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Summary

Conventional storage technologies such as hard disk drive, compact disc, digital

versatile disk, and blu-ray disc rely on the track-based paradigm i.e. they store

information along tracks that are well separated in order to eliminate inter-track

interference. This storage paradigm is two-dimensional (2-D); however it uses the

second dimension only loosely. Holographic data storage (HDS), on the other hand,

breaks the density bottleneck of conventional storage technologies by utilizing the

page-oriented paradigm that stores information in the form of 2-D holograms. Vast

storage densities are achievable by multiplexing several holograms throughout the

volume of the media. In addition, the page-oriented nature of HDS allows for high

data rates by retrieving the entire hologram with a single flash of light. Thus, HDS

is a promising technology for the increasing demands of information systems. In

viii
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this thesis, we study the signal processing aspects related to HDS.

Signal processing techniques are commonly used to meet the stringent require-

ments on data reliability in storage systems. Typical examples of signal processing

algorithms are equalizers, detectors, modulation codes, and error correction codes.

From the signal processing perspective, HDS has two key attributes that distinguish

it from conventional storage technologies. The first attribute is the page-oriented

nature of the HDS which results in higher computational complexities for signal

processing algorithms as well as for modeling the HDS channel. Furthermore, there

is no natural ordering in a 2-D page; thus it is difficult to generalize a major class

of signal processing algorithms that rely on the sequential nature of the data in

the track-based storage paradigm. The second attribute that requires attention

in the design of signal processing algorithms is the nonlinear nature of the HDS.

This feature introduces additional complexity to analysis and modeling of the HDS

channel. Furthermore, the signal processing algorithm designer should consider the

channel nonlinearity to achieve better performance. In this thesis, we address both

attributes in modeling and detection for the HDS.

Design of signal processing algorithms for the HDS heavily relies on accurate

channel modeling. In addition, extensive simulations are usually needed to evaluate

the performance of such algorithms; thus, the computational complexity of the

channel model is important. Because of the channel nonlinearity, linear models

are not capable of describing the channel accurately. Various researchers worked
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on nonlinear channel models for the HDS. While accurate models for the HDS

are available; their computational complexities are prohibitively high. On the

other hand, a notably efficient channel model for the HDS exists. This channel

model, called the discrete magnitude-squared channel model (DMC), is obtained

through exploiting the mathematical structure of the discretization of the channel.

In spite of its complexity reduction, this model does not address the optical noise

accurately.

In our work, we exploit the band-limited nature of the optical noise to develop

accurate models with reduced computational complexities. Furthermore, we point

out a flaw in the statistical analysis of the post-detector effects of the optical noise.

Our simulations show consistency with the corrected statistical analysis.

In an ideal HDS system, the page that represents the information during data

recording phase should be spatially matched with the detector page used in data

retrieval phase. In practice, page translation error is inevitable, and it results in

misalignment of pixels on these two pages. Pixel misalignment severely deteriorates

data reliability in the HDS systems. In our work, we have extended the DMC model

for systems with pixel misalignment.

Several researchers investigated equalization and detection techniques for the

HDS. The nonlinear nature of the HDS and the absence of natural ordering in the

page-oriented storage paradigm, add a great deal of complexity to this task. In
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particular, various researchers studied the extension of the one-dimensional Viterbi

algorithm for the page-oriented HDS channel. While most solutions are suffering

from high complexities, none of them addresses the absence of the natural ordering

effectively.

Various linear and nonlinear hard-decision detectors are developed for the HDS

channel; whereas little afford has been devoted to developing soft-decision detectors

for the HDS channel. The complexity of the existing soft-decision detector is

prohibitively high. Soft-decision detectors are of fundamental importance because

of their integral role in iterative reception schemes with near-optimal bit-error-rate

performance.

In order to address the aforementioned issues we designed a reception scheme

that fits the characteristics of the nonlinear HDS channel. Our reception scheme

is based on the soft-decision BCJR detector designed by extending an existing

reduced-complexity BCJR detector for linear 2-D channels. Exploiting the HDS

channel structure, our detector tackles the absence of natural ordering by break-

ing down the 2-D detection across the page into one-dimensional detection along

columns and rows of the page. The complexity of our scheme is much less than

the existing soft-decision detector for the HDS channels. We propose a novel par-

tial response signal to limit the complexity further. As an added advantage, our

scheme can handle high levels of pixel misalignment.
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Chapter 1
Introduction

1.1 Motivations for Holographic Data Storage

Data storage systems play an integral role in the advances of the information

era. Various technologies have been developed to answer diverse needs of various

consumers such as entertainment industries, on-line storage service providers, and

medical systems. Magnetic storage systems such as hard disk drive (HDD) mostly

target for high densities, whereas optical storage such as compact disk (CD) and

digital versatile disk (DVD) provide removable storage. Density and data rates of

data storage systems grow rapidly in response to increasing demands of information

technology. However, as a result of fundamental physical limitations, it is not clear

whether the current storage technologies are able to sustain their density growth.

3
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One of the major limitations of current technologies is that they all use a two-

dimensional (2-D) recording/retrieval paradigm in which data is stored along well

separated tracks. The spacing among tracks limits the achievable density. One so-

lution for breaking the density bottleneck suffered by current storage technologies

(i.e. CDs, DVDs, and HDDs) is to break the track-based paradigm. Holographic

data storage (HDS) is an example of a non-track-based paradigm. HDS systems

store information in the form of 2-D holograms. We will see later that several

holograms can be recorded throughout the volume of the recording media allow-

ing for ultra-high densities to be achieved. In addition, the entire hologram is

recorded / retrieved with a single flash of light allowing for high data rates to be

achieved.

In this work we investigate signal processing aspects of the HDS. Signal pro-

cessing played a crucial role in achieving reliable storage at high densities. One can

view the data storage channel as a noisy communication channel, where retrieving

information is prone to errors. In almost all scenarios, errors are more likely to

happen when storage density increases. On the other hand, data storage has strin-

gent reliability requirements and the challenge for signal processing is to reduce the

storage bit-error-rate (BER) to an acceptable level (usually around 10−12) while

achieving high density and high data rates.

We first give a brief description of the HDS and then proceed to survey the

existing literature on modeling and detection for the HDS to motivate the research
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reported in this thesis. In the end we conclude by a summary of main contributions

and the organization of the thesis.

1.2 Introduction to Holographic Data Storage

Holographic data storage (HDS) stores information in the form of 2-D holograms.

In order to have a clearer picture we give a basic account of holography. In hologra-

phy two coherent laser beams are used. One is called the object beam and carries

the information (light from the scene or object), and the other is the reference

beam. These two beams interfere and the interference pattern which is stored in

some photosensitive medium is called the hologram. Now if the stored hologram

is illuminated with the reference beam used during recording, the object beam is

reconstructed (with a loss in signal power). In HDS each hologram corresponds

to one page of data. So we call HDS a page-oriented data storage technology.

By virtue of a phenomenon called Bragg selectivity [1], several holograms can be

multiplexed throughout the same storage medium by changing some attribute of

the reference beam such as its wavelength or angle, resulting in wavelength multi-

plexing or angular multiplexing respectively. Other multiplexing techniques for the

HDS are phase-code multiplexing, shift multiplexing, or spatial multiplexing [1].

Multiplexing makes HDS a volumetric data storage technology.

After describing the basic concepts used in HDS. We proceed to introduce a
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Holographic 

medium

Aperture

Fourier 

lens

Fourier 

lensSLM CCD
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beam

Signal 
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f f f f
f =focal length

Input data

Figure 1.1: Schematic of the holographic data storage (In the 4-focal-length

architecture)

typical HDS architecture with angular multiplexing called the 4-focal-length (4−fL)

architecture [2]. As Figure 1.1 illustrates, in the recording phase data bits are

presented by a device called spatial light modulator (SLM) which modulates the

amplitude of the object beam. The object beam passes through a lens and the

Fourier transform of the SLM image appears on the focal plain (Fourier Plain) of

the lens. An aperture, which is placed at the center of the focal plain of the lens,

passes the low frequency content of the SLM image and rejects the high frequency

portion. This filtered beam reaches the recording medium, where it interferes with

the reference beam. The recording medium stores the interference pattern. During

data retrieval, the hologram is illuminated with the same reference beam used

during the recording phase and the object beam is reconstructed. Each hologram

can be randomly accessed by changing the angle of the reference beam. This

reconstructed image is inverse Fourier transformed by the second lens. Finally

a detector array such as charge-coupled-device (CCD) converts the information
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bearing object beam to electronic signal.

Since HDS is a volumetric and page-oriented data storage technology, it is po-

tentially capable of achieving high storage densities and high data rate parallel

recording and retrieval of information. Theoretically, densities up to 1/λ3 are pos-

sible for a laser light of wavelength λ [3]. Recently InPhase technologies has demon-

strated a HDS system with 500 Gbit/in2 with a write user rate of 23 MBytes /sec

and a read user rate of 13 MBytes /sec [4].

1.3 Holographic Data Storage Channel

Any data storage channel can be viewed as an imperfect communication chan-

nel which is susceptible to information loss due to noise, finite bandwidth, and

nonlinear distortions. In this section we give a qualitative account of the most

salient characteristics of the HDS systems that influence the system fidelity. A

quantitative model for HDS systems is presented in Chapter 2.

HDS systems may suffer from a vast array of impairments [5]. However, in

order to manage the model complexity, most channel models limit their scope to the

dominant channel impairments Viz. crosstalk and noise. Few models consider pixel

misalignment (page translation error) in addition to aforementioned impairments.

We qualitatively describe these impairments here; A quantitative channel model is

given in Chapter 3.
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Since HDS is a page-oriented, volumetric storage technology, two types of

crosstalk (interference) may arise. The page-oriented nature of holographic data

storage leads to intra-page crosstalk, which we refer to as 2-D inter-pixel interfer-

ence (IPI). On the other hand, the volumetric nature of the HDS which allows for

several holograms (pages) to be recorded in one medium may give rise to intra-

page interference. Most channel models focus on 2-D IPI, assuming that intra-page

interference is negligible [6, 7, 8, 9]. Two-dimensional IPI is the result of filtering

the high frequency portion of the SLM image by the aperture. This is the coun-

terpart of the one-dimensional (1-D) inter-symbol interference (ISI) encountered

in conventional storage technologies. We will discuss the 2-D IPI in more detail in

Section 1.3.1.

Noise sources in the HDS are the optical noise (scatter, laser speckle) and the

electronics noise [10]. Optical noise is modeled as a stationary complex-valued cir-

cularly symmetric colored Gaussian noise and electronics noise is simply modeled

as a real-valued white Gaussian noise. While modeling electronics noise is straight-

forward, modeling optical noise needs more care. We will look into this issue in

more detail later.

The signal power of the replica of the reconstructed object beam in the data

retrieval phase is inversely proportional to the square of the number of multiplexed

holograms [11]. Hence, increasing the storage density by increasing the number of
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holograms leads to low signal-to-noise ratio (SNR). This is an important observa-

tion as detector bit-error-rate (BER) relies heavily on the available SNR.

Another major difficulty of the HDS is its quadratic nonlinearity. This specific

type of nonlinearity stems from the fact that the SLM modulates the amplitude of

the object beam, while the CCD detects the intensity of the reconstructed object

beam over its pixels area. While some models assume a linear channel for the HDS

[2, 12], more accurate models such as those of Chugg et al. [9] and Keskinoz and

Kumar [8] incorporate a quadratic nonlinearity. Chugg et al. [9] accurately model

channel nonlinearity, however, their model is computationally demanding as it uses

a 4-D kernel to compute the CCD read-back signal.

The discrete magnitude-squared channel (DMC) model of Keskinoz and Ku-

mar [6, 7, 8] is of fundamental importance. In addition to being efficient, their

noise-free channel modeling provides us with useful insights on the mathematical

structure of the HDS channel. Most importantly, they show that one can view

the information-bearing component of the detector read-back signal as the total

response of a bank of magnitude-squared sub-channels, where each magnitude-

squared sub-channel consists of a 2-D separable discrete linear time-invariant chan-

nel followed by the magnitude square operation. They call their model discrete

magnitude-squared channel (DMC) model. The separability property of the under-

lying 2-D linear channel means that the 2-D IPI introduced by this linear channel

can be viewed as originating from a concatenation of two 1-D linear ISI channels.
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Furthermore, by utilizing principal component analysis, Keskinoz and Kumar ap-

proximate the model by one dominant sub-channel. This approximation permits

a compromise between complexity and accuracy in their model.

Although the DMC model greatly reduces the model complexity and provides us

with useful insights, it does not address optical noise accurately. He [13] presents

a more accurate treatment of the optical noise while using techniques of [8] to

maintain efficiency. Yet, He’s [13] model relies on the assumption that the optical

noise power is low. Furthermore, despite the fact that the optical noise is not white,

He’s [13] model does not capture the correlation characteristics of the post-detector

effect of the optical noise for the sake of achieving computational efficiency.

A further important challenge in HDS is the pixel misalignment. If we assume

an equal number of pixels on SLM and CCD, it is ideal for the pixels on these two

devices to be spatially matched, i.e. for each pixel on the CCD to be exactly in front

of the corresponding SLM pixel. In practice it is impossible to achieve perfect pixel

alignment due to a variety of adverse factors. As [11] reports, the effect of pixel

misalignment on BER is substantial. Yet, this has not received enough attention

in HDS channel modeling and most models take perfect pixel alignment between

SLM and CCD as granted. One exception is the work of Heanue et al. [12] that

accommodates pixel misalignment into their linear model of the HDS. Menetrier

and Burr [11] investigate pixel misalignment more precisely by using a numerical

approach based on fast Fourier transforms as in Bernal et al [14]. However, they
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give no detailed method for simulating channels with pixel misalignment.

Let us summarize our brief survey on HDS channel models. The HDS is a

quadratic, 2-D IPI channel. Existing HDS models capture quadratic nonlinear-

ity but they are either too computationally demanding or need further accuracy

improvements regarding the optical noise. None of the nonlinear HDS models cap-

tures pixel misalignment despite its importance. Another observation about HDS

channels is that using smaller aperture width or multiplexing more holograms re-

sult in increased storage density; however they lead to higher IPI and lower SNR

respectively.

