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Summary

We investigated the monocular perception of slant and tilt under viewpoint distortion

when the only depth cue was motion parallax. Viewpoint distortion is the distortion

due to the difference between the projection point of the projector system and the view-

point of the subjects. Our computational modeling showed that viewpoint distortion

could be regarded as an equivalent distortion in the intrinsic camera parameters.

Psychophysical experiments were designed to examine how human subjects perceived

depth when viewpoint distortion occurred. A plane containing random dots rotating-

in-depth was displayed to subjects who would then use a probe to indicate the perceived

orientation of the plane. The viewpoint distance and the projection point were changed

to produce viewpoint distortion. The tilt and slant of the perceived plane were ana-

lyzed to evaluate the effect of viewpoint distortion on depth perception. In the first

experiment, slant perception under viewpoint distortion was examined. The second ex-

periment was designed, in particular, to investigated slant perception under viewpoint

distortion in large field of view. We studied tilt perception in the third experiment.

Our experimental results suggested that human perception was not affected signifi-

cantly under viewpoint distortion. The data analysis cannot find any effect of view-

point distortion on tilt perception. Only a weak effect of viewpoint distortion on slant

perception was observed in the case of large slant magnitudes.
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A computational explanation of the viewpoint distortion was provided. We first proved

that the viewpoint distortion in our psychophysical experiments was equivalent to a

change in the focal length. Using the optical flow equations and the iso-distortion

framework, we could prove that a change in the focal length did not affect significantly

tilt and slant perception.
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Chapter 1

Introduction

The human perception of 3D space partly arises from motion field. It has been shown

that motion parallax is a critical cue in the perception of depth [45], and in the detection

of surface curvature [11]. As a consequence, structure from motion has become one

of the central topics of the computer vision community and has received constant

attention since the 1980s [21, 22, 23, 27]. With the recent development of various

Virtual Reality application, the question that arises is how people perceived depth

from viewing a moving sequence of image through a Head Mounted Display (HMD),

e.g. flight simulation for training pilot.

Perception from moving sequence of image is distorted by the difference between the

camera projection point and the viewpoint. The projection point is the position where

the camera center is; the viewpoint is the position of the observer’s eyes. Theoreti-

cally, only the observer located exactly at the projection point sees the right version of

the pictures. When the viewpoint is not identical with the projection point, observer

will receive visual stimuli including dynamic cues such as optical flow different from

1
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the moving sequence of image. As a result, depth perception from motion cues will

be affected. This distortion from the difference between the projection point and the

viewpoint will be called viewpoint distortion. Henceforth our experiments are designed

to examine how depth perception from motion changed because of this viewpoint dis-

tortion.

The viewpoint distortion has been studied by a few researchers in last three decades.

Hagen [19] examined if people could recognize relative size of images in different viewing

position. The stimuli was photographs of triangle and square images against a textured

background. Experimental results showed that the viewpoint did not affect much the

percentage of correct choices. Rosinski et al [34] carried out experiments about the

perception of picture surface. The viewing was monocular through an aperture. It

was found out that the dependence of judged slant on the projection slant for different

viewpoints was very similar. Perkins [44] explained that observer’s expectation of

known shapes compensated for the distortion arising from viewpoint change. The

observer seemed to forced the percept of objects to a familiar shapes (cube, circle) or

following some rules (parallel, orthogonal of line).

All the proceeding works only dealt with static object. With the development of the

digital age, moving sequence of image became popular in many applications. Moving

sequence of image give the spectators the feel of reality with the changing of objects in

time and in space. Usually perception from motion cues is critical. In flight simulation,

the screen duplicated the view of a pilot from the sky. The depth information is the

most important information in flight simulation. It decides how far from the plane to

the target or to the landing site. In this case, with very far distances, all depth cues

except the depth from motion cue are inactive. In Virtual Reality application with
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HMD, the 3D effect mainly comes from the moving images that changing according to

the movement and the orientation of the subjects. Again, depth from motion is the

primary source. Thus perception from motion, especially depth from motion, should

be the principal object of research in human perception from picture.

In this work, we focus on how plane orientation in 3D space is recovered from moving

images. The visual perception of plane orientation is necessary when climbing a slope

or in various action like grasping [51]. Stevens [46] described the plane orientation by

tilt and slant. We denoted N as the vector normal to a plane. The tilt τ is the angle

the projection of N onto the image plane makes with the positive x-axis (the direction

of Nf ). The slant σ is the angle between N and the Z-axis. Tilt computation requires

only ordinal relationship between object points [29], but absolute metrical depth is

necessary to recover slant.

