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Abstract 

 

Automatic image annotation (AIA) has been a hot research topic in recent years since 

it can be used to support concept-based image retrieval. In the field of AIA, 

characterizing image concepts by mixture models is one of the most effective 

techniques. However, mixture models also pose some potential problems arising from 

the limited size of (even a small size of) labeled training images, when large-scale 

models are needed to cover the wide variations in image samples. These potential 

problems could be the mismatches between training and testing sets, and inaccurate 

estimations of model parameters.  

In this dissertation, we adopted multinomial mixture model as our baseline and 

proposed a Bayesian learning framework to alleviate these potential problems for 

effective training from three different perspectives. (a) We proposed a Bayesian 

hierarchical multinomial mixture model (BHMMM) to enhance the 

maximum-likelihood estimations of model parameters in our baseline by 

incorporating prior knowledge of concept ontology. (b) We extended conventional 

AIA by three modes which are based on visual features, text features, and the 

combination of visual and text features, to effectively expand the original image 

annotations and acquire more training samples for each concept class. By utilizing the 

text and visual features from the training set and ontology information from prior 

knowledge, we proposed a text-based Bayesian model (TBM) by extending BHMMM 

to text modality, and a text-visual Bayesian hierarchical multinomial mixture model 
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(TVBM) to perform the annotation expansions. (c) We extended our proposed TVBM 

to annotate web images, and filter out low-quality annotations by applying the 

likelihood measure (LM) as a confidence measure to check the ‘goodness’ of 

additional web images for a concept class.  

From the experimental results based on the 263 concepts of Corel dataset, we 

could draw the following conclusions. (a) Our proposed BHMMM can achieve a 

maximum F1 measure of 0.169, which outperforms our baseline model and the other 

state-of-the-art AIA models under the same experimental settings. (b) Our proposed 

extended AIA models can effectively expand the original annotations. In particular, by 

combining the additional training samples obtained from TVBM and re-estimating the 

parameters of our proposed BHMMM, the performance of F1 measure can be 

significantly improved from 0.169 to 0.230 on the 263 concepts of Corel dataset. (c) 

The inclusion of web images as additional training samples obtained with LM gives a 

significant improvement over the results obtained with the fixed top percentage 

strategy and without using additional web images. In particular, by incorporating the 

newly acquired image samples from the internal dataset and the external dataset from 

the web into the existing training set, we achieved the best per-concept precision of 

0.248 and per-concept recall of 0.458. This result is far superior to those of 

state-of-the-arts AIA models. 
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Chapter 1 

Introduction 

 

Recent advances in digital signal processing, consumer electronics technologies and 

storage devices have facilitated the creation of very large image/video databases, and 

made available a huge amount of image/video information to a rapidly increasing 

population of internet users. For example, it is now easy for us to store 120GB of an 

entire year of ABC news at 2.4GB per show or 5GB of a five-year personal album (e.g. at 

an estimated 2,000 photos per year for 5 years at the size of about 0.5M for each photo) 

in our computer. Meanwhile, with the wide spread use of internet, many users are putting 

a large amount of images/videos online, and more and more media content providers are 

delivering live or on-demand image/videos over the internet. This explosion of rich 

information also poses challenging problems of browsing, indexing or searching 

multimedia contents because of the data size and complexity. Thus there is a growing 

demand for new techniques that are able to efficiently process, model and manage 

image/video contents. 

 

1.1 Background 

 

Since the early 1970’s, lots of research studies have been done to tackle the 

abovementioned problems, with the main thrust coming from the information retrieval 

(IR) and computer vision communities. These two groups of researchers approach these 

problems from two different perspectives (Smith et al.  2003). One is query-by-keyword 
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(QBK), which essentially retrieves and indexes images/videos based on their 

corresponding text annotations. The other paradigm is query-by-example (QBE), in 

which an image or a video is used to present a query.   

One popular framework of QBK is to annotate and index the images by keywords and 

then employ the text-based information retrieval techniques to search or retrieve the 

images (Chang and Fu 1980; Chang and Hsu 1992). Some advantages of QBK 

approaches are their ease of use and are readily accepted by ordinary users because 

human thinks in terms of semantics. Yet there exist two major difficulties, especially 

when the size of image collection is large (in tens or hundreds of thousands). One such 

difficulty in QBK is the rich contents in images and subjectivity of human perception. It 

often leads to mismatches in the process of later retrieval due to the different semantic 

interpretations for the same image between the users and the annotators. The other 

difficulty is due to the vast amount of laboring efforts required in manually annotating 

images for effective QBK. As the size of the image/video collection is large, in the order 

of 10
4
-10

7
 or higher, manually annotating or labeling such a large collection is tedious, 

time consuming and error prone. Thus in the early 1990’s, because of the emergence of 

large-scale image collections, the two difficulties faced by manual annotation approaches 

become more and more acute.  

To overcome these difficulties, QBE approaches were proposed to support content-

based image retrieval (CBIR) (Rui et al. 1999). QBIC (Flickner et al. 1995) and 

Photobook (Pentland et al. 1996) are two of the representative CBIR systems. Instead of 

using manually annotated keywords as the basis of indexing and retrieving images, 

almost all QBE systems use visual features such as color, texture and shape to retrieve 
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and index the images. However, these low-level visual features are inadequate to model 

the semantic contents of images. Moreover, it is difficult to formulate precise queries 

using visual features or image examples. As a result, QBE is not well-accepted by 

ordinary users.   

 

1.2 Automatic Image Annotation (AIA) 

 

In recent years, automatic image annotation (AIA) has become an emerging research 

topic aiming at reducing human labeling efforts for large-scale image collections. AIA 

refers to the process of automatically labeling the images with a predefined set of 

keywords or concepts representing image semantics. The aim of AIA is to build 

associations between image visual contents and concepts.  

As pointed out in (Chang  2002), content-based media analysis and automatic 

annotation are important research areas that have captured much interest in recognizing 

the need to provide semantic-level interaction between users and contents. However, AIA 

is challenging for two key reasons:  

1. There exists a “semantic gap”  between the visual features and the richness of 

human information perception. This means that lower level features are easily 

measured and computed, but they are far away from a direct human interpretation 

of image contents. So a paramount challenge in image and video retrieval is to 

bridge the semantic gap (Sebe et al.  2003). Furthermore, as mentioned in (Eakins 

and Graham 2002), human semantics also involve understanding the intellectual, 

subjective, emotional and religious sides of the human, which could be described 
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only by the abstract concepts. Thus it is very difficult to make the link between 

image visual contents and the abstract concepts required to describe the image. 

Enser and Sandom (2003) presented a comprehensive survey of the semantic gap 

issues in visual information retrieval and provided a better-informed view on the 

nature of semantic information need from their study.   

2. There is always a limited set of (even a small set of) labeled training images. To 

bridge the gap between low-level visual features and high-level semantics, 

statistical learning approaches have recently been adopted to associate the visual 

image representations and semantic concepts. They have been demonstrated to 

effectively perform the AIA task (Duygulu et al. 2002; Jeon et al. 2003; Srikanth 

et al. 2005; Feng et al. 2004; Carneiro et al. 2007). Compared with the other 

reputed AIA models, mixture model is the most effective and has been shown to 

achieve the best AIA performance on the Corel dataset (Carneiro et al. 2007). 

However, the performance of such statistical learning approaches is still low, 

since they often need large amounts of labeled samples for effective training. For 

example, the approaches of mixture model often need many mixtures to cover the 

large variations in image samples, and we need to collect a large amount of 

labeled samples to estimate the mixture parameters. But it is not a practical way to 

manually label a sufficiently large number of images for training. Thus this 

problem has motivated our research to explore the mixture models to perform 

effective AIA based on a limited set of (even a small set of) labeled training 

images. 
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Throughout this thesis, we loosely use the term keyword and concept interchangeably 

to denote text annotations of images.  

 

1.3 Motivation 

 

The potential difficulties resulting from a limited set of (even a small set of) training 

samples could be the mismatches between training and testing sets or inaccurate 

estimation of model parameters. These difficulties are even more serious for a large-scale 

mixture model. It is therefore important to develop novel AIA models which can achieve 

effective training with the limited set of labeled training images, especially with the small 

set of labeled training images. As far as we know, few research work in the AIA field 

have been conducted for tackling these potential difficulties, and we will discuss this 

topic in detail in the followed chapters. 

 

1.4 Contributions 

 

In this dissertation, we propose a Bayesian learning framework to automatically annotate 

images based on a predefined list of concepts. In our proposed framework, we 

circumvent abovementioned problems from three different perspectives: 1) incorporating 

prior knowledge of concept ontology to improve the commonly used maximum-

likelihood (ML) estimation of mixture model parameters; 2) effectively expanding the 

original annotations of training images based on multimodal features to acquire more 

training samples without collecting new images; and 3) resorting to open image sources 
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on the web for acquiring new additional training images. In our framework, we use 

multinomial mixture model (MMM) with maximum-likelihood (ML) estimation as our 

baseline, and our proposed  approaches are as follows:  

 

� Bayesian Hierarchical Multinomial Mixture Model (BHMMM). In this approach, 

we enhance the ML estimation of the baseline model parameters by imposing a 

maximum a posterior (MAP) estimation criterion, which facilitates a statistical 

combination of the likelihood functions of available training data and the prior 

density with a set of parameters (often referred to as hyperparameters). Based on 

such a formulation, we need to address some key issues, namely: (a) the definition 

of the prior density; (b) the specification of the hyperparameters; and (c) the MAP 

estimation of the mixture model parameters. To tackle the first issue, we define 

the Dirichlet density as a prior density, which is conjugate to multinomial 

distribution and makes it easy to estimate the mixture parameters. To address the 

second issue, we first derive a multi-level concept hierarchy from WordNet to 

capture the concept dependencies. Then we assume that all the mixture 

parameters from the sibling concept classes share a common prior density with 

the same set of hyperparameters. This assumption is reasonable since given a 

concept, say, ‘oahu’, the images from its sibling concepts (say, ‘kauai’ and ‘maui’) 

often share the similar context (the natural scene on tropical island). We call such 

similar context information among sibling concepts as the ‘shared knowledge’. 

Thus the hyperparameters are used to simulate the shared knowledge, and 

estimated by empirical Bayesian approaches with an MLE criterion. Given the 
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defined prior density and the estimated hyperparameters, we tackle the third issue 

by employing an EM algorithm to estimate the parameters of multinomial mixture 

model.  

 

� Extended AIA Based on Multimodal Features. Here we alleviate the potential 

difficulties by effectively expanding the original annotations of training images, 

since most image collections often come with only a few and incomplete 

annotations. An advantage of such an approach is that we can augment the 

training set of each concept class without the need of extra human labeling efforts 

or collecting additional training images from other data sources. Obviously two 

groups of information (text and visual features) are available for a given training 

image. Thus we extend the conventional AIA to three modes, namely associating 

concepts to images represented by visual features, briefly called as visual-AIA, by 

text features as text-AIA, and by both text and visual features as text-visual-AIA. 

There are two key issues related to fusing text and visual features to effectively 

expand the annotations and acquire more training samples: (a) accurate parameter 

estimation especially when the number of training samples is small; and (b) 

dependency between visual and text features. To tackle the first issue, we simply 

extend our proposed BHMMM to visual and text modalities as visual-AIA and 

text-AIA, respectively. To tackle the second issue, we propose a text-visual 

Bayesian hierarchical multinomial mixture model (TVBM) as text-visual-AIA to 

capture the dependency between text and visual mixtures in order to perform 

effective expansion of annotations. 
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� Likelihood Measure for Web Image Annotation. Nowadays, images have become 

widely available on the World Wide Web (WWW). Different from the traditional 

image collections where very little information is provided, the web images tend 

to contain a lot of contextual information like surrounding text and links. Thus we 

want to annotate web images to collect additional samples for training.  However, 

due to large variations among web images, we need to find an effective strategy to 

measure the ‘goodness’ of additional annotations for web images. Hence we first 

apply our proposed TVBM to annotate web images by fusing the text and visual 

features derived from the web pages. Then, given the likelihoods of web images 

from TVBM, we investigate two different strategies to examine the ‘goodness’ of 

additional annotations for web images, i.e. top N_P strategy and likelihood 

measure (LM). Compared with setting a fixed percentage by the top N_P strategy 

for all the concept classes, LM can set an adaptive threshold for each concept 

class as a confidence measure to select the additional web images in terms of the 

likelihood distributions of the training samples.  

Based on our proposed Bayesian learning framework which aims to alleviate the 

potential difficulties resulting from the limited set of training samples, we summarize our 

contributions as follows: 

1. Bayesian Hierarchical Multinomial Mixture Model (BHMMM)  

We incorporate prior knowledge into the hierarchical concept ontology, and 

propose a Bayesian learning model called BHMMM (Bayesian Hierarchical 

Multinomial Mixture Model) to characterize the concept ontology structure and 

estimate the parameters of concept mixture models with the EM algorithm. By 
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using concept ontology, our proposed BHMMM performs better than our baseline 

mixture model (MMM) by 44% in term of F1 measure. 

2. Extended AIA Based on Multimodal Features  

We extend conventional AIA by three modes (visual-AIA, text-AIA and text-

visual-AIA) to effectively expand the annotations and acquire more training 

samples for each concept class. By utilizing the text and visual features from 

training set and ontology information from prior knowledge, we propose a text-

based Bayesian model (TBM) as text-AIA by extending BHMMM to text 

modality, and a text-visual Bayesian hierarchical multinomial mixture model 

(TVBM) as text-visual-AIA. Compared with BHMMM, TVBM achieves the 36% 

improvement in terms of F1 measure. 

3. Likelihood Measure for Web Image Annotation   

We extend our proposed TVBM to annotate the web images and filter out the low-

quality annotations by applying the likelihood measure (LM) as a confidence 

measure to examine the ‘goodness’ of additional web images. By incorporating the 

newly acquired web image samples into the expanded training set by TVBM, we 

perform best in terms of per-concept precision of 0.248 and per-concept recall of 

0.458 as compared to other state-of-the-art AIA models. 

 

1.5  Thesis Overview 

 

The rest of this thesis is organized as follows:  
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Chapter 2 discusses the basic questions and reviews the-state-of-art research on automatic 

image annotation. We also discuss the challenges for the current research work on AIA.  

Chapter 3 reviews the fundamentals on finite mixture model, including Gaussian mixture 

model, multinomial mixture model and estimation of model parameters with EM 

algorithm based on an MLE criterion. Meanwhile, we discuss the details of our baseline 

model (Multinomial Mixture Model) for AIA. 

Chapter 4 presents the fundamentals of Bayesian learning of multinomial mixture model, 

including the formulation of posterior probability, the definition of the prior density, the 

specification of the hyperparameters and an MAP criterion for estimating model 

parameters. We propose a Bayesian hierarchical multinomial mixture model (BHMMM), 

and discuss how to apply Bayesian learning approaches to estimate the model parameters 

by incorporating hierarchical prior knowledge of concepts. 

In Chapter 5, without collecting new additional training images, we discuss the problem 

of effectively increasing the training set for concept classes by utilizing visual and text 

information of the training set. We then present three extended AIA models, i.e. visual-

AIA, text-AIA and text-visual-AIA models, which are based on the visual features, text 

features and the combination of text and visual features, respectively. 

In Chapter 6, we apply our proposed TVBM which is one of text-visual-AIA models to 

annotate new images collected from the web, and investigate two strategies of Top N_P 

and LM (Likelihood Measure) to filter out the low-quality additional images for a 

concept class by checking the ‘goodness’ of concept annotations for web images. 

In Chapter 7, we present our concluding remarks, summarize our contributions and 

discuss future research directions.  
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Chapter 2 

Literature Review 

 

This Chapter introduces a general AIA framework, and then discusses each module in 

this framework, including image visual feature extraction, image content decomposition 

and representation, and the association modeling between image contents and concepts. 

In particular, we categorize the existing AIA models into two groups, namely the joint 

probability-based and classification-based models, and discuss and compare the models 

in both groups. Finally we present the challenges for the current AIA work. 

 

2.1 A General AIA Framework 

 

 

Image Component 

Decomposition 

Images 

Visual Features 

High-level 

Annotations 

Image Content 

Representation 

Association 

Modeling 

Image Feature 

Extraction 

 

Figure 2.1: A general system framework for AIA 

Most current AIA systems are composed of four key modules: image feature extraction, 

image component decomposition, image content representation, and association learning. 

A general framework of AIA is shown in Figure 2.1. The feature extraction module 

analyzes images to obtain low-level features, such as color and texture. The module of 
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image component decomposition decomposes an image into a collection of sub-units, 

which could be segmented regions, equal-size blocks, or an entire image, etc. Such image 

components are used as a basis for image representation and analysis. The image content 

representation module models each content unit based on a feature representation scheme. 

The visual features used for image content representation could be different from those 

for image component decomposition. The module of association modeling computes the 

associations between image content representations and textual concepts and assigns 

appropriate high-level concepts to image.  

 

2.2 Image Feature Extraction 

 

Features are “the measurements which represent the data” (Minka 2005). Features not 

only influence the choice of subsequent decision mechanisms, their quality is also crucial 

to the performance of learning systems as a whole. For any image database, a feature 

vector, which describes the various visual cues, such as shape, texture or color, is 

computed for each image in the database. Nowadays, almost all AIA systems use color, 

shape and texture features to model image contents. In this Section, we briefly review the 

color-, shape-, and texture-based image features. 

2.2.1 Color 

Color is a dominant visual feature and widely used in all kinds of image and video 

processing/retrieval systems. A suitable color space should be uniform, complete, 

compact and natural. Digital images are normally represented in RGB color space used 
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by CRTs. However, RGB color space is perceptual non-uniform, i.e., it does not model 

the human perception of color. To overcome this problem, some linear color spaces, such 

as LUV, LAB, HSV, YCrCb color spaces, have been developed to best matches user’s 

ability to perceive and differentiate colors in natural images (Hall 1989; Chua et al. 1998, 

1999; Carson et al. 1999, 2002; Furht 1998; Manjunath et al. 2001). A comparison of 

color features and color spaces suitable for image indexing and retrieval can be found in 

(Furht  1998).  Furht  reported that while no single color feature or color space was best, 

the use of color moment and color histogram features in the LUV and HSV color spaces 

yielded better retrieval results than in the RGB color space.          

Color features can be categorized as global or local ones depending on the range of 

spatial information used. Global color features capture the global distribution or statistics 

of colored pixels, such as the color histogram which computes the distribution of pixels 

in quantized color space (Hafner 1995), or the color moments which compute the 

moment statistics in each color channel (Stricker and Orengo 1995). Color histogram is 

generally invariant to translation and rotation of the images, and the normalized color 

histogram leads to scale invariance. 

 However, color histogram can not capture any local information, and thus images 

with very different image appearances can have similar histogram (Hsu et al.  1995). To 

overcome this problem, new representations have been developed to incorporate spatial 

distributions of colors in (Chua et al.  1997; Vailaya et al.  1999). Examples include color 

coherence vector (CCV) ( Pass et al.  1996), color region model (Smith and Chang 1996), 

color pair model (Chua et al.  1994) and the color correlogram (Huang et al. 1997). These 

features have been demonstrated to be effective in color image classification and retrieval 
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(Smith 1997, Tong and Chang 2001), object matching and detection under controlled 

conditions (Fergus et al. 2003; Lowe 2004). 

