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SUMMARY 

During extrusion-spheronization, extrudates readily break down into fines and broken 

cores. The breakdown of the extrudates is followed by extensive layering of the fines. 

Extensive layering of fines would occur during spheronization. In contrast, spheroids 

produced by rotary processing are formed mainly by nucleation and agglomeration. In 

this study, rotary processing produced spheroids used lesser amounts of water for 

granulation, as compared to extrusion-spheronization. By appropriate choice of the 

spheronization duration and peripheral tip speed, a teardrop studded rotating frictional 

plate could produce spheroids with properties equivalent to those produced by the 

cross-hatch textured rotational frictional plate. The possible of equivalency between 2 

frictional plates that differ in plate surface design allows process engineers to explore 

new grounds in equipment design and to transfer know-how in production from 

extrusion-spheronization to rotary processing. The loss of moisture during 

spheronization was not found to be critical in spheroid formation. Although rotary 

processing is a less robust process compared to extrusion-spheronization, good quality 

spheroids could still be produced if the distribution of granulation liquid and 

movement of powder during wet massing could be improved. The mechanism of 

spheroid formation by extrusion-spheronization was found to be related to surface 

remodelling and fines layering. 

 

Size analysis of spheroids using sieves was found in this study to lack sensitivity in 

detecting subtle size differences as compared to sizing using image analysis. Size 
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distribution of spheroids produced by extrusion-spheronization and rotary processing 

did not follow normal or log normal distribution. Instead, both processes produced 

spheroids which followed a mix Gaussian distribution. These findings offered direct 

evidence of spheroid size heterogeneity within a population. During 

extrusion-spheronization, dumbbell intermediates were not likely to be formed. 

Instead, observations of dumbbells could be a result of coalescence between spheroids 

of similar sizes. Compared to conventional methods for computation of spheroid size, 

subtle but significant spheroid size changes could be detected if size was represented 

by mix Gaussian distribution.  

 

When used alone, circularity (C) was not critical in detecting improvement in 

roundness during spheronization. Data from both processes suggested strongly that 

eccentricity factor (eR) and aspect ratio (AR) were highly correlated with each other. 

Therefore, due to mathematical simplicity, AR could be used as a roundness 

descriptor instead of eR without being less critical in quantifying roundness. The novel 

method of using R values of AR-projected sphericity (PS) and AR-C correlations to 

distinguish shapes of spheroids such as oval, ellipse and rectangle with round ends 

were found to be applicable in both extrusion-spheronization and rotary processing 

spheroids. At the end of spheronization, the smaller extrusion-spheronization 

spheroids within the population were rounder and these smaller spheroids were also 

more variable in shapes, indicating that these spheroids participated actively in mass 
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transfer or remodelling. This observation further supported the hypothesis that within 

a spheroid population, the size and shape heterogeneity are related. 

 

Prolonged spheronization would alter the surface morphology of spheroids. Addition 

of granulating liquid after spheroids were formed would definitely increase the size of 

spheroids and also cause a decrease in roundness. 
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PART 1.  INTRODUCTION 

1. Spheroids 

Granules are generally physically and chemically less prone to changes compared to 

powders. Granules are easier to handle, possess better flow and are less likely to cake 

or harden on storage (Schwartz, 1988). Spheroids are a subset of granules. They are 

free flowing spherical granules, commonly of size between 0.5-1.5 mm (Sellassie, 

1989a). Hence they possess certain properties which are advantageous over 

irregularly shaped granules. These properties include narrow size distribution, 

uniformity in shape, low friability, better packing and better flow (Conine and Hadley, 

1970; Reynolds, 1970; Robinson and Hollenbeck, 1991). Spheroids are the desirable 

choice for capsule filling as they possess good flow properties and are resistant to 

breakdown during handling. 

 

The spherical shape allows spheroid coating to be carried out efficiently. Controlled 

released dosage forms can be made with drug-loaded cores and release modifying 

coatings. Drugs which are incompatible with one another can be placed in the same 

capsule by first formulating the different drugs into different spheroids and 

subsequently applying coating on the spheroids to function as a protective layer. 

Compared to single unit dosage forms, these multiparticulate systems offer 

advantages such as improved bioavailability, consistency in gastric emptying rate and 
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less variability in intra-subject and inter-subject drug plasma profiles. Occurrences of 

dose dumping effects can also be minimized (Sellassie et al., 1985; Sellassie, 1994). 

  

2. Methods of spheroid production 

Depending on the ways particles are brought together, spheroids could be produced 

by three general techniques (Sherrington and Oliver, 1981a; Sellassie, 1989b), 

a) globulation - spray drying, spray congealing, cryopelletization, 

b) compaction, and 

c) agitation - solution or suspension layering, powder layering, balling, high shear 

pelletization and rotary processing. 

 

Being a multi-step process, extrusion-spheronization (ES) can be classified as a 

combination of compaction and agitation. ES is currently one of the most popular 

methods of producing spheroids. 

 

2.1. Extrusion-spheronization 

ES could be broadly described by these steps: wet massing, extrusion, spheronization 

and drying. In general, powders are premixed prior to wet massing. Mixing and wet 

massing could be carried out simultaneously in mixer granulators such as planetary 

mixers, sigma blade mixers, high shear mixers and continuous granulators (Vervaet et 

al., 1995). During wet massing, a moistening agent is added to the powder mixture in 
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order to produce a homogenous wet mass. The moistening agent is usually water but 

other binders have also been used to produce spheroids (Umprayn et al., 1999). The 

wet massing step is usually followed by extrusion within a short time interval. 

However, some research groups have also allowed the wet mass to stand for a few 

hours to facilitate moisture equilibration prior to extrusion (Fielden et al., 1989; 

Newton et al., 1992).  

 

In the extrusion step, pressure is exerted on the wet mass, forcing it to flow through 

orifices of the extrusion die. As such, the wet mass is densified and shaped into 

cylindrical aggregates termed as extrudates. Types of extruders are classified 

according to the design of the die and the wet mass conveying mechanism (Fielden 

and Newton, 1992). The different types of extruders include ram, screw, radial screen, 

roll, gravity feed, sieve and basket extruders. Different types of extruders would exert 

varying degree of densification onto the wet mass (Sherrington and Oliver, 1981b). 

Specialized equipment such as the twin screw extruder could carry out mixing, wet 

massing and extrusion in a single step (Linder and Kleinebudde, 1994). 

 

Spheronization is carried out in a spheronizer after extrudates are produced. 

Extrudates within the product chamber of the spheronizer experience frictional forces 

exerted by the rotating frictional plate (Figure 1). 
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(a) 

 

 

(b) 

 

 

Figure 1. Schematic diagrams of (a) a spheronizer and (b) a rotary processor 
 
 

Typically, the surface texture of the rotating frictional plates is made up of a 

cross-hatch pattern of square pyramidal studs with rectangular grooves (Figure 2). 

The plate can also be of a radial pattern, consisting of rectangular grooves radiating 

from the center of the plate. It has been reported that cross-hatch or radial textured 

rotating frictional plates did not affect spheroid quality unless the extrudates were of 
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poor quality (Newton et al., 1995a). During spheronization, the sharp edged texture of 

the rotating frictional plate breaks up the cylindrical extrudates into shorter segments 

as they tumble around the spheronizer in a rope like motion. With prolonged tumbling, 

these shorter segments would be rounded, forming spheroids. 

(a) 

 
(b) 

 
 
Figure 2. Dimensions of the surface protuberances of (a) cross-hatch and (b) teardrop 
studded frictional plates. 
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Spheroids are commonly dried either by using hot air ovens or by fluid-bed driers. 

These two methods have been compared by Dyer et al. (1994). Other drying methods 

include microwave drying (Bataille et al., 1993) and freeze drying (Kleinebudde, 

1994). 

 

2.2. Rotary processing 

Rotary processing (RP) is alternative method to produce spheroids. The main 

difference between ES and RP is that the former is a multi-step process while the 

latter is a “one pot” process. Different terms have been used to describe the equipment 

for RP. These include centrifugal equipment/granulator, rotary fluidized bed 

granulator, rotary processor and rotor granulator (Figure 1). During RP, liquid 

addition, wet massing, agglomeration and spheronization would take place 

simultaneously. Like the spheronizer, the rotary processor has a product chamber with 

a rotating frictional plate located at the bottom (Figure 1). However, the texture of its 

rotating frictional plate differs from that of the typical spheronizer. The protrusions on 

the plates of the rotary processor are generally rounded with less well-defined edges, 

e.g. in the shape of teardrops (Figure 2) or truncated pyramids. Unlike the spheronizer, 

the rotating frictional plate of rotary processor has been designed to fulfill a wider 

range of requirements: transporting powders around the rotary processor, transporting 

aggregates around the rotary processor, densifying aggregates, breaking down 

excessively large aggregates and rounding of aggregates. Within the product chamber, 

the rotary processor has a spray gun to introduce granulating liquid to the powder 
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mixture. The wall of the product chamber can be elevated, allowing materials to move 

outwards by centrifugal forces when they are agitated around the product chamber by 

the rotating frictional plate to the fluidizing zone. Hot fluidizing air is passed through 

the fluidizing zone to dry the materials. Another difference between a rotary processor 

and a spheronizer is the presence of gap air in a rotary processor. Pressurized air, 

termed gap air, is introduced from the bottom of the product chamber of the rotary 

processor through the clearance between rotating friction plate and the product 

chamber wall. At the beginning of RP when the powder mixture is still dry, the 

powder mixture can slip through the clearance between the rotating frictional plate 

and the product chamber when the plate rotates. The gap air prevents the slippage of 

powders through the clearance. 

 

3. Process and formulation parameters influencing 

spheroid formation 

The parameters affecting spheroid formation can be divided into three groups. The 

first group affects exclusively ES. The second group affects exclusively RP. The third 

group affects both ES and RP. 

 

3.1. Parameters affecting extrusion-spheronization 

The type of extruder used can affect the resultant spheroids. Compared to a rotary ring 

die press, a twin-screw extruder required a higher amount of water for producing 
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spheroids of equivalent size (Schmidt and Kleinebudde, 1998). Using a radial 

extruder, Vervaet and Remon (1996) investigated the effects of two different impeller 

designs and three different screen perforation geometries on the quality of spheroids 

produced. Their results showed that the impeller design and screen perforation 

geometry affected the maximum amount of lactose to be used as filler. Thoma and 

Ziegler (1998) researched on the optimum amount of water required for making 

spheroids using roll, axial and radial extruders. Among these types of extruders, the 

roll extruder required the least amount of water for successful spheroid formation. 

While the axial extruder tolerated the widest range of water concentration for 

successful spheroid formation, the maximum allowable water concentration for 

extrusion for the axial extruder was also the highest among the three extruders. 

Extrudates produced by the axial extruder were the densest, thus improving their 

ability to retain water within the matrix, resulting in a decrease in the amount of 

excess water on spheroid surfaces. This, in turn, reduced the tendency for excessive 

agglomeration during spheronization. Larger spheroids could be produced if a thicker 

screen was used (Hellen et al., 1993). Instead of evaluating extrusion performance by 

assessing the quality of spheroids produced, Shah et al. (1994 and 1995) investigated 

extrusion performance using an instrumented extruder. Extrudability of wet mass 

could be determined by the screen temperature and pressure (Shah et al., 1994). The 

yield of spheroids of size 710-1000 µm could be controlled by the screen pressure. 

Yield and tensile strength of wet mass were also able to affect the shape factor of 

spheroids (Shah et al., 1995). 
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3.2. Parameters affecting rotary processing 

With sufficient amount of water for spheronization, an increase in spray rate would 

increase the spheroid size (Wan et al., 1994) whereas the rate of water addition during 

wet massing would not be an issue with ES. An increase in gap air pressure reduced 

the size of spheroids produced (Wan et al., 1994). Vertommen et al. (1998) attributed 

the influence of gap air pressure to the amount of water loss during water addition. 

 

3.3. Parameters affecting extrusion-spheronization and rotary 

processing 

A longer duration for spheronization allows an increased opportunity for 

agglomeration to take place. However, longer durations might cause spheroid size to 

decrease if spheronization speed is excessively high, promoting breakdown (Wan et 

al., 1993).  

 

Spheronization at low speed would yield spheroids with poor form factor due to 

insufficient frictional forces to round them. Above a certain threshold speed, generally 

round spheroids can be formed (Wan et al., 1993). As spheronization speed increases, 

spheroid size increases to a maximum. Interplay of agglomeration and breakdown 

govern the size of resultant spheroids. Increase in spheronization speed promotes 

agglomeration. However, if spheronization speed is excessively high, the tendency for 

spheroids to breakdown is greater than to agglomerate, leading to a decrease in 

spheroid size (Wan et al., 1993). 
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Liew et al. (2000) used a “low-high-low” speed variation during rotary processing to 

produce spheroids with narrow size distribution, minimizing the production of 

oversize agglomerates. In that study, powder mixture was first agitated with a lower 

spheronization speed for the initial 2 min of water addition. Subsequently, the higher 

spheronization speed aimed to improve the water distribution within the wet mass. 

Upon completion of water addition or to prevent excessive agglomeration, the 

spheroids were allowed to tumble at a low speed to effect roundening. 

 

Using teardrop studded plates with different heights, Heng et al. (2002) showed that 

an increase in the protuberance of teardrop studs on rotating frictional plate would 

increase the size and roundness of spheroids produced, at the expense of lowered 

yield due to increased adhesion of wetted powder mass onto the plate. 

 

3.4. Influence of formulation 

Regardless of ES or RP, the formulation for spheronization requires a balance 

between rigidity and plasticity. If the formulation is skewed towards rigidity, 

spheroids formed would be dumbbell shaped and the product would also have large 

amount of fines. On the other hand, a formulation which is extremely plastic would 

instead allow excessive agglomeration, resulting in excessively large spheroids 

(Harris and Sellassie, 1989). Extrudates with the right balance of rigidity and 

plasticity would break up into appropriate length, undergo minimal agglomeration and 
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allow roundening, yielding spheroids of desirable size and roundness. During RP, 

aggregates are formed when the granulating liquid is added to the powder mixture. 

With adequate plasticity, agglomeration between aggregates would take place. The 

right balance of rigidity and plasticity prevents uncontrolled agglomeration while 

allowing roundening of agglomerates, yielding spheroids. 

 

Usually a spheronization aid has to be added into the formulation in order to achieve 

the right balance of plasticity and rigidity. Presently, microcrystalline cellulose (MCC) 

remains the spheronization aid of choice. Studies have been carried out to investigate 

the properties of MCC with the intention of elucidating the reasons for its superior 

“spheronization aid” properties (Koo and Heng, 2001; Heng and Koo, 2001; Soh et al., 

2006).  

 

Newton et al. (1992) demonstrated that equivalent grades of MCC between brands 

required different amount of water for spheroid production. Regardless of brands and 

grades of MCC, an increase in void volume of MCC was found to increase the 

amount of water required for spheronization while MCC:lactose with higher packing 

densities required a lower amount of water for spheronization (Heng and Koo, 2001). 

MCC having high bulk density, low porosity and low water retentive capacity 

required less water to produce spheroids. However these spheroids had lower 

roundness and also wider range in roundness (Koo and Heng, 2001). 
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Spheroid formulations containing soluble fillers, such as lactose, required less water 

than formulations having insoluble fillers, such as dicalcium phosphate, to produce 

spheroids (Holm et al., 1996). 

 

4. Contrasting extrusion-spheronization and rotary 

processing 

To date, there have not been many reports comparing ES and RP on spheroid 

production. Using the same formulation but with differing amounts of water for both 

processes, Pisek et al. (2001) reported that RP spheroids were of broader size 

distributions but higher densities. These spheroids were also more brittle. However, 

the comparisons were made between spheroids of different mean sizes. By varying 

rotor speed, spray rate and drug loading, Robinson and Hollenbeck (1991) produced 

RP spheroids which had similar dissolution rates and crushing strengths as those 

produced by ES. 

 

5. Spheroid formation and growth 

The formation of spheroids could be described from different approaches: bonding 

between individual particles, basic growth mechanism of aggregates, and breakage 

and remodelling of aggregates. Particles at close proximity with one another 

experience attractive forces such as valence forces, Van der Waals forces, 

electrostatic forces or magnetic forces. During wet granulation, liquid bridges are 
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formed between particles. The degree of liquid bridging depends on the amount of 

granulating liquid and the inter-particulate void volume. Classical models on liquid 

saturation of granules defined 4 states of liquid saturation as pendular, funicular, 

capillary and droplet (Iveson et al., 2001).  

 

Theories have been proposed on how spheroids are formed and enlarged. These 

theories were based on experimental results and visual observations (Sastry and 

Fuerstenau, 1973; Sastry and Fuerstenau, 1977; Leuenberger and Imanidis, 1986; 

Mehrotra and Sastry, 1986 ). Experiments involving the use of tracers provided more 

convincing data which led to the proposal of the following spheroid growth 

mechanisms: nucleation, coalescence, layering and abrasion transfer (Sastry and 

Fuerstenau, 1973; Linkson et al., 1973; Bhrany et al., 1962).  

 

Two prominent theories have been put forward to explain how the extrudates develop 

into spheroids via ES. Rowe (1985) proposed that extrudates would rapidly break up 

at the initial 20 s of spheronization, producing cylindrical-like aggregates with 

rounded ends. The shape of these aggregates would be remodelled sequentially into 

dumbbells, proceeding to ellipses, and eventually into spheroids. Upon observation of 

spheroid formation using plasticine as a starting material, the alternative theory which 

was proposed by Baert and Remon (1993) suggested that because extrudates were 

subjected to rope folding forces, these extrudates were twisted, resulting in the 

development of dumbbell shaped aggregates. Under this rope folding force, the 
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dumbbell shaped aggregates would break apart in the middle into 2 spheroid 

precursors. These precursors would eventually be rounded into 2 spheroids. The 

existence of a central cavity within each spheroid was postulated to be caused by 

folding at the point of dumbbell separation. 

 

Unlike ES, RP has characteristics of high shear granulation, fluidized bed granulation 

and spheronization. Granulating liquid is added to the powder mixture tumbling on a 

rotating frictional plate. Nuclei progressively form, coalesce, consolidate, densify and 

eventually round off to form spheroids (Liew et al., 1998). Unlike in ES, wet massing, 

agglomeration and spheronization occur simultaneously during RP. The interplay of 

these process steps results in spheroid formation (Liew et al., 1998). 

 

6. Characterization of spheroids 

Spheroid quality is mainly determined by evaluating spheroid size, roundness, 

friability, dissolution rate, hardness, surface morphology, flowability and porosity 

(Vervaet et al., 1995). In general, spheroids could be analyzed by 2 approaches: their 

functional or process efficiencies. For example, on functional efficiency, drug can be 

included into the formulation and dissolution tests carried out to evaluate the 

dissolution profile (Chatchawalsaisin et al., 2004). Besides the dissolution profile, 

uniformity in drug content could also be inferred. 
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Percentage yield is often reported when process efficiency is considered to be more 

important. Yield is commonly defined by authors as percentage of spheroids within a 

desired size fraction. Percentage of oversized spheroids (Gu et al., 2006) or fines 

(Howard et al., 2006) have also been used to characterize process efficiency. 

Homogenous spheroids of narrow size distribution are desired for capsule filling. 

Highly rounded spheroids with narrow size distribution generally have good flow 

properties. It is therefore important that spheroid quality should be evaluated by 

characterizing their size, size distribution and shape. Table 1 provides a list on recent 

publications on spheronization and respective methods used to characterize mean size, 

size distribution and shape. 

 

During the last 4 years, there have been more publications on ES than on RP. Selected 

publications on RP which are not recent were also included in Table 1 as they are 

relevant in the review of methods used to characterize the size, size distribution and 

shape of spheroids. 

 

6.1. Spheroid size and size distribution 

Predominantly, sieving is the method of choice for characterizing spheroid size. Mass 

mean diameter has been used to represent the average size of spheroids produced by 

ES (Table 1). MacRitchie et al. (2002) and Boutell et al. (2002) used sieves of 2  

size progression to compute the mass median diameter and interquartile range of 

spheroids. Tomer et al. (2002) similarly reported mass median diameter. The size  



 

 

Table 1. Recent studies on spheronization and the respective methods used for size, size distribution and shape characterization. 
Reference Focus of research Characterization methods and descriptors Remarks 
  Size and size distribution Shape  
     
Pinto et al., 2006 Evaluation of quality of 

spheroids produced by a 
continuous spheronizer. 