Computational studies showed that plane orientation could be computed from motion

[31]. These approaches described the optical flow of a moving plane as a second-order

polynomial of image coordinates.They indicated however that there exists ambiguity

in the problem of solving the plane equation from optical flow. In general, there are

two solutions. It made the well-known N-T ambiguity between the plane orientation

and the frontal translation.

In visual psychophysics, plane orientation recovered from motion has been intensively

researched. It is well-known that perception of slant is distorted and not reliable.

In an experiment of planes rotating in depth under orthographic projection, Domini

and Caudek [16] reported that perceived slant was not significantly influenced by the

simulated slant. Instead, slant was influenced by tilt and increased with the tilt. In
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similar set-up, Todd and Perotti [49] showed that slant depends both on tilt and on

deformation def =
√

u2
x + u2

y. In contrast, both Domini and Caudek [16],Todd and

Perotti [49] reported that tilt estimation was more accurate than slant. For details

of the tilt perception from motion, Zhong et al [51] studied the dependence of tilt

estimation on field of view (FOV) and on the angle between the tilt and the frontal

translation (translation projected onto the image plane).

In all the above psychophysics experiments, viewpoint distortion has not been studied.

Under orthographic projection, the point of projection is irrelevant as the observer

received the same images in from different distances. Under perspective projection, the

stimuli was always projected with the centre of perspective projection located at the

subject’s eyes. Until now, the effect of the viewpoint distortion on plane perception

from motion is still an open question. In our computational studies, the viewpoint

distortion is equivalent to an error of intrinsic parameters. We carries out psychophysics

experiments to test our theory. Our experiments are designed to examine the distortion

of perceived plane orientation from motion cues under distorted viewpoint conditions.

In fact, the distorted condition in our experiments is the difference between the distance

from viewpoint and project point to the screen.

We first introduce the theory behind the computation of tilt and slant from optic

flow(Chapter 2). We then follow up by describe iso-distortion framework [6], which will

be used to explain the result of the experiments. In the next three Chapter 3,4, and 5,

psychophysical experiments are documented. In our experiments, a plane containing

random dots rotating in depth was displayed to subjects who would then use a probe to

indicate the perceived direction of plane. The viewpoint distances and the projection

distances are changed. Tilt and slant of the perceived plane were analyzed to evaluate
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the effect of viewpoint distortion to depth perception. Slant is studied in Experiment

1 (Chapter 3). Experiment 2 is designed to study slant perception in large FOV. In

Experiment 3 (Chapter 4), tilt perception is examined. Our experimental results show

that human subject can adapt well to the viewpoint distortion. In chapter 5, we first

introduce our computational modeling for viewpoint distortion. We prove that the

viewpoint distortion in our psychophysical experiments could be regarded as a change

in focal length. Applying optical flow equations and iso-distortion framework, we then

explain how human visual system manifests the kind of performance we witnessed in

the experiments under viewpoint distortion.



Chapter 2

Background

2.1 Introduction

The objective of our research program is to bring about new understanding of how a

visual system derives depth information from motion cues. Our approach is through

a cross-breeding of methodology in the fields of computational vision and visual psy-

chophysics. On the one hand, we develop computational models that appropriately ac-

count for the psychophysical phenomena. On the other hand, we conduct psychophys-

ical experiments to support the theories proposed in the computational studies, and in

turn gain new ideas from human vision to apply to computer vision. In this chapter, we

review some background in both computational vision and visual psychophysics that

are related to our work. This review also includes some of the more recent research

findings reported by members of our project team.

6
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2.2 Computational studies

2.2.1 Optical flow

Optical flow is “a vector field subject to the constraint in equation (2.1) and loosely

defined as a apparent motion of the image brightness motion”

(∇E)T v + Et = 0 (2.1)

where E = E(x, y, t) is the image brightness and v is the motion field, Et is the partial

derivative of E with respect to time. This is the well known optical flow equation. Let

n denote a unit vector along (Ex, Ey) then the optical flow equation can be written as:

(vx, vy)(nx, ny) = vn = − Et

‖∇E‖ (2.2)

Vn at any point can also be thought of as the image velocity component normal to

the iso-intensity contour through that point. Therefore, the optical flow equation

implies that at any point only that component of image velocity normal to the iso-

intensity through that point can be determined. Some heuristic assumptions have been

introduced to measure both components of the optical flow. Three common approaches

are:

- Impose smoothness constraint on flow.