2.2.2 Texture 

Variations of image intensities that form certain repeated patterns are called visual texture 

(Tuceryan and Jain 1993). These Patterns can be the result of physical properties of the 

object surface (i.e. roughness and smoothness), or the result of reflectance differences 

such as the color on a surface. Human can easily recognize a texture, yet it is very 

difficult to define it. Most natural surfaces exhibit texture and it may be useful to extract 

texture features for querying. For example, images of wood and fabric can be easily 

classified based on the texture rather than shape or color. 

Tuceryan and Jain (1993) identified four major categories of features for texture 

identification: statistical (Jain et al. 1995), geometrical (Tuceryan and Jain 1990), model-

based (Besag  1974; Pentland 1984; Mao and Jain 1992) and signal processing features 

(Coggins and Jain 1985; Jain and Farrokhnia 1991; Manjunath and Ma 1997). In 

particular, signal processing features, such as DCT, wavelets and Gabor filters, have been 

used effectively for texture analysis in many retrieval systems (Picard and Minka 1995; 

Manjunath and Ma 1997; Wang and Li 2002). The main advantage of signal processing 

features is that they can characterize the local properties of an image very well in 

different frequency bands. However, there are often a lot of different local properties that 

need to be characterized for images, such as clouds and buildings. In order to facilitate 

adaptive image representation, an adaptive MP texture feature and a feature extraction 

algorithm are proposed in (Shi et al. 2004) by borrowing the concept from matching 
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pursuit (Mallat 1993; Bergeaud and Mallat 1995) and using the different properties of 

some signal processing textures to represent image details.  

2.2.3 Shape 

Shape is a concept which is widely understood yet difficult to define formally. Therefore, 

at least yet, there exists no uniform theory of shape. Usually the techniques of shape 

descriptions can be categorized as boundary- or region-based methods depending on 

whether the boundary or the area inside the boundary is coded (Marshall 1989; Mehtre et 

al. 1997). The boundary-based features include histogram of edge directions, chord 

distribution, aspect ratio, boundary length and so on. The region-based features include 

Zernike moments, area, eccentricity, elongatedness, direction and so on. A good survey 

of shape features is presented in (Brandt 1999).   

Since AIA is a general task and not for a specific domain, a major limitation of using 

shape model is that the shape features are often unreliable and easily affected by noise. 

Thus only color and texture features are normally employed to model and represent the 

image contents in most existing AIA models.  

 

2.3 Image Content Decomposition 

 

As discussed in Section 2.2, image component decomposition aims to decompose the 

image into some meaningful units for image analysis. As shown in Figure 2.2, three kinds 

of image components, entire image, segmented regions and equal-size blocks, are often 
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used as image analysis units in most content-based image retrieval and automatic image 

annotation systems,  

                           
 

(a)  

entire image 

(b)  

segmented regions 

(c)  

fixed-size blocks 
 

Figure 2.2: Three kinds of image components 

The entire image was used as a unit in (Swain 1991; Manjunath and Ma 1996), and 

only global features were used to represent images. However, such systems are usually 

not effective since only global features cannot capture the local properties of an image 

well. Thus some recent systems use segmented regions as sub-units in images (Deng et al. 

1999; Deng and Manjunath 2001; Carson et al. 1999, 2002). Many techniques have been 

reported in the literature for image segmentation (Jain and Farrokhnia 1991; Manjunath 

and Ma 1997; Morris et al. 1997; Carson et al.  1999). However, segmenting images into 

meaningful units is a very difficult task, and the accuracy of segmentation is still an open 

problem. As a compromise, several systems adopt fixed-size sub-image blocks as sub-

units for an image (Szummer 1998; Mori et al. 2000; Feng et al.2004). The main 

advantage is that fixed-size block-based methods can be implemented easily. In order to 

compensate potential drawbacks of block-based methods, hierarchical multi-resolution 

structure is employed in (Wang and Li 2002). Intuitively the retrieval or annotation 

performance based on the segmented regions should be better than those based on fixed-

sized blocks, but there is no definite conclusion on which one is better. Generally 
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speaking, most existing AIA models employ segmented regions or fixed-size blocks as 

the image analysis units.  

 

2.4 Image Content Representation 

 

Image content representation aims to model each content unit based on a feature 

representation scheme. The visual features used for image content representation could be 

different from those for image component decomposition (Carson et al. 2002; Shi et al. 

2004). For example, some global features, such as average of LUV color components and 

DCT textures, are used for image segmentation in (Shi et al. 2004), since the 

segmentation based on global features can achieve good object-level results. But some 

local features, such as LUV histogram and adaptive matching pursuit (MP) textures (Shi 

et al. 2004), are used for content representation by combining with the global features, 

since these local features can characterize the local properties of image segmentations 

very well.  

 

images segmented regions region tokens 

 

Figure 2.3: An illustration of region tokens (Jeon et al. 2003)  
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Another popular method to represent image content is based on region tokens (Mori 

et al. 2000; Duygulu et al. 2002; Jeon et al. 2003; Shi et al. 2006, 2007). In such methods 

all the images are first segmented into regions, and each region is described by some set 

of visual features. Then all the regions are clustered into some region clusters which are 

so-called ‘region tokens’ represented by the centroids of region clusters. Thus given an 

image with a set of segmented regions, each segmented region is assigned to a unique 

region token whose centroid is closest to the given segmented region.  The main 

advantage of such methods is that we can construct a limited size of region token 

vocabulary to cover all the image variations in the space of visual features. Thus we can 

give a simple representation for images based on such a vocabulary of region tokens.  

 

2.5 Association Modeling 

 

In the previous sub-sections, we have discussed how to decompose and represent image 

contents. In the following, we will focus on the module of association modeling which is 

the most important part of AIA models. This module aims to compute the associations 

between image content representations and high-level textual concepts. 

2.5.1 Statistical Learning  

“Nothing is more practical than a good theory” (Vapnik 1998). Statistical learning theory 

plays a central role in many areas of science, finance and industry. The main goal of 

statistical learning is to study the properties of learning algorithms, such as gaining 

knowledge, making predictions, making decisions or constructing models, from a set of 
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data in a statistical framework (Bousquet et al. 2004). As noted in (Vapnik 1995, 1998; 

Cherkassky and Mulier 1998), statistical learning theory gives a formal and precise 

definition of the basic concepts like learning, generalization, overfitting, and also 

characterizes the performance of learning algorithms. Thus such a theory may ultimately 

help to design better learning algorithms.  

 

induction deduction 

estimated model 

a priori knowledge 

training data predicted 

output 

 

Figure 2.4: The paradigm of supervised learning (Vapnik 1995)  

A majority of statistical learning scenarios generally follows the classical paradigm as 

shown in Figure 2.4, including two steps: induction (i.e. progressing from training data to 

a general or estimated model) and deduction (i.e. progressing from a general or estimated 

model to a particular case or some output values). A training sample consists of a pair of 

an input representing the sample (typically a feature vector) and a desired output 

describing a corresponding concept. The output of the function can be a continuous 

value, or can predict a class label of the input. The task of learning is to predict the value 

of the function for any valid input after having seen a set of training examples (i.e. pairs 

of input and target output). In the current AIA field, most existing models follow this 
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classical paradigm, so first we will give a general formulation for AIA, and then illustrate 

the paradigm in detail.  

2.5.2 Formulation 

Consider that we have a predefined concept or keyword vocabulary C = {c1, c2,…, cV}, of 

semantic labels, (|C | =V), and a set of training images T = {I1, I2,…, IU}, (|T | =U). Given 

an image Ij∈T , 1≤j≤U, the goal of automatic image annotation is to extract the set of 

concepts or keywords from C , Cj ={cj,1, cj,2,…, cj,kj} ⊆  C , that best describes the 

semantics of Ij. In AIA, any training image is labeled with a set of concepts from C, thus 

the learning is based on a training set, D  = {(Ij , Cj): 1≤j≤U}, of image-annotation pairs. 

We now define additional notations as follows. (1) We denote an input variable by 

symbol X, where X is usually a random vector of image representations, and Ij is the j
th
 

observed value of X. (2) We denote an output variable W, which takes values in {1,…, V}, 

so that W = i if and only if X is a sample from the concept ci∈C . Thus given the training 

set D, we can use two ways for learning, namely the joint probability-based and 

classification-based models.  

For the joint probability-based models, we assume that (X, W) is a pair of random 

variables represented by some joint probability distributions, PX,W (X, W). Then based on 

a set of observations D  = {(Ij , Cj): 1≤j≤U} of (X, W), the goal of association learning is 

to infer the properties of this joint probability density. At the annotation stage, given an 
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image represented by a vector I, we obtain a function of W to rank all concepts as shown 

in Eq. (2.1).  

PW|X (W | I) = PX,W (X, W)∕PX (I)                                    (2.1) 

In the classification models, each label ci ∈C is taken as a semantic class, and then a set 

of class-conditional distributions or likelihood densities PX|W (X|W = i) are estimated for 

each concept class.  As pointed out in the well-known statistical decision theory (Duda et 

al. 2001), it is not difficult to show that labeling at the annotation stage can be solved 

with a minimum probability of error if the posterior probabilities  

PW|X (W = i | X) =PX|W (X| W = i) PW (W = i)∕PX (X)              (2.2) 

are available, where PW (W = i) is the prior probability of the i
th
 semantic concept class. In 

particular, given an image vector I for testing, the label that achieves a minimum 

probability of an error for that image is   

 arg max
i

i =  PW|X (W = i | I)                                       (2.3) 

In summary, in order to illustrate the classical paradigm of the learning process in 

AIA, we summarize both formulations as follows:  

1. A set of training data D  = {(Ij , Cj): 1≤j≤U} for learning.   

2. A prior knowledge used to impose constraints on the posterior or likelihood 

densities, PX (X) or PW (W). In AIA, PX (X) and PW (W) are often assumed to be 

uniform distributions. 
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3. A set of learning models needs to be estimated, PX,W (X, W) for joint probability-

based models, and PW|X (W | X) or PX|W (X | W) for classification-based models. 

4. An inductive principle, namely a general prescription for combining prior 

knowledge with available training data in order to produce an estimate of the 

learning model in Eq. (2.2). 

5. A deduction principle, i.e. Eqs. (2.1) and (2.3). 

Generally speaking, most existing AIA research work can be categorized into groups 

learning of either joint probability-based models or classification-based models. Before 

we review the existing work in Section 2.7, we will give a brief introduction on the 

performance measure used in the field of AIA.   

2.5.3 Performance Measurement 

Currently most AIA models adopt the common performance measures derived from 

information retrieval. Given some un-annotated images for testing, the AIA system will 

automatically generate a set of concept annotations for each image. Thus we can compute 

the recall, precision and F1 of every concept in the testing set. Given a particular concept 

c, if there are |cg| images in ground truth labeled with this concept, while the AIA system 

annotates |cauto| images with concept c, where |cr| are correct, then we can compute the 

following measurements: recall =  |cr|∕ |cg|, precision = |cr|∕ |cauto|, and F1 = 

2*recall*precision∕(recall + precision). 

Based on the definition of performance measurements, the expected values for recall, 

precision and F1 can be obtained if an algorithm randomly annotates an image. Here we 
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take recall measurement as an example to explain the best value of this metric. In our 

research work, we use the public CorelCD dataset containing 500 testing images for 263 

concept classes to test our models. The average number of testing images for each 

concept class is 10 in the CorelCD dataset. Thus the expected value of recall can be 

calculated as follows: 

  

10

1

( ) ( )i i

i

E R r P R r
=

= =∑                                    (2.4) 

where R is a random discrete variable for recall, ir  denotes the recall value, 1r =0.1, 

2r =0.2, 3r =0.3, …, 10r =1. Here 
10 10

10 500 10 500( ) /i i

iP R r C C C−

−= =  denotes the probability of 

taking the recall value as ir , and 
n

mC  denotes the number of choices on randomly 

extracting n objects from m different objects. For example, 

1 9 10

1 10 490 500( ) /P R r C C C= = ≈  0.02. So the expected value of recall, ( )E R , is less 

than 0.03.  

 

2.6 Overview of Existing AIA Models 

 

Next we will review existing AIA models by following the general formulation in 

Section 2.5.2. That is to say, most AIA models can be divided into two categories, 

namely the joint probability-based and classification-based models.   
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2.6.1 Joint Probability-Based Models 

The first category of AIA models is based on learning the joint probability of concepts 

and image representations (Barnard 2001; Blei and Jordan 2003; Duygulu et al. 2002; 

Feng et al. 2004; Carbonetto et al. 2004; Lavrenko et al. 2003; Monay and Perez 2003, 

2004). As discussed in Section 2.5.2, most approaches in this category focus on finding 

joint probabilities of images and concepts, PX,W (X, W). In these approaches a hidden 

variable L is introduced to encode the states of the world. Each of these states then 

defines a joint distribution for semantic concepts and image representations.   

The various methods differ in the definition of the states of the hidden variable: some 

associate a state to each image in the database (Feng et al. 2003; Lavrenko et al. 2003), 

some associate them with image clusters (Barnard and Forsyth 2001; Duygulu et al. 

2002), while others model high-level groupings by topic (Blei and Jordan 2003; Monay et 

al. 2003, 2004). The overall model is of the form:   

1

( , ) ( , | ) ( )
S

s

P I i P I i s P s
=

= = =∑X,W X,W|SX= W X= W                                    (2.5) 

where S is the number of possible states,  I is the vector of image representation, and i 

denotes the i
th
 concept in the vocabulary C. In order to avoid the difficulties of joint 

inference over the random variables on visual and text components, these two types of 

components are usually assumed to be independent given the state of the hidden variable.  

( , | ) ( | ) ( | )P I i s P I s P i s= = =
X,W|S X|L W|L

X= W X= W                                  (2.6) 
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Since Eq. (2.4) is a form of mixtures, learning is usually based on the expected-

maximization (EM) (Dempster et al. 1977) algorithm, with details depending on the 

definition of a hidden variable and the probability model adopted for PX,W (X, W). The 

simplest model in this family (Lavrenko 2003; Feng et al. 2004), which assumes each 

image in the training database as a state of the latent variable, 

| |

1

( , ) ( | ) ( | ) ( )
D

s

P I i P I s P i s P s
=

= =∑X,W X|S W|SX = W X = W=                      (2.7) 

where |D| is the size of training set. This enables individual estimation of PX|S (X=I|s)            

PW|S (W=i|s) from each training image, as is common in the probabilistic literature 

(Smeulders et al. 2000; Vasconcelos et al. 1997, 2004), therefore eliminating the need to 

iterate the EM algorithm over the entire database (a procedure of significant 

computational complexity). At the annotation stage, Eq. (2.1) is used to rank all the 

annotation concepts. But as pointed out in (Carneiro and Vasconcelos 2007), there are 

some contradictions with this naïve assumption as shown in Eq. (2.5) because the 

annotation process is based on the Bayes decision rule which relies on the dependency 

between concepts and the vectors of image representations.  

2.6.2 Classification-Based Models 

In the second category of AIA models, each concept corresponds to a class, and AIA is 

formulated as a classification problem. The earliest efforts in the area of image 

classification were directed to the reliable extraction of specific semantics, e.g., 

differentiating indoor from outdoor scenes (Szummer and Picard 1998), cities from 
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landscapes (Vailaya et al. 1998), and detecting trees (Haering et al. 1997), horses 

(Forsyth and Fleck 1997), or buildings (Li and Shapiro. 2002), among others. These 

efforts posed semantics extraction as a binary classification problem. A set of training 

images with and without the concept of interest was collected, and then a binary classifier 

was trained to detect the concept in a one-vs-all mode (the concept of interest versus 

everything else). The classifier was then applied to all database images which were, in 

this way, annotated with respect to the presence or absence of the concept.  

However, the one-vs-all training model in these efforts is not appropriate for AIA. 

There are several reasons. (a) Any images containing a concept c but not explicitly 

annotated with this concept are incorrectly taken as the negative samples. (b) In AIA, a 

training image is usually annotated by multiple concepts, thus a training image could be 

both positive and negative samples for a given concept. This is in conflict with the 

definition of binary classification. (c) If the size of concept vocabulary is large, the size 

of negative training samples for a given concept class is likely to be quite large, so the 

training complexity could be dominated by the complexity of negative learning.  

Thus some approaches formulate AIA as a multi-class classification problem where 

each of the semantic concepts of interest defines an image class (Mori et al 2000; 

Carneiro and Vasconcelos 2007; Fan et al. 2005a, 2005b; Srikanth et al. 2005; Gao et al. 

2006). At the annotation stage, these classes all directly compete for the image to 

annotate, which no longer faces a sequence of independent binary tests. Furthermore, by 

not requiring the modeling of the joint likelihood of concepts and image representations, 

the classification-based approaches do not require the independence assumptions usually 

associated with the joint probability-based models.  
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As shown in Eq. (2.2), there are two key issues for such approaches, namely: (a) how 

to define the likelihood density function, PX|W (X | W); and (b) how to specify the 

parameters of the likelihood density function. Since we will focus on the likelihood 

function in the later chapters, we simply denote the likelihood density function as p(X|Λi), 

where i denotes the ith concept class and 
iΛ denotes the parameters of the likelihood 

density function for the i
th
 concept class. Most approaches in this area characterize the 

likelihood density typically by a mixture model, since the mixture model is an easy way 

to combine multiple simple distributions to form more complex ones and effectively 

cover the large variations in images. Thus given a total of J mixture components and the 

i
th
 concept class, the observed image vector I from this class is assumed to have the 

following probability: 

, ,

1

( | ) ( | )
J

i i j i j

j

p I p Iα θ
=

Λ =∑                                           (2.8) 

where 
,1 , ,1 ,{ ,..., , ,..., }i i i J i i Jα α θ θΛ =  is the parameter set for the above mixture model, 

including mixture weight set 
, 1{ }Ji j jα =
 ( ,

1

1
J

i j

j

α
=

=∑ ), and mixture parameter set 
, 1{ }Ji j jθ =

. 

,( | )i jp I θ  is the j
th
 mixture component with the parameters 

,i jθ  .  

For example, Gaussian mixture model is employed in (Carneiro and Vasconcelos 

2007; Fan et al. 2005a, 2005b) and the image is represented by a continuous feature 

vector. In (Carneiro and Vasconcelos 2007), they first estimated a single Gaussian 

distribution for each image in a concept class, and then organized the collection of single 

mixtures hierarchically to estimate the final mixture components for this concept class. In 
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(Fan et al. 2005a, 2005b), they focused on finding the optimal mixture structures for 

higher-level concept classes given a predefined concept hierarchy. The EM algorithm 

was used to estimate the parameters of mixture models in both approaches. Different 

from approaches in (Carneiro and Vasconcelos 2007; Fan et al. 2005a, 2005b), ontologies 

were used in (Srikanth et al. 2005) to build a hierarchical classification model with a 

concept hierarchy derived from WordNet (Miller et al. 1990) to model the  concept 

dependencies. In this approach, they assumed a single multinomial distribution for each 

concept class, and an improved estimate for each leaf concept node was obtained by 

“shrinking” its estimate towards the ML estimates of all its ancestors tracing back from 

that leaf to the root of the concept hierarchy.  

2.6.3 Comparison of Performance 

To compare the performance of the state-of-the-art AIA models, we tabulate the 

published results in Table 2.1 based on the Corel dataset. The state-of-the-art AIA models 

include translation model (TM) (Duygulu et al. 2002), cross-media relevance model 

(CMRM) (Jeon et al. 2003), hierarchical classification approach (HC) (Srikanth et al. 