1.3.1 Detection for Holographic Data Storage

Before presenting our survey on signal processing techniques for holographic data

storage, let us define the notion of reception scheme. A reception scheme takes as

input the CCD read-back signal and makes decisions on the transmitted / stored

data bits. Important characteristics of a reception scheme are its complexity and

bit-error-rate (BER). Reception schemes may have several components such as

equalizers, detectors, and error correction decoders. The simplest reception scheme

is a slicer or a threshold detector which decides whether a bit is zero or one by

comparing the CCD read-back signal against a threshold. This reception scheme

is very simple but usually fails to provide acceptable BER if ISI is present. A more
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complicated reception scheme is made by equalization of the CCD signal before

the detector to remove or reduce ISI. More sophisticated reception schemes use

maximum-likelihood (ML) or maximum-a-posteriori (MAP) detectors to further

enhance the BER. Decoders are other possible components of a reception scheme

which exploit a known structure embedded earlier in the data bits by an error

correction code to detect / correct errors.

Before proceeding to review the existing detection schemes, let us look into

the 2-D IPI more closely. Two-dimensional interference is fundamentally different

from 1-D interference because of two issues: for an ISI span of L, the number of

interfering symbols in 1-D ISI is L, whereas in 2-D IPI the number of interfering

pixels is L2. This potentially leads to higher modeling and detection complexities.

However, what makes 2-D interference fundamentally different is the fact that

there is no natural ordering of data in two dimensions. This natural ordering is

of fundamental importance in designing ML or MAP detectors. MAP detectors

provide optimal BER performance, i.e. they yield the best BER performance

possible for a given SNR. If there is no prior information about the data bits to

be detected, then ML detectors are optimal too. Complexity of ML detection is

much lower than that of MAP detection. The Viterbi algorithm is an example of

a ML detector and the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is an example

of a MAP detector. Both detectors are originally developed for 1-D channels and

exploit the natural ordering of the data. By comparison, in the 2-D IPI case no
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such ordering exists, which hampers the generalization of the widely used Viterbi

or BCJR detectors.

In most reception schemes, linear equalizers are probably the most common

type of equalizers used to mitigate ISI. A common criterion for designing equal-

izers is minimization of the mean-square error (MSE). In minimum mean-square

error (MMSE) equalization the equalizer is designed such that the energy of the

error between the equalizer output and some target signal is minimized. If the

target signal is designed such that the interference is eliminated completely, we

have full response equalization. If the target signal is designed such that a con-

trolled amount of interference is permitted, we have partial response equalization.

A common practice is to choose the input data bits as the target signal, resulting

in an equalizer that produces an output which is as similar as possible (in the

MSE sense) to the input data bits. We refer to such targets as linear full response

targets. Since the common full response MMSE with fixed equalizer coefficients

does not rely on natural ordering of the data, it is straightforward to extend such

1-D equalizers to their 2-D counterparts. Chugg et al. [9] and Keskinoz and Ku-

mar [15] investigate the design and performance of linear minimum mean-square

error (LMMSE) equalizers with linear targets for the 2-D IPI in HDS systems.

When combined with a threshold detector, their results show that LMMSE im-

proves the BER performance that is limited by an error floor at high SNRs.

He and Mathew [16] designed a low-complexity quadratic MMSE (QMMSE)



1.3 Holographic Data Storage Channel 14

equalizer. They also investigated the effectiveness of full response equalization

that uses nonlinear (quadratic) transformation of data bits to construct the target

signal. QMMSE significantly improves the BER performance over LMMSE and

the error floor problem is effectively improved. However, the specific target signal

that they design does not bring significant BER improvement.

Devising a decision-feedback (DF) loop in reception schemes is a common tech-

nique. For HDS systems, two major designs are the pseudodecision-feedback equal-

izer (PDFE) [17] and the iterative magnitude-squared decision-feedback equalizer

(IMSDFE) [7, 8]. The design strategies behind both schemes are similar. First,

initial decisions for the data bits are computed. Later these decisions are refined

iteratively by computing the interference of neighboring bits on each data bit using

the knowledge of the channel nonlinear characteristics. Both PDFE and IMSDFE

provide superior BER performance in comparison with LMMSE based reception

schemes as they incorporate the knowledge of the channel nonlinearity in their

structure. However, both schemes break down if there are too many errors in the

initial decisions as a result of error propagations; hence, they require a relatively

large SNR.

Several researchers investigated Viterbi-based detection for HDS. Heanue et

al. [12] designed a reception scheme for HDS based on a 1-D Viterbi algorithm.

The complexity of their detector grows exponentially with 2L2 + 3L+ 1 for an IPI

span of (2L+1)×(2L+1). For a moderate IPI span of 3×3 i.e L = 1, the detector



1.3 Holographic Data Storage Channel 15

has 26 = 64 states while an IPI span of 5 × 5 i.e. L = 2, leads to a detector with

215 = 32768 states! For an IPI span of 3× 3, they use DF to reduce the number of

states to 24 = 16. Their scheme operates the Viterbi algorithm on a row-by-row

basis. This means that in order to detect a certain row, they assume that the upper

row is known (or correctly detected). Using DF makes their algorithm susceptible

to error propagation. In addition, row-by-row detection is not optimal; hence they

have not effectively addressed the problem of 2-D IPI.

Instead of using DF, some researchers opt for partial-response (PR) equaliza-

tion to reduce the IPI span. The general principle behind all these designs is

to equalize the data page in order to eliminate the IPI along one direction while

using Viterbi along the other direction. PR equalization allows for a controlled

amount of IPI and requires less equalization effort, which in turn results in less

noise coloring. Since Viterbi detection is based on the white noise assumption,

noise coloring has an adverse impact on the BER performance of the Viterbi de-

tection. Reception schemes based on 1-D PR equalization and Viterbi detection for

HDS are investigated by Vadde and Kumar [18]. In their scheme, first they apply

a zero-forcing equalizer to eliminate IPI along one dimension. Then the 1-D PR

equalization is used along the other dimension to reduce the span of ISI in order to

further control the complexity of the following Viterbi detection. Two-dimensional

quadratic PR equalization was investigated by He and Mathew [16]. They formu-

late the optimality criterion for PR quadratic-equalization target which results in
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2 dB performance gain over their QMMSE scheme.

All previous algorithms are hard-decision algorithms, i.e. they decide on the

the bit values. Soft-decision detectors, on the other hand, estimate the probability

that a bit is one (or zero). A notable soft-decision detector for HDS is the one

of [19] which works based on the same principles as turbo decoding [20, 21]. More

specifically, the likelihood of each data bit is updated based on the likelihood of its

neighboring data bits. The likelihood information propagates throughout the 2-D

page with iterations. Their algorithm is designed such that it allows for parallel

implementation. However, the complexity of the algorithm of [19] tends to be very

high: for an IPI span of L× L, the detector complexity is exponential in L2.

In [22] a reduced-complexity BCJR detector for a specific class of linear 2-D

channels was described. As already mentioned, BCJR is an optimal symbol-by-

symbol MAP detector that produces soft decisions. For an ISI span of L × L

the detector complexity in [22] is exponential in L. The complexity reduction

of [22] applies to linear channels that are separable, i.e. for which the 2-D ISI

can be viewed as a concatenation of ISI along the rows and the ISI along the

columns. Their scheme effectively solves the problem of natural ordering in 2-D

data detection for a specific class of linear channels.
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1.4 Motivations and Main Contributions

From the previous survey of channel models for HDS, we conclude that the current

efficient models do not treat the optical noise accurately. Since the optical noise

is not white and the detector array is nonlinear (quadratic), computing the post-

detector effects of the optical noise is not straightforward. We devote a major

portion of our research on developing an accurate, yet computationally efficient

model for the post-detector effects of the optical noise in the HDS channel.

Another contribution of our research is extending the DMC model originally de-

veloped for pixel-aligned HDS channels for the case of pixel misaligned HDS chan-

nels. Recall that pixel misalignment severely deteriorates BER performance [11].

However, little effort has been devoted to incorporate pixel misalignment into HDS

channel models. On the other hand, such misalignments almost always exist.

Hence, there is value in incorporating this impairment into HDS channel models.

We observe that the DMC model (and its extension for pixel misaligned chan-

nels) has the separability property. We use this property to effectively address

the issue of 2-D IPI by extending the soft-decision BCJR detector of [22] originally

developed for linear separable channels. The complexity of our extension is compa-

rable to [22] and far smaller than the current soft-decision detector of [19]. In order

to further reduce the complexity, we have designed a new PR target signal that uti-

lizes a quadratic nonlinearity in its structure and derived an analytical expression
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for the corresponding optimal detector. However, finding the optimal quadratic

PR target remains as a seemingly difficult open problem. Hence, we propose a

candidate for the target signal which seems to work with comparable performance

to the best target signal found by brute force search. Reception schemes that uti-

lize the quadratic target signal for channels with high misalignment level tend to

achieve an acceptable BER performance whereas other reception schemes fail to

provide acceptable BER performance.

1.5 Outline of the Thesis

The rest of the thesis is organized as follows. We study the 4− fL architecture and

the BCJR algorithm in more detail in Chapter 2. We dedicate Chapter 3 to the

accurate modeling of the HDS channels. In Chapter 4 our soft-decision nonlinear

2-D reception scheme along with the proposed quadratic target signal is described.

Chapter 5 concludes the report with some comments on possible directions for

further work.



Chapter 2
Preliminaries

In Chapter 1 we presented an overall view of the holographic data storage (HDS).

In this chapter, we give a more detailed account of the HDS system. We introduce

the 4-focal-length (4− FL) architecture in Section 2.1. We will derive an accurate

model for this architecture in Chapter 3. In Section 2.2 we present the background

on 1-D and 2-D MAP detection. The concepts presented in Section 2.2 enable us

to describe our quadratic 2-D BCJR detector in Chapter 4.

2.1 Holographic Data Storage Systems

2.1.1 System Architecture

The 4-focal-length (4−FL) architecture [2] is a commonly used architecture in prac-

tical HDS systems. We dedicate this section to describing the system architecture.

19
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The interested reader may refer to [1] for more information on the system compo-

nents. Furthermore, a detailed explanation of the underlying optical principles is

given in [23].

Figure 1.1 illustrates the 4 − FL architecture. A coherent source is used to

provide the object, the reference, and the playback laser beams. The spatial light

modulator (SLM) represents the data bits as a 2-D checkerboard pattern of dark

and bright pixels which either blocks or permits the object beam. One can view the

SLM as a 2-D matrix of miniature shutters that are controlled by the data bits and

creates an ON/OFF pattern [1]. Each of the two lenses in the 4− FL architecture

performs the Fourier transform operation [23]: if an object is placed in the front

focal plane of the lens, the Fourier transform of the object’s image is formed on

the rear focal plane. As Figure 1.1 shows, the SLM is placed on the front focal

plane of the first (left-hand side) Fourier lens. The two lenses are placed at the

distance equal to twice their focal lengths such that the rear focal plane of the first

lens coincides with the front focal plane of the second (right-hand side) Fourier

lens. The detector array is placed on the rear focal plane of the second Fourier

lens. This configuration allows for SLM to be exactly imaged on the detector

array. The storage medium is placed prior to the first Fourier lens focal plane.

Consequently, it is the Fourier transform of the SLM image that is stored as a

hologram in the storage medium. The advantage of storing the Fourier transforms

is the improved resilience to burst errors because each data bit is distributed over
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the entire page by the Fourier transform [2]. The most widely used detector array

in HDS systems is the charge-coupled-device (CCD) detector which is an array of

coupled capacitors [1]. The CCD pixels integrate the intensity of the laser light

temporally and spatially over their area and generate a varying voltage which is

used as the read-back signal.

During the recording phase, the SLM impresses the data on the object beam.

The Fourier transform of the SLM image is formed on the focal plane of the first

lens. The object beam then interferes with another beam called the reference

beam inside the storage medium which is placed just before the focal plane, and

the interference pattern is recorded inside the crystal by some chemical or physical

change in the photosensitive medium [1].

During the retrieval phase, the system may access any page by illuminating the

storage medium with the reference beam that was used to record that page. The

reference beam deflects off the corresponding hologram, thus the object beam is

reconstructed. The object beam passes through the aperture which is placed on

the center of the focal plane of the first lens thus permitting the lower frequencies

(and rejecting the higher frequencies) of the SLM image. The second lens then

reconstructs the low-pass filtered replica of the SLM image on its rear focal plane

where the CCD is placed.
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Holograms are grouped into stacks. In each stack, several holograms are multi-

plexed within the same volume of the medium. Holograms are randomly addressed

by using their corresponding reference beam during retrieval. Various multiplexing

techniques are available. One of the most widely used multiplexing techniques is

the angle multiplexing which works based on a physical phenomenon called the

Bragg effect [1]. In angle multiplexing, multiple holograms are stored by changing

the angle between the object beam and a reference beam. To prevent crosstalk

among holograms stored at the same location, each reference beam should be sep-

arated by the Bragg selectivity angle (BSA) [24, 25]. The BSA of the recording

medium is a function of thickness of the recording medium, among other things

such as desirable signal-to-noise ratio (SNR). In particular, the BSA decreases as

the thickness of the storage medium increases.

The number of holograms that can be multiplexed in the same location di-

rectly influences the achievable density; hence, a great deal of research is dedi-

cated to developing efficient multiplexing techniques such as peristrophic multi-

plexing [26], shift multiplexing [27],wavelength multiplexing [28], and phase-code

multiplexing [29].

The role of the aperture is to limit the inter-stack interference and to block the

scattered light. The aperture is placed at the center of the rear focal plane of the

first Fourier lens in order to minimize the blockage of useful signal (i.e. achieve

minimum intra-page crosstalk) [2]. The aperture introduces intra-page crosstalk or
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IPI by rejecting the high-frequency content of the image. A small aperture allows

for higher storage density at the cost of higher IPI.

2.1.2 Density Limitations

Various factors influence the achievable density. In simple terms, we can increase

the density by increasing the number of data bits in each hologram, the number

of holograms per stack, or the number of stacks per unit volume. Increasing the

number of data bits per hologram requires high precision optics and reduces the

system tolerance to misalignments and optical aberrations. Increasing the number

of holograms per stack decreases the SNR since the efficiency of the diffraction is

inversely proportional to the square of the number of multiplexed holograms [1].