(Sieving) 
Median and interquartile range 

(Image analysis) 
Aspect ratio 

 

Bommareddy et al., 
2006 
 
 

Inclusion of Carbopol® 974P 
in spheroids produced by ES. 
 

(Sieving) 
840 – 1410 µm size fraction 
reported as yield 
 

(Image analysis) 

064.14
""

2

×
=

A
proundness

π

 

Podczeck and 
Knight, 2006 
 
 

Relating rheological 
properties and fluid mobility 
of wet mass to quality of 
spheroids produced by ES. 

(Sieving) 
Median and interquartile range 

One plane critical stability  

Howard et al., 2006 
 

Feasibility of replacing MCC 
with polyethylene oxide and 
methoxypolyethylene to 
produces spheroids by ES. 

(Sieving) 
707-1190 µm size fraction 
reported as percentage yield. < 
707 µm size fraction reported 
as percentage fines. 

(Image analysis) 

A
proundness
π4

""
2

=  

 

 

Rough and Wilson, 
2005 

Extrudate defects, induced by 
varying extruder parameters, 
were related to the quality of 
spheroids produced by ES. 

(Sieving) 
Sieve fractions individually 
reported, depicting size 
distribution  

(Image analysis) 
Qualitative descriptions 
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Table 1 (Continued). Recent studies on spheronization and the respective methods used for size, size distribution and shape characterization. 
Reference Focus of research Characterization methods and descriptors Remarks 
  Size and size distribution Shape  
     
Almeida-Prieto et 
al., 2006 

Effects of process variables of 
ES on shape of spheroids 
produced, as described by 
circularity, aspect ratio, eR, Vr 
and Vp. 

(Image analysis) 
Mean size 

(Image analysis) 
Aspect ratio, eR, Vr and 
Vp 

 

Chukwumezie et al., 
2004 

Effects of formulation and 
process variables on ibuprofen 
spheroid production in a 
rotary processor. 

(Sieving) 
Geometric weight mean 
diameter and geometric weight 
standard deviation 

(Image analysis) 

2

142.34""
p

Asphericity ×
=

 

Agrawal et al., 2004 Using chitosan as a 
spheronization aid in spheroid 
production by ES. 

(Sieving) 
Weight mean diameter 

(Image analysis) 

2

4""
d
Asphericity

π
=  

 

Gu et al., 2006 Comparing the quality of 
spheroids produced by rotary 
processing using unblended 
and blended powder mixtures.

(Sieving) 
Percentage over 2.8 mm, mass 
mean diameter and span 

(Image analysis) 
Circularity, aspect ratio 
and eR 
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Table 1 (Continued). Recent studies on spheronization and the respective methods used for size, size distribution and shape characterization. 
Reference Focus of research Characterization methods and descriptors Remarks 
  Size and size distribution Shape  
     
Liew et al., 2005 Feasibility study of using 

cross-linked 
polyvinylpyrrolidone as a 
spheronization aid in 
producing spheroids using ES.

(Sieving) 
Percentage over 2.8 mm size, 
mass mean diameter and span 

(Image analysis) 
Circularity, aspect ratio 
and eR 

 

Galland et al., 2005 The hydro-textural and 
morpho-granular 
characteristics of the products 
at various stages of ES were 
monitored and compared to 
quality of spheroids produced.

(Sieving) 
Mass mean diameter and 
interquartile range 

(Image analysis) 

Elongation ratio=
max

min

d
d  

 

Chatchawalsaisin et 
al., 2004 

The quality of spheroids 
produced by ES when 
chitosan and/or sodium 
alginate were included in the 
formulation. 

(Sieving) 
Mass mean diameter and 
interquartile range 

(Image analysis) 
eR and aspect ratio 

Commented that 
aspect ratio was 
inferior. 

Kristensen, 2005 The effects of different grades 
of lactose and MCC on quality 
of spheroids produced by RP. 

(Sieving) 
Geometric weight mean 
diameter and geometric weight 
standard deviation 

(Image analysis) 
Aspect ratio and  

2

4""
p

Aroundness π
=  

Commented that size 
distribution was in 
good agreement with 
log normal 
distribution. 
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Table 1 (Continued). Recent studies on spheronization and the respective methods used for size, size distribution and shape characterization. 
Reference Focus of research Characterization methods and descriptors Remarks 
  Size and size distribution Shape  
     
Tho et al., 2005 Spheroids containing 

amidated low-methoxylated 
pectin were produced by ES 
and their quality investigated. 

(Image analysis) 
Mean diameter 

(Image analysis) 
Aspect ratio 

 

Krejcova et al., 
2006 

The influence of particle size 
and solubility of drug on the 
quality of spheroids produced 
by RP. 

(Sieving) 
Mass mean diameter 

(Image analysis) 

2

4""
p

Asphericity π
=  

 

Steckel and 
Mindermann-Nogly, 
2004 

Effects of different amount of 
chitosan on the quality of 
spheroids produced by ES. 

(Image analysis) 
Mean diameter 

(Image analysis) 
Aspect ratio 

Spheroids > 500 µm 
not included in size 
or shape analysis.  

Chatchawalsaisin et 
al., 2005 

Influence of glyceryl 
monostearate on the quality of 
spheroids produced by 
extrusion-spheronization. 

(Sieving) 
Mass mean diameter 

(Image analysis) 
eR and aspect ratio 

 

Bornhoft et al., 
2005 

Feasibility study using 
carrageenan as a 
spheronization aid in spheroid 
produced by ES. 

(Image analysis) 
Mean diameter 

(Image analysis) 
Aspect ratio 
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Table 1 (Continued). Recent studies on spheronization and the respective methods used for size, size distribution and shape characterization. 
Reference Focus of research Characterization methods and descriptors Remarks 
  Size and size distribution Shape  
     
Thommes and 
Kleinebudde, 2006a 
and Thommes and 
Kleinebudde, 2006b 

With ĸ-carrageenan as 
spheronizing aid, spheroids 
containing different fillers and 
drug of differing solubilities 
were produced by ES and 
assessed. 

(Sieving) 
1.0 – 1.6 mm size fraction as 
yield 
 
(Image analysis) 
Mean diameter 
Proportion of spheroids within 
10% of the mean spheroid 
diameter. 

(Image analysis) 
Aspect ratio 

 

Kristensen and 
Schæfer, 2000 

Feasibility of using torque as a 
RP end point was investigated 
with varying amount of MCC 
in formulation. 

(Sieving) 
Geometric weight mean 
diameter and geometric weight 
standard deviation 

(Image analysis) 
Aspect ratio 

 

Kristensen et al., 
2000 

Feasibility of using torque as a 
RP end point was investigated 
with varying rotational plate 
speed, gap air pressure and 
batch size. 

(Sieving) 
Geometric weight mean 
diameter and geometric weight 
standard deviation 

(Image analysis) 
Aspect ratio 
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distribution of spheroids was represented as percentage of spheroids in the 0.71-1.7 

mm size fraction. Sousa et al. (2002) presented the mass median diameter and 

percentage weight retained between 1-1.4 mm aperture size sieves. Tho et al. (2002) 

presented spheroid size distribution as percentages of spheroids in the 0.7-1.0 mm, 

1.0-1.7 mm and >1.7 mm size fractions. 

 

Average size of spheroids has also been presented as the average maximum and 

minimum feret diameters obtained from image analyses of 400 ± 50 spheroids. (Tho 

et al., 2005). D25%-D75% of feret diameter (the difference between the 25th and 75th 

percentile spheroid diameters) was reported to provide information on the spread of 

size distribution. From the choice of calculation method used to represent average size 

of spheroids, it would seem that spheroids either followed a normal distribution, a 

symmetrical distribution or did not follow any distribution. Apart from mass mean 

diameter, geometric weight mean diameter has been used to represent the average size 

of spheroids produced by RP (Table 1). The size distribution of spheroids could be 

log normal which consequently require the use of geometric weight mean diameter as 

the choice parameter to represent the average size (Kristensen, 2005). Liew et al. 

(2002) observed that sieved fractions of spheroids produced by RP resembled log 

normal distribution. Therefore, size of spheroids was presented as geometric weight 

mean diameter and the size distribution as geometric weight standard deviation.  
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However, to date, there has been no report on statistical significance tests carried out 

to verify if spheroids, either produced by ES or RP, follow any size distribution. 

 

6.2. Spheroid shape 

In shape characterization of spheroids, aspect ratio (AR) could be the most popular 

(Table 1). Other descriptors which have been used included eR and formulas 

resembling Circularity (C). eR was proposed by Podczeck and Newton (1994) as a 

superior shape descriptor for spheroids. Chatchawalsaisin et al., 2004 commented that 

AR showed results in agreement with those by eR. Nevertheless, they believed that 

AR was less critical in distinguishing spheroids produced by different formulations. 

Almeida-Prieto et al. (2004) introduced Vr and Vp as new shape descriptors for ES 

spheroids. Almeida-Prieto et al. (2004) did not give a name to these new shape 

descriptors but it should be reasonable to describe Vr and Vp as “Radius variability” 

and “Perimeter variability” shape factors. Vr measures radius variability which 

therefore is more sensitive to changes in shape. Vp measures perimeter and can be 

affected by surface roughness. It was reported that Vr and Vp were able to show 

predominant shape texture and in the spheroid population only when they used in 

combination (Almeida-Prieto et al., 2004).  
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7. Size distribution in other particulate systems 

In contrast to spheroids, studies concerning other particulate systems have defined 

size distribution by curve fitting to mathematical equations. For example, size 

distribution of cyclodextrins was found to be log normally distributed by using Chi 

square goodness of fit test (MunozRuiz and Paronen, 1997). Size distribution of 

unicored and multicored three-walled microcapsules could be curve fitted, by least 

square minimization, to a two log normal distribution (Morris and Warburton, 1984). 

 

Theories on spheroid formation by Rowe (1985) and Baert and Remon (1993) were 

derived based on qualitatively observed evidences. In contrast, Sastry and Fuerstenau 

(1973) mathematically analyzed the rate of spheroid growth in order to explain the 

underlying spheroid growth mechanism. In high shear melt granulation, heterogeneity 

has been observed in the particle size distribution of granules and heterogeneity could 

be correlated to the different methods of binder addition, which in turn was used to 

explain agglomerate formation by different mechanisms (Scott et al., 2000). The 

appropriate use of descriptors to represent the size distribution of particles can aid in 

finding relationships between particle populations to process or particle properties 

(Alderliesten, 2004). In unimodal distribution, location parameter of Rosin-Rammler 

distribution was used to quantify the outcome of grinding experiments (Alderliesten, 

2004). Bimodal or multiple modal distributions have been used to represent 

heterogeneity within a population, such as disease mapping, meta-analysis and texture 

modeling (Bohning and Seidel, 2003). For these reasons, the mathematical analysis of 
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spheroid size distribution will be useful, allowing greater understanding of spheroid 

growth and formation. 

 

8. Log normal, normal and mixed Gaussian 

distributions 

Log normal distribution, one of the many well-known statistical distributions, is a 

probability model which is used to represent the uncertainty of an occurrence. In this 

case, using the statistical model, the amount of fines and oversized spheroids can be 

predicted and should tally with actual experimental results. In the field of engineering, 

statistical distributions are commonly used to describe and predict chances of 

occurrence. Normal distribution, for instance, describes any occurrence as a result of 

the summation of many random independent reasons. Repeated measurements using 

an instrument might give readings which follow a normal distribution (Bury, 1999). 

 

Mixed Gaussian distribution is a distribution resulting from summation of multiple 

normal distributions. A normal distribution is defined by mean µ and standard 

deviation σ. For a 2 components mixed Gaussian distribution, let f(x) be the 

population density function (PDF) of a mixed Gaussian distribution  
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f(x) = α1f1(x) + α2f2(x) .....(1) 

 

α1 + α2 = 1.....(2) 

 

where f1(x) and f2(x) represent the PDF of first and second normal distributions with 

probability p1 and p2 respectively. Since a normal distribution PDF is defined by 

parameter mean µ and standard deviation σ, a 2 components mixed Gaussian 

distribution f(x) is defined by parameter α1, µ1, σ1 and α2, µ2, σ2. A 3 components 

mixed Gaussian distribution f(x) would be defined by parameter α1, µ1, σ1, α2, µ2, σ2 

and α3, µ3, σ3. 

 

In order to have a better understanding of spheroid growth mechanism, size 

distributions of spheroids have to be defined. The size distribution would then have to 

be examined together with the shape and size of individual spheroids so as to reveal 

information on how spheroids are formed during spheronization. 
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PART 2.  OBJECTIVES 

The main hypothesis of this study is that in spheroid formation, spheroid growth and 

shape changes would reflect a heterogeneous particulate population undergoing 

transformation in a non-random manner.  

 

In order to test the hypothesis: 

1) ES and RP would have to produce spheroids of similar quality and size. These 

spheroids have to be produced under identical or equivalent process conditions 

and formulation in order for fair comparison to be made. 

2) Growth of spheroids should be observed visually. In addition, spheroid growth 

and shape changes during spheronization have to be described quantitatively in 

order to substantiate visual observation. 

3) Spheroid growth during spheronization should be induced. This act as an 

experimental intervention to verify if quantification of spheroids growth could be 

reproducible. 

4) ES and RP spheroid formation would have to be compared. 
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PART 3.  MATERIALS AND METHODS 

1. Materials 

In this study, MCC (Avicel PH101, Asahi Chemical, Japan) was used as the 

spheronization aid and lactose monohydrate (Pharmatose 200M, De Melkindustrie 

Veghel, The Netherlands) as the bulk material in the preparation of spheroids. The 1:3 

MCC:lactose powder was pre-blended for an hour at 40 rpm using a twin cone mixer 

(AR401, Erweka, Germany). Unless otherwise specified, distilled water was used as 

the granulating liquid. Ten % w/v copovidone (Plasdone S630, International Specialty 

Product, US) in distilled water and 0.001%w/v polysorbate 80 (Tween 80, ICI 

Surfactants, US) in distilled water were 2 types of granulating liquids used. 

 

2. Methods 

2.1. Preparation of spheroids 

Spheroids were produced by 3 different spheronization processes: ES with cross-hatch 

plate (ESC), ES with teardrop studded plate (EST), and RP with teardrop studded 

plate (RT) (Figure 3). 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Schematics showing processes leading to spheroid formation. 
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2.2. Spheroid production by ES 

For ESC and EST, 1 kg of MCC:lactose powder mixture was wet massed using a 

planetary mixer (Kenwood Major, Kenwood, UK). During wet massing, 380 ml of 

water, used as granulating liquid, was delivered at a flow rate of about 40 ml/min by a 

peristaltic pump (502S, Watson-Marlow, England). The wet mass was extruded by a 

radial extruder (E140, GEA-Niro, UK) fitted with an extrusion screen of 1 mm 

aperture diameter and thickness. The extrusion feed rate and the extrusion speed were 

set at 60 rpm and 47 rpm respectively. The extrudates produced were subsequently 

spheronized using 2 different equipments. 

 

For ESC, extrudates were spheronized on a cross-hatch frictional plate in a 

spheronizer (S320, GEA-Niro, UK). For EST, extrudates were spheronized on a 

teardrop studded frictional plate in a rotary processor module connected to a 

multi-system air handling unit (MP1, Aeromatic–Fielder, UK). Details on the 

frictional plates are presented in Figure 2 and Table 2. Conditions for spheronization 

for ESC and EST batches are presented in Table 3. 
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Table 2. Details of equipment used for spheronization of extrudates by ESC and EST. 
Process Spheronizing 

equipment 
Diameter of 
frictional plate 
(mm) 

Texture of frictional plate 

    
ESC  Spheronizer 

(GEA-Niro S320, 
UK) 

320 Cross-hatch design plate 
(Grooves with well-defined and 
sharp edges) 

    
EST Rotary processor 

(MP1, 
Aeromatic–Fielder, 
UK) 

275 Teardrop studded plate 
(Stud height, 2.75 mm. Rounded 
edges.)  

    
 
Table 3. Process parameters for ESC and EST batches. 
Batch  Rotational speed 

of frictional plate 
(rpm) 

Equivalent tip 
speed (cms-1) 

Gap air (bar) Duration of 
spheronization 
(min) 

     
ESC 600 10.1 Not applicable 10 
EST793 793 11.4 1.2 20 
EST862 862 12.4 1.2 20 
EST931 931 13.4 1.2 20 
EST1000 1000 14.4 1.2 20 
     
 

For each batch, spheroids were sampled at half minute intervals during spheronization 

for size and shape analysis. All runs were carried out in triplicates and results 

averaged. The batches were coded according to the processes used and the 

“revolutions per minute” (rpm) of the frictional plate.  

 

For ESC spheroids, video footage of the first 20 s of spheronization was captured 

using a high speed camera (MotionPro HS-3, Redlake, US) at 1000 fps and shutter 

speed at 86 µs. 
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2.3. Spheroid production by RP 

RP was carried out in the rotary processor module, coupled to a multi-system air 

handling unit (MP1, Aeromatic-Fielder, UK). The same rotating frictional plate used 

for EST was used in RP. One kg load of the MCC:lactose powder mixture was used 

per batch. The amount of water used ranged from 360 to 380 ml. RP batches were 

coded according to the amount of water used (RT36%, RT37%, and RT38%). 

 

During RP, spheroids were sampled at half minute intervals after completion of water 

addition for size and shape analysis. The process parameters used are shown in Table 

4 and runs were triplicated. 

 

Table 4. Process parameters for RT batches. 
Process parameters Parameter values 
 
Equivalent tip speed (cms-1) 

 
7.2 (first 2 min) 
13.4 (after 2 min) 

Gap air (bar) 1.2 
Duration of process (min) 20 
Inlet air temperature (oC) 30 
Atomizing air pressure (bar) 1.2 
Spray nozzle diameter (mm) 0.8 
Spray rate (g/min) 41 
  

2.4. Formation process during ES 

In order to investigate spheroid formation during ES and RP, spheroids were 

produced with identical process parameters and formulation to ESC (Table 3). For 

each batch, spheroids were sampled at 2 min intervals during spheronization for size 

and shape analysis. Spheroids sampled during spheronization were coded as 
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xESC(TS)y where “x” is the experiment repeats and “y” is the spheronization time. 

All runs were carried out in triplicates and results averaged. 

2.5. Controlled spheroid agglomeration during RP 

RP batches were produced to investigate spheroid agglomeration behavior when 

additional amount of granulating liquid was added to well-formed spheroids during 

spheronization. These batches were coded RT(SR). “SR” represented “spray rate”. 

RT(SR) were produced with process parameters and formulation identical to those of 

RT36%. Process duration for RT36% was 20 min. However, for RT(SR) batches, the 

process was extended for 30 min. During the 30 min extended process period, 

spheroids were spheronized at the same spheronization speed of 931 rpm and 

additional granulation liquid (AGL) was added to the spheroids at a constant rate 

throughout that period. Spheroids were sampled at 10 min interval during the 

additional 30 min.  

 

AGL was added at 4 different spray rates, i.e. 0, 2, 4, 6 ml/min. Apart from using only 

distilled water as granulating liquid, solutions containing copovidone (S630) and 

polysorbate 80 (Tween 80) were also used. Details of process parameters and 

formulations used are listed in Table 5. All runs were carried out in triplicates. Runs 

with S630 and Tween 80 solutions were carried out in duplicates. Batch codes were 

assigned according to spray rate and additional excipient present in AGL. 