2005), multiple Bernoulli relevance model (MBRM) (Feng et al. 2004), and mixture 

hierarchy approach (MH) (Carneiro and Vasconcelos 2007). In this comparison, TM, 

CMRM and HC share the same experimental settings based on region tokens, while 

MBRM and MH share the same experimental settings based on continuous visual feature 

representations.   
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Table 2.1: Published results of state-of-the-art AIA models   

Models 

 

TM 

 

CMRM 

 

HC MBRM MH 

 

# of concepts 

(recall>0) 

49 66 93 122 137 

Mean Per-concept metrics on all 263 concepts on the Corel dataset 

Mean Precision 0.040 0.090 0.100 0.240 0.230 

Mean Recall 0.060 0.100 0.176 0.250 0.290 

As shown in Table 2.1, we can draw the following observations: (a) in terms of the 

performance measurements of mean precision and recall, classification-based approaches 

are more effective than joint probability-based approaches in AIA, since the performance 

of MH is better than that of MBRM, and HC is better than that of TM and CMRM; and (b) 

mixture model is effective in covering the image variations for AIA, since MH, CMRM 

and MBRM can be viewed as a kind of mixture model.. Thus in our work we also 

formulate AIA as a multi-class classification problem and adopt the mixture model as our 

baseline. In Chapter 3, we will present the details of mixture model and our baseline 

model. 

 

2.7 Challenges 

 

As we discussed in the previous sections, we are mainly relying on statistical learning 

approaches to build AIA models. But as pointed out in (Vapnik 1995, 1998; Cherkassky 

and Mulier 1998), such statistical learning approaches often need a large amount of 

labeled images for effective training. In terms of the published results of CMRM for each 

concept class, we tabulate in Table 2.2 the average number of training images in two 

categories: in terms of concept class with zero recall vs. those with recall greater than 
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zero. As shown in Table 2.2, the average number of training images for concept classes 

with non-zero recall values is much larger than that of concept classes with zero recall. 

Table 2.2: The average number of training images for each class of CMRM  

 CMRM 

(recall>0) 

CMRM 

(recall=0) 

# of concept classes in each category 66 197 

Average number of training images 

for each concept class 

164 23 

 

However, it is well known that labeling large amounts of training data for statistical 

learning is tedious and time-consuming, especially for multimedia data. Compared with 

the large variations of visual contents, we often have a limited set, or even a small set, of 

labeled training data. This could result in some potential difficulties, such as the 

mismatch between training set and testing set, and inaccurate parameter estimations. In 

particular, these potential difficulties could be more serious when a large-scale mixture 

model is employed to cover the large image variations, which often leads to poor AIA 

performance as our baseline shows in Chapter 3. It is therefore important to develop 

novel AIA models which can achieve effective training with the limited set of labeled 

training images, especially with the small set of labeled training images. Next we will 

start from mixture model to present how we tackle this challenge by three different 

perspectives as introduced in Chapter 1.  
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Chapter 3 

Finite Mixture Models 

 

In this Chapter, we first give a brief introduction to the finite mixture model. We then 

present two popular forms of mixture models, i.e. Gaussian mixture model (GMM) and 

multinomial mixture model (MMM) for continuous and discrete-value observations, 

respectively. In this dissertation we employ multinomial mixture model as our baseline. 

We next discuss how to estimate the parameters of multinomial mixture model with the 

EM algorithm based on a maximum likelihood estimation (MLE) criterion. Finally, we 

discuss the experimental results. 

  

3.1 Introduction 

 

Finite mixtures are a flexible and powerful probabilistic modeling tool for univariate and 

multivariate data. The usefulness of mixture models is currently widely acknowledged in 

many areas, such as patter recognition, computer vision, signal and image analysis, 

machine learning, etc. In statistical pattern recognition, mixture models are able to 

represent arbitrarily complex probability density functions (pdf’s). This makes them an 

excellent choice for representing complex class-conditional pdf’s (i.e., likelihood 

functions) in supervised learning scenarios (Hastie and Tibshirani 1996; Hinton et al. 

1997), or priors for Bayesian parameter estimation (Dalal and Hall 1983).  

The basic principle for setting up and computing with mixture models is to introduce 

unobserved indicators – random variables, which we denote as a random vector X. Let I 
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be one particular outcome or observed vector of X. It is said that X follows a J-component 

finite mixture distribution if its probability density function can be written as 

1

( | ) ( | )
J

j j

j

p I p Iα θ
=

Λ =∑                                               (3.1) 

where 1 1{ ,..., , ,..., }α α θ θΛ= J J  is the complete set of parameters for the above mixture model, 

including mixture weight set 
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J

j j
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, 0α >j ), and mixture parameter set 
1{ }θ =

J

j j
. In 

this dissertation we assume that all the components have the same functional form, and 

each ( | )jp I θ  is thus fully characterized by the parameter vectorθ j . The commonly used 

functional forms for mixtures are Gaussian and multinomial distributions.    

3.1.1 Gaussian Mixture Model (GMM) 

GMM has been a popular technique in practice because of the isotropic nature of 

Gaussian functions and their capability of representing the distribution compactly by a 

mean vector and covariance matrix (Medasani and Krishnapuram 1999). For example, 

GMM has been successfully applied in the area of automatic speech and speaker 

recognition to model non-Gaussian speech features (Lee et al. 1996). In computer vision 

applications, GMM can also be used to organize image collection as well as for color 

image segmentation, restoration and texture processing, and content-based image 

retrieval (Jain et al. 2000; Carson et al 2002). 

If we assume that the thj  mixture component is a multivariate Gaussian density 

parameterized by θ j  (i.e., µ j andΣ j ), then the form of density is as follows: 
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( ) ( )
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/2 1/2

1
( | )

(2 ) det

T
j j jI I

j L

j

p I e
µ µ

θ
π

−− − Σ −

=
Σ

                     (3.2) 

where I is a L-dimensional feature vector, µ j  is a mean vector and Σ j  is a covariance 

matrix.  

3.1.2 Multinomial Mixture Model  (MMM) 

Multinomial mixture model can be used to model discrete-valued observations, and has 

successfully been applied to text document classification (Novovicova and Malik 2002, 

2003) and clustering (Zhang et al. 2004). The multinomial distribution has been one of 

the most frequently used models for language modeling of text documents in information 

retrieval.  

We use 1 2( , ,..., )= LI n n n to represent a text document vector where each element ln  

denotes the term frequency of the thl  corresponding word in the document I, and L is the 

total size of the vocabulary. If we assume that the thj  mixture is a multinomial 

distribution parameterized by
,1 ,2 ,( , ,..., )θ θ θ θ=j j j j L

, then a document I is generated with 

the following probability: 

1
,

1
1

( ) !
( | )

!

l

L
L

l nl
j j lL

lll

n
p I

n
θ θ=

=
=

=
∑

∏
∏

                                    (3.3) 

where
,1 ,2 ,( , ,..., )θ θ θ θ=j j j j L

, 
, 0θ >j l

, 
,1
1θ

=
=∑

L

j ll
, and each element 

,θ j l  ( ,0 1θ≤ ≤j l
) can 

be interpreted as the probability of the thl  word generated from the thj  mixture 



 34 

component. From Eq. (3.3) we can see the so-called naïve assumption: words are 

assumed to be independent of each other.  

                    

 

 

 

 

  

 
 

 

  

         

I1 I2 

segmented 

regions 

region 

tokens 

region assignment 

 I1 = (0,…,1, 1, 3,…, 0) image vectors  I2 = (0,…,1, 1, 2,…, 0)  

Figure 3.1: An example of image representation in this dissertation 

In this dissertation we represent each image based on the vocabulary of region tokens. 

Thus given an image vector
1 2( , ,..., )= LI n n n , each element 

ln  denotes the observed 

count of the thl  corresponding region token in the document I as shown in Figure 3.1, and 

L is the total size of the region token vocabulary. Given a concept class ic , we assume 

that 
, , ,1 , ,2 , ,( , ,..., )i j i j i j i j Lθ θ θ θ=  is the parameters for the thj multinomial mixture component, 

and we rewrite Eq. (3.3) as follows: 

1
, , ,

1
1

( )!
( | )

!

l

L
L

l nl
i j i j lL

lll

n
p I

n
θ θ=

=
=

=
∑

∏
∏

                                    (3.4) 
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where the element  
, ,θi j l  (1≤ ≤l L ) represents the probability of the thl  region token 

occurring in the thj  mixture component of the thi  concept class. 

 

3.2 Maximum Likelihood Estimation (MLE) 

 

In this Section we focus on estimating the parameter set of 
, 1

{ }θ =

L

i j j
 for the thi concept 

class. Based on Eq. (3.4), we assume that the likelihood functions are given a parametric 

form of multinomial and the corresponding parameters from each vector 
,θi j  are 

unknown. Thus a classical approach to estimating these parameters is based on a 

maximum likelihood criterion, since MLE methods nearly always have good 

convergence properties as the number of training samples increases (Duda et al. 2001). 

Suppose that we separate a whole collection of training image samples into each 

concept class based on the image annotations, so that we have a set of 
1 2, ,..., VD D D  for 

each corresponding concept class {c1, c2,…, cV}, and the samples ,1 ,2 ,| |{ , ,..., }
ii i i i DD I I I=  

have been drawn independently according to the probability law ( | )ip I Λ . Since we only 

care about the concept class ic  in the later parts of this dissertation, we simply use the 

1 2 | |{ , ,..., }
iD iI I I D∈  to denote the training samples in the concept class ic . Then we have 

| |

1

( | ) ( | )
iD

i i t i

t

p D p I
=

Λ = Λ∏                                     (3.5) 

where 
,1 , ,1 ,{ ,..., , , ..., }α α θ θΛ =i i i J i i J

 is the parameter set for multinomial mixture model. 

Viewed as a function of Λ i , ( | )i ip D Λ is called the likelihood with respect to observing 
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the set of training samples. Maximum likelihood estimation of Λ i  is, by definition, the 

value Λ ml

i
 that maximizes ( | )i ip D Λ . Intuitively, this estimate corresponds to the value 

that in some sense best agrees with or supports the actually observed training samples. 

For analytical purposes, it is usually easier to work with the logarithm of the likelihood 

than with the likelihood itself, because the logarithm is monotonically increasing, Λ ml

i
 

that maximizes the log-likelihood also maximizes the likelihood. So the estimate to Eq. 

(3.5) based on the ML criterion can be written as   

arg max log ( | )
i

ml

i i ip D
Λ

Λ = Λ                               (3.6) 

Of course, if ( | )i ip D Λ  is a well-behaved, differentiable function ofΛ i , Λ
ml

i
 can be 

found by standard methods of differential calculus. In Section 3.3, we will present an 

Expected-Maximization (EM) solution to Eq. (3.6).   

 

3.3 EM Algorithm 

 

As discussed in the previous section, maximum likelihood estimation leads to an 

optimization of the log-likelihood function of the parameters Λ i . Thus given a training 

set iD , we have  

| | | |

, ,

1 11

( ) log ( | ) log[ ( | )]
i iD D J

i t i i j t i j

t jt

p I p Iα θ
= ==

Λ = Λ =∑ ∑∏L          (3.7) 
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The ML estimate, arg max ( )
Λ

Λ = Λ
i

ml

i i
L , can not be solved analytically in the case of 

mixture models. The usual choice for obtaining ML estimates of the mixture parameters 

is the classical EM algorithm (Dempster et al. 1977; Mclachlan and Krishnan 1997).  

The EM algorithm is based on the interpretation of 
iD  as incomplete data. In the case 

of finite mixtures, the missing part is the correspondences between mixture components 

and training samples. That means, given a training sample, we do not know which 

mixture component produced this sample. The EM algorithm maximizes ( )ΛiL  

iteratively by maximizing the so-called Q function given the previous estimate ( )Λ k

i
 

| |
( ) ( )

, ,

1 1 1

( , ) ( | ) lo g [ ( | ) ]
iDJ J

k k

i i t i j t i j

j t j

Q p j I p Iα θ
= = =

Λ Λ = ∑ ∑ ∑            (3.8) 

where ( ) ( | )k

tp j I  denotes the posterior probability given 
iD  and 

( )Λ k

i
. In (Dempster et al. 

1977), it is proven that maximizing ( )
( , )Λ Λ k

i iQ  is equivalent to maximizing ( )ΛiL . This 

maximization problem can be solved by the method of Lagrange multipliers since we 

have the parameter constraints.  

The EM algorithm starts with some initial guess at the ML parameters, (0)Λi  and then 

proceeds iteratively to generate estimates (1)Λi , 
(2)Λi , … by repeatedly applying the 

following two steps until some convergence criterion is met. 

E-step:  For j = 1, 2, …, J and t = 1, 2, …, | |iD compute posterior probabilities 

( ) ( )

, ,( )

( ) ( )

, ,1

( | )
( | )

( | )

k k

i j t i jk

t J k k

i r t i rr

p I
p j I

p I

α θ

α θ
=

=
∑

                              (3.9) 
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M-step:  Updates the parameter estimates according to   

( 1) ( )argmax ( , )+

Λ

Λ = Λ Λ
i

k k

i i i
Q                                     (3.10) 

               under the constraints
,1

1α
=

=∑
J

i jj
. It leads to 

, ,

| |
( 1) ( )

, ,

1

a rgmax a rgmax ( | ) log
i

i j i j

D
k k

i j t i j

t

Q p j Iα
α α

α α+

=

= = ∑               (3.11) 

                      
, ,

| |
( 1) ( )

, ,

1

argmax argmax ( | ) log ( | )
i

i j i j

D
k k

i j t t i j

t

Q p j I p Iθ
θ θ

θ θ+

=

= = ∑           (3.12) 

Since there are some necessary parameters constraints for 
,αi j  , ,

1

1α
=

=∑
J

i j

j

, we apply the 

method of Lagrange multipliers to optimize Eq. (3.11). Then we have 

| |
( 1) ( )

,

1

1
( | )

| |

iD
k k

i j t

ti

p j I
D

α +

=

= ∑                                       (3.13) 

The exact formulas for the ( ) ( | )k

tp j I , 
( 1)

,α +k

i j  and ( 1)

,θ
+k

i j  depend on the involved parametric 

family of distributions.   

 

3.4 Parameter Estimation with the EM Algorithm 

 

In this dissertation, we employ the multinomial mixture model to characterize each 

concept class, and the EM algorithm is used to find the ML estimate of the parameters of 
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multinomial mixtures given the training set. Thus we focus on the problem of optimizing 

Eq. (3.12) of multinomial mixtures in this sub-section.  

In terms of the definition of multinomial distribution based on Eq. (3.4), there are 

some necessary parameter constraints, 
, ,1

1θ
=

=∑
L

i j ll
 (

, , ,1 , ,2 , ,( , ,..., )θ θ θ θ=i j i j i j i j L
,

, , 0θ >i j l
). 

Thus we apply the method of Lagrange multipliers to optimize Eq. (3.12).  Then we have 

the appropriate Lagrangian for 
, , ,1 , ,2 , ,( , ,..., )θ θ θ θ=i j i j i j i j L

 

, ,

1

( 1)λ θ λ θ
=

= + −∑
L

i j l

l

Q Q                                    (3.14) 

where  λ  is the Lagrange multiplier. By differentiating λQ  with respect to each 
, ,θi j l  , λ  

and  setting them equal to zero, we can yield the estimate of the 
, ,θi j l    as follows: 

| | ( )

,1
, , | | ( )

,1 1

( | )

( | )

i

i

D k

t t lt
i j l L D k

t t ll t

p j I n

p j I n
θ =

= =

=
∑

∑ ∑
                             (3.15) 

From this estimate, we can interpret the , ,θi j l  as the average distribution of the 
thl  region 

token for images belonging to the thj  mixture component of the thi  concept class. Now 

we give two basic equations of the EM algorithm for fitting the multinomial mixture 

model are as follows: 

E-step:  For j = 1, 2, …, J and t = 1, 2, …, | |iD compute posterior probabilities using  

              the current parameter estimates ( ) ( )

, ,{ , }α θk k

i j i j
at iteration k. 

,

,

( ) ( )

, , ,( ) 1

( ) ( )

, , ,1 1

( )
( | )

( )

t l

t l

L nk k

i j i j lk l
t LJ nk k

i r i r lr l

p j I
α θ

α θ

=

= =

=
∏

∑ ∏
                   (3.16) 
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M-step:  Updates ( 1) ( 1)

, ,
{ , , 1,..., }α θ+ + =k k

i j i j
j J  according to   

| |
( 1) ( )

,

1

1
( | )

| |

iD
k k

i j t

ti

p j I
D

α +

=

= ∑                                    (3.17) 

| | ( )

,( 1) 1
, , | | ( )
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( | )

i

i

D k

t t lk t
i j l L D k

t t ss t

p j I n

p j I n
θ + =

= =

=
∑

∑ ∑
                              (3.18) 

 

3.5 Baseline Model 

 

In this dissertation, we employ multinomial mixture model to characterize each concept 

class, and follow the EM algorithm in Section 3.4 to estimate the model parameters with 

ML criterion. In the following, we will use this model as our baseline. The advantage of 

mixture model is that it is a simple way to combine multiple distributions to form more 

complex one.  

However, as discussed in Chapter 2, compared with the large variations of visual 

contents, we often have a limited set, or even a small set, of labeled training data, which 

could result in some potential difficulties such as inaccurate parameter estimations. In 

particular, those potential difficulties could be more serious when a large-scale mixture 

model is employed to cover large image variations, which could lead to poor AIA 

performance. Thus there are two goals in the experiments described in the next sub-

section: (a) we need to verify the effectiveness of our baseline model as compared to the 

state-of-the-art models under the same experimental settings; and (b) we need to compare 
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the performance of our baseline model with different numbers of mixtures, especially 

when we need a large number of mixtures to cover wide image variations.     

 

3.6 Experiments and Discussions 

 

Following the experimental settings in (Duygulu et al. 2002; Jeon et al. 2003; Srikanth et 

al. 2005), we conduct our experiments on the same Corel CD data set, consisting of 4500 

images for training and 500 images for testing. The total number of region tokens 

is 500=L . In this corpus there are 371 concepts in the training set but only 263 such 

concepts appearing in the test set, with each image assigned 1-5 concepts. As with the 

previous studies on this AIA task, the performance is evaluated by comparing the 

generated annotations with the ground truth of image annotations in the testing set. We 

assign a set of top five concepts to each test image based on their likelihoods.  

To compare the performance of a few representative state-of-the-art AIA models, we 

tabulate their published results on the Corel dataset in Table 3.1. These are all discrete 

models based on the same set of region tokens.  

Table 3.1: Performance comparison of a few representative 

state-of-the-art AIA models and our baseline 

Models 

 

TM 

 

CMRM 

 

HC Baseline 
(J=1) 

Baseline 
(J=5) 

Baseline 
(J=25) 

# of concepts 

(recall>0) 

49 66 93 93 104 101 

Mean Per-concept metrics on all 263 concepts on the Corel dataset 

Mean Precision 0.040 0.090 0.100 0.091 0.102 0.095 

Mean Recall 0.060 0.100 0.176 0.143 0.168 0.159 
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In order to highlight the ability to cover large variations in the image set, we select 

three different numbers of mixtures (J=1, J=5 and J=25) to emulate image variations. 

These three numbers are obtained by our empirical experience. The results in terms of 

averaging precision and recall are tabulated in Table 3.1. From Table 3.1, we can draw 

the following observations. (a) Among these models, HC achieved the best performance, 

since HC incorporated the concept hierarchy derived from WordNet into the 

classification. This reinforces the importance of utilizing hierarchical knowledge for AIA 

task. (b) As compared with our baseline (J=1) which used only one multinomial mixture 

for each concept class, our baseline (J=5, 25) achieved the better performance. This 

demonstrates again that mixture model is an effective way to cover image variations for 

AIA. (c) The performance of baseline (J=25) is worse than that of baseline (J=5). This is 

because the number of training image samples are the same in both cases and we are able 

to estimate the small number of parameters for baseline (J=5) more accurately. This 

result highlights the limitation of mixture models when there are large variations in image 

samples.    

