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Abstract

The thesis presents our study about the formation of nanostructures on the Stranski-

Krastanow film-substrate system and our proposed schemes to control the self-assembled

nanostructures in term of size, shape and site.

The study is conducted via two approaches: the energy analysis using the first order

boundary perturbation method and 3-dimensional numerical simulation for the morpho-

logical evolution in the SK system. It is demonstrated in this thesis that the combination

of these two methods is a powerful tool to analyze the nanostructures formation in the

SK system.

First of all, our analysis shows that the critical film thickness under nucleation and

surface undulation are different due to the nature of these two kinetic mechanisms. The

recognition of two critical film thicknesses lays the foundation of our further study on the

schemes to control the nanostructures.

Our subsequent investigations on the SK transition process reveal the common fea-

tures of nanostructures and their formation mechanisms. Our parametric study demon-

strates the impact of the key material properties such as the mismatch strain, surface

energy density, interaction energy density and film thickness. Particularly, our analysis

on the film thickness effect leads to the understanding of the mechanism for quantum dot

molecules.
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Abstract viii

On the other hand, our study on the SK film-substrate system under the effect of

electric field shows that it is possible to find equilibrium state for the nanostructures

under the patterned electric field, and these nanostructures are stable against coarsening.

Besides the analytical study, our numerical simulation also demonstrates the potential of

controlling the nanostructures in terms of their sizes, shapes and sites by using patterned

electrode.
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7.4 region of (Σ̂, Ĥf ) satisfying condition I . . . . . . . . . . . . . . . . . . . . 113

7.5 Variation of ∆Etot/γ0L with a and Hv . . . . . . . . . . . . . . . . . . . . 115
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Chapter 1

Introduction

1.1 Review of the Self-Assembled Nanostructures

The self-assembly of nanostructures on the Stranski-Krastanow (SK) systems has at-

tracted the attention of many researchers because of its potential applications in the

manufacture of the optoelectronic devices, cellular automata, and other nano-scale de-

vices. The nanostructures of the systems form after the film exceeds the critical thickness

for the SK transition where the flat film surface becomes unstable against island forma-

tion (Asaro and Tiller 1972; Spencer et al. 1991; Srolovitz 1989). The size of the structures

can be of the order of nanometer, and the self-assembly process can be applied to various

material systems, including the SiGe/Si (Eaglesham and Cerullo 1990; Mo et al. 1990),

the InGaAs/GaAs (Leonard et al. 1993; 1994), and the InP/GaInP systems (Ballet et al.

2000).

The self-assembly of nanostructures on the SiGe/Si(001) system has been of par-

ticular interest primarily due to the fact that the system serves as a good model for

understanding the self-assembly process, and the system may be easily integrated into

the Si-based microelectronics. The SiGe/Si(001) system can develop different types of

nanostructures, characterized by specific facets and shapes. Examples include faceted

islands such as pyramids, huts, and domes (Eaglesham and Cerullo 1990; Floro et al.

1997; 1998; Medeiros-Ribeiro et al. 1998; Mo et al. 1990; Ross et al. 1999; Stoffel et al.

1



Chapter 1: Introduction 2

2007), structures growing into films such as trenches and pits (Deng and Krishnamurthy

1998; Goldfarb et al. 1997; Jesson et al. 1996; Li et al. 2001; Shi and Lederman 2000),

and structures consisting of ridges, islands, trenches, and pits such as the faceted ripple

structures (Liu and Zhang 2007; Ozkan et al. 1997; 1999) and the quantum fortress (Gray

et al. 2004c).

In order to realize the device applications, it is crucial to control the islands size

uniformity since the size significantly affects the properties of each island due to the

quantum confinement effect. However, the task is challenging. The difficulties mainly

come from the instability of islands against coarsening where the larger islands grow bigger

and the smaller ones tend to reduce their size, leading to a larger size distribution (Floro

et al. 2000; Helen and Daniel 2005; Liu and Zhang 2007; Medeiros-Ribeiro et al. 1998;

Stoffel et al. 2007). Although the island-coarsening problem has been well understood and

recognized as a major obstacle to the development of self-assembly technology, how to

suppress the coarsening process remain an open question (Chiu and Huang 2006; Daruka

et al. 1999; Liang and Suo 2001; Shchukin and Bimberg 1998).

Many schemes have been suggested in the literature to overcome the challenges in

the self-assembly of nanoislands on the SK systems. The schemes can be generally clas-

sified into five categories. The first one is to enhance the materials properties of the SK

systems such as the surface stress (Daruka and Barabasi 1997; Medeiros-Ribeiro et al.

1998; Shchukin et al. 1995), the film-substrate interaction (Chiu 1999a; 2004) and the

strain-dependent surface energy (Lu and Liu 2005; Retford et al. 2007; Shklyaev et al.

2005) in order to induce island arrays that are stable against coarsening.

In comparison, the second category employs embedded structures to improve the

uniformity of the island size and spacing. The embedded structures can be multiple

arrays of nanoislands separated by layers of a different material (Chiu and Wang 2007;

G. et al. 2000; Liu et al. 2007; Tersoff et al. 1996). The embedded structures can also be

the misfit dislocations in the strained film (Romanov et al. 1999; Shiryaev et al. 1997) or

a regular dislocation network generated by bonding a film onto a substrate of the same

material but with a twist and/or miscut between them (Pascale et al. 2006; Poydenot
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et al. 2006).

The third category exploits special features on the film surface to control the growth

of nanoislands. The features can be fabricated by lithography, which include mesas (Jin

et al. 2000; Kamins et al. 1999; Kamins and Williams 1997; Kitajima et al. 2002; Konkar

et al. 1998; Lee et al. 2000; Yang et al. 2004; Zhang et al. 1998), pit arrays (Chen et al.

2006; Jang et al. 2007; Kiravittaya et al. 2004; Machtay and Kukta 2006; Schmidt et al.

2000; Zhong et al. 2003), patterned oxide masks (Berbezier and Ronda 2007; Eggleston

and Voorhees 2002; Nitta et al. 2000; Yoon et al. 2006), micropatterning by focused ion

beams (Kammler et al. 2003; McKay et al. 2007), thin patterned films (Chiu et al. 2004),

microdisks (Xie and Solomon 2005) and gold patterns (Robinson et al. 2006; 2007). The

surface features can also be generated by novel techniques adopted in the growth process

such as activating step bunching to produce regular ripples on vicinal surfaces (Zhu et al.

1998) .

The fourth category is making use of the rippling on solid surfaces at the length scale

of nanometer. The phenomenon was observed in (Jesson et al. 1996) by annealing a

Si0.5Ge0.5 alloy film of 5 nm in thickness on a thick Si substrate at temperatures ranging

from 570 to 590 ◦C.The result revealed that the film developed into nanoridges and nan-

otrenches via a cooperative manner that the two types of nanostructures formed one after

another at the adjacent sites. The cooperative ridge-trench (CRT) formation continued,

resulting in a ripple structure.

After the observation by Jessen et al. (1996b), the CRT formation was realized to be a

useful mechanism for self-assembling quantum-dot molecules (QDMs) on heteroepitaxial

systems (Deng and Krishnamurthy 1998; Gray et al. 2002; 2006). The fabrication process

of the QDMs consisted of two steps. The first step is to generate shallow holes on solid

surfaces by embedding a small amount of hard particles in a buffer layer prior to the

deposition of a heteroepitaxial film (Borgström et al. 2003; Deng and Krishnamurthy 1998;

Weil et al. 1998). The shallow holes would trigger the CRT formation on the film in the

second step, causing the self-assembly of QDMs around the holes. The QDMs generated

by this process are clusters of dots with the number of dots being adjustable (Huang
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et al. 2007; Sirlpitakchai and Suraprapapich 2007; Songmuang et al. 2003). The size

distribution of the QDMs is much more uniform than that of single quantum dots. These

advantages, namely, self-assembly, unique structures, adjustable number of dots, and

uniform size distribution, suggest that the QDMs are a promising building block for

quantum computation devices (Barth et al. 2005).

In addition to the two situations mentioned above, the CRT formation also happened

on heteroepitaxial films during the deposition process (Deng and Krishnamurthy 1998;

Jesson et al. 1996). This issue is examined in a series of papers aiming at understanding

the dependence of the CRT formation on the growth rate, the substrate temperature, the

film thickness, and the interrupting annealing during the process (Gray et al. 2004a; 2002;

2004b; 2005; 2004c; Vandervelde et al. 2003).

The fifth scheme, sometimes called the lithographically induced self-assembly (LISA),

a liquid polymeric film on a thick substrate is exposed to an electrode with the gap between

the film and the electrode being filled with air (Chou et al. 1999; Schäffer et al. 2000)

and/or another liquid layer (Deshpande and Chou 2001; Lin et al. 2001; Lu et al. 2006;

Morariu et al. 2003). The system is subject to an electric field, which can be an external

one resulting from an applied voltage (Schäffer et al. 2000) or an intrinsic one due to

localized charges or contact potential (Chou et al. 1999). The electric field causes the

liquid film to form structures by viscous flow of the film. The advantage of the scheme

is the capability of using patterns on the electrode to manipulate the sizes, shapes, and

sites of the structures. The scheme, on the other hand, has the disadvantage of dielectric

breakdown in the gap, limiting the reduction of the structure spacing and size (Pease et al.

2004). Another concern is the long-range ordering and the coalescence of the structures

since in general the structures are unstable against size variation (Leach et al. 2005; Pease

et al. 2004).
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1.2 Objective and Approach

The objective of this research is to understand the self-assembly of nanoislands in typical

SK systems and to develop a strategy for controlling the sizes, the shapes and the sites

of islands in the SK system from theoretical points of view. The approaches adopted to

investigate these two issues are discussed in the following sections.

1.2.1 Formation of nanostructures in typical SK system

Our study of the self-assembly process in the SK systems starts with the critical thickness

of the SK transition on the film. Of particular interest is how the critical thickness is af-

fected by the two island formation mechanisms of the systems, namely, surface undulation

and nucleation. The formation via surface undulation follows a gradual morphological

change from a smooth wavy surface to facet islands (Tersoff et al. 2002). Nucleation,

on the other hand, refers to the spontaneous formation of islands larger than a critical

size (Tersoff and Tromp 1993). By either mechanism, the islands on the SK system can

develop only after the film exceeds a critical thickness.It is found that the critical thick-

ness under the two mechanisms are different, and that under the surface undulation is

larger than that under the nucleation in most of the cases.

Based on the finding of the two critical film thicknesses, we study the formation

of nanostructures in three different regions of film thickness: between the two critical

film thickness, slightly higher than the critical film thickness for surface undulation and

thickness far exceeding the critical value.

For the thickness range between the two critical values, an almost flat film can develop

into islands via spontaneous formation but with surface undulation being suppressed. The

thickness range enables the nano-structures formation on the SK systems to be control-

lable. In this thesis, we propose to make simple patterns on the flat surfaces of the SK

systems in the special film thickness range and then anneal the systems. The scheme is

termed the activated SK transition (ASKT) method since the method is to trigger the SK

transition to form nano-crystals at the pattern sites by self-assembly during the annealing
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process (Chiu et al. 2004). The ASKT method is explored by simulating the morpho-

logical evolution of patterns on the SK systems in the special thickness range during the

annealing process. The results show that the ASKT method has the potential capability

to control the nano-crystal locations, and it can produce complicated shapes that can-

not be easily fabricated by the conventional growth techniques. Furthermore, the feature

length of the crystals can be a fraction of the original pattern size, and it can be tailored

by adjusting the mismatch strain in the film without reducing the pattern size.

For the case where the film thickness is slightly above the critical value for surface un-

dulation, we investigate the nanostructure formation effected by the surface undulation on

the SK systems by carrying out three-dimensional simulation for the process. Particularly,

we studied how the surface undulation led to the development of faceted nanostructures

and wetting layers and how the development would be affected by the parameters of the

SK systems. The results reveal that the development exhibits three common features in

the coarsening SK systems. The results also provide an insight into the effects of the

parameters of the SK systems on the maximum surface coverage of faceted islands, which

in turn is the crucial quantity controlling the film morphologies during the formation

process.

For the case of thick films, the morphological evolution is mainly characterized by the

CRT formation; hence, our focus in this case is to illuminate the mechanism causing the

CRT formation and to understand why the CRT formation can produce nanostructures

of uniform size. The CRT formation is commonly explained by the cooperative nucleation

model (Jesson et al. 1996). The model suggested that the presence of one type of structure

(e.g. a trench) can reduce the energy barrier for the nucleation of the other type (e.g. an

island) at the adjacent site, thus facilitating the repeating occurrences of the two types of

structures (Jesson et al. 1996). The model points out the significant effects of an existing

nanostructure on the nucleation of a different one; however, the nucleation model cannot

fully account for the uniform size distribution of the ripple structures and QDMs.

We examined the CRT formation in this thesis by considering two issues that were

overlooked previously. First, instead of nucleation, the adjacent new structure may de-
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velop gradually via the surface undulation process. The surface undulation process, as

mentioned earlier, is another mechanism of the morphological evolution of the film sur-

face. The process is characterized by a gradual change of the surface profile, and the

process can lead to the formation of faceted islands without experiencing an energy bar-

rier (Chiu and Huang 2006; 2007; Tersoff et al. 2002). These unique features suggest

that the surface undulation process can play an important role in the development of the

adjacent new structure. Second, the gradual development of the adjacent new structure

has to compete with the growth of the existing outermost one. The competition between

the two pathways is the key to the alternative growth of ridges and trenches during the

CRT formation (Huang et al. 2007).

1.2.2 Nanostructures formation in SK system under electric

field

In the second part of the thesis, we examine the approach of applying patterned electrode

to the self-assembly of nanoislands on the SK systems to fabricate nanostructures. The ap-

proach is termed the electromolding self-organization (EMSO) process in this thesis. The

EMSO process retains the characteristics of the patterned electrode and the self-assembly

of nanostructures in SK systems. The patterned electrode is an effective way to have

complete control over the sizes, shapes, and sites of the self-assembled nanoislands; and

the nanostructures developing from the SK systems exhibit remarkable material quality

and properties.

In addition to these advantages, the most important feature of the EMSO process

is that the process can produce nanostructures stable against size variation. This is in

contrast to the common problem of unstable islands in previous schemes, such as the LISA

method and the self-assembly of nanoislands in the SK systems. The unique feature is

achieved by growing a flat film below the critical thickness for the SK transition. Because

the flat film in such a case is the equilibrium profile, when a patterned electrode is used to

generate a non-uniform electric field in the system, the flat film can be activated locally
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to develop into an islanded surface that is the equilibrium or the meta-stable state. The

equilibrium/meta-stable state realizes the island stability against size variation.

We explore the EMSO process in this thesis by carrying out energy analysis for the

island formation and numerical simulations for the morphological evolution of the system.

We focus on the case where the patterned electrode is applied during the annealing process

of an SK system consisting of a conductor film and a semi-conductor substrate.

1.3 Literature Review of Methodology

The problems considered in this thesis are investigated by analyzing the total energy of

the system and by simulating the morphological evolution during the annealing process.

The methodologies presented in the literature for the energy analysis and the numerical

simulation are reviewed in the following two sections. The methodologies adopted in this

thesis are discussed later in Chap. 2.

1.3.1 Numerical Simulation

Three-dimensional (3D) simulation for the formation of nanostructures by the surface

undulation process have been an important tool for studying the nanostructures on SK

systems (Chiu 1999a;b; 2004; Chiu et al. 2004; Golovin et al. 2003; Levine et al. 2007;

Liu and Zhang 2007; Liu et al. 2003a;c; Muller and Grand 1999; Pang and Huang 2007;

Ramasubramaniam and Shenoy 2004; Tekalign and Spencer 2004; Zhang 2000; Zhang

and Bower 2001). All of the simulations are based on a similar evolution equation to

describe how the film morphology changed gradually when the surface chemical potential

varied on the film surface. The key kinetic mechanism behind the equation is surface

diffusion (Mullins 1957), while the growth of film can also be included (Chiu and Gao

1995; Liu et al. 2003a).

Several methods have been proposed to solve the evolution equation of the 3D cases. A

straightforward method is to evaluate the surface chemical potential and then substitute
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the result into the governing equation to simulate the morphological evolution (Chiu

1999a;b; 2004; Chiu et al. 2004; Liu and Zhang 2007). Besides the direct method, the

evolution equation can also be solved by the finite element method (FEM) (Liu and Zhang

2007; Liu et al. 2003a;b;c; Ramasubramaniam and Shenoy 2004; Zhang 2000; Zhang and

Bower 2001), and the phase field method (Muller and Grand 1999). All of the three

methods need to evaluate the strain energy density on the film surface at each time

step, a time-consuming calculation that can impose a severe limitation on the number of

nanostructures allowed in a simulation. In spite of the difficulty, the results obtained by

these methods are promising. Large scale simulations for rounded (Liu et al. 2003a) and

hut islands (Chiu 2004; Liu and Zhang 2007) have been demonstrated recently.

Contrary to the methods that solve the full evolution equation, the fourth method

adopts the assumption of a small surface slope to reduce the full evolution equation

to a simpler one in which the surface migration rate is expressed as a function of the

surface profile explicitly (Spencer et al. 1993). The scheme avoids evaluating the strain

energy density during the simulation, and it has been successfully implemented for the

3D cases (Golovin et al. 2003; Tekalign and Spencer 2004). More recently, numerical

simulation has also been developed to study the electric field induced viscous flow on the

liquid film (Kim and Lu 2006; Verma et al. 2005).

1.3.2 Energy Analysis

The elasticity problem of nanostructures on heteroepitaxial film-substrate system has

been studied by many researchers (Floro et al. 1997; Gray et al. 2002; Rastelli et al.

2001; Tersoff and Tromp 1993). One question often encounted when studying the nano-

structures is the strain energy change during the island formation and the island shape

transition processes. The question can be solved by FEM for linear elasticity problems

and there is no difficulty to calculate any island shape.

Besides the FEM, Gao (Gao 1991a) proposed the first-order boundary perturbation

method for solving the elasticity problem of a 2D strained solid with a wavy surface. The
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method is accurate to the first-order of slope of the surface, and it can be applied to

any smooth island profile, including cosine curves and 3D hexagonal island arrays. The

method can also be extended to anisotropic solids and elastically dissimilar film-substrate

systems (Gao 1991b).

A different perturbation method has been proposed by Tersoff and Tromp (1993).

They showed that under the shallow island assumption, the effects of an island on the

elasticity solution can be approximated by a distribution of surface traction on the flat

surface of a semi-infinite solid. This approach can be used to model smooth surface profile

as well as facet island in both 2D and 3D cases (Daruka et al. 1999).

In this thesis, we present the energy analysis using surface-traction approach for

estimating the strain energy of facet island on the SK system. The advantage of this

approach is that it only requires one-dimensional integral when evaluating the island

strain energy change due to island formation in the two-dimensional cases. The formula

is valid for single island containing one type or multiple types of facets and it is also valid

for island arrays.

Besides the strain energy, another question often encountered when analyzing the

growth of the nanostructures under the influence of the electrodes is to determine the

electric field along the film surfaces and to calculate the corresponding electrostatic energy

change during the process. This electrostatic problem can also be solved numerically by

the finite element method (Hughes 1987) and the boundary element method (Beer 2001),

which can take into account the effects of the shapes of the film and electrode surfaces

precisely. Besides the numerical results, perturbation solutions of different cases involving

two parallel electrodes are also available in the literature. For example, the results of flat

electrodes containing air and a wavy dielectric film were derived by Schaffer et al. (2001)

and by Yang and Song (2005), and those containing dielectric bi-layers with a wavy

interface between the bi-layers were considered by Pease and Russel (2003, 2004) and by

Lin et al. (2001). The scenario of wavy electrodes with a dielectric media was examined

by Du and Srolovitz (2004); that of patterned electrodes with dielectric bi-layers by Verma

et al. (2005); and that of anisotropic dielectric material was investigated by Chien et al.
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(1996).

1.4 Outline

The outline of this thesis is as follows. Chapter 2 presents the continuum model for the

SK system with and without the electric field. Chapter 3 describes the detailed energy

analysis based on the first-order boundary perturbation method. Chapter 4 discusses our

findings of the critical film thickness of the SK system and its applications in the ASKT

method. Chapter 5 illustrates the formation of faceted islands on the film surface with

the film thickness slightly higher than the critical value for the SK transition. Chapter 6

demonstrates the SK transition on thick film and the mechanism for the development of

QDMs. Chapter 7 is devoted to the proposed scheme of using patterned electric plate

to control the formation of nanostructures and the stability of the structures against size

variation. This thesis is concluded with a summary in Chap. 8.



Chapter 2

Model

Our study of the nanostructures formation on the Stranski-Krastanow heteroepitaxial

film-substrate system is mainly conducted under two scenarios: without electric field, and

with electric field. This chapter presents the models adopted in this thesis for studying the

nanostructure formation on the SK heteroepitaxial film-substrate system. In particular,

Sec.2.1 focuses on the model for the scenario that the electric field is absent from the

system, and Sec. 2.2 on that for the case when the electric field is present.

2.1 SK System without Electric Field

2.1.1 The SK system

Our study is based on a continuum model for the SK system which contains a thin film

and a thick substrate bonded coherently along a flat interface (Chiu 1999a; 2004; Chiu

et al. 2004). The system is attached to a set of Cartesian coordinate axes on the interface.

The x and y axes are parallel with the interface, while the z axis is perpendicular to the

interface. The z axis is taken to be in the [001] direction of the film material of the SK

system.

The film and the substrate are elastically similar materials characterized by Young’s

modulus E and Poisson’s ratio ν. The film and the substrate are subject to a mismatch

12
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strain E0 between them, which results in deformation and strain energy in the system (Gao

1994). The strain energy is the driving force for the nanostructure formation; the char-

acteristic strain energy density wσ0 is given by wσ0 = E(1 + ν)E2
0/2(1− ν).

In addition to the strain energy, the system is also affected by the film-substrate

interaction energy and the film surface energy. The interaction accounts for the SK

transition and the development of the wetting layer (Chiu 1999a; Chiu and Gao 1995;

Tersoff 1991). The interaction can be modeled as a special type of film surface energy

of which the density g varies with the distance z between the film surface and the film-

substrate interface (Chiu 1999a; Chiu and Gao 1995). If the interaction is caused by

the quantum confinement, g is given by g(z) = g0l/(z + l) where g0 and l are material

properties (Chiu 1999a; Suo and Zhang 1998). Similar phenomenological models for the

interaction, also termed the wetting interaction or wetting potential can be found in the

literature (Daruka and Barabasi 1997; Eisenberg and Kandel 2000; Kukta and Freund

1997; Ortiz et al. 1999; Spencer 1999; Spencer and Tersoff 1997).

The surface energy density γ is assumed to be a constant γ0 except in the vicinity of

the local minimum,

γ = γ0 −
∑

j

∆γj exp
(
ηj|n− nj|2

)
, (2.1)

where n is the normal vector of the film surface, nj is the orientation of the jth local

minimum, ∆γj is the depth, and ηj controls the curvature of the minimum. The directions

of nj are taken to be {105}, {15 3 23}, and {113}, the facet orientations of the islands on

the SiGe/Si system (Ross et al. 1999). In addition to the facet orientations, the surface

energy density γ may also include a shallow minimum on {001} (Chiu 1999a; Rastelli

et al. 2003; Tersoff et al. 2002). The shallow minimum affects the normalized effective

surface energy density α of the flat film (Chiu 1999a; Chiu et al. 2004),

α =
γ1 +K

γ0

, (2.2)
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where γ1 = γ at φ = 0, K = ∂2γ/∂φ2 at φ = 0, and φ is the angle between the vertical

direction ez and the normal vector n of the surface. For convenience, the normalized

effective surface energy density α is shortened to the NESE density in the thesis.

The SK systems considered here are characterized by two characteristic lengths, L

and ĝ0l, given by

L =
γ0

wσ0

, (2.3)

ĝ0l =
g0l

γ0

, (2.4)

The quantity L represents the length scale at which the strain energy reduction due to

island formation is balanced by the corresponding surface energy increment. Typical val-

ues of L used in this thesis are 16000, 4000, 1000, 250, and 62.5 Å, roughly corresponding

to the Si1−xGex/Si systems with x = 0.0625, 0.125, 0.25, 0.5, and 1, respectively. The

quantity ĝ0l, on the other hand, is the length scale associated with the interaction energy

and the surface energy. In this study, l is assumed to be 1 Å, and ĝ0 varies from 0.25,

0.0625, to 0.0156.

