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SUMMARY

In this thesis we study the application of modular static analysis to prove program

safety and detection of program errors. In particular, we shall consider imperative

programs that rely on numerical invariants. The analyses proposed in this thesis benefit

from the relationship between a modular analyzer and a precise disjunctive domain.

A modular analyzer requires a precise abstract domain to reason about the symbolic

method inputs. On the other hand, a modular analyzer has a local scope and therefore

favors more complex invariants than those that are usually involved in global analyzers.

The thesis makes three main contributions. Firstly, to handle the challenges of

disjunctive analyses, we introduce the notion of affinity to characterize how closely

related is a pair of disjuncts. Finding related elements in the conjunctive (base) domain

allows the formulation of precise hull and widening operators lifted to the disjunctive

(powerset extension of the) base domain. We have implemented a static analyzer based

on the disjunctive polyhedral analysis where the relational domain and the proposed

operators can progressively enhance precision at a reasonable cost.

Secondly, we designed a modular analyzer that combines forward and backward anal-

yses. The forward analysis aims to infer method postconditions, but it also discovers

invariants that are useful in the backward derivation of sufficient preconditions. To

increase the efficiency of the analysis, we designed a technique to strengthen precondi-

tions and trade precision for speed. Rather than deriving one program precondition for

proving program safety, our analysis derives individual preconditions for each check and

goes one step further by performing aggressive optimizations of checks.

Our final objective is to support either a proof of the absence of bugs in the case of

a valid program or bug finding in the case of a faulty program. We propose a dual static

analysis that is designed to track concurrently two over-approximations: the success and

the failure outcomes. The overlap between the two outcomes signifies imprecision in

analysis and can be used to guide abstraction refinement. More interestingly, due to the
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concurrent computation of outcomes, we can identify two significant input conditions:

a never-bug condition that implies safety for inputs that satisfy it and a must-bug

condition that characterizes inputs that lead to true errors in the execution of the

program. As a result, our analysis can identify a part of the alarms as being true errors

and reduces the manual effort of analyzing alarms to a smaller group of may-bugs.
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CHAPTER I

INTRODUCTION

During the last century computer-driven systems have become increasingly important

in our daily lives. Their reliance on software systems implies that any fault in the

software may cause the entire system to misbehave. Use of flight control systems coupled

with digital computers has been adopted under the concept “fly-by-wire” on board of

Airbus and Boeing planes and similarly the “drive-by-wire” initiative promises to be

followed by the automotive industry. Two extreme failure examples are a spacecraft

explosion caused by a floating-point conversion error (Ariane 5 failure, 1996 [99]) and

the Mars Climate Orbiter crash in 1999 caused by an incorrect conversion between

Imperial units and metric units [143]. Errors are even more obvious in software that

is less safety-critical. “Blue screens of deaths” or “segmentation faults” are errors that

cause frustration and countless hours of lost productivity. It was estimated that the

costs of having an inadequate infrastructure for software testing in the United States

are between USD 22.2 billion and USD 59.5 billion, approximately 0.2 to 0.6 percent of

the country’s Gross Domestic Product (GDP) [133]. The tremendous cost of software

errors has led to increasing interest in methods for automatic analysis and software

verification.

1.1 Background

Before dissecting the various techniques for program analysis, we should recognize that

a related approach for preventing software errors is to design programming language of

increasing sophistication, where (some kinds of) programmer errors are fully prevented

[48, 86, 31]. While this approach is worthy to follow, it does not promise to solve the class

of errors that exist in the current generation of software. Many software applications

are written using the C programming language that was developed in the seventies.

The widespread adoption of the C language is due to its flexibility as it encourages

programmers to take control over low-level access to memory and allows constructs
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that map efficiently to machine instructions. To quote from Bjarne Stroustrup, “C

makes it easy to shoot yourself in the foot”. Unfortunately, this ease of committing

errors becomes prevalent in the current software systems when considering their ever

increasing complexity.

To solve these difficulties, various techniques promise to provide automated support

for detection of software errors ranging from testing to static analysis. Systematic testing

or concrete state space exploration [59, 111] attempts to search through all the feasible

paths of the programs. While testing can uncover serious errors, it cannot offer guaran-

tees that no more bugs remain undiscovered in the program. On the other hand, static

analysis [37, 43] uses abstraction to interpret exhaustively all the feasible program paths

and compute which are the concrete program states that can be reached by execution.

Static analysis sidesteps the undecidable problem of computing the reachable concrete

states by using over-approximation to (potentially) reachable abstract states. Due to

approximation, static analysis may report false positives that are possible bugs that do

not exist in practice. Regardless of the inherent imprecision in static analysis, many

software properties have been verified and we list only some of the most impressive

results obtained:

• Verification against runtime errors including out-of-bound array accesses: Astrée

[12] for the flight control software of Airbus A340 and A380; C Global Surveyor

[145] for the flight software of the Mars Path-Finder and the Deep Space 1 missions;

ESPX [76] for preventing buffer overflows in future versions of Microsoft products.

• Ensuring proper usage of resources: ESP [46] for verifying file I/O in the gcc

compiler; Saturn [148] for finding incorrect usage of lock related functions through

the Linux kernel.

• Verifying consistency of complex data structure operations including circular linked

lists, sorted linked lists, priority queues, red-black trees [115, 18].

• Finding errors in critical device drivers: Slam [5], Blast [80] and Static Driver

Verifier [6] for safety properties; Terminator [34, 32] and Mutant [9] for liveness

properties (e.g. termination).
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From the properties enumerated previously, our study will focus on checking for

out-of-bound array accesses as an example of assertion checking. We aim to provide

a sound static analysis, meaning that if a property of a program is verified, then the

program execution is guaranteed not to violate that property. To achieve soundness,

we shall be content with the possibility of reporting alarms that may be false positives.

However, to minimize their number, we emphasize on the precision of our analysis and

on the modularity principle as a way to achieve precision regardless of the size of the

program to analyze. This principle of performing separate local analyses and composing

their results was also argued by Cousot and Cousot in their paper on “Modular Static

Program Analysis” [40]:

“The central idea is that of compositional separate static analysis of program

parts where very large programs are analyzed by analyzing parts (such as meth-

ods) separately and then by composing the analyses of these program parts to

get the required information on the whole program. Components can be analyzed

with a high precision whenever they are chosen to be small enough.”

In their paper [40], Cousot and Cousot give some guidelines for designing modular static

analyses. The first proposal, the worst-case separate analysis consists in considering

that absolutely no information is known on the interfaces of program parts. As a second

approach, the separate analysis with user-provided interfaces asks the user to provide

information about the interfaces of each program part. While pragmatic, these proposals

give up precision in the first case and automation in the second case. The current thesis

focuses on the third proposal, the symbolic relational separate analysis. We attempt to

study its applicability to the analysis of software errors and to realize its potential. With

this proposal, each program part is analyzed by giving symbolic names to all external

objects used or modified in that part. The interaction between the local and the external

objects is recorded symbolically and represents a summary or interface of the current

program part. Wherever that program part is invoked, the computed summary can be

used and the analysis proceeds without sacrificing precision. This analysis has smaller

local scope and therefore can be very precise.
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1.2 Contributions of this Thesis

This thesis makes three main contributions. Firstly, we present a new disjunctive abstract

domain meant to enhance analysis precision at a reasonable cost. Secondly, we propose

a modular technique for deriving preconditions sufficient to guarantee program safety.

With these two techniques, we are able to derive both postconditions and preconditions

and realize a completely modular analyzer for proving program safety. Since an analyzer

that aims to prove program safety may report alarms that correspond in part to false

positives, there is a need to (manually) classify the feasibility of alarms. Our third

proposal is a dual static analysis that can identify (automatically) a part of the alarms

as being true errors. More specifically, the dual static analysis identifies both a never-

bug condition that implies program safety and a must-bug condition that leads to true

errors (modulo program termination). The imprecision of static analysis results in a

may-bug condition that characterizes inputs leading to either possible errors or false

positives.

After we briefly described our contributions, we will show examples to motivate our

goals and list the challenges that need to be overcome.

1.2.1 Disjunctive Abstract Domain

We shall highlight various techniques to discover static invariants that hold at each

program point. A static invariant can be computed either using a forward or a backward

analysis. A forward derivation traverses the statements of the program in the same order

in which they execute, while a backward derivation does the traversal in the reverse order.

In a forward analysis, a static invariant is usually computed assuming any inputs to the

program. Therefore it represents an over-approximation of the concrete program state

computed using particular program inputs. While including some unfeasible concrete

states results in an over-approximating invariant, it is also possible to exclude some

feasible states and compute an under-approximating invariant. 1

The discovered invariants are used to prove the safety of either implicit checks (e.g.

array bound checks where the index used to access an array must be within the bounds

1The crossbreeding of over/under approximations with forward/backward derivations leads to four
analyses akin to the classical dataflow analyses [117, Section 2.3].
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of the array) or explicit checks introduced using the language construct assert. To

prove safety of checks, a forward analysis compares the computed invariant at the check

point with the check to be satisfied. We will illustrate this process using the following

example adapted from [136]:

void foo (int x) {
l0 : int y; bool b;
l1 : if (x > 0) { y = x; }
l2 : else { y = −x;
l3 : }
l4 : b = (y > 10);
l5 : assert(b⇒ (x < −10 ∨ 10 < x));

}

Figure 1.1: Simple example

The method foo computes the absolute value of the integer parameter x and assigns it

to the variable y. The boolean flag b is set to true when the value of the variable y is

bigger than 10. It can easily be observed that the assertion at label l5 is satisfied for any

execution of the program and for any value of the parameter x. We will illustrate two

facts that may influence the ability of a static analyzer to prove this assertion: firstly,

the precision of the abstract domain and secondly, whether the invariants are derived

using a forward or a backward analysis.

The abstract domain defines a class of properties that can be used to compute and

represent program invariants. There exists a wide variety of abstract domains that could

be used to capture the numerical properties that interest us. These domains balance

expressive power with computational cost. Two seminal papers introduced the abstract

domains of intervals [36] and polyhedra [43]. The interval abstract domain is able to

capture invariants stating that the variable y is positive at label l2 (after the assignment

statement is executed). In general, the form of interval invariants is a conjunction of

constraints of the form ±x ≤ c, where x is some program variable while c is a constant.

Analysis using the interval domain is efficient, but it loses precision by not capturing

constraints that relate multiple program variables. 2 The polyhedron abstract domain

is able to capture a more general form of invariants, as conjunctions of linear inequalities

2For this reason, the interval domain is called non-relational .
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relating multiple variables: a1x1+ . . . anxn ≤ c. In this format, program variables are

represented by xi, while ai and c are arbitrary constants.

Label Conjunctive (polyhedron) domain Disjunctive (polyhedron) domain
l0 > >
l1 x>0 ∧ y=x x>0 ∧ y=x

l2 x≤0 ∧ y=−x x≤0 ∧ y=−x

l3 y≥x ∧ y≥−x x>0 ∧ y=x ∨
x≤0 ∧ y=−x

l4 y≥x ∧ y≥−x b=true ∧ y>10 ∧ y=x ∨
b=true ∧ y>10 ∧ y=−x ∨

b=false ∧ y≤10 ∧ x>0 ∧ y=x ∨
b=false ∧ y≤10 ∧ x≤0 ∧ y=−x

l5 check cannot be proven check can be proven

Figure 1.2: Program state approximated at each label via forward analysis with
conjunctive and disjunctive abstract domains

For our example from Figure 1.1, the invariants obtained using a forward analysis

with the conjunctive polyhedron domain are shown in the second column of Figure 1.2.

The forward derivation starts at label l0 with a special element >, meaning that all the

program variables, x, y and b are unconstrained. At label l1, after the evaluation of the

assignment from the first branch, an invariant would capture the formula (x>0 ∧ y=x).

Abstract domains like the interval or the polyhedron are imprecise when capturing in-

variants at join points that follow, for example, conditional statements. In particular, at

label l3, the invariant after the conditional statement represents the over-approximation

of the invariants from the two branches. The invariant at label l3 computed with the

interval domain is determined to be y≥0. With the increased precision of the polyhedron

domain, a refined invariant could be obtained at label l3: (y≥x ∧ y≥−x). Neither of

these two invariants is precise enough to capture the fact that the variable y represents

the absolute value of the variable x. At the next step, the invariant at label l4 is not

able to capture the relation between the variables x, y and b. Consequently, the check

at label l5 cannot be proven.

A numerical abstract domain can be refined by adding elements that allow disjunctive

properties to be represented precisely. This refinement can be done systematically [39]

and results in a powerset extension of the base conjunctive domain. After illustrating the

forward analysis with a conjunctive domain, we will compare it with the derivation shown
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in the last column of Figure 1.2 based on a disjunctive domain. While the invariants

at labels l0, l1 and l2 are unchanged, the disjunctive domain captures more precisely

the state at label l3. The invariant captures each branch via a separate disjunct as

((x>0∧ y=x)∨ (x≤0∧ y=−x)). Further, the conditional assignment at label l4 assigns

a true value to b provided the value of y is bigger than 10; otherwise b is assigned false.

Consequently, the invariant at label l4 captures the relations between the variables x, y

and b with four disjuncts. Using this invariant, the check (b⇒ (x<−10 ∨ 10<x)) from

label l5 can be proven: the two disjuncts where b is true satisfy the property that the

absolute value of x is bigger than 10.

While we illustrated the need for disjunctive invariants using forward analysis, we

can argue that a disjunctive abstract domain is also useful for backward analysis. In

fact, the example from Figure 1.1 was used in [136] to show that the backward analysis

can be more effective than a forward analysis. For this particular example, the backward

analysis can indeed prove the check using a conjunctive domain!

Label Over-approximation from ¬(chk) Under-approximation from chk

l5 b=true ∧ −10≤x≤10 b=false ∨
b=true ∧ x<−10 ∨

b=true ∧ x>10
l4 y>10 ∧ −10≤x≤10 y<10 ∨

y>10 ∧ x<−10 ∨
y>10 ∧ x>10

l3 (same as l4) (same as l4)
l2 ⊥ (x<−10 ∧ −10≤x≤10) > (x≥−10 ∨ x<−10)
l1 ⊥ (x>10 ∧ −10≤x≤10) > (x≤10 ∨ x>10)

l0 ⊥ (check can be proven) > (check can be proven)

Figure 1.3: Program state approximated at each label via backward analysis

The second and third columns from Figure 1.3 show the invariants that are inferred

using backward analysis. This analysis starts with the location of the check to be

proven l5, where error states and safe states can be clearly identified. The error states

correspond to the negation of the check (b=true ∧ −10≤x≤10), while the safe states

correspond to the check formula, written in disjunctive normal form as (b=false) ∨
(b=true ∧ x<−10) ∨ (b=true ∧ x>10).

An over-approximating backward analysis starts with the error states and aims to
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prove that no program inputs may lead to the error states (a may analysis). The error

state from label l5 may be reached from label l4 provided that (y>10 ∧ −10≤x≤10).
The backward derivation continues with the two conditional branches. Contradictions

are obtained on each branch, represented with the special element ⊥ that stands for the

unsatisfiable invariant false. To reach the error state from the label l2, it is necessary

that x satisfies the following constraint: (x<−10∧−10≤x≤10), which is impossible since

this constraint is unsatisfiable. Similarly for the other branch, at label l1 the constraint

(x>10∧−10≤x≤10) cannot be satisfied by any value for the input variable x. Since the

error states cannot be reached from any of the two conditional branches, they cannot

be reached from the beginning of the method at label l0 and thus, the check is proven

safe.

Despite the success in proving this particular example starting with the error states,

conjunctive invariants may not be sufficient in general for backward analysis. This fact is

illustrated using the combination between backward analysis and under-approximation

as pioneered by Suzuki and Ishihata [144]. For this derivation, the starting invariant

at label l5 is the check to be proven. The aim of this under-approximating analysis is

to prove that all inputs must lead to the safe states (a must analysis). For the current

example, such an analysis fails when using a conjunctive domain: it computes only im-

precise under-approximations at each program point (the false invariant). On the other

hand, the third column of Figure 1.3 shows that the check can be proven if disjunctive

invariants are available for analysis. As a summary to the various forward/backward

analyses presented, we argue the general usefulness of a disjunctive abstract domain.

While a disjunctive domain is able to prove more checks due to its increased preci-

sion, the precision comes with a higher cost that hindered the adoption of disjunctive

abstract domains. A disjunctive domain has an exponential number of elements when

compared to the base conjunctive domain. Another potential problem shows in the case

of recursive programs, where, unlike the simple non-recursive example from Figure 1.1,

the disjunctive analysis may result in an unbounded number of disjuncts. One well-

known approach to control the number of disjuncts during analysis is to use a domain

where the number of disjuncts is syntactically bounded. In this setting, the challenge is

to find appropriate disjuncts that can be merged without (evident) losses in precision.
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Another challenge is to ensure the termination of analysis, by adapting the techniques

based on widening operators from the conjunctive [37, 43] to the disjunctive setting.

To handle these challenges in disjunctive analysis, we introduce in Chapter 3 the

notion of affinity to characterize how closely related is a pair of disjuncts. Finding related

elements in the conjunctive (base) domain allows the formulation of precise hull and

widening operators lifted to the disjunctive (powerset extension of the) base domain. We

have implemented a static analyzer based on the disjunctive polyhedral analysis where

the relational domain and the proposed operators can progressively enhance precision

at a reasonable cost.

1.2.2 Deriving Preconditions for Modular Static Analysis

A main challenge for static analysis is its extension from the intraprocedural setting

used for our previous examples to interprocedural analysis where calls to procedures can

be handled precisely and efficiently. A simple approach for solving this challenge is to

assume method specifications in the form of pre- and post-conditions are available in

the program. In this case, the intraprocedural analysis can be extended straightforward

to the interprocedural setting. For the situation when pre- and post-conditions are not

available, there are two main approaches to analyzing the program.

The global approach attempts to mimic the execution of a program in the order in

which method calls and return instructions are processed. The analysis starts with the

“main” method and traverses the call graph in top-down order. This approach has the

advantage of exploiting the context (program invariant) of a call to the method mn when

analyzing the callee, the method mn. Unfortunately, this approach discards the natural

boundaries from the method declarations since invariants combine information from the

call context with information local to the callee. This may lead to an explosion in the

size of the invariants: elaborate techniques are reported in Astrée to process precisely

and efficiently invariants relating tens of thousands of variables [12]. We will illustrate

this global approach to interprocedural analysis using the program fragment shown in

Figure 1.4. In this program, the method at the top of the figure declares two arrays,

initializes them and then computes the minimum element from each array.

A typical global static analyzer derives invariants for a method in each of its call contexts.
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. . .
int a[10];
initarray(a, 10);
int amin = getmin(a, 10);
. . .
int b[20];
initarray(b, 20);
int bmin = getmin(b, 20);
. . .

void initarray (int a[], int n) {
l0 : int i = 0;
l1 : while (i < n) {
l2 : a[i] = input(); //assert(0<=i && i<len(a));
l3 : i = i + 1;
l4 : }

}
int getmin (int a[], int n) { . . . }

Figure 1.4: Example for interprocedural analysis

In our example, the method initarray is analyzed twice, corresponding to the call

contexts of initarray(a, 10) and initarray(b, 20). In each call context, the assertion at

label l2 is proven safe, but the effort of proving the assertion is duplicated. Furthermore,

the invariants that need to be inferred inside the method initarray could be larger than

required since they take into account all the information from the call context.

A second alternative for analyzing interprocedural programs is a modular approach

that performs local analysis within the boundaries of a method. A method mn is analyzed

without assuming anything about its call contexts and an abstraction of the relation be-

tween values at the entry and at the method exit is computed [38, 141]. This abstraction

represents a summary of the method body and therefore this approach is also denoted

as summary-based analysis [118, 148]. Throughout this thesis, we will use the attributes

summary-based and modular interchangeably for such an approach to analysis.

One advantage of this modular approach is that it minimizes the analysis redun-

dancy, since the method summary is computed once and used at all the call sites. The
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summary-based approach promises more scalability, since it only computes smaller, lo-

cal invariants. The summary-based analysis processes the methods from a program in

bottom-up order of the call graph. Recursion requires simultaneous handling of methods

in the same strongly connected component of the program call graph. While the mod-

ular approach promises more scalability than a global approach, it poses an important

challenge. Analyzing a method body without the information provided by the call con-

text requires a more complex abstract domain. For example, reasoning about the code

of initarray method when the array a and the variable n have symbolic (rather than

fixed) values is more challenging.

There are many related works that use modularity in static analysis. We give a brief

account of these related works, starting with the general approaches to interprocedural

analysis proposed by Cousot-Cousot [38] and Sharir-Pnueli [141]. Reps et al [132] showed

how to do precise interprocedural analysis with finite abstract domains and distributive

transfer functions. Modular aliasing analyses have also been proposed [19, 21] and

recently Yorsh et al [152] showed how to combine finite typestate with aliasing analysis.

Closer to our focus on numerical properties, Müller-Olm et al [109] and Gulwani-Tiwari

[69] presented precise interprocedural analyses with linear equalities. Precise analysis

can be obtained only for programs that have non-deterministic conditionals; other classes

of conditionals make the precise problem undecidable even for a finite height domain

like that of linear equalities. Predicate abstraction domain is another instance of a finite

domain that has been extended to a polymorphic [7] or compositional setting [85]. Other

numerical abstract domains employed in interprocedural analysis are linear congruences

[110] and polyhedra analysis [140, 63]. Seidl et al [140] have focused on analysis with

a restricted form of polyhedra (simplices) that can be implemented efficiently, while

Gopan-Reps [63] recently proposed an analysis for summarizing low-level libraries.

Our proposal shares the modularity principle with all these works, but we apply

it in a more fine-grained abstract domain, that of disjunctive polyhedra. Further-

more, most summary-based analyses have focused on computing an over-approximation

for each method body, including in this category summary-based alias analyses [19,

21]. On the other hand, in addition to over-approximations we also derive under-

approximations modularly in the form of preconditions sufficient to guarantee the safety
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of the method body. There has been considerably less success in deriving modular under-

approximations. Recent efforts independent of our work include [108] in the context of

modular assertion checking and [152] proposing a framework for generating procedure

summaries restricted to finite-height abstract domains. In contrast to sufficient precon-

ditions, another class of analyses generates preconditions necessary (but not sufficient)

for ensuring the safety of a method [15, 123].

For the example from Figure 1.4, our modular analysis generates a summary for the

initarray method that includes a precondition (n≤len(a)) sufficient for guaranteeing

the safety of the assertion at label l2. Compared to the global analysis requirement of

re-analyzing the method’s body for each call context, with a modular analysis it is only

needed to check the precondition (n≤len(a)) at each call site.

Our proposal benefits from the symbiotic relationship between a modular analyzer

and a precise disjunctive domain. Firstly, a modular analyzer requires a precise abstract

domain to reason about the symbolic method inputs. On the other hand, a modular

analyzer has a local scope and therefore favors more complex invariants than those

that are usually involved in global analyzers. Based on this observation, we designed a

modular analyzer that combines forward and backward analyses and can be practical and

precise. The forward analysis aims to infer method postconditions, but it also discovers

invariants that are useful in the backward derivation of sufficient preconditions.

1.2.3 Dual Static Analysis

Static analysis uses abstraction on program states to prove program safety. Due to

approximation, static analysis may report false positives that are possible bugs that

do not exist in practice. High incidents of false positives can make static analysis

tools impractical to use for finding and eliminating bugs. Manual inspection of alarms

(possible bugs) can be a very time-consuming process and may take several days even

for simple alarms in a large program [136].

Since finding all errors and establishing program safety has proven difficult, from

a pragmatic angle researchers have been concerned with methods to find some of the

errors from a program. Traditionally, program testing [89] has been used for detecting

faulty programs. More recently, model checking or concrete state space exploration
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[59, 111] has been successfully applied to detect the presence of program errors. As this

systematic testing may not terminate in a reasonable amount of time, a limit is set in

practice on the number of paths that are covered. On the whole, the bugs that are

discovered are sound (they are guaranteed to occur in some concrete execution), but

some bugs may remain undiscovered.

Synergistic approaches for both proving safety and finding bugs usually rely on a

combination of over and under approximation. Model checking based on abstraction

refinement is often referred as CEGAR (counterexample-guided abstraction refinement)

[29] and tools like SLAM [5] or BLAST [80] are based on this paradigm. In a first step,

SLAM and BLAST perform a forward-directed overapproximating search for possible

bugs. If no bugs are found, then the safety of the program has been proven. Otherwise,

starting with a possible bug, a counterexample trace is analyzed backward via symbolic

reasoning in order to derive its weakest liberal precondition. If the counterexample is

shown to be feasible, then a true bug is reported. If the counterexample is shown to

be infeasible or spurious, the abstraction is refined and the search process is iterated.

Due to the infiniteness of the concrete state space, the process may not converge while

continuously refining the abstract domain. Only true bugs are reported provided that

the backward analysis is complete, for example in the context of the ACTL∗ fragment of

Computational Tree Logic [29] or of the theory of linear arithmetic with uninterpreted

functions [80]. However, in general the backward analysis is incomplete: in the presence

of division operators represented as uninterpreted functions the analysis may report false

positives.

To support the automatic analysis of false positives arisen from static analysis, we

propose a dual static analysis that is designed to track concurrently two over-approxi-

mations: the success and the failure outcomes. The overlap between the two outcomes

signifies imprecision in analysis and can be used to guide abstraction refinement. More

interestingly, due to the concurrent computation of outcomes, we can identify two signif-

icant input conditions: a never-bug condition that implies safety for inputs that satisfy

it and a must-bug condition that characterizes inputs that lead to true errors in the

execution of the program. As a result, our analysis can identify a part of the alarms as

being true errors and reduces the manual effort of analyzing alarms to a smaller group
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of may-bugs.

1.3 Thesis Overview

The aim of this thesis is to investigate techniques that would broaden the class of

applications to which modular static analyses approaches are applicable.

Firstly, to handle the challenges of disjunctive analyses, we introduce in Chapter 3 the

notion of affinity to characterize how closely related are two disjuncts. Finding related

elements in the conjunctive (base) domain allows the formulation of precise hull and

widening operators lifted to the disjunctive (powerset extension of the) base domain. We

have implemented a static analyzer based on the disjunctive polyhedral analysis where

the relational domain and the proposed operators can progressively enhance precision

at a reasonable cost. This chapter is based on a paper that was first presented at the

11th Annual Asian Computing Science Conference - ASIAN 2006: Corneliu Popeea and

Wei-Ngan Chin - “Inferring Disjunctive Postconditions” [123].

Secondly, our proposal from Chapter 4 exploits the relationship between modular

analysis and a precise disjunctive domain. We designed a modular analyzer that com-

bines forward and backward analyses and can be practical and precise. The forward

analysis aims to infer method postconditions, but it also discovers invariants that are

useful in the backward derivation of sufficient preconditions. To increase the efficiency

of the analysis, we designed a technique to strengthen preconditions and trade precision

for speed. Rather than deriving one program precondition for proving program safety,

our analysis derives individual preconditions for each check and goes one step further by

performing aggressive optimizations of checks. We formalise our technique as a depen-

dent type system that uses type annotations for communicating information between

the inference and the optimization phases. This work was presented at the ACM SIG-

PLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation -

PEPM 2008: Corneliu Popeea, Dana N. Xu, Wei-Ngan Chin - “A Practical and Precise

Inference and Specializer for Array Bound Checks Elimination” [127].

Finally, we aim to support either a proof of the absence of bugs in the case of a

valid program or bug finding in the case of a faulty program. In Chapter 5, we propose

a dual static analysis that is designed to track concurrently two over-approximations:
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the success and the failure outcomes. The overlap between the two outcomes signifies

imprecision in analysis and can be used to guide abstraction refinement. More interest-

ingly, due to the concurrent computation of outcomes, we can identify two significant

input conditions: a never-bug condition that implies safety for inputs that satisfy it and

a must-bug condition that characterizes inputs that lead to true errors in the execution

of the program. As a result, our analysis can identify a part of the alarms as being true

errors and reduces the manual effort of analyzing alarms to a smaller group of may-bugs.

This chapter is an extension of the paper: Corneliu Popeea, Wei-Ngan Chin - “Dual

Static Analysis” [125].

Before presenting the details of these extensions of static analysis, the next chapter

presents the Imp language, a subset of the C language. By focusing on a smaller lan-

guage, this thesis will introduce the key technical difficulties in modular static analysis.

The experimental results that will be described subsequently handle a larger subset of

the C language.
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CHAPTER II

CORE LANGUAGE, SEMANTICS AND

ABSTRACTION

The purpose of this chapter is to introduce the core language that we use for analysis,

called Imp, and give some preliminary notions needed for the further technical develop-

ments. We will first introduce the syntax of Imp in Section 2.1 and its concrete semantics

in Section 2.2. In Section 2.3, we will describe our analysis framework and show how to

compute an abstract semantics for the Imp language based on a traditional conjunctive

domain. We will explain the main features of our analysis framework: forward reason-

ing rules used to extract constraint abstractions and how to compute an approximate

solution of these constraints using a fixed point process.

2.1 Syntax of Imp Language

In this section we will describe a small language, called Imp, that is a first-order sequen-

tial imperative language. This language retains only few constructs from the better-

known C language and its purpose is to make program analyses easier to formulate and

prove soundness. Despite its simplicity, the language can be used to encode recursive

methods over data-types like integers. Therefore, the language is Turing-complete and

interesting properties over programs written in Imp are undecidable in general [134].

This fact makes static program analyses both interesting and challenging.

The syntax of our Imp language is shown in Figure 2.1. A program P written in

this language consists of a set of methods, either user-defined or primitive methods. All

methods have a return type and a list of parameters; each parameter has an optional

ref keyword, a type and a name. The ref keyword indicates the parameter passing

mechanism: when ref appears in the parameter declaration, then the parameter is

meant to be passed-by-reference (any change in its value is visible to the caller); when

the ref keyword is missing, the parameter is passed-by-value and any change to its value

in the callee is not reflected to the caller.
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P ::= prim∗ meth∗ (program)
prim ::= t mn (([ref] t v)∗) where Φ (primitive method)
meth ::= t mn (([ref] t v)∗) {e} (user-defined method)
t ::= bool | int | float | void | t[] (type)
e ::= v | k | v:=e | e1; e2 | l : mn(v∗) | t v ; e (expression)

| if v then e1 else e2 | l : error
k ::= true | false | kint | kfloat | () (constant)

Figure 2.1: Syntax of the language Imp

Types represented by t can be either basic types or array type. User-defined method

declarations include a method body represented by an expression e. The Imp language is

expression-oriented and uses a normalised form: only variables are allowed as arguments

to a method call or a conditional test. This normalization can be done with the help

of a simple pre-processor and for brevity we may show examples in a form that is not

normalized. Expression forms include assignment, sequence of expressions, method call,

local variable declaration, conditional and an error construct.

The error construct allows the program to terminate in case of an error situation.

Statically computing the conditions under which the error constructs are guaranteed

to be unreachable reduces to proving program safety and is the focus of this thesis. The

error construct is prefixed by a label l that uniquely identifies it. A more conventional

way to check that a condition holds is to use assert e. This form is equivalent to a

conditional expression in our language: if e then () else error.

An important feature of our core language is the presence of primitive method decla-

rations that lack a method body, but are instead given a symbolic description (summary)

Φ. Primitive methods can be used to encode the following:

• Various operators for integer values (plus,minus, multiply,divide), for bool val-

ues (or, and, not) and for comparison operators (lt or <, lte or ≤).

