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Abstract

The random set approach opens a new direction for multiple-sensor multiple-object

tracking. All aspects related to objects such as appearing, disappearing, moving,

measurements, and clutter can be modeled by random �nite sets. The probability

hypothesis density (PHD) �lter, proposed by Mahler, operates on a single-object

state space and avoids the data association problem. Multiple-object tracking is

thus made more practical but we need to formulate the problem under the random

�nite set framework to use the PHD �lter in applications. These formulations are

not straight-forward.

In this thesis, we investigated methods based on the PHD �lter for multiple-

object tracking. The contributions of this thesis include:

iv
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1) Proposing a method to maintain the track continuity in the PHD �lter in Chap-

ter 4. The method can be used to track multiple objects in applications with high

density of clutter and varying number of objects that traditional methods such as

JPDA or MHT �nd di¢ cult to handle because of the computational complexity.

2) Giving an e¢ cient method for multiple-speaker tracking using the PHD �lter in

Chapter 5. Our method is less computational and more reliable than some meth-

ods for multiple-speaker tracking. The proposed method is e¢ cient for real time

tracking of multiple speakers in a reverberant room.

3) Improving the performance of multiple-object tracking in video by using the

PHD �lter in Chapter 6. A PHD recursion for visual observations with color mea-

surements is proposed. With this approach, the video tracking can work for varying

number of objects in single-object state space. Moreover, we extend the method

in multiple-camera multiple-object tracking with good performance in Chapter 7.

The experimental results in this thesis show that the PHD �lter is a promising

approach for multiple-object tracking applications.



List of Tables

6.1 Error of estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Error of 3D estimation . . . . . . . . . . . . . . . . . . . . . . . . . 112

vi



List of Figures

2.1 Typical components of an object tracking system . . . . . . . . . . 12

2.2 Particle �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Particle PHD �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 An example when two objects are close . . . . . . . . . . . . . . . . 42

4.2 Label association for the GMPHD �lter . . . . . . . . . . . . . . . . 45

4.3 An example for wrong matching . . . . . . . . . . . . . . . . . . . . 46

4.4 Hungarian algorithm for label association . . . . . . . . . . . . . . . 47

4.5 Track continuity with the method in [21] . . . . . . . . . . . . . . . 50

4.6 Track continuity with our method . . . . . . . . . . . . . . . . . . . 51

4.7 Track continuity with the method in [21] . . . . . . . . . . . . . . . 52

vii



List of Figures viii

4.8 Track continuity with our method . . . . . . . . . . . . . . . . . . . 53

4.9 Mean number of labels for tracks of our method and the method in

[21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 TDOA measurements for multiple speaker tracking . . . . . . . . . 67

5.2 Position (x; y) of objects with measurements from sensor 1 . . . . . 71

5.3 Position (x; y) of objects with measurements from sensor 2 . . . . . 72

5.4 Position (x; y) of objects with the fusion method . . . . . . . . . . . 73

5.5 Position (x; y) of speakers with the particle �lter in [98] . . . . . . . 74

5.6 Number of speakers by the particle PHD �lter . . . . . . . . . . . . 75

5.7 Position (x; y) of speakers with the particle PHD �lter . . . . . . . 75

5.8 Number of speakers by the RFS-SMC Bayes �lter . . . . . . . . . . 76

5.9 Position (x; y) of speakers with the RFS-SMC Bayes �lter . . . . . . 77

5.10 Number of speakers by the GMPHD �lter . . . . . . . . . . . . . . 78

5.11 Position (x; y) of speakers with the GMPHD �lter . . . . . . . . . . 79

5.12 Probability of correct speaker number . . . . . . . . . . . . . . . . . 81

5.13 Absolute error on the number of speaker . . . . . . . . . . . . . . . 81

5.14 Conditional mean distance error of multiple-speaker tracking . . . . 82

6.1 PHD recursion for color multiple-object tracking . . . . . . . . . . . 92

6.2 Comparison between our method (left) and the boosted particle �l-

ter (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of Figures ix

6.3 Tracking multiple players in the football sequence . . . . . . . . . . 99

6.4 Tracking multiple persons in seq16 . . . . . . . . . . . . . . . . . . 101

7.1 An example for wrong matching based on the apperance . . . . . . 104

7.2 The sketch of our system for multiple object tracking using multiple

cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Sequential updating for PHD at cameras . . . . . . . . . . . . . . . 109

7.4 3D results of tracking multiple people using the PHD �lter . . . . . 114

7.5 Projection 3D estimations to two camera planes . . . . . . . . . . . 116

7.6 3D results of tracking multiple people using Stereo Matching . . . . 117

7.7 Some frame results from the Stereo Matching method . . . . . . . . 118

7.8 Some frame results from our method . . . . . . . . . . . . . . . . . 119

7.9 3D results of tracking multiple people in sequence 1 . . . . . . . . . 120

7.10 3D results of tracking multiple people in sequence 2 . . . . . . . . . 121



Contents

List of Tables vi

List of Figures vii

1 Introduction 5

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Major contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Review of object tracking 11

2.1 Introduction to object tracking . . . . . . . . . . . . . . . . . . . . 11

2.2 Single-object tracking by the Bayes �lter . . . . . . . . . . . . . . . 12

1



Contents 2

2.3 Kalman �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Particle �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Multiple-object tracking . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Multiple hypothesis tracking . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Joint probabilistic data association . . . . . . . . . . . . . . . . . . 21

2.8 Multiple-object tracking with visual data . . . . . . . . . . . . . . . 24

2.9 Multiple-speaker tracking . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Probability hypothesis density �lter 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Random �nite set Bayesian �lter for multiple-object tracking . . . 28

3.3 Probability hypothesis density (PHD) �lter . . . . . . . . . . . . . . 31

3.4 Particle PHD �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Gaussian mixture probability hypothesis density (GMPHD) �lter . 35

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Maintaining track continuity in the GMPHD �lter 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 GMPHD �lter with label association . . . . . . . . . . . . . . . . . 42

4.3 Matching with minimum total distance for label association . . . . 44

4.4 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . 47



Contents 3

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Multiple-speaker tracking using the PHD �lter 56

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Random �nite set for multiple-sensor multiple-object tracking . . . 59

5.3 Gaussian mixture probability hypothesis density �lter with multiple

sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 GMPHD �lter with multiple sensors . . . . . . . . . . . . . 62

5.3.3 Implementation issues . . . . . . . . . . . . . . . . . . . . . 64

5.4 Time delay of arrival measurement for multiple-speaker tracking . . 65

5.5 GMPHD �lter for multiple-speaker tracking . . . . . . . . . . . . . 67

5.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6.1 GMPHD �lter with multiple sensors for bearing and range

tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6.2 GMPHD �lter for multiple-speaker tracking . . . . . . . . . 71

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Multiple-object tracking using the PHD �lter and color measure-

ments 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Color likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Contents 4

6.3 Random �nite set formulation for color object tracking . . . . . . . 88

6.4 Hypothesis intensity function for color tracking . . . . . . . . . . . 89

6.5 GMPHD �lter for color multiple-object tracking . . . . . . . . . . . 91

6.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Multiple-camera multiple-object tracking using the PHD �lter 102

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Single-view tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 Multiple-camera fusion . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Conclusion and future work 123



Chapter1
Introduction

1.1 Motivation

Object tracking is an important part of many applications, such as sports analysis

[28], [72], surveillance [91], smart room [70], robot control [69], human computer

interaction [12], and video conferencing [27]. It allows us to determine the states

of objects and helps us in analyzing their behaviors. Because of the importance

of object tracking, there are many researchers working in this area. Some of them

have proposed approaches for tracking a single object [11], [83], [110]. However, in

many applications, there are more than one object. There are many approaches

for multiple-object tracking. Traditional approaches are based on data associa-

tion between objects and measurements such as time delay of arrival, and range

from sensors [6], [80]. If this data association is known in advance, the problem of

5
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multiple-object tracking becomes one of tracking independent single objects. Oth-

erwise, we need to consider the data association problem. This is because when

the data association is not correct, the state estimates are not reliable. There are

some approaches to data association problem such as multiple hypothesis tracking

(MHT) [80] and joint probabilistic data association (JPDA) [6], [85]. However, the

determination of association probabilities in these methods is an NP-hard problem

[71].

There has been increasing research interest on using the random set theory

for multiple-object tracking [37], [63]. In the random set approach, the states

of objects, measurements, and clutter are modeled by random sets. Mahler [63]

presented a probability hypothesis density (PHD) �lter for multiple-object tracking

by using the random set framework. This method operates on a single-object state

space and avoids the combinatorial problem that arises from the data association

between objects and measurements. Thus, the computation of the PHD �lter

is less than traditional methods such as MHT, and JPDA. The low cost of the

computation in the PHD �lter makes the random set approach more promising for

multiple-object tracking applications.

In this thesis, we focus on multiple-object tracking by using the random set

approach and concentrate on practical issues when using the PHD �lter in ap-

plications. Through experimental results on applications, we also show that the

PHD �lter can handle non-trivial tasks in multiple-object tracking such as data
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association, varying number of objects, multiple-sensor data fusion, and clutter

handling.

1.2 Major contributions

The major contributions of this thesis are to develop methods using the PHD �lter

for multiple-object tracking in several directions:

� A reliable method to maintain the track continuity in the PHD �lter.

A reliable method to maintain the track continuity in the PHD �lter is pro-

posed. The track continuity is determined by the Hungarian algorithm. This

is an exact method to determine the data association between tracks of the

previous and the current time steps. The proposed method is more reliable

than using heuristic methods to maintain track continuity. This method

might be important for multiple-object tracking with high density of clutters

and varying number of objects that traditional methods such as MHT and

JPDA �nd di¢ cult to handle. This is because the computational complexity

of MHT and JPDA are known as NP-hard while the computational com-

plexity of the PHD �lter is O (jZj �N), where jZj is the maximum number

of measurements, and N is the maximum number of Gaussian components

(for the Gaussian mixture PHD �lter) or number of samples (for the particle

PHD �lter).



1.2 Major contributions 8

� An e¢ cient method for multiple-speaker tracking

An e¢ cient technique for real-time tracking of multiple speakers in a rever-

berant room is proposed. To have an e¢ cient method for multiple-speaker

tracking, fusing measurements from microphone pairs with low cost of com-

putation and high performance is a critical and challenging step. In this

thesis, we fuse the time delay of arrival measurements in the Gaussian mix-

ture probability hypothesis density �lter. The method is more reliable and

computationally tractable than some methods for multiple-speaker tracking.

Moreover, our approach can be applied to other multiple-sensor multiple-

object applications such as bearing and range tracking, and multiple-camera

multiple-object tracking.

� A method using the PHD �lter for color object tracking.

When using the PHD �lter, representing measurements as random sets is a

mandatory step. Unfortunately, representing color measurements as random

sets is a di¢ cult task. We propose a method to obtain the color measurement

random set and apply it in the PHD �lter for color object tracking. It tracks

multiple objects with video data in single-object state space. Moreover, it

may be important in other applications, such as track-before-detect, where

it is di¢ cult to obtain a measurement random set.

� A method for multiple-camera multiple-object tracking using the PHD �lter.
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Tracking multiple objects in a multiple-camera environment is a challenging

task. This is because of the data association of objects among cameras in

the high dimensional state space. We propose a method for multiple-camera

multiple-object tracking using the PHD �lter. This method can track 3D

object locations even when objects are undergoing complex interaction with

multiple occlusions and merge-split in groups. Moreover, it avoids data as-

sociation and tracks multiple objects in single-object state space. In the

proposed method, both temporal and visual information are considered.

1.3 Organization of thesis

The organization of this thesis is as follows.

� Chapter 2: A literature review on object tracking by �ltering approaches

is given. This chapter discusses fundamentals of object tracking and data

association for multiple-object tracking.

� Chapter 3: This chapter contains an introduction on the PHD �lter. Random

set formulations of multiple-object tracking are described. Implementations

of the PHD �lter such as the particle PHD �lter, the Gaussian mixture PHD

�lter are also discussed.

� Chapter 4: The method for maintaining the track continuity in the PHD
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�lter is presented. Simulation resutls to show the e¢ ciency of the method is

detailed.

� Chapter 5: The method for multiple-speaker tracking and the implementa-

tion issues are described. Simulation results and comparisons between our

method and others are shown to demonstrate the e¢ ciency of the method.

� Chapter 6: A technique for tracking multiple objects by using the PHD �lter

and color measurements is proposed. Steps to obtain the color measurement

random set and the implementation of the method are described.

� Chapter 7: A multiple-camera multiple-person tracking using the random

set approach is presented. The method includes two stages of single-view

tracking and multiple-camera fusion. These two stages are described and

promising experimental results of the proposed method are shown.

� Chapter 8: This chapter summarizes contributions of our research and dis-

cusses future work.



Chapter2
Review of object tracking

2.1 Introduction to object tracking

Tracking is the processing of measurements obtained from objects such as color

[28], contour [11], time delay of arrival [112], bearing and range [81] to obtain the

estimations of unknown object kinematics or states. The unknown object kinemat-

ics of interest are usually the position, velocity, and acceleration of the object in an

appropriate coordinate system. Some examples of tracking include radar tracking

of military vehicles [9], tracking of people for monitoring [41], surveillance systems

[90]. Figure 2.1 shows the components of a typical tracking process.

11
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Figure 2.1: Typical components of an object tracking system

There are various techniques for object tracking. For example, some techniques

transfer the tracking problem to a minimization problem by searching for the best

match of the object with the previous estimation as an initialization [23], [34].

Some other object tracking techniques use neural networks [3], [59], fuzzy logic

[94], and Bayes �lter [47]. However, Bayesian theory remains the most widely

accepted approach to object tracking.

2.2 Single-object tracking by the Bayes �lter

We consider the scenario in which a single object is present. We assume that the

state of object follows a Markov process on the state space X � Rnx : Let xk be

the state of object at time k. The evolution of the state sequence of an object is

given by

xk = fk(xk�1; wk�1) (2.1)
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where fk is a transition function, wk�1 is the process noise. The probability density

of a transition from xk�1 to xk is fkjk�1(xkjxk�1).

This Markov process is partially observed in the observation space Z � Rnz ,

i.e., given a state xk at time k, the observation of an object is

zk = gk(xk; vk) (2.2)

where gk is a measurement function, vk is the measurement noise. The probability

density of receiving the observation zk given the state xk is gk (zkjxk). It is also

called the likelihood function.

