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SUMMARY 

 

In process industries, large numbers of process variables are regularly measured 

and automatically recorded in historical database. Therefore, how to extract useful 

information from data for controller design is one of the challenges in chemical 

industries. In this regard, data-based methods arise as an attractive alternative for 

nonlinear system modeling. In this thesis, the data-based controller designs for 

nonlinear process are developed. The main contributions of this thesis are as follows. 

In the fuzzy neural network modeling framework, an adaptive PID control 

scheme is proposed. A fuzzy neural network model is employed to approximate the 

controlled nonlinear process. By utilizing Lyapunov method, an updating algorithm is 

derived to adjust the PID parameters to guarantee the convergence of the predicted 

tracking error. Next, a self-tuning PID controller design is designed based on the JITL 

modeling technique. This proposed design method exploit the current process 

information from controller database and modeling database to realize on-line tuning 

of PID parameters. The controller database is constructed to store the PID parameters 

together with their corresponding information vector, and the modeling database is 

employed for the standard use by JITL for the modeling purpose. The PID parameters 

are obtained from controller database according to the current process dynamics 

characterized by the information vector at every sampling instant. Furthermore, the 

PID parameters can be updated during on-line implementation and the resulting 

updated PID parameters together with their corresponding information vector are then 

stored into the controller database.  

Simulation results are presented to demonstrate that the proposed control 

strategies give better performances than their conventional counterpart.  
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NOMENCLATURE 

 

IC ,  
inIC Initiator concentration 

mC ,  
inmC Monomer concentration 

Lc  Corresponding cluster in FNN modeling when LS  is 

obtained 

lic  Center of cluster 

D Number of process database for JITL modeling 
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re  Error between set-point and predictive output 
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Chapter 1 

 
 
 
 

Introduction 

 
 
1.1 Motivation 

Process control research has been an area of growing importance over the past 

several decades. The performance requirement in tightening product quality 

specifications have become increasingly difficult to satisfy due to stronger global 

competition, promptly changing economic conditions, tougher environmental and 

safety regulations, higher energy and material costs, and higher demand for robust and 

fault-tolerant systems. Furthermore, the rapid advances in computer technologies have 

enabled high-performance measurement and control systems to become an essential 

part of industrial plants. Hence, engineers and researchers are still motivated to 

develop more efficient and reliable techniques for process modeling, control, and 

monitoring for more flexible and complex processes. 

In process industries, large numbers of process variables are regularly 

measured and automatically recorded in historical database. However, how to extract 

1 



Chapter 1 Introduction 

valuable information and knowledge from database for process control, optimization 

and monitoring is still one of the challenges in the process industries. Although an 

accurate process model is required for many advanced control design method, the 

construction of first-principle models is usually time-consuming and costly. 

Furthermore, model-based controller design by incorporating these models would lead 

to complex controller structure, not to mention that many chemical processes are not 

amenable to this modeling approach due to the lack of precise knowledge about the 

processes (Babuška and Verbruggen, 2003). To this end, data-based methods arise as 

an attractive alternative for nonlinear system modeling in the last two decades 

(Pearson, 1999; Nelles, 2001). 

In the literature, many data-based modeling methods have been proposed. 

They can be roughly classified into two modeling approaches: global modeling and 

local or memory-based modeling approach (Bontempi et al., 2001). The most well-

known example for global modeling approach is neuro-fuzzy or fuzzy neural-network 

(FNN) which can facilitate the effective development of models by combining 

information from different sources, such as empirical models, heuristics, and data. 

Moreover, FNN has been proven to have ability to approximate any continuous 

function to a desired degree of accuracy through learning (Horikawa et al., 1992; 

Chen and Teng, 1995; Zhang and Morris, 1995, 1999; Cao et al., 1997; Wai and Lin, 

1998; Gao et al., 2000; Zhang, 2001; Babuška and Verbruggen, 2003; Andrášik et al., 

2004; Hsu et al., 2007). FNN describes systems by means of fuzzy if – then rules 

represented in a network structure, to which learning algorithms known from the area 

of artificial neural networks can be applied. 

In comparison, the local modeling approach can be represented by instance-

based learning algorithm which has attracted much research attention under various 

 2
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notions, for example locally weighted learning (Atkeson et al., 1997a, 1997b), lazy 

learning and just-in-time learning (JITL, Cybenko, 1996; Stenman, 1996; Bontempi et 

al., 1999, 2001; Cheng and Chiu, 2004). The JITL technique uses the concept of 

memory-based modeling which focuses on approximating the function only in the 

neighborhood of the point to be predicted and select the best local model by assessing 

and comparing different alternatives in cross-validation. JITL has no standard 

learning phase because it merely stores the data in the database and the models are 

built dynamically upon query. Moreover, JITL has inherent adaptive nature which is 

achieved by storing the on-line measured data into the database.  

PID controllers have been widely used in the process industries due to simple 

control structure, ease of implementation, and robustness in operation. However, the 

conventional PID controller is not adequate to deal with highly nonlinear and time 

varying chemical processes. To improve the control performance, various adaptive 

PID controller designs have been developed in the literature. In the context of neural 

network and FNN frameworks, Lu et al. (2001) constructed a predictive fuzzy PID 

controller by combining a fuzzy PID controller with model predictive controller. Chen 

and Huang (2004) designed adaptive PID controller based on the instantaneous 

linearization of a neural network model. Sun et al. (2006) developed a self-tuning PID 

controller based on adaptive genetic algorithm and neural networks. Most of the 

previous works update the parameters of the process model with respect to the current 

process condition and then PID parameters are computed by the corresponding 

adaptation algorithm and implemented. However, these adaptation algorithms are 

inadequate to address the convergence of the predicted tracking error. Recently, 

Chang et al. (2002) derived a stable adaptation mechanism in the continuous time 

domain by the Lyapunov approach such that the PID controller tracks a pre-specified 
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feedback linearization control asymptotically. Motivated by this work, a self-tuning 

algorithm derived from Lyapunov method in the discrete time for adaptive PID design 

based on FNN modeling technique will be developed in this thesis.  

In the JITL modeling framework, an adaptive PID controller has been 

developed by Cheng (2006). In this work, the JITL technique served as the process 

model to provide information for controller design. However, the initialization of PID 

parameters required trial and error effort which made its application in control 

practice less attractive. To alleviate this shortcoming, Takao et al. (2006) proposed a 

memory-based IMC-PID controller design. However, the PID controller considered in 

Takao et al. (2006) was formulated by assuming a first-order plus time delay model, 

which is too restrictive to be applied in practical applications. Inspired by these 

previous results, a self-tuning PID controller based on the memory-based method and 

JITL modeling technique will be developed in this thesis as well.  

 

1.2 Contribution 

 Motivated by the various modeling frameworks developed for nonlinear 

process modeling, two distinct modeling frameworks are explored and investigated in 

the proposed controller designs. One controller design uses FNN approach while 

another controller design is based on memory-based and JITL techniques. The main 

contributions of this thesis are as follows. 

Firstly, an adaptive PID control scheme is developed. A fuzzy neural network-

based model is employed to approximate the controlled nonlinear process. By 

utilizing Lyapunov method, an updating algorithm is derived to adjust the PID 

parameters to guarantee the convergence of the predicted tracking error. 

 4
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Secondly, a self-tuning PID controller design is proposed by exploiting the 

current process information from controller database and modeling database to realize 

on-line tuning of PID parameters. The controller database contains the PID 

parameters and the corresponding information vectors, while the modeling database is 

employed by the JITL technique for modeling purpose. The PID parameters are 

obtained from controller database according to the current process dynamics 

characterized by the information vector at every sampling instant. Whenever these 

PID parameters need to be updated during on-line implementation, the resulting 

updated PID parameters together with their corresponding information vector are 

stored into the controller database to enhance the database for the operating conditions 

where the information is not available in the construction of the initial controller 

database. 

 

1.3 Thesis Organization 

The thesis is organized as follows. Chapter 2 comprises the literature review 

of nonlinear process modeling and control. By incorporating FNN technique into 

controller design, an adaptive PID controller design based on Lyapunov approach is 

proposed in Chapter 3. A self-tuning PID controller design using JITL modeling 

approach is developed in Chapter 4. Lastly, the general conclusions from the present 

work along with some suggestions for future work are given in Chapter 5. 

 



  

 

Chapter 2 

 
 
 
 

Literature Review 

 
 
2.1 Nonlinear Process Modeling  

To overcome the difficulty of obtaining accurate first-principle models due to 

the lack of complete physicochemical knowledge of chemical processes, empirical 

models are attractive alternatives. This modeling approach or so called data-based 

method extracts models from process data measured in industrial processes even 

when very little a priori knowledge is available. Recently, various data-based methods 

for nonlinear process modeling have been proposed (Pearson, 1999; Nelles, 2001). 

They can be broadly classified into two main opposing paradigms, the global versus 

the local models (Bontempi et al., 2001). Global models have two main properties. 

First, they cover the entire operating conditions of the system underlying the available 

data. Second, global models solve the problem of learning an input-output mapping as 

a problem of function estimation. Fuzzy neural network (FNN) is one of well-known 

examples of this modeling approach. 

6 
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On the other hand, the local paradigm originates from the idea of relaxing one 

or both of the global modeling features. Given that the problem of function estimation 

is hard to solve in a general setting, this method focuses on approximating the 

function only in the neighborhood of the point to be predicted. Memory-based 

learning turns out to be a single-step approach where the learning problem is seen as 

value estimation rather than a function estimation problem. Furthermore, memory-

based method requires the storage of database in opposition to functional methods 

which discard the data after training. One representative modeling technique of this 

class of method is just-in-time learning (JITL) technique. 