Increasing the number of stacks per unit volume requires using smaller apertures

and increases the IPI. As the IPI increases, the required SNR for achieving reliable

data storage and retrieval also increases. This limits the number of holograms that

can be multiplexed within the same location and reduces the achievable density.

Hence, there is a trade-off in choosing the aperture size. Usually HDS systems

choose a Nyquist aperture DN

DN = λfL/∆, (2.1)

where ∆ denotes the pixel width of the SLM, λ is the wavelength of the laser light,

and fL is the lens’s focal length.



2.2 Soft-Decision Detection 24

2.2 Soft-Decision Detection

The discussion in Section 2.1.2 implies that as density increases the reception

scheme should handle higher IPI while less SNR is available. In addition, the

nonlinear nature of the HDS calls for more sophisticated reception schemes, thus

iterative reception schemes based on joint detection and decoding are interesting

options for the HDS because of their near-capacity performance for linear 1-D

channels. An integral part of such an iterative reception scheme is a soft-decision

MAP detector. In this section, we first study the MAP detector for 1-D channels

and then proceed to look into MAP detection for 2-D channels.

2.2.1 MAP Detection for 1-D Channels

The BCJR algorithm provides an efficient method to implement symbol-by-symbol

MAP detection by exploiting the natural ordering of the symbols [30]. In this

section, we look into the conventional 1-D BCJR detector in order to provide the

necessary background for presenting the 2-D BCJR detector.

Figure 2.1 illustrates the channel model. Binary information u ∈ {±1} are

transmitted through a band-limited noisy communication channel. The linear time

invariant system denoted by h models the effect of the finite band-width i.e. the

inter-symbol interference (ISI). Noise is modelled by a white Gaussian process n.
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Figure 2.1: The one-dimensional, linear channel with additive white Gaussian

noise

The received signal is denoted by y. Mathematically,

yk =
L−1∑

i=0

hiuk−i + nk, (2.2)

where yk is the k-th received signal, L is the channel memory length, uk is the k-th

bit, and nk is the k-th noise value. We describe the BCJR algorithm following

the tutorial paper [31]. The symbol-by-symbol MAP BCJR detector computes the

log-likelihood ratio (LLR) of each data bit. Mathematically,

L(uk) = log

(
P (uk = +1|y)

P (uk = −1|y)

)
, (2.3)

where y is the entire observed sequence of received signal. Note that we are able

to compute the probabilities P (uk = +1|y) and P (uk = −1|y) given L(uk) since

P (uk = +1|y) + P (uk = −1|y) = 1. (2.4)

The BCJR detector relies on the trellis diagram to compute L(uk). The trellis

diagram has 2L states to represent the channel memory. For each possible state,

there are two possible branches depending on the input data bit. We consider the
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transition of the state from the (k−1)-th bit to the k-th bit. Using the Bayes rule,

we can write Equation (2.3) as

L(uk) = log

(∑
(ŝ,s)∈S+ P (sk−1 = ŝ, sk = s,y)

∑
(ŝ,s)∈S− P (sk−1 = ŝ, sk = s,y)

)
. (2.5)

where we denote the set of all possible transitions by S and the state at the k-th

bit by sk. We partition S into two subsets at each k: S+ is the set of all the

state transitions from sk−1 to sk caused by uk = +1 and S− is the set of all the

state transitions from sk−1 to sk caused by uk = −1. From now on, we refer to

P (sk−1 = ŝ, sk = s,y) as P (ŝ, s,y) in order to use a shorter notation. In order to

compute P (ŝ, s,y) for any possible transition (ŝ, s) ∈ S , we apply the Bayes rule

for the second time to get

P (ŝ, s,y) = αk−1(ŝ)γk(ŝ, s)βk(s), (2.6)

where

αk−1(ŝ) = P (sk−1 = ŝ,yk−1
1 ), (2.7)

γk(ŝ, s) = P (sk = s, yk|sk−1 = ŝ), (2.8)

βk(s) = P (ynk+1|sk = s), (2.9)

where yba = (ya, ya+1, ..., yb). Using the Bayes rule, we can compute these three

terms recursively. In more detail,

αk(s) =
∑

ŝ

αk−1(ŝ)γk(ŝ, s), (2.10)
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with the initial conditions

α0(s = 0) = 1 , and α0(s 6= 0) = 0. (2.11)

Similarly,

βk−1(ŝ) =
∑

s

βk(s)γk(ŝ, s), (2.12)

with the initial conditions

βnbits
(s = 0) = 1 , and βnbits

(s 6= 0) = 0, (2.13)

where nbits is the number of data bits in the sequence. The initial conditions model

our knowledge that the first and the last data bits are zero. It remains to compute

γk(ŝ, s), for which we have

γk(ŝ, s) = P (s|ŝ)P (yk|ŝ, s) = P (uk)P (yk|ŝ, s), (2.14)

where the value of uk corresponds to the transition from ŝ to s. The term P (uk)

is the a priori probability of uk. In iterative detection and the decoding schemes,

this term allows for passing on information from the decoder to the detector. The

term P (yk|ŝ, s) is the conditional probability of yk knowing the state transition

(ŝ, s) occurred. This term depends on the channel characteristics, we will see in

Chapter 4 that by using a similar term we are able to incorporate the knowledge

of the HDS channel characteristics in our detector.
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2.2.2 Maximum Likelihood Detection for 2-D Nonlinear

Channels

The page-oriented nature of the HDS makes maximum likelihood (ML) ad MAP

detection difficult since a natural ordering of pixels is absent. A conceptually

simple page-wise optimal method is to generate a look-up-table (LUT) containing

all possible data pages together with their corresponding expected retrieved page as

corrupted by the finite band-width, nonlinear HDS channel. In practice, however,

this method is infeasible as for page size of Nbits × Nbits the required LUT would

contain 2Nbits×Nbits entries.

A computationally feasible method to approximate the likelihood of bits is given

by [19] that does not assume the channel to be linear. We briefly describe their

method here. Let us denote the data bits and the channel output, respectively,

by di,j and Îi,j. The entire data page is denoted by D = [di,j]Nbits×Nbits
. Let the

support Si,j of the channel output Îi,j be the subset of input data bits such that

P (Îi,j|Si,j) can approximate P (Îi,j|D) with sufficient accuracy. Assume that the

size of the support is (2L+ 1)× (2L+ 1). Also define the neighborhood of di,j to

be Ni,j = Si,j − {di,j}. It is important to note that the Ni,j can take on one of

2(2L+1)2−1 values in the space Ω = {0, 1}(2L+1)2−1. The following iterative likelihood
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propagation rule is proposed by [19]:

L
(k)
U (di,j) =

∑

Ni,j∈Ω

Ci,j(Si,j)
∏

dl,m∈Ni,j

L(k−1)(dl,m) (2.15)

L(k)(di,j) = (1− β)L(k−1)(di,j) + βL
(k)
U (di,j), (2.16)

where L(k)(di,j) is the estimate of the likelihood P (Îi,j|di,j) at k-th iteration, and

Ci,j(Si,j) is a set of 2(2L+1)2 combining coefficients commonly chosen as P (Îi,j|Si,j)

which is completely characterized by the channel. The filtering parameter β ∈ (0, 1]

controls the trade-off between the convergence and the accuracy of the iterative al-

gorithm. One may choose to set L(0)(dl,m) = P (dl,m). This technique is commonly

referred to as “propagation of the extrinsic information” [20] [21].

2.2.3 MAP Detection for 2-D Separable Linear Channels

The iterative likelihood propagation algorithm proposed by [19] does not require

the channel to be linear, however, the complexity of this algorithm is exponential

in (2L + 1)2. By assuming a Separable linear channel, Wu et al. [22] extended

the BCJR detection technique to efficiently approximate the a-posteriori probabil-

ity (APP) of the data bits corrupted by the separable 2-D ISI and the additive

white Gaussian noise.

Figure 2.2 illustrates the separable 2-D channel. We denote the input data bits

by di,j. These bits pass through a separable linear 2-D ISI channel characterized

by the matrix H = [hi,j]. The ISI span is L×L which means that L2 bits interfere
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Figure 2.2: The two-dimensional, separable, linear channel with additive white

Gaussian noise

for each channel output. Finally, the white Gaussian noise ni,j is added to produce

the channel output Îi,j as

Îi,j = [hi,j]⊗ [di,j] + ni,j

=
L−1∑

k1=0

L−1∑

k2=0

hk1,k2di−k1,j−k2 + ni,j, (2.17)

where ⊗ denotes the discrete 2-D convolution. The fundamental assumption here

is that H is separable, i.e.

H = uvT ,

or

hi,j = uivj, (2.18)

where u and v are L × 1 vectors and vT is the transpose of v. The k-th element

of u and v are denoted by uk and vk respectively. If we substitute Equation (2.18)
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Figure 2.3: The two-dimensional BCJR detector for separable linear channels

into Equation (2.17) we get

Îi,j =
L−1∑

k1=0

uk1

L−1∑

k2=0

vk2di−k1,j−k2

=
L−1∑

k1=0

uk1yi−k1,j, (2.19)

where

yi,j =
L−1∑

k=0

vkdi,j−k. (2.20)

Hence, Equations (2.19) and Equation (2.20) suggest that we may consider the

2-D ISI channel as the concatenation of two one-dimensional channels representing

the row and the column ISI respectively. First, data bits di,j ∈ {±1} pass through

the row ISI channel, characterized by v, and an intermediate output yi,j is pro-

duced. In the next stage, the symbols yi,j pass through the column ISI channel,

characterized by u.

Let us emphasis two issues here: First, the row ISI channel output yi,j is not

binary any more; in fact, it can take 2L values. We denote the set of these values

by Y . Second, we are only able to observe Îi,j, since yi,j is an intermediate signal.

First, let us define the matrices Y = [yi,j] and Î = [Îi,j]. The iterative detector
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that approximates P (di,j |̂I) is illustrated in Figure 2.3. We describe the components

in the following. For demonstration purposes, with no loss of generality, we assume

that the ISI span is 2× 2 i.e. L = 2 and Y = {−1.5,−0.5, 0.5, 1.5} similar to [22].

Column Detector

Since yi,j is not binary and it can take four values, the column detector trellis

has four states with four branches departing from and arriving at each state. The

column detector takes a column of Î and calculates the log-likelihood ratio (LLR)

of each element of the corresponding column in matrix Y. The MAP algorithm for

binary trellises can be extended to a MAP algorithm for non-binary trellises [32].

A brief description of the non-binary MAP is given in the following. The LLR for

yi,j is defined as

Lc(yi,j = Y |̂I:j) = log

(
P (yi,j = Y |̂I:j)

P (yi,j = −1.5|̂I:j)

)

= log

∑
(ŝ,s)∈ŜY

P (ŝ, s, Î:j)
∑

(ŝ,s)∈Ŝ−1.5
P (ŝ, s, Î:j)

, (2.21)

where Î:j represents the j-th column of the observation matrix, ŝ and s respec-

tively represent the starting state and the ending state of a branch of the column

ISI trellis. The set ŜY contains the transitions (ŝ, s) corresponding to Y . The

superscript ‘c’ represents the information produced or used by the column detec-

tor, and similarly the symbol ‘r’ plays the same role for row detector. Obviously,

Lc(yi,j = −1.5|̂I:j) always equals zero. The choice of the base −1.5 is arbitrary.
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Similar to Equation (2.6), the joint probability P (ŝ, s, Î:j) in Equation (2.21) con-

sists of three terms

P (ŝ, s, Î:j) = αck−1(ŝ)γc(ŝ, s)βck(s). (2.22)

The forward recursion is given by

αck(s) =
∑

ŝ

αck−1(ŝ)γck(ŝ, s). (2.23)

Similarly, the backward recursion is given by

βck−1(ŝ) =
∑

s

βck(s)γ
c
k(ŝ, s). (2.24)

The branch transition probability for the column ISI trellis γck(ŝ, s) is calculated as

γck(ŝ, s) = P (Îi,j|ŝ, s) exp (LcE(yi,j = Y )), (2.25)

where the extrinsic information LcE(yi,j = Y ) is provided by the row detector and

the superscript “E” is used to represent the extrinsic information. Assuming ni,j

to be a white zero-mean Gaussian process with variance σ2, we get

P (Îi,j|z(ŝ, s)) = A exp
(Îi,j − z(ŝ, s))2

2σ2
, (2.26)

where A is some normalization factor that does not affect the computations and

z(ŝ, s) denotes the noiseless column ISI channel output corresponding to the state

transition from ŝ to s. For the first iteration, there is no information available

from the row detector; hence LcE(yi,j = Y ) is initialized to zero. This follows from
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m̂

m
-1/-1.5

+1/+1.5

+1/0.5

-1/0.5

Figure 2.4: Binary row ISI trellis

the assumption that the four input symbols to the column detector are equiprob-

able. After computing the column LLR defined in Equation (2.21), the extrinsic

information

LrE(yi,j = Y ) = Lc(yi,j = Y |̂I:j)− LcE(yi,j = Y ), (2.27)

is passed to the constituent row detector as Figure 2.3 illustrates. Let us define

the matrix LrE = [LrE(yi,j)].

Row Detector

The inputs to row ISI are di,j ∈ {±1}. The row detector calculates the LLR of the

row ISI input symbols

Lr(di,j|LrE
i,: ) = log

(
P
(
di,j = 1|LrE

i,:

)

P
(
di,j = −1|LrE

i,:

)
)

= log

∑
(m̂,m)∈S+ P (m̂,m,LrE

i,: )
∑

(m̂,m)∈S− P (m̂,m,LrE
i,: )

, (2.28)

where LrE
i,: represents the extrinsic information for the i-th row given by Equa-

tion (2.27), and m̂ and m respectively represent the starting state and the ending
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state of a branch of the row ISI trellis. Furthermore, S+ and S− are defined on the

row detector trellis similar to the one-dimensional BCJR. For the row detector, we

directly apply the BCJR algorithm described in Section 2.2 to the binary row ISI

trellis illustrated in Figure 2.4. In Equation (2.28), the value of P (m̂,m,LrE
i,: ) can

be calculated using the BCJR algorithm.