The probability density of state xk at time k given all observations z1:k =

(z1; : : : ; zk) up to time k, denoted by

pk(xkjz1:k); (2.3)

is called the posterior density (or �ltering density) at time k. This posterior density

can be obtained by using the Bayes �lter. This �lter includes two steps. The �rst

step is called the prediction step. From the posterior density at the previous time

k � 1, pk�1(xk�1jz1:k�1); and the transition density fkjk�1(xkjxk�1), we can obtain

the predicted density pkjk�1(xkjz1:k�1) via the prediction equation

pkjk�1(xkjz1:k�1) =
Z
fkjk�1(xkjxk�1)pk�1(xk�1jz1:k�1)dxk�1 (2.4)

The second part of the Bayes �lter is the updating step. From the predicted density

pkjk�1(xkjz1:k�1) and the likelihood function gk(zkjxk), the posterior density can be
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obtained by

pk(xkjz1:k) =
gk(zkjxk)pkjk�1(xkjz1:k�1)R
gk(zkjxk)pkjk�1(xkjz1:k�1)dxk

(2.5)

The state of object x̂kjk can be estimated from the posterior density pk(xkjz1:k)

by taking either the maximum a posterior (MAP) estimation,

x̂MAP
kjk = argmax

xk
pk(xkjz1:k) (2.6)

or the expected a posteriori (EAP) estimation

x̂EAPkjk =

Z
xpk(xjz1:k)dx (2.7)

The EAP estimation is also the minimum mean square error (MMSE) estimation

of the state of object.

2.3 Kalman �lter

In linear systems with Gaussian noises, the Bayes �lter has a closed-form that is

proposed by Kalman [4]. This closed-form is called the Kalman �lter (KF). The

Kalman �lter assumes that the posterior density at every time step is a Gaussian

and hence parameterized by a mean and a covariance matrix. In linear systems

with Gaussian noises, if the posterior density at time k � 1, pk�1(xk�1jz1:k�1), is a

Gaussian, then the posterior density at time k, pk(xkjz1:k), is also a Gaussian. In
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these cases, the state space model can be re-written as follows:

xk = Fk�1xk�1 + wk�1 (2.8)

zk = Hkxk + vk (2.9)

where Fk�1 is a transition matrix, Hk is a measurement sensitive matrix, wk�1 �

N (0; Qk�1) is the process noise and vk � N (0; Rk) is the measurement noise.

N (m;P ) is a Gaussian density with mean m and covariance P:

The Kalman �lter algorithm, derived by using (2.4) and (2.5), can be viewed

as the following recursive relationship:

pk�1(xk�1jz1:k�1) = N
�
xk�1;mk�1jk�1; Pk�1jk�1

�
(2.10)

pkjk�1(xkjz1:k�1) = N
�
xk;mkjk�1; Pkjk�1

�
(2.11)

pk(xkjz1:k) = N
�
xk;mkjk; Pkjk

�
(2.12)

where

mkjk�1 = Fk�1mk�1jk�1 (2.13)

Pkjk�1 = Qk�1 + Fk�1Pk�1jk�1F
T
k�1 (2.14)

mkjk = mkjk�1 +Kk

�
zk �Hkmkjk�1

�
(2.15)

Pkjk = Pkjk�1 �KkHkPkjk�1 (2.16)

and where N (x;m;P ) is a Gaussian density with argument x, mean m and co-

variance P and

Kk = Pkjk�1H
T
k

�
HkPkjk�1H

T
k +Rk

��1
(2.17)
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In linear Gaussian systems, the Kalman �lter is an optimal solution to the

single-object tracking [4]. The implication is that no algorithm can do better than

the Kalman �lter in the linear Gaussian environment. If the system is not linear

Gaussian, there are some extension from the Kalman �lter such as the extended

Kalman �lter (EKF) [49] or the unscented Kalman �lter (UKF) [109] that can

be applied. The advantage of KF, EKF, UKF is the low computational burden.

However, they are not appropriate when the posterior density is a binomal or

multimodal probability density function.

2.4 Particle �lter

The particle �lter was �rst introduced by Gordon [38]. It is also known by dif-

ferent names, such as the condensation algorithm [46], the bootstrap �lter [38],

and the Monte Carlo �lter [32]. The particle �lter has been developed to solve

non-Gaussian and non-linear problems. The key idea to solve non-Gaussian and

non-linear problems is to represent the posterior density function by a set of ran-

dom samples with associated weights and to compute estimates based on these

samples and weights. When the number of samples goes to in�nity, the particle

�lter will become the optimal Bayes �lter. The proof of convergence is found in

[25], [26]. The particle �lter is brie�y described as follows.

Assume at time k� 1, a set of weighted particles
n
w
(i)
k�1; x

(i)
k�1

oN
i=1
representing



2.4 Particle �lter 17

the posterior density pk�1(xk�1jz1:k�1), i.e.,

pk�1(xk�1jz1:k�1) �
NX
i=1

w
(i)
k�1�x(i)k�1

(xk�1) (2.18)

The particle �lter proceeds to approximate the posterior density pk(xkjz1:k) by a

new set of weighted particles
n
w
(i)
k ; x

(i)
k

oN
i=1

as given in Figure 2.2.

At time k � 1,

Step 1: Sampling Step

For i = 1; :::; N

Sample ~x(i)k � qk

�
�jx(i)k�1; zk

�
Set ~w(i)k =

gk

�
zkj~x(i)k

�
fkjk�1

�
~x
(i)
k jx

(i)
k�1

�
qk

�
~x
(i)
k jx

(i)
k�1; zk

� w
(i)
k�1

EndFor

Normalized weights:
XN

i=1
~w
(i)
k = 1.

Step2: Resampling Step

Resample
n
~w
(i)
k ; ~x

(i)
k

oN
i=1

to get
n
w
(i)
k ; x

(i)
k

oN
i=1

Figure 2.2: Particle �lter

The problem with the particle �lter is that after a few time steps, one particle

will dominate the particle cloud. To prevent this problem, we have to resample

particles to guarantee that there is no sample having zero or very small probability.

Another approach is to choose an importance sampling density qk

�
�jx(i)k�1; zk

�
.
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Having a good importance sampling density is critical for the performance of the

particle �lter. There are some related works, such as the unscented particle �lter

[67], the boosted particle �lter [72], and the Markov chain Monte Carlo [36].

2.5 Multiple-object tracking

The formulations of single-object tracking in Section 2.2 can be extended to multiple-

object tracking. Let M(k) be the number of objects at time k, and N(k) is the

number of received measurements. The set of object states and measurements at

time k can be denoted by

Xk =
�
xk;1; xk;2; :::; xk;M(k)

	
(2.19)

Zk =
�
zk;1; zk;2; :::; zk;N(k)

	
(2.20)

We assume that each object moves according to the Markov dynamic model and

generates observations according to Equations (2.1) and (2.2). There are two

challenges in multiple-object tracking. The �rst challenge is the varying number

of objects. In a tracking scenario, the number of objects can be time-varying, so

the tracking algorithm has to detect the change of the number of objects, and

automatically track new objects. The second challenge is the data association

between measurements and objects. The data association problem can be de�ned

as follows:
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Let � = f�j;i; j = 1; :::; N(k); i = 1; :::;M(k)g denote the association events be-

tween objects and measurements, where �j;i is the particular event which assigns

measurement zk;j to the ith object. When the ith object moves, if we know in

advance which measurement zk;j is originated from the ith object, then multiple-

object tracking becomes independent tracking of single object. However, in appli-

cations, we do not know or are di¢ cult to know this association.

Let 
 be the space of all possibilities for the data association �. Each of � 2 


is called a hypothesis association. The multiple-object tracking algorithm try to

�nd the best hypothesis. The large number of possibilities for the data association

a¤ects the time for running tracking algorithms. Hence, data association is a

challenge to multiple-object tracking.

Two famous approaches to multiple-object tracking are the multiple hypothesis

tracking [80] and the joint probabilistic data association [6], [7]. Besides, there are

approaches to multiple-object tracking, such as PMHT [92], [93], sequential Monte

Carlo methods [44], and jump Markov model [33]. Random set approaches to

multiple-object tracking have also attracted increasing attentions [19], [37], [61],

[63], [102].
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2.6 Multiple hypothesis tracking

The multiple hypothesis tracking [80] (MHT) tries to �nd the best hypothesis

association between measurements and tracks. MHT does not need assumptions

on the number of objects. Thus, it can track a varying number of objects at each

time step. The idea of the method is based on enumerating all possible hypotheses

over the number of most recent frames and choosing the most likely one.

Let 
k
4
=
n

k1; :::;


k
I(k)

o
be the set of all association hypotheses at time k.

For each 
k�1m , a set of associations 	k
4
=
n
	k1; :::;	

k
J(k)

o
between Zk and Xk

is de�ned. Hence, an association hypothesis 
ki is the combination between an

previous association hypothesis 
k�1m and 	kn, i.e.,


ki =
�

k�1m ;	kn

	
(2.21)

The probability of hypothesis 
ki is p
�

ki jZk

�
given by

p
�

ki jZk

�
= p

�

k�1m ;	knjZk

�
(2.22)

=
1

c
p
�
Zkj
k�1m ;	kn

�
p
�
	knj
k�1m

�
p
�

k�1m

�
where c is a normalization constant. The �rst term p

�
Zkj
k�1m ;	kn

�
can be derived

by multiplications of likelihood function gk (zkjxk) and the clutter density. The

second term is obtained from assumptions on the probability of detection, the

clutter density, and the birth density. The last term is from previous step k � 1,

p
�

k�1m jZk�1

�
.
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The disadvantage of MHT is computational expense due to the number of hy-

potheses growing exponentially over time. The computation of MHT is known to

be NP-hard. Hence, there are some heuristic methods to reduce the number of

hypotheses, such as gating [24], [80], N-scan pruning [10], PMHT [92], [93], clus-

tering [108], and fast association technique [77]. However these heuristic methods

are used at the expense of optimality and the algorithms can still su¤er in a dense

environment. Furthermore, the running time at each step of the algorithm can-

not be bounded easily, making it di¢ cult to deploy in a real-time system. Some

examples of using MHT in applications are in [14], [40], [78].

2.7 Joint probabilistic data association

The joint probabilistic data association (JPDA) �lter [6], [7] tries to calculate

the state estimation based on the expectation of hypothesis associations beteen

measurement and objects. JPDA assumes that there is a known number of objects.

While MHT is concerned with the accumulated data set, JPDA aims to �nd an

association between measurements and objects at the current time step based on

enumerating all possible associations and computing the association probability.
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The joint association event probability is

p (�jZ1:k) = p (�jZk; N(k); Z1:k�1) (2.23)

=
1

c
p (Zkj�;N(k); Z1:k�1) p (�jZ1:k�1; N(k))

=
1

c
p (Zkj�;N(k); Z1:k�1) p (�jN(k))

where c is a normalization constant. The �rst term p (Zkj�;N(k); Z1:k�1) is the

likelihood function of the measurements, given by

p (Zkj�;N(k); Z1:k�1) = p�fa
Y
�ij2�

gk (xk;ijzk;j) (2.24)

where pfa is the probability density of false-alarms, � is the number of false-alarms.

The second term p (�jN(k)) is the prior probability of a joint association event,

given by

p (�jN(k)) = p
N(k)��
D (1� pD)M(k)�(N(k)��) �F (�)

�!

N(k)!
(2.25)

where pD is the probability of detection of an object, �F (�) is the probability of

number of false alarms. Thus the probability of a joint association event is

p (�jZ1:k) =
1

c

�!

N(k)!
p
N(k)��
D (1� pD)M(k)�(N(k)��) �F (�) p

�
fa

Y
�ij2�

gk (xk;ijzk;j)

(2.26)

The association probability for a particular association between measurement zk;j

to the ith object is de�ned by

�j;i = p (�j;ijZ1:k) (2.27)

=
X
�:�j;i2�

p (�jZ1:k)
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The state estimation of the ith object is

x̂k;i = E (xk;ijZ1:k) (2.28)

=

N(k)X
j=1

E (xk;ij�j;i; Z1:k) �j;i

=

N(k)X
j=1

x̂jk;i�j;i

where x̂jk;i is the state estimation from the Kalman �lter with the assumption on

the associating between measurement zk;j to the ith object.

The limitation of JPDA is that JPDA cannot initiate or terminate tracks. There

are restricted extensions to JPDA to allow the formation of a new track [86]. More-

over, the number of possible associations is
Pmin(M;N)

i=1 CiMA
i
N , so the computation

of JPDA is expensive. It is an NP-hard problem. There are some methods to

reduce the computation in JPDA, such as the Markov chain Monte Carlo data

association [71], and near optimal JPDA [82]. Some examples of using JPDA in

applications are in [35], [42], [48].

Discussion of Bayes rule in MHT and JPDA

In Section 2.5, 
 is the space of all hypothesis association between objects and

measurements. Hence, 
 should depend on Z. If this is true, the application of

the Bayes rule to estimate the probability of an hypothesis association in equations

(2.22) and (2.23) might be not suitable. This is because the probability p (�jZ) is
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calculated by the following equation

p (� (Z) jZ) = p (Zj� (Z)) p (� (Z))
p (Z)

(2.29)

However, the function p (Zj� (Z)) is not a valid likelihood function. Hence, it is

not clear when using the Bayes rule in MHT and JPDA [105].

2.8 Multiple-object tracking with visual data

Multiple-object tracking using visual data is an important task in applications in-

cluding surveillance, vehicle tracking, augmented reality, human motion analysis,

etc. Because visual data have many properties such as color, shape, and texture,

there is a variety of approches for multiple-object tracking with visual data. First,

methods based on �ltering try to estimate the posterior multiple-object density

with the assumption on the state space to model the dynamic of objects. Some

methods can be listed as follows. Isard [47] proposed a Bayesian multiple blob

tracker that used particle �lter to infer the multiple-object state. Wu [113] intro-

duced a particle �lter incorporating with Bayesian network to solve the occlusion

problem in visual tracking. Okuma [72] introduced a boosted particle �lter and

applied successfully in tracking hockey players. Some other approaches used MHT

or JPDA in visual tracking [39], [87]. Besides, the random �nite set approach is

also applied in visual tracking [111]. These �ltering methods used di¤erent observa-

tion models such as the color likelihood model [28], [91], the blob likelihood model
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[47], and the edge likelihood model [16]. Second, some methods used non-�ltering

approach such as Bayes inference and MAP estimation. Zhao [117] proposed an

Bayes inference to �nd the state of multiple objects. Yu [115] employed a varia-

tional distribution in multiple-object tracking. The above methods still have many

open research problems because of the high computation cost and the di¢ culty in

adapting to a changing of environment (e.g., lighting and scaling).

2.9 Multiple-speaker tracking

Speaker tracking is an important part of multimedia applications, e.g., video con-

ferencing and robot control applications. The tracking is technically a very chal-

lenging task because of multiple paths, noise from di¤erence sources, and simuta-

neously talking by speakers. The methods for multiple-speaker tracking are divided

into two approaches: deterministic methods and stochastic methods. Determinis-

tic methods try to �nd locations of speakers by minimizing the cost function such

as beamforming [17]. Stochastic methods usually include two stages: extracting

time delay of arrival measurements, and using �ltering methods to track speakers.

Some �lter methods are applied in multiple-speaker tracking such as the Kalman

�lter [79], the particle �lter [98]. These methods try to solve the data association

between the time delay of arrival and states of speakers. Recently, there are some

methods for multiple speaker tracking based on the random �nite set [61], [104].
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Because the multiple-speaker tracking has very high clutter in measurements, it is

still a di¢ cult research problem.