 FNN and JITL share the divide-and-conquer approach (Bontempi et al., 2001) 

to enhance the modeling accuracy by decomposing complex global problems into 

simpler local sub-problems. The main difference of these two modeling approaches 

lays in the model identification procedure. FNN aims at estimating a global 

description which covers the whole system operating domain, whereas JITL technique 

focuses simply on the current operating point. FNN is more time-consuming in the 

identification phase but it is faster in prediction. However, when a new piece of data 

is observed, it may need to update the model from scratch. On this matter, JITL is 

more advantageous because it is enough to update its database when a new input-

output data is observed. Therefore, JITL is intrinsically adaptive while FNN requires 

proper on-line procedures to deal with the model updating. In the next section, these 

two different modeling approaches will be briefly reviewed. 

 

2.1.1 Neural network modeling technique 

Neural network (NN) that makes use of the organizational principles of human 

brains can provide an excellent framework for modeling the nonlinear systems 

 7
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because of its capability of approximating any smooth function to an arbitrary degree 

of accuracy with a certain number of hidden layer neuron (Hornik et al., 1989). 

According to Hunt and Sbarbaro (1991), features of NN in the control context are:  

(i) the ability to represent arbitrary non-linear relations 

(ii) the adaptation and learning in uncertain systems, provided through both off-line 

and on-line weight adaptation 

(iii) the information transformed to internal representation allowing data fusion, with 

both quantitative and qualitative signals 

(iv) the parallel distributed processing architecture allowing fast processing for 

large-scale dynamical systems 

(v) the architecture providing a degree of robustness through fault tolerance and 

graceful degradation. 

Two classes of NN which have received considerable attention in the past two 

decades (Narendra and Parthasarathy, 1990) are: (1) multilayer feedforward neural 

network and (2) recurrent neural network. From systems theoretic point of view, 

multilayer neural network represents static nonlinear maps while recurrent neural 

network is represented by nonlinear dynamic feedback systems.   

The NN as shown in Figure 2.1 is a feedforward neural network that consists 

of neurons arranged in layers, which are connected via weight parameters such that 

the signals at the input are propagated through the network to the output. Through the 

weight parameters, the input of each neuron is computed as the weighted sum of the 

outputs from the neurons in the preceding layer. The output of each neuron is 

computed by a transfer function to yield the nonlinear behavior of the network. The 
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most popular functions are the sigmoid function 1( )
1 xx

e
σ −=

+
 and the radial basis 

function (RBF) , where x is the input of each neuron.  
2

)( xex −=σ

 

 

 

 

 

 

 

 

Figure 2.1 Structure of a multilayer feedforward neural network 

 

During the training of NN, the weights are adjusted and learned from a given 

set of data aiming to achieve the ‘best’ approximation of the dynamics of the system. 

For modeling the dynamic systems, the output of the NN can be represented by: 

ˆ( ) ( ( 1), , ( ), ( 1 ), , ( ))y d u dy k f y k y k n u k n u k n n= − − − − − −  (2.1) 

where  is the predicted output of NN at the k-th sampling instant, )(ˆ ky y  is the 

system output, u  is the system input, , , and n  are integers related to the 

system’s order and time delay, and 

yn un d

f  is the unknown nonlinear function to be 

approximated by the NN, respectively. 

Another class of NN is a recurrent neural network. The advantage of the 

recurrent neural network, as depicted in Figure 2.2, over the feedforward network is 

its better capability in long term prediction for chemical processes and thus it is more 

outputinput σ

σ

σ

σ

weight
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suitable for predictive control application (Su et al., 1992; Su and McAvoy, 1997). 

Mathematically, the output of recurrent network is described by  

ˆ ˆ ˆ( ) ( ( 1), , ( ), ( 1 ), , ( ))y d u dy k f y k y k n u k n u k n n= − − − − − −  (2.2) 

 

Figure 2.2 Structure of a recurrent neural network 

 

2.1.2 Fuzzy neural network modeling technique 

 Both NN and fuzzy systems are motivated by imitating human reasoning 

processes. Fuzzy reasoning is already proven in handling imprecise and uncertain 

information. However, there are several difficulties associated with fuzzy logic 

methods. In a conventional fuzzy approach, the membership functions and the 

consequent models are chosen by the designer according to his/her priori knowledge. 

However, this fuzzy approach is often time-consuming and not straightforward 

because it relies on process experts who may not be able to transcribe their knowledge 

into requisite fuzzy rule form. Moreover, there are no formal frameworks to choose 

σ

σ

σ

σ

σ

 

)(ˆ ky

)( ud nnku −−

)1( −− dnku

1−q

ynq −

)1(ˆ −ky

)(ˆ ynky −
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the parameters of fuzzy models. To overcome those drawbacks, fuzzy logic methods 

are integrated together with NN to construct the fuzzy neural network (FNN). By 

using the learning capability of the NN, FNN can identify fuzzy rules and optimize 

membership function of fuzzy model (Lin and Lee, 1991; Jang, 1993; Jang and Sun, 

1995).  

In the context of FNN, the fuzzy model commonly used is the Takagi-Sugeno 

(T-S) fuzzy model (Takagi and Sugeno, 1985). Applying T-S model to describe 

dynamic system is equivalent to dividing the operating space of a dynamic system 

into several local operating regions. Within each local region, one fuzzy rule lR  is 

used to represent the process behavior. Specifically, in T-S model, the rule 

antecedents describe fuzzy region in the input space and the rule consequents are crisp 

function of the model inputs:  

   
( )

1 1 2 2: ... ,
ˆ ; 1,2, ,

l l l
M M

l

lR IF x is F AND x is F AND x is F
THEN y f l N= =x

    (2.3)   

where lR  denotes the  fuzzy rule, -thl ( )1 2, ,..., Mx x x=x  is the input variable of the 

FNN system, ˆly  is the model prediction of the  fuzzy rule,  denotes the fuzzy 

sets defined on the corresponding universe [0, 1], and  is the total number of fuzzy 

rules. Normally, the consequents employ a liner model, i.e.

-thl

N

l
iF

M

l
i 1

ˆ li i ly w x b
=

= +∑ , where 

 and  are the model parameters.  liw lb

The output of the model is calculated by the center of gravity defuzzification 

as follows:  

1

ˆ
ˆ

N

l l
l

l

y
y

μ

μ
==
∑

 (2.4) 

where lμ  is the membership of the  rule antecedent. -thl
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2.1.3 Just-in-time learning modeling technique 

Aha et al. (1991) developed instance-based learning algorithms for modeling 

nonlinear systems. This approach is inspired by ideas from local modeling and 

machine learning techniques. Subsequent to Aha’s work, different variants of 

instance-based learning are developed, such as locally weighted learning (Atkeson et 

al., 1997a, 1997b) and just-in-time learning (JITL, Cybenko, 1996; Stenman, 1996; 

Bontempi et al., 1999, 2001). The JITL was recently developed as an attractive 

alternative for modeling the nonlinear systems because of its prediction capability for 

nonlinear processes and its inherently adaptive nature. JITL uses a query-based 

approach to select the best local model by assessing and comparing different 

alternatives in cross-validation. 

JITL assumes that all available observations are stored in a database, and the 

models are built dynamically upon query. Compared with other learning algorithms, 

JITL exhibits three main characteristics. First, the model-building phase is postponed 

until an output for a given query data is requested. Next, the predicted output for the 

query data is computed by exploiting the stored data in the database. Finally, the 

constructed answer and any intermediate results are discarded after the answer is 

obtained (Atkeson et al., 1997a, 1997b; Bontempi et al., 2001; Nelles, 2001).  

There are many benefits offered by the JITL technique. JITL has no standard 

learning phase because it merely stores the data in the database and the computation is 

not performed until a query data arrives. Moreover, JITL constructs local 

approximation of the dynamic systems characterized by the current query data. 

Therefore, a simple model structure can be chosen, e.g. a first-order or second-order 

ARX model. In addition, JITL inherent adaptive nature is achieved by storing the 

current measured data into the database. It is important to point out that the selection 

 12
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of relevant data is carried out individually for each incoming query data. This allows 

one to change the model architecture, model complexity, and the criteria for relevant 

data selection on-line according to the current situation (Nelles, 2001).  

 To achieve better predictive performance of JITL algorithm, Cheng and Chiu 

(2004) recently proposed an enhanced JITL algorithm by using a new similarity 

measure by combining the conventional distance measure with the angular 

relationship. In the following, the JITL algorithm developed in Cheng and Chiu 

(2004), which is used in this thesis, is described. 

JITL consists of three main steps in order to calculate the model output 

corresponding to the query data: (i) finding the relevant data samples in the database 

corresponding to the query data by the nearest-neighborhood criterion; (ii) 

constructing a low-order local model based on the relevant data; and (iii) obtaining 

the model output based on the local model and the current query data. When the next 

query data is available, a new local model will be built based on the aforementioned 

procedure. 

To proceed with the JITL technique, a required initial database is constructed 

by using process input and output data obtained around nominal operating condition. 

This database can be updated subsequently during its on-line implementation when 

modeling error between process output and predicted output by JITL is greater than 

the pre-specified threshold. In those cases, the current process data is considered as 

new data that is not adequately represented by the present database and is thus added 

to the database to improve its prediction accuracy for new operating region where the 

process data may not be available to construct the initial database for JITL. 

The JITL technique is mainly used to identify the current process dynamics at 

each sampling instant by focusing on the relevant region around the current operating 
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condition. Therefore, a simple first-order or second-order ARX model is usually used 

as a local model.  