Since the row ISI trellis illustrated in Figure 2.4 is binary, we are able to ap-

ply the BCJR algorithm described in Section 2.2 directly. In order to calculate

the value of P (m̂,m,LrE
i,: ) in Equation (2.28) using the one-dimensional BCJR al-

gorithm we need to modify the computation of the branch transition probability

γrk(m̂,m) since there is no direct observation of the row ISI output. To do so,

the branch transition probability is computed based on the extrinsic information

obtained from the column detector. To explain more, consider the labeled trellis

branch (m̂,m) in Figure 2.4

γrk(m̂,m) =
exp

(
LrE(yi,j = −0.5)

)
∑

Y ∈{−1.5,−0.5,0.5,1.5} exp (LrE(yi,j = Y ))
, (2.29)

where LrE(yi,j = Y is given by Equation (2.27). Furthermore, the LLR of the row

ISI output symbols are

Lr(yi,j = Y |LrE
i,: ) = log

(
P
(
yi,j = Y |LrE

i,:

)

P
(
yi,j = −1.5|LrE

i,:

)
)

= log

∑
(m̂,m)∈S̃Y

P (m̂,m,LrE
i,: )

∑
(m̂,m)∈S̃−1.5

P (m̂,m,LrE
i,: )

, (2.30)

where S̃Y denote the set of transitions (m̂,m) on the row detector trellis correspond-

ing to Y . The detection is performed iteratively between the column detector and
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the row detector. The information passed from the row detector to the column

detector is the difference of Equation (2.27) and Equation (2.30):

LcE(yi,j = Y ) = Lr(yi,j = Y |LrE
i,: )− LrE(yi,j = Y ). (2.31)

Once a predefined number of iterations are performed, Equation (2.28) gives the

LLR of the channel input symbols.

2.3 Conclusions

Our review of the 4 − FL architecture in this chapter is the basis of the accurate

model we propose in Chapter 3. Although various hard-decision reception schemes

for HDS are designed, the problem of soft-decision detection for the HDS did not

receive much attention. One reason could be lack of a natural ordering of pixels

in a 2-D array which prevents the generalization of the low-complexity 1-D MAP

detector, i.e. BCJR, for 2-D channels. In this chapter, we described the 1-D BCJR

algorithm and showed how the lack of natural ordering is tackled for 2-D separable

linear channels. Separability property allows us to reduce the high complexity

problem of the 2-D MAP detection into a much simpler problem of 1-D MAP

detection.



Chapter 3
Accurate Modeling of Holographic Data

Storage

Design of equalizers, detectors and codes for the HDS usually relies on extensive

simulations in order to measure their performance. The accuracy of such perfor-

mance measurements is influenced by the accuracy of the channel model that is

used for the simulations. Hence, an accurate yet computationally efficient channel

model is required. In this paper we study the channel model for the HDS with

4-focal-length (4-fL) architecture [2].

Since the HDS is a 2-D nonlinear channel, the analysis and efficient generation

of the read-back signal is not easy. Typical models capture the ISI, the channel

nonlinearity, the optical noise and the detector electronics noise. As a result of the

37
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HDS nonlinearity, the effect of the Gaussian optical noise on the detector read-

back signal is no longer Gaussian. Furthermore, the nonlinearity of the channel

lead to presence of various components in the detector read-back signal. As we will

see in Section 3.1.2, the optical noise has a band-limited nature thus results these

components to be correlated along the pixels.

Chugg et al. [9] develop an accurate yet computationally demanding model for

the HDS. On the other hand, Keskinoz and Kumar [6, 7, 8] develop a computation-

ally efficient model for the HDS called discrete magnitude-squared channel model

(DMC). We believe that the discrete magnitude-squared channel(DMC) model is

of fundamental importance since it provides us with insights about the structure

of noiseless channel output that comes in handy for design signal processing algo-

rithms such as the one presented in Chapter 4. However, as we will see later in

Section 3.4 the optical noise modeling in DMC is not accurate. In addition, the

DMC model is originally developed for pixel aligned channels. An interesting ques-

tion would be whether we are able to extend this structure for pixel mis-aligned

channels as well.

He [13] presents a more accurate treatment of the optical noise while using

techniques of [8] to achieve efficiency. Yet, He’s [13] model relies on the assumption

that the optical noise power is low. Furthermore, as we will see later in Section 3.4

He’s [13] model is not accurate as well. In summary, the accurate model of [9] is

not efficient, and the efficient models of [13] and [8] are not accurate man does not
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consider pixel misalignment.

In this chapter we extend the DMC model for the channels with pixel misalign-

ment. Furthermore, we investigate the CCD read-back signal in the presence of the

optical noise and study its statistics. Furthermore, we develop efficient simulation

methods for CCD read-back signal.

This chapter is organized as follows: In Section 3.1 we introduce the HDS

channel model, following the same notations and assumptions as Keskinoz and

Kumar [8] with the difference that we incorporate the optical noise using the ap-

proach of Chugg et al. [9]. In Section 3.2 we introduce our efficient numerical

method for simulating the HDS channel. In addition, we present the analytical re-

sults on the statistics of detector array read-back values. Section 3.3 presents the

simulation results. Section 3.4 presents a detailed comparison between our model

and other HDS models. We present our conclusions in Section 3.5.
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Figure 3.1: Physical Model of the Holographic Data Storage.

3.1 Channel Modeling

We present the mathematical derivation of the channel model for holographic data

storage using similar notations and assumptions as Keskinoz et al. [8]. The model

incorporates ISI, electronics and optical noise. Although we follow [8] closely, we

borrow the optical noise analysis from Chugg et al. [9]. The physical parameters

that our model takes into account are width of the frequency plane aperture, the

SLM finite contrast ratio, and non unity fill factors for SLM and CCD. Pixel sizes of

the SLM and the CCD are identical. We assume a defect free and linear recording

medium.

Figure 3.1 illustrates the HDS channel. Let us denote the input binary data

by di,j and the SLM finite contrast ratio by ε. The SLM represents one and zero

binary values by two amplitude levels of 1 and 1/ε respectively. The SLM’s pixel

shape is described by p(x, y) (usually rectangular). The SLM output, s(x, y), is

Fourier transformed. As the aperture windows the Fourier transform of the signal

beam, it acts as a low-pass filter with a cutoff frequency determined by the aperture
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width. The second lens system (denoted F−1) inverse Fourier transforms the wave-

front emerging from the medium during retrieval and produces information bearing

wave-front, r(x, y). The incident wave-front, z(x, y) is generated by addition of a

complex zero-mean colored Gaussian noise denoted by no(x, y) that represents the

optical noise. The CCD integrates the magnitude squared of the amplitude wave-

front z(x, y) over its pixels. The effect of the electronics noise is captured by the

white Gaussian process denoted by nei,j and the CCD read-back signal is denoted

by Ii,j.

3.1.1 Linear Subsystem

Between the SLM output and the CCD input the system can be thought to be

linear if we ignore nonlinearities of the medium. Therefore, linear system theory

can be applied up to the point of the incidence of light on the CCD. In this section

we model this linear subsystem in the absence of the optical noise. We will treat

the effect of that noise in the next subsection.

Because of the linear, shift-invariant assumption, the aperture and the Fourier

transform lenses can be characterized by the apertures impulse response hA(x, y).

For a square aperture of width D centered at the origin in the frequency plane, the

aperture’s impulse response, hA(x, y), is given as

hA(x, y) = h́A(x)h́A(y), (3.1)
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where

h́A(x) =
D

λfL
sinc(

xD

λfL
), (3.2)

λ is the wavelength of the light, and fL is the lens’s focal length. In order to omit

λ, fL, and D from our simulations later, we use the normalized aperture width ω,

defined as

ω = D/DN , (3.3)

where DN = λfL/∆s is known as the Nyquist aperture width [33, 8] where ∆s

is the pixel-to-pixel spacing (assumed to be the same for both the SLM and the

CCD). Consequently, we re-write Equation (3.2) as h́A(x) = (ω/∆s)sinc(ωx/∆s)

. The Fourier transform H́A(fx) of h́A(x) is an ideal low-pass filter with cutoff

frequency ω/2∆s; i.e.,

H́A(fx) =





1 |fx| ≤ ω
2∆s

,

0 otherwise.

(3.4)

The SLM’s pixel shape function, p(x, y), can be expressed as

p(x, y) = Π(
x

α∆s

)Π(
y

α∆s

) (3.5)

where α is the SLM’s linear fill-factor (i.e., square root of the areal fill-factor for a

square pixel) and Π(x) represents the unit rectangle function. Although we have

identical pixel spacing for CCD and SLM, we keep using the subscript in order to be
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able to distinguish between the SLM and the CCD pixel spacing. Mathematically,

the output of the SLM, s(x, y), is described by

s(x, y) =
∑

k

∑

l

dk,lp(x− k∆s, y − l∆s), (3.6)

where k and l represent the pixel locations along the x and y directions, respec-

tively, and k = 0 and l = 0 represent the center pixel in the page. Each page is

assumed to contain N × N pixels. The wave-front of the light leaving the SLM

s(x, y) passes through this linear, shift-invariant system whose impulse response is

hA(x, y). Hence, the information bearing wave-front, denoted by r(x, y), is

r(x, y) = s(x, y) ? hA(x, y)

=

[∑

k,l

dk,lp(x− k∆s, y − l∆s)

]
? hA(x, y)

=
∑

k,l

dk,lh(x− k∆s, y − l∆s), (3.7)

where ? represents 2-D (2-D) convolution of continuous signals. Furthermore, the

pixel response before the CCD, h(x, y), is defined as

h(x, y) = p(x, y) ? hA(x, y). (3.8)

We call h(x, y) the optical point spread function (PSF). Note that h(x, y) is sepa-

rable and symmetric since p(x, y) and hA(x, y) are both separable and symmetric.
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Figure 3.2: Optical noise due to independent scatterers in holographic data stor-

age.

Mathematically,

h(x, y) = h́(x)h́(y) (3.9)

h́(x) = h́A(x) ? Π(
x

α∆s

). (3.10)

Since h́A(x) defined in Equation (3.2) is low-pass and band-limited, Equation (3.10)

implies that h́(x) is low-pass and band-limited too; i.e. the H́(fx) is a low-pass

filter with cutoff frequency ω/2∆s. We also assume that h́(x) is zero outside the

interval |x| ≤ (L+ 0.5)∆s; hence the ISI span is (2L+ 1)∆s.

3.1.2 Optical Noise

Similar to [34], we assume that the optical noise is predominantly due to scatter

of the reference beam from a collection of independent scatterers. As shown in

Figure 3.2, assume that the information bearing wave-front, r(x, y), is represented
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by a vector of length A and zero phase. The noise can therefore be represented by

a sum of random phasors. The vector representing the signal at the detector will

have an amplitude and a phase that are, in general, different from the amplitude

and the phase of the transmitted vector.

We model this noise through the addition of no(x, y), to get the incident light

on the CCD, z(x, y)

z(x, y) = r(x, y) + no(x, y) (3.11)

=
∑

k,l

dk,lh(x− k∆s, y − l∆s) + no(x, y), (3.12)

where with no loss of generality we assume a real information bearing wave-front,

r(x, y), with zero phase. In addition, no(x, y) is a stationary complex circular

Gaussian process with mean of zero and auto-covariance given by Kn(x, y) =

E{no(x, y)no∗(0, 0)}. The statistics of the optical noise are assumed to be de-

termined by the optical PSF, h(x, y). In particular, we model no(x, y) as spatially

white noise (intensity E0) filtered by the system optical PSF, and as a result,

Kno(x, y) = E0h(x, y) ? h(−x,−y). (3.13)

Consequently,

Sno(fx, fy) = E0|H(fx, fy))|2 = E0|H́(fx)H́(fy)|2, (3.14)

where Sno(fx, fy) is the power spectrum of no(x, y). This means that no(x, y) is a
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low-pass and band-limited process with cutoff frequency of ω/2∆s.

3.1.3 Detector Array Modeling

The CCD array integrates intensity of the incident light, z(x, y), spatially and

temporally to produce the read-back signal Ii,j. For simplicity, we assume that

the intensity variations on the CCD pixels are sufficiently smooth in time so that

only the spatial integration matters. As a result of spatial integration in the CCD,

read-back signal Ii,j is given as

Ii,j =

∫ (i+β/2)∆c

(i−β/2)∆c

∫ (j+β/2)∆c

(j−β/2)∆c

|z(x, y)|2dxdy + nei,j

=

∫ +β∆c/2

−β∆c/2

∫ +β∆c/2

−β∆c/2

|z(x+ i∆c, y + j∆c)|2dxdy + nei,j, (3.15)

where β is the CCD linear fill-factor, and ∆c is the CCD pixel width which is

assumed to be equal to SLM pixel width

∆s = ∆c = ∆. (3.16)

Furthermore, ne(i, j) is the electronics noise of the CCD, which is Gaussian and

white with variance σ2
e . In order to model the misalignment of the CCD and the

SLM, we assume that the CCD integrates a shifted signal z(x+ δx, y + δy); hence
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Ii,j =

∫ +β∆/2

−β∆/2

∫ +β∆/2

−β∆/2

|z(x+ δx + i∆, y + δy + j∆)|2dxdy + nei,j (3.17)

=

∫ +β∆/2

−β∆/2

∫ +β∆/2

−β∆/2

|
∑

k,l

dk,lh(x+ δx + (i− k)∆, y + δy + (j − l)∆) +

no(x+ δx + i∆, y + δy + j∆)|2dxdy + nei,j. (3.18)

We restrict our study to global misalignments (i.e. page translation error); so δx

and δy represent page-wide misalignments in the x and y directions respectively.

Equation (3.18) completely characterizes the physical model. In the next step, we

develop efficient algorithms to compute Ii,j.