Time-sampled spheroids were coded with suffix representing time of sampling (20, 30, 

40, and 50). Time of sampling also represented process lapsed in minutes. 
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Table 5. Process parameters and formulations used for controlled agglomeration of RP 
spheroids. 
Batch Spray rate  

(g/min) 
Atomizing air 
pressure (bar)

Gap air 
(bar) 

AGL 

     
RT(SR0) 0 0 1.2 Nil 
RT(SR2) 2 1.2 1.2 Distilled water 
RT(SR4) 4 1.2 1.2 Distilled water 
RT(SR6) 6 1.2 1.2 Distilled water 
RT(SR4S630) 4 1.2 1.2 10% w/v S630 in 

distilled water 
RT(SR4TWN) 4 1.2 1.2 0.001% w/v Tween 80 

in distilled water 
     

2.6. Drying of spheroids 

Unless otherwise stated, ESC, EST and RT spheroids were dried in a fluid bed dryer 

(Strea-1, GEA-Aeromatic, Switzerland) with an inlet drying air temperature of 60 oC. 

Drying was deemed completed when outlet air reached 50 oC, which took 

approximately 30 min. ESC(TS) and RT(SR) spheroids were dried in a convection 

oven (Modell 600, Memmert, Germany) at 60 oC for 8 h.  

2.7. Characterization of spheroids 

2.7.1. Size analysis by sieving 

The spheroid batches were subdivided using a riffler (PT, Retsch, Germany) into 8 

portions. A portion, approximately 120 g, was sized using a nest of sieves of aperture 

sizes in a 4 2  progression, ranging from 250 µm to 4.00 mm. The nest of sieves was 

vibrated at amplitude of 1 mm for 15 min on a sieve shaker (VS1000, Retsch, 

Germany). 
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The size and size distribution of the spheroids were described using geometric weight 

mean diameter (Dwgeo), geometric weight standard deviation (SDwgeo) (Liew et al., 

2002), arithmetic weight mean diameter (Dwarith), arithmetic weight standard 

deviation (SDwarith) (Agrawal et al., 2004), mass median diameter (Dwmed) and 

span (Spanw) (Heng et al., 2002). The equations for the size and size distribution of 

spheroids are as follows, 
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where, 

di = midpoint of size intervals according to the aperture size of the sieves, and  

wi = weight of spheroids retained in the respective size interval. 

 

2.7.2. Sizing by image analysis 

For every lot of time-sampled spheroids, at least 625 spheroids were randomly 

selected for image analysis. The time-sampled spheroids were visually examined 
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under 20X magnification using a stereomicroscope (SZH, Olympus, Japan) and 

images captured using a digital colour video camera (DXC-390P, Sony, Japan) and 

imaging analysis software (Micro Image ver. 4.5, Media Cybernetics, US). The 

spheroids were mounted manually to ensure that all images taken represented discrete 

spheroids. Image analysis quantified the area of silhouette of each spheroid. All 

images of the spheroids were calibrated, ensuring that 1 mm was represented by at 

least l00 pixels. 

 

The size of each spheroid was represented by the equivalent circle diameter (ECD) 

(Schmidt and Kleinebudde, 1998) calculated from the area of the spheroid silhouette. 

For each lot of sampled spheroids, 625 ECD values were used to define its size 

distribution. The size and size distribution of spheroids were described by geometric 

mean diameter (DIgeo), geometric standard deviation (SDIgeo), arithmetic mean 

diameter (DI), arithmetic standard deviation (SDI), median diameter (DImed) and 

span (SpanI) as obtained from the image analysis data. The equations are as follows, 

 

ECDi = 
π

a×4 ....(7) 

where 

i = 1,…..625, representing ECD values in ascending order, and 

a = area of silhouette of spheroid. 
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where SpanI is computed by taking the difference between ECD of the 90th % and 

10th %, divided by DImed. 

 

2.7.3. Roundness quantification by image analysis 

Using data obtained from image analysis, spheroid shape was quantified using the 

following shape factors: aspect ratio (AR) and eccentricity factor (eR) (Eriksson et al., 

1997; Podczeck et al., 1999), projected sphericity (PS) and circularity (C). f is a 

correction factor for eR. Their equations are given as follows: 
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where 

lf = maximum feret diameter of image,  

bf = feret diameter of image, in the direction perpendicular to lf, 

re = mean radius derived from the average distances between the center of gravity of 

the image to the perimeter, 

p = perimeter of image, 

l = length of image outline,  

b = breadth of image outline, taken perpendicular to l, and 

a = projected image area of the particle. 

 

2.7.4. Crushing strength analysis 

For ESC, EST and RT, 25 spheroids within the 850 – 1000 µm size fraction were 

randomly selected from each batch for assessment of crushing strength. A tensile 

tester (EZ Tester, Shimadzu, Japan) affixed with a platen of diameter 25 mm was used 

to compress each spheroid at a rate of 3 mm/min. The force required to crush the 

spheroid was measured by a load cell connected to the platen and recorded using data 
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acquisition software (WinAGS ver 2.01, Shimadzu, Japan). For each batch, average 

crushing strength was computed. RT38% was excluded from the test as there was 

negligible amount of spheroids in the specified size fraction. 

 

2.7.5. Moisture content determination 

Approximately 25g of MCC:lactose powder mixture was accurately weighed and 

oven-dried (Modell600, Memmert, Germany) at 70 oC till constant weight. The 

percentage weight lost was taken to be the percentage amount of moisture present in 

the starting material of MCC:lactose powder mixture (W0). Experiments were carried 

out in triplicates and results averaged. In a similar manner, approximately 25 g of 

sampled spheroids were oven-dried at 70 oC till constant weight. Percentage weight 

lost was calculated (W1). The percentage moisture content of spheroids attributed to 

the amount of water added was (W1-W0). 

 

2.7.6. Surface roughness analysis 

For every time-sampled lot of RT(SR) spheroids, 12 randomly chosen spheroids were 

used for surface roughness measurement. The surface roughness was measured using 

a scanning probe microscope (SPM-9500J, Shimadzu, Japan). Spheroid surface was 

scanned at a frequency of 1 Hz over a scan area of 25 x 25 µm using the dynamic 

mode and a Z value of 10 µm. The arithmetic average roughness (Ra) of individual 

spheroids was obtained. 
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2.8. Statistical analysis on spheroid size distributions 

Statistical programs (SPSS version 12.0, SPSS Inc., US) and (Minitab release 14.1, 

Minitab Inc., US) were used to carry out the statistical calculations. Computing 

environment software (Matlab version 6.5 release 13, The MathWorks Inc., US) was 

used in statistical curve fitting of mixed Gaussian distribution.  

 

Mean, standard deviation skewness and kurtosis of individual size distribution were 

computed using 625 ECD of each lot of spheroids. The size distributions of spheroids 

were statistically fitted to normal, log normal and mixed Gaussian (MG) distributions. 

Statistical distribution fitting required 2 steps: estimating the parameters of an ideal 

distribution to be fitted, and testing the goodness of fit. The parameters for the mean 

and standard deviation for the ideal normal distribution are taken to be DI and SDI 

respectively. For log normal fitting, lg ECD values were fitted to normal distribution.  

 

A Matlab script, written to perform expectation maximization algorithm (Verbeek et 

al., 2003) was used to compute 2, 3, and 4 components MG distributions which 

approximated the size distribution of spheroids. PDF graphs were also plotted using 

the same software. 

 

Per sampled lot, 625 ECD were divided into 65 intervals to compute Chi square 

goodness of fit for normal, log normal and 2, 3 and 4 MG distributions. 
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3. Illustration and quantification of simulated spheroid 

images 

Images of circle, ellipses, ovals, rectangles with round ends (RRE), rectangles with 

round corners (RRC), and dumbbells were drawn (Macromedia Freehand MX, Adobe 

Systems Incorporated, US) and rasterized (Photoshop CS, Adobe Systems 

Incorporated, US) and saved in jpeg (Joint Photographic Experts Group) format. 

Breadth of individual rasterized image was represented by about 100 pixels. The 

images were assessed using the same method and software as that used for image 

analysis of the spheroids. 
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PART 4.  RESULTS AND DISCUSSION 

1. Equivalency in process between ES and RP 

The main similarity between ES and RP would be the use of a rotational frictional 

plate to round and shape agglomerates into spheroids. The magnitude of forces 

exerted by the rotating frictional plates onto agglomerates would generally be related 

to the surface texture and the speed of the rotational frictional plate. In order to 

compare ES and RP, process and formulation parameters between them have to be 

kept identical, if not equivalent. As the frictional forces exerted by surface texture 

onto agglomerates could not be measured realistically, the effect of the rotational 

frictional plates has to be measured qualitatively. The inclusion of EST into the 

experimental design allowed the possibility of establishing equivalency in the effect 

of the frictional plate between ES and RP. RP would usually require a duration of 20 

min to produce spheroids, inclusive of time for water addition. Both the peripheral tip 

speed and the duration of spheronization have to be considered together in order to 

achieve equivalency. The forces experienced by agglomerates during spheronization 

by RP versus ESC and EST could translate roughly to a spheronization duration of 20 

min for EST. For the initial part of the study, one of the objectives would be to 

establish standardization in spheronization conditions between ESC, EST and RP 

(Tables 3 and 4). 
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Spheronization of ESC spheroids was carried out with the rotating frictional base 

plate achieving a peripheral tip speed of 10.1 cms-1 (Table 3). The process and 

formulation parameters chosen for ESC batches were intended to produce spheroids 

within the pharmaceutically useful size range and with narrow size distribution (Table 

6). The average Dwmed and Spanw of ESC spheroids of 0.877 mm and 0.283 

respectively, adequately demonstrated the intention. These batches could be 

considered as a fair representation of good quality spheroids. This preliminary 

establishment of desirable attributes of spheroids was important as it formed the basis 

for comparison if the spheroid formation process or the spheroid formulae for 

spheronization were to be different. 
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Table 6. Size, size distribution, roundness, moisture content and crushing strength of 
ESC, EST and RT spheroids. 
Batch Dwmed 

(mm) 
Spanw AR eR Moisture 

content (%w/w) 
Crushing 
strength (N) 

       
ESC 0.877 

(0.057) 
0.283 
(0.0374) 

1.085 
(0.0042) 

0.620 
(0.0091) 

37.71 
(0.360) 

6.06 
(1.429) 

EST793 0.767 
(0.040) 

0.305 
(0.0441) 

1.106 
(0.0048) 

0.599 
(0.0090) 

29.57 
(0.375) 

4.17 
(1.368) 

EST862 0.777 
(0.006) 

0.352 
(0.0385) 

1.089 
(0.0048) 

0.631 
(0.0117) 

28.89 
(0.411) 

3.95 
(1.624) 

EST931 0.880 
(0.066) 

0.267 
(0.0362) 

1.079 
(0.0026) 

0.638 
(0.0029) 

29.00 
(0.262) 

5.65 
(2.720) 

EST1000 0.923 
(0.067) 

0.253 
(0.0715) 

1.068 
(0.0022) 

0.654 
(0.0054) 

28.36 
(0.308) 

6.24 
(2.717) 

RT36% 0.940 
(0.106) 

0.369 
(0.0527) 

1.135 
(0.0250) 

0.570 
(0.0249) 

28.79 
(0.476) 

11.19 
(2.679) 

RT37% 1.103 
(0.133) 

0.302 
(0.0130) 

1.102 
(0.0193) 

0.590 
(0.0023) 

29.85 
(0.291) 

12.67 
(1.803) 

RT38% 1.390 
(0.210) 

0.287 
(0.0298) 

1.097 
(0.0026) 

0.609 
(0.0015) 

31.09 
(0.337) 

- 

       
Values are mean with standard deviations in parentheses. 
 

1.1. Equivalency in spheronization conditions between 

different frictional surfaces 

Preliminary EST batches were carried out at equivalent tip speed of 10.1cms-1 (698 

rpm) for 20 min with the intention of producing spheroids of similar size and 

roundness to those of the ESC batches. However, the spheroids produced were 

smaller and less spherical than those produced by ESC. A possible cause could be the 

dissimilar surface textures of the rotating frictional plates of ESC and EST processes. 

Therefore, the differences in surface texture were examined in greater detail. 
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The amount of frictional forces exerted by the rotating frictional plate onto extrudates 

could be related to the geometry and the density of protuberances per unit surface area 

on the frictional plate. Surface protuberances of the cross-hatch textured plate were 

sharp-edged and relatively smaller than the teardrop studs found on the frictional plate 

of the rotary processor (Figure 2). Visual examination and calculation revealed that 

that per 10 cm2, there were about 111 cross-hatch studs and 6 teardrop studs on the 

respective plates. The lower density of studs per unit area and the design of the 

teardrop studs with rounded edges were indicative of lower amount of frictional 

forces exerted by the teardrop studded frictional plate than that of cross-hatch textured 

frictional plate at equivalent peripheral tip speed of 10.1 cms-1. Therefore, at identical 

peripheral tip speeds, processes such as size enlargement by coalescence, 

densification and roundening of EST extrudates occurred at a comparatively slower 

rate, resulting in smaller and less spherical spheroids in a similar time frame. Wan et 

al. (1993) demonstrated that increased spheronization speed and duration resulted in 

bigger and rounder spheroids. For that reason, EST had to be carried out at a higher 

peripheral tip speed in order for the teardrop studded frictional surface to exert 

comparable frictional forces matching those exerted by the cross-hatch textured 

surface. 

 

EST was thus carried out with a 20 min spheronization duration using a series of 

higher peripheral tip speeds to empirically elucidate equivalency in the effect of the 

rotating frictional plate (Table 2). The average Dwmed of EST spheroids were 
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0.767-0.923 mm, with higher spheronization speed predictably producing larger 

spheroids (Wan et al., 1993) (Table 6). At 931 rpm, EST produced spheroids of 

average Dwmed 0.880 mm, which in terms of size, was the closest to ESC. Spanw of 

EST931 and ESC were also similar (Table 6). The similarities in terms of size and 

size distribution of ESC and EST931 spheroids strongly indicated that the 

spheronization processes of ESC and EST931 were equivalent, implying that 

spheroids were experiencing equivalent amount of frictional forces. 

 

Upon elucidating spheronization process equivalency between ESC and EST, 

spheroids were produced by RP with the peripheral tip speed of the rotating frictional 

plate set at 13.4 cms-1. 

 

1.2. Producing RP spheroids of equivalent size and size 

distribution to ES spheroids  

With equivalent spheronization process conditions and the addition of same amount 

of granulation liquid, RT38% spheroids were markedly larger than those of ESC and 

EST931 (Table 6). Conditions have to be adjusted in order to produce RP spheroids 

with size similar to those produced by ESC. Of the many methods to produce smaller 

sized RP spheroids, reducing the amount of granulating liquid during RP had been 

applied (Heng et al., 1996). In this present study, 360 ml of water was the lowest 

amount of granulating liquid used for the production of spheroids by RP. RP carried 

out with 350 ml of water produced very small spheroid with large amount of fines and 
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it was concluded that the spheroid batch obtained was unsuitable for use in this study 

due to consistency issues. 

 

ESC, EST931 and RT36% products could be considered as batches of spheroids with 

similar size in terms of average Dwmed (Table 6). As important process and 

formulation parameters were kept constant or equivalent, ESC, EST931 and RT36% 

spheroids could be compared objectively according to the following aspects: size 

distribution of spheroids, roundness and crushing strength. 

 

1.3. Effect of processes on size and size distribution of 

spheroids 

ESC, EST931 and RT36% spheroids had narrow size distributions and they were 

similar in this aspect. The average Spanw for ESC was 0.283 and for EST at the 

peripheral tip speed investigated, 0.253-0.352. In comparison to ESC and EST931, the 

average Spanw for RT36% at 0.369 was slightly larger (Table 6). Using one way 

ANOVA, Spanw of ESC, EST931 and RT36% spheroids were shown not to have 

significant difference between themselves despite the visually observable small 

differences which suggested that ESC and EST spheroids were more narrowly 

distributed than those of RT36% (Tables 6 and 7).  
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Table 7. One way ANOVA and post hoc LSD test for variables of ESC, EST, and RT 
batches.  
Variable 
tested 

Batch P value for 
One-Way 
ANOVA 

Batches compared P value for 
post hoc 
LSD test 

     
EST793 EST793 vs EST862 0.036* 
EST862 EST793 vs EST931 0.069 
EST931 EST793 vs EST1000 0.001* 
EST1000 

0.000* 

EST793 vs RT36% 0.019* 
RT36%  EST793 vs RT37% 0.362 

Moisture 
content 

RT37%  EST793 vs RT38% 0.000* 
 RT38%  EST862 vs EST931 0.724 
   EST862 vs EST1000 0.091 
   EST862 vs RT36% 0.745 
   EST862 vs RT37% 0.006* 
   EST862 vs RT38% 0.000* 
   EST931 vs EST1000 0.047* 
   EST931 vs RT36% 0.501 
   EST931 vs RT37% 0.011* 
   EST931 vs RT38% 0.000* 
   EST1000 vs RT36% 0.160 
   EST1000 vs RT37% 0.000* 
   EST1000 vs RT38% 0.000* 
   RT36% vs RT37% 0.003* 
   RT36% vs RT38% 0.000* 
   RT37% vs RT38% 0.001* 
     

ESC 0.714 ESC vs EST931 0.666 
EST931  ESC vs RT36% 0.048* 

Spanw 

RT36%  EST931 vs RT36% 0.026* 
     

ESC 0.275 ESC vs EST931 0.719 
EST931  ESC vs RT36% 0.138 

DI 

RT36%  EST931 vs RT36% 0.231 
     

ESC 0.023* ESC vs EST931 0.733 
EST931  ESC vs RT36% 0.013* 

SDI 

RT36%  EST931 vs RT36% 0.020* 
     
*denotes statistical significance at 0.05 level 
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Table 7 (Continued). One way ANOVA and post hoc LSD test for variables of ESC, 
EST, and RT batches. 
Variable 
tested 

Batch P value for 
One-Way 
ANOVA 

Batches compared P value for 
post hoc 
LSD test 

     
ESC 0.000* ESC vs EST931 0.337 
EST931  ESC vs RT36% 0.000* 

Skewness 

RT36%  EST931 vs RT36% 0.001* 
     

ESC 0.005* ESC vs EST931 0.838 
EST931  ESC vs RT36% 0.003* 

Kurtosis 

RT36%  EST931 vs RT36% 0.003* 
     

ESC 0.000* ESC vs EST793 0.035* 
EST793  ESC vs EST862 0.697 
EST862  ESC vs EST931 0.483 
EST931  ESC vs EST1000 0.080 
EST1000  ESC vs RT36% 0.000* 
RT36%  EST793 vs EST862 0.070 
  EST793 vs EST931 0.009* 
  EST793 vs EST1000 0.001* 
  EST793 vs RT36% 0.035* 
  EST862 vs EST931 0.284 
  EST862 vs EST1000 0.040* 
  EST862 vs RT36% 0.000* 
  EST931 vs EST1000 0.258 
  EST931 vs RT36% 0.000* 

Aspect ratio 

  EST1000 vs RT36% 0.000* 
     
*denotes statistical significance at 0.05 level 
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Table 7 (Continued). One way ANOVA and post hoc LSD test for variables of ESC, 
EST, and RT batches. 
Variable 
tested 

Batch P value for 
One-Way 
ANOVA 

Batches compared P value for 
post hoc 
LSD test 

     
ESC 0.000* ESC vs EST793 0.066 
EST793  ESC vs EST862 0.309 
EST862  ESC vs EST931 0.104 
EST931  ESC vs EST1000 0.006* 
EST1000  ESC vs RT36% 0.000* 
RT36%  EST793 vs EST862 0.009* 
  EST793 vs EST931 0.003* 
  EST793 vs EST1000 0.000* 
  EST793 vs RT36% 0.016* 
  EST862 vs EST931 0.500 
  EST862 vs EST1000 0.044* 
  EST862 vs RT36% 0.000* 
  EST931 vs EST1000 0.145 
  EST931 vs RT36% 0.000* 

eR 

  EST1000 vs RT36% 0.000* 
     
*denotes statistical significance at 0.05 level 
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Table 7 (Continued). One way ANOVA and post hoc LSD test for variables of ESC, 
EST, and RT batches. 
Variable 
tested 

Batch P value for 
One-Way 
ANOVA 

Batches compared P value for 
post hoc 
LSD test 

     
ESC 0.000* ESC vs EST793 0.000* 
EST793  ESC vs EST862 0.000* 

Crushing 
strength 

EST862  ESC vs EST931 0.240 
 EST931  ESC vs EST1000 0.600 
 EST1000  ESC vs RT36% 0.000* 
 RT36%  ESC vs RT37% 0.000* 
 RT37%  EST793 vs EST862 0.527 
   EST793 vs EST931 0.000* 
   EST793 vs EST1000 0.000* 
   EST793 vs RT36% 0.000* 
   EST793 vs RT37% 0.000* 
   EST862 vs EST931 0.000* 
   EST862 vs EST1000 0.000* 
   EST862 vs RT36% 0.000* 
   EST862 vs RT37% 0.000* 
   EST931 vs EST1000 0.089 
   EST931 vs RT36% 0.000* 
   EST931 vs RT37% 0.000* 
   EST1000 vs RT36% 0.000* 
   EST1000 vs RT37% 0.000* 
   RT36% vs RT37% 0.000* 
     
 *denotes statistical significance at 0.05 level 
 

 

The size distributions of spheroids were analyzed using another approach. Size and 

shape data of spheroids obtained from image analysis could be used to compute 

statistical descriptors such as DI, SDI, skewness and kurtosis. These statistical 

descriptors were computed to evaluate differences in the size distribution of spheroids 

produced by ESC, EST931 and RT36% (Table 6). By using data from image analysis 

instead of sieving, one way ANOVA and post hoc Least Square Difference (LSD) test 
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indicated that RT36% spheroids had significantly wider size distribution, greater 

positive skewness and kurtosis than ESC or EST931 spheroids (Tables 7 and 8). 