In most of the cases, the islands may undergo the coarsening process during which

larger islands keep growing at the expense of smaller ones. The stability of the faceted

islands against the coarsening process is determined by the sign of the stability number

Σ (Chiu 2004),

Σ =

√
ĝ0lU0S
L

− γ1G

γ0

, (2.5)

where G = −1 + γ2/γ1 cosφ, φ is the facet angle, and γ2 is the surface energy density

of the facet. If Σ > 0, stable island arrays exist, and the system will evolve toward the

arrays. If Σ < 0, in contrast, the faceted islands are unstable against coarsening. The

systems with Σ < 0 are called the coarsening SK systems throughout this thesis.
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2.1.2 The surface chemical potential χ

The thermodynamics of the film surface is determined by the surface chemical potential

χ (Chiu 1999a; Herring 1950; Leo and Sekerka 1989; Rice and Chuang 1981),

χ = µ0 + Ω

[
wσ − (g + γ)κ+

∂g

∂z
nz +∇Γ · ∂γ

∂n

]
, (2.6)

where µ0 is the chemical potential of the film material without stress, Ω is the atomic

volume, wσ is the strain energy density, κ is the curvature, ∇Γ is the surface gradient

operator, and nz is the z component of n.

The physical meanings of the five terms in Eq. (2.6) are briefly discussed as follows.

The first term µ0 in Eq. (2.6) is the energy change when ignoring the effects of the stresses

and the surface. This term is a constant when the film composition remains homogeneous.

The second term Ωwσ is responsible for the effect that the total strain energy of the film-

substrate system decreases as a flat film surface develops into a rough profile (Asaro and

Tiller 1972; Srolovitz 1989; Tersoff and Tromp 1993). Hence, the second term describes an

energetic force favoring surface undulation and nanostructure formation. The third term

−Ω(g+γ)κ is due to a change of the surface area (Herring 1950), and evidently this term

impedes the development of islanded surfaces. The fourth term accounts for the variation

of the interaction energy with the film thickness (Chiu 1999a; Chiu and Gao 1995), and

including this term is crucial for modeling the SK transition and the formation of the

wetting layer. The last term measures the surface energy variation due to the change of

the surface orientations; this term determines the orientations of the facets that can form

during the morphological evolution (Chiu 1999a; Leo and Sekerka 1989).

2.1.3 The morphological evolution driven by surface diffusion

The variation of χ on the film surface causes the morphological evolution of the system;

the evolution controlled by surface diffusion is expressed as (Asaro and Tiller 1972; Mullins
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1957)

∂f(x, y, t)

∂t
=

ΩρsDs

nzkBTk

∇Γ · (∇Γχ), (2.7)

where f(x, y, t) is the film surface profile at time t, ρs is the adatom density, Ds is the

surface diffusivity, kB is the Boltzmann constant, and Tk is the temperature. The surface

diffusion mechanism is mass-conserved; it is the dominating kinetic mechanism of the

morphological evolution of the SK systems during the annealing process.

The implementation of the morphological evolution simulation is similar to those in

our previous works (Chiu 1999a; 2004; Chiu et al. 2004). The simulation employed the

two-dimensional Fourier series with the same wavelength in the x and y directions to

describe the film surface profile f(x, y, t). The wavelength of the Fourier series defined

the calculation cell size. The simulation consisted of three basic modules for determining

the evolution of the surface profile f(x, y, t). The first module evaluated χ expressed in

Eq. (2.6). In particular, the last three terms in Eq. (2.6) are calculated by the fast Fourier

transform method, while the term w is obtained by using the high-order boundary pertur-

bation method to solve the elasticity problem of a strained film on a thick substrate (Chiu

1999a). The second module then used the result χ to compute the surface migration rate

∂f(x, y, t)/∂t according to the Eq. (2.6). Finally, the third module integrated the sur-

face migration rate ∂f(x, y, t)/∂t with respect to time t by the generalized mid-point

rule (Hughes 1987) to update the surface profile f(x, y, t). The simulation results are nor-

malized by the time scale tL = kBTkL
4/ρsDsΩ

2γ0. Our simulation lacked the capability

to produce perfect facets. Nevertheless, the term facet is loosely used in the thesis when

describing the simulation results.

2.2 SK System with Electric Field

Similar to typical SK systems, the morphological evolution of the SK system under an

electric field (EMSO) is still dictated by Eq. (2.6). The key change in the current case is
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the expression for the surface chemical potential χ, which needs to take into account the

effects of the electric field on the SK system (Du and Srolovitz 2004),

χ = µ0 + Ω

[
wσ − we − (g + γ)κ+

∂g

∂z
nz +∇Γ · ∂γ

∂n

]
, (2.8)

where we is the electrostatic energy density. The opposite signs associated with the wσ

and ωe can be understood as follows.

When the surface moves along the normal vector direction n, the volume of the film

increases and the volume of the vacuum decreases. The increase of film volume means

that the strain energy stored in the film system also rises, and this explains the positive

sign of the term wσ in Eq. (2.8). On the other hand, the decrease of the vacuum volume

suggests the electrostatic energy in the vacuum reduces and this shows why the sign of

the term ωe is negative.

The simulation scheme for solving Eq. (2.8) is similar to those in the literature (Chiu

2004; Chiu et al. 2004). The results are still normalized by the same characteristic time

tL = kBTkL
4/ρsDsΩ

2γ0 as that defined earlier in Sec. 2.1 .



Chapter 3

Energy Analysis

This chapter summarizes the first-order boundary perturbation method for evaluating

the total energy change due to the formation of strained nanostructures on the SK film-

substrate system under the condition of mass conservation. For simplicity, the discussion

is limited to the two-dimensional (2D) cases, and the total energy is the sum of the strain

energy, surface energy, interaction energy and electrostatic energy with the presence of

electric field. The change of the strain energy ∆Wσ is discussed in Sec. 3.2, that of the

electrostatic energy ∆We is derived in Sec. 3.2, that of the interaction energy is examined

in Sec. 3.3, and that of the surface is shown in Sec. 3.4.

3.1 Strain Energy

This section summarizes the first-order perturbation method for determining the strain

energy change due to the formation of a nanostructure. The section is divided into three

parts. The first one examines the case of a single nanostructure. The second one explores

the situation where a new nanostructure develops at a site adjacent to a pre-existing one.

Based on the results of the second part, the third one considers the scenario that the new

adjacent structure is much smaller than the preexisting one.

18
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Figure 3.1: Schematic diagram of a heteroepitaxial film-substrate system containing a faceted
nanostructure on a flat wetting layer of thickness Hf .

3.1.1 A single nanostructure

System

Figure 3.1 depicts the morphology of a 2D strained film-substrate system that may appear

during the deposition/annealing process. The system is attached by a set of Cartesian

coordinate axes on the flat film surface. Similar to the convention adopted in Sec. 3.1,

the x and y axes lie parallel with the surface, while the z axis is normal to the surface.

The substrate of the system is a semi-infinite solid, and the film consists of a flat

wetting layer of thickness Hf and a nanostructure with N facets. There are totally

N + 1 vertices on the structure; the x components of the vertices are denoted as B =

{b1, b2, . . . , bN+1}. The angle between the jth facet and the x direction is φj. For con-

venience, one of the angles, denoted as φ∗, is chosen to define the characteristic slope

S = tanφ∗ of the structure. The ratio between the slope of the jth facet and the charac-

teristic value S gives the relative slope mj of the facet, i.e., mj = tanφj/S.

Strain energy change

The strain energy change ∆Wσ due to the formation of the nanostructure can be estimated

by the first-order perturbation method, assuming the total film volume is conserved during

the formation process and the slope S is small (Chiu and Poh 2005; Daruka et al. 1999;

Tersoff and Tromp 1993) The starting point of the method is to determine the strain
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energy density wσ(x) on the islanded film surface (Chiu and Poh 2005; Daruka et al.

1999),

wσ(x) = wσ
3d
0 − 2wσ0SΨσ(x), (3.1)

where wσ
3d
0 = 2wσ0/(1 + ν) is the strain energy density of the flat strained film, and the

function Ψσ(x) describes the variation of wσ(x) on the film surface due to the nanostruc-

ture,

Ψσ(x) = − 2

π

N∑
j=1

mj<
[
ln
x− bj+1

x− bj

]
. (3.2)

The symbol < in Eq. (3.2) denotes the real part of a complex number. Equation (3.1) is

accurate to the first order of S.

The result of wσ(x) is used in the following formula to describe the variation of the

strain energy ∆Wσ of the system with that of the surface profile δf(x) (Chiu and Poh

2005; Eshelby 1970; Rice 1968),

∆Wσ =

∫
B
wσ(x)δf(x)dx. (3.3)

As shown in Fig. 3.1, the island morphology can be obtained by changing the characteristic

slope S but fixing the wetting layer thickness h, the island base, the facets relative slope

m. When S = 0, the morphology is a flat film; as S increases, an island is added

gradually onto the wetting layer. The morphological evolution δf during the process can

be expressed as

δf(x) = F(x)δS, (3.4)

where F(x) = f(x)/S is the shape function of the island.

According to Eq. (3.4), the total film volume increases during the morphological

evolution. Therefore, the strain energy change during the process will include the change
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due to the volume increment and that due to the island shape change as shown below.

By substituting Eq. (3.1) and Eq. (3.4) into Eq. (3.3), we have

dWs

dS
= wσ

3d
0

∫
B
F(x)dx− 2wσS

∫
B

Ψσ(x).F(x)dx (3.5)

Carrying out the integral in Eq. (3.5) and evoking the solution procedure outlined in

(Chiu and Poh 2005) determine the strain energy change ∆Wσ to be

∆Wσ = −wσ0SV Uσ, (3.6)

where V is the volume of the structure and U represents the effect of the nanostructure

shape on ∆Wσ,

Uσ =
1

V

∫
Ψσ(x)f(x)dx. (3.7)

The quantity Uσ has the unique property that Uσ remains the same when the nanostruc-

ture enlarges self-similarly.

Equation (3.7) is valid for two-dimensional cases. The formula for 3D cases can

be found in Chiu and Poh (2005); it is found that the formula is similar except that

Ψσ = Ψσ(x, y) is a function of x and y and the integration becomes areal integrals instead

of the line integral in Eq. (3.7). By using formula for the 3D cases, Chiu et al (2005)

determined the strain energy change due to the formation of a square-based pyramid

island to be

∆Wσ = −1

6
U3Dwσ0tan2φD3, (3.8)

where U3D = 1.98 and D is the width of the pyramid base.
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Figure 3.2: Schematic diagram of a nanostructure developing at the adjacent site of a preexisting
one with N facets. The adjacent structure is illustrated by the dashed line, while the preexisting
one by the solid line.

3.1.2 An adjacent nanostructure

System

Figure 3.2 illustrates the case considered in this section where a nanostructure (denoted

by the dashed line) develops at the adjacent site of a preexisting one (denoted by the

solid line). The preexisting nanostructure contains N facets with the characteristic slope

being S0; the last vertex at the right edge of the nanostructure is located at x = a and

z = 0. In comparison, the adjacent nanostructure includes two surfaces. The slopes of

the surfaces are n1Sα and n2Sα, respectively, and Sα is the corresponding characteristic

slope. There are three vertices on the adjacent nanostructure. The first vertex is at the

same location as the last vertex of the preexisting structure, the second one is at x = b

and z = n1Sα(b− a), and the third one is at x = c and z = 0.

Strain energy change

It follows from Eq. (3.3) that the strain energy density on the film surface containing the

preexisting and the adjacent nanostructures can be expressed as

wσ(x) = wσ
3d
0 − 2wσ0S0Ψ0(x)− 2wσ0SαΨα(x), (3.9)
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accurate to the first order of S0 and Sα. In Eq. (3.9), Ψ0(x) describes the variation of

wσ(x) due to the preexisting nanostructure and Ψα(x) illustrates that due the adjacent

one. Both Ψ0 and Ψα can be obtained by employing Eq. (3.2). For example, Ψα can be

found to be

Ψα(x) = − 2

π

(
n1 ln

x− b

x− a
+ n2 ln

x− c

x− b

)
. (3.10)

Similar to the solution procedure for deriving ∆Wσ of a single nanostructure, Eq. (3.9)

can be substituted into Eq. (3.6) to evaluate the variation of the strain energy of the system

when the characteristic slope Sα of the adjacent nanostructure increases gradually from

0 to Sα with other parameters of the system being fixed, including S0 and the total mass

of the film. The result can be written as (Chiu and Poh 2005),

∆Wσ = −2wσ0S0V U0 − wσ0SαV Uα, (3.11)

where V is the volume of the adjacent nanostructure, and U0 and Uα are given by

Uk =
1

V

∫
B

Ψk(x)f(x)dx. (3.12)

In Eq. (3.12), the subscript k can be 0 or α, and f(x) refers to the surface profile of the

adjacent nanostructure. The quantities U0 and Uα represent the effects of the shapes of

the preexisting and adjacent nanostructures on ∆Wσ, respectively.

3.1.3 A small adjacent nanostructure with the same facet as the

pre-existing one

This section examines the special case where the adjacent nanostructure is small and its

first facet is the same as the last one of the preexisting structure, i.e., n1Sα = mNS0. The

strain energy change can be examined by two approaches.
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The first approach for calculating ∆Wσ

Since the adjacent structure is small, the function Ψ0(x) associated with the preexisting

nanostructure in the vicinity of x = a can be rewritten as the sum of the contribution from

the vertex at x = a, denoted as Ψa(x), and a constant Ψc representing the contribution

from the remaining vertices,

Ψ0(x) = Ψc + Ψa(x), (3.13)

where Ψc and Ψa(x) can be expressed as

Ψa(x) = −2mN

π
ln(x− a), (3.14)

Ψc = lim
x→a

[Ψ0(x)−Ψa(x)] . (3.15)

Substituting Eqs. (3.10) and (3.13) into (3.11) and (3.12), employing the identity

(c − b)n2 + (b − a)n1 = 0, and evoking the condition n1Sα = mNS0 yield ∆Wσ for the

special case considered here,

∆Wσ = −2wσ0S0∆V
{

Ψc +
mN

π
[3− 2 ln(c− b)]

}
, (3.16)

where ∆V can be calculated to be

∆V =
1

2
Sα(n1 − n2)(c− b)(b− a). (3.17)

The second approach for calculating ∆Wσ

In addition to the solution procedure described in Eqs. (3.1)–(3.7), the strain energy

change due to the formation of an adjacent nanostructure can also be given by the dif-

ference between the strain energy of the system containing both the preexisting and the

adjacent structures and that containing the preexisting one only. i.e., ∆Wσ = Wσ −Wσ0,

where Wσ0 is the strain energy of the system with the preexisting structure and Wσ is
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that with both preexisting and the adjacent ones.

The procedure for evaluating the quantity Wσ starts with the function Ψ(x) for the

nanostructure,

Ψα(x) = − 2

π

[
ln

(
x2 − b2

x2

)
− n ln

(
x2 − c2

x2 − b2

)]
. (3.18)

Substituting Ψ(x) into Eqs. (3.6) and (3.7) leads to

Wσ = −w0S
∫ c

−c

Ψ(x)f(x)dx, (3.19)

where f(x) expresses the shape of the pit-ridge structure. The integral in Eq. (3.19) is

divided into four ranges, [−c,−b], [−b, 0], [0, b], and [b, c], corresponding to the four facets

of the pit-ridge structure. Since the structure is symmetric, the results of the first and

the second ranges are equal to those of the fourth and the third ranges, respectively.

Accordingly, Eq. (3.19) can be reduced to

Wσ = −2w0S
[∫ b

0

f3(x)Ψ(x)dx+

∫ c

b

f4(x)Ψ(x)dx

]
, (3.20)

where f3(x) = S(x−a) describes the third facet in the range [0, b], and f4(x) = −nS(x−c)

is for the fourth facet in [b, c].

The integral in Eq. (3.20) can be calculated analytically by the computer program

MathematicaTM . The result, though extremely lengthy, can be significantly simplified by

evoking the following Taylor series expansion

ln(1 + t) = t− t2

2
+ o(t3), (3.21)

under the condition t� 1.

Deducting Wσ0 from the simplified expression yields the same formula in Eq. (3.16),

which is derived from the solution procedure described in Eqs. (3.1)–(3.7). The agreement

confirms the validity of the procedure presented in Sec. 3.1.3 for determining the strain
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energy change due to the formation of an adjacent nanostructure.

3.2 Electrostatic Energy

In this section, we investigate the two-dimensional case where a conducting film containing

a faceted nanowire on its surface is exposed to a patterned electrode with a dielectric

media between the film and the electrode. Our approach is similar to those for solving

the elasticity problems of strained and faceted wires on a flat film (Chiu and Poh 2005;

Gao 1991a; Tersoff and Tromp 1993). The result is accurate to the first order of the slopes

of the nanowire and the pattern, and the result is valid for the case of conducting films.

3.2.1 Problem statement

System

Figure 3.3 depicts a 2D system consisting of a thick substrate, a thin conductor film, a

dielectric media of thickness Hv on top of the film along the surface Γ1, and an electric

plate in contact with the dielectric media along the surface Γ2. The electric plate and the

film are connected by a battery with the voltage difference fixed at ∆Φ.

The conductor film of the system contains a nanowire with N facets. The wire is

similar to that considered in Fig. 3.1, characterized by the slope S0, the relative slopes of

the facets {m1,m2, . . . ,mN}, and the x-components of the vertices B.

In addition to the nanostructure on the film surface Γ1, the system also exhibits a

N -facet pattern on the electric plate surface Γ2. The geometry of the pattern can be fully

described by the characteristic slope Se of the pattern, the relative slopes of the N facets

{l1, l2, . . . , lN}, and the x components of the vertices on the pattern {t1, t2, . . . , tN+1}.

The electrostatics problem

The voltage difference ∆Φ generated by the battery causes variation of potential Φ in the

dielectric media. The potential Φ is determined by the Laplace equation ∇2Φ = 0 and
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Figure 3.3: Schematic diagram of conducting film-substrate system under the influence of an
electric field.

the boundary conditions that on Γ1,

Φ = 0, (3.22)

and on Γ2,

Φ = ∆Φ. (3.23)

The governing equation and the boundary conditions on Γ1 and Γ2 define the 2D electro-

statics problem considered in this thesis.

When both Γ1 and Γ2 are flat, the solution to the electrostatics problem is found to

be

Φ0(x, z) = E0z, (3.24)

where E0 = ∆Φ/Hv is the magnitude of the electric field. The electrostatic energy density

of this special case is given by we0 = εE2
0/2, where ε is the permittivity of the dielectric
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media.

When nanostructures are present on Γ1 and Γ2, the solution can be expressed as

Φ(x, z) = Φ0(x, z) + ΦΓ(x, z), (3.25)

where ΦΓ(x, z) are the potential induced by the structures on Γ1 and Γ2. Substituting

Eqs. (3.24) and (3.25) into (3.22) yields the boundary condition for ΦΓ on Γ1,

ΦΓ(x, f) = −SE0f̂(x). (3.26)

By following a similar procedure, the boundary condition for ΦΓ on Γ2 can be determined

to be

ΦΓ(x,Hv + g) = −SeE0ĝ(x). (3.27)

3.2.2 The complex-variable method

The complex-variable potential

The solution of the 2D Laplace equation can be expressed in terms of a complex-variable

function,

Φ = < [ψ(ζ)] , (3.28)

where ζ = x+ iz, and i =
√
−1. By employing the general expression for Φ and evoking

the change of variable,

∂

∂x
− i

∂

∂z
= 2

∂

∂ζ
, (3.29)
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the electric field E = Ex + iEz and the electrostatic energy density we can be determined

to be

E = ψ′(x), (3.30)

we =
ε

2
<
[
ψ′(x)ψ′(x)

]
, (3.31)

where ε is the electric permittivity of the dielectric media.

The complex-variable potential ψ0(ζ) corresponding to the special solution Φ0(x)

expressed in Eq. (3.24) can be found to be

ψ0(ζ) = −iE0ζ. (3.32)

Green’s functions

Before proceeding to the perturbation analysis, it is helpful to discuss the Green’s func-

tions that are employed later in the thesis. The first one is the solution to the problem

shown in Fig. 3.4(a) where two flat electrodes are separated by a distance of Hv. The

potential on the upper electrode z = Hv is zero. The potential on the bottom electrode

z = 0 is also zero in the range x < s, while Φ = 1 in the range x > s.

The first step to solve the problem is to map the stripe between the two electrodes to

the upper half space in the ω plane by the function,

ω = exp [η(ζ − s)] , (3.33)

where η = π/Hv. The mapping can be visualized in Fig. 3.4(b), which indicates the

six points in the ζ planes, namely, ζA = s, ζB = ∞, ζC = ∞ + iHv, ζD = s + iHv,

ζE = −∞+ iHv, and ζF = −∞, are mapped onto ωA = 1, ωB = ∞, ωC = −∞, ωD = −1,

ωE = 0, and ωF = 0, respectively, in the ω plane.

It follows from the mapping shown in Fig. 3.4 that the boundary conditions on z = 0

and z = Hv can be rewritten as Φ = <[ψ] = 1 on the line between ωA and ωB and
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Figure 3.4: (a) Schematic diagram of two flat electrodes with Φ = 0 on the upper electrode and
Φ = 0 and 1 on the lower electrode in the range x < s and x > s, respectively. (b) The stripe
between 0 ≤ z ≤ Hv is mapped on the upper half plane by the function ω = exp[η(ζ − s)]

Φ = <[ψ] = 0 on the line between ωC and ωA. The complex-variable function ψb satisfying

the condition can be found to be

ψb = 1 + iπ−1 ln(ω − 1). (3.34)

Replacing ω in the solution with the function given in Eq. (3.33) yields the Green’s

function for the electrostatics problem illustrated in Fig. 3.4(a),

ψb(ζ, s) =
i

π

[
eη(ζ−s) − 1

]
+ 1. (3.35)

The first Green’s function can be employed to write down the general solution to the

problem where Φ = 0 on the top flat electrode and Φ = h(x) on the bottom flat electrode,

ψ(ζ) =

∫
ψb(ζ, s)h

′
b(s)ds. (3.36)

Equation (3.36) is useful when examining the cases of faceted wires on the film surface.

The second Green’s function refers to the solution to the two-electrode problem plot-

ted in Fig. 3.5(a) where Φ = 0 on the bottom surface z = 0, and on the upper surface
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Figure 3.5: (a) Schematic diagram of two flat electrodes with Φ = 0 on the lower electrode and
Φ = 0 and 1 on the upper electrode in the range x < s and x > s, respectively. (b) The stripe
between 0 ≤ z ≤ Hv is mapped on the upper half plane by the function wσ = exp[η(ζ − s)]

z = Hv, Φ = 0 in the range x < s and Φ = 1 in the range x > s. The solution procedure

for deriving the Green’s function of the current case is identical to that of the first one. (1)

Map the stripe between the two surfaces z = 0 and z = Hv onto the upper half space of

the ω plane by the function expressed in Eq. (3.33). (2) Express the boundary conditions

on the ω plane: <[ψ] = 1 on the line between ωC and ωD, and <[ψ] = 0 on that between

ωD and ωB, see Fig. 3.5(b). (3) Write down the analytical solution on the ω plane that

satisfies the boundary condition: ψt(ω) = −iπ−1 ln(ω + 1). (4) Substituting the mapping

function ω(ζ) given in Eq. (3.33) into the solution yields the second Green’s function,

ψt(ζ, s) = − i

π
ln
[
eη(ζ−s) + 1

]
. (3.37)

Similar to the first case, the second Green’s function can be used to write down the general

solution to the problem where Φ = 0 on z = 0 and Φ = h(x) on z = Hv,

ψ(ζ) =

∫
ψt(ζ, s)h

′
t(s)ds. (3.38)

The result is applied later to the cases involving a patterned electrode.
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3.2.3 The first-order perturbation analysis

General expression for the first-order perturbation solution

The electrostatics problem given in Eqs. (3.26) and (3.27) can be significantly simplified

by assuming that the characteristic slopes S and Se are small. Under the assumption,

the weak singularities due to the vertices on the nanostructures can be neglected (Tersoff

and Tromp 1993), and the function ΦΓ(x, z) can be expressed as

ΦΓ(x, z) = SE0Φ1(x, z) + SeE0Φ2(x, z), (3.39)

accurate to the first order of S and Se. In Eq. (3.39), Φ1 refers to the effects of the

wire on Φ, and Φ2 describes the corresponding pattern effect. Substituting z = f(x) into

Eq. (3.39) leads to ΦΓ on the film surface. Expressing the result by Taylor series expansion

about z = 0 and neglecting the terms involving higher order terms of S and Se yield

ΦΓ(x, f) = SE0Φ1(x, 0) + SeE0Φ2(x, 0). (3.40)

By employing a similar scheme, ΦΓ on the pattern surface z = Hv + g(x) can be

estimated to be

ΦΓ(x,Hv + g) = SE0Φ1(x,Hv) + SeE0Φ2(x,Hv). (3.41)

Both Eqs. (3.40) and (3.41) are accurate to the first order of S and Se.

