this bound to O(K), while Park

et al [52] further reduced it to O(logK).

More recent works adopt the generalization of quasi-identifiers. Bayardo

et al [12] and LeFevre et al [43] proposed optimal K -anonymity solutions for

single-dimensional recoding, which performs value mapping independently

for each attribute. LeFevre et al [44] introduced Mondrian, an heuristic solu-

tion for multi-dimensional recoding, which performs mapping for the Carte-

sian product of multiple attributes. Mondrian outperforms optimal single-

dimensional solutions, due to its increased flexibility in forming anonymized

groups. Methods discussed so far perform global recoding, where a particu-

lar detailed value is always mapped to the same generalized value. In con-

trast, local recoding allows distinct mappings across different anonymized

groups. Clustering-based local recoding methods are proposed in [5, 66].

Xiao and Tao [64] consider the case where each individual requires a differ-

ent degree of anonymity, whereas Aggarwal [4] shows that anonymizing a

high-dimensional relation leads to unacceptable loss of information due to

the dimensionality curse.

11

K -anonymity prevents re-identification of individual records, but it is

vulnerable to homogeneity attacks, where many (or all) of the records in

an anonymized group share the same sensitive attribute (SA) value. ` -

diversity [47] addresses this vulnerability, and creates anonymized groups

in which at least ` SA values are “well-represented”. Any K -anonymity

technique can be adapted to account for SA value diversity, by changing

the group validation condition. Nevertheless, K -anonymity techniques use

generalization or suppression, and may result in high information loss, espe-

cially for high-dimensional QID. Ghinita et al [30] employ multi-dimensional

to 1-D transformations to solve efficiently the K -anonymity and `-diversity

problems, while [31] presents a technique for privacy-preserving publication

of high-dimensional transaction (or “market-basket”) data.

Anatomy [63] introduced a novel approach to achieve `-diversity: instead

of generalizing QID values, it decouples the SA from its associated QID, and

permutes the SA values among records. Since QID are published directly,

the information loss is reduced. A similar approach is taken in [67].

t-closeness is another privacy paradigm introduced in [46], which at-

tempts to reproduce in each anonymized group the overall distribution of

SA values of the entire published table. However, the method proposed

to transform the dataset may incur high information loss in practice. Fi-

nally, Xiao and Tao [65] have proposed m-invariance, a privacy model for

publishing sequential data releases.

2.2 Spatial K -anonymity. Assumptions and Goals

In the LBS domain, K -anonymity was first introduced in [33]. Spatial K -

anonymity (SKA) prevents an attacker from learning exact user locations.

Given a query from user u, SKA techniques replace the exact location of u

with an Anonymizing Spatial Region (ASR or K -ASR) that encloses u, as

well as K − 1 other users. Formally:

Definition 2.1. [Spatial K-anonymity(SKA)] Let H be a set of K

distinct user entities with locations enclosed in an arbitrary spatial region

K-ASR. A user u ∈ H is said to possess K-anonymity with respect to K-

12

ASR if the probability of distinguishing u among the other users in H does

not exceed 1/K. We refer to K as the required degree of anonymity.

Note that, SKA does not depend on the size of the K -ASR. In the

extreme case, the K -ASR can degenerate to a point, if K users are at the

same location. In general, we prefer small K -ASRs, in order to minimize

the processing cost at the LBS and the communication cost between the

LBS and the mobile user. Nevertheless, some applications may impose a

lower bound on the size of the K -ASR; for instance, it may be forbidden by

law to disclose exact user locations [16]. In such a case, the K -ASR can be

trivially enlarged to satisfy the lower bound, by symmetrical scaling in all

directions. The same procedure can also be used to avoid having users on

the perimeter of the K -ASR.

SKA is commonly performed by an Anonymizer Service (AS), or simply

anonymizer. The anonymizer is a trusted server, which collects the current

location of users and anonymizes their queries. Each query has a required

degree of anonymity K , which ranges between 1 (no privacy requirements)

and the user cardinality (maximum privacy). We assume that an attacker

has complete knowledge of (i) all the ASRs ever received at the LBS, (ii)

the cloaking algorithm used by the anonymizer, and (iii) the locations of all

users. The first assumption states that either the LBS is not trusted (e.g., a

commercial service that collects unauthorized information about its clients

for unsolicited advertisements), or the communication channel between the

anonymizer and the LBS is not secure. The second assumption is common in

the security literature since the data privacy algorithms are usually public.

The third assumption is motivated by the fact that users may often (or

always) issue queries from the same locations (home, office), which may be

easily identified through public databases, telephone directories, etc. Fur-

thermore, they may reveal their locations by issuing queries without privacy

requirements. In scenarios with highly mobile users, the attacker may not be

able to learn exact user locations. However, one can argue that in these cases

spatial K -anonymity is not important, because (i) the user ids are removed

by the anonymizer anyway, and (ii) a query at a random position does not

necessarily reveal information about the identity of the corresponding user.

13

However, in practice, a determined attacker may be able to acquire (through

triangulation, public databases, physical observation, etc.) the locations of

at least a few users in the vicinity of the targeted victim.

Similar to existing work on SKA [21, 33, 49] we focus on snapshot queries,

where the attacker uses current data, but not historical information about

movement and behavior patterns of particular clients1 (e.g., a user often

asking a particular query at a certain location or time). We also assume

that the value of K is not subject to attacks since it is transferred from the

client to the anonymizer through a secure channel.

Given a query, the anonymizer removes the user id, applies cloaking

to hide the user’s location through an ASR, and forwards the ASR to the

LBS. The cloaking algorithm is said to preserve spatial K -anonymity, if the

probability of the attacker pinpointing the query source under the above

assumptions does not exceed 1/K .

Note that simply generating an ASR that includes K users is not suf-

ficient for spatial K -anonymity. Consider for instance, a näıve algorithm,

called Center Cloak (CC) in the sequel, which given a query from u, finds his

K − 1 closest users, and sets the ASR as the minimum bounding rectangle

(MBR) or circle (MBC) that encloses them. In fact, a similar technique is

proposed in [21] for anonymization in peer-to-peer systems, i.e., the K -ASR

contains the query issuing peer and its K − 1 nearest nodes. CC is likely

to disclose the location of u under the center-of-ASR attack. Specifically,

let indexu be the position of u in the sequence of users enclosed by the

K -ASR, sorted in ascending order of their distance from the center of the

K -ASR; for example, if indexu = 1, then u is the closest user to the center.

The center-of-ASR attack is successful if P [indexu = 1] > 1/K , i.e., if the

probability of u being the closest user to the center exceeds 1/K .

Figure 2.1 shows the distribution of the positions of u inside an MBR

enclosing its 9 NNs (for details of the experimental setting, see Section 3.6).

In most cases, u is close to the center of the 10-ASR (i.e., P [indexu = 1] >

1/10). Hence, an attacker with knowledge of the cloaking algorithm (as-

sumption ii) may easily pinpoint u as the query source. Note that, since the
1In Chapter 6 we present a technique which guarantees privacy for continuous queries

as well; however, that technique relies on PIR, and not on SKA

14

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50

P
[in

de
x U

=
i]

i

Center Cloak

Figure 2.1: Distance from MBR center for Center Cloak (K=10)

MBR may enclose more than 10 users it is possible to get P [indexu = i] > 0

for i > 10. The dashed line in the graph corresponds to the “flat” index

distribution obtained by an ideal anonymization technique, which would

always generate 10-ASRs with exactly 10 users.

In addition to the preservation of spatial K -anonymity, we define the

following objectives of cloaking:

1. The generated ASR should be as small as possible.

2. The cloaking algorithm should not compromise the quality of service

(QoS).

3. The ASR should not reveal the exact location of any user.

Goal 1 is induced by the fact that a large ASR incurs higher processing

overhead (at the LBS) and network cost (for transferring a large number of

candidate results from the LBS to the anonymizer). In real-world services,

users may be charged depending on the overhead that the anonymization

requirements impose on the system. Note that, as long as the anonymity

requirements of the user are satisfied, the size of the ASR is irrelevant in

terms of K -anonymity. Goal 2 states that systems that delay or reject

service requests, such as Clique Cloak [27] (reviewed in Section 2.3), are

15

unacceptable. In general, since temporal cloaking compromises QoS, we

focus our attention on spatial cloaking. Goal 3 ensures that the anonymizer

does not help the attacker obtain the locations of users through the cloaking

algorithm (although, as discussed before, he may obtain them through other

means). The disclosure of exact locations by a service is undesirable to most

users (independently of their queries), and in some cases forbidden by law.

As an example, consider that the anonymizer picks K − 1 random users

and sends K independent queries (including the real one) to the LBS. This

method achieves spatial K -anonymity, but reveals the exact locations of K

users. Furthermore, it has several efficiency problems: (i) depending on the

value of K , a potentially large number of locations are transmitted to the

LBS and (ii) the LBS has to process K independent queries and send back

all their results.

Let u be the user issuing a query. The proposed cloaking algorithms first

generate an anonymizing set (AS) that contains u and at least K − 1 users

in u’s vicinity. The ASR is an area that encloses all users in AS. Although

the ASR can have arbitrary shape, we use minimum bounding rectangles

(MBR) or circles (MBC) because they incur small network overhead (when

transmitted to the LBS) and facilitate query processing. Note that, in ad-

dition to AS, the ASR may enclose some additional users that fall in the

corresponding MBR or MBC.

2.3 Existing SKA Techniques

Most previous work on location-based services adopts the concept of K -

anonymity using the framework of Figure 1.3: a user sends his position,

query and K to the anonymizer, which removes the id of the user and trans-

forms his location through cloaking. The generated K -ASR is forwarded to

the LBS which processes it and returns a set of candidates, containing the

actual results and false hits. The first cloaking2 technique, called Interval

Cloak [33] is based on quadtrees. A quadtree [54] recursively partitions the

space into quadrants until the points in each quadrant fit in a page/node.
2Beresford and Stajano [15] introduce the concept of mix zone, which is similar to the

K -ASR, but do not provide concrete algorithms for spatial cloaking.

16

Figure 2.2 shows the space partitioning and a simple quadtree assuming

that a node contains a single point. The anonymizer maintains a quadtree

with the locations of all users. Once it receives a query from a user U , it

traverses the quadtree (top-down) until it finds the quadrant that contains

U and fewer than K − 1 users. Then, it selects the parent of that quadrant

as the K -ASR and forwards it to LBS.
�

�������

��������

�������

	
�

	
� 	

�����

�����

����������

����� �	���

�	���

�����

�����

	�

�����

�����
�����

�����

�����

�����

�����

���������

����������

	
�

	�

	

	�

�	���

�

Figure 2.2: Example of Interval Cloak and Casper

Assume that in Figure 2.2, U1 issues a query with K=2. Quadrant3

〈(0, 2), (1, 3)〉 contains only U1, so its parent 〈(0, 2), (2, 4)〉 becomes the 2-

ASR. Note that the ASR may contain more users than necessary; in this

example it includes U1, U2, U3, although 2 users would suffice for the privacy

requirements. A large ASR burdens the query processing cost at the LBS

and the network overhead for transferring a large number of candidate re-

sults from the LBS to the anonymizer. In order to overcome this problem,

Gruteser and Grunwald [33] combine temporal cloaking with spatial cloak-

ing, i.e., the query may wait until K (or more) objects fall in the user’s

quadrant. In our example, the query of U1 will be executed when a second

user enters 〈(0, 2), (1, 3)〉, in which case 〈(0, 2), (1, 3)〉 is the 2-ASR sent to

the LBS.

Similar to Interval Cloak , Casper [49] is based on quadtrees. The anony-

mizer uses a hash table on the user id pointing to the lowest-level quadrant

where the user lies. Thus, each user is located directly, without having
3We use the coordinates of the lower-left and upper-right points to denote a quadrant.

17

to access the quadtree top-down. Furthermore, the quadtree can be adap-

tive, i.e., contain the minimum number of levels that satisfies the privacy

requirements. In Figure 2.2, for instance, the second level for quadrant

〈(0, 2), (2, 4)〉 is never used for K≥ 2 and can be omitted. The only differ-

ence in the cloaking algorithms of Casper and Interval Cloak is that Casper

(before using the parent node as the K -ASR) also considers the neighbor-

ing quadrants at the same level of the tree. Assume again that in Fig-

ure 2.2 U1 issues a query and K=2. Casper checks the content of quadrants

〈(1, 2), (2, 3)〉 and 〈(0, 3), (1, 4)〉. Since the first one contains user U3, the

2-ASR is set to 〈(0, 2), (2, 3)〉, which is half the size of the 2-ASR computed

by Interval Cloak (i.e., 〈(0, 2), (2, 4)〉).
However, Interval Cloak and Casper may compromise location anony-

mity in the presence of outliers. Consider the example of Figure 2.2 as-

suming that K= 2. If a query originates from U1, U2, or U3, the 2-ASR of

Interval Cloak is quadrant 〈(0, 2), (2, 4)〉. Similarly, the 2-ASR of Casper

is the concatenation of two sibling quadrants at level 2 (e.g., 〈(0, 2), (1, 3)〉
and 〈(1, 2), (2, 3)〉). On the other hand, if a query originates from U4, the

2-ASR is the entire data-space 〈(0, 0), (4, 4)〉) for both Interval Cloak and

Casper . Thus, an attacker can identify U4 for all 2-ASRs that cover the

entire data-space.

For illustration purposes, in the above examples we assumed that the

attacker knows K , although as discussed in Section 2.2, K is not subject

to attacks. Nevertheless, even for variable and unknown K , the presence of

outliers may compromise spatial anonymity. We demonstrate the problem

for Interval Cloak and Casper using Figure 2.3. There is a single user U1 in

quadrant 〈(0, 0), (1, 1)〉 and N−1 users in 〈(1, 1), (2, 2)〉, where N is the user

cardinality. Quadrant 〈(1, 1), (2, 2)〉 may be subdivided further, but this is

not important for our discussion. Each user has equal probability to issue a

query, and the degree of anonymity required by different queries distributes

uniformly in the range [1, N]. The term event signifies the issuance of a query

with anonymity degree K at a random user U . Then, an ASR covering the

entire data space is generated by (i) a query originating from U1 and 2 ≤
K ≤ N (i.e., N − 1 events), or (ii) a query originating from another user

and K= N (i.e., N − 1 events). Thus, if the attacker detects such an ASR

18

�

�
�

�����

�����

�����

�����

�
�

�
�

�

�

Figure 2.3: Location anonymity compromise in the presence of outliers

and has knowledge of the user distribution (assumption iii in Section 2.2),

then he concludes that it originated from U1 with probability 1/2. Thus,

the spatial anonymity of U1 is breached for all values K> 2.

In general, following a similar analysis, we show in Appendix A that,

if any two quadrants contain a different number of users, the location ano-

nymity is compromised (for all values of K exceeding a threshold) in the

quadrant containing the smaller number.

U
1

1rectangle for U

U
2

2rectangle for U

U
3

�
x

�
y

U
1

U
2

U
3

Queries and ASR Graph

ASR for U and U1 2

rectangle for U3

Figure 2.4: Example of Clique Cloak

In Clique Cloak [27], each query defines an axis-parallel rectangle whose

centroid lies at the user location and whose extents are ∆x,∆y. Figure 2.4

illustrates the rectangles of three queries located at U1, U2, U3, assuming that

they all have the same ∆x and ∆y. The anonymizer generates a graph where

19

a vertex represents a query: two queries are connected if the corresponding

users fall in the rectangles of each other. Then, the graph is searched for

cliques of K vertices and the minimum bounding rectangle (MBR) of the

corresponding rectangles forms the ASR sent to the LBS. Continuing the

example of Figure 2.4, if K=2, U1 and U2 form a 2-clique and the MBR of

their respective rectangles is forwarded so that both queries are processed

together. On the other hand, U3 cannot be processed immediately, but

it has to wait until a new query (generating a 2-clique with U3) arrives.

Clique Cloak allows users to specify a temporal interval ∆t such that, if a

clique cannot be found within ∆t, the query is rejected. The selection of

appropriate values for ∆x,∆y, ∆t is not discussed in [27].

Chow and Mobkel [20] identified, independently from our work, the K-

sharing property, which is similar to the reciprocity that we propose4 in

Chapter 3. The authors of [20] also consider an extension of K-sharing,

which aims to prevent correlation attacks, i.e. attacks based on history

of user movement. If a user issues a continuous query, i.e. a sequence

of shapshot queries from different locations at consecutive timestamps, the

attacker can corroborate information from all snapshots to infer the query

source. [20] protects against correlation attacks as follows: At the initial

timestamp t0, it builds ASR0, which encloses a set AS of at least K users.

At a subsequent timestamp ti, the algorithm computes a new anonymizing

region ASRi that encloses the same users in AS, but contains their locations

at timestamp ti. There are two drawbacks: (i) As users move, the resulting

CR can grow very large, leading to prohibitive query cost. (ii) If a user in

AS disconnects from the service, the query must be dropped.

Location anonymity has also been studied in the context of related prob-

lems. Probabilistic Cloaking [18] preserves the privacy of locations with-

out applying spatial K -anonymity. Instead, (i) the ASR is a closed region

around the query point, which is independent of the number of users inside

and (ii) the location of the query is uniformly distributed in the ASR. Given

an ASR, the LBS returns the probability that each candidate result satisfies

the query, based on its location with respect to the ASR. Kamat et al. [40]
4Note that, our work in [29] pre-dates the work in [20], therefore the reciprocity prop-

erty that we propose is the first work to provide privacy guarantees

20

propose a model for sensor networks and examine the privacy characteris-

tics of different sensor routing protocols. Hoh and Gruteser [34] describe

techniques for hiding the trajectory of users in applications that continu-

ously collect location samples. Chow et al. [21] study spatial cloaking in

peer-to-peer systems.

An encryption-based approach is considered in [41]: In a preprocessing

phase, a trusted third party transforms (using 2-D to 1-D mapping) and

encrypts the database. The database is then uploaded to the LBS, which

does not know the decryption key. All users possess tamper-resistant devices

which store the decryption key, but they do not know the key themselves.

Users send encrypted queries to the LBS and decrypt the answers to extract

the results. The method assumes that none of the tamper-resistant devices

is compromised. If this condition is violated, the privacy of all users can be

compromised. Moreover, there is no guarantee against correlation attacks,

in which an attacker combines information from multiple queries issued by

the same user from distinct locations.

2.4 Related Spatial Query Processing Techniques

The LBS maintains the locations of points-of-interest and answers cloaked

queries. The most common spatial queries, and the focus of the existing

systems, are ranges and nearest neighbors (NN). While the cloaking mecha-

nism at the anonymizer is independent of the query type, query processing

at the LBS depends on the query. Range queries are usually straightforward;

assume that a user U wants to retrieve the data objects within distance d

from his current location. Instead of the position of U , the LBS receives

(from the anonymizer), an ASR that contains U (as well as several other

users) and d. In order to compute the candidate results, the LBS extends

the ASR by d in all dimensions and searches for all objects in the extended

ASR. The set of candidates is returned to the anonymizer which filters out

false hits and returns the actual result to U .

The processing of NN queries is more complicated. If the ASR is an

axis-parallel rectangle (as in Interval Cloak , Casper and Clique Cloak), then

the candidate results can be retrieved using range nearest neighbor search

21

p

2

p
1

p
3

ASR

s s1 e

perpendicular
bisector of p p

1 2

(a) Before the discovery of p3

p

2

p
1

p
3

ASR

s s'1 e

perpendicular
bisector of p p

1 3

perpendicular
bisector of p p2 3

(b) After the discovery of p3

Figure 2.5: Example of continuous NN search

[35], which finds the NN of any point inside a rectangular range. Assume

the example of Figure 1.2(right). The LBS must return the NN of every

possible location in the ASR. Such candidate data points lie inside (e.g.,

h3), or outside the ASR (e.g., h2, h4). For instance, h4 would be the NN for

user u3, or another user situated at the top-right corner of the ASR.

Figure 2.5 shows an example of the application of range nearest neighbor

search for three points of interest stored at the LBS, denoted by p1 . . . p3.

The initial set of candidates contains all points (p1, p2) inside the input range

(i.e., the ASR). Then, four continuous NN (CNN) queries [60], one for each

side of the ASR, retrieve the remaining candidates. Consider, for instance,

the CNN query for the bottom side se. The initial candidates split se into

two intervals: ss1 and s1e, where s1 is the point where the perpendicular

bisector of p1p2 intersects se. Currently, the NN of every point in ss1 is

p1, whereas the NN of every point in s1e is p2. The three vicinity circles

in Figure 2.5a, are centered at s, s1, e and their radii equal the distances

between s and p1, s1 and p1 (or p2), and e and p2, respectively. The only

data points that can be closer to se (than p1 and p2) must fall inside some

vicinity circle.

Continuing the example, p3 falls inside the last two vicinity circles and

updates the result as shown in Figure 2.5b. Specifically, s′1 is the point where

the perpendicular bisector of p1p3 intersects se: p1 becomes the NN of every

point in ss′1, and p3 the NN of every point in s′1e. Note that the vicinity

circles shrink as new data points are discovered. The process terminates

22

when no more points are found within the vicinity circles. It can be shown

[35] that four CNN queries for the four sides of the ASR find all candidate

objects. A similar technique (also for rectangular ranges) is presented for

Casper in [49]; in Section 3.5, we develop a method capable of processing

circular ranges.

2.5 Related P2P Systems

In Chapter 5, we will introduce two P2P protocols for distributed anony-

mization of LBS queries. We further give a brief overview of the most

prominent P2P systems related to our work.

Key and range search has been studied extensively in distributed envi-

ronments. Several structured Peer-to-Peer systems (e.g, Chord [57]) support

distributed key search with O(log N) complexity. The drawback of such sys-

tems is that they cannot support efficiently node annotation. Without node

annotation, the communication cost for satisfying the reciprocity property

(which guarantees K -anonymity) is O(N); this cost is too high for large scale

systems. Closer to our work is the P-tree [22], which supports range queries

by embedding a B+-tree on top of an overlay network. No global index

is maintained; instead each node maintains its own B+-tree-like structure.

BATON [38] also addresses range queries, by embedding a balanced tree

onto an overlay network. It uses additional cross-links to prevent hotspots,

and achieves O(log N) complexity for search and maintenance. Similar to

Chord, these systems cannot support efficiently node annotation.

Hierarchical clustering in distributed environments has been an active

research topic in recent years. In [11], a hierarchical-clustering routing pro-

tocol for wireless networks is presented. The NICE project [10] proposes a

scalable application-layer multicast protocol, based on delivery trees built

on top of a hierarchically connected control topology. Nodes participating in

a multicast group are organized into a multi-layer hierarchy of clusters with

bounded size. NICE trees obtain delays in the order of O(log N), where N

is the size of the multicast group, and there is an upper bound of O(log N)

in terms of control state maintained per node. Our protocols also use hi-

erarchical clustering of mobile users, but the requirements of total ordering

23

and annotation impose particular challenges that have not been addressed

by existing research.

2.6 Private Information Retrieval

In Chapter 6, we develop an LBS privacy solution that relies on Private

Information Retrieval (PIR). Our work builds on the theoretical results for

the PIR problem, which is defined as follows: a server S holds a database

with n bits, X = (X1 . . . Xn). A user u has a particular index i and wishes

to retrieve the value of Xi, without disclosing to S the value of i. The PIR

concept was introduced by Chor et al [19] in an information theoretic setting,

requiring that even if S had infinite computational power, it could not find

i. In this context it was proved that in any solution with a single server,

u must receive the entire database (i.e., O(n) cost). The communication

cost can be reduced to n
O(log log K

K log K
) if the database is replicated in K non-

colluding servers [14]. Nevertheless, in practice, it is sufficient to ensure that

S cannot find i with polynomial-time computations; this problem is known

as Computational PIR. Kushilevitz et al [42] showed that the communication

cost for a single server is O(nε), where ε is an arbitrarily small positive

constant. Our work employs Computational PIR.

Several approaches employ cryptographic techniques to privately answer

NN queries in relational data. Most of them are based on some version of the

secure multiparty computation problem [32]. Let two parties A and B hold

objects a and b, respectively. They want to compute a function f(a, b) with-

out A learning anything about B and vice versa. They encrypt their objects

using random keys and follow a protocol, which results into two “shares”

SA and SB given to A and B, respectively. By combining their shares, they

compute the value of f . In contrast to our problem (which hides the query-

ing user from the LBS), existing NN techniques assume that the query is

public, whereas the database is partitioned into several servers, neither of

which wants to reveal their data to the others. [62] assumes vertically parti-

tioned data and uses secure multiparty computation to implement a private

version of Fagin’s [24] algorithm. [55] follows a similar approach, but data is

horizontally partitioned among the servers. The computation cost is O(n2)

24

and may be prohibitive in practice. [7] also assumes horizontally partitioned

data, but focuses on top-k queries.

More relevant to our problem is the work of [37] which uses PIR to

compute the NN of a query point. The server does not learn the query

point and the user does not learn anything more than the NN. To achieve

this, the method computes private approximations of the Euclidean distance

by adapting an algorithm [25] that approximates the Hamming distance in

{0, 1}d space (d is the dimensionality). The cost of [37] is Õ(n2) for the

exact NN and Õ(
√

n) for an approximation through sampling. The paper

is mostly of theoretical interest, since the Õ notation hides polylogarithmic

factors that may affect the cost; the authors do not provide any experimental

evaluation of the algorithms.

25

Chapter 3

SKA Framework for LBS

Privacy

3.1 Introduction

This chapter presents our comprehensive SKA framework for LBS query

privacy. Our framework includes techniques for generating K -ASRs at the

anonymizer, as well as algorithms to process transformed queries at the

LBS. Similar to existing SKA work, we consider a centralized architecture1,

with an intermediate AS server between the mobile users and the LBS (see

Figure 1.3). Furthermore, we assume that an attacker does not have a priori

knowledge of the user query frequencies (i.e., a query may originate from

any user with equal probability). We remove this assumption in Chapter 4.

In Section 3.2 we propose the Nearest Neighbor Cloak cloaking technique,

which clearly outperforms existing methods in terms of K -ASR size. Sec-

tion 3.3 introduces the reciprocity concept, a sufficient condition to achieve

privacy, based on which, in Section 3.4, we propose the Hilbert Cloak al-

gorithm. In Section 3.5 we focus on anonymized query processing at the

LBS.
1Later in Chapter 5 we remove the centralized AS, and propose a decentralized solution

26

3.2 Nearest Neighbor Cloak

Nearest Neighbor Cloak (NNC) is a randomized variant of Center Cloak

(presented in Section 2.2), and is not vulnerable to center-of-ASR attacks.

Given a query from U , NNC first determines the set S0 containing U and

his K -1 nearest users. Then, it selects a random user Ui from S0 (the

probability of selecting the initial user U is 1/K) and computes the set

S1, which includes Ui and his K -1 nearest neighbors (NNs). Finally, NNC

obtains S2 = S1 ∪U , i.e., S2 corresponds to the anonymizing set. This step

is essential, since U is not necessarily among the NNs of Ui. The K -ASR is

the MBR or MBC enclosing all users in S2.

Example 3.1. Figure 3.1 shows an example of NNC , where U1 issues a

query with K=3. The 2 NNs of U1 are U2, U3, and S0 = {U1, U2, U3}. NNC

randomly chooses U3 and issues a 2-NN query, forming S1 = {U3, U4, U5}.
The 3-ASR is the MBR enclosing S2 = {U1, U3, U4, U5}. NNC can be used

with variable values of K . It is not vulnerable to the center-of-ASR attack

since the probability of U being near the center of the K -ASR is at most 1/K

(due to the random choice). Furthermore, as we show in the experimental

evaluation of Section 3.6, the ASR is much smaller than that of Interval

Cloak and Casper .
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
��

�����������

�

Figure 3.1: Example of NNC

27

However, NNC , as well as Interval Cloak and Casper , may compromise

location anonymity in the presence of outliers. Consider that in Figure 3.1,

an adversary knows the locations of the users and the value of K . Then, he

can be sure that the query originated from U1 because if it were issued by

any other user (U3, U4, U5) in the 3-ASR, the ASR would not contain U1.

