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Summary 

With rapid advances in CMOS technology, power dissipation has become a great concern 

in modern microprocessor design, not only for battery-operated potable devices but also 

for high-end computer systems. Minimizing power dissipation of processors leads to 

many benefits, such as prolonging the battery lifetime of portable devices and reducing 

the heat dissipation and cooling cost of computer systems. 

In this thesis, we are going to propose efficient designs for reducing power dissipation of 

the microprocessor. First of all, we investigate background and techniques for reducing 

microprocessor power dissipation. Then we attempt to address power dissipation issue of 

the microprocessor at the micro-architecture level, and present a realistic analysis model 

to discuss and identify possible power reduction opportunities during application 

execution. Finally, based on our analysis model, we propose two novel schemes at the 

micro-architecture level to reduce runtime power dissipation of microprocessors. Both 

methods make use of a micro-architecture parameter-IPC to identify potential power 

reduction opportunities during application execution.  

Firstly, an IPC-driven online power reduction scheme is presented. This design employs the 

micro-architecture parameter (IPC) as the runtime performance indicator to dynamically 

scale the voltage and frequency of a processor. The basic idea in this interval-based 

identification and prediction design is to trace the current interval’s performance activity 

level and predict the coming interval at which certain power-performance trade-off would 

be profitable.  

Then, by using the same micro-architecture parameter, an IPC-driven offline power reduction 



 VII 

scheme is presented. This code analysis and reconfiguration design first identifies code 

sections that have appropriate IPC values and could make contributions to microprocessor 

power reduction, and then profiles them to dynamically scale the voltage and frequency of 

the microprocessor at appropriate points during application execution. For both low-power 

design schemes, simulation results showed that they significantly reduced the processor 

runtime energy consumption with minimal application performance degradation. 

Furthermore, both schemes could achieve better results when comparing with other 

state-of-the-art related works.  

Beside the two micro-architecture level low-power designs, we also propose two methods 

to identify related micro-architecture parameters: runtime power behavior and data 

dependence length of applications. The two micro-architecture parameters could be used 

to evaluate the two low-power designs proposed by us.  
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Chapter 1  

Introduction 

Power dissipation is becoming a crucial design constraint for modern microprocessors. 

This thesis investigates low power design schemes at the micro-architecture level to 

reduce power dissipation of microprocessors. In this chapter, we shall define the problem 

to be addressed, and describe the structure of the thesis. 

1.1 The Problem 

With the rapid growth of the internet and computer technology, portable devices, such 

as cellular phones, Personal Digital Assistants (PDA) and Global Positioning System 

(GPS) navigators, have become increasingly popular and widely-used. For these 

widespread portable electronic products, modern consumers require not only mobile 

computing ability, but also fast executing speed and various entertainment functions. 

The ability to fulfill these requirements usually lies on microprocessors embedded in 

the portable devices. To achieve faster computing speed, modern microprocessors 

have been pushed to higher clock speed and implemented with greater parallelisms. 

On the other hand, to accomplish more complicated functions, modern 

microprocessors have been packed with larger on-chip caches and more complex 

logic structures. 

However, with the dramatic increase in executing speed and on-chip functions in a 
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microprocessor, power dissipation also increases significantly. For example, maximum 

power dissipation of recent microprocessors has reached 130watts [1]. Such high 

power dissipation of microprocessors causes problems in at least two aspects.  

Firstly, high power dissipation of microprocessors limits the “battery-life” of 

portable products. As is well known, battery-life is an important factor in the adoption 

of these battery-powered portable devices. In general, the battery life-time depends on 

both the battery capacity and the power dissipation in a portable device. However, 

improvements in the capacity of batteries can not keep pace with the increasing power 

demand of today’s portable devices [2, 3, 4]. Thus, minimizing power dissipation of 

the portable devices is an efficient approach to prolong the battery life. As the 

microprocessor is a key component in a portable device, minimizing its high power 

dissipation could contribute much to the total power dissipation reduction of a 

portable device, and it is also very helpful to increase the battery life of the 

battery-powered device.  

Secondly, high power dissipation of microprocessors leads to high chip 

temperature during operation. High operating temperature may lead to phenomena 

such as electromigration and hotelectron effects in the circuit, thereby reducing 

reliability of the whole system. As studied in [5], researchers found that every 10°C 

increase in operating temperature roughly doubles the failure rate of an Integrated 

Circuit (IC). To reduce the failure rate caused by high temperature, large and expensive 

cooling systems have to be incorporated into computer systems to ensure proper 

operation.  
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(a): Power trends 

  

(b): Cooling cost 

Fig. 1.1: Trends in power dissipation and the cost of cooling [6] 

Figure 1.1(a) shows the trends in power dissipation of Intel processors over the 

past fifteen years. As shown in the graph, more recent processors have much higher 

maximum power dissipation, increasing by a factor of 2 every four years [6]. Figure 

1.1(b) shows the costs involved in removing this power (converted to heat) from the 

processors. This graph shows how the cost of cooling has increased as the amount of 
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heat produced has risen. It can be seen that the cooling cost rises non-linearly with the 

power of the processor [6]. From the two graphs, it is obvious that: reducing the 

amount of power dissipation in a processor would decrease the overall system cost. 

To address the above two issues, a lot of research effort has been focused on 

developing microprocessors with high performance and minimal power consumption. 

To achieve this goal, various low-power technologies, from transistor and gate levels 

to operating system and application levels, have been proposed in the past years, and 

we will present and discuss them in the next chapter. In this thesis, we focus on 

reducing power dissipation of microprocessors at the micro-architecture level, and 

successfully propose two new and efficient low-power strategies, which will be 

presented in the following chapters.  

1.2 Structure 

The remainder of this thesis is organized as follows. Chapter 2 describes the basic 

issues of processor power dissipation and investigates various types of power 

dissipation sources in microprocessors. In particular, this chapter focuses on reviewing 

distinguished low-power techniques to reduce power dissipation induced by these 

sources in microprocessors.  

In Chapter 3, firstly, the motivation for our micro-architecture level low-power 

design schemes is presented. Following that, an analysis model for our schemes is 

described in detail, and then the trade-off between power and performance of 

microprocessors in our schemes are studied.  
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In Chapter 4, the benchmark applications used to evaluate our proposed schemes in 

this thesis are presented. In addition, the simulation environment and the processor 

architecture of the simulator are also described in this chapter.  

Chapter 5 describes a scheme that employs a micro-architecture parameter (IPC) as 

the performance indicator for specific processor runtime periods, and implements an 

interval-based identification and prediction mechanism for processor demand to 

reduce its power dissipation with minimal performance degradation. The basic idea 

for this design is to trace the current interval’s performance activity level in terms of 

the IPC value and then use it to predict the processor demand for the coming interval 

at which certain power-performance trade-off would be profitable. Results show that 

this design scheme takes advantage of energy reduction as well as provides 

fine-grained, tight control over performance loss.  

In Chapter 6, using the same micro-architecture parameter (IPC), a code analysis 

and reconfiguration scheme for microprocessor power reduction is presented. This 

trace-based low power design is implemented to identify code sections in an application 

that have appropriate IPC values and could make contributions to program runtime 

power reduction. These traced code sections are then profiled to dynamically scale the 

voltage and frequency of the microprocessor at appropriate points during execution. 

Experiment results show that our trace-based code analysis and reconfiguration 

mechanism significantly reduces the energy consumption of microprocessors without 

degrading the performance very much.  

Chapter 7 presents two efficient methods to identify two useful micro-architecture 
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parameters, which are runtime power behaviors and data dependence length (DDL) of 

an application. Firstly, a method to identify application runtime power behaviors is 

presented. This method employs a phase-based analysis approach to obtain the 

runtime power dissipation information of an application and then characterize its 

runtime power behaviors. Then, a data dependence length identification method is 

presented. This method also uses the phase analysis technique to identify dynamic 

data dependence information among runtime instructions of a program and then use 

data dependence length (DDL) to characterize dynamic data dependence of the whole 

program. Experiment results demonstrate that both methods could identify the target 

micro-architecture parameter accurately and speedily.  

Finally, Chapter 8 concludes this thesis, summarizing the main results and 

contributions, and describing directions that future work could pursue in this research 

area. 
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Chapter 2  

Power Dissipation Source and Low Power 

Techniques 

In general, power dissipation of microprocessors can be divided into two categories:  

1) Static power dissipation, which arises from leakage currents and is 

generally independent of logic switching of circuits.  

2) Dynamic power dissipation, which arises from the switching activities of 

logic circuits.  

In this chapter, we will investigate both static power dissipation and dynamic 

power dissipation. In Section 2.1, we shall review leakage-induced static power 

dissipation. We shall examine the various sources for static power dissipation and the 

techniques to reduce static power dissipation. In Section 2.2 we shall describe the 

switching-induced dynamic power dissipation. We investigate sources for dynamic 

power dissipation and present low-power techniques to minimize them.  

2.1 Static Power Dissipation 

2.1.1 Static Power Dissipation Sources 

In deep sub-micrometer regimes, leakage current increases with reduced threshold 

voltage, channel length and gate oxide thickness. The high leakage current is 

becoming a significant contributor to the overall power dissipation of CMOS circuits. 



 8 

Figure 2.1 shows the projection of the International Technology Roadmap for 

Semiconductors (ITRS) for the trend of static and dynamic power dissipation with 

respect to technology progress [7]. It can be seen that the static power dissipation is 

expected to exceed the dynamic power dissipation unless effective static power 

reduction techniques are properly applied.  

 

Fig. 2.1: ITRS projections for device power dissipation [7] 

As known, for deep-submicron transistors, there are six major leakage 

mechanisms that contribute to the static power dissipation, as illustrated in Figure 2.2. 

 

Fig. 2.2: Leakage current mechanisms of deep-submicron transistors [8]  
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As is shown in Figure 2.2, the six leakage mechanisms [8] are: PN junction 

reverse-bias current (I1), sub-threshold leakage (I2), tunneling into and through gate 

oxide (I3), injection of hot carriers from substrate to gate oxide (I4), gate-induced 

drain leakage (I5) and punch-through (I6). In general, currents I2, I5, and I6 are off-state 

leakage mechanisms, while I1, I3, and I4 occur in both ON and OFF states.  

2.1.1.1 PN-junction reverse-bias current (I1) 

Normally, PN junction leakage current is generated when drain and source to well 

junctions are reverse-biased. A reverse-bias PN junction leakage (I1) has two main 

components: 1) minority carrier diffusion and drift near the edge of the depletion 

region; 2) electron-hole pair generation in the depletion region of the reverse-biased 

junction [9]. As is studied in [9], PN-Junction reverse-bias leakage is a complex 

function of junction area and doping concentration.  

2.1.1.2 Sub-threshold leakage (I2) 

The sub-threshold leakage is the leakage between source and drain in an off-state 

transistor. In modern MOSFETs, weak inversion leakage is the dominant part in the 

sub-threshold leakage. Other effects like Drain Induced Barrier Lowering (DIBL), 

Body Effect, Narrow-Width Effect, Channel Length Effect and Temperature Effect 

may also add to the sub-threshold leakage [8].  

2.1.1.3 Tunneling into and through gate oxide (I3) 

The gate oxide tunneling current is incurred from the tunneling of electrons between 

substrate and gate through the gate oxide. Basically, the tunneling effect occurs when 
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the high electric field is coupled with low oxide thickness. In general, the mechanism 

of tunneling between substrate and gate can be primarily divided into two parts: 

Fowler-Nordheim (FN) tunneling and direct tunneling.  

2.1.1.4 Injection of hot carriers from substrate to gate oxide (I4) 

In a short-channel transistor, the hot-carrier injection leakage occurs when electrons 

or holes gain sufficient energy from the electric field to cross the interface potential 

barrier and enter into the oxide layer. Usually, this effect is due to high electric field 

near the Si-SiO2 interface. Since electrons have a lower effective mass than that of 

holes and the barrier height for electrons is also less than that for holes, the injection 

from substrate (Si) to gate oxide (SiO2) is more likely for electrons than holes. 

2.1.1.5 Gate-induced drain leakage (I5) 

Gate-induced drain leakage (GIDL) is due to high field effect in the drain junction of 

an MOS transistor. As is presented in [96], a path for the GIDL is completed when the 

substrate is at a lower potential for minority carriers and the induced minority carriers 

underneath the gate are swept laterally to the substrate. Generally, GIDL is increased 

by thinner oxide thickness and higher potential Vdd between gate and drain. 

2.1.1.6 Punch-through (I6) 

In short-channel devices, punch-through occurs when the combination of channel 

length and reverse bias leads to the merging of the depletion regions. In 

sub-micrometer MOSFETs, Vth adjust implant is usually used to have a higher doping 

at the surface. This causes a greater expansion of the depletion region below the 
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surface, and thus the punch-through leakage current is generated below the surface. 

2.1.1.7 Static power dissipation model 

From the above discussion, it can be seen that the static power dissipation is very 

complex and thus is not easy to model. However, the static power dissipation can be 

simplified and represented by the following formula: 

 static leak DD
P I V= ×  (2.1) 

Where Ileak is the cumulative leakage current due to all the components (I1 to I6) 

described previously. 

2.1.2 Static Power Reduction Techniques 

 

Fig. 2.3: Static Power Reduction Techniques 

There is a wide range of low power techniques addressing static power dissipation, 

from fabrication level engineering to system level design. As a quick summary, we 

illustrate them in Figure 2.3. Each of these techniques will be presented in the 
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following sub-sections. 

2.1.2.1 Fabrication Level Techniques 

To minimize the overall static power dissipation, a straightforward way is to minimize 

the leakage current in each transistor. This can be done through fabrication techniques 

of transistors. Currently, fabrication techniques, such as high-k insulating materials, 

retrograde doping and halo doping, are already in use to provide transistors with the 

best performance and reduce the leakage at the same time. Here we present some 

examples for these fabrication techniques, illustrated as below:  

� Y. Taur (2000) 

In [10], Y. Taur found that with deep submicron transistors, to maintain 

performance, scaling happens not only in the lateral dimension (channel length), 

but also in the vertical dimension, doping concentration and supply voltage. 

Thus, as gate oxide thickness got thinner, this results in increased leakage 

through gate node. To solve this problem, the author proposed to use high-k 

insulating materials, which increases physical thickness of the insulator while 

keeping reduced equivalent electrical thickness and eventually minimizes the 

leakage current through gate node. 

� S. Thompson et al. (1998) 

As the channel length is scaled down, punch-through current becomes a big 

issue. At the same time, to maintain device performance, the mobility of the 

channel surface should be good enough. Thus, a better channel doping profile 
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should be with a low surface doping concentration followed with a highly 

doped sub-surface doping region. This is called “Retrograde Doping”.  

In the study of [11], S. Thompson et al. illustrated the retrograde doping 

technique and its useful effect on minimizing the punch-through leakage 

current. As they found, the low surface doping is to make sure less impurity 

presented in the surface, and hence the mobility will be higher. Furthermore, 

the higher sub-surface concentration can counteract the nearing of source and 

drain regions, which consequently reduces the punch-through leakage current 

in the channel. 

� D. Fotty (1997) 

In the study of [12], D. Fotty suggested using the halo doping technology to 

reduce the sub-threshold leakage. In general, halo doping is introduced to 

provide a way to control the dependence of threshold voltage on channel length. 

As the author found, below the edge of the gate, which is also the end of the 

source or drain region, the introduced halo doping results in a narrower 

depletion region, and thus reduces the charge-sharing effect and the threshold 

voltage degradation, and eventually reduces the sub-threshold leakage.  

The designs presented in this section have focused on fabrication techniques to 

minimize the static leakage current in each transistor. In these fabrication techniques, 

high-k gate dielectrics are expected to lower the static leakage [13]. On the other hand, 

retrograde and halo doping are also used as a means to decrease the static leakage 
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current, by scaling the channel length and increasing the transistor drive current [ 14, 

15, 16, 17]. More detailed discussion of these fabrication techniques can be found in 

[8]. So far, the fabrication techniques are commonly employed in transistors to 

provide good performance, and also minimize the overall static leakage. With the 

advance of technology, more and more fabrication techniques are predicted to be used 

to reduce the leakage-induced power dissipation in future. 

2.1.2.2 Circuit Level Techniques 

With the fabrication level techniques applied to extremes, additional leakage power 

reduction can be achieved by carefully designing the circuit structures. In this section, 

we will present several popular circuit level techniques which are used to reduce the 

static leakage current.  

A) Transistor Stack  

One promising way to reduce static leakage is by intentionally turning off a 

series-connected transistor. In general, sub-threshold leakage current can be reduced 

when more than one transistor in the stack is turned off. This is known as the stacking 

effect [18]. Furthermore, according to the study in [19], the leakage of a two-transistor 

stack is an order of magnitude less than the leakage in a single transistor. Thus, 

researchers proposed to use transistors stack to reduce the static leakage current and 

its induced power dissipation. Some applications using transistors stack are presented 

in the following. 
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� M. C. Johnson et al. (1999) 

As studied in [20], to reduce the leakage current in transistors, researchers 

proposed an off-state transistor stack approach. By identifying a low-leakage 

state and inserting leakage-control transistors only where needed, this method 

carefully selected the input vector so as to allow more off-state transistors in 

series. According to their experiment results, it was proven to be an effective 

way to control the sub-threshold leakage. 

� M. Powell et al. (2000) 

In the work of [21], to reduce leakage power dissipation, M. Powell et al. 

proposed a circuit-level technique to implement the transistor stack in 

processors. They employed additional transistors to gate a circuit structure from 

the power supply, as done with the Gated-VDD circuit technique. Their results 

indicated that Gated-VDD together with a resizable cache architecture reduced 

energy-delay very much with minimal impact on performance. 

� S. Mukhopadhyay et al. (2003) 

As presented in [22], S. Mukhopadhyay et al. first modeled the overall leakage 

in a stack of transistors, and then explored the opportunities for leakage 

reduction in the standby mode of operation for scaled technologies. To 

implement the transistor stack, the researchers proposed a novel technique of 

input vector selection to reduce total leakage in a circuit. Results showed that 

their technique achieved 44% savings in total leakage in 50-nm devices 

compared to the conventional stacking technique.  
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The designs presented in this section have focused on using transistor stack to 

minimize the leakage in transistors. Some schemes simply inserted transistor stack to 

control the leakage power dissipation [23, 24, 25]. As showed in their results, 

transistor stack is efficient to reduce the leakage current. However, as a result of 

introducing additional transistors into a chip circuit, this technique increased the 

transistor number in a chip and made its architecture more complex, thereby leading 

to additional dynamic power. 

B) Multiple Vth and Dynamic Vth 

As the sub-threshold leakage has an exponential dependence upon the threshold 

voltage, multiple threshold voltages can be provided in a single chip for proper use to 

reduce the leakage current. In general, higher threshold transistors can suppress the 

leakage while the lower threshold transistors can provide higher performance. There 

are various ways to achieve the varied threshold voltage. For example, changing the 

channel doping, gate oxide thickness, channel length, and body bias [26, 27] can all 

affect the final threshold voltage of a transistor. Thus, we can change the Vth either 

statically or dynamically. There are some useful strategies proposed by former 

researchers, as illustrated in the following.  