3.2 Efficient Simulation of Detector Read-Back

Signal

The complexity of computing Equation (3.18) is high. In order to generate Ii,j

efficiently, we decompose it into four major components. Using the band-limited

property and the separability property of the optical PSF, h(x, y), we devise effi-

cient methods to compute/approximate each component . Similar to [13, 9], we

expand the squaring operation expression in Equation (3.18) to get

Ii,j = ai,j + bi,j + ci,j + nei,j, (3.19)
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where

ai,j =

∫ +β∆/2

−β∆/2

∫ +β∆/2

−β∆/2

|r(x+ δx + i∆, y + δy + j∆)|2dxdy, (3.20)

bi,j =

∫ +β∆/2

−β∆/2

∫ +β∆/2

−β∆/2

|no(x+ δx + i∆, y + δy + j∆)|2dxdy, (3.21)

ci,j =

∫ +β∆/2

−β∆/2

∫ +β∆/2

−β∆/2

2<{r(x+ δx + i∆, y + δy + j∆)

×no∗(x+ δx + i∆, y + δy + j∆)}dxdy, (3.22)

where ai,j is the information-bearing component of Ii,j, bi,j is the post-detector

effect of the optical noise intensity, ci,j is the post-detector effect of the cross

product of the information-bearing wave-front and the optical noise wave-front, and

<{x} denotes the real part of the complex variable x. Furthermore, let us write

the complex optical noise as no(x, y) = nor(x, y) + jnoi (x, y), where nor(x, y) is the

real part and noi (x, y) is the imaginary part of the no(x, y) respectively. Now we

can write ci,j as

ci,j =

∫ +β∆/2

−β∆/2

∫ +β∆/2

−β∆/2

2r(x+ δx + i∆, y + δy + j∆)

×nor(x+ δx + i∆, y + δy + j∆)dxdy. (3.23)

He [13] also considered this decomposition of the CCD read-back signal and de-

velop methods for efficient computation/approximation of these terms separately.

However, in order to be more precise we take the dependency of the CCD read-

back signal into account. To explain more, we discuss a major constraint on the
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three components ai,j, bi,j, and ci,j in Section 3.2.1. Afterwards, in Section 3.2.2

we derive the model for ai,j following the methodology used in [8]. We show that

in the presence of pixel misalignments (i.e. δx 6= 0 or δy 6= 0), the structure of the

HDS channel remains intact. Furthermore, we illustrate the separability property

of the underlying discrete linear time-invariant filter that is useful for developing

reduced complexity 2-D BCJR detectors [35]. In Chapter 4 we explain how to

exploit this property as the foundation for design of a 2-D quadratic BCJR detec-

tor. In Section 3.2.3 we derive discrete time models for bi,j and ci,j. In order to

generate valid triples of {ai,j, bi,j, ci,j}, we generate samples of the optical noise.

This increases the complexity of our model, but guaranties statistical consistency

among these components. We use the separability of the optical PSF to reduce the

complexity of our computation.

3.2.1 Relation Among ai,j, bi,j, and ci,j

Now we proceed to investigate the relationship between xi,j, bi,j and ci,j. The most

important constraint to be considered is stated in the following theorem.

Theorem 3.1. For ai,j, bi,j, and ci,j given by Equation (3.20), Equation (3.21),

and Equation (3.23) respectively, the following inequalities hold

0 ≤ ai,j + bi,j + ci,j (3.24)

|ci,j| ≤ ai,j + bi,j (3.25)
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Proof. It is easy to prove Equation (3.24) since

ai,j + bi,j + ci,j =

∫ (i+β/2)∆

(i−β/2)∆

∫ (j+β/2)∆

(j−β/2)∆

|z(x, y)|2dxdy ≥ 0 (3.26)

In order to prove Equation (3.25), we recall that

|r(x, y) + no(x, y)|2 = |r(x, y)|2 + |no(x, y)|2 + 2<{r(x, y)no
∗
(x, y)} ≥ 0

|r(x, y)− no(x, y)|2 = |r(x, y)|2 + |no(x, y)|2 − 2<{r(x, y)no
∗
(x, y)} ≥ 0

Hence

|2<{r(x, y)no
∗
(x, y)}| ≤ |r(x, y)|2 + |no(x, y)|2 (3.27)

Integrating the Inequality Equation (3.27) over the pixel area proves Equation (3.25).

In summary, we observe that the CCD read-back signal components are heavily

constrained. This observation implies lack of precision in Computing methods that

generate the CCD read-back signal components separately.

3.2.2 Efficient Simulation of ai,j

We start by presenting an efficient method to compute the information-bearing

component of the CCD read-back signal Equation (3.20) using same techniques

as [8].
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Plugging Equation (3.7) into Equation (3.20) we get

ai,j =
∑

k,l

∑

m,n

dk,ldm,n

∫ +∆/2

−∆/2

∫ +∆/2

−∆/2

×h(x+ δx + (i− k)∆, y + δy + (j − l)∆)

×h(x+ δx + (i−m)∆, y + δy + (j − n)∆)dxdy.

(3.28)

Since h(x, y) is separable in terms of x and y, we can simplify Equation (3.28)

further to

ai,j =
∑

k,l

∑

m,n

dk,ldm,nG
δx
i−k,i−mG

δy
j−l,j−n, (3.29)

where Gδ
k,m is defined as

Gδ
k,m =

∫ +∆/2

−∆/2

h́(τ + δ + k∆)h́(τ + δ +m∆)dτ. (3.30)

Note that Gδ = [Gδ
k,m] depends on the amount of misalignment, δ. These equations

imply that for each amount of pixel misalignment along either axis there is a

corresponding matrix Gδ. We proceed to simplify Equation (3.29) further. Using

eigenvalue decomposition techniques, we may express entries in Gδ as

Gδ
k,m =

R∑

r=1

λδr(v
δ
r)k(v

δ
r)m (3.31)

where R, the rank of the DCM, is at most (2L+1), λδr is the r-th eigenvalue associ-

ated with eigenvector vδr, and (vδr)k represents the k-th component of eigenvector
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vδr. Inserting Equation (3.31) into Equation (3.29) we get

ai,j =
∑

k,l

∑

m,n

dk,ldm,n

R∑

r=1

R∑

s=1

λδxr λ
δy
s (vδxr )i−k(v

δx
r )i−m(vδys )j−l(v

δy
s )j−n

=
R∑

r=1

R∑

s=1

(di,j ⊗ [

√
λδxr λ

δy
s (vδxr )i(v

δy
s )j])

2, (3.32)

where ⊗ denotes discrete 2-D convolution. We can see that in the presence of

pixel misalignments we still have the DCM structure as in [8]. In more detail,

Equation (3.32) shows that one can view the ai,j as the total response of a bank

of magnitude-squared sub-channels, where each magnitude-squared sub-channel

consists of a discrete linear time-invariant channel followed by the magnitude square

operation.

We approximate Equation (3.31) as

Gδ
k,m ≈ λδmax(vδmax)k(v

δ
max)m. (3.33)

where λδmax is the largest eigenvalue and vδλmax
is its corresponding eigenvector.

From now on, we denote these quantities by λδ and vδ respectively. Inserting Equa-

tion (3.33) into Equation (3.29) we get

ai,j ≈
∑

k,l

∑

m,n

dk,ldm,nH
δx,δy
k,l Hδx,δy

m,n (3.34)

=
(
H
δx,δy
i,j ⊗ [di,j]

)2

, (3.35)

where

H
δx,δy
i,j =

√
λδxλδy

(
vδx
)
i

(
vδy
)
j
. (3.36)
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It is worthwhile to note that by storing N different vectors of qδi we can con-

struct channel models for N2 combinations of misalignments along x and y di-

rections. In order to show that Equation (3.35) is an accurate approximation of

Equation (3.29), we compute the ai,j values based on Equation (3.29) and Equa-

tion (3.35) respectively. Following [8], we use the normalized mean squared error

(NMSE) to quantify the approximation accuracy. The NMSE is defined as the

ratio (mean-squared error between the intensity sequences coming from the HDS

as computed by Equation (3.29) and the simplified DCM output as computed by

Equation (3.35))/(mean power of the HDSs intensity sequence computed by Equa-

tion (3.29)). The normalized mean squared error (NMSE) results that are presented

in Section 3.3.1 show that NMSE is at most 6.31%. A very interesting property of

Hδx,δy = [H
δx,δy
i,j ] is its separability. Mathematically,

Hδx,δy =
√
λδxλδyvδx(vδy)T . (3.37)

As figure 3.3 illustrates, the 2-D linear IPI channel may be considered as the

concatenation of a linear row ISI channel and a linear column ISI channel. Infor-

mation bits are denoted by di,j. The row ISI channel is determined by vδx and

represents the interference among bits di,j that are placed along neighboring rows

on the same column. The output of the row ISI is denoted by yi,j. The yi,j that are

placed along neighboring columns on the same row interfere according to (vδy)T

that represents the column ISI channel. The information-bearing component ai,j
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Figure 3.3: Separable DCM of information-bearing component of the CCD read-

back signal in a HDS system with pixel misalignment.

is the magnitude-square of the column ISI output. In [35] we present a reduced

complexity BCJR detector for the electronics noise dominated HDS channels with

pixel misalignment based on the separability property discussed here.

3.2.3 Efficient Simulation of bi,j and ci,j

As we observe in Section 3.2.1 there is dependency among the CCD read-back

signal components. Hence in our approach we generate samples of the optical

noise nςk,l = no(kς, lς), where ς is the sampling step. As the optical noise auto-

covariance is Kno(x, y) = E0h(x, y) ?h(−x,−y), the auto-covariance of the process

nςk,l is

E{nςk,lnς
∗

0,0} = E{no(kς, lς)no∗(0, 0)} = Kno(kς, lς). (3.38)

Hence we generate the samples by filtering a complex zero-mean white Gaussian
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process with the filter

hςk,l = ς
√
E0h(kς, lς). (3.39)

In order to simulate the post-detector effect of scatter noise, bi,j, based on Equa-

tion (3.21), we need to perform 2-D numerical integrations. However, using a suf-

ficiently fine integration step, ς, lead to a very large matrix representing nςi,j that

requires huge memory and takes a lot of time to apply the coloring filter hςi,j. In

more detail,a data page of N ×N pixels and integration step of ς = ∆/M lead to

nςi,j page of size

MN ×MN. (3.40)

Furthermore, if the IPI span is (2L+ 1)× (2L+ 1) then size of hς is

(2L+ 1)M × (2L+ 1)M. (3.41)

Consequently, using a fine integration step lead to prohibitive complexity. We show

an efficient method for performing 2-D integration of band-limited signals using a

large sampling step.

Theorem 3.2. Assume that E(x, y) is the response of the following two-dimensional

integrator system

E(x, y) =

∫ x+β∆/2

x−β∆/2

∫ y+β∆/2

y−β∆/2

S(τ1, τ2)dτ2dτ1, (3.42)
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where S(x, y) which is a band-limited signal with Nyquist sampling rate of Ts. The

samples ei,j = E(iTs, jTs) are

ei,j =
∞∑

k1=−∞

∞∑

k2=−∞

Sk1,k2wi−k1wj−k2 , (3.43)

where Sk1,k2 = S(iTs, jTs) and

wi =

∫ +β∆/2

−β∆/2

sinc(
τ1 + iTs
Ts

)dτ1. (3.44)

Proof. Let us first look at the reconstruction of S(x, y) based on its samples Si,j

as

S(x, y) =
∞∑

k1=−∞

∞∑

k2=−∞

Sk1,k2 sinc(
x− k1Ts

Ts
,
y − k2Ts

Ts
). (3.45)

E(iTs, jTs) =

∫ iTs+β∆/2

iTs−β∆/2

∫ jTs+β∆/2

jTs−β∆/2

∞∑

k1=−∞

∞∑

k2=−∞

Sk1,k2

×sinc(
τ1 − k1Ts

Ts
,
τ2 − k2Ts

Ts
)dτ2dτ1. (3.46)

Changing the order of summation and integration and changing the integration

variables we get

E(iTs, jTs) =
∞∑

k1=−∞

∞∑

k2=−∞

Sk1,k2

×
∫ +β∆/2

−β∆/2

∫ +β∆/2

−β∆/2

sinc(
τ1 + (i− k1)Ts

Ts
,
τ2 + (j − k2)Ts

Ts
)dτ2dτ1

=
∞∑

k1=−∞

∞∑

k2=−∞

Sk1,k2wi−k1wj−k2 , (3.47)

where

wi =

∫ +β∆/2

−β∆/2

sinc(
τ1 + iTs
Ts

)dτ1. (3.48)
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where we exploit the separability of sinc(x, y) = sinc(x)sinc(y) to drive Equa-

tion (3.48).

Equation (3.47) shows that 2-D integration is reduced to 2-D convolution as the

result of finite band-width. Replacing the separable two-dimensional convolution

with the concatenation of two one-dimensional convolutions in Equation (3.47)

brings more complexity reduction. In more detail, for a filter wi size Nf × Nf ,

the complexity is reduced from O(N2
f ) for two-dimensional convolution to O(Nf )

for one-dimensional convolution. In addition, despite the fact that the function

sinc(1/Ts) decays slowly, the filter coefficients, wi decays much faster as i increases

because the positive and negatives lobes of the sinc function cancel each other in

the integration Equation (3.48). Figure 3.4 shows filter ẃi for CCD fill-factor β = 1

and Ts = ∆/2.

In addition to generic complexity reduction gained by Theorem 3.2, it also

brings substantial complexity reduction in the context of computing bi,j and ci,j as

we explain in the following.

Derivation of the bi,j

In this section we study the post-detector effect of the optical scatter noise; namely

the process bi,j which is defined in Equation (3.21).
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Figure 3.4: Integrator filter ẃi for β = 1 and ς = Ts = ∆/2.

We can view Equation (3.21) as sampling of the time-invariant system

B(x, y) =

∫ x+β∆/2

x−β∆/2

∫ y+β∆/2

y−β∆/2

|no(τ1, τ2)|2dτ2dτ1 (3.49)

with rate ∆; i.e. bi,j = B(i∆, j∆). Let us denote the intensity of the optical scatter

noise by Ion(x, y) = |no(x, y)|2. Since the cutoff frequency of Ion(x, y) is ω/∆ with

Nyquist aperture width, ω = 1, we have Ts = ∆/2 which is much larger than a

typical ς required for precise numerical integration. This results in a much smaller

nςi,j page, and lower computation complexity for generating the optical noise sample

using the filter hςi,j.
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Efficient Simulation of the ci,j

Let us express the Post-detector effect of the cross product field as [13]

ci,j = 2
L∑

k,l=−L

di−k,j−lJk,l,i,j, (3.50)

where

Jk,l,i,j =

∫ +β∆/2

−β∆/2

∫ +β∆/2

−β∆/2

h(k∆ + x+ δx, l∆ + y + δy)

×nor(x+ δx + i∆, y + δy + j∆)dxdy. (3.51)

The discrete random process Jk,l,i,j is zero-mean and Gaussian. Efficient compu-

tation of the ci,j boils down to efficient computation of the Jk,l,i,j. Vector Ji,j the

coefficients Jk,l,i,j for the pixel (i, j). Since vector Ji,j contains zero-mean jointly

Gaussian random variables, it is fully described by its first and second order statis-

tics. Hence, we start by investigating its auto-covariance

KJi,j
= E{Ji,jJTi,j}. (3.52)

By spectral decomposition of KJi,j
numerically, we observed that this matrix has

only one significant eigenvalue and the rest of eigenvalues are negligible. So KJi,j

can be very well approximated in the (minimum mean-squared sense [36]) by

KJi,j
≈ λmaxppT , (3.53)

where λmax is the maximum eigenvalue of KJi,j
and p is its corresponding eigen-

vector. The normalized mean-squared error of the approximation is 5.5 × 10−30.
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Which is actually beyond the precision of the software we used in our simulations

(MATLAB). This shows that we may represent Ji,j as

Ji,j = qn̂i,j, (3.54)

where q = ηp and n̂i,j is a zero-mean Gaussian process with variance λmax/η
2.