Substituting Eqs. (3.40) and (3.41) into (3.26) and (3.27) and noticing that S and Se

are two independent parameters of the system determine the boundary conditions for Φ1,

Φ1(x, 0) = −f̂(x), Φ1(x,Hv) = 0, (3.42)

and those for Φ2,

Φ2(x, 0) = 0, Φ2(x,Hv) = −ĝ(x). (3.43)
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Equation (3.42) suggests, accurate to the first order of S and Se, the boundary conditions

for Φ1(x, z) can be written as a distribution of electrostatic potential −f̂(x) on the flat

surface z = 0. Similarly, Eq. (3.43) shows that the boundary conditions for Φ2(x, z) can

be represented by the potential distribution −ĝ(x) on z = Hv.

The electrostatics problem described by the boundary conditions given in Eqs. (3.41)

and (3.42) can be solved by using the two Green’s functions, ψb and ψt, discussed in

Sec. 3.2.2 to calculate the complex-valued function ψΓ due to the non-flat boundaries.

Summing the results and the special solution ψ0(ζ) expressed in Eq. (3.33) yields the

first-order perturbation solution of the system shown in Fig. 3.5,

ψ(ζ) = ψ0(ζ)− iE0Sψ1(ζ)− iE0Seψ2(ζ) +O(S2
max), (3.44)

where ψ1 is the first-order term due to the wires on the film surface and ψ2 is that due to

the patterns on the electrode,

ψ1(ζ) = − 1

π

∫ [
ln
(
eη(ζ−s) − 1

)
+ 1
]
m(s)ds, (3.45)

ψ2(ζ) =
1

π

∫ [
ln
(
eη(ζ−s) + 1

)
+ 1
]
l(s)ds. (3.46)

In Eqs. (3.45) and (3.46), m(s) = f ′(s)/S is the relative slope on the film surface, and

l(s) = g′(s)/Se is that on the patterned electrode.

The surface electrostatic energy density

It follows from Eqs. (3.43), (3.45), and (3.46) that the derivative ψ′(ζ) on the film surface

ζΓ = x+ if(x) can be written as

ψ(ζΓ) = −iE0 [1 + Sψ′1(x) + Seψ
′
2(x)] . (3.47)
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Substituting the expression into Eq. (3.45) and ignoring the high-order terms yields the

electrostatic energy density we on the film surface accurate to the first order of S and Se,

we(ζΓ) = we0 [1 + 2SΨ1(x) + 2SeΨ2(x)] +O(S2
max), (3.48)

where Ψ1(x) = <[ψ′1(x)], Ψ2(x) = <[ψ′2(x)], and we0 = εE2
0/2 is the characteristic electro-

static energy density.

Equation (3.48) shows that the wire and the pattern cause the electrostatic energy

density we on the film surface to deviate from the constant we0 by 2Swe0Ψ1(x) and by

2Sewe0Ψ2(x), respectively. The effects are proportional to the slopes of the wire and pat-

tern, the density we0, and the two functions Ψ1(x) and Ψ2(x) that describes the variation

of we on the film surface.

The two functions Ψ1(x) and Ψ2(x) are controlled by the relative slopes, m and l,

of the wire and pattern, respectively. The two functions are independent of the electric

permittivity ε of the dielectric media between the film and the electric plate and the slopes

of the wires and patterns.

Analytic expressions for faceted wires and patterns

The integrals in Eqs. (3.45) and (3.46) cannot be calculated analytically in most of the

cases. The two equations, however, can be employed to obtain concise results for the

functions Ψ1(ζ) and Ψ2(ζ) when the wires and the patterns are faceted. The results are

presented in this section.

We first consider ψ′1(ζ) by differentiating Eq. (3.43) with respect to ζ and noticing

that the integration can be divided into N intervals corresponding to the projections of

the N facets of the wire on the plane z = 0,

ψ′1(ζ) = −η
π

N∑
j=1

∫ bj+1

bj

mje
η(ζ−s)

eη(ζ−s) − 1
ds. (3.49)
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Carrying out the integral in Eq. (3.49) and taking the real part of the result lead to a

simple expression for Ψ1(ζ),

Ψ1(ζ) = − 1

π
<

{
N∑

j=1

mj ln

[
eη(ζ−bj+1) − 1

eη(ζ−bj) − 1

]}
. (3.50)

Equation (3.50) determines the electric field due to the N -facet wire on the film surface.

The expression is further reduced to

Ψ1(ζ) = − 1

π

N∑
j=1

mj ln

(
ζ − bj+1

ζ − bj

)
, (3.51)

when ηζ = πζ/Hv → 0.

Turn to the function Ψ2(ζ). The function can be calculated by employing the same

solution procedure for Ψ1(ζ), which leads to the following formula,

Ψ2(ζ) =
1

π
<

{
N∑

j=1

lj ln

[
eη(ζ−tj+1) + 1

eη(ζ−tj) + 1

]}
. (3.52)

Equations (3.50) and (3.52) are the first-order perturbation solutions for single wire and

pattern containing multiple facets. The results are also applicable to the cases of multiple

wires and patterns.

Examples

Equations (3.50) and (3.52) are applied to three special cases in this section, namely, the

trapezoidal wire, the flat tape, and the trapezoidal pattern. Of particular interest here are

the two functions, Ψ1(ζ) and Ψ2(ζ), of the three cases. As discussed earlier, the results

can be further substituted into Eqs. (3.30) and (3.31) to calculate the electric filed E and

the electrostatic energy density we in the system.

Trapezoidal wires

Figure 3.6(a) illustrates the details of the first case where a trapezoidal wire forms on

a film surface. The center of the wire base is located at x = x0. The characteristic
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Figure 3.6: Schematic diagrams of a film-substrate structure under the influence of an elec-
tric plate containing (a) a trapezoidal wire on the film, (b) a flat tape on the film, and (c) a
trapezoidal pattern on the electric plate.

slope of the structure is S = tanφ, and the relative slopes of three facets of the wire are

{1, 0,−1}. The width of the wire base is 2a1, that of the wire top surface is 2a2, and the

x components of the wire vertices are {x1, x2, x3, x4} where x1 = x0 − a1, x2 = x0 − a2,

x3 = x0 + a2, and x4 = x0 + a1. Substituting the information into Eqs. (3.50) and (3.52)

determines Ψ1(ζ) and Ψ2(ζ) of the current case to be Ψ2 = 0 and

Ψ1(ζ) =
1

π
<
{
ln
[
eη(ζ−x1) − 1

]
− ln

[
eη(ζ−x2) − 1

]
− ln

[
eη(ζ−x3) − 1

]
+ ln

[
eη(ζ−x4) − 1

]}
. (3.53)
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When |η(ζ − x0)| = |πη(ζ − x0)| � 1, Eq. (3.53) can be expressed by Taylor’s series

expansion at η(ζ − x0) = 0

Ψ1(ζ) =
1

π
ln

[
(ζ − x1)(ζ − x4)

(ζ − x2)(ζ − x3)

]
+

η2

12π
(a2

1 − a2
2) +O(η4). (3.54)

A flat tape

Figure 3.6(b) plots the second case considered in this section, showing a flat tape on a

flat film surface. The thickness of the tape is h, the width is w, and w � h. Under

the assumption w � h, the flat tape can be viewed as a trapezoidal wire as shown in

Fig. (3.6)(a) with (x4 − x3)/(x4 − x1) � 1. This suggests that the solution of the flat

tape can be obtained by applying the limit (x4− x3)/(x4− x1) → 0 to the solution of the

trapezoidal wire written in Eq. (3.53),

SΨ1(ζ) =
h

SHf

<
[

1

eη(ζ−x1) − 1
− 1

eη(ζ−x2) − 1

]
, (3.55)

where x1 and x2, respectively, are the locations of the left and right edges of the tape.

Substituting Eq. (3.55) into (3.43) shows that the effect of the thin flat tape on the electric

field is proportional to the thickness h of the tape, and is insensitive to the slopes of the

edges.

Trapezoidal pattern

Figure 3.6(c) depicts the trapezoidal pattern considered in the third case, where the char-

acteristic slope is Se, the relative slope of the pattern is {−1, 0, 1}, and the x components

of the vertices are {t1, t2, t3, t4} = {t0− d1, t0− d2, t0 + d2, t0 + d1} where t0 is the location

of the center of the pattern, 2d1 is the width of the top surface on the electrode, and 2d2

is that of the surface facing the substrate. Substituting these quantities into Eq. (3.41)
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yields Ψ2(ζ) of the trapezoidal pattern,

Ψ2(ζ) =
<
π

{
ln
[
eη(ζ−t1) + 1

]
− ln

[
eη(ζ−t2) + 1

]
− ln

[
eη(ζ−t3) + 1

]
+ ln

[
eη(ζ−t4) + 1

]}
. (3.56)

Similar to Ψ1(ζ) of a trapezoidal wire, Ψ2(ζ) of the pattern at largeHv/a1 can be simplified

by Taylor’s series expansion at ζ = t0,

Ψ2 = K0 +K2ζ̂
2 +O(ζ̂4), (3.57)

where ζ̂ = η(ζ − t0) and the two coefficients K0 and K2 are given by

K0 =
2

π
ln

[
cosh(ηd1/2)

cosh(ηd2/2)

]
(3.58)

(3.59)

K2 =
1

4π

sinh[η(d1 − d2)/2] sinh[η(d1 + d2)/2]

cosh2(ηd1/2) cosh2(ηd2/2)
. (3.60)

Electrostatic energy change

In this section we derive the electrostatic energy change ∆We (per unit length in the

y direction) due to the formation of a wire on the film surface. The derivation process

follows closely the procedure for evaluating the strain energy change of strained faceted

wires (Chiu and Poh 2005). The procedure starts with writing down the variation of the

total electrostatic energy of the system δWe with that of the film morphology δf (Chiu

et al. 2006; Du and Srolovitz 2004),

δWe = −
∫
weδfdx. (3.61)

The wire morphology can be obtained by changing the characteristic slope S but fixing

other parameters in the system, including the pattern geometry, the relative slope m, and

the projection B of the wire facets onto its base. When S = 0, the morphology is a flat



Chapter 3: Energy Analysis 39

film; as S increases, a wire is added gradually onto the film. The morphological variation

δf during the process can be expressed as

δf(x) = f̂(x)δS, (3.62)

where f̂(x) = f(x)/S is the normalized wire shape function depending on the size and

the relative facet slope m of the wire. The volume of the film increases and accordingly

that of the dielectric media decreases during the variation process described in Eq. (3.62).

This implies that the total electrostatic energy change during the process would include

the effect due to the volume change and that due to the wire shape. This becomes clear

later in Eq. (3.63).

Substituting Eqs. (3.48) and (3.62) into (3.61) leads to

dWe

dS
= −w0e

{∫
f̂(x)dx+ 2S

∫
Ψ1(x)f̂(x)dx

+ 2Se

∫
Ψ2(x)f̂(x)dx

}
. (3.63)

Integrating Eq. (3.63) with respect to S from 0 to S and noticing that the three integrals

in the equation are independent of S yields the total electrostatic energy change ∆W ∗

during the process,

∆W ∗ = −we0

{∫
S f̂(x)dx+ S2

∫
Ψ1(x)f̂(x)dx

+ 2SSe

∫
Ψ2(x)f̂(x)dx

}
. (3.64)

By using f = S f̂ and noticing that the first integral in Eq. (3.64) gives the island

volume V , the electrostatic energy change dW ∗ in Eq. (3.64) can be rewritten as

∆W ∗ = −we0V + ∆W, (3.65)
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where

∆W = −we0

{
S
∫

Ψ1(x)f(x)dx + 2Se

∫
Ψ2(x)f(x)dx

}
+O(S2

max).

It can be demonstrated that the first term −we0V in Eq. (3.65) is the electrostatic energy

change when the total film volume increases by V without the formation of any wire on

the film. This interpretation of −we0V suggests the second term ∆W in Eq. (3.66) is

the electrostatic energy change due to the formation of wire when the volume of the film

and that of the dielectric media are fixed. The second term ∆W can be regarded as the

electrostatic energy of the wire.

The wire electrostatic energy ∆W in Eq. (3.66) can be rewritten as

∆W = −we0SV U1 − 2we0SeV U2 +O(S2
max), (3.66)

where U1 and U2 are determined by

Uk =
1

V

∫
Ψk(x)f(x)dx. (3.67)

The result indicates ∆W consists of two parts. The first part, −we0SV U1, is the electro-

static energy of a wire in the absence of the pattern on the electric plate. This part is

proportional to the electrostatic energy density we0, the slope S of the wire, the volume V

of the wire, and the quantity U1 representing the effect of the wire shape. In comparison,

the second part of Eq. (3.66) refers to the influence of the pattern; this part is controlled

by the density we0, the wire volume V , the slope of the pattern, and the quantity U2

indicating the pattern shape effect.

General solution of trapezoidal wires and patterns

To derive the general solution of trapezoidal wires and patterns, Eqs. (3.66) and (3.67)

are employed to investigate the electrostatic energy ∆We of the system shown in Fig. 3.7

where a trapezoidal wire is exposed to an electric plate containing a trapezoidal pattern
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Figure 3.7: Schematic diagram of a trapezoidal wire under the influence of a trapezoidal pattern
with a misalignment of x0 between the centers of the two structures.

that is misaligned with the wire. Of particular interest here is to obtain an analytical

expression for the dependence of ∆W on the electrode height Hv between the film surface

and the electric plate, the width ratio ξ = a2/a1 of the wire, the shape and size of the

pattern, and the misalignment x0 between the wire and the pattern when Hv is large.

The key to the investigation is to determine the two quantities U1 and U2 defined

in Eq. (3.67) for the case where a1/Hv � 1. The first one, U1, can be calculated by

substituting the asymptotic result of Ψ1(x) given in Eq. (3.54) and the surface profile

f(x) of the trapezoidal wire,

f(x) =


S(x− x1) x1 ≤ x ≤ x2

S(a1 − a2) x2 ≤ x ≤ x3

−S(x− x4) x3 ≤ x ≤ x4,

, (3.68)
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into Eq. (3.67) to yield

U1V =
2S
π

[
(a2

1 + a2
2) ln 4 + 2a2

1 ln a1 + 2a2
2 ln a2 − (a1 − a2)

2 ln(a1 − a2)

−(a1 + a2)
2 ln(a1 + a2) +

(a2
1 − a2

2)
2

24
η2

]
. (3.69)

By evoking the definition a2/a1 = ξ and evaluating the wire volume V = S(a2
1 − a2

2), U1

in Eq. (3.69) can be simplified to

U1 =
2

π

[
1 + ξ2

1− ξ2
ln 4 +

2ξ2

1− ξ2
ln ξ

−1− ξ

1 + ξ
ln(1− ξ)− 1 + ξ

1− ξ
ln(1 + ξ)

]
+
π(1− ξ2)

12

(
a1

Hv

)2

. (3.70)

The first four terms in Eq. (3.70) represent the effect of the wire width ratio ξ on U1 when

a1/Hv = 0, while the last term describes the dependence of U1 on a1/Hv.

The quantity U1 expressed in Eq. (3.70) is further explored in Fig. 3.8 by plotting the

variation of U1 with the wire width ratio ξ for the cases, where a1/Hv = 0 and 0.5. The

results, denoted by the solid lines in the figure, indicate U1 is positive and declines as xi

increases from 0 to 1. The findings show the wire formation causes the electrostatic energy

of the system to decrease, and a triangular wire (ξ = 0) is more effective in reducing the

electrostatic energy than a trapezoidal one for the same amount of wire volume V and

slope S. Comparing the results of the two cases reveals that larger a1/Hv leads to higher

U1; in other words, smaller electrode height Hv can induce more electrostatic energy

reduction even though the electric field ∆Φ/Hv is fixed.

In addition to the analytical result given in Eq. (3.70), Fig. 3.8(a) also depicts numer-

ical results of U1, which are obtained by carrying out the integration given in Eq. (3.67)

and are denoted by the solid circles in the figure. The differences between the numerical

and the analytical results are found to be small. The finding suggests that, though de-

rived from the condition a1/Hv � 1, Eq. (3.70) is a good approximation of U1 even when

a1/Hv is as high as 0.5.

After understanding U1, our investigation turns to the quantity U2 at large Hv. The
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Figure 3.8: (a) The variation of U1 with the wire width ratio ξ for the cases, where a1/Hv = 0
and 0.5. (b) The variation of U2 with d2/d1 for the cases, where a1/Hv = 0.1, x0 =, and
d1/Hv = 0.2, 0.3, 0.4, and 0.5.

quantity is determined by substituting Ψ2(x) given in Eq. (3.70) and the function f(x)

expressed in (3.68) into Eq. (3.67),

U2 = K0 − π2K2

[
1 + ξ2

6

(
a1

Hv

)2

+

(
x0

Hv

)2
]
, (3.71)

where K0 and K2 are given in Eqs. (3.58) and (3.60), respectively. The first term in

Eq. (3.71) refers to the effect of the pattern geometry on U2 when a1/Hv is negligible

and x0 = 0; the effect, as indicated in Eq. (3.58), is controlled by the pattern width

ratio d1/d2 and the normalized pattern size d1/Hv. In comparison, the second and the
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third terms describe the dependence of U2 on the normalized wire size a1/Hv and the

normalized misalignment x0/Hv, respectively. The third term is found to decrease with

x0/Hv, meaning a wire aligning with the pattern is more energetically favorable than

misaligned ones. This demonstrates the potential capability of using the patterns to

dictate the wire locations.

According to Eq. (3.71), Fig. 3.8(b) depicts the variation of U2 with the pattern width

ratio d2/d1 for the cases, where d1/Hv = 0.2, 0.3, 0.4, and 0.5, x0 = 0, a1/Hv = 0.1, and

ξ = 0. The results, denoted by the solid lines, indicate U2 is positive and declines with

increasing d2/d1 and/or decreasing d1/Hv. The findings show that the electrostatic energy

reduction due to the wire formation is enhanced by the pattern; the pattern effect is the

highest when the pattern shape is triangular; and the effect increases with the pattern

size.

Besides the properties of U2, Fig. 3.8(b) also compares the analytical expression for

U2 given in Eq. (3.71) with the numerical results, which are calculated by Eq. (3.67)

and denoted by the solid circles in the figure. The differences between the analytical and

numerical results are negligible for the cases considered in the figure. Further investigation

suggests the difference increases with a1/Hv and reaches 6.5% when a1/Hv = 0.5. The

result shows that Eq. (3.71) is a good approximation of U2 for moderate values of a1/Hv.

3.3 Interaction Energy

As discussed earlier in Sec. 2.1, the interaction energy can be modeled by a special type of

surface energy of which the density g depends on the distance z between the film surface

and the film-substrate interface. Thus, the change of the interaction energy is determined

by

∆EI =

∫
gdΓB +

∫
gdΓw −

∫
gdΓ0, (3.72)

where dΓB refers to the area integral over the wire facets, dΓw represents that over the

wetting layer surface, and dΓ0 denotes that over the flat film surface before the wire
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formation.

The area integral dΓB can be expressed as dΓB = (Sm)−1dx; substituting the expres-

sion into the first term in Eq. (3.72) yields,

∫
gdΓB =

N∑
j=1

1

sinφj

[G(zj+1)− G(zj)] , (3.73)

where zj is the z component of the jth vertices of the wire and G(z) is defined by

G(z) =

∫
g(z)dz. (3.74)

The function G(z) is simplified to G(z) = g0l ln(z +Hf + l) if the quantum confinement

is the mechanism of the film-substrate interaction.

Turn to the second and the third terms in Eq. (3.72). The third term refers to the

interaction energy of the system prior to the wire formation, and is given by g(Hf )A,

where A is the area of the flat films surface. The second term, on the other hand,

corresponds to the interaction energy of the flat wetting layer after the wire formation,

and can be expressed as g(Hf − ∆Hf )(A − b), where b = bN+1 − b1 is the width of the

wire base, Hf −∆Hf is the thickness of the wetting layer, and ∆Hf = V/A. By evoking

the conditions A � b and Hf � ∆Hf , the difference between the second and the third

terms can be calculated to be

g(Hf −∆Hf )(A− b)− g(Hf )A = −g′(Hf )V − g(Hf )b. (3.75)

Adding the above result and that expressed in Eq. (3.73) and adopting the simplification

sinφj ≈ Smj for small values of φj determine the change of the interaction energy to be

∆EI =
1

S

N∑
j=1

G(zj+1)− G(zj)

mj

− g(Hf )(bN+1 − b1)− g′(Hf )V. (3.76)

Equation (3.76) is for two-dimensional cases. The result of the three-dimensional cases

can be obtained by a similar approach except that the integrations in Eq. (3.72) becomes
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area integrals instead of line integrals. Carrying out the area integrals for a pyramid with

a square base and assuming the interaction mechanism is quantum confinement yields the

interaction energy change ∆EI due to the formation of the pyramid,

I(Â) = −1 +
Â

3
+

2(1 + Â) ln(1 + Â)− 2Â

Â2 cosφ
. (3.77)

3.4 Surface Energy

The surface energy change ∆Es due to the formation of the nanostructure can be expressed

as

∆Es =
N∑

j=1

γ0Gj(bj+1 − bj), (3.78)

where Gj = −1 + γj/(γ0 cosφj), γj is the surface energy density of the jth facet, and

γ0 is that of the flat wetting layer. Summing the changes of the strain, electrostatic,

interaction, and surface energy yields the total energy change ∆Etot,

∆Etot = ∆Wσ + ∆We + ∆EI + ∆Es. (3.79)
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Critical Film Thickness for

Stranski-Krastanow Transition

4.1 Introduction

The formation of nanoislands is generally observed in the SK mode in heteroepitaxial

film-substrate systems. The 3D structures can form after the film thickness exceeds a

critical value, and the formation can take place via two kinetic mechanisms: spontaneous

formation by nucleation and gradual morphological transition by surface diffusion. In the

nucleation process, the structure has to be larger than a critical size in order to be stable

against shrinkage, and there is an energy barrier for the structure to exceed the critical

size (Tersoff and Tromp 1993). In comparison, the surface undulation process is charac-

terized by smooth morphological changes without experiencing an energy barrier (Tersoff

et al. 2002).

The two mechanisms of island formation, namely, the spontaneous formation and

surface undulation, not only affect the pathways of the formation but also influence the

critical film thickness for the SK transition. The critical film thickness of the two mecha-

nisms are derived in this chapter, and it is found that the critical thickness under surface

undulation is larger than that under spontaneous formation. The difference in the criti-

cal thickness implies that there is a special thickness range in which an almost flat film

47
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can develop into islands via spontaneous formation but with surface undulation being

suppressed. The thickness range can be exploited to control the nanostructure formation.

This chapter is divided into two parts. The first part analyzes the critical film thick-

ness of the SK systems for the case of surface undulation and spontaneous formation.

The second part of this chapter then focuses on the scheme of fabricating self-assembled

nanostructures in the special film thickness range. This scheme is named the activated

Stranski-Krastanow transition (ASKT) method.

4.2 The Critical Film Thickness of the SK Transition

Our study is based on the continuum model for the SK film-substrate systems (Chiu

1999a), which is discussed in Chaps. 2 and 3. Therefore the system described here is

characterized by the surface energy γ, the film thickness Hf and the two length scales of

the system, namely ĝ0l = g0l/γ0 and L = γ0/wσ0.

γ γ

φ

D

H

1 2

f

Figure 4.1: A schematic diagram of a pyramid island on a film-substrate system.

We first calculate the total energy change ∆Etot as the SK system undergoes a mass-

conserved shape transition from a flat film to one with a pyramid island as shown in

Fig. 4.1. The film thickness is Hf , the island base width is D, the island height is A, and

the facet angle is φ. The surface energy densities of the wetting layer and the facet surface
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are γ1 and γ2, respectively. The total energy change ∆Etot is the sum of the change of

the surface energy ∆Es, the interaction energy ∆EI , and the strain energy ∆Wσ. The

quantities ∆Es and ∆EI can be can be calculated by using Eqs. (3.76) and (3.78), and

∆Wσ is expressed in Eq. (3.34). Summing the results yields

∆Etot = −U0wσ0SD3/6 + γ1D
2G+ g(Hf )D

2I(Â), (4.1)

where Â = A/(Hf +L), G = 1+γ2/γ1 cosφ, U0 = 1.98, and I(Â) is expressed in Eq. (3.77).

Figure 4.2: The region of (D,Hf ) in which the island formation is energetically favored for the
case where L = 250 Å, φ = 11.4◦, γ2/γ0 = 0.99, γ1/γ0 = 0.99, and l = 1 Å. The corresponding
stability number Σ is negative.

The total energy change ∆Etot(D,Hf ) depends on the island size D and the film

thickness Hf . The domain (D,Hf ) with ∆Etot < 0 specifies the region in which the

island formation is energetically favorable. The characteristic of the region is found to be

controlled by the sign of the stability number Σ.