- Assume velocity is locally constant.

- Assume local parametric model.
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Figure 2.1: Space and object model showing global and image coordinate system

2.2.2 3D Space model

Figure 2.2.2 describes the imaging model used: The origin O is at the optic center

of the observer’s eye (or the focal point of the camera). A point in space is defined

by its coordinates (X,Y, Z) with respect to this origin. The positive Z-axis is the

direction of the optical axis of the viewing system and the image plane is modeled as

a flat plane parallel to the XY -plane, a distance of focal length f from the origin. The

relative motion between the observer and object can be decomposed into a translation

component T = (U, V, W ) and a rotation component R = (α, β, γ). Vector Tf (U, V ) is

called frontal translation. The object is said to be rotating in depth if α and/or β is

non-zero.

A point P(X,Y,Z) has an image p(x,y) on the image plane, which can be obtained



9

using the perspective projection rules:

x =
fX

Z
(2.3)

y =
fY

Z
(2.4)

2.2.3 Plane equation

The general equation of a plane is given by

Z = ZXX + ZY Y + ZO (2.5)

where ZX and ZY are the derivatives with respect to the X-axis and Y -axis, and ZO is

the intercept of the plane with the line of sight. In this report, ZO may sometimes be

referred to as the distance of the plane from the observer. Under perspective projection,

there is an alternative form of plane equation using the image coordinates:

p = pxx + pyy + p0 (2.6)

where p = 1
Z

, px = −ZX

Z0
, py = −ZY

Z0
, and p0 = 1

Z0

The plane normal is given by N = (px, py, p0). The vector Nf = (px, py) is the projec-

tion of N onto the frontal-parallel plane.

The orientation of the plane can be described by the tilt τ and slant σ. Tilt is the

angle between Nf and positive x-axis. Slant is the angle between N and the Z-axis.

τ = tan−1 py

px

(2.7)
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Figure 2.2: The tilt and slant of a plane

σ = tan−1

√√√√p2
x + p2

y

p2
0

(2.8)

In this report, we use the term winding angle [14] to describe the angle between Tf

and Nf .

2.2.4 Projection model

In the following, we assume that the focal length f = 1
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Perspective projection

x =
X

Z
(2.9)

y =
Y

Z
(2.10)

For an observer translating with T = (U, V, W ) and rotating with R = (α, β, γ) about

the origin O, the instantaneous velocity of the point P (X,Y, Z) is:

Ẋ = −U − βZ + γY (2.11)

Ẏ = −V − γX + αZ (2.12)

Ż = −W − αY + βX (2.13)

If P is a point on the plane, the velocity of its image p(x, y) is:

u = ẋ = u0 + uxx + uyy + uxxx
2 + uxyxy (2.14)

v = ẏ = v0 + vxx + vyy + vyyy
2 + vxyxy (2.15)

where

u0 = −(Up0 + β) (2.16)

ux = −(Upx −Wp0) (2.17)

uy = −(Up0 − γ) (2.18)

uxx = Wpx − β (2.19)

uxy = Wpy + α (2.20)

v0 = −(V p0 − α) (2.21)

vx = −(V px + γ) (2.22)
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vy = −(V py −Wp0) (2.23)

vyy = Wpy + α (2.24)

vxy = Wpx − β (2.25)

(2.26)

Orthographic Projection

This model does not bring any perspective information into the image. It is often used

to approximate perception in small field.

x = X (2.27)

y = Y (2.28)

Under orthographic projection, the optic flow contains only first-order terms:

u = ẋ = u0 + uxx + uyy (2.29)

v = ẏ = v0 + vxx + vyy (2.30)

where:

u0 = −(U + βZ0) (2.31)

ux = −βZx (2.32)

uy = −(βZy − γ) (2.33)

v0 = −(V − αZ0) (2.34)

vx = −(γ − αZx) (2.35)

vy = −αZy (2.36)
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From the optic flow equations above, if u0 = v0 = γ = 0(as in the case of a rotation

about a fronto-parallel axis through the centre of the plane), we are unable to extract

an expression for the slant, and there are generally two solutions for the tilt direction.