2.10 Summary

In this chapter, we reviewed methods for single and multiple-object tracking. The

Kalman �lter and the particle �lter were presented to solve the Bayes �ltering for

single-object tracking. In multiple-object tracking, the data association problem

is most challenging. Two methods, MHT and JPDA, were introduced to solve the

data association problem. Both the Kalman �lter and the particle �lter can be

used to implement MHT and JPDA. However, MHT and JPDA are computation-

ally expensive due to the possible data associations. In the next chapter, we will

discuss random set approaches that can avoid the data association in multiple-

object tracking.



Chapter3
Probability hypothesis density �lter

3.1 Introduction

MHT and JPDA are indirect estimation methods for multiple-object tracking be-

cause they concentrate on the computing of the probability of data associations

before estimating the states of objects. In this chapter, we review multiple-object

tracking methods based on the random set approach. These methods are direct

estimation methods for multiple-object tracking.

Random sets are random elements whose values are sets. They are generaliza-

tions of the familiar concept of random variables (or random vectors) in probability

theory. Recently, there has been increasing research interest in using random �nite

set theory to solve multiple-object tracking problem [37], [63], [66]. Here, the states

of objects are represented as random sets. Using this model, the birth and death of

27
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objects can be described in the tracking algorithm. Mahler [63] presented a prob-

ability hypothesis density (PHD) �lter based on random �nite set to approximate

the �rst moment of the multiple-object posterior density. The PHD �lter operates

on a single-object state space and avoids the combinatorial problem that arises

from data association.

3.2 Random�nite set Bayesian �lter for multiple-

object tracking

The following RFS formulations for multiple-object tracking is described in [102].

From Section 2.5, we have multiple-object state Xk and measurements of mul-

tiple objects Zk. Let the single-object state space be X . The object states

xk;1; : : : ; xk;M(k) 2 X and multiple-object state Xk 2 F(X ), where F(X ) denotes

the collection of all �nite subsets of space X . Similarly, let the single-object mea-

surement space be Z. The measurements zk;1; : : : ; zk;N(k) 2 Z and the multiple-

object measurement Zk 2 F(Z).

Now, we describe an RFS model for the time evolution of the multiple-object

state, which incorporates object motions, births and deaths of objects. For a given

multiple-object state Xk�1 at time k � 1, each xk�1 2 Xk�1 either continues to

exist at time k with probability pS;k(xk�1) or dies with probability 1� pS;k (xk�1).

Conditional on the existence at time k, the probability density of a transition from
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state xk�1 to xk is fkjk�1(xkjxk�1) (mentioned in Section 2.2). Consequently, the

object survives or dies from a given state xk�1 2 Xk�1 can be described by an RFS

Skjk�1(xk�1) that includes fxkg when the object survives, or ; when the object

dies. Moreover, a new object at time k can arise either by spontaneous birth

or by spawning from an object at time k � 1. For a given Xk�1 at time k � 1,

multiple-object state Xk at time k is given by the union of the surviving objects,

the spawned objects and the spontaneous births:

Xk =

24 [
xk�12Xk�1

Skjk�1(xk�1)

35 [
24 [
xk�12Xk�1

Bkjk�1(xk�1)

35 [ �k; (3.1)

where

�k = RFS of spontaneous births at time k;

Bkjk�1(xk�1) = RFS of objects spawned at time k from an object with

previous state xk�1

The RFS measurement model, which includes detections and clutters, is described

as follows. A given object xk 2 Xk is either detected with probability pD;k (xk)

or missed with probability 1� pD;k (xk). Conditional on detection, the probability

density of obtaining an observation zk from xk is given by the likelihood function

gk(zkjxk) (mentioned in Section 2.2). Consequently, at time k, the RFS of mea-

surements �k(xk) that are generated from xk 2 Xk include fzkg when the object

is detected, or ; when the object is missed. Moreover, the sensor also receives a

set Kk of false measurements, or clutters. Thus, given a multiple-object state Xk
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at time k, the multiple-object measurement Zk received at the sensor is formed by

the union of object generated measurements and clutters

Zk = Kk [
" [
x2Xk

�k(x)

#
(3.2)

With RFS formulations on multiple-object states and measurements, the Bayesian

�lter for multiple-object tracking is described as follows. Similar to single-object

tracking in Section 2.2, the multiple-object transition is denoted by the func-

tion fkjk�1(XkjXk�1) and the multiple-object likelihood is denoted by gk(ZkjXk),

where fkjk�1(XkjXk�1) and gk(ZkjXk) can be derived by using �nite set statistics

(FISST) [37]. Then, the RFS Bayes �lter propagates the multiple-object posterior

pk(XkjZ1:k) in time via the recursion

pkjk�1(XkjZ1:k�1) =
Z
fkjk�1(XkjXk�1)pk�1(Xk�1jZ1:k�1)�s(dXk�1) (3.3)

pk(XkjZ1:k) =
gk(ZkjXk)pkjk�1(XkjZ1:k�1)R

gk(ZkjXk)pkjk�1(XkjZ1:k�1)�s(dXk)
(3.4)

where �s is an appropriate reference measure on F(X ) [103].

There is an implementation of the RFS Bayes �lter by the sequential Monte

Carlo method [61]. However, this method is computationally intensive due to the

combinatorial nature of the densities, especially when the number of objects is

large. Nonetheless, the RFS Bayes �lter has been successfully applied to applica-

tions where the number of objects is small [61].
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3.3 Probability hypothesis density (PHD) �lter

The RFS Bayes �lter in the previous section propagates the multiple-object pos-

terior density recursively in time. However, the computational intractability is far

more severe than the single-object case. A more tractable alternative to estimate

the state of multiple objects is based on the probability hypothesis density �lter

[63]. The PHD is the �rst moment of the multiple-object posterior density. The

PHD is de�ned as follows. For a RFS X on X with probability distribution P ,

the PHD is intensity v(x) such that for each region S � X , the integral of v over

region S gives the expected number of elements of X that are in S:

Z
j X \ S j P (dX) =

Z
S

v(x)dx; (3.5)

where X is a random set represented for a multiple-object state and x represents a

state of a single object. Thus, we can estimate the state of objects by investigating

high local maxima peaks of the PHD.

With the de�nition of PHD, the PHD �lter is derived [63]. This is a recursive

process from the PHD in the previous time under some assumptions. They are:

� Each object evolves and generates measurements independent of one another.

� The birth RFS and the surviving RFS are independent of each other.

� Clutter RFS is Poisson and independent of object-originated measurements.
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These assumptions are commonly used in most tracking applications. Let

k(:) = intensity of the birth RFS �k at time k

�kjk�1(:j�) = the intensity of the RFS Bkjk�1(�) spawned at time k

by an object with previous state �

pS;k(�) = the probability that an object still exists at time k

given that its previous state is �

pD;k(x) = the probability of detection given a state x at time k

�k(:) = the intensity of the clutter RFS Kk at time k

Let vk and vkjk�1 denote the posterior and predicted intensities corresponding to

the multiple-object posterior density pk (XkjZ1:k) and the multiple-object predicted

density pkjk�1 (XkjZ1:k�1) in the recursion. Under the above assumptions, the PHD

�lter propagates the posterior intensity in time via the PHD recursion:

vkjk�1(x) =

Z
pS;k(�)fkjk�1(xj�)vk�1(�)d�

+

Z
�kjk�1(xj�)vk�1(�)d� + k(x) (3.6)

vk(x) = [1� pD;k(x)]vkjk�1(x)

+
X
z2Zk

pD;k(x)gk(zjx)vkjk�1(x)
�k(z) +

R
pD;k(�)gk(zj�)vkjk�1(�)

(3.7)

Prediction Equation (3.6) includes three components. They can be intepreted as

follows. The �rst component
R
pS;k(�)fkjk�1(xj�)vk�1(�)d� is the predicted inten-

sity of surviving objects from the previous step with a survival probability pS;k(�).

The second component
R
�kjk�1(xj�)vk�1(�)d� is represented for the intensity of
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spawning objects and the last component k(x) is the intensity of birth objects

that is mentioned before. Update equation (3.7) has two components. The �rst

component [1�pD;k(x)]vkjk�1(x) is the intensity of objects with assuming that these

objects are not detected. The second component
P

z2Zk
pD;k(x)gk(zjx)vkjk�1(x)

�k(z)+
R
pD;k(�)gk(zj�)vkjk�1(�)

is represented for the intensity of objects that is caused by each measurement in

the measurement random set.

Equations (3.6) and (3.7) are used in applications with one sensor. In the

multiple-object tracking with multiple-sensor, the true PHD formula is di¢ cult to

obtain. Asynchronous sensor fusion in which the PHD is updated sequentially at

each sensor has been proposed to deal with this case [104].

The PHD �lter propagates the PHD in a single-object space over time steps,

thus avoiding the high complexity computation from data association between

measurements and objects. When using the intensity function to characterize the

multiple-object posterior density, it is assumed that higher order moments are

negligible. These assumptions are justi�able when measurement noise is small.

Recently, to improve the performance of the PHD �lter, Mahler [65] also presented

a cardinalized probability hypothesis density (CPHD) �lter that is a generalization

of the PHD recursion. The CPHD �lter jointly propagates the posterior intensity

and the posterior cardinality distribution at time steps. Vo [106], [107] presented

an implementation of the CPHD �lter by using the Gaussian mixture.
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3.4 Particle PHD �lter

The earlier implementation of the PHD �lter was based on sequential Monte Carlo

methods [103]. This implementation is proved convergent and it is called the

particle PHD �lter. The particle PHD �lter is summarized as follows.

Let a set of samples
n
w
(i)
k ; x

(i)
k

oLk
i=1

represent for the PHD vk (x), i.e.,

vk (x) =

LkX
i=1

w
(i)
k �x(i)k

(x) (3.8)

where Lk is the number of samples. From
n
w
(i)
k�1; x

(i)
k�1

oLk�1
i=1

representing for vk�1 (x),

the prediction step is performed from Equation (3.6). Let Jk be the number of birth

samples at time k, we have
n
~w
(i)
kjk�1; ~x

(i)
k

oLk�1+Jk
i=1

representing vkjk�1 (x)

vkjk�1 (x) =

Lk�1+JkX
i=1

~w
(i)
kjk�1�~x(i)k

(x) (3.9)

Samples represented for predicted intensity vkjk�1 (x) can be obtained from sam-

pling functions q
�
�jx(i)k�1; Zk

�
and pk (�jZk). The weight for each birth sample is

calculated from birth intensity k (x) and the weight for each predicted sample is

from function �kjk�1 (x; �), where

�kjk�1 (x; �) = pS;k(�)fkjk�1(xj�) + �kjk�1(xj�) (3.10)

Then the update step is implemented from Equation (3.7) to obtain the
n
~w
(i)
k ; ~x

(i)
k

oLk�1+Jk
i=1

representing vk (x). We eliminate particles with low weights and multiply particles

with high weights to focus on the important zone of the space by the resampling
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step. Figure 3.1 shows the details of the particle PHD �lter. From the set of

particles
n
w
(i)
k ; x

(i)
k

oLk
i=1
, clustering techniques are performed to obtain the state

estimates of objects. There are some works on obtaining the estimations from the

set of particles such as approximation Gaussian mixtures [97] and K-means [103].

3.5 Gaussian mixture probability hypothesis den-

sity (GMPHD) �lter

The limitations of the particle PHD �lter are the large number of particles and

the unreliability of clustering techniques for extracting state estimates. Hence, Vo

[102] proposed an analytic solution to the PHD �lter for linear Gaussian systems.

It is called the Gaussian mixture probability hypothesis density (GMPHD) �lter.

The advantages of the GMPHD �lter are the great reliability in extracting state

estimates and lower cost of computation than the particle PHD �lter. Some ex-

tensions of the GMPHD �lter for non-linear Gaussian systems are also proposed.

The GMPHD �lter is summarized as follows.

First, we consider some assumptions. The transition function of each object

follows a linear Gaussian model, i.e.,

fkjk�1(xj�) = N (x;Fk�1�;Qk�1) (3.11)

where N (:;m;P ) denotes a Gaussian density with mean m and covariance P , Fk�1
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At time k � 1,

Step 1: Prediction Step

For i = 1; :::; Lk�1

Sample ~x(i)k � q
�
�jx(i)k�1; Zk

�
and compute the predicted weights

~w
(i)
kjk�1 =

�kjk�1

�
~x
(i)
k ; x

(i)
k�1
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qk

�
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(i)
k jx

(i)
k�1; Zk

� w(i)k�1
For i = Lk�1 + 1; :::; Lk�1 + Jk

Sample ~x(i)k � pk (�jZk) and compute the weights of new born particles

~w
(i)
kjk�1 =

1

Jk

k

�
~x
(i)
k

�
pk

�
~x
(i)
k jZk

�
Step 2: Update Step

For each z 2 Zk, compute

Ck (z) =

Lk�1+JkX
j=1

pD;k(~x
(j)
k )gk(zj~x

(j)
k ) ~w

(j)
kjk�1

For i = 1; :::; Lk�1 + Jk

~w
(i)
k =

"�
1� pD;k(~x(i)k )

�
+
X
z2Zk

pD;k(~x
(i)
k )gk(zj~x

(i)
k )

�k (z) + Ck (z)

#
~w
(i)
kjk�1

Step 3: Resampling Step

Compute the total mass N̂kjk =
XLk�1+Jk

j=1
~w
(j)
k

Resample
�

~w
(i)
k

N̂kjk
; ~x
(i)
k

�Lk�1+Jk
i=1
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�
w
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(i)
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�Lk
i=1

Rescale the weights by N̂kjk to get
n
w
(i)
k ; x

(i)
k

oLk
i=1

Figure 3.1: Particle PHD �lter
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is a state transition matrix, and Qk�1 is a process noise covariance. The likelihood

function is also a linear Gaussian model, i.e.,

gk(zjx) = N (z;Hkx;Rk) (3.12)

where Hk is an observation matrix, and Rk is an observation noise covariance. The

survival and detection probabilities are

pS;k(x) = pS;k (3.13)

pD;k(x) = pD;k (3.14)

The intensity of the spontaneous birth RFS is

k(x) =

J;kX
i=1

w
(i)
;kN (x;m

(i)
;k; P

(i)
;k) (3.15)

The posterior intensity at time k � 1 is a Gaussian mixture of the form

vk�1(x) =

Jk�1X
i=1

w
(i)
k�1N (x;m

(i)
k�1; P

(i)
k�1) (3.16)

With these assumptions, it may be proven that if the initial prior intensity is a

Gaussian mixture, then the posterior intensity at any subsequent time step is also

a Gaussian mixture. The details of the GMPHD �lter are now described.