� H. Makino et al. (1998)  

In 1998, H. Makino et al. [28] suggested an auto-backgate-controlled 

MT-CMOS circuit to provide multi-threshold voltages for both p-channel and 

n-channel transistors. This design is similar to transistor stack. Additional 
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high-threshold transistors were put in series to low Vth circuit and these 

additional transistors reduce leakage of a circuit in sleep mode. Experiments 

showed their method achieved good results. 

� N. Tripathi et al. (2001)  

In [29], researchers proposed an algorithm to realize dual threshold CMOS 

circuits. In their algorithm, it employed transistors to lower thresholds in 

critical paths and thus guarantee best performance while applying higher 

threshold elsewhere. The results showed that their algorithm reduced the 

leakage current with better results for ISCAS benchmark circuits compared to 

other reported results. 

� T. Inukai et al. (2001)  

As is well-known, by changing the body bias of transistors, the threshold 

voltage can be manipulated at run time. In [30], researchers investigated 

characteristics of variable threshold voltage CMOS (VT-CMOS) in series 

connected circuits, and found that the leakage power dissipation of transistors is 

minimized by utilizing VT-CMOS while the performance degradation is 

suppressed due to the body effect in series connected circuits. 

 The designs presented in this section have focused on using multiple Vth and 

dynamic Vth to reduce the leakage current in transistors. Some designs employed 

inserted control transistors or circuits to implement multiple Vth and reduce the 

leakage [31, 32]. Other schemes utilized back-gate bias control to carry out dynamic 

Vth adjustment to minimize the leakage current [33, 34]. Results of these examples 
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proved that it is an effective way to control the leakage current of transistors by 

changing the Vth statically or dynamically. Although achieving good power reduction, 

similar to the problem in transistor stack design, it also introduced additional 

transistors/devices and consequently increased the complexity of chip circuits. 

C) Supply Voltage Scaling 

Designed to reduce dynamic power dissipation, voltage scaling technique is the most 

successful and widely used low-power technique. However, as found, it is also an 

effective method for static leakage reduction. There are some applications by using 

supply voltage scaling to reduce static power dissipation, described as below.  

� A. J. Bhavnagarwala et al. (2000) 

In [35], researchers found that the sub-threshold leakage can be reduced when 

the supply voltage is scaled down. As is identified by them, the reason is that 

Drain Induced Barrier Lowering (DIBL) also decreases as the supply voltage 

decreases. Moreover, their results of experiments proved that supply voltage 

scaling is helpful to minimize the sub-threshold leakage and static power 

dissipation.    

� S. Tyagi et al. (2000) 

In the study of [36], S. Tyagi et al. presented that supply voltage scaling 

achieved sub-threshold and gate leakage reduction in the orders of V
3
 and V

4
 

respectively. In their experiments, results showed that it significantly reduced 

the static power dissipation by scaling supply voltage. 
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� M. Takahashi et al (1998) 

In [37], researchers proposed to use clustered voltage scaling to reduce the 

leakage-induced power dissipation for mobile multimedia circuits. In their 

design, transistors for critical and non-critical paths were separately clustered 

and powered by higher and lower supply voltages, respectively. By using the 

clustered voltage scaling, they found that the overall static power dissipation of 

the design was much smaller since the leakage current in circuits was reduced.  

The designs presented in this section have focused on using supply voltage 

scaling to reduce leakage current in transistors. To achieve low-power benefits, some 

researchers used static supply scaling to lower supply voltage [38, 39, 40]. On the 

other hand, researchers employed dynamic supply scaling to minimize the leakage 

[41]. All these techniques showed that supply voltage scaling is useful to minimize the 

leakage current and hence reduce the static power dissipation. Thus, although supply 

voltage scaling is originally designed to reduce dynamic power dissipation, it has an 

additional and effective purpose for static power dissipation reduction. 

2.1.2.3 System Level Techniques 

Even higher level low power techniques are proposed by researchers to further reduce 

static power dissipation. The nature of static power dissipation indicates that it is 

independent of switching activities and is “static” all the time. Thus, if the total time 

needed by a specific job can be considerably reduced, the amount of static energy can 

also be saved. There are some techniques which attempted to reduce static power 
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dissipation at system level, as is illustrated in the following. 

A) Pipelining 

Pipelining saves energy in a straightforward way. When using pipelining, it 

significantly reduces the overall execution time of a certain program. As a result, the 

time of leakage flowing is also reduced, thereby leading to a reduction in 

leakage-induced static power dissipation.  

� N. S. Kim et al. (2003) 

In the work of [42], N. S. Kim et al. compared the overall power dissipation of 

pipelined systems with that of series systems, and concluded that “pipelining’s 

combined dynamic and static power leakage will be less than that of the serial 

case”. Thus, their conclusion has proven that pipelining can reduce the 

leakage-induced static power dissipation. 

The design presented in this section has focused on using pipelining to reduce 

static power dissipation at the system level. As showed in the above example, 

pipelining is helpful to reduce the static leakage time and consequently achieve 

energy reduction. Therefore, although pipelining usually is used for improving the 

performance of processors, it also is an effective method to reduce static energy 

consumption. 

B) Phase Switching 

In general, modern day microprocessors are designed for the best performance. 

However, such best performance is not always needed in most applications. If certain 
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periods of an application can be identified as “standby” or “dormant”, many circuit 

level techniques can be applied to significantly reduce the leakage power. Then, 

identifying such phases in applications is a system level effort toward low power 

design. Some examples by using phase switching to reduce static power dissipation 

are presented in the following. 

� M. Powell et al. (2000) 

In [21], the authors found that there is a large variability in active cell usage 

both within and across applications. Thus, by using Gated-VDD Caches, they 

proposed to identify phases with unused SRAM cells and gate their supply 

voltage and reduce their leakage. Their results indicated that it highly reduces 

leakage-induced power dissipation with minimal impact on performance. 

� E. Rohou et al. (1999) 

E. Rohou et al. in [43] presented an adaptive approach that used feedback 

information to identify jobs in some phases which consume less power, and 

then switch phase contexts to manage processor temperature and reduce the 

leakage-induced static power dissipation. Their technique was implemented in 

the operating system so that it can both access hardware statistics and control 

the interleaving of processes. Results showed that their method could 

significantly reduce the static power dissipation with little cost in performance. 

The designs presented in this section have focused on using phase switching to 

reduce static power dissipation at the system level. As known, the functioning of 
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certain applications can be divided into various phases in which the processors can be 

of different level of activity. Therefore, identifying these phases helps in minimizing 

the static power dissipation. Designs discussed above attempted to switch the 

processor setting according to phases with different level of activities. Usually, the 

phase switching design is combined with other schemes, for example DVS, to reduce 

the static power dissipation. 

In summary, many low-power techniques, varied from the fabrication engineering 

level to the system design level, have been proposed to address static power 

dissipation. However, there is a trade-off among product cost, system complexity and 

power saving when applying these static power reduction techniques discussed above. 

Therefore, careful designing is needed for static power dissipation optimizations. 

Even though we do not target the leakage reduction in our research work presented in 

this thesis, it is also important to know that there are so many techniques which could 

be combined to further reduce the overall power dissipation of a microprocessor. 

2.2 Dynamic Power Dissipation 

2.2.1 Dynamic Power Dissipation Sources 

For many years, efforts toward power reduction are mostly focused on reducing 

dynamic power dissipation, due to the extensive use of CMOS technology where 

leakage-induced power dissipation in the static state is many orders of magnitude 

smaller compared to power dissipated in dynamic switching of states. In general, 

dynamic power dissipation of microprocessors mainly arises from two circuit sources: 
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1) transient short-circuit current; 2) repeated charging and discharging of capacitive 

loads.  

2.2.1.1 Transient short-circuit current 

The short-circuit current is incurred due to transient conduction in both the pull-up 

and pull-down circuits in the CMOS circuit. Because such transitions can not 

realistically be instant, it is possible that the shut-off network is turned on before the 

previously turned-on network is shut off. However, as is discussed in [42] and [44], 

this transient short-circuit current is not significant in most circuits, and thus it is often 

ignored.  

2.2.1.2 Repeated charging and discharging of capacitive loads 

The major dynamic power dissipation comes from the charging and discharging of the 

state-keeping nodes. A low-to-high state transition corresponds to the charging up of 

all the capacitors associated with that node; while a high-to-low transition 

corresponds to the discharging of the node. With scaled feature sizes in modern 

transistors, the capacitance per unit area increases, accompanied by the increased 

switching frequency. Therefore, these trends lead to significant dynamic power 

dissipation in modern-day processors.  

2.2.1.3 Dynamic Power Dissipation model 

In the conventional process technology, the dynamic power dissipation involved in the 

switching is estimated by 

 d y n a m ic L D D C L K
P C V V fα= • • • ∆ •  (2.2) 
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Where α is a constant of average activities and less than 1, CL is the load capacitance 

involved, VDD is the supply voltage, ∆V is the swing of voltage between two states 

and fCLK is the switching frequency. For a normal switching in a CMOS circuit, the 

swing range is the full supply voltage. Supposing an amount of work that takes N 

clock cycles to finish, the time to finish the work is given by 

 
C L K

N
T

f
=  (2.3) 

Furthermore, as is presented in [41], the maximum clock frequency achievable 

shows a nearly linear dependence upon the supply voltage, which is illustrated in 

Figure 2.4 below.  

 

Fig. 2.4: Maximum Clock Frequency vs. Supply Voltage [41]  

Thus we can approximately put: 

 
C L K D D

f k V= •  (2.4) 

As a result, the dynamic power can be estimated by: 

 ( ) 3

d y n a m i c L D DP C k Vα= • • •  (2.5) 

Obviously, the supply voltage has a very strong effect on the dynamic power 

dissipation. This leads to the wide-spread employment of voltage scaling techniques 
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to reduce dynamic power dissipation.  

2.2.2 Dynamic Power Dissipation Reduction 

In this section we review the low power techniques that target dynamic power 

dissipation. From the design strategy, these techniques are also grouped into either 

circuit-level or system level.  

2.2.2.1 Circuit-level Techniques 

As shown in the previous section, the dynamic power dissipation can be modeled by: 

       
d y n a m i c L D D C L KP C V V fα= • • • ∆ •  (2.6) 

As we can see from the above formula, it is natural to think of reducing the 

voltage swing (∆V) and supply voltage (VDD) to minimize the dynamic power 

dissipation. In general, the voltage swing can be reduced by the use of low-swing 

signaling, while the supply voltage can be reduced by the use of dynamic voltage 

scaling. We will detail the two low-power schemes in the following section. 

A) Low-swing Signaling 

As is discussed in the above, a straight-forward method to achieve dynamic power 

reduction is to reduce the signal swing. As known, low-swing technology provides 

high speed and low power at the same time. Instead of driving signals rail-to-rail, 

special drivers allow reduced signal swing. This may directly result in linearly 

reduced dynamic power, as expressed by the above equation. At the same time, the 

time needed to charge or discharge a node is also reduced, enabling faster state 
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switching. In the following, we will present some research work using this technique 

to reduce dynamic power dissipation of microprocessors.  

� T. Sakurai et al. (1997) 

In 1997, T. Sakurai et al. [45] described some circuit level techniques for 

low-power CMOS designs. In particular, the authors discussed the low swing 

signaling technique, and presented its applications to a clock system, logic part, 

and I/O’s. They concluded that the low swing signaling technique is useful to 

reduce dynamic power dissipation. 

� H. Zhang et al. (2000) 

In the study of [46], H. Zhang et al. reviewed a number of low-swing on-chip 

interconnect schemes and presents a thorough analysis of their effectiveness 

and limitations, especially on energy efficiency and signal integrity. After that, 

they proposed several new interface circuits which employed low swing 

signaling, and achieved more energy savings and better reliability in 

experiments than former schemes.  

� F. Worm et al. (2002) 

In [47], F. Worm et al. introduced and showed the results of a interconnect 

system using low-swing signaling, which minimized the interconnect voltage 

swing and frequency subject to workload requirements and S/N conditions. 

Results showed that their scheme can attain tangible savings in energy, at the 

same time, achieving more robustness to large variations in actual workload, 
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noise, and technology quality.  

� W. Jeong et al. (2004) 

Recently, in 2004, W. Jeong et al. [48] proposed an adaptive supply voltage 

technique for low swing interconnects. To implement a low swing signaling 

design, their proposed technique assigned different supply voltages to drive 

interconnects based on their delay. Simulation results showed that their design 

could obtain very high power saving. 

The designs presented in this section have focused on using the low-swing 

signaling technique to reduce dynamic power dissipation at the circuit level. As found 

by researchers, current-mode low-swing signaling techniques provide an attractive 

alternative to conventional full-swing voltage mode signaling in terms of delay and 

power dissipation [49, 50]. All these example designs presented here showed that 

low-swing technology is very useful to minimize the dynamic power dissipation, and 

provides both high speed and low power. For example, the low-swing signaling 

technique is already employed in the arithmetic core of Pentium 4 Processors [51]. 

B) Dynamic Voltage Scaling 

Dynamic Voltage Scaling (DVS) is by far the most popular technique in use to reduce 

dynamic power dissipation. As is deducted in Section 2.2.1, dynamic power has a 

cubic relationship with the supply voltage in conventional CMOS circuits, while the 

maximum clock frequency is approximately proportional to supply voltage. Thus, 

supply voltage reduction, which usually implies a frequency reduction, could produce 
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a significant power saving. Over the past years, many researchers worked in DVS to 

reduce dynamic power dissipation of computer systems, which will be presented in 

the following.   

� T. Ishihara et al. (1998) 

In [52], T. Ishihara et al. presented a theoretical study on dynamic voltage 

scheduling. In their work, they set up a model of dynamically variable voltage 

processor and analyzed it for power/energy reduction. Eventually, based on 

their model, they gave basic theorems for power-delay optimization of DVS.  

� I. Hong et al. (1999) 

In 1999, I. Hong et al. [53] developed a design methodology for the low power 

core-based system, based on dynamically variable voltage hardware. Their 

synthesis technique addressed the selection of the processor core and the 

determination of the instruction and data cache size and configuration so as to 

fully exploit dynamically variable voltage hardware, which resulted in 

significantly lower power dissipation for a set of target applications than 

existing techniques. As they showed, their approach was effective in a variety 

of modern industrial-strength multimedia and communication applications. 

� K. Flautner et al. (2001) 

In [54], the authors described a software approach to automatically control 

dynamic voltage scaling in order to optimize energy use, which was 

implemented in the Linux kernel and required no modification of user programs. 
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Their method worked equally with irregular and multi-programmed workloads 

and ensured that the quality of interactive performance is within user specified 

parameters. Their experiments showed a good result of high energy savings and 

only a minimal impact on the user experience. 

� A. Azevedo et al. (2002) 

In 2002, A. Azevedo et al. [55] proposed an intra-task DVS technique under 

compiler control using program checkpoints. Their defined checkpoints, which 

carried user-defined time constraints, were generated at compile time and 

indicated places in the code where the processor speed and voltage should be 

re-calculated. Checkpoints also carried user-defined time constraints. Their 

technique handled multiple intra-task performance deadlines and modulated 

power dissipation according to a run-time power budget. Results showed that 

their technique resulted in 82% energy savings over the execution of the 

program without employing DVS. 

� K. Choi et al. (2005) 

Recently in 2005, K. Choi et al. [56] presented an intra-process dynamic 

voltage and frequency scaling (DVFS) technique targeted toward non real-time 

applications running on an embedded system platform. Their DVFS technique 

relied on dynamically-constructed regression models that allow the CPU to 

calculate the expected workload and slack time for the next time slot, and thus, 

adjust its voltage and frequency in order to save energy while meeting soft 



 30 

timing constraints. This was in turn achieved by estimating and exploiting the 

ratio of the total off-chip access time to the total on-chip computation time. 

Results showed that their scheme achieved very high CPU energy saving and 

low performance degradation for both memory-bound programs and 

CPU-bound programs. 

The designs presented in this section have focused on using DVS to reduce 

dynamic power dissipation at the circuit level. DVS is the technique for exploiting 

this tradeoff whereby an appropriate clock rate and voltage is determined in response 

to dynamic application behavior. A number of DVS algorithms have been proposed to 

address power/energy optimization issues [57, 58, 59]. As known, DVS has been 

widely used in modern commercial chips such as Pentium 4 [51]. Furthermore, it is 

highly compatible with all kinds of circuit structures from memory to logics. It can 

also be combined with many other dynamic and static power reduction techniques to 

further minimize power dissipation. Currently, the key challenge is to develop 

effective DVS scheduling techniques that treat voltage as a variable to be determined, 

in addition to the conventional task scheduling and allocation. In the next chapter, we 

will discuss some algorithms for DVS and talk about the motivation for our low 

power design schemes using DVS.  

2.2.2.2 System-level Techniques 

At a higher system level, some techniques have also been proposed to reduce dynamic 

power dissipation. In general, these techniques all make use of system level 

information to reduce either the voltage swing or the supply voltage. 
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A) Signal Swing 

As is well-known, in CMOS circuits, frequent signal switching consequently produce 

much voltage swing. Therefore, some researchers suggested reducing the signal swing 

to minimize the overall voltage swing. 

� S. Haga et al. (2003) 

Signal switching usually happens at the input port, output port and inside of the 

functional unit (FU). In [60], S. Haga et al. proposed a hardware method for 

functional unit assignment, based on the principle that a functional unit’s power 

dissipation is approximated by the switching activity of its inputs. It 

dynamically assigned instructions to carefully selected Functional Units to 

minimize signal switching that happens in the FU. In their design, instructions 

are preferably issued to FU where the previous operands are similar to the 

current operands. This is illustrated in Figure 2.5.  

 

Fig. 2.5: Dynamic Functional Unit Assignment [60]  

By using their design, voltage switching happening at the FU is reduced. The 
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simulation results showed a high reduction of switching activities in various FU 

and consequently achieved high power reduction. 

The design presented in this section has focused on minimizing signal swing to 

reduce dynamic power dissipation at the system level. Some researchers proposed to 

use low-voltage swing circuits and techniques for microprocessors to reduce its power 

dissipation [61, 62]. As showed above, although the dynamic power dissipation is 

reduced, this is achieved at the price of extra hardware that carries out the comparing 

of the operands. Therefore, additional algorithms are needed to minimize the 

hardware cost. 

B) State Switching 

Scaling the supply voltage can considerably reduce the dynamic voltage at the price 

of slower execution speed. Thus, the best trade-off between power and performance 

can be achieved by switching between a spectrum of “active” and “standby” states. 

Therefore, some designs are suggested to reduce dynamic power dissipation by 

carefully switching states during system execution, which are presented in the 

following. 