Next, we introduce the reciprocity principle, which is sufficient to guarantee

query privacy, regardless of user location distribution.

3.3 Reciprocity

We identify the following property that is sufficient for a K -ASR construc-

tion technique in order to preserve user privacy:

Definition 3.2. [K-ASR Reciprocity] Consider a user uq issuing a query

and its associated K-ASR Aq. Aq satisfies the reciprocity property iff there

exists a set of users AS lying inside Aq such that (i) |AS| ≥ K, (ii) uq ∈ AS

and (iii) every user u ∈ AS lies in the K-ASRs of all other users in AS.

Example 3.3. Fig. 3.2 shows an example with ten users. For K=5,

the K -ASR of users u1, u3, u4, u8, u10 is area A1 and the K-ASR of users

u2, u5, u6, u7, u9 is area A2. In this example, ASRs of all users satisfy the reci-

procity property. For instance, for user u1, if we set AS = {u1, u3, u4, u8, u10},
we may easily verify that AS satisfies all the requirements of the reciprocity

property.

Figure 3.2: K -ASR Reciprocity Example, K=5

Theorem 3.4. For a given snapshot of user locations, and regardless of the

query distribution among users, a K-ASR construction technique guaran-

28

tees spatial K-anonymity if every generated K-ASR satisfies the reciprocity

property.

Proof. We assume the worst case scenario, where an attacker knows the

exact location of all users in the system (from an outside source). The

attacker possesses a set A of K -ASRs associated to user queries.

Consider K -ASR Aq ∈ A. The attacker attempts to infer the user uq

that constructed Aq. Since Aq satisfies the reciprocity property, there exists

a set of users AS (lying inside Aq) such that (i) |AS| ≥ K, (ii) uq ∈ AS

and (iii) every user u ∈ AS lies on the K -ASRs of all other users in AS.

Moreover, since every K -ASR satisfies the reciprocity property, it follows

that when the attacker inspects any K -ASR that includes uq, he will observe

the same set of users AS. Therefore, for all users u in AS, the probability

Pu of being the query issuer is:

Pu = Puq =
1

|AS| ≤
1
K

Hence, the K -anonymity property is satisfied.

In general, Interval Cloak , Casper and NNC do not satisfy reciprocity

as they violate condition (iii). For instance, in the example of Figure 2.3,

although users U2 . . . UN lie in the K -ASR of U1, U1 is not in the K -ASR of

U2 . . . UN for 2 ≤K< N . Similarly for NNC , although in Figure 3.1 U3 . . . U5

are in the 3-ASR of U1, U1 is not in the 3-ASR of U3 . . . U5.

In view of this property, an optimal K -ASR construction algorithm

would partition the user population into K -ASRs that possess the reci-

procity property, such that the sum of areas of the resulting K -ASRs is

minimized. However, finding this optimal K -anonymity solution, which is

similar to finding the optimal K-anonymous generalization of a dataset, is

an NP-Hard problem [48]. Next, we introduce an efficient algorithm that en-

forces reciprocity, and at the same time generates K -ASRs with low spatial

extent.

3.4 Hilbert Cloak

Hilbert Cloak(HC) uses the Hilbert space-filling curve [50] to generate small

29

(but not necessarily optimal) ASRs for variable values of K . The Hilbert

space filling curve transforms the 2-D coordinates of each user into a 1-D

value H(U). Figure 3.3 illustrates the Hilbert curves for a 2-D space using

a 4 × 4 and 8 × 8 space partitioning. With high probability [50], if two

points are in close proximity in the 2-D space, they will also be close in

the 1-D transformation. A major benefit of Hilbert (and similar) curves,

is that they permit the indexing of multidimensional objects through one-

dimensional structures (e.g., B+-trees).

�

�

�

������

���	

�
��

�����

Figure 3.3: Hilbert Curve (left: 4× 4, right: 8× 8)

Given a query from user U with anonymity requirement K , HC sorts the

Hilbert values and splits them into K -buckets. Each K -bucket has exactly

K users, except the last one which may contain up to 2·K -1 users. Let H(U)

be the Hilbert value of U and rankU be the position of H(U) in the sorted

sequence of all locations. HC identifies the K -bucket containing rankU .

The users in that K -bucket constitute the corresponding AS. Figure 3.4

illustrates an example, where the user ids indicate their Hilbert order. For

K=3, the users are grouped into 3 buckets (the last one contains 4 users).

When any of U1, U2 or U3 issues a query, HC returns the first bucket (shown

shaded) as the AS; the MBR (or MBC) of that bucket becomes the 3-ASR.

HC is reciprocal because all users in the same bucket share the same K -

ASR; therefore, it guarantees spatial anonymity according to Theorem 3.4.

Furthermore, it can deal with variable values of K by not physically storing

the K -buckets. Instead, it maintains a balanced sorting tree, which indexes

the Hilbert values. When a user U initiates a query with anonymity degree

K , HC performs a search for H(U) in the index and computes rankU . From

30

�

��

��

��

��

�
�

�� ��

�	

�

���

������������

�� �� �� �� �� �� �	 �
 ���
��

���������������

�� �� �� �� �� �� �	 �
 ���
��

���������������

�

Figure 3.4: Example of Hilbert Cloak

rankU , we calculate the start and end positions defining the K -bucket that

includes H(U), as follows:

start = rankU − (rankU mod K), end = start + K − 1 (3.1)

The complexity of the in-order tree traversal is O(N), where N is the

number of indexed users. To compute rankU efficiently, we use an aggregate

tree [59], where each node w stores the number wcount of nodes in its left

subtree (including itself). Using this data structure, rankU is calculated

in O(logN) as follows: we initialize rankU to zero and perform a normal

lookup for H(U). For every node w we visit, we add wcount to rankU only if

we follow a right-hand branch. The complexity of maintaining the aggregate

information is O(logN) because changes are propagated from the leaves to

the root. Since the complexity of constructing the K -ASR is O(logN + K),

whereas search, insert and delete cost O(logN), the data structure is scal-

able. Therefore, HC is applicable to a large number of mobile users who

update their location frequently and have varying requirements for the de-

gree of anonymity. Note that, while our description assumes a main memory

index, the technique can be easily extended to secondary memory by using

B+-trees (we address ASR construction with various disk-based index struc-

tures in Chapter 4).

31

3.5 Location-Based Service Query Processing

The Location-Based Service (LBS) receives the query from the anonymizer,

processes it and sends the results back to the anonymizer. In our implemen-

tation, the data in the LBS are indexed by an R*-Tree [13]; our methods,

however, are independent of the index structure. We support two types of

queries:

1. Range queries: The LBS receives the query range which is either an

axis-parallel rectangle R or a circle C. Processing is straight-forward;

the R-tree is traversed from the root to the leaves and any object inside

R (or C) is returned.

2. kNN queries: This case is more complex, since the LBS must find the k

nearest neighbors of the entire range. For rectangular ranges, we adopt

the Range Nearest Neighbor (RkNN) algorithm [35] (see Section 2.4

for details). The rest of this section describes our CkNN algorithm,

which computes the kNNs of circular ranges.

3.5.1 CkNN - Circular Range kNN

Similar to rectangular ranges [35], the set of kNNs of a circular range C also

consists of two subsets of objects: (i) all the objects inside C and (ii) the

kNNs of the circumference of C. The objects in (i) are retrieved by a range

query; in the rest of the section, we present the novel CkNN-Circ algorithm

which computes the kNNs of the circumference of C. Intuitively CkNN-Circ

is similar to CNN (see Section 2.4). However, some of the properties of 1-D

shapes which are used in CNN (e.g., continuity by the definition of [60]) do

not hold for 2-D shapes, rendering the problem more complex.

Conceptually, CkNN-Circ partitions the circumference of C into disjoint

arcs, and associates to each arc the data objects nearest to it. Consider the

example of Figure 3.5, where p1, p2 and p3 are the data objects. Let s0, s1

be the intersection points of the perpendicular bisector of p1p2 (denoted by

⊥p1p2) with C, i.e., |p1s0| = |s0p2| and |p1s1| = |s1p2|. Assuming that the

center c of C is the origin of the coordinate system, the polar coordinates of

s0 are (r, ŝ0), where r is the radius of C and ŝ0 is the (anti-clockwise) angle

32

between the x-axis and the vector ~cs0. Similarly, the polar coordinates of

s1 are (r, ŝ1). The NN of every point in the arc [ŝ0, ŝ1] is p1; we denote this

as: [ŝ0, ŝ1] → p1. Likewise [ŝ1, ŝ0] → p2, since any point in the arc [ŝ1, ŝ0]

is closer to p2 than to any other object. Therefore, the set of NNs of C is

{p1, p2}. Note that p3 is not in this set, even though it is closer to C than

p2, because p1 is closer than p3 to any point on C; we say that p1 covers p3.

c r

p
3 p

1 1s

1s

0s

0s p
2

Figure 3.5: The 1-NNs of C are p1 and p2

Let D = {p1, p2, . . . , pn} be the set of all data objects. CkNN-Circ main-

tains a list SL of mappings [a, b] → pi, where a, b are angles defining an arc

on C, 0 ≤ a < b ≤ 2π, and pi ∈ D is the object which is closest to every

point of arc [a, b] than any other object pj ∈ D. The CkNN-Circ pseudocode

is shown in Figure 3.8.

In the example of Figure 3.6a, let p1 ∈ D be the first object encountered

by the algorithm. Since SL is initially empty, p1 is closest to the entire C.
Without loss of generality, we pick two points s0, s

′
0 ∈ C, where ŝ0 = 0 and

ŝ′0 = 2π (i.e., they are the same point), and insert the mapping [ŝ0, ŝ′0] → p1

into SL (line 2 of the pseudocode). For each subsequent point p ∈ D, the

algorithm traverses SL (line 4) and examines all existing mappings [a, b] →
q. There are three possible cases:

Case 1: ⊥pq∩C= ∅ or ⊥pq is tangent to C (lines 5-6). This case is

exemplified2 in Figure 3.6b. The only existing mapping is [ŝ0, ŝ′0] → p1, and

p2 is processed next. Any point on the right-hand side of ⊥p1p2, is closer

to p1. Therefore, the entire C is closer to p1 than to p2. Since the mapping

to p1 already exists, there is no change in SL. Furthermore, even if there
2For simplicity, all objects are shown outside C. However, the algorithm also works for

objects inside C.

33

c c

(a) (b)

r

1
p

s'0

0s
s'0

p
1
p
2

2
p

1
p

s'0
0s

Figure 3.6: CkNN example: perpendicular bisector does not intersect C

were more mappings inside SL, it would not be necessary to compare with

p2, since p1 covers p2. On the other hand, if p2 was at the right-hand side

(and p1 on the left), then p2 would be closer to C than p1. In this case, the

algorithm would remove the [ŝ0, ŝ′0] → p1 mapping from SL and add a new

one [ŝ0, ŝ′0] → p2 (line 6).

Case 2: ⊥pq∩C= {s0, s1} and either ŝ0 ∈ [a, b] or ŝ1 ∈ [a, b] (lines 12-

14). This case is illustrated in Figure 3.7a: both p1 and p2 have already been

processed, and there are two mappings in SL: [ŝ1, ŝ′1] → p1 and [ŝ′1, ŝ1] → p2.

Let p3 be the next object to be processed. p3 is compared against the existing

mappings. For the first one (i.e., [ŝ1, ŝ′1] → p1), ⊥p1p3 intersects C at s2 and

s′2. Note that ŝ′2 6∈ [ŝ1, ŝ′1], so it is not considered further. On the other

hand, ŝ2 ∈ [ŝ1, ŝ′1] and p3 is closer to s1 than p1. Therefore (line 13), the arc

is split into two parts [ŝ1, ŝ2] and [ŝ2, ŝ′1], which are assigned to p3 and p1,

respectively. Similarly, for the second mapping (i.e., [ŝ′1, ŝ1] → p2), ⊥p2p3

intersects C at s3, s
′
3. Only ŝ3 ∈ [ŝ′1, ŝ1], so the arc is split into [ŝ′1, ŝ3]

and [ŝ3, ŝ1], which are assigned to p2 and p3, respectively. After updating,

SL = {[ŝ2, ŝ′1] → p1, [ŝ′1, ŝ3] → p2, [ŝ3, ŝ1] → p3, [ŝ1, ŝ2] → p3}. The last two

mappings can be combined (i.e., [ŝ3, ŝ2] → p3) since they are consecutive

and are mapped to the same object.

Case 3: ⊥pq∩C= {s0, s1} and both ŝ0, ŝ1 ∈ [a, b] (lines 9-11). This

case is illustrated in Figure 3.7b: again, both p1 and p2 have already been

processed, and SL = {[ŝ′1, ŝ1] → p1, [ŝ1, ŝ′1] → p2}. Next, p3 is com-

pared to the first mapping of SL. Note that ⊥p1p3 intersects C at s′2,

s2 and both ŝ′2, ŝ2 ∈ [ŝ′1, ŝ1]. Therefore (line 10), the arc is split into three

34

(a) (b)

p
3

p
1

s2

s'3

s1
3s
s'2

p
2s'1

p
1

p
3

p
2

s2

s1

3s

s'2
s'1
s'3

Figure 3.7: The perpendicular bisector intersects C

parts and since p3 is closer to s′1 than p1 the corresponding mappings are:

[ŝ′1, ŝ
′
2] → p3, [ŝ′2, ŝ2] → p1, [ŝ2, ŝ1] → p3. Similarly, after considering ⊥p2p3,

[ŝ1, ŝ′1] is also split into three parts. Finally, after combining the consecutive

mappings, SL = {[ŝ′2, ŝ2] → p1, [ŝ2, ŝ3] → p3, [ŝ3, ŝ′3] → p2, [ŝ′3, ŝ
′
2] → p3}.

For simplicity, the pseudocode of Figure 3.8 computes only the 1-NNs.

To compute the kNNs, instead of a single object, the arcs in our imple-

mentation are mapped to an ordered list of k objects: [a, b] → (p1, . . . , pk),

where p1 is the nearest neighbor of arc [a, b], p2 is the second NN of arc

[a, b], etc. The procedure is called for each position i (1 ≤ i ≤ k) of the

ordered list. In the ith call, if an object p ∈ D already exists in position j

(1 ≤ j ≤ i− 1), then p is not considered for that mapping. Also, if an arc is

split, the objects in positions 1 . . . i−1 (i.e. the i−1 nearest neighbors found

already) are not altered. The worst case complexity of CkNN is O(|D|k),
since any object may cause an arc split. In practice, however, the algorithm

is faster, because the objects which are far away from C do not cause splits.

3.5.2 R-trees and CkNN

In order to use the CkNN algorithm with an R-tree, we employ a branch-

and-bound heuristic. Starting from the root, the R-tree is traversed either

in Depth-First or in Best-First [60] manner. When a leaf entry (i.e., object)

p is encountered, the CkNN algorithm is used to check whether p is closer

to C than any of the objects in the current mappings (i.e., p is a qualifying

object) and updates SL accordingly. For an intermediate entry E we avoid

35

CkNN-Circ(D: the set of objects)

1. for every object p ∈ D do

2. if SL = ∅ then SL := {[0, 2π] → p}
3. else

4. for every interval ϕ ≡ [a, b] → q, ϕ ∈ SL do

5. if ⊥pq∩ C= ∅ or ⊥pq is tangent to C then

6. if |pC| < |qC| then SL := (SL− ϕ) ∪ {[a, b] → p}
else break

7. else

8. let s0, s1 be two points such that ⊥pq∩ C= {s0, s1}
9. if ŝ0 ∈ [a, b] and ŝ1 ∈ [a, b] then

// Assume ŝ0 < ŝ1 (the other case is symmetric)

10. if |pCa| < |qCa| then SL := (SL− ϕ)∪
∪{[a, ŝ0] → p, [ŝ0, ŝ1] → q, [ŝ1, b] → p}
// Ca, Cb are the endpoints of arc [a, b]

11. else SL := (SL− ϕ)∪
∪{[a, ŝ0] → q, [ŝ0, ŝ1] → p, [ŝ1, b] → q}

12. else if ŝ0 ∈ [a, b] or ŝ1 ∈ [a, b] then

// Let only ŝ0 ∈ [a, b] (ŝ1 ∈ [a, b] is symmetric)

13. if |pCa| < |qCa| then SL := (SL− ϕ)∪
∪{[a, ŝ0] → p, [ŝ0, b] → q}

14. else SL := (SL− ϕ) ∪ {[a, ŝ0] → q, [ŝ0, b] → p}
15. else if |pCa| < |qCa| then

SL := (SL− ϕ) ∪ {[a, b] → p}
16. return SL

CkNN(D: the set of objects)

1. call CkNN-Circ(D)

2. return {p : p ∈ D ∧ p is inside C}∪
∪{p : p belongs to a mapping of SL}

Figure 3.8: Find the 1-NNs of a circular range C

36

visiting its subtree if it is impossible to contain any qualifying object.

Figure 3.9 presents an example where p1 and p2 are the current 1-NNs of

C. Next, an entry E from an intermediate node of the R-tree is encountered.

We observe the following:

Lemma 3.5. Let MBRE be an axis-parallel MBR and let st be the side

which is closest to circle C. If st does not contain any of the kNNs of C,
then MBRE cannot contain any kNN.

d

e

c

f

E
r

s

t

p
1

2
p

Figure 3.9: Check if E may contain qualifying objects

The proof is straight-forward, since any point in the MBR will be further

away from C than the closest point on st. In our example, the right side

st of E is closer to C. Assume there is a point d on st, such that the

perpendicular bisector ⊥dp1 is tangent to C, and let e ≡ ⊥dp1∩C. Then we

get the following system of equations3:

|ce| = r

|p1e| = |de|
|p1e|2 − |p1f |2 = |cf |2 − r2

(3.2)

The first equation is derived from the fact that e ∈ C, while the second

one is because the distance from any point on ⊥dp1 to d and p1 is equal.

The third equation results from the application of the Pythagorean theorem

on the orthogonal triangles p1fe and fec which have a common side ef .

After substituting the points with their Cartesian coordinates, we get the

following system (note that xf = xd+xp1

2 , yf = yd+yp1

2 , since f is the middle

of dp1):
3If a different side of E is closer to C, the equations are modified accordingly.

37

(xe − xc)2 + (ye − yc)2 = r2

(xd − xe)2 + (yd − ye)2 = (xp1 − xe)2 + (yp1 − ye)2

(xp1 − xe)2 + (yp1 − ye)2 − (xd−xp1)2+(yd−yp1)2

4 =

=
(

xd+xp1

2 − xc

)2
+

(
yd+yp1

2 − yc

)2
− r2

There are three equations and three unknowns: xe, ye, yd. If there is a real

solution to this system, under the condition (xd, yd) ∈ st, then there may be

a qualifying object inside the subtree of E. Else all objects in E are further

away from C than the current objects in SL, so the subtree under E can be

pruned.

Solving this system, however, is slow (in the order of 100’s of msec in

an average computer); given that an entry E must be checked against many

objects, the running time is prohibitively long. Therefore, in our implemen-

tation, we use the RkNN algorithm to traverse the R-tree and employ the

CkNN algorithm only for the objects at the leaf-level. Our strategy is based

on the following observation:

Lemma 3.6. Let C be a circle, MER the maximum enclosed axis-parallel

rectangle of C and S the set of kNNs of MER’s perimeter. Let pi be an

object, such that pi is inside MER and pi 6∈ S. Then pi cannot be a kNN

for any point of C.

d

e

MBR of �

MER of �

�

p
2

p
1

Figure 3.10: The MBR and the MER of C

Proof. Assume the lemma does not hold. Figure 3.10 shows an example

where p2 is inside MER and p2 6∈ S. Assume that p2 is the NN of point e ∈
C. Let d be the point where the line segment p2e intersects the perimeter

of MER, and p1 be the object which is the NN of d. It follows from our

38

hypothesis that: |p2e| < |p1e|. Using the triangular inequality, we get:

|p2d|+ |de| < |p1d|+ |de| ⇒ |p2d| < |p1d| which is a contradiction, since p1

is the NN of d. Therefore, the lemma holds.

We construct the Minimum Bounding Rectangle4 MBR and the Max-

imum Enclosed Rectangle MER of C (the side-length of MER is
√

2r).

Conceptually, our implementation works in three steps:

1. Use theRkNN algorithm to find the set S1 of kNNs of MBR (including

all the objects inside MBR). Recall that S1 is a superset of the kNNs

of any point inside MBR; therefore, it contains all the kNNs of C.

2. Use CNN (see Section 2.4) to find the set S2 of kNNs of only the

perimeter of MER. Use Lemma 3.6 and S2 to prune objects from S1.

3. Call the CkNN algorithm with the objects remaining in S1.

In practice, these steps can be combined. In a single traversal of the R-tree,

steps (1) and (2) can be used at the intermediate levels to prune the tree

and step (3) is applied on the leaf-level objects.
4For a set of users U1...n, the MBR of C is not the same as their corresponding anonymiz-

ing rectangle R.

39

Figure 3.11: North-America (NA) dataset

3.6 Experimental Evaluation

This section evaluates our proposed anonymization and query processing

algorithms. We implemented prototypes for both the anonymizer and the

LBS using C++. All experiments were executed on an Intel Xeon 2.8GHz

machine with 2.5GB of RAM and Linux OS. Our workload for user positions

and landmarks/points of interest consists of the NA dataset [61], which con-

tains 569K locations on the North-American continent (Figure 3.11). Per-

formance is measured in terms of CPU time, I/O time and communication

cost. At the anonymizer we employed main-memory structures, therefore

we measured only the CPU time. At the LBS, we used an R*-Tree and

measured the total time (i.e., I/O and CPU time); in all experiments we

maintained a cache with size equal to 10% of the corresponding R*-Tree.

The communication cost was measured in terms of number of candidates

sent from the LBS back to the anonymizer.

In the following, Section 3.6.1 focuses on cloaking algorithms at the

anonymizer, whereas Section 3.6.2 evaluates query processing at the LBS.

3.6.1 Anonymizer Evaluation

We compare the proposed Nearest Neighbor Cloak (NNC) and Hilbert Cloak

(HC) against Casper and Interval Cloak (IC). The first experiment mea-

sures the area of rectangular K -ASRs. Recall that we wish to minimize the

40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 20 40 60 80 100 120 140 160

A
re

a
(%

 o
f D

at
aS

pa
ce

)

K

HC
NNC

IntervalCloak
Casper

(a) Varying K, N=50,000

 0

 0.05

 0.1

 0.15

 0.2

 50k 100k 150k 200k 250k 300k

A
re

a
(%

 o
f D

at
aS

pa
ce

)

N

HC
NNC

IntervalCloak
Casper

(b) Varying N , K=80

Figure 3.12: Area of rectangular K -ASR

ASR area, since it affects the processing time at the LBS and the communi-

cation cost between the LBS and the anonymizer. First, we fix the number

of users N = 50, 000 and vary the degree of anonymity K . The K -ASR area

is expressed as a percentage of the entire data space. We generated 1, 000

queries originating at random users. Figure 3.12a shows the average area

per query. Clearly IC is the worst algorithm, whereas NNC is the best.

HC and Casper exhibit similar behavior to each other. All algorithms scale

linearly with K in terms of ASR area. Figure 3.12b, shows the K -ASR area

for K = 80 and varying N . Since the extent of the data space remains con-

stant, an increase in user population translates to higher user density, hence

41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20 40 60 80 100 120 140 160

A
S

R
 C

on
st

ru
ct

io
n

T
im

e
(m

ill
is

ec
on

ds
)

K

HC
NNC

IntervalCloak
Casper

(a) Varying K, N=50,000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50k 100k 150k 200k 250k 300k

A
S

R
 C

on
st

ru
ct

io
n

T
im

e
(m

ill
is

ec
on

ds
)

N

HC
NNC

IntervalCloak
Casper

(b) Varying N , K=80

Figure 3.13: K -ASR generation time

reduced K -ASR size for all methods. The relative performance among the

algorithms remains the same. Observe that HC and Casper outperform IC,

and generate ASRs with roughly twice the area of NNC.

Figure 3.13 shows the average ASR generation time (in milliseconds)

for varying K and N . HC, IC and Casper behave similarly. NNC , on

the other hand, has a significantly larger generation time, due to the more

costly nearest-neighbor search. Nevertheless, we will show in the following

that NNC is best in terms of overhead at the LBS.

So far, we focused on rectangular K -ASRs. However, depending on the

user distribution, circular K -ASRs may have smaller size. Here we adopt

42

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 20 40 60 80 100 120 140 160

A
re

a
(%

 o
f D

at
aS

pa
ce

)

K

Rectangle
SA

(a) Varying K, N=50,000

 0

 0.01

 0.02

 0.03

 0.04

 50k 100k 150k 200k 250k 300k

A
re

a
(%

 o
f D

at
aS

pa
ce

)

N

Rectangle
SA

(b) Varying N , K=80

Figure 3.14: Rectangular vs SA K -ASR, Nearest Neighbor Cloak

a simple optimization: first we identify the set of users which belong to

a K -ASR. Then we calculate the minimum bounding rectangle R and the

minimum enclosing circle C of the K -ASR, and select the shape with the

smallest area. We call this method SA. NNC is more suitable to be com-

bined with SA, since the nearest neighbor search tends to identify circular

clusters of users. Figures 3.14a and 3.14b compare the rectangle-only ap-

proach against the SA optimization for varying K and N , respectively. SA

manages to reduce the K -ASR area by up to 15%.

Finally, we measure the anonymity strength of the above-mentioned al-

43

 0

 0.01

 0.02

 0 10 20 30 40 50 60 70 80 90 100

P
[in

de
x U

=
i]

i

HC
NNC

IntervalCloak
Casper

Figure 3.15: center-of-ASR attack, K= 50

gorithms against the center-of-ASR attack5. We consider a workload of

1000 queries, originating at a set of random users, with K = 50. Figure 3.15

shows the probability P [indexU = i] (the experiment is similar to that of

Section 2.2). Recall that indexU = 1 means that user U is the closest to

the center of the K -ASR. Furthermore, the dashed line corresponds to the

distribution of indexU for the ideal anonymization technique. All studied

algorithms preserve privacy in the case of the center-of-ASR attack. NNC

is close to the ideal distribution and there are few cases where the K -ASR

encloses more than K users, which explains the relatively small ASR size

observed in the previous experiments. HC and Casper exhibit similar be-

havior to each other, but include a larger number of redundant users inside

the K -ASR, compared to NNC ; this is why P [indexU = i] > 0 for i > K.

However, they are both better than IC.

3.6.2 Location-Based Service Evaluation

For this experiment, we generate 1, 000 queries originating at random users.

The corresponding K -ASRs are sent to the LBS and the queries are exe-

cuted against the entire NA dataset, which is indexed by an R*-tree. For

all K -ASR generation techniques, we compare the average processing time

(i.e, CPU plus I/O time) per query, and the size of the candidate set. The
5Although we formally proved that Hilbert Cloak guarantees location anonymity, we

include this experiment for illustration purposes.

44

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 c

an
di

da
te

s

Number of Neighbors k

HC
NNC

IntervalCloak
Casper

(a) Number of candidates

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Neighbors k

HC
NNC

IntervalCloak
Casper

(b) Avg. processing time (sec)

Figure 3.16: kNN queries, varying k, N = 50, 000, K = 80

latter is a superset of the actual result, and it reflects the communication

cost between the LBS and the anonymizer. First, we focus on kNN queries.

Figure 3.16 shows the performance for varying number of nearest neighbors

k. NNC generates a significantly lower number of candidates compared to

the other techniques. This is expected, since the sizes of the correspond-

ing K -ASRs are also smaller. HC and Casper generate up to 50% more

candidates than NNC. However, they both outperform IC by a large mar-

gin. In terms of processing time, NNC is the fastest, with HC and Casper

considerably better than IC.

45

 0

 1000

 2000

 3000

 4000

 5000

 20 40 60 80 100 120 140 160

N
um

be
r

of
 c

an
di

da
te

s

K

HC
NNC

IntervalCloak
Casper

(a) Number of candidates

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(s

ec
)

K

HC
NNC

IntervalCloak
Casper

(b) Avg. processing time (sec)

Figure 3.17: kNN queries, varying K , k = 2 neighbors, N = 50, 000

In Figure 3.17 we fix the number of neighbors k = 2 and vary the degree

of anonymity K . Again, NNC performs best, followed by HC and Casper.