1 2ˆ( ) ( 1) ( 2) ( 1)k k ky k y k y k u kα α β= − + − + −  (2.5) 

where  is the predicted output by JITL model, ˆ( )y k ( 1)y k −  and  denote the 

process output and input at the (k – 1)-th sampling instant, and the model parameters 

( 1)u k −

1
kα , 2

kα , and kβ  are calculated by JITL at the k-th sampling instant.  

Based on Eq. (2.5), the regression vector for the ARX model is defined as 

x(k) =[ ]( 1) ( 2) ( 1)y k y k u k− − −  (2.6) 

Suppose the present JITL’s database consists of D data (y(k), x(k))k=1-D. The 

following similarity measure, , is used to select the relevant regression vectors from 

the database that resembles the query data xq: 

ks

( ) (
2

( ) 1 cosq k
k ks e )φ φ θ− −= + −x x

,    if cos(θk) ≥ 0  (2.7) 

where φ  is a weight parameter constrained between 0 and 1, ⋅  is an Euclidean 

norm, and θk is the angle between Δxq and Δx(k), where Δxq = xq−xq−1 and Δx(k) = 

x(k)−x(k–1). The value of  is bounded between 0 and 1. When  approaches to 1, 

it indicates that x(k) resembles closely to xq. 

ks ks

After all k  are computed by Eq. (2.7), for eacs h h ∈  [kmin kmax], where kmin 

and kmax are the pre-specified minimum and maximum numbers of relevant data, the 

relevant data set (yh, Φh) is constructed by selecting the h  most relevant data (y(k), 

x(k)) corresponding to the largest  to the  largest . Next, the leave-one-out 

cross validation test is conducted and the validation error is calculated. Upon the 

completion of the above procedure, the optimal , , is determined by that giving 

ks -thh ks

h *h
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the smallest validation error. Subsequently, the predicted output for query data is 

calculated as ( )* * * * *

1T T T
q h h h h h

−
x P P P W y , where * *

T
h h *h
= ΦP W and is a diagonal 

matrix with entries being the first  largest .  

*h
W

*h ks

 

2.2 Adaptive Controller Design for Nonlinear Processes 

Even though most processes in the chemical process industry are nonlinear in 

nature, most controller designs have used linear control techniques to control such 

systems. The prevalence of linear control strategies is partly due to the fact that, over 

the normal operating region, many of the processes can be approximated by linear 

models, which can be obtained by the well-established identification methods. In 

addition, the theories for the stability analysis of linear control systems are quite well 

developed so that linear control techniques are widely accepted. In contrast, controller 

design for nonlinear models is considerably more difficult than that for linear models. 

However, linear control design methodologies may not be adequate to achieve 

satisfactory control performance for nonlinear chemical processes. This has led to an 

increasing interest in the nonlinear controller design for the nonlinear dynamic 

processes.  

Process control systems inevitably require adjustable controller settings to 

facilitate process operation over a wide range of conditions. Typically, controller 

settings are designed after the implementation of control system. If the process 

operating condition or the environment changes significantly, the controller may then 

have to be retuned. If these changes occur frequently, adaptive control techniques 

should be considered. Most adaptive control techniques integrate a set of techniques 

for automatic adjustment of controller parameters in real time in order to achieve or 
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maintain desired control performance when the process dynamics are unknown or 

vary in time. Adaptive control schemes provide systematic and flexible approaches 

for dealing with uncertainties, nonlinearities, and time-varying process parameters. 

The diagram of adaptive control concept is depicted in Figure 2.3. 

In recent years, there has been extensive interest in adaptive control systems. 

With the progressing of control theories and computer technology, various adaptive 

control methodologies were proposed for process control in the last three decades. 

There are two distinct adaptive control categories (Narendra and Parthasarathy, 1990; 

Chen and Teng, 1995): (1) direct adaptive control and (2) indirect adaptive control. In 

direct adaptive control, the parameters of the controller are directly adjusted to reduce 

the error between the plant and the reference model. On the other hand, in indirect 

adaptive control, the parameters of the plant are estimated and the controller is chosen 

assuming that the estimated parameters represent the true values of the plant 

parameters. 

 

Figure 2.3 Block diagram of adaptive control scheme 

 

There are three main technologies for adaptive control: gain scheduling, model 

reference control, and self-tuning regulators. The purpose of these methods is to find a 

 16
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convenient way of changing the controller parameters in response to changes in the 

process and environment dynamics.  

Gain scheduling is one of the earliest and most intuitive approaches for 

adaptive control. The idea is to find process variables that correlate well with the 

changes in process dynamics and then possible to compensate for process parameter 

variations by changing the parameters of the controller as function of the process 

variables. The advantage of gain scheduling is that the parameters can be changed 

quickly in response to changes in the process dynamics. It is convenient especially if 

the process dynamics are in a well-known fashion on a relatively few easily 

measurable variables. Despite of the benefits, gain scheduling concept also suffers 

some drawbacks, such as open-loop compensation without feedback and no 

straightforward approach to select the appropriate scheduling variables for most 

chemical processes. 

Model reference control is a class of direct self-tuners since no explicit 

estimate or identification of the process is made. The specifications are given in terms 

of “reference model” which tells how the process output ideally should respond to the 

command signal. The desired performance of the closed-loop system is specified 

through a reference model, and the adaptive system attempts to make the plant output 

match the reference model output asymptotically. The third class of adaptive control 

is self-tuning controller. The general strategy of this controller is to estimate model 

parameters on-line and then adjust the controller settings based on the current 

parameter estimate (Åström, 1983). In the self-tuning controller, the parameters in the 

process model are updated using on-line estimation methods from input-output data, 

and then the control calculations are based on the updated model.  The self-tuning 

control strategy generally consists of three steps: (i) information gathering of the 
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present process behavior; (ii) control performance criterion optimization; and (iii) 

adjustment of the controller parameters. The first step implies the continuous 

determination of the actual condition of the process to be controlled based on 

measurable process input and output data and appropriate modeling approaches 

selected to identify the model parameters. Various types of model identification can 

be distinguished depending on the information gathered and the method of estimation. 

The last two steps calculate the control loop performance and the decision as to how 

the controller will be adjusted or adapted. These characteristics make self-tuning 

controller very flexible with respect to its choice of controller design methodology 

and to the choice of process model identification (Seborg et al., 1986; Seborg et al., 

2004).  

 



  

 

Chapter 3 

 
 
 
 

Fuzzy Neural Network-Based  

Adaptive PID Controller Design 

 
 
3.1 Introduction 

The design of control systems is currently driven by a large number of 

requirements posed by increasing competition, environmental requirements, energy 

and material costs and the demand for robust, fault-tolerant systems. These 

considerations introduce extra needs for effective process modeling techniques. 

However, the construction of first-principle models is usually time-consuming and 

costly. Furthermore, model-based controller design by incorporating these models 

would lead to complex controller structure, not to mention that many chemical 

processes are not amenable to this modeling approach due to the lack of precise 

knowledge about the process (Babuška and Verbruggen, 2003). To this end, data-

based methods arise as an attractive alternative for nonlinear system modeling in the 

19 
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last two decades (Pearson, 1999; Nelles, 2001). One of the most well-known 

examples for data-based methods is neuro-fuzzy or fuzzy neural-network (FNN). 

FNN has been recognized as a powerful approach which can facilitate the 

effective development of models by combining information from different sources, 

such as empirical models, heuristics and data, to solve many engineering problems. 

Chen and Teng (1995) proposed a model reference control structure using a FNN 

controller which is trained on-line using a FNN identifier with adaptive learning rates. 

Jang and Sun (1995) reviewed the fundamental and advanced developments in neuro-

fuzzy models for modeling and control based on an adaptive network. Zhang and 

Morris (1995) described a technique for modeling of nonlinear systems using two 

different FNN topologies. Jang and Sun (1995) reviewed the fundamental and 

advanced developments in neuro-fuzzy synergisms for modeling and control based on 

an adaptive network. Wai and Lin (1998) applied a FNN controller with adaptive 

learning rates to control a nonlinear slider-crank mechanism system. Zhang and 

Morris (1999) designed a recurrent neuro-fuzzy network to build long-term prediction 

models for nonlinear processes. Lin and Wai (2001) developed a hybrid control 

system using recurrent fuzzy neural network to control linear induction motor servo 

drive. Juang (2002) proposed a Takagi-Sugeno-Kang (TSK) recurrent fuzzy neural 

network for dynamic system identification and controller design.   

Fink et al. (2003) described three commonly used nonlinear model-based 

approaches for process model architectures originating from the fields of neural 

networks and fuzzy systems. Similar work is given by Babuška and Verbruggen 

(2003) which reviewed the neuro-fuzzy modeling methods for nonlinear systems 

identification with an emphasis on the tradeoff between accuracy and interpretability. 

Lee and Lin (2005) developed an adaptive filter which uses periodic fuzzy neural 

 20 
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network to treat the equalization of nonlinear time-varying systems. Lin and Chen 

(2006) proposed a compensation-based recurrent fuzzy neural network which 

employed adaptive fuzzy operations. 

As the most widespread used controller in the process industries, PID 

controllers have the advantage of simple control structure, ease of implementation, 

and robustness in operation. Nevertheless, the conventional PID controller might be 

difficult to deal with highly nonlinear and time varying chemical processes. To 

improve the control performance, various adaptive PID controller designs have been 

developed in the literature. Riverol and Napolitano (2000) proposed the use of neural 

network to update the PID controller parameters on-line. Lu et al. (2001) constructed 

a predictive fuzzy PID controller by combining a fuzzy PID controller with model 

predictive controller. Andrasik et al. (2004) made use of two neural networks for on-

line tuning of PID controller. Chen and Huang (2004) designed adaptive PID 

controller based on the instantaneous linearization of a neural network model. Sun et 

al. (2006) developed a self-tuning PID controller based on adaptive genetic algorithm 

and neural networks. 