The predicted intensity to time k is a Gaussian mixture, and is given by

vkjk�1(x) = vS;kjk�1(x) + k(x) (3.17)
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where

vS;kjk�1(x) = pS;k

Jk�1X
j=1

w
(j)
k�1N (x;m

(j)
S;kjk�1; P

(j)
S;kjk�1);

m
(j)
S;kjk�1 = Fk�1m

(j)
k�1;

P
(j)
S;kjk�1 = Qk�1 + Fk�1P

(j)
k�1F

T
k�1:

Because vS;kjk�1(x) and k(x) are Gaussian mixtures, vkjk�1(x) can be expressed

as a Gaussian mixture of the form

vkjk�1(x) =

Jkjk�1X
i=1

w
(i)
kjk�1N (x;m

(i)
kjk�1; P

(i)
kjk�1) (3.18)

Then, the posterior intensity at time k is also a Gaussian mixture, and is given by

vk(x) = (1� pD;k)vkjk�1(x) +
X
z2Zk

vD;k(x; z) (3.19)

where

vD;k(x; z) =

Jkjk�1X
j=1

w
(j)
k (z)N (x;m

(j)
kjk; P

(j)
kjk);

w
(j)
k (z) =

pD;kw
(j)
kjk�1q

(j)
k (z)

�k(z) + pD;k
PJkjk�1

l=1 w
(l)
kjk�1q

(l)
k (z)

;

q
(j)
k (z) = N (z;Hkm

(j)
kjk�1; Rk +HkP

(j)
kjk�1H

T
k );

m
(j)
kjk = m

(j)
kjk�1 +K

(j)
k (z �Hkm

(j)
kjk�1);

P
(j)
kjk = [I �K(j)

k Hk]P
(j)
kjk�1;

K
(j)
k = P

(j)
kjk�1H

T
k (HkP

(j)
kjk�1H

T
k +Rk)

�1:
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3.6 Summary

In this chapter, we reviewed random set approaches for multiple-object tracking.

The RFS Bayes �lter can be used when the number of objects is small. However,

when there are a large number of objects, the computation of the RFS Bayes �lter

is intractable. This is because the number of computations of likelihood function

in the RFS Bayes �lter using the �nite set statistics is about
Pmin(M;N)

i=1 CiMA
i
NN .

Hence, the PHD �lter, the �rst moment of the multiple-object posterior density,

was proposed. Two implementations of the PHD �lter, the particle PHD �lter and

the GMPHD �lter, were summarized. The PHD �lter operates on a single-object

state space and avoids the data association problem. This can help to reduce

the computation when tracking multiple objects. In subsequent chapters, we will

propose our methods and applications for multiple-object tracking that employ the

PHD �lter approach.



Chapter4
Maintaining track continuity in the

GMPHD �lter

4.1 Introduction

PHD implementations such as the particle PHD �lter and the GMPHD �lter do not

include object identities. In many cases, we need to know the track continuity of

objects in order for post processing such as behavior of objects and activity recogni-

tion. There are methods to obtain the object identities for the PHD �lter. Firstly,

some methods use the particle PHD �lter for pre-�ltering the data input to other

methods, such as the multiple hypothesis tracker [75] and assignment algorithms

[60]. There are also methods that analyze the propagation of particles to maintain

track continuity [20], [74]. Because of the unreliability of clustering methods in the

40
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particle PHD �lter, the performances of these approaches are a¤ected.

Recently, Clark [21] introduced a technique to identify the state estimates of ob-

jects in the GMPHD �lter. In this method, each Gaussian component is identi�ed

by a label. After the updating step in the GMPHD �lter, if two or more com-

ponents have the same label, then this label is given to the one with the largest

weight and new labels are assigned to the other components. This method was

successfully applied to sonar image tracking [22]. However, a limitation is that it

does not include temporal information, which adversely a¤ects the performance.

For example in Figure 4.1, at time k � 1, the �rst object (square) and the second

object (circle) are at positions A and C, respectively. At time k, the �rst object

moves to B and the second object moves to D. If we do not consider temporal

information, the weight of the Gaussian component with label �circle�at position

B may be higher than the weight of the Gaussian component with the same label

at position D. Hence, the state of the second object is estimated at B and a new

label is assigned for the Gaussian component at D. These estimates are not the

desired estimates.

In this chapter, we propose a method for maintaining the continuity of state

estimates of objects in the GMPHD �lter. To identify the states of objects, the

set of labels from Gaussian components is used to create hypotheses for the label

association process. This method reduces a large number of label association hy-

potheses compared with methods in [60], [75]. Moreover, we employ the Hungarian



4.2 GMPHD �lter with label association 42

Figure 4.1: An example when two objects are close

algorithm [56] for optimizing the search for the best hypothesis association. The

method can be applied in real-time tracking applications that the MHT or JPDA

method performs with di¢ culty because of computational expense. Since the pro-

posed method considers the temporal information from the previous step to the

current step, it could achieve better performance than the identi�cations by the

method in [21].

4.2 GMPHD �lter with label association

To maintain the temporal continuity of state estimates of objects in the GMPHD

�lter, we propose a method with two stages. The �rst stage is to build hypothesis

labels for Gaussian components. The set of labels for Gaussian components of

the posterior intensity at time k � 1 is Lk�1 =
�
l1;k�1; :::; lJk�1;k�1

�
, where li;k�1

is the label of the ith Gaussian component. The labels of state estimates are
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LEk�1 =
�
lE1;k�1; :::; l

E
Nk�1;k�1

�
, where Nk�1 is the number of objects at time k � 1.

At time k, in the prediction step of the GMPHD �lter (Equation (3.17)), the set

of predicted labels is

Lkjk�1 = Lk�1 [ L� (4.1)

where L� is the set of birth labels for birth Gaussian components. Then, in the

updating step of the GMPHD �lter (Equation (3.19)), Gaussian components are

updated with the measurement set to obtain vk(x). These Gaussian components

are attached with labels from Lkjk�1. These labels are called hypothesis labels ~Lk =�
~l1;k; :::; ~lJk;k

�
. We notice that because some Gaussian components are merged in

the updating step, ~li;k can have more than one label. After that, state estimates

are extracted from intensity vk(x). From ~Lk =
�
~l1;k; :::; ~lJk;k

�
, the set of hypothesis

labels for state estimates ~LEk =
�
~lE1;k; :::;

~lENk;k

�
is obtained.

In the second stage, each Gaussian component will be assigned a label. From

~LEk and L
E
k�1, we construct a bipartite graph G = (V;E) where V = VL [ VR,

vertices VL are state predictions x̂kjk�1 from state estimates x̂k�1at time k � 1,

vertices VR are state estimates x̂k at time k, and E is the set of weight edges eij

such that

eij =

8>>>>>><>>>>>>:

x̂i;k � x̂j;kjk�1 , if lEj;k�1 2 ~lEi;k

and i 2 VR; j 2 VL

1 otherwise

(4.2)

A matching in a bipartite graph is assigning vertices in VL to vertices in VR. We
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have to �nd the optimal match with minimum edges�weights. Then, if vertex

i 2 VR that is not matched with any vertex in VL, we will assign vertex i with

the label that has the largest weight in ~lEi;k. Thus, the label association for the

GMPHD �lter can be described in Figure 4.2.

4.3 Matching with minimum total distance for

label association

In the context of label association for the GMPHD �lter, we have to �nd a match-

ing with minimum edge weights in a bipartite graph. If we choose a match by

selecting edges that have minimum weights, there is no guarantee that the num-

ber of matched vertices is maximum. Therefore, some labels of state estimates at

time k may not be the same as labels of state estimates at time k � 1. In other

words, selecting edges that have minimum weight favors good local matches. In

the global view, this method is not an optimal method. For example, in Figure

4.3, if we choose {(b,d),(c,e)} (edges that have minimum weights), the vertices a

and f are not matched. In this case, we have to choose {(a,d),(b,e),(c,f)}.

The best known polynomial time-bound algorithm for weighted bipartite match-

ing is the classical Hungarian algorithm due to Kuhn [56], which runs in time

O(jV j(jEj + jV jlogjV j). Weighted bipartite matching algorithms can be imple-

mented e¢ ciently, and can be applied to graphs of reasonably large size (about
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Step 1: Prediction Step

i = 0

For j = 1; :::; J;k (birth Gaussians)

i = i+ 1

Obtain weight, mean, covariance for the ith birth Gaussian

l
(i)
kjk�1 = birth label

For j = 1; :::; Jk�1 (existing Gaussians)

i = i+ 1

Obtain weight, mean, covariance for the ith predicted Gaussian

l
(i)
kjk�1 = l

(j)
k�1

Step 2: Updating Step

For j = 1; :::; Jkjk�1

~lj;k = l
(j)
kjk�1

n = 0

For each z 2 Zk

n = n+ 1

For j = 1; :::; Jkjk�1

Obtain weight, mean, covariance for the (nJkjk�1 + j)-th update Gaussian

~lnJkjk�1+j;k =
~lj;k

Pruning and merging Gaussian components

Construct the label association graph G = (VL [ VR; E)

Find a matching with minimum total distance in the graph

Assign labels for matching and non-matching Gaussian components

Figure 4.2: Label association for the GMPHD �lter
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Figure 4.3: An example for wrong matching

100,000 vertices) [50]. Thus, we applied the Hungarian algorithm to �nd the mini-

mum edge weight matching in the bipartite graph that is mentioned in the previous

section. The Hungarian algorithm for label association can be summarized in Fig-

ure 4.4. After using the Hungarian algorithm to �nd the matching with minimum

edge weights, we have label associations of state estimates of the previous and cur-

rent time steps. If a state estimate at the current step is matched, we assign the

corresponding Gaussian component for the label of the matched state estimate at

the previous step. Otherwise, this Gaussian component is assigned for the label of

the largest weight Gaussian contributing to this component. For example, in Fig-

ure 4.3, after using the Hungarian algorithm, the labels of Gaussian components

represented for vertices d, e, f are the labels of Gaussian components represented

for vertices a, b, c, respectively.
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Input: G =(VL [ VR; E)

Step 1: Initialize M  � 0

Step 2:

For each unmatched x� 2 V

Find path D from x� in which matched vertex

and unmatched vertex are alternated

(see [84] for more details)

M = (M n(M \D)) \ (D n(M \D))

EndFor

Output: M

Figure 4.4: Hungarian algorithm for label association

4.4 Simulation experiments

Results of simulations are presented to demonstrate the e¤ectiveness of our ap-

proach. There are two examples. In Example 1, a maximum of two objects appear

and disappear at di¤erent times. Each object has a survival probability pS;k = 0:99

and follows a nonlinear nearly constant turn model in which the object state takes

the form xk =
�
yTk ; !k

�T
, where yk = [px;k; py;k; _px;k; _py;k]T is the coordinate (x; y)
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and velocity in each dimension of object, and !k is the turn rate. The state dy-

namic equations are given by

yk = F (!k�1)yk�1 +G!k�1;

!k = !k�1 +�uk�1;

where

F (!) =

266666666664

1 0 sin!�
!

�1�cos!�
!

0 1 1�cos!�
!

sin!�
!

0 0 cos!� �sin!�

0 0 sin!� cos!�

377777777775
, G =

266666666664

�2

2
0

0 �2

2

� 0

0 �

377777777775
� = 1s, !k � N (:; 0; �2wI2), �w = 102, uk � N (:; 0; �2u), and �u = 2�=180. We

assumed no spawning and that the spontaneous birth RFS is Poisson with intensity

k(x) = 0:1N (x;m(1)
 ; P)

where

m(1)
 = [500; 500; 0; 0; 0]T

P = diag([4000; 4000; 4000; 4000; (6�=180)2]T ):

Each object has a probability of detection pD;k = 0:98. An observation consists of

bearing and range measurements. The observation model is given by

zk =

2664 arctan(px;k=py;k)q
(p2x;k + p2y;k)

3775+ �k;
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where �k � N(:; 0; Rk) with Rk = ([�2�; �
2
r]
T ), �� = (�=300) and �r = 10. The clut-

ter RFS follows the uniform Poisson model over the surveillance region [��=2; �=2]�

[0; 2000], with �c = 1:6� 10�3 (i.e., an average of 10 clutter returns on the surveil-

lance region). The pruning parameters for the GMPHD �lters are T = 5 � 10�3,

merging threshold U = 10, and maximum number of Gaussian components Jmax =

100.

Figures 4.5 and 4.6 show the track continuity from the method in [21] and our

method, respectively. In these �gures, the ground-truth is represented by lines and

state estimates are represented by shapes. Two estimations having the same shape

are from the same object. In Figure 4.5, the results indicate that the identities of

the objects change at time steps 6 and 65. This is because the track continuity

method in [21] chooses the labels of Gaussian components that have the largest

weights. This method does not consider the temporal information, and it is based

on the heuristic method. Hence, the labels of state estimates are not correct at time

steps 6 and 65. In Figure 4.6, our method considers the minimum total distance

between the prediction of previous state estimates and the current state estimates

to assign labels. Thus, its performance is better in this example.
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Figure 4.5: Track continuity with the method in [21]
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Figure 4.6: Track continuity with our method
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Figure 4.7: Track continuity with the method in [21]

In Example 2, there are a maximum seven objects that appear and disappear

at di¤erent times. Figures 4.7 and 4.8 show the track continuity from the method

in [21] and our method, respectively. The method in [21] changes the identities of



4.4 Simulation experiments 53

the objects at time steps 19 and 70 in Figure 4.7. Especially, at time step 70, this

method gives wrong identi�cations of two tracks. In Figure 4.8, our method has a

good performance in all time steps.

Figure 4.8: Track continuity with our method
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In this example, in some time steps, there are 7 objects and 10 measurements.

If we use methods such as MHT [80] or JPDA [6], the number of hypotheses is

about
P7

i=1C
i
7A

i
10. The computation by JPDA or MHT in this example is very

complicated. However, the run-time of our method for 100 time steps is 3.7s on

Matlab 6.0, with a Pentium IV 2.6 GHz PC.

Figure 4.9: Mean number of labels for tracks of our method and the method in

[21]

The above results are the performances for two trials. For performance gener-

alization, we test the algorithm for 1000 trials. For ease of visualization, Figure

4.9 shows the results of the mean number of labels for tracks between our method

and the method in [21] from the 400th trial to the 500th trial. The mean number

of labels for tracks is the mean number of labels used to identify each track. The
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results indicate that in most of the trials, the mean number of labels for tracks

with our method is nearer to the true value (1) than the method in [21]. Moreover,

the overall mean number of labels for tracks in 1000 trials with our method is

1.26 compared with 1.33 of the method in [21]. Hence, the proposed method for

continuity tracking is more e¢ cient.

4.5 Summary

An algorithm for maintaining the continuity of state estimates of objects in the

GMPHD �lter has been presented. It can be used to track multiple objects in

applications with high density of clutters and varying number of objects that tra-

ditional methods such as JPDA or MHT are di¢ cult to handle because of the

computational complexity. Our method reduces the number of hypotheses re-

markably based on the property of Gaussian components in the GMPHD �lter.

Furthermore, our method considers temporal information and it performs better

than the method without using temporal feature [21]. It has been shown that our

method is e¢ cient for multiple-object tracking.



Chapter5
Multiple-speaker tracking using the PHD

�lter

5.1 Introduction

Speaker tracking is an important part of multimedia applications. For example, in

video conferencing [18], [27], and robot control applications [69], it can be used to

determine the spatial location of a speaker so that the camera is steered toward

that speaker. The essential requirement for a speaker tracking system is to estimate

the state of speaker within the acoustic environment based on measurements that

are collected from several microphones. Speaker tracking is challenging because of

the e¤ects of reverberations, and noise from di¤erent sources.