• Potentially unsafe operators that handle array values. The primitive newarr re-

turns an array value, len returns the length of its array parameter. The primitive

sub returns an array element from a specified index, while assign updates the

specified array element with a given value. For example, an array access a[i] is

viewed as sub(a, i), while an array update a[i]:=v is converted to the primitive
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call assign(a, i, v).

• Calls to (external) library methods for which the analysis does not have access to

the code that implements the library.

In most of the cases, the description Φ of the primitive operators can be automatically

derived. This formula may include a safety precondition (for example, bound checks

for array operations), or simply represent the input-output relation (for primitive nu-

merical operations like plus or multiply). The syntax of the formulae depends on the

underlying constraint solver. Throughout this thesis we will use various fragments of

Presburger arithmetic [128] and introduce their syntax in Section 2.3.

2.1.1 Other Language Features

Other core languages have been proposed for analysing C-like languages and we enumer-

ate some of them here: Ckit [8], CIL [114], CoreC [151], Core-Expressions [119]. The

goal of these projects is to capture a large subset of the C language. Our goal is not so

ambitious and we only discuss informally how some language features can be analyzed

in the context of Imp. More details on supporting these and other features can be found

in our technical report on a core language named µCIL [124].

Loops : Both while and for loops from C programs can be converted to tail-recursive

methods, where variables used inside loops are promoted as method parameters.

Variables used inside a loop may change value and the change has to be reflected

across the loop body. For this purpose, the method parameters are passed by

reference, using the ref keyword from Imp. Our translation always ensures that

the ref parameters are all different and non-aliased. Constructs that interrupt

the normal control-flow in a loop, like continue, break and return, can also

be handled by our translation to tail-recursive methods. To illustrate the loop

conversion, we use a simple example that assigns 0 to those elements in the array

a from the range i to 1 (see Figure 2.2).

Global variables : Initialization of global variables can be moved to a newly-created

function globinit. Global variables can then be made available to each method

as parameters.
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while (i > 0) {
assign(a, i, 0);
i:=i−1 }

void g(int[] a, ref int i)
{ if (i≤0) then ()

else { assign(a, i, 0); i:=i−1; g(a, i) } }

Figure 2.2: Example of loop translation

Floating-point values : Even though float values are supported in Imp, this does

not imply that our program analyses will handle them precisely. The constraint

language that we use is based on the integer domain and does not capture values

of float variables. Specialized techniques for handling rounding errors in floating-

point computations have been proposed for static analysis in [102, 105].

Integer overflow : C programs do not manipulate perfect integers, but bounded-

domain machine integers. Solutions to handle integer overflow detection have

been proposed elsewhere via specific abstract domains [106, Chapter 7].

Structure values and aliasing : We have made some explorations on how to anal-

yse structure values in the context of verification of functional and object-based

programs [122, 25]. However, the subsequent chapters of this thesis do not discuss

these language features.

Imp language is meant to facilitate program analysis of first-order sequential impera-

tive programs. Therefore, it does not support features like higher-order functions or

concurrency primitives.

2.2 Concrete (Operational) Semantics

In this section, we define a small-step operational semantics for our core imperative

language. Our machine configuration is being represented by 〈s, e〉 where s denotes the

current stack and e denotes the current program code.

Stack : s ∈ Stack = V ar →fin V alue

V alues : δ ∈ V alue = Float ] Int ]Bool ] V oid

Each reduction step can then be formalised as a small-step transition of the follow-

ing form: 〈s, e〉↪→〈s1, e1〉. The rules are standard and presented in Figure 2.3. As an
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[D−VAR]

〈s, v〉↪→〈s, s(v)〉

[D−BLK]
δ = default(t) fresh x ρ = [v 7→x]
〈s, t v; e〉↪→〈[x7→δ]+s, ret(x, ρe)〉

[D−ERROR]

〈s, l : error〉↪→〈s,⊥〉

[D−PRIM]
mn ∈ Primitives

〈s′, δ〉 = exec〈s, l : mn(v1, ..vn)〉
〈s, l : mn(v1, ..vn)〉↪→〈s′, δ〉

[D−CALL]
t0 mn((ref ti wi)m−1

i=1 , (ti wi)n
i=m){e}

s′ = [wi 7→ s(vi)]ni=m+s

〈s, l : mn(v1, ..vn)〉↪→〈s′, ret({wi}n
i=m, [vi/wi]m−1

i=1 e)〉

[D−IF−1]
s(v) = true

〈s, if v then e1 else e2〉↪→〈s, e1〉

[D−IF−2]
s(v) = false

〈s, if v then e1 else e2〉↪→〈s, e2〉

[D−ASSIGN−1]

〈s, v := δ〉↪→〈s[v 7→ δ], ()〉

[D−SEQ−1]

〈s, δ; e2〉↪→〈s, e2〉

[D−RET−1]

〈s, ret(v∗, δ)〉↪→〈s−{v∗}, δ〉

[D−ASSIGN−2]
〈s, e〉↪→〈s′, e′〉

〈s, v := e〉↪→〈s′, v := e′〉

[D−SEQ−2]
〈s, e1〉↪→〈s′, e′1〉

〈s, e1; e2〉↪→〈s′, e′1; e2〉

[D−RET−2]
〈s, e〉↪→〈s′, e′〉

〈s, ret(v∗, e)〉↪→〈s′, ret(v∗, e′)〉

[D−ASSIGN−3]
〈s, e〉↪→〈s′,⊥〉

〈s, v := e〉↪→〈s′,⊥〉

[D−SEQ−3]
〈s, e1〉↪→〈s′,⊥〉
〈s, e1; e2〉↪→〈s′,⊥〉

[D−RET−3]
〈s, e〉↪→〈s′,⊥〉

〈s, ret(v∗, e)〉↪→〈s′,⊥〉

Figure 2.3: Operational semantics

example, a conditional expression is evaluated depending on the test value. If the value

is a boolean constant, then either the rule [D−IF−1] (if the constant is true) or the rule

[D−IF−2] applies. If the value is not of boolean type, then in principle the execution

would be stuck with a type error. We rely on the fact that the source program is well-

typed and such errors cannot occur. For any given complete execution, we expect one

of three possible outcomes: 〈s, e〉↪→∗〈s1, δ〉 for success, 〈s, e〉↪→∗〈s1,⊥〉 for failure, or

〈s, e〉6↪→∗ for non-termination.

To ease the formulation of the correctness relation between the concrete and the

abstract semantics, we extend the source language with a construct to represent the
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Figure 2.4: Overview of analysis framework

intermediate result of a method call: the evaluation of the expression ret(v∗, e) proceeds

first with the method’s body e (rule [D−RET−2]) and, after its reduction to a value, the

parameters passed by value v∗ are removed from the current stack (rule [D−RET−1]). If

the evaluation of the body reaches an error, then the rule [D−RET−3] throws the error

to the caller.

2.3 Abstract Semantics

The operational semantics introduced in the previous section is not suitable for auto-

mated static analysis due to its undecidability. We will use the abstract interpretation

framework [37] to compute an approximation of this semantics, a sound and decidable

abstract semantics for Imp programs. This section presents an overview of our ap-

proach and an introduction to our modular static analysis framework based on forward

reasoning rules, constraint abstractions and fixed point approximation.

2.3.1 Overview

An overview of our analysis framework is shown in Figure 2.4. The input to our analysis

is an Imp program, consisting of a group of methods that are first analysed to obtain

a call graph. A call graph contains one directed edge from each caller method to the

corresponding callee method. Recursive methods are represented as a strongly connected

component (SCC) in the graph.

Our analysis traverses the call graph in reverse topological order (bottom up) and

each method (or group of methods) is analysed assuming unknown initial values. Specif-

ically, each method is passed to the forward reasoning process and an intermediate con-

straint representation is derived in the form of a constraint abstraction. If the method
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is non-recursive, then a method summary (that includes a postcondition and a pre-

condition) can be immediately derived. If the method is recursive, then the constraint

abstraction is passed on to a fixed point approximation process parameterized by an

abstract domain. In the case of mutually-recursive methods, the fixed point process is

done simultaneously for the corresponding constraint abstractions.

Most summary-based analyses compute an over-approximation of the set of reachable

states: summary-based alias analyses [19, 75] or analyses computing method postcon-

ditions [38, 123]. For software verification purposes, it is required to compute also an

under-approximation for method precondition. In the case of tail recursive methods

(including loops), the precondition can be derived from the over-approximation phase

without an additional fixed point computation. However, more general recursion pat-

terns complicate the fixed point process. To support general recursion, our analysis uses

a feedback loop since the postcondition is required for a second fixed point computation.

After a summary is derived for the current method, the analysis proceeds with the next

method in the call graph order. An inspirational line of works for our developments is

the generic framework for inference of size relations in functional programs proposed by

Chin, Khoo et al [23, 24, 25].

2.3.2 Forward Reasoning Rules

The goal of the forward reasoning process is to collect from each method a constraint

abstraction that is amenable to fixed point computation. This process is built around

a static judgement with roots in Hoare logic [82, 1]. Given a formula φ1 describing the

current state and an expression e, the judgement derives a formula φ2 describing the

state after the expression e is evaluated:

`{φ1} e {φ2}

The computation of φ2 assuming a given formula φ1 is what gives the forward character

to the reasoning process. Next, we will explain two aspects concerning the formulae φ1

and φ2: their syntactic form and their semantic meaning.

The syntactic form of φ is based on the first order theory of linear arithmetic (Pres-

burger arithmetic) with support for recursive constraint abstractions (see Figure 2.5).
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The choice of the domain is influenced by the numerical properties that we want to cap-

ture. A set of recursive constraint abstractions is denoted by Q and amenable to fixed

point computation as explained in more detail later. The existential quantifier ∃v · φ is

used for eliminating intermediate variables when computing postconditions, while the

universal quantifier ∀v · φ is used for eliminating intermediate variables when comput-

ing preconditions (see Chapter 4). The operator ¬φ is used in Chapter 5 to derive the

complement of a formula φ. An equality constraint (a1v1+ · · ·+anvn = a) can be rep-

resented as a conjunction of constraints: (a1v1+ · · ·+anvn ≤ a ∧ a1v1+ · · ·+anvn ≥ a).

A strict inequality (a1v1+ · · ·+anvn < a) can also be represented using an axiom from

integer arithmetic: (a1v1+ · · ·+anvn+1 ≤ a). We also use the syntactic shorthands

true = s ∧ ¬s and false = s ∨ ¬s for some predicate s.

φ ::= s | φ1 ∧ φ2 | φ1 ∨ φ2 | (formula)
∃v · φ | ∀v · φ | ¬φ | q〈v∗〉

s ::= a1v1+ · · ·+anvn ≤ a (linear inequality)
Q ::= {( q〈v∗〉 = φ)∗} (constraint abstraction)
q, v ∈ V AR (identifier)
a ∈ Z (integer constant)

Figure 2.5: Syntax of formulae and constraint abstractions

For the non-recursive integer constraints, we make use of a complete decision proce-

dure for Presburger arithmetic implemented in the Omega Test [129]. The Omega Test

is an extension of Fourier-Motzkin variable elimination to integer arithmetic. Despite

its doubly-exponential worst case complexity, the Omega Test has been shown to be

efficient in practice [129, 131].

The syntax of φ formulae gives us some flexibility in choosing the abstract domain

used in the fixed point process. For fixed point computation, we have experimented

with various subdomains of the theory of linear arithmetic like the conjunctive domains

of octagons [104] and polyhedra[43] and the disjunctive domain of polyhedra [123].

The semantic meaning of a formula φ is an abstraction for a set of traces [35, 30, 135].

Such a transition formula ranges over two sets of logical variables: unprimed variables

represent the values of program variables at the beginning of the current method, named

prestate; primed variables represent the values of program variables at some program
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point in the method (poststate). A simple example of an assignment expression follows:

`{x′=x ∧ y′=y}x = y+1 {x′=y+1 ∧ y′=y}

The input formula does not assume anything about the initial values of the variables

x and y. Additionally, the values of the variables at the beginning of a method are

unchanged: (x′=x ∧ y′=y). After the assignment expression is abstractly evaluated, the

postcondition formula describes the state after the assignment relative to the state at the

beginning of the method. The trace semantics forms the basis of our modular analysis. It

allows individual reasoning about each method and a subsequent composition between

the method abstraction and its call contexts. For example, if the call context would

initialize x and y to the values 10 and respectively 20, then the state after the assignment

can be resolved using trace composition to the formula (x′=21 ∧ y′=20).

The most important rule in our forward reasoning process is the one that handles a

method declaration and computes the method postcondition φpo:

[METH]

W={vi}n
i=1 `{nochange(W )} e {φ}

X={v1, .., vn, res, v′1, .., v
′
m−1} V ={v′i}n

i=m Q={mn〈X〉 = ∃V · φ}
φpo = fix(Q)

` t0 mn((ref ti vi)m−1
i=1 , (ti vi)n

i=m) {e} ⇒ φpo

The first line of the rule uses the expression judgement to traverse the method body e,

where W is a set of logical variables representing the inputs to the method mn. Using

the (possibly recursive) postcondition φ, a constraint abstraction Q is constructed for

the current method: mn〈X〉 = ∃V · φ. It has as arguments the variables from X, both

inputs and outputs of the method. Updates to the parameters that are passed by value

V should not be visible in the postcondition and thus are existentially quantified. A

non-recursive constraint abstraction mn〈X〉 = φ can be seen as a function which when

given some variables Y applies the substitution [X → Y ] on the constraint φ [73]. In

the case when the constraint abstraction is recursive, the third line of the [METH] rule

invokes a fixed point process. The fixed point process computes an approximation to the

least fixed point of the constraint abstraction function. This approximation represents

the postcondition φpo of the original method mn.
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Example 2.1 : We illustrate the process of collecting a constraint abstraction using

the simplest possible recursive method shown in Figure 2.6. The method mn is given

an integer argument x that is decremented to 0 in case it is positive, otherwise being

left unchanged. For exposition purposes, the example uses a recursive method and a

parameter that is passed by reference.

void mn (ref int x) {
if (x > 0) then {
x := x− 1;
mn(x);
} else { () }

}

Figure 2.6: Simple recursive example

The intended semantics of the method mn is represented as a constraint in terms of

the initial value of the parameter x and the latest value of the parameter x′ as follows:

(x≤0 ∧ x′=x) ∨ (x>0 ∧ x′=0). The first step in computing this semantics is to collect a

constraint abstraction which is close to the syntactic definition of the method mn:

mn(x, x′) = (x≤0 ∧ x′=x) ∨ (x>0 ∧ ∃x1 · (x1=x−1 ∧mn(x1, x
′))) (2.1)

This view of the method mn has two parameters, namely the logical variables x and x′.

Next, we will show how to compute an approximation for the fixed point of the

constraint abstraction.

2.3.3 Fixed Point Approximation

We briefly review the method based on Kleene’s fixed point iteration and its application

to the polyhedron abstract domain [43]. Let (L,≤) be a complete lattice, and denote

by (P,⇒) the lattice of polyhedra. We write ⊥ for its least element (in P, the empty

polyhedron or its representation, the formula false), and > for its greatest element

(in P, the entire n-dimensional space or its representation, the formula true). The

least upper bound and the greatest lower bound operations in the lattice of polyhedra

are, respectively, the convex polyhedral hull and the set intersection, the first being

denoted by ⊕. A function f that is a self-map of a complete lattice is monotone if

x ≤ y implies f(x) ≤ f(y). In particular, the constraint abstraction functions derived
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by our analysis are monotone self-maps of the polyhedra lattice.

The least fixed point of a monotone function f can be obtained by computing the

ascending chain f0 = ⊥, fn+1 = f(fn), with n≥0. If the chain becomes stationary, i.e.,

if fm = fm+1 for some m, then fm is the least fixed point of f . In the case of a lattice

infinite in height (as the lattice of polyhedra), an ascending chain may be infinite, and

a widening operator must be used to ensure convergence. A widening operator ∇ is a

binary operator to ensure that the iteration sequence f0 = ⊥, fk+1 = f(fk) followed

by fn+1 = fn∇f(fn), with n > k, converges. In this case, the limit of the sequence is

known as a post fixed point of f . A post fixed point is a sound approximation of the

least fixed point, and the criterion to verify that x is a post fixed point for f is that

x ≥ f(x). For the polyhedron domain, the standard widening operator was introduced

in [43]. Intuitively, the result of the widening φ1∇φ2 is obtained by removing from φ1

those conjuncts that are not satisfied by the next iteration φ2.

The post fixed point result represents the method postcondition, a conservative

representation of the method transfer function. As mentioned before, the fixed point

process is parametric in the abstract domain. Consequently, the method postcondition

approximates more closely the concrete semantics when the abstract domain is more

fine-grained.

For fixed point computation, the constraint abstraction can be viewed as a function

that takes an abstract element in some lattice L and returns another abstract element.

Compared to the syntactic view from Equation 2.1, we now use a more semantic view

for the constraint abstraction function:

mn(φ) = (x≤0 ∧ x′=x) ∨ (x>0 ∧ ∃x1 · (x1=x−1 ∧ φ[x→x1, x
′→x′])) (2.2)

The argument φ represents an abstraction of the traces from the beginning to the end

of the method (a constraint in terms of x and x′). Using the least element of the lattice

false(⊥), the abstract element mn1 is computed as mn(false), considering that the

recursive branch is never executed. The next iteration computes mn2 as mn(mn1) and

the iteration process continues further. The element mn1 represents the abstraction of

traces through the method mn for 0 recursive calls. The result of the next iteration

mn2 represents the abstraction of traces through the method mn for 1 recursive call.

At the limit, the least fixed point of the constraint abstraction function mn represents
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the abstraction of traces through the method mn for all possible recursive calls. As

might be expected, the least fixed point may or may not be computable, depending on

the abstract domain that is used. For the conjunctive polyhedra domain, the compu-

tation yields the following post fixed point: (x′≤x ∧ x′≤0). The disjunctive abstract

domain that will be introduced in Chapter 3 computes a more precise post fixed point:

(x≤0 ∧ x′=x) ∨ (x>0 ∧ x′=0).

We also note that the constraint abstraction body can be written using the least

fixed point operator from a fixpoint calculus [53, 142]. In such a formalism, the method

postcondition can be denoted as follows:

φpo = µX · ((x≤0 ∧ x′=x) ∨ (x>0 ∧ ∃x1 · (x1=x−1 ∧X[x→x1, x
′→x′]))) (2.3)

Finally, we observe that the recursive method mn is tail-recursive and therefore it can

be written simply as a loop. One of the advantages of our approach based on trace

semantics and constraint abstraction formalism is that it analyzes more general patterns

of recursion with the same algorithm used for tail-recursive methods (including loops).

2.3.4 Method Summary

Other than the derivation of postcondition, method summaries used in software verifi-

cation require additional computations. We highlight three kinds of method summaries.

Algorithms towards their inference will be formalized in subsequent chapters.

• The inference of a method produces a summary composed of a postcondition

and a precondition necessary for safety. The precondition necessary for safety

can be trivially derived from the postcondition. Despite the simplicity of this

precondition inference, this approach can help eliminate a considerable number

of checks in our experiments. However, the precondition derived in this manner

requires a separate verification stage to ensure its soundness. We will formalize

this approach in Chapter 3.

• The inference of a method produces a summary composed of a postcondition and a

precondition sufficient for safety. We use an additional fixed point computation, in

order to derive preconditions sufficient for safety (for the case of general recursion).

Individual preconditions are derived for each check, which makes them useful not
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only for proving safety, but also for aggressive optimization of the checks. The

computation of such method summaries will be described in Chapter 4.

• The inference of a method produces a summary composed of a postcondition and

a precondition necessary for error. This derivation is useful for proving safety and

also for finding true errors that are guaranteed to occur during program execution

(modulo termination). The same technique has potential in guiding abstraction

refinement and for identifying preconditions sufficient for non-termination. These

aspects will be further elaborated in Chapter 5.
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CHAPTER III

DISJUNCTIVE FIXED-POINT ANALYSIS

Polyhedral analysis [43] is an abstract interpretation used for automatic discovery of

invariant linear inequalities among numerical variables of a program. Convexity of this

abstract domain allows efficient analysis but also loses precision via convex-hull and

widening operators. To selectively recover the loss of precision, sets of polyhedra (dis-

junctive elements) may be used to capture more precise invariants. However a balance

must be struck between precision and cost.

In this chapter, we introduce the notion of affinity to characterize how closely re-

lated is a pair of polyhedra. Finding related elements in the polyhedron (base) domain

allows the formulation of precise hull and widening operators lifted to the disjunctive

(powerset extension of the) polyhedron domain. We have implemented a modular static

analyzer based on the disjunctive polyhedral analysis where the relational domain and

the proposed operators can progressively enhance precision at a reasonable cost.

3.1 Background

Abstract interpretation [37, 39] is a technique for approximating a basic analysis, with

a refined analysis that sacrifices precision for speed. Abstract interpretation relates the

two analyses using a Galois connection between the two corresponding property lat-

tices. The framework of abstract interpretation has been used to automatically discover

program invariants. For example, numerical invariants can be discovered by using nu-

merical abstract domains like the interval domain [36] or the polyhedron domain [43].

Such convex domains are efficient and their elements represent conjunctions of linear

inequality constraints.

Abstract domains can be designed incrementally based on other abstract domains.

The powerset extension of an abstract domain [39, 58] refines the abstract domain by

adding elements that allow disjunctions to be represented precisely. Unfortunately, anal-

yses using powerset domains can be exponentially more expensive compared to analyses
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on the base domain. One well-known approach to control the number of disjuncts dur-

ing analysis is to use a powerset domain where the number of disjuncts is syntactically

bounded. In this setting, the challenge is to find appropriate disjuncts that can be

merged without (evident) losses in precision. Our work was done at the same time

with (and independently from) a related technique for disjunctive static analysis that

has been proposed and implemented in [138]. Their analysis is formulated for a generic

numerical domain and an heuristic function based on the Hausdorff distance is used to

merge related disjuncts. Besides combining related disjuncts, recent interest has been

shown in tackling another difficulty in disjunctive analysis, that of defining a convergent

widening operator [2, 68].

In this chapter, we develop a novel technique for selective hulling to obtain precise

fixed-points via disjunctive inference. Our framework uses a fixed-point algorithm guided

by an affinity measure to find and combine disjuncts that are related. We also develop

a precise widening operator on the powerset domain by using a similar affinity measure.

We have built a prototype system to show the utility of the inferred postconditions and

the potential for tradeoff between precision and analysis cost.

This chapter is organized as follows: an overview of our method with a running

example is presented in Section 3.2. The proposed disjunctive abstract domain is de-

tailed in Section 3.3 by introducing an affinity measure, a selective hull and a widening

operator. Section 3.4 introduces a set of reasoning rules that collect a (possibly recur-

sive) constraint abstraction from each method/loop to be analyzed. Those recursive

constraint abstractions are the subject of disjunctive fixed-point analysis. Section 3.5

shows how boolean constraints can be handled in our framework. Our experimental re-

sults and interesting examples are presented in Section 3.6 and Section 3.7. Section 3.8

argues the correctness of our analysis, while Section 3.9 presents related work.

3.2 Overview of Fixed-Point Analysis

To provide an overview of our method, we will consider the following example.

x:=0;upd:=False;

while (x < N) do {

if (randBool()) then {
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l:=x;upd:=True

} else { () };

x:=x+1 }

This program computes the index l of a specific element in an array of size N . The

array content has been abstracted out and only the updates to the index variables l and

x have been retained. The call to the method randBool abstracts whether the current

element indexed by x is found to satisfy the search criterion. Whenever the criterion is

satisfied, the index variable l is updated, as well as the boolean flag upd. An assertion at

the end of the loop could check that, whenever an element has been found (upd=true),

its index l is a valid index of the array (0≤l<N). The aim of our static analysis is to

infer disjunctive invariants that can help prove such properties.

A static analysis can be formulated as a state-based analysis: guided by the program

state at the beginning of the loop, it computes the loop postcondition as a program

state approximation [43, 68, 138]. As an alternative, our method is related to trace-

based analysis [30] and computes the loop summary as a transition formula from the

prestate (before the loop) to the poststate (after the loop body).

Our analysis is formulated in two stages. Firstly, it collects a constraint abstraction

from the method/loop body to be analyzed. This abstraction can be viewed as an

intermediate form and is related to the constraint abstraction introduced in [73]. As a

second step, an iterating process will find the fixed-point for the constraint abstraction

function.

For the running example, the constraint abstraction named wh represents the input-

output relation between the loop prestate (in terms of X, the unprimed variables

x,N, l, upd) and the loop poststate (in terms of X ′, the primed variables x′, N ′, l′, upd′).

wh(X,X ′) = ((nochange(X) ∧ x′<N ′)◦{l,upd}

(l′=x ∧ upd′=1 ∨ nochange(l, upd))◦{x}
(x′=x+1)◦Xwh(X, X ′))

∨ (nochange(X) ∧ x′≥N ′)

The nochange operator is a special transition where original and primed variables are

made equal: nochange({}) =df true; nochange({x}∪X) =df (x′=x)∧nochange(X). The
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composition operator (φ1◦W φ2) is left-associative and composes the input-output rela-

tions φ1 and φ2 updating W variables as specified by φ2 formula. Formally:

Definition 3.1 (Compose with Update). Given φ1, φ2, and the set of variables to

be updated X={x1, . . . , xn}, the composition operator ◦X is defined as:

φ1 ◦X φ2 =df ∃ r1..rn · ρ1 φ1 ∧ ρ2 φ2

where r1, . . . , rn are fresh variables;

ρ1 = [x′i 7→ ri]ni=1 ; ρ2 = [xi 7→ ri]ni=1

Note that ρ1 and ρ2 are substitutions that link each latest value of x′i in φ1 with the

corresponding initial value xi in φ2 via a fresh variable ri.

With these two operators, the effects of the loop sub-expressions are composed to

obtain the effect of the entire loop body. The 1st line of the constraint abstraction

corresponds to the loop test that is satisfied. The 2nd line stands for the body of the

conditional expression from the loop. Note that the boolean constants false and true

are modeled as integers 0 and 1. The 3rd line represents the assignment that increments

x by 1 composed with the effect of subsequent loop iterations (the occurrence of the wh

constraint abstraction). The 4th and last line stands for the possibility that the loop

test is not satisfied.

After some simplifications, the constraint abstraction reduces to:

wh(X,X ′) = ∃X1·( (x1=x+1 ∧N1=N ∧ l1=x ∧ upd1=1 ∧ wh(X1, X
′))

∨ (x1=x+1 ∧N1=N ∧ l1=l ∧ upd1=upd ∧ wh(X1, X
′))

∨ (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′))

where X1 denotes the local variables (x1, N1, l1, upd1).

The analysis goal is then to compute a fixed-point approximation for the constraint

abstraction function. This function takes as argument a transition depending on X,X ′

and its result is also expressed as a transition dependent on the same variables. Both

transitions can either be approximated by polyhedra or, more precisely, by sets of poly-

hedra. The first case is akin to the polyhedral analysis from [43] and is reviewed next.

For the second case, we will use our running example to show how to compute a dis-

junctive loop postcondition.
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3.2.1 Computing Fixed-Points in the Polyhedron Abstract Domain

We will use the method based on Kleene’s fixed-point iteration applied to the polyhedron

abstract domain (see Section 2.3.3 for basic notations and a simpler example) for our

running example. The fixed-point iteration starts with the least element of the abstract

domain represented by the false formula. The first approximation wh1 is a transition

formula that considers that the loop test fails and the loop body is never executed:

wh1 = (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)

The next iteration is a three-disjunct formula that cannot be represented in the

polyhedron domain. An approximation for the disjunctive formula is computed using

the convex hull operator. A formula in disjunctive normal form φ = ∨n
i=1di can be viewed

as a set of disjuncts: setd(φ) = {di}n
i=1. We use either infixed or prefixed operators on

these disjuncts. For example, given φ=d1∨d2 then ⊕(φ) = ⊕({d1, d2}) = d1⊕d2.

wh2 = (x′=x+1 ∧N ′=N ∧ l′=x ∧ upd′=1 ∧ x′≥N ′)

∨ (x′=x+1 ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)

∨ (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)

wh′2 = ⊕(wh2) = (x≤x′≤x+1 ∧N ′=N ∧ x′≥N)

wh′3 = ⊕(wh3) = (x≤x′≤x+2 ∧N ′=N ∧ x′≥N)

The iterating sequence will not converge since the inequality x′≤x will be translated at

the following iterations into x′≤x+1, x′≤x+2 and so on. Convergence is ensured by the

widening operator which simplifies as follows:

wh′′3 = wh′2∇wh′3 = (x≤x′ ∧N ′=N ∧ x′≥N)

This result proves to be a post fixed point for the wh function. However, the result is

rather imprecise as it does not capture any information about the value of l or the flag

upd at the end of the loop. Intuitively, such information was present in wh2 and wh3,

but approximated by the convex hull operator to obtain wh′2 and wh′3. Next, we outline

a method to compute disjunctive fixed-points able to capture this kind of information.

3.2.2 Computing Fixed-Points in a Disjunctive Abstract Domain

The two ingredients that we use to compute disjunctive fixed-points are counterparts

to the convex hull and widening operators from the conjunctive case. Both operators
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ensure a bound on the number of disjuncts allowed in the formulae.

We first propose a selective hull operator ⊕m parameterized by a constant m that

takes as argument a disjunctive formula and collapses these disjuncts into a result with

at most m disjuncts. The crux of this operator is an affinity measure to choose the two

most related (affine) disjuncts from a disjunctive formula. Formally:

Definition 3.2 (Selective Hull). Given φ = ∨n
i=1di, and let di,dj be the most related

disjuncts as determined by their affinity, we define the selective hull operator as follows:

⊕m(φ) =df if n ≤ m then φ

else ⊕m (setd(φ) \{di, dj} ∪ {di ⊕ dj})
Note that the convex hull operator from the polyhedron domain ⊕ is equivalent to

⊕1 since it reduces its disjunctive argument to a conjunctive formula with one disjunct.

The affinity measure aims to quantify how close is the approximation d1⊕d2 from the

disjunctive formula d1∨d2. Intuitively, it works by counting the number of inequalities

(planes in the n-dimensional space) from the disjunctive formula that are preserved in

the approximation d1⊕d2. Since it counts the number of inequalities (relations between

variables), this affinity measure is able to handle the relational information captured by

the formulae in the polyhedron domain.

As an example, consider wh2 and wh3 obtained previously. The result of selective

hull with m=3 the bound on the number of disjuncts is computed as follows:

wh′′′2 = ⊕3(wh2) = wh2

wh′′′3 = ⊕3(wh3) = (x≤x′≤x+2 ∧N ′=N ∧ x≤l′≤x+2 ∧ upd′=1 ∧ x+2≥N)

∨ (x≤x′≤x+2 ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x+2≥N)

∨ (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x≥N)

The second operator needed in the disjunctive abstract domain is a widening opera-

tor. We propose a similar affinity measure to find related disjuncts for pairwise widening.

For the two disjunctive formulae wh′′′2 = (d1∨d2∨d3) and wh′′′3 = (e1∨e2∨e3), the most

affine pairs will distribute the widening operator:

wh′′′2 ∇3wh′′′3 = (d1∨d2∨d3)∇3(e1∨e2∨e3) = (d1∇e1) ∨ (d2∇e3) ∨ (d3∇e3)

= (x′=N ∧N ′=N ∧ x≤l′≤N ∧ upd′=1)

∨ (x′=N ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x≤N)

∨ (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x>N)
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This result proves to be a post fixed point for the wh function in the powerset domain.