 
Table 8. Statistical descriptors for size distribution of ESC, EST931 and RT36% 
spheroids. 

Batch Statistical 
descriptors ESC EST931 RT36% 
    
DI 993.1 

1079 
940.5 

1086 
951.1 
1065 

1193 
986.5 
1241 

    
SDI 107.0 

89.4 
124.2 

87.8 
161.8 
94.3 

189.4 
169.3 
191.1 

    
Skewness 0.567 

0.860 
0.580 

1.135 
1.022 
1.007 

2.807 
3.518 
4.333 

    
Kurtosis -0.131 

1.753 
-0.473 

2.766 
0.527 
1.285 

14.68 
27.46 
37.00 

    
 

The differences in size distribution between ESC and EST931, and RT36% could 

have been caused by the extrusion process or the teardrop studded rotating frictional 

plate. Since the size distributions of ESC and EST931 were not significantly different 

(Table 7), it would be reasonable to postulate that the teardrop studded rotating 

frictional plate was unlikely to have caused RT36% spheroids’ differing size 

distribution. When the rotating frictional surface was in motion, both the cross-hatch 

textured or teardrop studded surfaces would provide the necessary frictional forces to 

move and remodel the aggregated contents. The resultant spheroid size would be a 

result of a balance of coalescence and breakdown during spheronization (Wan et al., 
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1993). Spheroids could be broken down by some of these methods: excessive force 

exerted by frictional surface, intense collision between spheroids, or intense collision 

between spheroid and container wall. When the sharp edged cross-hatch textured 

surface was compared to the teardrop studs with round edges, the latter most likely 

exerted lower breakdown forces. By having a higher peripheral tip compared to ESC, 

EST931 spheroids have similar size and size distribution. This apparent similarity in 

size distributions between ESC and EST931 spheroids indicated that the process of 

spheroid agglomeration and breakdown was determined by collisions encountered by 

the spheroids and not the nature of the rotating frictional plate surface. 

 

Upon demonstrating that different rotating frictional plate surfaces could produce 

spheroids with similar size and size distribution, it could therefore be reasonably 

postulated that different spheroid formation mechanisms caused the differences in the 

shape of size distributions of spheroids produced by ESC and RT.  

Certain shape of size distribution could be represented by mathematical models. 

Wanibe and Itoh (1998) had fitted the size distributions of crushed materials with the 

Rosin-Rammler equation. Using a similar approach, it was postulated that by model 

fitting and analysis of the size distributions of multiparticulate systems obtained by 

sampling as pelletization runs progressed, the underlying formative processes could 

be comprehended and understood. 
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1.4. Shape of size distribution between ES and RP spheroids 

Between ES and RP, size distributions of ESC and EST931 spheroids were 

significantly more symmetrical and more narrowly distributed than those of RT36% 

(Tables 7 and 8). Sieving data indicated that 3.36% by weight of RT36% spheroids 

were larger than 1.7 mm. In contrast, the proportions of ESC and EST931 spheroids 

larger than 1.7 mm were negligible (≤ 0.06%). The oversized spheroids present in 

RT36% caused the size distribution to be positively skewed and with greater degree 

of kurtosis. Hence, the concomitant process of wet massing, agglomeration and 

spheronization during RP could have provided the opportunity for the formation of 

oversized spheroids. Alternatively, the extrusion step in ES by pre-forming the wet 

mass into extrudates before the spheronization step could have prevented the 

formation of such oversized spheroids. Hence, ES and RP spheroid formation 

mechanisms have to be further investigated. 

 

1.5. Effect of processes on spheroid roundness 

ESC did not produce rounder spheroids compared to EST (p > 0.05) (Tables 6 and 7) 

indicating that the choice of appropriate peripheral tip speed, duration and 

protuberance on the rotating frictional plate did not significantly affect the roundness 

of spheroids. The similarity in roundness and size between ESC and EST spheroids 

further reinforced the possibility that spheroid formation relied mainly on collision 

between spheroids and less on collision between spheroids and the well-defined 

textured surface of rotating frictional plate. In this study, AR and eR indicated 
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increasing roundness with higher peripheral tip speed for EST spheroids, which were 

similarly observed by Wan et al. (1993) and Newton et al. (1995b). 

 

RT36% spheroids were significantly less spherical when compared to ESC or EST 

spheroids (Tables 6 and 7). Aggregates have to possess a balance of rigidity and 

plasticity during spheronization in order to be rounded into spheroids of desired size. 

RT36% spheroids, having comparatively less water than those of ESC and EST, 

would be more rigid, less deformable and consequently less round. Roundness of RT 

spheroids was improved with higher amount of water added. However, the 

consequential increase in plasticity due to higher amount of water added also yielded 

larger spheroids which made them unsuitable for equivalent size comparison with 

those of the ESC spheroids. 

 

1.6. Role of moisture in spheroid formation 

The amount of water added during ES and RP is important as it would influence the 

eventual size of the spheroids. However, the amount of water remaining in spheroids 

after spheronization need not always correlate with the final spheroid size. In this 

study, RP used less water to produce spheroids of equivalent size to those of ESC and 

EST931. However, in another study (Pisek at al, 2001), it was reported that RP 

required more water than ES to produce spheroids of similar size. In their RP studies, 

Vertommen et al. (1998) attributed the differences in spheroid size to the amount of 

water remaining after accounting for moisture loss due to the gap and atomizing air.  
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The difference in moisture content of spheroids upon spheronization between RT38%, 

RT37% and RT36% batches were approximately 1.1 %w/w (Table 6). Different 

amount of moisture content would be expected due to the different amounts of water 

added for granulation. Although equal amounts of granulating liquid were used for 

EST and RT38%, moisture content upon spheronization for RT38% spheroids (at 31.1 

%w/w) was higher than that of EST spheroids. The better air flow through the 

extrudates than powder mass could have aided the higher moisture loss rate. Another 

possibility would be that during extrusion, water might have migrated to the extrudate 

surface, facilitating moisture loss from the surface during spheronization. These 

factors might have caused extrudates to lose moisture at a higher rate when exposed to 

the gap air. Moisture content of spheroids upon spheronization was similar for 

RT36%, EST862, EST931 and EST1000 batches. The final spheroid size of the 

RT36%, EST862, EST931 and EST1000 batches were also similar. This coincidental 

similarity suggested that amount of moisture remaining in spheroids upon 

spheronization may be indicative of the final spheroid size. However, this “moisture 

content of spheroids upon spheronization” and “final spheroid size” relationship could 

not be established as the size of RT37% and EST793 spheroids differed widely 

despite having similar amounts of moisture. This demonstrated that the final amount 

of water remaining in the spheroids could not be a reliable predictor of the final size 

of spheroids if spheroids were produced using different processes. Compared to ESC 

spheroids, EST spheroids experienced significant moisture loss to the gap air. 
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Average moisture content of EST spheroids were 28.4- 29.6 %w/w and higher speed 

of rotation of the rotating frictional plate would contribute to greater moisture loss. 

Despite the differences in moisture remaining in spheroids, ESC and EST spheroids 

had similar sizes. This demonstrated that quantity of moisture lost during 

spheronization did not have a major consequence to the eventual spheroid size for 

multi-step ESC and EST as the process of spheroid formation almost reached the final 

size within a minute into the spheronization run. Subsequent moisture loss would 

have minimal effect unless the integrity of spheroids was compromised. 

 

1.7. Crushing strength of ES and RP spheroids 

The quality of spheroids produced could also be measured by the crushing strength of 

spheroids. Spheroids with high crushing strength would be desirable. Morever, 

crushing strength of spheroids could be used to represent and distinguish spheroid 

structural differences which in turn resulted from differing spheroid formation 

processes. For that reason, crushing strength could be an indirect indicator for 

detecting differences in spheroid formation mechanism.  

 

At equivalent spheronizing conditions, ESC, EST931 and EST1000 spheroids had 

similar crushing strength (Tables 6 and 7). This apparent similarity in crushing 

strength, size and size distribution between ESC and EST931 spheroids further 

reinforced the possibility that the spheroid formation process is greatly influenced 

more by the collisions experienced by the spheroids than by the texture of the rotating 
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frictional plate. Although EST931 spheroids experienced greater moisture loss during 

spheronization, spheroid integrity remained similar to that of ESC spheroids, which 

was reflected by the similar crushing strength measured. Crushing strength of EST 

spheroids increased with increasing spheronization speed. At higher spheronization 

speed, spheroids would collide with one another or with the wall of the spheronizer, 

generating greater densification forces on the spheroids. Kleinebudde et al. (1999) 

also produced spheroids by ES at different spheronization speeds. Instead of lactose 

monohydrate and MCC, the spheroid formulation used dicalcium phosphate and MCC. 

However, Kleinebudde et al. (1999) did not observe the increase crushing strength 

with higher spheronization speed. 

 

RT37% spheroids had higher crushing strength than those of RT36%. Pore volume 

was reported to be reduced when higher amount of water was used (Vertommen et al., 

1998). The greater amount of water used in RP37% could have increased the 

percentage of lactose dissolved, thus allowing more extensive solid bridges to be form 

upon drying, consequently reducing pore volume. In this study, RT36% spheroids had 

significantly higher crushing strength than those produced by ESC or EST (Tables 6 

and 7). While Pisek et al. (2001) reported RP spheroids to be more friable compared 

to those produced by ES, Robinson and Hollenbeck (1991) could not find significance 

difference in crushing strength between ES and RP spheroids. 
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The two possible factors could have caused the difference in spheroid crushing 

strength: the difference in formulation which in this study was different amount of 

water used, and the differences in the spheroid formation mechanism. Although ESC, 

EST and RT38% spheroids should be compared as these batches used the same 

amount of water for granulation, RT38% spheroids being significantly larger would 

not provide a fair comparison as crushing strength is largely influenced by size. As 

aforementioned, higher amount of water could have reduced pore volume of the 

spheroid matrix due to more extensive formation of solid bridges from dissolved 

lactose. It would therefore be unlikely that ESC or EST produced weaker spheroids 

compared to RT36% spheroids. This eliminated the possibility that the amount of 

water in the spheroid formulation might have contributed to the higher crushing 

strength of RT36% spheroids. Therefore, the difference in spheroid formation 

mechanism between ES and RP had to be analyzed in greater detail in order to explain 

the difference in spheroid crushing strength. 

 

1.8. Visual examination of spheroid formation 

Visual examination of time-sampled spheroids revealed differences in spheroid 

formation between ES and RP. Generally, the morphological changes of ESC and 

EST931 spheroids during spheronization were similar (Figure 4). The cylindrically 

shaped extrudates were visually examined to be approximately 5 to 10 mm in length. 

The spheronization process began with rapid breakdown of extrudates by attrition 

around the edges and fractures across the extrudates caused by the impact on the 



 

 

 

   

   
Figure 4. Photographs of time-sampled spheroids depicting stages of spheroid formation in ESC, EST931 and RT36%.  
For ESC and EST931, time annotations indicate time lapsed during spheronization. For RT36%, time annotations indicate time lapsed after 
completion of water addition. 
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Figure 4 (Continued). Photographs of time-sampled spheroids depicting stages of spheroid formation in ESC, EST931 and RT36%.  
For ESC and EST931, time annotations indicate time lapsed during spheronization. For RT36%, time annotations indicate time lapsed after 
completion of water addition. 
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Figure 4 (Continued). Photographs of time-sampled spheroids depicting stages of spheroid formation in ESC, EST931 and RT36%.  
For ESC and EST931, time annotations indicate time lapsed during spheronization. For RT36%, time annotations indicate time lapsed after 
completion of water addition. 
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Figure 4 (Continued). Photographs of time-sampled spheroids depicting stages of spheroid formation in ESC, EST931 and RT36%.  
For ESC and EST931, time annotations indicate time lapsed during spheronization. For RT36%, time annotations indicate time lapsed after 
completion of water addition. 
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textured rotating frictional plate and collisions between extrudates as well as with the 

container wall. Extrudates broke down within 0.5 min seemingly into two populations 

distinguished by size: aggregates of size approximately 1 mm, and 0.2 mm in length. 

In this study, the larger aggregates were termed core aggregates and those of 

approximately 0.2 mm lengths were termed fines. Upon spheronization for 1 min, 

fines which initially appeared irregularly shaped became rounder and slightly larger. 

These fines increased in size by coalescence between themselves. Materials that were 

larger than fines but smaller than core aggregates were termed nucleated aggregates. 

As spheronization proceeded into the 2nd min, nucleated aggregates became 

increasingly rounder and larger, concurrently with the core aggregates. Beyond the 2nd 

min, the proportion of unagglomerated individual particles reduced considerably and 

the remaining population consisted only of nucleated aggregates and core aggregates. 

These were also usually rounder. The disparity in size between nucleated and core 

aggregates was small, in comparison to that of fines and core aggregates. The 

nucleated aggregates became progressively larger with time whilst size of core 

aggregates remained relatively unchanged. From the 4th min onwards, both core and 

nucleated aggregates were indistinguishable from one another as aggregates were 

approaching uniformity in size. 

 

Video footage of spheronization for ESC captured in situ using high speed 

photography revealed images which were in agreement with observations made on 

time-sampled ESC spheroids (Figure 5). Upon 0.5 min of spheronization, the 
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population consisted of less spherical core aggregates which distinctively had much 

fines adhered onto their surfaces. At 1 min into spheronization, these core aggregates 

were observed to be more spherical. Nucleated aggregates were also observed to be 

rounder. Core aggregates consolidated as they were being spheronized. They resisted 

size enlargement but became progressively rounder. In contrast, nucleated aggregates 

continued to grow bigger and rounder as spheronization proceeded (Figure 5). 

 

   

   

   
Figure 5. Sequential frames of ESC spheroid formation captured in situ using high 
speed video camera. 
Time annotations indicate time lapsed during spheronization. 
 

In general, spheroid production could be considered as a specialized form of 

granulation. The classic granulation model depicts 3 stages: wetting and nucleation, 
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consolidation and growth, and attrition and breakdown (Iveson et al., 2001). ES began 

with the moistening of powder mixture, causing nucleation of particles to form 

aggregates. Agglomerates formed experienced compressive forces during transit 

through the extrusion screen, resulting in consolidation and formation of extrudates. 

In RP, nucleation occurred when water was sprayed onto the powder mixture. Unlike 

the process of extrusion, consolidation of aggregates during RP was brought about by 

the shearing forces of the rotating frictional plate. Although shearing forces could 

cause consolidation, excessive shearing forces would cause agglomerates to be broken 

down. 

 

1.9. Comparison of observed spheroid formation with existing 

theories 

Extrudates could be fractured across their lengths: by shear forces from the rotating 

frictional plate surface of the spheronizer, collision among extrudates, or collision 

between extrudates and container wall. Fractured extrudates yielded core aggregates. 

Edges and surface irregularities of extrudates underwent attrition, producing fines. 

Visual observation of core aggregates and fines in the 0.5 min and 1 min samples of 

ESC and EST931 might suggest that size distribution could assume a bimodal 

characteristic (Figure 4). The initial phase of extrudate breakdown was followed by 

these size enlargement mechanisms: coalescence of fines forming aggregates, 

coalescence of aggregates with core aggregates, and layering of fines onto core 

aggregates. One of the spheroid formation models (Vervaet et al., 1995) suggested 
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that extrudates were rounded at the edges, followed by the formation of dumbbell 

shaped aggregates. These dumbbell shaped aggregates were intermediates which 

proceeded to become elliptical spheres, eventually rounding to yield spheroids. This 

model hypothesized that extrudates were relatively plastic and non-brittle, able to 

deform during spheronization to form dumbbells. The alternative model proposed by 

Baert and Remon (1993) also hypothesized the formation of dumbbell shaped 

aggregates as intermediates. However, the main difference between the two models 

was that in the latter model, the dumbbell shaped aggregates would break into two in 

the middle. Folding would occur at the point of breakage before spheroids eventually 

formed. These intermediates which were dumbbell shaped aggregates should exist at 

the beginning of spheronization (0-2 min). However, visual observation of 

time-sampled spheroids of ESC and EST931 (0.5-2 min) indicated that existence of 

dumbbell shaped aggregates as intermediates were unlikely unless they occurred 

within the first 30 s of spheronization (Figure 4). The video footage of the 

spheronization of ESC spheroids, captured by the high speed camera, showed the 

existence of elongated core aggregates (Figure 5). However, these elongated core 

aggregates did not resemble precursors that were dumbbell shaped aggregates but 

rather, they were short rod-like core aggregates. These core aggregates progressively 

became rounder. A distinct decrease in size in the mid-section of core aggregates 

could suggest a dumbbell breakage. However, this decrease in size was not observed 

in this present study. 

 



RESULTS AND DISCUSSION 

Page 70 

It has been hypothesized that the dumbbell breakage and folding was the reason for 

the presence of cavity found within spheroids (Baert and Remon, 1993 and Pisek et al., 

2001). However, Pisek et al. (2001) used ES and RP to produce spheroids with 

different amount of lactose and noticed that spheroids with higher percentage of 

lactose in the formulation also correlated with larger cavities within the spheroids. 

This would indicate the possibility that the cavities were present if the spheroid 

formulation contained soluble excipients. Remodelling also tended to be more of a 

surface phenomena with the cohesive but plastic aggregate surfaces remodelled or 

realigned along the circumferential direction, away from the ends of the longer axes, 

to the mid-sections as the impact forces were regular but of low magnitudes. 

Entrapped cavities would likely remain unaffected as the impact forces were 

dissipated along the agglomerate surfaces as they remodelled. In fact, the remodelling 

process itself could have contributed to the existence or enlargement of entrapped 

cavities. As the rod-like aggregate ends were pressured inwards by impact forces, the 

mid-section may be forced outwards by inward moving water liberated by the 

sponge-like microcrystalline particles (Heng and Koo, 2001), contributing to a high 

water pressure within. Subsequently, these water-rich regions, upon drying became 

cavities in the spheroids. This observation provided an alternative explanation for the 

existence of the cavity, complementing the observations by other investigators as 

discussed earlier. Although the spheroid formation mechanism could be different 

using different formulation or process parameters, within the limits of this study 

where the formulation used was able to produce typically good quality spheroids of 



RESULTS AND DISCUSSION 

Page 71 

suitable size and narrow size distribution, the ES spheroid formation mechanism 

could be described as follows,  

(a) breakdown of extrudates to length approximately equal to their diameter, 

(b) attrition of corners and edges of extrudates, producing core aggregates and 

fines, 

(c) layering of fines onto core aggregates, coalescence between fines, small 

aggregates to form larger core aggregates, and 

(d) remodelling of rod-like aggregates by gradual and consistent impacts on 

the circumferential edges to form spheroids of high sphericity (Figure 6a) 

 

In comparison, the RP spheroid formation mechanism followed this pattern: 

(a) nuclei formation from agglomeration of wetted particles, 

(b) agglomeration of nuclei, forming small agglomerates, 

(c) layering of fines onto larger agglomerates, and 

(d) coalescence of agglomerates and rounding to form spheroids (Figure 6b). 
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Figure 6. Model of spheroid formation by (a) ES and (b) RP. 