There are many approaches to speaker tracking. Traditional approaches are

56
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classi�ed as one-stage or two-stage methods. One-stage methods are direct meth-

ods such as steered beam-forming [17], [30]. They scan the search space by an

acoustic beam to �nd the position with the highest beam output energy. These

methods su¤er from the poor resolution and require a search over a highly nonlinear

surface. Moreover, they are computationally intensive, which may be impractical

for real-time applications.

Two-stage methods include the time-estimation stage and the localization stage.

Firstly, the time delays of arrival are extracted from data frames. A well-known

method for time delay estimation is based on the generalized cross correlation

function [54]. The localization stage can be done by a least squares or Gauss-

Newton iteration method [34]. In general, these methods transform the received

data frames into a localization function that exhibits a peak in the location due

to the speaker. However, reverberations cause spurious peaks in the localization

function that may have greater magnitudes than the peak associated with the

speaker. Thus, these traditional methods may not be e¢ cient in a reverberant

acoustic environment.

Recently, some approaches for speaker tracking problem using the particle �lter

has been proposed to cope with the e¤ects of reverberations [99], [112]. In these

approaches, the speaker tracking problem is formulated within a state-space esti-

mation framework. The key idea of these methods is that the state of a speaker
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follows a dynamic model from frame to frame. The performances of these ap-

proaches outperform traditional methods. They assume that only one speaker

is active at a time, while in many applications, there are many people speaking

simultaneously at a time. Thus, it is necessary to have methods to track multi-

ple speakers. Unfortunately, tracking multiple speakers is a challenging problem

because it is di¢ cult to obtain the measurements for multiple speakers and the

number of speakers varies in the tracking periods. Multiple-sensor data fusion,

high clutter, and data association also need to be considered.

With the development of multiple-object tracking methods, recently, there are

some approaches for multiple-speaker tracking. In [79], the authors assume that

a single array is unable to track two simultaneously active speakers, whereas the

complementary provision of data in the multiple-array framework makes multiple-

speaker tracking possible. This method assumes a �xed number of speakers. In

[98], the authors propose a data association method for multiple-speaker tracking

by using the particle �lter . However, this method has a limitation when there is

clutter. There are two methods for multiple-speaker tracking based on the random

�nite set [61], [104]. These methods have good performance when tracking multiple

speakers.

The objective of this chapter is to develop an e¢ cient technique for real-time

tracking of multiple speakers in a reverberant room. We use the idea of approxi-

mating multiple-sensor PHD update in [104] for the GMPHD �lter. The method is
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performed in a simulation environment with 4 microphone pairs to do the multiple-

speaker tracking. Because the GMPHD �lter is a closed-form of the PHD �lter,

it avoids the need for data association of time delay of arrival measurements and

speakers. Moreover, the state estimates of speakers are obtained from the means of

Gaussian components. Thus, we do not need to use clustering techniques to extract

state estimates. The advantages of our method are lower computational expense

and higher reliability than other methods in [61], [98], [104] for multiple-speaker

tracking.

5.2 Random�nite set for multiple-sensor multiple-

object tracking

Multiple-speaker tracking is a particular problem in multiple-sensor multiple-object

tracking. The multiple-sensor multiple-object tracking problem can be modeled by

a random �nite set (RFS) framework. Similar to Section 3.2, given a multiple-

object state Xk�1 at time k� 1, the multiple-object state Xk at time k is given by

the union of surviving objects and new objects, which is

Xk =

24 [
xk�12Xk�1

Sk(xk�1)

35 [
24 [
xk�12Xk�1

Bkjk�1(xk�1)

35 [ [�k] (5.1)

Let Z i be the measurement space of a single object at the ith sensor, then

measurements collected from the ith sensor at time k is Zik 2 F(Z i). A given
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object state xk 2 Xk is either detected with a probability pD or missed with a

probability (1 � pD). Conditional on detection, the measurement from xk at the

ith sensor is de�ned by the RFS �ik(xk). The ith sensor can also receive a set

of clutters Cik. So, given a multiple-object state Xk at time k, the measurement

set from the ith sensor at time k is formed by the union of object generated

measurements and clutters,

Zik =

" [
xk2Xk

�ik(xk)

#
[ Cik (5.2)

Assuming that we have Q sensors, the RFS of measurements at time k is modelled

by

Zk =
h
Z1k ;Z

2
k ; : : : ;Z

Q
k

i
(5.3)

The multiple-sensor multiple-object tracking problem can be posed as follows:

given a set of measurements Z1:k collected from sensors up to time k, the problem is

to �nd X̂k that is the expectation or maximization of the posterior density function

p(XkjZ1:k). In the next section, we will present a method to obtain the PHD of

the posterior density function p(XkjZ1:k) in the multiple-sensor multiple-object

tracking environment by the GMPHD �lter.
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5.3 Gaussian mixture probability hypothesis den-

sity �lter with multiple sensors

5.3.1 Assumptions

First, we consider some assumptions. The transition function of each object follows

a linear Gaussian model, i.e.,

fkjk�1(xj�) = N (x;Fk�1�;Qk�1) (5.4)

where N (:;m;P ) is a Gaussian density with mean m and covariance P , Fk�1 is a

state transition matrix, and Qk�1 is the process noise covariance. The likelihood

function at each of Q sensors is a linear Gaussian model

gik(zjx) = N (z;H i
kx;R

i
k) (5.5)

where H i
k is an observation matrix of the ith sensor, and Rik is an observation

noise covariance of the ith sensor. The survival and detection probabilities are,

respectively,

pS;k(x) = pS;k (5.6)

pD;k(x) = pD;k (5.7)

The intensity of the spontaneous birth RFS is

k(x) =

J;kX
i=1

w
(i)
;kN (x;m

(i)
;k; P

(i)
;k) (5.8)
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where J;k is the number of birth Gaussian components at time k. The posterior

intensity at time k � 1 is a Gaussian mixture of the form

vk�1(x) =

Jk�1X
i=1

w
(i)
k�1N (x;m

(i)
k�1; P

(i)
k�1) (5.9)

where Jk�1 is the number of Gaussians of posterior intensity vk�1(x)

5.3.2 GMPHD �lter with multiple sensors

When there are many sensors, Vo [104] gave an idea of approximating multiple-

sensor PHD update. Now, we implement this idea to fuse data from multiple

sensors in the GMPHD �lter. The algorithm is described below.

With the assumptions in 5.3.1, at time k � 1 we have

vk�1(x) =

Jk�1X
i=1

m
(i)
k�1N (x;w

(i)
k�1; P

(i)
k�1) (5.10)

First, we use assumptions on state equation (5.4), measurement equation (5.5)

and vk�1(x) to predict intensity v1kjk�1(x) at sensor 1 by using Equation (3.17).

Then, predicted PHD v1kjk�1(x) is updated with measurement set Z
1
k by Equation

(3.19) to obtain the PHD at time k on sensor 1, v1k(x). Since vk�1(x) is a Gaussian

mixture, v1k(x) is also a Gaussian mixture and has the form

v1k(x) =

J1kX
i=1

w
(i)
1;kN (x;m

(i)
1;k; P

(i)
1;k) (5.11)

Now, at sensor 2, v1k(x) is considered as the predicted PHD for sensor 2. Similar
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to Equation (3.19), we have

v2k(x) = (1� pD;k)v1k(x) +
X
z2Z2k

vD;k(x; z) (5.12)

Hence, v2k(x) also has the Gaussian mixture form

v2k(x) =

J2kX
i=1

w
(i)
2;kN (x;m

(i)
2;k; P

(i)
2;k) (5.13)

We repeat this process with Q sensors. At the Qth sensor, we obtain vQk (x), and

it has the form

vQk (x) =

JQkX
i=1

w
(i)
Q;kN (x;m

(i)
Q;k; P

(i)
Q;k) (5.14)

The PHD for the multiple-sensor multiple-object posterior density will be

vk(x) = vQk (x) (5.15)

The number of objects is estimated by

N̂kjk =

Z
vk(x)dx

=

Z JQkX
i=1

w
(i)
Q;kN (x;m

(i)
Q;k; P

(i)
Q;k)dx

=

JQkX
i=1

w
(i)
Q;k (5.16)

Thus, the properties of the GMPHD �lter in the case of multiple sensors are

similar to the single-sensor case. This means that in the multiple-sensor multiple-

object tracking problem, under the assumptions in 5.3.1, if the initial prior intensity

of multiple-sensor multiple-object tracking is a Gaussian mixture, the posterior
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intensity for asynchronous sensor fusion method at any subsequent time step will

be a Gaussian mixture.

5.3.3 Implementation issues

The state estimates of objects are the means of Gaussian components that have

high weights (above 0.5) in vk(x). This estimation method is more e¢ cient than

the particle PHD �lter. This is because in the particle PHD �lter, we obtain the

number of objects N̂kjk then partition particles into N̂kjk clusters. If N̂kjk is not

correct, the tracking performance will be a¤ected.

Now, we investigate the number of Gaussian components in vk(x). At the �rst

sensor, the number of Gaussian components is

J1k = (Jk�1 + J;k)(1 + jZ1k j) (5.17)

At the second sensor, the number of Gaussian components is

J2k = J1k (1 + jZ2k j) = (Jk�1 + J;k)(1 + jZ1k j)(1 + jZ2k j) (5.18)

Hence, the number of of Gaussian components in vk(x) is

Jk = JQk = (Jk�1 + J;k)(1 + jZ1k j) � � � (1 + jZ
Q
k j) (5.19)

The number of Gaussian components Jk in the GMPHD �lter with multiple sensors

increases with the time. This causes high computations. So, at each time, methods

to reduce the number of Gaussian components are required. There are some rules
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to reduce the number of Gaussians, such as those that have small weights will be

discarded, those that are close together will be merged into one, and if the number

of Gaussian components is over a threshold L, the �rst L Gaussian components

with high weights will be chosen for propagating in the next iteration (see [102] for

more details of these rules).

5.4 Time delay of arrival measurement for multiple-

speaker tracking

There are many methods to estimate the time delay of arrival (TDOA) measure-

ment for each pair of microphones, such as the adaptive eigenvalue decomposition

algorithm [8], and the well-known generalized cross correlation function (GCC)

[54]. However, these techniques are applied for estimating the TDOA for one

speaker. In [61], the authors extended the GCC method to collect measurements

for multiple-speaker tracking. The technique is described as follows.

Let sn(t) be the signal due to speaker n, and y1(t); y2(t) are the signals received

at the �rst and second microphones of a microphone pair. Assuming there are N

speakers, the received signals y1(t) and y2(t) can be modeled as

y1(t) =
NX
n=1

sn(t��1;n) + v1(t) (5.20)

y2(t) =
NX
n=1

sn(t��2;n) + v2(t) (5.21)
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where vi(t) is a noise signal present at microphone i, and �i;n is the time it takes

the sound to propagate from speaker n to microphone i. The time delay of arrival

(TDOA) due to speaker n is de�ned for a given microphone pair as:

�n = �2;n ��1;n (5.22)

The goal of the collecting measurement step is to �nd these TDOAs due to multiple

speakers.

The GCC method is applied to �nd the TDOA of multiple speakers. The GCC

function is obtained as:

R̂(�) =

Z +1

�1
 12(w)Y1(w)Y

�
2 (w)e

jw�dw (5.23)

where Y1(w); Y2(w) are the Fourier transforms of y1(t); y2(t) respectively, � is the

time delay, and  12(w) =
1

jY1(w)Y �
2 (w)j

. In the presence of multiple speakers,

there are multi-path signal propagations and the GCC function in Equation (5.23)

is composed of cross correlations of the various paths. Hence, some of the peaks of

the GCC function are expected to be contributed by the direct path components

of speaker sources. By collecting some local maximum peaks in the GCC function,

we have a set of measurements for multiple-speaker tracking. Figure 5.1 shows

an example to collect TDOA measurements at a microphone pair (for example

microphone pair 2).
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Figure 5.1: TDOA measurements for multiple speaker tracking

5.5 GMPHD �lter for multiple-speaker tracking

Firstly, we de�ne the state space model for multiple-speaker tracking. Each speaker

follows a dynamic model equation

xk = Axk�1 + wk�1 (5.24)

where A is a pre-speci�ed matrix, and wk�1 is an uncorrelated noise. We assume

A = [I] and wk�1 � N ([0; 0];diag([0:01; 0:01])). This means the average distance

from the previous time k � 1 to k of a speaker is about 10 cm. Given a speaker

state xk, TDOA measurement z
q
k is measured from the qth microphone pair at time

k. The measurement equation is

zqk =
kxk � p2;qk � kxk � p1;qk

c
+ vqk; q = 1; :::; Q (5.25)
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where pi;q is the position of microphone i of pair q, c is the speed of sound, and

vqk is an uncorrelated noise and follows a Gaussian distribution with zero mean

and variance �2v. In this context, we assume v
q
k � N (0; 4 � 10�9). The sampling

frequency is 16000 Hz. This means the average time delay noise is the time for

delay of 1 sample.

Secondly, at each time k, RFS measurement Zk is obtained by collecting TDOA

measurements at microphone pairs. The method to collect TDOA measurements

is described in Section 5.4. From the PHD at time k � 1, vk�1(x) and RFS mea-

surement Zk, we apply the GMPHD �lter for multiple sensors that was proposed

in Section 5.3 to obtain the state estimates of speakers. Because measurement

equation for speaker tracking (5.25) is not linear, we have to apply an unscented

transform to approximate a linear system [102].

5.6 Experimental results

5.6.1 GMPHD �lter with multiple sensors for bearing and

range tracking

First, we consider a bearing and range tracking application to demonstrate the

e¤ectiveness of the GMPHD �lter with multiple sensors. There are objects that

appear and disappear at di¤erent times. Each object has the survival probability
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pS;k = 0:99 and follows a nonlinear nearly constant turn model [102] in which the

object state takes the form xk =
�
yTk ; !k

�T
, where yk = [px;k; py;k; _px;k; _py;k]T is the

coordinate (x; y) and velocity in each dimension of object, and !k is the turn rate.

The state dynamic equations are given by

yk = F (!k�1)yk�1 +G!k�1; (5.26)

!k = !k�1 +�uk�1;

where � = 1s, !k � N (�; 0; �2wI2), �w = 15 m/s2, uk � N (�; 0; �2u), �u = �=180

rad/s,

F (!) =

266666666664

1 0 sin!�
!

�1�cos!�
!

0 1 1�cos!�
!

sin!�
!

0 0 cos!� �sin!�

0 0 sin!� cos!�

377777777775
,G =

266666666664

�2

2
0

0 �2

2

� 0

0 �

377777777775
We assume no spawning and that the spontaneous birth RFS is Poisson with

intensity

k(x) = 0:1N (x;m; P)

where

m = [0; 0; 2000; 0; 0]T ;

P = diag([2500; 2500; 2500; 2500; (6�=180)2]T ):

Each object has a probability of detection pD;k = 0:98. The observations consist

of bearing and range measurements from two sensors. The positions of the sensors
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are

p1s = [0; 0] (5.27)

p2s = [1000; 1000] (5.28)

The observation model at sensor i is given by

zik =

2664 arctan
�
px;k�pis;x
py;k�pis;y

�
q
(px;k � pis;x)2 + (py;k � pis;y)2

3775+ �k; (5.29)

where �k � N(:; 0; Rk) with Rk =diag([�2�; �
2
r]
T ), �� = �=30 rad/s and �r = 10 m.