The first disjunct captures the updates to the variable l, thus l′ can safely be used as

an index for the array of size N . The last two disjuncts capture the cases where, either

the loop was executed but the then branch of the conditional has never been taken

(x≤N ∧ upd′=upd), or the loop has not been executed (x>N).

Note that our disjunctive fixed-point computation works not only for loops, but also

for general recursion. Our analysis also supports mutual recursion where fixed-points

are computed simultaneously for multiple constraint abstraction functions.

Since the computed fixed-point represents a transition, the analysis does not rely

on a fixed initial state and can be implemented in a modular fashion. While modular

analysis may expose more disjuncts (because no information is assumed about the initial

state) and benefits more from our approach, disjunctive analysis has been shown to be

also useful for global static analyses [68, 138].

3.3 Disjunctive Abstract Domain

Derived from the polyhedron abstract domain (P,⇒), we introduce a new disjunctive

abstract domain (℘m(P),⇒) able to represent sets of polyhedra with fixed cardinality

m. The partial order, the least and the greatest element are similar to those from the

base polyhedron domain. Fixed-point analysis in the polyhedron domain [43] attempts

to obtain a conjunctive formula result with the help of convex-hull and widening oper-

ators. A challenge for disjunctive fixed point inference is to apply hulling and widening

selectively on related disjuncts whenever needed. We propose a planar affinity measure

to be used by these two important operators in the disjunctive abstract domain.

3.3.1 Planar Affinity and Selective Hulling

In this section, we propose a qualitative measure called affinity to determine the suit-

ability of two disjuncts for hulling. To identify disjuncts, we expect formulae obtained

during fixed-point analysis to be in disjunctive normal form (DNF). For example, the

simplification of a formula φ in our prototype is performed with the help of Omega

library [88]. The result in DNF form φ = ∨n
i=1di can be viewed as a set of disjuncts:

setd(φ) = {di}n
i=1. Each disjunct di = ∧m

j=1cij is a conjunction of linear inequalities and

equalities. It can be represented as a set of conjuncts setc(di) = {cij}m
j=1.
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Measuring the affinity between disjuncts benefits from a canonical form of each dis-

junct. Representing such linear arithmetic formulae in canonical form can be done by

removing constraints that are trivially redundant, syntactically redundant and semanti-

cally redundant [95]. The original algorithm is applicable to a set of linear inequalities.

In addition, a linear equality can be split in two inequalities, while disequalities (or neg-

ative constraints) can also be handled by a more elaborate algorithm [96]. With Omega

Library, the simplification of constraints from a disjunct can be done with various trade-

offs between precision and efficiency. More expensive tests can ensure that redundant

constraints are eliminated [88, page 24]. Alternative to the constraint form, polyhedra

can be represented using the double-description method [107]. An advantage of this

double representation is that some operators like the set intersection can be computed

efficiently in constraint form, while other operators like the convex hull can be computed

efficiently in generator form [43, 3]. For our purposes, we use only the constraint form

and rely on Omega for efficient simplification at the expense of some redundancy in

formulae.

In order to obtain the affinity between two disjuncts φ1 and φ2, we have to compute

two main expressions (i) φhull = φ1⊕φ2 and (ii) φdiff = φhull∧¬(φ1∨φ2). Furthermore,

we also require a heuristic function heur that indicates how closely related is the ap-

proximation φ1⊕φ2 from the original formula φ1∨φ2. With this, we can formally define

the affinity measure using:

Definition 3.3 (Affinity Measure for Hulling). Given a function heur that returns

a value in the range 1..99, the affinity measure can be defined as:

hull affin(φ1, φ2) =df if φdiff=false then 100

else if φhull=true then 0

else heur(φ1, φ2)

The precise extreme (100) indicates that the convex-hull operation is exact without any

loss of precision. The imprecise extreme (0) indicates that the convex-hull operation is

inexact and yields the weakest possible formula true. In between these two extremes,

we will use an affinity measure to indicate the closeness of the two terms by returning

a value in the range 1..99.

This formulation of the affinity measure can be instantiated with various heuristic



3.3. Disjunctive Abstract Domain 39

functions. We propose the use of a planar affinity measure that computes the fraction

of planes from the geometrical representation of the original formula that are preserved

in the hulled approximation:

Definition 3.4 (Planar Affinity for Hulling). Given two disjuncts φ1, φ2 and the

convex-hull approximation φhull = φ1⊕φ2, we first compute the set of conjuncts mset

using the following: mset = {c ∈ (setc(φ1) ∪ setc(φ2)) | φhull =⇒ c}. The planar affinity

measure is shown below :

p-heur(φ1, φ2) =df
|mset|

|setc(φ1) ∪ setc(φ2)| ∗ 98 + 1

The denominator |setc(φ1) ∪ setc(φ2)| represents the number of planes corresponding

to the original formulae (from both polyhedra φ1 and φ2). Some of these planes are

approximated by the hulling process, while others are preserved in the approximation

φhull. The number of preserved planes is represented by the cardinality of mset and

indicates the suitability of the two disjuncts for hulling.

Example 3.1 : To illustrate the use of this measure for selective hulling, consider the

following disjunctive formula (obtained from the example on page 26):

F3 = (x≤0 ∧ x′=x) ∨ (x=1 ∧ x′=0) ∨ (x=2 ∧ x′=0)

Firstly, the three disjuncts (denoted respectively by d1, d2 and d3) are converted to a

canonical form. As with other operators on polyhedra (e.g. the standard widening

operator from [77]), this minimal form requires that no redundant conjuncts are present

and, furthermore, each equality constraint is broken into two corresponding inequalities

as follows:

d1 = (x≤0 ∧ x′≥x ∧ x′≤x)

d2 = (x≥1 ∧ x≤1 ∧ x′≥0 ∧ x′≤0)

d3 = (x≥2 ∧ x≤2 ∧ x′≥0 ∧ x′≤0)

We compute three affinity values, one for each pair of disjuncts from φ. Note that

the cardinality of the set of conjuncts (setc(φ1) ∪ setc(φ2)) is considered after removing
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duplicate conjuncts that appear both in φ1 and φ2.

d1 ⊕ d2 = (x′≤x ∧ x′≤0 ∧ x′≤x−1) mset(d1, d2) = {x′≤x, x≤1, x′≤0}
p-heur(d1, d2) = 3/7 ∗ 98 + 1 = 43

d1 ⊕ d3 = (x′≤x ∧ x′≤0 ∧ x′≤x−2) mset(d1, d3) = {x′≤x, x≤2, x′≤0}
p-heur(d1, d3) = 3/7 ∗ 98 + 1 = 43

d2 ⊕ d3 = (x≥1 ∧ x≤2 ∧ x′≥0 ∧ x′≤0) mset(d2, d3) = {x≥1, x≤2, x′≥0, x′≤0}
p-heur(d2, d3) = 4/6 ∗ 98 + 1 = 66

Based on these affinities, the most related pair of disjuncts is {d2, d3}. Even more,

this pair of disjuncts satisfy the exact test from Definition 3.3 (there is no loss of precision

by hulling d2 and d3) and therefore their affinity is 100. Computing the affinities between

each pair of disjuncts has in general a quadratic cost in the number of disjuncts and we

represent the results using a diagonal matrix of affinities:

d1 d2 d3

d1 - 43 43

d2 - - 100

d3 - - -

The above matrix is used to choose the two most affine disjuncts for hulling, d2 and d3.

If this operation leaves more disjuncts than the allowed bound m, then other disjuncts

are subsequently chosen for hulling. For the current example, the selective hull of φ

captures a precise relation between x and x′ and is computed as follows:

⊕2(F3) = ⊕2(d1 ∨ d2 ∨ d3) = d1 ∨ (d2 ⊕ d3) = (x≤0 ∧ x′=x) ∨ (x≥1 ∧ x≤2 ∧ x′=0)

Related to our affinity measure, Sankaranarayanan et al [138] have concurrently

introduced a heuristic function that uses the Hausdorff distance to measure the dis-

tance between the geometrical representations of two disjuncts. The Hausdorff dis-

tance is a commonly used measure of distance between two sets. Given two polyhe-

dra, P and Q, their Hausdorff distance can be defined using the following function:

h-heur(P, Q) =df maxx∈P {miny∈Q{d(x, y)}} where d(x, y) is the Euclidian distance be-

tween two points x and y. This heuristic was deemed as hard to compute in [138] and,

as an alternative, a range-based Hausdorff heuristic was used.
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Because it reduces the relational constraints among variables to non-relational ranges

bounded by constants, we can argue that a range-based heuristic is less suitable for a

relational abstract domain like the polyhedron domain. Furthermore, we present an

intuitive argument why such a distance based heuristic is less appropriate.
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Figure 3.1: Pairs of disjuncts with similar Hausdorff distance

The pairs of disjuncts {F1,F2} and {F3,F4} from Figure 3.1 may have similar h-heur

values; on the other hand, the affinity based on p-heur precisely indicates that the second

pair {F3,F4} is more suited for hulling. In Section 3.6, we will compare experimentally

these two heuristic functions when inferring postconditions for a suite of benchmark

programs.

3.3.2 Widening Operator

The standard widening operator for the convex polyhedron domain was introduced in

[43]. For disjunctive fixed point inference, a (powerset) widening operator for sets of

polyhedra is required. Given two disjunctive formulae φ1 and φ2, the challenge is to find

pairs of related disjuncts {di, ei} (di∈φ1, ei∈φ2) such that the result of widening di wrt

ei is as precise as possible.

For this purpose, Bagnara et al [2] introduced a framework to lift a widening operator

over a base domain to a widening operator over its powerset domain. The strategy used

by the powerset widening based on a connector starts by joining (connecting) elements

in φ2 to ensure that each such connected element approximates some element from

φ1. Secondly, it chooses related pairs {di, ei} based on the logical implication relation,

where di ⇒ ei. Mostly concerned with convergence guarantees for widening operators,

the framework from [2, 4] does not give a recipe for defining connector operators able to

find related disjuncts. Later, the generic widening operator definition was instantiated

for disjunctive polyhedral analysis by Gulavani et al in [68]. However, their proposal uses

a connector operator that relies on the ability to find one minimal element from a set of
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polyhedra. In general, the most precise result cannot be guaranteed by a deterministic

algorithm, since the polyhedron domain is partially ordered. To overcome this problem,

we propose an affinity measure to find related disjuncts for pairwise widening.

The strategy that we adopt for widening is to choose related pairs {di, ei} based on

their affinity. After pairwise widening, we subject the result to a selective hull operation

provided it contains more disjuncts than φ1. In general, there may be more disjuncts

in φ2 than in φ1. A reason for non-convergence of the powerset widening operator is

that some element from φ2 is not involved in any widening computation and included

unchanged in the result. Our operator (similar to the connector-based widening) dis-

tributes each disjunct from the arguments φ1 and φ2 in a widening computation and

thus ensures convergence. Formally, we define the widening operator as follows:

Definition 3.5 (Widening Operator). Given two formulae φ1=
∨m

i=1 di and φ2=
∨n

i=1 ei,

the powerset widening operator ∇m is defined as follows:

φ1∇mφ2 = ⊕m({di∇ei | di∈φ1, ei∈φ2})

where di is the best match for widening ei as found by the widen affin measure.

Similar to the affinity from Definition 3.3, the widen-affinity aims to find related

disjuncts, but proceeds by indicating how closely related is the approximation φ1∇φ2

from the original formula φ1:

Definition 3.6 (Affinity Measure for Widening). Given two disjuncts φ1, φ2 and

their widening φwiden = φ1∇φ2, the affinity for widening is defined as:

widen affin(φ1, φ2) = if φwiden∧¬φ1=false then 100

else if φwiden=true then 0

else heur(φ1, φ2)

The planar affinity measure from Definition 3.4 can be used for widening, provided we

redefine mset to relate φ1, φ2 with the approximation φwiden as follows:

mset = {c ∈ (setc(φ1) ∪ setc(φ2)) | φwiden ⇒ c}

Example 3.2 : To illustrate the use of this measure for disjunctive widening, consider

the following two formulae obtained during successive iterations of fixed-point analysis
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for the example on page 26:

F3 = (x≤0 ∧ x′=x) ∨ (1≤x≤2 ∧ x′=0) (d1 ∨ d2)

F4 = (x≤0 ∧ x′=x) ∨ (1≤x≤3 ∧ x′=0) (e1 ∨ e2)

After splitting the equality constraints, each disjunct can be written as follows:

d1 = (x≤0 ∧ x′≤x ∧ x′≥x)

d2 = (1≤x ∧ x≤2 ∧ x′≤0 ∧ x′≥0)

e1 = (x≤0 ∧ x′≤x ∧ x′≥x)

e2 = (1≤x ∧ x≤3 ∧ x′≤0 ∧ x′≥0)

We compute affinity values for each pair of disjuncts, one from F3 and another from F4:

d1∇e1 = (x≤0 ∧ x′≤x ∧ x′≥x) mset(d1, e1) = {x≤0, x′≤x, x′≥x}
p-heur(d1, e1) = 3/3 ∗ 98 + 1 = 99

d1∇e2 = (x≤0 ∧ x′≤x) mset(d1, e2) = {x≤0, x′≤x}
p-heur(d1, e2) = 2/7 ∗ 98 + 1 = 29

d2∇e1 = (x≤2 ∧ x′≤0 ∧ x′≥0) mset(d2, e1) = {x≤2, x′≤0, x′≥0}
p-heur(d2, e1) = 3/7 ∗ 98 + 1 = 43

d2∇e2 = (1≤x ∧ x′≤0 ∧ x′≥0) mset(d2, e2) = {1≤x, x′≤0, x′≥0}
p-heur(d2, e2) = 3/5 ∗ 98 + 1 = 60

These affinity values can be arranged in a matrix. The affinity between d1 and e1 is

modified to 100, since the widening operator applied to them is precise (equivalent to

d1):

d1 d2

d1 100 29

d2 43 60

The above matrix is used to choose the most affine disjuncts for widening. Accordingly,

the widening operator is computed as follows:

F3∇2F4 = (d1 ∨ d2)∇2(e1 ∨ e2) = (d1∇e1) ∨ (d2∇e2) =

= (x≤0 ∧ x′=x) ∨ (x>0 ∧ x′=0)

To conclude this example, we observe that the result of the widening operator satisfies

the post fixed point condition and therefore is a safe approximation for the postcondition

of the method from Figure 2.6. Comparatively, the postcondition computed using a

conjunctive abstract domain is less precise: (x′≤x ∧ x′≤0).
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3.3.3 Higher-Order Planar Affinity Measure

In the previous sections, we defined two affinity measures, one for hulling (Definition

3.3) and one for widening (Definition 3.6). Both affinity measures aim to predict the loss

of precision induced by an abstract operator (e.g. hulling or widening) when applied to

the two arguments φ1 and φ2. The accuracy of the prediction depends crucially on the

heuristic function that is used (e.g. planar affinity or Hausdorff distance).

One important benefit of the planar affinity is that we can formulate it as a higher-

order operator and use it to predict the loss of precision induced by an arbitrary abstract

operator op:

p-heur(op, φ1, φ2) =df
|{c ∈ (setc(φ1) ∪ setc(φ2)) | φ1 op φ2 =⇒ c}|

|setc(φ1) ∪ setc(φ2)| ∗ 98 + 1

With this definition, we can use the planar affinity for other abstract operators, like the

greatest lower bound operator or the narrowing operator.

3.4 Forward Reasoning Rules

To complement the fixed-point analysis presented in the previous section, we pro-

pose a set of forward reasoning rules for collecting a constraint abstraction for each

method/loop. Some primitive methods may lack a method body and be given instead

a formula φ: the given formula may include a safety precondition (for example, bound

checks for array operations), or simply represent the input-output relation (for primitive

numerical operations like add or multiply). The reasoning process is modular, starting

with the methods at the bottom of the call graph.

We shall use the core imperative language introduced previously in Chapter 2. The

constraint language is based on the theory of linear arithmetic and denoted by φ formu-

lae. We shall assume that a type-checker exists to ensure that expressions and constraints

used in a program are well-typed.

The rule [METH] associates each method mn with a constraint abstraction of the

same name. Namely, mn(v∗, w∗) = φ, where v∗ covers the input parameters, while

w∗ covers the method’s output res and the primed variables from pass-by-reference

parameters. The fixed point analysis outlined in the previous section is invoked by

fix(Q) and returns φpo, the input-output relation of the method. To derive suitable
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postconditions, we shall subject each method declaration to the following rule:

[METH]

W={vi}n
i=1 V ={v′i}n

i=m `{nochange(W )} e {φ}
X={v1, .., vn, res, v′1, .., v

′
m−1} Q={mn(X) = ∃V · φ} φpo = fix(Q)

` t0 mn((ref ti vi)m−1
i=1 , (ti vi)n

i=m) where mn(X){e} ⇒ φpo

The inference uses a set of Hoare-style forward reasoning rules of the following form

`{φ1} e {φ2}. Given a transition φ1 from the beginning of the current method/loop to

the prestate before e’s evaluation, the judgement will derive φ2, a transition from the

beginning of the current method/loop to the poststate after e’s evaluation. A special

variable res is used to denote the result of method declaration as well as that of the

current expression under program analysis. Due to our use of primed variables and

existential linking of values that are passed around, the forward rules essentially derive

an SSA-like translated formula. Each intermediate value is captured by a unique variable

and the translated formula is purely declarative.

The reasoning rules are shown in Figure 3.2. The [ASSIGN] rule captures imperative

updates with the help of the prime notation. The [SEQ] rule captures flow-sensitivity,

while the [IF] rule captures path-sensitivity. The [CALL] rule accumulates the effect of

the callee postcondition using the composition operator: φ ◦W φpo. This rule postpones

the checking of the callee precondition to a later stage. The two rules [METH] and

[WHILE] compute a postcondition (indicated to the right of the ⇒ operator) which will

be inserted in the code and used subsequently in the verification rules. The result of

these rules is a definition for each constraint abstraction. As an example, consider:

void mnA(ref int x, int n) where (mnA(x, n, x′))

{ if x>n then x:=x−1; mnA(x, n) else () }
After applying the forward reasoning rules, we obtain the following constraint abstrac-

tion:

mnA(x, n, x′)=(x>n∧(∃x1·x1=x−1∧mnA(x1, n, x′)))∨(x≤n∧x′=x)

Note that the forward rules can be used to capture the postcondition of any recursive

method, not just for tail-recursive loops. For example, consider the following recursive

method:

int mnB(int x) where (mnB(x, res)) { if x≤0 then 1 else x:=x−1; 2+mnB(x) }
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[CONST]
φ1 = (φ∧res=k)
`{φ} k {φ1}

[VAR]
φ1 = (φ∧res=v′)
`{φ} v {φ1}

[ASSIGN]
`{φ} e {φ1} φ2 = ∃res·(φ1◦{v}v′=res)

` {φ} v:=e {φ2}

[BLK]
`{φ} e {φ1}

` {φ} t v; e {∃v′·φ1}

[IF]
`{φ∧v′=1} e1 {φ1}
` {φ∧v′=0} e2 {φ2}

` {φ} if v then e1 else e2 {φ1∨φ2}

[SEQ]
`{φ} e1 {φ1}

` {∃res·φ1} e2 {φ2}
` {φ} e1; e2 {φ2}

[CALL]
W={vi}m−1

i=1 distinct(W )
t0 mn((ref ti vi)m−1

i=1 , (ti vi)n
i=m)

where φpo {...}
` {φ}mn(v1..vn) {φ ◦W φpo}

[WHILE]
X=freevars(v, e) `{nochange(X)∧v′=1} e {φ1}
φ2=(φ1◦Xwh(X, X ′)) ∨ (nochange(X)∧v′=0)

Q={wh(X, X ′) = φ2} φpo = fix(Q)
`{φ} while v do e {φ◦Xφpo} ⇒ φpo

Figure 3.2: Forward reasoning rules

Applying forward reasoning rules will yield the following constraint abstraction:

mnB(x, res)=(x≤0∧res=1)∨(x>0∧(∃x1, r1·x1=x−1∧mnB(x1, r1)∧res=2+r1))

The next step is to apply fixed point analysis on each recursive constraint abstraction.

By applying disjunctive fixed point analysis, we can obtain:

mnB(x, res)=(x≤0∧res=1)∨(x≥0∧res=2∗x+1)

3.4.1 Verification of Preconditions

Once a closed-form formula has been derived via fixed-point analysis, we shall return

to checking the validity of preconditions that were previously skipped. The rules for

verifying preconditions are similar to the forward rules for postcondition inference, with

the exception of three rules, namely:

[VERIFY−CALL]

t0 mn((ref ti vi)m−1
i=1 , (ti vi)n

i=m) where φpo

W={vi}m−1
i=1 Z={res, v′1, .., v′m−1}

φpr=∃Z·φpo φ =⇒ [vi 7→v′i]
n
i=1φpr

`{φ}mn(v1..vn) {φ ◦W φpo}

[VERIFY−WHILE]

X = freevars(v, e) ρ = X 7→X ′

φpr = ∃X ′·φ2 φ =⇒ ρφpr

`{φ∧ρφpr} e {φ′}
` {φ} while v do e where φ2 {φ ◦X φ2}
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[VERIFY−METH]

W={vi}n
i=1 Z={res, v′1, .., v′m−1}

φpr=∃Z·φpo `{φpr∧nochange(W )} e {φ}
` t0 mn((ref ti vi)m−1

i=1 , (ti vi)n
i=m) where φpo {e}

The [VERIFY−CALL] rule checks that the precondition of each method call can be

verified as statically safe by the current program state. If it cannot be proven statically

safe, a run-time test will be inserted prior to the call site to guarantee the safety of the

precondition during program execution. The precondition derived for recursive methods

is meant to be also satisfied recursively. The [VERIFY−METH] rule ensures that each of

its callees is either statically safe or has a runtime test inserted. The [VERIFY−WHILE]

rule uses X to denote the free variables appearing in the loop body; the substitution ρ

maps the unprimed to primed variables. This rule uses the loop formula φ2 to compute a

precondition φpr necessary for the correct execution of the loop body. The precondition

is checked for satisfiability using φ, the state at the beginning of the loop. We refer to

this new set of rules as forward verification rules. We define a special class of totally-safe

programs, as follows:

Definition 3.7 (Totally-Safe Program). A method is said to be totally-safe if the

precondition derived from all calls in its method’s body can be verified as statically safe.

A program is totally-safe if all its methods are totally-safe.

For each totally-safe program, we can guarantee that it never encounters any runtime

error due to unsatisfied preconditions.

3.5 Mixing Boolean and Integer Constraints

In the preceding sections, we have focused largely on the (linear) arithmetic constraint

domain. However, in our constraint sublanguage, we can provide support for boolean

variables to be captured explicitly. In general, there are two ways to handle boolean

constraints.

The simpler solution that we adopted is to map each boolean value into the integer

domain and then allow an integer-based solver to handle the combined formulae. For

example, we can map false to 0, true to 1 and ensure that each boolean variable v
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be bounded by 0≤v≤1 in the integer domain. Furthermore, the basic boolean oper-

ators would have their postcondition translated as follows (i) not(v)⇒(res=1−v), (ii)

or(v1, v2)⇒(res=max(v1, v2)) and (iii) and(v1, v2)⇒(res=min(v1, v2)). The main ad-

vantage of this approach is that it allows a simple integration for both the boolean and

integer constraints under a single framework. However, there are some problems with

this approach. Firstly, the resulting constraint may have many disjunctions due to the

use of min and max operators which are defined in terms of disjunctions. This can make

such formulae more difficult to handle. Secondly, when performing fixed point inference,

the integer-based solver may try to discover arithmetic relationships between boolean

and integer variables that are typically meaningless. Thus, from the point of inference,

a single domain may result in a more complicated analysis.

Another solution is to use a different boolean SAT solver to handle boolean con-

straints, and to allow this solver to coexist with the integer-based solver. Our proposal

is to support a formula
∨

(σ∧φ)∗ where φ is an integer constraint in conjunctive form,

while σ is an arbitrary boolean formula. We call each disjunct of this form a mixed

constraint. The formula may be subjected to a hulling operation to limit the size of the

outermost disjunction. Formally, we define hulling for a pair of mixed constraints as

follows:

(σ1∧φ1)⊕m (σ2∧φ2) =df (σ1∨σ2) ∧ (φ1 ⊕m φ2)

Note that approximation is carried out for integer constraint, while boolean constraint

may be kept precise. We can now define an affinity measure for mixed constraints. We

may give higher weightage to the affinity measure for boolean formulae as it is more

precise than the heuristic used for integer constraints:

Definition 3.8 (Affinity for Mixed Constraint). Let k be a weightage ratio we give

to prioritize boolean constraint over the integer constraint. We can define affinity for

mixed constraints as follows:

affin(σ1∧φ1, σ2∧φ2)=df (affin(σ1, σ2)×k+affin(φ1, φ2))/(k+1)

Given a boolean formula, we use #σ to denote the number of truth assignments

in σ that can be obtained by a counting SAT algorithm. Let mn=min(#σ1, #σ2) and
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Benchmark Source Rec. m=1 m=2 m=3 m=4 m=5
Programs (lines) constr. (secs) (secs) post (secs) post (secs) post (secs) post

binary search 31 1 0.44 1.02 1 - - - - - -
bubble sort 39 2 0.78 0.89 1 - - - - - -
init array 5 1 0.17 0.24 1 - - - - - -
merge sort 58 3 1.42 3.39 3 3.76 1 3.91 1 4.48 1

queens 39 2 1.89 2.41 2 2.48 1 - - - -
quick sort 43 2 0.63 1.51 2 1.70 1 - - - -

FFT 336 9 8.24 10.17 5 11.62 3 11.90 1 12.15 1
LU Decomp. 191 10 10.27 13.41 8 14.44 3 - - - -

SOR 84 5 1.46 2.41 3 3.49 1 3.64 1 - -
Linpack 903 25 28.14 33.23 20 35.04 2 - - - -

Figure 3.3: Statistics for postcondition inference. Timings include precondition verifi-
cation. (“-” signifies a time and post similar to those from the immediate lower value
of m)

mx=max(#σ1, #σ2) We can define affinity of two boolean formulae σ1 and σ2, as follows:

affin(σ1, σ2) =df if (σ1∧¬σ2) then 100

else if ¬(σ1∧σ2) then 0

else 99− ((#(σ1∨σ2)−mx)×98/mn)

With this extra definition for affinity, we may proceed to handle mixed constraints for

disjunctive fixed point analysis using the same framework as that for integer constraints.

3.6 Experimental Results

We have implemented the proposed inference mechanisms with the goal of analyzing

imperative programs. Our implementation includes a pre-processing phase to convert

each C-like input program to our core language. The entire prototype system was built

using Glasgow Haskell compiler [121] extended with the Omega constraint solving library

[129, 88]. Our test platform was a Pentium 3.0 GHz system with 2GBytes main memory,

running Fedora 4.

We tested our system on a set of small programs with challenging recursion, and also

the Scimark and Linpack benchmark suites [112, 51]. Figure 3.3 summarizes the statis-

tics obtained for each program. To quantify the analysis complexity of the benchmark

programs, we counted the program size (column 2) and also the number of recursive

methods and loops present in each program (column 3).

The main objective for building this prototype was to certify that the disjunctive

analysis can be fully automated and that it gives more precise results compared to a

conjunctive analysis. To this end, we experimented with different bounds on the number
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m of disjuncts allowed during fixed point analysis. For each value of m, we measured

the analysis time and the number of methods for which the postcondition was more

precise than using (m−1) disjuncts. For each analyzed program, we detected a bound

on the value of m: increasing m over this bound does not yield more precision for the

formulae. The analysis time remains constant for cases where m is bigger than this

bound, therefore the values beyond these bounds are marked with ”-”. Capturing a

precise postcondition for algorithms like binary search, bubble sort, or init array was

done with a value of m equal to 2. We found that queens and quick sort require 3

disjuncts, while merge sort can be inferred by making use of 5 disjuncts.

After experimenting with different bounds for m imposed by the user, we designed

a heuristic to obtain automatically a bound useful for both precise and efficient analy-

sis. Such a bound is computed separately for each recursive method. More specifically,

the corresponding constraint abstraction is unrolled for a fixed number of times (3 in

our implementation) and we count the number of non-adjacent disjuncts. Adjacent dis-

juncts, those with 100 affinity for hulling, are combined directly. This heuristic gives

useful bounds for most of the methods and keeps the cost of analysis low by using more

disjuncts only when needed. We found only few methods (in FFT and Linpack bench-

marks) where, due to multiplication and division operators, a high bound is generated.

For such cases, we normally force a high bound of 5 disjuncts, unless overridden by the

user.

We also evaluated the usefulness of the disjunctive fixed point inference for static

array bound check elimination. The results are summarized in the Figure 3.4. Column 2

presents the total number of checks (counted statically) that are present in the original

programs. Columns 4 and 8 present the number of checks that cannot be proved safe

by using conjunctive analysis (m=1) and, respectively, disjunctive analysis with m=5

and planar affinity. For comparison, column 6 shows results of analysis using the Haus-

dorff distance heuristic, where the number of checks not proven is greater than using

planar affinity. While the planar affinity is usually more expensive (column 7) than the

Hausdorff affinity (column 5) for our experiments, we found that the difference is minor

considering the additional checks that can be proven safe using our planar affinity.

Using the planar affinity, the two programs bubble sort and init array were proven
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Benchmark Static Conj.(m=1) Haus.(m=5) Plan.(m=5)
Programs Chks. (secs) pre (secs) pre (secs) pre

binary search 2 0.44 2 0.80 2 1.02 2
bubble sort 12 0.78 3 0.78 0 0.89 0
init array 2 0.17 2 0.22 0 0.24 0
merge sort 24 1.42 9 3.09 4 4.48 0

queens 8 1.89 4 2.37 2 2.48 2
quick sort 20 0.63 5 1.43 5 1.70 1

FFT 62 8.24 17 11.91 12 12.15 5
LU Decomp. 82 10.27 42 14.71 9 14.44 4

SOR 32 1.46 15 2.78 2 3.64 0
Linpack 166 28.14 92 31.99 65 35.04 52

Figure 3.4: Statistics for check elimination

totally safe with 2-disjunctive analysis. Merge sort and SOR exploited the precision of

4-disjunctive analysis for total check elimination. Even if not all the checks could be

proven safe for queens, quick sort, FFT, LU and Linpack benchmarks, the number of

potentially unsafe checks decreased gradually, for analyses with higher values of m. As

a matter of fact, our focus in this chapter was to infer precise postconditions and we

relied on a simple mechanism to derive preconditions. To eliminate more checks, we

could use preconditions sufficient for safety in the style of [28, 127]. In the next chapter,

we will propose a technique that is powerful enough to derive sufficient preconditions

and eliminate all checks in this set of benchmarks. However, we stress that, either kind

of prederivation we use, disjunctive analysis is needed for better check elimination.

In general, analysis with higher values for m has the potential of inferring more

precise formulae. The downside is that computing the affinities of m disjuncts is an

operation with quadratic complexity in terms of m and may become too expensive for

higher values of m. In practice, we found that the case (m=3) computes formulae

sufficiently precise, with a reasonable inference time.

3.7 Examples

In this section, we give details on the analysis of some interesting examples. Firstly, we

show how disjunctive fixed-point is able to obtain a precise result for the McCarthy’s

91 function (res = 91). Secondly, we show the pivot partitioning method from the

quicksort algorithm where we observe a gradual increase in precision for postconditions

computed with 1, 2 and 3 disjuncts. Lastly, we show an example where a modular
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analysis requires a more complex abstract domain compared to a global analysis with

fixed values for the method parameters. This last example is extracted from the FFT

benchmark and requires non-linear invariants.