� W. Kim et al. (2002) 

In [63], W. Kim et al. proposed a DVS algorithm for periodic hard real-time 

tasks based on an improved slack estimation algorithm. By deciding the state of 

different tasks and executing switches between states, their proposed method 

took advantage of the periodic characteristics of the real-time tasks under 
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priority-driven scheduling, such as EDF. Experimental results showed that their 

algorithm reduced the energy consumption by 20~40% over the other DVS 

algorithms. Their experiment results also showed that their algorithm based on 

state switching gave comparable energy savings to the DVS algorithm based on 

the theoretically optimal (but impractical) slack estimation method. 

� A. Sinha et al. (2001) 

In [64], A. Sinha and A. P. Chandrakasan proposed an adaptive approach to 

switch states of processors for dynamic voltage scheduling, based on workload 

prediction by filtering a trace history. In this work, a performance hit metric is 

defined and a state-switching technique to minimize energy under a given 

performance requirement is outlined. Their results demonstrated that up to two 

orders of magnitude energy savings is possible with dynamic voltage 

scheduling depending on workload statistics. 

The designs presented in this section have focused on using state switching to 

reduce dynamic power dissipation at the system level. These approaches all lead to 

better power-performance results in microprocessors. In general, this state switching 

decision can be made by either hardware or software. If it is done by the hardware, 

additional hardware has to be added and consequently increase the hardware 

complexity.  

 

 



 34 

2.3 Summary 

In this chapter, both static and dynamic power dissipation are discussed. Firstly, we 

reviewed different sources for static and dynamic power dissipation. Following that, 

various existing techniques for static and dynamic power reduction have been 

discussed. In general, many of these static and dynamic power reduction techniques 

can be combined to minimize the overall power dissipation. For example, our low 

power design schemes presented in following chapters are going to combine phase 

switching, state switching and dynamic voltage scaling to reduce the overall runtime 

power dissipation of microprocessors. The detailed implementation of our schemes 

will be introduced later in this thesis.  
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Chapter 3 

Motivation and Analysis Model 

This chapter describes the motivation and the analysis model for our low-power 

design schemes presented in this thesis. It is structured as follows. In Section 3.1 we 

describe the motivation for our approaches. In Section 3.2, we first present the 

analysis model for our schemes, and then discuss the trade-off between power and 

performance in our low-power designs. In Section 3.3, we summarize this chapter. 

3.1 Motivation 

As is discussed in the previous chapter, Dynamic Voltage Scaling (DVS) is by far one 

of the most popular power reduction techniques in use. Basically, DVS is a technique 

that varies the supply voltage and frequency of a microprocessor to provide a desired 

performance with the minimum amount of energy consumption. As an efficient 

technique to reduce energy consumption, dynamic voltage/frequency scaling (DVFS) 

has already been used in many computer systems, such as those based on the Transmeta 

Crusoe[65] and Intel XScale[66] processors. 

Various algorithms had been proposed to use DVS to match the changing 

demands for microprocessor processing speed to achieve reduction of runtime power 

dissipation. In general, these approaches analyzed system or program dynamic 

behaviors, adjusted microprocessor settings to better match its performance 

requirements, and consequently reduced system/application power dissipation. As 
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known, previous work has been studied exhaustively at the operating system (OS) level 

and the source code level to employ DVS to achieve power-performance trade-off 

optimization. 

3.1.1 OS Level DVS Algorithms 

Algorithms running at the OS level usually use heuristic methods to reduce power 

dissipation in response to variations in workload during runtime. In general, OS level 

runtime algorithms use prediction approaches to monitor the current system load and 

estimate the future demand by using interval-based schedulers with a time window. In 

1994, M. Weiser et al. [67] suggested an interval-based predicting algorithm to 

dynamically scale the frequency and voltage of the processor. Their algorithm divided 

time into fixed-length intervals and set each interval’s speed so that most work is 

completed by the interval’s end. Thereafter, E. Chan et al. [68] in 1995 refined the 

idea by separating it into two parts: prediction and speed-setting. At the front of an 

interval, the prediction part estimates how busy the CPU will be during the interval, 

which is measured via the non-idle fraction of the last interval. The speed setting part 

uses this information to set the speed of processor.  

 As known, M. Weiser et al. are the pioneers of the DVS research by first 

designing the interval-based prediction DVS algorithm at the OS level. Since then, 

following their idea, many interval-based DVS algorithms [69, 70] have been 

proposed. Recently in 2008, Seo et al. [105] presented a time-slice based DVS 

algorithm to adjust processor performance at every context switch in order to match 
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the performance demand of the next scheduled task. In general, evaluations of these 

algorithms through simulations showed that they all achieved good results in power 

savings.  

As discussed above, all these OS-based predictive algorithms aim to reduce 

power dissipation without degrading application performance. However, in a recent 

study in 2000, D. Grunwald et al. [71] used actual measurements and observed 

noticeable performance loss for some interval-based algorithms running at the OS 

level. One possible reason is the misunderstanding about future performance demand of 

CPU, and it could be caused by inaccurate predictions at the high OS level. As studied in 

[72], researchers found that the OS itself could have a strong impact on application 

performance sometimes; hence it will also affect the prediction results in these algorithms, 

thereby leading to wrong decisions by DVS scheduler and the accompanying 

performance penalty.  

This observation motivates us to estimate the future performance demand of CPU at 

a lower micro-architecture level to avoid such misunderstandings, because at the 

micro-architecture level it relies solely on the hardware to identify current performance of 

CPU and thus obtain a more reliable prediction for future performance demand. Therefore, 

we propose a micro-architecture level identification and prediction algorithms in the 

following of this thesis. 

3.1.2 Source-code Level DVS Algorithms 

Beside DVS approaches employed at the OS level, researchers have addressed low-power 
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DVS designs at the source-code level, and proposed that applications themselves provide 

information about their future performance demands, such as deadlines of real-time tasks 

and other timing constraints. 

For applications used in the real-time system, researcher usually utilized hard 

real-time constraints of tasks as their performance demands to direct DVS scheduling to 

reduce power dissipation of microprocessors. For example, J. Pouwelse et al. [73] 

proposed an approach for real-time applications: it indicated the required number of clock 

cycles (instructions) for the next deadline and allowed the CPU to compute with the 

lowest speed at which this application could also meet its deadline. 

For non real-time applications, researchers suggest using mode-set instructions as 

performance indicators for the CPU to dynamically schedule its setting. In the work of 

[74], C. H. Hsu et al. proposed a compiler-based method to reduce the power dissipation 

in microprocessors. First of all, the authors identified single or multiple regions of a 

program, which may be memory-bound regions where the CPU can be slowed 

down without significant performance impact. Then, they employed a nonlinear 

optimization formulation to insert their defined power-down instructions at regular 

intervals in the program. Finally, they lowered the voltage and frequency of 

CPU when encountering these instructions during application execution. 

Similarly, in [75], M. Huang et al. implemented a profile-based method. It first 

identified the most frequently executed functions/modules of an application during its 

training runs, and then used a selection algorithm to choose the best low-power 

configuration for each module after profiling its runs with mode-set instructions. In both 
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methods, the researchers directed the voltage scaling of microprocessors by their defined 

indicators, and eventually reduced the energy consumed by microprocessors. Recently, 

Zhou et al. [106] in 2005 suggested a combination of optimal speed and limited 

preemption as mode settings for a dynamic task scheduling algorithms for periodic 

tasks that minimize the system-level energy; Malani et al. [107] in 2007 proposed a 

profile-based low power scheduling by using conditional task graph to differentiate 

different modes. 

In [76], D. Mosse et al. presented a method that profiles program regions by 

mode-set instructions and simultaneously meets their hard time constraint--the worst 

case execution time (WCET) assumption when determining a voltage scaling 

schedule. Actually, this method combined the two approaches discussed above, 

integrating the mode-set indicator into the real-time applications that have hard 

deadlines, to direct DVS to decrease the total energy consumption. 

All the above DVS algorithms running at the source-code level gained 

power-performance tradeoffs by using various performance indicators to direct DVS 

scheduling. During execution time of applications, an optimal processor setting, such 

as appropriate voltage and frequency, can be chosen to minimize its power dissipation 

and still meet application performance requirement. For all these source-code level 

DVS algorithms, their evaluations through experiments showed that they most often 

achieved good results with high power reduction. 

However, in the above algorithms running at the source-code level, all the 

applications must be aware of their processing performance demands in advance. For 
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applications of real-time systems, there is no problem because they could use hard 

real-time constraints, which have been clearly defined in the source code, as 

performance indicators to direct DVS scheduling. But, for applications used in 

general-purpose systems, such performance demands are usually unknown in advance 

since these applications have no explicit deadline or other hard timing constraints.  

This observation motivates us to employ the micro-architecture parameters, 

which could be obtained from execution results of non real-time applications, as 

performance indictors to direct DVS scheduling and thus void limitations of former 

source-code level algorithms. Therefore, in this thesis, we propose a code analysis and 

reconfiguration mechanism by using the micro-architecture parameters to direct DVS 

scheduling. 

3.1.3 Our Micro-architecture Level DVS Algorithms 

As discussed above, in this thesis, we propose two novel algorithms to schedule DVS at 

the micro-architecture level to achieve successful low-power designs for 

microprocessors. 

A) Identification and Prediction Algorithm  

To estimate a reliable future performance demand of microprocessors, we propose a 

micro-architecture level identification and prediction algorithm. 

This algorithm employs a micro-architecture parameter, Instructions per Cycle 

(IPC), as the runtime performance indicator to dynamically scale the voltage and 

frequency of a processor. In this design, we obtain the micro-architecture parameter (IPC) 
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through hardware support in the processor, and use it to quantify the knowledge of the most 

recent performance requirements for each program interval and guide the voltage and 

frequency scaling. Thus, it avoids the impact of the OS on the prediction results in former 

OS level DVS algorithms. Therefore, the DVS decisions made by our micro-architecture 

level identification and prediction algorithm are more reliable, resulting in bigger energy 

reduction and smaller performance losses. 

B) Code Analysis and Reconfiguration Algorithm 

Using the micro-architecture parameters as performance indicators, we propose a code 

analysis and reconfiguration mechanism to direct DVS scheduling.  

In this mechanism, we first identify code regions of an application that have low 

performance requirements and could make contributions to runtime power reduction. 

We utilize the micro-architecture parameter (IPC), which is obtained from execution 

results of application training runs, as the performance indicator to identify such code 

regions. Then, we profile these code regions to dynamically scale the voltage and 

frequency of the microprocessor during application execution.  

In our design, the micro-architecture parameter (IPC) could be estimated from 

execution results of non real-time applications, thereby avoiding the limitations of 

former source-code level algorithms. Furthermore, based on execution results of 

application training runs, our mechanism practically identifies power-performance 

tradeoff opportunities in applications and thus avoid inappropriate switch points for 

DSV scheduling. Thus, our micro-architecture level code analysis and reconfiguration 
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mechanism is more reliable, thereby leading to more power reduction and less 

performance degradation. 

However, for any profile-driven algorithms based on application training runs, a 

common question is how much the quality of the execution results is affected by the 

training runs.  

To answer the above question, it is very important to identify how many factors 

affect the execution results of a program. Firstly, the results may be affected by the 

program source code.  Different source codes to implement the same function in a 

program will lead to variations of the execution results. Secondly, the results may be 

affected by the compiler. Different compilers may have distinguishing strategies to 

optimize the program source code, resulting in differences in the binary files and the 

execution results. Thirdly, the results may be affected by the processor architecture 

implementations. For the same binary file of a program, the execution results may be 

quite different when executing on processor architecture with different 

implementations. Lastly, the results may be affected by different input data sets. The 

execution process of any application may also be data-sensitive, and different input 

data will lead to many differences in the execution results. Overall, there are many 

factors that can influence the execution results of an application. Therefore, it is quite 

difficult for profile-based methods to guarantee the capture all execution behaviors 

through training runs. 

However, for these profile-based methods, some approaches could be applied to 

avoid or reduce these influences on the execution results, Firstly, to avoid the 
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affections from the source code and compilers, we can made use of the same binary 

file of applications in both training runs and later executions. Secondly, to avoid the 

affection from the processor architecture, we can perform the binary file on a 

processor with the same architecture implementation. Lastly, we can minimize the 

affection from input data sets by using good training inputs, which could well match 

the real instance of application execution and thus well capture the execution behavior 

of applications. As is well known, it is impossible to eliminate the affection caused by 

the input data sets since different input files have to be used between the training runs 

and later executions.  

In our code analysis and reconfiguration mechanism, we applied the above 

approaches to avoid or diminish such affections. For this aim, we chose the 

well-developed benchmarks (SPEC [77] and MediaBench [78]) in our experiments. In 

both the training runs and the subsequent actual executions, we performed the same 

object files, which are supplied by the benchmark suits, on a processor with the same 

architecture. Thus, we avoid the first three factors. Furthermore, in the benchmark 

suits, the reference inputs for training runs can well capture the execution behaviors of 

applications. Thus, we well identified power optimization opportunities in applications 

from the results of training runs, which is proved by the good results in our 

experiments.  

Overall, our proposed micro-architecture level low-power designs in this thesis 

could reduce the power dissipation of microprocessors, at the same time, with little 

performance degradation. Results of our designs show that it is more efficient to 
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address low-power optimizations at the micro-architecture level.  

3.2 Analysis Model  

As is discussed in the previous section, the primary idea of our low-power design 

schemes is an attempt to identify power reduction opportunities in an application 

where a possible CPU slowdown will not significantly affect the performance. In the 

following, we will first present a realistic model for our low-power designs. Then, based 

on the model, we will analyze potential code regions in an application which have such 

possible opportunities. Lastly, we will discuss the constraints and the resulting penalty 

for using the model in our low-power strategies. 

To derive our analysis model, first of all, we make the following assumptions 

about the application and the micro-architecture implementation of microprocessors: 

� The logical behavior of an application does not change with the voltage and 

frequency scaling of microprocessors. 

� Peripheral components, such as I/O and memory, are asynchronous with the 

microprocessor. 

� The clock is gated when the processor is idle. 

3.2.1 Basic Model  

Since the goal of our designs is to identify power reduction opportunities in an application, 

this model is going to define and analyze the problem from the aspect of program code. 

Firstly, we shall identify different types of code regions in a program, corresponding 
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to various operations related to CPU. In general, any program is a union of code regions. 

In our model, an entire program is divided into two major code regions: CPU 

computing operation region and peripheral operation region. For the CPU computing 

operation region, it again can be divided into two sub-sets: parallel computing operation 

region, which can run concurrently with the peripheral operations; dependent 

computing operation region, which has to be pended and wait for the results of 

peripheral operations.  

For the above three operations in a code region, we make use of three 

corresponding parameters (W d i, W p i, W m i) to quantify their workload (in cycles). In 

the following, we will describe the detailed definitions for the three parameters employed in 

our model: 

Wm i: the number of execution cycles cost in region Ri where peripheral 

operations are executed, including memory-bound and I/O-bound operations. For 

memory-bound operations, both cache hit and cache miss operations are taken 

into account. 

W p i:  the number of execution cycles cost in region Ri where CPU computing 

operations can run in parallel with peripheral operations, which means both 

operations are active at the same time during execution. 

W d i: the number of execution cycles cost in region Ri where the CPU 

computing operation is stalled while waiting for data from peripheral operations, 

which means that is dependent on peripheral operations. 

Then, the total workload for code region Ri is defined as Wi = W d i +W p i +W m i, 
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and the total workload for program P is defined as ∑=
i

iWW . 

     

(a)            (b)        (c)  

Fig. 3.1: Possible overlaps in peripheral and CPU computing operations. 

As shown in Figure 3.1, we can illustrate the execution of any code region in a 

program within the three cases, corresponding to different relative workload of the 

above defined three operations. In these figures, “T” is the execution time to complete 

the code region, “pph” is the peripheral operations, “CPU” is the CPU computing 

operations, and “f” is the frequency of a processor.  

In the case shown in Figure 3.1(a), the parallel CPU computing operations dominate 

the overlap part, and they take relatively longer time than the peripheral operations. Thus, 

the execution time of the overlap part is determined by the parallel computing operations. 

For a code region in this case, its total execution time is decided by the time for CPU to 

finish the computing operations, and could be expressed as W p i /f + W d i /f. Thus, for 

this case, we define it  as a computation-dominated case.  

In the case shown in Figure 3.1(b), the peripheral operations dominate the overlap 

part, but the time cost by the peripheral operations nearly equals that of the parallel 
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computing operations. Thus, the execution time of the overlap part is determined by the 

peripheral operations, and the total execution time of the code region is decided by the 

peripheral operations and the dependent computing operations. In this case, the total 

execution time expression is W m i /f + W d i /f. Since there almost is no CPU idle time in 

this case, we define it as a peripheral-dominated case without slack.  

In the case shown in Figure 3.1(c), obviously, the peripheral operations dominate the 

overlap part, and the time cost by the peripheral operations is much more than that of the 

parallel computing operations. Thus, the execution time of the overlap part is absolutely 

determined by the peripheral operations. In this case, the total execution time is also 

decided by the peripheral operations and the dependent computing operations, and its 

expression is W m i /f + W d i /f. Since there is much CPU idle time in this case, we define it 

as a peripheral-dominated case with slack.  

3.2.2 Basic Analysis 

The aim for our low-power design schemes is to identify individual code regions in an 

application which has possible power reduction opportunities, and then scale these 

regions to be run at lower frequency and voltage to reduce power dissipation of CPU 

without affecting their performance very much. Therefore, based on the above model, 

it is important for us to figure out the following questions: what are the potential code 

regions having such power reduction opportunities? How to achieve the power 

reduction and under what constraints? The answers to these questions will help 

provide insight into what kinds of program code regions are likely to benefit from our 
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designs and under what scenarios. 

A) Potential Code Regions 

As we can see from the above analysis, the difference among the three cases shown 

in Figure 3.1 depends on the balance of the overlap part: the parallel computing 

operations and the peripheral operations. Thus, for any one of above three cases, the 

total execution time for a code region can be expressed by one uniform formula: 

 /fW  /fW  /fWT d ip i m ii   ) ,(max  +=    (3.1) 

From the above formula, it is obvious to see that: for a code region, when 

executed on a processor with a fixed frequency (f), if the peripheral operations (W m i) 

take much more time than the parallel computing operations (W p i), there will be much 

slack, i.e. CPU idle time, during the execution of a code region, which means there are 

possible opportunities for us to achieve power reduction. For example, as shown in Figure 

3.1(c), there is a quite long period of CPU idle time because the peripheral operations 

dominate the overlap part, and spend more time than the parallel CPU computing 

operations. Thus, in this case, the parallel CPU computing operations could be run at a 

lower frequency and voltage to reduce power dissipation of the processor.  

Therefore, these code regions, in which the peripheral operations dominate the 

overlap part, are the potential regions which have possible power reduction opportunities 

and will benefit from the power-performance trade-off optimization. As is well-known, 

during the execution period of a code region, peripheral operations, including I/O-bound 

operations and memory-bound operations, usually spend much time to be finished. Thus, 
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researchers proposed to utilize this observation for low-power designs. For example in 

[43], cache miss rate was used to direct the processor to scale its supply-voltage and 

eventually reduce power dissipation of processors. In our model, not only memory-bound 

operations but also I/O-bound operations are taken into account. Thus, we will identify 

more power reduction opportunities and achieve more power saving by using this model. 