The clutter RFS follows the uniform Poisson model over the surveillance region

[��=2; �=2] rad �[0; 3000] m, with �c = 1:1 � 10�3radm�1 (i.e., an average of

10 clutter returns on the surveillance region). The pruning parameters for the

GMPHD �lters are T = 10�5, merging threshold U = 4, and maximum number of

Gaussian components Jmax = 100.

Figure 5.2 and 5.3 show the position estimations with measurements from sen-

sor 1 and 2, respectively. Because of the high clutter and high noise, there are

some errors in the �lter outputs. Figure 5.4 shows the position estimations of the

GMPHD �lter with multiple sensors. The performance of the GMPHD �lter with

fusion of multiple sensors outperform with the GMPHD �lter with single sensor.
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Figure 5.2: Position (x; y) of objects with measurements from sensor 1

5.6.2 GMPHD �lter for multiple-speaker tracking

We simulate an acoustic room to test the performance of the GMPHD �lter in

tracking multiple speakers. The dimensions of the room are 3m � 3m � 2.5m.

There are four microphone pairs, each of them has an inter-sensor spacing of 0.5m.

The speaker sources are all female. The acoustic image method [2] is used to

simulate the room impulse responses. The reverberation time of the room impulse

responses is about T60 = 0:15s. The speech signal to noise ratio is about 20dB.

There are 60 frames. The time frame length for measuring TDOA is 256ms, and
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Figure 5.3: Position (x; y) of objects with measurements from sensor 2

they are non-overlapping. There are two speakers. They appear and disappear at

di¤erent times.

The parameter settings for the GMPHD �lter are as follows. The probability

of survival pS = 0:95. The probability of detection pD = 0:7 that are set by exper-

iments. The pruning parameters for the GMPHD �lter is T = 10�5, the merging

threshold U = 10, and the maximum number of Gaussian components Jmax = 30.

These parameters are set for reducing the number of Gaussian components that

helps to improve the speed of the algorithm. The clutter density is the uniform

distribution on the range of TDOA of microphone pairs.



5.6 Experimental results 73

Figure 5.4: Position (x; y) of objects with the fusion method

Figures 5.5 shows the multiple-speaker tracking performance of the particle

�lter in [98]. Because the simulated acoustic room is reverberant, the steer-

beamforming method to detect measurements in [98] is not e¢ cient due to multi-

path. In particular, when two people speaks simultaneously in this data set, the

measurements from speakers are not correct. Thus, this tracking method does not

perform well.
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Figure 5.5: Position (x; y) of speakers with the particle �lter in [98]

Figures 5.6 and 5.7 show the multiple-speaker tracking performance of the par-

ticle PHD �lter [104]. Because of the unreliability in the clustering, the state

estimates are a¤ected.
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Figure 5.6: Number of speakers by the particle PHD �lter

Figure 5.7: Position (x; y) of speakers with the particle PHD �lter
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Figures 5.8 and 5.9 show the multiple-speaker tracking performance of the RFS

sequential Monte Carlo (RFS-SMC) Bayes �lter [61]. The results show that this

method is better than the particle PHD �lter. However, the RFS-SMC Bayes

�lter is computationally expensive due to the large number of samples and the

calculation of the RFS likelihood function by using a �nite set statistic. The

computation of the RFS-SMC Bayes is exponentially growing with the number of

speakers or measurements.

Figure 5.8: Number of speakers by the RFS-SMC Bayes �lter
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Figure 5.9: Position (x; y) of speakers with the RFS-SMC Bayes �lter

Figures 5.10 and 5.11 show the multiple-speaker tracking performance of our

method. This performance is better than the method in [98], the particle PHD

�lter and is similar to the RFS-SMC Bayes �lter under the same parameters. In

most of the time when two persons speak simultaneously, our method can give

reliable estimations. This is because the state estimates in the GMPHD �lter are

the means of Gaussian components that have high weights. Hence, this method

is not a¤ected by errors from clustering techniques. Moreover, the complexity of

the GMPHD �lter in the multiple-sensor environment is O (Q: jZj :Jmax), where

Q is the number of sensors, jZj is the maximum number of measurements, and
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Jmax is the maximum number of Gaussian components. It is less computationally

expensive than the RFS-SMC Bayes �lter QNt
Pmin(M;jZj)

i=1 CiMA
i
jZj jZj, where Nt is

the number of samples, and the particle PHD �lter O (Q �Nt � jZj).

Figure 5.10: Number of speakers by the GMPHD �lter
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Figure 5.11: Position (x; y) of speakers with the GMPHD �lter

The above result is the performance for one trial. To measure the average per-

formance, we use the performance measurement from [61]. It includes the proba-

bility of correct speaker number, expected absolute error on the number of speaker

and conditional mean distance error by Wasserstein distance. The probability of

correct speaker number is de�ned by

P (jX̂kj = jXkj) =
Number of jX̂kj = jXkj
Number of trials

(5.30)
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where X̂k is the estimation of multi-speaker state and Xk is ground-truth. The

expected absolute error on the number of speaker is

E(jX̂kj � jXkj) (5.31)

When jX̂kj = jXkj, the Wasserstein distance between X̂k and Xk is de�ned as

follows

d(Xk; X̂k) = inf
C

0@X
xi2Xk

X
x̂j2X̂k

d(xi; x̂j)
P

1A1=P

(5.32)

where C represents an jX̂kj � jXkj. The conditional mean distance error is de�ned

Efd(Xk; X̂k)jcorrect speaker number estimateg (5.33)

We test the performance with 500 trials. Each trial is a new signal and a new

TDOA measurement set. Figures 5.12 and 5.13 show the probability of correct

speaker number and expected absolute error in estimation of number of speaker

compared between our method and the particle PHD �lter, the RFS-SMC Bayes

�lter. Our method is more stable than others. The main error in our method occurs

due to TDOA measurements are not reliable in some time steps for example when

two people speak simultaneously. Figures 5.14 shows the conditional mean distance

error of speaker tracking. Our method is also more accurate than the others.
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Figure 5.12: Probability of correct speaker number

Figure 5.13: Absolute error on the number of speaker
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Figure 5.14: Conditional mean distance error of multiple-speaker tracking

Our implementation runs under Matlab 6.0 on a Pentium IV 2.6 GHz, 512M

RAM computer. The run-time for 60 time steps is 11.2 s. This means 0.19 s for

one frame (0.256 s). The run-time of the RFS-SMC Bayes �lter and the particle

PHD �lter are 14.2 s and 31.5 s, respectively. Hence, this method is fast and it

can be used in real-time applications.

5.7 Summary

Tracking multiple speakers is a challenging problem. In this chapter, we developed

a reliable and computationally tractable approach to multiple-speaker tracking.

The GMPHD �lter was applied in multiple-speaker tracking. Using simulation
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data, we demonstrated that the GMPHD �lter was more e¢ cient than some other

methods in a reverberant acoustic environment. To improve the performance of

the GMPHD �lter in multiple-speaker tracking, the investigation on accurate and

robust acoustic measurements is needed.



Chapter6
Multiple-object tracking using the PHD

�lter and color measurements

6.1 Introduction

Tracking moving objects in video sequences is important in many applications,

e.g., tracking players in sport sequences [72], [100], surveillance [91], and many

more. Video tracking is challenging due to many factors, including measurement

noise, inaccurate modelling, and clutter problem. They cause the uncertainty in

the estimations of object states. To adequately capture the uncertainty due to

these factors, a probabilistic framework can be used.

One particularly popular approach is the Bayes �lter. In this �lter, the state

84
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estimates are obtained from the posterior density function. The Bayes �lter prop-

agates the posterior density function with the time. The Markov dynamic model

is assumed to describe how the object state evolves, and a model to evaluate the

likelihood of a hypothesised state given the observed data is assumed. However,

the Bayes �lter in multiple-object tracking is computationally expensive and some-

times cannot be represented analytically. Hence, approximation methods are often

used.

Among approximation methods for the Bayes �lter, methods using the sequen-

tial Monte Carlo implementation attract substantial interest. In this approach, the

posterior density function is represented by a set of particles. These particles are

weighted by observation models that can be obtained from background model [47],

[91], or color model [28]. Some of these methods operate on a single-object state

space [72], [100]. In these methods, the mixture �ltering distribution is de�ned

from the �ltering distribution of each object and coe¢ cient weights. The mixture

�ltering distribution is approximated to maintain multi-modality by the particle

�lter. However, a common limitation of these methods is that if objects are close to

each other and particles from one speci�ed object have very high weight, the par-

ticles representing the remaining objects are often suppressed. In addition, there

are methods using a joint state space for tracking [28], [47]. The number of dimen-

sions of a multiple-object state space is the multiplication between the number of

objects and the number of dimensions of single-object state space. For example,
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if the number of objects is 9 and the number of dimensions of single-object state

space is 4, the number of dimensions of multiple-object state space is 36. Hence,

the state space of multiple-object tracking by using the joint state space is very

large. Sampling particles from the joint state space can become ine¢ cient as the

number of dimension of the space increases. Although there are some attempts to

reduce the number of particles such as [91], it is still computationally demanding.

In this chapter, we propose a method for tracking multiple objects from video

data using the probability hypothesis density �lter on color measurements. A

method to obtain the PHD with color histogram measurements is presented. This

method is based on a hypothesis intensity function that is used to obtain the color

measurement set. We assume that we have color histogram models of objects

under tracking which can be obtained from the training stage or initialization

stage. Then, the proposed tracking can be e¢ ciently applied for tracking varying

number of objects. The advantages of the method are that it operates on single-

object state space and can be employed in applications that methods based on

background subtraction fails due to a lot of clutters. The proposed method can be

used for the analysis of di¤erent type of video, such as sports video, home video

and surveillance video.
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6.2 Color likelihood

The state of single object is described by x = fxc; yc; Hx; Hyg. This is a rectangle

with the center and size de�ned by fxc; ycg and fHx; Hyg, respectively. Let the

color histogram of object be denoted as p(u), the color histogram of template as

q(u). The similarity function between an object and a template is measured by

the Bhattacharyya distance [23],

D =

s
1�

Z p
p(u)q(u)du (6.1)

In multiple-object tracking, we can have many color models of templates, and let

these models be as fq1(u); q2(u); :::; qn(u)g. The similarity function between an

object and the templates is modi�ed by

D = min
i

 s
1�

Z p
p(u)qi(u)du

!
(6.2)

We use the RGB color system, so the distance D is

D = min
i

�
Di
R +Di

G +Di
B

�
(6.3)

where Di
R; D

i
G; D

i
B are the Bhattacharyya distances between the object model and

templates on the R; G; B color channels, respectively.

The color likelihood function is de�ned by

p(zjx) = lz (x) = N (D; 0; �2) =
1p
2��

exp

�
�D

2

2�2

�
(6.4)

where z is the current image and �2 is a variance of noise.
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6.3 Random �nite set formulation for color ob-

ject tracking

By assuming that the state of object does not change a lot between frames, each

object in multiple-object tracking is evolved from a dynamic moving equation as

follows:

xk = xk�1 + wk (6.5)

wherewk is the process noise. Let the multiple-object state beXk = fx1;k; x2;k:::; xNk;kg 2

F(X ), where F(X ) denotes the collection of all �nite subsets of the single-object

state space X . Let Zk be the image frame at time k. Color tracking is to track

objects described by speci�ed color representations q�; e.g., histograms. More

speci�c, the multiple-object tracking problem is to �nd the multiple-object state

estimate X̂k from the posterior density function p(XkjZ1:k);where the objects have

the color histograms similar to q�. However, it is not easy to obtain the posterior

density function p(XkjZ1:k) when the state space is too large. Fortunately, it can

be approximately recovered from the �rst moment of this distribution, the PHD.

To obtain the PHD, we need to represent measurements as a random �nite set. It

is di¢ cult to represent color histograms as a RFS directly. The following sections

in this chapter will present a method to obtain the PHD with color measurements

in video tracking.
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6.4 Hypothesis intensity function for color track-

ing

In this section, we propose a hypothesis intensity function that is used for the

multiple-object tracking algorithm with video data. The generating probability

functional (gpf) of the posterior density is de�ned in [29] as

Gk [h] = E

" Q
xk2Xk

h (xk)

#
(6.6)

We let
Q
X [h] =

Q
x2X

h (x), the gpf Gk [h] becomes

Gk [h] = E
�Q

Xk
[h]
�

(6.7)

=

Z Q
Xk
[h] p (XkjZ1:k)� (Xk)

where � is a dominating measure [103]. From the Bayes rule, we have

p (XkjZ1:k) =
g (ZkjXk) p (XkjZ1:k�1)R
g (ZkjX) p (XjZ1:k�1)� (X)

(6.8)

Hence,

Gk [h] =

Z Q
Xk
[h] p (XkjZ1:k)� (Xk) (6.9)

=
1R

g (ZkjX) p (XjZ1:k�1)� (X)

Z Q
Xk
[h] g (ZkjXk) p (XkjZ1:k�1)� (Xk)

We let K =
R
g (ZkjX) p (XjZ1:k�1)� (X) ;

Gk [h] =
1

K

Z Q
Xk
[h] g (ZkjXk) p (XkjZ1:k�1)� (Xk) (6.10)
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From the assumption in [28], the multiple-object color likelihood is as follows

g (ZkjXk) /
Y
xk2Xk

g(Zkjxk) (6.11)

/
Y
xk2Xk

lZk(xk)

This means given an image Zk, the function lZk(xk) described in Section 6.2 repre-

sents the dependence of a state xk on image Zk. The multiple-object color likelihood

in Equation (6.11) is the multiplication of all lZk(xk) where xk 2 Xk.

The gpf Gk [h] can be re-written by

Gk [h] /
1

K

Z Q
Xk
[h]
Q
Xk
[lZk ] p (XkjZ1:k�1)� (Xk) (6.12)

/ 1

K

Z Q
Xk
[hlZk ] p (XkjZ1:k�1)� (Xk)

/ 1

K
Gkjk�1 [hlZk ]

We assume that p (XkjZ1:k�1) is Poisson [63], the generating function Gkjk�1 [h] has

the form

Gkjk�1 [h] = evkjk�1�(h�1) (6.13)

where vkjk�1 is the predicted intensity function and vkjk�1 � h =
Z
vkjk�1 (dx)h (x).

Hence,

Gk [h] /
1

K
evkjk�1�(hlZk�1)

Let � [h] = vkjk�1 � (hlZk � 1), the derivative functional of � [h] is

(d�)h [&] = vkjk�1 � (&lZk) (6.14)
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Thus, the derivative functional of Gk [h] is

(dGk)h [&] /
1

K
vkjk�1 � (&lZk) e

vkjk�1�(hlZk�1) (6.15)

We know from [29] that

vk (x) = (dGk)1 [�x] (6.16)

From Equation (6.15), we have

(dGk)1 [�x] /
1

K
vkjk�1(x)lZk (x) e

R
vkjk�1(dx)(h(x)lZk (x)�1) (6.17)

/ vkjk�1(x)lZk (x)

Let ~vk (x) = vkjk�1(x)lZk (x), from Equations (6.17), and (6.16), we can conclude

vk (x) / ~vk (x) = vkjk�1(x)lZk (x) (6.18)

From the joint state space, we have found a function ~vk(x) in the single-object

state space that is a proportion to PHD vk(x): ~vk(x) is called hypothesis intensity

function for color tracking.