 

The visually observed differences in spheroid formation (Figure 4) and presence of 

oversized spheroids for RT36% (3.36% by weight larger than 1.7 mm) emphasized 

the importance of uniform water distribution in RP. A homogenous distribution of 

water throughout the powder mixture depended on factors such as flow pattern of the 

powder mixture and spray rate. Flow pattern of powder mixture would be related to 

its rheology and the speed of the rotating frictional plate. When the powder mixture 

did not flow uniformly or consistently, its transit time and movement across the spray 

zone became irregular, resulting in localized overwetting. In a high shear mixer 

granulator, an increase in amount of granulating liquid increased the rate of granule 

a (i) a (ii) a (iii) a (iv)

b (i) b (ii) b (iii) b (iv)

Remodelling 
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growth and also the final size of the granules (Hoornaert et al., 1998). Examining the 

process similarities between high shear granulation and RP, localized overwetting 

would cause rapid agglomerate growth, bringing about disparity in sizes of formed 

agglomerates in the processor. According to the granulation model concerning 

coalescence of non-deformable granules, the opportunity to coalesce upon impact is 

higher between granules of dissimilar sizes during coalescence of non-deformable 

granules (Iveson et al., 2001). This model postulated the existence of a maximum size 

which granules could achieve by coalescence. During spheronization, large 

aggregates increased in size by a “snowball effect”, continuously coalescing smaller 

aggregates onto its surfaces. When the amount of moisture on the surface was 

insufficient to facilitate subsequent successful coalescence, aggregates would have 

reached their maximum size. Excessively large aggregates would also be broken 

down by the impact forces exerted by the textured surface of the rotating frictional 

plate. During spheronization, there was concurrent loss of moisture by evaporation. 

This also acted as an additional barrier to agglomerate growth with time. Moreover, if 

spheronization run was continued beyond the usual run time for making good 

spheroids, breakdown of formed spheroids would have occurred for both ES and RP. 

 

The extrusion step caused ES spheroids to be formed differently compared to RP. The 

occurrence of core aggregates and layering of fines during the initial stage of 

spheronization could have produced aggregates of non homogenous matrix, in terms 

of particle to particle interaction. In RP, nuclei formation, agglomeration of nuclei and 
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coalescence of agglomerates with the possibility of minimal layering of fines could 

have produced aggregates with a more homogenous matrix, resulting in higher 

crushing strength. 

 

Inevitably, as both ES and RP are different spheroid production methods, it would be 

expected that spheroids produced would have different attributes. However, up to this 

point, the aim of the study is to establish equivalent process and formulation 

parameters for comparison between ES and RP. The common parameters established 

are: 

a) identical excipients used with slight variation in amount of water used, 

and 

b) equivalent spheronization conditions. 

 

These common parameters allowed the production of spheroids of similar size, which 

were within the pharmaceutically useful size range. Using these common parameters, 

spheroid size distribution and morphology were studied in greater detail in order to 

characterize the spheroid formation mechanism and at the same time investigate 

whether there is any common spheroid mechanism that would be present in ES and 

RP.  
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2. Mathematical quantification of spheroid formation 

process 

2.1. Conventional size and shape characterization methods 

2.1.1. Sieving 

Regardless of the mathematical formula used for calculation, the mean size of 

spheroids, as analyzed by sieving, was approximately 0.85 mm (Table 9). As expected, 

Dwmed and Spanw of ESC and ESC(TS) batches were similar. All the descriptors in 

Table 9 consistently indicated that ESC(TS) batches were of optimum mean size and 

narrow size distribution, representing a typical good formulation with suitable process 

parameters. Numerically, the descriptors represented mean size values with slight 

differences. The manner in which the descriptors vary with one another would depend 

on the shape of the size distribution. Dwarith was marginally larger than Dwgeo and 

both were consistently larger than Dwmed (Table 9). The size distribution of 

spheroids was positively skewed, possibly resembling a log normal distribution as 

Dwmed was consistently smaller than Dwarith. Dwmed is an empirical and 

distribution-free method of finding the size at the 50th %. If the underlying size 

distribution of spheroids is a log normal distribution, the values of Dwmed and 

Dwgeo should be approximately the same. However, as values of Dwmed and  

Dwgeo were not comparable, spheroid size distribution might not be log normal. In 

this study, spheroids were sized using sieves and typically, a maximum of 5-7 sieve 

fractions were obtained. This would also result in only 5-7 data points to plot a size 

distribution curve. From the mismatch of Dwmed and Dwgeo, and the limited data 
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points obtainable from sieving of spheroids to plot a size distribution curve, there was 

insufficient evidence to deduce or validate whether size distribution of spheroids 

could be represented by a log normal distribution. Conventional method of sizing 

spheroids using sieves could not provide enough data points to accurately show the 

size distribution of spheroids. In order to observe the size distribution of spheroids, 

sizing with image analysis and analyzing hundreds of spheroids per spheroid batch 

must be carried out. For this reason, size distributions of spheroids were plotted using 

image analysis data points from at least 625 spheroids per batch.  

 
Table 9. Mean size and size distribution of ESC(TS) spheroids derived from size 
analysis using sieves. 
Batch Dwgeo SDwgeo Dwarith SDwarith Dwmed Spanw 
 (mm)  (mm)  (mm)  
       
1ESC(TS) 0.891 1.135 0.898 0.116 0.815 0.350 
2ESC(TS) 0.884 1.138 0.891 0.118 0.805 0.348 
3ESC(TS) 0.844 1.171 0.854 0.142 0.780 0.404 
       
 

2.1.2. Image analysis 

The typical endpoint for spheronization could be taken when spheroid size achieves a 

constant stable value, concurrent with a sufficiently good degree of roundness. As 

shown by data in Table 10 and Figure 7, the spheronization process for ESC(TS) 

batches was sufficiently completed within 10 min. Size of ESC(TS) spheroids 

increased during spheronization, with the greatest increase between the 2nd and 4th 

min. This trend was similar to that observed by Wan et al. (1993). From 6th to 10th 

min, spheroid size reached a plateau. Spheroid size distribution narrowed with 

increased residence time during spheronization (Figure 8). Mean AR and eR of 
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spheroids indicated increasing roundness with increasing residence time during 

spheronization (Figure 7). 

 

Table 10. Mean size and size distribution of ESC(TS) spheroids derived from image 
analysis. 
Batch DI (µm) SDI DIgeo (µm) SDIgeo DImed (µm) SpanI 
       
1ESC(TS)2 753.0 266.5 707.9 1.422 688.4 1.029 
1ESC(TS)4 908.5 217.3 882.3 1.277 905.5 0.628 
1ESC(TS)6 908.6 170.5 893.0 1.204 879.8 0.499 
1ESC(TS)8 926.1 142.1 915.5 1.164 907.4 0.413 
1ESC(TS)10 935.5 125.4 927.4 1.140 910.7 0.355 
       
2ESC(TS)2 690.3 312.2 626.7 1.546 574.0 1.423 
2ESC(TS)4 889.5 212.3 864.5 1.271 847.5 0.664 
2ESC(TS)6 921.8 167.7 906.9 1.197 895.8 0.501 
2ESC(TS)8 925.1 144.2 914.2 1.166 888.9 0.425 
2ESC(TS)10 924.9 123.5 917.0 1.139 885.5 0.355 
       
3ESC(TS)2 676.1 322.2 602.7 1.622 565.4 1.489 
3ESC(TS)4 800.9 238.9 766.7 1.344 752.6 0.817 
3ESC(TS)6 847.8 193.7 826.8 1.248 798.7 0.630 
3ESC(TS)8 872.4 169.8 856.5 1.210 819.2 0.531 
3ESC(TS)10 862.2 149.0 850.2 1.179 802.6 0.479 
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Figure 7. Effect of spheronization duration on (a) eR, (b) AR, (c) PS and (d) C of ESC(TS) spheroids.  
Error bars represent ± standard deviations. 
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Figure 8. Population density function of ESC(TS) spheroids. 
(Solid line - empirical PDF, light dashes - 3 individual component of MG, bold dashes - PDF of fitted 3 components MG). 
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Figure 8 (Continued). Population density function of ESC(TS) spheroids. 
(Solid line - empirical PDF, light dashes - 3 individual component of MG, bold dashes - PDF of fitted 3 components MG).
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Figure 8 (Continued). Population density function of ESC(TS) spheroids. 
(Solid line - empirical PDF, light dashes - 3 individual component of MG, bold dashes - PDF of fitted 3 components MG). 
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One way ANOVA (Table 11) and post hoc test verified that the increase in spheroid 

roundness was significant throughout the 10 mins of spheronization. DI of ESC(TS) 

spheroids increased significantly during the initial stage of spheronization from 2nd to 

4th min, after which (from 6th to 10th min) no significant increase was observed (Table 

11). During spheronization, mass transfer between spheroids can be reflected by size 

changes. Concurrently, spheroids also underwent plastic deformation upon collision 

with one another and with surfaces, resulting in greater roundness. As verified 

statistically, there was significant mass transfer between ESC(TS) spheroids during 

the first 4 min of spheronization. Subsequently, any collision between spheroids did 

not appear to result in mass transfer. The conclusion arrived upon analysis of DI and 

spheroid roundness was that while plastic deformation of spheroids occurred 

throughout spheronization, mass transfer between spheroids occurred during the first 

4 min of spheronization. While DI of spheroids was able to show mass transfer 

between spheroids for the first 4 min of spheronization, it was unable to detect any 

considerable mass transfer after 4 min of spheronization. 

 



 

 

Table 11. One way ANOVA and post hoc test for size and roundness of ESC(TS) spheroids. 
   P value for LSD post hoc test 
Batches compared  DI µ1,σ1 eR AR PS C 
      
1ESC(TS)2 vs. 1ESC(TS)4  0.000*(0.000*) 0.000*(0.000*) 0.000*(0.000*) 0.000*(0.000*) 0.000(0.000*) 0.000(0.000*) 
 1ESC(TS)6  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 1ESC(TS)8  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 1ESC(TS)10  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
1ESC(TS)4 vs. 1ESC(TS)6  0.993 0.000* 0.000* 0.000* 0.000* 0.000* 
 1ESC(TS)8  0.104 0.000* 0.000* 0.000* 0.000* 0.000* 
 1ESC(TS)10  0.013* 0.000* 0.000* 0.000* 0.000* 0.000* 
1ESC(TS)6 vs. 1ESC(TS)8  0.106 0.000* 0.010* 0.003* 0.004* 0.653 
 1ESC(TS)10  0.013* 0.000* 0.000* 0.000* 0.000* 0.011* 
1ESC(TS)8 vs. 1ESC(TS)10  0.387 0.000* 0.016* 0.008* 0.008* 0.037* 
         
2ESC(TS)2 vs. 2ESC(TS)4  0.000*(0.000*) 0.000*(0.000*) 0.000*(0.000*) 0.000*(0.000*) 0.000* 0.000* 
 2ESC(TS)6  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 2ESC(TS)8  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 2ESC(TS)10  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
2ESC(TS)4 vs. 2ESC(TS)6  0.005* 0.000* 0.000* 0.000* 0.000* 0.000* 
 2ESC(TS)8  0.002* 0.000* 0.000* 0.000* 0.000* 0.000* 
 2ESC(TS)10  0.002* 0.000* 0.000* 0.000* 0.000* 0.000* 
2ESC(TS)6 vs. 2ESC(TS)8  0.773 0.000* 0.003* 0.001* 0.002* 0.198 
 2ESC(TS)10  0.789 0.000* 0.000* 0.000* 0.000* 0.342 
2ESC(TS)8 vs. 2ESC(TS)10  0.984 0.000* 0.005* 0.002* 0.002* 0.736 
Values in parenthesis are P values for one way ANOVA. * indicates statistical significance at P ≤ 0.05. 
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Table 11 (Continued). One way ANOVA and post hoc test for size and roundness of ESC(TS) spheroids. 
   P value for LSD post hoc test 
Batches compared  DI µ1,σ1 eR AR PS C 
      
3ESC(TS)2 vs. 3ESC(TS)4  0.000*(0.000*) 0.000*(0.000*) 0.000*(0.000*) 0.000*(0.000*) 0.000* 0.000* 
 3ESC(TS)6  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 3ESC(TS)8  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 3ESC(TS)10  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
3ESC(TS)4 vs. 3ESC(TS)6  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 3ESC(TS)8  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
 3ESC(TS)10  0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
3ESC(TS)6 vs. 3ESC(TS)8  0.051 0.000* 0.000* 0.000* 0.000* 0.047* 
 3ESC(TS)10  0.420 0.000* 0.000* 0.000* 0.000* 0.003* 
3ESC(TS)8 vs. 3ESC(TS)10  0.420 0.000* 0.039* 0.005* 0.024 0.310 
         
Values in parenthesis are P values for one way ANOVA. * indicates statistical significance at P ≤ 0.05. R
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2.2. Representing ES spheroid size with MG distribution 

The shape of the size distribution of ESC(TS) spheroids changed characteristically as 

spheronization progressed, from 2nd -10th min (Figure 8). Qualitatively, size 

distribution of ESC(TS)2 spheroids showed multimodal characteristics. These 

multiple peaks merged with one another with continued spheronization, reducing the 

observed multimodal characteristics as size distribution narrowed. Eventually, size 

distribution of ESC(TS)10 spheroids developed into a shape which resembled a log 

normal distribution. However, statistical curve fitting revealed that ESC(TS) spheroid 

size distributions did not significantly follow normal or log normal distribution (Table 

12). 

 

Shape of the size distribution for all the 3 batches of ESC(TS) spheroids changed 

throughout the 10 min of spheronization period in a consistently similar manner, 

suggesting that mass transfer between spheroids occurred during the entire duration of 

spheronization. It was discussed previously on page 82 that the analysis of DI and 

spheroid roundness would only provide evidence of spheroid mass transfer during the 

first 4 min of spheronization. This inability to detect spheroid property changes during 

spheronization prompted the need for an alternative approach to spheroid size analysis. 

This alternative approach should have the ability to detect any mass transfer between 

spheroids during the entire spheronization process. Attempts were therefore made to 

quantify and mathematically describe the shape of size distribution of spheroids 

throughout the entire spheronization process. 
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Table 12. P values from Chi square curve fitting of size distribution of ESC(TS) 
spheroids to various distributions.  
Batch Distribution 
 Normal Log normal 2cMG 3cMG 4cMG 
      
1ESC(TS)2 0.000* 0.000* 0.296 0.936 0.975 
1ESC(TS)4 0.000* 0.000* 0.265 0.291 0.430 
1ESC(TS)6 0.000* 0.000* 0.002* 0.002* 0.002* 
1ESC(TS)8 0.000* 0.000* 0.042* 0.340 0.420 
1ESC(TS)10 0.000* 0.000* 0.328 0.321 0.328 
      
2ESC(TS)2 0.000* 0.000* 0.000* 0.026* 0.243 
2ESC(TS)4 0.000* 0.000* 0.052 0.505 0.607 
2ESC(TS)6 0.000* 0.000* 0.624 0.763 0.817 
2ESC(TS)8 0.000* 0.000* 0.347 0.617 0.874 
2ESC(TS)10 0.000* 0.000* 0.237 0.356 0.426 
      
3ESC(TS)2 0.000* 0.000* 0.000* 0.078 0.239 
3ESC(TS)4 0.000* 0.000* 0.000* 0.000* 0.194 
3ESC(TS)6 0.000* 0.000* 0.000* 0.459 0.654 
3ESC(TS)8 0.000* 0.000* 0.220 0.265 0.266 
3ESC(TS)10 0.000* 0.000* 0.544 0.452 0.046* 
      

* denotes statistical significance at P ≤ 0.05. 

 

2.2.1. Verifying size distribution of ES spheroids statistically 

Contrary to Souto et al.’s (2005) assumption that size distribution of spheroids 

followed a normal or log normal distribution, most of the ESC(TS) spheroid size 

distributions could be represented by and followed 2, 3, and 4 components (c) MG 

distributions. 

 

Among the multi components MG distributions, the size distributions best fitted to 3 

or 4 components. The number of equation variables defining MG distribution 

increases with increasing number of components. With more components, the ability 
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of MG distribution to assume the observed empirical distribution would increase. 

However, the usefulness of having more variables to define a distribution would be 

questionable if these variables could not be used to explain or provide additional 

insight to the spheronization process. In order to achieve a balance between best fit to 

the curve fitting and simplicity in mathematical equation, a 3cMG distribution was 

used to quantify the size distribution of spheroids and with the attempt to model the 

spheronization process. 

 

3cMG distribution can be used to characterize spheroid population and information 

obtained be used to supplement knowledge drawn from conventional methods by 

illustrating the characteristics of each size distribution. The findings obtained by 

fitting to the 3cMG distribution model can help to reveal evidence of heterogeneity in 

spheroid sizes within the spheroid population. The heterogeneity could be regarded as 

the coexistence of spheroids in various states or phases of growth. Fines, core 

aggregates, nucleated aggregates and spheroids could be observed at different phases 

during spheronization (Figure 8). Fines, core aggregates, nucleated aggregates and 

spheroids distinguished from one another mainly by their size distributions. 

Heterogeneity could be understood as subpopulations of spheroids within a population 

of spheroids, distinguished from one another by size. By analyzing the proportions of 

the subpopulations, the size of spheroids within those subpopulations and the relative 

spheroid size between subpopulations, spheroid growth processes during 

spheronization could be better understood. 
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2.2.2. Quantifying spheroid formation with MG distribution 

The 3cMG distribution could be hypothesized to represent 3 subpopulations of 

spheroids. Each of these 3 subpopulations of spheroids would be defined by a normal 

distribution of mean µi and standard deviation σi
 (Table 13). The relative proportion 

of each subpopulation with respect to the composite of the 3 subpopulations would be 

indicated by αi. 

 
Table 13. Size distribution of ESC(TS) spheroids as defined by 3cMG distribution. 
Batch α1 µ1 

(µm) 
σ1 α2 µ2 

(µm)
σ2 α3 µ3 

(µm) 
σ3 

          
1ESC(TS)2 0.3511 503.8 71.56 0.4245 752.4 156.2 0.2245 1144 107.9
1ESC(TS)4 0.3643 681.4 73.27 0.4665 980.7 131.4 0.1692 1199 98.85
1ESC(TS)6 0.3717 744.8 55.17 0.1788 998.1 138.3 0.4495 1009 138.3
1ESC(TS)8 0.2853 777.0 37.97 0.3860 894.4 74.97 0.3287 1093 71.97
1ESC(TS)10 0.4335 828.3 44.22 0.4682 993.5 92.84 0.0984 1132 69.89
     
2ESC(TS)2 0.4659 450.7 87.55 0.2630 646.0 141.6 0.2711 1145 137.2
2ESC(TS)4 0.1115 621.2 32.53 0.4382 750.2 87.53 0.4503 1092 121.3
2ESC(TS)6 0.3254 756.1 55.59 0.3396 892.7 87.08 0.3350 1112 96.79
2ESC(TS)8 0.3901 794.9 50.47 0.3309 921.8 78.75 0.2791 1111 71.92
2ESC(TS)10 0.4359 833.5 43.73 0.1753 870.0 71.95 0.3888 1052 88.02
     
3ESC(TS)2 0.2928 365.4 66.33 0.3470 544.6 126.1 0.3603 1055 173.0
3ESC(TS)4 0.3696 568.6 64.00 0.1978 742.3 76.53 0.4326 1026 164.5
3ESC(TS)6 0.3814 673.5 54.75 0.3475 838.8 103.1 0.2711 1104 107.7
3ESC(TS)8 0.4612 725.2 50.51 0.2677 906.9 101.6 0.2711 1089 82.77
3ESC(TS)10 0.5421 753.8 42.48 0.4213 974.9 118.9 0.03654 1171 30.14

     
 

Consistently throughout spheronization for all batches, µ1 increased as σ1 decreased 

(Table 13). In comparison, µ2 increased less and σ2 did not consistently decrease. 