In other words, for a given pixel (i, j), the coefficients Jk,l,i,j are all factors of one

random variable n̂i,j. This insight is hard to get from Equation (3.51).

The difficulty we face here is that n̂i,j has no physical meaning and hence there

seem to be no apparent connection between n̂i,j and the optical scatter noise. Such

a connection is important as long as we want to generate bi,j and ci,j consistently.

In addition, the relationship between vector p and the function h(x, y) is not clear.

Note that computing KJi,j
and its spectral decomposition is time consuming. This

relationship is important since it potentially enables us to generate p more effi-

ciently for different system parameters. In order to derive a physically meaningful

representation for Ji,j we approximate Jk,l,i,j in Equation (3.51) by substituting a

constant q
δx,δy
k,l instead of h(k∆ +x+ δx, l∆ + y+ δy). We omit the superscript and

simply write qk,l. Using this approximation Equation (3.51) we get the approxi-

mation for Jk,l,i,j as

J̃k,l,i,j = qk,lñi,j (3.55)

where

ñi,j =

∫∫ +β∆/2

−β∆/2

nor(x+ δx + i∆, y + δy + j∆)dxdy. (3.56)
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Since h(x, y) does not fluctuate rapidly over the pixel area, this is a reasonable

approximation. We would like to determine qk,l such that the mean-squared error

MSE = E{(Jk,l,i,j − J̃k,l,i,j)2} (3.57)

is minimized. Inserting Equation (3.51) and Equation (3.55) into Equation (3.57)

and set the expectation of the derivative of MSE with respect to qk,l to zero results

in

qk,l =
Ak,l
σ2
ñ

, (3.58)

where

Ak,l =
1

2

∫∫∫∫ β∆/2

−β∆/2

h(k∆ + x+ δx, l∆ + y + δy)

×Kno(x− x́, y − ý)dxdydx́dý, (3.59)

and σ2
ñ is, the variance of ñi,j, equal to

σ2
ñ = E{ñ2

i,j}

=

∫∫∫∫ β∆/2

−β∆/2

E{nor(x+ δx + i∆, y + δy + j∆)

×nor(x́+ δx + i∆, ý + δy + j∆)}dxdydx́dý

=

∫∫∫∫ β∆/2

−β∆/2

Kno
r
(x− x́, y − ý)dxdydx́dý

= (β∆)2

∫∫ β∆

−β∆

(1− |x|
β∆

)(1− |y|
β∆

)Kno
r
(x, y)dxdy

=
(β∆)2

2

∫∫ β∆

−β∆

(1− |x|
β∆

)(1− |y|
β∆

)Kno(x, y)dxdy, (3.60)
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where the last equality is due to the fact that the optical scatter noise no(x, y) is a

complex symmetric Gaussian process; hence its power is equally divided between

its real and imaginary parts and hence Kno
r
(x, y) = 0.5 ∗ Kno(x, y). Let qMMSE

denote the vectorized representation of qk,l. The NMSE

E{(p− qMMSE)2}
E{qMMSE2} = 0.0019 (3.61)

signifies that the optimal qk,l that minimizes the MSE, also result in accurate

second order statistics. We expect this to happen in fact.

Considering the finite band-width of the optical noise, we are allowed to exploit

Theorem 3.2 to efficiently calculate ñi,j based on Equation (3.56); mathematically,

ñi,j =
∞∑

k1=−∞

∞∑

k2=−∞

nδk1,k2wi−k1wj−k2 , (3.62)

where integrator filter coefficients, wi, are similar to Equation (3.48).

The Nyquist sampling distance for the optical scatter noise is Ts = ∆/ω which

is half of the Nyquist sampling distance for intensity of the optical scatter noise

used in calculating Equation (3.49). However, for this increased sampling distance

the corresponding integrator filter coefficients vanish much slower. The reason is

that for sampling distance Ts = ∆/ω each filter coefficient in Equation (3.48) is the

area under one lobe of the ‘sinc’ function. Since we have already computed samples

of the optical scatter noise with sampling rate of ∆/(2ω), it is more efficient to use

the smaller sampling distance Ts = ∆/2ω since the filter coefficients vanish much

faster.
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Statistics of the bi,j

Throughout our research, we use the analytical results of Chugg et al. [9] on the

first and second order statistics of the process bi,j to validate our approach. In-

terestingly, our numerical results appear to be very different to what their theory

projects. We find out that a flaw in the derivation of the second order statistics of

bi,j in [9]. we present their results as well as our correction. Later, in Section 3.3.2

we will observe that our simulation results match the corrected analytical results.

Let us first look into the statistics of the integrand, |no(x, y)|2. The mean of

|no(x, y)|2 is

E{|no(x, y)|2} = E{no(x, y)no
∗
(x, y)} = Kno(0, 0), (3.63)

where Kno(x, y) is the covariance of the optical scatter noise process given by Equa-

tion (3.13). In order to compute the auto-covariance of |no(x, y)|2, K|no|2(x, y) =

E{|no(x, y)|2|no(0, 0)|2} − E2{|no(x, y)|2}, Chugg et al. resort to Reed’s theorem

for complex Gaussian random variables [37] and get

K|no|2(x, y) = |Kno(x, y)|2 . (3.64)

Based on Equation (3.64) we conclude that,

S|no|2(fx, fy) = Sno(fx, fy) ? Sno(−fx,−fy). (3.65)

Equation (3.65) and the band-limited property of no(x, y) shows that |no(x, y)|2 is

also a low-pass and band-limited process with cutoff frequency of ω/∆.
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After discussing the statistics of |no(x, y)|2, we present the results of Chugg et

al. [9] on the statistics of the process bi,j:

E{bi,j} = β2∆2Kno(0, 0) (3.66)

Kb(i, j) = E{ei,je0,0} − E2{e0,0}

=
1

(2β∆)2

∫∫ β∆

−β∆

(1− |x|
β∆

)(1− |y|
β∆

)

×|Kno(i∆ + x, j∆ + y)|2dxdy. (3.67)

The auto-covariance function Equation (3.67) is incorrect. In their derivation they

use the equality

∫∫∫∫ β∆/2

−β∆/2

f(x− x́, y − ý)dxdydx́dý =
1

4(β∆)2

∫∫ β∆

−β∆

(1− |x|
β∆

)(1− |y|
β∆

)

×f(x, y)dxdy, (3.68)

where they actually considered β = 1. The correct equality is

∫∫∫∫ β∆/2

−β∆/2

f(x− x́, y − ý)dxdydx́dý = (β∆)2

∫∫ β∆

−β∆

(1− |x|
β∆

)(1− |y|
β∆

)

×f(x, y)dxdy. (3.69)

For a simple check one may substitute the function f(x, y) = 1 to see that in

Equation (3.68) the right hand side does not match the left hand side;whereas in

Equation (3.69) they both equal (β∆)4. We present a detailed proof for Equa-

tion (3.69) next that you may safely escape.
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Proof. Let us define u = x− x́ and v = y − ý. Hence,

∫∫∫∫ β∆/2

−β∆/2

f(x− x́, y − ý)dxdydx́dý =

∫∫∫∫

Ξ

f(u, v)dxdydudv, (3.70)

where Ξ is the integration region. Since it is a four-dimensional space, it is impos-

sible to visualize it. From the four variables, we can take u and v as free variables

and x = u+ x́, y = v+ ý. Hence, the right hand side of Equation (3.70) is equal to

∫∫∫∫

Ξ

f(u, v)dxdydudv =

∫∫ β∆/2

−β∆/2

f(u, v)

×
(∫∫

Ξ́u,v

dxdy

)
dudv, (3.71)

where Ξ́u,v is an integration region in the two-dimensional space which depends u

and v. In addition,

∫∫

Ξ́u,v

dxdy = Area of the region Ξ́u,v, (3.72)

since the integrand is unity. For a fixed u and v, the equalities x = u + x́ and

y = v + ý and the fact that all variables should be in the range [−β∆/2, β∆/2],

we conclude that

Ξ́u,v =





max(−β∆/2, u− β∆/2) ≤ x ≤ min(β∆/2, u+ β∆/2),

max(−β∆/2, v − β∆/2) ≤ y ≤ min(β∆/2, u+ β∆/2).

(3.73)

This area is the intersection of two squares. Both has a width of β∆, one is centered

at the origin in the (x, y) plane and one is centered at the point (u, v) in the (x, y)
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plane. Hence,

Area of the region Ξ́u,v = (β∆)2 − (β∆)|u| − (β∆)|v|+ (β∆)2|uv|

= (β∆)2(1− |u|
β∆

)(1− |v|
β∆

). (3.74)

If we substitute Equation (3.74) into Equation (3.72) we get

∫∫

Ξ́u,v

dxdy = (β∆)2(1− |u|
β∆

)(1− |v|
β∆

). (3.75)

If we substitute Equation (3.75) into Equation (3.71), the theorem is proved.
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Figure 3.5: Auto-covariance of Kb(i, j) for E0 = 1, ω = 1, α = β = 1, ∆ = 1.

Using 3.69 in their derivation, we get the correct second order statistics as

Kb(i, j) = (β∆)2

∫∫ β∆

−β∆

(1− |x|
β∆

)(1− |y|
β∆

)

×|Kno(i∆ + x, j∆ + y)|2dxdy. (3.76)

Figure 3.5 gives a 2-D view of Kb(i, j) as a function of i and j.

Next we present a reduced complexity method to compute Equation (3.76).

Since h(x, y) = h́(x)h́(y) is separable we can writeKno(x, y) = E0h(x, y)?h(−x,−y)

as

Kno(x, y) = K1
no(x)K1

no(y), (3.77)

where

K1
no(x) =

√
E0h́(x) ? h́(−x). (3.78)

In order to simplify the 2-D numerical integration in Equation (3.76) we use the
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separability of Kno(x, y) to write Kb(i, j) as

Kb(i, j) = K1
e (i)K1

e (j), (3.79)

where

K1
e (i) = β∆

∫ β∆

−β∆

(1− |x|
β∆

)|K1
no(i∆ + x)|2dx. (3.80)

Following a tedious mathematical derivation He [13] proved the inequality

Kb(0, 0) ≤ β4∆4|Kno(0, 0)|2. (3.81)

We can simply prove the inequality in the following way noting that |Kno(x, y)| ≤

|Kno(0, 0)| and upper bounding the integrand in 3.76.

3.3 Numerical Results

First, we investigate the accuracy of the simplified model of the information-

bearding component ai,j in Section 3.3.1. Next, we proceed to present the simula-

tion results for bi,j in Section 3.3.2. We validate our computation method against

the analytical results of bi,j. In the end, we investigate the complexity reduction

provided by our methods.
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In a our simulations we the HDS parameters as following:

∆ = 1 Pixel spacing for the SLM/CCD

ω = 1 Normalized aperture width

α = 1 , β = 1 The fill-factor for the SLM/CCD pixels

2L+ 1 = 21 The IPI span

E0 = 1 Refer to auto-covariance of Kno(x, y)in (3.13)

ε = 100 The SLM contrast ratio

N = 1024 The number of pixels along each dimension of the data page

(3.82)

3.3.1 Accuracy of ai,j Simplification

In order to assess the accuracy of the one branch DCM model we adopt the ap-

proach of [8] which quantifies accuracy based on the normalized mean-squared

error (NMSE). The NMSE is defined as the ratio (mean-squared error between the

intensity sequences coming from the HDS as computed by (3.29) and the simplified

DCM output as computed by (3.35))/(mean power of the HDSs intensity sequence

computed by (3.29)).

Several different factors such as SLM contrast ratio, normalized aperture width,

SLM and CCD fill factors, and finally pixel misalignment affect the accuracy of the

one branch DCM. For a channel with no pixel misalignments, the NMSE results

are studied by [8]. We are particularly interested in the effect of pixel misalign-

ment on the NMSE. To investigate further NMSE plots as a function of δx/∆,
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the normalized pixel misalignment along axis x, are presented. The value of δx

varies in the range of 0 - 0.5∆, where δ = 0.5∆ is the most severe case of pixel

misalignment along an axis. To study the effect of each factor, the rest of factors

are fixed to typical values and three plots are sketched for δy = 0.1∆, δy = 0.25∆,

and δy = 0.5∆.

Figure 3.6 illustrates the effect of the pixel misalignment on the NMSE for

various normalized aperture widths (ω). The SLM/CCD fill factors are 100% and

SLM contrast ratio is set to 100. We observe that the pixel misalignment highly

impact the NMSE. First of all, in Figure 3.6(a) we observe that for a limited

pixel misalignment the NMSE is maximum at Nyquist aperture (ω = 1) (The

NMSE results in [8] show this as well); nevertheless for higher values of the pixel

misalignment, larger apertures lead to higher NMSE values. Nyquist and sub-

Nyquist apertures (ω ≤ 1) tend to maintain a constant error level as the pixels

lose their alignment. However, for super-Nyquist apertures (ω > 1) the NMSE

steeply increases as the pixel misalignment increases. The maximum NMSE of

3.63% occurs at ω = 1.2, δx = 0.5∆, and δy = 0.5∆ for the given set of parameters.

Figure 3.7 illustrates the effect of the pixel misalignment on the NMSE for

various CCD fill factors (β). The SLM fill factor is 100% and the SLM contrast

ratio is set to 100. We use Nyquist aperture (ω = 1). We observe that the behavior

of the NMSE is consistent for pixel aligned and pixel mis-aligned channels. In other

words, increase of the CCD fill factor leads to substantial increase of the NMSE.
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However, for the given set of system parameters, the NMSE does not significantly

change as pixel misalignment increases. The maximum NMSE is 3.63% for the

given set of parameters. The maximum NMSE of 1.24% occurs at β = 1, δx = 0.5∆,

and δy = 0.5∆ for the given set of parameters.