The difference is more significant for larger K values, as the average size of

the K -ASR increases.

46

 0

 500

 1000

 1500

 2000

 2500

 3000

 50k 100k 150k 200k 250k 300k

N
um

be
r

of
 c

an
di

da
te

s

N

HC
NNC

IntervalCloak
Casper

(a) Number of candidates

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50k 100k 150k 200k 250k 300k

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(s

ec
)

N

HC
NNC

IntervalCloak
Casper

(b) Avg. processing time (sec)

Figure 3.18: kNN queries, varying N , k = 2, K = 80

Figure 3.18 shows the number of candidates and processing time for

varying N . Note that more users lead to higher density, thus smaller K -

ASRs. Consequently, the number of candidates and the average processing

time decrease with N .

47

 0

 1000

 2000

 3000

 4000

 5000

 20 40 60 80 100 120 140 160

N
um

be
r

of
 c

an
di

da
te

s

K

HC
NNC

IntervalCloak
Casper

(a) Number of candidates

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 40 60 80 100 120 140 160

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(s

ec
)

K

HC
NNC

IntervalCloak
Casper

(b) Avg. processing time (sec)

Figure 3.19: Range queries, N = 50, 000, varying K

We also evaluated the performance of the four techniques for range

queries. The results are presented in Figure 3.19 for varying K and N =

50, 000. Again, we observe a significant advantage of NNC over the other

techniques, while HC and Casper outperform IC in terms of both processing

cost and candidate set size. The trends for varying N are similar.

The previous results were obtained for rectangular K -ASRs. We also

48

 0

 500

 1000

 1500

 2000

 2500

 20 40 60 80 100 120 140 160

N
um

be
r

of
 c

an
di

da
te

s

K

Rectangle
SA

(a) Number of candidates

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100 120 140 160

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(s

ec
)

K

Rectangle
SA

(b) Avg. processing time (sec)

Figure 3.20: NNC , rectangular vs SA K -ASR, k = 2, N = 50, 000

investigated the effect of the SA (i.e., smallest area) optimization on query

processing. For a given K -ASR, if SA generates a circular range C, we em-

ploy CkNN to execute the corresponding kNN query. For our workload,

SA generated circular ranges for around 45% of the K -ASRs when K was

small, and up to 90% for large values of K. Figure 3.20 compares SA against

the rectangles-only approach for k = 2 neighbors and varying K. SA re-

49

 0

 200

 400

 600

 800

 1000

 1200

 50k 100k 150k 200k 250k 300k

N
um

be
r

of
 c

an
di

da
te

s

N

Rectangle
SA

(a) Number of candidates

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50k 100k 150k 200k 250k 300k

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(s

ec
)

N

Rectangle
SA

(b) Avg. processing time (sec)

Figure 3.21: NNC , rectangular vs SA K -ASR, k = 2, K = 80

duces the number of candidates by up to 18%, compared to the rectangular

K -ASR. The tradeoff is the increased processing time. The same relative

performance is observed in Figure 3.21, where we vary N .

50

3.7 Discussion

Our proposed anonymization algorithms are clearly superior compared to

the existing approaches. The HC algorithm provides privacy guarantees

under all user and query distributions, and its overhead in terms of ASR

generation time, query processing time and communication cost is similar

to Casper , the most recent and most efficient technique. On the other hand,

NNC clearly outperforms Casper in terms of overhead at the LBS, while

offering similar anonymity strength.

The LBS is likely to maintain huge volumes of data and disk-based data

structures, while the anonymizer typically uses memory-based data struc-

tures. For this reason, the query overhead at the LBS is considerably larger

than at the anonymizer (observe that time is measured in milliseconds in

Figure 3.13 instead of seconds in Figure 3.16b). Under these circumstances,

the reduced LBS processing cost offers NNC an important performance ad-

vantage, despite its increased K -ASR generation time.

The choice between Hilbert Cloak and Nearest Neighbor Cloak involves a

clear trade-off between privacy guarantees on one hand, and processing over-

head on the other. If provable anonymity guarantees are required, Hilbert

Cloak is the only option. Nevertheless, Nearest Neighbor Cloak also achieves

strong anonymity for most of the cases, and may be acceptable for appli-

cations where outliers do not constitute an anonymity threat (e.g., very

frequent user movement) and efficiency is crucial.

Finally, there is a tradeoff between rectangular-only K -ASRs and the SA

optimization. The cost of CkNN at the LBS is higher than RkNN. However,

CkNN reduces the number of candidates. Therefore, CkNN is preferable if

the communication cost is more important than the processing cost at the

LBS. In practice, this happens if a single anonymizer sends queries to several

LBSs. In this case the bandwidth of the single anonymizer is shared among

all connections. Thus, it is important to minimize the communication cost,

whereas the processing cost is distributed among the LBSs.

51

Chapter 4

Reciprocal Framework for

SKA

4.1 Introduction

In the previous chapter, we have introduced the reciprocity concept, a suf-

ficient condition to guarantee privacy for snapshot LBS queries. In this

chapter, we propose a general framework to implement reciprocity in con-

junction with a spatial index. We investigate several methods to group the

set of users into reciprocal partitions, which provide a trade-off between the

size of the resulting K -ASR, and the time required to generate it.

We also extend the reciprocity principle to address the scenario where

an attacker has additional background knowledge on the frequencies of gen-

erating queries for each LBS user.

4.2 Algorithm for Reciprocal Cloaking

We consider the architecture of Figure 1.3, where an anonymizer receives

queries from geographically distributed users, removes the user IDs, hides

their locations, and forwards the resulting ASRs to the LBS. Each query

has a required degree of anonymity K, which ranges between 1 (no privacy

requirements) and the user cardinality (maximum privacy).

The anonymizer indexes the user locations by a hierarchical (i.e., tree-

52

based) spatial index (e.g., R*-tree, Quad-tree, etc). Let U be the user issuing

a query. We propose a general spatial cloaking algorithm, called Reciprocal,

which traverses the tree and generates a reciprocal AS that contains U and

at least K -1 users in its vicinity. The resulting K -ASR is the area that

encloses all elements of the AS. Figure 4.1 illustrates the pseudo-code for

the reciprocal framework. Let N be the leaf node that contains U . Reciprocal

traverses the tree in a bottom-up fashion, starting from N . The important

observation here is that even if N contains enough (≥ K) points (we use

the term user and point interchangeably) for the anonymity requirements,

we still have to traverse the tree bottom-up (lines 1-2), if there is a node N ′

at the same level as N such that 0 < |N ′| < K, because N ′ may contain a

user U ′ whose AS includes U .

Reciprocal (query issuer U , anonymity degree K, node N)

//initially N is the leaf node containing U

1. while (∃ non-empty node at the same level as N with < K users)

2. N = N.parent //bottom-up traversal

3. while (N not leaf) and

(∀ child of N is either empty or contains ≥ K users)

4. N = child of N that contains U //top-down traversal

5. ASR = Partition(U,K,N)

Figure 4.1: Reciprocal Cloaking

Let AN be the ancestor of N when the bottom-up traversal stops. Each

node at the level of AN is either empty (non-balanced trees such as the

Quad-tree can have empty nodes at any level), or contains at least K users in

its sub-tree. This implies that the AS can be determined locally within AN

because all other queries (originating outside AN) do not need to include

users of AN in their AS. Having established that AN can autonomously

generate a K -ASR, Reciprocal traverses AN top-down towards U (lines 3-4)

as long as each sub-tree has at least K points1. Let PN be the node in

AN where the top-down traversal stops. PN includes U in its sub-tree and
1While bottom-up traversal considers the cardinality of all nodes at a level, top-down

only takes into account the cardinalities at a single path

53

some of its child nodes have fewer than K points. PN is called the partition

node, and corresponds to the lowest ancestor of U where we can achieve

reciprocity. This is because all nodes in the sub-tree of AN and at the level

of PN or above, contain at least K points, and thus can generate ASRs

without using any points in PN .

PN may contain numerous (À K) points, which is likely to yield very

large ASRs. The Partition routine (line 5) eliminates this problem by group-

ing these points into disjoint buckets. The users in the same bucket bU as

U form the AS for the query. As we will discuss in Section 4.3, several

partitioning methods can be used, provided that:

i. each bucket contains at least K and no more than 2K − 1 points.

The lower bound is due to the K -anonymity requirement. The upper

bound is due to the fact that if the cardinality of a bucket exceeds

2K − 1, the bucket can be split into smaller ones, each containing at

least K users.

ii. partitioning is independent of the query point, i.e., each user in the

node will generate exactly the same partitioning for the same K. This

property guarantees reciprocity.

After determining the AS, we form the ASR as the minimum bound-

ing rectangle (MBR) covering AS. Note that, the MBR may enclose some

additional users that are not in AS. Compared to the fixed cells of Casper

and Interval Cloak, MBRs adapt more effectively to the density around the

query, i.e., if the query lies in an area with numerous users, the ASR is likely

to be small. The disadvantage is that the MBR reveals the coordinates of

points on its boundaries. Furthermore, in case that there are K (or more)

users at the same location, the ASR may degenerate to a single point and

disclose the positions of these users. A simple way to overcome these prob-

lems is to superimpose a grid where the cell size corresponds to a pre-defined

anonymity resolution [49]. Then, the ASR sent to the LBS is the minimum

enlargement that aligns the MBR to the grid. For the following discussion

we omit this modification because the cell size depends on the application

requirements for the anonymity resolution. Furthermore, spatial cloaking

54

U4

U2 U3

(0,0)

(4,4)

(2,2)(0,2)

(0,3) (1,3)

(1,2)

(2,3)

(2,4)

U5

(1,4)

U1

(2,0)

(3,4)

(4,2)

U6

(0,1) (1,1)

(a) Partitioning at root level

U4

U2

U3

(0,0)

(4,4)

(2,2)(0,2)

(0,3) (1,3)

(1,2)

(2,3)

(2,4)

U5

(1,4)

U1

(2,1)

(2,0)

(3,2) (4,2)

U6

(3,0)

(4,1)

(b) Partitioning at leaf level

Figure 4.2: Partitioning with a Quad-tree

should be secure even if the attacker has complete knowledge of all the user

positions.

Reciprocal can be applied in conjunction with main-memory or disk-

based, and space-partitioning or data-partitioning indices. The following

example demonstrates Reciprocal on top of a Quad-tree. We will present

R*-tree examples in Section 4.3.

Example 4.1 (Quad-tree Cloak). Figure 4.2a illustrates an example where

6 clients are indexed by a Quad-tree (level 1 corresponds to the leaf cells).

Assume a query with K = 2 originating from U1. Since the cell 〈(0, 2), (1, 3)〉
of U1 already contains 2 clients, Casper (and Interval Cloak) would use it

directly as the ASR. This violates reciprocity because there are four level-

1 cells that contain a single point; e.g., a query with K = 2 from any of

these cells could include U1 in its AS. In contrast, Quad-tree Cloak (QC)

ascends to level 2, where there still exist non-empty cells (e.g. 〈(0, 0), (2, 2)〉)
with fewer than K users. Finally, QC reaches the root and sets AN =

PN = 〈(0, 0), (4, 4)〉. The same partition node is obtained for all users given

K = 2.

In the above query, PN contains 6 points, although only 2 are required

for the anonymity requirements. Partition groups these 6 points into buck-

ets of 2 or 3 (i.e. K to 2K − 1), and includes in AS the users from the same

bucket bU as U1. Assuming that AS = {U1, U2, U6}, the ASR is the shaded

55

MBR of Figure 4.2a. Figure 4.2b illustrates a second example, which in addi-

tion involves the top-down traversal phase. Given again a query with K = 2

from U1, the bottom-up traversal stops at level 2 with AN = 〈(0, 2), (2, 4)〉
because all non-empty cells at this level have at least 2 points. Further-

more, both non-empty children of AN , 〈(0, 2), (1, 3)〉 and 〈(1, 3), (2, 4)〉, also

include 2 points each. Therefore, QC descends to level 1 and sets the par-

tition node to PN = 〈(0, 2), (1, 3)〉. Since this cell contains only U1 and

U2, Partition returns directly the MBR of these users, without performing

grouping. In general, if |PN | < 2K, then there is a single bucket containing

all the points in PN .

Theorem 4.2. Reciprocal guarantees spatial K-anonymity.

Proof. We show that each AS generated by Reciprocal satisfies reciprocity,

by retracing the steps of the algorithm. The bottom-up traversal terminates

at an ancestor node AN such that each node at the level of AN is either

empty or contains at least K users. Therefore, no user in AN belongs to the

AS of any other user outside AN , and vice versa. The top-down traversal

determines a partition node PN , that satisfies similar conditions, i.e., each

sibling of PN (under the same parent) is either empty or has at least K

points in its sub-tree. Thus, an AS can be assembled locally in PN without

violating reciprocity. Finally, Partition generates buckets that by definition

obey reciprocity, since each bucket contains at least K users, and each query

with the same K from a user in PN will lead to exactly the same bucket.

A simple method for guaranteeing reciprocity could load all the points

and apply Partition(U,K, root), i.e., directly set AN = PN = root, without

performing bottom-up and top-down traversals. In fact, this is similar to

the relational K -anonymity (RKA) generalization techniques surveyed in

Section 2.1, except that SKA requires a single group (instead of the entire

anonymized table). Clearly, this approach would be inefficient because it

has to access all the user locations. Furthermore, it would probably be

ineffective (i.e., would lead to large ASRs), since it does not take advantage

of the existing grouping of users in the index nodes.

56

Reciprocal needs the cardinality of the node with the minimum number of

points per level. These numbers (i.e., one per level) can be explicitly stored

and updated when there is change in the tree structure. Alternatively, if

the index has a minimum node utilization M (e.g., R-trees), we can set the

minimum cardinality at level i to its lower bound M i (leaves are at level

1). This does not affect correctness, but may have a negative impact on

performance, if the actual minimum cardinality is significantly higher than

the lower bound. Furthermore, the top-down traversal requires the number

of points in each entry of an intermediate node (line 3). We assume that

this number is stored with the corresponding entry. Such structures are

called aggregate indexes, and have been used extensively in spatio-temporal

data warehouses [59]. Finally, note that, the location updates issued by the

users can be handled automatically by the corresponding algorithms of the

indices, without any effect on the anonymization process.

4.3 Partitioning Methods

Given a partition node PN , Partition (line 5 in Figure 4.1) splits the users

inside the sub-tree of PN into buckets containing between K and 2K − 1

users. In the sequel we discuss alternative partitioning algorithms. Sec-

tions 4.3.1 and 4.3.2 present two novel methods with different tradeoffs in

efficiency and effectiveness. Sections 4.3.3 and 4.3.4 adapt two RKA tech-

niques to our framework. Although all techniques can be used with any

spatial index, the examples assume an aggregate R*-tree (aR*-tree [59]),

i.e., an R*-tree where each intermediate node entry stores the total num-

ber of points in the corresponding sub-tree. The resulting implementation is

called R-Tree Cloak (RC). For ease of presentation, we assume that the min-

imum node cardinality per level i is M i, where M is the R*-tree minimum

node utilization (usually 40% of the node capacity).

4.3.1 Greedy Hilbert Partitioning (GH)

Let LN be the leaf node containing the query issuer. We first consider that

partitioning takes place at the leaf level, i.e., K ≤ M and PN = LN . Similar

to Hilbert Cloak (introduced in Section 3.4), GH sorts the points in LN

57

U3

U1

U2 U10

U9

U6

U8

U7

U5U4

Hilbert Curve

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

Buckets for K=3

Buckets for K=4

Leaf node LN

3-ASR

Buckets for K=5

for U , U , or U2 31

5-ASR
for U to U 106

Ranks: 1 2 3 4 5 6 7 8 9 10

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

U1 U2 U3 U4 U5 U7 U8 U9 U10U6

Figure 4.3: GH partitioning for (leaf) level 1

according to their Hilbert value. The Hilbert space filling curve transforms

the multi-dimensional coordinates of each user U into an 1-D value H(U).

Figure 4.3 illustrates the Hilbert curve for a 2-D space using a 8x8 space

partitioning. A point U is assigned the value H(U) of the cell that covers

it. If two users are near each other in the 2-D space, they are likely to be

close in the 1-D transformation. Given a query with required anonymization

degree K, GH assigns the first K points (in the Hilbert order) to the first

bucket, the next K points to the second bucket and so on. Following this

approach, each bucket contains exactly K users, except for the last one that

may include up to 2K − 1 users. Let rU be the rank of U in the Hilbert

order (1 ≤ rU ≤ |LN |). The bucket bU of U contains all clients whose ranks

are in the range [s, e], where s = rU − (rU − 1) mod K and e = s + K − 1

(unless bU is the last bucket).

Example 4.3. Figure 4.3 elaborates the application of GH to a leaf node

containing 10 users, whose IDs are ordered according to their Hilbert value.

Consider a query from U7 with K = 5. The rank of U7 is r(U7) = 7. The

bucket containing U7 starts at s = 7−6 mod 5 = 6 and ends at e = 10, i.e.,

it contains all users U6 to U10. Its ASR is the MBR (shaded rectangle at

the upper-right corner) covering the corresponding points. Any query with

K = 5 originating from these users will generate the same bU , AS and ASR,

thus, guaranteeing reciprocity. Note that, GH constructs on-the-fly only bU ,

as the remaining buckets are irrelevant to the query. Figure 4.3 illustrates

58

PN

...... ...

leaf level 1

... U

10

... ...

10 15 10 15

LN1 LN2
LN3 LN4 LN5

level 2

10 from LN1

Buckets for K=30

Buckets for K=20

2 3 5 from LN310 from LN 10 from LN 410 from LN 515 from LN

10 from LN1 210 from LN 315 from LN 45 from LN 45 from LN 515 from LN

...

...

...

potential bU

bU

Figure 4.4: GH partitioning for level 2

another ASR (shaded rectangle at the lower-left corner) for a query with

K = 3 originating from one of U1 to U3.

In case that partitioning takes place above the leaf level, GH could simply

load the entire sub-tree of the partition node PN and compute bU (and its

ASR) as above, which would be similar to using Hilbert Cloak. However,

this process is not necessary since we only need bU (and not the other buckets

at this level). Figure 4.4 shows an example, assuming that the query issuer

U is in leaf node LN4. The leaves are numbered according to their Hilbert

order in the parent PN ; specifically, each node is assigned the Hilbert value

of the cell that covers its center in the data space defined by the MBR of

PN . The cardinality of each leaf node is shown in the corresponding entry

of PN .

If K = 30, the bucket bU includes 5 users from LN3, 10 users from LN4

and 15 users from LN5. The nodes that must be accessed for generating bU

are LN4, PN , and LN3. Inside LN3, only the 5 last users in the Hilbert

order (in the data space defined by the MBR of LN3) contribute to bU , while

the rest are assigned to the first bucket (not computed). Note that, since

the entire LN5 is included in bU , the node is not visited, but its MBR is

simply merged to that of the bucket. In some cases the leaf node containing

U may fall on the boundary between two buckets. In Figure 4.4, if K = 20,

the first 5 users of LN4 are assigned to the second bucket, and the remaining

59

to the third one. Depending on the position of U in the Hilbert order, either

of these two buckets constitutes bU .

Figure 4.5 illustrates the general GH method. First, GH computes the

extent of the bucket bU that contains U . Recall that this requires the rank

of U in the Hilbert order of N . The function compute rank performs this

computation in a recursive manner. Specifically, rU is the rank of U in LN

plus the sum of cardinalities of all nodes that precede the ancestors of U in

the path from LN to PN . For instance, if K = 30 in Figure 4.4, then rU

is the rank of U among the points of LN4 plus the cardinalities of LN1 to

LN3. Once bU has been determined, all leaf nodes that contribute points

to bU participate in the ASR construction through the merge function. The

merging process is also recursive. Specifically, if an entry E is totally in-

cluded within the bucket, it causes the replacement of the ASR with a larger

one, whose maximum (minimum) coordinate on each axis is the maximum

(minimum) between the corresponding coordinates of E and the original

ASR. If E is only partially included, we have to read its contents and repeat

this process; there can be at most two such entries per level.

GH involves accessing only (i) the nodes from the path LN to PN (i.e.,

one node per level) and (ii) leaf nodes that are partially (but not totally)

included in bU (i.e., at most two nodes). The first set of nodes is used for

the computation of rU . Other intermediate nodes are not necessary since

their contribution to rU is determined by their cardinalities, which are stored

with their parent entries (lines 13-14). Furthermore, leaf nodes that do not

intersect bU are ignored, whereas the MBRs of those totally included in bU

are directly aggregated in the ASR.

For index structures that impose a minimum occupancy constraint M ,

such as the R-tree, the PN node is situated at height at most dlogM Ke. At

each level below the PN node, at most two nodes are accessed, hence the I/O

cost is O(logM K). The computation complexity of GH includes: (i) sorting

of entries according to Hilbert values (line 8 in Figure 4.5) in each accessed

node, which takes O(M · log2 M · logM K), (ii) computation of bucket extent

(lines 3-5) which has O(1) cost, and (iii) determining the ASR extent (17-23)

with O(M · logM K) cost. Therefore, the overall computational complexity

is O(M · log2 M · logM K).

60

GH-partitioning(query issuer U , anonymity degree K, partition node PN)

1. ASR = ∅
2. rU = compute rank(PN, 0)

3. s = rU − (rU − 1) mod K ; e = s + K − 1 // extent of bU

4. if |PN | − e < K // bU is the last bucket

5. e = |PN |; s = e− (e mod K)−K + 1

6. for each entry E of PN intersecting bU = [s, e] //E is point or node

7. ASR = merge(E, ASR)

compute rank(N , rU)

8. list = entries of N sorted in Hilbert order

9. if N is leaf node

10. rU = rU+ position of U in list

11. else // N is an internal node

12. let E be the entry that contains U

13. for each entry E′ before E in list

14. rU = rU + |E′|
15. rU = compute rank(E, rU)

16. return rU

merge(E, ASR)

17. if E is totally included in bU = [s, e]

18. for each dimension d

19. ASRd−min = min(ASRd−min, Ed−min)

20. ASRd−max = max(ASRd−max, Ed−max)

21. else // E intersects but is not included in bU

22. for each entry E′ of E that intersects bU = [s, e]

23. ASR = merge(E′, ASR)

Figure 4.5: Greedy Hilbert - general method

61

4.3.2 Asymmetric R-tree Split (AR)

The AR partitioning method is inspired by the R*-tree construction algo-

rithm2, which is known to have good locality properties. A straightforward

approach is to apply the R*-split [13] on the partition node, after setting the

minimum node utilization to K. Specifically, R*-split first sorts all points by

their x-coordinates. Then, it considers every division of the sorted list in two

nodes N , N ′ so that each node contains at least K points, and computes

the perimeters of N and N ′. The overall perimeter on the x-axis equals

the sum of all the perimeters. The process is repeated for the y-axis, and

the axis with the minimal overall perimeter becomes the split dimension.

Subsequently, R*-split examines again all possible divisions on the selected

dimension, and selects the one that yields the minimum overlap between

the MBRs of the resulting nodes. The split is recursively applied on each

partition with more than 2K − 1 users.

R*-split has some shortcomings with respect to the problem at hand.

First it attempts to minimize factors such as perimeter and overlap of the

resulting nodes, whereas we aim at minimizing the ASR area. Even if we

modify the algorithm to consider only the ASR area, R*-split can still lead

to fragmentation, i.e., a split may create partitions with a large number of

redundant users, such that no subsequent splits are possible. As an example,

consider that we want to partition the 6 points of Figure 4.6a into buckets, so

that each bucket contains at least K=2 users. The split point that minimizes

the sum of resulting areas is x=C, which eliminates the largest gap (i.e., dead

area) between partitions P1 and P2. No further split can be performed, since

each new node contains 3 users.

To address the problem of fragmentation, AR takes into account both

the area and the cardinality of the resulting partitions. Specifically, AR

generates partitions P1 and P2 that minimize the objective function:

[ASR(P1) + ASR(P2)] · |P1| · |P2| (4.1)

subject to the constraint that |P1| and |P2| are at least K. AR favors un-

balanced splits, which are desirable, since they achieve low fragmentation.
2Although AR is inspired by R*-tree, the method can be used on top of any spatial

index including the Quad-tree (see experimental evaluation).

62

20

10

615141302010

CP1 P2

U4

U3

U2

U5

U1

30
U6

40

(a) R∗-split

C1 C2P 1 P 3P 2

20

10

615141302010

U4

U3

U2

U5

U1

30
U6

40

(b) AR

Figure 4.6: R*-tree split vs AR

Continuing the example in Figure 4.6b, any of the split points C1 or C2 would

yield split cost (200+620) ·2 ·4 = 6560, compared to 2 ·400 ·3 ·3 = 7200 gen-

erated by C. Hence, AR would split on either C1 or C2, and subsequently

allow a second split, resulting in three ASRs, with a total weighted ASR

area of 2 · (200 + 110 + 200) = 1020, compared to 2400 for R*-split.

Figure 4.7 shows the pseudocode for AR. Lines 6-15 of compute ASR(U,N)

identify the best split point (according to the objective function) for split-

ting node N by looping over all dimensions and split points in the range

K to |N | − K. Let listsplit dim be the list of points sorted on the split

dimension. The position of U in listsplit dim determines the partition N ′

that contains it. If U is before split point, then N ′ includes all points of

listsplit dim in the range [1, split point]. Otherwise, N ′ includes all points in

the range [split point+1, |listsplit dim|]. In either case, N ′ is split recursively.

Note that the other partition of N is not split as it is not necessary for the

computation of bU .

Similarly to GH, if an index with minimum node occupancy is used, the

PN node is situated at height at most dlogM Ke. However, this time all

nodes under PN need to be accessed, with an I/O cost of O(1 + M + M2 +

. . . + Mα) where α = dlogMKe, which equals to O(K). The computation

complexity of AR is a function of K and |PN |: at each split of a partition

P with more than 2K − 1 points, a sorting phase is employed, with cost

|P | · log|P |. In the worst case, each split is unbalanced, and yields two

partitions with cardinalities |P |−K and K; the former is split further, until

63

AR (query issuing user U , anonymity requirement K, partition node PN)

1. load all points in PN

2. compute ASR(U,PN)

compute-ASR(U , N)

3. if |N | < 2K

4. return MBR(N)

5. min split cost = inf

6. for d = 1 to #dimensions // for each dimension

7. listd = sort points according to d coordinate

8. for point = K to |N | −K

9. P1 = listd[1..point]

10. P2 = listd[point + 1..|listd|]
11. split cost = [ASR(P1) + ASR(P2)] · |P1| · |P2|
12. If split cost < min split cost

13. min split cost = split cost

14. split point = point

15. split dim = d

16. if rank(U) in listsplit dim ≤ split point

17. N ′ = points in listsplit dim[1 . . . split point]

18. else // U is in the second node of the split

19. N ′ = points in listsplit dim[split point + 1 . . . |listsplit dim|]
20. return compute ASR(U,N ′)

Figure 4.7: Asymmetric R-tree Split (AR)

it has less than 2K points. The complexity is:

|PN |/K∑

i=2

(iK) log iK = K

|PN |/K∑

i=2

i(log i + log K)

 = O

(|PN2|
K

log |PN |
)

(4.2)

4.3.3 Dynamic Programming Hilbert (DH)

DH is an adaptation of the RKA method proposed in [30]. We use DH as

a benchmark in our experimental evaluation, as well as a case study that

64

U
3

U
1

U
2 U

10

U
9

U
6

U
8

7

U
5

U
4

U

(a) GH Partitions

U
3

U
1

U
2 U

10

U
9

U
6

U
8

U
7

U
5

U
4

(b) DH Partitions

Figure 4.8: GH and DH partitions for K=4

demonstrates the versatility of our framework. DH is motivated by the fact

that greedy selection may generate sub-optimal buckets. Figure 4.8a shows

the GH partitioning for K = 4 and the leaf node contents of Figure 4.3.