In the abovementioned works, the parameters of the process model are 

updated with respect to the current process condition and the PID parameters are then 

computed by the corresponding adaptation algorithm and implemented. However, 

these adaptation algorithms employed in the previous results are inadequate to address 

the convergence of the predicted tracking error. To this end, Chang et al. (2002) 

derived a stable adaptation mechanism in the continuous time domain by the 

Lyapunov approach such that the PID controller tracks a pre-specified feedback 

linearization control asymptotically. Motivated by this work, a self-tuning algorithm 
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derived from Lyapunov method in the discrete time for adaptive PID design based on 

FNN modeling technique will be developed in this thesis.  

In the following sections, FNN modeling strategy is presented and the detail of 

the proposed PID controller design is discussed. Literature examples are then 

presented to illustrate the proposed control strategy and a comparison with its 

conventional counterpart is made. 

 

3.2 Fuzzy Neural Network-Based Modeling 

FNN is recently developed neural network-based fuzzy logic control and 

decision system which is suitable for on-line nonlinear systems identification and 

control. The FNN is a multilayer feedforward network which integrates the TSK-type 

fuzzy logic system and radial basis function neural network into a connection 

structure. Without loss of generality, the following first-order TSK-type fuzzy rule is 

considered: 

       1 1 2 2: ...
ˆ ( ) ( 1) ( 1); 1,2, ,

l l l l
M M

l l l

R IF x is F AND x is F AND x is F
THEN y k y k u k l Nα β= − + − =

,
(3.1)   

where lR  denotes the  fuzzy rule, -thl ( )1 2( ) ( ) ( ) ... ( )Mk x k x k x k=x

-tl

 is the input 

variable of the FNN system,  is the model prediction of the  fuzzy rule, 

 and  denote the output and input of the system at the ( 1

ˆ ( )ly k h

(y k −1) ( 1u k − ) )-thk −  

sampling instant,  denotes the fuzzy sets defined on the corresponding universe [0, 

1], and  is the total number of fuzzy rules.  

l
iF

N

The FNN consists of five layers as depicted in Figure 3.1. The first layer is 

called input layer. The nodes in this layer just transmit the input variables to the next 

layer, expressed as: 
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(1)

(1) (1)

: , 1,2, ,
: , 1,2,

i i

i i

Input I x i M
Output O I i M

= =
= = ,

 (3.2)  

 

1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer

ˆ( )y k( )kx

{ { { { {
lμ

{ { {
DefuzzificationInference MechanismFuzzification  

Figure 3.1 The structure of FNN system 

 

The second layer is composed of N  fuzzy if – then rules. Each rule has M  

neurons to receive inputs from every neurons of the first layer, by which the 

membership function of each fuzzy rule is calculated. In this thesis, Gaussian 

membership function is chosen, and thus the membership function of  rule in this 

layer can be expressed as: 

-thl

( )

(2)

2(2)
(2)

2 ;

:

: exp 1,2, , ; 1,2, ,

li li

li li
li

l

Input I x

I c
Output O i M l N

χ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

−
= − = =

 (3.3)

 The third layer consists of  neurons, which compute the fired strength of a 

rule. The  neuron receives only inputs from the corresponding neurons of the 

second layer. The input and output of every neuron is represented as follows: 

N

-thl

(3) (2)

(3) (2)

1

;

:

: 1

l l
M

l li
i

Input I O

Output O O l N
=

=

= =∏ ,2, ,
 (3.4)
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 There are two neurons in fourth layer. One neuron connects with all neurons 

of the third layer through unity weight and another one connects with all neurons of 

the third layer through the weights ˆly , as described below: 

( 4 ) (3) (3) (3)
1 1 2

( 4 ) (3) (3) (3)
2 1 2

( 4 ) (3)
1

1

( 4 ) (3)
2

1

: , , ,
, , ,

:

ˆ

N

N

N

l
l
N

l l
l

Input I O O O
I O O O

Output O O

O y O
=

=

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

=

=

=

=

∑

∑

 (3.5)  

 The last layer has a single neuron to compute the predicted output ŷ . It is 

connected with two neurons of the fourth layer through unity weights in which 

defuzzification is performed. The integral function and activation function of the node 

can be expressed as: 

(5) (4) (4)
1 2

(4)
(5) 2

(4)
1

: ,

:

Input I O O
OOutput O
O

⎡ ⎤⎣ ⎦=

=
 (3.6)

The output of the whole FNN is then obtained as: 

(5)

1
ˆ ˆ

N

l l
l

y O yμ
=

= = ∑  (3.7)

where  

( )

( )

2

2
1

2

2
1 1

exp

exp

M
i li

i l
l

N M
i li

l i l

x c

x c

χ
μ

χ

=

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−−
=

−−

∑

∑ ∑
 (3.8)

 

3.3 Adaptive FNN-PID Control Scheme  

In this section, the proposed adaptive PID control scheme as shown in Figure 

3.2 will be described in details. The nonlinear processes under PID control are 

approximated by a fuzzy neural network model (FNNM), which provides information 
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to adjust the PID parameters by an updating algorithm derived from Lyapunov 

method.  

yuer +
−

 

Figure 3.2 The structure of FNN-PID controller system 

 

The nonlinear process can be represented by the following discrete nonlinear 

function 

( 1) ( ( ))y k f k+ = z  (3.9)

where 

( )T( ) ( ), ( 1), , ( ), ( ), ( 1), , ( )y d d dk y k y k y k n u k n u k n u k n n= − − − − − − −z u

)

 (3.10) 

where , , and  are integers related to the system’s order and time delay, 

respectively. 

yn un dn

The FNNM is employed for nonlinear process modeling due to its capability 

of uniformly approximating any nonlinear function to any degree of accuracy, namely, 

ˆ( 1) ( ( )y k FNNM k+ = x  (3.11) 

The input  used in this thesis is defined by first-order as follows ( )kx

( )T( ) ( 1), ( 1)k y k u k= − −x  (3.12) 

The method employed for the identification of FNNM can be summarized as 

follows: 
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1. The first input data point, (1)x , is chosen as the first cluster (fuzzy rule) and its 

cluster center is set as 1 (1)c = x . The number of input data point belonging to the 

first cluster, 1N , and the number of fuzzy clusters, N , at this time are respectively 

1 1N =  and 1N = ; 

2. For the -thk  training data point, ( )kx , determine the largest similarity measure, 

LS , between ( )kx  to every cluster centers, ( 1,2, , )lc l N= , according to Eq. 

(3.13), and the corresponding cluster is denoted by Lc .  

     ( ) 2
2|| ||

1
max lk c

L l N
S e− −

≤ ≤

⎛ ⎞
⎜ ⎟
⎝ ⎠

= x  (3.13) 

3. Next, decide whether a new cluster (fuzzy rule) should be added or not, according 

to the following criteria: 

• If LS ψ<  where ψ  is a pre-specified threshold, the -thk  training data point 

does not belong to all the existing cluster and a new cluster will be established 

with its center located at 1 ( )k+Nc = x , and set 1N N= +  and 1 1NN + = , while 

other clusters remain unchanged; 

• If LS ψ≥ , the -thk  training data point belong to the -thL  cluster and its 

corresponding center is adjusted as follows 

            ( )0 ( )1L L L
L

c c k cN
λ= + −
+

x ;  0 0,1λ ⎡ ⎤⎣ ⎦∈  (3.14) 

 and set . 1L LN N= +

4. Set 1k k= +  and go to step 2 until all training data points are clustered to the 

corresponding cluster. After finishing the first three steps, the width of each fuzzy 

rule can be calculated as: 

      
1, 2 , , ,
m in l j

l j N j l

c c
χ

ρ= ≠

−
=  (3.15) 
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where ρ  is overlap parameter, usually 1 2ρ≤ ≤ . 

5. The consequent parameters, lα  and N( 1,2, , )l lβ = , are obtained by using least 

square method as given by: 

      ( )

1

1

2
1T T

2

(2)
(3)
(4)

( )N t

N

y
y
y

y N

α
β
α
β

α
β

−

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦

= A A A  (3.16) 

where  is the total number of training data and tN

11 11 1 1

12 12 2 2

13 13 3 3

1 1

(1) (1) (1) (1)
(2) (2) (2) (2)
(3) (3) (3) (3)

( 1) ( 1) ( 1) ( 1)
t t t t

N N

N N

N N

N t N t NN t NN t

y u y u
y u y u
y u y u

y N u N y N u N

μ μ μ μ
μ μ μ μ
μ μ μ μ

μ μ μ μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

− − −

A

−

 (3.17) 

where ljμ  is the membership function of the fuzzy rule corresponding to the 

input

-thl

( ) ( 1,2, , )l tx j j N= . 