Generally speaking, when the number of mixtures is more than 25, the performance 

of mixture model will be worse and worse with the number of mixtures increasing, since 

the same limited set of training images cannot handle more and more complex model. 

Meanwhile, the appropriate number of mixtures should be between 2 and 24, and then 

some approaches like MDL (Carson et al. 1999, 2002) can be used to find such a number. 

But until now how to find the appropriate number of mixtures is still a hard research topic. 
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3.7 Summary 

 

In this chapter, we briefly introduced the multinomial mixture model. We estimate the 

parameters of multinomial mixtures based on the ML criterion and EM algorithm. By 

taking MMM as our baseline, we compared the performance of our baseline with a few 

representative state-of-the-art models. The results not only indicate that our baseline is 

effective for AIA, but also reveal the limitations of our baseline. In next Chapter we will 

propose a Bayesian hierarchical multinomial mixture model to tackle this problem by 

incorporating prior hierarchical knowledge.    
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Chapter 4 

Bayesian Hierarchical Multinomial Mixture Model 

 

Having discussed our baseline model, we first present the potential difficulties resulting 

from the limited set of training data in this Chapter. Then we briefly introduce the 

Bayesian estimation, and compare the maximum likelihood estimation and Bayesian 

estimation. Based on the principle of Bayesian estimation, we propose a Bayesian 

hierarchical multinomial mixture model (BHMMM) to improve the ML estimates of our 

baseline model by incorporating the prior hierarchical knowledge. We then focus on 

addressing a few key issues in our proposed model. Finally, we discuss the experimental 

results on Corel CD image dataset by comparing the performance of BHMMM with our 

baseline and some representative state-of-the-art AIA models. 

 

4.1 Problem Statement 

 

As discussed in the previous chapters, we always have a limited set (even a small set) of 

training samples, which could lead to some potential difficulties such as mismatches 

between training sets and testing sets and inaccurate parameter estimations. Now we use 

an example to explain these difficulties by using a single multinomial distribution. As 

shown in Figure 4.1, we have two training image samples 
1
I and 

2
I for the concept class 

‘black bear’ in the grass background, but they are different from the testing sample 
1
T on 

‘black bear’ in the water background. In terms of Eq. (3.15), the ML estimation of 

parameters on region tokens are
1

2 / 9θ =b
,

2
2 / 9θ =b

,
3

5 / 9θ =b
,

4
0θ =b
, 
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respectively. If we employ multinomial distribution to model the concept class ‘black 

bear’, then the likelihood that 
1T  is generated from ‘black bear’ is closed to zero 

according to Eq. (3.4), since the ML estimation of parameter on region token 

4
b corresponding to ‘water’ is zero, 

4
0θ =b
.  

                    

  

I1 I2 

 I1 = (1, 1, 3, 0) 

 I2 = (1, 1, 2, 0) 

two training samples for 

‘Black Bear’ 

 

testing sample 

T 

   

 T = (1, 0, 0, 1) 

 

 

 

 

  

 
 

  
 

 

         

 θ  = (2/9, 2/9, 5/9, 0) 

b1 b2 b3 b4 

 ( | ) 0p T θ ≈  

 

Figure 4.1: An example of potential difficulty for ML estimation 

Obviously, the key reason that such potential difficulty arises is because the MLE 

criterion only depends on the training data. Such difficulty could be more serious when 

we employ more mixtures to model the concept class, as shown in the Table 3.1. Thus 
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starting from the introduction of Bayesian estimation in the next section, we present how 

to alleviate the difficulties by incorporating prior hierarchical knowledge in the following 

sections.  

 

4.2 Bayesian Estimation 

 

The problem of parameter estimation is a classical one in statistics. There are two 

common and reasonable procedures, namely maximum-likelihood estimation and 

Bayesian estimation, which are quite different conceptually (Duda et al. 2001). In this 

Section, we use our mixture model as an example to explain such differences. As shown 

in Figure 4.2 (a), the maximum likelihood estimation only depends on the training data, 

and the best estimation of parameter values is defined to be the one that maximizes the 

probability of obtaining the samples actually observed. Thus MLE views the parameters 

as quantities whose values are fixed but unknown.  

                    

(a) 

ML 

Model Parameters 

iD argmax log ( | )
i

ml

i i ip D
Λ

Λ = ΛTraining Data 

iΛ

 

                    

                    

Model Parameters 

0

argmaxlog( ( | ))

argmaxlog( ( | )* ( | ))

i

i

map

i i i

i i i i

p D

p D p ϕ

Λ

Λ

Λ = Λ

= Λ Θ

0( | )i ip ϕΘ
Prior Density 

MAP Training Data 
i
D

iΛ

(b) 
 

Figure 4.2: The principles of MLE and Bayesian estimation 
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In contrast, Bayesian estimation (or Bayesian learning) views all the 

parameters,
, 1{ }Li i j jθ =Θ = , as random variables having some prior distribution 

parameterized by iϕ  (often referred to as hyperparameters). Observation of the training 

samples converts this prior distribution to a posterior density, thereby revising our 

opinion about the true values of parameters. Obviously, Bayesian estimation facilitates a 

statistical combination of training data and prior information by using the criterion of the 

so-called maximum a posterior criterion (MAP). Thus compared with the formulation of 

ML estimation (Eq. (3.6)), the Bayesian estimation formulates the parameter estimation 

as follows: 

0

a rg m ax lo g ( ( | ) )

a rg m ax lo g ( ( | ) * ( | ) )

i

i

m ap

i i i

i i i i

p D

p D p ϕ

Λ

Λ

Λ = Λ

= Λ Θ
               (4.1) 

From the Eq. (4.1), we simply assume that all the mixture parameters 
, 1{ }Li i j jθ =Θ =  

share the single prior distribution 0p  with the same set of hyperparameters, iϕ . Of course, 

we may not use such an assumption, but in Section 4.4 we will explain why we take this 

assumption in our scenario. With a posterior density ( | )i ip DΛ , Bayesian learning 

approach brings more information into the problem of estimation than maximum 

likelihood estimation does. If the prior information is reliable, Bayesian estimation can be 

expected to give better results. Thus, we propose a Bayesian hierarchical multinomial 

mixture model (BHMMM) to enhance the ML estimation of our baseline model 

parameters.  
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Based on the formulation of Eq. (4.1), we need to address three key issues in 

BHMMM, namely: (a) the definition of the prior density, 0p ; (b) the specification of the 

hyperparameters, iϕ ;  and (c) the MAP estimation of the mixture model parameters, 

map

iΛ . The Bayesian estimation for Gaussian mixture model has been studied in the field 

of speech recognition. For example, in the research work of (Gauvain and Lee 1994; 

Shinoda and Lee 2001), a hierarchical prior framework for Bayesian estimation is 

established for Gaussian mixture model. Now we focus on the above key issues of 

Bayesian estimation for multinomial mixture model.   

 

4.3 Definition of Prior Density 

 

Generally speaking, the definition of prior density 0p  may derive from subject matter 

considerations and/or from previous experience. Since AIA task is a general problem in 

pattern recognition, we are always in absence of some special information on the 

definition of such a prior density. However, we have to consider the computational 

complexity -- an important factor that will influence our choice.  

Thus conjugate prior becomes a common choice for such a consideration. In Bayesian 

learning theory, a class of prior probability distributions 
0 ( )p θ  is conjugate to a class of 

likelihood functions ( | )p I θ  if the resulting posterior distributions ( | )p Iθ  are in the 

same family as 
0 ( )p θ  (Raiffa and Schlaifer 1961; Gelman et al. 2003). For example, the 

Gaussian family is conjugate to itself. If the likelihood is Gaussian, choosing a Gaussian 

prior will ensure that the posterior distribution is also Gaussian. A conjugate is an 
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algebraic convenience, otherwise a difficult numerical method may be necessary to find a 

solution to optimize the posterior density. 

It is well known that a Dirichlet density is the conjugate prior for estimating the 

parameters of multinomial distribution so that the posterior distribution has a similar form 

to the Dirichlet density, which makes it easy to estimate its parameters. Such methods 

have been used successfully in automatic speech recognition for adaptive estimation of 

histograms, mixture gains, and Markov chains (Huo et al. 1995; Lee and Huo 2000). We 

adopt Dirichlet distribution as the prior distribution  
0p  with the hyperparameter iϕ  

,, ( 1)1
0 , , ,

1,1

( )
( | )

( )

i l

L
L

i ll
i j i i j lL

li ll

p
ϕϕ

θ ϕ θ
ϕ

−=

=
=

Γ
=

Γ

∑
∏

∏
                             (4.2) 

where 
,1 ,2 ,( , ,..., )i i i i Lϕ ϕ ϕ ϕ= , 

, 0i lϕ > , 1 l L≤ ≤ , and ( )xΓ  is the Gamma function. 

Compared with the interpretations for multinomial distribution in Section 3.1.2, the 

hyperparameters ,i lϕ  can be interpreted as the ‘prior observed count’ for the thl  region 

token in the thi  concept class. In Bayesian learning as shown in Eq. (4.1), the posterior 

density (also Dirichlet density) facilitates a statistical combination of the observed count 

of region tokens from training set iD  and the prior observed count of region tokens iϕ  

from prior density 
0p . Thus in next Section, we will discuss how to specify the 

hyperparameters 
iϕ  based on our hierarchical prior knowledge. 

 

4.4 Specifying Hyperparameters Based on Concept Hierarchy 

 

As discussed in Section 4.3, we choose the Dirichlet distribution which is the conjugate 

prior of multinomial distribution as the prior density for the sake of computation 
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complexity. Thus, it is natural for us to incorporate some useful information into the 

hyperparameters iϕ  to enhance the ML estimates
ml

iΘ , and such useful information should 

be obtained not only from the training set but also from some human prior knowledge. 

 

Black Bear   

Bear   

Grizzly   Kauai   Oahu   

Island   

Maui    Dock   

Structure   

Bridge   
 

Figure 4.3 The examples of concept hierarchy 

In most practical settings, we do have some domain knowledge or ontology resources 

that describe the dependencies among concepts often in terms of a hierarchical structure. 

For example, in Section 3.6, we mentioned the importance of utilizing hierarchical 

knowledge for AIA task, and HC approach (Srikanth et al. 2005) based on a multi-level 

concept hierarchy achieved the best performance among the AIA models under the same 

experimental settings. Figure 4.3 gives some examples on a concept hierarchy. From 

these examples, we can see that there are always some similar contexts shared among the 

sibling concepts, say, the similar wild living environment for ‘black bear’ and grizzly, 

tropic island sea scenes for ‘oahu’, ‘kauai’ and ‘maui’, and the structures around the 

water for ‘dock’ and ‘bridge’. In Figure 4.4, we show some training examples on 

‘grizzly’, ‘water’ and ‘grass’. 
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Figure 4.4: Training image samples for the concept class of ‘grizzly’  

As shown in Figure 4.1 we don’t have the training samples on ‘black bear’ and 

‘water’, we want to incorporate such context information from ‘grizzly’ into 

hyperparameters to enhance the ML estimation of model parameters for ‘black bear’. The 

basic idea is that we view the hyperparameters as the shared knowledge among sibling 

concepts to simulate the similar context, and then we use the MAP criterion to estimate 

the model parameters of these sibling concepts. Obviously how to specify the 

hyperparameters relies on what hierarchical structure we use to model the concept 

dependencies. In next Section, we will discuss how to derive such a concept hierarchy.  

4.4.1 Two-Level Concept Hierarchy 

As shown in Figure 4.5, the simplest concept hierarchy is a two-level one in which all the 

concepts in (c1, c2, … , cV) are derived from the root node labeled with ‘entity’. The 

advantage of using such a two-level concept hierarchy is that we do not need any prior 

domain knowledge. However, the two-level concept hierarchy cannot capture all the 

concept dependencies accurately. For instance, there is not much dependency between 

the concepts of ‘buildings’, ‘street’ and the concept of ‘anemone’, and most region tokens 

from ‘buildings’, ‘street’ are irrelevant to those from ‘anemone’.  
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‘Entity’ 

… ‘c1’ ‘c2’ ‘cV’ 

… 

 

Figure 4.5: Two-level concept hierarchy 

4.4.2 WordNet 

Now we are interested in modeling the concept dependencies. Ontologies, such as the 

WordNet (Miller et al. 1990), are convenient specifications of such relationships. 

WordNet is an electronic thesaurus used popularly in lexical semantic acquisition. It was 

developed by the Cognitive Science Laboratory at Princeton University under the 

direction of Professor George A. Miller. It contains approximately 140’000 unique words 

with 111’000 different senses.  

In WordNet, the meaning of English nouns, verbs, adjectives and adverbs are 

organized into synonym sets. Different relations, such as hypernym or hyponym relations, 

link the synonym sets. “Representations in WordNet are not on the level of individual 

words or word forms, but on the level of word meanings (lexemes). A word meaning, in 

turn, is characterized by simply listing the word forms that can be used to express it in a 

synonym set (synset). As a result, the meaning of the word in WordNet is determined by 

its sets of synonyms. This is essentially a recursive definition of word meaning. Hence 

meaning in WordNet is a structural notion: the meaning of a concept is determined by its 

position relative to the other words in the larger WordNet structure (Kamps 2001). For 

example, the word ‘path’ is a concept in our corpus. ‘Path’ has four senses in WordNet 
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and each sense is characterized by a sequence of words (hypernyms): (a) path←course←

action←activity←abstract←entity; (b) path←way←artifact←object←entity; (c) path, 

route←line←location←object←entity, and (d) path, track←line←location←object←

entity.  

WordNet is an open source resource. Several contributions have been made to 

interface the WordNet Thesaurus. The Visual Thesaurus Software, for instance, gives a 

visual representation of WordNet Structure. Different tools can be used to visualize the 

Word-Net lexical database structure. In this study, we will focus on using WordNet 

which contains all words and has a user-friendly API for accessing its dictionary.     

4.4.3 Multi-Level Concept Hierarchy 

The key for building a concept hierarchy is to disambiguate the senses of words. Since 

the words used as annotations in our data set (Corel CD) are nouns, we only use the 

‘hypernym’ relation which points to a word that is more generic than a given word in 

order to disambiguate the sense of words. We further assume that one word corresponds 

to only one sense in the whole corpus. This is reasonable as a word naturally has only one 

meaning within a context.  

With this assumption, we adopt the basic idea that the sense of a word is chosen if the 

hypernyms that characterize this sense are shared by its co-occurred words in our data set. 

For example, the co-occurred words of ‘path’ from its training images 

are ’tree’, ’mountain’, ‘wall’, ‘flower’ and so on. Thus 

path←way←artifact←object←entity is chosen since this sense is mostly shared by these 
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co-occurred words of ‘path’. Our approach for disambiguating the senses of words is 

similar to that used in (Barnard et al. 2001). After this step of word sense disambiguation, 

every word is assigned a unique sense characterized by its hypernyms. Thus, we can 

easily build a multi-level concept hierarchy with ‘entity’ as the root node of the overall 

concept hierarchy.  

4.4.4 Specifying Hyperparameters 

In this Section, we discuss how to specify hyperparameters based on a concept hierarchy. 

As shown in Figures 4.6 (a), we have a two-level concept hierarchy  in which 
ic  is the 

root node of ‘entity’ (M=V), or a two-level sub-tree of multi-level concept hierarchy in 

which 
ic  is the parent node of the concept set 1 2{ , ,..., }Mc c c . As shown in Figure 4.6 (b), 

we assume that all mixture parameters of sibling concepts, 
1,1 1,2 ,1 ,{ , ,..., ,..., }M M Jθ θ θ θ , share 

the same set of hyperparameters, iϕ , we can then adopt an empirical Bayes approach 

(Huo et al. 1995) to estimate these hyperparameters, 
iϕ .  

 ‘ci’ 

… ‘c1’ ‘c2’ ‘cM’ 

… 

(a)    

 

 

                                                               

… 1,1θ  

… 

iϕ  

… 1,2θ  1,Jθ  ,1Mθ  ,2Mθ  ,M Jθ  … 

(b) 

 

(c) 

1,1θ  

iϕ  

… 1,2θ  '1,J
θ  

iD  

 

Figure 4.6: An illustration of specifying hyperparameters 
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Let 
',1 ,2 ,

{ , ,..., }ml ml ml

i i i i J
θ θ θΘ =  denote the mixture parameter set estimated with a ML 

criterion as shown in Eq. (3.6) for concept class ic , and 
'J  is the number of mixtures 

which depends on the total number of mixtures from sibling concept classes. We then 

pretend to view 
iΘ  as a set of random samples from the Dirichlet prior 

0 ( )ip ϕ in Eq. (3.3). 

Thus the ML estimate of iϕ  maximizes the logarithm of the likelihood function, 

0log ( | )i ip ϕΘ . As pointed out in (Minka, 2003; Huang 2005), there exists no closed-form 

solution to this ML estimate, and the fixed-point iterative approach, can be adopted to 

solve for the ML estimate based on a preliminary estimate of 
old

iϕ that satisfies the 

following: 

'

, , , ,'
1 1

1
( ) ( ) log

L J
new old ml

i l i l i j l

l jJ
ϕ ϕ θ

= =

Ψ = Ψ +∑ ∑                          (4.3) 

where
( )

( )
d x

x
dx

Γ
Ψ =  is known as the digamma function. More details can be found in 

(Minka 2003; Huang 2005). 

 

4.5 MAP Estimation 

 

With the prior density given in Eq. (4.2) and the hyperparameters specified in Eq. (4.3), 

we are now ready to solve the MAP estimation in Eq. (4.1). Based on Eq. (4.1), we have 

a MAP estimation of model parameters as follows: 

0arg max{log ( | ) log ( | )}
i

map ml

i i i i ip D p ϕ
Λ

Λ = Λ + Θ          (4.4) 
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where 
,1 ,2 ,( , , ..., )ml ml ml ml

i i i i Lϕ ϕ ϕ ϕ= , 
, 0ml

i lϕ > , 1 l L≤ ≤ . Since we cannot find the 

analytical solution to log ( | )i ip D Λ in the case of mixture model, the same is true for the 

MAP estimate, map

iΛ (Figueiredo and Jain 2002). Thus we also apply the classical EM 

algorithm (Dempster et al. 1977; Malachlan and Krishnan 1997) to optimize Eq. (4.4). 

The EM algorithm maximizes Eq. (4.4) iteratively by maximizing the so-called 'Q  

function given the previous estimate ( )Λ k

i
 (Figueiredo and Jain 2002): 

' ( ) ( )

0( , ) ( , ) log ( | )k k ml

i i i i i iQ Q p ϕΛ Λ = Λ Λ + Θ               (4.5) 

where ( )( , )ki iQ Λ Λ  is defined in Eq. (3.8). Here we use '
Q to denote the log likelihood 

function for MAP estimation. As discussed in Section 3.3, it is obvious that maximizing 

' ( )( , )ki iQ Λ Λ  is equivalent to Eq. (4.4). This maximization problem can be solved by the 

method of Lagrange multipliers since we have the parameter constraints.  