Σ =

√
ĝ0lU0S
L

− γ1G

γ0

. (4.2)
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An example is shown in Fig. 4.2 for the case where Σ < 0. The results indicates that the

island formation is energetically favorable when the island size is larger than a critical

value Dcr. At large film thickness, Dcr is a constant, which can be derived as follows.

When Hf →∞, Â is infinitesimally small, and I(Â) in Eq. (3.77) is reduced to

I(Â) = −1 +
Â

3
+

2

cosφ
. (4.3)

Substituting Eq. (4.3) into (4.1) yields,

∆Etot = −U0wσ0S2D3/6 + γ1D
2G, (4.4)

which is dictated by strain energy and surface energy. Equation (4.4) suggests the total

energy ∆Etot is negative when the island size is sufficiently large. Solving the equation

∆Etot = 0 determines the critical island size Dcr at large values of Hf ,

lim
Hf→∞

Dcr =
6γ1GL

γ0U0S2
, (4.5)

which is independent of the film thickness Hf . The result is consistent with that derived

earlier by Tersoff and Tromp (1993).

After discussing Dcr at large Hf , our focus turns to the dependence of Dcr on Hf . As

illustrated in Fig. 4.2, the critical island size Dcr increases as the film thickness decreases

and reaches infinity at a critical value of thickness. The finding suggests the critical film

thickness can be determined by analyzing the total energy change of large islands. In the

case of large islands, Â → ∞, I(Â) is reduced to Â/3, and the total energy change can

be expressed as

∆Etot =

[
−U0wσ0S2 +

S ĝ0l

Hf + l

]
D3

6
− γ1

[
ĝ0l

γ1(Hf + l)
−G

]
D2. (4.6)

Equation (4.6) indicates the total energy change at large D is dictated by the coefficient

of D3. A positive coefficient means the total energy change is still positive even when the
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Figure 4.3: The region of (D,Hf ) in which the island formation is energetically favored for the
case where L = 250 Å, φ = 11.4◦, ĝ0 = 0.3 and Σ > 0

island size is big; therefore, the island formation is suppressed in this case. A negative

coefficient, on the other hand, indicates the total energy becomes negative when the island

size is sufficiently large and the island formation is energetically favorable. The condition

that the coefficient is zero determines the critical film thickness for the SK transition,

Hf + l = H1 =

√
ĝ0lL

U0S
=

√
g0l

wσ0U0S
. (4.7)

In the range Hf + l < H1, the spontaneous formation of any pyramid island with facet

angle φ is prohibited.

Figure 4.3 plots the region (D,Hf ) of ∆Etot < 0 for the case where Σ > 0. The

region is characterized by three thickness ranges. In the range (Hf + L)/H1 > 1, island

formation is favored when D exceeds a critical value Dcr. Similar to the case of Σ < 0,

Dcr is a constant given by Eq. (4.5) at large film thickness and Dcr increases as the film

thickness decreases. The critical size Dcr in the current case, however, reaches a finite

value at Hf + l = H1 instead of an infinitely large number as in the previous case. When

the film thickness is less than H1− l, the energetically favorable island size is bounded by
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two values; the upper and the lower bounds approach each other and coincide at some film

thickness. Below this thickness, island formation is suppressed. The findings, together

with the result sin Fig. 4.3, show that, irrespective of the sign of Σ, (Hf + l) > H1 is a

sufficient condition for the island formation to be energetically favorable.

The critical valueH1 results from the competition between the strain energy relaxation

∆Wσ and the interaction energy change ∆EI for the case of large island. As shown in Eq.

(4.6), both types of energy dominate the total energy change ∆Etot in this case. The strain

energy relaxation ∆Wσ favors island formation, and is proportional to D3. The strength

of the relaxation is a constant given by U0wσ0 tan2(φ)/6. The interaction relaxation, on

the other hand, discourages the formation of islands since the formation causes a thinner

wetting layer and thus higher interaction energy. The corresponding interaction energy

change is also proportional to D3, while the strength decreases with the film thickness.

As a consequence, the strain energy dictates at large Hf , but the interaction energy at

small Hf is strong enough to suppress the formation of large islands. The balance of the

two types of energy occurs at Hf + l = H1.

According to Eq. (4.6), the total energy change ∆Etot at the critical thickness H1

is determined by the coefficient of D2 since the coefficient of D3 is zero at the critical

thickness. The coefficient of D2 can be rewritten as

ĝ0l

(Hf + l)
− γ1G =

√
ĝ0lU0S
L

− γ1G = −γ1Σ, (4.8)

which depends on the stability number Σ. The dependence suggests that the characteris-

tics of the favorable island formation region is significantly affected by the parameter Σ.

When Σ is negative as in the coarsening case, the D2 term is positive. Therefore, both the

D3 and D2 terms are positive when Hf + l < H1. This explains why island formation is

suppressed in the range Hf + l < H1 and the critical island size is infinity at Hf + l = H1

as shown in Fig. 4.3. Turn to the case where Σ is positive. In this case, the D3 term

is still positive when the film thickness is slightly smaller than the critical value, while

the D2 term is negative. The opposite signs of the D3 and D2 terms mean that the total
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Figure 4.4: The contours of H2 −H1, in Å, as a function of L and ĝ0. φ = 11.3◦, γ2/γ0 = 0.99,
and γ1/γ0 = 1

energy can be negative if the island size is small. This explains the result in Fig. 4.8 that

the island can form on a stable film with Hf + l less than H1.

In contrast to the spontaneous formation, the surface undulation means the film first

develops a slightly wavy surface before the surface transforms into faceted island (Rastelli

et al. 2003; Tersoff et al. 2002). The critical film thickness for island formation via surface

undulation can be determined by solving a nonlinear equation derived in (Chiu 1999a).

Nevertheless, when g0 is much less than γ0, the result can be simplified to (Chiu 1999a;b;

Suo and Zhang 1998)

Hf + l = H2 =
3

√
αĝ0lL2

2
= 3

√
α.g0γ0lL2

2wσ
2
0

. (4.9)

Figure 4.4 plots the difference H2−H1 as a function of L and ĝ0 when φ = 11.3◦ and

α = 1. The result demonstrates that except at small L and large ĝ0, the critical thickness

H2 for surface undulation is larger than H1 for spontaneous formation. The difference is

more than the height of one Si mono layer when L > 10 nm and ĝ0 ∈ [0.01, 0.02].

The difference between island nucleation and surface undulation is analogous to that
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between nucleation and spinodal decomposition in phase transformation. The surface

undulation and the spinodal decomposition both occur under the condition that the energy

of the system is in the vicinity of a maximum so that the system can evolve toward a

minimum without involving nucleation. Nucleation, in contrast, is needed in order for

the system to reach another energy minimum if the energy of the system has been in

the vicinity of a minimum. In island formation, this corresponds to the case that the

flat surface is stable against infinitesimal perturbation but the facet island formation is

energetically favorable.

Although the case where H2 < H1 cannot be ruled out mathematically, this would

not occur in the SK systems studied in experiments because the corresponding interaction

energy density would result in unreasonably large critical film thickness for the SK tran-

sition. Take L = 62.5 Å in the Fig. 4.4 for example, which is about the value of Ge/Si

system. The quantity H2 in this case has to be larger than 12 Å in order to satisfy the

condition H2 < H1, but the value is much larger than the experimental findings, which is

between 4 and 5 Å.

In summary, due to the fact that the first critical thickness H1 of spontaneous forma-

tion is found to be smaller than the second critical film thickness H2 of surface undulation

in most of the cases, the morphological evolution can be classified into three regimes ac-

cording to the film thickness. At small thickness, Hf < H1, the morphological evolution

leads to a flat film for any initial surface profile. At large film thickness Hf + l > H2,

in contrast, the morphological evolution always causes surface undulation and faceted

island formation, irrespective of the initial profile. For films with thickness in the range

H1 < Hf + l < H2, the outcome of the morphological evolution of a film depends on the

initial profile. If the evolution starts with a slightly rough surface, the morphological evo-

lution results in a flat film. The morphological evolution, however, can produce faceted

island if there are sufficiently large pre-existing patterns or nanostructures on the film

surface. The finding motivates us to propose an approach to control the self-assembled

nanostructures by pre-patterning in the thickness range of H1 < Hf < H2 (Chiu et al.

2004).
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4.3 The Activated Stranski-Krastanow Transition

Method

4.3.1 Introduction

The SK systems satisfying the condition H2 > H1 can be applied to control the growth of

nanostructures. The proposed scheme, called the activated Stranski-Krastanow transition

(ASKT) method, is to make patterns on the film in the thickness range H1 < Hf < H2

and then anneal the system. If the patterns are larger than the critical size as shown

in Fig. 4.2, the formation of islands is energetically favorable, and the patterns can self-

assemble into nanostructures during the annealing process. The un-patterned surface, on

the other hand, will remain smooth. The contrast between the patterned and un-patterned

surfaces means the nanostructures can be fabricated at the selected locations.

The suppression of surface undulation and island nucleation on the un-patterned

flat area can be understood as follows. The surface undulation is prohibited since the

surface is stable against waviness of small amplitude in the special thickness range. The

island nucleation is possible energetically but impeded kinetically because of a low adatom

density during the annealing process. The low density significantly reduces the probability

that a sufficient number of adatoms can accumulate in a small regime to attempt nucleus

formation.

The patterns in the ASKT method can develop into nano-structures during the an-

nealing process by the spontaneous shape transition and the surface undulation. The first

mechanism is similar to the island nucleation, and it is insignificant during the annealing

process. The surface undulation is prohibited on the un-patterned surface; however, the

mechanism can be activated by the patterns to facilitate nano-structure formation.

In summary, the ASKT method is to anneal the SK systems in a special thickness

range. In this method, islands cannot form on the flat film surface since the surface

undulation is suppressed energetically and the spontaneous island formation is kinetically
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Figure 4.5: The simulation results for the morphological evolution of the SK systems, where
L = 250 Å, ĝ0 = 0.0625, l = 1 Å. Three cases of different film thickness Hf and the initial
surface profile are shown in (a1-a3), (b1-b3), and (c1-c3). In particular, Hf =2.5, 2.5, and 1.05
nm in (a1-a3), (b1-b3), and (c1-c3), respectively. The initial surface for the case in (a1-a3)
is a slightly wavy surface; those in (b1)-b(3) and (c1)-(c3) are identical, containing two square
patterns. The color represents the height of the surface, varying from brown for trenches/valleys
to light yellow for peaks. The corresponding height difference is 0.04, 7.6, 8.1, 1.4, 7.5, 8.3, 1.4,
4.3, and 5.2 in (a1-c3), respectively.

impeded. The island formation, however, can be activated by introducing patterns on the

film to self-assemble into nano-structures by surface undulation.

4.3.2 Numerical Simulation

The self-assembly process controlled by the surface undulation mechanism is further stud-

ied by numerical simulation to explore the potential capability of the ASKT method. The

implementation of the numerical simulation is discussed in Chap. 3.

We considered the model system where L = 250 Å, ĝ0 = 0.0625, and l = 1 Å, corre-

sponding to Si50Ge50/Si film-substrate system. We compared the morphological evolution

of the SK system in the two thickness ranges, Hf + l > H2 and H1 < Hf + l < H2. The
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morphological evolution in the first range, plotted in Figs. 4.5(a1)-4.5(b3), follows the

cooperative formation process: island are encircled by trenches, and subsequently the

trenches facilitate the growth of island at the adjacent sites. The cooperative formation

can be triggered on a slightly wavy surface, see Figs. 4.5(a1)-(a3), and on a patterned sur-

face, see4.5(b1)-(b3). The results are consistent with the experimental findings of similar

SixGe1−x/Si system (Jesson et al. 1996). The results also suggest that it is challenging to

control the island locations and island shapes when the surface undulation can occur on

the whole surface.

The morphological evolution of the same system is completely different when the

film thickness is in the second range Hf + l ∈ [H1, H2]. The surface undulation of small

amplitude is energetically unfavorable in this case, and our simulation confirmed that

a slightly wavy surface would evolve toward a flat profile. The morphological evolution

of a patterned surface is plotted in Figs. 4.5(c1)-(c3). The results demonstrate that the

patterns can develop into islands without inducing other nanostructures on the surface.

Besides single islands, different patterns may self-assemble into different shapes of

nanostructures. This is shown in our simulation by varying the size, the height, and the

aspect ratio of rectangle patterns on the same SK system considered in Fig. 4.5 with

Hf ≈ 1 nm. The structures found in our simulations includes island arrays, rings, and

wires as shown in Fig. 4.6. The island arrays can be 2 × 2 and 3 × 3. The ring shape

can be a square or a rectangle, and it can contain a single rim or multiple rims. Since

the shapes are controlled by the pattern geometry, all the shapes can be produced on the

same substrate.

The nanostructures shown in Fig. 4.6 are appealing for their unique morphologies and

their potential in device application. For example, the 2× 2 island array and the square

ring may be adopted as the basic unit for the quantum cellular automata (Orlov et al.

1997). The wire and the long rectangular ring may be used for the nano-electronic devices

(Cui and Lieber 2001). In addition to the two examples, other applications can also be

developed by using different patterns to produces more complicated structures.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: The simulation results for the effect of the pattern geometry on the shapes of the
nanostructures fabricated by the ASKT method. The size of the patterns are (a-c) 150, (d-f) 200,
(g) 150×450, and (h) 50×450 nm. The height of the patterns is 0.75, 1.55, 3.1, 3.5, 2.9, and 2.5
nm in (a-h), respectively. The patterns lead to (a) single pyramid island; (b) 2×2 island array;
(c) 3×3 island array; (d) a single-rim square ring; (e) a single-rim square ring with a quantum
dot in center; (f) a double-rim square ring with a quantum dot in center; (g) a rectangular ring;
and (h) a wire. The color represents the angle φ between the vertical direction and the normal
vector of the surface, which ranges from light yellow for φ = 0◦ to brown for 11.3◦.
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4.4 Discussion

Although patterns are needed to activate the island formation in the ASKT method, the

pattern sizes does not impose a lower limit on the feature length of the nanostructures.

The feature length is controlled by the characteristic length L. This is demonstrated

in Fig. 4.6 that patterns of different shapes and sizes on the same SK system with L =

250 Å lead to nanostructures of similar feature length. It is further found in our simulation

that the feature length decreases when L increases. This means that the feature length

can be reduced by increasing the mismatch strain E0 in the SK system without changing

the pattern size.

We only adopted a simple interaction mechanism to account for the SK transition in

the project; however, the results would be similar when more realistic mechanisms of the

film-substrate interaction are included. The key point here is that the critical thickness H1

of the transition under spontaneous formation differs from H2 under surface undulation,

irrespective of the interaction mechanisms. The fundamental difference between H1 and

H2 is the pivot of the ASKT method for the controlled self-assembly of nanostructures.

The difference between the H1 and H2 is indicated in the experimental observations;

however, the importance of the idea still needs to be exploited in the future.

One of the important conditions for the realizing the ASKT method is to have large

value of H2 − H1. This can be easily achieved when the surface energy density γ is a

minimum in the film thickness direction. One example is the SiGe film on the Si(001)

substrate (Tersoff et al. 2002). In such a case, reducing the process temperature would

cause the minimum to be stronger, leading to higher H2 and thus a larger value of H2−H1.

Another issue in the ASKT method is whether or not the nucleation rate can be low.

It is known that nucleation plays a significant role in the island formation of the SiGe

systems with a large Ge concentration, particularly during the growth process. In such

a case, the adatoms are abundant, and it is easy to have enough adatoms to diffuse by

a short distance to form nuclei. The scenario, however, is different during an annealing

process in the ASKT method. The adatom density is much lower, the probability at any
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moment to have enough adatoms in such a short distance to form nuclei is extremely low.

For example, when the adatom concentration xa is 2%, the probability of gathering 180

Ge adatoms to form a pyramid nuclei of 5 nm is 0.02180, less than 10−300. The low adatom

concentration during the annealing process results in a high kinetic barrier to suppress

the nucleation mechanism in the ASKT method.



Chapter 5

Formation of Nanostructures by

Surface Undulation

This chapter investigates the nanostructure formation of typical Stranski-Krastanow sys-

tems by simulating the surface undulation of the system driven by the surface diffusion

mechanism. This chapter is organized as follows: Section 1 reviews the critical film thick-

ness of typical SK system, Sec. 2 describes the approach that are adopted to study the

nano-islands in this chapter, Sec. 3 presents the common features that are observed in

our simulation, Sec. 4 examines the effect of key parameters of the SK system and Sec.

5 summaries the key morphological evolution processes in the SK system.

5.1 Introduction

5.1.1 Critical film thickness

As discussed in Chap 4, the SK systems can form faceted islands only when the film thick-

ness exceeds a critical value. The critical thickness depends on whether the development

of the faceted islands follows the spontaneous formation or the surface undulation (Chiu

et al. 2004). The spontaneous formation means the faceted islands grow directly on the

film surface by the mechanism of nucleation (Tersoff and Tromp 1993). The critical value

61
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is called the first critical thickness, and it is given in Eq. (4.7). In contrast to the spon-

taneous formation, the surface undulation means the film first develops a slightly wavy

surface before the surface transforms into faceted islands (Rastelli et al. 2003; Tersoff

et al. 2002). The critical value is called the second critical thickness, and it is given by

Eq. (4.9). The critical value H2 is adopted in this thesis to normalize the film thickness

and the quantity H1,

Ĥf = (Hf + l)/H2, (5.1)

Ĥ1 = H1/H2. (5.2)

5.1.2 The fastest surface undulation mode

In the section, we employ the first-order boundary perturbation method to derive the

fastest surface undulation mode due to surface diffusion (Chiu 1999a; Gao 1991a; Srolovitz

1989). We consider the case where the surface profile is described by a cosine curve

f(x, t) = A(t) cos kx where A(t) is the amplitude at time t and k is the wave number.

For a shallow surface Ak � 1, the morphological evolution expressed in Eq. (2.7) can be

simplified to (Srolovitz 1989)

∂f

∂t
= D′∂

2χ

∂x2
, (5.3)

where D′ = ΩρsDs/kBTk. The surface chemical potential χ is given by (Chiu 1999a)

χ = µ0 + Ω {wσ0 + g′(Hf )+ A cos kx
[
αγ0k

2 − 4wσ0k + g′′(Hf )
]}
,

according to the continuum model adopted in the thesis and assuming g(Hf )/γ0 � 1.

Substituting Eq. (5.4) into (7.30) yields the evolution equation for the amplitude A(t)

of the cosine surface,

dA

dt
= CA, (5.4)
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C = −D′ [αγ0k
4 − 4wσ0k

3 + g′′(Hf )k
2
]
. (5.5)

The solution of A(t) can be found to be A(t) = A0 exp(Ct) where A0 is the amplitude at

t = 0. The result indicates the amplitude A(t) varies exponentially with the quantity Ct,

which depends on the wave number k. The wave number k0 resulting in the largest C

corresponds to the fastest surface undulation mode under the surface diffusion mechanism.

The value of k0 can be obtained by solving the equation dC/dk = 0,

k0 =
3 +

√
9− 2αĝ′′(Hf )L2

4αL
, (5.6)

where ĝ′′(Hf ) = g′′(Hf )/γ0. By evoking the definitions of ĝ′′(Hf ), Ĥf , H2, and k0 can be

rewritten as

k0 =
3 +

√
9− 8Ĥ−3

f

2αL
. (5.7)

The wavelength λ0 of the fastest mode is thus

λ0 =
2π

k0

=
4παL

3 +
√

9− 8Ĥ−3
f

. (5.8)

The values of α are briefly discussed as follows. For the case where γ(n) is uniform in

the vicinity of (001), γ1 = γ0, K = ∂2γ/∂φ2 = 0, and α = (γ1 +K)/γ0 = 1. For the case

where γ contains a shallow minimum on (001), the value of K can be significantly high

even though the surface energy density γ1 on (001) is only lowered by a nominal value.

This means that α > 1 when a minimum of γ on (001) is introduced, and α increases

with the strength of the minimum.
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5.2 Model and Methodology

5.2.1 Approach

We adopt the continuum model described in Chap. 3 to study the nanostructure formation

effected by the surface undulation on the SK systems. The film thickness is higher than

the critical value for surface undulation. and the initial surface f(x, y, 0) is taken to be

an almost flat profile with some random roughness.

The nanostructure formation considered here is controlled by three nondimensional

parameters: the characteristic length ratio F = ĝ0l/L, the normalized film thickness Ĥf ,

and the NESE density α [defined in Eq. (2.2)]. The ratio F , representing the normalized

strength of the interaction energy, controls the SK transition, the wetting layer formation,

and the stability of islands against coarsening. The normalized thickness Ĥf is related to

the amount of film material that can be transformed into islands, and the NESE density

α determines the effect of γ(n) on the surface undulation process. The formation is also

affected by the minimum of γ on {105}, {113}, and {15 3 23}. The minimum is included

in our simulations, while the magnitude of the minimum is fixed.

A major part of our investigation is based on a parametric study of F = ĝ0l/L with

the other two parameters of the SK systems being fixed: Ĥf = 1.3 and α = 1. The choice

of α implied γ is uniform in the vicinity of (001). The cases in the parametric study are

listed in Table 5.1. Each case is labeled by a letter followed by an integer. The letter,

ranging from I to M, refers to the ratio F of the case: The ratio F of the I, J, and K cases

are small, causing pyramids to be unstable against coarsening. On the contrary, those of

the L and M cases are sufficiently high to stabilize the coarsening. The integer following

the letter refers to the value of ĝ0l. The number is 1, 2, and 3 when ĝ0l = 0.25, 0.0625,

and 0.01563 Å respectively.

The I, J, and K cases of the parametric study are first analyzed in the following sec-

tions to reveal the common features of the formation of faceted nanostructures on the

coarsening SK systems. The common features lead to a simple model for determining
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Table 5.1: The values of ĝ0l and L of the cases considered in the parametric study.

ĝ0l (Å) L (Å)
16000 4000 1000 250 62.5

0.25 I1 J1 K1 L1 M1
0.0625 I2 J2 K2 L2
0.01563 I3 J3 K3

the effects of {F,Hf , α} on the maximum surface coverage ξmax in Sec. 5.4. After under-

standing how F , Ĥf , and α affect ξmax, Section 5.5 turns to numerical simulation that

illustrates the effects of ξmax on the film surface profile during the nanostructure forma-

tion. The simulation includes the cases in Table 5.1 and those with different values of Ĥf

and α.

5.3 The Common Features

The common features of the nanostructure formation on the coarsening SK systems can

be summarized as follows.

1. The essence of the nanostructure formation process is the transformation of the film

material above the wetting layer into faceted islands.

2. The wetting layer thickness is equal to the first critical thickness for the SK transi-

tion.

3. The nanostructure width measured at the average film height is close to a constant

during the formation process.

The common features are observed by comparing the morphological evolution of the

I, J, and K cases. An example of the comparison is shown in Fig. 5.1 for Cases I2, J2,

and K2. The three cases are arranged in three rows which contain five sub-figures. The

first four illustrate how the film morphology changes as the surface coverage of faceted

islands increases to the maximum value. The fifth one plots the film cross-sections along

the solid line shown in the first sub-figure at four time steps.
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Figure 5.1: The morphological evolution of (a1–a5) Cases I2, (b1–b5) Case J2, and (c1–c5)
Case K2. In (a5), (b5), and (c5), Line (0) is from the result prior to the emergence of faceted
islands, and Lines (1), (2), and (4) are obtained from the first, second, and fourth sub-figures of
the corresponding case. In (a5), (b5), and (c5), the horizontal lines represent the average film
height.

5.3.1 The formation process on the coarsening SK systems

Figures. 5.1(a1)–5.1(a5) show a typical example of the nanostructure formation effected

by the surface undulation. The film first develops a wavy profile containing shallow bumps

and valleys, see Fig. 5.1(a1). The bumps then undergo a shape transition from smooth

structures, to faceted islands with rounded tops, and finally to pyramids, see the arrows

in Fig. 5.1(a1). The bump-pyramid transition shown in the simulation is consistent with

the experimental observations reported in the literature (Rastelli et al. 2003; Tersoff et al.

2002).

As the bumps and the pyramids form on the film, the film material is transported

from the valleys toward the islands by surface diffusion. This causes the valleys to deepen

and evolve into a flat wetting layer, see Fig. 5.1(a5).

Similar island formation process, characterized by the growth of a wavy surface profile,
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(a) (b) (c)

Figure 5.2: The evolution of the surface coverage ξ of the faceted islands during the morpholog-
ical evolution of Case K2, (b) the film surface profile at the maximum surface coverage, and (c)
the film surface profile at the stage of island coarsening.

the shape transition, and the development of a flat wetting layer, is observed in all of the I,

J, and K cases. This confirms the first common feature that the nanostructure formation

of the coarsening SK systems can be depicted as the transformation of film material above

the wetting layer into faceted islands. The essence of the first feature is similar to that of

barrierless island formation during the deposition process (Tersoff et al. 2002). The two

processes, however, differ significantly in the kinetic pathways.