Figure 3.8 illustrates the effect of the pixel misalignment on the NMSE for

various SLM fill factors (α). The CCD fill factor is 100% and SLM contrast ratio

is set to 100. We use Nyquist aperture (ω = 1). We observe that the NMSE

slightly decreases as the SLM fill factor increases. The maximum NMSE of 1.24%

occurs at β = 1, δx = 0.5∆, and δy = 0.5∆ for the given set of parameters.

Figure 3.9 illustrates the effect of the pixel misalignment on the NMSE for

various SLM contrast ratios (ε). The SLM/CCD fill factors are 100% and Nyquist

aperture is used. We observe that the increase of the SLM contrast ratio leads to

substantial increase of the NMSE. However, for the given set of system parameters,

the NMSE does not significantly change as pixel misalignment increases. The

maximum NMSE of 1.26% occurs at ε = 100, δx = 0.5∆, and δy = 0.5∆ for the

given set of parameters.

We summarize the above results: 1) For the Nyquist aperture the NMSE does

not change much as pixel misalignment varies. The maximum NMSE is around

1.8% and occurs when alpha = 0.8. 2) The NMSE increases steeply as pixel

misalignment increases for ω ≥ 1. 3) The NMSE increases as normalized aperture
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width, CCD fill factor or SLM contrast ratio increase. The only exception is the

pixel aligned channel, where NMSE decreases when ω increases from 1 to 1.2. 5)

The NMSE increases as SLM fill factor decrease. 4) For reasonable configurations,

ω = 1.2, α = 0.8, β = 1, ε = 100 lead to the maximum NMSE 0f 6.31% at

δx = δy = 0.5∆. We conclude that for Nyquist or sub-Nyquist apertures, the one

branch DCM is accurate to around 2.0% NMSE. For ω > 1, the accuracy depends

on the pixel misalignment and the SLM fill factor and special care should be taken

with small SLM fill factors and high pixel misalignments.

3.3.2 Validation of bi,j

The system parameters are ω = 1, ∆ = 1, E0 = 1, α = β = 1. The analytical

value for mean of bi,j is

E{bi,j} = β2∆2Kno(0, 0) = 0.5925. (3.83)

Our simulations show E{bi,j} = 0.5905 which is consistent with the theory. Matri-

ces in 3.84 and 3.85 correspond to analytical results and statistical averaging over

simulated bi,j respectively.

KAnalytical
i,j =




0.0098 0.0418 0.0098

0.0418 0.1772 0.0418

0.0098 0.0418 0.0098




(3.84)
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Figure 3.6: NMSE as a function of the normalized pixel misalignment δx/∆ for

various normalized aperture widths, β = 1, α = 1, ε = 100, and δy ,(a) 0.1∆, (b)

0.25∆, (c) 0.5∆.
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Figure 3.7: NMSE as a function of the normalized pixel misalignment, δx/∆ for

various CCD fill factors, ω = 1, α = 1, ε = 100, and δy ,(a) 0.1∆, (b) 0.25∆, (c)

0.5∆.
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Figure 3.8: NMSE as a function of the normalized pixel misalignment, δx/∆ for

various SLM fill factors, ω = 1, β = 1, ε = 100, and δy ,(a) 0.1∆, (b) 0.25∆, (c)

0.5∆.
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Figure 3.9: NMSE as a function of the normalized pixel misalignment, δx/∆ for

various contrast ratios, ω = 1, α = 1, β = 1, and δy ,(a) 0.1∆, (b) 0.25∆, (c) 0.5∆.
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Figure 3.10: Histogram of bi,j for E0 = 1, ω = 1, α = β = 1, ∆ = 1.

KAveraging
i,j =




0.0095 0.0412 0.0095

0.0418 0.1767 0.0418

0.0095 0.0412 0.0095




(3.85)

Figure 3.10 illustrates the histogram of bi,j. The complexity of computing the

information-bearing component of the CCD read-back signal, ai,j is same as that

of Keskinoz and Kumar [8]. Using the separability property of the underlying

linear channel in the DCM model enables us to characterize the channel for N2

pixel misalignment lays by storing only N vectors. Furthermore, we can use the

separability property to reduce the complexity of computing the two-dimensional

convolution in (3.35) from O((2L+ 1)2) to O(2L+ 1).

Recalling the discussion in 3.2.3, the major bottleneck regarding the computing

of bi,j and ci,j is related to generating the samples of the optical noise. Based on
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the simulation parameters given in 3.82, the data page size is 1024 × 1024. If we

intend to compute (3.21) and (3.23) by numerical integration; we need at least a

sampling rate of Ts = ∆/5 (i.e. M = 5 points per pixel) for acceptable accuracy.

Consequently, based on (3.40) and (3.41) the size of the optical noise page would be

5120× 5120 and the filter size would be 105× 105 respectively. However, utilizing

our method in Section 3.2.3 needs a sampling rate of Ts = ∆/2 (i.e. M = 2

points per pixel) which results in a much smaller noise page size of 2048 × 2048

and coloring filter size of 42× 42.

3.4 Model Comparison

We end this article by comparing our model with that of Keskinoz and Kumar [8]

and He [13].

Keskinoz and Kumar [8] model for the HDS with electronics and optical noise

is given as

Ii,j = |di,j ⊗ hi,j + noi,j|2 + nei,j,

= |di,j ⊗ hi,j|2 + |noi,j|2 + 2<(di,j ⊗ hi,j)no
∗

i,j + nei,j, (3.86)

where Ii,j denotes the CCD read-back signal, di,j denotes the data bits, hi,j is the

DCM (for pixel aligned HDS), noi,j denotes the optical noise and nei,j denotes the

CCD electronics noise. They assume that noi,j is white and Gaussian. However,
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since the optical noise is colored as Equation (3.13) suggests, Equation (3.86) is

not accurate. Furthermore, the term |noi,j|2 is exponentially distributed whereas the

distribution of its counterpart, bi,j, which is shown in Figure 3.10, does not appear

to be exponential. Based on these arguments, we believe that Equation 3.86 is

accurate as long as the optical noise is negligible (electronics noise dominated

channel). The main difference between our model and He [13]’s model is that

He [13] ignores the dependency among the three components of the read-back

signal and investigates methods to generate them separately. He [13] derived simple

expressions for the first and second order statistics of each component for a typical

configuration of parameters as

E{ai,j} ≈ 0.5∆2, (3.87)

var (ai,j) ≈ 0.1∆4, (3.88)

E{bi,j} = β2∆2Kno(0, 0), (3.89)

var (bi,j) ≤ β4∆4 (Kno(0, 0))2 , (3.90)

E{ci,j} = 0 (3.91)

var (ci,j) = 0.5β4∆4Kno(0, 0). (3.92)

Based on these equations He [13] argues that when the power of the optical noise

is low, the variance of bi,j is much smaller compared to those of ai,j and ci,j. In other

words, the relative variations in bi,j about its mean are much less compared to those

of ai,j and ci,j. Hence, He [13] approximates bi,j as a constant noise floor located
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at its mean value in his channel model. In order to compute ci,j, He [13] develops

an efficient approximation method; however, as we have already stated ci,j is a

colored process whereas in his method it is considered white. Furthermore, there

is a dependency between bi,j and ci,j which is not considered in [13]. Comparing

to [13] and [8], our model is more complex. However, its derivation does not involve

major approximations; hence it is more accurate and follow the statistics of the

actual read-back signal closely.

If we ignore the connection between ci,j and bi,j, we may generate ci,j indepen-

dently by a fast routine which does not require to compute ñi,j in Equation (3.56).

In order to find auto-covariance of the n̂i,j over i and j we need to compute the

auto-covariance ci,j and then compute the analytical relationship between Kci,j and

Kn̂i,j
. Unlike ñi,j which is the average of the optical scatter noise, n̂i,j has no phys-

ical meaning , and we can not incorporate the optical noise information; so it does

not result in ci,j which is statistically consistent with bi,j. If power of the optical

scatter noise is low, we can treat bi,j as a constant and this second method is useful.

However, for high levels of noise where we want bi,j and ci,j to be consistent, we

incorporate the optical noise samples to generate bi,j and ci,j.
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3.5 Conclusion

An accurate model for the HDS is of fundamental importance since it allows for

accurate performance evaluation of signal processing algorithms such as equalizers,

detectors etc. The discrete magnitude-squared channel model of Keskinoz and

Kumar [8] is a one of they most important models for the HDS channels. This

importance stems from the fact that The DCM model provides us with a useful

insight into the underlying structure of the inter-pixel interference(IPI) in the HDS.

As we will see in the Chapter 4, this model inspires us to design a robust detector for

HDS. However, this model only works for pixel aligned channels. We have extend

the DCM model of Keskinoz and Kumar for channels with pixel misalignment.

Analysis and simulation of the detector read-back signal in the presence of the

optical noise is difficult because of its quadratic nonlinearity. As another contri-

bution of this work, we present a new method for efficient and accurate simulation

of the detector read-back signal in the presence of the optical noise.



Chapter 4
Soft-Decision Nonlinear Two-Dimensional

Reception Scheme for Holographic Data

Storage

Our discussion in Section 2.1.2 shows that as the storage density increases, the

inter-pixel interference (IPI) increases as a result of using smaller apertures [2].

Furthermore, SNR is inversely proportional to the square of the number of holo-

grams multiplexed in each stack [1, 11]. Consequently, low SNRs are inevitable as

density increases. Accordingly, developing soft-decision detectors for HDS chan-

nels is of fundamental importance, since such detectors are readily integrable with

low-density parity-check (LDPC) codes into iterative reception schemes that can

82
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achieve near-optimal BER performance at low SNRs. Most existing detection tech-

niques for HDS [9], [8], [38] produce hard decisions and hence do not fit this bill.

A notable exception is [19]. Unfortunately, complexity of the detector of [19] tends

to be very high.

An important soft-decision detector is BCJR [30] which is an optimal symbol-

by-symbol MAP detector. Unfortunately, the absence of natural ordering in the 2-

D page of data renders the generalization of BCJR algorithm difficult as it relies on

the sequential nature of the data. In Section 2.2.3 we explained how [22] exploit the

separability property to tackle the lack of natural ordering in linear 2-D channels.

In a linear separable channel, the 2-D ISI can be viewed as a concatenation of

the ISI along the rows and the ISI along the columns. The work reported in this

chapter is based on our observation in Section 3.2.2: The HDS channel, while

nonlinear, has a similar separability property. This key observation permits us to

extend the 2-D BCJR detector of [22] to deal with the quadratic nonlinearity of

the HDS channel at no additional complexity.

For an ISI span of (2L+ 1)× (2L+ 1), the detector complexity in [19] is expo-

nential in (2L+1)2 while complexity of the detector in [22] is exponential in 2L+1

(Refer to Sections 2.2.2 and 2.2.3 respectively). Although, the resulting complexity

is much lower than that of [19], it can still be very high at high densities (i.e. for

large ISI spans). To limit complexity further, we resort to partial-response (PR)

techniques that limit the ISI span prior to detection. To this end, we introduce
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a new target signal that involves the same nonlinear mechanism as in the HDS

channel.

A further important challenge in HDS is pixel misalignment. In practice it is

impossible to achieve perfect pixel alignment due to a variety of adverse factors.

The effect of pixel misalignment is substantial. As [11] showed, pixel misalignment

significantly deteriorates the detection performance and even sometimes brings

the achievable density to zero. Reference [11] presented a nonlinear algorithm to

mitigate the effects of pixel misalignment. However, this algorithm fails to work

with an acceptable performance for high levels of pixel misalignment. Unlike the

approach of [11], our technique works well even for severe misalignments. Further-

more, [11] uses decision feedback; consequently, error propagation may arise at low

SNRs. Conversely, combinations of BCJR detectors and LDPC codes are known

for their excellent performance at low SNRs. We also test linear PR targets along

with the 2-D BCJR detector of [22] (Refer to Section 2.2.3), and observe a poor

BER performance for severe misalignment. This clearly illustrates the necessity of

accommodating nonlinearity in the 2-D BCJR for HDS channels.

This chapter is organized as follows: In Section 4.1 we review the separability

property of the HDS system which is of fundamental importance in our detector de-

sign. In Section 4.2 we discuss our reception technique including the 2-D quadratic

BCJR detector and the quadratic partial response (PR) signal. In Section 4.4 we

discuss the numerical results and finally we present our conclusions in Section 4.5.
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Figure 4.1: Electronics-Noise Dominated HDS Channel Model.

4.1 Channel Model

We use the discrete magnitude-squared channel model derived in Section 3.2.2 to

simulate CCD read-back values in HDS. We consider detector electronics noise only,

which is zero-mean, additive, white, and Gaussian. In other words, we assume an

electronics-noise dominated channel (ENDC) [8] . The simplified channel model

with no optical noise is illustrated in Figure 4.1. We denote the input data bits by

di,j. These bits pass through a linear 2-D ISI channel characterized by a discrete

channel matrix (DCM) Hδx,δy (We use the shorthand H in Figure 4.1). The ISI span

is (2L+1)×(2L+1) which means that (2L+1)2 pixels interfere for each read-back

value of the CCD. As shown in the Equation (3.37), Hδx,δy is separable. Separability

of the DCM Hδx,δy allows us to consider 2-D ISI as the concatenation of two

channels representing row and column ISI respectively similar to Section 2.2.3. The

only difference is that now the magnitude of the column ISI channel is squared to

generate the noiseless channel output. White Gaussian noise nei,j is added afterward

to produce the CCD read-back value Ii,j. Now the CCD read-back signal Ii,j in
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0.0005 −0.0027 −0.0169 −0.0027 0.0005
−0.0027 0.0156 0.0972 0.0156 −0.0027
−0.0169 0.0972 0.6045 0.0972 −0.0169
−0.0027 0.0156 0.0972 0.0156 −0.0027

0.0005 −0.0027 −0.0169 −0.0027 0.0005







0.0027 −0.0043 0.0288 0.0288 −0.0043
−0.0043 0.0069 −0.0456 −0.0456 0.0069

0.0288 −0.0456 0.3029 0.3030 −0.0456
0.0288 −0.0456 0.3030 0.3032 −0.0456
−0.0043 0.0069 −0.0456 −0.0456 0.0069




Figure 4.2: Discrete channel matrix for the pixel-aligned channel H0.0,0.0 (Up)

and the pixel-misaligned channel H0.5,0.5 (Down).

the absence of the optical noise is :

Ii,j =
∣∣∣[hδx,δyi,j ]⊗ [di,j]

∣∣∣
2

+ nei,j (4.1)

where ⊗ denotes 2D convolution.