Throughout the spheronization process from 2nd -10th min, µ3 remained relatively 

unchanged while σ3 decreased as spheronization progressed. Therefore, µ3 could be 

an indicator for the maximum size achievable by spheroids during spheronization. At 
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the 2nd min into spheronization, α1 represented a considerable segment of the spheroid 

population, ranging from 0.292 to 0.466. µ1 ranged from 365.4 – 503.8 µm and 

represented the population of nucleated aggregates, pending coalescence with core 

aggregates. Fines which were produced from the breakage and attrition of extrudates 

at the start of spheronization could coalesce with each another to yield the nucleated 

aggregates that constituted the proportion, α1. Cylindrical extrudates produced in this 

study would be about 1 mm diameter. As µ3 for all batches were about 1 mm, it 

suggested that the cylindrical extrudates were surface attrited and broke down to form 

core aggregates which were represented by α3 of the population at the 2nd min of the 

spheronization run. 

 

µ1 and DI of ESC(TS) had a significant logarithmic increase, as verified using 

regression analysis, during spheronization (Table 14). Although the increase in µ1 and 

DI could also be represented linearly, the Pearson correlation (R) values for 

logarithmic trend were higher. When one way ANOVA and LSD post hoc test were 

carried out on µ1 and σ1 of ESC(TS) spheroids, it indicated that this subpopulation of 

ESC(TS) spheroids had significant spheroid growth throughout the spheronization run 

(Table 14 ). DI, which represented mean size of the entire spheroid population, 

generally did not show significant increase in size after 6 min of spheronization. µ1 

and σ1 as size descriptors were more sensitive in detecting spheroid size increase 

during the entire duration of spheronization. By representing the entire spheroid 

population as a heterogeneous population consisting of subpopulations, the changes in 

subpopulations during the entire process of spheronization provided evidences of 
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mass transfer between spheroids during the entire duration of spheronization. µ1 and 

σ1 showed the potential to be size descriptors critical in demonstrating any possible 

spheroid size changes within the spheroid population during the entire spheronization 

process.  

 

Table 14. Regression analysis for logarithmic trend of spheroid size against duration 
of spheronization.  
Batch µ1 µ2 µ3 DI 
 R P value R P value R P value R P value
    
1ESC(TS) 0.990 0.001* 0.723 0.168 -0.353 0.560 0.908 0.033* 
2ESC(TS) 0.993 0.001* 0.926 0.024* -0.762 0.135 0.903 0.036* 
3ESC(TS) 0.992 0.001* 0.999 0.000* 0.750 0.144 0.959 0.010* 

         
* denotes statistical significance at P ≤ 0.05. 
 
 

µ2 and µ3 were statistically analyzed in the same manner as µ1 to investigate if µ2 and 

µ3 had increased logarithmically during spheronization run. Two out of 3 µ2 values of 

ESC(TS) have significant logarithmic increase throughout the spheronization run 

(Table 14). Low R values and insignificant P values for µ3 indicated that µ3 did not 

change significantly throughout the spheronization process (Table 14). The 

subpopulation of spheroids which was smaller in size, as represented by µ1, showed 

significant size changes and therefore, displayed evidence of mass transfer. In contrast, 

the subpopulations of bigger spheroids, as represented by µ2 and µ3, due to 

inconclusive or insignificant size changes during spheronization, were not able to 

show evidence of mass transfer between spheroids during spheronization. The 3 

subpopulations of spheroids represented by MG distributions showed different 
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tendencies to increase in size. µ3 showed a clear indication that large spheroids within 

the population did not increase in size during spheronization. These large spheroids 

also did not show any reduction in size which could be construed as mass transfer to 

smaller spheroids, promoting the enlargement of smaller spheroids. The µ1 

logarithmic increase during spheronization suggested that mass transfer or 

coalescence occurred exclusively between smaller spheroids to yield larger spheroids. 

µ2, being a subpopulation between µ1 and µ3, represented a region of intermediates 

which existed transiently and had unclear size trends during spheronization. 

 

3. Relationship between size and roundness of ES 

spheroids 

Within a single population of spheroids, the relationship between size and roundness 

was not constant during spheronization. The R value for ECD against roundness and 

its significance varied during spheronization (Table 15). When ECD was correlated 

against eR, PS or C, a negative R value indicated that smaller spheroids were rounder. 

Likewise, when ECD was correlated against AR, a positive R value showed that 

smaller spheroids were rounder. 



 

 

 
Table 15. Correlation coefficient (R) of roundness against ECD of ESC(TS) spheroids. 
Batch Sampling time Correlation coefficient (R) 
 (min) eR P value AR P value PS P value C P value 
          
1ESC(TS)2 2 -0.033 0.406 0.035 0.382 0.013 0.748 -0.068 0.088 
1ESC(TS)4 4 -0.170* 0.000 0.173* 0.000 -0.121* 0.002 -0.189* 0.000 
1ESC(TS)6 6 -0.298* 0.000 0.290* 0.000 -0.265* 0.000 -0.234* 0.000 
1ESC(TS)8 8 -0.352* 0.000 0.324* 0.000 -0.249* 0.000 -0.123* 0.002 
1ESC(TS)10 10 -0.261* 0.000 0.281* 0.000 -0.206* 0.000 -0.137* 0.001 
       
2ESC(TS)2 2 -0.097 0.016 0.093 0.019 -0.043 0.285 -0.172* 0.000 
2ESC(TS)4 4 -0.138* 0.001 0.152* 0.000 -0.068 0.088 -0.125* 0.002 
2ESC(TS)6 6 -0.205* 0.000 0.195* 0.000 -0.133* 0.001 -0.129* 0.001 
2ESC(TS)8 8 -0.317* 0.000 0.313* 0.000 -0.242* 0.000 -0.108* 0.007 
2ESC(TS)10 10 -0.267* 0.000 0.303* 0.000 -0.254* 0.000 -0.068 0.090 
       
3ESC(TS)2 2 0.040 0.317 -0.034 0.401 0.109 0.006 -0.033 0.417 
3ESC(TS)4 4 -0.053 0.184 0.045 0.258 -0.037* 0.355 -0.137* 0.001 
3ESC(TS)6 6 -0.261* 0.000 0.254* 0.000 -0.203* 0.000 -0.186* 0.000 
3ESC(TS)8 8 -0.382* 0.000 0.402* 0.000 -0.309* 0.000 -0.228* 0.000 
3ESC(TS)10 10 -0.361* 0.000 0.368* 0.000 -0.261* 0.000 -0.175* 0.000 

  
* denotes statistical significances at P ≤ 0.05. 
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R values of ESC(TS)2 spheroids were generally small and statistically insignificant, 

indicating that at the start of spheronization run, spheroid size was not related to its 

degree of sphericity. With increasing spheronization duration, the R values generally 

increased in magnitude, indicating that smaller spheroids were rounder within the 

population. For spheroids to be rounded, spheroid surface should be plastic, allowing 

remodelling of the circumferential shape during spheronization. These forces which 

remodelled spheroid shape could be from: collision between spheroids, collision 

between spheroids and spheronizer wall or collision between spheroid and both 

spheronizer wall and spheronizer base frictional plate. The degree of spheroid 

remodelling would also depend on the mass and velocity of spheroids during 

spheronization. Therefore, the combination of highly plastic surfaces, large mass and 

high velocity would favor the occurrence of highly spherical spheroids. On the other 

hand, smaller spheroids were rounder as mentioned above. Smaller spheroids with 

their lower mass would not be expected to be rounder unless they had higher 

velocities or greater surface plasticity. Tendency for spheroids to coalesce with one 

another would be higher with greater surface plasticity (Wan et al., 1993). µ3 

spheroids, being the subpopulation which did not increase in size during 

spheronization, were of lower roundness, suggested that µ3 spheroids were less plastic 

and resisted coalescence and roundening. There may even be attritive breakdown of 

the outer surfaces. In contrast, the µ1 spheroids increased in size as spheronization 

progressed, along with higher degree roundness due to their greater surface plasticity. 
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3.1. Sensitivity of roundness descriptors in characterizing 

spheronization  

As mentioned earlier, all roundness descriptors, namely eR, PS, AR and C, showed 

significance in LSD post hoc test, demonstrating that spheroids were indeed 

significantly rounder after 10 min of spheronization (Table 11). Qualitatively, 

roundness descriptors had also shown trends of increasing spheroid roundness with 

increasing residence time during spheronization. However, the practical usefulness of 

these roundness descriptors should be to quantify any change in spheroid roundness 

throughout the spheronization process. In this study, the ability of roundness 

descriptors to quantify changes in roundness for every 2 min of spheronization was 

tested. Using statistical analysis, eR, PS and AR showed significant improvement in 

roundness at every 2 min interval during spheronization. C indicated that spheroids 

were rounder up to 6 min into spheronization. After the 6th min, C generally could not 

significantly represent improvement in roundness (Table 11). eR, AR and PS appeared 

as sensitive roundness descriptors which were able to detect and represent 

improvement in roundness throughout spheronization. In comparison, the inability of 

C to detect subtle improvement in roundness toward the end of spheronization made 

C a questionable roundness descriptor for quantifying spheroid shape changes for ES 

processes. 
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3.2. Correlation between roundness descriptors 

Correlation analysis of eR, PS, AR and C values were carried out for all ESC(TS) 

spheroids. R values for ESC(TS)’s eR-PS, eR-AR, PS-AR correlation were high at 

approximately 0.9 (Figure 9). From a practical perspective where good quality  
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Figure 9. R values of correlations among roundness descriptors for ESC(TS) 
spheroids. a) PS-AR, b) eR-AR, c) eR-PS, d) C-AR, e) C-PS, and f) C-eR. All R values 
are significant at P ≤ 0.05. 
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Figure 9 (Continued). R values of correlations among roundness descriptors for 
ESC(TS) spheroids. a) PS-AR, b) eR-AR, c) eR-PS, d) C-AR, e) C-PS, and f) C-eR. All 
R values are significant at P ≤ 0.05. 
 
 

spheroids were generally produced, eR, PS and AR could be used interchangeably to 

chart changes in spheroid shape during spheronization. Interestingly, R values for 

ESC(TS) C-eR, C-PS and C-AR correlations ranged approximately from 0.4-0.8. R 

values of PS-AR, eR-AR, and eR-PS correlations in Figure 9 varied linearly with 

duration of spheronization. In contrast, R values of C-AR, C-PS and C-eR correlations 

showed trend containing maxima or minima at the 6th -8th min of spheronization. R 

values of eR-AR ranged from -0.85 to -0.95, representing a highly correlated pair. In 

contrast, R values of C-AR ranged from -0.4 to -0.78, representing a variably 

correlated pair, depending on duration of spheronization. eR-AR and C-AR 

represented extreme values and therefore the relationship of the R values of eR-AR 

and C-AR correlations were examined in greater detail. 
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3.3. Shape heterogenicity within ES spheroid population 

during spheroid formation 

Using data from image analysis, 625 spheroids from every ESC(TS) sample were 

divided into 25 equal intervals according to their individual ECD. Within each 

interval, R values for eR-AR and C-AR correlations were computed and plotted 

accordingly as shown in Figure 10. 

 

All ESC(TS) batches showed that intra lot R values of eR-AR correlations were 

similar. The intra lot R values of eR-AR correlations did not vary with spheroid size 

within any ESC(TS) batch. In contrast, the intra lot R values of C-AR correlations 

were related to spheroid size. The intra lot R values of C-AR correlations fluctuated 

greatly with increasing spheroid size and there was an observable trend of bigger 

spheroid having larger (less negative) R values. As spheronization progressed, 

ESC(TS)6-10 spheroids showed distinctly that smaller spheroids had larger intra lot R 

values of C-AR correlations. The intra lot R values of C-AR correlations of 

ESC(TS)6-10 spheroids did not vary proportionally with increasing spheroid diameter. 

The intra lot R values generally took 2 extremes; R values at below 900 µm fluctuated 

greatly but were generally larger, whereas R values above 900 µm were more 

consistent and generally smaller. Comparing the MG distribution representation for 

spheroid size distribution (Figure 8) and Figure 10 of ESC(TS)6-10, the region where 

the intra lot R values of C-AR correlations fluctuated coincided with spheroids which 

belonged to α1 of respective MG distributions. Apart from showing heterogeneity in 
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Figure 10. Intra lot R values of AR-eR and C-AR correlations against ECD of spheroids (µm). 
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Figure 10 (Continued). Intra lot R values of AR-eR and C-AR correlations against ECD of spheroids (µm). 
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Figure 10 (Continued). Intra lot R values of AR-eR and C-AR correlations against ECD of spheroids (µm). 
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size within a batch of spheroid population, MG distribution could suggest 

heterogeneity in shape of spheroids within a spheroid population if evaluated with 

intra lot R values of C-AR correlations. 

 

3.4. Novel method in spheroid shape analysis 

Figures 4 and theories on spheroid formation (Rowe, 1985, Baert and Remon, 1993) 

suggested that spheroids could possibly assume the following 2 dimensional shapes 

after 2-10 min of spheronization: 

1. Circle - An ideal spheroid shape for comparison. 

2. Ellipse - A distorted circle which could assume perfect circularity with 

sufficient roundening. 

3. Oval – A possible resultant shape if 2 round spheroids collided and 

resulted in abrasion transfer of material. 

4. Rectangle with rounded corners (RRC) - A fragmented extrudate with 

edges rounded. 

5. Rectangle with rounded ends (RRE) – RRC could be further attrited at 

both ends to yield RRE. A dumbbell could become a RRE if its 

bi-concave surfaces were flattened. 

6. Dumbbell - Spheroid formation theory (Baert and Remon, 1993) 

suggested that stretching of extrudates would occur during 

spheronization, forming dumbbell shaped aggregates. 
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In consideration of the likely spheroids shapes proposed by the theories, these shapes 

should be artificially simulated and compared with empirical observations to verify 

the validity of the theories. Therefore the possible shapes of spheroids were drawn, 

image analyzed and results tabulated in Table 16. 

 

In order to generate a series of simulated images, ellipse, oval and RRE were 

stretched along their length with AR of respective shape increasing in a predictable 

manner, from 1.05 to 2. Altogether 20 images were generated and analyzed for each 

of the shape (ellipse, oval and RRE). Only circle and selected images of ellipse, oval 

and RRE are included in Table 16. 

 

eR, C and PS decreased when the length of ellipse, oval and rectangle were increased. 

However, among the 3 descriptors, eR decreased with greatest magnitude as the 

shapes were increasingly distorted while C decreased with the smallest magnitude. 

This supported the early findings when concluded that shape data obtained from 

ESC(TS) spheroids (Figure 7) demonstrated that eR, AR and PS, unlike C, were able 

to show significant improvement in spheroid roundness with increasing 

spheronization duration. The minimal numerical change in C in Table 11 suggested 

that C was less sensitive and less critical as roundness descriptor for spheroids. 
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 Table 16. Roundness values for different shapes. 
Shape  eR AR PS C 
   

Circle 
 

0.990  1.000  1.002  1.010  

      

Ellipse 
 

0.693 1.051  0.962  1.012  

 
 

0.440  1.250  0.810  0.991  

 
 

0.301  1.500  0.673  0.950  

 
 

0.218  1.750  0.576  0.899  

 
 

0.148 2.000  0.504  0.847  

Oval 
 

0.694 1.050  0.961  1.009  

 
 

1.252  0.802  0.990  0.429 

 
 

0.287  1.504  0.678  0.935  

 
 

0.198  1.748  0.575  0.883  

 
 

0.131  2.000  0.505  0.823  
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Table 16 (Continued). Roundness values for different shapes. 
Shape  eR AR PS C 
   

RRE 
 

0.694  1.050  0.977  1.009  

 
 

0.423  1.252  0.858  0.990  

 
 

0.298  1.496  0.737  0.951  

 
 

0.218 1.741  0.648  0.904  

 
 

2.000  0.572  0.854  0.143 

      

RRC 
 

0.080  2.000  0.550  0.750  

 
 

0.109  2.000  0.577  0.794  

 

 
0.124  2.000  0.586  0.829  

Dumbbell 
 

0.127  1.985  0.537  0.787  

 

 
0.120  1.985  0.525  0.753  

 

 
0.080  1.985  0.517  0.717  

   

 

Roundness values of the 20 images each of ellipse, oval and RRE were correlated 

with one another and tabulated in Table 17. Using the same data, a plot was also 
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obtained (Figure 11). All roundness descriptors were highly correlated (|R| ≥ 0.9) with 

one another for the three shapes (Table 17). If the roundness descriptors of spheroids 

were correlated in the same manner and |R| ≥ 0.9, it indicated that all spheroids would 

have similar shapes, either ellipse, oval or RRE. However, the observed R values 

from the simulated images were not exactly similar to the R values obtained from 

actual spheroid images (Figure 9 and Table 17). 

 
Table 17. Correlation between roundness descriptors for ellipse, oval and RRE. 

Correlation coefficient (R) Correlated roundness 
descriptors Ellipse Oval RRE 
  
PS-AR -0.985 -0.985 -0.990 
eR-AR -0.956 -0.953 -0.948 
eR-PS 0.990 0.989 0.980 
C-AR -0.994 -0.995 -0.994 
C-PS 0.961 0.966 0.971 
C-eR 0.920 0.922 0.911 
 
All R values are statistical significant at P≤0.05.
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Figure 11. eR, AR, PS, C of simulated images plotted against one another. 
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Figure 11 shows the relationship between the different roundness descriptors obtained 

for the different shapes. In an ideal scenario, a spheroid which is elliptical would have 

a coordinate along the line representing an ellipse as in Figure 11. Likewise, a 

spheroid assuming an oval shape would be represented by a coordinate along the 

“oval” line. An area would be bounded by the “oval” and “ellipse” lines. This area 

constitutes a region where the shape would be irregular and possesses characteristics 

of both oval and ellipse. Similarly, an area could also be bound by “RRE”, “oval” or 

“ellipse” lines. In Figure 11, the 2 features to observe for each plot would be the 

overlap of lines and the size of the area bound by the lines. In figures where the lines 

overlap, if a coordinate lies on the lines, the graph would be unable to distinguish 

which shape the coordinate represents. If lines were far apart, the area bound by the 

lines would be bigger, indicating that the graphs would be more definitive in 

distinguishing between shapes. In Figures 11a and 11c, the plots show that oval and 

ellipse lines overlapped each other. Figure 11b shows that all 3 shape lines overlapped 

with one another. In contrast, all 3 shape lines in Figure 11e do not cross over one 

another. In Figure 11f, ellipse and RRE lines overlapped, with the oval line running 

nearby but not overlapping. Figure 11a shows that the ellipse and RRE lines 

overlapped each other. On the sizes of areas bounded by the lines, Figures 11a, 11c, 

11d and 11e show that areas enclosed were relatively similar. The bound area in 

Figure 11f, in comparison, was distinctly smaller. Due to the overlap of all the shape 

lines with minimal bound area for Figure 11b, shapes of the spheroids present were 

either ellipse, oval or RRE. AR and eR of spheroids would be expected to be highly 
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correlated. This is shown in Figure 9b with R values approximately 0.9. Figures 11a 

and 11c could differentiate ellipse and oval from RRE but not between ellipse and 

oval. In contrast, Figure 11d could differentiate ellipse and RRE from oval but not 

between ellipse and RRE. Figure 11e plot could differentiate all three shapes. 

 

3.4.1. Predominant spheroid shape during spheronization 

Spheroids with roundness coordinates scattered within the area bound by the shape 

lines would result in low R values when these coordinates were correlated. ESC(TS) 

R values of AR-PS, AR-eR, and eR-PS correlations were high (≈0.9) in Figure 9. 

When Figures 11a and 11c were evaluated together with high R values in Figure 9a-c, 

it indicated that throughout spheronization, the likely spheroid shape was either 

ellipse or oval, not RRE. The smaller R values in Figure 9d, in relation to the 

observation with Figure 11d suggested that spheroid shape would be (i) ellipse or 

RRE and (ii) oval. If Figures 9a-d were to be evaluated together with Figure 11, it 

indicated that during spheronization, the predominant spheroid shapes was not RRE. 