B) Constraints 

After identifying these potential code regions which have possible power reduction 

opportunities, our approach is trying to scale these regions as if they could be run at a 

certain lower frequency and voltage to reduce power dissipation of CPU.  

In general, if a code region Ri is slowed down by a factor ofδ , the resulting 

performance is 

 )/ ,/(m/)( i pi m fWfWaxfWT idi ∗+∗= δδδ         (3.2) 

However, when slowing down CPU to execute these identified code regions to 

reduce power dissipation, our designs attempt to not significantly affect their overall 

execution time. Thus, to achieve a successful power-performance trade-off 

optimization, our low-power designs are subject to the following two time constraints: 

1) fWfW // i mi p ≤∗δ : When slowing down CPU by a factor ofδ , for 

a code section, the time cost by the parallel computing operations 

( fW /i p∗δ ) should be less than that of the peripheral operations 

( fW /i m ). This time constraint is hard to meet since the workloads of 

both peripheral operations and parallel computing operations in a code 
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region are uncertain. 

2)  )1()( ii TrT +≤δ : When slowing down CPU by a factor ofδ , the total 

execution time of a code region ( )(δiT ) should be less than the original 

execution time plus a user acceptable performance penalty ( iTr )1( + ), 

where  r represents the user acceptable performance penalty ratio and its 

range usually is defined from 1% to 10%. For non real-time applications 

used in general-purpose systems, they often do not have such hard timing 

constraints, and it is necessary for us to define a soft time constraint 

( iTr )1( + ) for them to guarantee their performance not to be degraded 

very much. In our experiments, we employ the soft time constraint as a 

criterion to evaluate the results. 

C) Resulting Penalty 

As is discussed above, when slowing down CPU to achieve power dissipation 

reduction during the runtime of identified code regions, our approach is trying to hide 

the degraded performance behind the peripheral accesses. Nevertheless, we could 

make use of the three parameters (Wdi, Wpi, Wmi) to estimate the performance impact 

of the CPU slowdown for a code region.  

In the three cases shown in Figure 3.1, we are only interested in the 

peripheral-dominated case with slack since it have possible power reduction opportunities, 

and the resulting performance for it will become 

 //)( i m fWfWT idi +∗= δδ                 (3.3) 
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As a result, a performance penalty of fW id /∗δ  will occur if the entire i pW∗δ  

workload can be hidden behind the peripheral activity workload ( i mW ). However, if 

only a partial hiding is possible, an additional performance penalty will be accounted 

for. 

3.3 Summary 

In this chapter, we first described the motivation to our low-power design schemes 

using DVS at the micro-architecture level. Then we presented the analysis model for 

our designs and use it to direct our low-power designs. Based on our analysis model, 

in the following chapters, we proposed three low-power design schemes that make 

use of micro-architecture parameters to identify power reduction opportunities in code 

regions and dynamically schedule the voltage and frequency of microprocessors 

during flavor regions execution having such opportunities.  
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Chapter 4  

Infrastructure 

This chapter describes the benchmarks and simulation tools used in our ex-

perimentations in this thesis. It is structured as follows. In Section 4.1, we shall 

describe the selected benchmarks. In Section 4.2, we shall first describe the simulator 

used in our experiments, and then we will list changes made by us in the simulator, 

finally we shall present the method by which power/energy results were obtained. In 

Section 4.3, we will summarize this chapter. 

4.1 Benchmarks 

In this thesis, to evaluate our low-power design schemes, different types of 

benchmarks are performed in our experiments. First of all, four benchmarks are 

chosen from the Standard Performance Evaluation Corporation (SPEC) CPU2000 

suite [77], which is the standard for research into microprocessor architecture 

optimizations for general-purpose systems. Then, other four benchmarks are chosen 

from the MediaBench [78] suite, which is the standard for research into embedded 

application for embedded systems, such as multimedia and communication systems. 

Overall, our low-power design strategies in this thesis are verified by benchmark 

applications from both general-purpose systems and embedded systems. 

In our experiments, all these benchmarks were run with the reference input 
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workloads supplied by the two benchmark suites. Table 4.1 lists our chosen 

benchmarks and their descriptions. 

Benchmark Description 

176.gcc C Programming Language Compiler 

181.mcf Combinatorial Optimization 

197.parser Word Processing 

255.vortex Object-oriented Database 

unepic Image decompression 

epic Image compression 

 
adpcmencode Differential audio pulse coding 

 
adpcmdecode Differential audio pulse decoding 

 

Table 4.1: Summary of selected benchmarks 

4.2 Simulation Environment 

In this section, we shall present the simulator used in our experiments. Firstly, the 

simulator architecture is described, and then the changes made in the simulator are 

discussed. Following that, the power/energy model of the simulator is presented, from 

which the power/energy results for applications were obtained. 

4.2.1 The Simulator 

In our experiments, all benchmark applications were run on the Wattch [79] tool, 

which is based on the SimpleScalar [80] simulator. The Wattch tool was chosen 

because it can model a high-performance superscalar processor and also provide 

detailed energy/power results. Moreover, it is the standard environment for research in 
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the area of micro-architecture design for microprocessors. As known, Wattch is widely 

used by researchers of today in the area of low-power technique designs for 

microprocessors. In this thesis, to evaluate our designs, we employed the Wattch tool 

to perform our chosen applications and collect their execution results.  

 

Fig. 4.1: Architecture of the Wattch Simulator 

Figure 4.1 presents the detailed architecture of the Wattch simulator. As is shown 

in the above figure, the Wattch simulator has to be run on a host platform, which 

could be Linux or Windows platform. Then, Wattch implemented its simulation kernel 

based on self-defined target ISA and target I/O interface. In Wattch simulator, 

corresponding to various micro-architectural components inside microprocessors, 

such as predictor, caches and pipeline, there are specific simulation models to 

implement the functions of these components. Among these models, the performance 

& power model is one of the most important simulation models, because it is with the 
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responsibility for producing the final performance and power results when a target 

application is executed on Wattch simulator. 

However, in order to carry out our low power designs at the micro-architecture 

level, some changes had to be made in Wattch simulator. Our modifications to Wattch 

not only provide runtime performance sampling, but also support dynamic voltage and 

frequency scaling (DVFS). Furthermore, it is important to know that the voltage and fre-

quency transition of a microprocessor has a cost in terms of both time delay and energy 

consumption. Thus, the impact of DVS cost should be taken account into the total 

execution time and power/energy data of our simulation results. As an important 

modification to the Wattch simulator, referring to [81], we modeled the DVS cost with 

a transition time of 12 µs and a transition energy of 1.2µJ. In this thesis, we are going 

to make use of the slowdown of microprocessor and achieve power dissipation reduction. 

Thus, in our simulations, we consider a kind of scaling between a slow frequency and 

voltage and a normal frequency and voltage. To implement DVFS into Wattch simulator, 

we assume that the microprocessor has two scaling levels for (v, f): a slow frequency 

of 150MHz at 1.1v and a normal frequency of 600MHz at 1.6v. 

In Wattch simulator, the configuration of the processor was designed to be typical of a 

high-performance superscalar supporting 8-wide fetch, decode, issue and commit. The 

details of the configuration can be seen in Table 4.2, which lists the micro-architectural 

parameters of the baseline model of Wattch simulator. 
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Parameter Configuration 

Memory 150 cycle round trip access 

Virtual Memory 8K byte pages, 30 cycle fixed TLB miss latency after 

earlier-issued instructions complete 

Architecture 

Registers 

32 integer, 32 floating point 

Instruction Cache 8k 2-way set-associative, 32 byte blocks, 1 cycle latency 

Data Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency 

Unified L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle latency 

Branch Predictor hybrid - 8-bit share w/ 8k 2-bit predictors + a 8k bimodal 

predictor 

Out-of-Order 

Issue 

out-of-order issue of up to 8 operations per cycle, 128 entry 

re-order buffer 

Functional Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integer 

MULT/DIV, 2-FP MULT/DIV 

     Table 4.2: Wattch Baseline Simulation Model 

4.2.2 Energy Measurements 

In this section, we shall discuss the model used to measure energy/power data with the 

Wattch simulator, which is presented in the previous section. 

As is found by many researchers, it is a very difficult task to estimate detailed power 

dissipation or energy consumption within a superscalar processor. Over the past years, 

several models and tools are proposed to accomplish this task, but Ghiasi and Grunwald 

found experiment results of these models varied dramatically [82]. To solve this problem, 

in the study of [83], N. S. Kim et al. suggested that it can be done by a cycle-accurate 

simulator to produce meaningful energy/power results. Following this suggestion, D. 

Brooks et al. designed the Wattch tool, which makes use of the cycle-accurate simulator 

of SimpleScalar as a base, and successfully implements a framework to estimate detailed 
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power/energy data at the micro-architecture level. 

In this thesis, we make use of the dynamic and static power/energy model from the 

Wattch tool to obtain the detailed power/energy results for benchmark applications. In 

Wattch simulator, there are three steps to accomplish its dynamic and static power/energy 

model, which is described in the following. 

1) As a starting point, the Wattch simulator employs the power/energy model of 

Cacti [84] tool, which is for calculating the power/energy data of memory circuits.  

2) Then, Wattch simulator models all the major components of real microprocessors. 

In general, the main units of microprocessors for the energy/power estimation 

model used in Wattch fall into four categories: 

� Array structures, including data and instruction caches, cache tag arrays, all 

register files, register alias table, branch predictors, large portions of the 

instruction window and load/store queue. 

� Fully associative content-addressable memories, including instruction 

window/reorder buffer wakeup logic, load/store order checks and TLBs. 

� Combinational logic and wires, including functional units, instruction 

window selection logic, and dependency check logic and results buses. 

� Clocking, including clock buffers, clock wires, and capacitive loads. 

3) Finally, for these components, Wattch simulator parameterizes their power/energy 

data as accurate as possible, and integrates these power/energy estimations into a 

high-level simulator.  
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Basically, the power/energy model of Wattch uses SimpleScalar’s hardware 

configuration parameters as inputs to compute the power/energy data for the various units 

in the processor. Furthermore, during execution, the Wattch simulator keeps track of 

which units are accessed per cycle, thus the power/energy model of Wattch could 

eventually calculate the detailed power/energy results for an application.  

Overall, the Wattch simulator demonstrates a fast, usefully-accurate, high-level 

energy/power measurement model. 

4.3 Summary 

This chapter has described the infrastructure used in this thesis. In our experiments, 

benchmarks were chosen from both the SPEC CPU2000 benchmark suite and the 

MediaBench suite, and then they were simulated using an adapted version of Wattch 

and SimpleScalar tools, to obtain their performance and power/energy results. 
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Chapter 5  

IPC-Driven Online Power Reduction 

Method 

Nowadays, with fast advances in CMOS technology, power dissipation has already 

become a great concern in microprocessor design, not only for battery-operated 

potable devices but also for high-end computer systems due to excessive cooling and 

power costs. Therefore, various techniques are employed by modern microprocessor 

designers to address the power reduction issue. As known, dynamic voltage scaling 

(DVS), which is a technique to vary the supply voltage and frequency of CPU to 

provide desired performance with the minimum amount of energy consumption, has 

been identified as one of the most effective ways to reduce energy consumption.  

In the past years, many algorithms have been proposed to use DVS to match the 

changing demands for processing speed and achieve power reduction. Based on when 

the decisions to switch voltage/frequency are made, they can be broadly classified as 

compile-time and run-time algorithms.  

At compile time, researchers suggested the use of mode-set instructions as 

indicators to schedule DVS. Hsu et al. [85] defined some power-down instructions for 

memory-bound regions and provided a non-linear optimization formulation to insert 

such instructions during program compiling period for optimal DVS scheduling.  

Run-time DVS algorithms have received much attention because of the ability to 
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reduce power dissipation in response to variations in workload. Generally, runtime 

algorithms are studied at the operating system (OS) level and the micro-architecture 

level. Algorithms at the OS level usually use heuristic scheduling, including 

interval-based algorithms like Lorch’s proposal [69] and task-based algorithms like 

Luo’s work [70]. However, because of the misunderstanding about future performance 

demand of CPU caused by inaccurate predictions at the high OS level, researchers 

suggested scheduling DVS at the lower micro-architecture level to avoid such 

problems and achieve reliable predictions. For example, in [86], Marculescu proposed 

the use of cache miss rate to direct DVS by hardware support during execution time. 

In this chapter, we introduced Instruction per Cycle (IPC), a micro-architecture 

level parameter, as the performance indicator for processor runtime period and 

implemented an interval-based identification and prediction mechanism for reducing 

processor power dissipation without much performance degradation. The basic idea of 

our mechanism is to trace the current interval’s performance activity level and predict 

the coming interval at which certain power-performance trade-off would be profitable. 

Our simulation results of real workloads showed that our approach takes advantage of 

energy reduction as well as provides fine-grained, tight control over performance loss. 

The low-power design presented in this chapter is built upon my earlier work in [102]. 

The rest of this chapter is organized as follows: Section 5.1 gives the motivation 

of using IPC as the performance indicator in our low power design schemes. Section 

5.2 describes the detailed steps of this method. Section 5.3 demonstrates our simulation 

results and related discussions, and we summarize this chapter in Section 5.4. 
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5.1 Motivation for IPC Indicator 

5.1.1 IPC variations  

When applications execute, they regularly show changes in some parameters, such as 

IPC (Instructions per Cycle). These changes can vary widely during application 

execution period. Figure 5.1 shows the IPC variations when running “gcc” on the 

SimpleScalar tool. The IPC value is estimated by measuring how many cycles spent in an 

execution interval with a fixed number of instructions (100K in this experiment). In Figure 

5.1, the IPC value shown on the Y coordinate varies largely even in the very short 

execution periods.   

00.51
1.52
2.5

Instructions
IPC

 

Fig. 5.1: IPC variations during a short execution period of “gcc”. 

Moreover, as noted by some researchers, this variability of IPC can be extended to 

other resources of the microprocessor. For example, D. W. Wall [87] investigated the 
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range of IPC values in direction to the depth level of instruction parallelism within a 

single application. D. Albonesi [88] also noted the similar characteristic of IPC in 

applications and used it in an IPC/clock rate tradeoff design. In our method, we shall 

employ IPC variations to indicate different performance requirements of application 

runtime periods to implement a power-performance tradeoff design. 

5.1.2 IPC Indicator  

As is well-known, for a task of an application, the most straightforward way to 

quantify the performance requirement is to make use of its required execution time. 

When executed by a processor, the CPU time (T) needed to finish a task is estimated 

by 
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where IPS is instructions per second. From the above formula, a new formula for IPC 

can be deduced as the following:  
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where Ni is the number of instructions in the task, Nc is the amount of cycles, τ is the 

clock cycle time, and f is the frequency of a processor.  
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(a)            (b)        (c)  

Fig. 5.2: Analysis model 

In Chapter 3, from the analysis model shown in Figure 5.2, we derived the 

formula for the execution time of a task, which is given as: 

 /fW  /fW  /fW d ip i m i   ) ,(max  T +=            (5.3) 

where miW  is the peripheral operations’ workload,  Wpi is the parallel computing 

operations’ workload, and  Wdi is the dependent computing operations’ workload (all 

the three workloads are quantified in cycles). Therefore, the IPC parameter can be 

estimated by the following formula: 
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From the above formula, it is obvious to see that for a task with a fixed number of 

workload (Ni), and executed on a processor with a fixed frequency (f), when the 

execution time (T) becomes longer, the IPC value for this task will consequently 

become lower.  

Furthermore, from the analysis model, we can deduce scenarios and reasons for 

the longer execution time and the lower IPC value. As shown in Figure 6.2(c), when 
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the peripheral operations ( miW ) dominate the overlap part, they usually take much more 

time than the parallel computing operations ( piW ), and consequently result in a period of 

CPU idle time during the task execution. Therefore, in this case, it often leads to a much 

lower IPC value for the execution interval.  

In general, peripheral operations are a combination of both memory-bound and 

I/O-bound operations. In our analysis model, we have assumed that peripheral 

components are asynchronous with the CPU and the processing speed of peripheral 

components is usually much slower than that of the CPU. Thus, some CPU computing 

operations have to be stalled while waiting for data from the peripheral operations if 

they are dependent on the peripheral operations.  

In memory-bound operations, especially when a cache miss operation happens, the 

time will be prolonged as the CPU computing operations have to wait for the necessary 

data to be read from memory. In this case, the IPC value can become lower if very few 

parallel computing operations are simultaneously executing during this execution period. 

I/O-bound operations may be implemented in use of two different ways: polling and 

interrupt. When using a polling method, the CPU is in a busy-waiting state. In such a case, 

the IPC value is not going to be lowered since these polling operations usually belong to 

the parallel computing operations and could execute concurrently with the I/O-bound 

operations. When using an interrupt method, the CPU is idle and waiting for an interrupt 

signal from the I/O controller to notify that it has finished the I/O task. In our analysis 

model, we have assumed that the clock is gated when the processor is idle. Thus, in this 

case, the IPC value is becoming lower since the CPU computing operations have to be 
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stalled while waiting for data from the I/O and very few parallel computing operations 

are executed simultaneously. 

In summary, the IPC value will become much lower for an execution interval when 

the peripheral operations dominate the execution interval, especially for memory-bound 

operations when encountering cache miss operations and I/O bound operations when 

using interrupt style. This finding also explains the wide variations of the IPC values 

during application execution period. 

This observation motivates us to employ the IPC parameter as a performance 

indicator to scale individual application execution intervals as if they could be run at 

their own performance-specific frequency and voltage. When an executed interval has 

lower performance activity level, which quantified by a lower IPC value, it is likely to 

have opportunities to reduce power dissipation of the microprocessor by slowing it at 

a lower frequency and voltage. 

5.2 Methodology  

In this section, we will present the detailed implementation of our method. To 

schedule the voltage and frequency at which a microprocessor is running, there are three 

tasks to be done in this method, including identification, prediction and speed-setting. We 

shall describe them in the following. 

5.2.1 Identification   

In this task, we are going to estimate the micro-architecture parameter, IPC, for the 
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current or some recent execution intervals. To achieve this goal, we employed a 

modified SimpleScalar tool for measuring the IPC value of every interval with a fixed 

amount of instructions. In this method, choosing an appropriate interval length for an 

application is important, since the following three tasks are all performed at the fixed 

length interval throughout application execution period. In Section 5.3.3, we shall discuss 

the impact of different interval lengths of an application on the final results of our method 

and show how to determine the appropriate interval length for an application. 

To obtain the probability distribution for intervals’ performance, we attempted to 

measure a quantifiable estimation of the IPC value for every interval during 

application runtime period. Firstly, we executed the benchmark application on our 

modified SimpleScalar at the baseline processor setting. Then, for each interval 

during application execution, we designed an algorithm to estimate its performance 

activity level in terms of the IPC value, which is illustrated in Algorithm 5.1. 