With the FNN model obtained off-line according to the abovementioned 

procedure, it will then be incorporated into the proposed adaptive PID controller 

design to be detailed in the sequel. The PID control law of the proposed design is 

expressed as follows: 

)()1()( kukuku Δ+−=  (3.18) 

)()()()()()()( 321 kekwkekwkekwku δ+Δ+=Δ  (3.19) 

where ,  and  are the PID controller parameters obtained at the  

sampling instant,  is the error between process output, , and its set-point, r , at 

the  sampling instant, 

1( )w k

h

2 ( )w k

(e

3 ( )w k

(

-thk

)k y

-tk )1()() −−=Δ ke keke , and )1()(( −Δ−) Δ= kekekeδ .  
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Since the controller parameters, , are constrained to be positive or negative, 

the following function is introduced to map the set of positive (or negative) number to 

the set of real number: 

jw

( )

( )

,       if     ( ) 0
( )

,      if     ( ) 0

j

j

k
j

j k
j

e w
w k

e w k

ς

ς

⎧ ≥⎪= ⎨
− <⎪⎩

k
,  1 ~ 3j =  (3.20) 

where ( )j kς  is a real number. In the sequel, an updating algorithm will be developed 

to adjust ( )kjς  on-line, and subsequently the FNN-PID parameters  can be 

easily calculated by Eq. (3.20).  

( )jw k

 To facilitate the subsequent development, the following notations are 

introduced: 

( ) [ ( ) ( ) ( )]xe k e k e k e kδ= Δ  (3.21) 

T
1 2 3( ) [ ( ) ( ) ( )]w k w k w k w k=  (3.22) 

T
1 2 3( ) [ ( ) ( ) ( )]k k k kς ς ς ς=  (3.23) 

 In order to update the parameter ( )j kς  at each sampling time so that the 

FNNM’s predicted output converges to the desired set-point trajectory, the following 

theorem gives the theoretical basis for the convergence property of the proposed 

updating algorithm for ( )kς . 

 

Theorem 1. Considering nonlinear processes of Eq. (3.9) controlled by the FNN-

PID controller of Eq. (3.18) with the following updating law and the learning rates 1η , 

2η , and 3 2η < , 
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1 1 T

2 T

3

1

2

3

( 1) ( ) ( )
0 0

( ) ( )( )1( ) 0 0ˆ ( ) ( ) ( )( 1)
0 0( )

( ) 0 0
( ) 0 ( ) 0( )

0 0 ( )

x r

x x

k k k

e k e kw kk k e k e ky k
u k

w k
w k w kk

w k

ς ς ς
η

ς η
ς

η

ς

−
⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+ = + Δ

∂Δ = ⋅ ⋅ ⋅
∂∂ +

∂

∂ =
∂

 

(3.24) 

If the Lyapunov function candidate is chosen as  

2( ) ( )rv k e kξ=  (3.25) 

where  and ˆ( ) ( ) ( )re k r k y k= − ξ  is a positive constant, then ( ) 0v kΔ <  always holds. 

Thus, the predicted tracking error is guaranteed to converge to zero asymptotically. 

 

Proof.  Define  

( 1) ( ) ( 1r r re k e k e k+ = + Δ + )

)

 (3.26) 

By considering Eqs. (3.25) and (3.26), the following relationship can be obtained: 

2 2

2

( ) ( 1) ( ) ( 1) (
2 ( ) ( 1) ( 1)

r r

r r r

v k v k v k e k e k
e k e k e k

ξ ξ
ξ ξ

Δ = + − = + −
= Δ + + Δ +

 (3.27) 

In Eq. (3.27), ( 1re k )Δ +  can be further expressed as  

( ) ( )

[ ]

1
1

ˆ( 1) ( 1) ( ) ( ) ( )
( ) ( ) ( )

ˆ ( 1) ( ) ( ) ( )
( ) ( ) ( )

r
r

e k
e k k

k
r k y k u k w k k k

u k w k k k
y k u k w k k

u k w k k

ς
ς

ς
ς

∂ +
Δ + = Δ

∂
∂ + − + ∂ ∂ ∂

= ⋅ ⋅ ⋅
∂ ∂ ∂ ∂

∂ + ∂ ∂
= − ⋅ ⋅ ⋅ Δ

∂ ∂ ∂

Δ  (3.28) 

where the partial derivative ˆ( 1)
( )

y k
u k

∂ +
∂

 can be derived from the FNNM as follows: 
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( ) ( )
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It is evident from Eq. (3.30) that ( )v kΔ  is always negative if 0 2jη< <  holds, 

meaning that tracking error  is guaranteed to converge to zero by using the 

updating algorithm, Eq. (3.24), to design 

( )re k

( )kς . This completes the proof. 
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The implementation of the proposed FNN-PID control algorithm is 

summarized as follows: 

1. Given the learning rates jη  and initial FNN-PID controller parameters jw ; 

2. Given the measured process output ( )y k , compute the manipulated variable 

)(ku  from Eq. (3.18); 

3. Update ( )j kς  by using Eq. (3.24) and consequently, FNN-PID parameters at the 

next sampling instant, ( 1)jw k + , are calculated by using Eq. (3.20).  

4. Set 1+= kk  and go to step 2. 

 

3.4 Examples 

Example 1 The first example considered is a continuous polymerization 

reaction that takes place in a jacketed CSTR as depicted in Figure 3.3, where an 

isothermal free-radical polymerization of methyl methacrylate (MMA) is carried out 

using azo-bis-isobutyronitrile (AIBN) as initiator and toluene as solvent. Under the 

following assumptions (Doyle et al., 1995): (i) isothermal operation; (ii) perfect 

mixing; (iii) constant heat capacity; (iv) no polymer in the inlet stream; (v) no gel 

effect; (vi) constant reactor volume; (vii) negligible initiator flow rate (in comparison 

with monomer flow rate); and (viii) quasi-steady state and long-chain hypothesis. The 

dynamics of this reactor can be described by the following equations: 

0

( )
( ) inm mm

p fm m

F C CdC k k C P
dt V

−
= − + +   (3.31) 

I
ini I II

I

F C FCdC k C
dt V

−
= − +   (3.32) 

20 0
0 0(0.5 )

c d mT T f m
dD FDk k P k C P
dt V

= + + −   (3.33) 
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0( )
m

I I
m p f m

dD FDM k k C P
dt V

= + −   (3.34) 

0

IDy
D

=   (3.35) 

0.5

I
0

2 *

d c

I

T T

f k CP
k k

⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
  (3.36) 

The control objective is to regulate the product number average molecular 

weight (  = NAMW) by manipulating the flow rate of the initiator (u  = ). The 

operating space considered is NAMW 

y iF

∈ [12500 25000]. The model parameters and 

steady-state operation condition are given in Tables 3.1 and 3.2. 

To apply FNNM for process modeling, input and output data are generated by 

introducing uniformly random steps with distribution of [  in process input. 

The process input and output (depicted in Figure 3.4) are then scaled by 

0.01 0.08]

0.016783
0.016783

uu −
=  and 25000.5

25000.5
yy −

= , respectively. Both process input and output 

are corrupted by 5% Gaussian white noise. With sampling time of 0.03h, input and 

output data thus obtained are used to build the database. 

Validation tests (see Figure 3.5 for an illustration) are carried out to determine 

the optimal parameters for FNNM algorithm as follows: ψ  = 0.9984, 0λ  = 0.4, and ρ 

= 1.28. To design FNN-PID controller, initial PID parameters , , 

and  are designed and their corresponding learning rates are specified as 

, , and . 

1w = −1.39 2 7.81w = −

3 2.3w = −

41.35 10−= ×1η
-3

2 1.16 10η = × -4
3 7.17 10η = ×
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Figure 3.3 Polymerization reactor 

 

Table 3.1 Model parameters for polymerization reactor 

cTk    =     10103281.1 × h)/(kmolm3 F      =   1.00   /hm3

dTk    =     11100930.1 × h)/(kmolm3 V       =   0.1  3m  

Ik      =     1100225.1 −× L/h inIC   =  8.0   3kmol/m

pk     =      6104952.2 × h)/(kmolm3
mM   =  100.12  kg/kmol 

mfk   =      3104522.2 × h)/(kmolm3
inmC   =  6.0   3kmol/m

*f    =   0.58 

 

 

Table 3.2 Steady-state operating condition of polymerization reactor 

mC   =   5.506774     3kmol/m ID  =   49.38182   3kmol/m

IC   =   0.132906     3kmol/m    =   0.016783   u /hm3

0D   =   0.0019752   3kmol/m   y   =   25000.5    kg/kmol 
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Figure 3.4 Input and output data used to construct the FNN model 

in polymerization reactor example 
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Figure 3.5 Validation of FNN model 

 

 

 34 



Chapter 3 FNN-Based Adaptive PID Controller Design 

For the comparison purpose, an adaptive PID controller is designed based on a 

second-order ARX model with parameter adaptation by the recursive least-square 

(RLS) identification procedure (Shahrokhi and Baghmisheh, 2005). To compare the 

performances of two PID designs, successive set-point changes between 25000.5 and 

12500 kg/kmol are conducted. As can be seen from Figure 3.6, it is obvious that the 

proposed FNN-PID controller has better performance than that achieved by the RLS-

based PID controller, resulting in the reduction of Mean Absolute Error (MAE) by 

23.4%. Figure 3.7 shows the updating of controller parameters in the FNN-PID 

design.  

By assuming ±25% step disturbances in the monomer initiator concentration, 

the resulting performances of two controllers at different operating conditions are 

compared in Figures 3.8 and 3.9. The FNN-PID controller achieves better control 

performance by giving shorter settling time compared to RLS-based PID controller, as 

evidenced by the reduction of MAE ranging from 14% to 49%. To evaluate the 

robustness of the proposed controller, it is assumed that there exist 10% modeling 

error in the kinetic parameter  and 20% error in the gain coefficients of the  and 

. It is clear from Figure 3.10 that the proposed controller still maintains better 

control performance by achieving 23.3% reduction of MAE relative to RLS-based 

PID controller. 