3.7.1 McCarthy’s 91 Function

The McCarthy’s 91 function shown in Figure 3.5 returns the value 91 for all integer

arguments smaller or equal with 101. For arguments n bigger than 101, the function

returns (n − 10). Despite its simplicity, this example is challenging for static analysis

and was described in the context of various conjunctive domains in [38, 15, 93].

int f91(int n) {
if (n<=100) then {
f91(f91(n+11))

} else { n-10 }
}

Figure 3.5: McCarthy’s 91 function

Our disjunctive fixed-point analysis computes the following intermediate results:

F1 = (n≥101 ∧ res=n−10)

F2 = (n≥101 ∧ res=n−10) ∨ (n=100 ∧ res=91)

F3 = (n≥101 ∧ res=n−10) ∨ (n=100 ∧ res=91) ∨ (n=99 ∧ res=91)

The 2-disjunctive abstract domain is sufficiently fine-grained, since hulling all the dis-

juncts obtained from recursion is precise with 100% affinity. The postcondition com-

puted matches the exact semantics of the code:

(n≥101 ∧ res=n−10) ∨ (n≤100 ∧ res=91)

3.7.2 Quicksort Example

Figure 3.6 shows an excerpt from a quicksort algorithm. The method partition divides

the elements of the array a between the indexes l and h into two partitions: elements

smaller than the initial pivot value a[l] and elements greater than the pivot value. The

parameters of the method changeN are a, n, i, h and v: a is the array to sort; n represents

the last element smaller-or-equal than the pivot; i and h are the start and the end of
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the sequence remaining to be compared with the pivot and v corresponds to the value

of the pivot.

int partition(float[] a, int l, int h) {
int v := a[l];
int n := changeN(a,l,l+1,h,v);
swap(a,l,n); n }

int changeN(float[] a, int n, int i, int h, float v) {
if (i <= h) then {
if (a[i] < v) then {
swap(a,n+1,i);
changeN(a,n+1,i+1,h,v)

} else { changeN(a,n,i+1,h,v) }
} else { n } }

void swap(float[] a, int i, int j) {
float temp := a[i];
a[i]:=a[j]; a[j]:=temp }

Figure 3.6: Quicksort example

We present the postconditions inferred for the recursive method changeN with in-

creasing values of m (1, 2 and 3). While a lower bound for the result of the method

(res≥n) can be discovered using conjunctive analysis, inference with 2 and 3 disjuncts

are able to discover also upper bounds for res. The result res may be safely used as a

valid index for the array parameter only with the relation discovered by the 3-disjunctive

analysis: (0≤res<s), where s is used to denote the size of array a.
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Postcondition with 1−disjunct :

changeN(s, n, i, h, res) =(res≥n)

Postcondition with 2−disjuncts :

changeN(s, n, i, h, res) =(h<i ∧ res=n)

∨(0≤i≤h<s ∧ n≤res≤n+(h−i)+1)

Postcondition with 3−disjuncts :

changeN(s, n, i, h, res) =(h<i ∧ res=n)

∨(0≤i≤h<s ∧ res=n))

∨(0≤i≤h<s ∧ 0≤n+1<s ∧ n<res≤n+(h−i)+1 ∧ res<s)

For array bound check elimination, the precondition obtained from the 2-disjunctive

postcondition of the method changeN helps to prove statically-safe the array access

to a[i]: φpre = (h<i)∨(0≤i≤h<s), However, this precondition cannot guarantee the

safety of the array accesses inside swap(a, n+1, i) call. Consequently, in the optimized

quicksort program, a runtime test is needed to protect this call to the method swap.

The precondition φpre may be hoisted out for runtime testing at some of its call

sites. At first sight, the replacement of two checks 0≤i<s of array access a[i] by a more

complex condition (h<i)∨(0≤i≤h<s) may potentially cause performance degradation

during check hoisting. However, the array access occurs within a recursive method, and

we are effectively replacing multiple runtime checks by a single hoisted check.

As mentioned previously, the derivation of necessary preconditions may be comple-

mented by a sufficient precondition derivation technique. The following sufficient pre-

condition can be derived (with the use of disjunctive fixed point analysis) and helps prove

all checks in quicksort as statically safe: (h<i ∨ 0≤i≤h) ∧ (h<a) ∧(0≤n+1<a−(h−i))

3.7.3 Fast Fourier Transform Example

The third example shows a complex excerpt from the FFT benchmark (see Figure 3.7).

The code written in C language indicates with comments what are the values of the

relevant parameters: (len(data) = 2048) and (N = 2048). An invariant for the outer

loop is: (0≤bit<logn ∧ dual=2bit). Even with the help of this non-linear invariant,
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void FFT transform internal (int N, double *data, int direction) {
// len(data) is 2048
int n = N / 2; // N is 2048, n is 1024
int dual = 1;
int logn = int log2(n); // logn is 10
for (bit = 0; bit < logn; bit++, dual *= 2) {
// dual will have values of {1,2,4,8,16,32,64,128,256,512}
...
for (b = 0; b < n; b += 2 * dual) {

int i = 2 * b;
int j = 2 * (b+dual);
... data[j] ...
... data[j+1] ... // assert (0 <= j+1 < len(data))
... data[i] ...
... data[i+1] ...

}
}

}

Figure 3.7: FFT example

it is tricky to obtain the inner loop invariant that is useful in proving the safety of

array checks: (0 ≤ b+dual < 1024). For example, the array check data[j+1] requires:

(0 ≤ 2∗(b+dual)+1 < 2048).

We use this example to show one complex example of the checks that cannot be

proven by our system. The verification task can be eased by specializing a copy of

the inner loop for each value of the dual local variable. Even in this simpler case,

analysis of the inner loop (shown in Figure 3.8 specialized for the value 2 of the local

variable dual) requires an existential invariant: (0≤b<1024∧∃k · (b=4k)). Inferring this

existential invariant is not possible using our disjunctive abstract domain, but would

be an interesting future work. It requires the extension of our abstract domain with

support for congruence relations introduced by Granger in [64, 65].

3.8 Correctness

In this section, we shall outline the proofs that state that our forward reasoning rules

are correct in the following ways:

1. the forward analysis algorithm terminates (lemma 3.1).
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for (b = 0; b < 1024; b += 4) {
...
int j = 2 * (b+4);
... data[j+1] ...

}

Figure 3.8: Inner loop of FFT example

2. its inferred postcondition is a safe approximation of the possible final program

state (lemma 3.2).

3. each program that has been verified as totally-safe never fails due to primitive

operations having unsatisfiable preconditions (lemma 3.4).

The first two aspects are directly related to the correctness of forward reasoning

rules, while the third aspect is concerned with the safety of totally-safe program whose

preconditions have been statically verified. We shall also highlight why it is sound to

use the inferred postcondition of each method for strengthening its method’s necessary

precondition.

When used with both unprimed and primed variables, φ actually denotes a transition

(or change) in abstract states. In this situation, we shall use two operators to distinguish

between the original and final abstract states, as follows:

Definition 3.9 (Prestate and Poststate). Given an abstract state transition φ, its

prestate PreSt(φ) captures the relation between unprimed variables of φ. Correspond-

ingly, its poststate PostSt(φ), captures the relation between primed variables of φ.

3.8.1 Termination of Analysis

As highlighted in Sections 3.4 and 3.3, our postcondition inference algorithm is being

organised into two main stages. In the first stage, a constraint abstraction is built for

each method. In the second stage, a fixed point analysis is applied to each constraint

abstraction that is recursive. The first stage always terminates since the forward rules

effectively perform a structural recursion over its input expression. Consequently, the

termination of postcondition inference is solely dependent on the termination of fixed
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point analysis. We can show the terminations for the disjunctive fixed point analysis,

as follows:

Lemma 3.1 (Termination of Disjunctive Fixed Point). Given an affinity measure,

we can show that disjunctive fixed point with an upper bound on the number of disjuncts

always terminates.

Proof : Related to the result of [43] in which widening is used to ensure that constraints

encountered during conjunctive fixed point have at most finite variations. Due to the

existence of an upper bound on the number of disjuncts, widening will eventually occur

for a disjunctive formulae with respect to an earlier formulae with an identical number

of disjuncts. This widening operation will be applied to the respective components (with

closest affinity) of two disjunctive formulae. It will ensure that there are finite variations

in the constraints encountered for each m-disjuncts formulae. Hence, there are at most

finite variations of the disjunctive formulae. The choice of the affinity measure does not

influence the termination of the fixed point analysis (only its precision).

3.8.2 Soundness of Postcondition Inference

The poststate that we infer is a conservative approximation of the program state that

we expect after executing the program. A related property is stated as Theorem 5.1,

and we refer to its complete proof in Chapter 5.

Lemma 3.2 (Soundness of Postcondition Inferred). Given an abstract state φ and

an expression e1, we may obtain a new poststate φ1 via our forward reasoning rules, as

follows: `{φ} e1 {φ1}. This inference is sound as we can show that the following holds,

namely : for all states s1 consistent with φ1, if 〈s1, e1〉↪→∗〈sn, δ〉, then it must be the

case that the pair of states (s1, [res 7→δ]+sn) is soundly approximated by φ1.

3.8.3 Necessary Precondition

Postcondition inference expresses a possible abstract state and is conservative in that

whenever its program code terminates, its resulting program state is always captured

by the inferred postcondition. As a corollary, if an initial state s1 is not covered

by the prestate of the inferred postcondition, we can confirm that it fails either as

〈s1, e1〉↪→∗〈error〉 from runtime error or as 〈s1, e1〉6↪→∗ from non-termination. Thus,
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strengthening the precondition of a method with the prestate of its method’s inferred

postcondition is safe to use for ruling out a class of definite errors, including those from

non-termination. The following lemma shows that necessary precondition is always safe

to use and never induces any false alarms.

Lemma 3.3 (Definite Errors from each Necessary Precondition). Consider an

inference `{φ} e1 {φ1} and an initial abstract state φ such that φ =⇒ nochange(V(e)).

For each state s1 consistent with φ, but not consistent with φ1, it is never the case

that 〈s1, e1〉↪→∗〈sn, δ〉. This means that either 〈s1, e1〉↪→∗〈error〉 or 〈s1, e1〉6↪→∗ does not

terminate.

Proof : Follows as a corollary of Lemma 3.2 on the Soundness of Inferred Postcondi-

tion, where we require that s1 is consistent with φ1 whenever there is a possibility that

〈s1, e1〉↪→∗〈sn, δ〉.
A related property in the context of Chapter 5 is stated by the Corollary 5.5.

3.8.4 Totally-Safe Program

For programs that have been verified as totally-safe by our forward reasoning rules, we

can guarantee that run-time errors from primitive operations can never occur using the

following lemma:

Lemma 3.4 (Totally-Safe Program). Given a program that has been shown to be

totally-safe by the forward verification rules of Section 3.4, its execution will always

either make progress or terminate with a value, but will never result in any runtime

error.

Proof : Follows from a subject reduction condition that is ensured for each totally-safe

program code. Given any pair 〈s1, e1〉 such that s1 is consistent with φ. If the judgement

`{φ} e1 {φ1} holds, we can always show that either e1 is a value or 〈s1, e1〉↪→〈s2, e2〉 and

that `{φ2} e2 {φ′1} holds where φ′1 ⇒ φ1. This evaluation either terminates or makes

another evaluation step, but it can never fail due to runtime error. The result can be

proven by an induction over the small-step semantics of each totally-safe program code.

A related property in the context of Chapter 5 is stated by the Corollary 5.6.
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3.9 Related Work

Our analysis is potentially useful for software verification and for static analyses based

on numerical abstract domains.

Program verification may be performed by generating verification conditions, where

their validity implies that the program satisfies its safety assertions. Verification con-

dition generators assume that loop invariants are present in the code, either annotated

by the user or inferred automatically. Methods for loop invariant inference include

the induction-iteration approach [144] and approaches based on predicate abstraction

[56, 92]. Leino and Logozzo [98] designed a loop invariant computation that can be

invoked on demand when an assertion from the analyzed program fails. The invariant

that is inferred satisfies only a subset of the program’s executions on which the assertion

is encountered. Comparatively, our method infers a disjunctive formula that is valid for

all the program’s executions, with each disjunct covering some related execution paths.

We achieve this modularly, regardless of any subsequent assertions. Thus, our results

can be directly used in the inter-procedural setting.

Partitioning of the abstract domain was first introduced in [44]. Recently, Mauborgne

and Rival [103] have given strategies for partition creation and demonstrated their fea-

sibility through their use in Astrée static analyzer [12]. Like them, we make the choice

of which disjunctions to keep at analysis time. However, the partitioning criterion is

different. In their case, the control flow is used to choose which disjunctions to keep.

Specifically, a token representing some conditions on the execution flow is attached to

a disjunct, and formulae with similar tokens are hulled together. In our case, the par-

titioning criterion is based on a property of the disjuncts themselves, with the affinity

measure aiming to hull together the most closely related disjuncts.

Various abstract numerical domains have been developed for static analysis based

on abstract interpretation. The form of invariants to be discovered is determined by

the chosen numerical domain: from the interval domain that is able to discover rela-

tions of the form (±x≤c), to the lattice of polyhedra that represents invariants of the

form (a1x1+..+anxn≤c), all these abstract domains represent conjunctions of linear in-

equalities. Our pre/post analysis is formalised in a manner that is independent of

the abstract domain used. It can therefore readily benefit from advances in constraint
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solving techniques for these numerical domains.

3.10 Summary

We have proposed a new method for inferring disjunctive postconditions. Our approach

is based on the notion of selective hulling as a means to implement adjustable precision

in our analysis. We introduced a simple but novel concept called affinity and showed

that planar affinity is superior to a recently introduced method based on Hausdorff

distance. We have built a prototype system for disjunctive inference and have proven its

correctness. Our experiments demonstrate the utility of the disjunctive postconditions

for proving a class of runtime checks safe at compile-time, and the potential for tradeoff

between precision and analysis cost.
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CHAPTER IV

DERIVING PRECONDITIONS FOR MODULAR

STATIC ANALYSIS

Array bound check optimization has been extensively investigated over the last three

decades [144, 43, 71], with renewed interests as recently as [13, 149, 52, 145, 116]. While

the successful elimination of bound checks can bring about measurable efficiency gain,

the importance of check optimization goes beyond this direct gain. In safety-oriented

languages, such as Java, all bound violation must be faithfully reported under precise

exception handling mechanism. Thus, check optimization is even more important for

run-time efficiency under such constraints. For example, the code motion technique is

severely hindered by potential array bound violations.

Most array optimization techniques (e.g. [144, 43, 147]) focus on the elimination

of totally redundant checks. To achieve this, whole program analysis is carried out to

propagate analysis information (e.g. availability) to each program point. Even for tech-

niques that handle partially redundant checks, such as partial redundancy elimination

(PRE)[14], the focus has been on either moving these checks or restructuring the con-

trol flows, but without exploiting path-sensitivity or interprocedural relational analysis.

These features are important for supporting precise analyses.

In this chapter, we propose a practical approach towards array bound checks op-

timization that is both precise and efficient. Our approach is based on the derivation

of a suitable precondition for each array check across the method boundary, followed

by program specialization to eliminate array checks found to be redundant. Successful

elimination of array checks depends on how accurately we are able to infer the states of

the program variables. To achieve accuracy, we employ the disjunctive abstract domain

developed in Chapter 3. We formalise our technique as a type system that uses type

annotations for communicating information between the inference and the specialization

phases. We use a form of dependent type [84, 147, 27] that can capture symbolic pro-

gram states using a relational analysis. The key contributions described in this chapter
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include:

• Forward with Backward Combination : We propose a novel combination of

forward plus backward analysis that can be practical and precise. This combina-

tion performs the more expensive forward fix-point analysis only once per method,

but proceeds to derive individual safety precondition for each check across pro-

cedural boundary. We provide the first formalization and implementation of this

combination technique for an imperative language. (Sections 4.3 and 4.4)

• Indirection Arrays : Our approach can analyse the bounds of elements inside

an array. This is important for eliminating array checks for a class of programs

where indexes are kept inside indirection arrays (Section 4.5). Past techniques on

array bound checks elimination have largely ignored this aspect.

• Smaller Preconditions : To obtain a practical analysis, we devise a new tech-

nique to make formulae smaller by suitable strengthening of preconditions (Sec-

tion 4.6). This approach trades (some) precision for speed and has been vindicated

by experiments with our prototype inference system.

• Integration with Specializer: We adopt a summary-based approach that gath-

ers preconditions, postcondition and unsafe checks for each method. While su-

mmary-based techniques have already been proposed for a number of program

analyses [19, 40, 148], their integration with program specializer is hardly investi-

gated. We show how a flexivariant specializer could be used to insert runtime test

for each array check that has been classified as unsafe (Section 4.7).

• Prototype : To confirm the viability of our approach, we have built a prototype

inference and specializer system (Section 4.8).

4.1 Overview

A key feature of our approach is the three-way classification of checks. Given a method

definition with a set of parameters V and a set of checks C, our approach will classify

each check (c ∈ C) that occurs at a location with a symbolic program state s, as follows:
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• c is safe if it is redundant under the program state s at the location of this check.

This holds if the following is valid:

(s ⇒ c)

• c is partially-safe if it may become redundant under an extra condition. This holds

if there exists a satisfiable precondition pre (expressed in terms of variables from

only V ) such that:

(pre ∧ s ⇒ c) (4.1)

The precondition can be derived using pre = (∀L · ¬s∨c), where L is the set of

local variables, denoted by vars(s, c)− V . The function vars returns the free vari-

ables used in s and c.

• c is unsafe, if false is the only precondition that can be found to satisfy (4.1). In

this case, the analysis will (conservatively) conclude that the check c may fail at

runtime.

Partially-safe checks are special in that they can be propagated across methods from

callees to callers. This mechanism can further exploit the program states at callers’

sites for the elimination of checks. While the above classification is general and may

be applicable to any kind of checks, in this chapter we shall be focusing exclusively on

array-related checks.

Let us highlight the above check classification using the foo example at the top of

Figure 4.1. In this example, randInt returns a random integer, while abs converts each

number into its positive counterpart. The set of parameters V at method boundary is

{a, j, n} where a is an array with indices from 0 to len(a)−1. The foo method contains

two array accesses at locations `1 and `2. The symbolic program states (sps) at these

sites may be affected by the type invariants 1, conditionals, imperative updates and by

prior calls. Computing the states for the method entry `0 and the locations `1 and `2,

we get:

1An example of a type invariant is that the size of an array a, denoted by len(a), is positive (a design
decision we took for our language).
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Float foo(Float[] a, Int j, Int n)
`0:{ Float v=0.0; Int i=j+1;

if (0<i<=n) then v=(`1:a[i]) else ();
Int m=abs(randInt());
v+(`2:a[m]) }

wwÄ Inference

Float foo(Float[Ints] a, Intj j, Intn n)
where (j≤s−2) ∨ (n≤j ∧ j+1≥s) ;

{`1.H : (j≤s−2) ∨ (n≤j ∧ j+1≥s)}; {`2.H} {· · · }
wwÄ Specialization

Float foo(Float[Ints] a, Intj j, Intn n)
where (j≤s−2) ∨ (n≤j∧j+1≥s); (j≤s−2) ∨ (n≤j∧j+1≥s)
`0:{ Float v=0.0; Int i=j+1;

if (0<i<=n) then v=(`1:a[i])else ();
Int m=abs(randInt());
v+(if (m<len(a)) then `2:a[m] else error) }

Figure 4.1: Inference and specialization : An example

sps(`0) = len(a) > 0

sps(`1) = sps(`0) ∧ i=j+1 ∧ 0<i<=n)

sps(`2) = sps(`0) ∧ i=j+1 ∧ m>=0

Based on the earlier classification of checks, we can establish that the low-bound checks

(at `1 and `2) are safe, since:

sps(`1)⇒(i >= 0) and sps(`2)⇒(m >= 0)

For the high-bound checks (denoted by `1.H and `2.H), we derive (the weakest) pre-

conditions through universal quantification of the local variables, as follows:

pre(`1.H) = ∀i, m · (¬sps(`1) ∨ i<len(a))

= ∀i, m · (¬(len(a)>0 ∧ i=j+1 ∧ 0<i<=n) ∨ i<len(a))

= len(a)<=0 ∨ (j<=len(a)−2 ∧ 1<=len(a))

∨(1<=len(a)<=j+1 ∧ n<=j)

pre(`2.H) = ∀i, m · (¬sps(`2) ∨ m<len(a))

= ∀i, m · (¬(len(a)>0 ∧ i=j+1 ∧ m>=0) ∨ m<len(a))

= len(a)<=0
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These derived preconditions may be the weakest, but they do not take into account

the type invariant and thus are larger than needed. The type invariant len(a) > 0

can be used to simplify pre(`2.H) to false and pre(`1.H) to (j<=len(a)−2 ∨ n<=j ∧
j+1>=len(a)). The last formula contains a disjunct (j<=len(a)−2) for satisfying

the check, and a second disjunct (n<=j ∧ j+1>=len(a)) for avoiding the check (when

the conditional test is unsatisfiable). In general, the simplification may drop disjuncts

that violate the type invariant (len(a)<=0) or remove conditions already present in the

type invariant (len(a)>0). We perform each simplification of a formula φ1 under type

invariant φ2 by the operation (gist φ1 given φ2) introduced in [130]. This gist opera-

tion yields a simplified term φ3 such that φ3∧φ2 ≡ φ1∧φ2. Informally, the operation

(gist φ1 given φ2) returns the new information from φ1 given that φ2 holds.

While a goal of our analysis is to obtain weaker preconditions for precision, this might

impact the scalability of our analysis. To obtain smaller (but stronger) preconditions,

we apply a similar simplification based on the gist operation, but more aggressive. For

example, simplifying pre(`1.H) with respect to the program state of the check ∃i·sps(`1)
yields a smaller precondition (j<=len(a)−2) without the disjunct that allows avoiding

the check. Our proposal trades off precision for performance and is crucial for overcoming

the intractability of solving large Presburger arithmetic formulae.

One feature of our optimization is its formulation in two stages: type inference

followed by specialization. The type inference stage processes methods in reverse topo-

logical order of the call graph. It computes post-states at each program point, classifies

checks and propagates preconditions as new checks at each method boundary. It also

marks all unsafe checks. These information are collected for each method declaration:

a postcondition ∆, a set of preconditions Φ, a set of unsafe checks Υ, and annotated

types τ0, .., τk.

τ0 m (τ1 v1, . . . , τk vk) where ∆; Φ; Υ {body}

For example, after type inference on the foo method, we would obtain the method

displayed in the middle of the Figure 4.1, where the unchanged method body is replaced

by {. . . }. During the actual inference, we use size variables instead of program variables.

For example, size variables s, j and n denote len(a), j and n respectively.
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The inference result is then used by the specialization stage to insert runtime tests

to guard unsafe checks and to derive target programs that are well-typed. Well-typed

specialised methods are decorated with a postcondition ∆ and a precondition φpre :

τ0 m (τ1 v1, . . . , τk vk) where ∆; φpre {body}

The precondition φpre is a conjunction of checks from Φ that are guaranteed safe at

each call site. For example, if pre(`1.H) is found to be safe when analyzing the call sites

of method foo, we can generate the specialised (and well-typed) method at the bottom

of Figure 4.1. Note that ∆ ≡ φpre holds for this particular example, but in general the

two formulae may be different. This is so as postcondition is computed using over-

approximation, while precondition is computed using under-approximation. Moreover,

postcondition may capture its method’s result(s), but not so for precondition.

Well-typed programs are safe in that no array bound errors are ever encountered

by any array access during program execution. This safety property is guaranteed by

either the program context (for array checks `1.L and `2.L), or the precondition of each

method (for array check `1.H) or the inserted runtime test (for `2.H). In the rest of this

chapter, we shall formalise a type inference system to derive well-typed programs for a

core imperative language.

4.2 An Imperative Language

To formalise our type inference we use as source language Imp, as introduced in Chap-

ter 2 (see Figure 2.1), where types, denoted by t do not have annotations. Imp has

support for assignments, conditionals, local declarations, method calls, and multidimen-

sional arrays. Typical language constructs, such as multi-declaration block, sequence,

calls with complex arguments can be automatically translated to constructs in Imp. In

addition, loops can be viewed as syntactic abbreviations for tail-recursive methods, and

are supported by our analysis with the help of pass-by-reference parameters.

4.2.1 Target Language

The target of our inference system is a corresponding imperative language with depen-

dent types where types may be annotated with size variables. For example, a boolean

value can be denoted by Boolb where b = 0 represents false and b = 1 represents true;
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meth ::= τ mn (([ref] τ v)∗) where ∆;Φ; Υ {e}
prim ::= τ mn ((τ v)∗) where ∆;Φ; C

τ, τ̂ ::= τ | τ [Ints1 , . . . , Intsk ]
τ ∈ PrimAnnType

::= Void | Ints | Bools | Float
Φ ::= { (l+ : φ)∗ } (Labelled Preconditions)
Υ ::= { (l+)∗ } (Unsafe Checks)
C ::= { (l+ : e)∗ } (Labelled Runtime Checks)
` ∈ Label

`+ ::= ` | `1. · · · .`n (Label Sequences)
φ, ∆ ∈ Formula (first order theory of linear arithmetic)

Figure 4.2: Inferred ImpI language

an integer value can be denoted by Intn with n to denote its integer value, while

Float[Ints] can denote an array of floats with s elements. Input-output relation be-

tween size variables from method parameters and result is captured after the where

keyword:

Intr randInt() where true; . . .

Intr abs(Inta v)

where (a<0∧r=−a ∨ a≥0∧r=a)∧(a′=a); . . .

Intr add(Inta x, Intb y)

where (r=a+b) ∧ nochange{a, b}; . . .
Boolr lessThan(Inta x, Intb y)

where (a<b∧r=1 ∨ a≥b∧r=0)∧nochange{a, b}; . . .

Note that true for randInt signifies that r is unbounded. Also, non-trivial size relations

can be supported through disjunctive formulae. The prime notation is used to denote

the state of size variables at the end of the method. Parameter values that are unchanged

across method calls are captured using the notation nochange{a, b}≡(a′=a∧b′=b) as a

shorthand for “no change in state”. This no-change in state occurs mostly for param-

eters that are passed by value. Pass-by-reference parameters are also supported in our

language using the ref keyword.
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Figure 4.2 summarises a language with dependent type, called ImpI , which is de-

signed to be the target of our inference. Each method declaration captures three infor-

mation: an input-output relation (postcondition) ∆, a set Φ that contains a precondition

for each partially-safe check, and a set of label sequences Υ, each sequence representing

the location of an unsafe check. The labels from Φ and Υ identify call sites from the

body of the current method. This is enabled in our language since every method call is

uniquely labelled . The suffix notation s∗ denotes a list of zero or more distinct syntactic

terms separated by appropriate separators, while s+ represents a list of one or more

distinct syntactic terms.

For a non-recursive method mn, the triple (∆, Φ, Υ) can be derived via inference of

the method body (since the triple for each method called in mn are already inferred.) To

support recursive methods, we make use of constraint abstractions. For each mutual-

recursive method, we first derive a (recursive) constraint abstraction Q of the form

q〈n∗〉 =φ. These abstractions are used by fix-point computation to provide a sound and

precise analysis for recursive methods. An adaptation of the fix-point approximation

from [43] is detailed via examples in Section 4.4. Besides constraint abstractions, our

language of constraints contains conjunctions and disjunctions of linear (in)equalities.

We make use of a Presburger solver [129] (with support for universal and existential

quantifications) to eliminate local variables or simplify formulae.

Primitive methods (denoted by prim in Figure 4.2) lack a method body and are

instead annotated with a postcondition and a set of preconditions to support type infer-

ence. A primitive is also annotated with a set of runtime tests C for use by the specializer:

if some precondition is not satisfied at a primitive call site, its corresponding runtime

test is to be inserted. Array operations are implemented as calls to primitive methods.

For example, 1-dimensional array operations with element type τ are shown below:

τ [Intr] newarr(Ints s, τ v) where (0<s ∧ r=s ∧ s′=s); {S: s> 0}; {S: s>0}

Intr len(τ [Ints] a) where (r=s ∧ s′=s); {}; {}
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τ sub(τ [Ints] a, Inti i)

where (0≤i<s ∧ nochange{i, s}); {L: 0≤i, H: i<s}; {L: 0≤i, H: i<len(a)}
Void assign(τ [Ints] a, Inti i, τ v)

where (0≤i<s ∧ nochange{i, s}); {L: 0≤i, H: i<s}; {L: 0≤i, H: i<len(a)}
The primitive newarr returns a new array with all elements initialized to the value v, len

returns the length of the array, sub returns an array element from the specified index

i, while assign updates the specified array element with the value v. For example,

an array access a[i] is (automatically) converted to sub(a, i), while an array update

a[i] = v is converted to the primitive call assign(a, i, v).

[Var]
Γ(v) = τ τ1 = fresh(τ)
φ = equate(prime(τ), τ1)

V ; Γ; ∆ ` v ; v :: τ1, ∆ ∧ φ, ∅, ∅

[Var−Assign]
V ; Γ; ∆ ` e ; e1 :: τ1, ∆1,Φ,Υ

Γ(v) = τ ∆2 = assign(∆1, τ, τ1)
V ; Γ;∆ ` v:=e ; v:=e1 :: Void,∆2, Φ, Υ

[If ]
Γ(v) = Boolb V ; Γ;∆ ∧ (b′ = 1) ` e1 ; e3 :: τ1, ∆1, Φ1, Υ1

τ = fresh(τ1) V ; Γ; ∆ ∧ (b′ = 0) ` e2 ; e4 :: τ2, ∆2,Φ2, Υ2

ρi = rename(τi, τ) ∀i ∈ {1, 2} ∆3 = ρ1∆1 ∨ ρ2∆2 e5 = if v then e3 else e4

V ; Γ; ∆ ` if v then e1 else e2 ; e5 :: τ, ∆3, Φ1∪Φ2, Υ1∪Υ2

[Call]
Γ(vi) = τi ∀i ∈ 1..n τ = fresh(τ̂) U =

⋃k
i=1 V(τi) ` = fresh()

(τ̂ m(τ̂1 x1, . . . , τ̂n xn) where ∆m; Φm; · · · ) ∈ P ∪ Pm Φm = {(`+1 : φ1), .., (`+k : φk)}
ρ = rename(τ̂ , τ) ] Σn

i=1{rename(τ̂i, τi)} prei ≡s (∆ ≈> ρφi)↓V
mkChk(prei, `.`

+
i , Φ̂i,Υi) ∀i ∈ 1..k Φ̂ =

⋃k
i=1 Φ̂i Υ =

⋃k
i=1 Υi

V ; Γ; ∆ ` m(v1..n) ; ` : m(v1..n) :: τ, ∆ ◦U ρ(∆m), Φ̂, Υ

[Mtd−Declare]
md = t m(t1 v1, . . . , tk vk) {e} τi = fresh(ti) ∀ i = 1..n τ = fresh(t)

V =
⋃k

i=1 V(τi) W = V ∪V(τ) Γ = {v1 : τ1, . . . , vk : τk}
∆init = init(Γ) V ; Γ;∆init ` e ; e1 :: τ, ∆, Φ, Υ Q = {m〈W 〉 = ∆}

`I md ; τ m(τ1 v1, . . . τkvk) where m〈W 〉; Φ; Υ{e1} | Q

[MkChk−1]
pre ≡ true

mkChk(pre, `+, ∅, ∅)

[MkChk−2]
pre ≡ false

mkChk(pre, `+, ∅, {`+})

[MkChk−3]
¬(pre ≡ true ∨ pre ≡ false)
mkChk(pre, `+, {`+ : pre}, ∅)

Figure 4.3: Type inference rules
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4.3 Type Inference Rules

Our inference system analyses and propagates state information so as to determine if an

array check is safe and if a precondition is to be propagated to the method boundary . The

type judgment for the entire program is Pm `I P ; PI . It derives a program PI ∈ ImpI

from a program P ∈ Imp and a set of primitive declarations Pm.