Besides the film morphology and the cross-sections shown in Fig. 5.1, the island

formation process can also be visualized by the evolution of the surface coverage ξ of the

faceted islands. One example is depicted in Fig. 5.2(a) for Case K2. The result indicates

the coverage ξ is zero at the initial stage of the formation process when the film surface is

dominated by shallow bumps and valleys. After the initial stage, the coverage ξ increases

drastically, reaches a maximum, and then declines gradually. The fast increase of ξ signals

the bump-pyramid transition, while the decrease of ξ is caused by the island coarsening

process after the islands and the wetting layer form. During the coarsening process, bigger

islands grow bigger, and smaller ones become smaller and then disappear. The nature

of the coarsening process is evidently shown in the comparison between Figs. 5.2(b) and

5.2(c) where the former plots the film profile with the maximum surface coverage of faceted

islands and the latter depicts that at the later stage of the morphological evolution
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Figure 5.3: The cross-section profiles of the (a) I, (b) J, and (c) K cases examined in Table 5.1
when the island surface coverage ξ reaches the maximum.

5.3.2 The wetting layer thickness

Figures 5.3(a), 5.3(b), and 5.3(c) plot the cross-sections of the I, J, and K cases, repre-

senting when the faceted island surface coverage attains the maximum. The horizontal

dash-dotted lines in the figure indicate the average film height, and the dash-dotted lines

correspond to the first critical thickness. The dash-dotted lines are found to coincide well

with the wetting layer surface, demonstrating the second common feature.

The second feature can be understood as follows. The first critical thickness, given in

Eq. (4.7), refers to the film thickness below which the formation of a pyramid island of

any size is energetically unfavorable (Chiu et al. 2004). This means the portion of the film

below the first critical thickness cannot develop into islands, and this portion will remain a

flat layer. In contrast, the portion of the film above the first critical thickness is unstable
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against island formation, and this portion will gradually transform into islands. The

different characteristics of the two portions of the film lead to the tendency to develop a flat

wetting layer during the formation of nanostructures. The second feature is independent

of the type of wetting potential in the SK system.

The second feature suggests that the first critical thickness for the SK transition can

be determined by measuring the wetting layer thickness after the annealing process. This

is a potentially simpler and more reliable scheme than the conventional method, where

the critical thickness is obtained by observing the SK transition during the film growth

process, a challenging task if the islands form via a gradual barrierless process.

As a remark, Eq. (4.7) suggests that the critical thickness H1 for island formation

and the wetting layer thickness decrease when the characteristic slope S of the island

increases. Hence, the wetting layer thickness for the dome islands, characterized by the

{113} facets, is smaller than that of the {105} pyramids. This explains the observations

in experiments that there is a shallow valley around the dome islands (Medeiros-Ribeiro

et al. 1998; Rastelli et al. 2001).

5.3.3 The island width

The island width is investigated by examining the evolution of the film surface cross-

sections depicted in Figs. 5.1(a5), 5.1(b5), and 5.1(c5). Of particular importance are the

interception points of the cross-sections and the horizontal lines at the average film height.

These points determine the nanostructure width d0 measured at that height. It is found

that the width d0 does not change significantly during the formation of nanostructures.

The finding can be observed in all of the cases shown in Fig. 5.1. The island width d0 at

the average film height is termed the basic width in the thesis.

5.3.4 The formation of faceted island

The three features together describe how nanostructures form on the SK system during the

annealing process. The process starts with the growth of a wavy surface, see Fig. 5.4(a).
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Figure 5.4: The schematic diagram of the general island formation process that consists of surface
undulation, bump pyramid transition, and wetting layer development. The basic width d0 of
the island approximates to a constant even though the shape of the island changes significantly
during the formation process.

As the amplitude of the wavy surface increases, faceting is triggered at the average film

height since the slope of the surface is the highest there, see Fig. 5.4(b). After the facet

is initiated, the facet develops quickly in the lateral direction of the facet, resulting in

a fully developed pyramid. The process continues until all of the film material above

the first critical thickness is transformed into islands, leading to a flat wetting layer, see

Fig. 5.4(c).

This common feature can be understood by the general nanostructure formation

process depicted in Fig. 5.4. The process starts with undulation of the film surface.

As the amplitude of the wavy surface increases, faceting is triggered at the average film

height since the slope of the slightly wavy surface is highest there. This explains why the

basic width of the shallow bump is similar to that of the truncated pyramid.

5.3.5 Comparison

Strictly speaking, the surface profiles in Figs. 5.1(a5), 5.1(b5), and 5.1(c5) are not perfect

facets, raising a question of the applicability of the third feature to the case of perfect

facets. To answer the question, we first compared our simulations with those in the
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Table 5.2: The maximum surface coverage and the island base width obtained by numerical
simulation (dnum and ξnum) and those predicted by Eqs. (5.11) and (5.12) (dth and ξth)

Case dnum (Å) ξnum dth (Å) ξth
I1 2.13× 104 0.44 2.20× 104 0.43
I2 5.32× 103 0.44 5.51× 103 0.43
I3 1.33× 103 0.44 1.38× 103 0.43
J1 5.68× 103 0.60 5.86× 103 0.58
J2 1.42× 103 0.60 1.47× 103 0.58
J3 3.54× 102 0.60 3.66× 102 0.58
K1 1.51× 103 0.79 1.58× 103 0.76
K2 3.73× 102 0.80 3.95× 102 0.76
K3 9.35× 101 0.80 9.88× 101 0.76

literature studying perfect facets. It is found that those results also revealed fast facet

growth in the lateral direction even though there is no stress in the systems (Liu and

Metiu 1993).

In addition to the literature results, we also compared d and ξmax obtained from the

numerical simulations with those predicted by Eqs. (5.11) and (5.12), which are derived

later in Sec. 5.4. The results are listed in Table 5.2 for all of the I, J, and K cases. In the

table, dnum and ξnum refer to the simulation results; dth and ξth are the values predicted by

Eqs. (5.11) and (5.11), respectively. The simulation results agree well with the predicted

values. The good agreement suggests the third feature is applicable to the cases of perfect

facets.

5.4 The Maximum Surface Coverage ξmax of Faceted

Islands

5.4.1 Derivation of ξmax

The faceting process shown in Fig. 5.4 suggests a simple model for estimating the average

base width d of faceted islands when the faceted islands have fully developed and the
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island surface coverage reaches the maximum ξmax,

d = d0 +
2(Hf − h)

tanφ
, (5.9)

where Hf is the film thickness and h is the wetting layer thickness equal to the first

critical thickness. The basic width d0 in Eq. (5.9) is half of the wavelength λ0 given

in Eq. (5.8). Similarly, the difference Hf − h in Eq. (5.10) can be obtained by evoking

Eqs. (4.7), (4.9), (5.1) and (5.2),

Hf − h

L
=
H2Ĥ −H1

L
=

3

√
αF
2
Ĥf −

√
F
U0S

. (5.10)

Substituting Eqs. (5.9) and (5.10) into (5.9) yields (5.11)

d

L
=

2πα

3 +
√

9− 8Ĥ−3
f

+
2

tanφ

(
3

√
αF
2
Ĥf −

√
F
U0S

)
. (5.11)

With the knowledge of Hf − h and d, the maximum surface coverage ξmax of faceted

islands can be determined by

ξmax =
6

tanφ

Hf − h

d
. (5.12)

Equations (5.9)–(5.12) indicate the dependence of ξmax on F , Ĥf , and α.

Equation (5.12) may predict ξmax > 1. This means the wetting layer depth Hf−h is so

large that the faceted island bases cannot reach the wetting layer after the shape transition

from a smooth profile to faceted nanostructures. In such cases, the nanostructures cover

the whole film surface after the shape transition and ξmax = 1.

5.4.2 The effects of F , Ĥf , and α on ξmax

The effects of F , Ĥf , and α on ξmax are illustrated in Fig. 5.5. In particular, Fig. 5.5(a)

depicts the variation of ξmax with Ĥf for the I, J, and K cases, where F = 1.56 × 10−5,
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Figure 5.5: (a) The variation of ξmax with Ĥf at α = 1 for the I, J, and K cases, and (b) that
with Ĥf at α = 1, 2, and 3 for the K cases.

6.25× 10−5, and 2.5× 10−4, respectively, and α = 1. The results show that ξmax increases

with F and Ĥf . Figure 5.5(b) shows the effect of α on ξmax by plotting the variation

of ξmax with Ĥf at three different values of α. Comparing the results of the three cases

suggests that ξmax is reduced when α increases. This implies a minimum of γ on (001)

favors an array of sparse islands during the formation process.

Figure 5.5 can be further understood as follows. First, a higher value of Ĥf means

more film material can transform into islands; hence, the maximum island surface coverage

ξmax increases. Second, as suggested in Eqs. (5.10) and (5.11), raising the ratio F results

in more film material for island formation and larger island size. The effect on the former,

however, is stronger, thus leading to a higher ξmax. Third, increasing α also causes more

film material for island formation and larger island size, while the effect on the island size

is stronger in the current case. Accordingly, ξmax decreases when α increases.

As a remark, Eqs. (5.10)–(5.12) are valid only when the stability number Σ is negative.

If Σ > 0, the coarsening of islands is stabilized and the wetting layer thickness is different

from the first critical thickness (Chiu 2004); consequently, (Hf − h)/L cannot be given

by (ĤfH2 − H1)/L as suggested in Eq. (5.10). Although it is beyond our capability to

derive a simple expression for ξmax of the stable SK systems, the simulation results in our
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parametric study seem to indicate that the maximum surface coverage of faceted islands

on the stable SK systems is high.

In short, Eqs. (5.10)–(5.12) show it is the characteristic length ratio F , the normalized

film thickness Ĥf , and the NESE density α that determine the maximum surface coverage

ξmax of faceted islands. It becomes clear in the next section that the quantity ξmax in turn

controls the film surface profiles during the nanostructure formation.

5.5 The Film Morphologies

The film morphologies observed in our simulation can be classified into three types: (1)

an array of separate islands, (2) localized wetting layers and induced facets, and (3) a

faceted ripple structure. The film surface profile changes gradually from Type 1 to Type

2 and then to Type 3 when ξmax increases. The three types of morphology and the effects

of ξmax on the film morphologies are discussed in this section.

5.5.1 An array of separate islands

An example of this type of film morphology can be found in Figs. 5.1(a1)–5.1(a5) for Case

I2. The morphology is characterized by sparse pyramid islands. It is also observed that

the wetting layer in this case has largely developed at the onset of the shape transition

from bumps to pyramid islands, see Figs. 5.1(a1) and 5.1(a5).

This type of film morphology appears when ξmax is low. For example, ξmax = 0.43 in

Case I2. A low value of ξmax means the wetting layer depth Hf − h is much smaller than

the height of the pyramid island (d tanφ)/2; accordingly, it takes less time for the wetting

layer to form than the pyramid islands. This explains the relatively flat wetting layer

at the onset of the bump-pyramid transition. The low surface coverage also implies that

the bump-pyramid transition of an island can seldom activate another transition in the

neighboring area. Therefore, most of the pyramid islands in this case form individually

without a particular sequence.
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The shape of islands in this type of film morphology is mainly pyramids with a square

base. This is consistent with the result that the total energy of the pyramid is lower than

elongated ridges and truncated huts of the same volume (Chiu and Poh 2005; Tersoff and

Tromp 1993).

5.5.2 Localized wetting layers and induced facets

The second type of film morphology can be found in Figs. 5.1(b1)–5.1(b5) and 5.1(c1)–

5.1(c5), the results of Cases J2 and K2, respectively. The distinguishing features of the

morphology are the localized wetting layers and induced facets highlighted by the arrows

in Figs. 5.1(b2).

This type of morphology occurs when ξmax is high. In such cases, the wetting layer

depth Hf −h is higher and the wetting layer formation is slower. As a consequence, when

some of the bumps start to transform into pyramids, the wetting layer has not developed,

and the film surface still comprises mainly valleys and bumps, see Figs. 5.1(b1) and

5.1(c1). The emergence of the pyramids results in a higher stress gradient in the vicinity

of the island base, causing the film material to be quickly transported away from the

valleys to the pyramids and the nearby bumps. This leads to the two distinguishing

features of this type of morphology: The removal of the material from the valleys results

in the localized wetting layers around the pyramids; the accumulation of the material on

the nearby bumps causes the bumps to develop facets on the sides facing the pyramids.

The considerable influence of the existing islands on the subsequent faceting process also

explains why there are more elongated islands in this type of morphology than in the first

type.

The morphological evolution of the third case is plotted in Figs. 5.1(c1)–5.1(c5). The

characteristics of the evolution are similar to those in the second case: the development of

a wetting layer around a faceted island, the induced faceting on the neighboring bumps,

and a higher percentage of non-pyramid islands. The difference between the two cases is

that in the current case the island surface coverage ξ is higher.
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Figure 5.6: The morphological evolution of the faceted ripple structures due to (a1)–(a3) a high
Ĥf and (b1)–(b3) a large value of F . In (a1)–(a3) the material properties are given by those of
the J2 case with Ĥf = 3, and in (b1)–b(3) the material properties correspond to the M1 case
with Ĥf = 1.3

5.5.3 The faceted ripple structure I

The faceted ripple structure is observed in the SK systems with ξmax being close or equal

to one. As shown in Sec. 5.4, this happens when the normalized film thickness Ĥf and/or

the characteristic length ratio F is large.

Figure 5.6(a1)–5.6(a3) plots an example of the ripple structure on a thick film. The

material properties in the example are identical to those of Case J2, while Ĥf is increased

to 3. Figure 5.6(a1) indicates that the nanostructure formation at large Ĥf is similar to

that at small Ĥf , also following the process of the growth of a wavy profile and the shape

transition from the wavy profile to faceted nanostructures. The shape transition at high

Ĥf , however, is mainly from valleys to trenches/pits, instead of from bumps to pyramid

islands.

After the shape transition, the pits and the trenches facilitate the growth of pyramids

and ridges at the adjacent sites, see Fig. 5.6(a2). The process is called the cooperative

nucleation in the literature (Jesson et al. 1996). As implied by the term, the cooperative

nucleation is thought to be effected by nucleation. Our simulation, however, shows that

the process can also result from the surface undulation. To highlight the different mecha-



Chapter 5: Formation of Nanostructures by Surface Undulation 77

nism, the process caused by the surface undulation is termed the cooperative formation.

The cooperative formation is the kinetic pathway of the faceted ripple structure. The

cooperative formation is further studied in the next chapter.

Figure 5.6(a3) depicts the faceted ripple structure after the nanostructures have fully

developed, showing two characteristics of the morphology. First, the faceted ripple struc-

ture is a network of ridges and trenches covering the whole film surface. Second, the

shapes of the nanostructures can be irregular because of the cooperative development of

the trenches and the islands. The nanostructures are still defined by the {105} facets,

while the shapes can be an L, U, T, or staircase. The two characteristics are consistent

with the experimental observations in the literature (Ozkan et al. 1997; 1999), which

studied a thick Si0.78Ge0.22 film on a Si substrates during the annealing process.

It is necessary to explain the intriguing finding in Figs. 5.6(a2) and 5.6(b2) that the

trenches are the major surface structures at the early stage of the island formation process

on a thick film even though, from the energy point of view, the trench formation is less

favorable than the pit formation when the facet angle is small (Chiu and Poh 2005; Tersoff

and Tromp 1993). The substantial trench formation is caused by the random roughness on

the initial surface profile. During the surface undulation process, the random roughness

leads to a wavy profile with many long valleys; it is the long valleys that trigger the

trench formation. When the long valleys are suppressed in the initial surface profile, the

formation process is dictated by the valley-pit transition.

5.5.4 The Faceted Ripple Structure II

Figures 5.6(b1)–5.6(b3) plot the morphological evolution of Case M1 with Ĥf = 1.3.

This is an example of the faceted ripple structure due to a large value of F , and the

corresponding SK system is stable against island coarsening. The results indicate the

formation of the current faceted ripple structure is similar to that due to large Ĥf : The

formation process in both cases consists of the surface undulation, the shape transition,

and the cooperative formation. In addition to the process, the morphologies of the two
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Figure 5.7: The morphological evolution of the SK system, where L = 250 Å, ĝ = 0.0625,
α = 1.5, and Ĥf = 1.3

faceted ripple structures are also similar, which can be described as a network of faceted

islands and trenches of various shapes.

The major difference between the two cases in Fig. 5.6 is the faceted structures de-

veloping from the shape transition at the initial stage of morphological evolution. In the

case of high Ĥf , the structure induced by the shape transition is the trenches; in contrast,

the structure is the pyramid islands when F is high but Ĥf is low. Because of the dif-

ference, the cooperative formation of the former follows the trench-island sequence, while

the latter follows the island-trench sequence. The difference also accounts for the finding

that the fraction of the irregular islands/ridges of the former is higher than that of the

latter.

The cooperative formation illustrated in Fig. 5.6 lacked the characteristic suggested

in literature (Gray et al. 2004c; Jesson et al. 1996) that the process alternated between

the emergence of islands and the development of trenches. This is mainly caused by the

random roughness adopted in the initial surface profile, which yielded a higher density of

islands or trenches at the initial stage. It is shown later in Chap. 6 that when the density

is reduced by introducing a holes on a smooth surface, the ordered growth of islands and

trenches became evident.
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5.5.5 The nanostructure formation under the influence of a min-

imum of γ

The effect of a minimum of γ on (001) is examined by simulating the SK system that is the

same as Case K2 except that α is increased to 1.5. The results, depicted in Figs. 5.7(a)–

5.7(c), are then compared with those of Case K2 illustrated in Figs. 5.1(c1)–5.1(c5).

The comparison indicates a higher value of α leads to larger islands, smaller ξmax, and

accordingly a sparse island array. The finding confirms the prediction shown in Fig. 5.7(b).

5.6 Summary

The formation of islands effected by the surface undulation on the coarsening SK systems

can be described as a gradual process to transform the portion of the film above the first

critical thickness into islands. The process is characterized by the growth of a wavy profile,

the shape transition from the wavy profile to faceted nanostructures, and the tendency

to form a flat wetting layer at the first critical thickness. A unique property of the shape

transition is that the variation of the island basic width is negligible during the transition.

Three types of film morphology can appear in the nanostructure formation process:

(1) an array of separate islands, (2) localized wetting layers and induced facets, and (3)

a faceted ripple structure. The film morphology is controlled by the maximum surface

coverage ξmax of faceted islands. As ξmax increases, the film morphology changes gradually

from the sparse array to the localized wetting layers and finally to the faceted ripple

structure.

The crucial quantity ξmax depends on three parameters of the SK systems, namely,

the characteristic length ratio F , the normalized film thickness Ĥf , and the NESE density

α. It is found that ξmax increases with F and Ĥf , while ξmax is reduced as α increases.

As a remark, different assumptions for the interaction mechanisms will affect the

details of the results; however, the essence of the nanostructure formation effected by

the surface undulation would be similar. Irrespective of the interaction mechanism, the
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formation process is still characterized by the surface undulation, the shape transition,

and the tendency to form a wetting layer at the first critical thickness; the basic width is

given by the fastest surface undulation mode, varying little during the process; and the

film morphology is determined by the maximum surface coverage ξmax of faceted islands.



Chapter 6

Self-Assembly of Quantum Dot

Molecules by Cooperative Formation

This chapter investigate another important phenomenon observed in typical SK system,

namely, the formation of quantum dot molecules on a thick film. Our investigation starts

with numerical simulation for the morphological evolution of strained film-substrate sys-

tem driven by surface diffusion. The results demonstrate that the surface undulation

process on a thick film leads to the unique cooperative formation of faceted trenches and

ridges. The cooperative formation mechanism is further explored from the energetic point

of view by considering the crucial moment when the formation of a facet island adjacent

to a trench becomes a barrierless process more favorable than the growth of the trench

itself. The critical trench size for favorable growth of adjacent facet island suggests that

alternative development of trenches and ridges is a self-limiting process dictating the size

selection of quantum dots molecules.

6.1 Introduction

Rippling on solid surfaces at the length scale of nanometers is a remarkable phenomenon

of self-assembly. The phenomenon was observed in literature by annealing a Si0.5Ge0.5

alloy film of 5 nm in thickness on a thick Si substrate at temperatures ranging from 570

81
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to 590 ◦C (Jesson et al. 1996). The result revealed that the film developed into nanoridges

and nanotrenches via a cooperative manner that the two types of nanostructures formed

one after another at the adjacent sites. The cooperative ridge-trench (CRT) formation

continued, resulting in a ripple structure. The ripples are characterized by the same

type of facet but could exhibit a variety of different shapes. Similar ripple structures

are also found in other SiGe films (Ozkan et al. 1997; 1999) and in the InGaAs/GaAs

system (Chokshi et al. 2002; Chokshi and Millunchick 2000).

Subsequent to the observation, the CRT formation is realized to be a useful mechanism

for self-assembling quantum-dot molecules (QDMs) on heteroepitaxial systems (Deng and

Krishnamurthy 1998). The fabrication process of the QDMs consisted of two steps. The

first step is to generate shallow holes on solid surfaces by embedding a small amount of

hard particles in a buffer layer prior to the deposition of a heteroepitaxial film (Borgström

et al. 2003; Deng and Krishnamurthy 1998; Weil et al. 1998). The shallow holes would

trigger the CRT formation on the film in the second step, causing the self-assembly of

QDMs around the holes. The QDMs generated by this process are clusters of dots with

the number of dots being adjustable (Songmuang et al. 2003). The size distribution of

the QDMs is much more uniform than that of single quantum dots. These advantages,

namely, self-assembly, unique structures, adjustable number of dots, and uniform size

distribution, suggest that the QDMs are a promising building block for quantum compu-

tation devices (Barth et al. 2005).

In addition to the two situations mentioned above (Deng and Krishnamurthy 1998;

Jesson et al. 1996), the CRT formation also happened on heteroepitaxial films during the

deposition process. This issue is examined in a series of papers aiming at understanding

the dependence of the CRT formation on the growth rate, the substrate temperature, the

film thickness, and the interrupting annealing during the process (Gray et al. 2004a; 2002;

2004b; 2005; 2004c; Vandervelde et al. 2003). Those papers focused on the Si0.7Ge0.3/Si

system, and the key findings can be summarized as follows. (1) At 550 ◦C and a growth

rate of 0.09 nm/s, the film morphology developed shallow indents and then QDMs via

the CRT formation (Gray et al. 2002). The QDMs are mainly quantum fortresses, char-
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acterized by a {105} ring surrounding a square pit with the same type of facet. (2) At

the same 550 ◦C but a much slower growth rate (0.015 nm/s), no shallow indent is found,

and the film morphological evolution led to a ripple structure when the film thickness

reached 30 nm (Gray et al. 2002). The ripple structure is similar to that observed in

literature (Jesson et al. 1996). (3) Increasing the temperature to 750 ◦C with similarly

low growth rates caused nanoislands to form at small thickness (3 nm); the islands grew

and coalesced as the film thickness increased (Floro et al. 1997; Gray et al. 2005). (4)

The development of quantum fortresses from the shallow indents is prevented when the

fast film growth at 550 ◦C is interrupted by annealing at the same temperature; instead

of quantum fortresses, the indents evolved into elongated trenches (Gray et al. 2004b).

The CRT formation is generally explained by the cooperative nucleation model in

the literature (Jesson et al. 1996). The model argues that the presence of one type of

structure (e.g. a trench) can reduce the energy barrier for the nucleation of the other

type (e.g. an island) at the adjacent site, thus facilitating the repeating occurrences of

the two types of structures. The energy reduction can come from the mismatch strain in

the film (Jesson et al. 1996) or the adatom concentration on the film surface (Bouville

et al. 2004)

The cooperative nucleation model points out the significant effects of an existing

nanostructure on the nucleation of a different one. The nucleation model, however, cannot

fully account for the ordered morphology and the uniform size distribution of the QDMs

generated by the pitted buffer layer (Deng and Krishnamurthy 1998) and by the fast film

deposition (Gray et al. 2002). Furthermore, nucleation requires spontaneous accumulation

of a large amount of adatoms at the adjacent sites, and there is an energy barrier during

the process. The difficulty in nucleating new structures at the adjacent sites suggests the

CRT formation may be dictated by a different mechanism.

The CRT formation is examined in this thesis by considering two issues. First, instead

of nucleation, the adjacent new structure may develop gradually via the surface undulation

process. The surface undulation process, driven by surface diffusion, is another mechanism

of the morphological evolution of the film surface. The process is characterized by a
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gradual change of the surface profile, and the process can lead to the formation of faceted

islands without experiencing an energy barrier (Chiu and Huang 2006; 2007; Tersoff et al.