 

Algorithm 5.1: Interval performance estimation algorithm 

As is shown in Algorithm 5.1, for each interval with a fixed amount of 

instructions, we first collected a trace of primitive execution results, including its 

consumed cycles and spent time. Then, by using Formula 5.2 presented in the 

1. Set an interval: a fixed amount of instructions Ni 

2. For an interval, glean its execution results 

a) Consumed cycles Nc; 

b) Consumed time T; 

3. For an interval, IPC = Ni / Nc; 

4. For an interval, Performance = IPC 
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previous section, we calculated the IPC value for the executed intervals. Finally, we 

associated the measured IPC value with these executed intervals as their performance 

indicator. 

5.2.2 Prediction  

In the second task, the future interval’s performance is predicted based on the current 

interval’s or some recent intervals’ performance in terms of their IPC values.  

In general, the performance demand for the coming interval could be predicted 

based on the traced performance of one or some recent executed intervals. In [68], 

Govil et al. compared different predicting policies for DVS algorithms and found that 

simple algorithm rather than “smart” predicting algorithm may be most effective. 

Possible reason could be that there are usually more overheads, such as complex 

settings and complicated computations, in these smart predicting policies, thereby 

resulting in mistaken or ineffective predictions for future performance demand. 

Therefore, in this design, we employed PAST, a simple prediction algorithm proposed 

by Weiser et al. [67], as our heuristic policy for this task. Basically, the main idea of 

PAST algorithm is to look a fixed interval into the past, and assume the next interval 

will be like the previous one. 

Following the PAST prediction policy, our method limits itself to only analyzing 

the performance of the immediately preceding interval to predict that for the future 

interval: if the IPC value for the previous interval was high, the coming interval could 

also have high performance demand and should be executed in a high speed; while if 
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the IPC value was low, the next interval could also have low performance demand and 

should be executed in a low speed. 

5.2.3 Speed-setting  

In the third step, the goal of the speed-setting task is to decide whether to scale the 

voltage and frequency of the processor and by how much.  

As found, there is a wide range of IPC values in our traced results, which implies 

that the executed intervals have many different performance activity levels. However, 

in our design, we do not intend to continuously scale the processor’s voltage and 

frequency over such a wide range. Furthermore, it is infeasible to use continuously 

variable voltage and frequency scale because the supply voltage and clock frequency 

transition of processors has a cost in terms of both time and energy consumption. 

Therefore, in this design, to achieve power reduction by the processor slowdown, we 

employed a simple DVS setting with two supply voltages and frequencies. 

Accordingly, we defined only one transition threshold, a boundary value of IPC 

indicator, to scale between the two voltage/frequency settings.  

The decision to scale the frequency and voltage is determined by the defined IPC 

threshold. If the predicted IPC value for the next interval drops below the threshold, 

the voltage and frequency of microprocessor is scaled down; otherwise, if it is higher 

than the threshold, the voltage and frequency is scaled up. Thus, it is important to 

choose an appropriate IPC threshold value for achieving a successful design. In 

Section 5.3.4, we will discuss the effect of different IPC threshold values on our 



 69 

experiment results, and attempted to determine the appropriate IPC threshold value 

for our method. 

After making the decision of whether to scale the clock up (or down), the next 

problem is to decide how much to scale the processor voltage and frequency. In our 

method, we used the supply voltage/frequency setting of the Intel XScale processor 

since it is a typical application of actual DVS implementations and is widely used 

today. Thus, in this method, a two-mode setting for the processor is illustrated as 

below: 





=
 MHz 600 & 1.6v:

 MHz 150 & 1.1v:

Normal

Slow
Mode  

5.3 Results  

5.3.1 Evaluation metric 

In experiments, we make use of three metrics to evaluate results of our method, 

including: energy saving, performance degradation, and energy-performance product 

improvement. Detailed experiment setup and benchmark information to measure the 

three metrics are already discussed and presented in Chapter 4.   

Energy saving is used to evaluate how much energy could be reduced by using 

our low-power design. To estimate the energy saving result of an application, we 

perform it on our modified Wattch simulator at both dynamic voltage scaling and fixed 

voltage settings, and calculate the difference of its energy consumption. 

Performance degradation is used to evaluate how much performance penalty 
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would be generated by using our design. To determine the performance degradation 

result of an application, we examine the difference of its execution time at both fixed 

voltage and dynamic scaled voltage. 

As is discussed in Chapter 3, to achieve a successful power-performance trade-off 

optimization, our design is subject to a soft time constraint: TrT )1()( +≤δ , where 

δ  is the slowdown factor of the processor, T is the application total execution 

time without CPU slowdown, and r  is the user acceptable performance penalty 

ratio.  

In our experiment results, we employed the performance degradation (PD) metric 

to indicate the resulting performance penalty caused by our method. Thus, to meet the 

defined soft time constraint, our PD value must to be less than rT . Moreover, to 

evaluate our results, we defined the user acceptable performance penalty ratio ( r ) to 

be 10%. Therefore, for any application, when its performance degradation is more 

than 10% of the original execution time, it means that our method does not achieve 

its goal since it can not meet the time constraint. 

Energy-performance product improvement is used to evaluate how much both 

execution latency and energy are affected by using our method.  To determine the 

energy-performance product improvement of an application, we calculated the 

difference of its energy*performance results at both fixed voltage and dynamic scaled 

voltage. By using energy*performance improvement (EPI), it actually helps us 

understand the overall trade-off between the energy reduction and the induced 

performance slowdown from our mechanism. 
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5.3.2 Principal results 

Figure 5.3 shows our principal results: energy saving (ES), performance degradation 

(PD), and energy*performance improvement (EPI) for the applications in our 

benchmark suite. To optimize the power-performance trade-off, we employed an IPC 

threshold value (1.3) in experiments and all results shown in this section are gathered 

by using this threshold. For the reason to select this value as our standard threshold, 

we will discuss and present in the next section.  

To determine these results, we compared the simulation results obtained at 

dynamical voltage scaling with that measured at a fixed clock speed and voltage, both 

on the same baseline processor setting. Furthermore, we normalized results obtained at 

voltage scaling to those measured at fixed voltage. Therefore, in the following figure, 

all the bars represent results with dynamical voltage scaling, which are normalized to 

those results obtained at fixed voltage (the normal level setting in our case).  

0%10%20%30%40%50%60%70%

unepic epic adpcmdecode gcc vortex parser

ESPDEPI

 

Fig. 5.3: Principal results: ES, PD, and EPI. 



 72 

5.3.2.1 Energy savings 

Our simulation results indicate that the potential for energy savings from our method is 

high. Figure 5.3 shows energy saving for all the benchmark applications. Compared 

with the energy consumption obtained at fixed voltage, energy savings from our 

mechanism vary from 5% to 60%, with an average of 29%. In contrast, “gcc” 

achieved the highest energy saving (61.7%), while “epic” only saved the least energy 

(5.8%). In general, the energy saving in our mechanism is decided by the slack time 

of intervals available at runtime. For the application that has less energy saving, the 

ratio of slack time to its whole execution time must be smaller, whereas the 

application that achieves higher energy saving must have a bigger ratio of slack to 

trade speed for energy reduction. For example, “gcc” could have much more slacks 

than “epic” since it saved more energy by dynamic voltage scaling reconfiguration.   

5.3.2.2 Performance degradations 

We do show that the overall performance of applications obtained from our 

mechanism does not degrade significantly compared with the baseline. As shown in 

Figure 5.3, almost all the performance degradations of applications are less than 10%, 

with an average of 8% slowdown. This finding implies that almost all applications 

meet their soft time constraints by using our method. Therefore, we can see that our 

low-power design did not adversely hurt execution latency very much for all these 

applications in our simulation. The reason is that we only scaled the clock speed of 

processor when there is slack in the interval execution, which means we attempted to 
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finish the task by a slow but adequate speed to reduce energy as well as maintain its 

performance. Thus, for these intervals having slacks, their goal performance can be 

achieved while running at slow clock rates. 

5.3.2.3 Energy*performance improvements 

As shown in Figure 5.3, the improvement of energy*performance (EP) varies from 

2%-60% (average is 23%). Therefore, for each application, although there is 

undesirable but comparatively minor performance degradation, the overall 

improvement of energy and performance product is advantageous, with respect to the 

baseline results. At the same time, from Figure 5.3, we can see that the improvement 

of energy*performance of all applications is almost the same as their energy savings. 

The reason is that the energy saving of an application is much more than its 

performance degradation and thus it dominates the overall result. 

Based on the three results presented in the above sections, we can draw a conclusion 

that our online identification and prediction mechanism, which dynamically scales the 

voltage and frequency of the processor in response to the IPC value of fixed intervals, 

is an effective way to reduce processor energy consumption and maintain the 

application performance with little extra overhead. 

5.3.3 Impact of interval length 

In this section, we shall discuss the impact of different length settings of an 

application execution interval on the final simulation results: energy saving (ES), 

performance degradation (PD), and energy*performance improvement (EPI). To 
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evaluate the impact of different interval lengths, we only changed the interval length 

setting in the first step described in Section 5.2.1, and kept the other settings to be the 

same in the following steps during simulations (the IPC threshold is set to be 1.3 for 

this experiment). Figure 5.3 shows the experiment results of “gcc” when using four 

different interval lengths of (10k, 100k, 500k, 1M). 

0%10%20%30%40%50%60%70%80%

10k 100k 500k 1M

ES PD EPI

 

Fig. 5.4: The impact of different interval length on “gcc” 

As shown in Figure 5.4, when using different interval length settings, there is 

actually much impact on our method and the final experiment results are quite 

different. Obviously, when the interval length varied from 10k to 1M, results of 

energy saving become higher, increasing from 40% to 70%, which implies that longer 

interval length setting will get more energy saving. But, as we can see from the figure, 

when the interval length increased from 100k to 1M, results of performance 

degradation in our method also increased very much, from 4% to 35%. This finding 

indicates that longer interval length will cause longer performance penalty although it 
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can achieve more energy saving. When the interval length is set to be 10k, comparing 

with the results obtained at the interval length of 100k, its energy saving is much less 

but its performance degradation is a bit more because of more runtime identification 

and prediction cost. Thus, its overall energy*performance improvement (37%) is 

much less that (60%) obtained at the 100k interval length setting, which means that 

shorter interval length setting will achieve less energy saving as well as less 

performance degradations.  

Based on the experiment results, we finally decided to set the interval length of 

“gcc” to be 100k and our simulation results proved that this interval length setting is 

efficient. For different applications, they use different input files and consequently 

have different execution lengths. Thus, we have to follow the above experiment and 

analysis to determine appropriate interval lengths for them and achieve a good 

tradeoff between the energy savings and performance degradations. 

5.3.4 Sensitivity to Slowdown Threshold 

The experiment we discussed in this section shows the impact of different IPC thresholds 

on our final simulation results: energy saving, performance degradation and 

energy*performance improvement. For a clear comparison, we only presented the 

simulation results by using three IPC thresholds values (1.0, 1.3 and 1.6) to scale 

runtime intervals into distinct execution modes of microprocessors. Thus, for a given 

application, we can explore the impact of different switching thresholds by comparing 

the collected results. 
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5.3.4.1 Energy savings 

As expected, for all applications, there is more energy savings when using a higher 

IPC threshold value. Figure 5.5 shows energy savings of all applications when 

executing with the three IPC thresholds. Obviously, for all benchmarks, their energy 

savings are increased when the IPC threshold value is raised. The reason for the 

results is evident: for a higher IPC threshold, there will be more runtime intervals to  ENERGY SAVING
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Fig. 5.5: Energy savings for different IPC thresholds. 

be scaled into slow processor execution mode, which means that the CPU spends 

longer execution time in a low power mode; therefore, the total energy consumption 

will consequently be reduced. For some benchmarks, such as “adpcmdecode” and 

“parser”, when using a higher IPC threshold, the increment of energy saving is very 

large, nearly double and even more.  

5.3.4.2 Performance degradations 

Our experiment results show that performance degradations of all applications 
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also increase with the raising of the IPC threshold. Furthermore, when the IPC 

threshold exceeds a certain value, the performance degradation is becoming very large, 

which means an unacceptable longtime performance penalty. As is shown in Figure 

5.6, when IPC threshold is at both 1.0 and 1.3, the performance degradations of all 

applications are not very long, which is acceptable compared to the original execution 

time and can still meet the soft time constraint; while the IPC threshold is 1.6, for all  PERFORMANCE DEGRADATION
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Fig. 5.6: Performance degradations for different IPC thresholds. 

benchmarks, the performance degradations become very large, with an average of 

37% performance degradation. For such a large performance penalty, one possible 

reason can be that: some intervals without slack but with an IPC value below the 

threshold are scaled into slow execution mode, resulting in the longer execution time 

and improper performance degradation. 

5.3.4.3 Energy*performance improvements 

As believed by many researchers, the improvements of energy-performance 
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product could well indicate the overall system energy-performance trade-off 

achievement. The EPI results shown in Figure 5.7 actually revealed the trade-off 

differences according to the three IPC thresholds. As shown in the figure, when the 

IPC threshold is low (1.0), there will be very little energy savings and also very little 

performance degradation, thus the overall EPI is consequently very small. However, 

for some applications, the EPI result is negative because the DVS overhead dominates  ENERGY*PERFORMANCE IMPROVEMENT
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Fig. 5.7: Energy*performance improvement for different IPC threshold 

the overall results. When the IPC threshold becomes appropriate (1.3), energy saving 

dominates the total result and the performance degradation is still very little, thus the 

overall EPI becomes good. When the IPC threshold is as high as 1.6, although there 

are very large energy savings, the performance degradation of applications are also 

very big because of the improper slowdown, thus the overall EPI results are 

unfavorable. For example, overall EPI of “epic” is negative because of its too big 

performance delay. 
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Based on the above discussions, we can see that the results of our method are 

sensitive to different IPC thresholds. However, to our knowledge, there is no good 

way to estimate the best threshold, and we can only select an experiential threshold 

that could achieve relatively good results in simulations. In experiments, we actually 

investigated a wide range of IPC values, varying from 0.5 to 2.5.  Then we followed 

the above approach to compare the overall simulation results, and finally decided to 

choose the IPC threshold (1.3) as our standard experiment setting. As shown in the 

principal results, when the IPC threshold is 1.3, our mechanism achieved good energy 

savings, at the same time, with minor performance loss. 

5.3.5 Overhead 

In this method, the overhead could be broadly split into two types: one is the runtime 

cost to estimate the IPC value for the current interval and decide when to execute the 

DVS mode transition; the other one is the switch cost of microprocessor dynamic 

voltage and frequency scaling.  

Unfortunately, for the first overhead related to the run-time identification and 

prediction, we do not yet have a good way to estimate the cost value in terms of 

execution time and energy consumption. However, the actual performance results 

measured in our experiments had already comprised the time loss caused by the dynamic 

judgment cost.  

For the DVS transition cost, we referred to [81] and estimated one time DVS switch 

overhead with a transition time of 12 µs and transition energy of 1.2µJ. Therefore, for a 
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complete execution of applications, the overall impact of DVS cost is already 

considered in the total execution time and energy consumption of our simulation 

results.  

As known, frequent or heavyweight DVS switches will have significant time and 

energy cost, and thus a power reduction approach is less likely to achieve a finer 

power-performance trade-off result. In our method, as is discussed in the previous 

section, the IPC threshold can affect the DVS switch times very much. Table 5.1 lists 

the total transition times for the three applications from MediaBench when finishing their 

execution by using different IPC thresholds.  

 IPC=1.0 IPC=1.3 IPC=1.6 

unepic 138 147 308 

epic 172 184 283 

adpcmdecode 2 174 523 

Table 5.1: Transition times for different IPC threshold. 

As shown in the Table 5.1, when the IPC threshold is raised, the transition times 

for all applications correspondingly increased. As is noted, when IPC threshold raised 

from 1.3 to 1.6, the transition times of some applications, such as “adpcmdecode”, 

increased very much. Usually, much more transition times also mean much more DVS 

switch cost in both performance degradation and energy cost. As is discussed in the 

previous section, the result proves again that too high IPC threshold will not improve 

the overall power-performance trade-off optimization.  
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5.3.6 Comparison 

To verify the efficiency of our IPC-driven online DVS algorithm, we compared it with 

the algorithm proposed by Weiser et al. [67], which is the first and most commonly 

used OS level algorithm to scale the frequency and voltage of the processor based on 

how busy the CPU was during an interval execution. 
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Fig. 5.8: Comparison between Our algorithm and Weiser’s algorithm 

Figure 5.8 shows the comparison of simulation results between the two 

algorithms, including energy saving (ES), performance degradation (PD) and 

energy*performance improvement (EPI). As shown in the figure, ES, PD and EPI 

present the measured results for our algorithm, while ES’, PD’ and EPI’ present the 

estimated results for Weiser’s algorithm. Also, all the results presented by the bars 

are normalized to the results obtained form application executions with fixed 

voltage on the same baseline setting. 
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As we can see from Figure 5.8, Weiser’s algorithm usually saved more energy 

than our algorithm, but the difference between the two algorithms is not too big, 

only varying from 2% to 6%. However, as shown in all cases, Weiser’s algorithm 

generated much more performance degradation than our algorithm. It can be seen 

that in some benchmarks such as “gcc” and “adpcmdecode”, applying Weiser’s 

algorithm resulted in very high performance degradation (more than 50%). 

Moreover, when using Weiser’s algorithm, the performance degradations for all 

applications are more than 10%, which means they all could not meet the soft time 

constraint. As a result, for the metric of energy*performance improvement, in all 

cases, our algorithm achieve better results than Weiser’s algorithm. This implies 

that: our IPC-driven online algorithm can obtain high energy savings while 

keeping low performance degradations to meet the soft time constraint, thereby 

leading to a good results for the overall energy*performance improvement. 

The above findings indicate that our algorithm could achieve a considerable 

good result by using the micro-architecture parameter (IPC) to avoid the impact of 

the OS on the prediction results in former OS level DVS algorithms and obtain a 

reliable prediction for future performance requirements.  

5.4 Summary  

In this chapter, we have successfully presented a detailed interval-based identification 

and prediction mechanism for processor power reduction. Based on data obtained 

from the current interval, we calculated its performance activity level in terms of the 
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IPC value, and then predicted the next coming interval’s performance activity to 

dynamically scale the voltage and frequency of the processor at appropriate level. In 

simulations, our approach achieved energy saving by an average of 29% with minor 

performance degradation, compared to a processor running at a fixed voltage and speed. 

Our simulation results revealed that our mechanism provides a practical and effective 

way to save significant amounts of energy while almost maintain the original 

performance.  
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Chapter 6  

IPC-Driven Offline Power Reduction 

Method 

In recent years, power dissipation is increasingly becoming a limiting factor for 

microprocessor design due to many reasons, for example, increased demand of mobile 

computing and high operating temperature of the microprocessor as a result of 

pushing its operating frequency. Therefore, various techniques are employed by 

modern microprocessors to reduce power dissipation, typically involving voltage 

reduction and activity reduction. 