Observe that the MBR of the second bucket (containing U5 to U10) is rather

large. The problem is caused by U5, which would be better grouped with

the points of the first bucket. DH applies dynamic programming to find

the best clustering, given the Hilbert order. For instance, in Figure 4.8b

DH would include U5 in the first bucket since the small increase of its MBR

is compensated by the large decrease in the ASR of the second bucket.

The sum over all ASR areas multiplied by their cardinality is an estimation

of effectiveness (i.e., ASR processing cost at the LBS). Hence, we aim at

minimizing the total weighted ASR area:

WASR =
∑

∀ASRA

area(A) · |A| (4.3)

DH first loads all the data points of the partition node PN and sorts

them. Let e be a position in the Hilbert order. WASRmin(e) is the optimal

weighted sum of ASR areas (of all buckets), when the first e points have

been partitioned. ASR(s, e) is the area of the MBR containing all points

between positions s and e (s < e). The intuition behind DH is that the total

weighted area of the best partitioning equals the minimum sum of (i) the

total weighted area of the best partitioning for the first s users plus (ii) the

ASR of the last bucket, containing the remaining |PN |−s points, multiplied

65

by its cardinality. Formally:

WASRmin(|PN |) = min
|PN |−2K<s≤|PN |−K

WASRmin(s)+

(|PN | − s) ·ASR(s + 1, |PN |)

(4.4)

The range |PN | − 2K < s ≤ |PN | − K is due to the fact that each

bucket must include between K and 2K − 1 users. The expression above

can be calculated by Dynamic Programming. Because each bucket can have

up to 2K − 1 users, the computation complexity of Dynamic Programming

becomes O(K · |PN |). DH needs to load all points inside PN . Therefore,

the I/O cost is O(K) (i.e., the same as AR).

4.3.4 Top-Down Clustering (TD)

For completeness, our evaluation includes one more recent method from the

RKA literature as a benchmark. Specifically, we adapt Top Down (TD),

a divisive clustering-based approach that builds anonymized groups with

cardinality bounded between K and 2K − 1 [66]. The adaptation works

as follows. Once the partition node PN has been determined, all points of

PN are loaded and form one large cluster. TD chooses as seeds two of the

most distant points (through an approximate, iterative, linear technique)

and divides the cluster among the seeds, so that the extents of the resulting

clusters are minimized. The process is repeated recursively for all resulting

clusters with cardinality 2K or higher. After completion of this step, some

clusters (called runts) may have fewer than K items. To preserve the K -

anonymity requirement, a runt may either be merged with another runt, or

borrow points from one of the clusters with more than K items. The algo-

rithm terminates when all clusters have at least K items. TD has O(|PN |2)
computation complexity and O(K) I/O cost.

4.3.5 Discussion

The proposed partitioning techniques provide different tradeoffs of efficiency

and effectiveness. At one end, GH (which is very localized) is fast in terms

of both I/O and CPU cost, but may yield large ASRs. At the other end,

AR, DH and TD are more expensive, since they have to read the entire

66

sub-tree of PN and perform CPU-intensive computations, but they usually

yield smaller ASRs. The choice of partitioning technique depends on the

application characteristics. If, for instance, the anonymizer charges clients

according to their usage, and the LBS is a public service, it may be preferable

to use GH. On the other hand, if the LBS imposes limitations (e.g., on the

number of results, processing time, etc) AR (or DH, TD) is a better choice.

In Section 4.5 we experimentally evaluate these tradeoffs.

4.4 SKA With Variable Query Frequencies

So far, we assumed that every user may issue a query with equal probability.

However, in practice, the query frequency distribution among users can be

skewed. For instance, a taxi driver may issue numerous queries due to the

nature of his occupation. In this section, we extend the reciprocal framework

to variable query frequencies. Assuming the worst case scenario, we consider

that the attacker knows the query frequencies of all users (e.g., by obtaining

billing records).

The definition of SKA is the same as for uniform query frequencies,

but the reciprocity property as discussed so far is not sufficient to guarantee

SKA. Assume AS={U1, U2, . . . , UK}, with user query frequencies F1, F2, . . . ,

FK , and that U1 has twice the query frequency of the other users in AS.

Even if AS satisfies reciprocity, based on the knowledge of frequencies, an

attacker can pinpoint U1 as the query source with probability F1/(F1 +

F2 + . . . + FK) = 2/(K + 1) > 1/K for all values of K > 1. If a query

has anonymity degree K, in order to preserve SKA it is necessary that,

Fi/(F1+F2+. . .+FK) ≤ 1/K, ∀Ui ∈ AS. Below, we generalize the reciprocity

requirement to incorporate information about query frequencies:

Definition 4.4 (Frequency-Aware Reciprocity (FQR)). Consider a user U

with query frequency F issuing a query with anonymity degree K, anonymiz-

ing set AS = {U1, U2, . . . , U|AS|}, and anonymizing spatial region ASR. AS

satisfies the frequency-aware reciprocity (FQR) property if (i) it contains U ,

(ii) every Ui ∈AS generates the same anonymizing set AS for the same value

of K and (iii) ∀Ui ∈ AS, it holds that Fi/(F1 + F2 + . . . + F|AS|) ≤ 1/K.

67

An immediate consequence of condition (iii) is that K · Fmax ≤ (F1 +

F2 + . . . + FN), where Fmax is the maximum query frequency of any user

in AS. Note that, the reciprocity property discussed in the previous sec-

tions is a special case of FQR where all users have equal query frequency.

The reciprocal framework can be extended to achieve FQR by incorporat-

ing frequency-related information. Assume frequency is represented as the

number of queries issued by each user in a previous time interval. For each

sub-tree, i.e. internal index node N , we store the sum of frequencies F

of users rooted at N , together with the maximum frequency Fmax in the

sub-tree. N can accommodate by itself any query with K < F/Fmax. The

Reciprocal algorithm of Figure 4.1 remains the same, except from line 3,

which changes to:

3. while (N not leaf) and (∀ child of N is empty or has K < F/Fmax)

Figure 4.9: Reciprocal Cloaking Change for Variable Frequency

Next, we discuss how GH can be extended to accommodate FQR. Re-

call that, after the partition node PN has been determined, GH sorts the

points according to Hilbert values, and creates buckets that contain at least

K consecutive points. In the case of Frequency-Aware GH (FQGH), each

point (i.e., user) is conceptually replicated a number of times equal to its

query frequency. Hence, each point appears multiple times in the Hilbert

sequence, although it is physically stored only once in the index, along with

its frequency. The resulting sequence is split into buckets of K · Fmax each,

where Fmax is the maximum frequency that occurs in PN .

Example 4.5. Figure 4.10 illustrates the application of FQGH: each node

stores the additional frequency information. At the level 2 PN node, the

total number of queries in the sub-tree is F = 28, whereas Fmax = 7. Assume

a query with K = 2: the splitting into buckets is performed with respect to

K · Fmax = 2 · 7 = 14, and buckets B1 and B2 are obtained.

Since the split is performed with respect to frequencies, it is possible for

a user to belong to more than one bucket. However, since the bucket size

is at least K · Fmax, it is straightforward to show that a user can belong

to at most two buckets. Assume that querying user U contributes with a

68

PN

leaf level 1

U

7 4 11 6

LN1 LN2 LN3 LN4

level 2

F=28, Fmax=7

U
2

UU U U U U U U U
2 3 1 2 1 2 2 3 1 2

3 4
7

U

Bucket B (14)

1 2 3 4 5 6 7 8 9 10 11 12

Bucket B (14)
1 2

Figure 4.10: FQGH partitioning, K=2

fraction p of its queries to B1, and (1−p) to B2. Then, B1 will be chosen as

ASR with probability p, and B2 with (1−p). In Figure 4.10, U7 contributes

with 3/7 of its points to B1, and 4/7 to B2; hence, if U7 issues a query with

K = 2, the respective generation probabilities for the two buckets are 0.43

and 0.57.

Similar to GH, FQGH only needs to access at most two leaf nodes for

each query, therefore it is efficient. Furthermore, the Hilbert sorting is per-

formed based on user locations, and it is oblivious to the query frequencies;

hence, the complexity of FQGH is similar to that of GH. AR, DH and TD

can be extended to accommodate FQR in a similar manner. However, in

practice, query frequency distribution is expected to be skewed, in which

case partitioning techniques that require the retrieval of the entire PN sub-

tree (e.g., AR, DH, TD) are not practical because a much larger number of

users than K are required to achieve SKA. We experimentally verify this

claim in the next section.

69

4.5 Experimental Evaluation

We implemented a C++ prototype of the anonymizer and deployed it on

an Intel Xeon 2.8GHz machine running Linux OS. The anonymizer in-

dexes the user locations, which are taken from the NA dataset (available

at www.rtreeportal.org) containing 569k intersections of the North Amer-

ican road network. K ranges from 10 to 1, 000. In each experiment, we

generate 1, 000 queries originating at random users. Effectiveness is mea-

sured as the average ASR area, expressed as a percentage of the entire

data space. Efficiency is measured in terms of average ASR generation

time. The average cost per random I/O is 5ms. For I/O efficiency, we

implemented Quad-trees using linear representation [2], which is easily em-

beddable into B+-trees. Section 4.5.1 evaluates the partitioning methods

of Section 4.3. Section 4.5.2 compares R-tree Cloak (RC) and Quad-Tree

Cloak (QC) against Hilbert Cloak [39], the only existing method which is

reciprocal (hence secure). In Section 4.5.3 we address the variable query

frequency scenario.

4.5.1 Evaluation of Partitioning Techniques

First, we consider the RC implementation of Reciprocal and compare differ-

ent partition methods (i.e., GH, AR, DH and TD). Figure 4.11 illustrates

the ASR area and generation time as a function of K, using a fixed page

size of 4KB. AR has the clear advantage in terms of ASR area, while GH

and DH both outperform TD. In terms of generation time, GH is consid-

erably faster. Note that generation time exhibits a jump after K = 80 for

all methods except GH. For the 4KB page size, the minimum occupancy of

the underlying R*-tree index is 85. Hence for K ≤ 85, ASRs are generated

within one leaf node (at level 1). As K increases beyond this threshold,

the ASR is created in a partition node PN at level 2. GH retrieves only a

small number of leaf nodes (under PN). On the other hand, AR, DH and

TD need to scan the entire sub-tree of PN , leading to significantly more

I/Os. Furthermore, the processing time, which is a function of the input

size, increases accordingly. For a fixed number of data points under PN ,

the generation time of AR decreases with larger K because the number of

70

 0

 0.02

 0.04

 0.06

 0.08

 0 200 400 600 800 1000

K

ASR Area (%)
RC-GH
RC-DH
RC-AR
RC-TD

(a) Area

 0

 1

 2

 0 200 400 600 800 1000

K

Generation Time (sec)
RC-GH
RC-DH
RC-AR
RC-TD

(b) Time

Figure 4.11: R-tree Cloak (RC). Partitioning methods versus K

splits drops (i.e., there are fewer, larger buckets). On the other hand, the

cost of DH increases linearly with K. TD is expensive for partitioning at

level 2 (in some cases up to 100 sec per query) and omitted for K > 80.

71

 0

 0.02

 0.04

 0.06

 0.08

 0 200 400 600 800 1000

K

ASR Area (%)
QC-GH
QC-DH
QC-AR
QC-TD

(a) Area

 0

 4

 8

 12

 16

 0 200 400 600 800 1000

K

Generation Time (sec)
QC-GH
QC-DH
QC-AR
QC-TD

(b) Time

Figure 4.12: Quad-tree Cloak (QC). Partitioning methods versus K

Figure 4.12 repeats the same experiment for the Quad-tree (QC) imple-

mentation of Reciprocal. While the ASR area is similar to RC, the generation

time is considerably higher for QC, due to the lack of balance in the index

structure, resulting in a large number of points under the PN node.

72

 0

 0.01

 0.02

 0.03

 1000 2000 3000 4000 5000 6000 7000 8000

Page Size

ASR Area (%)

RC-GH
RC-DH
RC-AR
RC-TD

(a) Area

 0

 2

 4

 6

 8

 10

 12

 1000 2000 3000 4000 5000 6000 7000 8000

Page Size

Generation Time (sec)

RC-GH
RC-DH
RC-AR
RC-TD

(b) Time

Figure 4.13: RC versus page size

In Figure 4.13 we vary the page size, and measure the ASR area and

generation time for RC, when K = 400. As the page size increases, ASRs

need to span across fewer leaf nodes. Therefore, we expect the effectiveness

to improve, as the good locality properties of the underlying R*-tree index

are better exploited. For page sizes from 2 to 8KB, this is indeed the case.

However, at the transition from 1 to 2KB, GH and DH exhibit an increasing

trend because, for 1KB page size, the K = 400 setting coincides with the

minimum occupancy at level 2. Hence, a point of convergence occurs, which

helps GH and DH to obtain smaller ASRs. A larger page size also trans-

lates into increased generation time, as the cardinality of the partition node

73

increases. TD is very expensive for sizes exceeding 2KB (for 8KB page size,

it needs 400sec per query). The cost of AR grows faster than that of DH

due to the recursive splits. GH is rather insensitive to the page size since it

computes a single bucket, independently of node cardinality.

 0

 0.01

 0.02

 1000 2000 3000 4000 5000 6000 7000 8000

Page Size

ASR Area (%)

QC-GH
QC-DH
QC-AR
QC-TD

(a) Area

 0

 2

 4

 6

 8

 10

 12

 1000 2000 3000 4000 5000 6000 7000 8000

Page Size

Generation Time (sec)

QC-GH
QC-DH
QC-AR

(b) Time

Figure 4.14: QC versus page size

Figure 4.14 shows the same experiment for QC. Observe that the page

size does not affect the ASR area, since construction only depends on the

Quad-tree hierarchy. On the other hand, a larger page increases the occu-

pancy of leaf nodes, and reduces the I/O cost, as shown in Figure 4.14b (TD

is omitted due to very high values).

Summarizing, among the various local partitioning techniques GH is the

74

method of choice when the priority is efficiency. On the other hand, AR is

the best technique in terms of effectiveness. DH offers a trade-off between

the two: it obtains smaller ASR area than GH, and it is usually faster than

AR. The performance of TD is unsatisfactory, as it is extremely expensive

while producing ASRs with quality comparable to GH. Regarding the R-

tree and Quad-tree implementations, they offer similar ASR areas, but RC

is more efficient. Based on the above, RC-GH is the method of choice for

efficiency (e.g., when the anonymizer charges clients according to their usage

and the LBS is a public service) and RC-AR the winner when effectiveness

is more important (e.g., free anonymizer service and expensive LBS). Next,

we compare RC-GH and RC-AR against Hilbert Cloak (HC).

75

4.5.2 Comparison with Hilbert Cloak (HC)

 0

 0.02

 0.04

 0.06

 0.08

 0 200 400 600 800 1000

K

ASR Area (%)
RC-GH
QC-GH

HC

(a) Area

 0.01

 0.1

 1

 0 200 400 600 800 1000

K

Generation Time (sec)

RC-GH
QC-GH

HC

(b) Time

Figure 4.15: RC-GH and RC-AR versus HC

Figure 4.15 shows the relative performance of RC-GH, RC-AR and HC.

RC-GH is slightly better than HC in terms of ASR size and up to one

order of magnitude faster, as can be observed from the log-scale graph in

Figure 4.15b. Although HC applies a Hilbert sorting method similar to RC-

GH and does not incur the overhead of finding the PN node, it still needs

to retrieve from the disk O(K) leaf entries. In contrast, RC-GH, which

maintains MBR information in the internal nodes, only needs to access two

leaf nodes per query. Note that the RC-GH generation time exhibits an

initial increase with increasing K, as the PN node moves from the leaf

level to level 2. RC-AR generates significantly smaller ASRs, but it is much

slower than both RC-GH and HC.

76

4.5.3 Variable Query Frequencies

 0

 100

 200

 300

 400

 0 200 400 600 800 1000

K

Page Accesses
RC
QC

(a) Area

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

K

PN Points (*10000)

RC
QC

(b) Time

Figure 4.16: PN overhead for variable query frequency

As discussed in Section 4.4, local partitioning methods that require load-

ing the entire PN node (e.g., AR, DH, TD) are not I/O and CPU efficient,

when the query frequency distribution is skewed. We support our claim with

an experiment which measures the I/O cost to retrieve the PN node, and

the number of points included in PN . We generated 1, 000 queries, each as-

signed to a user according to the zipf distribution with parameter 0.8. Page

size is 4KB. The results are shown in Figure 4.16. Due to its unbalanced

structure, QC incurs higher I/O cost than RC, and it requires retrieving

the entire dataset for values of K > 600. Although RC incurs less I/O,

77

for K > 800, PN corresponds to the root node of the index; therefore, all

points need to be retrieved. Consequently, AR, DH and TD are impractical

for skewed frequency distribution.

 0

 0.1

 0.2

 0.3

 0 200 400 600 800 1000

K

ASR Area (%)
RC-Cst

RC-Unif
RC-Zipf
HC-Cst

HC-Unif
HC-Zipf

(a) Area

 0

 0.1

 0.2

 0 200 400 600 800 1000

K

Generation Time (sec)

RC-Cst
RC-Unif
RC-Zipf
HC-Cst

HC-Unif
HC-Zipf

(b) Time

Figure 4.17: RC-FQGH versus HCf

Next, we evaluate RC-FQGH, which is feasible for skewed query distri-

butions because it does not retrieve the entire PN sub-tree. For comparison,

we use a frequency-aware variant of HC (called HCf), which is similar to

RC-FQGH, except that partitioning is applied to the entire user set, as op-

posed to the PN node. We consider 1, 000 random queries with constant

(Cst), uniform (Unif) and zipf-0.8 distribution (Zipf). Figure 4.17 shows

that, guaranteeing privacy for variable query frequency comes at an addi-

78

tional increase in ASR size, which grows with the skewness of the frequency

distribution. RC-FQGH is slightly better in terms of ASR area. On the

other hand, the advantage of the reciprocal framework is clear in terms of

generation time, where RC-FQGH is much faster than HCf for all query

distributions.

4.6 Discussion

Our proposed reciprocal framework for spatial K -anonymity offers a sys-

tematic methodology to enforce SKA on top of index structures which are

already wide-spread in LBS applications. The framework is versatile, and

allows a broad range of partitioning techniques: GH offers excellent effi-

ciency, with an ASR generation time up to one order of magnitude faster

than competitor methods. GH is the ideal choice if the anonymizer service

has limited resources, and handles a large number of queries.

In terms of ASR effectiveness, AR is the method of choice, obtaining

ASRs with roughly 50% the area of those obtained by GH. In scenarios

where the LBS is the bottleneck, or quotas/charges are imposed on users

based on the amount of LBS processing incurred, AR is preferred.

For the variable query frequency setting, the frequency-aware flavor of

GH (FQGH) outperforms the only existing reciprocal (i.e. secure) anony-

mization method - Hilbert Cloak - by up to one order of magnitude in terms

of efficiency, with similar ASR extent.

As stated in the assumptions from Section 2.2, we only employ SKA for

a snapshot of user locations. In this setting, our proposed reciprocal frame-

work guarantees user privacy. However, in the case of continuous queries, an

attacker can correlate information from ASRs generated at different times-

tamps in order to expose the querying user. Later in Section 6 we will

propose a private information retrieval protocol which guarantees privacy in

the case of continuous queries as well.

79

Chapter 5

Decentralized Query

Anonymization

5.1 Introduction

So far, most existing approaches utilized the centralized architecture of Fig-

ure 1.3, where a trusted anonymizer server acts as an intermediate tier be-

tween the users and the LBS. All users subscribe to the anonymizer and con-

tinuously report their location while they move. Each user sends his query

to the anonymizer, which constructs the appropriate K -ASR and contacts

the LBS. The LBS computes the answer based on the K -ASR, instead of

the exact user location; thus, the response of the LBS is a superset of the

answer. Finally, the anonymizer filters the result from the LBS and returns

the exact answer to the user.

A centralized anonymizing service has the following shortcomings (i) The

anonymizer server is a bottleneck due to handling query requests, frequent

updates of user locations and result post-processing. (ii) The anonymizer

is a single point of failure; the system cannot function without it. (iii)

The complete knowledge of the locations and queries of all users is a serious

security threat, if the anonymizer is compromised. Even if there is no attack,

the centralized anonymizer may be subject to governmental control, and

may be banned or forced to disclose sensitive user information (similar to

the legal case of the Napster file-sharing service).

80

In this chapter, we propose distributed architectures for anonymous

location-based queries, which address the problems of centralized solutions.

Mobile users self-organize into a P2P overlay network, and cooperate to as-

semble K -ASRs. The bottleneck of the centralized server is avoided. More-

over, since the state of the system is distributed in many users, distributed

solutions are resilient to attacks.

Our specific contributions are two P2P systems: (i) In Section 5.2, we

introduce Privé, a hierarchical P2P network that implements the Hilbert

Cloak algorithm presented in Section 3.4. The structure of Privé resembles

a distributed B+-tree (each mobile user corresponds to a data point), with

additional annotation to support efficiently the Hilbert-based K -ASR con-

struction. Privé offers privacy guarantees for snapshot LBS queries, but

it may exhibit slow response time under heavy load, due to its hierarchical

organization. (ii) In Section 5.3, we present the MobiHide P2P network,

which employs a randomized version of Hilbert Cloak : MobiHide does not

enforce reciprocity, hence it does not offer privacy guarantees under all sce-

narios. Nevertheless, we show that it provides strong privacy in practice,

and its scalability is clearly superior to Privé. Therefore, our two decen-

tralized solutions offer a trade-off between privacy guarantees and system

scalability.

5.2 Privé

Figure 5.1 depicts the architecture of Privé. We assume a large number of

users who carry mobile devices (e.g., mobile phones, PDAs) with embedded

positioning capabilities (e.g., GPS). The devices have processing power and

access the network through a wireless protocol such as WiFi, GPRS or 3G.

Moreover, each device has a unique network identity (e.g., IP address) and

can establish point-to-point communication (e.g., TCP/IP sockets) with any

other device in the system through a base station (i.e., the two devices do

not need to be within communication range of each other). For security

reasons, all communication links are encrypted.

In addition, we assume the existence of a trusted central Certification

Server (CS), where users are registered. Prior to entering the system, a

81

u0
u1

u2

u4

Certification
Server

Location-Based Service

u5

u6

u3

u7

u8

u9

C1

C2

C3

C4

Pseudonym
services

...

Figure 5.1: Architecture of Privé

user u must authenticate against the CS and obtain a certificate. Users

having a certificate are trusted by all other users. Typically, a certificate is

valid for a few hours; it can be renewed by recontacting the CS. Apart from

the certificate, the CS returns to u the IP addresses of some users who are

currently in the system. u uses this list to identify an entry point to the

distributed network. Note that the CS does not know the locations of the

users and does not participate in the anonymization process. Therefore the

workload of the CS is low (i.e., no location updates); moreover, it does not

store any sensitive information.

Each user corresponds to a peer. Peers are grouped into clusters, ac-

cording to their location. Within each cluster, peers elect a cluster head,

and the set of heads is grouped recursively to form a tree. To achieve load

balancing, the cluster heads are rotated in a round-robin manner. By defi-

nition, cluster heads belong to multiple levels of the tree. In Figure 5.1, for

instance, there is a two-level hierarchy, where users u2, u3, u8 are the heads

of cluster C1, C2 and C3, respectively; also, u8 is the head of the upper layer

cluster C4.

Assume user u1 asks a query. u1 initiates a distributed procedure to

build a K -ASR, in cooperation with other users (the details of the protocol

82

are presented in Section 5.2.3). Once the K -ASR is ready, u1 needs to send

it to the LBS. In order to hide his IP address, u1 uses a pseudonym. To

obtain a pseudonym, any existing service for anonymous web surfing can be

used1.

Note that the pseudonym service does not know the location of any user.

Moreover, the auxiliary users inside the K -ASR collaborate only to hide the

location, but do not know the exact query of u1; therefore, a single point of

attack is avoided.

5.2.1 Hilbert Cloak with a B+-tree index

In Section 3.4, we have described the details of the Hilbert Cloak algorithm,

and mentioned that it can be efficiently implemented with any type of an-

notated index structure. The index must efficiently support the K -ASR

formation operation, which boils down to determining the start and end

values for a certain bucket, as given by eq. (3.1).

In Privé, we use an annotated B+-tree (similar to the aR-tree [51]),

which stores the number of leaf nodes in each of its subtrees.

Example 5.1. Figure 5.2 shows the application of Hilbert Cloak with an

annotated B+-tree index. For each internal node entry e, we store the num-

ber of leaf entries that are rooted at e; annotation counters are shown in

parentheses. Assume we want to determine a K-ASR for entry 37, with

K = 6. First, we compute the rank of entry 37 (Figure 5.2a): we follow the

path in the tree from root to the leaf that contains 37, and at each internal

node we add to the rank value the sum of all counters in the node situated

at the left of the followed pointer. At the leaf layer, we add to the rank the

local rank value of key 37 in its leaf, and obtain rank 8 (ranks start from

0). Then, we calculate the bucket delimiters using eq. (3.1), and obtain the

interval [6..11]. Next (Figure 5.2b), we perform a range search to locate the

entries with ranks [6..11]. Observe that this operation uses the annotation

counters, rather than the B+-tree keys. Sub-ranges at each level are deter-
1Since each user can access his preferred pseudonym service, that service is not a bottle-

neck or a single point of failure. The pseudonym, as opposed to the location anonymizer,

does not need to pool together a large number of users

83

Figure 5.2: Hilbert Cloak with Annotated B+-tree

mined by splitting the initial range based on subtree sizes; the offset for the

recursive call at entry e is determined as the initial start value minus the

sum of counters of all entries in the node preceding e. The resulting K-ASR

is highlighted in the diagram.

The data structure is scalable, since the complexity of constructing the

K -ASR is O(log N+ K), whereas search, insert and delete cost is O(log N).

5.2.2 Protocol Overview

Privé mimics the functionality of a B+-tree in a distributed setting. Each

mobile user u has an associated index entry consisting of an ID (e.g., IP

address), and the Hilbert value H(u) of his location as index key. A node

(leaf or internal) in the B+-tree corresponds to a cluster of users, with size

bounded between α and 3α, where α is a fixed system parameter. We use

the terms cluster and index node interchangeably. The maximum cluster

size is 3α, instead of the usual 2α for B+-trees, to prevent cascading splits

and merges (i.e., a split followed by a user departure), which are costly in

the distributed environment.

Every user belongs to a leaf level cluster (level 0), and the contents of

84

Figure 5.3: Distributed Index Structure, α=2

each cluster are disjoint (see Figure 5.3). The users of each cluster C elect a

leader called head(C). The head (marked with an asterisk) handles all index

operations on behalf of the users in the cluster. Cluster heads are recursively

grouped to form a tree; therefore, they belong to multiple levels of the tree.

We denote by Ci
u, the level i cluster which includes user u. In our example,

user ua is the head of cluster C0
a at level 0, and also the head of clusters

C1
a and C2

a ; therefore, it belongs to every level of the tree. There is a single

cluster at the top of the hierarchy, denoted as top. The cluster head of top

is denoted by root (ua in the example). In our protocol description, we use

remote procedure call convention to specify interactions between users. The

notation u.func(params) denotes the invocation of subroutine func with

parameters params at user u.

Each cluster is associated with its state information. The state of a

leaf level cluster consists of an ordered list of (IP address, H(u)) pairs (user

coordinates can be derived from the H(u) value). The state of an upper layer

cluster with m elements consists of a list of m user addresses, separated

by m − 1 key values used to direct the search; the process is similar to

a B+-tree, with the role of memory pointers fulfilled by the IP addresses

of users. Each internal node entry is annotated with a counter (depicted in

parentheses) representing the total number of users at the subtree under the

entry. Only the head needs to know the state of the cluster. However, in

our implementation, we replicate the state on every user within the cluster,

85

Table 5.1: Privé Protocol Terminology
Notation Definition

Ci
u level i cluster user u belongs to

head(C) cluster leader of cluster C

parent(C) the parent-cluster of cluster C

top the cluster at the top of the hierarchy

root head(top)

u.func(params) RPC call for func at user u

to improve fault tolerance (in Section 5.4, we discuss the tradeoff between

fault tolerance and maintenance cost). The Privé hierarchy has at most

logα N layers, where N is the total number of users. Since the cluster size is

bounded and a user may belong to at most one cluster at each level, there

is an upper bound of O(α logα N) on the membership state stored at a user.