2002). These unique features suggest that the surface undulation process can play an

important role in the development of the adjacent new structure. Second, the gradual

development of the adjacent new structure has to compete with the growth of the existing

outermost one. The competition between the two pathways is the key to the alternative

growth of ridges and trenches during the CRT formation (Huang et al. 2007).

In this chapter, the two issues are studied by simulating the surface undulation process

and by analyzing the energy difference between the two pathways of the CRT formation.

The results confirm that the CRT formation can happen during the surface undulation

process on a thick film and is caused by the competition between the two pathways. In

particular, the growth of the existing outermost structure dictates the process initially

when the size of the outermost structure is small. However, once the size reaches a

critical value, the gradual development of a new structure adjacent to the outermost one

becomes the more energetically favorable pathway. The critical size differentiating the two

pathways explains the alternative growth of ridges and trenches in the CRT formation.

The critical size also accounts for the uniform size distribution of the ripple structures

and QDMs.

This chapter is organized as follows. Section 6.2 shows the simulation results for

the alternative growth of ridges and trenches and the formation of QDMs. Section 6.3

presents the energy analysis for the two competing pathways that cause the CRT forma-

tion. Section 6.4 summarizes the results of this chapter and discusses the limitations of

the model adopted in this chapter.

6.2 Numerical Simulation for the CRT Formation

This section presents numerical simulation results of the CRT formation. In particular,

we simulate the surface undulation of three cases of Si0.7Ge0.3 films driven by the surface

diffusion mechanism described in Chapter. 3.
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The film morphology changes totally when the film thickness is sufficiently large.

This is shown earlier in Chap 5, and is demonstrated again in the second case where the

initial surface profile is identical to that of the first case but the film thickness is increased

to 30 nm. Plotted in Figs. 6.1(b1), 6.1(b2), and 6.1(b3), the results indicate that the

surface undulation process mainly result in faceted pits and trenches first, instead of

islands or ridges. The pits and trenches subsequently facilitates the growth of pyramids

and ridges at the adjacent sites, leading to a ripple structure. Using the same film as

in the second case, the third case examines how the CRT formation is affected by the

presence of shallow holes on the initial surface (Gray et al. 2004c). The holes are randomly

distributed; the diameter and depth of the holes are varied ±10% around the prescribed

average values, which are 50 and 0.9 nm, respectively. The same random roughness as

employed in the earlier cases is still included on the initial surface profile. The results,

illustrated in Figs. 6.1(c1), 6.1(c2), and 6.1(c3), show that the CRT formation causes

the holes to develop into QDMs of comparable shapes. The QDMs consist of a faceted

pit, a ridge ring, and a trench ring, which are consistent with the structures reported in

the literature (Gray et al. 2002; 2004c). The regular QDMs morphology is in contrast

to the random distribution of trenches and ridges in the second case. The difference

demonstrates the important role of shallow holes in the QDMs formation.

In summary, Fig. 6.1 shows that the CRT formation happens on thick films; the

process leads to QDMs if shallow holes are present on the initial surface and to a network

of irregular ripples if the initial surface is characterized by random roughness.

The suppression of the cooperative formation on thin films can be understood as

follows. Both islands and trenches/pits can reduce the strain energy stored in the film,

and the latter is more effective than the former (Chiu and Gao 1993). Though reducing

Table 6.1: The film thickness and the initial surface profiles of the three cases shown in Fig. 6.1.
Case Film Thickness (nm) Initial Profile

1 4 random roughness
2 30 random roughness
3 30 holes and random roughness
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Figure 6.1: The morphological evolution of Si0.7Ge0.3/Si with different film thickness and initial
surface profiles. 6.1(a1), 6.1(a2), and 6.1(a3): Hf = 4 nm and the initial film surface is flat
with rms roughness being 0.05 nm. 6.1(b1), 6.1(b2), and 6.1(b3): Hf = 30 nm and the initial
profile is the same as the first case. 6.1(c1), 6.1(c2), and 6.1(c3): Hf = 30 nm and an array of
shallow holes are present at t = 0. The average diameter and depth of the holes are 50 and 0.9
nm, respectively. The tone of the colors represents the angle φ between the normal vector of the
surface and the vertical direction. The lightest one corresponds to φ = 0◦; the darkest ones to
0.14◦ in 6.1(a1) and 6.1(b1), 6.9◦ in 6.1(c1), 11.3◦ in 6.1(a2), 6.1(b2), 6.1(c2), and 6.1(a3), and
15◦ in 6.1(b3) and 6.1(c3).
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(a) (b) (c)(a)(a) (b)(b) (c)(c)

Figure 6.2: The morphological evolution of Si0.7Ge0.3/Si at thin film with shallow holes. Hf =
1.5 nm and the initial film surface is flat with rms roughness being 0.05 nm.

more strain energy, the formation of trenches/pits is obstructed on thin films because

of the film-substrate interaction energy. The interaction energy favors nanostructures

protruding out of the films over those penetrating into the films. Since the strength of

the interaction energy increases with decreasing film thickness, the trench/pit growth and

thus the CRT formation are impeded when Hf is small.

The significance of the interaction energy on suppressing the trench/pit formation

is further investigated by employing a lower interaction energy density (ĝ0 = 0.01) to

simulate case 1 of Table 6.1. As plotted in Figs. 6.2(a)-6.2(c), the results confirmed

that faceted trenches and pits formed if the interaction energy density is sufficiently low.

The trenches and pits, however, exhibited flat bases at the bottom of the nanostructures

instead of an apex or a sharp edge. The pit/trench shapes are different in this case because

the depth of fully developed pits and trenches are larger than the thickness of the film

above the wetting layer. Due to the small film thickness, when the growth of the pits

and trenches approached the wetting layer, the growth is hindered by the wetting layer,

leading to the formation of the flat bases.

6.3 Kinetic pathways

Motivated by the findings in Figs. 6.1(c1), 6.1(c2), and 6.1(c3), our investigation turns to

the case of a single shallow hole on a thick Si0.7Ge0.3 film to reveal the kinetic pathways of

the CRT formation. The diameter and depth of the hole are 50 and 0.9 nm, respectively.
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Figure 6.3: (a)–(c) The morphological evolution of a hole with 50 nm in diameter and 2 nm in
depth on a film with Hf = 30 nm. (d) The film cross-sections along the solid lines shown in (b)
during the evolution. In (d) the horizontal line represents the initial height of the film, and the
dashed lines indicate the final pit size.

In addition to the hole, the random roughness is also present on the initial surface. The

morphological evolution of the hole is depicted in Figs. 6.3(a) - 6.3(c). The results suggest,

via the cooperative formation, the shallow hole first evolves into a QDM and then a

relatively ordered ripple structure involving multiple rings of ridges and trenches.

The formation process is further studied in Fig. 6.3(d) by plotting the film cross-

sections at different time steps along the solid line shown in Fig. 6.3(b). The figure

reveals that the shallow hole first transforms into a faceted pit and then the pit enlarged

(see lines 0–2). The pit growth is significantly impeded when ridges develops at the pit

edges. The ridges are faceted on the side facing the pit initially (see line 3). Afterward,

the ridges are fully faceted and grew continuously (see line 4). Similar to the pit, the

ridge growth is also hindered after the ridges activated the formation of faceted trenches

surrounding the ridges (see line 5). The subsequent morphological evolution on the film
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Figure 6.4: Schematic diagrams of the two competing pathways of the CRT formation: (a)
the initial condition, (b) the self-similar pit growth, and (c) the adjacent ridge formation. The
dotted lines in (b) and (c) indicate the initial profile illustrated in (a).

follows the same pattern, leading to the cooperative formation (see line 6).

In short, Fig. 6.3(d) shows that the cooperative formation results from the competition

of two kinetic pathways: the growth of the existing outermost nanostructure and the

formation of a new structure adjacent to the outermost one.

6.4 Energy Analysis for the Cooperative Formation

In this section, the two competing pathways of the CRT formation are analyzed from the

energy point of view with the focus on the initial stage of the formation process, where

the shallow hole has transformed into a faceted pit. The results provide an insight into

the alternative growth of ridges and trenches and the size selection mechanism of the CRT

formation.
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6.4.1 A model problem

Figure 6.3 plots the 2D model adopted in the energy analysis for the CRT formation on

the surface of a heteroepitaxial film-substrate system. The film thickness is sufficiently

large so that the film-substrate interaction energy in the system can be neglected, and it

is the strain energy and surface energy that dictate the morphological evolution of the

nanostructures on the film surface.

The film-substrate system contains a faceted pit initially, as illustrated in Fig. 6.3(a).

The pit may evolve via two pathways. In the first pathway, depicted in Fig. 6.3(b), the

film material is transported from the pit surfaces to the remaining flat film profile, causing

the pit to grow self-similarly. The volume ∆V (per unit length in the y direction) of the

transported material can be calculated to be

∆V = S(2a+ d)d, (6.1)

where 2a is the width of the initial facet and 2d is the increment of the pit width. Ac-

cording to Eq. (6.1), d can be expressed as a function of the volume ∆V ,

d =

√
a2 +

∆V

S
− a. (6.2)

In contrast to the first pathway, the film material in the second pathway is transported

from the flat film surface to the edges of the pit, leading to the formation of a ridge at both

edges of the pit, see Fig. 6.4(c). The surface of the ridge facing the pit is the same facet

as the pit one, while the other surface of the ridge is nonfacet. The angle between the

nonfacet surface and the flat film profile is θ and is allowed to vary during the formation

process. The nonfacet surface with adjustable θ is adopted here as a simple model to

account for the gradual ridge formation.

The surface energy density γ(θ) of the film surface is taken to be

γ(θ) = γ0 −∆γ exp [−β|θ − φ|] , (6.3)
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which contains a cusp at the facet angle θ = φ. In Eq. (6.3), ∆γ is the depth of the cusp,

and β∆γ is the gradient dγ/dθ at the cusp. The quantity β is assumed to be large; thus,

γ approximates to γ0 in the vicinity of θ = 0.

The volume ∆V of the material that is transported from the flat film surface to form

the ridges can be expressed as

∆V = Sn(1 + n)p2, (6.4)

where p, as illustrated in Fig. 6.4(c), is the length of the projection of the ridge nonfacet

surface onto the flat film and n is defined to be n = tan θ/ tanφ ≈ θ/φ.

The energy changes of the two pathways, namely, the self-similar pit growth and the

adjacent ridge formation, are compared in the next section.

6.4.2 Energy changes

Self-similar pit growth

The energy change ∆Etot1 due to the self-similar pit growth can be estimated by using

the method discussed in Sec. 3.1. We first consider the pit illustrated in Fig. 6.4(a) where

the center of the pit is located at x = 0 and the width of the pit is 2a. Based on the

information and Eq. (3.10), the function Ψ0(x) for the pit can be found to be

Ψ0(x) = − 2

π
ln

(
x2 − a2

x2

)
. (6.5)

Substituting the function into Eqs. (3.11) and (3.12) yields the strain energy change Wσ0

due to the formation of the pit,

Wσ0 = −8 ln 2

π
w0SV0, (6.6)

where V0 = Sa2 is the pit volume. Equation (6.6) suggests when the pit volume increases

from V0 to V0 +∆V during the self-similar growth as shown in Fig. 6.4(b), the total strain
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energy changes by

∆Wσ1 = −8 ln 2

π
w0S∆V. (6.7)

Adding the strain energy change and the corresponding surface energy change, given by

2γ0Gφd, leads to the total energy change ∆Etot1 of the self-similar growth,

∆Etot1 = −8 ln 2

π
wσ0S∆V + 2γ0Gφd, (6.8)

where Gφ = −1+ γ1/γ0 cosφ, γ1 = γ0−∆γ is the surface energy density of the facet, and

d is related to ∆V by Eq. (6.2).

Adjacent ridge formation

Turn to the adjacent ridge formation illustrated in Fig. 6.4(c). There are two adjacent

ridges in this problem, differing from that considered in Sec. 3.1.3. In spite of the differ-

ence, the strain energy change of the current case can still be calculated by Eqs. (3.11)

and (3.12) presented in Sec. 3.1.

The calculation begins with writing down the two functions f−(x) and f+(x) that

describe the shapes of the adjacent ridges at the left and right edges of the pit, respectively,

f−(x) =

 nSα(x+ c) for −c < x < −b

−Sα(x+ a) for −b < x < −a
(6.9)

f+(x) =

 Sα(x− a) for a < x < b

−nSα(x− c) for b < x < c
, (6.10)

where b = a+np, c = a+(n+1)p, and n = tan θ/Sα. Based on the information provided

in Eqs. (6.9) and (6.10), Ψα(x) of the two adjacent ridges can be expressed as

Ψα(x) = − 2

π

(
ln
x2 − b2

x2 − a2
+ n ln

x2 − b2

x− c2

)
. (6.11)
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In comparison, Ψ0(x) of the pit is given in Eq. (6.5). Substituting the expressions for

Ψ0(x) and Ψα(x) into Eqs. (3.11) and (3.12) and noticing that S0 and Sα appearing in

those two equations are equal to S for the current case yield the strain energy change

∆Wσ2 due to the adjacent ridge formation,

∆Wσ2 = −w0S∆V U2, (6.12)

where ∆V U2 is given by

∆V U2 =

∫ −a

−c

[2Ψ0(x) + Ψα(x)] f−(x)dx+

∫ c

a

[2Ψ0(x) + Ψα(x)] f+(x)dx. (6.13)

Summing ∆Wσ2 and the corresponding surface energy changes yields the total energy

change ∆Etot2 of the adjacent ridge formation expressed in Eq. (6.14),

∆Etot2 = −wσ0S∆V U2 + 2γ0(nGφ +Gθ)p, (6.14)

where the quantity ∆V U2 is defined in Eq. (6.13) and Gθ = −1 + γ(θ)/(γ0 cos θ).

The energy difference ∆Etot = ∆Etot2 −∆Etot1 between the ridge formation and the

pit growth is illustrated in Fig. 6.5 by plotting the contours of ∆Etot as a function of ∆V

and θ. The contours with ∆Etot < 0 determine the domain (∆V, θ) in which the adjacent

ridge formation is more energetically favorable, while those with ∆Etot > 0 define the

domain where the pit growth is preferred. The figure considers two cases that differ in

the initial pit size: 2a = 90 and 190 nm in Figs. 6.5(a) and 6.5(b), respectively. Except a,

the other parameters adopted in the two cases are identical: L = γ0/w0 = 70 nm, γ0 = 1

J/m, ∆γ/γ0 = 0.015, β = 50, and φ = 11.3◦.

A distinctive feature in both Figs. 6.5(a) and 6.5(b) is the sharp variation of the

contours in the narrow stripe located at θ = φ. The narrow stripe is called the facet

domain in this thesis since the stripe corresponds to the case, where the adjacent ridge

is fully faceted. The remaining area, characterized by smooth contours, gives ∆Etot for

the case, where the ridge contains a nonfacet surface; this area is termed the nonfacet
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Figure 6.5: The contour of the energy difference ∆Etot as a function of ∆V and θ for the cases,
where L = 70 nm, γ0 = 1 J/m, ∆γ0/γ0 = 0.015, φ = 11.3◦, and β = 50; 2a = 90 nm in (a) and
2a = 190 nm in (b).

domain. The two domains represent different ways of adjacent ridge formation. The facet

domain refers to an abrupt shape transformation, which can occur by nucleation. The

nonfacet domain, in contrast, implies a gradual shape change that happens during the

surface undulation process. The nonfacet domain is investigated in the following.

The nonfacet domain depicted in Fig. 6.5(a) shows a typical result of ∆Etot for the

case of small pit size. The result is characterized by the pattern that ∆Etot is positive and

increases with ∆V . The characteristics suggests that the energy favors the pit growth

over the adjacent ridge formation during the surface undulation process when the pit size

is small. The nonfacet domain plotted in Fig. 6.5(b), in contrast, represents the result of

large pit size. The domain is divided into two regimes along the two black lines that depict

the contours ∆Etot = 0. The regime outside the two black lines indicates positive ∆Etot

and is favored by the pit growth. The regime between the black lines, on the contrary,

shows ∆Etot < 0 and is dictated by the adjacent ridge formation. The result suggests

that the adjacent ridge formation can be more favorable than the pit growth during the

surface undulation process when the pit size is sufficiently large.
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Figure 6.6: The effects of ∆V on ∆Eeq and ∆Etot of faceted ridges for the two cases shown in
Fig. 6.5. The function ∆Eeq is depicted by the solid lines and ∆Etot of faceted ridges by the
dash-dotted lines.

6.4.3 The gradient F

The effect of the initial pit size on the adjacent ridge formation can be further understood

by considering the function ∆Eeq(∆V ), defined as the minimum of ∆Etot(∆V, θ) among

all θ for a given value of ∆V . The function ∆Eeq(∆V ) is plotted by the solid lines in

Figs. 6.6(a) and 6.6(b) for the two cases shown in Fig. 6.5. The two lines suggest whether

the adjacent ridge formation can happen or not during the surface undulation process is

determined by the gradient F of the function ∆Eeq(∆V ) at ∆V = 0,

F =
d∆Eeq

d∆V

∣∣∣∣
∆V =0

. (6.15)

A positive value of F signifies that the adjacent ridge formation encounters an energy bar-

rier, see Fig. 6.6(a). On the contrary, F is negative if the formation process is barrierless,

see Fig. 6.6(b).
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6.4.4 Derivation of F

The crucial quantity F is derived in this section. The result is then employed in the next

section to determine the critical pit size for the adjacent ridge formation.

The key step in deriving F is to calculate ∆Etot1 and ∆Etot2 under the condition

∆V/Sa2 � 1. For ∆Etot1, the condition means d given in Eq. (6.2) can be expressed as

d = ∆V/(2Sa). Applying the result to Eq. (6.8) yields

∆Etot1 = w0∆V

(
−8S ln 2

π
+
LGφ

Sa

)
. (6.16)

For ∆Etot2, the condition of small ∆V implies θ and n are small. Accordingly, γ(θ) ≈ γ0,

Gθ � Gφ, and p =
√

∆V/Sn. Substituting these expressions into Eq. (6.14), noticing

that the term ∆V U2 can be simplified by the scheme presented in Sec. 3.2.3, and ignoring

the terms with higher order of n reduce ∆Etot2 to

∆Etot2 = −w0S∆V

π

[
6− 4 ln 2 + 2 ln

(
Sna2

∆V

)]
+ 2γ0Gφ

√
n∆V

S
. (6.17)

The condition ∂∆Etot2/∂n = 0 yields the equilibrium relative slope neq that minimizes

∆Etot2 at ∆V/Sa2 � 1,

neq =
4S3∆V

π2G2
φL

2
. (6.18)

Substituting Eq. (6.18) into (6.17) and subtracting ∆Etot1 from the result determine the

minimum ∆Eeq at small ∆V ,

∆Eeq = ∆Etot2|n=neq
−∆Etot1

=
w0S∆V

π

[
−2− πGφL

aS2
+ 4 ln

(
4πGφL

aS2

)]
. (6.19)
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Figure 6.7: The variation of πF/w0S with the normalized pit size â.

Differentiating Eq. (6.19) with respect to ∆V gives F ,

F =
w0S
π

(
−2− 1

4â
− 4 ln â

)
, (6.20)

where â is the normalized pit size,

â =
aS2

4πGφL
. (6.21)

6.4.5 Critical pit size for adjacent ridge formation

Figure 6.7 plots the variation of πF/w0S with the normalized pit size â. The result is

divided into three ranges of â: [0, âcr,0], [âcr,0, âcr], and [âcr,∞] where âcr,0 corresponds to

the critical pit size above which the formation of the faceted pit reduces the total energy

of the system,

âcr,0 =
1

16 ln 2
, (6.22)
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and the quantity âcr = 0.5403 is the larger solution of the two results that satisfy the

equation F = 0.

The first range, [0, âcr,0], is characterized by a drastic variation of F . The range,

however, is disregarded since the initial pit is too small to be an energetically favorable

nanostructure in the first place. The second range, [âcr,0, âcr], is characterized by positive

F . The characteristics suggests that in the second range the pit formation is energeti-

cally favorable and the pit growth suppresses the development of adjacent ridges. The

third range [âcr,∞], in contrast, shows negative F . This confirms the finding implied in

Figs. 6.5 and 6.6 that the adjacent ridge formation by a gradual shape change can reduce

more energy than self-similar pit growth once the pit size exceeds a critical value. By

substituting âcr = 0.5403 into Eq. (6.21), the critical pit size acr for the adjacent ridge

formation can be expressed as

acr =
ηGφL

S2
, (6.23)

where η = 4πâcr. The critical value acr gives a good estimate for the pit size appearing

in the cooperative formation. For example, 2acr = 106 nm for the parameters adopted

in Figs. 6.5 and 6.6, which is consistent with the value reported in literature (Gray et al.

2002).

6.4.6 Fully faceted adjacent ridge

The adjacent ridge formation is barrierless when the ridge is allowed to change its shape

during the formation process. The scenario is completely different if the adjacent ridge

is fixed to be a fully faceted structure, i.e., θ = φ. The energy difference ∆Etot of this

scenario is illustrated by the facet domain in Figs. 6.5(a) and 6.5(b) and is redrawn by the

dash-dotted lines in Figs. 6.6(a) and 6.6(b), respectively. The two dash-dotted lines follow

the same trend: ∆Etot increases with ∆V first, reaches a maximum, and then declines to

negative values. The result demonstrates that the direct formation of a faceted structure
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at the adjacent site always needs to overcome an energy barrier and a critical nucleation

size before the process can reduce more energy than the pit growth.

The dash-dotted lines coincide with the solid lines in Fig. 6.6 after ∆V exceeds a

critical value. The result shows that though the fully faceted structure is less favorable

than a partially faceted one in the early stage of the adjacent ridge formation, the fully

faceted one eventually becomes the most favorable morphology. The transition to the

fully faceted ridge is expected to be similar to that of a single nanoisland changing from

a shallow bump to a faceted pyramid (Chiu and Huang 2006; 2007; Tersoff et al. 2002).

6.5 Discussion

This section first presents an overview of the CRT formation based on the results shown

in Secs. 6.2 and 6.3. This is followed by a brief discussion on how the CRT formation

may be affected by the deposition process in Sec. 6.5.2 and a survey of the limitations of

the model employed in this study in Sec. 6.5.3.

6.5.1 The CRT formation

The results in Secs. 6.2 and 6.3 reveal that the cooperative formation is an interplay be-

tween the growth of the outermost nanostructure and the formation of a new structure

adjacent to the outermost one via the surface undulation process. The cooperative for-

mation starts with the development of faceted nanostructures on a thick film by surface

undulation, a barrierless process similar to that on a thin film (Chiu and Huang 2006;

2007; Tersoff et al. 2002). The faceted nanostructures are mainly pits and trenches.

After the faceted structure forms, the structure grows until reaching a critical size.

In this stage, the growth reduces energy, and it reduces more energy than the gradual

formation of adjacent structures. Above the critical size, however, the adjacent structure

formation becomes more effective in reducing the energy than the growth of the first

structure. As a consequence, the growth of the first structure is suppressed and the

adjacent structure emerges.
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The development of the new structure is characterized by a sequence similar to that

of the first structure: (1) formation of a small ridge with nonfacet surface, (2) shape

transition to a fully faceted structure, (3) further enlargement of the structure, and (4)

suppression of growth due to the formation of another adjacent structure. The repeating

emergence of the adjacent structures and their self-limiting growth is the mechanism of

the CRT formation.

The resulting morphology of the cooperative formation is a ripple structure consisting

of nanotrenches and nanoridges. The shapes of those nanostructures are irregular if the

initial surface profile is dictated by random roughness (Ozkan et al. 1997; 1999). The

nanostructures, however, can self-organize into an ordered configuration to form QDMs

if the initial surface contains shallow holes (Gray et al. 2002) .

6.5.2 Deposition

Before exploring the effects of the deposition process on the CRT formation, it is helpful

to discuss first how the deposition process influences the morphological evolution of the

film surface from three aspects. First, the deposition introduces statistical roughening on

the film surface, and this can play a crucial role in the development of shallow holes (Lam

et al. 2002). Second, the deposition increases the film thickness, which in turn influences

the types of nanostructures emerging from the film surface. Third, the effects of the

deposition process are controlled by the ratio between the deposition and the surface

diffusion rates. The ratio can be increased by raising the deposition rate and/or reducing

the substrate temperature.

Back to the effects of the deposition process on the CRT formation. Of particular

interest here are the three general cases, where the ratio between the deposition and the

surface diffusion rates is large, moderate, and small, respectively. For the case, where

the ratio is large, the film can quickly become a thick one before an island array can

develop. Furthermore, when the ratio is large, there is a high probability for the statistical

roughening to form holes deeper than the average roughness of the film surface during the
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deposition process. The thick film and the holes suggest that the CRT formation happens

in this case and is characterized by the development of ordered QDMs.