The EM algorithm starts with some initial guess at the parameters, (0)Λi  and then 

proceeds iteratively to generate estimates (1)Λi , 
(2)Λi , … by repeatedly applying the 

following two steps until some convergence criterion is met: 

E-step:  For j = 1, 2, …, J and t = 1, 2, …, | |iD compute a posterior probability 

( ) ( )

, ,( )

( ) ( )

, ,1

( | )
( | )

( | )

k k

i j t i jk

t J k k

i r t i rr

p I
p j I

p I

α θ

α θ
=

=
∑

                                (4.6) 

M-step:  Updates the parameter estimates according to   

( 1) ' ( )argmax ( , )
i

k k

i i i
Q+

Λ

Λ = Λ Λ                                              (4.7) 
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               under the constraints
,1

1α
=

=∑
J

i jj
. It leads to 

, ,

| |
( 1) ( )

, ,

1

a rgmax a rgmax ( | ) log
i

i j i j

D
k k

i j t i j

t

Q p j Iα
α α

α α+

=

= = ∑                       (4.8) 

,

,

( 1)

, 0

| |
( )

, 0

1

argmax( log ( | ))

argmax{[ ( | ) log ( | )] log ( | )}

i j

i

i j

k ml

i j i i

D
k ml

t t i j i i

t

Q p

p j I p I p

θ
θ

θ

θ ϕ

θ ϕ

+

=

= + Θ

= + Θ∑
  (4.9) 

Since there are some necessary parameter constraints for 
,αi j  , ,

1

1α
=

=∑
J

i j

j

, we apply the 

method of Lagrange multipliers to optimize Eq. (4.8). Thus we have 

| |
( 1) ( )

,

1

1
( | )

| |
α +

=

= ∑
iD

k k

i j t

ti

P j I
D

                                      (4.10) 

The form of Eq. (4.10) is the same as Eq. (3.13), but the computation of a posterior 

probability ( )
( | )

k

tp j I  is based on the parameters of MAP estimations.   

In terms of the definition of Dirichlet distribution based on Eq. (4.2), there are some 

necessary parameter constraints, 
, ,1

1θ
=

=∑
L

i j ll
 (

, , ,1 , ,2 , ,( , ,..., )θ θ θ θ=i j i j i j i j L
,

, , 0θ >i j l
). Thus 

we apply the method of Lagrange multipliers to optimize Eq. (4.9).  Then we have the 

appropriate Lagrangian for 
, , ,1 , ,2 , ,( , ,..., )θ θ θ θ=i j i j i j i j L

 

'

0 , , ,

11

lo g ( | ) ( 1)
J L

m l

i j i i j l

lj

Q Q pλ θ θ ϕ λ θ
==

= + + −∑∏            (4.11) 
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where λ  is the Lagrange multiplier, and Qθ  is the same as in Eq. (3.12). By 

differentiating 'Qλ  with respect to each , ,θi j l  , λ  and  setting them equal to zero, we can 

yield the estimate of , ,θi j l    as follows: 

| | ( )

, ,1
, , | | ( )

, ,1 1 1

( | ) ( 1)

( | ) ( 1)

i

i

D k m l

t t l i lt
i j l L D Lk m l

t t l i ll t l

p j I n

p j I n

ϕ
θ

ϕ

=

= = =

+ −
=

+ −

∑
∑ ∑ ∑

         (4.12) 

So we can see that the MAP estimation facilitates a statistical combination of observed 

count of region tokens ( ,t ln ) from the training set of concept i
c  and the count of region 

tokens ( ,( 1)ml

i lϕ − ) learned from concept ic  and its sibling concepts. Now we give two 

basic equations of EM algorithm for Bayesian MAP estimation as follows: 

E-step:  For j = 1, 2, …, J and t = 1, 2, …, | |iD compute posterior probabilities using  

              the current parameter estimates ( ) ( )

, ,{ , }α θk k

i j i j
at iteration k. 

,

,

( ) ( )

, , ,( ) 1

( ) ( )

, , ,1 1

( )
( | )

( )

t l

t l

L nk k

i j i j lk l
t LJ nk k

i r i r lr l

p j I
α θ

α θ

=

= =

=
∏

∑ ∏
                     (4.13) 

M-step:  Updates ( 1) ( 1)

, ,{ , , 1,..., }α θ+ + =k k

i j i j j J  according to   

| |
( 1) ( )

,

1

1
( | )

| |

iD
k k

i j t

ti

p j I
D

α +

=

= ∑                                      (4.14) 

| | ( )

, ,( 1) 1
, , | | ( )

, ,1 1 1

( | ) ( 1)

( | ) ( 1)

i

i

D k ml

t t l i lk t
i j l L D Lk ml

t t l i ll t l

p j I n

p j I n

ϕ
θ

ϕ

+ =

= = =

+ −
=

+ −

∑
∑ ∑ ∑

                (4.15) 
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4.6 Exploring Multi-Level Concept Hierarchy 

 

Given a multi-level concept hierarchy derived from WordNet, we need to explore the 

whole hierarchical structure to perform the MAP estimation for each concept class. 

Figure 4.7 shows three examples of 3-level concept hierarchy extracting from the 7-level 

concept hierarchy derived from WordNet.  

 

(a) 

beach 

coast  

geological_formation 

shore   

              

 

 

                                             

(b) 

big_cat 

tiger 

feline 

cat   

leopard   

          

 

(c) 

dog 

coyote 

canine 

fox   wolf 

 

Figure 4.7: Some examples of 3-level concept hierarchy 

By traversing the nodes one by one from left to right in the same level, and from root 

level down to the leaf level, for each node 
i
c  in the concept hierarchy: 

1) Let ipc  denote the parent node of ic , and 0 ( )mlipp ϕ denotes the prior density function 

with the hyperparameters ml

ipϕ , we have: 

0argmax{log( ( | ) log ( | )}
i

map ml

i i i i ipp D p ϕ
Λ

Λ = Λ + Θ  

2) If ci has the child nodes, then the prior density function 0 ( )mlip ϕ for mixture 

parameters of ci can be calculated by the approach described in Section 4.4.4.  

0argmax log ( | )
i

ml

i i ip
ϕ

ϕ ϕ= Θ  
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4.7 Experiments and Discussions 

 

Following the experimental settings in Section 3.6, we conduct our experiments on the 

same Corel CD data set, consisting of 4500 images for training and 500 images for 

testing. The total number of region tokens is L=500. After the derivation of concept 

hierarchy as discussed in Section 4.4.3, we obtained a 7-level concept hierarchy 

containing a total of 513 concepts, including 322 leaf concepts and 191 non-leaf concepts. 

The average number of children of non-leaf concepts is about 3. If a non-leaf concept 

node in the concept hierarchy does not belong to the concept set in Corel CD corpus, then 

its training set will consist of all the images from its child nodes. As with the previous 

studies on this AIA task, the AIA performance is evaluated by comparing the generated 

annotations with the actual image annotations in the test set. We assign a set of five top 

concepts to each test image based on their likelihoods.  

4.7.1 Baseline vs. BHMMM 

 We first compare the performance of BHMMM (based on two-level and 7-level concept 

hierarchy) with the baseline mixture model. In order to highlight the ability of BHMMM 

to cover large variations in the image set, we select two different numbers of mixtures (5 

and 25) to emulate image variations. These two numbers are obtained by our empirical 

experience. The results in terms of averaging precision, recall and F1 are tabulated in 

Table 4.1 where TL and ML denote the 2-level and 7-level concept hierarchies 

respectively. 
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Table 4.1: Performance summary of baseline and BHMMM 

Models 

(mixture number) 

Baseline 

(J=5) 

Baseline 

(J=25) 

BHMMM 

(J=5;TL) 

BHMMM 

(J=25;TL) 

BHMMM 

(J=5;ML) 

BHMMM 

(J=25;ML) 

# of concepts 

(recall>0) 

104 101 107 110 117 122 

Mean Per-concept metrics on all 263 concepts on the Corel dataset 

Mean Precision 0.102 0.095 0.114 0.121 0.137 0.142 

Mean Recall 0.168 0.159 0.185 0.192 0.209 0.225 

Mean F1 0.117 0.109 0.133 0.140 0.160 0.169 

From Table 4.1, we can draw the following observations. (a) The F1 measure of 

Baseline (J=5) is better than that of Baseline (J=25). This confirms our believe that with 

higher number of mixture models, the traditional multi-mixture model with limited 

amount of training samples does not perform well because of difficulty in estimating the 

much higher number of model parameters (when J=25). (b) The F1 performance of all 

variants of BHMMMs are better than that of the baseline (J=5). This indicates that the 

use of prior information is important to overcome the limitation of training samples in our 

baseline of mixture model. (c) The F1 performance of BHMMM (J=25; ML) is better 

than BHMMM (J=5; ML). This indicates that the use of prior information and domain 

hierarchy is important to alleviate the sparse training sample problem of large-scale 

mixture model. (d) As compared to BHMMM (J=5, 25; TL), BHMMM (J=5, 25; ML) 

achieves about 20% and 21% improvements on F1 measure. This shows that the use of 

multi-level concept hierarchy in BHMMM (ML) can model the concept dependency 

more accurately, since BHMMM (ML) permits a concept node to inherit the prior 

information only from its parent node. Overall, BHMMM (J=25; ML) achieves the best 

performance of 0.169 in terms of F1 measure. In the later parts of this thesis, we will use 

BHMMM (J=5, 25) to denote BHMMM (J=5, 25; ML) for the sake of simplicity.  
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4.7.2 State-of-the-Art AIA Models vs. BHMMM 

For further comparison, we tabulate the performance of a few representative state-of-the-

art AIA models in Table 4.2. These are all discrete models that used the same 

experimental settings as shown in Table 4.1 and Table 3.1. The discrete models refer to 

translation model (TM) (Duygulu et al. 2002), cross-media relevance model (CMRM) 

(Jeon et al. 2003) and hierarchical classification approach (HC) (Srikanth et al. 2005). 

Table 4.2: Performance comparison of state-of-the-art AIA models and BHMMM 

Models 
 

TM 
 

CMRM 
 

HC BHMMM 
(J=25) 

# of concepts 

(recall>0) 

49 66 93 122 

Mean Per-concept metrics on all 263 concepts on the Corel dataset 

Mean Precision 0.040 0.090 0.100 0.142 

Mean Recall 0.060 0.100 0.176 0.225 

From Table 4.2, we can draw the following observations. (a) Among these models, HC 

achieved the best performance in terms of precision and recall measures, since HC also 

incorporated the concept hierarchy derived from the WordNet into the classification. This 

further reinforces the importance of utilizing the hierarchical knowledge for AIA task. (b) 

As compared with HC which used only one mixture for each concept class and adopted 

ML criterion to estimate the parameters, BHMMM (J=25) achieved about 40% and 28% 

improvements on the measure of mean per-concept precision and mean per-concept recall 

respectively. This demonstrates again that our proposed BHMMM is effective to AIA. 
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4.7.3 Performance Evaluation with Small Set of Samples  

This Section analyzes the effect of our proposed BHMMM when the number of original 

training images is small. We selected a subset of 132 testing concepts in Corel CD dataset 

in which the number of training samples in each class is no more than 21. 

Table 4.3: Performance summary of baseline and BHMMM on the concept 

classes with small number of training samples  

Models 

 

Baseline 

(J=5) 

BHMMM 

(J=25) 

# of concepts (recall>0) 14 25 

Mean Per-concept metrics on all 132 concepts on the Corel dataset 
(# of original training samples <=21) 

Mean Precision 0.023 0.059 

Mean Recall 0.061 0.106 

Mean F1 0.033 0.069 

In Table 4.3 we compare two models, the baseline (J=5) and BHMMM (J=25). It is 

clear that for this set of concepts, the performances were in general much worse than 

those shown in Table 4.1. For example, the mean F1 was degraded from 0.169 in Table 

4.1 to 0.069 in Table 4.3 for BHMMM (J=25). Compared with the baseline (J=5), 

BHMMM achieved much better performance in terms of mean precision, recall and F1 

measures. This again demonstrates that prior knowledge is critical for parameter 

estimation of visual mixture models, especially when the number of training examples is 

small. 
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4.8 Summary 

 

In this chapter, we incorporated prior knowledge into hierarchical representation of 

concepts to facilitate modeling of multi-level concept structures. To alleviate the potential 

difficulties arising from limited set of (even a small set of) training images, we proposed 

a Bayesian hierarchical mixture model (BHMMM) framework. By treating the mixture 

model parameters as random variables characterized by a joint conjugate prior density, 

BHMMM facilitates a statistical combination of the likelihood function of the available 

training data and the prior density of the concept parameters into a well-defined posterior 

density whose parameters can now be estimated via a maximum a posteriori criterion. 

Conceptually the training set for BHMMM and our baseline multinomial mixture model 

(MMM) is the same, and BHMMM does not need more training images than our baseline 

model does. 

On the one hand when no training data are used, the MAP estimate can only depend 

on the  prior density. On the other hand when a large of amount of training data is 

available the MAP estimate can be shown to asymptotically converge to the conventional 

maximum likelihood estimate. This desirable property makes the MAP estimate an ideal 

candidate for parameter estimation when we have a limited set of (even a small set of) 

training data.  

Experimental results on the Corel image dataset showed that our proposed BHMMM 

approach, using a multi-level structure of 371 concepts with a maximum of 25 mixture 

components per concept, achieves a mean F1 measure of 0.169, which outperforms many 

state-of-the-art techniques for automatic image annotation. In particular, our proposed 



 65 

BHMMM outperforms our baseline model on a subset of 132 testing concepts in Corel 

CD dataset in which the number of training samples in each class is no more than 21. 
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Chapter 5 

Extended AIA Based on Multimodal Features 

 

In this Chapter, we first introduce the motivations to propose extended AIA to alleviate 

the potential difficulties. Then we extend the traditional AIA to three modes, namely 

visual-AIA, text-AIA and text-visual-AIA that are used to effectively expand the original 

image annotations and acquire more training samples for concept classes, and discuss 

these extended AIA models respectively. Finally, by comparing our extended AIA 

models with our baseline and some state-of-the-art AIA models, we discuss the 

experimental results on Corel image dataset by combing the additional training images 

acquired from annotation expansions.  

 

5.1 Motivation 

 

As discussed in Chapter 4, we proposed a BHMMM framework to enhance the ML 

estimation of large-scale multinomial mixture models, which can alleviate the potential 

difficulties resulting from limited set of training data by incorporating prior hierarchical 

knowledge. Since most existing AIA models, especially mixture models, depend heavily 

on a large number of training samples for effective training, we therefore study the issues 

related to acquiring more training samples automatically for each concept class in this 

Chapter.  
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(a)  boats. buildings. sky. 

water 

(b)  boats. dock. canal. 

sky. 

Figure 5.1: Two image examples with incomplete annotations 

Our research work is motivated by two aspects. (a) Most image collections often 

come with few and incomplete annotations. For example, Figure 5.1 shows the original 

annotations of two images coming from the Corel image corpus. Given the predefined set 

of concepts {‘boats’, ’buildings’, ’sky’, ’water’, ‘dock’, ‘canal’, …}, The possible 

missing annotation for the image in Figure 5.1a could be ‘dock’, and that for the image in 

Figure 5.1b could be ‘buildings’. (b) As discussed in Section 2.6, most existing AIA 

approaches, including both classification-based models and joint probability-based 

models, neglect to use the available text information from the training set and ontological 

information from prior knowledge to effectively annotate the training images or expand 

the original annotations of training images.   

 

5.2 Extended AIA 

 

Two groups of information, i.e. text and visual features, are available for a given training 

image. Thus, there are several key issues related to fusing text and visual information to 

acquire more training samples: (a) accurate parameter estimation especially when the 

number of training samples is small; and (b) dependency between visual and text 

features. To tackle the first issue, we incorporate prior knowledge into the hierarchical 



 68 

concept representation, and extend our proposed BHMMM to different features to 

estimate the parameters of concept mixture models. To address the first and second 

issues, we propose a text-visual hierarchical multinomial mixture model to model the 

dependencies between text and visual mixtures and expand the annotations.   

To better explain our proposed framework to obtain additional training samples for 

each concept we assume that the original set of concept labels associated with training 

images is incomplete. We extend the definition of conventional AIA to three modes, 

namely associating concepts to images represented by visual features, briefly called as 

visual-AIA, by text features as text-AIA, and by both text and visual features as text-

visual-AIA. Clearly visual-AIA is similar to conventional AIA, since both approaches 

can be used to associate visual features to concepts. But visual-AIA is performed on the 

training images to obtain extra labels. Here we emphasize that only models for visual-

AIA can be used in the testing phase to perform the conventional AIA, but all the models 

for visual-AIA, text-AIA or text-visual-AIA can be employed in the training phase for 

acquiring more image annotations for each concept.  

As shown in Figure 5.2, we propose a novel framework to expand the image 

annotations and acquire image samples for concept classes. Given the annotated images 

in training phase, extended AIA model is first used to expand the original image 

annotations, and then the images with expanded annotations are taken as the new set of 

training samples for the conventional AIA model. Here the conventional AIA refers to 

associating visual features to text annotations. Obviously, our proposed framework is 

general, and a lot of models can be also used to expand the annotations or perform the 

conventional AIA. 
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Labeled 

Training  

Images 

boats.  

sky.  

water. 

buildings
 

tree.  

field. 

moose
 

… … 
Extended AIA  

Models
 … … 

dock. 

boats. sky. 

water. 

buildings 

antlers. 

tree.  

field.  

moose
 

Conventional  

AIA Model
 

Concept Ontology 

 
  

     

Figure 5.2: The proposed framework of extended AIA 

In this dissertation, we employ our proposed BHMMM (J=25) as our baseline to 

perform conventional AIA, since BHMMM (J=25) is one of the state-of-the-art 

conventional AIA models. The concept ontology derived from WordNet in Section 4.4.3 

is used to model the concept relationships and estimate the hyperparameters of BHMMM 

(J=25) and extended AIA models. The algorithm of our proposed framework is as 

follows: 
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Input: The set of training images Di for a given concept class ci; 

Output: The estimated model parameters with MAP criterion, map

iΛ ; 

1) Given training set of images, estimate the parameters of extended AIA models of 

each concept class with a MAP criterion. 

2) For any concept ci, expand the annotations of images related to ci by extended AIA 

models. 

3) Generate a rank list of images for ci based on their likelihoods. 

4) Expand training set of ci by combining the fixed top percentage of candidate images. 

5) Estimate the parameters of BHMMM for ci by combining the additional and original 

training set, and then perform conventional AIA model to annotate the test images. 

Given a concept in step 2 of this algorithm, we do not perform extended AIA models 

in the whole training set to expand the annotations of all the training images, since the 

size of the whole training corpus can be very large. Instead, extended AIA models are 

performed only on the set of images that are related to the given concept. The set of 

related concepts includes three parts: (a) the closest hypernym concept; (b) the co-

occurred concepts in the training corpus; and (c) the co-occurring concepts from its 

sibling concepts. 

 

5.3 Visual-AIA Models 

 

Here the visual-AIA model is used to expand the original image annotations only based 

on visual features. In terms of the comparisons in Sections 4.7.1 and 4.7.2, our proposed 

BHMMM (J=25) achieved the best performance as compared to the other representative 

AIA models, such as HC. Hence we employ BHMMMs (J=25) as the visual-AIA model 
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to effectively perform annotation expansions by incorporating the concept ontology 

information. 

5.3.1 Experiments and Discussions 

In this Section we want to testify the effectiveness of visual-AIA model for acquiring 

additional image samples. We use the conventional AIA performance of BHMMM (J=25) 

to evaluate such effectiveness. In step 4 of our pipeline in Section 5.3, we picked the top 

5% (the mean number of the increased training samples for each concept class is about 7 

images), and top 10% (the mean number of the increased training samples for each 

concept class is about 15 images) of additional samples, which will be the same for all 

the models from  text-AIA and text-visual-AIA.   