The type judgement for expressions is specified as follows:

V ; Γ; ∆ ` e ; e1 :: τ, ∆1, Φ,Υ

Here V is a set of size variables (called boundary variables) available at the boundary

of the method in which the expression e resides. Γ is a type environment mapping

program variables to their annotated types. The above judgement states that e will be

transformed into e1 during the inference: the target expression e1 will contain types

annotated with fresh size-variables and labels that uniquely identify method calls. Both

e and e1 have the same underlying type. Furthermore, successful evaluation of e (and

e1) requires the validity of preconditions Φ, and the inclusion of the runtime tests Υ.

Successful evaluation of e also changes the program state from ∆ to ∆1.

For convenience, our inference rules ensure that the size variables occurring in the

annotated type τ are unique; ie., V(τ)∩ V(Γ) = ∅ where FSV returns the set of free

size variables found. Some of the interesting inference rules are specified in Figure 4.3.

In these rules, we use s = fresh() and ` = fresh() to generate a new size variable and

a new label, respectively. For annotated types, τ̂ = fresh(t) (or τ̂ = fresh(τ)) returns

a new type τ̂ with the same underlying type as t (or τ), but annotated with fresh

size variables. The function equate(τ1, τ2) generates equality constraints for the corre-

sponding size variables of its two arguments, assuming both arguments share the same

underlying type. For example, we have equate(intn, intm′
) = (n = m′). The function

rename(τ1, τ2) returns a mapping instead, e.g. rename(intn, intm′
) = (n 7→ m′). A

conditional constraint is expressed as ζ1 ¢ b ¤ ζ2 =df if b then ζ1 else ζ2. For the rest of

this section, we highlight the important aspects of our inference system via examples.

4.3.1 Inferring Imperative Update

Let us consider an expression v := v + u, a pre-state formula ∆ = (m′=2+n′∧n′=5) and

the type environment Γ = {u :: Intm, v :: Intn, . . .} . This example shows how the prime
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notation is used to capture the latest values of size variables at each symbolic state. It

also shows how updates are effected by a sequential composition operator, ◦X , where X

denotes a set of size variables that are being updated.

The following depicts the inference step for assignment:

Γ(v) = intn Γ(u) = intm

V ; Γ;∆ ` v + u ; v + u :: intr, ∆ ∧ r = n′ + m′, ∅, ∅
∆2 = assign(∆ ∧ r = n′ + m′, intn, intr)

V ; Γ; ∆ ` v := v + u ; v := v + u :: void, ∆2, ∅, ∅

The function assign performs the necessary sequential composition:

assign(∆, τ, τ1) =def let X = V(τ) ; Y = V(τ1)

in ∃Y.(∆ ◦X equate(prime(τ), τ1))

For our example, the correct post-state of the assignment can be computed as follows:

∆2 = ∃r · ((∆ ∧ r=n′+m′) ◦{n}(n′=r))

= ∃r · ((m′=2+n′∧n′=5∧r=n′+m′) ◦{n}(n′=r))

= ∃r · (∃n0 ·m′=2+n0∧n0=5∧r=n0+m′∧n′=r)

= (m′=7 ∧ n′=m′+5)

More formally, sequential composition is defined as:

φ1 ◦X φ2 =def ∃R · ρ1(φ1) ∧ ρ2(φ2)

where X = {s1, . . . , sn} are size variables being updated

R = {r1, . . . , rn} are fresh size variables

ρ1 = {s′i 7→ ri}n
i=1 ρ2 = {si 7→ ri}n

i=1

4.3.2 Path Sensitive Inference

The [If ] rule attempts to track the size constraint of conditionals with path sensitivity.

The two conditional branches are distinguished by assuming the conditional-test result

to be either 1 or 0, representing the true or the false value, respectively. Given

e = if u then v else 5 and Γ = {v :: intn, u :: boolb}, the rule derives ∆3 combining

via disjunction the inference results of both branches. We replace both r1 and r2 (the
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resulting sizes from both branches) by the final resulting size r.

∆1 = ∆∧(b′=1) ∆2 = ∆∧(b′=0)

V ; Γ;∆1 ` v ; v :: intr1 , ∆1 ∧ (r1=n′), ∅, ∅
V ; Γ; ∆2 ` 5 ; 5 :: intr2 , ∆2 ∧ (r2=5), ∅, ∅
∆3 = ∆ ∧ ((b′=1 ∧ r=n′) ∨ (b′=0 ∧ r=5))

V ; Γ;∆ ` e ; e :: intr, ∆3, ∅, ∅

4.3.3 Precondition for Safety of Check

Precondition derivation is essential for the detection of safe checks across method bound-

aries. A check is proved safe when a call context implies the call’s preconditions. Oth-

erwise, the preconditions associated with a call are replaced by preconditions associated

with its caller. The generated preconditions are expressed in terms of the boundary

variables. The [Call] rule formalizes this process.

As an example, consider inferring a primitive call sub(z, j) under the type assump-

tion Γ = {v :: intv, z :: Float[intm], j :: intj} and the pre-state ∆ = (m′=m ∧ m′=10 ∧

j′=v′+2 ∧ v′=v+1 ∧ v′>5). Furthermore, let the set of boundary variables V be {v, m}
and j be a local variable. The two array-bound checks of the sub primitive, 0≤i and

i<s, are transformed into the following preconditions:

pre1 = (∆ ≈> ρ(0 ≤ i))↓V ≡s true

pre2 = (∆ ≈> ρ(i < s))↓V ≡s (v < 7)

where ρ = {s 7→ m, s′ 7→ m′, i 7→ j, i′ 7→ j′}. The substitution ρ replaces the size vari-

ables associated with the formal parameters of sub with those from the actual param-

eters of the call. The new preconditions are obtained by simplifying (≡s) the result of

the operations (≈>) and ↓V . The operator ≈> formulates the implication of an array-

bound check by the corresponding calling context. It ensures that all size variables are

expressed in terms of those of the call arguments, and primed variables are used in the

post-state of the caller:

∆ ≈> φ =def (∆ ⇒ ρ(φ)) where ρ = {s1 7→s′1, . . . , sn 7→s′n};
{s1, . . . , sn} = V(φ)
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The operator ↓V projects a constraint to the boundary variable set V through quan-

tification of (size variables from) the local variables. These variables are universally

quantified, so that the resulting precondition is strengthened (weakening via ∃ quanti-

fier is unsound in this case):

φ↓V =def ∀W · φ where W = FSV (φ)− V.

After its derivation, each precondition is classified by the relation mkChk(pre, A, B, C)

to determine if the corresponding array bound check can be eliminated safely, be left

as runtime check, or decided at a later stage (a partially-safe check). Here, A is a label

sequence leading to the specific bound-check, B outputs the check if it is partially-safe,

and C outputs the label sequence identifying the check if it should be left at runtime. For

the example above, we have mkChk(pre1, `.L, ∅, ∅) and mkChk(pre2, `.H, {`.H : pre2}, ∅),
where ` is a new label associated with the call sub(z, j). These mkChk clauses indicate

that the low-bound check is safe, while the upper-bound check is partially safe.

For recursive methods, we first employ a fixed-point computation to derive both the

method postcondition and a recursive invariant. The invariant captures a size relation

to relate the parameters of an arbitrary-nested recursive call with those of the first call.

Once the postcondition and the invariant are determined, we can compute the program

state at each program point and derive preconditions similarly to the non-recursive case.

Details are given next.

4.4 Recursion Analysis

Our type inference rules effectively determine both a postcondition and a set of precondi-

tions for non-recursive methods. For recursive methods, these rules derive a (recursive)

constraint abstraction that can be analyzed via fix-point analysis. The analysis steps are:

(i) determine a fix-point for the constraint abstraction, and derive the method postcon-

dition, (ii) determine an invariant for the recursive calls, and (iii) derive preconditions

for checks inside recursion.

4.4.1 Deriving Postcondition

The postcondition can be derived from a recursive constraint via a fix-point approxima-

tion procedure pioneered in [43] and adapted for a disjunctive domain in [138, 123]. Let
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us consider a constraint abstraction of the form q〈n∗, r〉 where n∗ denote inputs, while r

denotes its output. For simplicity and without loss of generality, let us assume we have

a constraint abstraction with two recursive invocations of the following form.

q〈n∗, r〉 = φ0∨φ1[q〈s∗, r1〉, q〈t∗, r2〉]

Note that φ1[ , ] is a formula with two holes containing the two recursive invocations,

while φ0 is the base case. The fix-point of such an abstraction can be formalised by the

following series:

q0〈n∗, r〉 = false

qi+1〈n∗, r〉 = φ0∨φ1[qi〈s∗, r1〉, qi〈t∗, r2〉]
For the above fix-point series to converge, we perform approximations via two techniques,

known as hulling and widening.

Hulling approximates a set of disjuncts
∨

φi with a conjunct φ such that (
∨

φi) ⇒ φ.

This process can be refined by hulling selectively a subset of closely-related disjuncts.

We use the notion of affinity to characterize how closely related is a pair of disjuncts

[123]. This selective hulling process is denoted by
∨

φi ≡h φ.

Conjunctive widening takes a formula
∧

φi and drops (by replacing with true) those

constraints φi that are changed compared to the previous step. To apply the widening

operator to a disjunctive formula, we first look for pairs of disjuncts (from the current

and the previous step) to widen and then apply the conjunctive widening on these pairs

[123]. Let us denote widening by ≡w. We shall apply each fix-point approximation until

we obtain a formula qp〈n∗, r〉 such that qp+1〈n∗, r〉 ⇒ qp〈n∗, r〉. This test indicates that

a post fix-point qp〈n∗, r〉 has been reached.

Consider the simple summation program from Figure 4.4, where the constraint ab-

straction obtained from our inference rules is also given. To obtain a closed-form post-

condition, we apply fix-point analysis starting with false, the least element of the dis-

junctive polyhedron domain. Due to the use of widening, such fix-point approximation

always terminates. For brevity, we display related constraints like (j−1≤i ∧ 0≤i ∧ i≤j)

using the abbreviated form (j−1, 0≤i≤j).

sumvec0〈s, i, j〉 = false

sumvec1〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1∧false))



4.4. Recursion Analysis 75

Methods with Postconditions:
Float sumvec(Float[Ints] a,Inti i,Intj j)

where sumvec〈s, i, j〉, . . .
{ if i>j then 0.0 else {Int v= `1:sub(a,i);

v+`2:sumvec(a,i+1,j) } }
Float sum(Float[Ints] a) where sum〈s〉, . . .
{ Int l=`3:len(a); `4:sumvec(a,0,l-1) }

Constraint Abstraction :
sumvec〈s, i, j〉 ≡ (i>j)∨(i≤j ∧ 0≤i<s ∧ sumvec〈s, i+1, j〉)

Figure 4.4: Summation program

= (i>j)

sumvec2〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1∧i1>j))

= (i>j)∨(0≤i<s ∧ i=j)

sumvec3〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1

∧ (i1>j ∨ (0≤i1<s ∧ i1 = j))))

= (i>j)∨(0≤i<s−1 ∧ j=i+1)∨(0≤i≤s∧i=j)

≡h (i>j)∨(j−1, 0≤i≤j<s)

sumvec4〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1

∧ (i1>j ∨ (0≤i1<s−1 ∧ j=i1+1)∨(0≤i1≤s∧i1=j)))))

≡h (i>j)∨(j−2, 0≤i≤j<s)

≡w (i>j)∨(0≤i≤j<s)

sumvec5〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1

∧ (i1>j ∨ (0≤i1≤j<s))))

= (i>j)∨(0≤i≤j<s)

Fix-Point Detected: sumvec5〈s, i, j〉 ⇒ sumvec4〈s, i, j〉

We reach the following fix-point in five iterations:

sumvec〈s, i, j〉 = (i>j) ∨ (0≤i≤j<s)

4.4.2 Deriving Recursive Invariant

Within each recursive method, we may have checks that must be optimized. To deal

with this, we compute another constraint, but this time, for just the input parameters

(excluding the results of method). More specifically, we build a one-step size relation
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to relate the parameters of the next recursive calls with those of the first call. This

relation is then analysed via fix-point analysis to derive a multi-steps relation, known as

recursive invariant. The latter can relate the parameters of an arbitrary recursive call

with those of the first call.

One-step relation can be directly extracted from each recursive constraint abstrac-

tion. Given the earlier constraint abstraction with two recursive invocations, q〈n∗, r〉 =

φ0∨φ1[q〈s∗, r1〉, q〈t∗, r2〉], we can obtain a one-step relation, named I, that attempts to

relate the input n∗ with that of its recursive call, n̂∗, as shown below.

I〈n∗, n̂∗〉 = φ1[
∧

(s = n̂)∗, q〈t∗, r2〉] ∨ φ1[
∧

(t = n̂)∗, q〈s∗, r1〉]

With this relation, we can now apply fix-point analysis to obtain:

I1〈n∗, n̂∗〉 = I〈n∗, n̂∗〉
Ii+1〈n∗, n̂∗〉 = Ii〈n∗, n̂∗〉 ∨ (∃z∗ · Ii〈n∗, z∗〉∧I〈z∗, n̂∗〉)

We derive the following recursive invariant via fix-point analysis:

sumvecI〈s, i, j, ŝ, î, ĵ〉 = (ŝ=s)∧(ĵ=j)∧(0≤i<î≤s, j+1)

The recursive invariant is important for deriving safety preconditions of checks inside

recursive methods, as elaborated next.

4.4.3 Deriving Precondition

Our inference can derive preconditions for checks inside recursion. Due to recursion,

such checks may be encountered multiple times. We propose to separate out the check

of the first recursive call from the checks of the rest of the recursive calls. The reason for

this is that recursive invariant that we derive is applicable to all recursive calls, except

the first. Consequently, the program state for the first check and the program state for

the recursive checks are different. More specifically, consider a check c labelled as ` at

program context s in a recursive method m with invariant i. Its two preconditions can

be derived as follows:

preFst(`) = ∀L · (s ⇒ c) where L = vars(s, c)− V

preRec(`) = ∀L · (s∧i ⇒ c) where L = vars(s, c, i)− V
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For the sumvec example, we would derive two sets of preconditions, namely:

preFst(`1.L) = (j<i)∨(0≤i)

preFst(`1.H) = (j<i)∨(i<s)

preRec(`1.L) = true

preRec(`1.H) = (j<s)∨(s≤j∧i≤−1)∨(s≤j, i)

These preconditions are propagated to the caller of each sumvec call. Note that the

precondition for (rest of the) recursive checks for `1.L is totally safe, but the first check

of `1.L can be guarded by a condition (j<i)∨(0≤i). These different scenarios of array

checks can be exploited by program specialization, so as to maximise the elimination of

redundant checks whilst being mindful of the potential for code explosion. We describe

such a specialization process in Section 4.7.

4.5 Array Indirections

There is a class of programs which has been largely ignored in past work on array bound

checks elimination. This class of programs uses indexes that are stored in another array

(indirection array). Array indirections are used intensively for implementing sparse

matrix operations. For such matrices, only nonzero elements are stored; Additionally,

the indices of these elements are kept inside an indirection array. Luján et al [101]

proposed a solution to handle indirection arrays via a runtime mechanism. Our system

handles indirection arrays and relies entirely on compile-time analysis.

To support programs with indirection arrays, the bounds of their elements will have

to be captured using an additional size variable a via a new annotated type for integer

array Inta[Ints]. Precise tracking will allow us to analyse the indexes retrieved from such

integer arrays. As the array elements are being changed by the assign primitive, their

bounds may also change during program execution. Such size properties are therefore

mutable. To handle them safely, we require the support of an alias analysis, such as

the one proposed in [79], that could be used to identify may-aliases amongst the integer

arrays.

In addition to alias annotation, the main extra machinery is a set of enhanced prim-

itive declarations (preconditions and runtime tests are unchanged, so we replace them
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for brevity with . . .).

Inta[Intr] newarr(Ints s, Intv v)

where (0<s ∧ r=s ∧ a=v ∧ nochange{s, v}); . . .

Intr sub(Inta[Ints] a, Inti i)

where (0≤i<s ∧ r=a ∧ nochange{i, s, a}); . . .

Void assign(Inta[Ints] a, Inti i, Intv v)

where (0≤i<s ∧ (a′=v ∨ a′=a) ∧ nochange{i, s, v}); . . .

The array elements are updated by the newarr and assign primitives, and read

by the sub primitive. In particular, the formula (a′=v ∨ a′=a) captures a weak update

operation with a new approximation to the state of elements in the array. Furthermore,

we may even track the relation between array indexes and their elements by using

the annotated type Int(i,a)[Ints] with a new size variable i to denote index positions.

By using primitives with such type declarations, we can selectively support increased

precision for our analysis. Note that both the inference and the specializer work with the

above indirection array primitives as well as with the array primitives without indirection

from Section 4.2.1.

Let us illustrate how array indirections are analyzed via a simple example that

initializes an array with a range of integer values:

Void initarr (Inta[Ints] a, Inti i, Intj j, Intn n)

where initarr〈a, s, i, j, n〉
{ if i>j then () else {a[i]=n; initarr(a,i+1,j,n+1)} }

Using the fix-point analysis described in Section 4.4, we can obtain the following

postcondition which captures the initialization of the array elements:

initarr〈a, s, i, j, n〉 ≡ (i>j ∧ a′=a) ∨ (0≤i≤j<s ∧ (a′=a ∨ n≤a′≤n+j−i))

This postcondition captures an universal property about the elements of the array

a. The constraint (a′=a) indicates there is no change in the value of array elements.

Intuitively, it can be expressed in the universal fragment of the theory of arrays [16]

using the following constraint: ∀ix · (0 ≤ ix < len(a) ⇒ a[ix]′ = a[ix]). The constraint
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(n ≤ a′ ≤ n+j−i) captures both a lower and an upper bound for all the array elements,

also expressible in the theory of arrays as follows:

∀ix · (0 ≤ ix < len(a) ⇒ n ≤ a[ix]′ ≤ n+j−i)

4.6 Deriving Smaller Formulae

An important property of program analysis is efficiency, and this is particularly so for

an inference system based on Presburger arithmetic. Presburger arithmetic can give

highly accurate analysis (with disjunctions and quantifiers) but has double-exponential

complexity, namely 22cn
where n is the size of its formulae. A summary-based analysis

like ours brings about a smaller number of size variables at each method boundary than

a global analysis approach. With this decrease, the main proviso for efficiency is to

ensure that the pre and postconditions are kept small in size.

A major reason for large formulae is the presence of disjuncts related to the specifica-

tion aggregation problem observed in [94]. To counter this effect, a derived postcondition

can be weakened through the hulling of its disjuncts. However, applying a weakening

process is unsound for preconditions! For preconditions, it is only safe to strengthen and

we propose a new technique that improves the analysis efficiency at a low cost in pre-

cision. We perform the strengthening of the precondition φpre using the gist operation

from the Omega library [130].

Given a check c which occurs at a location with program state s and local variables

VL, we have earlier derived the weakest precondition using pre = (∀VL · ¬s∨c). This

derived precondition is unsuitable due to the negation of a (possibly very large) program

state formula s. To derive smaller preconditions, we may simplify pre using a valid state

s1 for which (∃VL · s)⇒s1 holds.

• One such s1 that can be used is the type invariant inv at method entry. Let us

refer to this technique of using (gist pre given inv) as weak pre-derivation.

• A second technique is to use ∃VL · s itself. Let us refer to this technique as strong

pre-derivation: it uses (gist pre given ∃VL · s) . This technique would strip off all

the avoidance conditions from the derived precondition, which may result in some

loss of precision.
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• To recover this loss of precision, we also propose a third technique, called selective

prederivation, which would first obtain a variant of ∃VL · s that is weakened by

removing conditional tests from s.

For example, consider a symbolic program state derived from the recursive sumvec

method as follows: ∃ î · s>0∧î≤j∧(0≤i<î≤s, j+1). After stripping off its conditional

test, î≤j, we would obtain a weaker state:

∃ î · s>0∧(0≤i<î≤s, j+1)

Simplifying the precondition of (j<s)∨(s≤j∧i≤−1)∨(0≤i∧s≤j, i) with this program

state results in a much smaller precondition, namely j<s, that is obtained by both

selective and strong prederivations. This is in contrast to (j<s)∨(s≤j∧i≤−1)∨(s≤j, i)

that is obtained by weak prederivation.

In our experiments (see Section 4.8), we tested the three prederivation techniques.

When compared to the weak prederivation technique, we were able to reduce the size of

preconditions on average by 63.4% for selective prederivation and by 81.8% for strong

prederivation. We found the selective prederivation to have a reasonable compromise

between efficiency and precision. Furthermore, we achieved a significant reduction in

the inference times needed by some larger programs which fail to complete in reasonable

(allotted) time, otherwise!

4.7 Flexivariant Specialization

The objective of specialization is to place run-time tests (for unsafe checks) at their

respective primitive operations with the objective that array operations become safe,

and the array checks are done minimally. To this end, we specialize the existing method

definitions with information about run-time tests.

To understand the effectiveness of various approaches to specializing method defini-

tions, we examine the following example program:
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void main()

{ · · ·
`5 : p(· · · );
· · ·
`6 : q(· · · )}

t2 p(· · · )
{ · · ·

`3 : q(· · · );
· · ·
`4 : q(· · · )}

t1 q(· · · )
{ · · ·
v1=(`1: sub(a1, i1));

`2: assign(a2, i2, v1);

· · · }

Let us assume that the results of inference are as follows:

Preconditions for q

from `1 from `2

`1.L `1.H `2.L `2.H

true φ1 true φ2

Preconditions for p

from `3 from `4

`3.`1.H `3.`2.H `4.`1.H `4.`2.H

true φ3 φ4 false

Preconditions for main

from `5 from `6

`5.`3.`2.H `5.`4.`1.H `6.`1.H `6.`2.H

true true false false

This corresponds to the following inferred method headers with partially-safe and

unsafe checks.

t1 q(· · · ) where ∆q, {`1.H : φ1, `2.H : φ2}, {}
t2 p(· · · ) where ∆p, {`3.`2.H : φ3, `4.`1.H : φ4}, {`4.`2.H}
void main() where ∆main, {}, {`6.`1.H, `6.`2.H}

Thus, there are three unsafe checks that must be residualized at run-time, namely `4.`2.H,

`6.`1.H and `6.`2.H. The other checks are either safe, or partially-safe with the possibility
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of becoming safe using the context of the caller. An aggressive approach to eliminating

checks is polyvariant specialization. This aims at creating multiple specialized methods

for each method definition, such that each specialized version of a method has a different

set of array checks being eliminated. Its application on our example program yields the

following result:

void main()

{ · · ·
p(· · · );
· · ·
q 3(· · · )}

t2 p(· · · ) where .., φ3∧φ4

{ · · ·
q 1(· · · );
· · ·
q 2(· · · )}

t1 q 1(· · · ) where .., φ1∧φ2

{ · · ·
v1 = (sub(a1, i1));

assign(a2, i2, v1);

· · · }

t1 q 2(· · · ) where .., φ1

{ · · ·
v1 = sub(a1, i1);

if (i2 < len(a2)) then

assign(a2, i2, v1)

else error · · · }

t1 q 3(· · · ) where .., true

{ · · ·
v1 = (if (i1 < len(a1))

then sub(a1, i1)

else error);

if (i2 < len(a2)) then

assign(a2, i2, v1)

else error · · · }

Note that three versions of q have been created to handle its three calls under different

calling contexts.

In this section, we propose a flexivariant program specialization scheme. As spe-

cial cases, we can either support polyvariant or monovariant specializations. For poly-

variance, we can achieve it by never attempting to weaken any of the configurations

encountered. For monovariance, we can achieve it by weakening each configuration en-

countered to its most conservative variant with maximal unsafe checks. For this example,

the monovariant case will weaken the configurations of both q 1 and q 2 to q 3. Even

though q 3 is the weakest configuration, it still has two low bound checks eliminated.

A key feature of our flexivariant specialization scheme is its ability to trade-off op-

timization for a reduction in code size. Furthermore, it is possible to achieve such

trade-offs with minimal loss in performance. For example, if it can be determined that
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q 1 configuration occurs infrequently, we may weaken it into q 2 to save on code size

with little loss in performance.

Flexivariant specialization of a program P into an optimized program S is declared as

follows: .flex P ⇀ S. Specializing a method requires information about the set of runtime

tests to which calls in the method body may lead. Thus, a specialized method can be

identified by a triple comprising the original method name, a set of label sequences

associated with the relevant runtime tests, and a new method name uniquely defined by

the first two components of the triple. We call such a triple a specialization signature

(or signature in short), and a set containing such signatures a specialization cache (or

cache in short).

(m, ς, m̂) ∈ SSig = MName× LSet×MName

σ, σY , σN , σ̂N ∈ SCache = P(SSig)

ς ∈ LSet = P(Label+)

The specialization of an expression is defined by:

P, σ, ς .e
flex e ⇀ e1, σN

The specialization cache σ drives the process, while ς contains the checks to be resid-

ualized. New specialization points created during specialization are stored in σN . We

highlight the most important specialization rules below.

An array operation is specialized in [Spec−Prim] by calling the respective primitive

method without array checks under the condition that the combined runtime checks for

this operation, e1, is true.

[Spec−Prim]

τ m(τ1 x1, . . . , τn xn) where ∆, Φ,C ∈ Pm

ρ = [x1 7→ v1, . . . , xn 7→ vn]

e1 =
∧{ρ e | `.c ∈ ς ∧ (c : e) ∈ C}

e2 = if e1 then m(v1, . . . , vk) else error

e3 = m(v1, . . . , vk) ¢ (e1 = true) ¤ e2

P, σ, ς .e
flex (` : m(v1, . . . , vk)) ⇀ e3, ∅

Here, a label sequence of the form `.c occurring in the set ς represents an array check to

be residualized. Its code is available at the corresponding primitive method declaration.
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Variable substitution is needed to residualize the code. All codes thus generated are

combined as a conjunct, named e1, which is then wrapped as a runtime test for the

primitive call to m. If the runtime set is empty – signified by e1 being true – the m call

will not be wrapped by a conditional.

Similarly, user-defined methods are specialized with respect to the set of runtime

tests ([Spec−Call1]). Weakening of configurations by W may enlarge this set of runtime

tests. Specialization produces a signature for this specialized method if the latter has

not been recorded in the current cache. Otherwise, it reuses the specialised method that

has been recorded previously, as specified in [Spec−Call2].

[Spec−Call1]

(τ m(τ1 x1, . . . τkxk) where ∆, Φ,Υ {e}) ∈ P

ς2 = W(m, ς1) ς1 = {`+ | `1.`
+ ∈ ς} ∪Υ

(m, ς2, ) 6∈ σ ms = genName(m, ς2)

P, σ, ς .e
flex (`1 : m(v1, . . . , vk))

⇀ ms(v1, . . . , vk), {(m, ς1,ms)}

[Spec−Call2]

(τ m(τ1 x1, . . . τkxk) where ∆,Φ, Υ{e}) ∈ P

ς1 = {`+ | `1.`
+ ∈ ς} ∪Υ (m,W(m, ς1),ms) ∈ σ

P, σ, ς .e
flex (`1 : m(v1, . . . , vk)) ⇀ ms(v1, . . . , vk), ∅

4.8 Experimental Results

On top of the disjunctive fixed-point analyzer (described in Chapter 3), we have con-

structed a modular inference system together with a program specializer. The out-

put from our system was validated by a separate checking system that we have also

built. The entire prototype system was written in Haskell and compiled using Glas-

gow Haskell compiler[121]. For constraint solving in the Presburger arithmetic domain,

we used the Omega library [129, 88]. A web-demo of our system can be found at

http://loris-7.ddns.comp.nus.edu.sg/~popeeaco/imp/.

We evaluated our prototype using small programs with challenging recursion and two

numerical-intensive benchmarks: SciMark (Fast Fourier Transform, LU decomposition,

http://loris-7.ddns.comp.nus.edu.sg/~popeeaco/imp/�


4.8. Experimental Results 85

Programs Source Static Checking Inference (secs) Static Checks
(lines) Checks (secs) Weak Selective Strong Eliminated

binary search 31 2 0.17 1.84 1.81 1.79 100%
bubble sort 39 12 0.43 1.55 1.51 1.47 100%

foo 12 4 0.39 0.66 0.67 0.87 50%/75%
hanoi tower 38 16 3.73 11.74 11.53 11.47 100%
merge sort 58 24 7.70 11.21 16.01 13.07 100%

queens 39 8 0.52 2.13 2.11 2.10 100%
quick sort 43 20 0.38 1.92 1.92 1.76 100%
sentinel 26 4 0.05 0.18 0.16 0.15 75%

sparse multiply 46 12 3.27 22.61 17.37 7.09 100%
sumvec 33 2 0.11 0.51 0.48 0.47 100%
FFT 336 62 9.58 * 58.02 28.74 100%

LU Decomp. 191 82 13.10 137.1 93.31 72.91 100%
SOR 84 32 1.15 7.18 4.67 3.8 100%

Linpack 903 166 42.26 * 360.1 162.2 100%

Figure 4.5: Statistics for array bound checks elimination

Successive Over-Relaxation) [112] and Linpack [51]. Our test platform was a Pentium

2.8 GHz system with 1GByte main memory, running Red Hat Linux 9.0.

Our main objective was to show the viability and the precision of the system. Fig-

ure 4.5 summarises the statistics obtained for each program that we inferred. To quantify

the analysis complexity of the benchmark programs, we counted the program size (col-

umn 2) and also the number of static checks present in each program (column 3). The

time taken for inference (columns 5-7) includes parsing, preprocessing, modular type

inference and specialization. For comparison, we present the time taken for checking

pre-annotated programs (column 4), composed from parsing and dependent type check-

ing. The size of the method constraints (preconditions, postconditions and recursive

invariants) is on average around 15% of the size of the source program. Thus, our in-

ference eliminates the effort to annotate methods required of programmers with access

to only a dependent type checker.

Due to the precision of our inference system, we were able to eliminate 100% of array

checks for all the programs we tested, except for sentinel and foo (column 8). The

sentinel example illustrates a pattern where some checks cannot be eliminated by our

method, since it makes use of a sentinel/guard against falling off one end of the array.

Like [149, 147], we were unable to capture the existential property that is required for

check elimination. For the foo example, strong prederivation and selective prederivation

eliminate 50% and 75%, respectively, of the static checks.
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We can compare our experimental results to other analyses that are based on dis-

junctive domains similar to ours, but employ only forward derivation [138, 123]. For

the benchmark set used in our previous work [123], a forward derivation and a fixed-

point analysis with Hausdorff affinity akin to [138] led to 76% check elimination, while

a forward analysis using planar affinity introduced in [123] was able to eliminate 84%

of the checks. Compared to these two previous analyses, our current techniques achieve

100% check elimination. We can attribute this improvement to the combination of the

forward derivation of postconditions with the backward derivation of preconditions. An-

other reason for our improved results was the handling of array indirections present in

the sparse multiply and Linpack benchmarks.