The Privé protocol terminology is summarized in Table 5.1.

5.2.3 Protocol Operations

The index supports four operations: join, departure, relocation and K-

request (i.e., a request for a K -ASR with anonymization degree K). We

establish two performance metrics for Privé: (i) latency : the number of

hops an index operation requires to complete. The latency is equal to the

longest tree path followed as a result of the operation. Multiple paths may

be followed in parallel during an operation. (ii) communication cost : the

number of messages generated by an index operation.

Join. User join corresponds to a B+-tree insertion operation. Newly joining

users authenticate at the certification server and receive the address of a

user already inside the system. Without loss of generality, we assume that

joining users know the root, since the root can be reached from any user

in O(logα N) cost. We stress that since we require an index structure with

annotation (in order to determine the absolute ranks of users), all joins must

occur through the root. To avoid overloading the root, we devise a load-

balancing mechanism (Section 5.2.4). User join has O(logα N) complexity

in terms of latency and O(logα N +α) communication cost; the second term

is for updating the cluster state in all the users of the affected cluster.

86

Figure 5.4: User Join and Relocation, α=2

Consider user uy with Hilbert value H(uy) = 46 that joins the index

of Figure 5.3: uy contacts ua (at the root level) who forwards the join

request to ub and updates ub’s annotation counter in C2
a to 14. ub then

forwards the request to uh, whose annotation counter in C1
b is updated to 4.

Figure 5.4(a) shows the join outcome. User join may trigger a cluster split,

handled similarly to a B+-tree node split; the head initiating the split leads

one of the resulting clusters, and appoints a random initial cluster node to

lead the other.

Departure (informed). User departure is similar to a B+-tree deletion.

The effect of deletion must be propagated to root to update the annotation

counters. Deletion has O(logα N) latency and O(logα N + α) communica-

tion cost. If the cluster size decreases below α, the head triggers a merge

operation with the neighbor leaf-level cluster that has fewer members (to

avoid a cascaded split). The head of the resulting cluster can be any of the

initial heads, except if one of them (e.g., ua) is also head at the higher level.

If so, ua will be chosen as leader, to minimize membership changes.

Relocation. User mobility is treated as an entry update, which in a B+-

tree translates into a deletion and an insertion. Since users are likely to

change location often, we optimize this process by performing local reas-

signment of users to nearby clusters. Due to the good locality properties of

Hilbert ordering, the number of clusters involved in relocation is likely to be

small. Annotation counter updates are only performed by affected clusters;

this way, updates are not propagated all the way to the root. The upper

87

u.RelocateMyself() /*executed by moving user*/

determine new key value Hu = Hilbert(u.x, u.y)

call head(C0
u).Relocate(u,Hu,0)

u.Relocate(relocated user,H,l)

if (H in indexed key range at level l)

if (l = 0)

add relocated user to leaf user list; return

else

let n be the next hop for H

call n.Relocate(relocated user,H,l − 1)

else

call head(parent(Cl
u)).Relocate(relocated user,H,l + 1)

Figure 5.5: User Relocation Pseudocode

bound on relocation latency is O(logα N), but in most cases relocation only

involves a few clusters, at the low layers of the index. The pseudocode for

user relocation is given in Figure 5.5.

Consider user us from Figure 5.3 who relocates to a new position with

Hilbert value 60. He forwards the request to ua = head(C0
s). ua cannot keep

us within the same leaf entry, since the new value is outside the interval

[49..55]. Since ua = head(C1
a), with no additional message, ua decides that

us can be relocated to C0
f , forwards the request to uf and updates the

annotation counters of ua and uf accordingly. Figure 5.4(b) illustrates the

relocation outcome.

K -request. This operation corresponds to the Hilbert Cloak algorithm

described in Section 5.2.1. Consider the example in Figure 5.6, where user

um issues a K -request with K=6. The request follows the path: um → ud →
ub → ua (solid arrows in Figure 5.6(a)). The root ua determines the K -

bucket (i.e., start = 6, end = 11) and sends a K -ASR request to ub (dotted

arrows in Figure 5.6(a)). ub sends in parallel requests for partial K -ASRs

with ranges [6..6], [7..9] and [10..11] to ud, ue and uh, respectively. ub, which

is the head of the lowest-layer cluster that completely covers the K -bucket

(shown hashed in Figure 5.6(b)) collects the partial K -ASRs, assembles the

final query K -ASR and sends it back to the query issuer on the reverse

path of the request. Note that, the cluster head that covers the K -bucket

88

Figure 5.6: K -request, α=2, K=6

sustains the highest load among all other users involved in the query. This

potential load imbalance issue is addressed in Section 5.2.4. A K -request

has O(logα N)+O(logα K) latency and O(logα N)+O(K/α) communication

cost. The pseudocode for K -request is shown in Figure 5.7. Once the K -

ASR is constructed, the query issuer (i.e., um) can send the anonymized

query to the LBS through any preferred pseudonym service.

5.2.4 Fault Tolerance and Load Balancing

Privé implements a soft-state based mechanism to deal with user failures

or disconnections without notification2. Each cluster leader sends period-

ically (i.e., every δt seconds) a membership update message to all cluster

members. The message contains the membership list of the current cluster

C and that of parent(C). Cluster members respond to these messages; if a

cluster member does not respond to two consecutive messages, it is consid-

ered disconnected and removed from the cluster. The change is broadcast

by the cluster head to the remaining cluster members.

If a non-head cluster member u does not receive a membership update

from its head for a 2δt period, it initiates a leader election process. Alterna-

tively, when u attempts to initiate a operation, such as query or relocation,

but cannot contact the cluster head for two consecutive attempts, it trig-

gers the leader election protocol without waiting for the timer to expire. u

2Similar fault-tolerance and load-balancing mechanisms have also been proposed for

hierarchical wireless networks [11]

89

u.K -request() /*executed by query source*/

determine key value Hu = Hilbert(u.x, u.y)

call head(C0
u).ForwardRequest(Hu, 0, 0)

u.ForwardRequest(H, count, l)

if (l = 0) count = rankH in leaf entry

else count+ = sum of annotation counters of keys < H

if (u is root)

compute start and end using eq (3.1)

K -ASR = root.findMBR(start, end, root height)

else call head(Cl+1
u).ForwardRequest(H, count, l + 1)

u.findMBR(start,end,l)

if (l = 0) /*leaf level*/

return MBR of members with local rank in [start,end]

find set of next hops U for range [start,end]

MBR = ∅
for u′ ∈ U

MBR = MBR ∪ u′.findMBR(startu′ , endu′ , l − 1)

return MBR

Figure 5.7: K -request

checks the membership it had at the last update, and chooses as leader (i.e.,

new head) the user with the smallest identifier. It then sends a transfer head

message to new head, which in turn sends a membership update message to

all cluster users and also contacts head(parent(C)) to notify the change in

leadership. new head will replace the old head in all layers where the latter

was leader before disconnection.

The hierarchical structure can cause significant differences between the

load sustained by cluster heads and ordinary cluster members, as well as

among cluster heads at different layers of the hierarchy. To alleviate the

inherent imbalance, we propose a cluster head rotation mechanism, where

users take turns in fulfilling the cluster head role. Since the promotion to

cluster head translates into presence at a higher layer of the hierarchy, the

rotation also ensures that users equally share the load at different layers.

Rotation is triggered when a node reaches a certain load threshold, de-

noted by load unit. In wireless devices, the communication cost is dominant.

90

Figure 5.8: Load Balancing Mechanism

It is also important from the user’s perspective, since mobile phone oper-

ators charge by the amount of transferred data. Therefore, in Privé the

load is best represented by the number of messages sent and received by the

user.

When user u reaches one load unit, it triggers a head rotation in all the

clusters it currently heads, starting with its highest layer. For each node

along the path to its level 0 cluster, the member with the least load is ap-

pointed as new head. Note that, since u stores the membership state about

all clusters it belongs to at different layers, the appointment of a new leader

can be done directly by u, without the need for a complex protocol or addi-

tional messages. Choosing the cluster member with the lowest load prevents

the newly appointed head to start a fresh rotation soon after promotion.

Figure 5.8 illustrates the rotation mechanism. For simplicity, all clusters

have size 2. Assume all queries originate at user ud with K=4. After

ua reaches one load unit, it hands over the root role to ue (at layer 2)

from the right-hand subtree. Also, at layer 1, uc becomes the head and is

automatically promoted to layer 2. Similarly, at layer 0, ub becomes the

head and is promoted to layer 1; the result is shown in Figure 5.8(b). Next,

uc reaches its load unit, because more requests pass through it (it must

inject queries and collect partial K -ASRs). uc triggers a rotation at level 1

and appoints ub as cluster head (see Figure 5.8(c)). Subsequently, ub may be

the next one to reach the load threshold, and start a new rotation in the left

subtree. Observe that at step (d), the left subtree has already performed

a complete rotation round, whereas the right subtree has only performed

one change. Hence, our rotation mechanism alleviates hotspots (an entire

subtree shares the load generated by ud) and at the same time provides a

degree of fairness, not allowing a localized hotspot to affect a large partition

91

u1 uN

uq uq+1uq-1uq-2 uq+2 uq+K-1 ...uq-K+1...

uq

......

2K-1 users

Figure 5.9: Hilbert sequence ring

of the index.

The granularity of load unit choice is important in practice, in order to

achieve a good tradeoff between load balancing and communication cost,

since a rotation may incur a number of messages as large as O(α logα N).

In practice, the load unit value can be set to a multiple of the rotation cost,

i.e. β × α logα N , where β ∈ N. This way, the communication overhead of

changing cluster leaders will not exceed an 1/β fraction of the usual protocol

operation cost.

5.3 MobiHide

In this section, we introduce MobiHide, a P2P system which employs a

randomized K -ASR construction technique to offer query source anonymity,

and is scalable to a large number of mobile users. Similar to Privé, Mobi-

Hide is using the Hilbert ordering of the users’ locations. However, instead

of grouping users into fixed partitions, it forms a K -ASR by randomly choos-

ing K consecutive users, including the querying user.

Let [u1, . . . , uN] be the sequence of all users, ordered by their Hilbert

value. To allow random K -ASR selection for the users at the start and

end of the sequence, the 1-D space becomes a ring (or torus), instead of an

array. Therefore, u1 is after uN (and uN is before u1). Figure 5.9 presents an

example, where uq is the user who issues a query. There are K ways to choose

a set of consecutive K users which includes uq: [uq−K+1 : uq], [uq−K+2 :

92

u2 u3 u4 u5u6 u1u7 u8 u9 u10

5 10 15 1827 333 43 56 58
Hilbert value

K=4

u1

u2

u3

u4

u10

4-ASR

u5

u6

u7

u8

u9

Figure 5.10: K -ASR construction in MobiHide

uq+1], . . . , [uq : uq+K−1]. This is equivalent to choosing a random offset

l ∈ [0, K−1], representing the offset of uq in the resulting sequence. For

example, if l = 0, the resulting sequence is [uq : uq+K−1]. Observe that

we only need information in the neighborhood of uq in order to select the

sequence (as opposed to Privé, which needs the global ranking). Therefore,

MobiHide works in a fully decentralized manner, and can be deployed on

top of a scalable structure such as Chord.

Example 5.2. Figure 5.10 shows the MobiHide K-ASR construction,

where u2 is the querying user. Let K = 4 and assume that u2 randomly se-

lects offset l = 2. According to the Hilbert ordering, the resulting sequence of

users is [u10, u1, u2, u3]. The corresponding K-ASR is the minimum bound-

ing rectangle (MBR) which encloses these four users. In this particular

example it was necessary to wrap around the Hilbert sequence (from u10 to

u1). Observe that the “jump” in Euclidean distance due to wrapping, is not

necessarily larger than other “jumps” that may occur within the sequence

(e.g., from user u8 to u9). Therefore, the average size of the K-ASRs (thus

the query cost) is not affected significantly by wrapping. We investigate

further this issue experimentally in Section 5.4.

Theorem 5.3. If all users issue queries with the same probability (i.e.,

93

uniform distribution), MobiHide guarantees query anonymity.

Proof. Denote by PQ the probability of a user issuing a query (same for

all users). The query source generates a random offset l ∈ [0, K−1]; we

denote by 〈u, l〉 the event of user u generating a set of users with offset l.

The probability P〈u,l〉 = PQ/K. Refer to Figure 5.9, where uq is issuing a

query. Obviously, uq must belong to the set associated to his query. To

guarantee anonymity, the probability of identifying uq as the query source

must not exceed 1/K. We denote by Aq any set of users that includes uq,

and by PAq the probability of such a set being generated. We denote by

Pui the probability of user ui being the source of the query associated with

Aq. Then, Pui > 0 only for users [uq−K+1 : uq+K−1], and by symmetry,

Puq−j = Puq+j . We have:

Puq =
K−1∑

l=0

P〈uq,l〉 = PQ, (5.1)

Pui =
K−1∑

l=i−q

P〈ui,l〉 =
K − i + q

K
PQ, i > q (5.2)

Puq + 2
q+K−1∑

i=q+1

Pui = PAq (5.3)

The probability of pinpointing uq as the query source is

Puq

PAq

=
PQ(

1 + 2
K−1∑

i=1

K − i

K

)
PQ

=
1
K

, (5.4)

hence user uq is K -anonymous.

5.3.1 The Correlation Attack

In practice, the query distribution is not always uniform. In the extreme

case, the same user (e.g., uq) would send all queries and he would be included

in all K -ASRs. An attacker can intersect the K -ASRs and pinpoint uq as the

querying user with high probability. It is more realistic, however, that many

users ask queries, even if the query distribution is skewed. In this case,

intersecting the K -ASRs is unlikely to compromise the system, since the

94

random sequence selection in MobiHide distributes the anonymized regions

in the entire space. In order to succeed, the attacker should know the exact

locations of all users, to be able to reconstruct the Hilbert sequence. Then,

he could find the users included in each K -ASR by reverse-engineering the

K -ASR construction mechanism, and speculate that the users who appear

more frequently are the ones who issued the queries.

Consider the extreme case where the attacker knows the exact location

of all users and intercepts the set R of K -ASRs. We formalize the corre-

lation attack as follows: (i) Construct a histogram F with the number of

occurrences of every user in any of the queries. (ii) For each R ∈ R: infer

the query source as the user in R with the highest number of occurrences in

F .

The correlation attack gives an attacker powerful means to infer the

query source. Privé guarantees anonymization against this type of attack,

but as discussed in Section 5.1, may not scale well as the number of users

increases. MobiHide cannot offer theoretical guarantees when the query

distribution is extremely skewed. However, we believe that in practice this

attack is hard to stage, since it is difficult for an attacker to know the exact

locations of all users at each snapshot. Furthermore, we show experimen-

tally (Section 5.4) that the probability of identifying the querying user in

MobiHide is very close to the theoretical bound 1/K , even if the attacker

knows all users’ locations and the query distribution is skewed. Finally, ob-

serve that MobiHide does not suffer from the center-of-ASR attack (see

Section 2.2) because, by construction, the probability of uq to be closest to

the center of the K -ASR is 1/K .

5.3.2 Protocol Overview

MobiHide users organize themselves into a Chord [57] P2P system. Chord

is a Distributed Hash Table (DHT), where each peer (or node) has an m-

bit key (the Hilbert value in our case), and it stores a routing table with

pointers to other nodes (see Figure 5.11). The routing table at peer n with

key keyn consists of:

• a successor and predecessor pointer to the node with the key that

95

Figure 5.11: MobiHide implementation over Chord

immediately follows (respectively, precedes) keyn on the ring

• a successor list, used mainly for fault tolerance, with a list of consec-

utive peers that follow n on the ring

• a finger table, with m pointers to nodes that are situated at 2i distances

from n (i = 0, 1, ..,m− 1}.

We denote by H(u) the Chord key of user u. Assume that each user

is mapped to a distinct Chord node. When user u wants to pose a query,

he initiates the K -ASR construction procedure, denoted by K-request. u

generates a random offset l ∈ [0, K−1], and contacts the set P of l prede-

cessors and the set S of K−1− l successors on the Chord ring. The resulting

K -ASR is the MBR that encloses users in P ∪ S ∪ {u}. The complexity of

a K -request is O(K) overlay hops.

Since K can be large (e.g., 50-100) in practice, we wish to reduce the

number of hops, and hence the latency of K -request. We introduce an addi-

tional level of hierarchy, such that each overlay node represents a cluster of

users, rather than a single user. Similar to Privé, each cluster has between

α and 3α-1 users, where α is a system parameter. If the cluster reaches 3α,

a split is performed and an additional ring node is created. If the size falls

below α, a merge operation with another overlay node is performed3. We

chose 3α, instead of 2α, as the upper bound on size, to minimize frequent
3Obviously, if more keys fall within a Chord segment, there will also be proportionally

more nodes in that segment; therefore, hot-spots are avoided.

96

merge and split operations. Each cluster has a representative, or cluster

head, which is part of the Chord ring. In the example of Figure 5.11, u12 is

the head of cluster {u8, u11, u12}. The head’s key on the ring is the maxi-

mum of all keys inside its cluster, in order to preserve the key ordering on

the ring. The cluster membership is maintained by the head, and is repli-

cated to all cluster members, to enhance fault-tolerance. Heads are rotated

periodically to achieve load-balancing. We denote by Cu the cluster that

contains user u, and by CHu the head of Cu.

We further describe how various operations are performed in MobiHide.

5.3.3 Protocol Operations

Similar to Privé, for each operation, we consider two performance metrics:

(i) latency: the time to completion, measured as the number of overlay hops

on the longest path followed. Multiple paths may be followed in parallel. (ii)

communication cost: the communication cost of an operation, measured as

the number of transmitted messages (communication cost typically prevails

over CPU cost).

Join and Departure. User join is illustrated in Figure 5.12a. User u

with key H(u) = 71 authenticates at the certification server4 and receives

the address of user ubs inside the system. ubs issues a search for key H(u),

which returns the address of u85, the successor of 71 on the ring. u contacts

u85 and joins cluster C. Hence, Cu ≡ C and CHu ≡ u85. Upon u’s join,

CHu checks the new size of cluster Cu, and if size(Cu) = 3α, CHu splits

his cluster into two halves, in increasing order of key values. He appoints

one of his cluster members, CH ′
u, as head of the newly formed cluster. All

nodes in the initial cluster are notified. CHu and CH ′
u also notify their

predecessor and successor on the ring. CH ′
u inherits a large part (if not all)

of the finger table of CHu; the rest of the table is determined through the

Chord stabilization process [57].

In our example, the new size of C is 6 and α = 2, so u85 triggers a

split operation (Figure 5.12b). u85 divides his cluster C into two halves,
4MobiHide uses the same architectural components as shown in Figure 5.1 for Privé,

except that the user organization is different

97

Figure 5.12: Join and Split, α=2

C ′ with members 61, 67 and 71, and C ′′ with members 74, 82 and 85.

u71 is appointed as head of C ′, while u85 remains head for C ′′. u85 sets his

predecessor pointer to u71, and notifies the former predecessor u52 to change

its successor from u85 to u71. The complexity of join is O(log N − log α)

latency and O(log N − log α + α) communication cost (the last term stands

for notifying all cluster members).

User u can depart gracefully, or fail; failure is addressed in Section 5.3.4.

When u departs gracefully, he notifies his cluster head CHu, who updates

the cluster membership. If the departing node is cluster head, he appoints

one of his members as new head. A merge can be triggered by departure.

In this case, user CHu triggering the merge contacts randomly either his

successor s or predecessor p on the Chord ring to merge5. CHu transfers his

members (including himself) to the merging peer and ceases to be cluster

head. All members are notified and the successor and predecessor pointers

are updated.

Relocation. When user u moves to a new location, his Hilbert value H(u)

changes. If the new H ′(u) falls within the key range of other users in cluster

Cu, u only needs to inform his cluster head of the key change. Otherwise,

u performs a graceful departure followed by a join. Since Hilbert ordering

preserves locality, it is likely that the relocation will be within a small dis-

tance from the initial ring position. The worst case complexity of relocation
5Alternatively, an interrogation phase can find which of s or p has fewer members, and

merge with that one (to avoid cascaded splits and to equalize cluster sizes).

98

u.findASR(H,K)

compute rankH in sorted order of Cu

generate random offset l

before = max(0,l - rankH)

after = max(0,K -l + rankH − size(Cu))

if (after > 0)

succ.FwdReq(after,1)

if (before > 0)

pred.FwdReq(before,−1)

wait for partial MBRs

K -ASR = union of all received MBR

u.K -request(K)

call CHu.findASR(H(u),K)

u.FwdReq(count,direction)

if (direction == 1) /*Look Forward*/

return MBR of first count keys

if (count > size(Cu))

succ.FwdReq(count− size(Cu),1)

else /*Look Backward*/

return MBR of last count keys

if (count > size(Cu))

pred.FwdReq(count− size(Cu),−1)

Figure 5.13: Pseudocode for K -Request

is O(log N − log α) latency and O(log N − log α + α) communication cost.

K -request. To generate a K -ASR, u forwards a K -request to his cluster

head CHu (unless u himself is the cluster head). CHu generates a random

offset l ∈ [0, K−1]. Then, CHu examines the membership list of his cluster

Cu and determines how many users in Cu will belong to the K -ASR. CHu

computes the values before and after corresponding to the number of users

in K -ASR that are outside Cu and precede (respectively, follow) the set of

keys in Cu. CHu issues a request for the MBR6 of these members to his

predecessor p and successor s. In p and s the same procedure is followed

recursively, until K users are found. CHu waits for all answers, and assem-

bles the K -ASR as the union of the received MBRs. The pseudocode for

K -request is given in Figure 5.13. The complexity is O(K/α) in terms of

both latency and communication cost. Once the K -ASR is assembled, u can

submit it to the LBS using his preferred pseudonym service.

5.3.4 Fault-tolerance and Load Balancing

MobiHide inherits the good fault-tolerance properties of Chord [57]. Simi-

lar to Chord, some of the pointers to other peers (i.e., successor and prede-

cessor pointers, the successor list and the finger table) may be temporarily

corrupted (e.g., when a user fails). Such pointers are corrected periodically

through a stabilization process. In addition to stabilization, MobiHide

6CHu only acquires the MBR, not the exact location of users in other clusters.

99

Figure 5.14: Leader Election Protocol

implements an intra-cluster maintenance mechanism. Each cluster head pe-

riodically (i.e., every δt seconds) checks if all cluster members are alive, by

sending beacon messages; beacons contain the current cluster membership

in addition to the successor and predecessor nodes of the head on the Chord

ring. If a user fails to respond for 2δt seconds, he is considered failed and is

removed from the cluster. Similarly, a non-head node that does not receive

a beacon from his head for 2δt seconds, concludes that the head has failed

and initiates a leader election protocol (see Figure 5.14). The RecoveryState

(RS) variable of each node indicates whether the node is in normal operation

(RS = 0) or participates in the election protocol. Since the cluster member-

ship is replicated at all cluster nodes, recovery is facilitated. Upon detecting

leader failure, node n enters the RS = 1 state, sends a candidate(n.IP)

message to all peers in the cluster and sets an election timer large enough to

allow other peers to respond to the candidature proposal. When a node re-

ceives the candidate(IP) message, it initiates its own candidature only if its

address is smaller than IP ; otherwise, it enters the RS = 2 state and waits

for a setParent message. The user with the smallest address declares him-

self leader and notifies all other cluster members, as well as the predecessor

and successor on the ring.

To prevent unequal load sharing, a simple rotation mechanism is en-

forced among cluster members. The rotation is triggered when a certain

load threshold is reached. This threshold is measured in terms of number

of messages sent/received, since the communication cost is predominant in

100

terms of both energy consumption and fees payed to the service provider.

When the cluster head CH transfers leadership to another cluster member

CH ′, he transfers his routing state on the Chord ring and the cluster mem-

bership to CH ′. Observe that the Chord key does not change, since it is the

maximum key among all cluster members. Therefore, the overhead for the

P2P network is minimal.

101

Figure 5.15: Dataset

5.4 Experimental Evaluation

To evaluate our distributed anonymization protocols, we have implemented

event-driven packet level simulators in C++. Our Privé implementation

is developed on top of the NICE [10] protocol suite for multicast delivery

networks. For MobiHide, we have used the Chord DHT [57] implementa-

tion in the p2psim [1] suite, a packet-level simulator for P2P systems. Since

we are mostly interested in the overlay-layer performance, we consider a full

mesh topology with lossless 500ms round-trip time links between any pair

of users. Furthermore, we only consider packet loss as an effect of queueing

at the processing nodes, and not as a result of link faults. Our workload

consists of user locations and movement patterns, and is generated using the

Network-based Generator of Moving Objects [17], which models user move-

ment on public road networks. We consider user velocities ranging from 18

to 68km/h. We present our results for a data set consisting of the San Fran-

cisco bay area (Figure 5.15), with number of users N varying from 1, 000

to 10, 000. We vary the anonymization degree K from 10 to 160. We con-

sider both uniform and Zipfian distributions of queries over the set of users.

If not stated differently, we set α = 5 (see Section 5.2.2 and 5.3.2). We

compare Privé and MobiHide against the only other existing distributed

spatial anonymization system, CloakP2P [21]. In Section 5.4.1 we evalu-

ate the Privé protocol, whereas in Section 5.4.2 we evaluate MobiHide.

Section 5.4.3 compares directly the two protocols.

102

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20

α

Latency
N=10000

N=1000
N=100

(a) Latency vs α

 0

 10

 20

 30

 40

 50

 5 10 15 20

α

Cost

N=10000
N=1000
N=100

(b) Cost vs α

Figure 5.16: Privé Join/Leave Operation

5.4.1 Privé protocol

Join and Departure. In a system with N users, we perform 0.1N ran-

dom user joins, followed by 0.1N random user departures. Figure 5.16(a)

shows the join latency measured as hop count from the time a user issues

a join request until he receives a join response message from its leaf-level

head. We observe that the latency is lower than the theoretical 1 + logα N ,

as a user may appear in multiple levels and can avoid sending redundant

messages to himself. The communication cost (i.e., total messages) per join

and departure operation (Figure 5.16(b)) varies linearly with α, since ev-

103

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20

α

Latency

N=10000
N=1000
N=100

(a) Latency vs α

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20

α

Cost
N=10000
N=1000
N=100

(b) Cost vs α

Figure 5.17: Privé K-request Operation

ery join/departure translates into a membership update broadcast message

within one leaf-level cluster. Note the role of α in the latency-cost trade-

off: an increase of α decreases latency as logα N , but triggers a linear cost

increase in membership notification. A larger α also increases the cost of

periodic cluster membership maintenance.

K -request. Figure 5.17(a) and 5.17(b) show the K -request latency and

communication cost for varying α, where K=40. Larger α decreases the

latency as the height of the index decreases. The communication cost also

decreases, as fewer leaf-level cluster heads need to be contacted to build

104

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 20 40 60 80 100 120 140 160

Κ

Latency

N=10000
N=3000
N=1000

(a) Query Latency vs K

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 20 40 60 80 100 120 140 160

Κ

Cost

N=10000
N=3000
N=1000

(b) Query Cost vs K

Figure 5.18: Privé K-request Operation

the K -ASR. However, α cannot grow very large from index maintenance

considerations. Figure 5.18(a) and 5.18(b) show the latency and communi-

cation cost variation with anonymization degree K, α = 5. Latency is only

marginally affected by K (the dominant factor in latency is logα N , since in

practice K¿ N), while the communication cost grows linearly with K.