Voltage reduction, which usually implies a frequency reduction, could produce a 

significant energy saving, since energy is proportional to the square of the voltage. 

Typically referring to as Dynamic Voltage Scaling (DVS), this is a widely used 

implementation of voltage reduction in concert with clock frequency change.  

Many algorithms have been proposed to dynamically set the frequency and voltage 

of processors to match the changing demands for processing speed and to achieve power 

reduction. In general, these algorithms can be divided into two categories.  Some of 

them use the OS to monitor the system load and estimate the future processing demand at 

regular time interval. Control algorithms employed by the OS usually use heuristic 

scheduling. Examples are the interval-based algorithms of Lorch [69] and the 

task-based algorithms of Luo [70]. However, for some OS arbitrated DVS algorithms, 



 85 

researchers found noticeable performance loss in their actual executions [71]. One 

possible reason is inaccurate predictions of future performance demand by the OS due to 

the long lapse between the low level activities at the processor and high level detection at 

the OS. This leads to wrong DVS decisions and the accompanying performance penalty. 

To overcome the problem, researchers proposed that applications themselves should 

provide additional information about their future performance demands, such as 

deadlines of real-time tasks. In these algorithms, applications must be designed with 

awareness of their processing demands. Then the optimal processor voltage and 

frequency can be selected to minimize power dissipation and still meets performance 

requirement of applications.  

In this chapter, we introduced a micro-architecture parameter (IPC) to indicate the 

performance requirement for different code sections in an application to determine the 

value of IPC at different parts of the code. The motivation for using IPC as the 

performance indicator has been presented and discussed in the previous chapter. By 

using IPC, we implemented a traced-based code analysis and reconfiguration 

mechanism. The basic idea in our mechanism is to use IPC to identify opportunities in 

the various application code sections at which certain voltage and frequency scaling 

would be profitable. To do this, we first collected performance activity levels of 

different code sections during application training runs. We then performed an off-line 

analysis of the traced statistics to obtain the performance indicators in terms of the 

IPC value. Thirdly, we grouped these identified code sections into distinguished 

processor running modes with certain voltage and frequency setting. Finally, 
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throughout the application execution, we dynamically change processor running 

modes by scaling its voltage and frequency based on the profiled performance 

indicators. The low-power design presented in this chapter is built upon my earlier 

work in [103]. 

The rest of this chapter is organized as follows: Section 6.1 gives a brief 

motivation of our mechanism. Section 6.2 describes the detailed steps to implement 

our mechanism, which is the essential basis of this design. Section 6.3 demonstrates 

our simulation results, and we summarized in Section 6.4. 

6.1 Methodology  

The primary idea of this method is to divide the program execution code into different 

groups, and then each group has a uniform reaction to processor running mode 

adaptation. Basically, our trace-based code analysis and reconfiguration mechanism 

can be divided into three steps, including: phase identification, code matching, and 

slowdown process. We shall describe them in the following three subsections. 

6.1.1 Phase Identification  

In this step, our goal is to divide an application execution into individual intervals and 

identify some favorable intervals which have possible power reduction opportunities. 

To do this, we first identify performance activity levels of these intervals, and then 

classify them into different groups according to their performance levels, finally choose 

some phase groups having power reduction opportunities. 
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6.1.1.1 Phase Performance 

In this method, a phase is defined as an execution interval with a fixed amount of 

instructions. In Section 6.3.3, we will give a detailed discussion about the impact of 

different interval length settings on our final results.  

In this step, we modified the SimpleScalar tool to estimate the performance 

activity levels of application runtime phases. To obtain performance activity levels of 

each phase, there are three tasks to be done during application training runs. Firstly, 

we executed a benchmark application on the modified SimpleScalar tool at the baseline 

processor setting. For each application, we used the training data set supplied by the 

benchmark suits as its training input file. Then, for every phase interval throughout 

application execution, we collected a trace of primitive statistics, including its 

consumed cycles and spent time. Lastly, we employed Formula 5.2 presented in 

Chapter 5 to calculate the IPC value of every phase. Thus, for each phase interval 

throughout application execution, we estimated its performance activity level in terms of 

an IPC value.  

The final output of our on-line trace is a performance activity level vector (PALV) for 

all phase intervals of an application, which also could be used as referenced performance 

requirements.  

6.1.1.2 Phase Groups 

As found, there is a wide range of IPC values in PALV, which means that application 

runtime phases have very many different performance activities. Since our mechanism is 
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not going to continuously scale voltage and frequency of processors over such a wide 

range, it is necessary to divide these phases into several distinct performance-specified 

groups according to their IPC values.  

To identify phase intervals at which a CPU slowdown is feasible to achieve power 

reduction, we attempted to divide these phase intervals into two groups: a slow group 

and a normal group. Each of them represents a phase group with approximate IPC 

values in a specific range. Based on the knowledge obtained from our experiments, we 

selected the IPC value (1.3) as a threshold for classifying the two groups. We will present 

the reason for choosing 1.3 as the IPC threshold in Section 6.3.4.  Then, by using the 

IPC threshold, we defined the two phase groups, which are illustrated in the following: 
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Following the above phase group definition, we clustered these phase intervals, 

which have similar performance activity levels, into different phase groups. 

Eventually, based on these classified groups with distinctive IPC values, we could 

identify these favorable phases, which might have power reduction opportunities. 

6.1.2 Code Matching  

To activate voltage and frequency scaling, we must identify the advisable code 

sections which could divide the program execution into different running modes. Thus, 

step two is to estimate such code sections in an application binary file through 

matching them with runtime track record of these phases identified in the first step. In 
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the following, we shall first show how to get the runtime track record of phases, and then 

present the detailed implementation of code section identification. 

6.1.2.1 Runtime Track Record of Phases 

In [89], Sherwood et al. have presented an efficient scheme for detecting application 

runtime execution behaviors. In this task, we modified their SimPoint [90] scheme 

and make use of their defined Basic Block Vectors (BBV) to detect runtime contents 

of phase intervals.  

Basically, BBV represents the proportion of basic block executions through a 

given phase interval. To keep track of run-time information within every phase, we 

assign a static numeric identity (ID) to every basic block in the application execution 

code, starting from 1. Thus, in an interval with a fixed amount of instructions, we used 

BBV to record the number of times each basic block executed during the sampling 

period. Simultaneously, for the same interval, we employed a basic block instruction 

vector (BBIV) to trace detailed contents of each basic block, such as opcodes, 

instructions and their addresses. 

6.1.2.2 Code Section Identification  

Based on our collected runtime basic block clusters of phases, we attempted to match 

them with the binary code of an application to identify these favorable code sections. 

The detailed method to locate and mapping runtime execution contents of phases and 

static code sections could be divided into three steps, which are described as below: 
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� BB ratio: As found, although there might be hundreds of basic blocks within 

one phase interval, only very a few basic blocks are executed frequently and 

takes most of execution time. Therefore, we make use of a ratio to quantify 

the importance of these basic blocks, which is calculated as below: 

∑ ×

×
=

×
=

BBID

bbbb

bbbb

phase

bbbb

TN

TN

N

TN
Ratio               (6.1) 

Where Nbb is the amount of instructions in a basic block, Tbb is its occurrence 

frequency in a phase, and Nphase is the total amount of instructions in a phase. 

� ID clusters: During the application execution, there is an assigned ID for 

each basic block, and some continuous or nearby basic blocks usually 

execute together, thereby resulting in some small ID clusters. Thus, based on 

identified important basic blocks, we can obtain some potential basic block 

clusters for each phase interval. 

� Section mapping: After identifying these potential basic block clusters by 

their ID, the next step is to match them with static code sections in an 

application binary file by using the traced opcodes and addresses of basic 

block clusters. 

Following the above three steps, we finally identified these favorable code sections in 

an application binary file, which could divide the whole program execution into 

different processor runtime modes and contribute to power reduction. Most often, one 

of such identified code sections could also be defined as a small function unit. 
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6.1.3 Slowdown Process  

After successfully identifying these code sections that have low performance 

requirements and could make possible contributions to runtime power reduction, Step 

three attempts to dynamically scale the voltage and frequency of the processor to reduce 

power dissipation. For this aim, there are two tasks to be finished, which will be 

described in the following. 

Firstly, we should estimate how much to scale the processor voltage and 

frequency during execution period of these code sections with low performance 

requirements. Following the typical settings of both the Transmeta Crusoe and the 

Intel XScale processor, which are widely used implementations of DVS, we defined a 

two-mode setting with different clock frequencies and supply voltages, which is 

shown as below.  





=
Group NormalMHz 600 & 1.6v:

Group SlowMHz 150 & 1.1v:

Normal

Slow
Mode  

Then, the next step is to profile indicators to direct microprocessor voltage and 

frequency scaling. Actually, one assumption for our method is that the application is 

not allowed to be modified, including both its source code and binary code. As is 

mentioned in the previous section, we have already obtained the detailed contents of 

identified code sections, including their opcodes and addresses. Thus, for one code 

section, we used the opcodes and addresses of its beginning and ending points as the 

performance indicators, and saved them into some registers of the processor simulator 

to direct the voltage and frequency scaling. We developed a mode selection and 
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profile algorithm for these identified code sections, which is shown in Algorithms 6.1. 

As shown in Algorithms 6.1, Line 2 through 9 show the main loop of the 

algorithm applied for each code section to select its mapping mode. The main loop 

includes two subroutines to differentiate code sections and their mapping modes.   

 

     Algorithms 6.1: Pseudocode for the mode selection and profile algorithm 

From line 10 to 13, the OneToOne function deals with these code sections keeping the 

same performance activity level throughout the application execution, which means 

that a code section only belongs to one execution mode. Another function OneToMany, 

between line 14 and 17, will treat with these code sections, which have many 

performance activity levels throughout the application execution, to find out their 

mapping modes. This case is possible since the same code section might be in 

different phases which have different performance activity levels. For this case, we 

1:  Mode-Select (Code_Section(C1,...,Ci), Mode(M1, M2)){ 

2:  for each (C1,...,Ci) in Code_Sections { 

3:   for Modes M1, M2 { 

4:    if Ci only belongs to one Mode 

5:     OneToOne(Ci); 

6:    else Ci belongs to two Modes 

7:     OneToMany(Ci); 

8:   } 

9:  } 

10:  OneToOne( Cj ){ 

11:   if ( IPC(Cj) < 1.3 )     

12:    save Indicator Ij for Cj; 

13:  } 

14:  OneToMany( Cj ){ 

15:   if ( IPC(Cj) < 1.3 && IPC(Cj) >=1.3 ) 

16:    set IPC(Cj) >= 1.3; 

17:  } 

18: } 
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select a group with the highest performance activity level for the code section. 

6.2 Results  

6.2.1 Evaluation metric 

In this chapter, we still made use of the three metrics (energy saving, performance 

degradation, and energy*performance improvement) to evaluate the results of our 

method obtained in experiments. Detailed experiment setup and benchmark 

information to measure the three metrics are already discussed and presented in Chapter 

4.  Energy saving is used to evaluate how much energy could be reduced by using 

our low-power design. Performance degradation is used to evaluate how much 

performance penalty would be generated by using our design. Energy*performance 

improvement is used to evaluate how much both execution latency and energy are 

affected by using our method. 

Furthermore, to achieve a successful low-power design, the method proposed in 

this chapter is still subject to the soft time constraint: TrT )1()( +≤δ , where δ  is 

the slowdown factor of the processor, T is the application total execution time 

without CPU slowdown, and r  is the user acceptable performance penalty ratio. In 

this section, we still defined the user acceptable performance penalty ratio ( r ) to be 

10% to evaluate our results, thus the soft time constraint is 1.1 times of the original 

execution time. Therefore, when using our design, if the performance degradation of 

an application is more than 0.1T, it implies that our method does not achieve its goal 

for this application since it can not meet the soft time constraint. 
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6.2.2 Principal results 

In this chapter, for achieving a good power-performance trade-off optimization, we set 

the IPC threshold value to be 1.3 in experiments, and all results shown in this section 

are gathered under this threshold. In Section 6.3.4, we will evaluate our results by 

using different IPC threshold values and present the reason for choosing 1.3 as the 

IPC threshold in our method.  

0%10%20%30%40%50%60%70%80%90%

unepic epic adpcmencode adpcmdecode gcc vortex parser mcf
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Fig. 6.1: Principal results: ES, PD, and EPI. 

Figure 6.1 shows our principal results, including energy saving (ES), performance 

degradation (PD), and energy*performance improvement (EPI) for our chosen 

benchmark applications. To validate our method, we compared the experiment results 

obtained with dynamical voltage scaling with that measured at a fixed clock speed 

and voltage, both on the same baseline processor. Furthermore, we normalized all 

simulation results with voltage scaling to those with fixed voltage. Thus, in following 

figures, all the bars represent results with dynamical voltage scaling, which are 
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normalized to those results obtained with fixed voltage (the normal level setting in our 

case). 

6.2.2.1 Energy Saving 

In experiments, we obtained the energy saving by first running each application under 

our modified Wattch simulator at both dynamic voltage scaling and fixed voltage and 

then calculating the difference between the two results. Our simulation results indicate 

that the potential for energy savings of our code analysis and reconfiguration mechanism 

is very high.  

Figure 6.1 shows energy saving for all the benchmark applications. Compared with 

energy consumption of the baseline processor, energy savings of applications by using 

our mechanism vary from 5% to 80%, with an average of 40%. By contrast, “adpcm 

encode” achieved the highest energy saving by 79.7%, while “epic” only saved the least 

energy by 5.8%. Generally, the energy saving in our code analysis and reconfiguration 

mechanism is dominated by slack, i.e. the CPU idle time, of applications available at the 

runtime. For the benchmark that has less energy saving, the ratio of slack time to its 

whole execution time must be less, whereas the application that achieves higher energy 

saving must have a bigger ratio of slacks to trade speed for energy reduction. For example, 

“adpcmencode” must have much more slacks than “adpcmdecode” since it saved more 

energy by dynamically scaling voltage of the processor.   
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6.2.2.2 Performance Degradation 

To determine the runtime performance penalty of an application, we compared the 

total execution time that a benchmark spent in both fixed voltage and dynamical 

scaled voltage, and then made use of the difference between the two cases as the 

performance degradation. 

We do show that the overall performance of applications based on our mechanism 

does not degrade significantly compared with that at the fixed voltage. As shown in 

Figure 6.1, almost all the performance degradations of applications are less than 10%, 

with an average of 6% slowdown. It implies that all the applications meet their soft 

time constraints (1.1T) when using our method. Therefore, we can draw a conclusion 

that our low power design did not adversely hurt the execution latency very much for 

all these applications in our simulation. The reason is that we only scale the clock 

speed of processor when there is slack during the application execution, which means 

we attempted to finish the task by a slow but adequate speed to reduce power 

dissipation as well as maintain its performance. Therefore, for these benchmarks 

having enough slacks, their original performance would not be degraded while 

running at slow clock rates.  

6.2.2.3 Energy*Performance Improvement. 

We make use of the metric energy*performance improvement (EPI) to show how both 

execution latency and energy consumption of an application are affected by dynamic 

voltage scaling. By using EPI, Figure 6.1 helps to understand the trade-off between 
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the energy reduction and the induced slowdown by using our code analysis and 

reconfiguration mechanism. 

As shown in Figure 6.1, the improvements of energy*performance varied from 

2%–80% (average is 35%). Therefore, for each application, although there is undesired 

but comparatively minor performance degradation, the overall improvement of energy 

and performance product is advantageous, with respect to the baseline configuration. 

Also, from Figure 6.1, we can see that the improvement of energy*performance of all 

applications is almost the same to their energy savings. The reason is straightforward since 

the energy savings of applications are all much more than their performance degradation. 

From the above discussion about the three metrics, we can draw a conclusion that our 

code analysis and reconfiguration mechanism with dynamical voltage and frequency 

scale in response to IPC variations during application execution period is an effective 

way to reduce processor energy consumption and maintain the application 

performance. 

6.2.3 Impact of Phase Interval Length 

In this section, we shall study the impact of different length settings of phase intervals 

on our final simulation results: energy saving (ES), performance degradation (PD), 

and energy*performance improvement (EPI). In experiments, to evaluate the impact 

of different interval length settings, we only changed the interval length in the first 

step of our method described in Section 6.1.1, and kept the other settings to be the 

same (the IPC threshold is set to be 1.3 for this experiment). Figure 6.2 shows the 
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experiment results of “gcc” when using four different interval length settings of (10k, 

100k, 500k, 1M).  
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Fig. 6.2: The impact of different interval length on “gcc” 

As shown in Figure 6.2, when using different interval lengths in our method, the 

experiment results are not affected very much. For energy saving, the four results are 

all around 60% for the four interval length settings. For performance degradation, 

there are also not very big differences in the four cases when using different interval 

lengths, only varying from 4% to 9%. As a result, when using four different interval 

length settings, there are not very much changes in the energy*performance 

improvement results for the four cases. This observation is reasonable: in this code 

analysis and reconfiguration method, we only directed the DVS scheduling during 

execution periods of some favorable code sections, which are identified in the 

application binary file through code-match process with these phase intervals. When 

using different interval length settings in the method, we found that these identified 

code sections are almost the same, and thus there is little impact on the final 
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experiment results.  This finding also proves that only 10% program codes consumes 

more than 90% execution times (known as the 90/10 law).  

Although different interval lengths will not affect our final results very much, 

there are still some problems needed to be considered. If using a too small interval 

length, for a big input file of an application, there will be a huge amount of phase 

intervals to be handled in the following processes in this method, thereby resulting in 

a quite long process time. Therefore, for different applications, according to their 

input files and their complete execution length, we have to choose appropriate interval 

length settings for them to achieve a trade-off between the process time and the 

amount of phase intervals. 

6.2.4 Sensitivity to Slowdown Threshold 

The experiment we discussed in this section is going to show the impact of different 

values of the IPC threshold on our final simulation results: energy saving, 

performance degradation and energy*performance improvement. For comparison, we 

present simulation results of three IPC threshold values (1.0, 1.3 and 1.6) used in our 

experiment to group code sections into distinct microprocessor execution modes. 

Thus, for a given application, we can explore the impact of different switching 

thresholds by comparing the experiment results. 

6.2.4.1 Energy Savings 

As expected, for all applications, there is more energy savings when using a higher 

IPC threshold value. Figure 6.3 shows energy savings of all benchmark applications  
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Fig. 6.3: Energy saving results 

when executing by using the three IPC thresholds. Obviously, for all benchmarks, 

their energy savings are increased when the IPC threshold value is raised. The reason 

is evident: for higher IPC threshold, there will be more code sections to be grouped 

into slow processor execution mode, which means that the CPU executes longer time 

in a low power mode; therefore, the total energy consumption will consequently be 

reduced. For some benchmarks, such as “adpcmdecode” and “parser”, when shifting 

to a higher IPC threshold, the increment of energy saving becomes to be very large, 

nearly to be double.  