In almost all cases, strong prederivation takes less time than selective prederivation,

followed by weak prederivation. As an exception, the increased precision of weak pred-

erivation allows a faster analysis of mergesort, since some bound checks are proved

redundant at an earlier point than the other two prederivation methods. On the other

hand, for those larger programs we found it crucial to use either selective or strong

prederivation; weak prederivation does not scale up as inference fails to complete in

reasonable time (cases denoted by * signify over an hour inference time).

To summarize our experiences, we observe that our initial goal was to build a precise

inference system and make it practical by employing a modular analysis that computes

method summaries. However, the small number of size variables at each method bound-

ary was not enough to ensure the efficiency of our system. The backward component

of our system proved to be expensive mostly due to two reasons. Firstly, precondition

derivation was done via negation of a (possibly very large) program state formula. Sec-

ondly, array bound checks were specialized by deriving individual preconditions, one for

each check. This was our intention in order to enable aggressive program optimization.

Note that proving program safety does not necessarily require individual precondition

derivation (and, in our setting, can be less expensive). To cope with these additional diffi-

culties, we employed additional approximations to reduce the size of method summaries:

weakening of postconditions via selective hulling and strengthening of preconditions via

gisting. With these techniques, both the inference and the specializer were integrated

into a system that was shown to be practical and precise enough for our purposes.
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4.9 Correctness

The soundness of our type inference is defined with respect to a type checking system

and a specialization process. After type inference (that includes fixed-point analysis),

the inferred program must be specialized to include the runtime tests discovered during

inference, before it becomes well-typed. We state the soundness of our system below

and refer the reader to the technical report [126] for details on the proof.

Theorem 4.1 (Soundness). Let P be a program and a type inference judgement such

that (Pm `I P ; PI). Let (.flex PI ⇀ PT ) be the specialization of PI to PT guided by

the inferred runtime tests. Then PT is well-typed.

As a special case, if no unsafe check is discovered during inference then PI is well-

typed. However, if unsafe checks are discovered, the use of label sequences (eg., `6.`1.H)

to identify array checks also enables debugging feedback. Specifically, our analysis can

pin-point the exact location of each unsafe check based on the calling hierarchy up until

an unsatisfied precondition.

4.10 Related Work

Traditionally, data-flow analysis techniques have been employed to gather information

for the purpose of identifying redundant array checks [71]. Within the scope of intra-

procedural analysis, these techniques are also used to gather anticipatable information

for the purpose of hoisting partially-redundant checks to more profitable locations. The

techniques have gradually evolved in sophistication, from the use of family of checks in

[90], to the use of difference constraints in [13].

To identify redundant checks more accurately, verification-based methods have been

used by Suzuki and Ishihata [144], Necula and Lee [113] and Xu et al [149]. Xi and

Pfenning have advocated the use of dependent types for array bound check elimination

[147]. Their approach is limited to totally redundant checks. Moreover, the onus for

supplying suitable dependent types rests squarely on the programmers, as only a type

checker is available.

Precondition derivation with respect to a postcondition (or check) has been formu-

lated via generating its Verification Condition (VC) by Flanagan et al [56, 57]. Their

focus was to obtain compact VCs whose size is worst-case quadratic to the size of the
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source. However, they do not attempt to make preconditions and postconditions any

smaller through strengthening and weakening, respectively. Furthermore, these VCs

are for totally-redundant checks. In contrast, our technique stresses on modularity and

deals with inter-procedural analysis over recursive methods, whereas they focus on intra-

procedural analysis and loops. Recently, Flanagan [54] introduced the idea of inserting

assertions that cannot be proven during type checking as run-time checks. Our use of a

flexivariant specializer to insert runtime checks (after inference) shares a similar flavour.

However, our proposal is based on inference, while his is formalised for a type-checker.

Identifying redundant array bound checks can also be done using abstract interpreta-

tion techniques over numerical domains. In a seminal paper, Cousot and Halbwachs [43]

introduced the polyhedra abstract domain and defined convex-hull and widening opera-

tors for this domain. Subsequently, various other abstract domains have been proposed,

varying from conjunctive weakly-relational domains like octagons [104], pentagons [100]

or template constraint matrices [139, Chapter 4] to disjunctive domains [138, 123]. In

fact, safety analyzers that scale to large critical programs like Astrée [12] or C Global

Surveyor [145] use elaborate combinations of abstract domains to achieve maximum

efficiency. For example, the static analyzer that has been described by Cousot et al

[12, 42] succeeds in analyzing a program of 75 kloc with no false alarm. It achieves

this by varying the precision of arithmetic abstract domains from interval domain to

ellipsoid domain. It also uses a decision tree abstract domain and trace partitioning for

path-sensitivity. These relational domains operate on packs of variables for efficiency

reasons. However, our analysis maintains path-sensitivity and the same level of precision

over the entire program by exploiting modularity. Being a summary-based approach,

we have a bounded number of variables at method boundary and we further ensure that

preconditions are kept small via suitable prederivation. Modularity has also been rec-

ognized as an important step for static program analyses to scale up to precise analysis

of large programs [40] and our proposal is a solution in this direction.

To avoid fix-point iteration, Rugina and Rinard [137] proposed an analysis method

(using linear programming) to synthesize polynomial symbolic bounds. While efficient,

fixing a target form (without disjunction) for the symbolic bound may result in loss of

precision. Dor et al advocated for linear constraints, expressed using pre/post conditions,
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to help determine the safety of C pointers to string buffers [52]. For their experiments,

the inference result is, however, less precise than user-supplied annotations. This is

likely due to the absence of disjunction and path-sensitivity during inference.

The idea of deriving preconditions for partially redundant checks was first proposed

in [28] to complement postcondition inference on sized types [27] for a first-order func-

tional language. However, this early work was mostly informal and had no implementa-

tion. We formalize this early idea by inferring a sound dependent-type annotation for an

imperative language, and integrating its results with a program specializer. Moreover,

we now have a practical and precise implementation.

Unlike the work in [24] which uses a separate set-based analysis for properties of

elements in a collection, our current proposal uses arithmetic constraints to represent

such properties directly for indirection arrays. This decision reduces the burden of

using two different analyses. On the other hand, the set-based analysis approach [24]

may give more precise results via universal and existential properties, and deal with

elements which may not be integers.

Flexivariant specialization scheme enables a trade-off to be made, that can give

up some array check optimization for a reduction in code size. Such trade-off can be

guided with the help of suitable path-profiling techniques[146]. Such a compromise was

originally pioneered in a technique, called selective specialization [47], to convert expen-

sive dynamic method dispatches for object-oriented programs into static counterparts,

where possible. Our flexivariant scheme supports the proposed inference with a family

of specializers, with selective specialization as a possible option.

4.11 Summary

We have proposed a new inference mechanism for a dependent type system with size

relations. Our approach captures postcondition in the presence of imperative updates,

and derives safety preconditions for each check encountered. Both the postcondition and

safety precondition are propagated interprocedurally, though in opposite directions. Re-

cursive methods are also handled through a fix-point analysis on constraint abstraction

derived via inference. The resulting analysis is not only flow and context-sensitive, but

is also path-sensitive. It can capture symbolic program states between local variables,
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inputs and outputs. Initial experiences with a prototype implementation suggest that

such an advanced form of type inference is both precise and efficient. Just as the present

analysis is empowered by the use of Presburger arithmetic, it is inevitably limited by

the linearity of expressible constraints. However, by first subjecting the original pro-

gram to pre-processing such as partial evaluation (using constant propagation and loop

unrolling), our analysis can discover more linear constraints, and thus further improve

its effectiveness.
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CHAPTER V

DUAL STATIC ANALYSIS

5.1 Introduction

Program bugs remain a major challenge for software developers and various tools have

been proposed to help with their localization and elimination. Traditionally, program

testing and model checking [59, 62, 45] have been applied to detect the presence of

real bugs. However, one shortcoming of the testing process is that it is unable to

prove the absence of bugs, compromising on program safety. In contrast, static analysis

which uses abstraction on program states can be used to prove program safety [43, 138].

It achieves this by showing that bad error states are not reachable via an exhaustive

interpretation in the abstract domain. Due to approximation, static analysis may report

false positives that are possible bugs that do not exist in practice. High incidents of false

positives can make static analysis tools impractical to use for finding and eliminating

bugs. This problem is serious enough that Jung et al [87] have resorted to machine

learning (that are neither sound nor complete) to heuristically cut down on the numerous

false-positives that were reported by their static analyzer. Furthermore, as reported in

the Astrée project [12, 136], manual inspection of alarms (possible bugs) can be a very

time- consuming process and may take several days even for simple alarms.

Recently, there have been some proposals [120, 150, 67] that advocate for over-

approximation techniques (based on static analysis) to be synergistically combined with

under-approximation techniques (based on concrete execution or program testing). One

main goal of this combination, as advocated in [67], is to leverage on the strengths of

the two techniques so that program bugs or their absence can be discovered more accu-

rately and effectively. While such a proposal can exploit the complementary strengths

of its constituent techniques, it is also more complex to construct due to the need to

combine quite different techniques and to consider potential interplays between them.

Furthermore, it is often useful to explore what can be achieved within a single method-

ology before considering synergistic combinations of different techniques, to allow the
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strengths of each technique to be more fully exploited.

In this chapter, we shall propose a dual static analysis that is different from past

approaches as both its components are based primarily on over-approximation. Our

approach is also modular and computes (on a per method basis) trigger conditions for

each bug expressed symbolically in terms of the method’s parameters. Specifically, we

support the concurrent discovery of three conditions for bugs, called must-bug, may-bug

and never-bug, respectively. To illustrate the three different kinds of bugs, consider a

simple example :

int foo(int x, int y)

{ if (x≤y) then { if (x>10) then `1:error else 1 }
else { if complexTest(x, y) then `2:error

else { if x≥y then 2 else `3:error }
}

}

The bugs in our programs shall be flagged using a special error construct. This ap-

proach is simple but general as we can translate the more conventional (assert c)

command for bug detection, directly to (if c then skip else error). The method

complexTest denotes a predicate whose outcome cannot be modelled by the underlying

static analyser, for example modelling the predicate x3+y3≥0 is beyond the capability

of linear arithmetic solvers. According to our analysis, the error at location `1 is a

must-bug as we can determine an input trigger condition x≤y ∧ x>10 that must lead

to the error. In contrast, the error at location `2 is a may-bug as our analysis can only

determine a trigger condition x>y that may lead to this error, since its occurrence is still

dependent on the second conditional with a statically unknown test. Lastly, the error

at location `3 is a never-bug as our analysis can determine a trigger condition x>y∧x<y

that can never happen, namely false.

Our classification of bugs is dependent on the precision of the underlying static

analyser. A more precise analyser can classify more of the may-bugs as either must-

bugs or never-bugs. In our approach, each must (or may) bug is guarded by a trigger

condition that specifies a condition on the parameters of a method that will (or could)

lead to the bug. These trigger conditions are useful for interprocedural analysis as they
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allow their associated bugs at each call site to be either propagated to caller, downgraded

to a may-bug or proven to be safe (as a never-bug). For example, a trigger condition

for a bug in the callee may be propagated as a bug for the caller with a new trigger

condition based on the caller’s inputs. A trigger condition may also be shown to be false

in some callers’ contexts which renders its associated bug unreachable and hence safe.

Alternatively, the trigger condition of a must-bug might be shown to be always true.

This means such a must-bug is always triggered whenever the method is invoked. In

this scenario, a definite (or real) error can be reported for the method. More specifically,

this chapter makes the following contributions :

• We propose a new dual static analysis to support either bug finding or a proof

of the absence of bugs, where possible. This integrated analysis is based only

on over-approximation and tracks concurrently both success and failure outcomes.

Though this idea is simple (and may appear obvious on hindsight), it has never

been used in mainstream work on static analyses.

• Our analysis has adjustable precision based on disjunctive formulae. The overlap

between the two outcomes signifies imprecision of the analysis and can be used to

guide the precision refinement.

• We propose a new technique to classify a sub-class of definite non-terminations

as bugs. Our technique catches this class of non-termination bugs by explicitly

identifying unreachable states during fixed point analysis. We can achieve this

despite its converse problem (termination) being a liveness property, that is not

usually addressed by safety-based static analyses.

• We formalise a correctness proof for our technique, and conduct a set of experi-

ments to validate our proposal.

5.2 Our Approach

We propose a new approach to static analysis that can both detect real bugs and also

be sound with respect to some stated safety property by reporting all of its possible

bugs. Each concrete execution may result in one of three possible outcomes : (i) ok for

a successful execution, (ii) err for a failed execution and (iii) loop for an execution that
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does not terminate. Our strategy is to track two over-approximations, denoted by OK

and ERR, to capture all executions that lead to (i) ok outcomes, and (ii) err outcomes,

respectively. Formally:

Definition 5.1. (Entire Success Outcomes)

Given a method, we can capture a condition on the method’s inputs that leads to all

possible ok outcomes. This condition is named OK and is an over-approximation that

may include some err and loop outcomes. It represents a condition necessary for safety.

Definition 5.2. (Entire Failure Outcomes)

Given a method, we can capture a condition on the method’s inputs that leads to all

possible err outcomes. This condition is named ERR and is an over-approximation that

may include some ok and loop outcomes. It represents a condition necessary for error.

For example, consider the earlier foo example with two input parameters, x and y.

Using our static analysis, we may compute a condition that covers all its ok outcomes :

OK = (x≤y ∧ x≤10) ∨ x>y.

Correspondingly, a condition that covers all its err outcomes can be computed to be:

ERR = (x≤y ∧ x>10) ∨ x>y.

Our analysis may also identify individual errors separately by attaching each ERR out-

come with a distinct program label, but we defer the presentation of this technique for

Section 5.4.1.

Based on the two over-approximation results OK and ERR, we can determine the

conditions for must-bug, may-bug and never-bug for each given method, as follows :

Definition 5.3. (Never-Bug Condition)

A condition c (on the inputs) of a method is a never-bug condition if each of its inputs

leads to either the ok or loop outcomes, but never the err outcome. This condition c can

be computed using OK ∧ ¬(ERR) where ¬(ERR) ensures that none of the err outcomes are

possible. It represents a condition sufficient for safety. 1

Definition 5.4. (Must-Bug Condition)

A condition c (on the inputs) of a method is a must-bug condition if each of its inputs

1For proving program safety, our classification is closer to partial correctness terminology, where the
safety proof does not ensure program termination.
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leads to either the err or loop outcomes, but never the ok outcome. This condition c can

be computed using ERR ∧ ¬(OK) where ¬(OK) ensures that none of the ok outcomes are

possible. It represents a condition sufficient for error (where non-termination can also

be considered a kind of bug).

Definition 5.5. (May-Bug Condition)

A condition c (on the inputs) of a method is a may-bug condition if each of its inputs

leads to either ok, err or loop outcomes. This condition c arises from imprecise analysis

and can be computed using OK ∧ ERR which covers an overlap where all three outcomes

are possible.

A graphical illustration of these three categories of bug conditions is shown in

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

may
bug

must
bug

OK ERR
never

bug

Figure 5.1: Classifying bugs

Figure 5.1. The two circles denote the conditions for

OK and ERR, while the three areas being partitioned

by the two circles are the conditions for never-bug,

may-bug and must-bug. The goal of our analysis is to

minimise the overlap between OK and ERR outcomes,

so that fewest possible inputs are classified under the

may-bug category. This can be achieved by using a

more precise analysis on the two over-approximated outcomes. Note that ok outcomes

may only appear inside OK, while err outcomes may only appear inside ERR.

Due to our use of over-approximation analysis, our analysis can only guarantee that

a bug will occur, assuming the absence of non-termination outcome. In other words,

we may sometimes report a must-bug when the outcome is actually a loop. Neverthe-

less, we will discuss how to discover some non-termination outcomes in Section 5.4.2.

Even though loop outcomes may appear everywhere, the condition ¬(OK∨ ERR) contains

exclusively loop outcomes.

Going back to the foo example, we may now compute this method’s conditions for

must-bug, may-bug and never-bug :

MUST BUG = ¬(OK) ∧ ERR

= ¬(x≤y∧x≤10 ∨ x>y) ∧ (x≤y∧x>10 ∨ x>y)

= x≤y ∧ x>10
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MAY BUG = OK ∧ ERR

= (x≤y∧x≤10 ∨ x>y) ∧ (x≤y∧x>10 ∨ x>y)

= x>y

NEVER BUG = OK ∧ ¬(ERR)

= (x≤y∧x≤10 ∨ x>y) ∧ ¬(x≤y∧x>10 ∨ x>y)

= x≤y ∧ x≤10
Thus, to analyse for must, may and never-bugs, we only need to determine the

condition for possible successful execution OK and the condition for possible program

errors ERR. Analysing both these outcomes concurrently is the main novelty behind our

approach for capturing both must and may analyses under a dual static analysis. As we

shall see later, our approach supports adjustable precision with the help of disjunctive

formulae to accurately report must-bugs or prove the absence of bugs, where possible.

When none of these scenarios is possible, we can report may-bugs that could be either

real bugs or false positives. May-bugs usually occur when the abstraction domain (used

by our static analysis) is not precise enough.

5.3 Summarizing Dual Over-approximations

The results of our analysis are encoded as summaries Φ computed individually for each

method (excepting mutually recursive methods that are analyzed simultaneously). Sum-

maries shall be inferred bottom-up, starting with the methods lowest in the calling hi-

erarchy. A method summary Φ = {OK : φ1, ERR : φ2} combines all the traces leading to

success outcomes under the OK label as (φ1). The traces leading to failure outcomes

are combined under the ERR label as (φ2). The form of the φ formula depends on the

constraint solver used. Our analysis makes use of a linear arithmetic domain. Due to

its forward nature, our analysis can capture each successful OK outcome with a postcon-

dition that tracks the relation between inputs and output. The output of a method (or

expression) is identified by a special res variable.

Our analysis summarizes entire method bodies, but also parts of the method body

(individual expressions). It models state changes in a symbolic manner through tran-

sition formulae φ. This is done using two symbolic values per program variable for

capturing new and old variable values, respectively. Given a program variable v, the
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prime notation v′ denotes the new value, while v itself denotes the old value of the

program variable. Two transition-based formulae may be composed in a natural way

using an operator compose with update effect on a set of variables W.

Definition 5.6. (Compose with Update)

Given transition formulae φ1, φ2, and a set of variables to be updated W={w1, . . . , wn},
the operator ◦W is defined as:

φ1 ◦W φ2 =df ∃ r1..rn · ρ1 φ1 ∧ ρ2 φ2

where r1, . . . , rn are fresh variables;

ρ1 = [w′i 7→ ri]ni=1; ρ2 = [wi 7→ ri]ni=1

Note that ρ1 and ρ2 are substitutions that link each latest value of w′i in φ1 with the

corresponding initial value wi in φ2 via a fresh variable ri. Unchanged variables in φ2

are used in primed form.

Consider the sequence x:=(x+y)∗2; y:=x+y. Its effect can be captured by composing

two transition formulae, each corresponding to one assignment :

(x′=2∗(x+y) ∧ y′=y) ◦{x,y} (y′=x+y ∧ x′=x)

≡ ∃r1, r2 · (r1=2∗(x+y) ∧ r2=y) ∧ (y′=r1+r2 ∧ x′=r1)

≡ x′=2∗(x+y) ∧ y′=2∗x+3∗y
The use of transition formulae in program analysis has been known since [38], and

intensely studied in [30].

5.3.1 Forward Reasoning Rules

To compute method summaries, we shall now propose a set of forward rules that relies

on transition formulae in Figure 5.2. These rules resemble those from weakest precondi-

tion/strongest postcondition calculi with two important distinctions. Firstly, our inte-

grated approach is entirely forward and does not derive backwards weakest precondition.

Secondly, we use a set of outcomes to compute simultaneously two over-approximations.

Deriving both sound bugs and proving safety is made possible by this combination.

The rules are written in Hoare-style form using the judgement `{Φ1} e {Φ2}. Given

the OK outcome from Φ1 (a transition from the beginning of the current method to the

prestate before e’s evaluation), the judgement derives Φ2: firstly, a transition from the

beginning of the current method to the poststate after e’s evaluation; secondly, an ERR

condition, in part from Φ1 and also from possible errors happening during e’s evaluation.
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[CONST]
Φ1 = (Φ ∧ res=k)
`{Φ} k {Φ1}

[BLK]
`{Φ ∧ default(t, v′)} e {Φ1}
` {Φ} t v; e {∃v′·Φ1}

[SEQ]
`{Φ} e1 {Φ1}

` {∃res·Φ1} e2 {Φ2}
` {Φ} e1; e2 {Φ2}

[ASSIGN]
`{Φ} e {Φ1}

Φ2 = ∃res·(Φ1◦{v}v′=res)
`{Φ} v:=e {Φ2}

[VAR]
Φ1 = (Φ∧res=v′)
`{Φ} v {Φ1}

[CALL]
V={vi}m−1

i=1 distinct(V)
t0 mn((ref ti vi)m−1

i=1 , (ti vi)n
i=m) where Φmn {...}

` {Φ} ` : mn(v1..vn) {Φ ◦V Φmn}
[IF]

`{Φ ∧ v′=1} e1 {Φ1}
` {Φ ∧ v′=0} e2 {Φ2}

` {Φ} if v then e1 else e2 {Φ1 ∨Φ2}

[ERROR]
Φ1 = Φ ◦∅

{OK : false, ERR : true}
` {Φ} ` : error {Φ1}

[METH]
X={v1, .., vn, res, v′1, .., v

′
m−1} V ={v′i}n

i=m R={res, v′1, .., v′n}
W={vi}n

i=1 `{{OK : nochange(W )}} e {{OK : φ1, ERR : φ2}}
Q={mnOK(X)≡∃V ·φ1, mnERR(W )≡∃R·φ2} Φ′mn = fix(Q)

` t0 mn((ref ti vi)m−1
i=1 , (ti vi)n

i=m) where Φmn{e} ⇒ Φ′mn

Figure 5.2: Forward reasoning rules

Our rules use logical operators with set of outcomes as arguments: ∃V ·Φ, Φ ∨ Φ and

Φ ◦ Φ. These logical operators are distributed to the components of Φ as follows:

∃V ·{OK : φ1, ERR : φ2} ≡ {OK : ∃V ·φ1, ERR : ∃V ·φ2}
{OK : φ1, ERR : φ2} ∨ {OK : φA, ERR : φB}

≡ {OK : φ1∨φA, ERR : φ2∨φB}
{OK : φ1, ERR : φ2} ◦W {OK : φA, ERR : φB}

≡ {OK : φ1◦W φA, ERR : φ2∨(φ1◦W φB)}

The rule that involves ◦ is more complex. The ERR outcome of the result (condition:

φ2∨(φ1◦φB)) indicates either failure from the first argument (condition: φ2), or from the

success of the first argument followed by the failure of the second argument (condition:

φ1◦φB). The ◦ operator is not commutative as there is an implied order in the execution

of the two summary outcomes. For brevity, a singleton set can also be expressed as:
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φ ≡ {OK : φ}. In that case, operators like Φ ∧ φ and Φ ◦W φ are shorthands for :

Φ ∧ φ ≡ Φ ◦∅ {OK : φ, ERR : false}
Φ ◦W φ ≡ Φ ◦W {OK : φ, ERR : false}

For the [BLK] rule, we provided some constraints as default values depending on the

respective types. According to the language semantics, a possible set of defaults could be

default(int, v)≡v=0, default(int[], v)≡v=null and default(void, v)≡true. Note that

true may be used if there are no defaults. For the [CALL] rule, we used distinct(V)

to ensure that the list of variables in V are different from each other. This is used to

avoid aliases for pass-by-reference parameters. In the case of boolean values, we encode

them in the integer domain by using 0 for false, and 1 for true, as can be seen in the

[IF] rule. For the [METH] rule, we use nochange({v1..vn}) ≡
∧n

i=1 vi=v′i to compute the

initial prestate for the method’s body.

For a recursive method, the rules will derive a set of recursive constraints, one for

each outcome of the method. The recursive constraints can be viewed as an intermediate

form and are represented as constraint abstraction functions [73]. During the inference

of a recursive method mn, the rule [CALL] will use the following placeholder for its

summary: Φmn={OK : mnOK(X), ERR : mnERR(W )}. The rule [METH] collects in Q the

constraint abstractions and then invokes an iterative fixed point analysis to compute

the summary Φ′mn = fix(Q). This fixed point analysis will be described in more detail

in Sec 5.3.2.

While the summary of each user-defined method can be inferred, some methods are

primitives in that they lack a method body and are provided instead with a summary

formula. As an example, consider the following two primitives that may incur divide-

by-zero and some array-related errors, respectively.

int div(int x, int y) where{OK : y 6=0∧res=x/y, ERR : y=0}
void assign(int[] a, int i, int v) where

{OK : a 6=null∧0≤i<a.len, ERR : a=null∨i<0∨i≥a.len}

The div operation succeeds only when the argument y is non-zero, while the array

assign method succeeds only when index i is within the bounds of a non-null array. For

the assign method, we may split its ERR outcome to {ERR.null : a=null, ERR.low : i<0,
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ERR.high : i≥a.len}, so as to capture the null dereferencing, low bound and high bound

errors individually. In general, we expect the outcomes of a primitive to represent non-

overlapping conditions that completely characterize the inputs of the primitive.

Note that null may be modelled by the value 0, while nonnull may be modelled

by a value ≥1. In the implementation, we rely exclusively on an arithmetic constraint

form as our abstraction domain and solver. Due to the use of the integer domain to

encode array lengths (a.len > 0), boolean values (false ≡ 0, true ≡ 1) or nullness

(null ≡ 0, nonnull ≡ ≥1), we ensure that derived formulae always satisfy a type-

invariant. This is not required for correctness; it merely filters out the unnecessary part

of the integer domain. For example, given a variable of boolean sort b, after filtering we

obtain: ¬(b=0 ∨ b=1) ≡ false.

Example: Let us illustrate the forward reasoning process using a simple example, a

method that assigns 0 to those elements in the array a from the range i to 1.

void g(int[] a, ref int i)

{ if (i≤0) then ()

else { assign(a, i, 0); i:=i−1; g(a, i) } }

We will use the forward rules to derive formulae at intermediate points from the method

g. To improve readability, formulae are simplified and we omit the tracking on nullness

of array variables:

For assign(a, i, 0), [CALL] rule is applied:

Φ1 ≡ {OK : i′=i ∧ i′>0 ∧ i′<a.len, ERR : i>0 ∧ i≥a.len}
For i:=i−1, [ASSIGN] rule is applied:

Φ2 ≡ {OK : i′=i−1 ∧ i>0 ∧ i<a.len, ERR : i>0 ∧ i≥a.len}
For g(a, i), [CALL] rule is applied:

Φ3 ≡ Φ2 ◦{i} {OK : gOK(a, i1, i′), ERR : gERR(a, i1)}
For the conditional expression, the [IF] rule is applied:

Φ4 ≡ {OK : i′=i ∧ i′≤0, ERR : false} ∨ Φ3

For the method’s body, the [METH] rule is applied:

Q = {gOK(a, i, i′) ≡ φOK4, gERR(a, i) ≡ ∃i′·φERR4}
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After simplifications, Q reduces to two independent constraint abstractions, one for the

OK outcome, the other for the ERR outcome:

gOK(a, i, i′)≡(i≤0 ∧ i′=i) ∨ (i>0∧0≤i<a.len∧
∃i1· i1=i−1 ∧ gOK(a, i1, i′))

gERR(a, i)≡i>0∧((i<0 ∨ i≥a.len) ∨
0≤i<a.len ∧ ∃i1· i1=i−1 ∧ gERR(a, i1))

5.3.2 Fixed-Point Analysis

Our approach to analysing recursive methods is to first build two constraint abstractions

for OK and ERR outcomes. Once built, we can apply traditional fixed point analysis (for

example, with hulling and widening approximations [43]) to derive a closed-form formula

for each recursive constraint abstraction. The constraint abstractions are monotone

functions and can be interpreted over various abstract domains. We will fix the abstract

domain to the disjunctive polyhedral analysis as recently proposed in [138, 123]. This

abstract domain is essentially based on the seminal work of Cousot and Halbwachs [43],

but is more fine-grained by allowing disjunctions of linear inequalities to be captured.

Though the abstract domain expresses disjunctive invariants, it still uses a (selective)

hull operator reminiscent of the convex-hull operator originally proposed in polyhedral

analysis.

Example: We apply fixed point analysis to gOK obtained previously. The iteration

starts with the least element of the abstract domain represented by gOK0(a, i, i′)≡false.
After few iterations, we can obtain a post fixed point gOK4(a, i, i′) as follows:

gOK1(a, i, i′) ≡ (i≤0 ∧ i′=i) ∨ (i>0∧0≤i<a.len∧
∃i1· i1=i−1 ∧ gOK0(a, i1, i′))

≡ i≤0 ∧ i′=i

gOK2(a, i, i′) ≡ (i≤0∧i′=i) ∨ (i=1∧i′=0∧2≤a.len)
gOK3(a, i, i′) ≡ (i≤0∧i′=i) ∨ (1≤i≤a.len−1∧i≤2∧i′=0)

gOK4(a, i, i′) ≡W (i≤0∧i′=i) ∨ (1≤i≤a.len−1∧i′=0)

Note that ≡W denotes a widening step. A similar analysis would derive the following

closed-form formula for gERR(a, i).

gERR(a, i) ≡ i>0 ∧ i≥a.len
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The input conditions corresponding to the two over-approximations ∃i′ ·gOK(a, i, i′) and

gERR(a, i) do not overlap. Hence, we have a precise result that leads to either never-bug

or must-bug.

NEVER BUG = i≤0 ∨ 1≤i≤a.len− 1

MUST BUG = i>0 ∧ i≥a.len
MAY BUG = false

To compute the never-bug and the must-bug conditions, we make use of the negation

operator ¬ which can be provided precisely for some abstract domains. This is the

case for our disjunctive polyhedron abstract domain. Disjunctions are crucial: for the

(conjunctive) polyhedron abstract domain a sound under-approximating version of the

¬ operator has to be used (which may lose a lot of precision). A simple example of a

disjunctive formula:

¬(x≥0 ∧ y≥0) = (x≤−1) ∨ (y≤−1 ∧ x≥0)

This formula could be approximated in the polyhedron domain by dropping one of its

disjuncts.

Our technique for fixed-point analysis can also be applied to imperative loops. It is

folklore in the functional community that loops are but tail-recursive functions. This

same idea can also be used for imperative languages, except that pass-by-reference pa-

rameters are critical for modelling variables that may be updated across method invo-

cations (or loop iterations). For example, consider the following loop where variables

{r, i} are updated :

while (i<n) do { r := r + 2; i := i + 1 }

To model the effect of this loop, our system transforms it automatically to the following

tail-recursive method :

void tail(ref int r, ref int i; int n) {
if (i<n) then { r := r + 2; i := i + 1; tail(r, i, n) }
else () }

The following summary is computed for the above loop:

{OK : (i≥n∧r′=r∧i′=i) ∨ (i<n∧i′=n∧r′=r+2(n−i))}
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5.4 Further Improvements

There are at least three avenues to further improve on our static analysis. First, we can

provide a more precise way to capture the origin of each detected error. Second, we can

capture a sub-class of definite non-termination as bugs. Lastly, we shall look at an alias

analysis to support the handling of heap-allocated objects.