105

 0

 0.5

 1

 1.5

 2

 20 40 60 80 100 120 140 160

Κ

Nodes(%)

N=10000
N=3000
N=1000

(a) Percentage vs K

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 5 10 15 20

α

Nodes(%)

N=10000
N=3000
N=1000

(b) Percentage vs α

Figure 5.19: Privé Percentage of users involved in query

The percentage of the user population involved in answering a single

K -request operation is shown in Figure 5.19(a) and 5.19(b). For small N

values, at most 2% of all users are needed to answer a K -request, while for

larger N , less than 0.5% of the users are required.

Relocation. Privé addresses user mobility by using an index update algo-

rithm that attempts to resolve relocation at the lower levels of the hierarchy,

in order to reduce both latency and communication cost. In our simulated

scenario, we consider 10, 000 users across 20 consecutive time frames, with

half of the indexed users moving at each time frame. We consider three ve-

106

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 5 10 15 20

α

Latency
68km/h
40km/h
18km/h

(a) Relocation Latency

 4
 6
 8

 10
 12
 14
 16
 18
 20

 5 10 15 20

α

Cost
68km/h
40km/h
18km/h

(b) Relocation Cost

Figure 5.20: Privé Relocation

locities: 68, 40 and 18km/h. Figure 5.20(a) and 5.20(b) show that relocation

is efficiently handled: for the moderate α = 10 value, the relocation is done

on average in 2.5 hops for fast-moving users and 1.5 hops for slow-moving

users. The dominant communication cost is that of the membership change

propagation; for α = 10 this cost is roughly a quarter compared to the cost

of an index deletion followed by insertion for the 68km/h case, and 1/8 for

18km/h.

107

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 1 2 3 4 5

Level

Frequency
68km/h
40km/h
18km/h

Figure 5.21: Privé Relocation Level

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200

Time(sec)

Membership Correctness

10%
20%
30%

Figure 5.22: Privé Failure Recovery

Fig 5.21 shows the frequency of relocations completed at various levels

of the hierarchy for a 6-level, α = 3, 10, 000 users system. Most relocations

are solved at the low levels of the hierarchy: for slow movement, 70% are

solved at the leaf level and 86% at levels 0 and 1; for fast movement, 32% of

relocations are completed at the leaf level, 63% at levels 0 and 1, and 86%

at levels 0, 1 or 2.

Fault-tolerance. Starting with a system having correct cluster member-

ship, we fail simultaneously 10, 20 or 30% of the nodes. We use maintenance

timer values of 30 seconds for refreshing cluster membership and 60 seconds

for purging a failed member. Figure 5.22 shows the evolution of member-

ship state correctness over time (1 represents completely correct state). The

108

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2K 4K 6K 8K 10K

Ν

Load CDF

No Rotation
Rotation-unif

Rotation-Zipf(0.8)
Ideal

(a) Node Load CDF

 0

 50

 100

 150

 200

 250

 300

 350

 0 2K 4K 6K 8K 10K

Ν

Absolute Load

Uniform
Zipf(0.8)

(b) Absolute Node Load

Figure 5.23: Privé Load Balancing

system recovers to a correct state within 3 purge cycles (138 sec) for 10%

failure and 4 purge cycles (197 sec) for 30% failure.

Load-balancing. We measure the load incurred by each user for a 10, 000

users system, α = 5, K=80, load unit = 200 messages (load unit is discussed

in Section 5.2.4) and a simulated time of 1 hour, during which an average of

8 queries/user were generated. We consider both uniform and skewed (Zipf

0.8) query source distribution. Figure 5.23(a) shows the cumulative distri-

bution function (CDF) of sorted user loads. The load is highly unbalanced

if no rotation is performed, with 10% of users sustaining more than 80% of

109

the load. With rotation, for uniform query distribution, the load is close

to the ideal one (i.e., diagonal line). For skewed query distribution, most

of the users share equal load, while part of the users (roughly 10%) share

a slightly higher load, as dictated by the fairness requirement discussed in

Section 5.2.4. This is illustrated better in Figure 5.23(b) which shows the

absolute load of each user.

110

 0

 2

 4

 6

 8

 10

 5 10 15 20

La
te

nc
y

(h
op

s)

α

N=1k
N=2k
N=5k

N=10k

(a) Latency

 0

 10

 20

 30

 40

 50

 5 10 15 20

C
os

t(
m

es
sa

ge
s)

α

N=1k
N=2k
N=5k

N=10k

(b) Communication cost

Figure 5.24: MobiHide Join

5.4.2 MobiHide protocol

Join. In this experiment, we measure the latency (i.e., number of hops)

and communication cost (i.e., total number of messages) for the user join

operation. Starting from a stable system, an additional 10% of the initial

user population joins randomly the system. Figure 5.24(a) shows the latency

for N = 1K, 2K, 5K and 10K users, for varying α (recall that the cluster size

is between α and 3α). The plot confirms the theoretical expected complexity

O(log N − logα). For low α values, we observe a slight increase, due to the

increasing proportion of split operations. In terms of communication cost

(see Figure 5.24(b)), the dominant factor is O(α) due to the intra-cluster

111

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20

La
te

nc
y

(h
op

s)

α

K=10
K=20
K=40
K=80

K=160

(a) Latency

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 5 10 15 20

C
os

t(
m

es
sa

ge
s)

α

K=10
K=20
K=40
K=80

K=160

(b) Communication cost

Figure 5.25: MobiHide K -Request Operation

notification. There is a tradeoff between join latency and communication

cost in terms of α. For low α values, the cluster maintenance cost is lower,

but the latency increases. Furthermore, a low α also causes increased latency

and communication cost during K -requests, as we will show shortly. Our

experiments suggest that a value 5 < α < 10 is likely to yield good results

in practice.

K -Request. We consider a 10K user population with 10K uniformly dis-

tributed queries. Figure 5.25(a) and 5.25(b) show the average latency and

communication for constructing the K -ASRs (α is varied). Both the latency

112

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Lo
ad

 C
D

F

User ID

No Rotation
Rotation

Ideal

Figure 5.26: MobiHide Load Balancing

and communication cost are favored by larger α values. However, a compro-

mise must be reached among the K -Request performance, maintenance cost

and system scalability. Larger α determines higher maintenance cost and

also yields a more centralized system, with inferior peak-load performance.

Load Balancing. Due to the hierarchical nature of MobiHide, the cluster

heads that participate on the Chord ring bear more load than other cluster

members. Here, we evaluate the rotation mechanism of MobiHide which

aims at distributing the load evenly. We set α=5, K=20 and simulated a

10K user network, where an average of 3.6quh are generated. The total

simulated time is 3 hours, and a rotation is triggered at every 300 messages

received by a node. Figure 5.26 shows the cumulative distribution function

(CDF) of the sorted node loads. Without rotation, the roughly 1,000 cluster

heads (i.e., 10000/2α as 2α is the average cluster size) bear 90% of the system

load. With rotation, the load balancing is very close to the ideal (i.e., linear

CDF, plotted as dotted line). Note that, for a load unit setting of 300 and

a rotation cost of 2α messages, the rotation overhead is only 2α/300 = 3%.

This overhead can be decreased further by increasing the load unit.

Fault Tolerance. In this experiment we evaluate the fault-tolerance fea-

tures of MobiHide. We consider 10K users and α=5. Chord performs

periodical maintenance for its pointers. The respective timers are set at

3sec for the successor/predecessor, 10sec for the successor list and 30sec for

113

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

N
et

w
or

k
C

or
re

ct
ne

ss
 (

%
)

Time(sec)

Finger Table
Succ/Pred

Cluster Membership

Figure 5.27: MobiHide Fault Tolerance

the finger table pointers. The intra-cluster beacon timer δt = 10sec. We

consider three network correctness metrics: (i) the intra-cluster correctness,

measured as the ratio of correct cluster membership entries out of the total

entries, (ii) the succ/pred correctness, measured as the ratio of correct suc-

cessors/predecessors over the total number of successor/predecessor point-

ers, and (iii) we define similarly the correctness of finger tables. Note that,

for correct execution of K -request operations, only the successor/predecessor

and intra-cluster membership need to be 100% accurate; the finger table

pointers are only used for join and relocation operations, and their inac-

curacy can only cause a slight increase in latency. Figure 5.27 shows the

evolution in time of the three metrics, starting with a correct network, when

25% of the users fail simultaneously; t = 0 is the time of failure. We observe

that the succ/pred and intra-cluster correctness are established after 60sec.

For the intra-cluster correctness, it takes the system roughly three purge

intervals (6δt) to detect head failure, elect new leaders and establish correct

cluster membership. The finger table is restored after 120sec.

5.4.3 Privé and MobiHide Comparison

Anonymity Strength.

In Section 3.4, we have proved that Hilbert Cloak guarantees anonymity

against location-based attacks, under any query distribution. Furthermore,

114

in Section 5.3, we proved theoretically that MobiHide guarantees K -anonymity

for uniform query distribution.

First, we focus on the center-of-ASR attack, and we show a head-to-head

comparison of MobiHide and Privé against CloakP2P [21]. We assume

that an attacker knows (from an external source) the locations of all users,

and employs a simple strategy which infers the query source as uc, the user

who is nearest to the center of the K -ASR. We consider a 10, 000 users sce-

nario in which 10, 000 random queries are issued, according to a Zipf (i.e.,

skewed) query distribution with ϑ = 0.8. In Figure 5.28(a) we plot the prob-

ability of uc being the query source, for various values of K . The dotted line

represents the value 1/K ; ideally, the performance of the algorithms should

be under that line. For CloakP2P , if K=40, the probability of uc being the

query source is 10%, four times the 1/K=2.5% maximum allowed bound.

For larger values of K, the situation gets worse, as the number of users in-

cluded in the K -ASR increases. The users are likely to come uniformly from

all directions; hence, uc is disclosed as the query source. On the other hand,

Privé and MobiHide always satisfy the privacy bound. Note that, even

if the anonymizing sets contain exactly K users, the corresponding MBRs

may enclose a few more. This is why the results for Privé and MobiHide

are not identical to the 1/K line.

In Figure 5.28(b) we consider the correlation attack (see Section 5.3.1).

We assume the extreme case, where the attacker knows the exact locations

of all users (recall that this attack is unlikely to occur in practice). We

show the results for uniform and Zipf query distribution, with ϑ = 0.5

and ϑ = 0.8. As expected, for uniform distribution, anonymity is always

preserved. Actually, in this case MobiHide behaves almost identical to

Privé (not shown in the graph). Anonymity is also entirely preserved for

ϑ = 0.5. As the distribution becomes more skewed, MobiHide may fail

to preserve anonymity by a small margin. In most cases, however, the

probability of identifying the query source is very close to the theoretical

bound 1/K . In the worst case, for K= 160, ϑ = 0.8, the probability of

identifying the query source was 1.2/K.

115

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 20 40 60 80 100 120 140 160

P
(I

de
nt

ify
S

ou
rc

e)

K

1/K
MobiHide

Prive
CloakP2P

(a) center-of-ASR attack

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 20 40 60 80 100 120 140 160

P
(I

de
nt

ify
S

ou
rc

e)

K

1/K
MobiHide-Unif

MobiHide-Zipf0.5
MobiHide-Zipf0.8

(b) Correlation Attack

Figure 5.28: Anonymity Strength

Observe that in Figure 5.28(b) we did not consider CloakP2P , as it can

be easily compromised by the much simpler center-of-ASR attack. Since it

fails to provide anonymity in many cases, we will not consider CloakP2P

any further.

116

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100 120 140 160

A
S

R
 A

re
a

(%
)

K

Prive-Unif
MobiHide-Unif

Prive-Zipf
MobiHide-Zipf

Figure 5.29: K -ASR Area

K -ASR Size.

MobiHide wraps around the Hilbert sequence in order to handle users near

the start/end of the sequence. In some cases, this may yield K -ASRs with

larger area, compared to Privé; consequently, the query processing cost will

increase. To investigate this issue, we considered uniform and Zipf (ϑ = 0.8)

query distributions over a set of 10K users and varying K . In Figure 5.29

we plot the average area of the K -ASRs as a percentage of the entire datas-

pace. Observe that for the Zipf distribution the two systems behave almost

identical, while for uniform distribution MobiHide generates 25% larger

K -ASRs in the worst case. Therefore, we tradeoff at most 25% in additional

query processing cost, but we obtain far superior system scalability as we

will show next.

Scalability (response time).

The most important advantage of MobiHide is its increased scalability due

to the highly decentralized structure. Here, we evaluate the response time of

the system for 1K, 5K and 10K users. The querying users are selected with

a Zipf (ϑ = 0.8) distribution7. We use exponential distribution to model the

query rate, and the mean is varied between 0.5 and 60quh (Queries per User

per Hour). Processing time at each node is exponentially distributed with
7MobiHide behaves even better for uniform distribution of the querying user.

117

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

R
es

po
ns

e
T

im
e

(s
ec

)

QueryRate(quh)

N=10k
N=5k
N=1k

(a) MobiHide

 1

 10

 100

 1000

 0 10 20 30 40 50 60

R
es

po
ns

e
T

im
e

(s
ec

)

QueryRate(quh)

N=10k
N=5k
N=1k

(b) Privé

Figure 5.30: Scalability, K = 40

mean 50ms. This is a realistic processing time that includes CPU processing

and network buffer access. We set K=40 and inject queries for a period of

600sec. From Figure 5.30(a), we can see that the response time is short (i.e,

does not exceed 5sec) even for large user populations and high query rates.

Note that the experiment assumes unbounded message queues at the nodes;

therefore the drop rate of requests is 0. We also considered bounded queues

(size = 100); in the worst case, the drop rate was 3.4%.

In Figure 5.30(b) we repeated the same experiment for Privé. Observe

that the response time grows sharply with the query rate, due to delays

at the root node. For 10K users and 10quh the response time is almost

118

600sec (whereas, MobiHide needs only 2.5sec). Again, these results are for

unbounded queues. For the bounded case (queue size = 100), the drop rate

was 26% for 8quh; for 10quh the drop rate surges as high as 60%.

5.5 Discussion

Most previous work on spatial K -anonymity assumes a centralized anonymi-

zer service architecture [33, 27, 49], whereas the only proposed distributed

anonymization system [21] provides weak privacy features, and is vulnerable

even to the simple “center-of-ASR” attack.

Our two proposed P2P anonymization infrastructures, Privé and Mo-

biHide, address the limitations of previous work, and remove the central

anonymizer bottleneck/single point-of-attack, while at the same time pro-

viding strong privacy and good system scalability. Our two proposed tech-

niques provide an interesting trade-off between privacy and scalability. If

theoretical guarantees on K -anonymity are required, Privé is the method of

choice. On the other hand, if response time is of primary importance, even

under periods of peak system load, MobiHide is the preferred technique,

with good resilience to both “center-of-ASR” and correlation attacks.

119

Chapter 6

PIR Framework for LBS

6.1 Introduction

In this chapter, we propose a novel approach to LBS privacy, based on Pri-

vate Information Retrieval (PIR). This is the first work that integrates loca-

tion privacy and PIR, with the following advantages over SKA approaches:

i. PIR eliminates the need for a trusted third party, whether it takes the

form of an anonymizer service, or other users. For this reason, PIR

offers much stronger privacy guarantees, and prevents attacks based

on collusion among users, which SKA is vulnerable to

ii. since PIR privacy is not dependent on other users, it eliminates the

need of expensive maintenance of the locations of a large number of

subscribed users

iii. PIR does not disclose any information about user location, not even

in perturbed (cloaked) form; location information is completely ab-

stracted, and therefore any type of location-based attack is thwarted.

In particular, PIR guarantees privacy for continuous queries

The rest of this chapter is organized as follows: Section 6.2 outlines an

existing PIR protocol for binary data, which we use as a building block in

our techniques. Section 6.3 discusses the advantages of our PIR framework,

compared to existing spatial cloaking techniques. We introduce methods

for approximate nearest-neighbor (NN) search in Section 6.4 and exact NN

120

Symbol Description

k Modulus Bits

q1, q2 k/2-bit primes

N = q1 · q2 Modulus

n Number of Data Objects

m Object Size (bits)

t = d√ne PIR Matrix Dimension

M1:t,1:t[1 : m] PIR Matrix (binary array)

y1:t, array of k-bit numbers PIR Query

z1:t[1 : m], array of k-bit numbers PIR Reply

Table 6.1: Summary of notations

methods in Section 6.5. In Section 6.6, we present two optimizations tar-

geted to reduce the computational overhead of PIR. We present the results

of our experimental evaluation in Section 6.7.

6.2 Computational PIR Protocol

Computational PIR [42] relies on the Quadratic Residuosity Assumption

(QRA), which states that it is computationally hard to find the quadratic

residues in modulo arithmetic of a large composite number N = q1 ·q2, where

q1, q2 are large primes (see Table 6.1 for a summary of notations).

Define

Z∗N = {x ∈ ZN |gcd(N,x) = 1}, (6.1)

the set of numbers in ZN which are prime with N (gcd is the greatest

common divisor). Then the set of quadratic residues (QR) modulo N is

defined as:

QR = {y ∈ Z∗N |∃x ∈ Z∗N : y = x2 mod N}. (6.2)

The complement of QR with respect to Z∗N constitutes the set of quadratic

non-residues (QNR).

Let

Z+1
N = {y ∈ Z∗N |

(y

N

)
= 1}, (6.3)

where
(y

N

)
denotes the Jacobi symbol [26]. Then, exactly half of the numbers

in Z+1
N are in QR, while the other half are in QNR. According to QRA,

121

for y ∈ Z+1
N , it is computationally intractable to decide whether y ∈ QR

or y ∈ QNR. Formally, define the quadratic residuosity predicate QN such

that:

QN (y) = 0 ⇔ y ∈ QR (6.4)

Then, if q1 and q2 are k
2 -bit primes, for every constant c and any function

C(y) computable in polynomial time, there exists k0 such that

∀k > k0, Pr
y∈Z+1

N

[C(y) = QN (y)] <
1
2

+
1
kc

(6.5)

Hence, the probability of distinguishing between a QR and a QNR is neg-

ligible for large-enough k.

Let t = d√n e and consider that the database X is organized as a

square t× t matrix M (the matrix is padded with extra entries if n is not a

perfect square). Let Ma,b be the matrix element corresponding to Xi that

is requested by the user u. u randomly generates modulus N (similar to a

public key in asymmetric cryptography), and sends it to the server, together

with query message y = [y1 . . . yt], such that yb ∈ QNR, and ∀j 6= b, yj ∈
QR.

The server computes for every row r of M the value

zr =
t∏

j=1

wr,j (6.6)

where wr,j = y2
j if Mr,j = 0, or yj otherwise1. The server returns z =

[z1 . . . zt]. Based on the Euler criterion, u computes the following formula:
(

z
q1−1

2
a = 1 mod q1

)
∧

(
z

q2−1
2

a = 1 mod q2

)
(6.7)

If Equation 6.7 is true, then za ∈ QR else za ∈ QNR. Since u knows

the factorization of N , Equation 6.7 can be efficiently computed using the

Legendre symbol [26]. The user determines the value of Ma,b as follows: If

za ∈ QR then Ma,b = 0, else Ma,b = 1.

Example 6.1. Figure 6.1 shows an example, where n = 16. u requests

X10, which corresponds to M2,3. Therefore, u generates a message y =
1According to [56] the formula can be simplified as follows: wr,j = yj if Mr,j = 1,

otherwise wr,j = 1

122

X1

1 2 3 4

4

3

2

1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

M a

b
y1 y2 y3 y4
QR QR QNR QR

Input

z1

z2

z3

z4

Output

i=10 a=2, b=3

z2 QR X10=0

z2 QNR X10=1

y1, y2, y3, y4

z1, z2, z3, z4

S
u

Figure 6.1: PIR example. u requests X10

[y1, y2, y3, y4], where y1, y2, y4 ∈ QR and y3 ∈ QNR. The server replies with

the message z = [z1, z2, z3, z4]. If z2 ∈ QR then u concludes that X10 = 0,

else X10 = 1.

The protocol requires O(n) multiplications at the server, and O(
√

n)

communication cost. The latter can be reduced to O(nε), 0 < ε < 1/2, by

applying the method recursively [42]. Although the recursive variation is

asymptotically better that the basic one, our experiments revealed that the

overhead of the recursion is not justified in practice.

The previous protocol retrieves privately one bit of information. The

same idea can be extended to retrieve an object pi which is represented as

an m-bit binary string. Let D be a database containing n objects: D =

{p1, p2, . . . pn}. Again, the server generates a matrix M with the difference

that each cell contains an m-bit object. Conceptually, this is equivalent to

maintaining m matrices M [1],M [2], . . . M [m], one for each bit of the objects.

Assume that u requests object pi. Same as the 1-bit case, u sends a message

y = [y1 . . . yt]. However, the server applies y to each one of the m matrices,

resulting to m answer messages: z[1], z[2], . . . z[m]. u receives these messages

and computes all m bits of pi. The communication and computation cost

increase to O(m
√

n) and O(m · n), respectively. We use

PIR(pi)

to denote that a user u retrieves privately an object pi from the server, using

123

the described protocol.

6.3 PIR and Location-dependent Queries

There are two privacy issues in location-dependent queries: (i) The user

must hide his identity (e.g., username, IP address, etc). This is orthogonal

to our problem and can be achieved through a widely available anonymous

web browsing service (that service does not learn the location of u). (ii)

The user must hide his location. Similar to previous research on spatial K-

anonymity (see Section 2.2), our PIR framework focuses on this issue. The

advantages of our approach are:

PIR does not disclose any spatial information. As opposed to CR-

based methods (which only perturb location, but still disclose the CR), no

location information is disclosed. Instead, the data (i.e., POIs) are retrieved

based on object index, by employing the provably private PIR protocol. This

approach prevents any type of attack based on user location. In Sections 6.4

and 6.5, we develop methods to find the NN of a user with exactly one PIR

request, irrespectively of his location.

PIR protects against correlation attacks. Assume that u asks a

continuous query as he moves. Existing methods generate one cloaking

region CRi per location, but all CRi will include u. By intersecting the set

of users in all CRi, an attacker can identify u with high probability; this is

called correlation attack. Observe that this attack is possible because the

CR reveals spatial information. Since the PIR framework does not reveal

any spatial information, u is protected against correlation attacks.

PIR reduces significantly the identification probability. Let U be

the set of all possible users (e.g., all mobile phone users within a country);

|U | is typically a large number (i.e., in the order of millions). From the

server’s point of view, the PIR request may have originated from any ui ∈ U .

Therefore, the probability to identify u as the querying user, is 1/|U |. In

contrast, existing techniques require a subset of users U ′ ⊂ U to subscribe

to the anonymization service; typically |U ′| ¿ |U |. Moreover, the number

of users in the cloaking region CR must be K ¿ |U ′|, else CR grows large

and the query cost becomes prohibitive (typically K is in the order of 102

124

[39, 49]). Therefore, the probability 1/K of identifying u is several orders

of magnitude larger than that of the PIR framework.

PIR does not require any trusted third party, since privacy is

achieved through cryptographic techniques. Existing techniques, on the

other hand, need: (i) An anonymizer, which is a single point of attack, and

(ii) A large set U ′ of subscribed users, all of whom must be trustworthy, since

malicious users may collaborate to reveal the location of u. Furthermore,

users in U ′ must accept the cost of sending frequent location updates to the

anonymizer, even if they do not ask queries.

PIR reduces the number of disclosed POI. Existing SKA tech-

niques may disclose a large set of candidate POIs (see the experimental

evaluation of Section 3.6). Since the database is a valuable asset of the

LBS, users may be charged according to the result size. We will show that

PIR techniques disclose far fewer POIs.

6.4 Approximate Nearest Neighbors

In this section we describe our ApproxNN method, which employs the PIR

framework to retrieve privately the nearest point of interest (i.e., NN) of u

from a LBS. We show that a good approximation of the NN can be found

with only one PIR request. For simplicity, in Section 6.4.1 we describe our

method using the 1-D Hilbert ordering. In Section 6.4.2 we generalize to

2-D partitionings, such as kd-trees and R-trees.

6.4.1 Approximate NN using Hilbert ordering

The Hilbert space filling curve is a continuous fractal that maps the 2-D

space to 1-D. Let pi be a POI and denote its Hilbert value as H(pi). The

Hilbert ordering of a database D = {p1, p2, . . . pn} is a list of all objects

sorted in ascending order of their Hilbert values. Figure 6.2 shows an exam-

ple database with 9 POIs D = {p1, . . . p9}, where H(p1) = 6, H(p2) = 15,

etc. The granularity of the Hilbert curve is 8× 8. The granularity does not

affect the cost of our method, therefore it can be arbitrarily fine.

If two POIs are close in the 2-D space, they are likely to be close in the

Hilbert ordering, as well [50]. Therefore, an approximation of the NN of u

125

22

24

16

33

6

9

57

6
p1

15
p2

16
p3

22
p4

24
p5

33
p6

36
p7

57
p8

62
p9

36

15
62

u (9)

Hilbert
value

Figure 6.2: 9 POIs on a 8× 8 Hilbert curve

is the POI pi whose Hilbert value H(pi) is closest to H(u). Since the POIs

are sorted on their Hilbert value, we can use binary search to compute the

approximate NN in O(log n) steps. In our example, H(u) = 9, therefore we

retrieve p5 → p3 → p2 → p1. The answer is p1 since its distance from u in

the 1-D space is |H(p1)−H(u)| = |6− 9| = 3, which is the smallest among

all POIs. Note that the answer is approximate; the true NN is p2.

There are two problems with this approach: First, since the search must

not reveal any information, O(log n) costly private requests for PIR(pi)

must be performed. Second, a side effect of the PIR protocol is that each

PIR(pi) retrieves not one, but
√

n POIs. Recall the example of Figure 6.1,

where u is interested in X10. The server returns z1, z2, z3, z4, from which u

can compute the entire column 3 of M , i.e., X9, X10, X11, X12. Consequently,

the binary search will retrieve O(
√

n log n) POIs, which represent a large

fraction of the database.

Observe, however, that each PIR request is intuitively analogous to a

“page access” on a disk. Therefore, the POIs can be arranged in a B+-tree,

where each node contains at most d√ne POIs. The B+-tree for our running

example is shown in Figure 6.3.a; since there are 9 POIs, the capacity of

each node is 3. Each entry in the root has a key and a pointer to a leaf. All

Hilbert values in a leaf are less or equal to the corresponding root key. Each

leaf node corresponds to one column of the PIR matrix M (see Figure 6.3.b).

Note that M stores the POIs without their Hilbert value. Without loss of

generality, we assume that each POI consists of its coordinates: pi = (xi, yi);

126

p1 p4 p7
p2 p5 p8
p3 p6 p9

1
2
3

1 2 316 33 62

22 24 33
p4 p5 p6

6 15 16
p1 p2 p3

36 57 62
p7 p8 p9

Mroot

Su=9

Send root

PIR(p1, p2, p3)
p1, p2, p3

(a) 3-way B+-tree (b) Matrix M (c) Protocol

u(9)

Figure 6.3: Approximate NN using Hilbert

Approximate NN Protocol

User u: Initiate query

Server: Send root node

User u: Let b be the column that includes u

y = [y1 : y√n], yb ∈ QNR, and ∀j 6= b, yj ∈ QR

Send y

Server: Send z[1 : m] = [z1 : z√n][1 : m]

User u: Calculate distance to all POIs in column b

Return the approximate NN

Figure 6.4: Protocol for approximate NN

more complex objects are easily supported. During query processing the

server sends to u the root node (i.e., 〈16, 33, 62〉). In the example H(u) =

9 ≤ 16, therefore u must retrieve privately the first column of M . This is

done with one request PIR({p1, p2, p3}). Next, u computes his NN from the

set {p1, p2, p3}. The answer is p2, which happens to be the exact NN. Note

that by retrieving several POIs in the neighborhood of u, the approximation

error decreases; however, the method remains approximate.

Observe that the height of the tree is always log√n n = 2. The fact that u

asks for the root node does not reveal any information to the server, since all

queries require the root. Therefore, the server sends the root, which contains

only Hilbert values but no POIs, in a low-cost plain format (i.e., does not use

PIR). Consequently, the NN is computed with only one PIR request (i.e.,

one column of M). Figure 6.4 shows the protocol. The communication cost

is O(
√

n) and u retrieves up to
√

n POIs; for instance, if the LBS contains

106 POIs, u retrieves 0.1% of them. In Section 6.7 we show that existing

methods, which employ an anonymizer, typically retrieve more POIs.