Table 5.1 Performance of BHMMM and visual-AIA  

Models 

 

BHMMM 

(J=25) 

visual-AIA 

(top 5%) 

visual-AIA 

(top 10%) 

# of concepts (recall>0) 122 133 141 

Mean Per-concept metrics on all 263 concepts on the Corel dataset 

Mean Precision 0.142 0.143 0.147 

Mean Recall 0.225 0.261 0.282 

Mean F1 0.169 0.171 0.174 

The results in Table 5.1 indicate a clear trend that the use of additional training 

examples is beneficial in our visual-AIA framework, since the performance of both 

visual-AIA (top 5%) and visual-AIA (top 10%) were better than that of BHMMM (J=25). 

In particular, visual-AIA (top10%) gave the best performance 0.147, 0.282 and 0.174 in 
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terms of the precision, recall and F1 measurements respectively. In next Section we focus 

on how to apply text-AIA models to perform annotation expansions. 

 

5.4 Text-AIA Models 

 

In the training set, a given image I has been labeled by some concept annotations, and can 

be represented by a concept vector, Ic = (m1, m2, …, mV), where V is the total number of 

predefined concepts (C = {c1, c2,…, cV}), and mv (1≤v≤V) denotes the observed count of 

the v
th
 concept in image I. We use Di (It ∈Di) to denote a collection of independent 

training images for concept class ci. In this Section, we introduce two text-based models, 

text mixture model and text-based Bayesian model, to perform the annotation expansions 

by utilizing the text annotations from the training set. 

5.4.1 Text Mixture Model (TMM) 

In the scenario of AIA, each labeled training image is a text document represented by a 

concept vector, Ic. Here we formulate the task of expanding annotations as a multi-class 

text classification problem. The objective of text classification is to assign one or more 

predefined set of topic classes to a text document. As pointed out in (Novovicova and 

Malik 2002, 2003), mixture models are suitable for text classification since each class 

often consists of multiple topics. This is also true for the scenario of AIA task. For 

example, the concept ‘arts’ consists of the topics on ‘sculpture’, ‘paintings’, ‘carvings’ 

and so on, in the Corel dataset. Furthermore, the multinomial mixture model has been 

demonstrated to be effective on the dataset of Reuters-21578 (Novovicova and Malik 
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2002, 2003). Thus we take the multinomial mixture model as the text classifier. Given a 

total of H text mixture components, the observed vector Ic from concept class ci is 

assumed to have the following probability:  

  , ,

1

( | ) ( | )
H

c i i h c i h

h

p I p Iβ χ
=

Ω = ∑                                    (5.1) 

where 
,1 , ,1 ,{ ,..., , ,..., }i i i H i i Hβ β χ χΩ =  is the parameter set for the text mixture model, 

including mixture weight set 
, 1{ }H
i h h
β =

 (
,1
1

H

i hh
β

=
=∑ ), mixture parameter set 

, 1{ }Hi i h hχ =Γ = , 

and 
,( | )c i hp I χ  is the h

th
 mixture component to characterize the class distribution. Here 

each parameter 
, ,i h vχ  in 

,i hχ can be interpreted as the average distribution of the v
th
 

concept for images belonging to h
th
 mixture component of the i

th
 concept class. We call 

the Eq. (5.1) as the text mixture model.  

5.4.2 Parameter Estimation for TMM 

Maximum likelihood estimation is the usual choice to estimate the parameters. But as 

discussed in Sections 3.3 and 3.4, maximum likelihood estimation cannot be solved 

analytically in the case of mixture models. Thus given the training images represented by 

text vectors, we employ the EM algorithm in Section 3.4 to find the maximum likelihood 

estimation of the parameters of multinomial mixtures. Here the log likelihood function 

for TMM is as follows: 

| | | |

, , , ,

1 11

( ) log ( | ) log[ ( | )]
i iD D H

i c t i i h c t i h

t ht

p I p Iβ χ
= ==

Ω = Ω = ∑ ∑∏L          (5.2) 
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The EM algorithm starts with some initial guess at the ML parameters, (0)

iΩ  and then 

proceeds iteratively to generate estimates (1)

iΩ , (2)

iΩ , … by repeatedly applying the 

following two steps until some convergence criterion is met. The algorithm is as follows:  

E-step:  For h = 1, 2, …, H and t = 1, 2, …, | |iD compute posterior probabilities using  

              the current parameter estimates ( ) ( )

, ,{ , }k k

i h i h
β χ at iteration k. 

,

,
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, , ,( ) 1
, ( ) ( )
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where we use 
, ,1 ,2 ,( , ,..., )c t t t t VI m m m=  to denote a test image in iD , and mt,v (1≤v≤V) 

denotes the observed count of the v
th
 concept in image 

,c tI . 

So far, we have not discussed how to choose H, the number of mixture components. 

In our proposed BHMMM, we choose two fixed numbers of mixture components (i.e. 5 

and 25) to emulate the large variations among images. As our experience, however, we 

do not need a large number of mixtures for text as compared to visual modality in order 

to emulate the text variations in Corel dataset. Thus we would like to choose the value of 

H which can best suit the natural number of text groups of training images in a concept 
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class. Given the log likelihood function (Eq. (5.2)), we can apply the Minimum 

Description Length (MDL) principle to select among values of H by maximizing the 

followed measure (Rissanen 1978, 1989): 

( ) log(| |)
2

H
i i

T
DΩ −L                                      (5.6) 

where HT  is the number of free parameters needed for a model with H mixture 

components. In the case of our scenario, we have *HT H V= . As a consequence of this 

principle, when models use two values of H to fit the data equally well, the simpler model 

will be chosen. For our experiments, H ranges from 1 to 12. 

5.4.3 Text-Based Bayesian Model (TBM) 

In terms of our observations, TMM does not always work well if there is a mismatch 

between training and test image samples when we have a limited set of (even a small set 

of) training data. Here the test image means the other set of training images labeled with 

concept annotations. For example, the bag-of-keywords in the class of ‘dock’ is a set of 

annotations, {‘boats’, ‘mountain’, ‘water’, ‘sky’, ‘clouds’, ‘ships’, ‘canal’}, and the four 

training images and their annotations for the class of ‘dock’ are shown in Figure. 5.3.    

    

boats. mountain. 

water. 

boats. sky. water. clouds. ships. 

water. 

boats. dock. 

canal. sky. 

Figure 5.3: Four training images and their annotations for the class of ‘dock’ 
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Due to the incomplete annotations for the first, third and fourth training images, the 

concept annotation ‘buildings’ does not appear in this training set. Thus given a training 

image labeled with ‘buildings’, ‘boats’, ‘sky’ and ‘water’ as shown in Figure. 5.1a, this 

image could not be annotated with the concept ‘dock’ by TMM, since TMM employs 

MLE to estimate the model parameters only based on the training data in the concept 

class.  

As pointed out in (Zhai and Lafferty 2001), smoothing of the maximum likelihood 

estimation is extremely important for the text classification problem when the number of 

training samples is small. They summarized that the basic idea behind the current 

smoothing methods lies in the linear combination between maximum likelihood 

estimations of multinomial parameters and a vector of 
1 2( ( ), ( ),..., ( ))Vp c p c p cµ µ µ . Here 

µ is an empirical constant, and ( )vp c is the relative frequency of observing the keyword 

vc in the whole training set of all the classes. However, these smoothing methods ignore 

the concept dependency. For example, if we want to estimate the model parameters of the 

‘tiger’ class, then the relative frequency of observing the keyword of ‘street’, ‘buildings’ 

should be lower.  But if we want to estimate the model parameters of ‘city’, then the 

relative frequency of observing the keyword of ‘street’, ‘buildings’ should be higher.  

Thus we would like to take another way to enhance the ML estimations by 

incorporating prior knowledge. We assume the mixture parameters in 
,i kχ as random 

variables with a joint prior density 
0 ,( | )i k ip χ τ  with parameters i

τ (referred to as 

hyperparameters). Thus, the posterior probability of observing the training set can be 

evaluated as:  
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In contrast to conventional ML estimation, we can impose a maximum a posterior (MAP) 

criterion to estimate the parameters as follows: 
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where 
,1 , ,1 ,{ ,..., , ,..., }i i i H i i Hβ β χ χΩ =  is the parameter set for the text mixture model, and 

, 1{ }Hi i h hχ =Γ = .  

To better model the concept dependencies, we derive concept ontology through 

WordNet as shown in Section 4.4.3. Thus, we propose a text-based Bayesian learning 

model to characterize the concept ontology structure. Here we also assume that the 

mixtures from the sibling concepts share the same set of hyperparameters and these 

concept mixture models are constrained by a common prior density parameterized by this 

set of hyperparameters. This is reasonable since given a concept (say, ‘dock’), the image 

annotations from its sibling concept (say, ‘bridge’) are often related. For example, the 

keywords in the class of the concept ‘bridge’ are ‘water’, ‘boats’, ‘buildings’, ‘canal’, 

‘sky’, etc., which are closely relevant to the concept ‘dock’. We also call such similar 

context among sibling concepts as the ‘shared knowledge’. Thus the hyperparameters can 

be interpreted as the shared prior knowledge among the sibling concepts. Figure 5.4a 

shows a sub-tree of a multi-level concept ontology in which the child concepts (c1, c2, … , 

cM) are derived from their parent node, labeled ‘ci’. As shown in Figure 5.4b, we assume 

that all mixture parameters of the child concepts, 
1,1 1,2 ,1 ,{ , , ..., , ..., }M M Jχ χ χ χ , share the 

same set of hyperparameters,
iτ , 
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(b)  

Figure 5.4: An illustration of TBM 

Thus based on the Eq. (5.7) and (5.8), TBM needs to address three key issues, namely: (a) 

the definition of the prior density, 
0p ; (b) the specification of the hyperparameters based 

on concept ontology, iτ ; and (c) the MAP estimation of the mixture model parameters, 

map

iΩ .  

5.4.4 Parameter Estimation for TBM 

As discussed in Section 4.3, we also define 0
p  as the Dirichlet density, and employ the 

same approach as in Section 4.4.4 to specify the hyperparameters, iτ . With the Dirichlet 

prior density and the specified hyperparameters ml

iτ , we have a MAP estimation of 

model parameters by rewriting Eq. (5.8) as follows: 

| |

, , , 0

11

argmax log{ [ ( | )]}* ( | )
i i

i

D H
map ml

i i h c t i h i i

ht

p I pβ χ τ
Ω ==

Ω = Γ∑∏          (5.9) 

where 
,1 ,2 ,( , , ..., )ml ml ml ml

i i i i Vτ τ τ τ= is the specified hyperparameter, 
, 0ml

i vτ > ,1 v V≤ ≤ . As 

discussed in Section 4.5, we still employ the EM algorithm to find the analytical solution 

of MAP estimations.  



 79 

The EM algorithm starts with some initial guess at the parameters, (0)

iΩ  and then 

proceeds iteratively to generate estimates (1)

iΩ , (2)

iΩ , … by repeatedly applying the 

following two steps until some convergence criterion is met. The algorithm is as follows:  

E-step:  For h = 1, 2, …, Hi and t = 1, 2, …, | |iD compute posterior probabilities using  

              the current parameter estimates ( ) ( )

, ,{ , }k k

i h i h
β χ at iteration k. 
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Here Hi is the number of mixture components of concept class ci. In our experiments, we 

take the same Hi as the component number obtained by MDL principle (Eq. (5.6)) of ML 

estimation in Section 5.4.1.     

5.4.5 Experiments and Discussions 

As BHMMM with J=25 (where J is the number of the mixtures) without expanding the 

annotations by TBM and TMM, achieved the best performance among conventional AIA 

systems. We thus take BHMMM with J=25 as our baseline. 
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First, we want to verify the effectiveness of our proposed framework and TBM. We 

use BHMMM (J=25) as the conventional AIA. In the step 4 of our pipeline in Section 5.3, 

we pick the top 5% (the mean number of the increased training samples for each testing 

concept class is about 7 images) or top 10% (the mean number of the increased training 

samples for each testing concept class is about 15 images) of additional samples.  

Table 5.2: Performance comparison of TMM and TBM for text-AIA 

Models 

 

BHMMM 
(J=25) 

TMM 

(top5%) 
TMM 
(top10%) 

TBM 
(top5%) 

TBM 
(top10%)  

# concepts (recall>0) 122 134 143 152 153 

Mean Per-concept metrics on all 263 concepts on the Corel dataset 

Mean Precision 0.142 0.143 0.145 0.152 0.156 

Mean Recall 0.225 0.278 0.301 0.330 0.341 

Mean F1 0.169 0.177 0.181 0.184 0.188 

 We tabulate the performance of TBM and TMM in Table 5.2. We derive the 

following observations from Table 5.2. (a) The use of additional training examples 

derived from TMM and TBM is beneficial, since the performance of TMM- and TBM 

models are better than that of BHMMM (J=25). This demonstrates that text information 

is important and effective to expand the original annotations. (b) As compared with TMM 

(top 5% and 10%), TBM achieved even better performance in mean precision, and recall 

mF1 measures. In particular, TBM (top 10%) achieves the best performance 0.188 of mF1 

measures, and detects 153 of 263 testing concepts.  
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antlers coast railroad jet 

    

bulls. field. elk. 

grass. 

boats. harbor. 

sky. water. 
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train. snow. 

plane. prop. 

runway. 

    

field. moose. tree. beach. sand. sky. 

water. 

locomotive. road. 

train. 

formation. sky. 
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Figure 5.5: Examples of top additional training samples  

      obtained from both TMM and TBM 

Figure 5.5 shows some examples of top training samples obtained from both TMM 

and TBM. The blue italic keywords denote the concept class or the additional annotation 

for the corresponding training images, and black keywords denote the original image 

annotations. From these examples, we can easily observe the problem of incomplete 

annotations. Meanwhile, the additional annotations added in these examples are detected 

correctly by both TMM and TBM, which demonstrate the effectiveness of text features 

and our text-based models.  
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beach dock 

  

sand. water. seals. boats. sky. water. buildings. 

  

Figure 5.6: Examples of top additional training samples obtained from TBM 

Figure 5.6 shows two examples of the top additional annotations or training samples 

obtained only from TBM. The red keywords (‘seals’ and ‘buildings’) do not occur in the 

training set of the corresponding concept class (‘beach’ and ‘dock’). But the keyword 

annotation ‘seals’ occurs in the training set of the concept classes ‘shore’ and ‘coast’, and 

the keyword annotation ‘buildings’ occurs in the training set of the concept class ‘bridge’. 

From these examples, we derive the following observations. (a) The ML estimations does 

not work if there is a mismatch between training and testing samples. (b) TBM can 

effectively enhance the ML estimations of model parameters by incorporating the prior 

knowledge into the text models.  

Now we want to analyze the effectiveness of our proposed framework with TBM 

when the number of original training images is small. We still selected a subset of 132 

test concepts in Section 4.1 in which the number of training examples in each class is less 

than 21.  

    

  beach 

coast  

geological_formation 

shore  

    

  

structure 

dock  bridge  
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Table 5.3:  Performance summary of TMM and TBM on the concept classes    

with small number of training samples 

Models 

 

BHMMM 

(J=25) 

TMM 

(top10%) 

TBM 

(top10%) 

# of concepts (recall>0) 25 50 57 

Mean Per-concept metrics on all 132 concepts on the Corel dataset (# of original training 

samples <=21) 

Mean Precision 0.059 0.071 0.090 

Mean Recall 0.106 0.264 0.333 

Mean F1 0.069 0.104 0.128 

Table 5.3 compares three models, BHMMM (J=25), TMM (top10%) and TBM 

(top10%). Obviously, TBM achieves the best performance 0.090, 0.333 and 0.128 in 

terms of mean precision, recall and F1 measurements. This indicates again that our 

proposed framework and TBM are effective in acquiring more training samples even 

when the number of training samples is small.   

 

5.5 Text-Visual-AIA Models 

 

In this Section, we discuss the problem on combining text and visual modalities to 

acquire ‘more appropriate’ training samples in this section. We mainly focus on two 

fusion models. One is the linear fusion model, and the other is our proposed text-visual 

Bayesian model.  

5.5.1 Linear Fusion Model (LFM) 

Given an image represented by text and visual feature vectors, the easiest way to deal 

with these two feature vectors is to concatenate them into an extended feature vector 
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instead of using individual component vectors, which can be thought of as “feature-level 

fusion”. Machine learning algorithms, such as SVM, can then be used to train classifiers 

for the extended feature vectors. As pointed out in (Hastie et al. 2001), this creates a 

major problem of the curse of dimensionality. For example, there are 500 region tokens 

in Corel dataset to represent image visual contents, and we have a vocabulary of 374 

concepts to represent a text vector of an image.     

Therefore linear and non-linear fusions of scores produced by different features are 

popular alternatives to fuse the multi-modal features. Some of them have led to better 

performance than the concatenation method (Chen and Hauptman 2004; Naphade et al. 

1998; Smith et al. 2003; Tong et al. 2005; Yan et al. 2003). The basic idea behind linear 

fusion is that the outputs (likelihood, posterior probability, et al.) from different 

modalities are taken as new feature vectors to represent each class, and then the 

coefficient of each feature for the final combination is learned in the new feature space. 

Based on the experiments on large-scale TRECVID’02 video (Yan and Hauptman 2003), 

it was concluded that linear fusion can be an appropriate choice when fusing small 

number of modalities. Thus we take linear fusion model as one of our text-visual-AIA 

models. Since our proposed visual-AIA model in Section 5.4.2 and TBM achieve the best 

performance on visual and text features respectively, we would like to fuse their 

likelihoods by the followed formulation: 

( | ) (1 ) ( | ) ( | )i BHMMM b i TBM c ip I c a p I c a p I c= − × + ×       (5.13) 

Here, ( | )ip I c denotes the final likelihood of generating an image I from the concept 

class ic . ( | )BHMMM b ip I c  denotes the likelihood of generating bI  from ic based on our 
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proposed BHMMM which is taken as our visual-AIA model in Section 5.3 , and 
bI  is the 

image representation of region tokens. ( | )TBM c ip I c  denotes the likelihood of generating 

cI  from ic based on our proposed TBM model in Section 5.4.2. In essence, Eq.(5.13) is 

an example of score-level fusion. a is a constant used to combine the likelihoods from 

visual-AIA model and TBM,  and the value of a is set empirically as 0.7 in our 

experiments.  

5.5.2 Text and Visual-based Bayesian Model (TVBM) 

                   

                        

  

 

        

‘buildings’, ‘sky’ 

 

‘tree’, ‘palm’ 

 

 
 

 

 

text mixtures 

visual mixtures 
                    

 

 

  

‘buildings’ 

  

                (a) Text and visual mixtures of ‘beach’                                         (b) 

Figure 5.7: An illustration of the dependency between visual and text modalities 

Although linear fusion model is an easy way to fuse multi-modal features, and work well 

when the number of modality is small, linear fusion is not capable of modeling the inter-

dependencies between modalities. Figure 5.7 shows an example of illustrating the 

dependencies between visual and text modalities. 
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       As shown in Figure 5.7a, there are four possible mixtures for the concept class 

‘Beach’, two of them are based on text features (i.e. ‘buildings’ and ‘sky’, ‘tree’ and 

‘palm’), and the other two are based on visual features. Given an image labeled with 

‘buildings’ in the training corpus as shown in Figure 5.7b, it is likely to be chosen as an 

additional sample for ‘beach’, since it could be supported with high confidence by both 

the text mixture of ‘buildings’ and ‘sky’ and visual mixture on the right. But this image is 

not an appropriate additional sample for the concept class ‘beach’, so we need to explore 

the inter-dependency of text and visual modalities to acquire ‘more appropriate’ training 

samples. 