Ik ID

mM
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Figure 3.6 Servo responses of FNN-PID (top) and RLS-based PID (bottom) 
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Figure 3.7 Updating of the FNN-PID parameters  
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Figure 3.8 Closed-loop responses of two PID designs for -25% step change in  
inmC

Dashed: set-point; solid: FNN-PID; dotted: RLS-based PID 
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Figure 3.9 Closed-loop responses of two PID designs for +25% step change in  

inmC

Dashed: set-point; solid: FNN-PID; dotted: RLS-based PID 
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Figure 3.10 Servo responses of FNN-PID (top) and RLS-based PID (bottom)  

in the presence of modeling error 
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Example 2 Consider a distillation process where the output variable is the top 

column composition, y, and the input variable is the reflux flow rate, u. This process 

can be defined by the following equations (Eskinat et al., 1991): 

( ) 0.757 ( 1) 0.243 ( ( 1))y k y k g u k= − + −

4

  (3.37) 
2 3( ) 1.04 14.11 16.72 562.7g k x x x x= − − +   (3.38) 

where the input and output variables are both defined as derivations from their 

respective nominal values. 

To apply FNNM for process modeling, input and output data are generated by 

introducing uniformly random steps with distribution of [ 0.052 0.052]−  in process 

input. The process input and output are scaled by ( )min

max mi

2 u u
u

u u
−

n

1= −
−

 and 

( )min

max min

2
1

y y
y

y y
−

=
−

− , respectively, where  and are the minimum and maximum 

values of process input in the database, while 

minu maxu

miny  and maxy are the minimum and 

maximum values of process output in the database. Both process input and output are 

corrupted by 5% Gaussian white noise as depicted in Figure 3.11. 

Again, validation tests are carried out to determine the optimal parameters for 

FNNM algorithm as follows: ψ  = 0.997, 0λ  = 0.7, and ρ = 2. The validation result 

using these optimal parameters is shown in Figure 3.12. To design FNN-PI controller, 

initial PI parameters and 1 0.64w = 2w 1.43=  is designed and their corresponding 

learning rates are specified as 51 101η
−= ×  and .  -5

2 8 10= ×η
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Figure 3.11 Input and output data used to construct the FNN model 

in distillation column example 
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Figure 3.12 Validation of FNN model 
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To evaluate the servo performance of the proposed FNN-PI controller, 

successive set-point changes between 0.018 and -0.01 are conducted. For the purpose 

of comparison, an adaptive PI controller based on a first-order ARX model with 

parameter adaptation by the RLS identification procedure (Shahrokhi and 

Baghmisheh, 2005) is designed. As can be seen from Figure 3.13, the proposed FNN-

PI has better control performance than that achieved by RLS-based PI controller, 

resulting in the reduction of MAE by 14.3%. Figure 3.14 shows the updating of the 

FNN-PI controller parameters in the abovementioned servo response. 

To compare the disturbance rejection capability of these two controllers, 

unmeasured +30% step disturbances in the top column composition, y, are considered. 

The resulting closed-loop responses at three different operating points are compared 

in Figure 3.15. Again, the FNN-PI controller gives smaller deviation from the 

respective set-point compared to RLS-based PI controller, as evidenced by the 

reduction of MAE summarized in Table 3.3. 

 

 Table 3.3 Control performance comparison of two PI designs 

 Tracking Error (MAE) 
 FNN-PI RLS-based PI 

% Decrease  
in MAE 

 Servo Response 5.080 10-4 5.930 10-4 14.35 

 Load Response     

    at y  = -0.01 1.965 10-4 2.673 10-4 26.48 

    at y  = 0 2.144 10-4 3.001 10-4 28.57 

    at y  = 0.01 2.544 10-4 3.680 10-4 30.88 

 

 

 

 

 42 



Chapter 3 FNN-Based Adaptive PID Controller Design 

 

 

 

 

0 100 200 300 400 500
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

y

Samples  
0 100 200 300 400 500

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

u

Samples  

0 100 200 300 400 500
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

y

Samples  
0 100 200 300 400 500

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

u

Samples  

Figure 3.13 Servo responses of FNN-PI (top) and RLS-based PI (bottom) 
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Figure 3.14 Updating of the FNN-PI parameters 
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Figure 3.15 Closed-loop responses of two PI designs under +30% step disturbance 

Dashed: set-point; solid: FNN-PI; dotted: RLS-based PI 
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3.5 Conclusion 

An adaptive FNN-PID controller is developed for nonlinear process control in 

this chapter. A fuzzy neural network-based model is employed to approximate the 

controlled nonlinear process. By utilizing Lyapunov method, an updating algorithm is 

derived to adjust the PID parameters to guarantee the convergence of the predicted 

tracking error. Simulation results illustrate the performance and applicability of the 

proposed adaptive PID design.  



 

 

Chapter 4 

 
 
 
 

Self-Tuning PID Controller Design 

for Nonlinear Systems 

 
 
4.1 Introduction 

The proportional-integral-derivative (PID) controller has gained widespread 

use in many process control applications due to its simplicity in structure, robustness 

in operation, and easy comprehension in its principle (Åström and Hägglund, 1995). 

Numerous tuning methods have already been proposed to design PID controller, like 

Cohen-Coon, Zieglar-Nichols, model-based and relay feedback test (Tan et al., 2002; 

Huang et al., 2005), and dominant pole design (Åström and Hägglund, 1995). 

However, most of the tuning rules for PID controllers are based on a linear process 

model obtained experimentally around the nominal operating condition. Therefore, 

the performance of the conventional PID controller might degrade or even become 

unstable for nonlinear processes with a range of operating conditions.  
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To improve the control performance, several schemes of incorporating 

nonlinear control techniques in the design of PID controller have been developed in 

the literature. For example, Krishnapura and Jutan (2000) utilized neural network 

framework to mimic nonlinear PID design. Riverol and Napolitano (2000) proposed 

the use of neural network to update the PID controller parameters on-line. Chang et al. 

(2002) developed a stable adaptation mechanism such that the PID parameters are 

adjusted to track certain feedback linearization control previously designed. Andrasik 

et al. (2004) made use of two neural networks for on-line tuning of PID controller. In 

their method, a hybrid model consisting of a neural network and a simplified first-

principle model is constructed as an estimator, while the second neural network is a 

neural PID-like controller, which is pre-trained off-line as a black-box model inverse 

of the controlled process. Bisowarno et al. (2004) developed a nonlinear PI controller 

to accommodate the directionality of the process gain for a reactive distillation 

column. Hirata et al. (2004) designed a nonlinear PID controller whose parameters are 

calculated based on the local models identified based on least squares method. 

Likewise, the recursive least-square method was employed to develop local models 

for an adaptive IMC-PID design to control a fixed-bed reactor (Shahrokhi and 

Baghmisheh, 2005). Using the genetic algorithm, the PID controller is optimized for 

nonlinear processes, such as activated sludge aeration process (Zhang et al., 2006) and 

jacketed batch polystyrene reactor (Altinten et al., 2007). Wang et al. (2007) proposed 

an adaptive PID controller based on reinforcement learning for complex and time-

varying systems. The tuning of PID parameters is conducted using Actor-Critic 

learning based on RBF network. Pan et al. (2007) developed a two-layer supervised 

control method for tuning PID controller parameters. A conventional PID controller is 

adopted in the lower layer while the upper layer is composed of a tuning and an 
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identification module. System parameters are estimated based on the lazy learning 

algorithm to obtain better accuracy of system identification for nonlinear systems. 

However, the aforementioned previous results require trial and error procedure for 

initialization of PID parameters, which is computationally intensive and thus hampers 

the use of these results in practical applications.  

To alleviate the aforementioned drawbacks, a memory-based IMC-PID 

controller design was proposed by Takao et al. (2006).  In this design method, initial 

PID parameters are designed based on the local model obtained around the nominal 

operating condition, which can be carried out straightforwardly. In on-line application, 

PID parameters are initially calculated using both modeling and controller databases, 

where the latter consists of controller parameter previously implemented and the 

relevant information vector. Whenever required, an updating algorithm is used to tune 

the controller parameter in proportional to control errors. However, the PID 

controller considered in Takao et al. (2006) was formulated by assuming a first-order 

plus time delay model, which is too restrictive to be applied in practical applications. 

 To overcome the aforementioned limitation, a self-tuning PID design utilizing 

just-in-time learning (JITL) is proposed in this thesis. There are two databases 

employed in the proposed method. The first database is a controller database which 

contains the PID parameters and the corresponding information vectors. The initial 

controller database can be constructed from closed-loop data collected from 

successive set-point changes around nominal operating condition. Alternatively, the 

available historical closed-loop data can be used for the same purpose. Because the 

initial controller database can be easily obtained, the proposed method requires less 

trial and error effort compared to the previous methods. The second database is 

modeling database which is employed by the JITL technique for modeling purpose. 
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During the on-line implementation, the controller database is used to extract the 

relevant information based on the current process dynamics characterized by the 

information vector and the nearest-neighborhood criterion. Such information is 

subsequently utilized to calculate the PID parameters. Moreover, the PID parameters 

thus obtained can be further updated on-line when the predicted control error is 

greater than a pre-specified threshold and the resulting updated PID parameters 

together with their corresponding information vector are stored into the controller 

database. Literature examples are presented to illustrate the proposed control strategy 

and a comparison with its counterpart is made. 

 

4.2 Self-Tuning PID Design for Nonlinear Systems 

As discussed above, the proposed self-tuning PID (STPID) design as depicted 

in Figure 4.1 requires not only the database used by the JITL for modeling purpose 

but also the controller database to be exploited by the on-line tuning algorithm to 

extract the relevant information in order to compute PID parameters at every sampling 

instant. 