For the case of a moderate ratio, it is conjectured that the ratio is high enough to

induce the CRT formation but insufficient to cause the statistical roughening to generate

holes on the film surface. As a consequence, the film morphology is a ripple structures

composed of irregular nanoridges and nanotrenches in the second case.

For the case of a small ratio, the film thickness can remain low for a long period of time

to promote the development of islands on a thin wetting layer. After the development,

the islands will grow in size since the material deposited onto the film surface can be

transported to the islands quickly by surface diffusion. The process continues until the

islands coalesce. The development and growth of the islands suppress the CRT formation

in this case.

The qualitative descriptions of the three cases are consistent with the findings reported

in the literature (Gray et al. 2005). In particular, the first case of a large ratio agrees

with the observations at a low deposition rate and a high temperature. The second case

of a moderate ratio corresponds to the experimental results at the same deposition rate

but a lower temperature. The third case of a low ratio captures the phenomenon at fast

deposition and a low temperature.

6.5.3 Limitations

The surface diffusion model adopted here captures well the formation of QDMs during

the fast deposition process (Gray et al. 2002; 2005) and the development of the ripple

structure during the high-temperature annealing (Ozkan et al. 1997; 1999). The model,

however, cannot explain the finding that shallow holes evolve into long trenches when

annealed at low temperatures. The difference suggests the simple model described by

Eqs. (2.6) and (2.7) is suitable for the surface diffusion mechanism in the deposition and

in the high-temperature annealing, while the model needs to be modified in order to

simulate trench growth during annealing at low temperatures.
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Besides the deposition process and the elongated trenches, other issues that need to

be considered include the composition variation in the film (Spencer et al. 2001; Tu and

Tersoff 2007), the surface stress (Shchukin et al. 1995), the orientation of the substrate,

and the different stiffness between the film and the substrate (Spencer et al. 1991). Un-

derstanding these issues is essential for building a complete picture of the cooperative

formation.



Chapter 7

The SK System under Electric Field

This chapter investigates the stability of wires against the size variation for Stranski-

Krastanow systems under the influence of an electric field generated by a patterned electric

plate. The stability is determined by considering the total energy change as a function of

the wire size. The results show that the wire size can be stabilized by the electric field if

the systems meet the viability criterion and the effective electric field effect is within the

maximum and minimum limits.

7.1 Introduction

Recently, we proposed that electric fields generated by patterned electrodes could also

be an effective prescription for controlling the self-assembly of nanoislands in the SK

systems; the idea is termed the electromolding self-organization (EMSO) process (Chiu

et al. 2006). Our numerical simulation for the EMSO process suggests that the process is

capable of fabricating a wide range of island shapes, including 2×2 island arrays, square

rings, cross junctions, and zigzag ridges, with controllable sizes and locations. The EMSO

process also has the crucial advantage that the process can produce nanostructures stable

against size variation (Chiu et al. 2006). The unique feature is in contrast to the common

problem of unstable islands in the SK systems and in the LISA method (Chou et al. 1999;

Schäffer et al. 2000).

103
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The size stability is examined in this chapter by analyzing the total energy changes

due to the formation of faceted nanostructures. Our investigation focuses on the two-

dimensional cases, and of particular interest is the scenario where the height of the electric

plate is much larger than the wire size. The results reveal that the size stability can be

achieved in the EMSO process if the material properties and the film thickness of the

SK system satisfy the viability criterion and the effective electric field effect is within the

upper and lower limits. The results illuminate a clear overall picture for understanding

how the size stability is affected by the vast amount of parameters involved in the EMSO

process, including the material properties of the SK system, the film thickness, the electric

plate height, and the size and slope of the pattern on the electric plate.

This chapter is organized as follows. Section 7.2 summarizes the methods for calcu-

lating the total energy change due to the formation of a faceted wire under an electric

field. Section 7.3 examines the size stability of the SK systems without the electric field.

Section 7.4 adopts a coarsening SK system to investigate the effects of the electric field

on the size stability. Section 7.5 derives the stability condition for the case where the

electric plate height is large. Section 7.6 presents the numerical simulation results. Sec-

tion 7.7 discusses how to modify the SK system to produce stable nanostructures, the

kinetic aspects and limitations. The chapter is concluded in Sec. 7.8 with a summary of

the results.

7.2 Model and Energy Analysis

Section 7.2.1 first presents the model system for analyzing the size stability. The energy

change ∆Etot of the system is then determined in Sec. 7.2.2 by adopting the formulae

discussed in Sec. 7.2.1. The result is further simplified in Sec. 7.2.3 for the case where the

electric plate height is much larger than the wire base width.
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Figure 7.1: Schematic diagram of a triangular wire on an SK system under the influence of a
triangular pattern on an electric plate with a misalignment of x0 between the centers of the two
structures.

7.2.1 Model system

Figure 7.1 plots the model adopted in this chapter where a triangular wire on an SK

film-substrate system is exposed to an electric plate containing a triangular pattern. The

wire is characterized by the slope S = tanφ and the base width 2a; in comparison, the

slope and width of the pattern are Se and 2d, respectively. In addition to the differences

in slope and width, the wire and the pattern are also misaligned by x0. For convenience,

the center of the pattern base is taken to be at (0, Hv), and that of the wire at (x0, 0).

7.2.2 Energy analysis

For the triangular wire and pattern considered in the model, the three functions, Ψσ, Ψ1,

and Ψ2, for evaluating the changes of the strain and electrostatic energy can be written

down directly by referring to Eqs. (3.50), and (3.52),

Ψσ =
2

π
<
[
ln

(x− b1)(x− b3)

(x− x0)2

]
, (7.1)

Ψ1 =
1

π
<
{
ln
[
eη(x−b1) − 1

]
+ ln

[
eη(x−b3) − 1

]
− 2 ln

[
eη(x−x0) − 1

]}
, (7.2)

Ψ2 =
1

π
<
{
ln
[
eη(x+d) + 1

]
+ ln

[
eη(x−d) + 1

]
− 2 ln [eηx + 1]

}
, (7.3)
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where b1 = x0 − a and b3 = x0 + a. Substituting Eq. (7.1) into (3.67) leads to Uσ =

(8 ln 2)/π; for conciseness, this value is denoted as U0, i.e.,

U0 =
8

π
ln 2. (7.4)

Similarly, substituting Ψ1 and Ψ2 given in Eqs. (7.2) and (7.3) into (3.67) yields

U1 and U2. The quantity U1 depends on ηa, and U2 is a function of ηx0, ηa, and ηd.

For moderate values of ηx0 and ηa, the two quantities U1 and U2 have to be evaluated

numerically. For the special case where ηx0 � 1 and ηa� 1, on the other hand, U1 and

U2 can be expressed as,

U1 =
U0

2
+
η2a2

12π
, (7.5)

U2 =
K0

2
− K2η

2a2

12
− K2η

2x2
0

2
, (7.6)

where the two constants K0 and K2 are given by

K0 =
4

π
ln cosh

πd̂

2
,

K2 =
1

2π

(
1− cosh−2 πd̂

2

)
, (7.7)

and d̂ = d/Hv is the normalized pattern size.

The quantity U1 described in Eq. (7.5) refers to the effect of the wire shape on the

electrostatic energy change ∆We; U1 is found to be positive, meaning the electrostatic

energy is reduced when the wire is formed. The quantity U2 given in Eq. (7.6), on the

other hand, consists of three terms. The first two terms represent the pattern shape effect

on ∆We, and the sum of the two terms is positive since K0 > 0 and ηa� 1. This indicates

that the pattern on the electric plate also enhances the electrostatic energy reduction

during the wire formation. The third term of U2 corresponds to the misalignment effect

on ∆We; this term is always negative, suggesting that the misalignment x0 between the

pattern and the wire causes an increment in the electrostatic energy. The finding shows
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that it is sufficient to consider the aligning case, i.e. x0 = 0, in the remaining part of the

thesis.

After Uσ, U1, and U2 are calculated, the total energy change ∆Etot due to the forma-

tion of the wire at x0 = 0 can be determined by substituting Eqs. (3.6), (3.66), (3.76),

and (3.78) into (3.79),

∆Etot = −wσ0SV U0 + 2γ0Ga− we0SV U1(ηa)− 2we0SeV U2(ηa, d̂)

+
2g0l

S
ln

(
Sa+Hf + l

Hf + l

)
+

g0lV

(Hf + l)2
− 2g0la

Hf + l
, (7.8)

where G = −1 + γ/(γ0 cosφ) and γ denotes the surface energy density of the wire facet.

The quantityG is positive in the SK system; the scenario whereG is negative is beyond the

scope of this thesis. Equation (7.8) shows how ∆Etot depends on the material properties,

the film thickness, the applied electric field, the wire/pattern size and slope, and the

electric plate height. For the special case where ηa� 1, U1 and U2 are given by Eqs. (7.5)

and (7.6), and (7.8) is reduced to

∆Etot = −wσ0SV U0 + 2γ0Ga−
1

2
we0SV U0 − we0SeVK0 +

2g0l

S
ln

(
Sa+Hf + l

Hf + l

)
−we0η

2V 2

12πS
+
we0SeK2η

2V 2

6S
+

g0lV

(Hf + l)2
− 2g0la

Hf + l
. (7.9)

7.2.3 Parameters and normalization

Before normalizing ∆Êtot expressed in Eq. (7.9), it is helpful to introduce three key para-

meters of the ESMO process, namely, the normalized film thickness Ĥf , the normalized

stability number Σ̂, and the electromolding (EM) strength J . The three parameters

dominate the characteristics of the total energy change and the size stability of the wire.

The normalized film thickness Ĥf is defined to be

Ĥf =
Hf + l

H1

, (7.10)
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where H1 is the critical thickness for spontaneous island formation (or called the first

critical thickness in the literature) (Chiu et al. 2004),

H1 =

√
g0lL

γ0U0S
. (7.11)

The quantity L = γ0/wσ0 in Eq. (7.11) gives the length scale at which the strain energy

reduction due to the wire formation is balanced by the corresponding surface energy

increment.

The normalized stability number Σ̂ is given by (Chiu 2004)

Σ̂ =
1

G

√
g0lU0S
γ0L

− 1. (7.12)

A positive value of Σ̂ means that the SK system can develop an island array that is stable

against coarsening, while a negative value indicates the opposite. Since G is positive for

the SK systems, the parameter Σ̂ is larger than -1.

The EM strength J is expressed as

J = 1 +
1

2
ŵe0 + ŵe0Ŝe

K0

U0

, (7.13)

where ŵe0 = we0/wσ0 and Ŝe = Se/S. The parameter J , depending on the normalized

electrostatic energy density ŵe0, the ratio between the pattern and the wire slopes Ŝe,

and the normalized pattern size d̂, describes the effect of the electric field on ∆Etot when

ηa � 1 and x0 = 0. The variation of J with d̂ and Ŝe is plotted in Fig. 7.2 for the case

where ŵe0 = 0.5. The result indicates J increases with d̂ and Ŝe.

In addition to Ĥf , Σ̂, and J , the total energy change ∆Etot is also affected by the pa-

rameter J2 = −πŵe0Ĥ
4
f (1−2πŜeK2)/(24U0S2). Though influencing ∆Etot, this parameter

has little effect on the condition of the wire size stability.

By evoking the definitions of Ĥf , Σ̂, J , and J2, the total energy change ∆Etot ex-
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eŜ

d̂

2

3.5

5

7

Figure 7.2: The contours of J as a function of d̂ and Ŝe for the case where ŵe0 = 0.5.

pressed in Eq. (7.9) can be rewritten as

∆Êtot = ln(1 + â) + ĉ1â+ ĉ2â
2 + ĉ4â

4, (7.14)

where ∆Êtot = S∆Etot/(2g0l), â = Sa/(Hf + l), and the three coefficients, ĉ1, ĉ2, and ĉ4,

are given by

ĉ1 =
Ĥf − 1− Σ̂

1 + Σ̂
, (7.15)

ĉ2 =
1

2
(1− J Ĥ2

f ), (7.16)

ĉ4 =
J2H

2
1

H2
v

. (7.17)

It is found that ĉ1 and ĉ2 are fully controlled by Ĥf , Σ̂, and J , and ĉ4 is proportional to

H−2
v as Hv →∞.

7.3 SK Systems without Electric Field

As a first step, this section focuses on the SK systems without an electric field. Of

particular interest is the condition under which the systems can form a wire stable against
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Figure 7.3: The variation of ∆Êtot with â for the cases where Σ̂ = 0.6 and Ĥf = 0.97, 0.98,
0.99, and 1.02, which are denoted by lines 1A, 1B, 2, and 3, respectively.

size variation. The results of this special case are used as a reference point for those under

the influence of an electric field. The analysis follows closely those in (Chiu et al. 2004).

7.3.1 Characteristics of the total energy change

When the electric field is absent from the system, we0 = 0, J = 1, ĉ4 = 0, and the total

energy change ∆Etot expressed in Eq. (7.14) is reduced to

∆Êtot = ln(1 + â) + ĉ1â+ ĉ∗2â
2, (7.18)

where ĉ1 is given in Eq. (7.15) and ĉ∗2 = (1− Ĥ2
f )/2.

The variation of ∆Êtot with â is plotted in Fig. 7.3 for the cases where Σ̂ = 0.6 and

Ĥf = 0.97, 0.98, 0.99, and 1.02. The results are denoted by lines 1A, 1B, 2, and 3,

respectively. Lines 1A, 1B, and 2 describe typical examples of ∆Êtot when Ĥf < 1, and

line 3 illustrates ∆Êtot when Ĥf > 1. These lines have the same property that the slope

d∆Êtot/dâ is positive at â = 0, while they differ in the maximum and minimum points of

∆Êtot(â): Line 1A shows a monotonic increase of ∆Êtot with â, line 1B is distinguished

by a maximum and a positive minimum of ∆Êtot, line 2 is similar to line 1B but the
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minimum is negative, and line 3 is characterized by a maximum point followed by a

monotonic decrease of ∆Êtot.

These characteristics of ∆Êtot(â) signify different types of film morphology. In par-

ticular, lines 1A and 1B indicate ∆Êtot is the lowest at â = 0, meaning the wire cannot

form and the flat film is the equilibrium morphology. The negative minimum on line 2,

on the other hand, suggests the system can develop a wire stable against size variation.

Wires can also form in the case of line 3 since ∆Êtot can be negative; however, the lack

of a minimum on line 3 means the wires are unstable in this case.

In brief, the film can be classified into three types of morphology, namely, the unstable

wire, the stable wire, and the stable flat film. The unstable wire develops when Ĥf > 1.

The stable wire and the stable flat film, on the other hand, occur in the thickness range

Ĥf < 1; the condition differentiating the two types of morphology is further investigated

in the next section.

7.3.2 Stability condition against size variation

The results depicted in Fig. 7.3 suggest that the film morphology is characterized by the

stable wire when the following two conditions are satisfied.

• Condition I: There are one maximum and one minimum points in ∆Êtot.

• Condition II: The minimum of ∆Êtot is negative.

The key quantities in the stable-wire conditions are the minimum/maximum points

of ∆Êtot, which can be derived by solving the equation ∆Êtot/dâ = 0,

â1 =
−(2ĉ∗2 + ĉ1)−

√
Q

4ĉ∗2
, (7.19)

â2 =
−(2ĉ∗2 + ĉ1) +

√
Q

4ĉ∗2
, (7.20)
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where 2ĉ∗2 + ĉ1 and Q are functions of Σ̂ and Ĥf ,

2ĉ∗2 + ĉ1 =
Ĥf

1 + Σ̂

[
1− (1 + Σ̂)Ĥf

]
, (7.21)

Q = (2ĉ∗2 + ĉ1)
2 − 8(1 + ĉ1)ĉ

∗
2

=
Ĥf

1 + Σ̂

[
(1 + Σ̂)2Ĥ3

f + 2(1 + Σ̂)Ĥ2
f + Ĥf − 4(1 + Σ̂)

]
. (7.22)

If both â1 and â2 are positive numbers, the two solutions correspond to the maximum

and minimum points of ∆Êtot, respectively, meaning condition I is satisfied. In contrast,

if any one of â1 and â2 is a negative or complex number, there is no minimum point in

∆Êtot and condition I cannot be met.

The criterion of positive â1 and â2 holds in the overlapping region of the following

three domains,

Q > 0, (7.23)

2ĉ∗2 + ĉ1 < 0, (7.24)

ĉ∗2 > 0. (7.25)

The first domain described by Eq. (7.23) ensures that â1 and â2 are real numbers, and

the remaining two domains enforce â1 and â2 to be positive.

The three domains are plotted in Fig. 7.4(a) to determine the region of (Σ̂, Hf ) that

satisfies condition I. The results clearly show that condition I cannot be satisfied for SK

systems with Σ̂ < 0. For SK systems with Σ̂ > 0, on the contrary, condition I is met if

the normalized film thickness Ĥf falls into the range [ĤQ, 1], where ĤQ is the solution

to the equation Q(ĤQ, Σ̂) = 0. The critical thickness ĤQ for condition I is equal to 1 at

Σ̂ = 0 and decreases with increasing Σ̂, see Fig. 7.4(a).

Calculating the minimum of ∆Êtot in the thickness range [ĤQ, 1] indicates the min-

imum ∆Êmin is always positive at Ĥf = ĤQ, decreases gradually as Ĥf increases, and

becomes zero at the thickness ĤE. The variation of ĤE with Σ̂ is plotted in Fig. 7.4(b).

Similar to ĤQ, ĤE is equal to 1 at Σ̂ = 0 and decreases as Σ̂ increases. The domain
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Figure 7.4: (a) The region of (Σ̂, Ĥf ) satisfying condition I; (b) the phase diagram of the film
morphology of the SK systems without an electric field.

between Ĥf = ĤE(Σ̂) and Ĥf = 1 gives the region of (Σ̂, Ĥf ) that satisfies conditions I

and II for stable wires.

In summary, the dependence of the wire stability on the two parameters Σ̂ and Ĥf

of the SK systems can be illustrated by the phase diagram shown in Fig. 7.4(b). The

diagram is divided into three regions along the two boundaries, Ĥf = 1 and Ĥf = ĤE.

The region above the boundary Ĥf = 1 corresponds to an unstable wire of which the total

energy change ∆Êtot is characterized by line 3 in Fig. 7.3. The region between the two

boundaries identifies the SK systems that can develop wires stable against size variation,

and ∆Êtot(â) of this case is represented by line 2 in Fig. 7.3. The region below both

boundaries refers to a stable flat film, and the total energy change is described by line 1A

or 1B in Fig. 7.3.

7.4 Effects of Electric Field

This section examines the effects of Hv and d on the stability of wires against size variation

for a typical coarsening system where Σ̂ = −0.24, Ĥf = 0.3, L = 100 nm, ŵe0 = 3, and

S = Se = 1/5. The results demonstrate the potential of using patterned electric plate to
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fabricate stable wires. The results also reveal interesting features that motivate further

stability analysis of the case where Hv and d are large in Sec. 7.6.

7.4.1 Characteristics of ∆Etot and phase diagram of wire size

stability

The size stability is determined by employing Eq. (7.8) to evaluate ∆Etot(a) for different

values of Hv and d. Typical examples are depicted in Fig. 7.5(a) where Hv = 50 nm and

d = 110, 131, 140, and 160 nm. The results are found to be similar to those in Fig. 7.3

for the case without an electric field. The finding suggests the SK systems under the

influence of an electric field can still be classified into the three types of film morphology

discussed in Sec. 7.4, namely, a stable flat film, a stable wire, and an unstable wire.

The dependence of the film morphology on Hv and d is summarized by the phase

diagram shown in Fig. 7.5(b). The diagram indicates stable flat films happen at small

d and large Hv, unstable wires are triggered at large d and small Hv, and stable wires

are obtained in the region between the two solid lines shown in the phase diagram. (The

dashed boundaries in the diagram are discussed later in Sec. 7.5.2.) The existence of the

stable wire region demonstrates that the EMSO process can cause an originally coarsening

SK system to develop wires stable against size variation.

The stable wire region implies, for given electric plate height Hv, a range of pattern

size d can be adopted to generate stable wires of different sizes. For example, taking d to

be the value dmax on the upper boundary of the stable wire region results in the largest

stable wire size aeq(max), while adopting dmin on the lower boundary yields the smallest

stable wire size aeq(min). The size range [aeq(min), aeq(max)] of the stable wires is plotted in

Fig. 7.5(c) as a function of Hv. The results show aeq(max) increases with Hv, while aeq(min)

is insensitive to the electric plate height Hv.
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Figure 7.5: (a) The variation of ∆Etot/γ0L with a for the cases where Hv = 50 nm and d =
110, 131, 140, and 160 nm, denoted by lines 1A, 1B, 2, and 3, respectively. (b) The domains of
(d, Hv) that lead to a stable flat film, a stable wire, and an unstable wire. (c) The variation of
the stable wire sizes aeq(min) and aeq(max) with the electric plate height Hv. (d) The variation of
∆Etot/γ0L with a for the cases where Hv = 80 nm and d is in the vicinity of the lower boundary
of the stable wire region; d = 205, 212.4, and 220 nm for lines 1, 2, and 3, respectively. (e) The
variation of ∆Etot/γ0L with a for the cases where Hv = 80 nm and d is in the vicinity of the
upper boundary; d = 230, 235, and 240 nm for lines 1, 2, and 3, respectively. The parameters
adopted in the calculation are listed as follows. L = 100 nm, γ0 = 1 J/m2, γ = 0.99 J/m2,
ĝ0 = 0.15, l = 0.1 nm, S = Se = 1/5, ŵe0 = 3, and Ĥf = 0.3. The normalized stability number
Σ̂ can be evaluated to be −0.24.
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7.4.2 Boundaries of stable wire region

After discussing the phase diagram of size stability and the effect of Hv on the range of

stable wire size, the focus of this section turns to the two boundaries of the stable wire

region.

The lower boundary is examined in Fig. 7.5(d) by depicting ∆Etot(a) of three cases

where the values of d are in the vicinity of the lower boundary and Hv is fixed. In

particular, line 1 plots ∆Etot when d is lower than the value dmin on the boundary, line 2

illustrates the result of the case where d = dmin, and line 3 presents that when d > dmin.

The results indicate two properties of the lower boundary. First, the lower boundary is

determined by the condition that the minimum of ∆Etot is equal to zero. Second, the

lower boundary signifies the onset of the morphological transition from a stable flat film to

a stable wire. The morphological transition happens when the electric field effect caused

by the patterned electrode is sufficiently strong.

Similarly, the upper boundary is investigated in Fig. 7.5(e) by considering the cases

where d are lower than, equal to, and higher than the value dmax on the upper bound-

ary. The results, denoted by lines 1, 2, and 3, respectively, demonstrate that the upper

boundary corresponds to the morphological transition from a stable to an unstable wire,

and is characterized by the scenario that the curvature of the minimum point of ∆Etot

vanishes. The characteristic suggests the wire becomes unstable against size variation if

the electric field effect is too strong.

The lower and upper boundaries generally have to be determined by numerical meth-

ods, preventing the two boundaries from being described analytically. Further examina-

tion of the example depicted in Fig. 7.5(b), however, reveals that the two boundaries of

the stable wire region approach straight lines at large values of d and Hv. The straight

lines are expressed as d = αHv (α is a constant), and are denoted by the dashed bound-

aries in the phase diagram. Motivated by the simple expression for the boundaries of the

stable wire region, we investigate the wire size stability of the asymptotic cases in the

next section.
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7.5 The Asymptotic Cases

The size stability of the asymptotic case is analyzed by considering the onset of two

critical morphological transitions, namely, the flat film-stable wire transition and the

stable-unstable wire transition. The former is studied in Sec. 7.5.1, yielding the minimum

criterion for the EM strength. The latter, imposing an upper limit on the EM strength,

is investigated in Sec. 7.5.2. The results of the two sections are summarized in Sec. 7.5.3

to present an overall picture of the asymptotic cases. For convenience, the onset of the

flat film-stable wire transition is termed the basic stable state, while that of the stable-

unstable wire transition is called the utmost stable state.

7.5.1 Minimum criterion and basic stable states

The asymptotic cases are characterized by the condition that the height Hv and the

pattern size d are large. This implies ηa = πa/Hv � 1, and the total energy change ∆Êtot

can be expressed by Eq. (7.14). The expression can be further simplified by neglecting the

term ĉ4â
4 when studying the basic stable states since Eqs. (7.15)–(7.17) and Fig. 7.5(c)

suggest ĉ1, ĉ2, and â of the basic stable states are invariant with Hv, but ĉ4 → 0 as Hv

approaches infinity. The simplification leads ∆Êtot to

∆Êtot = ln(1 + â) + ĉ1â+ ĉ2â
2, (7.26)

where ĉ1 is a function of Ĥf and Σ̂, and ĉ2 is that of Ĥf , Σ̂, and the EM strength J .