                  ‘ci’ 

  
i
τ     

       
,1iχ     

,2iχ     ...      , ii Hχ   

 
i
ϕ  

    
,1iθ  

,2iθ  ... 
1,i J

θ    …       ... 
, Hi
i Jθ  

mixtures at text-level 

mixtures at visual-level 

 

Figure 5.8: An illustration of structure of the proposed text-visual Bayesian model 

As shown in Figure 5.8, we model the inter-dependency of text and visual features by 

building the correspondences between text and visual mixtures. For example, the first text 

mixture with the parameter ,1iχ  corresponds to the visual mixtures with 

parameter
1,1 ,2 ,, ,...,i i i Jθ θ θ . Meanwhile, in terms of previous discussions, we also employ 

the Bayesian approach to estimate the parameters in our proposed model by incorporating 

the prior knowledge. Thus iτ  and  iϕ  are the hyperparameters of prior density to 
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emulate the similar context of text and visual features respectively among sibling 

concepts.  

5.5.3 Parameter Estimation for TVBM 

Text features have been shown in the related work to provide an excellent recall 

performance (Chua et al. 2005, Hauptmann et al. 2006). The reason could be that text 

features are more useful to find the relevant images than visual features. For example, the 

results in (Chua et al. 2005) show that more than half of the positive shots in a video 

corpus can be found by using simple text retrieval. Thus we first estimate the parameters 

of text mixtures and the hyperparameters ml

iτ  by using the same approach for TBM in 

Section 5.4.3. Then given the estimated parameters
, 1{ } iHmap

i h hχ =
, the likelihood of 

generating 
bI  from the concept class ic  can be computed as follows: 

, , ,

1 1

( | , ) { [ ( | )] ( | )}
i h

h h

h

H J
map

b i c i j b i j c i h

h j

p I I p I p Iα θ χ
= =

Λ =∑ ∑                      (5.14) 

where 
1

iH

hh
J J

=
=∑ , J is the total number of mixtures at the visual level, and we separate J 

mixtures into each group of hJ  mixtures equally in our experiments. 1 2( , ,..., )b LI n n n=  is 

the image representation based on region tokens as shown in Section 3.1.2. Thus the 

followed equation is the posterior probability of observing the training samples.  

| |
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h

D H J
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i i i j b t i j c t i h i i
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p D p I p I pα θ χ ϕ
= ==

Λ ∝ Θ∑ ∑∏     (5.15) 
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Here we still define the prior density 
0p  as the Dirichlet distribution, and employ the 

same approach in Section 4.4.4 to estimate the hyperparameters, iϕ . With the specified 

hyperparameters 
ml

iϕ , we then impose a MAP criterion to estimate the parameters as 

follows:   

| |

, , , , , 0

1 11

argmax log ( | )

argmax{ [ ( | )] ( | )}* ( | )

i

i i h

h h

i h

map

i i i

D H J
map ml

i j b t i j c t i h i i

h jt

p D

p I p I pα θ χ ϕ

Λ

Λ = ==

Λ = Λ

∝ Θ∑∑∏
    (5.16) 

where 
,1 ,2 ,( , , ..., )ml ml ml ml

i i i i Lϕ ϕ ϕ ϕ= , 
, 0ml

i lϕ > ,1 l L≤ ≤ . As discussed in Section 4.5, we will 

employ the EM algorithm to find the analytical solution of MAP estimation. The two 

basic equations of the EM algorithm for MAP estimation are as follows: 

E-step:  For all the 1, 2,...,h hj J= , 1, 2,...,
iH

h J= , and 1, 2,..., | |it D= , we compute  

posterior probabilities  using the current parameter estimates ( ) ( )
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h h

k k
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iteration k. 
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M-step:  Updates ( 1) ( 1)
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As compared with the EM algorithm for TBM and BHMMM as shown in Eq. (5.10) and 

(4.13), the main difference of the EM algorithm for TVBM lies in the computation of the 

posterior probabilities as shown in Eq. (5.17).  

5.5.4 Experiments and Discussions 

Now we want to compare the effectiveness of two text-visual-AIA models, namely, (a) 

LFM (linear fusion model) to merge the two lists of additional sample obtained with 

visual-AIA and TBM, respectively, and (b) TVBM as discussed in Sections 5.5.2 and 

5.5.3. With the same configuration as the experiments in the previous sections, we list the 

corresponding AIA results in Table 5.4. In contrast with the results in Table 5.4, LFM 

produced performance similar to what is achieved with TBM. Nevertheless the best 

results were obtained with TVBM in which the combined text and visual features were 

used to estimate better models, and consequently better set of additional training samples 

to training better BHMMM (J=25) models for AIA. For example, we achieved the best 

mean recall of 0.385 among all competing models with TVBM (top 10%). The mean F1 

obtained with the same model is 0.230, which is also the best among all of our 

experimental results. 
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Table 5.4: Performance comparison of LFM and TVBM for text -visual-AIA 

Models 

 

LFM 
(top5%) 

LFM 
(top10%)  

TVBM 
(top5%) 

TVBM 
(top10%)  

# of concepts (recall>0) 150 154 161 166 

Mean Per-concept metrics on all 263 concepts on the Corel dataset 

Mean Precision 0.157 0.163 0.181 0.190 

Mean Recall 0.288 0.302 0.363 0.385 

Mean F1 0.183 0.190 0.218 0.230 

In cases when the number of training samples is limited for some concept classes, we 

expect the fusion models to improve over the baseline results. This can be demonstrated 

by using the models in Table 5.5, and testing them on the subset of text concept classes 

with less than 21 training samples defined in the previous Sections. The corresponding 

results with the two fusion models are listed in Table 5.5. Comparing with the results in 

Table 4.3, it is clear that both LFM and TVBM provided much better results as compared 

to those obtained with the baseline BHMMM (J=25) without incorporating the extra 

training samples. Furthermore the improvement from BHMMM (J=25) to TVBM (top 

10%) was very significant, from a mean recall of 0.106 to 0.320. In the mean time, the 

mean F1 was improved from 0.069 to 0.162, for the set of 132 concept classes that have 

less than 21 training samples. 

Table 5.5: Performance summary of LFM and TVBM on the concept classes       

with small number of training examples 

Model 

 

LFM 
(top5%) 

LFM 
(top10%)  

TVBM 
(top5%) 

TVBM 
(top10%) 

# of concepts (recall>0) 44 47 50 52 

Mean Per-concept metrics on all 132 concepts on the Corel dataset  

(# of training samples<=21) 

Mean Precision 0.102 0.109 0.118 0.129 

Mean Recall 0.221 0.237 0.298 0.320 

Mean F1 0.121 0.129 0.147 0.162 
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5.6 Summary 

 

In this chapter, since the initial collection of concept annotations for each image in the 

training set is usually incomplete, we explore the use of mixture models to generate more 

concept labels to each image using the same training set of images so that a new set of 

mixture models can be built with the same image data coupled with an expanded 

collection of acquired annotations. For primarily labeled images in the training set, the 

new additional annotations can be obtained with mixture models built from text and 

visual features. These models can now be used to associate additional concepts to the 

images and their original set of concept labels by AIA. We called the text-AIA, visual-

AIA and combined text-visual-AIA, respectively. 

Experimental results on the Corel image dataset showed that the inclusion of more 

concept annotations with text-AIA, visual-AIA and text-visual-AIA, gave a significant 

improvement over the results obtained without the additional training annotations. The 

best results were achieved with the expanded concept labels obtained with TVBM in 

which both text and visual features are fused to build a joint models for text-visual-AIA. 

In summary by incorporating the newly acquired annotations and the corresponding 

samples into the existing training set, we achieved an even better per-concept F1 of 0.230 

over the top results obtained with our proposed BHMMM, LFM and other extended AIA 

models.  
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Chapter 6 

Annotating and Filtering Web Images 

 

Having discussed how to alleviate potential difficulties resulting from a limited set of 

training data by our proposed BHMMM in Chapter 4 and extended AIA in Chapter 5, we 

now explore the use of external data sources (i.e. World Wide Web) to automatically 

acquire more training samples. We discuss how to annotate web images and filter out 

low-quality annotations to collect high-quality additional web image samples for training. 

Our aim is to circumvent the requirements of a large amount of labeled images by 

resorting to open sources of web images. 

 

6.1 Introduction 

 

With the explosive growth of multimedia information such as images and videos on the 

internet, the World-Wide Web (WWW) has been a popular external data source for 

acquiring additional training samples. In particular, some search engines, such as Google, 

Yahoo and AltaVista, offer a search function for images. These image search engines 

provide a convenient way for users to search or collect large-scale web images. Different 

from the traditional image collections that contain very little information, the web images 

contain many context information like image’s filename, ALT-tag and/or associated web 

pages. Thus to address the problem of effectively annotating a large amount of images 

from the web and collecting high-quality additional training samples automatically, we 

need to tackle three key issues: (a) extract appropriate textual hints from the associated 
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HTML pages of images; (b) fuse the text and visual contents to model the dependencies 

between them; and (c) due to large variations among web images, we need an effective 

strategy to check the ‘goodness’ or quality of annotations for web images. Thus in the 

following Sections, we will discuss these three key issues.    

 

6.2 Extracting Text Descriptions 

 

The text descriptions of a web page often give useful hints on what an embedded image is 

about. However, textual contents may contain not only information that captures the 

semantics of the embedded image, but also other descriptions that are not directly 

relevant to the image. There are several places in a webpage where relevant texts may be 

found: (a) image file name; (b) page title; (c) alternate text (ALT-tag); and (d) 

surrounding text. For example, the first three features are employed in (Shen et al.  2000; 

Zhang and Chen 2002), since these features are easy to extract. However, the empirical 

studies in (Feng et al. 2004) show that these three features do not often give sufficient 

semantic information on an image. The image file name is often abbreviated and may not 

be recognized as meaningful words. The page title may be inaccurate to semantic 

contents of the embedded image as there is often multiple images or topics in a web page. 

Moreover, a lot of web images do not even have alternate text.  

In order to provide a more complete description of image contents, we need to 

incorporate relevant surrounding text. However, the great variety in style and web page 

layout makes the automated extraction of surrounding text a challenging task. This is 

partly why most existing approaches do not consider surrounding text. Fortunately, there 
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is regularity to the appearance of relevant surrounding text with respect to the position of 

an image in an HTML document. For example, relevant surrounding text often appears 

adjacent to or below an image, or in the table cell next to the one containing the image. 

An earlier study of over 1,000 web pages (Feng et al. 2004) arrives at the following 

observations. (a) Surrounding text may appear to the left or right of the image in the 

HTML document. The probability of finding relevant surrounding text to the right is 73% 

while that to the left is 27%. (b) According to the survey conducted by Google, the first 

or last 32 words in the text nearest to an image appear to be most descriptive of the image. 

So if the text description extracted in the left or right direction is longer than 32 words, 

we only keep the first 32 words as surrounding text. Further details of our algorithm for 

finding relevant surrounding text can be found in (Pan  2003). 

Given a predefined concept vocabulary C = {c1, c2,…, cV} and a bag of keywords 

derived from the associated HTML pages, we employ only those keywords contained in 

the concept vocabulary to represent a web image I . We use a vector Ic = (m1, m2, …, mV) 

as the text representation of an image, where V is the total number of the predefined 

concepts, and mv (1≤v≤V) denotes the observed count of the v
th
 concept in the bag of 

keywords, as shown in Section 5.4. 

 

6.3 Fusion Models 

 

In Section 5.5.2, we have discussed how to fuse text and visual features to model the 

dependencies between them. For web image annotation, most approaches explore the 

fusion of multi-source evidences by employing either heuristic techniques such as convex 
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combination or voting scheme (Hauptman et al.  2003; Chaisorn et al.  2003), or the 

Dempster-Shafer combination technique (Aslandogan and Yu 2000). In essence, these 

fusion approaches ignore the dependencies between text and visual features. Thus we 

apply our proposed TVBM model in Section 5.5.2 to fuse the text and visual features and 

to annotate web images.  

The visual representation of web images follows the approach in CMRM (Jeon et al. 

2003) and TM (Duygulu et al. 2002), which is the same as the experimental settings in 

previous Sections. That is to say, each web image is first segmented into regions by 

BlobWorld and region visual features are computed. A region is assigned a region token 

whose centroid is the closest to the region in the feature space. As a result, each web 

image I is represented by an image vector 1 2( , ,..., )b LI n n n= , where each element ln  

denotes the observed count of the thl  corresponding region tokens in the image I as 

shown in Figure 3.1.  

 

6.4 Annotation Filtering Strategy 

 

Web images often have extensive semantics and large variations on visual contents. Thus 

we need a strategy to evaluate the ‘goodness’ or quality of newly annotated web image 

samples. Some approaches evaluate the quality of newly annotated samples by the so-

called ‘co-training’ technique. For example, Feng et al. developed two ‘view-

independent’ classifiers in (Feng et al. 2004) – one based on text, and the other on visual 

features. Thus a web image is likely to be chosen as an additional sample if this image is 

supported by both text and visual classifiers. As discussed in Section 5.5.2, such 
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approaches ignore the dependencies between text and visual features, and we apply our 

proposed TVBM to annotate web images. Thus in this section we design two strategies to 

filter out the low-quality web image samples based on their likelihoods from TVBM.    

6.4.1 Top N_P  

As far as we know, top N strategy is a common approach to ranking and filtering 

candidate concept annotations or images in the field of image annotation and retrieval. 

For the top N, a fixed number of newly annotated images with the highest N ranking 

values (i.e. likelihoods) are chosen. For example, most existing AIA models (Duygulu et 

al. 2002; Jeon et al. 2003; Srikanth et al. 2005) assign a set of top five concepts to each 

test image based on the concept likelihoods, and the model performance is evaluated by 

comparing the generated annotations with the ground truth of image annotations in the 

testing set. In (Rui et al. 2007), the strategy of top N is used to filter out the low quality 

annotations for web images.  

In our proposed extended AIA models, a fixed percentage, rather than a fixed N, of 

the newly annotated images with the highest likelihoods are chosen as the additional 

training samples in our proposed extended AIA models. Here we call this strategy as ‘top 

N_P’. Empirically, one can use cross-validation experiments to set appropriate values of 

a fixed percentage (Rui et al. 2007), but in our experiment we simply tried different 

percentage values. The disadvantage of top N or top N_P is that if the number of high-

quality images for each concept class varies, it is hard to select an accurate number or 

percentage for annotations.  
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6.4.2 Likelihood Measure (LM) 

In order to evaluate the ‘goodness’ or quality of annotations for web images, a natural 

way is to attach to each concept label a number that indicates how confident the AIA 

model is about accepting this concept label for the given web image. This number is often 

referred to as a confidence measure, serving as a reference guide to evaluate the quality 

of new annotations.  

In essence, our scenario is a problem of pattern verification. Generally speaking, it is 

formulated as follows: given a test signal Y, we want to verify if the signal Y is generated 

from a signal source, S0. Thus we need to consider two types of errors. First, one could 

have decided that Y was not generated from the signal source S0, while it was indeed 

coming from the source. Second, one could have verified the given Y as coming from the 

signal source S0 while it was actually generated from a different source. The verification 

performance is often evaluated as a combination of these two types of errors. From the 

viewpoint of statistical inference (Duda et al. 2001), the pattern verification scenario is 

closely related to a hypothesis testing problem. That is to say, given the test signal Y, we 

want to test the null hypothesis H0, against the alternative hypothesis, H1, where H0 

assumes that Y is generated from the source S0, and H1 assumes that Y is generated from 

another source S1. 

Thus based on the above analysis, we perform pattern verification as follows: given a 

test signal Y, a test statistic T(Y) is formed, and the hypothesis H0 is accepted if  

( )T Y ω≥                                                 (6.1) 



 98 

where ω is a test threshold. A test statistic commonly used is likelihood ratio test (LRT) 

as shown in Eq. (6.2), which has been adopted as a way to perform speaker and utterance 

verification (Lee 2001; Jiang 2005) in the field of speech recognition.    

0 1( ) ( | ) / ( | )T Y p Y p Yλ λ ω= ≥                             (6.2) 

where 0λ and 
1λ  are model parameters characterizing H0 and H1, respectively, and 

0( | )p Y λ and 
1( | )p Y λ  are the likelihoods that the test signal Y is generated by the 

two competing sources, S0 and S1. Based on Eq. (6.2), the approaches of LRT-based 

confidence measures in speaker and utterance verification focus on how to 

approximate 1( | )p Y λ  (Cox and Rose 1996; Gillick et al. 1997; Kemp and Schaaf 1997; 

Modi and Rahim 1997).  Thus a key issue for LRT-based confidence measures is how to 

find the competing sources S1.  

A common way to find the competing sources S1 is the one-against-all criterion. That 

is to say, given a concept ic ∈ C = {c1, c2,…, cV}, the source S0 is the training set of ic , 

iD , while the competing source S1 is the set of training samples from the other concepts, 

{c1, c2,…, cV}/ ic . However, in our scenario, each image can be labeled with multiple 

concepts and the original annotations are often incomplete, so such a binary criterion is 

not appropriate. Furthermore, one-against-all criterion could often result in the very large 

size of competing source S1 as compared with the size of source S0. Therefore we 

simplify Eq. (6.2) by only considering the likelihood distribution of source S0 as shown in 

Eq. (6.3) 

0( ) ( | )T Y p Y λ ω= ≥                                     (6.3) 
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Thus given a concept 
ic  and model parameter iΛ , a test statistic T(Y), can be rewritten 

as follows, and the hypothesis H0 is accepted if 

( ) ( | )i iT Y P Y ω= Λ ≥                                 (6.4) 

We call our strategy in Eq. (6.4) as likelihood measure (LM). In this strategy, we set the 

threshold 
iω for a concept class 

ic adaptively in terms of the likelihood distribution over 

its training set. The basic idea is that if the likelihood of an additional web image is 

consistent with or no less than the likelihood values of most training samples, then we 

can trust and accept this additional sample.  

 

,1iω  
top 75% 

x 

top 25% 
Likelihood 

Distribution 

,2iω  

x1 x2 x3 x4 x5 x6 x7 x8 
 

Figure 6.1: Likelihood measure 

Compared with the ‘top N_P’ strategy, LM does not set a fixed percentage number of 

the annotated images with highest likelihoods for all the concept classes, but set an 

adaptive threshold for each concept class according to the likelihood distribution of the 

training set. In our experiment we want to investigate how the different ω values affect 

the performance of confidence measure. Figure 6.1 shows an example of likelihood 

distribution over the training set of a concept class
ic . ,1iω corresponds to the threshold of 
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highest likelihood for top 25% training samples, and 
, 2iω corresponds to the threshold of 

highest likelihood for top 75% training samples. 

 

6.5 Experiments and Discussions 

 

In this Section, we want to compare the annotation performance of top N_P and LM for 

web images. We still use the Corel CD dataset, including 4500 training images and 500 

testing images, to verify these two strategies. The experimental settings are the same as 

the other experiments in this dissertation, but we mainly focus on the concept classes in 

which the number of original training samples is less than 21, and the total number of 

such concept classes is 132.  