The PID algorithm under consideration are given by: 

)()1()( kukuku Δ+−=  (4.1) 

)()()()()()()( 321 kekwkekwkekwku δ+Δ+=Δ  (4.2) 

where the notations used were previously defined in Eqs. (3.18) and (3.19).  

The algorithm of the STPID control scheme based on JITL technique is 

discussed in the following subsections. 
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Figure 4.1 Self-tuning PID control scheme 

 

4.2.1 Generation of initial controller database 

The initial controller database can be easily constructed from the closed-loop 

data around the nominal operating condition, for example closed-loop data resulting 

from successive set-point changes around the nominal operating condition. 

Alternatively, the available historical closed-loop data can be used for the same 

purpose. It is assumed that PID parameters ( ) chosen achieve satisfactory control 

performance. With the availability of measured process input and output data, the 

initial controller database is then generated as follows 

0w

cl( ) ( ( ), ( ))i w i iΦ = x ,   i = 1, 2, …,       0N (4.3) 

where  is information vector obtained from the available 

closed-loop data, 
 
and  denotes the number of 

information vectors stored in the initial controller database. Because a fixed-

cl ( ) [ ( 1), ( 1)]i y i u i= − −x

( ) [ (w i w= 1 2 3) ( ) ( )],i w i w i 0N
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parameter PID controller is employed in the abovementioned closed-loop test, 

 is specified in the initial database.
  

0
0(1) (2) ( )w w w N w= = = =

 

4.2.2 Calculation of initial PID parameters 

At the k-th sampling instant during on-line application, the following measure 

is calculated between the query data  and information vector  in the 

controller database:  

cl ( )kx cl ( )ix

2

cl cl( ) ( )k i
id e− −= x x ,      i = 1, 2, …,  kN (4.4) 

where  denotes the number of information vectors stored in the current controller 

database. To extract PID parameters from controller database,  relevant information 

vectors or nearest-neighbors in the controller database that resemble  are 

selected to be those corresponding to the largest  to the -th largest . As the 

number of nearest-neighbors may vary with respect to the operating condition, in the 

proposed STPID design, a selection procedure is developed to determine the optimal 

 in a pre-specified range as discussed in what follows. 

kN

ch

ch

cl ( )kx

idid

ch

With  nearest-neighbors chosen, a weight is assigned for each neighbor by 

using the following equation: 

ch

1

c

i
i h

i
i

d

d
γ

=

=

∑
,        

1

1
ch

i
i

γ
=

=∑  
(4.5) 

Next, the corresponding PID parameters are obtained from the controller 

database by using the following formula: 
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0

1
( ) ( )

ch

i
i

w k w iγ
=

=∑  (4.6) 

and the resulting controller output is calculated by Eq. (4.1) as: 

0 0 0
1 2 3ˆ( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( )u k u k w k e k w k e k w k e kδ= − + + Δ +  (4.7) 

Then, the process output at the ( 1)-tk h+ sampling instant can be predicted by 

employing the JITL technique as follows: 

1 1 1
1 2ˆ( 1) ( ) ( 1) (k k k ˆ )y k y k y kα α β+ + ++ = + − + u k  (4.8) 

The optimal nearest-neighbors at the k-th sampling instant is then determined 

by that giving the smallest deviation from the set-point at the (  sampling 

instant. After the optimal  is determined, the fitness of its corresponding PID 

parameters, , is then further evaluated in the next step. 

1)-thk +

ch

( )optw k

 

4.2.3 Refinement of controller database and PID parameters 

Because the initial controller database is constructed by using the process data 

around the nominal operating condition, it may not provide adequate information to 

adjust PID parameters effectively when the operating condition is away from the 

nominal one. In this situation, the PID parameters  need further refinement 

and this resulting PID parameters together with the current information vector are 

added into the controller database to improve the controller database for the operating 

conditions where the information is not available in the construction of the initial 

controller database. To determine whether  is satisfactory or not, the following 

criterion is introduced: 

( )optw k

( )optw k
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ˆ( 1) ( 1)
( 1)

optr k y k
r k

ε+ − +
<

+
 (4.9) 

where  is the JITL’s predicted output by using , and ˆ ( 1opty k + ) ( )optw k ε  is the 

threshold. The PID controller designed with  is considered to give good 

control performance if the above inequality is satisfied and thus there is no need for 

further refinement. On the other hand, when the above inequality does not hold, 

 can be improved further by the steepest descent method discussed in what 

follows. 

( )optw k

(optw )k

The following quadratic function is used as the objective function for the 

updating law of PID parameters: 

2 2ˆ ˆ( ( 1) ( 1)) ( ( ) ( 1))opt optMin J r k y k u k u kκ= + − + + − −  (4.10) 

where  is a weight parameter and  is the control action calculated by Eq. 

(4.7) using . 

κ ˆ ( )optu k

( )optw k

As mentioned in Chapter 3, the PID parameters are constrained to be positive 

or negative. Therefore, to consider this constraint in the updating of PID parameters, 

the mapping function in Eq. (3.20) is applied.  

( )

( )

,       if     ( ) 0
( )

,      if     ( ) 0

j

j

k
j

j k
j

e w
w k

e w k

ς

ς

⎧ ≥⎪= ⎨
− <⎪⎩

k
,   1 ~ 3j =  (3.18) 

where ( )j kς  is a real number. Likewise,  denotes the mapping variable 

corresponding to . The following updating algorithm can now be derived to 

improve the design of 

( )opt
j kς

( )optw k

(j )kς  for 1 ~ 3j = : 
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( )  ( )
( )

  ( ) ( )
( )

new opt
j j j opt

j

opt opt
j i jopt

j

Jk k
k

Jk w
w k

ς ς η
ς

ς η k

∂
= −

∂

∂
= −

∂

 (4.11) 

where jη  are the respective learning rates for opt
jς  and  

ˆ ( )
ˆ( ) ( ) ( )

opt

opt opt opt
j j

J J u k
w k u k w k
∂ ∂ ∂

=
∂ ∂ ∂

 (4.12) 

1 ˆ ˆ2 ( ( 1) ( 1)) 2 ( ( ) ( 1))
ˆ ( )

k opt opt
opt

J r k y k u k u k
u k

β κ+∂
= − + − + + − −

∂
 (4.13) 

1

ˆ ( ) ( )
( )

opt

opt

u k e k
w k
∂

=
∂

 (4.14) 

2

ˆ ( ) ( ) ( 1
( )

opt

opt

u k e k e k
w k
∂

= − −
∂

)  (4.15) 

3

ˆ ( ) ( ) 2 ( 1) ( 2)
( )

opt

opt

u k e k e k e k
w k
∂

= − − + −
∂

 (4.16) 

After  is calculated by Eq. (4.11), the corresponding new PID 

parameters are obtained from Eq. (3.20). Furthermore, these new PID parameters and 

their corresponding information vector are stored into controller database. The 

implementation of the proposed STPID control algorithm is summarized as follows: 

( )new
j kς

1. Given the weight parameter κ , learning rate jη , and range of nearest-

neighbors for ch ; 

2. At each sampling instant, determine the optimal nearest-neighbors and 

calculate PID parameters ( )optw k according to Eq. (4.6) and the 

corresponding controller output ˆ ( )optu k  by Eq. (4.7), by which )1(ˆ +ky  is 

obtained from the JITL; 
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3. Evaluate the fitness of ( )optw k  by the criterion given in Eq. (4.9). If this 

criterion is satisfied, ˆ ( )optu k  is implemented to the process and set 

1+= kk  and go to step 2. Otherwise, go to step 4; 

4. Update ( )opt
j kς by Eq. (4.11) and calculate the resulting new PID 

parameters using Eq. (3.20), by which controller output is obtained and 

implemented to the process. In addition, the controller database is updated 

by adding new PID parameters thus obtained and their corresponding 

information vector. Set 1+= kk  and go to step 2. 

 

4.3 Examples 

Example 1 The proposed self-tuning PID design is applied to the 

polymerization reactor discussed in Chapter 3. The model parameters and steady-state 

operating condition can be found in Tables 3.1 and 3.2. To apply the JITL method for 

process modeling, input and output data are generated by introducing uniformly 

random steps with distribution of [  to the process input . The process 

input and output are scaled by 

0.016 0.02] iF

0.016783
0.016783

uu −
=  and 25000.5

25000.5
yy −

= , respectively. 

Both process input and output are corrupted by 5% Gaussian white noise. With 

sampling time of 0.03h, input and output data thus obtained (see Figure 4.2) are used 

to build the database. A second-order ARX model is used as the local model and the 

parameters chosen for JITL algorithm are 0.95φ = , min 7k = , and . ma 50k x =

To construct the initial controller database, the PID controller with , 

, and  is designed to give good control performance around the 

nominal operating condition. This PID controller is then used in a closed-loop 

1 1.86w = −

2 8.35w = − 3 3.40w = −
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experiment consisting of multiple set-point changes as illustrated in Figure 4.3, from 

which the initial controller database is constructed with 0 150N = . In addition, the 

following parameters are chosen in the proposed design: the threshold 0.05ε = , the 

weight parameter , nearest-neighbors 0.003κ = ch ∈ [3 20], and the learning rates 

1 0.96η = , 2 0.1η = , and 3 0.3η = . 