6.5 GMPHD�lter for color multiple-object track-

ing

We cannot apply directly the GMPHD �lter with color measurements because

obtaining the measurement random set from video is not straight-forward. Here, we
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propose a PHD recursion for color measurements. This PHD recursion is described

in Figure 6.1.

Figure 6.1: PHD recursion for color multiple-object tracking

Firstly, color models of objects are obtained from template images. The color

models are the color histograms of objects. These models are used when we evaluate

the color likelihood that is described in Section 6.2. From previous posterior density

vk�1(x), prediction equation (3.17) is performed to obtain the predicted intensity

at time k, vkjk�1(x):We propose a method to obtain ~vk(x) and color measurement

random set by the Monte Carlo technique. Predicted intensity vkjk�1(x) can be

expressed in the form

vkjk�1(x) =

NX
i=1

 i�xi (x) (6.19)

where sample xi is drawn from vkjk�1(x) and has weight  
i, N is the number of
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samples. From Equation 6.18, we have

~vk (x) = vkjk�1(x)lZk (x) (6.20)

= lZk (x)

NX
i=1

 i�xi (x)

=

NX
i=1

 ilZk (x) �xi (x)

Hence, ~vk can be represented as

~vk (x) =

NX
i=1

�i�xi (x) (6.21)

where

�i = lZk(x
i) i (6.22)

Next, resample fxi; �igNi=1, and group these samples into clusters. A simple clus-

tering technique is performed. Samples that are close to each other are grouped

to form m clusters. Then, the K-means algorithm is applied to adjust centers of

these clusters. After that, these centers of clusters are used to create the color

measurement random set

Zk = fz1; :::; zmg (6.23)

where zi is the center of the ith cluster.

Secondly, from predicted intensity vkjk�1(x) and color measurement random set

Zk, we apply the updating step in the GMPHD �lter to obtain posterior inten-

sity vk(x). Then we �nd Gaussian components whose weights are larger than a
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threshold (0.5) in posterior intensity vk(x). The set of means of these Gaussian

components are state estimations.

With assumptions in Section 3.5, the tracking method is detailed as follows:

� Step 1. Prediction

The predicted intensity to time k is given by

vkjk�1(x) = vS;kjk�1(x) + k(x) (6.24)

where

vS;kjk�1(x) = pS;k

Jk�1X
j=1

w
(j)
k�1N (x;m

(j)
S;kjk�1; P

(j)
S;kjk�1);

m
(j)
S;kjk�1 = Fk�1m

(j)
k�1;

P
(j)
S;kjk�1 = Qk�1 + Fk�1P

(j)
k�1F

T
k�1:

vS;kjk�1(x) and k(x) are Gaussian mixtures, so vkjk�1(x) can be expressed as a

Gaussian mixture of the form

vkjk�1(x) =

Jkjk�1X
i=1

w
(i)
kjk�1N (x;m

(i)
kjk�1; P

(i)
kjk�1) (6.25)

From vkjk�1, we obtain ~vk by the Monte Carlo technique. vkjk�1 are represented by

N samples fxi;  igNi=1. From Equation (6.21), ~vk will be represented by fxi; �ig:

Then, resamples fxi; �ig, and groups these samples into clusters. The centers of

clusters Zk = fz1; :::; zmg will be measurements for the next updating step.

� Step 2. Update
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The posterior intensity at time k is a Gaussian mixture, and is given by

vk(x) = (1� pD;k)vkjk�1(x) +
X
z2Zk

vD;k(x; z) (6.26)

where

vD;k(x; z) =

Jkjk�1X
j=1

w
(j)
k (z)N (x;m

(j)
kjk; P

(j)
kjk);

w
(j)
k (z) =

pD;kw
(j)
kjk�1q

(j)
k (z)

�k(z) + pD;k
PJkjk�1

l=1 w
(l)
kjk�1q

(l)
k (z)

;

q
(j)
k (z) = N

�
z;Hkm

(j)
kjk�1; Rk +HkP

(j)
kjk�1H

T
k

�
;

m
(j)
kjk = m

(j)
kjk�1 +K

(j)
k (z �Hkm

(j)
kjk�1);

P
(j)
kjk = [I �K(j)

k Hk]P
(j)
kjk�1;

K
(j)
k = P

(j)
kjk�1H

T
k (HkP

(j)
kjk�1H

T
k +Rk)

�1:

Note that we have associated each Gaussian component with each label by

using the method in [21]. These labels are also the object identi�cations. Gaussian

components that are near each other and have the same label are merged after the

updating step. At the end of each iteration, among Gaussian components having

the same label, we keep the Gaussian component that has largest weight. Another

notice is that if a new object appears, this object will create a peak in hypothesis

intensity function ~vk (x) because of the high value in the likelihood function with

assuming that we knew the color model of this object before. Hence, the color

measurement random set includes the mean of the cluster that contains this peak.

Then, after the updating step, the state estimate of this new object is obtained.
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In a similar manner, when an object disappears, no peak in ~vk (x) caused by this

object is obtained. This leads to the small weight of the Gaussian component

represented for this object and this Gaussian component is removed. Hence, the

label of this object is removed. Moreover, when objects are occluded together,

peaks can also be detected and used to update Gaussian components. Thus, this

method can estimate states of objects when occlusions occur.

6.6 Experimental results

We test the performance of the proposed method in sequences from [28], [58], and

[91]. There is a total about 9500 frames. The Wasserstein distance in [43], [61] is

used to measure the performance. The errors of estimations are shown in Table

6.1

We use 400 samples to represent for the hypothesis intensity function. The

maximum of Gaussian mixture components are 30. For the football sequence,

we divide the tracking area into 15 parts (grid 3 � 5). The birth intensity is the

mixture of Gaussian components whose means are centers of these parts. For other

sequences, we assume that persons enter the tracking areas from entrances. Hence,

the birth intensity is the mixture of Gaussian components whose means are the

locations at these entrances. The clutter density is an uniform distribution of the

size of image and the range of radius Hx and Hy. The probability of survival is
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Sequences Mean error (pixel)

seq24-2p-0111-cam1 7.2

seq24-2p-0111-cam2 4.8

seq35-2p-1111-cam1 4.8

seq35-2p-1111-cam2 3.9

seq44-3p-1111-cam1 8.2

seq44-3p-1111-cam2 6.1

football 7.2

seq16 9

Table 6.1: Error of estimation

pS = 0:99 and the probability of detection is pD = 0:98. These parameters are

set by experiments. In these testing sequences, the detected number of objects are

correct except that there are some delays at frames when objects begin to enter

the tracking area.

Figure 6.2 shows the comparison between our method and the boosted particle

�lter [72] that we implemented. For the boosted particle �lter, we assume that we

have very good detections (from groudtruth) and the proposal coe¢ cient � = 0:8

(80% particles from detection distribution which means majority of particles are

around the real state). However, because the likelihoods of the particles near

the black person are too high, the boosted particle �lter is ambiguous between
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two persons and one track is lost. The results show that our method is better

to maintain the tracking through the occlusion. This is because we can detect

the peak caused by the white person although this peak is smaller than the peak

caused by the black person. If detected peaks are not caused by persons, these

peaks will be false alarms. The weights of Gaussian components caused by these

peaks are small and they are removed. Otherwise, if peaks are caused by persons,

state estimates of these persons will be obtained. Hence, in this case, our method

is better than the boosted particle �lter.

Figure 6.2: Comparison between our method (left) and the boosted particle �lter

(right)

Figure 6.3 shows the results of tracking white football players. In this sequence,

the number of white players changes during the tracking period. When a white
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player appears in the camera view, the likelihood function is high at the position

of this player and we can collect the color measurement by using the hypothesis

intensity function. This measurement increases the weight of a birth Gaussian

and the state estimate of this player is obtained. In this sequence, the camera is

moving when capturing. Hence, segmentation methods are di¢ cult to apply. In

[28], Czyz used 5000 joint state space samples for this sequence. However, we use

400 particles to obtain the color measurement random set.

Figure 6.3: Tracking multiple players in the football sequence
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Figure 6.4 shows some results of the tracking in the seq16 from [91]. In this

sequence, at the beginning, there is no one in the scene. At frame 34, 78, 135 and

141, the �rst, second, third and fourth person enter the tracking area, respectively.

They walk in two opposite directions and occlusions may occur. The results show

that our method can track varying number of people in this sequence.

6.7 Summary

The chapter described a method using the GMPHD �lter to track multiple objects

by incorporating the color representation. It is proved that the PHD is proportional

to our hypothesis intensity function for color tracking, which helps to de�ne the

color measurement random set. A PHD recursion for visual observations with

color measurements is proposed. With this approach, the experiments show that

the video tracking works for varying number of objects in a single-object state

space, which is e¢ cient and promising for real-time applications.
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Figure 6.4: Tracking multiple persons in seq16



Chapter7
Multiple-camera multiple-object tracking

using the PHD �lter

7.1 Introduction

Tracking moving objects is an important part of many applications. Some people

proposed methods to track objects by using one camera [23], [28], [83]. However,

when persons might be occluded by other persons in the scene, using one camera to

track these persons is di¢ cult. This is because information of these persons from

one camera is not enough to solve the occlusion problem. An idea to solve this

problem is to use multiple cameras to recover information that might be missing

from a particular camera. Furthermore, multiple cameras can be used to recover

the 3D information of objects.

102
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There are some approaches for tracking using multiple cameras. Most of them

have two stages. They are single-view stage and multiple-view data fusion stage.

In the single-view stage, observations and estimations are extracted by the Kalman

�lter [31], the particle �lter [70], segmentation methods [68], or detection methods

[13]. Then in the second stage, these data are fused to obtain the �nal results.

Some methods propose to track one object using multiple cameras [13], [70]. These

methods track an object and switch to another camera when the system predicts

that the current camera no longer has a good view of the object. However, these

methods need to consider data association when extending from tracking one object

to multiple objects. Some other methods can track multiple objects [15], [31],

[53], [68]. Among them, some methods match objects between di¤erent camera

views [15], [68] or incorporate classi�cation methods [53] to do the data association

between observations and objects in multiple views. These methods can collaborate

multiple cameras for multiple-object tracking. However, when the appearances of

objects are similar or occlusions occur, these methods might not be suitable. This

is because some wrong matches may occur. An example is shown in Figure 7.1.

In this �gure, the color of the brown person�s face in camera 1 is similar to the

color of the white person�s face in camera 2. Hence, the wrong match has occurred.

The other idea is to �nd 3D observations that correspond with observations from

di¤erent views [31]. However, the association of observations from di¤erent views

can increase computational cost in 3D observation searching.
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Figure 7.1: An example for wrong matching based on the apperance

Data association between observations and objects in multiple views is a chal-

lenging problem in multiple-camera multiple-object tracking. If data association is

based on the appearance of objects, the changing of appearance between cameras

will a¤ect the performance. To avoid the data association problem, the PHD �lter

can be used. There are some approaches that use the PHD �lter for video tracking

[62], [111].

In this chapter, we employ the GMPHD �lter with multiple sensors (more

details are in Section 5.3) to track several people using multiple cameras in a

room. The method includes two stages: single-view tracking and multiple-camera

fusion. These two stages are based on the GMPHD �lter. It is assumed that we

have projection matrices from 3D space to the cameras. Our method can recover

the 3D object locations and handle the occlusion at each camera. We assume that

color models are available. Then, the proposed tracking method can be e¢ ciently

applied to track a varying number of objects. Our method fails when an object
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is occluded in all cameras views, but it can be tracked once the occlusion is over.

Further, because the fusion stage of multiple cameras to obtain 3D object locations

is based on the GMPHD �lter, it reduces the amount of computation compared

with other methods such as search based methods or the particle �lter.

7.2 System overview

We propose a method to track 3D locations of heads of people using multiple

cameras with assumptions that the cameras are calibrated and the �elds of views

of the cameras overlap. The proposed method, as shown in Figure 7.2, consists of

two major components: single view tracking and multiple-camera fusion. In the

�rst component, at each camera at time k, we �nd color observations and then use

the GMPHD �lter to estimate the 2D locations of objects. Let Y i
k = fyi1;k; :::; yim;kg

be the set of 2D estimations of objects at time k, view i. We have n single views,

so the set of 2D estimations of objects at time k can be de�ned by

Yk =
�
Y 1
k ;Y

2
k ; :::;Y

n
k

�
(7.1)

More details on the �rst step will be shown in Section 7.3.
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Figure 7.2: The sketch of our system for multiple object tracking using multiple

cameras

In the second component, we consider the set of 2D estimations of objects Yk as

observations for a data fusion step to estimate the 3D information of objects by the

GMPHD �lter. This method can avoid the data association between observations

and state of objects. More details of the second step will be shown in Section 7.4.

7.3 Single-view tracking

At each single view, we assume that the object state does not change much be-

tween frames and each object in multiple-object tracking is evolved from a dynamic
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moving equation

xk = xk�1 + wk�1 (7.2)

where the state of an object in a single view xk = fxc; yc; Hx; Hyg is a rectangle

with center fxc; ycg and size fHx; Hyg, wk is the process noise.

Single-view tracking consists of two parts: obtaining the color measurement

random set and using these color measurements to obtain the PHD. First, we

train color models of the heads from template images. The color model is the

color histogram of the head. These models are used when we evaluate the color

likelihood. Now, we consider the ith camera. Let vik(x) be the PHD of the ith

camera at time k and vikjk�1(x) be the predicted PHD of the ith camera at time

k. From vik�1(x), we can predict the PHD vkjk�1(x) by assumptions on the state

dynamic equation and the prediction step in the GMPHD �lter. We prove that

vik(x) / ~vik(x) = lz(x)v
i
kjk�1(x) (7.3)

where lz(x) is the color likelihood that is de�ned in Section 6.2. ~vik(x) is the

hypothesis intensity function. After that, we use Monte Carlo samples to �nd

peaks in ~vik(x). These peaks are also peaks in v
i
k(x). The set of these peaks is

considered to be the color measurement random set.

Secondly, we use the color measurement random set to update the PHD by the

updating step in the GMPHD �lter. After updating the predicted PHD vikjk�1(x)

with the color measurement random set, we obtain the PHD vik(x). From PHD
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vik(x), we �nd Gaussian components whose weights are larger than a threshold (0.5).

The set of means of these Gaussian components are 2D estimations of objects at

the ith camera. They are denoted as Y i
k = fyi1;k; :::; yim;kg. (See Chapter 6 for more

details of single-view tracking.)

7.4 Multiple-camera fusion

We assume that the dynamic moving equation for 3D tracking is

xk = xk�1 + wk�1 (7.4)

where the state of an object xk = fx1;k; x2;k; x3;kg is a 3D coordinate, wk�1 is the

process noise.