6.5.1 Crawling Web Images 

We use Google Image Search to collect additional web images. Given a concept ic , we 

first find the co-occurred words from its training set. Here we denote the set of co-

occurred words of i
c as icw  , where icw ⊆  C = {c1, c2,…, cV}, and any concept 

j ic cw∈  i j≠  , 1 j V≤ ≤ . So the pair of concepts ( , )i jc c (
j ic cw∈ ) is labeled for 

at least one training image of concept class ic .  Then we submit the one word ic  and the 

word pairs ( , )i jc c (
j ic cw∈ ) as queries to Google Image Search. Finally we retrieve 

top 20 resulting web images for each query as the candidates for additional training 

samples (Liu et al. 2007). For example, if we want to collect additional web images for 

the concept ‘tiger’, then we submit five queries such as ‘tiger’, ’tiger’ and ‘water’, ’tiger’ 

and ‘grass’, ‘tiger’ and ‘tree’ to Google Image Search, thus we have a total of 100 
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additional web images for the concept class ‘tiger’. In our experiment we crawled a total 

of 14,726 web images for 132 concept classes by Google Image Search. 

6.5.2 Pipeline 

As shown in Section 5.6.3, TVBM (top 10%) achieves the best performance both on the 

263 concepts of the whole testing set and on the 132 concepts with small number of 

training samples, thus we employ the trained TVBM (top 10%) to annotate and filter the 

candidate web images. Given a concept class ci, we denote the original training set as iD  , 

the additional training set obtained by TVBM as 
( )i

tvS  and the set of selected web images 

as 
( )i

webS , then we have the following algorithm to annotate and filter out the web images: 

Input: The set of training images Di for a given concept class ci; 

Output: The estimated model parameters with MAP criterion, map

iΛ ; 

1) Given the training set of images, estimate the parameters of TVBM by MAP 

criterion. 

2) For any concept ci, expand the annotations of images related to ci by TVBM. 

3) Generate a rank list of images for ci based on their likelihoods. 

4) Expand training set of ci by combining top 10% images (
( )i

tvS ) and iD . 

5) Re-estimate the parameters of TVBM for ci based on the expanded training set. 

6) Crawl web images for each concept by using Google Image Search and the expanded 

set of queries as explained in Section 6.5.1. 

7) Apply the re-estimated TVBM to compute the likelihoods of additional web images. 

8) Set fixed percentage or the threshold i
ω  to filter out the low-quality web images 

based on the strategy of top N_P or LM, and obtain the additional set
( )i

webS . 

9) Estimate the parameters of BHMMM (J=25) for concept class ci by combing i
D , 

( )i

tvS  and 
( )i

webS  , to perform conventional AIA. 
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6.5.3 Experimental Results Using Top N_P  

The aim of this experiment is to verify the effectiveness of the top N_P strategy for 

checking the ‘goodness’ of web images. That is to say, given the list of likelihoods of 

web candidate images for a concept class, we only select the fixed top percentage of 

candidate images as the additional set
( )i

webS . We set four different values for percentage, 

i.e. at 20%, 25%, 30% and 35%, respectively.  

Table 6.1: Performance of TVBM and top N_P strategy 

Models Top 20% Top 25% Top 30% Top 35% TVBM (top 10%) 

# of additional images 3000 3728 4475 5218 -- 

# of concepts (recall>0) 62 62 62 61 52 

Mean Per-concept metrics on the 132 concepts on the Corel dataset                                               

(#. of original training samples of each concept class <=21) 

Mean Precision 0.242 0.246 0.236 0.226 0.190 

Mean Recall 0.371 0.374 0.369 0.357 0.385 

Mean F1 0.264 0.269 0.258 0.253 0.230 

With the same configuration as the experiments in previous sections, we list the 

corresponding conventional AIA results in Table 6.1. From Table 6.1, we can draw the 

following observations.  (a) Compared with the results of TVBM (top 10%) from Table 

5.5, top N_P based methods achieve better performance in terms of mean precision, recall 

and mean F1. This indicates that WWW is useful to provide the additional training 

images for users and most of the selected web images are positive so that the final 

performance can be improved. (b) It is clear that the top 25% achieves the best 

performance, but the performance of top 30% and 35% degrade continuously, which 

indicates that more noisy web images are accepted as the additional training samples 
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when we set the threshold to top 30% and 35%. Obviously this highlights the 

disadvantage of top N_P strategy – that if the number of high-quality images for each 

concept class varies, it is hard to select an accurate number of annotations.   

6.5.4 Experimental Results Using LM 

This Section analyzes the effectiveness of LM for selecting high quality web images for 

training. That is to say, given the list of likelihoods of training set for a concept class, we 

set the threshold to filter out the web images in terms of the top likelihoods of training 

samples. We set four thresholds ω in terms of different top likelihoods of training 

samples i.e. at 25%, 50%, 75% and 100%, respectively (see Figure 6.1).  

Table 6.2: Performance of LM with different thresholds 

Models 

 

LM 

(top 25%) 

LM 

(top 50%) 

LM 

(top 75%) 

LM 

(top 100%) 

# of additional images 753 2136 3512 4557 

# of concepts (recall>0) 60 67 69 65 

Mean Per-concept metrics on the 132 concepts on the Corel dataset                                               

(#. of original training samples of each concept class <=21) 

Mean Precision 0.1975 0.240 0.255 0.247 

Mean Recall 0.370 0.416 0.449 0.407 

Mean F1 0.2290 0.269 0.291 0.277 

With the same configuration as the experiments in the previous sections, we tabulate 

the corresponding conventional AIA results in Table 6.2. From Table 6.2, we can draw 

the following observations. (a) Compared with the results in Table 6.1, the LM with 

higher thresholds (top 50%, 75% and 100%) achieve better performance in terms of mean 

F1. In particular, LM with top 75% achieves the best performance in terms of all 
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measurements. This indicates that LM is more effective to filter out low-quality 

additional web images than the top N_P strategy. (b) The performance of LM with top 

100% is a little worse than that of LM with top 75%. This indicates that not all the 

original annotations could be correct, which leads to some noisy web images included 

into the additional set
( )i

webS .   

6.5.5 Refinement of Web Image Search Results 

The previous two experiments have demonstrated the effectiveness of crawling additional 

web images refined by TVBM and various filtering strategies to support AIA task. This 

seems to indicate that TVBM can be used as a method to improve the retrieved results of 

web image search. In particular, top N_P (25%) and LM (top 75%) achieved the best 

performance in their respective group. Thus in order to validate this claim, we tabulate 

the performance of Google Image Search, top N_P (25%) and LM (top 75%) in Table 6.3 

by manually checking the retrieved results obtained by Google Image Search and the 

refined results obtained by TVBM coupled with the strategies of top N_P and LM.   

Table 6.3: Performance comparison of top N_P and LM                                            

for refining the retrieved web images 

Models 

 

Google Image Search Top N_P 

(25%) 

LM 

(top 75%) 

Mean Precision 0.55 0.62 0.76 

In the absence of ground truth for the retrieved web images, we manually estimate the 

performance of the retrieval in terms of precision based on the 132 concepts on the Corel 

dataset. As shown in Table 6.3, TVBM coupled with top N_P (25%) and LM (top 75%) 
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is able to improve the precision of the original Google Image Search results by 0.62 and 

0.76 respectively. This indicates that TVBM could be used as an effective model to refine 

the results of web image search. In particular, TVBM coupled with LM (top 75%) 

achieved the best precision of 0.76, with an improvement of about 21% over the original 

retrieved results by Google Image Search.  

6.5.6 Top N_P vs. LM 

As discussed in Section 6.4, LM can set an adaptive threshold for each concept class to 

filter out low-quality web images. To compare the effectiveness of two strategies on top 

N_P and LM in detail, we further analyze the results by splitting the set of 132 concepts 

into two groups, i.e. I and II. In group I, LM select less additional web images for each 

concept than top N_P, while LM select more additional web images for each concept in 

group II than top N_P. As a result, there are a total of 70 concepts in group I, and 62 

concepts in group II. We hope that LM is more adaptive for setting thresholds than top 

N_P in both groups. Since the top N_P (25%) and LM (top 75%) achieved the best 

performance in their respective experiments, we compare their performance in group I 

and II.   

Table 6.4: Performance comparison of top N_P and LM in Group I 

Models 

 

Top N_P 

(25%) 

LM 

(top 75%) 

# of additional images 2534 1944 

# of concepts (recall>0) 28 32 

Mean Per-concept metrics on the 70 concepts in group I                                              

(#. of original training samples of each concept class <=21) 

Mean Precision 0.193 0.204 

Mean Recall 0.310 0.422 

Mean F1 0.218 0.255 
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We first compared the performance of the top N_P and LM on the concepts in group I. 

As shown in Table 6.4, more additional web images are obtained by the top N_P (25%). 

But the performance of the top N_P is worse than that of LM in terms of the recall, 

precision and F1. This indicates that many noisy additional web images are incorporated 

by the top N_P but not as many by LM. Figure 6.2 shows some noisy additional web 

image samples of the concepts in group I obtained by the top N_P but not by LM. 
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Figure 6.2: Some negative additional samples obtained from top N_P  

We then compared the performance of the top N_P and LM on the concepts in group 

II. As shown in Table 6.5, fewer additional web images are obtained by the top N_P 

(25%). However, the performance of the top N_P strategy is still worse than that of LM 

in terms of the recall, precision and F1. This indicates that some positive additional web 
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images are incorporated by LM but not by the top N_P strategy. Figure 6.3 shows some 

examples of positive additional web image samples of the concepts in group II obtained 

by LM but not by the top N_P. 

Table 6.5: Performance comparison of top N_P and LM in Group II 

Models 

 

Top N_P 

(25%) 

LM 

(top 75%) 

# of additional images 1194 1568 

# of concepts (recall>0) 34 37 

Mean Per-concept metrics on the 62 concepts in group II                                              

(#. of original training samples of each concept class <=21) 

Mean Precision 0.306 0.312 

Mean Recall 0.446 0.480 

Mean F1 0.326 0.332 
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Figure 6.3: Some positive additional samples obtained from LM 
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6.5.7 Overall Performance 

In this experiment, we want to verify the overall performance on the full 263 testing 

concept classes of the Corel dataset. Here we incorporate all the additional images 

obtained from TVBM and LM (TVBM (top 10%) + LM (top 75%)) for effective training 

of BHMMM (J=25) which is used for conventional AIA.  

Table 6.6 tabulates the performance of MH (MH = Mixture Hierarchy (Carneiro et al. 

2007)), and TVBM (top 10%). From the Table, it is clear that our strategy of TVBM (top 

10%) + LM (top 75%) achieves the best performance in terms of the recall, precision and 

F1 measurements. In particular, the recall measurement is significantly improved from 

0.290 to 0.458, which is the best recall performance on this dataset as compared with all 

reputed state-of-the-art AIA models.   

Table 6.6: Overall performance 

Models 

 

MH TVBM 

 

(top 10%) 

TVBM (top 10%) 

+ 

LM (top 75%) 

# of concepts (recall>0) 137 166 186 

Mean Per-concept metrics on the 263 concepts on the Corel dataset                                               

Mean Precision 0.230 0.190 0.248 

Mean Recall 0.290 0.385 0.458 

Mean F1 -- 0.231 0.298 

6.6 Summary 

In this chapter, we discussed the problem of annotating and filtering the web images. We 

first downloaded the web images by Google Image Search, and then applied our proposed 

TVBM to annotate these web images. We presented two strategies for filtering out the 
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low-quality web images, top N_P strategy and LM. Experimental results on the Corel 

image dataset show that the inclusion of web images as additional training samples gives 

a significant improvement over the results obtained without using additional web images. 

The best results were achieved with the LM (top 75%), which indicates that the LM is 

more effective for filtering out the low-quality web images than the top N_P strategy. In 

summary, by incorporating the newly acquired image samples from the internal dataset as 

well as the external dataset from the web into the existing training set, we achieved the 

best per-concept precision of 0.248 and per-concept recall of 0.458, as compared to all 

reputed AIA models. 
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Chapter 7 

Conclusions and Future Work 

 

In this chapter, we first summarize the work presented in this dissertation based on our 

proposed Bayesian learning framework used to alleviate the potential problems arising 

from the limited size of training samples, including Bayesian Hierarchical Multinomial 

Mixture Model (BHMMM), Extended AIA models (i.e. TBM and TVBM) and applying 

TVBM for web image annotation coupled with the likelihood measure. We then discuss 

some work that we plan to pursue in the near future. 

 

7.1 Conclusions 

 

In this dissertation, we circumvented the potential problems arising from the limited size 

of labeled training images by proposing a Bayesian learning framework. The framework 

includes three key aspects: 1) incorporating prior knowledge of concept ontology to 

improve the maximum-likelihood estimations of model parameters; 2) effectively 

expanding the original annotations of training images based on multi-modality analysis to 

acquire more training samples without collecting new images; and 3) resorting to open 

image sources on the web for new additional training images. Thus we summarize our 

conclusions in the following sections.  
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7.1.1 Bayesian Hierarchical Multinomial Mixture Model 

We proposed BHMMM to enhance the maximum likelihood estimate of our baseline 

model (multinomial mixture model) by incorporating prior knowledge into hierarchical 

representation of concepts, since the ML estimates in our baseline model depend heavily 

on a large set of labeled training images. The formulation of BHMMM facilitates a 

statistical combination of the likelihood function of the available training data and the 

prior density of the concept parameters into a well-defined posterior density, by treating 

the mixture model parameters as random variables characterized by a joint conjugate 

prior density. The model parameters can then be estimated via a maximum a posteriori 

criterion.  

Experimental results on the Corel image dataset showed that the proposed BHMMM 

approach, using a multi-level concept hierarchy of 371 concepts with a maximum of 25 

mixture components per concept, achieves a mean F1 measure of 0.169, which 

outperforms our baseline model and many state-of-the-art techniques under the same 

experimental settings for automatic image annotation. In particular, BHMMM 

outperforms our baseline model by 0.069 in terms of F1 measurement on a subset of 132 

test concepts in Corel CD dataset in which the number of training samples in each class is 

no more than 21. 

7.1.2 Extended AIA Based on Multimodal Features 

We extended the conventional AIA by three modes (visual-AIA, text-AIA and text-

visual-AIA) to effectively expand the annotations and acquire more training samples for 
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each concept class. The advantage of such an approach is that we can augment the 

training set of each concept class without the need of additional human labeling efforts or 

collecting additional training images from other data sources. By utilizing the text and 

visual features from the training set and concept ontology derived from prior knowledge, 

we employed BHMMM as visual-AIA, and then proposed a text-based Bayesian model 

(TBM) as text-AIA by extending BHMMM to text modality, and finally proposed a text-

visual Bayesian hierarchical multinomial mixture model (TVBM) as text-visual-AIA. 

Experimental results on the Corel image dataset showed that the inclusion of more 

concept labels with text-AIA, visual-AIA and text-visual-AIA, gives a significant 

improvement over the results obtained without the additional training labels. The best 

results were achieved with the expanded concept labels obtained with TVBM in which 

both text and visual features are fused to build a joint models for text-visual-AIA. In 

summary by incorporating the newly acquired annotations and the corresponding samples 

into the existing training set, we achieved an even better per-concept F1 of 0.230 over the 

top results of 0.169 obtained with our proposed baseline BHMMM.  

7.1.3 Likelihood Measure for Web Image Annotation  

Nowadays, images have become widely available on the World Wide Web (WWW). 

Different from the traditional image collections where very little information is provided, 

the web images tend to contain a lot of contextual information like surrounding text and 

links. Thus we want to annotate web images to collect additional samples for training.  

However, due to large variations among web images, we focused on finding an effective 

strategy to check the ‘goodness’ of annotations for additional web images. We first 
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applied our proposed TVBM to annotate web images. Given the likelihoods of web 

images, we investigated two strategies to check the ‘goodness’ of additional annotations 

for web images, i.e. top N_P and likelihood measure. Compared with the strategy of fixed 

top N_P, LM can set an adaptive threshold for each concept class as a confidence 

measure to select the additional web images in terms of the likelihood distributions of the 

training samples.  

Based on a subset of 132 testing concepts in Corel CD dataset in which the number of 

training samples in each class is no more than 21, experimental results showed that the 

inclusion of web images as additional training samples gave a significant improvement 

over the results obtained without using additional web images. The best results were 

achieved with the LM (top 75%). In particular, by incorporating the newly acquired 

image samples from the internal dataset (TVBM (top 10%)) and the external dataset from 

the web LM (top 75%) into the existing training set, we achieved the best per-concept 

precision of 0.248 and per-concept recall of 0.458. This result is far superior to those of 

state-of-the-arts AIA models as reputed in Table 2.1. 

 

7.2  Future Work 

 

Automatic image annotation is a challenging task. While this thesis proposed a novel 

framework to tackle several important aspects of this problem, there are necessarily gaps 

to be bridged in the framework that should be addressed in the future. In the following, 

we discuss some work that we are going to pursue in the near future. 
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1. Image Content Representations. To represent image contents, in this dissertation 

we first segmented the images into regions and then clustered all the regions into 

some region clusters which are the so-called ‘region tokens’. The main advantage of 

such methods is that we can construct a limited size of region token vocabulary to 

cover all the image variations in the space of visual features. However, the above 

clustering methods could lead to poor clustering performance if we were to use only 

visual features of regions as basis for clustering. This is because the regions with 

different semantic concepts but share similar appearance may be easily grouped 

together. Thus such clustering methods were improved by using the annotations of 

training images to impose additional semantic pair-wise constraints when clustering 

the regions (Jin et al. 2004; Shi et al. 2005; Yang et al. 2007). Recently research on 

clustering (Wagstaff 2001; Yan and Hauptman 2004) showed that clustering with 

pair-wise constraints, a kind of realistic semi-supervised clustering method, performs 

considerably better than the unconstrained methods. But it is still an open research 

problem on how to improve the traditional clustering methods by incorporating the 

constraints and how to assign the region token to a segmented region based only on 

visual features. 

2. Statistical Confidence Measures. To check the ‘goodness’ of annotations for 

additional web images, we formulated our problem as a hypothesis testing problem, 

and simplified LRT-based confidence measures (Lee 2001; Jiang 2005) to our 

likelihood measure by only considering the likelihood distribution of source S0 and 

ignoring the competing source S1. As presented in Section 6.4.2, there is some 

research work on LRT-based confidence measures in the field of speaker and 
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utterance verification (Cox and Rose 1996; Gillick et al. 1997; Kemp and Schaaf 

1997; Modi and Rahim 1997). But these approaches employed a binary way to find 

the competing source S1, which is not appropriate in our scenario due to incomplete 

original annotations. So we are interested in studying a new scheme in which we can 

perform confidence measures adaptively. For example, given the images with 

incomplete annotations, we can first expand the annotations with likelihood measure. 

With increase number of annotations, we could assume that the annotations are more 

complete and then apply the LRT-based confidence measures to filter out low-quality 

image annotations.      

3. Refinement of web image search. As discussed in Chapter 6, the performance of 

the current image search engines is not very good due to the lower ranks of some 

relevant retrieved images. Thus we need to develop an effective model to refine the 

retrieved results. In Section 6.5.5, we demonstrated that our proposed TVBM coupled 

with LM (top 75%) was able to achieve the best performance with an improvement of 

about 21% in precision over the original Google Image Search results. Therefore, we 

will further investigate the problems of scalability and speed of online interactive use 

which will be an important area of our future research work. 

4. TRECVID video dataset. TRECVID video dataset is a large-scale video collection 

available on TREC video forum (Chua et al. 2005, Hauptmann et al. 2006). For the 

video data, we have more features to describe the video contents, such as visual, text, 

audio, motion, face detection and recognition, etc. Obviously the dependencies 

among multimodal features are more complex than just text and visual features. So 
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we will consider extending our proposed TVBM to model the complex dependencies 

among multi-modal features to annotate the video data.  
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