6.2.4.2 Performance Degradations 

Our experiment results show that performance degradations of all applications 

also increase with the increase of the IPC threshold. Furthermore, when the IPC 

threshold exceeds a certain value, the performance degradation will become very 

large, which means an unacceptable long time postpone for the application execution. 
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As shown in Figure 6.4, when IPC threshold is at 1.0 and 1.3, the performance  
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Fig. 6.4: Performance degradation results 

degradations of all applications are not very big, which is acceptable compared to the 

original execution time and can meet the soft time constraint; while the IPC threshold 

is at 1.6, for all benchmarks, the performance degradation becomes very large, with an 

average of 30% execution degradation, thus all applications can not meet the soft time 

constraint. For such a large degradation, possible reasons may be: some code sections 

without slack but with an IPC indicator value below the threshold are grouped into 

slow execution mode and result in the longer execution time and improper 

performance degradation. 

6.2.4.3 Energy*Performance Improvements 

As believed by many researchers, the improvements of energy-performance 

product could well indicate the overall system energy-performance trade-off. As 
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shown in Figure 6.5, the EPI results actually revealed the trade-off differences when 

using the three IPC thresholds. As we can see from the figure, when the IPC threshold 

is low at 1.0, there will be very little energy savings and also very little performance  
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Fig. 6.5: Energy*performance improvement results 

degradation, thus the overall EPI results for all applications are small. As found, for 

some applications, the EPI result is negative because of the DVS overhead; when the 

IPC threshold becomes higher at 1.3, energy saving dominates the overall result and 

the performance degradation is still very small, thus the overall EPI results of all 

applications become good; when the IPC threshold is high at 1.6, although there are 

very large energy savings, the performance degradation of some applications are also 

very large because of the improper slowdown, thus the overall EPI results are 

unfavorable.  

Therefore, based on the above discussions, we can draw a conclusion that the 
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results of our method are sensitive to different IPC thresholds. However, as is 

discussed in the previous, there is no good way to estimate the best threshold, so in 

this method, we still have to select an experiential threshold that could achieve good 

results. In experiments, we investigated a wide range of IPC values, varying from 0.5 

to 2.5, and then we followed the above approach to compare the overall simulation 

results, Thus, based on our experiment results for a wide range of IPC values, we also 

chose the IPC threshold (1.3) as our standard experiment setting for this method. As 

shown in the principal results, when the IPC threshold is 1.3, our mechanism achieved 

good energy savings, at the same time, with minor performance loss. 

6.2.5 Overhead 

In our code analysis and reconfiguration method, the overhead could be broadly 

divided into two types: one is the runtime judgment cost to monitor the profiled 

indicator and decide when to execute the DVS mode transition; the other one is the 

switch cost of microprocessor dynamical voltage and frequency scaling.  

Unfortunately, the first type of cost is related to the run-time DVS decision, and 

we do not yet have a good estimate for the time delay and the power dissipation. However, 

a partial runtime judgment cost, i.e. the execution time loss, has already been comprised 

into the performance degradation results in our simulations.  

For the DVS transition cost, we referred to [81] and estimated one time DVS switch 

overhead with a transition time of 12 µs and transition energy of 1.2µJ. Therefore, when 

an application finished its execution, the overall impact of DVS cost is included in the 
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total execution time and energy consumption of our simulation results.  

As well known, frequent DVS switches will have a significant cost in terms of both 

execution time and energy consumption, and thus the power-aware approach is less likely 

to achieve a finer power-performance trade-off result. As is discussed in the previous 

section, we found that our experiments results will affected when using different IPC 

threshold values. Thus, in this following, we are going to investigate how much the DVS 

switch times will be affected by the IPC threshold.  

Figure 6.6 shows the total transition times for the four applications selected from 

MediaBench when completing their execution under different IPC thresholds. 
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Fig. 6.6: Transition times for different IPC threshold. 

As shown in the Figure 6.6, when the IPC threshold increases, the transition times 

for all applications correspondingly increased. In particular, when IPC threshold is 

raised from 1.3 to 1.6, the transition times of some applications, such as 
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“adpcdecode”, increased very much. Obviously, much more transition times also 

mean much more DVS switch cost, both in performance degradation and energy cost. 

Thus, we can conclude that the DVS switch times are also highly affected by the IPC 

threshold. The observation again proves that too high IPC threshold will not improve 

the overall power-performance trade-off optimization.  

6.2.6 Comparison with the IPC-driven online Method 

In this section, we compared our IPC-driven offline DVS method with the 

IPC-driven online DVS method, which is proposed in the previous chapter. 

Although the two designs both use the same micro-architecture parameter (IPC) to 

address power reduction opportunities in applications, they employed two different 

mechanisms to identify appropriate chances for DVS scheduling. The offline method 

uses a code analysis and reconfiguration mechanism based on application training runs; 

On the other hand, the online method uses an interval-based identification and 

prediction mechanism during application execution period. 

Figure 6.7 shows the comparison of simulation results between the two 

methods, including energy saving (ES), performance degradation (PD) and 

energy*performance improvement (EPI). As shown in the above figure, ES, PD and 

EPI present the measured results for the online method, while ES’, PD’ and EDI’ 

present the estimated results for the offline method. Also, all the results presented 

by the bars are normalized to the results obtained form application executions with 

fixed voltage on the baseline processor. 
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Fig. 6.7: Comparison between the online and offline algorithms 

As we can see from Figure 6.7, the offline method usually saved more energy 

than the online method, but the difference of energy saving between the two 

methods is not very big, only varying from 1% to 4%. Furthermore, as shown in 

Figure 6.7, for most cases, the performance degradation from the offline method is 

smaller than that of the online method, and the difference of PD is also not big, 

varying from 1% to 7%. As a result, for energy*performance improvement, the 

results obtained from the offline method are better that that from the online method. 

The reason could be that: The offline code analysis and reconfiguration method 

could identify more power reduction opportunities than the online prediction 

method, and the decision made by the offline method might be more reliable than 

that by the online method, therefore, the overall energy-performance product 

results of the offline method are better than that of the online method. 
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The above findings indicate that both the online and offline methods proposed 

by us could achieved good results and it is an effective way to employ 

micro-architecture parameter (IPC) to identify power reduction opportunities in 

applications for a successful low-power design . 

6.2.7 Comparison with Other Offline Methods 

In this section, we compared our IPC-driven offline DVS method with an offline 

DVS method proposed in [74]. In their design, C. H. Hsu et al. identified 

memory-bound regions at source code level and made use of compiler to insert their 

defined instructions to direct DVS. Therefore, we compared offline DVS algorithms 

implemented at different implementation level.  
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Fig. 6.8: Comparison between our and Hsu’s offline DVS algorithm 

Figure 6.8 shows simulation results of the two offline DVS algorithms, 

including ES, PD and EPI. In the figure, ES, PD and EPI present the measured 
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results for Hsu’s offline DVS algorithm, while ES’, PD’ and EDI’ present the 

estimated results for our offline algorithm.  

As we can see from the above figure, our IPC-driven method achieved better 

results than Hsu’s source code level algorithm in all of ES, PD and EPI. As shown 

in all cases, Hsu’s algorithm usually achieved less energy savings than our 

algorithm. The reason might be that our micro-architecture level mechanism could 

find out not only memory-bound but also I/O-bound code sections, thereby 

identifying more opportunities to save energy. Furthermore, their algorithm most 

often generated more performance degradation for all benchmark applications. 

Possible reason could be that Hsu’s identified coarser grain size of code sections at 

source code level. Therefore, it is straightforward that our IPC-driven offline 

algorithm obtained a better energy*performance improvement. 

The above findings imply that: our IPC-driven offline algorithm can achieve 

considerable higher energy savings with lower performance degradations by 

identifying more energy saving opportunities and finer grain DVS scheduling at 

the micro-architecture level. 

6.3 Summary  

In this chapter, at the micro-architecture level, we have successfully implemented a 

code analysis and reconfiguration mechanism for processor power reduction. Based on 

execution results obtained during application training runs, we identified code sections 

with slack in terms of their IPC value, and then profile applications to dynamically 
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scale the voltage and frequency of processor at appropriate points during later 

execution. In simulations, our approach achieves significant energy savings by an average 

of 40% with minor performance degradation (6%), compared to a processor running at a 

fixed voltage and speed. Our simulation results showed that our code analysis and 

reconfiguration mechanism provides a practical and effective way to reduce energy 

consumption in many applications while nearly maintain the original performance.  
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Chapter 7  

Methods to Identify Related 

Micro-architecture Parameters  

In the previous two chapters, we have proposed two effective low-power designs by 

using the micro-architecture parameter (IPC) to identify power reduction 

opportunities during application execution period to direct DVS scheduling and 

eventually achieve a profitable power-performance trade-off.  

In this chapter, we shall present two methods to identify two related 

micro-architecture parameters. In Section 7.1, we shall describe a method to identify 

application runtime power behaviors during its execution period. In Section 7.2, we 

shall present a method to identify data dependence length (DDL) through application 

runtime instructions. The two micro-architecture parameters, application runtime 

power behaviors and DDL characteristics, could be helpful to evaluate our proposed 

micro-architecture level low-power designs. For example, application runtime power 

behaviors could reveal runtime power dissipation characteristics for different code 

sections in an application, and it can be used to verify these power reduction 

opportunities identified in our methods. In Section 7.3, we will summarize this chapter. 
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7.1 Application Power Behavior Identification Method 

7.1.1 Introduction   

In recent years, power dissipation issues in modern processors have led to significant 

research efforts in power optimization technologies, such as power-aware and 

temperature-aware low power designs. Usually, these power optimization designs focus 

on not only reducing the overall energy consumptions, but also minimizing the runtime 

power dissipations. Therefore, runtime power dissipation behavior is becoming one of the 

important metrics to evaluate such power optimization designs.  

Recently, researchers have proposed some methods to identify runtime power 

dissipation information of a computer system and then characterize its power behaviors. 

In 2003, Isci et al. [91] presented a practical measurement approach to monitor runtime 

power dissipation of a computer system. They also proposed an efficient technique in a 

further study [92], which could offer lower average errors for classifying system power 

behaviors. In [93], to identify runtime power behaviors, C. Hu et al. used the SimPoint 

tool to find representative program execution slices, and validated the feasibility of using 

them to estimate system power dissipation information. Later, in [94], they suggested to 

characterize system runtime power behaviors instead of the detailed power dissipation 

information, and proposed an effective method to characterize system runtime power 

behaviors. 

In general, all the fore-mentioned methods measured the runtime information of a 

computer system, and then calculated its power dissipation to characterize the runtime 
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power behaviors. Therefore, the power behavior characteristics identified by them usually 

is for a whole computer system but not for a single application.  

In this section, we will present an efficient method to identify fine-grained runtime 

power behaviors for a single application by using a phase classification technique. To 

identify runtime power behaviors of an application, first of all, we detect its representative 

execution phases, which is a small set of runtime instruction intervals that can be used for 

analysis instead of the complete executed program. Then, we perform the application on a 

power/performance simulator to estimate its runtime power dissipation information of 

these representative phases. Finally, we characterize the whole program power behaviors 

based on runtime power dissipation information of the representative phase. Our 

simulation results demonstrate that our method is efficient and speedy to identify 

application power behaviors and the results estimated by these selected phases is very 

close to that measured from the complete application execution. 

7.1.2 Methodology 

In this method, our primary idea is to capture the detailed power behaviors for an 

application by using the phase classification technique. There are three steps to 

implement our method. Firstly, we employ the SimpleScalar tool to perform an 

application and gather its runtime information. Then, for phase identification, we 

make use of the SimPoint tool to identify representative execution phases for an 

application. Finally, we estimate both the detailed runtime power behaviors and the 

total energy consumption for these identified phases, which are used to represent the 
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power behavior characteristic for the whole application. We shall describe them in the 

following sections. 

7.1.2.1 Phase identification 

This step is going to identify these representative phases, which are a small set of 

execution slices but could represent the power behavior characteristics of the whole 

program. 

As found during execution period, most applications show that many runtime phases 

have similar behaviors in some metrics, such as instructions-per-cycle (IPC), cache miss 

rate and branch mis-prediction rate. Some previous works have investigated various 

issues to identify program runtime phase behaviors [95, 96, 97, 98]. As they suggested, 

instead of working over the complete program execution, only a small set of 

representative phase intervals is measured and analyzed to characterize the whole 

program behavior, which could achieve significant savings in both experiment time and 

storage space.. This observation motivates us to make use of the phase classification 

technique to speedily identify application power behaviors. 

In this step, we make use of Basic Block Vector (BBV), which could show the 

proportion of basic block executions during a given interval, to detect representative 

phases. In addition, we have implemented a modified version of the SimPoint tool for 

identifying these representative phases, which is described in the following: 

1) Profiling basic block: this task is to obtain the basic block vector (BBV) for 

each phase interval with a fixed amount of instructions. For the interval length 

setting, we still followed the discussions described in the previous chapter to 
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choose appropriate settings for different applications and achieve a good tradeoff 

between the total process time and the amount of phase intervals. For all intervals 

throughout a program execution, we employed BBV to record the number of 

times each basic block executed in a phase interval.  

2) BBV comparison: this task is to compare BBV which are identified in the 

previous task. We employed the Manhattan distance of basic blocks to compare 

how closely related two phase intervals are to one another, and find out their 

differences. For vector a and vector b in D-dimensional space, the distance can be 

computed as: 
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3) Phase classification: this task is to classify runtime phase behaviors. In order 

to detect the amount of resemblance between different phase intervals, a basic 

block similarity matrix was defined to represent the Manhattan distance between 

all pairs of basic block vectors. And we made use of the similarity matrix to 

classify phase-based behaviors. 

4) Picking representative phases: this task is to identify representative phases 

from each cluster. By checking the similarity between BBV, we generated 

similarity groups among these executed phase intervals. Eventually, we clustered 

these intervals, which have similar runtime behaviors, into phase groups. 

By using these identified phases, we can represent the full program’s execution 

characteristics through analyzing only a single sample from each cluster. 
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7.1.2.2 Runtime power behavior identification 

This step is going to estimate the detailed runtime power behaviors for these 

representative phases, which are identified in the previous step, to represent the whole 

program power behaviors with a reasonable accuracy.  

As known, when an application is executed by a microprocessor, its power 

dissipation could be calculated by 

    CPSEPC
S

C

C

E

S

E

Time

Energy
Power ⋅=⋅===     (7.1) 

Where Power is the average power dissipation for an execution period, EPC is the 

average energy per cycle, and CPS is the cycles per second ratio for a CPU. 

As shown in the above formula, it is obvious to see that: for a processor with a 

fixed frequency (f), the CPS is the same at anytime during an application execution, 

and the power dissipation is in a direct proportion to the EPC. Therefore, in our 

method, we make use of the EPC metric to show the detailed runtime power 

behaviors of an application. 

In the first step, we have already identified representative phases for a complete 

program execution. Now, for every one of these identified phase, we can estimate its 

detailed runtime power behavior by measuring its EPC parameter. The detailed 

implementation is described in the following. 

Firstly, we employ our modified Wattch tool to calculate the EPC parameter for 

small sample slices within a phase. Supposing that in an application, there are M 

representative phases, which are identified in the first step. For each phase Pj (j = 
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1,...,M), there are N small sample slices to measure its runtime power dissipation 

value. For each sample Si (i = 1,...,N), there is a corresponding data [EPC] measured 

during its execution. Then, for every phase, we make use of a power vector to save 

the detailed runtime power behavior in terms of EPC. Thus, for a phase Pj, we collect 

a “power vector”, PVj, as the detailed runtime power values for the total N samples 

belonging to the phase Pj. Eventually, for the complete application execution, we can 

obtain the total representative power behaviors, by orderly combining the 

corresponding power vector for the M representative phases.    

7.1.2.3 Total energy consumption estimation 

This step is to estimate the total energy consumption for a complete application 

execution based on our selected representative phases.  

For every identified phase, we not only gather a power vector for its detailed 

runtime power behaviors, but also measured its total energy consumption. Therefore, 

for an application with M representative phases, the whole program energy 

consumption is estimated by 

                ∑
=

×=
M

i

iiest WEE
1

            (7.2) 

Where Ei is the measured energy consumption of the ith phase, Wi is the weight for the 

ith phase, and M is the total number of phases. 

To evaluate the accuracy of the total energy consumption estimated by our 

identified phases, we compare it with the real energy consumption measured during 

the complete application execution. To do this, we make use of an error rate to present 
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the difference between the estimated and measured total energy consumption, which 

is calculated as  

   
suredenergy_mea

suredenergy_meaimatedenergy_est
error

| -|
=         (7.3) 

In the next section, we will demonstrate the overall error rates between the estimated 

and measured total energy consumption in our simulation results. 

7.1.3 Results 

We employed a modified version of Wattch to perform our experiments and collected 

the execution results. Our modifications to Wattch provide detailed runtime power 

dissipation information sampling. The micro-architectural parameters of the baseline 

model of Wattch are shown in Table 4.2 in Chapter 4. In order to validate the 

feasibility and accuracy of our identified phases, we selected two benchmark 

applications from the MediaBench and two benchmark applications from the SPEC 

CPU2000 to perform experiments. And the reference workloads supplied by the two 

benchmark suites were executed in experiments. 

7.1.3.1 Runtime power behavior estimation 

To verify the accuracy of runtime power behaviors estimated by identified phases, we 

compare it with the real power behavior measured during the complete application 

execution. Figure 7.1 and 7.2 show our experiment results for the runtime power 

behaviors: Figure 7.1(a) and 7.2(a) present the measured runtime power behaviors for 

the complete program execution, and Figure 7.1(b) and 7.2(b) present the estimated 
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runtime power behaviors by the representative phases. In these figures, the curve 

demonstrates the power behaviors of benchmark applications; each power value 

presents the power dissipation of a sample interval with a fixed amount of continuous 

instructions. Obviously, Figure 7.1(b) and 7.2(b) have much fewer samples than 

Figure 7.1(a) and 7.2(a) because our chosen phases are only a small part of the 

complete application execution workload.  
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Fig. 7.1(a): Measured runtime power behavior for “vortex” 
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Fig. 7.1(b): Phase estimated power behavior for “vortex” 
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From Figure 7.1(a) and 7.1(b), we can see that: the runtime power behaviors 

estimated by these representative phases match well with that measured through the 

complete application execution.  

As shown in Figure 7.1(a), for “vortex”, there are some frequent and distinct 

changes in its real runtime power behaviors. In Figure 7.1(b), our estimated runtime 

power behaviors highly repeated all the distinctive characteristics. Figure 7.1(a) shows 

that: the whole program execution can be roughly partitioned into 4 stages according 

to its power dissipation value. In Figure 7.1(b), as expected, the power behaviors 

estimated by the representative phases well captured the 4 stages of power behaviors. 

In addition, our phase-based power estimation well represented the periodic and highly 

varying areas in the real measured power behaviors. Lastly, we can see that: In both 

figures for “vortex”, they have nearly the same value range for power behaviors, 

varying from 6 to 10. 