2.2.5 N-T Ambiguity

Longuet-Higgins ([32]) showed that, under the case of perspective projection, in general

there is a twofold ambiguity when solving this set of non-linear equations (2.17)-(2.26),

with the roles of the vectors N (the plane normal) and T being interchangeable. The

exceptions are

1. when the translation along the line of sight is zero (i.e. W = 0), in which case a

unique solution is obtained from the reduced set of linear flow equations,

2. when the translation is parallel to the surface normal, in which case the two solutions

coincide.

In the presence of the twofold ambiguity, the relation between the dual solutions is:

T ′ = Z0WN (2.37)

N ′ =
T

Z0W
(2.38)

R′ = R− Z0(T ×N) (2.39)

In other words, the directions of N and T are interchanged.
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2.2.6 Tilt and slant in lateral motion

In this report, we use the term lateral motion to describe the motion comprising a

rotation R = (0, β, 0) and a translation T = (U, 0,W ) where U >> W . Lateral motion

is prevalently used in psychophysical experiments involving motion cues and is known

to produce a better depth information from motion cues [9].

Under such motion, the set of optic flow components are reduced to

u0 = −(Up0 + β) = 0 (2.40)

ux = = −(Upx −Wp0) (2.41)

uy = −Upy (2.42)

uxx = Wpx − β (2.43)

uxy = Wpy (2.44)

v0 = 0 (2.45)

vx = 0 (2.46)

vy = Wp0 (2.47)

vyy = Wpy (2.48)

vxy = Wpx − β (2.49)

In this case, tilt can be recovered from the first order components of optical flow.

However the second order components are necessary for the recovery of slant:

τ = tan−1 uy

ux − vy

(2.50)

σ = tan−1

√√√√u2
xy(u

2
y + (ux − vy)2)

u2
yv

2
y

(2.51)
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In this case, the spurious solution arising from the N − T ambiguity, given by T ′ =

Z0W (px, py, po) and N ′ = (U, 0,W )/ZOW , is not a realistic choice for the observer.

This is because in our case of lateral motion where U À W , the ambiguity solution

would represent an extremely slanted plane with its normal almost lying in the fronto-

parallel plane. This percept is not compatible with the stimulus covering a large part

of the visual field. In the extremely case where W=0, in fact a unique solution is

obtained.

2.2.7 Error in focal length

In structure from motion, it is common to assume that the camera is calibrated and

the focal length is fixed. However, with the advent of zoom lenses, the focal length

of a camera is often not fixed. Changes can come from zooming or because of the

viewing environment such as wearing a HMD. In many cases, it is not possible to stop

the camera to recalibrate. During calibration, the camera is forced to do a special

motion or view a special calibration object. Even with these constraints, there are

some ill-conditioned cases that can result in ambiguous solutions.

There are a few works about the effect of errors in focal length on depth reconstruction.

Recently, Cheong and Peh ([8]) studied the distortion in reconstruction from 3D motion

with varying focal length. In the case where the focal length is unknown, depth relief

can still be obtained. In addition, Cheong and Xiang ([9])demonstrated how erroneous

focal length affects the bas-relief ambiguity.
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2.3 Iso-distortion framework

The iso-distortion framework was first introduced by Cheong et al. [6]. The isodistor-

tion framework seeks to understand the distortion due to some errors in the estimated

camera parameters. 3-D motion estimation is regarded as the first step towards the

full recovery of 3-D shape information from 2-D measurements. Therefore any error

in the 3-D motion estimates will systematically affect the perceived space. However,

the reliability of depth estimates could have quite a different behavior from that of

3-D motion estimates. That is, motion-scene configuration that allows robust motion

recovery may yield less than desirable depth estimates, and vice versa. Another sub-

stantive question is of course, whether there is any interaction between errors in motion

estimates and the corresponding distortion in the recovered depth. That is, would the

distortion in the perceived space in turn affect motion estimation? Partially to address

these questions, the iso-distortion framework was introduced in [6]. The iso-distortion

framework seeks to understand the geometric laws under which the recovered scene is

distorted due to some errors in estimated motion parameters. The distortion in the

perceived space is visualized by looking at the locus of constant distortion, known as

the iso-distortion surfaces. The iso-distortion framework is employed by us to analyze

the behavior of depth estimation. In this section, we revisit some notations that would

be useful for this thesis.

The scaled depth of a scene point recovered can be written as

Z =
(x− x0, y − y0) · n

(u− urot, v − vrot) · n (2.52)
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where n is an unit vector in the image plane which specifies a direction.