Instead, the shape was likely to have characteristics of oval and ellipse. The maxima 

or minima in R values of Figures 9d-f suggested that at 6-8 min, ESC(TS) spheroids 

were of similar shape, possibly RRE or ellipse. Since the presence of RRE was ruled 

out, the likely predominant spheroid shape would be ellipse for ESC(TS)6 and 

ESC(TS)8 batches. 
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Figure 11 does not include lines representing RRC and dumbbells. However, from the 

C and eR values shown in Table 16, effects of RRC and dumbbells on RRE line in 

C-AR and AR-eR plots could be estimated. RRC with increasing sharp corners and 

increasing biconcave dumbbells would cause RRE line in Figure 11d to shift towards 

the left. With AR-eR plot, RRC would cause the RRE line in Figure 11b to deviate 

away from the oval and ellipse lines. The presence of RRC or dumbbells in the 

spheroid population would therefore have mixed effects on the R values of AR-C 

correlation. However, presence of RRC or dumbbells in spheroid population would 

cause the R values of AR-eR correlation to decrease.  

 

The concept of spheroid shape analysis using R values of C-AR plot was applied 

again in Figure 10 to demonstrate intra batch spheroid shape variations during 

spheronization. Apart from the heterogenicity suggested by variations in intra batch R 

values and MG distribution, the R values demonstrated that changes in spheroid shape 

depended on the spheroid size and duration of spheronization. R values of ESC(TS)2 

batches were generally less negative, with high variability across different spheroid 

sizes, indicating that at any size, spheroids did not exist with a consistent or 

predominant shape (Figure 10). The consistency in shape versus size for spheroids 

changed with the increasing duration of spheronization. ESC(TS)8 and ESC(TS)10 

batches showed that spheroids were generally larger than 900 µm and had average R 

values which were more negative but with less variability, indicating that larger 

spheroids were similar in shape with one another (Figure 10). In comparison, 
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ESC(TS)8 and ESC(TS)10 spheroids with ECD smaller than 900 µm had average R 

values which were less negative but with higher variability. This indicated that with 

increasing spheronization duration, smaller spheroids maintained less negative and 

more variable R values while larger spheroids assumed more negative but consistent 

R values. With indication that smaller spheroids had greater shape variation, it would 

be likely that mass transfer and remodelling were predominantly active among 

smaller spheroids toward the end of spheronization. 

 

4. Controlled spheroid agglomeration in rotary 

processor 

Upon completion of spheroid formation in the rotary processor, the spheroids were 

rotated in the processor for an extended period. During that period, additional amount 

of water termed “AGL” was sprayed onto spheroids with the intention of inducing 

physical changes on spheroid surfaces and controlling spheroid agglomeration. The 

size, size distribution, surface roughness, roundness of spheroids during 

agglomeration and yield were evaluated. 

 

During RP, spheroids were expected to lose moisture with increasing processing 

duration. After RP, all RT(SR)20 batches had about 31 %w/w moisture remaining in 

the spheroids (Figure 12). As expected, RT(SR0)50 spheroids had the least amount 

moisture left in the spheroids. Higher AGL spray rate increased the remaining amount 

of moisture in the spheroids. When AGL was added at 4 ml/min, the amount of 
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moisture remaining in spheroids at the end of the process run was approximately 31 

%w/w, indicating that amount of moisture gained and lost by spheroids had reached 

equilibrium (Figure 12). RT(SR6)50 spheroids had a net gain in moisture content with 

AGL spray rate at 6 ml/min. 
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Figure 12. Moisture content of RT(SR) spheroids during RP. 
Error bars represent standard deviations. 
 
 

Addition of AGL was expected to affect the plasticity and rigidity of the spheroid 

surface, if not that of entire spheroid. The interrelated nature of plasticity and rigidity 

with roundness and agglomeration suggested that the addition of AGL would affect 

the roundness and size of the resultant spheroids. Size and size distribution of 
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spheroids with the least amount of moisture remaining (RT(SR50)) were analyzed by 

sieving and results presented in Table 18.  

 
Table 18. Size and size distribution of RT(SR) spheroids as characterized by sieving.  
Batch Dwgeo 

(mm) 
SDwgeo Dwarith 

(mm) 
SDwarith Dwmed 

(mm) 
Spanw 

       
RT(SR0)50 1.006 1.189 1.024 1.051 0.898 0.244 
 (0.081) (0.019) (0.080) (0.078) (0.088) (0.017) 
RT(SR2)50 0.933 1.200 0.951 0.980 0.828 0.294 
 (0.117) (0.029) (0.116) (0.113) (0.100) (0.035) 
RT(SR4)50 0.955 1.197 0.974 1.004 0.847 0.314 
 (0.200) (0.027) (0.201) (0.200) (0.185) (0.011) 
RT(SR6)50 1.013 1.181 1.029 1.051 0.925 0.294 
 (0.164) (0.011) (0.167) (0.170) (0.151) (0.018) 
RT(SR4S630)50 1.097 1.185 1.114 1.140 0.985 0.300 
 (0.065) (0.021) (0.061) (0.052) (0.057) (0.003) 
RT(SR4TWN)50 1.076 1.182 1.095 1.121 0.960 0.301 
 (0.128) (0.007) (0.130) (0.132) (0.120) (0.014) 
       
Values are mean with standard deviations in parentheses. 
 

Size analysis of RT(SR) spheroids using sieves did not demonstrate any significant 

changes in the size and size distribution of spheroids with increasing rate of AGL 

addition nor with the inclusion of S630 or Tween 80 in AGL (Table 19). One 

exception was that Spanw of RT(SR0)50 was significantly smaller, as indicated by 

the LSD post hoc test (Table 19). Since SDwgeo and SDwarith of RT(SR0)50 were 

not significantly different from the rest of the RT(SR)50 batches, the presence of 

AGL could not be attributed to cause a widening in the size distribution of spheroids. 
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Table 19 One way ANOVA of size and size distribution of RT(SR) spheroids. 
Size and size distribution 
descriptors 

P value for one way ANOVA 

  
Dwgeo (mm) 0.756 
SDwgeo 0.847 
Dwarith (mm) 0.765 
SDwarith 0.781 
Dwmed (mm) 0.724 
Spanw 0.027* 
  
* denotes statistical significance at P ≤ 0.05. 
 
 

4.1. Representation of RP spheroids with MG distribution 

Size distribution of RT(SR) spheroids did not significantly fit a normal or log normal 

distribution (Table 20). Instead, the size distribution of RT(SR) spheroids fitted 

significantly to MG distribution (Table 20). This finding was similar to that found for 

ESC(TS) spheroids. Size distribution of the majority of the RT(SR) batches could be 

best fitted to 4cMG or 3cMG, followed by 2cMG distribution. Although RT(SR) 

batches best fitted a 4cMG distribution with 56 out of 64 batches having P value 

greater than 0.05, RT(SR) batches would instead be approximated to a 3cMG for 

reasons similar to those of ESC(TS) batches; i.e. to achieve a balance between 

absolute closest in fitting and simplicity in mathematical equation for practical 

understanding. 
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Table 20. P values for Chi square curves fitting of size distribution of RT(SR) spheroids 
to statistical distributions. 
Batch Distribution 
 Normal Log normal 2cMG 3cMG 4cMG 
      
1RT(SR0)20 0.000* 0.000* 0.648 0.882 0.981 
1RT(SR0)30 0.000* 0.000* 0.919 0.943 0.990 
1RT(SR0)40 0.000* 0.000* 0.872 0.906 0.907 
1RT(SR0)50 0.000* 0.000* 0.436 0.677 0.679 
      
2RT(SR0)20 0.000* 0.000* 0.180 0.702 0.726 
2RT(SR0)30 0.000* 0.000* 0.182 0.377 0.472 
2RT(SR0)40 0.000* 0.000* 0.872 0.917 0.923 
2RT(SR0)50 0.000* 0.000* 0.379 0.327 0.267 
      
3RT(SR0)20 0.000* 0.000* 0.029* 0.735 0.843 
3RT(SR0)30 0.000* 0.000* 0.249 0.474 0.485 
3RT(SR0)40 0.000* 0.000* 0.212 0.240 0.358 
3RT(SR0)50 0.000* 0.000* 0.000* 0.000* 0.000* 
      
1RT(SR2)20 0.000* 0.000* 0.570 0.755 0.769 
1RT(SR2)30 0.000* 0.000* 0.276 0.566 0.568 
1RT(SR2)40 0.000* 0.000* 0.407 0.424 0.891 
1RT(SR2)50 0.000* 0.000* 0.570 0.527 0.557 
      
2RT(SR2)20 0.000* 0.000* 0.242 0.539 0.849 
2RT(SR2)30 0.000* 0.000* 0.457 0.800 0.926 
2RT(SR2)40 0.000* 0.000* 0.010* 0.038* 0.051 
2RT(SR2)50 0.000* 0.000* 0.003* 0.001* 0.002* 
      
3RT(SR2)20 0.000* 0.000* 0.793 0.860 0.925 
3RT(SR2)30 0.000* 0.000* 0.000* 0.000* 0.000* 
3RT(SR2)40 0.000* 0.000* 0.985 0.994 0.995 
3RT(SR2)50 0.000* 0.000* 0.074 0.138 0.125 
      
* denotes statistical significance at P ≤ 0.05. 
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Table 20 (Continued). P values for Chi square curves fitting of size distribution of 
RT(SR) spheroids to statistical distributions. 
Batch Distribution 
 Normal Log normal 2cMG 3cMG 4cMG 
      
1RT(SR4)20 0.000* 0.000* 0.038* 0.770 0.895 
1RT(SR4)30 0.000* 0.000* 0.183 0.452 0.444 
1RT(SR4)40 0.000* 0.000* 0.354 0.521 0.610 
1RT(SR4)50 0.000* 0.000* 0.045* 0.063 0.040* 
      
2RT(SR4)20 0.000* 0.000* 0.040* 0.310 0.580 
2RT(SR4)30 0.000* 0.000* 0.129 0.277 0.517 
2RT(SR4)40 0.000* 0.000* 0.003* 0.024* 0.139 
2RT(SR4)50 0.000* 0.000* 0.183 0.468 0.698 
      
3RT(SR4)20 0.000* 0.000* 0.331 0.834 0.821 
3RT(SR4)30 0.000* 0.000* 0.096 0.104 0.126 
3RT(SR4)40 0.000* 0.000* 0.378 0.650 0.614 
3RT(SR4)50 0.000* 0.000* 0.105 0.173 0.162 
      
1RT(SR6)20 0.000* 0.000* 0.351 0.946 0.991 
1RT(SR6)30 0.000* 0.000* 0.294 0.721 0.840 
1RT(SR6)40 0.000* 0.000* 0.152 0.655 0.708 
1RT(SR6)50 0.000* 0.000* 0.062 0.671 0.740 
      
2RT(SR6)20 0.000* 0.000* 0.003* 0.029* 0.047* 
2RT(SR6)30 0.000* 0.000* 0.894 0.957 0.957 
2RT(SR6)40 0.000* 0.000* 0.000* 0.074 0.082 
2RT(SR6)50 0.000* 0.000* 0.006* 0.127 0.188 
      
3RT(SR6)20 0.000* 0.000* 0.000* 0.000* 0.000* 
3RT(SR6)30 0.000* 0.000* 0.077 0.225 0.223 
3RT(SR6)40 0.000* 0.000* 0.027* 0.027* 0.053 
3RT(SR6)50 0.003* 0.012* 0.021* 0.748 0.991 
      
* denotes statistical significance at P ≤ 0.05. 
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Table 20 (Continued). P values for Chi square curves fitting of size distribution of 
RT(SR) spheroids to statistical distributions. 
Batch Distribution 
 Normal Log normal 2cMG 3cMG 4cMG 
      
1RT(SR4S630)20 0.000* 0.000* 0.005* 0.213 0.465 
1RT(SR4S630)30 0.000* 0.000* 0.056 0.126 0.226 
1RT(SR4S630)40 0.000* 0.000* 0.052 0.143 0.264 
1RT(SR4S630)50 0.000* 0.000* 0.130 0.334 0.328 
      
2RT(SR4S630)20 0.000* 0.000* 0.335 0.390 0.651 
2RT(SR4S630)30 0.000* 0.000* 0.002* 0.069 0.105 
2RT(SR4S630)40 0.000* 0.000* 0.643 0.751 0.749 
2RT(SR4S630)50 0.000* 0.000* 0.373 0.407 0.414 
      
1RT(SR4TWN)20 0.000* 0.000* 0.054 0.179 0.543 
1RT(SR4TWN)30 0.000* 0.000* 0.000* 0.000* 0.000* 
1RT(SR4TWN)40 0.000* 0.000* 0.058 0.456 0.449 
1RT(SR4TWN)50 0.000* 0.000* 0.000* 0.000* 0.000* 
      
2RT(SR4TWN)20 0.000* 0.000* 0.269 0.308 0.330 
2RT(SR4TWN)30 0.000* 0.000* 0.018* 0.042* 0.057 
2RT(SR4TWN)40 0.000* 0.000* 0.030* 0.100 0.113 
2RT(SR4TWN)50 0.000* 0.000* 0.626 0.904 0.932 
      
* denotes statistical significance at P ≤ 0.05. 
 
 

4.2. Effects of AGL on spheroid size 

Paired T test was carried out on DI of RT(SR)20 and RT(SR)50 batches to investigate 

the effects of AGL. DI of RT(SR) batches demonstrated that with sufficiently high 

rate of AGL addition, spheroid increased in size (Figure 13). This observation was 

similar to the reported work in Wan et al.’s (1994) study which related high spray rate 

to production of larger spheroids. As a control, DI of RT(SR0) did not significantly 

increase with prolonged spheronization. RT(SR6) demonstrated that with sufficiently 

high rate of AGL addition and prolonged spheronization, spheroids continued to 
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increase in size. At moderate rate of AGL addition, the results were not conclusive to 

prove any size changes for RT(SR2) or RT(SR4) batches. 
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Figure 13. Average DI of RT(SR)20 batches and respective DI % changed after AGL 
addition. 
Error bars represent standard deviation. * denotes statistical significant increase in DI 
after processing. 
 
 

Low AGL spray rates were used to examine the possibility of inducing changes in 

spheroid morphology without causing spheroid growth or agglomeration, and 

consequently size increase. Apart from performing paired T test on DI, paired T test 

was also carried out on µ1 to validate any spheroid size increase with the addition of 

AGL. Without AGL, µ1 of RT(SR0) had significant increase with prolonged 

spheronization (Table 21).  

*

*



 

 

 
Table 21. Size distribution of RT(SR) spheroids as defined by 3cMG distribution. 
Batch α1 µ1 

(µm) 
σ1 α2 µ2 

(µm) 
σ2 α3 µ3 

(µm) 
σ3 

          
1RT(SR0)20* 0.229 956.6 26.60 0.527 968.5 60.51 0.245 1154.2 112.55 
1RT(SR0)30 0.395 986.7 31.21 0.283 1016.6 40.14 0.323 1181.9 116.42 
1RT(SR0)40 0.428 995.2 28.42 0.306 1001.6 46.23 0.266 1141.3 117.40 
1RT(SR0)50 0.483 1003.0 29.19 0.272 1030.4 67.73 0.245 1240.5 113.37 
   
2RT(SR0)20 0.558 1091.1 48.77 0.393 1221.1 99.85 0.049 1495.7 58.96 
2RT(SR0)30 0.096 1113.3 14.79 0.527 1152.1 38.53 0.377 1243.8 125.39 
2RT(SR0)40 0.260 1128.7 42.76 0.443 1160.3 35.48 0.297 1306.7 115.04 
2RT(SR0)50 0.167 1139.3 44.65 0.453 1161.3 35.63 0.381 1253.1 139.18 
   
3RT(SR0)20 0.389 933.4 33.67 0.461 1046.8 69.60 0.151 1249.6 65.62 
3RT(SR0)30 0.066 986.7 8.36 0.576 983.8 45.40 0.358 1140.4 111.42 
3RT(SR0)40 0.395 984.7 31.96 0.197 1001.0 58.92 0.408 1113.8 133.54 
3RT(SR0)50 0.193 987.7 26.44 0.428 998.8 41.61 0.379 1121.5 167.53 
   
1RT(SR2)20* 0.223 763.1 29.58 0.564 818.3 42.62 0.213 949.7 79.73 
1RT(SR2)30 0.698 832.1 35.57 0.051 928.2 17.87 0.251 1028.2 93.96 
1RT(SR2)40 0.395 826.1 24.08 0.239 864.8 24.81 0.366 961.9 100.69 
1RT(SR2)50 0.299 846.1 25.26 0.327 857.8 43.70 0.374 1019.0 137.75 
   

* denotes paired T test statistical significance at P≤0.05.
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Table 21 (Continued). Size distribution of RT(SR) spheroids as defined by 3cMG distribution. 
Batch α1 µ1 

(µm) 
σ1 α2 µ2 

(µm) 
σ2 α3 µ3 

(µm) 
σ3 

          
2RT(SR2)20 0.252 948.9 33.02 0.470 1017.5 53.74 0.278 1200.6 101.50 
2RT(SR2)30 0.554 1018.7 30.77 0.303 1073.4 76.20 0.143 1243.0 98.55 
2RT(SR2)40 0.269 1029.5 42.92 0.426 1052.2 29.27 0.306 1189.4 115.60 
2RT(SR2)50 0.263 1053.6 29.01 0.452 1057.4 44.21 0.285 1226.7 143.21 
   
3RT(SR2)20 0.331 993.6 40.85 0.375 1048.8 50.31 0.294 1217.4 100.01 
3RT(SR2)30 0.525 1063.2 40.33 0.206 1146.4 72.87 0.269 1233.5 161.06 
3RT(SR2)40 0.261 1097.2 60.68 0.476 1099.0 37.26 0.263 1306.4 112.15 
3RT(SR2)50 0.568 1102.9 47.33 0.091 1092.9 9.79 0.341 1208.8 158.95 
   
1RT(SR4)20* 0.475 827.1 35.74 0.461 975.3 91.77 0.064 1226.4 58.38 
1RT(SR4)30 0.437 867.6 28.73 0.339 900.6 55.17 0.225 1044.6 127.22 
1RT(SR4)40 0.517 902.2 27.85 0.2968 937.4 72.89 0.186 1126.6 80.31 
1RT(SR4)50 0.388 924.9 85.77 0.4752 924.1 28.18 0.137 1109.1 67.98 
   
2RT(SR4)20 0.597 855.6 42.09 0.347 977.1 77.86 0.056 1174.6 68.00 
2RT(SR4)30 0.476 893.0 29.59 0.380 955.9 69.80 0.143 1112.7 78.30 
2RT(SR4)40 0.531 913.4 40.16 0.202 929.7 18.62 0.266 1077.8 107.92 
2RT(SR4)50 0.304 939.5 51.59 0.436 934.4 23.06 0.259 1087.0 104.45 
   
* denotes paired T test statistical significance at P≤0.05.
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Table 21 (Continued). Size distribution of RT(SR) spheroids as defined by 3cMG distribution. 
Batch α1 µ1 

(µm) 
σ1 α2 µ2 

(µm) 
σ2 α3 µ3 

(µm) 
σ3 

          
3RT(SR4)20 0.572 1140.9 54.98 0.404 1296.4 112.53 0.024 1562.2 16.25 
3RT(SR4)30 0.420 1186.2 45.31 0.352 1238.8 38.88 0.228 1395.3 93.36 
3RT(SR4)40 0.361 1284.8 90.03 0.588 1264.4 48.91 0.051 1508.9 45.94 
3RT(SR4)50 0.808 1299.6 72.10 0.109 1361.5 22.09 0.083 1511.3 76.73 
   
1RT(SR6)20* 0.537 898.6 46.05 0.381 1054.6 93.52 0.082 1267.6 39.37 
1RT(SR6)30 0.632 950.7 35.07 0.320 1055.1 92.97 0.048 1276.7 43.44 
1RT(SR6)40 0.370 1011.1 65.25 0.478 1010.8 29.24 0.152 1233.4 78.68 
1RT(SR6)50 0.255 971.4 43.59 0.622 1072.6 40.39 0.123 1235.5 62.01 
   