127

6.4.2 Generalization to 2-D partitionings

The previous method can be extended to 2-D partitionings. The only re-

quirement is that data must be partitioned into at most
√

n buckets, each

containing up to
√

n POIs. Consider the case of kd-tree [23]. The origi-

nal insertion algorithm partitions the space either horizontally or vertically

such that every partition contains one point. We modify the algorithm as

follows: Let n′ be the number of POIs in the current partition (initially

n′ = n), and let g be the number of remaining available partitions (initially,

there are
√

n). We allow splits that create partitions e1 and e2 such that

|e1|+ |e2| = n′ and

d|e1|/
√

n e+ d|e2|/
√

n e ≤ g. (6.8)

Then, the algorithm is recursively applied to e1 and e2, with d|e1|/
√

n e and

d|e2|/
√

n e remaining partitions respectively. Out of the eligible splits, we

choose the most balanced one.

In the example of Figure 6.5.a there are n = 9 POIs, and 3 available

buckets. The points are split into region A which contains |A| = 3 POIs

and BC which contains |BC| = 6 POIs. BC is further split into B (where

|B| = 3) and C (where |C| = 3). The resulting kd-tree has 2 levels. The

root contains regions A,B,C and the leaf level contains 3 nodes with 3 POIs

each, which are arranged in a PIR matrix M . Query processing follows the

protocol of Figure 6.4. Since u is in region C, column 3 is retrieved; the NN

is p2.

As another case study, consider the R-tree. Originally, each node would

store between f/2 and f objects, where f is the node capacity; internal nodes

contain minimum bounding rectangles (MBR) which enclose the objects of

their children. We modify the R-tree construction algorithm such that there

are 2 levels and the root contains no more than
√

n MBRs. Let n′ be the

number of POIs in the current partition. The original algorithm checks all

possible partitionings with |e1| + |e2| = n′ POIs, along the x and y-axis.

It selects the best one (e.g., lowest total area, or total perimeter, etc) and

continues recursively. We modify this algorithm to validate a split only

if Equation 6.8 is satisfied. Figure 6.5.b shows an example where MBRs

128

A B C

p6 p8 p9p4 p5 p7 p3 p2 p1

root

(a) kd-Tree

A B C

p3 p2 p6p4 p5 p7 p1 p8 p9

root

p4
p5

p3 p6

p1

u

p8

p7

p2

p9

A

B

C

p4 p5

p3
p6

p1

u

p8

p7

p2

p9

A

B

C

1

2

(b) R-Tree

Figure 6.5: 2-D approximate NN

A,B, C contain 3 POIs each. The leaf nodes are arranged in a PIR matrix

M and query processing follows the protocol of Figure 6.4. u is closer to

MBR B, therefore column 2 is retrieved and the NN is p2.

Both 2-D methods return the approximate NN by retrieving
√

n POIs.

The communication cost is O(
√

n). Therefore, in terms of cost, they are the

same as the Hilbert-based method. The only difference is the approximation

error, which depends on the characteristics of the dataset (e.g., density,

skew). The case studies of the kd-tree and R-tree demonstrate a general

method for accommodating any partitioning in our PIR framework. The

choice of the appropriate partitioning for a specific dataset is outside the

scope of this thesis. Note that, all variations of ApproxNN can also return

the approximate ith-Nearest Neighbor, where 1 ≤ i ≤ √
n.

6.5 Exact Nearest Neighbors

In this section we present a method, called ExactNN, which returns the

POI that is the exact nearest neighbor of user u. In a preprocessing phase,

ExactNN computes the Voronoi tessellation [23] of the set of POIs (see

Figure 6.6). Every Voronoi cell contains one POI. By definition, the NN of

any point within a Voronoi cell is the POI enclosed in that cell. ExactNN

129

p1

p2

p3 p4

u

A B C D

4

3

2

1

y1 y2 y3 y4Input

z1

z2

z3

z4

Output

A1: p2, --, --
A2: p2, --, --
A3: p1, p2, p3

...
C1: p2, p3, p4

...
D1: p4, --, --
D2: p4, --, --
D3: p4, --, --
D4: p4, --, --

16
cells

Pmax = 3

Figure 6.6: Exact nearest neighbor

superimposes a regular G×G grid on the Voronoi diagram. Then, for every

cell c of the grid, it determines all Voronoi cells that intersect it, and adds the

corresponding POIs to c. Hence, cell c contains all potential NNs of every

location inside it. For example, Figure 6.6 depicts a 4 × 4 grid, where cell

A1 contains {p2}, cell B2 contains {p2, p3}, etc. During query processing,

u learns the granularity of the grid; therefore he can calculate the cell that

encloses his location (i.e., D2 in our example). Then, u issues a private

request PIR(D2); from the contents of D2 u finds his NN (i.e., p4).

In contrast to ApproxNN methods, the objects of the PIR matrix M of

ExactNN are not the POIs. Instead, each object in M corresponds to the

contents of an entire grid cell c. For instance, our example contains 4 POIs

(i.e., p1, p2, p3, p4), but M contains 16 objects, since there are 16 cells in

the grid. In the previous section, n (i.e., the number of objects in M) was

the same as the number of POIs. To avoid confusion, n still refers to the

number of objects in M (i.e., n = 16 in the example) and we use |POI| to

denote the number of POIs.

All objects in M must have the same number of bits, otherwise the server

may infer the requested cell based on the amount of bits transferred. Let

Pmax be the maximum number of POIs per grid cell. If a cell has fewer

than Pmax POIs, we add dummy POIs as placeholders. In our example,

Pmax = 3 because of cells A3 and C1. Therefore, all other cells are padded

with dummy POIs. For instance, cell A1 becomes {p2,−,−}. Recall from

130

Exact NN Protocol

User u: Initiate query

Server: Send grid granularity G

User u: Let b be the column that includes u

y = [y1 : y√n], yb ∈ QNR, and ∀j 6= b, yj ∈ QR

Send y

Server: Send z[1 : m] = [z1 : z√n][1 : m]

User u: Let a be the row that includes u

Discard dummy POIs in za

Calculate distance to real POIs in za

Return the exact NN

Figure 6.7: Protocol for exact NN

Table 6.1 that m denotes the number of bits of each object in M . Since there

are Pmax POIs in each object, m = |pi| · Pmax, where |pi| is the number of

bits in the representation of each POI.

Since the number of objects in M is n = G2, depending on the granularity

of the grid, n may be larger or smaller than the number of POIs. Pmax (hence

m, too), also depends on G. Therefore the communication and computation

cost of ExactNN depend on G. In Section 6.5.1 we discuss how to select an

appropriate value for G.

The protocol for ExactNN is shown in Figure 6.7. It is similar to the

ApproxNN protocol, with one difference: Let 〈a, b〉 be the cell that con-

tains u, where a is the row and b the column. u issues a private request

PIR(〈a, b〉). Recall that, in addition to 〈a, b〉, the byproduct of this request

are the POIs of the entire column b. ApproxNN would utilize the extra POIs

to improve the approximation of the result. On the other hand, the extra

results are useless for ExactNN, since the exact NN is always in 〈a, b〉. A

possible concern is that ExactNN reveals to the user G · Pmax POIs, which

may be more than those revealed by ApproxNN. In practice, however, this

is not a problem because column b includes many duplicates. For example,

cells D1, D2, D3, D4 in Figure 6.6 all contain the same POI p4; therefore the

request PIR(D2) reveals only p4 to the user. In Section 6.6.2 we discuss an

optimization which reduces further the number of revealed POIs.

131

G

C
om

m
un

ic
at

io
n

co
st

Gopt

Minimum
communication cost

Optimal overall cost

Tangent
Slope = -1

Figure 6.8: Finding the optimal grid granularity

6.5.1 Grid Granularity

For a particular choice of grid granularity G, the PIR protocol overhead of

ExactNN is k · G + k ·m · G communication (the first term corresponds to

request y; the second to reply z), and O(m ·G2) server computation (recall

that m = |pi| · Pmax). By increasing G (i.e., finer grid), Pmax may decrease

or remain the same, depending on the data characteristics. Figure 6.8 shows

the general form of the communication cost, as a function of G. Initially

the cost decreases fast because Pmax decreases, but later the cost increases

again at finer granularity, as Pmax reaches a lower bound (either 1, or the

maximum of duplicate POIs). We could select the value of G that minimizes

the communication cost, but there is a tradeoff, as the CPU cost increases

quadratically to G. We could include the CPU cost in the graph and find

the granularity that minimizes the total cost (expressed as response time).

This would require the exact CPU speed and network bandwidth; the latter

is problematic, since the bandwidth of each user differs. A good tradeoff is

to select the granularity Gopt near the point where the rate of decrease of

the communication cost slows down. That is the point where the slope of

the tangent of the cost function becomes −1.

In practice, since Pmax is not known in advance, the graph of Figure 6.8 is

generated as follows: First, we compute the Voronoi diagram of the dataset.

Then, we select a set of values Gi using random sampling. For each of

these values, we superimpose the resulting grid on the Voronoi diagram,

132

and calculate Pmax by counting the POIs in each cell. The communication

cost is Ci(Gi) = k · Gi + k ·m · Gi . Finally, we apply curve fitting on the

〈Gi, Ci(Gi)〉 points to obtain the complete curve.

6.6 Optimizations

This section presents optimizations that are applicable to the previous meth-

ods. By employing these optimizations, the communication cost is reduced

by as much as 90%, whereas the computation cost is reduced by up to 40%

for a single CPU and more for multiple CPUs.

6.6.1 Compression

The size of z (i.e., the server’s answer) is k ·m ·r bits, where r is the number

of rows in the PIR matrix M . However, there is a lot of redundancy inside

z. Consider the example of Figure 6.6. Cells A4, B4, C4, D4 have at least

one dummy object each. Assuming that the dummy object corresponds to

bits mi . . . mj , then all z1[mi : mj] results will be the same. Since each one

of these results is k bits, the redundancy is significant. In our implementa-

tion we use standard compression techniques to compress the result. Our

experiments showed that, in many cases, compression may save up to 90%

of the communication cost.

6.6.2 Rectangular vs. Square PIR Matrix

In the previous sections the PIR matrix M is assumed to be square. How-

ever, M can have any rectangular shape [42] with r rows and s columns (see

Figure 6.9). The shape of M does not affect the CPU cost, since the number

of multiplications does not change. On the other hand, the communication

cost becomes: C(r, s) = k · s + k ·m · r, where the first part is the size of

the user’s request y1..s and the second part is the size of the server’s answer

z1..r. C(r, s) is minimized for:

r =
⌈√

n

m

⌉
, s =

⌈n

r

⌉
(6.9)

133

X1

1

n

.

.

.

2

1

X2

...

Xn

y1

z1

z2

.

.

.

zn

(a) M: n 1

X1

1 2 ... n

1 X2 ... Xn

y1 y2 ... yn

z1

(b) M: 1 n

X1

1 2 ... s

r

.

.

.

1

.

.

.

Xr

Xr+1

X2r

...

...

Xn-r+1

Xn

y1 y2 ... ys

z1

.

.

.

zr

.

.

.

.

.

.

…
…

(c) M: r s

Figure 6.9: Rectangular PIR matrix M

If each object has 1 bit (i.e., m = 1), C(r, s) is minimized for r = s =
√

n (i.e., square matrix). In our ExactNN method, on the other hand,

m À 1; therefore, the communication cost is minimized for r smaller than

s. Rectangular matrices have an additional benefit: they can reduce the

number of POIs that the user learns. Consider the example of Figure 6.9.a,

where r = n and s = 1. The server returns z1..n, therefore, the user learns

n POIs. On the other hand, in Figure 6.9.b r = 1 and the server returns

only 1 POI. By using rectangular M in the ExactNN algorithm, the user

learns up to r ·Pmax POIs. This is much less than the
√

n ·Pmax POIs that

a square matrix would reveal.

Rectangular M could also reduce the communication cost in the Ap-

proxNN methods, since m À 1. However, there is a drawback: Recall that

the ApproxNN methods organize POIs in an index, whose root node is al-

ways sent to the user. The size of the root is equal to the number of columns

s. In the extreme case (i.e., for large enough m), Equation 6.9 results in

s ≈ n, therefore the root node reveals the entire database to the user, de-

feating the purpose of PIR. The minimum number of revealed POIs (i.e.,

O(
√

n)) is achieved for square M . In our implementation we use a square

matrix M for the ApproxNN methods.

134

0 0 1 1 1 1

01 0 1 1 1

0 1 1 1 0 1

0 0 1 0 1 1

0 1 1 0 0 0

0 1 1 0 0 1

y1 y2 y3 y4
Input

z1

z2

z3

z4

Output1 2 3 4 5 6

1

2

3

4

5

6

z5

z6

y5 y6

y1 y2 y3 y4 y6y5

z1 z2 z3 z4 z6z5

y2 y3 y3 y5 y6

Execution plan

Figure 6.10: Pre-compiled optimized execution plan

6.6.3 Avoiding Redundant Multiplications

From Equation 6.6 (Section 6.2), it is clear that a PIR request requires m ·n
multiplications with yi ∈ y. Each yi is a k-bit number; to ensure that factor-

ization is hard, k needs to be in the order of hundreds. Therefore, the CPU

cost of the multiplications is high. Nevertheless, many multiplications are

redundant, since they are repeated several times. In this section we propose

an optimization technique, which employs data mining to avoid redundant

multiplications. Although in this work we only evaluate the effectiveness of

the proposed optimization for the location privacy problem, our technique

is general and can be used in other PIR applications.

By using the simplification of [56] (Section 6.2), in each row of the PIR

matrix we only need to consider the ‘1’ bits. For example, in Figure 6.10,

the result for row 1 is: z1 = y3 · y4 · y5 · y6. Observe that the partial product

y356 = y3 · y5 · y6 appears in rows 1, 2 and 4. If y356 is computed once, it can

be reused to compute z1 = y356 · y4, z2 = y356 · y1 and z4 = y356, thus saving

many multiplications. The same idea applies to y23, which appears in rows

3, 5 and 6.

Intuitively, the previous idea can be implemented as a “cache”. When a

new PIR request arrives, the server starts processing it and stores the partial

results in the cache. If a partial product is repeated, the corresponding

partial result is retrieved from the cache. Unfortunately, the number of

possible partial products is 2s, where s is the number of columns in M .

135

BuildExecutionPlan

Input: transaction Ti (from row i of M),

list of frequent itemsets IT

1. ExecP lani = ∅
2. foreach itemset itj ∈ IT

3. if (¬Ti ∧ itj = 0) /*itj is part of Ti*/

4. ExecP lani = ExecP lani ∪ {itj}
5. Ti = ¬itj ∧ Ti

6. if (Ti = 0) /*no more ‘1’s in Ti*/

7. break

8. output ExecP lani

Figure 6.11: Execution plan for one row

s can be in the order of thousands, therefore the method is prohibitively

expensive for on-line use.

Observe that, although the result depends on the input y, the set of

multiplications depends only on the server’s data and is the same for any

PIR request. Therefore, similarly to pre-compiled query plans in databases,

we generate in an off-line phase an optimized execution plan that avoids

redundant multiplications. Then, during query processing, the server routes

the input y through the operators of the plan, in order to compute fast the

result z. The execution plan for our running example is shown in Figure 6.10.

In the off-line phase, we employ data mining techniques to identify re-

dundant partial products. Following the data mining terminology, each

item corresponds to one column of matrix M , whereas each transaction cor-

responds to a row of M . For example, row 1 in Figure 6.10 corresponds

to transaction T1 = 001111. A ‘1’ bit means that the corresponding item

belongs to the transaction. There are r ·m transactions with s items each.

An itemset corresponds to a partial product. In order to avoid many multi-

plications, we must identify frequent and long itemsets. We use the Apriori

algorithm [8]. Initially, Apriori considers all itemsets with one item and

prunes those that do not appear in at least fmin transactions. Then, it

considers all possible combinations with two of the remaining items and

continues recursively with itemsets containing more items.

Accessing the execution plan incurs an overhead on query execution.

136

Therefore, the frequency and length of the discovered itemsets must be large

enough such that the savings from the multiplications are more than the

overhead. The cut-off values for frequency and length can be estimated by

measuring the actual multiplication time of the particular CPU. Moreover,

by decreasing fmin the running time of Apriori increases. Therefore, fmin

must be selected such that Apriori finishes within a reasonable time. Note

that the identification of frequent itemsets is a costly operation, therefore it

is not appropriate for databases with frequent updates. However, in many

LBSs updates are infrequent (e.g., hospitals change rarely). Similar to data

warehouses, our method is appropriate for batch periodic updates (e.g., once

per night).

Let IT = (it1, it2, . . .) be the list of frequent itemsets sorted in de-

scending order of itemset length. In the example of Figure 6.10, IT =

(001011, 011000) which corresponds to y356 and y23. We use the following

greedy algorithm to build the execution plan for row zi: Let Ti be the trans-

action that corresponds to zi. We traverse the list IT and select the first

(i.e., longest) itemset itj which appears in Ti. The rationale for this heuris-

tic is that longer itemsets correspond to longer partial products, hence they

are preferred for their higher potential in multiplication savings. We include

itj in the execution plan of Ti, remove from Ti all items in itj (this step is

necessary in order to ensure correctness) and repeat the process for the rest

of itemsets in IT . The pseudocode is shown in Figure 6.11 (lines 3 and 5 use

bitwise operations for performance reasons). The same process is repeated

for all rows of M .

Figure 6.12 shows the architecture of the PIR optimizer. Once a query

is received, the server checks for each row the associated execution plan

ExecP lani: for each itemset it ∈ ExecP lani, the server checks whether the

partial product of it has already been tabulated in table PROD; if so, it

is used directly, otherwise, the server computes the product and stores it

in PROD to be used for subsequent rows. The overhead of this technique

consists of the lookup in the PROD table, which can be efficiently manip-

ulated as a hash table, having as key the signature of it. The experiments

show that, by using the optimized execution plan, the computation cost is

reduced by up to 40%.

137

Figure 6.12: PIR Optimizer Architecture

6.6.4 Parallelism

The PIR framework involves a large number of multiplications in a regular

pattern. Consequently, the computations can be easily parallelized. The

parallel computing infrastructure can vary from multicore CPU, to multi-

CPU to computer cluster. Matrix M is partitioned horizontally in as many

partitions as the available CPUs, and each CPU receives the corresponding

partition in an off-line phase. During query processing, all CPUs receive

the input vector y and calculate their part of the result. Communication is

minimal (only the input and output) since each partition does not depend

on the others. Therefore, parallel implementations achieve almost linear

speedup. In our experiments we used up to 8 CPUs resulting to almost 7

times faster execution time.

6.7 Experimental Evaluation

We developed a C++ prototype of the proposed PIR framework. We tested

the methods using both synthetic (uniform and Gaussian) and real (Se-

quoia2, 65K POIs in California) datasets. Our experimental testbed con-

sisted of a Pentium 4 3.0GHz machine with 2GB of RAM, running Linux OS.
2http://www.rtreeportal.org

138

We employed the GMP3 library for operations with large integers (required

by PIR), and the zlib4 library for data compression. In our experiments,

we measured the communication cost, as well as the computation cost at

the server, which is the dominating factor for PIR. The CPU time includes

the compression of the result before returning it to the client (which only

accounts for a small fraction of the total CPU time). We also measured the

computation cost at the client. We varied k (i.e., modulus bits) between 256

and 1280, and the number of POIs between 10, 000 and 100, 000. Each POI

consists of its (x, y) coordinates (i.e., 64 bits).

6.7.1 1D and 2D Approximate NN

First we compare the approximate NN methods. 1D refers to the Hilbert

variant, whereas 2D refers to the R-tree variant. Figure 6.13.a shows the

server CPU time with varying k for the real Sequoia set. Recall that, for

approximate methods, n is the number of POIs. The CPU time is very

similar for both 1DApprox and 2DApprox, since in both cases it mainly

depends on the data size. CPU time varies approximately as k
√

k, which

is the average complexity of the multiplication algorithms implemented in

GMP.

Figure 6.13.b, shows the communication cost, which is linear to k. The

cost for 2DApprox is slightly lower due to compression. Compression is

more effective for 2DApprox, especially for skewed data, because the R-tree

clustering algorithms have good locality, and many POIs with similar co-

ordinates are grouped together in the same “index node” (i.e., PIR matrix

column), therefore increasing data redundancy. For k = 768, the communi-

cation cost is 1MB.

Figure 6.14.a shows the CPU time for varying data size (synthetic sets)

and k = 768. The CPU time is linear to n, since the number of multiplica-

tions is proportional to the number of ‘1’ bits in the data. The communi-

cation cost follows the expected theoretical dependency of
√

n, as shown in

Figure 6.14.b. Compression is more effective with Gaussian data, because
3http://gmplib.org/
4http://www.zlib.net

139

 0

 5

 10

 15

 20

 25

 30

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

1DApprox 2DApprox

(a) (b)

 0

 0.5

 1

 1.5

 2

 1280 1024 768 512 256

C
om

m
un

ic
at

io
n

(M
B

yt
es

)

Modulus Bits (k)

Figure 6.13: Variable k, Sequoia set (62K POI)

 0

 2

 4

 6

 8

 10

 12

100k75k50k25k10k

S
er

ve
r

T
im

e
(s

ec
)

Data Size

1DApprox-Unif 1DApprox-Gauss 2DApprox-Unif 2DApprox-Gauss

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

100k75k50k25k10k

C
om

m
un

ic
at

io
n

(M
B

yt
es

)

Data Size

Figure 6.14: Variable data size, k = 768 bits

there are more POIs with nearby (possibly identical) coordinates, increasing

redundancy.

Next, we investigate the approximation error of the proposed techniques.

We generate 1000 queries originating at random locations that follow the

POI distribution (this is a reasonable assumption, since the dataset is likely

to correspond to an urban area, for instance). Given query point q, the

returned result r and actual NN p, we express the approximate NN error as

err = (dist(q, r)−dist(q, p))/maxD, where maxD is the side of the (square)

data space.

Figure 6.15 shows the average error for 1DApprox and 2DApprox. The

error is slightly larger for uniform data, as POIs are scattered in the entire

dataspace. For Gaussian data, the clustering of POIs in the PIR matrix

140

1e-4

8e-5

6e-5

4e-5

2e-5

SequoiaGauss100kGauss50kUnif100kUnif50k

A
pp

ro
xi

m
at

io
n

E
rr

or

1DApprox
2DApprox

Figure 6.15: Approximation Error

10K 25K 50K 75K 100K

Uniform 20x20 22x22 28x28 32x32 36x36

Gaussian 42x42 61x61 78x78 108x108 122x122

Sequoia 104x104

Table 6.2: Grid Granularity for ExactNN

is more effective, leading to better accuracy. Furthermore, the error de-

creases when data density increases. The error is always under 0.01% of the

dataspace size.

1DApprox and 2DApprox have similar CPU time and comparable com-

munication cost, since they both follow the same 2-level tree approach. The

choice between the two depends on the characteristics of the data and is

outside the scope of this work. Due to the similar performance, we only

consider 1DApprox for the rest of the experiments.

6.7.2 Exact Methods

We evaluate the performance of ExactNN in comparison with 1DApprox.

The grid size of ExactNN was determined as described in Section 6.5.1. Ta-

ble 6.2 shows the resulting grid size for each dataset. Figure 6.16.a depicts

the CPU time versus k for the real dataset. The trend is similar to ap-

proximate methods, but the absolute values are higher for ExactNN, due

to the larger size of the PIR matrix (recall that the m value for ExactNN

may be considerably larger than that for 1DApprox). In Section 6.7.3 we

evaluate methods that reduce the CPU time. Figure 6.16.b confirms that

the communication cost is linear to k.

141

 0

 10

 20

 30

 40

 50

 60

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

1DApprox ExactNN

(a) (b)

 0

 1

 2

 3

 1280 1024 768 512 256

C
om

m
un

ic
at

io
n

(M
B

yt
es

)

Modulus Bits (k)

Figure 6.16: Variable k, Sequoia set (62K POI)

 0

 10

 20

 30

 40

100k75k50k25k10k

S
er

ve
r

T
im

e
(s

ec
)

Data Size

1DApprox-Unif 1DApprox-Gauss ExactNN-Unif ExactNN-Gauss

(a) (b)

 0

 0.5

 1

 1.5

 2

100k75k50k25k10k

C
om

m
un

ic
at

io
n

(M
B

yt
es

)

Data Size

Figure 6.17: Variable data size, k = 768 bits

Figure 6.17.a shows the CPU time versus the data size. Recall that n

for ExactNN depends on the grid granularity, and is not equal to the data

size. For uniform data, the number of grid cells (i.e., n value) required to

maintain a constant Pmax grows proportionally with data size, therefore the

CPU time increases linearly. On the other hand, for skewed data, in order

to maintain a value of m which provides low communication cost, it may

be necessary to use a finer grid, resulting in increased CPU time. However,

the results show that the CPU time is almost linear to the number of POI,

confirming that the heuristic for choosing the grid granularity is effective.

The good choice of granularity is also reflected in the communication cost

(Figure 6.17.b). Observe that, for Gaussian data, Pmax (hence m) increases,

and consequently the communication cost increases.

142

 0

 10

 20

 30

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

1DApprox 1DApprox-DM ExactNN ExactNN-DM

 0

 10

 20

 30

 40

 50

 60

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

Figure 6.18: DM Optimization, Sequoia set

6.7.3 Execution Time Optimizations

In this experiment we evaluate our optimizer, which employs data mining

(DM) to reduce the CPU cost of PIR at the server. We run the Apriori

algorithm on the real dataset and retain all frequent itemsets with a support

of at least 5%. Figure 6.18 shows the results: for small k values, the gain

in execution time is less significant, because multiplications are relatively

inexpensive. However, as k increases, the benefit of avoiding redundant

multiplications becomes clear: the CPU time is reduced by up to 41% for

1DApprox, and 32% for ExactNN.

The PIR computations are suitable for parallel execution. We imple-

mented a Message Passing Interface (MPI) version of the server, and tested

it on a Linux cluster with Intel Xeon 2.8 GHz nodes. In Figure 6.19, we

show the effect of parallel processing. We vary the number of CPUs from

1 to 8; note that, since each individual CPU is slower than the one used in

the previous experiments, the 1-CPU time is slightly larger. The speed-up

obtained is almost linear for 1DApprox, where we obtained improvements

by a factor of 7.25 for 8 CPUs. For ExactNN, the speed-up is slightly lower,

up to 6.1 for 8 CPUs, because the dummy objects correspond to a lot of ‘0’

bits and result in load imbalance among the CPUs. We expect better per-

formance with a more sophisticated load-balancing algorithm. For a typical

value of k = 768 bits, 1DApprox finishes in 1sec, whereas ExactNN needs

6sec.

143

 0

 5

 10

 15

 20

 25

 30

 35

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

1 CPU 4 CPU2 CPU 8 CPU

ApproxNN

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

ExactNN

Figure 6.19: Parallel execution, Sequoia set

6.7.4 User CPU Time

The user is typically equipped with a slow PDA; therefore he cannot afford

expensive computations. However, our experiments show that the CPU cost

for the user is low. In Figure 6.20.a we use the real dataset and vary k. The

user needs to generate random k-bit numbers and perform QR/QNR ver-

ifications of the k-bit replies; therefore the CPU time is linear to k. For

typical k = 768, the CPU time does not exceed 0.5sec. In Figure 6.20.b we

set k = 768 and vary the data size (we use the Gaussian dataset). When

the data size increases, so does the number of columns in matrix M . Conse-

quently, the size of the query vector y , as well as the size of the reply vector

z, increases. Note that, the CPU time is lower for ExactNN, due to the use

of rectangular matrices, which reduce the size of vector z. The resulting

CPU time is always lower than 0.4sec.