5.4.1 Precise Error Tracing

Our analysis may pin-point the precise location of a discovered error by the notation

{ERR.` : e} where ` is a sequence of program locations that corresponds to the method

call chain leading to the specified error. As an example, consider the following :

void foo3(int x) {
`1 : foo4(x, x + 1);

`2 : foo4(x, 3); }

void foo4(int x, int y) {
if x=y then `3 : error

else () }

The error in foo4 will only be flagged if x=y. We may therefore capture its sum-

mary outcome as {OK : x 6=y, ERR.`3 : x=y}. This ERR.`3 error is impossible when in-

voked from `1:foo4(x, x+1), but can occur when it is invoked from the context of

`2:foo4(x, 3). The summary outcome for the foo3 method is therefore inferred as:

{OK : x6=3, ERR.`1.`3 : false, ERR.`2.`3 : x=3}. The formula false at ERR.`1.`3 indicates

that the bug at `1 can never occur. We can omit this never-bug from the summary out-

come of foo3 which would simplify to {OK : x 6=3, ERR.`2.`3 : x=3}. In contrast, the bug

at call `2 can occur under the input condition x=3. The label `2.`3 is used to indicate

the call chain leading to the bug at final destination `3. Each label and trigger condition

essentially captures a potential counter-example (in the form of a must or may bug) that

violates safety.

To provide precise reporting of errors, we only need to change two rules where label

` is added to trace the calling hierarchy of each error:

[ERROR]

Φ1=Φ ◦∅ {OK : false, ERR.` : true}
` {Φ} ` : error {Φ1}
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[CALL]

V={vi}m−1
i=1 distinct(V )

t0 mn((ref ti vi)m−1
i=1 , (ti vi)n

i=m) where Φmn {...}
` {Φ} ` : mn(v1..vn) {Φ ◦V add(Φmn, `)}

The add command is defined as follows:

add({OK: φ, (ERR.`i : φi)∗}, `) = {OK : φ, (ERR.`.`i : φi)∗}
In the case of recursive methods, all bugs that originate from the same location in

the recursive method are grouped under the same error outcome. This ensures that

the label sequences are always finite, and shall be bounded by the static height of the

method call hierarchy. Note that all elements in a set of mutual-recursive methods have

the same height in the call hierarchy.

We can classify each individual bug, as follows:

Definition 5.7. (Individual Bug Classification)

Consider a method with the following summary outcomes :

{OK : φ0, ERR.`1 : φ1, .., ERR.`n : φn}
A bug ERR.`i is said to be a never-bug if φi = false.

A bug ERR.`i is said to be a must-bug if (φi∧φ0 = false) and φi ∧ (
∨

j∈{1..n}−{i} φj)) =

false.

A bug ERR.`i is said to be a may-bug otherwise.

Two bugs ERR.`a and ERR.`b are said to be closely-related if either φa =⇒ φb or

φb =⇒ φa. As closely-related bugs may be indistinguishable from each other, we shall

group them together in the must-bug category, if the condition (φa∨φb) ∧ φ0 is unsat-

isfiable. This amalgamation of closely-related must-bugs allows us to report that a bug

from the amalgamated set will be definitely triggered as a must-bug, except that we are

unable to pin-point the exact bug from this set.

5.4.2 Non-Termination as Bugs

Non-termination can be considered another source of bugs that is difficult to detect, since

static analyses are typically formalised for safety property rather than liveness property.

In general, static analyses may be used to partition the input domain of a given program.
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Our analysis computes over-approximations for inputs that lead to all successful execu-

tions (all ok executions approximated by OK), and all failed executions (all err executions

approximated by ERR). Similarly, we can specify an over-approximation for inputs that

lead to all non-terminating executions (all loop executions approximated by LOOP). The

resulting input partitioning is shown in Figure 5.3, where each circle corresponds to one

over-approximation. 2 While computing a

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

may
bug

must
bug

must
loop

OK ERR

LOOP

never
bug

Figure 5.3: Adding LOOP to the

bug classification

reasonably precise LOOP condition is still an open

problem [33], our computation of both OK and ERR

outcomes has the nice side-effect of being able to de-

tect a sub-class of non-termination bugs. This class

of non-termination bugs are due to recursive methods

and may be discovered by fixed point analysis: with

both OK and ERR outcomes soundly covered, any state

left unreachable after analysis would have to belong

to the non-termination outcome.

For example, consider a recursive method whose summary has been inferred to be

{OK : φ1, ERR : φ2}. As these two outcomes cover all executions that either succeed or

fail, whatever is left in the complement ¬(∃R·φ1 ∨ φ2) can only be executions leading to

non-terminating loop, where R denotes the set of output variables including res from φ1.

We will use MUST LOOP to denote this precondition sufficient for non-termination. This

is on the assumption that all errors have been modelled and captured under the ERR

outcome. For a precise classification of this class of non-termination bugs, we can use

{OK : φ1, ERR : φ2, ERR.fn.MUST LOOP :¬(∃R·φ1 ∨ φ2)}. In this case, fn denotes the name

of the recursive method that is causing the non-termination bug.

To illustrate how non-termination bugs can be captured, consider the following re-

cursive method:

int foo5(int i) { if i=10 then 1 else 2 + foo5(i+1) }

From fixed point analysis, we can obtain:

2This input partitioning is inspired by the seminal work of Dijkstra on semantic characterization
and weakest-precondition calculus [49, pages 20-23]. While our classification is concerned with program
safety and bug detection, Dijkstra’s classification is more concerned with characterizing termination and
whether the final state satisfies a given postcondition.
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{OK : i≤10 ∧ res=2(10−i)+1}}.
Since the ERR condition is false, we can determine ¬(∃res · i≤10 ∧ res=2(10−i)+1)

which simplifies to (i>10) that is clearly a non-termination must-bug. Our summary

can now be modified to the following :

{OK : i≤10 ∧ res=2(10−i)+1, ERR.foo5.MUST LOOP : i>10}}
Once a non-termination bug has been detected for a given recursive method, it can

be treated like any other bug where it could be propagated, downgraded to a may

bug or proven safe, depending on the context of its callers. Lastly, we emphasize that

we can only catch a subset of the non-termination bugs and cannot guarantee that all

non-termination bugs are captured.

5.4.3 Alias Analysis for Heap-Allocated Objects

Heap-allocated objects pose an extra challenge to program analysis as we are required to

undertake a separate alias analysis first. As the problem of alias analysis is orthogonal

to our analysis for bug discovery, we discuss a generic solution for aliasing here. Our

proposal incorporates the major trends in alias analyses, which could be divided into

three broad categories, as follows:

Definition 5.8. (Must-Aliases)

A set of references {x1, .., xm} is said to be must-aliases if they definitely refer to the

same object. We may represent each must-aliased object by the following notation

x:: Obj〈f1, .., fn〉 ∧
∧

i∈1..m x=xi where f1, .., fn denote its fields that can be subjected

to strong updates.

Definition 5.9. (May-Aliases)

A set of references {x1, .., xm} is said to be may-aliases if they are possibly aliased with

each other but may refer to zero or more objects. We shall represent each may-aliased

object by the notation x::Obj〈f1, .., fn〉@M∧x∈{x1, .., xm} where f1, .., fn denote its fields

which can be subjected to weak-updates.

Strong update allows the states of its fields to be directly changed, while weak update

can only support either unchanged or possibly changed weakening of its fields’ states.

Definition 5.10. (Arbitrary-Aliases)
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A reference is said to be arbitrary-aliased if it points to an object where only the im-

mutable fields are tracked. We may represent each arbitrary-aliased object by the fol-

lowing notation x::Obj〈f1, .., fn〉@I. A field fi is said to be immutable if its value is

never changed after the object is constructed. For example, the length field of an array

is immutable and can be tracked using just arbitrary-aliases.

Arbitrary-aliases are the least precise but simplest to analyse. May-aliases are typi-

cally obtained with the help of points-to graph, while must-aliases require also linearity

analysis. Our current prototype system only supports arbitrary-aliases and may-aliases

but not must-aliases. Nevertheless, we design alias analysis as an orthogonal component

to dual analysis, as it can help improve the precision of dual analyzer without affecting

its correctness.

5.5 Experimental Results

We have implemented the proposed inference mechanisms in a tool named Dualyzer

(from Dual analyzer). The goal of Dualyzer is to analyze imperative programs for

proving safety or discovering bugs. We have also implemented the enhancements (except

must-aliasing) described in the preceding Section 5.4. The prototype system was built

using the Haskell language and the Glasgow Haskell compiler [121]. We use the Omega

library [129] to simplify and check for satisfiability of Presburger formulae. Our test

platform was a Pentium 3.0 GHz system with 2GBytes main memory, running Fedora

4. A web-demo of our system can be found at http://loris-7.ddns.comp.nus.edu.

sg/~popeeaco/bugs/.

One objective of Dualyzer is to prove the absence of bugs, whenever possible. For

this purpose, we tested our system on a set of small programs with challenging recursion

and some programs from two benchmark suites: SciMark (Fast Fourier Transform, LU

decomposition, Successive Over-Relaxation) [112] and Linpack [51]. These programs are

free from array bound check errors. We capture array accesses in primitive methods with

an OK outcome (when the index is within the bounds of the array) and an ERR outcome

(when the index is out-of-bounds). In our experiments there was no programmer effort

required to place error/assert constructs, since for array bound checks such assertions

can be generated automatically.

http://loris-7.ddns.comp.nus.edu.sg/~popeeaco/bugs/�
http://loris-7.ddns.comp.nus.edu.sg/~popeeaco/bugs/�
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Benchmark Source Rec. All Dualyzer
Programs (lines) constr. checks May (secs)

binary search 31 1 2 0 3.16
bubble sort 39 2 12 0 0.82
init array 11 1 2 0 0.26
merge sort 58 3 16 0 4.63

queens 39 2 8 0 1.47
quick sort 43 2 12 0 1.50
sentinel 17 1 4 1 0.12
FFT 336 9 62 0 13.50

LU Decomp. 191 10 82 0 14.34
SOR 84 5 32 0 3.50

Linpack 903 25 166 0 38.91

Figure 5.4: Statistics for a set of array-based programs without bugs

Figure 5.4 summarizes the statistics obtained for each program. To quantify the

analysis complexity of the benchmark programs, we counted the number of lines of C

code (column 2) and also the number of recursive methods and loops present in each

program (column 3). Column 4 presents the total number of array accesses (counted

statically) from the original programs. The number of array accesses that cannot be

proven safe (may-bugs) is shown in column 5, while the analysis time is given in column

6. Our analysis determines automatically the number of disjuncts for fixed point analysis

of each method. Consequently, by using at most three disjuncts (m=3) during fixed point

analysis, we can prove all array accesses safe, except for sentinel program with a may-

bug. This program uses a guard against falling off one end of the array. To eliminate

this may-bug, we require an existential property on the collection of array elements

which is beyond the capability of our current system.

To evaluate the bug finding credentials of Dualyzer, we used a simple procedure

Faulty Dualyzer
Programs May Must (secs)

bsort 0 1 2.44
initarr 0 1 1.12
qsort 0 1 2.24

sentinel 0 1 1.31

Figure 5.5: Buggy codes

to seed bugs into a subset of the correct programs

from Figure 5.4. Arbitrary array accesses were

changed using an offset by a random value con-

strained to exhibit true errors. The results of this

experiment are shown in Figure 5.5 where we are

able to report some of the new errors as must-

bugs. Note that we were using precise error tracing to capture the exact location and
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trigger condition of each individual bug. While the programs we used to validate Du-

alyzer are small in size, we believe they show the versatility of dual static analysis in

both proving program safety and finding true bugs.

5.5.1 Comparison with BLAST

Benchmark BLAST Dualyzer
Programs Result (secs) Result (secs)

binary search * 0.06
√

3.16
bubble sort * 0.10

√
0.82

init array
√

1.15
√

0.26
merge sort * 0.12

√
4.63

queens
√

3.45
√

1.47
quick sort

√
28.82

√
1.50

sentinel * 1.31 * 0.12
FFT * 0.57

√
13.50

LU
√

7.26
√

14.34
SOR

√
2.14

√
3.50

Linpack *(exc) 408.1
√

38.91

Figure 5.6: Comparison with Blast

We used the same set of programs (shown in Figure 5.4) to make a comparison with

the Blast software verification system [80].3 With a similar goal to Dualyzer, the

Blast software verification system aims at statically proving safety or finding true bugs

otherwise. We present the results in Figure 5.6. Compared to our prototype, Blast

performed as well in proving safety for init array, queens, quicksort, LU and SOR.

However, Blast was not able to prove the safety of binary search, merge sort and

FFT for which it reported (false) bugs due to division being treated as an uninterpreted

function[10]. Blast also reported a false bug for bubble sort; for Linpack the analysis

ended prematurely with an exception (raised in the Simplify prover).

Though an intended goal of BLAST is to report true bugs where possible, the rep-

resentation of program states by symbolic constraints ultimately leads to some approxi-

mation (for e.g. via uninterpreted functions) that could lead unwittingly to false alarms.

This scenario does not occur for Dualyzer since we rely on dual analysis to help dis-

tinguish program safety from must-bug, but can revert to may-bug reporting whenever

3We used the latest version of Blast 2.4, available from http://mtc.epfl.ch/software-tools/blast/.
The running times reported for Blast correspond to several runs of abstraction refinement as we invoked
Blast with the default set of arguments.
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Benchmark Synergy Dualyzer
Programs May Must
ex fig1 BUG 0 1
ex fig3 SAFE 0 0
ex fig4 BUG 0 1
ex fig6 SAFE 0 0
ex fig7 BUG 0 1
ex fig8 SAFE 0 0
ex fig9 ABORT 0 1(MUST LOOP)

Figure 5.7: Examples from the SYNERGY paper [67]

there is uncertainty.

5.5.2 Comparison with SYNERGY

Synergy [67] is a recently proposed system that complements the capabilities of pred-

icate abstraction refinement (as in Blast) with Dart-style testing [62] to prove safety

and also find true bugs. To test the Dualyzer capability, we shall use a set of illustrative

programs that were highlighted as figures in [67] with at most one bug per program. Col-

umn 2 from Figure 5.7 shows on what examples SYNERGY would discover a true BUG,

prove that the program is SAFE or time-out during the refinement process (ABORT).

Our analysis took less than a second on each of these programs. Compared to Synergy,

we performed equally well in finding real bugs in ex fig1, ex fig4, ex fig7, and also

proving safety for ex fig3, ex fig6, ex fig8. We highlight three examples. The first

example is reproduced below:

void ex fig1 (int a) {
int i, c; i := 0; c := 0;

`1 : while (i<1000) { c := c + 1; i := i + 1; }
if (a≤0) then {`2 : error; } else {}

}

This example is difficult for tools like Slam [5] and Blast [80], that have to discover

1000 predicates, before finding a feasible path to the error. In contrast, Synergy finds

the error quickly using Dart-style testing by generating input constraints for a>0,

and then a≤0. Our solution is also fast but relies on static analysis. It first discovers

a postcondition (c′≥c ∧ i′≥i ∧ i′≥1000) for the loop at `1. Subsequently, it reports a
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precise must-bug condition at `2 from the outcome {OK : (a>0), ERR.`2 : (a≤0)} of

method ex fig1.

The code ex fig3 is an example where both Synergy and Slam-like tools make

use of path-sensitivity to prove correctness. By using intraprocedural path-sensitivity,

we discover a precise set of outcomes and characterize the error at `4 as unreachable.

Specifically, the outcome for the loop at `3 is computed as {OK : (lock′=1∧x′=y′∧y′≥y)}
which can subsequently confirm that `4 is unreachable.

void ex fig3 (int y) {
int x := randInt();

int lock := 0; //0 means Unlocked

`3 : do {
lock := 1; //1 means Locked

x := y;

if (randBool()) then {
lock := 0;

y := y + 1;

} else ()

} while (x != y);

if (lock != 1) then {`4 : error; } else{}
}

While able to prove safety and also find bugs, the Synergy system may fail to

terminate due to abstraction refinement. The last example from [67] illustrates a case

when Synergy fails to terminate as it generates longer and longer test sequences start-

ing with the predicates (y<0), (y+x<0), (y+2x<0), and so on. The code ex fig9 is

reproduced below:

void ex fig9() { int x, y; x := 0; y := 0;

`5 : while (y≥0) { y := y + x; }
`6 : error; }

Our system is able to initially confirm a must-bug at `6 with conjunctive fixed-point
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(m=1). The loop outcomes are computed as follows:

loop(m=1) = {OK : (x′=x ∧ y′≤y ∧ y′<0)}

This conjunctive formula is unable to capture the non-termination of the loop. Combined

with the information prior to the loop (x=0 ∧ y=0), the outcome for the entire method

can only confirm the presence of a must bug at `6 (if the program terminates):

ex fig9(m=1) = {OK : false, ERR.`6 : true}

However, using disjunctive fixed point analysis (m=2), we can capture non-termination

in the outcome of the while loop and prove that the error at `6 is unreachable:

loop(m=2) = {OK : (x′=x ∧ y′=y ∧ y′<0)

∨ (x′=x ∧ x≤y′≤x+y ∧ y′<0),

ERR.MUST LOOP : (x≥0 ∧ y≥0)}
ex fig9(m=2) = {OK : false, ERR.`5.MUST LOOP : true}

Thus, with increased precision, our analysis is able to re-classify a must-bug more

accurately and indicate the source of non-termination, where possible.

5.5.3 Examples from Verisec Benchmark

We have also analyzed several buffer overflow vulnerabilities from the CVE database

as grouped in the Verisec benchmark suite [91]. This suite contains testcases with the

actual vulnerabilities as well as corrected versions of these testcases. We were surprised

that Dualyzer found two must-bugs in the corrected versions of the testcases, bugs

that were later confirmed by the authors of the Verisec benchmark. The first must-bug

is from the Samba implementation of the SMB networking protocol (CVE-2007-0453). It

corresponds to a buffer access with an off-by-one error in the r strncpy function. The

second example is from the SpamAssassin open-source email filter and corresponds to a

non-termination must-bug. We show the relevant C code below, originally split in two
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different files:

#define BASE SZ 2

#define BUFSZ BASE SZ+2

void message write (char ∗ msg, int len) {
char buffer[BUFSZ];

int limit = BUFSZ− 4;

for (int i=0; i<len; ){
for (int j=0; i<len && j<limit; ){

...

buffer[j] = msg[i];

j++;

...

}}}
Since both the local variables limit and j are initialized to 0 and the value of j is

increased through the inner-loop, the loop condition (j<limit) cannot be satisfied

causing a non-terminating execution.

5.5.4 Beyond Safety to Memory Bounds Inference

Though Dualyzer has been originally formulated for finding bugs or proving safety,

its ability to determine numeric trigger conditions can be put to other uses. In this

experiment, we formulated the memory usage needed by each program into a safety

problem, and raised a memory adequacy error whenever memory use exceeded a given

initial memory bound. We achieved this by tracking two values : memory usage and

memory bound. The former symbolically tracks the current memory that is in use, while

the latter denotes the memory upper bound (high watermark). This tracking can be

automatically instrumented for each given program. More details on the formalization

of this analysis can be found in [26].

Dualyzer is able to infer statically both a lower-bound and an upper-bound for

the memory needed. The more useful is the upper-bound: our analysis can guarantee

that, if given at least this amount of memory, the program execution will be free of

memory adequacy errors (never-bug condition). Secondly, the analysis guarantees that

a memory adequacy error will definitely happen when the program execution is given
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Benchmark Source Bounds Stack Inf. Heap Inf.
Programs (lines) Inferred (secs) (secs)

Ackermann 16 * 2.24 1.52
binary search 31

√
1.49 0.97

bubble sort 39
√

1.55 0.82
init array 11

√
0.45 0.28

queens 39
√

2.39 1.41
quick sort 43

√
4.53 2.34

FFT 336
√

26.12 17.54
LU Decomp. 191

√
32.71 18.73

SOR 84
√

7.34 4.57
sha 211

√
13.92 13.25

susan 2123
√

57.1 98.3

Figure 5.8: Memory bounds estimation

less memory than the inferred lower bound (must-bug condition).

We have carried out experiments to infer stack/heap bounds for a set of small pro-

grams with challenging recursion and for some programs from two benchmark suites:

SciMark [112] and MiBench (sha, susan) [74]. Figure 5.8 shows the statistics obtained

for each program that we inferred. Column 3 captures time taken for stack-bounds

inference, while Column 4 is for heap-bounds inference.

The time for inference roughly correlates with the program size and with the com-

plexity of the relations between program variables. Specifically, the time taken for stack

inference was more significant due to the intensive use of the stack by all of the pro-

grams. All stack usage bounds were successfully captured, except for the Ackermann

function which requires a stack space that is exponential to its parameters’ sizes. This

stack bound is beyond the linear arithmetic form used in our current system. The time

taken for heap inference was less substantial, due to the nature of our programs. Most

of the benchmarks used few heap objects, with the exception of the susan benchmark.

Susan is an image processing package that uses more heap-allocated arrays to represent

patterns for image recognition.

5.6 Correctness of the Dual Static Analysis

In this section, we shall prove that our forward reasoning rules are correct in the following

ways:
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• the inferred summary outcomes for both success and failure are safe approxima-

tions of the expected final program state.

• each program never fails from an input of never-bug condition, never succeeds from

an input of must-bug condition, and diverges from an input of loop condition.

• the forward analysis algorithm terminates.

5.6.1 Consistency between Static and Dynamic Semantics

The dynamic semantics for our core imperative language was defined previously in a

small-step operational style (see Section 2.2). Here, we extend the source language with

a new construct representing the intermediate result of a method call: the evaluation of

the expression ret(v∗, e) proceeds first with the method’s body e (rule [D−RET−2]) and,

after its reduction to a value, the parameters passed by value v∗ are removed from the

current stack (rule [D−RET−1]). If the evaluation of the body reaches an error, then the

rule [D−RET−3] will throw the error back to the caller. A forward rule will be used in

the static semantics for the ret construct, as follows:

[RET]
` {Φ} e {Φ1}

` {Φ} ret(v∗, e) {∃(v, v′)∗ · Φ1}

The correctness proof requires analogous rules in static and dynamic (concrete) se-

mantics. The static semantics rules for local variable declaration and method call are

modified to be closer to their dynamic counterparts:

[BLK]
fresh x ρ = [v 7→x]

`{Φ ∧ default(t, x′)} ρe {Φ1}
` {Φ} t v; e {∃x′·Φ1}

[CALL]
t0 mn((ref ti wi)m−1

i=1 , (ti wi)n
i=m) where Φmn {...}

W={wi}m−1
i=1 distinct(W) ρ = [wi 7→vi]ni=1 + [w′i 7→v′i]

m−1
i=1

`{Φ} ` : mn(v1..vn) {Φ ◦ρW ρΦmn}

While the concrete state is captured by the stack s∈S, the abstract state that we

infer is captured by a relational constraint φ∈D between the program variables. When

used with both unprimed and primed variables, φ∈D×D actually denotes a transition
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between abstract states. In this situation, we shall use two operators to distinguish

between the original and final abstract states, as follows:

Definition 5.11 (Prestate and Poststate). Given an abstract state transition

φ∈D×D, its prestate PreSt(φ) captures the relation between unprimed variables of φ.

Correspondingly, its poststate PostSt(φ), captures the relation between primed variables

of φ.

PreSt(φ) = ∃X · φ, where X = V ′(φ) ∪ {res}
PostSt(φ) = ρ(∃X · φ), where X = V(φ) and ρ = [x′ 7→ x | x ∈ V(φ)]

To formalise the relation between the concrete and abstract domains, we introduce

an abstraction operator: α(s)=
∧{v = δ | [v 7→ δ] ∈ s}. If the stack contains two

or more variables with the same name, only the leftmost variable is considered. For

example, α([x 7→ 1, y 7→ 1, x 7→ 0]) = (x=1 ∧ y=1).

Two consistency relations between the concrete and abstract domains are defined

to either agree in the current state, or in a pair of both pre- and post-state. These

consistency relations rely on an implication operator for the constraint language:

α(s) ⇒ φ

s |= φ

α(s1) ∧ ρα(s2) ⇒ φ ρ = [x 7→ x′ | x ∈ V(α(s2))]
(s1, s2) |= φ

In general, (s1, s2) |= φ implies s1 |= PreSt(φ) ∧ s2 |= PostSt(φ), but the implication

does not hold in the other direction (for constraints relating both primed and unprimed

variables).

5.6.2 Proof Methodology

In general, we want to prove that the results obtained by the static semantics correctly

reflect what happens during execution, as predicted by the dynamic semantics. The

dynamic semantics is formulated in small-step style and the proof proceeds by showing

that some property is preserved by each step of (dynamic) evaluation:

〈s1, e1〉 ↪→ 〈s2, e2〉 ↪→ . . . ↪→ 〈sn, en〉

xy

xy

xy

`{P1} e1 {O1, E1} ` {P2} e2 {O2, E2} ` {Pn} en {On, En}
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Thus, we will proceed by induction on the length of the (dynamic semantics) reduc-

tion sequence:

• base case: prove the property for 〈s1, e1〉.

• induction step: assume the property holds for 〈si, ei〉 and prove it for 〈si+1, ei+1〉.

To prove the property for a configuration 〈si, ei〉, the proof proceeds by induction on

the height of the (dynamic semantics) reduction tree:

• base case: prove the property for those reduction rules without premises.

• induction step: assume the property holds for the premises and prove it for the

concluding reduction rule.

The proof is completed when all the reduction rules are shown to preserve the required

property. More details on the induction principle and proof examples for various program

analyses can be found in the “Principles of Program Analysis” book [117, Sec 2.2, Sec 3.2,

Sec 4.5.2, Sec 5.2, Appendix B].

Method Summaries: Checking and Inference

We formalize the notion of a sound method summary meaning that the summary is

an over-approximation of the outcomes collected from the method’s body. A summary

is checked to be sound using an alternative static rule for a method declaration:

[CHECK−METH]
W={vi}n

i=1 V ={v′i}n
i=m R={res, v′1, .., v′n}

` {nochange(W )} e {{OK : φ1, ERR : φ2}}
∃V ·φ1 ⇒ Omn ∃R·φ2 ⇒ Emn

` t0 mn((ref ti vi)m−1
i=1 , (ti vi)n

i=m) where {OK : Omn, ERR : Emn}{e}

Using this soundness notion for method summaries, we can split the main proof in two

parts. For the first part, the proof is done assuming a program where all methods are

given sound summaries. For the second part, we show that our fixed-point analysis

always infers sound method summaries.

5.6.3 Main Theorem and Its Proof

The summary outcomes that we infer are a conservative approximation of the program

state that we expect for our program. We can prove this by the following soundness

theorem:
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Theorem 5.1 (Soundness of Summary Outcomes). Given an arbitrary expression

e1, an initial state s1 and a transition formula P1 consistent with s1 such that α(s1) ∧
nochange(V(s1)) ⇒ P1, where V(s1) returns the variables defined by the state s1.

Using P1, we may obtain the following judgement `{P1} e1 {{OK: O1, ERR: E1}}.
The success outcome O1 is sound as we can show that the following holds, namely: if

〈s1, e1〉↪→∗〈sn, δ〉, then it must be the case that (s1, [res7→δ]+sn) |= O1. The failure

outcome E1 is also sound as we can show that the following holds: if 〈s1, e1〉↪→∗〈sn,⊥〉,
then it must be the case that s1 |= E1.

Proof:

This result can be shown using induction on the length of the reduction sequence.

We consider an arbitrary reduction step 〈si, ei〉↪→〈si+1, ei+1〉 and inference judgements

such that the prestate is consistent with dynamic state: Pi = P1 ◦ ρα(si).

Success outcome is sound: (s1, [res7→δ]+sn) |= O1

The base case proves the property for the last expression in a successful reduction

sequence. When en is a constant expression δ, we can infer using the rule [CONST]:

`{Pn} δ {{OK: On, ERR: En}} such that On = Pn∧(res=δ) = (P1 ◦ ρα(sn)) ∧ (res=δ).

As a consequence, the following consistency relation holds: (s1, [res 7→δ]+sn) |= On.

The main part of the proof is based on a subject reduction lemma. This lemma proves

the induction step corresponding to an arbitrary reduction step: 〈si, ei〉↪→〈si+1, ei+1〉.
In particular, the lemma proves that the success outcome for ei+1 is more precise than

the one inferred from ei: Oi+1 ⇒ Oi. By repeated applications, we can conclude that

the success outcome obtained from the inference of the original expression e1 is sound:

(s1, [res7→δ]+sn) |= O1.

Failure outcome is sound: s1|=E1

The base case proves the property for the last expression in a failed reduction se-

quence. When en is an error expression then from the rule [ERROR] we can deduce

`{{OK : Pn, ERR : false}} l : error {{OK : On, ERR : En}} such that En = Pn ∧ {OK :

false, ERR : true} = Pn. From the definition of Pn we can conclude that s1 |= En.

The subject reduction lemma is used to prove the induction step. As a direct conse-

quence of the lemma, the failure outcome for ei+1 is more precise than the one inferred

from ei: Ei+1 ⇒ Ei. From the base case and the induction step, we can conclude that
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the failure outcome is sound: s1 |= E1.

The proof of Theorem 5.1 is based on induction over the length of reduction sequence

and uses a subject reduction lemma as induction step. This lemma states the properties

that are satisfied by an arbitrary reduction step.

Lemma 5.2 (Subject reduction). Consider an execution started from the initial

state s1 and some arbitrary reduction step: 〈s1, e1〉↪→ . . . ↪→〈si, ei〉↪→〈si+1, ei+1〉↪→ . . ..

Further, consider a transition formula Pi consistent with the execution states: (s1, si) |=
Pi and an inference `{Pi} ei {{OK : Oi, ERR : Ei}}.

Then there exists Pi+1 consistent with the execution states (s1, si+1) |= Pi+1 and

the results of the inference `{Pi+1} ei+1 {{OK : Oi+1, ERR : Ei+1}} satisfy the following

relations:

• Oi+1 ⇒ Oi. We also have PreSt(Oi+1)⇒PreSt(Oi) and PostSt(Oi+1)⇒PostSt(Oi).

• Ei+1 ⇒ Ei. We also have Ei ≡ PreSt(Ei).

Proof: We will prove that there is a relation between the inference result for ei and the

inference result for ei+1 by induction on the height of the (dynamic semantics) reduction

tree. The induction hypothesis assumes that this relation holds for the reduction steps

for the subexpressions of ei. Various cases are denoted by the name of the evaluation

rule that applies in the conclusion.

• Case [D−VAR]: With si+1 = si, si(v) = δ, we have the following reduction step:

〈si, v〉 ↪→ 〈si+1, si(v)〉
xy

xy
`{Pi} v {Pi ∧ res = v} ` {Pi+1} δ {Pi+1 ∧ res = δ}

Let us choose Pi+1 = Pi.

– We can prove Pi+1 is consistent with the execution states (s1, si+1) since Pi

is consistent with (s1, si) and si+1 = si.

– Oi+1 ⇒ Oi since Oi+1 = (Pi+1 ∧ res=δ) and Oi = (Pi ∧ res=v).

– Ei+1 ⇒ Ei since Ei+1 = Ei = false.
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• Case [D−ASSIGN−1]:

〈si, v := δ〉 ↪→ 〈si[v 7→ δ], ()〉
xy

xy
`{Pi} v := δ {Pi ◦{v} v′=δ} ` {Pi+1} () {Pi+1}

Let us choose Pi+1 = Pi ◦{v} v′=δ.

– By definition of the consistency relation, (s1, si[v 7→δ]) |= Pi+1 reduces to

α(s1)∧ρα(si[v 7→δ]) ⇒ Pi ◦{v} v′=δ. To prove this implication, we rely on the

hypothesis that Pi is consistent: α(s1) ∧ ρα(si) ⇒ Pi.

– Oi+1 ⇒ Oi since Oi+1 = Oi.