2RT(SR6)20 0.596 829.9 41.77 0.323 950.0 74.70 0.081 1122.2 39.70 
2RT(SR6)30 0.565 889.1 33.42 0.369 988.0 80.23 0.066 1154.5 50.79 
2RT(SR6)40 0.118 861.4 33.69 0.588 934.4 31.73 0.294 1074.2 80.95 
2RT(SR6)50 0.593 940.5 67.19 0.2132 987.6 25.90 0.194 1100.1 91.38 
   
3RT(SR6)20 0.385 1050.2 36.38 0.279 1143.4 67.47 0.336 1265.0 154.44 
3RT(SR6)30 0.552 1164.5 60.10 0.275 1168.3 31.64 0.174 1378.1 101.59 
3RT(SR6)40 0.220 1160.0 56.19 0.698 1240.7 55.22 0.083 1430.6 72.23 
3RT(SR6)50 0.314 1178.5 59.17 0.655 1323.1 60.63 0.031 1530.4 37.17 
   

* denotes paired T test statistical significance at P≤0.05.
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Table 21 (Continued). Size distribution of RT(SR) spheroids as defined by 3cMG distribution. 
Batch α1 µ1 

(µm) 
σ1 α2 µ2 

(µm) 
σ2 α3 µ3 

(µm) 
σ3 

          
1RT(SR4S630)20 0.547 1014.1 46.09 0.371 1151.9 97.80 0.082 1379.9 37.93 
1RT(SR4S630)30 0.411 1082.5 35.03 0.362 1102.0 59.67 0.226 1281.0 117.93 
1RT(SR4S630)40 0.087 1059.6 23.97 0.648 1135.2 34.21 0.265 1275.9 130.63 
1RT(SR4S630)50 0.250 1107.1 44.33 0.596 1174.7 40.05 0.155 1366.3 89.02 
   
2RT(SR4S630)20 0.083 1048.6 32.83 0.596 1131.0 47.86 0.321 1336.2 138.36 
2RT(SR4S630)30 0.358 1254.7 99.30 0.626 1180.5 39.79 0.016 1523.8 18.28 
2RT(SR4S630)40 0.229 1249.1 92.27 0.706 1215.8 49.14 0.065 1501.1 80.56 
2RT(SR4S630)50 0.395 1211.3 47.67 0.304 1275.6 40.99 0.301 1301.7 118.17 
   
1RT(SR4TWN)20 0.255 952.4 33.11 0.352 1013.0 47.66 0.393 1197.7 151.75 
1RT(SR4TWN)30 0.273 1019.5 28.17 0.406 1054.8 35.57 0.321 1176.9 134.46 
1RT(SR4TWN)40 0.107 1002.2 27.66 0.594 1075.0 30.83 0.298 1198.9 118.27 
1RT(SR4TWN)50 0.503 1097.0 50.03 0.216 1118.0 22.80 0.282 1187.1 124.70 
   
2RT(SR4TWN)20 0.046 1060.6 7.31 0.646 1131.8 59.37 0.306 1346.5 112.53 
2RT(SR4TWN)30 0.345 1189.9 35.13 0.509 1206.4 60.42 0.146 1392.1 120.48 
2RT(SR4TWN)40 0.023 1156.9 6.01 0.703 1244.9 41.87 0.274 1338.0 141.76 
2RT(SR4TWN)50 0.649 1254.4 69.93 0.246 1339.6 35.87 0.105 1502.7 90.90 

  
* denotes paired T test statistical significance at P≤0.05. 
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This was contrary to the findings earlier when DI was used instead. With AGL, 

RT(SR2) RT(SR4) and RT(SR6) also had significant increase in size with prolonged 

spheronization (Table 21). The extent of size increase would be higher with higher 

AGL spray rates. When AGL was sprayed onto spheroid surface, the amount of 

moisture on spheroid surface was instantaneously increased. The increased amount of 

surface moisture would increase the spheroid surface plasticity while reducing its 

rigidity. Higher surface plasticity would in turn allow greater tendency for 

agglomeration during spheroid collisions, resulting in size increase. At 2 and 4 ml/min, 

the rate of AGL addition did not increase the net moisture content in the spheroids 

(Figure 12). However, as AGL was sprayed onto the spheroid surface, its immediate 

effect would be to cause the spheroid surface to be more plastic, promoting spheroid 

coalescence. It would take considerable amount of time for excessive moisture on the 

spheroid surface to migrate and distribute itself throughout the spheroid matrix. Hence, 

compared to amount of surface moisture, the net amount of moisture remaining in 

spheroids was less important in contributing to agglomeration. 

 

All the 3 methods used to quantify spheroid size, sieving, image analysis and 

statistical curve fitting into mix Gaussian distribution, highlighted different aspects of 

RP spheroid agglomeration due to the addition of AGL (Table 18, Figure 13 and 

Table 21). RP inherently is widely regarded as less robust compared to ES. When 

experiments were repeated, variability in mean size of RP spheroids was higher than 

those of ES. This variability would obscure any subtle spheroid size change due to 
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AGL. Sieving, the less sensitive sizing method also could not detect this subtle 

spheroid size change caused by the AGL addition. As suggested by the MG 

distribution representing spheroid size distribution, the whole batch of spheroids 

could be considered as a heterogeneous population, consisting subpopulations of 

spheroids. The highest AGL spray rate of 6 ml/min caused all the subpopulations to 

increase in size (Figure 13). At lower spray rate of 2 and 4 ml/min, only the 

subpopulation represented by µ1 had distinct size increase (Table 21). In a situation 

where granules of different sizes had the same level of surface plasticity, the smaller 

granules were more likely to coalescence with one another until a maximum size was 

reached (Iveson et al., 2001). Therefore, at low rate of AGL addition, surface 

plasticity of the subpopulation of the smaller spheroids were sufficiently increased, 

allowing agglomeration to take place. However, the low rate of AGL addition did not 

increase the surface plasticity of larger spheroid sufficiently to promote agglomeration 

among subpopulations of larger spheroids. The effect of low rate of AGL addition to 

cause spheroid size increase could only be observed on smaller spheroids. This 

phenomenon of spheroid size increase for smaller spheroids instead of larger 

spheroids could be viewed as a step-wise size increase process. Hence, at low rate of 

AGL addition, smaller spheroids increased in size while larger ones remained 

unchanged in size. At high AGL spray rate, both small and large spheroids increased 

in size at the same time. 

 



RESULTS AND DISCUSSION 

Page 124 

4.3. Effects of AGL on spheroid roundness 

Apart from the increase in spheroid size, introduction of AGL also altered the 

roundness of spheroids. Paired T test was carried out on roundness of RT(SR)20 and 

RT(SR)50 batches to investigate the effects of AGL (Figure 14). At zero AGL spray 

rate, eR, AR and PS of RT(SR0) spheroids did not show significance changes. 

However, when AGL was introduced at 2-6 ml/min, spheroids became significantly 

less round as shown by the eR, PS, and AR values. Percentage change in eR, PS and 

AR reached a maximum with AGL spray rate at 4 ml/min. At 4 ml/min, net moisture 

content of RT(SR4) spheroids reached an equilibrium, with moisture loss balanced by 

uptake of AGL into the spheroid matrix. When C was used to quantify the roundness 

of spheroids during the addition of AGL, the findings appeared to be contrary to those 

obtained using eR, PS and AR as roundness descriptors (Figure 14). At zero AGL 

spray rate, RT(SR0) spheroids were significantly rounder with increased 

spheronization duration. With the exception of RT(SR4S630), the introduction of 

AGL did not cause the C of spheroids to change significantly. RT(SR4S630) 

spheroids had significantly higher C value. 

 

4.3.1. Applicability of roundness correlations with RP spheroids 

The contradiction between eR, PS and AR, and C prompted further examination. eR, 

PS, AR and C were correlated with one another using the method which was applied 

to ESC(TS) spheroids. R values of eR-AR correlations of RT(SR) spheroids were 

approximately 0.88 (Figure 15). Addition of AGL did not cause any change in the R 
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Figure 14. Roundness RT(SR)20 batches and respective roundness % changed upon 
AGL addition. 
Error bars represent standard deviation. * denotes statistical significant change in 
roundness upon AGL addition. 
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Figure 14 (Continued). Roundness RT(SR)20 batches and respective roundness % 
changed upon AGL addition. 
Error bars represent standard deviation. * denotes statistical significant change in 
roundness upon AGL addition. 
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values of eR-AR correlations (Figure 15). Compared to eR-AR correlations, addition 

of AGL caused a significance decrease in the R values of eR-PS correlations. R values 

of eR-PS correlations of RT(SR2)20, RT(SR4)20 and RT(SR6)20 batches were 

approximately 0.7, which decreased significantly by about 0.1 with the introduction of 

AGL (Figure 15). R values of eR-C correlations of RT(SR) spheroids were 

approximately 0.5 and addition of AGL did not cause significant change in the R 

values. R values of AR-PS correlations for RT(SR)20 batches averaged about -0.75 

and introduction of AGL caused a significant change in the R values (less negative). 

R values of AR-C and PS-C correlations averaged about -0.6 and 0.8 respectively for 

RT(SR) batches and presence of AGL did not cause significance change. 

 

4.3.2. Choosing robust spheroid roundness descriptors  

The R values of roundness correlations could be evaluated independently among the 

RT(SR) batches and also in comparison with ESC(TS) batches. Both RT(SR) and 

ESC(TS) batches have R values of eR-AR correlations approximately 0.9. This high R 

value indicated that for ES and RP spheroids, spheroid represented by eR or AR would 

yield approximately equivalent results. In consideration of the complexity of the 

mathematical equation and the extra measurements required from image analysis to 

calculate eR, it would be advantageous to use AR as a spheroid roundness descriptor 

for its simplicity in calculations. Apart from complexity in the calculation, spheroid 

measurements required by eR might be obtained differently when different image 

analysis systems are used. In order to obtain p and re, an image analysis system has to 
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b) eR-PS 
Figure 15. R values of roundness correlations for RT(SR) spheroids.  
* denotes statistical significant change upon AGL addition 
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d) AR-PS 
Figure 15 (Continued). R values of roundness correlations for RT(SR) spheroids.  
* denotes statistical significant change upon AGL addition. 
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e) AR-C 
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f) PS-C 
Figure 15 (Continued). R values of roundness correlations for RT(SR) spheroids.  
* denotes statistical significant change upon AGL addition. 

 

accurately detect and resolve the 2 dimensional outline of the spheroid. Podczeck et al. 

(1999) ensured consistency in image analysis by standardizing the specimen 

illumination method and minimum pixel resolution. Although the minimum number 

of pixels was specified, resolution of image outline would also depend on the quality 



RESULTS AND DISCUSSION 

Page 131 

of the optical system to competently resolve the outline of the spheroids. Slight 

differences in image thresholding process and optical resolution would affect the 

measurements of both the length and breadth of the spheroid image in a similar 

manner. However, as AR is calculated as a ratio of the length and breadth, having 

length and breadth of the spheroid image affected in a similar manner would yield the 

same AR value with different image analysis systems. Taking into consideration the 

large R values of eR-AR, the complexity in calculating eR, the likelihood of higher 

variability in eR values when analyzed by different laboratories and research groups, 

AR could be applied in place of eR to evaluate spheroids produced by ES and RP. 

 

The R values of eR-PS and AR-PS correlations between ESC(TS) and RT(SR) batches 

were distinctively different compared to the rest of the R values (Figures 9 and 15). R 

values of eR-PS and AR-PS correlations for RT(SR) were smaller than those of 

ESC(TS). R values of eR-PS and AR-PS correlations for ESC(TS) averaged 0.9 and 

-0.94 respectively versus 0.7 and -0.75 for eR-PS and AR-PS of RT(SR) respectively 

(Figures 9 and 15). Out of the 6 R values of roundness correlations of RT(SR), only 

eR-Ps and AR-PS r values were significantly different in the presence of AGL. Since 

eR-PS and AR-PS plots could distinguish between spheroid shape RRE from oval and 

ellipse (Figure 11), smaller R values of eR-PS and less negative R values of AR-PS 

correlations would indicate that shape of some of RT(SR) spheroids have changed, 

resulting in a more homogenous mix of RRE, oval and ellipse. The introduction of 

AGL caused µ1 and DI of RT(SR) spheroids to increase, pointing to agglomeration 



RESULTS AND DISCUSSION 

Page 132 

taking place among the spheroids. During the process of agglomeration with the 

addition of AGL, the resultant spheroids would become less spherical, possibly taking 

on a shape similar to RRE. The presence of agglomeration, resulting in newly formed 

enlarged spheroids of different shape would have caused the change in the R values of 

eR-PS and AR-PS correlations. The R values of AR-eR, eR-C, AR-C and PS-C 

correlations of RT(SR) spheroids were similar to those of ESC(TS), demonstrating the 

applicability of roundness correlation plots in evaluating shapes of spheroids 

produced by ES and RP. 

 

4.4. Surface changes during spheronization with addition of 

AGL 

The introduction of AGL had mixed effects on the surface roughness of spheroids 

(Figure 16). Paired T test was carried out on Ra values of RT(SR)20 and RT(SR)50 

batches to investigate the effects of AGL. Without AGL, surfaces of RT(SR0) 

spheroids were significantly smoother with the lowest Ra among all RT(SR) batches 

at the end of the process run (50 min). At AGL spray rate of 2 ml/min, surface 

roughness values of RT(SR2) spheroids were also significantly lowered. At higher 

AGL spray rates, with the exception of RT(SR4TWN), higher AGL spray rates did 

not appear to effect a significant decrease in surface roughness of the resultant 

spheroids. Spheroids surfaces could be smoothened by attrition and abrasion when 

spheroids collide between themselves or with the rotating frictional plate. When AGL 

was sprayed onto spheroid surfaces, surface material may be solvated, possibly 
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yielding smoother surfaces. Similarly, plasticity of spheroid surfaces may be 

increased when AGL was sprayed onto spheroid surfaces. With higher surface 

plasticity, spheroid collision during spheronization may give rise to spheroids with 

higher sphericity or cause protrusions to be flattened to yield smoother surfaces. 

Conversely, the higher surface plasticity or surface moisture could promote spheroid 

enlargement by abrasion transfer, coalescence or layering. Enlarged spheroids would 

have newly formed surfaces that are rougher than surfaces prior to enlargement. 
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Figure 16. Surface roughness of RT(SR) spheroids. 
* denotes statistical significant change in roughness between 20th and 50th min 
(P≤0.05). 
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Qualitative examination of spheroid surfaces by scanning probe microscopy revealed 

that surfaces of RT(SR0)50 spheroids were distinctively different from the rest of the 

surfaces as shown in Figure 17. Surfaces of RT(SR0)50 spheroids possessed 

crystalline features, with surface protrusions having sharp, well-defined edges. There 

was absence of large protrusions which could account for its lowest Ra value. In 

general, the surface of RT(SR0)50 spheroids resembled “sand paper”. Prolonged 

spheronization of RT(SR0) spheroids could have allowed large surface protrusions to 

be attrited. The continued loss of moisture from the spheroids was also a possible 

contributing factor leading to crystallization at the surfaces to give the “sand paper” 

appearance. The rest of the surfaces in Figure 17 appeared similar, with 

“smooth-muddy” features interspersed with large surface protrusions. Surfaces of 

RT(SRS630) and RT(SR4TWN) spheroids did not reveal any distinctive features 

which might suggest the influence of S630 or Tween 80. The solvation of spheroid 

surface by AGL and the possible exposure of new surfaces after spheroid 

agglomeration maintained the “smooth muddy” appearance. Therefore, the Ra value 

of spheroid surface could result from a balance of attrition, surface solvation and new 

surface exposure upon agglomeration. RT(SR2)50 spheroids which had significantly 

lower Ra could be due to predominant attrition, surface solvation and minimal 

exposure of new surfaces due the low AGL spray rate which limited agglomeration. 
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Figure 17. Surface morphology of RT(SR) spheroids as observed under scanning probe microscopy. 
Three pictures per batch represent surfaces from 3 different spheroids. 
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Figure 17 (Continued). Surface morphology of RT(SR) spheroids as observed under scanning probe microscopy. 
Three pictures per batch represent surfaces from 3 different spheroids. 
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Figure 17 (Continued). Surface morphology of RT(SR) spheroids as observed under scanning probe microscopy. 
Three pictures per batch represent surfaces from 3 different spheroids. 
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Figure 17 (Continued). Surface morphology of RT(SR) spheroids as observed under scanning probe microscopy. 
Three pictures per batch represent surfaces from 3 different spheroids.
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4.5. Yield 

Among the RT(SR) batches, RT(SR0) had the lowest yield, averaging approximately 

750 g (Figure 18). The remaining RT(SR) batches had relatively the same amount of 

yield, approximately 850 g. For RT(SR0) batches, towards the end of the 50 min 

process run, more spheroids were observed to eject or vault out over the wall of the 

rotary processing chamber, resulting in material loss and lowered yield. Without the 

addition of AGL, the surfaces of spheroids would be relatively drier than those from 

batches with AGL. Surface-wetted spheroids, due to water tension between surfaces, 

could have momentarily attracted spheroids together during collision while 

undergoing spheronization. The surface could also be more plastic while wetted, 

resulting in a lower tendency to rebound when spheroids collided with one another or 

walls of the rotary processor. The lower rebound tendency would reduce the 

likelihood of spheroids vaulting out of the rotary processing chamber, resulting in 

increased yield. 
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Figure 18. Yield for RT(SR) processes. 
Error bars represent standard deviations. 
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PART 5.  CONCLUSIONS 

Extrusion-spheronization spheroids of similar size and quality could be produced by 

frictional base plates with dissimilar plate design if the spheronization speed and 

duration are adjusted appropriately to compensate for differences in frictional forces 

exerted by the plates. With appropriate choice of spheronization speed and amount of 

granulation liquid, the quality of spheroids produced by RP could approximate that of 

ES. In this study, RP was found to require less granulation liquid and at the same time 

produced harder spheroids compared to ES. The amount of moisture present during 

the initial stage of spheroid formation (and not the amount of moisture remaining after 

spheronization) determined the eventual size of ES spheroids. 

 

Visual examination of spheroid formation revealed that for ES, extrudates are broken 

up to lengths approximately equal to their diameters. This would be followed by 

attrition of the edges of the broken extrudates. During the first 2 min of 

spheronization, layering was the predominant mechanism for spheroid size 

enlargement in ES. In contrast, RP spheroid size enlargement was characterized by 

layering and coalescence. Contrary to existing ES spheroid formation theories, 

occurrence of dumbbell like intermediates was not observed. 

 

Extrusion spheronization spheroid size changes during spheronization could not be 

represented by conventional methods of sizing via sieving or image analysis. Size 

distribution of ES spheroids was found to follow a 3 components MG distribution 
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instead of normal or log normal distribution. By representing spheroid size 

distribution using 3 components MG distribution, ES spheroid size changes during 

spheronization could be quantified. Furthermore, being represented by a MG 

distribution reinforced the observed heterogeneity in size whereby layering was 

observed to be a predominant mechanism for ES spheroid size enlargement. 

 

Generally within the spheroid population, smaller ES spheroids were rounder. AR and 

eR were found to be highly correlated with each other, indicating that both descriptors 

could be used interchangeably. Among the roundness descriptors examined, C was 

found to be the least critical in quantifying improvement in roundness for ES 

spheroids as spheronization progressed. However, when C-AR correlations were 

carried out, it had the ability to detect heterogeneity in spheroid shape within 

subpopulations of ES spheroids of different sizes. 

 

Correlation analysis of eR, PS, AR and C values of spheroids could be carried out to 

identify the possible shapes of spheroids. This novel shape identification method was 

proposed. By comparing results from simulated spheroids shapes with actual data, the 

likely ES spheroid shape towards the end of spheronization would be ellipse. 

Occurrences of dumbbells and RRC shapes were unlikely. Generally, smaller ES 

spheroids were rounder. Mass transfer and remodeling were also found to be more 

active with smaller ES spheroids especially towards the end of spheronization run as 

smaller spheroids had greater variation in shape. 
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Size distribution of RP spheroids also fitted the MG distribution. By representing RP 

spheroids with MG distribution, different subpopulations of spheroids based on size 

were found to have varying tendencies to agglomerate when AGL was added. This 

phenomenon would not be observed if size of spheroids were characterized by 

conventional methods. 
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