6.7.5 PIR vs. Anonymizer-based Methods

We compare our methods with Hilbert Cloak (HC) [39], which offers privacy

guarantees for snapshot queries, and outperforms other cloaking-based lo-

cation privacy techniques in terms of overhead, i.e. size of cloaking region

(CR). Direct comparison is difficult, since the architectures are completely

different and there are many unknowns (e.g., how many users subscribe in

the anonymizer service, how often they update their location, how often they

ask private queries, etc). Instead we study the number of POIs that the user

learns from each query (recall from Section 6.3 that the user is charged by

144

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1280 1024 768 512 256

C
lie

nt
 T

im
e

(s
ec

)

Modulus Bits (k)

1DApprox ExactNN

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

100k75k50k25k10k

C
lie

nt
 T

im
e

(s
ec

)

Data Size

Figure 6.20: User CPU time

 0

 500

 1000

 1500

 2000

128K64K32K16K8K4K2K1K

P
O

I

Users
(a) (b)

HC,K=20
1DApprox
ExactNN

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

P
O

I

K (degree of anonymity)

HC,16K users
1DApprox
ExactNN

Figure 6.21: PIR vs. K-anonymity, Sequoia set

the number of retrieved POIs).

We consider the Sequoia dataset, and for HC we generate a number of

subscribed users between 1K and 128K, at locations that follow the POI

data distribution (as discussed in Section 6.7.1). Figure 6.21.a shows the

number of disclosed POI for varying number of subscribed users, and a

value of anonymity degree K of 20 (i.e., 5% probability of identifying the

source). If the number of subscribed users is low, the size of the generated

CR is large, and a huge number of POIs are included in the result. Only

for a very large number of subscribers does the POI count become com-

parable with that of 1DApprox, which is roughly 250 for the Sequoia set.

The number of disclosed POIs is even lower for ExactNN (i.e., 15 POIs in

average), due to the rectangular PIR matrix. This result shows that, in or-

der to maintain a reasonable degree of disclosed POIs (i.e., a compact CR),

145

cloaking-based methods need to have a large number of subscribed users.

This translates into a high cost of location updates (mobile users change

location frequently), and also poses privacy concerns, since all users must

be trustworthy.

In Figure 6.21.b we fix the number of subscribed users to 16,000 and

vary K. HC achieves similar performance to ExactNN for K < 10, which

means that the identification probability exceeds 10%. The PIR methods

are constant because they do not need any subscribed user. Moreover the

identification probability is 1
|U | ¿ 1

K , where U are all possible users (see

Section 6.3).

6.8 Discussion

Our experimental evaluation shows that, although PIR techniques are rel-

atively expensive compared to usual query execution, the overhead is still

reasonable. For the real dataset and a typical value of k = 768 bits, the

communication cost for 1DApprox and ExactNN is roughly 1MB and 2MB,

respectively. The corresponding CPU time at the server is 1sec and 6sec,

respectively (by employing optimization and/or using multiple CPUs). The

CPU time at the user is 1sec at most, and the number of disclosed POIs

(hence the resulting financial cost of using the LBS), is low.

Existing SKA approaches have many hidden efficiency issues, such as

handling location updates, and managing a large number of user requests.

In addition, they have important drawbacks of qualitative nature: First,

they lack privacy guarantees for continuous queries (i.e., correlation attack),

and fail completely if some of the users are malicious. Second it may not be

commercially feasible to gather the required large number of subscribers who

will offer continuously their resources for a sporadic benefit. Third, there

may be legal reasons which prohibit the anonymizer to gather locations of

users.

Compared to previous work, the PIR framework architecture is simpler,

more secure (i.e., does not require an anonymizer or collaborating trust-

worthy users), and is the first one to protect against correlation attacks.

Nevertheless, in the absence of a parallel computing infrastructure, the com-

146

putational cost incurred by PIR may be high in comparison with SKA. For

this purpose, we plan to study in future work methods to further reduce the

computational overhead of PIR.

147

Chapter 7

Conclusions and Future

Work

7.1 Summary of Contributions

This thesis has focused on a comprehensive framework for private queries in

Location Based Services (LBS). We have identified the main objectives and

assumptions behind LBS query privacy, and we have systematically built

solutions that address the limitations of existing techniques. In summary,

our contributions are:

Secure SKA Algorithms. We have first considered the already estab-

lished setting in most existing work, i.e. Spatial K-anonymity (SKA) within

a centralized Anonymizer Server (AS) architecture. In Chapter 3, we have

identified the reciprocity property, a sufficient condition to guarantee SKA

for a snapshot of user locations. Our work was the first to provide privacy

guarantees in the above-mentioned setting. We have proposed two SKA

algorithms: Nearest Neighbor Cloak and Hilbert Cloak . Nearest Neighbor

Cloak uses a randomized variation of NN search, and significantly outper-

forms existing techniques in terms of K -ASR size, by a factor of up to

4 times. Hilbert Cloak builds upon the reciprocity property, and provides

provable privacy guarantees, independently of the user location distribution.

Anonymized Query Processing at LBS. The LBS overhead incurred

by the processing of anonymized queries is an important concern. In Chap-

148

ter 3, we have introduced a novel algorithm for finding the NN of a circular

region, as opposed to rectangular regions which were considered previously.

We have shown that by using circular ASRs, the LBS overhead can be re-

duced by a significant margin.

SKA Reciprocity with Variable Query Frequency. We have also

considered the scenario in which a determined attacker has additional back-

ground knowledge on the query frequency of various users. In Chapter 4, we

extended the reciprocity property to account for differences in probability

of issuing a query at distinct users.

Reciprocal Framework for SKA. In Chapter 4 we have introduced a

methodology for building reciprocal ASRs in a systematic manner. We have

proposed a family of partitioning methods based on hierarchical spatial in-

dices, with various trade-offs between ASR size and generation time. The re-

ciprocal framework also addresses the variable query frequency setting. Our

AR partitioning method outperforms existing solutions by a factor of 2 in

terms of ASR size, while the proposed GH method (and its frequency-aware

counterpart) incurs an ASR generation time up to an order of magnitude

lower than competitor methods.

Decentralized LBS Query Anonymization. Motivated by the limi-

tations of the centralized AS architecture, we have considered in Chapter 5

a distributed architecture for LBS query anonymization. Users self-organize

in a P2P overlay network, and cooperate to anonymize queries. We pro-

posed two different P2P protocols, Privé and MobiHide, which provide a

trade-off between privacy guarantees and response time. Privé implements

the Hilbert Cloak algorithm in a distributed fashion and offers privacy guar-

antees. MobiHide relies on a randomized version of Hilbert Cloak , which

allows a fully-decentralized implementation on top of the Chord [57] DHT.

MobiHide guarantees privacy for uniform query distribution, and offers ex-

cellent scalability with the number of subscribed users, with a response time

of under 5 seconds in the worst case.

PIR-based LBS Privacy. Finally, in Chapter 6, we proposed a com-

pletely novel approach to LBS privacy, based on Private Information Re-

trieval (PIR). This approach has several fundamental advantages over its

SKA-based counterparts: specifically, (i) it offers strong privacy guarantees,

149

that do not depend on the existence of a large number of trusted third-

parties, in the form of the AS and its subscribed users. (ii) it eliminates the

need for the maintenance of locations for a large population of mobile users

and (iii) it thwarts any type of location-based attack, as it does not disclose

any location information whatsoever to the LBS server (not even in per-

turbed form). We have also shown the benefits of PIR techniques in terms

of commercial considerations: the number of points of interest disclosed,

which is a good estimator of the financial cost incurred by LBS users, is one

order of magnitude smaller for PIR than for SKA-based techniques.

7.2 Directions for Future Research

We envision extending this research along the following directions:

• A challenging problem is to ensure anonymity for users issuing contin-

uous spatial queries. Intuitively, preserving anonymity is more difficult

in this case: asking the same query from successive locations may dis-

close the identity of the querying user, who will be included in all

ASRs. Although we have addressed this problem with our PIR ap-

proach, the issue remains open under the SKA paradigm. Our SKA

methods can be extended for processing continuous queries as follows:

a snapshot technique (e.g., NNC, HC) is first employed to determine

the set AS of users included in the ASR for the initial snapshot of the

query; this anonymizing set is “frozen” for the rest of the query life-

time. The MBR of AS is then used as ASR at subsequent snapshots1.

However, as users move in different directions, such an approach may

yield large ASRs. Furthermore, if one of the users in AS disconnects,

it compromises the privacy of the other users. Continuous queries

involve several complex issues, and constitute a promising topic for

further work.

• Another interesting aspect to enhance the privacy offered by SKA

methods is preventing “background knowledge” attacks, when the

attacker has additional information about the preferences of certain
1Such an approach has been proposed in [20], as discussed in Chapter 2.

150

users. For instance, if Bob, a rugby fan, asks for the location of the

closest rugby club, and the associated ASR contains only female users

in addition to Bob, the attacker may infer Bob as query source with

higher probability. A solution to this problem would be to group users

into partitions according to their areas of interest (e.g., users who

query frequently about restaurants, or night clubs, etc). Then, when

a query is issued, the corresponding ASR is generated with users from

the same interest group as the query source, such that each user in the

ASR has an equally likely probability of having asked the query.

• Our P2P anonymization methods currently assume a communication

network infrastructure (such as IP connectivity), where users can es-

tablish point-to-point connections. An interesting direction for future

work is to devise protocols for infrastructure-less networks, in which

only mobile devices within communication range can connect to each

other (for instance, using Wi-Fi or Bluetooth connections). Further-

more, it would be interesting to develop real-life prototypes of the

proposed decentralized anonymization systems, in order to confirm

their feasibility in practice.

• Although it offers much stronger privacy guarantees, and works under

more relaxed assumptions than SKA, our PIR LBS privacy approach

may incur increased computational and communication cost. In the

future, we plan to further investigate specific LBS privacy techniques

that result in lower cost, as well as general optimizations for PIR

protocols that would help reduce the incurred overhead.

151

Bibliography

[1] p2psim: The Peer-to-Peer Network Simulator.

http://pdos.csail.mit.edu/p2psim.

[2] D. J. Abel. A B+-tree structure for large quadtrees. Computer Vision,

Graphics, and Image Processing, 27(1):19–31, 1984.

[3] N. R. Adam and J. C. Wortmann. Security-Control Methods for Sta-

tistical Databases: A Comparative Study. ACM Computing Surveys,

21(4):515–556, 1989.

[4] C. C. Aggarwal. On k-Anonymity and the Curse of Dimensionality. In

VLDB, pages 901–909, 2005.

[5] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy,

D. Thomas, and A. Zhu. Achieving Anonymity via Clustering. In

Proc. of ACM PODS, pages 153–162, 2006.

[6] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy,

D. Thomas, and A. Zhu. Approximation Algorithms for k-Anonymity.

Journal of Privacy Technology, (Paper number: 20051120001), 2005.

[7] G. Aggarwal, N. Mishra, and B. Pinkas. Secure Computation of the

k th-Ranked Element. In Proc. of Int. Conference on the Theory and

Applications of Cryptographic Techniques (EUROCRYPT), pages 40–

55, 2004.

[8] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Association Rules

between Sets of Items in Large Databases. In Proc. of ACM SIGMOD,

pages 207–216, 1993.

152

[9] R. Agrawal and R. Srikant. Privacy-Preserving Data Mining. In Proc.

of ACM SIGMOD, pages 439–450, 2000.

[10] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable applica-

tion layer multicast. In Proc. of ACM SIGCOMM, 2002.

[11] S. Banerjee and S. Khuller. A Clustering Scheme for Hierarchical Con-

trol in Wireless Networks. In Proc. of IEEE INFOCOM, 2001.

[12] R. Bayardo and R. Agrawal. Data Privacy through Optimal k-

Anonymization. In Proc. of ICDE, pages 217–228, 2005.

[13] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree:

An Efficient and Robust Access Method for Points and Rectangles. In

Proc. of ACM SIGMOD, pages 322–331, 1990.

[14] A. Beimel, Y. Ishai, E. Kushilevitz, and Jean-Fran. Breaking the bar-

rier for information-theoretic private information retrieval. In IEEE

Symposium on Foundations of Computer Science, pages 261–270, 2002.

[15] A. R. Beresford and F. Stajano. Location privacy in pervasive comput-

ing. IEEE Pervasive Computing, 2(1):46–55, 2003.

[16] C. Bettini, X. SeanWang, and S. Jajodia. Protecting Privacy Against

Location-Based Personal Identification. In VLDB Workshop on Secure

Data Management (SDM), 2005.

[17] T. Brinkhoff. A framework for generating network-based moving ob-

jects. Geoinformatica, 6(2):153–180, 2002.

[18] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving user

location privacy in mobile data management infrastructures. In Int.

Workshop on Privacy Enhancing Technologies, pages 393–412, 2006.

[19] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private infor-

mation retrieval. In IEEE Symposium on Foundations of Computer

Science, pages 41–50, 1995.

[20] C.-Y. Chow and M. F. Mokbel. Enabling Private Continuous Queries

for Revealed User Locations. In Proc. of SSTD, pages 258–275, 2007.

153

[21] C.-Y. Chow, M. F. Mokbel, and X. Liu. A Peer-to-Peer Spatial Cloak-

ing Algorithm for Anonymous Location-based Services. In ACM Inter-

national Symposium on Advances in Geographic Information Systems,

2006.

[22] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram.

Querying P2P Networks using P-trees. In Proc. of WebDB, pages 25–

30, 2004.

[23] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-

putational Geometry: Algorithms and Applications. Springer-Verlag,

2nd edition, 2000.

[24] R. Fagin. Combining Fuzzy Information from Multiple Systems. In

Proc. of ACM PODS, pages 216–226, 1996.

[25] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. N.

Wright. Secure Multiparty Computation of Approximations. In Int.

Colloquium on Automata, Languages and Programming (ICALP), 2001.

[26] D. E. Flath. Introduction to Number Theory. John Wiley & Sons, 1988.

[27] B. Gedik and L. Liu. Location Privacy in Mobile Systems: A Per-

sonalized Anonymization Model. In Proc. of ICDCS, pages 620–629,

2005.

[28] G. Ghinita, P. Kalnis, and S. Skiadopoulos. MobiHide: A Mobile Peer-

to-Peer System for Anonymous Location-Based Queries. In Proc. of

SSTD, pages 371–380, 2007.

[29] G. Ghinita, P. Kalnis, and S. Skiadopoulos. PRIVE: Anonymous

Location-based Queries in Distributed Mobile Systems. In Proc. of

Int. Conference on World Wide Web (WWW), pages 371–380, 2007.

[30] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast Data Anony-

mization with Low Information Loss. In Proc. of VLDB, pages 758–769,

2007.

154

[31] G. Ghinita, Y. Tao, and P. Kalnis. On the Anonymization of Sparse,

High-Dimensional Data. In Proc. of ICDE, page to appear, 2008.

[32] O. Goldreich. The Foundations of Cryptography, volume 2. Cambridge

University Press, 2004.

[33] M. Gruteser and D. Grunwald. Anonymous Usage of Location-Based

Services Through Spatial and Temporal Cloaking. In Proc. of USENIX

MobiSys, 2003.

[34] B. Hoh and M. Gruteser. Protecting Location Privacy Through Path

Confusion. In Proc. of SecureComm, pages 194–205, 2005.

[35] H. Hu and D. L. Lee. Range Nearest-Neighbor Query. IEEE TKDE,

18(1):78–91, 2006.

[36] Z. Huang, W. Du, and B. Chen. Deriving private information from

randomized data. In Proc. of ACM SIGMOD, 2005.

[37] P. Indyk and D. P. Woodruff. Polylogarithmic Private Approximations

and Efficient Matching. In Proc. of Theory of Cryptography Conference

(TCC), pages 245–264, 2006.

[38] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: a Balanced Tree

Structure for P2P networks. In Proc. of VLDB, 2005.

[39] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preventing

Location-Based Identity Inference in Anonymous Spatial Queries. IEEE

TKDE, 19(12):1719–1733, 2007.

[40] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk. Enhancing Source-

Location Privacy in Sensor Network Routing. In Proc. of ICDCS, pages

599–608, 2005.

[41] A. Khoshgozaran and C. Shahabi. Blind Evaluation of Nearest Neighbor

Queries Using Space Transformation to Preserve Location Privacy. In

Proc. of SSTD, pages 239–257, 2007.

155

[42] E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: Sin-

gle database, computationally-private information retrieval. In IEEE

Symposium on Foundations of Computer Science, pages 364–373, 1997.

[43] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient

Full-Domain K-Anonymity. In Proc. of ACM SIGMOD, pages 49–60,

2005.

[44] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian Multidi-

mensional k-Anonymity. In Proc. of ICDE, 2006.

[45] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware

Anonymization. In Proc. of KDD, pages 277–286, 2006.

[46] N. Li, T. Li, and S. Venkatasubramanian. t-Closeness: Privacy Beyond

k-Anonymity and l-Diversity. In Proc. of ICDE, 2007.

[47] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.

l-Diversity: Privacy Beyond k-Anonymity. In Proc. of ICDE, 2006.

[48] A. Meyerson and R. Williams. On the Complexity of Optimal K-

anonymity. In Proc. of ACM PODS, pages 223–228, 2004.

[49] M. F. Mokbel, C. Y. Chow, and W. G. Aref. The New Casper: Query

Processing for Location Services without Compromising Privacy. In

Proc. of VLDB, 2006.

[50] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the

Clustering Properties of the Hilbert Space-Filling Curve. IEEE TKDE,

13(1):124–141, 2001.

[51] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP Oper-

ations in Spatial Data Warehouses. In Proc. of SSTD, pages 443–459,

2001.

[52] H. Park and K. Shim. Approximate algorithms for K-anonymity. In

Proc. of ACM SIGMOD, 2007.

[53] P. Samarati. Protecting Respondents’ Identities in Microdata Release.

IEEE TKDE, 13(6):1010–1027, 2001.

156

[54] H. Samet. The Design and Analysis of Spatial Data Structures.

Addison-Wesley, 1990.

[55] M. Shaneck, Y. Kim, and V. Kum. Privacy Preserving Nearest Neighbor

Search. In Int. Workshop on Privacy Aspects of Data Mining (PADM),

2006.

[56] R. Sion and B. Carbunar. On the Computational Practicality of Private

Information Retrieval. In Proc. of Network and Distributed System

Security Symposium (NDSS), 2007.

[57] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,

F. Dabek, and H. Balakrishnan. Chord: a Scalable Peer-to-Peer Lookup

Protocol for Internet Applications. IEEE/ACM Transactions on Net-

working, 11(1):17–32, 2003.

[58] L. Sweeney. k-Anonymity: A Model for Protecting Privacy. Int. J. of

Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570,

2002.

[59] Y. Tao and D. Papadias. Historical spatio-temporal aggregation. ACM

Trans. Inf. Syst., 23(1):61–102, 2005.

[60] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor

Search. In Proc. of VLDB, pages 287–298, 2002.

[61] Y. Theodoridis. The R-tree-portal, 2003.

[62] J. Vaidya and C. Clifton. Privacy-Preserving Top-K Queries. In Proc.

of ICDE, pages 545–546, 2005.

[63] X. Xiao and Y. Tao. Anatomy: Simple and Effective Privacy Preserva-

tion. In Proc. of VLDB, 2006.

[64] X. Xiao and Y. Tao. Personalized Privacy Preservation. In Proc. of

ACM SIGMOD, 2006.

[65] X. Xiao and Y. Tao. m-invariance: Towards privacy preserving re-

publication of dynamic datasets. In Proc. of ACM SIGMOD, 2007.

157

[66] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu. Utility-Based

Anonymization Using Local Recoding. In Proc. of SIGKDD, pages

20–23, 2006.

[67] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate Query

Answering on Anonymized Tables. In Proc. of ICDE, 2007.

158

Appendix A

Analysis of Privacy in

Casper and Interval Cloak

Among the systems reviewed in Section 2.2, Casper and Interval Cloak per-

form spatial cloaking, using the same architecture and following the same as-

sumptions as our techniques. Next, we show formally that both approaches

are not secure. Recall that the shape of an ASR in Casper can be either a

square, or the horizontal/vertical union of two adjacent cells under the same

parent. We first analyze the case of square ASRs assuming that an attacker

detects the ASR of Figure A.1a. Then, s/he can infer that it was created

due to a query from a user U in A, B, C, D. If U is in cell A, the required

degree of anonymity KA must be in the range [MA +1, |A|+ |B|+ |C|+ |D|].
MA = |A| + max{|B|, |C|} is due to the fact that neither A ∪ B, nor

A ∪ C contains sufficient points (otherwise the ASR would be A ∪ B, or

A ∪ C). Similar to KA, we can calculate the ranges of KB, KC and KD

which have the same maximum value |A| + |B| + |C| + |D|, but different

lower bounds MB = |B| + max{|A|, |D|},MC = |C| + max{|A|, |D|} and

MD = |D|+ max{|B|, |C|}, respectively.

Summarizing, the ASR is generated by a query originating from (i) A

with anonymity KA, i.e., |A| · (|A| + |B| + |C| + |D| −MA) events, or (ii)

B with KB, i.e., |B| · (|A| + |B| + |C| + |D| −MB) events, or (iii) C with

KC , i.e., |C| · (|A|+ |B|+ |C|+ |D| −MC) events, or (iv) D with KD, i.e.,

|D| · (|A| + |B| + |C| + |D| − MD) events. The total number of events is

159

(|A|+ |B|+ |C|+ |D|)/2−|A| ·MA−|B| ·MB−|C| ·MC−|D| ·MD. Given no

additional knowledge about the query frequency and the anonymity degree

distributions, the attacker considers that these events have equal probabil-

ities. For instance, s/he assumes that the query originates from A with

probability:

PA =
|A| · (|A|+ |B|+ |C|+ |D| −MA)

(|A|+ |B|+ |C|+ |D|)2 − |A| ·MA − |B| ·MB − |C| ·MC − |B| ·MD

(A.1)

Within A, each individual user can issue the query with equal probability

PA/|A|. For SKA to be preserved, it must hold that PA/|A| ≤ 1/KA.

Since the maximum value of KA is |A|+ |B|+ |C|+ |D|, we have PA/|A| ≤
1/(|A|+|B|+|C|+|D|). Applying the same reasoning to PB/|B|, PC/|C| and

PD/|D| and some algebraic simplifications, we derive the following system

of linear inequalities:

MA =
|B| ·MB + |C| ·MC + |D| ·MD

|B|+ |C|+ |D| (A.2)

MB =
|A| ·MA + |C| ·MC + |D| ·MD

|A|+ |C|+ |D| (A.3)

MC =
|A| ·MA + |B| ·MB + |D| ·MD

|A|+ |B|+ |D| (A.4)

MD =
|A| ·MA + |B| ·MB + |C| ·MC

|A|+ |B|+ |C| (A.5)

The solution to the above system has the only form MA = MB = MC =

MD. MA = MD implies that |A| = |D|, and MB = MC that |B| = |C|. In

other words, each pair of diagonal cells should have the same cardinality;

otherwise Casper fails to preserve SKA. As an example consider Figure

A.1a, where A, C and D contain one user each, and B includes 10 users

(MA = MB = MD = 11, MC = 2). Assuming that the query originates

from UC in cell C, then KC must be in the range [3, 13]. The attacker will

infer UC as the origin with probability PC/|C| = 11/35, which exceeds 1/KC

for KC ≥ 4. Thus, the anonymity of UC is breached for all, but one, queries

involving this ASR.

Having established that the diagonal neighbors must have the same car-

dinality (in order not to compromise square ASRs), we will show that the

horizontal (and vertical) neighbors must also satisfy the same condition.

160

A B

C D

ASRUC

A B

C D

ASR

UA

(a) Square ASR (b) 2x1 Rectangular ASR

Figure A.1: Examples of Casper ASRs

Assume a rectangular ASR consisting of cells A and B as shown in Figure

A.1b. Clearly, the query may have originated from a user U in A or B.

If U is in A, the required degree of anonymity KA must be in the range

[|A|+ 1, |A|+ |B|]. This is because if KA ≤ |A|, the ASR would not include

B (as the points in A would suffice). Otherwise, if KA > |A| + |B|, the

ASR should be larger than the union of A and B. Similarly, if the query

is issued by any user from B, the degree of anonymity KB is in the range

[|B|+ 1, |A|+ |B|].
The ASR is generated by (i) a query originating from A with KA, i.e.,

|A|·|B| events, or (ii) a query originating from B with KB, i.e., |B|·|A| events.

Given that these events have equal probabilities, the attacker assumes that

the query originates from A or B with PA = PB = |A| · |B|/(2 · |A| · |B|) =

1/2. Within A or B, each individual user can issue the query with equal

probability PA/|A| = 1/(2 · |A|) or PB/|B| = 1/(2 · |B|), respectively. SKA

requires that PA/|A| ≤ 1/KA and PB/|B| ≤ 1/KB. Because the maximum

value of KA and KB is |A|+ |B|, it must hold that 1/(2 · |A|) ≤ 1/(|A|+ |B|),
and 1/(2 · |B|) ≤ 1/(|A|+ |B|), which are simultaneously satisfied only when

|A| = |B|. In case that |A| 6= |B|, Casper fails to preserve SKA. For instance,

in Figure A.1b (|A| = |D| = 5, |B| = |C| = 10), assume that the ASR is

generated due to a query from UA with KA in [6, 15]. The attacker will

pinpoint UA with probability PA/|A| = 1/10, which compromises anonymity

for all values of KA in the range [11, 15].

In conclusion, Casper achieves SKA only when each cell (at any level)

contains exactly the same number of users as its neighbors, i.e., only for

perfectly uniform user distribution. The analysis of Interval Cloak is similar

161

to Casper; except that (i) the ASR is always square, and (ii) MA = |A|,
MB = |B|, MC = |C| and MD = |D|, because if a cell does not contain

enough users, the method uses directly its parent. Thus, the previous system

of inequalities implies that in order to guarantee anonymity, it should hold

that |A| = |B| = |C| = |D|, meaning that Interval Cloak is also applicable

only to uniform datasets.

162

	Introduction
	Contributions and Thesis Organization

	Related Work
	K-anonymity
	Spatial K-anonymity. Assumptions and Goals
	Existing SKA Techniques
	Related Spatial Query Processing Techniques
	Related P2P Systems
	Private Information Retrieval

	SKA Framework for LBS Privacy
	Introduction
	Nearest Neighbor Cloak
	Reciprocity
	Hilbert Cloak
	Location-Based Service Query Processing
	CkNN - Circular Range kNN
	R-trees and CkNN

	Experimental Evaluation
	Anonymizer Evaluation
	Location-Based Service Evaluation

	Discussion

	Reciprocal Framework for SKA
	Introduction
	Algorithm for Reciprocal Cloaking
	Partitioning Methods
	Greedy Hilbert Partitioning (GH)
	Asymmetric R-tree Split (AR)
	Dynamic Programming Hilbert (DH)
	Top-Down Clustering (TD)
	Discussion

	SKA With Variable Query Frequencies
	Experimental Evaluation
	Evaluation of Partitioning Techniques
	Comparison with Hilbert Cloak (HC)
	Variable Query Frequencies

	Discussion

	Decentralized Query Anonymization
	Introduction
	Privé
	Hilbert Cloak with a B+-tree index
	Protocol Overview
	Protocol Operations
	Fault Tolerance and Load Balancing

	MobiHide
	The Correlation Attack
	Protocol Overview
	Protocol Operations
	Fault-tolerance and Load Balancing

	Experimental Evaluation
	Privé protocol
	MobiHide protocol
	Privé and MobiHide Comparison

	Discussion

	PIR Framework for LBS
	Introduction
	Computational PIR Protocol
	PIR and Location-dependent Queries
	Approximate Nearest Neighbors
	Approximate NN using Hilbert ordering
	Generalization to 2-D partitionings

	Exact Nearest Neighbors
	Grid Granularity

	Optimizations
	Compression
	Rectangular vs. Square PIR Matrix
	Avoiding Redundant Multiplications
	Parallelism

	Experimental Evaluation
	1D and 2D Approximate NN
	Exact Methods
	Execution Time Optimizations
	User CPU Time
	PIR vs. Anonymizer-based Methods

	Discussion

	Conclusions and Future Work
	Summary of Contributions
	Directions for Future Research

	Analysis of Privacy in Casper and Interval Cloak