Differentiating Eq. (7.26) with respect to â and requiring the result to be zero yield an

equation for the wire size âmin at the minimum point,

1

1 + âmin

[
2ĉ2â

2
min + (ĉ1 + 2ĉ2)âmin + 1 + ĉ1

]
= 0. (7.27)
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Figure 7.6: The contours of (a) Jmin and (b) âmin of the basic stable states as functions of Σ̂
and Ĥf .

The minimum point corresponds to a basic stable state if the total energy change is zero

at that point,

ln(1 + âmin) + ĉ1âmin + ĉ2â
2
min = 0. (7.28)

Equations (7.27) and (7.28) constitute the conditions of the basic stable states.

The procedure for solving the two conditions given in Eqs. (7.27) and (7.28) can be

described as follows. For a given set of Ĥf and Σ̂, the coefficient ĉ1 can be calculated by
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Eq. (7.15). After ĉ1 is known, Eqs. (7.27) and (7.28) are two equations of âmin and ĉ2, and

the solutions can be obtained numerically. Substituting the result of ĉ2 into Eq. (7.16)

yields the EM strength J for the basic stable state. This critical value is denoted as Jmin

since it is also the minimum EM strength needed in order to induce a stable wire.

Minimum EM strength and viable region

The contours of Jmin are plotted in Fig. 7.6(a) as a function of Σ̂ and Ĥf . The figure

indicates the contours are present in the overlapping region of the following two domains,

Ĥf ≤ 1,

Ĥf ≤ 1 + Σ̂. (7.29)

The overlapping region identifies the SK systems that can be activated by the EMSO

process to develop wires stable against size variation, and is termed the viable region.

Evidently, the SK systems outside the viable region cannot realize the size stability during

the EMSO process.

The viable region illustrated in Fig. 7.6(a) suggests all of the non-coarsening SK

systems (Σ̂ > 0) with Ĥf < 1 can develop stable wires during the EMSO process. This

is in contrast to the case without an electric field where the stable states can only occur

in a much smaller thickness range [ĤE(Σ̂), 1]. In addition to the non-coarsening systems,

the viable region also includes the coarsening systems with Ĥf in the range [0, 1 + Σ̂].

The viable region of stable states can be further divided into two areas along the

contour Jmin = 1. The area above the contour is characterized by Jmin < 1. Since

1 ≤ J , this characteristic means the condition Jmin < J is always satisfied, and the

corresponding SK systems can develop stable wires even if ŵe0 = 0. This area, as a

matter of fact, is the stable wire region shown in Fig. 7.4(b) for SK systems without an

electric field.

In comparison, the area below the contour Jmin = 1 is characterized by Jmin > 1. In

this area, the EM strength has to be higher than the minimum value in order to activate
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the stable states. The required minimum strength Jmin decreases when Σ̂ and/or Ĥf

increases.

Wire size of basic stable states

Turn to âmin, the wire size of the basic stable states and the smallest size of the stable

wires in the asymptotic cases. As discussed earlier in this section, âmin can be obtained by

solving Eqs. (7.27) and (7.28) with given Σ̂ and Ĥf . This shows âmin is fully controlled by

Σ̂ and Ĥf of the SK systems, independent of the electric field generated by the patterned

electrode. The result explains the finding in Fig. 7.5(c) that the smallest stable wire size

aeq(min) is insensitive to the electric plate height Hv.

The effects of Σ̂ and Ĥf on the wire size âmin of the basic stable states are depicted

in Fig. 7.6(b). The results indicate âmin decreases when Σ̂ is raised or Ĥf is reduced,

while âmin increases drastically when approaching the boundary Ĥf = 1+ Σ̂ of the viable

region. The wire size âmin in the vicinity of the boundary is further explored below.

The basic stable states in the vicinity of Ĥf = 1 + Σ

When studying the basic stable states in the vicinity of the boundary Ĥf = 1 + Σ̂, it

is convenient to express the coefficient ĉ1 as ĉ1 = −ε where ε is a positive number with

small magnitude. Substituting the expression into Eq. (7.26) and employing the change

of variable t = âminε reduce ∆Êtot given in Eq. (7.26) to

∆Êtot = ln t− ln εt+
ĉ2t

2

ε2
. (7.30)

The minimum point of ∆Êtot is determined by solving the equation ∆Ê ′
tot(t) = 0, which

can be rewritten as

ĉ2t
2

ε2
− t

2
+

1

2
= 0. (7.31)
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According to (7.31), ∆Êtot at the minimum point can be calculated to be

∆Êmin = ln t− ln ε− t

2
− 1

2
. (7.32)

It can be verified later that t � 1 at small values of ε. Thus, t � ln t, | ln ε| � 1/2, and

∆Êmin can be further simplified to

∆Êmin = − ln ε− t

2
. (7.33)

The minimum ∆Êmin vanishes at the basic stable states, leading to the solution t =

−2 ln ε. The result confirms the assertion that t� 1 as ε→ 0. The result also determines

the stable wire size âmin in the vicinity of the boundary to be

âmin =
−2 ln ε

ε
. (7.34)

Equation (7.34) explains the result depicted in Fig. 7.6(b) that âmin increases drastically

when approaching the boundary Ĥf = 1 + Σ̂.

Substituting the solution of t into Eq. (7.31) and ignoring the smallest term −1/2

yields

ĉ2 =
ε2

2t
= − ε2

4 ln ε
. (7.35)

Comparing Eq. (7.35) with (7.16) gives the required minimum EM strength Jmin in the

vicinity of the boundary Ĥf = 1 + Σ̂,

Jmin =

(
1 +

ε2

2 ln ε

)
1

Ĥ2
f

. (7.36)

Equation (7.36) indicates that the minimum EM strength Jmin on the boundary Ĥf =

1 + Σ̂ is given by 1/Ĥ2
f , which is independent of the parameter Σ̂.
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7.5.2 Maximum EM strength and utmost stable states

This section first focuses on the maximum EM strength under the condition ĉ4 < 0, which

is satisfied when Ŝe < 1. It is then shown that the result is also applicable to the cases

with ĉ4 > 0.

The utmost stable states, as shown in Fig. 7.5(e), are characterized by a stationary

point with zero curvature in ∆Êtot to signify the onset of no minimum in the total en-

ergy change. The characteristic can be described by the two equations, ∆Ê ′
tot(âmax) =

∆Ê ′′
tot(âmax) = 0. By assuming ĉ4 < 0, the two equation can be expressed as

1

1 + âmax

+ ĉ1 + 2ĉ2âmax + 4ĉ4â
3
max = 0, (7.37)

− 1

(1 + âmax)2
+ 2ĉ2 + 12ĉ4â

2
max = 0, (7.38)

where âmax is the wire size of the utmost stable state. Comparing the order of magnitude

of the terms in Eqs. (7.37) and (7.38) suggests (1 + âmax)
−1 and (1 + âmax)

−2 can be

neglected, simplifying the two equations to

ĉ1 + 2ĉ2âmax + 4ĉ4â
3
max = 0, (7.39)

2ĉ2 + 12ĉ4â
2
max = 0. (7.40)

Equations (7.39) and (7.40) can be solved to express ĉ2 and âmax in terms of ĉ1 and

ĉ4,

âmax =

(
ĉ1
8ĉ4

)1/3

, (7.41)

ĉ2 = − 3ĉ1
4âmax

. (7.42)

Since ĉ4 is proportional to H−2
v when Hv approaches infinity, Eqs. (7.41) and (7.42) imply

âmax ∝ H
2/3
v and ĉ2 ∝ H

−2/3
v . The result âmax ∝ H

2/3
v confirms the insignificance of

(1 + âmax)
−1 and (1 + âmax)

−2 in Eqs. (7.37) and (7.38), respectively.
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The finding that ĉ2 is proportional to H
−2/3
v at larger values of Hv determines the

EM strength of the utmost stable states or equivalently the maximum EM strength Jmax

allowed for stable wires,

Jmax =
1

Ĥ2
f

. (7.43)

Equation (7.43) indicates Jmax is independent of the normalized stability number Σ̂.

For the case where ĉ4 > 0, it is necessary to include higher order terms of â in order

to determine the maximum stable size âmax. The maximum EM strength Jmax, however,

is still given by Eq. (7.43) because the coefficients of the higher order terms, similar to ĉ4,

all decay to zero as Hv → ∞. In such a case, the minimum point of ∆Êtot would cease

to exist when ĉ2 ≤ 0. The critical condition ĉ2 = 0 leads to the maximum EM strength

expressed in Eq. (7.43).

7.5.3 Size stability of wires

The results in Secs. 7.5.1 and 7.5.2 reveal that the size stability of wires in the asymptotic

cases is determined by two criteria. The first one is the viability criterion expressed in

Eq. (7.29). This criterion evaluates whether or not the SK system can be activated by

the electric field to develop stable wires during the EMSO process. Failing the viability

criterion indicates stable wires cannot be produced on the SK system during the EMSO

process. Satisfying the viability criterion, on the other hand, means stable wires can be

generated if the EM strength J meets the second criterion that J is in the range of Jmin

to Jmax,

Jmin(Ĥf , Σ̂) ≤ J (ŵe0, d̂, Ŝe) ≤ Jmax(Ĥf ). (7.44)
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Since J ≥ 1 + ŵe0/2, the second criterion imposes an upper bound for the normalized

electrostatic energy density ŵe0,

ŵe0 ≤ ŵe(max) = 2

(
1

Ĥ2
f

− 1

)
. (7.45)

For a viable SK system with a given ŵe0 below its upper bound ŵe(max), the solution to

the second criterion for stable wires is given by the region of (d̂, Ŝe) between the contours

J (d̂, Ŝe) = Jmin and J (d̂, Ŝe) = Jmax. Consider the case where Ĥf = 0.4472, Σ̂ = 1.715,

and ŵe0 = 0.5 for example. The values of Ĥf and Σ̂ yield Jmin = 3.5 and Jmax = 5. Thus,

the stable wire region (d̂, Ŝe) of this case is between the contours J = 3.5 and J = 5, see

Fig. 7.2. It is found that d̂ in the region increases with decreasing Ŝe.

The region of (d̂, Ŝe) for stable wires is reduced to a range of normalized pattern

size [d̂min, d̂max] when Ŝe is fixed. The two limits, d̂min and d̂max, explain the finding

in Fig. 7.5(b) that the upper and lower boundaries of the stable wire region approach

straight lines in the asymptotic cases. The two limits also suggest the straight lines are

given by d = d̂minHv and d = d̂maxHv.

As a remark, the maximum EM strength Jmax expressed in Eq. (7.43) is always

larger than the minimum EM strength Jmin in the viable region. This can be understood

as follows. We first compare Jmax and Jmin on the boundary Ĥf , where the former is

expressed in Eq. (7.43) and the latter in Eq. (7.45). The comparison shows Jmax and Jmin

coincide on the boundary. Nevertheless, except on the boundary, the upper and lower

limits of the EM strength are different. In particular, Jmin decreases if Ĥf is fixed but Σ̂

decreases, see Fig. 7.6 and Eq. (7.43). On the other hand, Jmax remains the same as long

as Ĥf is fixed. This demonstrates that Jmax ≥ Jmin in the viable region for the stable

wires.

7.6 Numerical Simulation

In addition to the energy analysis, we also carried out simulation for the morphological

evolution of the SK system during the EMSO process. The EMSO method is essentially
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Figure 7.7: The simulation results of the EMSO process for the system described in Fig. 7.1
with ŵe0 = 2, Hf = 2 nm, and Hv = 10 nm, L = 50 nm. By using different patterns, the EMSO
process produces (a) a single island, (b) a 2×2 island array, (c) a square ring, (d) a cross-junction,
(e) a zigzag wire, and (f) a structure with potential applications in single-electron transistors.
The patterns are depicted on the top and the resulting nanoislands at the bottom of each part
of the figure.

an annealing process of the SK system under a non-uniform electric field (Chiu et al.

2006), and the morphological evolution morphological evolution is dictated by Eqs. (2.6)

and (2.7).

Figure 7.7 plots the simulation results of the EMSO process for the SK system de-

scribed in Fig. 7.1. In addition, the surface energy density γ(n) contained shallow min-

imums at {113} and {116} to model the development of facets on the nano-structures.

Figure 7.7(a) presents the pattern profile and the resulting pyramid island morphology

at the steady state. The simulation result clearly indicates that the EMSO process can

produce islands aligning well with the patterns. To test the stability of the island against

size variation, the island in Fig. 7.7(a) is enlarged by about 10% and then subject to

the EMSO process with the original pattern on the electric plate. It is found that the

enlarged island could return to the original size. The stability is also tested by adding
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shallow bumps and random roughness in the initial film surface. The results showed the

bumps and the initial roughness had no significant effect on the geometry or the formation

time of the nanostructure induced by the pattern. The two tests demonstrate that the

EMSO process can lead the system to the intended equilibrium/meta-stable states.

Besides the pyramids shown in Fig. 7.7(a), more complicated shapes of island may also

be “molded” by the EMSO process using different patterns. The examples demonstrated

in our simulation include 2×2 island arrays, square rings, cross junctions, straight and

zigzag wires; see Figs. 7.7(b)–7.7(e). These examples, though incomprehensive, strongly

imply the EMSO process is capable of fabricating a wide range of three-dimensional

structures for the nano-technologies. The structures can be the basic building blocks

of quantum dot cellular automa, single-electron transistors, nano-electronics, and opto-

electronics (Orlov et al. 1997).

7.7 Discussion

7.7.1 Modification of SK systems for stable nanostructures

In this section we briefly discuss how to modify the SK systems in order to satisfy the

viability criterion for stable nanostructures. The approach depends on whether the film is

a conductor or a semiconductor. For conductor films, the interaction energy strength g0l

is high; thus, the critical thickness H1 for the SK transition is large, and Σ̂ is a positive

value. In those systems, the viability criterion can be fulfilled by simply decreasing the

film thickness Hf below H1.

As an example, consider the case where the film is silver, εm = 0.02, E = 83 GPa,

ν = 0.37, γ0 = 1 J/m2, L = 27.7 nm, γ̂ = 0.99, and φ = 10◦. The interaction energy

strength g0l of silver films was estimated to be 6.62× 10−10 J/m (Suo and Zhang 1998).

Substituting the value of g0l and the material properties into Eqs. (7.12) and (7.11) yields

Σ̂ = 15.4 and H1 = 7.7 nm. Since Σ̂ > 0, the film would satisfy the viability criterion if

Hf is less than H1 = 7.7 nm.
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The large value of H1 implies amin can be small even at moderate film thickness. For

instance, a film of 4.8 nm (Ĥf = 0.622) in our current case yields amin = 12.2 nm when

the electric field is taken to be 0.073 volt/nm and the pattern is described by d̂ = 2.5 and

φe = 10◦. The size amin is reduced to 1.86 nm if Hf is equal to 1.5 nm, and a high electric

field of 1.29 volt/nm is applied.

Turn to the semiconductor film-substrate systems. It is more difficult to meet the

viability criterion in those systems because the interaction strength g0l is much smaller.

One possible solution is to enhance the strength by doping the film heavily. It was

suggested that the strength g0l of a SiGe film could reach 5.7×10−12 J/m when introducing

one atomic percent of donors in the film (Chiu 2004). This interaction strength can

produce amin = 26 nm for the case where L = 100 nm, φ = 11.3◦, γ̂ = 0.99, and Hf = 0.4

nm, which roughly corresponds to the SiGe film with 25% of Ge in atomic concentration.

The equilibrium island size can be further reduced if the interaction strength can be

increased significantly. This, however, requires a different interaction mechanism, a crucial

issue that needs to be explored in the future.

7.7.2 Kinetics

After discussing the possible approaches for satisfying the size stability criteria, we com-

ment briefly in this section whether or not the stable nanostructures can develop during

a typical annealing process where surface diffusion is the dominating kinetic mechanism.

To answer this question, it is helpful to compare the simulation results in Fig. 7.7 and

Fig. 5.1. Both adopt the same model for the SK systems to study the growth of nanois-

lands driven by the surface diffusion mechanism, while the two results differ in the electric

field: Figure 7.7 takes into account the effects of the electric field generated by a patterned

electric plate; in contrast, Fig. 5.1 focuses on the cases where the electric field is absent.

Figures 7.7 and 5.1 also present the results in term of the normalized time t/tL. It

is found that the normalized time t/tL for the formation of nanostructures during the

EMSO process is less than 5 × 104, see Fig 7.7. The results plotted in Fig. 5.1, on the
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other hand, suggest the normalized formation time t/tL is about 0.5 during the annealing

process without the electric field.

The comparison of the two results reveals that the growth of nanoislands under a

patterned electric plate is much faster than that without the electric field. Since the

latter can be observed in experiments routinely, the patterned-induced island formation

is expected to be feasible.

The effect of a pattern on the growth rate of nanostructures can be understood as

follows. The growth of nanostructures in SK systems without an electric field is driven

by the strain energy reduction, and it follows from Eq. (3.3) that the corresponding

energetic force for island growth is given by the negative of the strain energy density

−w(x). (This is analogous to the energetic force due to the electrostatic energy discussed

in Sec. 3.2.3.) This energetic force, as expressed in Eq. (3.9), increases with the slope and

size of the nanostructure. Thus, the energetic force for island growth is small when the

film morphology is a slightly rough surface profile.

The pattern on the electric plate, on the contrary, induces an energetic force that is

independent of the geometry of the nanoislands on the film surface. This energetic force

can be large even when the nanostructures on the film are still shallow and/or small. This

explains why the pattern can accelerate the growth of nanostructures drastically.

7.7.3 Controlled growth of nanoislands

The size stability analysis presented in this section illustrates a potential method for

controlling the self-assembly of nanostructures. The first step is to choose a system that

can satisfy the viability criterion given in Eq. (7.29). The system can be a coarsening one

characterized by Σ̂ < 0 or a stable one with Σ̂ > 0, while the stable one is a better choice

since it allows a larger thickness range for fabricating stable nanostructures.

The stable SK system can develop stable wires without an electric field if the nor-

malized thickness Ĥf is in the range ĤE < Ĥf < 1, where ĤE is defined earlier in

Fig. 7.4. This range, however, is unsuitable for controlling the island growth since the

nanostructures can develop at any location on the film surface.
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The controllable self-assembly of nanoislands is achieved by using films in the thickness

range Ĥf < ĤE together with a patterned electric plate. In this design, the flat film is

the equilibrium morphology in the areas with little influence from the patterns, while the

flat film is transformed into stable nanostructures in the area affected by the pattern.

The transformation can occur if the EM strength J due to the patterns satisfies the

criterion expressed in Eq. (7.44), which in turn defines a stability domain of the pattern

parameters. Varying the pattern geometry within the stability domain leads to different

sizes and shapes of stable nanostructures at the specified locations.

For a given SK system, Σ̂ is fixed, and the smallest size of stable nanostructures âmin

can be reduced by decreasing the normalized thickness Ĥf , see Fig. 7.3(b). Decreasing

Ĥf , however, causes Jmin and thus the electric field to increase, see Fig. 7.3(a). The

electric field can become too high to be feasible in the actual systems, and this imposes

a constraint on the smallest film thickness that can be attained in the process.

7.7.4 Limitations

The analysis presented in this section provide a simple scheme for determining the size

stability of wires under the influence of a patterned electric plate. The scheme, neverthe-

less, overlooks several issues that can affect the size stability. For example, the formulas

adopted here for calculating the strain and electrostatic energy changes are accurate to

the first order of the wire slope. This is valid for shallow islands, while the effects of large

wire slopes have to be included in order to have more accurate predictions of the size

stability.

Besides the large slopes, other issues that need to be considered include the kinetics of

the EMSO process, the surface stress, other mechanisms of the interaction energy in SK

systems such as SiGe and III-V compounds, the electrostatics of semiconductor films, bulk

diffusion of alloy film, and the evaporation of As in III-V compounds. Understanding these

issues is essential for developing technologies that can control the growth of nanoislands

in the SK systems.
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7.8 Summary

This chapter investigates the stability of wires against size variation for SK systems during

the EMSO process. The investigation starts with the case where the electric field is absent

from the process. In such a case, the wire is stable against size variation if the normalized

stability number Σ̂ is positive and the normalized film thickness Ĥf is within the range

[ĤE, 1]. The variation of the thickness range with Σ̂ is illustrated in Fig. 7.4(b).

The investigation then turns to a typical example of coarsening SK system to study

the effects of d and Hv on the wire size stability. The results show that the coarsening

system can be activated to develop stable wires of different sizes when the pattern size d

and the electric plate height Hv are in the stable wire region depicted in Fig. 7.5(b). The

results also indicate the upper limit of the wire size aeq(max) increases with Hv, while the

lower limit aeq(min) is insensitive to the parameters of the electric field.

Motivated by the findings in the specific example, the investigation further explores

the wire size stability of the asymptotic cases where the pattern size d and the electric

plate height Hv are large. The size stability is shown to be determined by two criteria.

The first one, the viability criterion given in Eq. (7.29), evaluates whether or not the SK

system can be activated by the electric field to generate stable wires. The second criterion,

expressed in Eq. (7.44), requires that the EM strength J is in the range [Jmin,Jmax].

In conclusion, the EMSO process adopts a patterned electrode to effect island forma-

tion on the film of an SK system below the critical thickness for the SK transition. The

EMSO process has enormous potential for the self-assembly of nanostructures. The EMSO

process works well for conductor films on semiconductor substrates; and it is conjectured

that the process can also be extended to semi-conductor and dielectric films on semi-

conductor substrates. The EMSO process can be implemented without much difficulty

since the enabling technologies for the realization of the process are already demonstrated

in the LISA method and the growth of the SK systems. Most importantly, the EMSO

process can produce islands at the equilibrium/meta-stable state, and the process can

control the sizes, shapes, and sites of the islands.
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Conclusion

This thesis presents our research on the nanostructures formation in Stranski-Krastanow

film-substrate system with and without the effects of electric field. The physics of the

nanostructure formation is investigated via two methods: the 3D numerical simulation for

the morphological evolution and the energy analysis for the nanostructures. Our results

provide qualitative explanation for experimental observations of nanostructure formation

in the SK system. The results also lead to our proposed schemes to control the self-

assembly of nanostructures in term of the sizes, the sites, and the shapes.

Chapters 2 and 3 show the first-order boundary perturbation model adopted in

our research. The model allows us to compute the key energy components in the SK

system, including the strain energy, the surface energy, the interaction energy and the

electro-static energy.

Chapter 4 discusses our study about the critical film thickness which is dictated by

the mechanism of nanostructures formation: spontaneous formation by nucleation and

gradual morphological transition by surface diffusion. It shows that the critical thickness

under surface undulation is generally larger than that under spontaneous formation. The

difference in the critical thickness implies that there is a special thickness range in which

an almost flat film can develop into islands via spontaneous formation where the the

surface undulation is suppressed. It is demonstrated in that chapter that the thickness

range can be used to control the nanostructure formation via the ASKT method.

131
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Chapter 5 investigates the nanostructure formation of typical Stranski-Krastanow

systems by simulating the surface undulation of the system driven by the surface diffusion

mechanism. The results lead to the following findings.

• The whole nanostructure formation process on the SK system is characterized by the

surface undulation, the shape transition, and the formation of wetting layer. The

unique feature of the shape transition is the invariance of the basic width during

the process.

• Three types of film morphologies appear during the nanostructure formation process

without the effect of electric field: an array of separate islands; localized wetting

layers and induced facets; and a faceted ripple structure.

• The film morphology is controlled by the maximum surface coverage of faceted is-

lands. As maximum surface coverage increases, the film morphology changes gradu-

ally from the sparse array to localized wetting layer and finally to the faceted ripple

structures. The maximum surface coverage depends on three parameters of the SK

systems, namely the ratio between the interaction energy density and strain energy

density, the normalized film thickness , and the strength of the minimum of surface

energy density on (001).

Chapter 6 presents the formation of quantum dot molecules on a thick film. The

results demonstrate that the special nanostructures can grow by the surface undulation

process on a thick film with shallow indents via the unique cooperative formation of

faceted trenches and ridges. The cooperative formation mechanism is further explored

from the energetic points of view by considering the crucial moment when the formation

of a faceted island adjacent to a trench become more favorable than the growth of the

trench itself. It is also demonstrated in the chapter that the critical trench size can

be determined analytically. The critical trench size for favorable growth of adjacent

faceted island suggests that alternative development of trenches and ridges is a self-limiting

process dictating the size selection of the quantum dots molecules.
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Chapter 7 presents our theoretical study of the SK transition under the effect of

electric field and demonstrates that it is feasible to self-assemble nanostructures with

controllable sites, sizes,and shapes by using patterned electric field when the viability

criterion is satisfied.
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