As shown in Figure 7.2(a) and 7.2(b), for “adpcmencode”, there is infrequent and 

small change in its real power behavior. Nevertheless, our phase estimated results also 

well represent its real power dissipation very well. As shown in Figure 7.2(a), for the 

real power dissipation value, there is only a small range between 7.0 and 7.6. Then, as 

we can see from Figure 7.2(b), our phase estimated data exactly repeated the range of 

power value. Moreover, as shown in the figure, our estimated power behaviors captured 

not only the smooth period with small variations (7.1-7.2), but also the big change area 

with peak power dissipation (7.6).   
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Fig. 7.2(a): Measured runtime power behavior for “adpcmencode” 
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Fig. 7.2(b): Phase estimated power behavior for “adpcmencode” 

All the above findings indicate that our phase-based methodology could achieve a 

considerable good result not only in the power data accuracy, but also in its 

representation of the full program power behavior characteristics. Therefore, we can 

draw a conclusion: it is an accurate and to efficient way to reconstruct the full program 

runtime power behaviors by estimating the power behaviors of a small set of 
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representative phases. 

7.1.3.2 Total energy consumption estimation 

As discussed in Section 7.1.3.3, to determine the accuracy, we compared the total 

energy consumption results estimated by our selected phases against that measured in 

the complete application execution. Using the formula presented in Section 7.1.2.3, we 

calculated an error rate, which is based on the comparison between the estimated and 

measured total energy consumption of applications.  Error ratesError ratesError ratesError rates

0.00%0.50%1.00%1.50%2.00%2.50%3.00%3.50%4.00%4.50%5.00%
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Error rateError rateError rateError rate

 

Fig. 7.3: Error rates  

Figure 7.3 demonstrates the calculated error rates of our estimated total energy 

consumption by using phase-based estimation. As shown in the figure, the result 

implies that our phase-based methodology could estimate the total energy consumption 

for a complete application execution with very high accuracy. 

For all the four applications, comparing to real measured energy consumption for 
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the complete application execution, the error rate of the total energy consumption 

estimated by our mechanism vary from 1% to 4.5%, with an average of 2.2%. As 

shown, “vortex” estimated the results with the highest error rate by 4.47%, while 

“adpcmencode” did with the lowest error rate by 1%. The observation is consistent to 

the finding of the runtime power behaviors in the above section. As shown in Figure 

7.1 and 7.2, “vortex” shows highly varying behavior in its runtime power dissipation 

while “adpcmencode” shows a very flat behavior in its runtime power dissipation. Thus, 

the total energy consumption estimation for “vortex” is more difficult than that for 

“adpcmencode”, resulting in a higher error rate. Overall, for all applications, the error 

rates of the total energy consumption estimation are very small, which indicates that the 

total energy consumption measured by our phase-based methodology is an exact 

estimation to the real measured results. 

7.1.4 Conclusion 

Application power behavior is helpful to evaluate the power optimization designs. In this 

section, we successfully presented an efficient power behavior identification 

methodology for a single application based on their runtime phase estimation. Firstly, 

we made use of a phase analysis technique to identify a small set of application 

execution intervals, which could represent characteristics of the complete application 

execution. Then, based on identified representative phases, we estimated the detailed 

runtime power behavior and total energy consumption to represent the power 

characteristics of a whole application. Our simulation results revealed that our 
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phase-based mechanism provides a practical and effective way to analyze application 

power behavior and assure the accuracy of results. We believe that our mechanism 

can be used to evaluate and observe power optimization opportunities in 

microprocessor power optimization designs.  
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7.2 Data Dependence Length Identification Method 

7.2.1 Introduction   

As known, data dependence analysis was a fundamental technique employed in 

compilers to perform optimization transformations. In recent years, data dependence 

analysis became an attractive topic for microprocessor architecture research to exploit 

micro-architecture characteristics in a program, such as dynamic branch prediction, 

memory access estimation, and out-of-order superscalar execution.  

In the past years, the exploitation of data dependence information usually was 

estimated by static analysis at the source code level [99], such as FORTRAN, C and 

Assembly code [100]. However, only static data dependence analysis in the source 

code is insufficient for the micro-architecture level research, thus researchers 

proposed to perform data dependence analysis during a program execution period to 

identify its dynamic data dependence information. For example, Lei Chen at al [101] 

developed a mechanism to dynamically track data dependence of pipeline instructions 

when a program is executing.  

In this paper, we present an efficient methodology to identify dynamic data 

dependence characteristic among program runtime in-flight instructions by using a 

phase analysis technique. To identify dynamic data dependence information of a 

program, first of all, we detect its representative execution phases, which is a small set of 

execution intervals with a fix amount of instructions. These representative phases are 

used for data dependence analysis instead of the complete execution of a program. We 
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employed a modified version of SimPoint to identify these representative phase 

intervals. Then, based on the tracked runtime information of these phases, we 

implemented an approach to exploit the data dependence length (DDL) within both 

basic blocks and phases. Finally, we characterized dynamic data dependence 

characteristic for the whole program based on our identified DDL information of the 

representative phases. This data dependence length identification method presented in 

this section is built upon my earlier work in [104]. 

7.2.2 Methodology 

The goal of this method is to identify dynamic data dependence information of a 

program at runtime. As shown in Figure 7.4, there are three steps for our DDL 

identification method. Firstly, we perform a program on the SimpleScalar tool and 

gather its runtime information. Then, based on the traced execution results, we 

attempt to detect some representative phases for the complete application execution. 

Finally, we identify the DDL through analyzing these representative phases. In the 

following, we will describe the detailed implementations of these steps. 

 

Fig. 7.4: Steps for DDL identification method 

7.2.2.1 Phase Identification 

This first step is to identify some potential phases, which could be a representative of 

the complete program execution. As is presented in Section 7.1.2.1, we have 
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implemented an approach to identify such a small set of execution intervals that are 

representative of the entire application execution. Thus, we also use it as the phase 

identification method in this step, and give a briefly description about it in the 

following. 

Firstly, we use basic block vector (BBV) to estimate the proportion of basic 

block executions for each phase interval throughout a program execution. At the same 

time, for each interval, we employed a basic block instruction vector (BBIV) to trace 

runtime instructions of each basic block, which will be used for data dependence 

length analysis later. Then, based on the identified BBV, we employed the Manhattan 

distance of basic blocks to compare how closely related two execution intervals are to 

one another, and find out their differences. Thirdly, we made use of a basic block 

similarity matrix to identify phase-based behaviors. Finally, we generated similarity 

groups of phases by clustering these intervals, which have similar runtime behaviors, 

into groups. 

By using the above phase analysis method, we finally detect these representative 

phases and employ them to identify dynamic data dependence information in the next 

step. 

7.2.2.2 DDL identification 

After identifying these representative phases, the second step is to analyze their 

dynamic data dependence information, which could be representative to that of the 

complete program execution.  
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In general, data dependence shows an ordering relationship between sequences of 

instructions, and data dependence length (DDL) indicates the length of a data 

dependence chain relative to a particular instruction. In the previous step, we have 

obtained a basic block instruction vector (BBIV), which is used to trace detailed 

instructions of each basic block. Thus, we could identify the DDL for each basic block 

through analyzing its BBIV. 

Our traced BBIV is a two dimensional array [X, Y], where X recodes each basic 

block executed in a phase, while Y recodes all instructions of basic blocks. In the 

following, we began our data dependence length identification by analyzing 

instructions contained within Y of each BBIV. Figure 7.5 shows a simple example of a 

DDL analysis in a basic block. 

 

 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 DDL 

1 D X         0 

2   D X       0 

3 X  X  D      2 

4      D X    0 

5        D X  0 

6      D  X   2 

7     D X     4 

8     X     D 1 

Fig. 7.5: DDL Example 

As is shown in Figure 7.5, we made use of a DDL table to present array Y of 

every BBIV. The depth of DDL table is the number of instructions of Y, and the width 

of DDL is the number of real data of Y. Thus each instruction occupies a row in the 

DDL table. For clarity, we will refer to a data in the column of the DDL as a data entry. 

 

1. ld d1, d2 

2. ld d3, d4 

3. add d1 d3, d5 

4. ld d6, d7 

5. ld d8, d9 

6. mul d6, d8, d6 

7. sub d5, d6, d5 

8. ret d10, (d5) 
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Also, we refer to the instruction information occupying a row in the DDL as an 

instruction entry. Entries with an ‘X’ indicate that the data is read and the instruction 

depends on it, while entries with a ‘D’ indicate that the data is written and it depends 

on that instruction.  

As is shown in the last column of DDL table, for each instruction, we identify its 

data dependence chain length. The DDL table contains all instructions of a basic block 

as nodes with a data dependence value. However, when an instruction commits, it 

must be eliminated from all data dependence chains length analysis because its data 

value is now ready for immediate use. Therefore, DDL is defined as the distance from 

one instruction to the latest one if there is data dependence between them. For an 

instruction that depends on more than one data, its DDL is defined as the maximum 

length of its data. For example, the third instruction depends on both d1 and d3, and 

d1’s dependence length is 2 whereas d3’s dependence length is 1. So, DDL of the 

third instruction is 2. For a basic block, the minimum execution time usually is to 

finish an instruction with the maximum DDL. Therefore, the DDL for a basic block is 

defined as the maximum dependence length of its instructions. Furthermore, the total 

DDL of a basic block is the sum of each instruction’s dependence length. 

However, identifying data dependence length of all basic blocks in a phase is a 

very computationally expensive task since a phase may have hundreds of basic blocks. 

Therefore, we developed a data dependence length identification algorithm, which is 

presented in Figure 7.6. 

As shown in Figure 7.6, Lines 1 through 13 shows the main loop of the algorithm 
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which will be applied for each basic block. In lines 2 through 4 we create a data 

dependence node of the basic block for an instruction. In lines 5 through 10, a reverse 

search function is performed to get instruction’s dependence length. In lines 11 

through 13, it is to calculate the maximum data dependence length and the total 

dependence length of a basic block. The subroutine in lines 14 through 19 will 

identify each data of an instruction and figure out its dependence length. 

 

Fig. 7.6: Pseudocode for DDL Identification Algorithm 

7.2.3 Results 

In experiments, we used the SimpleScalar tool to perform an application and collected 

its execution results. From experiment results, we identified data dependence length 

of basic blocks within phases as well as the entire program execution. To determine 

1 for each (basic block) { 

2   for each instruction { 

3    add instruction as node 

4   } 

5   for each node { 

6       for each register { 

7    get_register_length(cur_register) 

8   } 

9   node_length = maximum_register_length 

10   } 

11   maximum_basic_block_length = maximum_node_length 

12  total_basic_block_length = sum(node_length) 

13 } 

14 get_register_length(cur_register) { 

15   if cur_register has no predecessor 

16    cur_register_length = 0 

17   else cur_register has a predecessor  

18   predecessor_length = get_register_length(predecessor) 

19 } 
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these results, we compared the experiment results obtained by representative phases 

with that measured through the complete program execution, both on the same baseline 

processor. Detailed experiment setup information is presented in Chapter 4. 

7.2.3.1 MAX_DDL 

We make use of the metric MAX_DDL to show the maximum DDL of one basic 

block. The value of MAX_DDL is calculated by the DDL identification algorithm,  

0%10%20%30%40%50%60%70%80%90%100%

bzip gzip vortex crafty gcc parser
>=3020-3010--20<10

 

Fig. 7.7(a): MAX_DDL of the complete application execution 
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Fig. 7.7(b): MAX_DDL of the representative phases 
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which is presented in the previous section. Figure 7.7 (a) and (b) show the 

MAX_DDL results obtained form both the representative phases and the complete 

application execution, for different benchmark applications. 

From both Figure 7.7(a) and Figure 7.7(b), we can see that: the largest fraction of 

basic blocks has a maximum DDL lower than 10; some basic blocks have maximum 

DDL lower than 20, and only very few basic blocks have maximum DDL high than 

20. In general, the MAX_DDL is directly proportional to the amount of instructions in a 

basic block. As found, most basic blocks have less than 10 instructions, and there are 

very few basic blocks that have more than 20 instructions. Thus, it is obvious that 

increasing the amount of instructions of a basic block will consequently increase its 

MAX_DDL characteristic. 

7.2.3.2 TOTAL_DDL 

To determine the dynamic data dependence information of an application, we 

employed a metric of TOTAL_DDL to demonstrate the sum of DDL value for an 

application execution interval. The results are also obtained by our DDL identification 

algorithm. Figure 7.8(a) and 7.8(b) show the difference of the total DDL results 

between the representative phases and the complete application execution. 

As we can see from Figure 7.8(a) and 7.8(b), for all these benchmark applications, 

they have similar TOTAL_DDL results to their MAX_DDL results: most of basic 

blocks has the total DDL value lower than 10; some basic blocks have total DDL 

lower than 20, and very few basic blocks have summed DDL higher than 20. The 
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result is reasonable since the TOTAL_DDL is the sum of DDL value within one basic 

block. 
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Fig. 7.8(a): TOTAL_DDL of the complete application execution 
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Fig. 7.8(b): TOTAL_DDL of the representative phases 

Another observation is that the similarity between the DDL results obtained from 

the representative phases and those from the complete program execution. From all 
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the above four figures, we can see that: for any application, its DDL results of chosen 

phases are very similar to that of its complete execution. This finding indicates that 

our phase-based methodology could achieve a considerable good result not only in the 

DDL accuracy, but also in its representation of dynamic data dependence character of 

the full program.  

7.2.6 Conclusion 

In this section, we have presented an efficient dynamic data dependence identification 

methodology by using a phase analysis technique. Firstly, we used a phase 

identification technique to detect representative execution phases for a program. Then, 

based on these representative phases, we employed a DDL identification approach to 

obtain runtime data dependence information among in-flight instructions of a program. 

Finally, we characterized dynamic data dependence for the whole program by using our 

identified DDL information obtained from the representative phases. Our simulation 

results revealed that our phase-based data dependence length identification 

methodology can improve analysis efficiency at the same time assuring accuracy of 

results.  
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7.3 Summary  

In this chapter, we have presented two efficient methods to identify runtime power 

behaviors and data dependence length (DDL) of an application, which are two useful 

micro-architecture parameters to evaluate our proposed low-power designs in the 

previous chapters. Both of the two methods employed a phase analysis technique to 

rapidly identify the target micro-architecture parameters, and demonstrated a 

considerable accuracy in their experiment results. 
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Chapter 8  

Conclusions and Future Work 

In this chapter, we shall summarize our work in Section 8.1. In Section 8.2, we shall 

briefly describe our main contributions of this thesis. Finally, in Section 8.3, we shall 

suggest some possible directions for future work. 

8.1 Summary of Work 

In this thesis, our main aim is to implement new low-power design schemes for the 

microprocessor to reduce its runtime power dissipation. For this goal, we first 

investigated various technologies for reducing power dissipation of the 

microprocessor, and then we proposed to address the issue of microprocessor power 

reduction at the micro-architecture level, finally we presented a realistic analysis 

model to discuss potential opportunities for power reduction during application 

execution period. Based on our analysis model, we have designed two low-power 

schemes at the micro-architecture level: the IPC-driven online identification and 

predication power reduction method and the IPC-driven offline code analysis and 

reconfiguration power reduction method. The two designs employed the same 

micro-architecture parameter-IPC, as the performance indicator to identify appropriate 

points during application execution to scale the voltage and frequency of the 

microprocessor for reducing power dissipation.  

Our first design, the IPC-driven online power reduction method, has achieved 
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good results in experiments with high energy savings and small performance 

degradation. In this design, based on execution results obtained from the current 

interval, we calculated its performance activity level in terms of the IPC value, and 

then predicted the coming interval’s performance requirement to dynamically scale 

the voltage and frequency of the processor at an appropriate level. Our simulation 

results revealed that the interval-based identification and prediction approach 

successfully achieved energy savings by an average of 29% with small performance 

degradation (8%).  

Our second design, the IPC-driven offline power reduction method, has also been 

proved to be a practical and effective way to save significant amounts of energy while 

maintaining the original performance. In this design, based on execution results 

obtained in application training runs, we first identified code sections having 

opportunities in terms of their IPC value to reduce power dissipation, and then profiled 

applications to dynamically scale the voltage and frequency of the processor at ap-

propriate points during their execution. As shown in our experiment results, this code 

analysis and reconfiguration design finally achieved energy savings by an average of 40% 

with little performance degradation (6%). 

Beside the two micro-architecture level low-power designs, we also presented 

two methods to identify two micro-architecture parameters: runtime power behavior 

and data dependence length of applications. The two micro-architecture parameters 

are helpful to evaluate the two low-power designs proposed by us. Both methods 

employed a phase-based analysis technique to speedily identify the interesting 
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micro-architecture parameters through a small set of representative execution phases 

for a program, and the experiment results demonstrated both methods could identify the 

target micro-architecture parameter accurately.  

8.2 Summary of Contributions 

The main contributions presented in this thesis are as follows: Firstly, focusing on the 

micro-architecture level, a closer level to microprocessor, we have addressed the 

microprocessor power dissipation issue and accomplished two effective low-power 

design schemes to reduce power dissipation of the processor. We also showed that the 

micro-architecture level is a practical and efficient level to address power 

optimization opportunities for the microprocessor. Secondly, we successfully 

demonstrated a realistic analytical model to discuss how to estimate potential code 

regions in an application which have opportunities to optimize power dissipation of the 

microprocessor. Lastly, as shown in our experimental results, to achieve a successful 

power-performance trade-off optimization, the micro-architecture parameter (IPC) 

employed in our designs is shown to be a good performance indicator for DVS 

scheduling.  

In summary, working at the micro-architecture level and using a useful and 

realistic analytical model, our proposed low-power designs have successfully 

employed the micro-architecture parameter (IPC) as a performance indicator to direct 

DVS scheduling at appropriate points and eventually achieved good 

power-performance trade-off.  
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8.3 Future work 

Although our methods only focused on addressing the power dissipation and 

optimization issues of the microprocessor, the micro-architecture parameters 

identified and employed in our designs, such as IPC and DDL, could also be used in 

software power/energy optimization. From our proposed methods and designs, there 

are several future/potential research directions for low-power design in the high level 

software domain. 

� Software compiling optimization 

There are many conventional optimization techniques in the process of compiling 

a program into a binary execution file, such as critical path and data dependence 

identification. However, these former strategies mostly focus on improving the 

performance of a program, but do not consider its energy consumption. Therefore, 

during the compiling period, our proposed micro-architecture parameters, such as 

our defined IPC and DDL, could be used to identify opportunities for energy 

savings in a program and optimize the final binary code to reduce the whole 

program energy consumption.   

� Software architecture optimization 

As believed by researchers in the area of low-power designs, the efficiency of 

analysis and the amount of energy savings obtainable are much larger at higher 

levels. Thus, there should be many opportunities to address low power design at a 

higher level of software architecture. For example, since we could estimate 

opportunities among program code sections by using the micro-architecture 
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parameter-IPC, we could also identify some experiential code sections group with 

power reduction opportunities as potential “code bank”, which could be referred 

to by later software designers, and let them know possible chances to save energy 

in the architecture design period.  
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