To evaluate the servo performance of the proposed STPID controller, 

successive set-point changes between 25000.5 and 12500 kg/kmol are conducted. For 

comparison purpose, the RLS-based adaptive PID controller provided in Chapter 3 

serves as the benchmark design. As can be seen from Figure 4.4, the proposed STPID 

has consistent better control performance than that achieved by RLS-based PID 

controller, resulting in the reduction of MAE by 26.4%. Figures 4.5 and 4.6 show the 

updating of controller parameters and the profile of corresponding optimal nearest-

neighbors in the STPID design respectively. 

To compare the disturbance rejection capability of these two controllers, 

unmeasured ±25% step disturbances in the monomer initiator concentration are 

considered. The resulting closed-loop responses at three different operating points are 

shown in Figures 4.7 and 4.8. STPID controller gives smaller deviation from the 

respective set-point and shorter settling time compared to RLS-based PID controller, 

as evidenced by the reduction of MAE ranging from 29% to 51.9%. To evaluate the 

robustness of the proposed controller, it is assumed that there exist 10% modeling 

error in the kinetic parameter  and 20% error in the gain coefficients of the  and 

. As can be seen in Figure 4.9, the proposed controller still maintains better 

control performance by achieving 21.5% reduction of MAE relative to RLS-based 

PID controller.  

Ik ID

mM
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Figure 4.2 Input and output data used to construct the modeling database for JITL  

in polymerization reactor example 
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Figure 4.3 Input and output data used to construct the initial controller database  

in polymerization reactor example 
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Figure 4.4 Servo responses of STPID (top) and RLS-based PID (bottom) 
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Figure 4.5 Updating of the STPID parameters  
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Figure 4.6 The profile of optimal nearest-neighbors in STPID design 
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Figure 4.7 Closed-loop responses of two PID designs for -25% step change in  
inmC

Dashed: set-point; solid: STPID; dotted: RLS-based PID 
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Figure 4.8 Closed-loop responses of two PID designs for +25% step change in  
inmC

Dashed: set-point; solid: STPID; dotted: RLS-based PID 
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Figure 4.9 Servo responses of STPID (top) and RLS-based PID (bottom)  

in the presence of modeling error 

 
 

 61



Chapter 4 Self-Tuning PID Controller Design for Nonlinear Systems 

 62

Example 2 The next example considered is the control of a distillation process 

discussed in Chapter 3. To apply the JITL method for process modeling, input and 

output data are generated by introducing uniformly random steps with distribution of 

 in process input. The process input and output are scaled by [ 0.00145 0.00163]−

( )min

max min

2
1

u u
u

u u
−

= −
−

 and ( )min

max min

2
1

y y
y

y y
−

=
−

− , respectively, where  and are the 

minimum and maximum values of process input in the database, while 

minu maxu

miny  and maxy  

are the minimum and maximum values of process output in the database. Both 

process input and output are corrupted by 5% Gaussian white noise as depicted in 

Figure 4.10. A first-order ARX model is used as the local model and the parameters 

chosen for JITL algorithm are as follows: 0.95φ = , min 5k = , and .  maxk 50=

A PI controller with 1 0.510w =  and 2 1.853w =  is designed to give good 

control performance around the nominal operating condition. This PI controller is 

then used in a closed-loop experiment consisting of multiple set-point changes as 

illustrated in Figure 4.11, from which the initial controller database is constructed 

with . In addition, the following parameters are chosen in the proposed 

design: the threshold , the weight parameter 

0 150N =

0.05ε = 0.1κ = , range of nearest-

neighbors [3 20], and the learning rates  and . Again, the 

RLS-based adaptive PI controllers provided in Chapter 3 serve as the benchmark for 

the purpose of comparison. 

ch ∈ -5
1 5 10η = × -59 10= ×2η
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Figure 4.10 Input and output data used to construct the modeling database for JITL  

in distillation column example 
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Figure 4.11 Input and output data used to construct the initial controller database  

in distillation column example 
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To compare the performances of two PI designs, successive set-point changes 

between 0.018 and -0.01 are conducted. As can be seen from Figure 4.12, it is obvious 

that the proposed STPI controller has better performance than those achieved by the 

RLS-based PI controller, resulting in the reduction of MAE by 14.2%. Figures 4.13 

and 4.14 show the updating of the STPI controller parameters and the corresponding 

optimal nearest-neighbors in the aforementioned closed-loop responses. By assuming 

unmeasured +30% step disturbance in the top column composition y, the resulting 

performances of two controllers at different operating conditions are compared in 

Figure 4.15. Again, the STPI controller achieves better control performance, as 

evidenced by the reduction of MAE summarized in Table 4.1. 

 

 

Table 4.1 Control performance comparison of two PI designs 

 Tracking Error (MAE) 
 STPI RLS-based PI 

% Decrease  
in MAE 

 Servo Response 5.088 10-4 5.930 10-4 14.20 

 Load Response    

     at y  = -0.01 1.723 10-4 2.673 10-4 35.56 

     at y  = 0 2.550 10-4 3.001 10-4 15.04 

     at y  = 0.01 2.182 10-4 3.680 10-4 40.70 
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Figure 4.12 Servo responses of STPI (top) and RLS-based PI (bottom) 

 

 65



Chapter 4 Self-Tuning PID Controller Design for Nonlinear Systems 

0 100 200 300 400 500

1

1.5

2

w
2

Samples

0 100 200 300 400 500
0.4

0.6

0.8

1

w
1

 
Figure 4.13 Updating of the STPI parameters 
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Figure 4.14 The profile of optimal nearest-neighbors in STPI design 
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Figure 4.15 Closed-loop responses of two PI designs under +30% step disturbance  

Dashed: set-point; solid: STPI; dotted: RLS-based PID 

 

 

4.4 Conclusion 

A new self-tuning PID controller is proposed for nonlinear process control in 

this chapter. This proposed design method exploit the current process information 

from controller database and modeling database to realize on-line tuning of PID 

parameters. The controller database contains the PID parameters and the 

corresponding information vectors, while the modeling database is employed by the 

JITL technique for modeling purpose. The PID parameters are obtained from 

controller database according to the current process dynamics characterized by the 

information vector at every sampling instant. Then, these PID parameters are updated 
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during on-line implementation based on certain criterion and the resulting updated 

PID parameters with their corresponding information vector are then stored into the 

database. The simulation results reveal that the proposed STPID controller gives 

better control performance than its counterpart. 



 

 

Chapter 5 

 
 
 
 

Conclusions and Further Work 

 
 
5.1 Conclusions 

In this thesis, two modeling frameworks are investigated in nonlinear process 

controller design. Adaptive FNN-PID controller design uses fuzzy neural network 

(FNN) approach while self-tuning PID controller design is based on the just-in-time 

learning (JITL) technique. These controllers make use of the information provided by 

their respective modeling techniques to realize on-line tuning of control parameters 

and calculation of the manipulated variable for that matter. 

In FNN-PID controller design, a FNN model is employed to approximate the 

controlled nonlinear process. By utilizing Lyapunov method, an updating algorithm is 

derived to adjust the PID parameters to guarantee the convergence of the tracking 

error. Next, a new self-tuning PID controller is proposed for nonlinear process control. 

This proposed method consists of two databases, (i) controller database which is 

constructed to store the PID parameters together with their corresponding information 
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vector, and (ii) modeling database which is employed for the standard use by JITL for 

the modeling purpose. The PID parameters are then obtained on-line based on the 

nearest-neighborhood criterion and controller database. Compared with the previous 

adaptive PID controller design methods, the initialization of the proposed design 

requires less trial and error effort because the initial controller database can be easily 

constructed from the closed-loop data available in the historical operating data. 

Simulation results are presented to illustrate the improved control performance 

obtained by the proposed controller designs over their conventional counterpart. 

Using the polymerization reactor and distillation column as examples, the control 

performances of two proposed controller designs are compared in Tables 5.1 and 5.2. 

In terms of MAEs, the self-tuning PID controller design is comparable with the FNN-

PID controller design in servo performance. However, the self-tuning PID controller 

gives better load performance than the FNN-PID controller.   

Moreover, it can be seen from simulation results that FNN aims at obtaining a 

global model to describe the process dynamics in the entire operating space, whereas 

JITL technique focuses simply on the current operating point. FNN is more time-

consuming in the identification phase but it is faster in prediction. However, when 

new data is observed, model update may need to start from scratch. In comparison, 

JITL is more advantageous because it is enough to update its database when a new 

input-output data is observed. 
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Table 5.1 Comparison of two proposed PID designs  

for polymerization reactor example 

Tracking Error (MAE) 
 

FNN-PID STPID 

 Servo Response 596.230 572.814 

 Servo Response* 694.530 711.351 
 -25% in  at = 25000.5 

inmC y 89.929 86.155 
 -25% in  at = 18750 

inmC y 148.508 135.982 
 -25% in  at 

inmC y = 13500 240.324 172.096 
 +25% in  at = 25000.5 

inmC y 82.184 70.116 
 +25% in  at = 18750 

inmC y 146.057 119.704 
 +25% in  at 

inmC y = 13500 266.206 159.746 
* In the presence of modeling error 

 

 

 

Table 5.2 Comparison of two proposed PI designs 

for distillation column example 

 Tracking Error (MAE) 
 FNN-PI STPI 

 Servo Response 5.080 10-4 5.088 10-4 
 Load Response   
    at y  = -0.01 1.965 10-4 1.723 10-4 
    at  = 0 y 2.144 10-4 2.550 10-4 
    at y  = 0.01 2.544 10-4 2.182 10-4 
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72 

5.2 Suggestions for Further Work 

The data-based control strategies developed in this thesis are restricted to the 

single-input single-output systems. Therefore, it is of practical importance to 

generalize the proposed design methods to the multivariable systems, which are often 

encountered in industrial control practices.  
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