– Ei+1 ⇒ Ei since Ei+1 = Ei = false.

• Case [D−ASSIGN−2]:

〈si, v := e〉 ↪→ 〈si+1, v := e′〉
xy

xy
` {Pi} e {Φ}

` {Pi} v := e {Φ ◦{v} v′=res}

` {P ′
i} e′ {Φ′}

` {Pi+1} v := e′ {Φ′ ◦{v} v′=res}

We use the induction hypotheses corresponding to the following reduction step:

〈si, e〉↪→〈si+1, e
′〉. By these hypotheses, there exists P ′

i that satisfies the consis-

tency relation: (s1, si+1) |= P ′
i . Also, the results of the inference judgements

`{Pi} e {Φ} and ` {P ′
i} e′ {Φ′} satisfy the relation Φ′ ⇒ Φ.

Let us choose Pi+1=P ′
i , where P ′

i is the prestate constructed using the induction

hypothesis.

– (s1, si+1) |= Pi+1 from the induction hypothesis (s1, si+1) |= P ′
i

– From the induction hypothesis Φ′ ⇒ Φ, we can deduce that (Φ′◦{v}v′=res) ⇒
(Φ ◦{v} v′=res). This fact implies that Oi+1 ⇒ Oi .

– From the induction hypothesis Φ′ ⇒ Φ, we can deduce that (Φ′◦{v}v′=res) ⇒
(Φ ◦{v} v′=res). This fact implies that Ei+1 ⇒ Ei.
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• Case [D−SEQ−1]: We have si+1 = si:

〈si, δ; e2〉 ↪→ 〈si+1, e2〉xy
xy

`{∃res · (Pi ∧ res=δ)} e2 {Φ}

` {Pi} δ; e2 {Φ} ` {Pi+1} e2 {Φ′}

Let us choose Pi+1 = Pi.

– We can prove Pi+1 is consistent with the execution states (s1, si+1) since Pi

is consistent with (s1, si) and si+1 = si.

– From the construction, Pi does not refer to the variable res. Consequently,

Pi+1 = Pi = ∃res · (Pi ∧ res=δ). Two inference judgements starting with

equivalent prestates will have equivalent summary outcomes: Φ′ = Φ. This

implies that Oi+1 ⇒ Oi.

– Φ′ = Φ implies that Ei+1 ⇒ Ei.

• Case [D−PRIM]: Since the code for primitive methods is not available for analysis,

we assume that the summaries of primitives methods are sound with respect to

the operational semantics of the primitive’s implementation.

〈si,mn(v1, .., vn)〉 ↪→ 〈si+1, δ〉xy
xy

` {Pi}mn(v1, .., vn) {Pi ◦V(Φmn) Φmn} ` {Pi+1} δ {Pi+1 ∧ res=δ}

The soundness of the primitive summaries can be formalized with the following

condition: (si, [res7→δ]+si+1) |= Φmn∧nochange(X), where X = V(si)−V(Φmn).

Let us choose Pi+1 = Pi ◦V(Φmn) Φmn.

– From (s1, si) |= Pi and (si, si+1) |= Φmn ∧ nochange(X) we should be able to

prove that (s1, si+1) |= Pi ◦V(Φmn) Φmn.

– Using the chosen Pi+1, we can derive trivially Oi+1 ⇒ Oi.

– Using the chosen Pi+1, we can derive trivially Ei+1 ⇒ Ei.

• Case [D−CALL]: For this reduction step, we assume that each method is annotated

with a sound summary. Using the soundness of the method summary, we can
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successfully apply the rule [CHECK−METH] to the method declaration mn:

t0 mn((ref ti wi)m−1
i=1 , (ti wi)n

i=m) where Φmn{e}. Consequently, the result of the

judgement `{nochange(W )} e {{OK : φ1, ERR : φ2}} is more precise than Φmn as

follows: ∃V ·φ1 ⇒ Omn and ∃R·φ2 ⇒ Emn.

The reduction step corresponding to a method call follows:

〈si,mn(v1, .., vn)〉 ↪→ 〈[wi 7→si(vi)]ni=m+si, ret({wi}n
i=m, e′〉

xy
xy

`{Pi}mn(v1, .., vn) {Pi◦ρW ρΦmn}

` {Pi+1} e′ {Φ′}

` {Pi+1} ret({wi}n
i=m, e′) {∃(wi, w

′
i)
∗·Φ′}

where e′ = [vi/wi]m−1
i=1 e, W = {vi}n

i=1 and ρ = [vi/wi]ni=1 + [v′i/w′i]
m−1
i=1 .

Let us choose Pi+1 = Pi ∧
∧n

i=m(wi=vi).

– From the induction hypothesis (s1, si) |= Pi, we can prove that the following

holds: (s1, [wi 7→si(vi)]ni=m+si) |= Pi ∧
∧n

i=m(wi=vi).

– We can prove a pre-transition lemma that allows us to use a given judgement

`{nochange(W )} e {Φ} to deduce a related judgement where a transition for-

mula Φpre is used to translate both the prestate and the poststate: `{Φpre◦W

nochange(W )} e {Φpre ◦W Φ}. Note that the formula (Φpre ◦W nochange(W ))

can be simplified to Φpre.

Using this lemma with Φpre=ρ−1Pi, the judgement `{nochange(W )} e {{OK :

φ1, ERR : φ2}} can be transformed to ` {ρ−1Pi} e {ρ−1Pi ◦W {OK : φ1, ERR :

φ2}}. After proper renaming, this last judgement is equivalent with the

following judgement `{Pi} ρe {Pi ◦ρW ρ{OK : φ1, ERR : φ2}}, which we denote

as (JUDG-1).

The judgement from the induction hypothesis `{Pi+1} e′ {Φ′} can be used

together with (JUDG-1) to conclude that Φ′ ≡ Pi ◦ρW ρ{OK : φ1, ERR : φ2}.
Since we know that {OK : φ1, ERR : φ2} ⇒ Φmn, we can finally conclude

that Φ′ ⇒ Pi ◦ρW ρΦmn. From this implication, we can directly derive that

Oi+1 ⇒ Oi.

– From the above proof, we can also conclude that Ei+1 ⇒ Ei.
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• Case [D−BLK]:

〈si, t v; e〉 ↪→ 〈[x 7→δ]+s, ret(x, ρe)〉
xy

xy
`{Pi ∧ default(t, x′)} ρe {Φ}

` {Pi} t v; e {∃x′ · Φ}

` {Pi+1} ρe {Φ′}

` {Pi+1} ret(x, ρe) {∃(x, x′) · Φ′}
Let us choose Pi+1 = Pi ∧ default(t, x′).

– From the induction hypothesis (s1, si) |= Pi and δ=default(t), we can prove

that (s1, [x7→δ] + s1) |= (Pi ∧ default(t, x′)).

– From the induction hypothesis Φ′ ⇒ Φ and the fact that x does not ap-

pear in the formulae Φ and Φ′, we can conclude that ∃(x, x′) · Φ′ ⇒ ∃x′ · Φ.

Consequently, we have Oi+1 ⇒ Oi.

– By a similar reasoning as above, we can conclude that Ei+1 ⇒ Ei.

• Case [D−RET−1]:

〈si, ret(v∗, δ)〉 ↪→ 〈si−{v∗}, δ〉xy
xy

`{Pi} δ {Pi ∧ res=δ}

` {Pi} ret(v∗, δ) {∃(v, v′)∗ · (Pi ∧ res=δ)} ` {Pi+1} δ {Pi+1 ∧ res=δ}
Let us choose Pi+1 = ∃(v, v′)∗ · Pi.

– From the induction hypothesis (s1, si) |= Pi, we can prove that the following

holds: (s1, si−{v∗}) |= ∃(v, v′)∗ · Pi.

– We have Oi = ∃(v, v′)∗ · (Pi ∧ res=δ) and Oi+1 = (∃(v, v′)∗ · Pi) ∧ res=δ,

where v∗ are either local variables or parameters passed by value. We can

conclude that Oi+1 ⇒ Oi.

– We can conclude that Ei+1 ⇒ Ei from Ei+1 = Ei = false.

• Case [D−ERROR]: We have si+1 = si:

〈si, l : error〉 ↪→ 〈si,⊥〉xy
xy

`{Pi} l:error {{OK : false, ERR : true}} ` {Pi}⊥{{OK : false, ERR : true}}
Let us choose Pi+1 = Pi.
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– (s1, si+1) |= Pi+1 since (s1, si) |= Pi.

– We have Oi+1 = Oi = false.

– We have Ei+1 = Ei = true.

• Case [D−IF−1]: We have si+1 = si:

〈si, if v then e1 else e2〉 ↪→ 〈si+1, e1〉xy
xy

`{Pi ∧ v′=1} e1 {Φ} ` {false} e2 {false}

` {Pi} if v then e1 else e2 {Φ ∨ false}
` {Pi+1} e1 {Φ′}

Let us choose Pi+1 = Pi.

– We can prove Pi+1 is consistent with the execution states (s1, si+1) since Pi

is consistent with (s1, si) and si+1 = si.

– The reduction step assumes that si(v) = true. Since Pi is consistent with

the execution state si, we can conclude that the prestate Pi ∧ v′=0 simplifies

to the false formula. Consequently, two inference judgements for e2 with

equivalent prestates Pi and Pi+1 will have equivalent poststates: Φ and Φ′.

This implies that Oi+1 ⇒ Oi.

– Φ′ = Φ implies that Ei+1 ⇒ Ei

• Case [D−IF−2]: We have si+1 = si:

〈si, if v then e1 else e2〉 ↪→ 〈si+1, e2〉xy
xy

`{false} e1 {false} ` {Pi ∧ v′=0} e2 {Φ}

` {Pi} if v then e1 else e2 {Φ ∨ false}
` {Pi+1} e2 {Φ′}

Let us choose Pi+1 = Pi.

– We can prove Pi+1 is consistent with the execution states (s1, si+1) since Pi

is consistent with (s1, si) and si+1 = si.

– The reduction step assumes that si(v) = false. Since Pi is consistent with

the execution state si, we can conclude that the prestate Pi ∧ v′=1 simplifies

to the false formula. Consequently, two inference judgements for e1 with
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equivalent prestates Pi and Pi+1 will have equivalent poststates: Φ and Φ′.

This implies that Oi+1 ⇒ Oi.

– Φ′ = Φ implies that Ei+1 ⇒ Ei

• Case [D−SEQ−2]: by induction hypothesis (similar to [D−ASSIGN−2]).

• Case [D−RET−2]: by induction hypothesis (similar to [D−ASSIGN−2]).

5.6.4 Soundness of the Fixed-Point Analysis

To complement the proof of the main theorem 5.1, we will show that our fixed-point

analysis always infers sound method summaries.

Theorem 5.3 (Soundness of the Fixed-Point Analysis). Given a method decla-

ration, we can show that the fixed-point inference applied to the constraint abstraction

(obtained via the forward reasoning rules) would result in a sound summary Φmn.

Proof: The proof is done using induction on the height of the call graph dominated

by the method mn. The base case where mn does not call methods other than itself,

can be proven as a special case of the induction step. For the induction step, the

induction hypothesis assumes that the inference of methods called by mn has computed

sound summaries. Using this hypothesis, we aim to prove that the fixed-point analysis

computes a sound summary for the method mn.

The first step in the inference process is to derive constraint abstractions from a

given method declaration using the forward reasoning rules. These rules are applied

recursively on sub-expressions of the method body and, with one exception, derive con-

straints equivalent to the respective sub-expression. The exception is the rule [CALL],

where, rather than equivalent, the constraint that is derived is an over-approximation of

the method call since the callee has a sound summary (from the induction hypothesis).

Consequently, we can show that the constraint abstractions mnOK and mnERR are

consistent with the method declaration from which they are derived using the forward

reasoning rules. Furthermore the constraint abstractions are monotonic functions de-

fined on the abstract domain (e.g. disjunctive polyhedron domain) with values in the

same domain. The domain contains elements that are formulae over a fixed set of vari-

ables {v1, .., vn, v′1, .., v
′
m−1}, where v1, .., vm−1 are parameters passed by reference and

vm, .., vn are parameters passed by value.
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The fixed-point analysis computes iteratively a sequence starting with the least ele-

ment of the domain (the formula false). Being applied to a monotonic function, this

computation will result in an ascending sequence. To ensure convergence of this se-

quence, a widening operator is used. The result is then guaranteed to be an upper

approximation of the least fixed point for the constraint abstractions mnOK/mnERR.

Given that the results of the fixed-point analysis Omn/Emn are over-approximations

of the least fixed points (lfp) of mnOK/mnERR abstractions, we can apply the judge-

ment for the method body e and prove that the implications required by the checking

rule [CHECK−METH] hold as follows:

`{nochange(W )} e {{OK : φ1, ERR : φ2}}
∃V ·φ1 ⇒ Omn ∃R·φ2 ⇒ Emn

` t0 mn((ref ti vi)m−1
i=1 , (ti vi)n

i=m) where {OK : Omn, ERR : Emn}{e}

The formulae φ1 and φ2 correspond to the constraint abstraction functions mnOK and

mnERR where the recursive calls are replaced by Omn and Emn. Since Omn and Emn

are over approximations of the lfp, they are reductive points of these functions [117,

Sec 4.2, Appendix A.4]. As a consequence, the results from the judgement are more

precise formulae and the following implications hold: ∃V ·φ1 ⇒ Omn and ∃R·φ2 ⇒ Emn.

Thus the premises of the checking rule are satisfied and Φmn is shown to be a sound

summary for its corresponding method declaration.

The current proof can be extended to handle mutual recursive functions. In this

case, fixed points are computed simultaneously for all the mutually recursive constraint

abstraction functions.

A further lemma shows that our fixed-point analysis always terminates:

Lemma 5.4 (Termination of Forward Analysis). Forward analysis comprises of

two main parts (i) to build two constraint abstractions per method, (ii) fixed point anal-

ysis for each recursive abstraction. Both parts terminate.

Proof: The forward reasoning traverses each program via a well-founded recursion

over the expression and is therefore guaranteed to terminate for programs of finite code

size. The termination property of fixed point analysis is dependent on the abstraction

domain and techniques used for approximation and widening. For linear arithmetic do-

main, we can use the result of [37] whereby hulling and widening are used to ensure that
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constraints encountered during conjunctive fixed-point have at most finite variations.

This result extends also to k-bounded disjunctive formulae [138].

5.6.5 Corollaries of the Main Theorem

We shall now show four results that are corollaries of the Theorem on Soundness of

Summary Outcomes. The first corollary confirms that we have a true error from the

must-bug condition; secondly, we can guarantee a safe execution from the never-bug

condition. Thirdly, we have a diverging execution from the loop condition. The fourth

corollary applies when neither of the previous three cases holds: for inputs that satisfy

the may-bug condition, it is possible to have either a safe execution, a true error or a

diverging execution.

Corollary 5.5 (Definite Error from Must-Bug). Given an arbitrary expression

e1, consider an inference judgement as follows: `{P1} e1 {{OK:O1, ERR:E1}}. For each

state s1 such that s1 6|=PreSt(O1), it is never the case that 〈s1, e1〉↪→∗〈sn, δ〉. This means

that either 〈s1, e1〉↪→∗〈sn,⊥〉 or 〈s1, e1〉6↪→∗ does not terminate.

Proof: Theorem 5.1 confirms that if the execution is successful then the consistency

property s1|=PreSt(O1) holds. Consequently, if the consistency property does not hold

s1 6|=PreSt(O1), then the execution cannot be successful; it either fails or diverges.

Corollary 5.6 (Definite Safety from Never-Bug). Given an arbitrary expression

e1, consider an inference judgement as follows: `{P1} e1 {{OK:O1, ERR:E1}}. For each

state s1 such that s1 6|=PreSt(E1), it is never the case that 〈s1, e1〉↪→∗〈sn,⊥〉. This means

that either 〈s1, e1〉↪→∗〈sn, δ〉 or 〈s1, e1〉6↪→∗ does not terminate.

Proof: Theorem 5.1 confirms that if the execution fails then the consistency prop-

erty s1|=PreSt(E1) holds. Consequently, if the consistency property does not hold

s1 6|=PreSt(E1), then the execution cannot fail; it is either successful or it diverges.

Corollary 5.7 (Definite Non-termination from Loop Condition). Given an ar-

bitrary expression e1, consider a judgement as follows: `{P1} e1 {{OK:O1, ERR:E1}}.
For each state s1 such that s1 6|=PreSt(O1) and s1 6|=PreSt(E1), it is neither the case

that 〈s1, e1〉↪→∗〈sn,⊥〉, nor that 〈s1, e1〉↪→∗〈sn, δ〉. This means that 〈s1, e1〉6↪→∗ does not

terminate.
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Proof: Using the previous two corollaries, we denote by s1 a state that does not

satisfy neither of the following consistency properties s1 6|=PreSt(O1) and s1 6|=PreSt(E1).

Then the execution is neither successful nor failed. The only possible alternative is that

〈s1, e1〉6↪→∗ does not terminate.

Corollary 5.8 (Indefinite kind of execution from May-Bug). Given an arbitrary

expression e1, consider an inference judgement as follows: `{P1} e1 {{OK:O1, ERR:E1}}.
For each state s1 such that s1|=PreSt(O1) and s1|=PreSt(E1), all the following three

alternatives are possible: 〈s1, e1〉↪→∗〈sn, δ〉, 〈s1, e1〉↪→∗〈sn,⊥〉 or 〈s1, e1〉6↪→∗ does not

terminate.

Proof: This corollary is vacuously true.

5.7 Related Work

Most program analyses working towards the goal of bug-free programs can be divided

broadly depending on their goal: proving safety of programs, finding bugs or synergistic

approaches trying to prove safety and, at the same time, find bugs where possible.

We summarize the main approaches from these three categories in Figure 5.9. The

second column from the figure lists the direction in which the program is traversed,

either forward (FW), backward (BW) or a combination of the two. The presented

approaches can also be classified depending on the approximation done: either over-

approximating, under-approximating, exact symbolic execution or a combination. Note

that the effectiveness of the symbolic execution is inherently limited by the constraint

solver or the theorem prover that is used. We also list if the analysis is designed to be

modular, where each method is analysed in isolation to derive a summary. The method

summary would further be used instead of reanalyzing the method at each of its call

sites. Column 5 shows if the respective approaches are either meant to terminate or

run until a time limit is reached. In general, it is difficult to have a converging answer

from approaches based on abstraction refinement or by testing an unbounded number of

execution paths, so in practice a time limit is imposed. Finally, column 6 shows what is

the general goal of the analysis: safety, bugs or a combination of the two. Additionally,

the alarms reported by the analysis can be classified as bugs(1) (an alarm that is either

a true bug or a false positive), bugs(2) (an alarm that is a true bug, if the program
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Analysis Direction Approximation Mod Term Goal
Suzuki et al.[144] BW under NO YES safety

Astrée[12] FW over NO YES safety
VeriSoft [59], CMC [111] FW under NO NO bugs

DART [62], EXE [17] FW under+sym NO NO bugs
SMART [61] FW under+sym YES NO bugs
Saturn [148] FW over+under YES YES bugs(1)

Slam[5], BLAST [80] FW+BW over+sym NO NO safety+bugs(2)
Pasareanu et al. [120] FW under+over NO NO safety+bugs

Synergy [67] FW+BW over+under+sym NO NO safety+bugs
Syntox [15] FW+BW over+under NO YES safety+bugs(2)
Rival [136] FW+BW over+under NO YES safety+bugs(2)
Dualyzer FW over YES YES safety+bugs(2)

Figure 5.9: Classification of various analyses for proving safety and finding bugs

terminates), or bugs (an alarm that is unconditionally a true bug).

Proving safety: The first camp is concerned with proving safety of programs and

its proponents are shown in the top lines of the Figure 5.9. It needs to find a way to

abstract all the possible concrete executions into a statically computable form. The

abstraction may represent an over-approximation of the state at some program point

computed using a forward traversal of the program as in the seminal paper of Cousot and

Halbwachs [43]. Conversely, the statically computed abstraction may represent an under-

approximation of the state leading to a program error derived using a backward traversal

of the program. This second approach computes loop invariants using the induction-

iteration method pioneered by Suzuki and Ishihata [144] and later enhanced by Xu et al.

[149]. Various trade-offs between precision of the underlying abstraction and efficiency of

the safety analysis have been explored: the interval domain, the polyhedron domain [43]

and the octagon domain [104] are just a few of the proposed abstractions. In fact, safety

analyzers that scale to large critical programs like Astrée[12] or C Global Surveyor [145]

use elaborate combinations of abstract domains to achieve maximum efficiency. Two

other approaches towards proving safety are extended static checking [55] and program

verification. In these cases, pre/post annotations have to be designed by programmers

to provide further guidance on over-approximation, especially for recursive methods.

As a summary for all these analyses, when they cannot prove safety, alarms that may

include false positives will be signaled. The user of the analyzer is left with the job of

manually distinguishing false alarms from real bugs.
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Our modelling of error outcomes is related to the specification of exceptional con-

ditions that has been pioneered for SPEC# [97]. However, this work focuses on safety

guarantee for exception-based programs, and is not designed for bug finding purposes.

Moreover, it currently requires users to specify each exceptional behaviour, while our

approach automatically infers both success and failure outcomes.

Finding bugs: The second camp is primarily concerned with finding bugs in soft-

ware, so that faulty programs could be quickly patched. Traditionally, program testing

has been used for detecting incorrect programs. More recently, systematic testing or

concrete state space exploration has been implemented in model checkers like VeriSoft

[59] or CMC [111]. It attempts to search through all the feasible paths of the program,

uncovering real bugs (no false positives). Systematic testing cannot achieve full path

coverage, so its results represent an under-approximation of all the concrete executions

of the program. As search may not terminate in a reasonable amount of time, a limit is

set in practice on the number of paths that are covered.

A recent project, called DART [62], attempts to find more errors in a systematic

fashion by keeping a stack of conditional tests encountered during execution. The gath-

ered conditionals are used to generate new test cases that would allow deeper branches

to be explored, so as to find real bugs, where possible. It also combines concrete with

symbolic execution in order to alleviate the limitations of the constraint solver used in

symbolic execution. Whenever the constraint solver does not know how to resolve a

conditional test, DART simplifies this constraint using the concrete values of the in-

puts involved in the test. EXE [17] even used symbolic execution to explore conditional

branches exhaustively. One problem with exact symbolic execution is that it requires

heuristic to analyse each loop/recursion that is not bounded by a constant, and would

fail for infinite loop. Another issue is that symbolic solvers are typically restricted in

scope and may be inefficient, but [17] provided some solutions to this difficulty. To re-

duce the complexity of the automated testing approach, an extension of DART named

SMART [61] generates the tests compositionally on a per method basis. On the whole,

the bugs that are discovered are sound, but some bugs may remain undiscovered.

Closer in spirit to over-approximating static analyses, bug-finding tools like xgcc [78],
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FindBugs [83], Saturn [148] or FastCheck [22] take some unsound (under-approximating)

decisions in order to minimize the number of false positives. For example, Saturn only

considers some aliasing possibilities between the parameters of a method and only an-

alyzes a bounded number of iterations through a loop. Due to this combination of

over and under approximation, these tools aim to report few false positives, but neither

guarantee program safety, nor report only true bugs.

Proving safety + finding bugs: Synergistic approaches for both proving safety and

finding bugs usually rely on a combination of over and under approximation. In contrast,

our proposal is more integrated as it computes forward only over-approximations.

Model checking based on abstraction refinement is often referred as CEGAR (counter-

example guided automated refinement) and tools like Slam [5] or BLAST [80, 81, 11] are

based on this paradigm. In a first step, Slam and BLAST perform a forward-directed

over-approximating search for possible bugs. If no bugs are found, then the safety of the

program has been proven. Otherwise, starting with a possible bug, a counter-example

trace is analyzed backward via symbolic reasoning in order to derive its weakest liberal

precondition. If the counter-example is shown to be feasible, then a true bug is reported.

If the counter-example is shown to be infeasible, the abstraction is refined and the search

process is iterated. More recently, a model checking algorithm has been devised around

refinement of under-approximations to better preserve the bug detection ability of the

checker [120]. Yet another abstraction refinement is based on mixed transition systems

that represent both must and may transitions [72]. This approach can reason about

both safety and true bugs, but is (as yet) restricted to non-recursive programs. Simi-

larly, as elaborated earlier, Synergy [67] extends predicate abstraction and refinement

mechanism with DART-style program testing.

Syntox [15] is a system for abstract debugging of imperative Pascal programs. It

can prove safety and find bugs by using a combination of forward over-approximating

analysis and backward under-approximating analysis. We highlight the main differences

compared to our approach. Firstly, our analysis does not require a separate backward

phase, since it is based on a relational semantics and can derive input conditions directly

from the forward phase. Secondly, Syntox uses a less precise interval abstract domain,
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where in general the complement of an interval cannot be represented as an interval.

Thus a separate greatest fixed point computation is used to determine must-bug condi-

tions. Finally, the correctness conditions determined by Syntox are necessary, but not

sufficient like the never-bug condition derived by Dualyzer.

In order to investigate the origin of the alarms raised by the static analyzer Astrée[12],

Rival used iterated forward-backward over-approximating analysis to prove safety of as-

sertions [136]. Despite elaborate combination of abstractions, some alarms cannot be

resolved by over-approximation alone. Understanding if an alarm is a true bug is fa-

cilitated by under-approximating techniques such as input selection or restriction to an

execution pattern. The input selection process is not currently automated, but made

easier by semantic slicing techniques. The process of restriction to an execution pat-

tern and guiding the analysis towards true bugs is in general incomplete and may not

converge. However, [136] reports that in practice all considered alarms from their set of

benchmarks could be classified by the above-mentioned techniques. The classification of

alarms is similar to ours in that an alarm indicates either a true bug or a non-terminating

program.

In the absence of runtime errors, over-approximating static analysis may conclude

that, if a program location is unreachable, then the program exhibits non-terminating

behaviour. In general, in the presence of runtime errors, an unreachable location may

indicate either non-termination or a runtime error [15, 41]. In our approach, we can

prove non-termination by tracking reachability of both successful and failed executions.

A different approach to proving non-termination [70] proceeds in two steps: first it

dynamically enumerates possible non-terminating program paths and then statically

proves their feasibility by inferring a recurrent set of states.

In a recent position paper [60], Godefroid likens may- and must- analyses to the

Yin and Yang of program analysis. He advocated for greater efforts to be devoted to

must-analysis, especially because practitioners found it more useful, while researchers

(on program analysis and verification) have focused mostly on may-analysis instead.

Our proposal can be viewed as heeding this call, as we attempt to achieve a balance

between the Yin and Yang of program analyses, but using a new framework based on

dual static analysis.
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5.8 Summary

Our approach is based on a modular static analysis and is aimed at proving safety or

discovering true bugs. To achieve both goals, our key innovation is the simultaneous

capture of error outcomes and successful outcomes. Moreover, we have also shown that

our static analysis technique is able to detect a subclass of definite non-termination when

identifying unreachable states of recursive methods. Our experiments have shown that

this approach can also use may-bug conditions to guide precision improvement based

on disjunctive abstract domain. While we have focused our efforts on bugs discovery,

our use of dual static analysis can be viewed as an instance of a general framework that

simultaneously infers trigger conditions for an arbitrary property P and its complement

P. We believe that this exploration might open up a fertile ground whereby better may-

and must-analyses can be more effectively developed.
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CHAPTER VI

CONCLUSIONS

The focus of this thesis was to investigate modular static analysis with the goal of

proving program safety and detecting program errors. This chapter reviews the main

results of the current work and then makes suggestions for future research and possible

applications.

6.1 Main Results

In this thesis, we described three main results. Firstly, we presented a new disjunctive

abstract domain meant to enhance analysis precision at a reasonable cost. Secondly, we

proposed a modular technique for deriving preconditions sufficient to guarantee program

safety. With these two techniques, we were able to derive both postconditions and

preconditions and realized a completely modular analyzer for proving program safety.

Since an analyzer that aims to prove program safety may report alarms that correspond

in part to false positives, there is a need to (manually) classify the feasibility of alarms.

Our third proposal was a dual static analysis that can identify (automatically) a part

of the alarms as being true errors. More specifically, our dual static analysis was able

to identify both a never-bug condition that implies program safety and a must-bug

condition that leads to true errors (modulo program termination).

6.2 Future Work

In this section, we make some suggestions on how to improve the research presented in

this thesis and increase its practical impact.

CIL front-end : Being based on the core Imp language, our prototype implementation

was restricted to smaller-sized programs. In our experiments, we circumvented this

restriction by building a code pre-processor. We plan to extend it to the point that it

can accept CIL programs as input. The CIL framework [114] is a widely used tool for

analysis of C programs and should help in making our analyses more widely available.
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Indirectly, by this extension we hope to successfully analyze larger programs.

Disjunctive weakly relational abstract domains : Another opportunity for im-

proving the efficiency of our analyses is to adapt the proposal from Chapter 3 to a more

efficient but less precise base domain. There we used the affinity function for lifting

a base (conjunctive) abstract domain to its (disjunctive) powerset extension, and we

demonstrated this idea in the context of the base polyhedron domain. It seems promis-

ing to extend this proposal to weakly relational abstract domains like the octagons [104]

or the template constraint matrices [139].

Fixed-point analyzer : With the general applicability of fixed-point computations

to static analyses, we believe in the utility of making Disj-Fix as a separate application

package. To increase its applicability, we should make its implementation parametric in

terms of abstract domain and disjunctive heuristic function.

Abstraction refinement : Our dual static analysis generates method summaries that

are useful for abstraction refinement. Computing both an input condition that leads to

safety (never-bug) and an input condition that leads to errors (must-bug) allows an

abstraction refinement procedure to concentrate on those inputs that do not satisfy

either of these conditions. We used this observation to selectively increase the precision

of the abstract domain. A natural extension is to provide more strategies for abstraction

refinement, including the iteration of the forward analysis assuming as precondition the

may-bug determined previously. Inspired by the refinement techniques proposed in

[68, 66], we speculate that it should also be useful to refine abstract operations like

selective hulling or powerset widening when they are performed with a value less than

100% affinity.

Non-termination and termination analyses : With the dual static analysis, we

proposed to classify inputs based on whether they are sufficient/necessary to guarantee

safety or the encounter of an error. Our classification is related to the classification given

in the weakest precondition calculus of Dijkstra [49, Chapter 3]. While our classification

is concerned with program safety and bug detection, Dijkstra’s classification is more



6.2. Future Work 137

concerned with characterizing termination and whether the final state satisfies a given

postcondition. In addition to this semantic classification of inputs, our static analysis

also provided algorithms that compute a precise input partitioning. A further challeng-

ing task is to provide algorithms that classify inputs with regard to program termination.

There are some promising forays in finding inputs that lead to non-termination [70] and

inputs that lead to conditional termination [33].

Parallelization of analysis : For the analysis of larger programs, we should consider

an unavoidable increase in the analysis time. To counter this increase, we could effi-

ciently parallelize our analyses due to their modular characteristic. The parallelization

algorithm would naturally follow the method boundaries for dividing the analysis tasks,

as proposed and implemented in other summary-based analyses [20, 50].

This thesis has focused on investigating modular static analysis in the context of nu-

merical abstract domains. To this goal, we derived efficient method summaries and

obtained precise method abstractions by using disjunctive invariants. We hope that

the techniques developed here will be helpful in devising more general modular static

analyses, increase their applicability and finally lead to more dependable software.
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theory of linear arithmetic, 23
trace-based analysis, 33
transition formula, 24, 33

widening operator
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