From this point on, we will refer to a HDS by its corresponding DCM. We

consider two HDS channels. The first channel is a perfectly pixel-aligned HDS

channel, referred to as pixel-aligned HDS. Second channel is a HDS channel with

half pixel misalignment in both x and y directions, simply referred to as pixel-

misaligned HDS. Figure 4.2 illustrates the DCM of these channels. The entry at

the center of the DCM is presented in bold face. All the other entries correspond

to interfering pixels. Note that H0.5,0.5 represents the most severe case of pixel

misalignment where we can see that 4 pixels contribute almost equally to the read-

back value.
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Figure 4.3: Reception for nonlinear separable channel.

4.2 Reception Technique

As shown in Figure 4.3, our reception technique is comprised of a linear minimum-

mean-squared-error (MMSE) equalizer and the 2-D BCJR detector. Linear MMSE

equalization for HDS channels is investigated in detail by [9].

First, we equalize the channel output, Ii,j. The equalizer output s̃i,j is an

estimate of the target signal si,j to be described later in Section 4.2.2. For the

time being, it is enough to know that the HDS channel and the target signal follow

the same model and the only difference between them is the size of their DCM.

The 2-D BCJR detector in Figure 4.3 is slightly different than the one described

in Section 2.2.3.

Let us first explain the BCJR detector.

4.2.1 The Quadratic Reduced-Complexity 2-D BCJR De-

tector

The BCJR detectors we use here are based on the 2-D BCJR detectors in [22]

explained in Section 2.2.3. Detectors in [22] were developed for separable linear
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additive white gaussian noise channels illustrated in Figure 2.2.

As Figure 4.1 suggests, the DCM is separable. However, the ENDC HDS chan-

nel is not linear because of the squaring operation. Thus, we have to modify the

detectors to work with the nonlinear HDS channel. First we use a BCJR detector

similar to the column detector in Section 2.2.3 to produce the log-likelihood ratio

(LLR) values for the intermediate signal yi,j. We only have to modify the branch

values of the column detector trellis based on the nonlinearity of the HDS channel.

In other words, we only need to substitute the values z(ŝ, s) by their squares. The

remaining column detector equations and the entire row detector equations are

kept unchanged.

In Figure 4.3, we denote the output of the column detector by L(yi,j). The

column detector then passes L(yi,j) to another binary BCJR detector to compute

the LLR of data bits, denoted by L(di,j). We refer to this detector as the row

detector and its structure is exactly the same as the row detector in [22]. We

decide on the bit values based on the sign of L(di,j).

The original row and column BCJR detectors exchange extrinsic information

LcE(yi,j = Y ) and LrE(yi,j = Y ) and exhaust a pre-defined number of iterations

to compute the final LLR. This operation is computationally demanding, and it is

sensible to do so only if the BCJR detectors are exchanging information with an

error correction code. Such an scheme is described in [22]. Otherwise, exchanging
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extrinsic information does not significantly improve the detection BER since the

same information in used in each iteration. Our simulations certify this fact; thus,

we use only one iteration and the BCJR detectors in Figure 4.3 do not exchange

information.

4.2.2 New Magnitude-Squared Partial Response Signal

In order to limit the complexity of the 2D-BCJR we choose a partial response

signal that has an S × S support for S < 2L + 1. We present the following 2-D

signal

si,j = |γ̃i,j ⊗ [di,j]|2 (4.2)

as the equalization target. The structure of Equation 4.2 is identical to that of

Equation 4.1, where γ̃i,j are target coefficients that control the shape of the target

signal. We present the target coefficients γ̃i,j in matrix form, and we constrain the

matrix to be separable, i.e.

Γ = [γ̃i,j] = xyT . (4.3)

Vectors x and y are S × 1. For the rest of this paper, we refer to such a target

signal by its underlying matrix Γ = [γ̃i,j].

Nonlinearity is incorporated so that the signal can to be very close to the

channel output. Hence, less equalization effort is needed and better noise-whitening
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is achieved. This will improve the performance of the BCJR detector. Furthermore,

since Γ is separable, we can still use the simplified BCJR detector of Figure 4.3.

We equalize the channel to a target signal with a support size of 2× 2. Given

this support size, the column detector traverses a non-binary trellis with four states

and the row detector traverses a binary trellis with two states.

4.3 Equalizer and Target Optimization

The error signal between the equalizer output and the corresponding target signal

is

ei,j = si,j − s̃i,j. (4.4)

In order to derive the expression for mean-squared-error (MSE) and the optimal

equalizer coefficients, we use a vector format to represent the variables. As [9]

suggests, we represent equalizer, target, and their inputs and outputs by vectors

instead of matrices. We can represent a matrix by a vector using any arbitrary

convention. Assume that the equalizer support size is (2Q+ 1)× (2Q+ 1). Vector

c(2Q+1)2×1 represents the equalizer coefficients and I(2Q+1)2×1 is the equalizer input.

Hence, the equalizer output (2D-BCJR input) s̃i,j is

s̃i,j = cT I. (4.5)
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We use the vector ΛS2×1 to represent the target coefficients in Γ, and the vector

dS2×1 to represent the target input data bits, we have:

si,j = (ΛTd)2 = ΛTddTΛ. (4.6)

The MSE is

ξΛ = E
[
(ΛTddTΛ− cT I)2

]

= E
[
(ΛTddTΛ)2

]
+ cTRc− 2cTPΛΛ (4.7)

where R = E
[
IIT
]

and PΛ = E
[
IΛTddT

]
. Although a nonlinear target is used,

ξΛ is still convex in terms of c for a given Λ. So we take the gradient with respect

to c and obtain

∇cξΛ = 2Rc− 2PΛΛ. (4.8)

Setting this gradient to zero and solving for c we get

c = R−1PΛΛ. (4.9)

Note that PΛ depends on Λ. This dependency is not desirable if we wish to

compute equalizer coefficients for various targets. However, there is a simple way to

overcome this problem. Assume that vector Λ is expressed as a linear combination

of some basis {vi} that contains S2 linearly independent vectors,

Λ =
S2∑

i=1

aivi (4.10)
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where ai are scalars. Then

PΛ =
S2∑

i=1

aiPvi
(4.11)

where Pvi
= E

[
IvTi ddT

]
. Hence, if we compute Pvi

for the entire basis, we can

efficiently compute the PΛ for any vector Λ of length S2 × 1.

For example, consider H0.5,0.5 which is the DCM of the pixel-misaligned HDS

in Figure 4.2. This matrix has four entries that are significantly larger than other

entries. Consequently, the channel output is mostly dominated by 4 bits corre-

sponding to these entries. So the 2× 2 target coefficient matrix

ΓCT =




0.3029 0.3030

0.3030 0.3032


 (4.12)

which is simply obtained by truncating H0.5,0.5 is intuitively a promising candidate.

We refer to target signals with such a coefficient matrix as Channel Truncation

(CT) target signals.

As we have not yet developed an analytical way to find the optimal target, we

perform a brute force search for a coefficients that yield the best BER performance.

We search the space of 2 × 2 separable matrices; such matrices have the general

form 


a2 ab

ab b2


 (4.13)

where a and b are scalars. In order to limit the search complexity, we constrain a

to be 1 and b to be smaller than 1. We increase b from zero to one and estimate the
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corresponding BER by simulation. This will largely reduce the search complexity,

but it may lead to loss of optimality as well. In spite of posing these constraints, our

results in the next section still illustrate that magnitude-squared targets achieve

superior performance. A separate b is chosen for each SNR. Here, SNR is defined

as

SNR = 10 log

(
1

σ2
n

)
(4.14)

where σ2
n is the electronics noise variance. It is worthwhile to note that for

electronics-noise dominated channels,
√
σn is proportional to number of recorded

pages as [11] stated.

4.4 Numerical Results

In our simulations, we use unity fill factors for SLM and CCD, normalized pixel

width, Nyquist aperture width, and SLM contrast ratio of 100. A MMSE equalizer

of kernel size 5× 5 is used for all equalizations. We present the BER performance

in Figures 4.4 and 4.5. We have also plotted the BER performance of BCJR with

a linear 2-D PR target and the BER performance of a full response equalizer with

threshold detection.

For convenience we refer to the best target found as optimal target. We should

bear in mind that because of constraining the search space, our results are not

optimal, still they show the significant gains of using magnitude-squared target
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Figure 4.4: BER performance of BCJR detection with linear and nonlinear PR

targets, and MMSE-threshold detection for pixel-aligned HDS.

signals. Also note that the discrete channel matrices of the two HDS channels we

study are diagonally symmetrical as Figure 4.2 suggests.

We can see that the optimal nonlinear target gives the best performance among

different reception techniques/targets. For the pixel-aligned channel, the CT target

is far away from optimality at low SNR. However, the performance gap between the

optimal nonlinear target and the CT target reduces at high SNR for pixel-aligned

channel. For the pixel-aligned channel the CT target outperforms the optimal lin-

ear target at high SNR. For the pixel-misaligned channel the CT target always

offers superior BER performance. In fact, for the pixel-misaligned channel, thresh-

old detection and linear target PR fail due to the high amount of ISI. However,

for nonlinear targets the BER decays slowly and reaches a floor beyond SNR of 36

dB.
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Figure 4.5: BER performance of BCJR detection with linear and nonlinear PR

targets, and MMSE-threshold detection for pixel-misaligned HDS.

4.5 Conclusion

We extended the low-complexity, 2-D BCJR detector of [22] to the nonlinear HDS

channels. We exploited the separability property of the holographic data storage

channel for this purpose. With simple adjustments, our 2-D BCJR detector is

able to handle channel nonlinearity at no additional complexity. We present a

new partial response target signal that mimics the nonlinear behavior of the chan-

nel. This new partial response enables us to detect at low complexity even in the

face of severe pixel misalignment. By comparison, linear targets fail when severe

misalignment exists.



Chapter 5
Conclusions and Further Work

5.1 Conclusions

In this work, we studied modeling and detection for the holographic data stor-

age (HDS). In more detail, we derived reduced-complexity computational methods

to simulate the HDS channel accurately. Furthermore, we extended the discrete

magnitude-squared channel (DMC) model to incorporate pixel misalignment. In

the detection part, we focused on developing soft-decision maximum-a-posteriori

detectors for the two-dimensional nonlinear HDS channel. We designed a novel

nonlinear partial-response (PR) target signal which enables us to alleviate the

adverse effects of pixel misalignment effectively.

We may partition this thesis into three parts. In part 1, which consists of

96
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Chapters 1 and 2, we presented a brief survey of the literature on the related top-

ics. This survey served as the ground for motivating our research. In addition, we

presented the required preliminaries such as a detailed description of the 4 − fL

architecture, the BCJR detector for one-dimensional linear channels with additive

white Gaussian noise (AWGN), and the BCJR detector for two-dimensional sep-

arable linear channels with AWGN. In part 2, which consists of Chapter 3, we

presented an accurate channel model for HDS systems with pixel misalignment

along with an efficient simulation approach for the optical noise. In part 3, which

consists of Chapter 4, we presented a reduced-complexity two-dimensional BCJR

detector modified for the quadratic nonlinearity of the HDS channel. We pre-

sented a novel PR target signal which enabled us to combat the adverse effects of

pixel misalignment. The contributions of this thesis are discussed further in the

following.

While it is essential for a channel model to be accurate and efficient, the existing

channel models for the HDS do not achieve both requirements simultaneously. A

notable channel model for the HDS is the DMC model. The simple structure of this

model brings efficiency as well as handy insights which are useful for developing

signal processing algorithms for the HDS channel. Despite its merits, this model

does not accurately address the optical noise. The quadratic nonlinearity as well

as the page-oriented nature of the channel renders the analysis and simulation of

the detector read-back signal in the presence of the optical noise difficult. We
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presented a new method for efficient and accurate simulation of the detector read-

back signal in the presence of the optical noise. Furthermore, we corrected a flaw in

the statistical analysis of the effects of the optical noise on the detector read-back

signal. Our simulation results are consistent with the corrected statistical analysis.

The DMC model does not incorporate pixel misalignment. Since pixel misalign-

ment has a substantial effect on the bit-error-rate performance and it is inevitable

in practice, we extended the discrete magnitude-squared channel model for pixel

misaligned channels. We observe that the two-dimensional inter-symbol interfer-

ence in the extended model is separable i.e. one can view the two-dimensional HDS

channel as concatenation of two one-dimensional channels.

The page-oriented nature of the HDS results in additional complexity for the

detectors. In more detail, the number of interfering pixels increases significantly

and the natural ordering of the data often used by Viterbi or BCJR detectors is

lost. The quadratic nonlinearity of the channel also makes the detection problem

more challenging. In the detection part, we showed how to exploit the separabil-

ity property of the HDS channels to tackle the absence of natural ordering in a

two-dimensional data page. Using this property, we extended an existing reduced-

complexity two-dimensional BCJR detector for separable linear channels to the

nonlinear HDS channel. Furthermore, we presented a new PR target signal with

quadratic nonlinearity similar to the channel. This quadratic PR target enables
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us to detect with an acceptable bit-error-rate even in the face of severe pixel mis-

alignment.

5.2 Directions for Further Work

The contributions of this thesis need further work in several directions. We discuss

the issues that require further attention in the following.

In the modeling part, we need further investigation on the effect of the optical

noise on the bit-error-rate performance. This investigation allows us to understand

how much accuracy we need for modeling the optical noise in the HDS; This un-

derstating, in turn, leads to a better trade-off between accuracy and efficiency of

the HDS model.

In the detection part, we need to develop an analytical approach to find the

optimum quadratic PR target for the electronics-noise dominated channels. The

channel truncation target inspired by intuition shows near-optimum performance.

Furthermore, we need to develop novel reception schemes customized for channels

with correlated optical noise.
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