The observations are 2D estimations from multiple cameras. So, the measure-

ment equation at the ith camera is described by

0BBBBBB@
l1;k

l2;k

l3;k

1CCCCCCA =

0BBBBBB@
ai11 ai12 ai13 ai14

ai21 ai22 ai23 ai24

ai31 ai32 ai33 ai34

1CCCCCCA

0BBBBBBBBBB@

x1;k

x2;k

x3;k

1

1CCCCCCCCCCA
0BB@ yi1;k

yi2;k

1CCA =

0BB@ l1;k=l3;k

l2;k=l3;k

1CCA+ uk (7.5)

where uk is the measurement noise, and aimn are projection parameters from 3D
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coordinate to the ith camera plane. Assuming that cameras are calibrated, we

have projection parameters aimn.

The idea of fusing data from multiple cameras is to use the approximation

of multiple-sensor PHD update in GMPHD �lter. The idea of approximation of

multiple-sensor PHD update is described in [104]. Let Vk(x) be the PHD for

multiple-camera multiple-object tracking at time step k. The overview of the idea

is shown in Figure 7.3. Now, we describe the details of the algorithm

Figure 7.3: Sequential updating for PHD at cameras

� Step 1: Assuming that we have the PHDs of previous time step k � 1 of

multiple-camera fusion stage Vk�1(x) and single-view tracking stage v1k�1(x)

at camera 1, we employ the method described in Section 7.3 to obtain the set

of 2D estimations of objects, Y 1
k , and PHD v1k(x). Then, from Vk�1(x), we

use dynamic state equation (7.4) and measurement equation (7.5) to predict

V 1
kjk�1(x) at camera 1 by Equation (3.17). Because measurement equation

(7.5) is not linear, we have to use the unscented transform in the prediction

step (more details are in [102]). Then, the set of 2D estimations of objects

at camera 1, Y 1
k , is used to update Vkjk�1(x) to V

1
k (x) by the updating step

in the GMPHD �lter (Equation (3.19)). From assumptions on the GMPHD
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�lter, Vk�1(x) is a Gaussian mixture, so V 1
k (x) is also a Gaussian mixture.

� Step 2: Set i = 2

� Step 3: At camera i, set V i
kjk�1(x) = V i�1

k (x). Assuming that we have the

PHD of previous time step k � 1 of single-view tracking stage at camera i,

vik�1(x), the method described in Section 7.3 is performed to obtain the set of

2D estimations of objects at camera i, Y i
k , and PHD vik(x): Because V

i
kjk�1(x)

is a Gaussian mixture, we can use the updating step of the GMPHD �lter to

update V i
kjk�1(x) with observations in Y

i
k . This means

V i
k (x) = (1� pD;k)V i�1

k (x) +
X
y2Y ik

VD;k(x; y) (7.6)

Then, we can obtain the V i
k (x).

� Step 4: Set i = i + 1. If i � n then we repeat step 3. Otherwise, we

have V n
k (x). The PHD of the system is Vk(x) = V n

k (x). For estimating

the 3D object locations, we investigate the PHD of the system Vk(x) and

choose Gaussian components whose weights are larger than a threshold (0.5)

to obtain the 3D estimations of objects. (See Section 5.3 for more details of

the asynchronous sensor updating in the GMPHD �lter.)

We note that the GMPHD �lter in [102] did not include the track labels of

objects. For label tracking, our method is described as follows. Each Gaussian

component is associated with a label. For birth Gaussian components, we assign
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them a special label (for example -1). After the updating step in the �rst camera,

Gaussian components with labels become the predicted Gaussian components for

the second camera and then they are used to update the PHD in the second camera.

At the last camera, for each label, we choose the Gaussian component that has the

largest weight. The estimations of object locations are from the means of these

largest Gaussian components. If a Gaussian component has a special label and its

weight is large enough, we assign it a new label. This means a new person occurs.

Hence, the identi�cations of people are de�ned in the tracking. This label tracking

method is extended from the work in [22] from single sensor to multiple sensors

and then applied in multiple-camera multiple-object tracking.

7.5 Experimental results

First, we test the performance of our method with data from the �rst and second

cameras in scenarios seq24-2p-0111, seq35-2p-1111, and seq44-3p-1111 in the test

database [58]. There are about 4500 time steps for each camera (9000 image

frames for two cameras). We use the Wasserstein distance in [43], [61] to measure

performance. The errors of 3D estimations are listed in Table 7.1.
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Scenarios Mean error (m)

seq24-2p-0111 0.06

seq35-2p-1111 0.05

seq44-3p-1111 0.07

Table 7.1: Error of 3D estimation

For visualization, we show the results from test case �seq44-3p-1111�in Figures

7.4 and 7.5. In this scenario, there are three persons. They appear and disappear

at di¤erent times. This scenario is challenging because occlusions occur between

persons when they cross together. Moreover, in this scenario, the lighting of the

room changes through the tracking, so it is di¢ cult to apply segmentation meth-

ods. In addition, because the color models of heads are di¤erent between views, it

is sometimes di¢ cult to apply methods such as stereo matching to �nd the corre-

spondences. Hence, the 3D reconstructions from correspondences are not reliable

in this data. However, our method successfully tracks 3D object locations in this

scenario.

At each camera, we use 400 samples to represent for the hypothesis intensity

function at single-view tracking stage. The maximum of Gaussian mixture compo-

nents are 30. We assume that persons enter the tracking areas from two entrances.

Hence, the birth intensity is the mixture of Gaussian components whose means are

the locations at these entrances. The clutter density in the multiple-view camera
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fusion is an uniform distribution on the tracking area 3m � 2m � 2m which is the

visible space in the 3D tracking and the clutter density in the single-view tracking

stage is an uniform distribution of the size of image (it is also the projection from

tracking area to cameras) and the range of radius Hx and Hy ([5,15]). The proba-

bility of survival is pS = 0:99 and the probability of detection is pD = 0:98. These

parameters are set by experiments.

Figure 7.4 shows the performance of 3D people tracking. The dots are the

ground-truth and the lines are the estimates from our method. The results indicate

that tracks of people are maintained. The x and y components are reliable while

the z component has some errors, for example at steps 600 to 700. This is because

at steps 600 to 700, the color of the background near the person�s location at the

camera 2 is similar to the color of the templates. However, these errors are quite

small. In this sequence, when a person moves out of the view and then moves back,

we will assign it a new label, which is treated as correct detection.
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Figure 7.4: 3D results of tracking multiple people using the PHD �lter

Figure 7.5 shows the results when we project 3D locations to the camera plane.
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Each cell in the �gure has two images. The left image is from camera 1 and the right

image is from camera 2. In this �gure, we can see that at time k = 99; 144; 247,

the �rst, second, and third persons appear in the overlapped region sequentially.

They are detected and tracked automatically. At time k = 264; 295, the occlusion

between the second and third person occurs in camera 1 and 2. However, the tracks

are maintained after the occlusion. At time k = 809, the occlusion between the

�rst and third person occurs at camera 1 and the occlusion between the �rst and

second person occurs at camera 2. We can see in the �gure that our method can

handle these cases. This is because the PHD from camera 1 is a good prediction

for the PHD at the camera 2. Information from two cameras is fused to obtain the

reliable 3D estimations without using data association methods.
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Figure 7.5: Projection 3D estimations to two camera planes

We also compare our method with the stereo matching method that is based

on epipolar constraints [13], [68]. Figure 7.6 shows the performance of 3D people
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tracking using the stereo matching. The results indicate that the performance of

our method in Figure 7.4 is better than the stereo matching method in this data.

Figure 7.6: 3D results of tracking multiple people using Stereo Matching

Figure 7.7 and 7.8 show some comparison frame examples from stereo matching

method and our method. In Figure 7.7, the stereo matching to reconstruct 3D
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coordinates was not successful because the color models of the same object in two

cameras are di¤erent from each other. Thus, matching cannot give the desired

correspondences. The results in Figure 7.8 show that our method is successful in

the 3D reconstruction. This is because we considered the temporal information

of each object in two cameras. In our method, the current state estimates are

predicted and updated from the previous state estimates and observations. This

avoids sudden changes due to the errors of appearance matching.

Figure 7.7: Some frame results from the Stereo Matching method



7.5 Experimental results 119

Figure 7.8: Some frame results from our method

To further test the performance, we set up a multiple-camera system in our lab

�StarHome� [1]. We collect some video sequences with 5000 image frames (2500

time steps). In this data, when persons move to the television, the tracking is lost

because the color models of the screen and head are similar. This error is common

for color object tracking. Hence, we use a simple background subtraction method

to remove local background areas that have the similar color to the head. The
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background is obtained before any object moves in the camera view. Of course, if

the object is the same as the local background, it will not be able to be tracked

correctly. In this case, we can use auxiliary information to maintain the tracking,

or the system will recover the track when the object moves out of the region. Figure

7.9 shows results in the �rst sequence.

Figure 7.9: 3D results of tracking multiple people in sequence 1

The occlusions between two persons occur at time steps k = 401; 527 in camera

1. However, in camera 2, two persons are not occluded in these time steps. Thus,

the method can track these persons correctly. In the second sequence, there are

three persons. This sequence is challenging because three persons are occluded at
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some time steps, for example time step k = 625. Figure 7.10 shows results in the

second sequence.

Figure 7.10: 3D results of tracking multiple people in sequence 2

Our method has good state estimates in most of the time in this sequence.

However, at time step k = 615, because persons are near each other, the state

estimates of the white person and orange person are the same at both cameras.

This causes errors of identi�cations of persons. These errors can be recovered by
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using auxiliary information such as cloth color [114].

7.6 Summary

The chapter described a method of using the GMPHD �lter to track 3D locations

of objects. The method can track a varying number of objects. Moreover, it

can solve some occlusion problems for which single camera system has di¢ culty.

The fusion stage using the GMPHD �lter reduced a lot of computations compared

with the methods that search whole state space or the particle �lter method with

multiple objects. Experimental results have shown that the proposed approach is

promising.
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Conclusion and future work

In this study, we applied successfully the PHD �lter in visual tracking and speaker

tracking. The GMPHD �lter is proved e¢ ciently in multiple-sensor scenarios such

as microphone pairs or multiple cameras. Moreover, a method for maintaining

track continuity in methods using the PHD �lter for multiple-object tracking was

also proposed. These contributions and discussions are detailed as follows.

Firstly, an e¢ cient method for maintaining the track continuity in the GM-

PHD �lter is proposed. Our experimental results show that the GMPHD �lter

could identify the trajectory of each object in multiple-object tracking with a high

accuracy. In the results, even when the measurement detection is not very reliable,

the labels of objects are kept correctly. The results also show that the performance

of our method is better than existing methods. This is because our method prop-

agates the identi�cations of objects with Gaussian components and uses them to

123
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create a label association search tree. A lot of branches in this search tree are

reduced. Then, an exact search method is employed rather than approximation

methods. Therefore, our algorithm has a high accuracy and can deal with a large

number of objects in multiple-object tracking. The results of this study demon-

strate that our method can be used in applications requiring real time processing

with high density clutter and variable number of objects that traditional methods

such as JPDA or MHT �nd di¢ cult to handle due to the computational complex-

ity. One limitation is when two objects are close or occluded for a long time, the

track label could be wrong. Therefore, it is necessary to develop a method to deal

with these cases. A suggestion is that we can detect when the occlusions occur

and then we can solve the occlusion problem based on data from previous times.

Secondly, an e¢ cient method for multiple-speaker tracking using the random

�nite set frame work is also addressed. We use the GMPHD �lter for multiple-

speaker tracking in a reverberant environment. The results show that the positions

of speakers have a small error during the tracking period. Moreover, the method

successfully handles the varying of number of speakers and false alarms in a rever-

berant environment. The results also demonstrate that the GMPHD �lter is much

more e¢ cient than some methods for multiple-speaker tracking in a reverberant

acoustic environment. Furthermore, it is shown that our method works well in

other applications, such as tracking with bearing and range measurements. By

applying the approximation of multiple-sensor PHD update in the GMPHD �lter,
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which proved to be a closed-form of the PHD �lter, the e¢ ciency is maintained.

Because the state estimates of objects are peaks in Gaussian components, they are

more exact than those by using clustering techniques to extract state estimates

from particles. However, in the speaker tracking application that we implemented

in this thesis, the extracting measurement method is based on the GCC TDOA

method. It is easy to have false detections when there are a large number of speak-

ers. To deal with this problem, we need to investigate some other methods to

obtain better measurements. Another issue also can be considered. It is to inte-

grate the acoustic and visual data in multiple-speaker tracking. With the help from

visual processing, the accuracy of estimations of state of speakers will be improved.

Thirdly, in this study, a method is developed for tracking multiple objects us-

ing the PHD �lter and color measurements. The method operates in single-object

state space. It requires less computation than methods using multiple-object state

space and it provides an alternative way to obtain the visual measurement random

set which is not straight-forward sometimes. For example, when the camera is

moving, methods to de�ne the visual measurement random set by using detection

methods such as background subtraction are di¢ cult to be performed. By propos-

ing a hypothesis intensity from color likelihood, a color measurement random set

is obtained. From this color measurement random set, we can formulate the video

tracking in the random �nite set framework. With our method, the experimen-

tal results demonstrate that state estimates of objects are more reliable during
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the tracking period. Moreover, our method can detect the appearance and disap-

pearance of objects without using other additional methods. In the experimental

results, the objects interact each other many times, but they are tracked with high

accuracy by using our method. This is because the random �nite set approach

can overcome the varying number of objects automatically. The method can be a

general framework for other applications such as radar tracking where we do not

have a method to de�ne measurement random set with raw data. However, two

issues need to be considered. The �rst issue is that the method requires an amount

of computation when using particles to obtain the measurement set. Therefore, it

is worth developing a closed-form to obtain the measurement set to improve the

speed of the method. The second issue is that in the proof to obtain the hypothesis

intensity function, we assume that the multiple-object likelihood is the products of

each single-object likelihood. This assumption is from [28] and can be used in the

video tracking. It is not always correct in other applications. Hence, proving the

formula of the hypothesis intensity function without using this assumption need to

be considered.

Lastly, a two-stage method for multiple-camera multiple-object tracking is pro-

posed. The method divides into two stages. These two stages operate in a single-

object state space by using the GMPHD �lter. The results show that our method

can track 3D locations of objects even when the occlusions occur in some cam-

era views and can track varying number of objects. Moreover, as a comparison,
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the results indicate that the performance of our method is better than the stereo

matching method because of using temporal information to avoid sudden changes.

One limitation is that when two or more objects are occluded at all camera views,

the identi�cations of these objects may be not correct. This is because the infor-

mation of these objects at all camera views are the same and the proposed method

cannot di¤erentiate them. A suggestion is that we can use auxiliary information

such as cloth color to recover the identi�cations of these objects. However, if two

objects have similar appearances, the di¤erentiation between them is a challeng-

ing task. Another limitation is the changing of the object colors. This is because

limitations of of using color in single object tracking of the �rst stage. Therefore,

it is worth developing methods to adapt to color changes in objects.
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