If there are some errors in the estimation of extrinsic parameters, this will in turn cause

errors in the estimation of scaled depth, and thus a distorted version of the space will

be computed. The estimated depth Ẑ can be readily shown to be related to the actual

depth Z as follows:

Ẑ = Z

(
(x− x̂0, y − ŷ0) · n

(x− x0, y − y0) · n + Z (urote , vrote) · n + Z(un, vn) · n

)
(2.53)

where (un, vn) is a noise term representing error in the estimate for the optical flow,

the “ˆ” symbol represents the estimated quantity, those terms with the subscript “e”

represent the errors in those quantities.

From (2.53) we can see that Ẑ is obtained from Z through multiplication by a factor

given by the terms inside the bracket, which we denote by D and call the distortion

factor. The expression for D contains the term n whose value depends on the scheme

we use to recover depth. In the optical-flow based approach, however, a possible scheme

is to recover depth along the estimated epipolar direction, based on the intuition that

the epipolar direction contains the strongest translational flow. It means that we

first project optical flow along the direction emanating from the estimated FOE and

then recover depth along that direction, i.e. n = (x−x̂0,y−ŷ0)T√
(x−x̂0)2+(y−ŷ0)2

, or in the case of

Ŵ = 0 where the estimated FOE is at infinity, n = − (Û ,V̂ )T√
Û2+V̂ 2

. Upon substituting the

corresponding value of n for the case of epipolar reconstruction approach, we obtain

the following expression for the distortion factor:

D =
(x− x̂0)

2 + (y − ŷ0)
2

(x− x0, y − y0) · (x− x̂0, y − ŷ0) + Z (urote + un, vrote + vn) · (x− x̂0, y − ŷ0)

(2.54)



18

Ignoring the noise term for the moment, we see that for specific values of the parameters

x0, y0, x̂0, ŷ0, αe, βe, γe and n, and for any fixed distortion factor D, equation (2.53)

describes a surface g(x, y, Z) = 0 in the xyZ-space, which is the iso-distortion surface.

This iso-distortion surface has the obvious property that points lying on it are distorted

in depth by the same multiplicative factor D. The systematic nature of the distortion

can then be made clear by looking at the organization of these iso-distortion surfaces.

Sometimes to facilitate the pictorial description of these surfaces, we slice them with

planes parallel to either the xZ-plane or the xy-plane. We call the curves thus obtained

on the planar slice the iso-distortion contours.

2.3.1 Distortion under lateral and forward motion

In an attempt to further develop the iso-distortion framework, Cheong and Xiang

([9]) investigate the characteristics of depth distortion experienced under two kinds of

motion: lateral and forward translations. They argue that the two motions are not

equal in terms of robust depth recovery and there exists certain dichotomy between

forward and lateral translations. It is thus important to adopt a good motion strategy

so as to obtain reliable depth information.

In the descriptions of their work, Cheong and Xiang ([9]) make several assumptions.

First, they assume that the agent executing the motion is at least aware that such

generic type of motion is being executed. That is, when the agent is making lateral

motion, it is aware that no forward motion is made. Similarly, when it is making a

forward motion, it is aware that no lateral motion is executed. This assumption seems

reasonable since the motion is likely to be purposely executed for depth recovery by
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the agent. Second, they assume that the field of view is small so that second order

effect can be neglected. Third, the error contributed by rotation about the optical axis

is assumed to be negligible.

With the above assumptions, they find that when lateral translation was executed, the

distortion factor could be very much simplified. The distortion transformation reduces

to an invertible projective transformation with most of the elements in the matrix

representing the transformation being zero. In fact, it has the effect of generating a

relief transformation that possesses some nice properties. Under certain conditions that

can be satisfied easily, the ordinal depth information can be obtainable. Moreover, if

the errors caused by the rotation are totally eliminated (i.e. error is only in the lateral

translation), all of the first order and second order shapes can be preserved. However,

with a large field of view or if the contribution of error in rotation about the optical

axis is not negligible, the global ordinal depth information may not be obtainable. The

preservation of ordinal depth is only restricted to a localized region. The size of this

localized region is dependent on the size of the motion errors, the respective image

coordinates and the depth difference.

2.3.2 Distortion under calibration uncertainty

Cheong and Xiang ([9]) further extend their work to account for the effects of calibra-

tion uncertainty on the depth recovery under the two simple motion types. In other

words, the motion errors are not restricted to the extrinsic parameters. The intrinsic

parameters of the camera are allowed to vary over time (e.g. in zooming). They con-

clude that with varying intrinsic parameters, depth relief can only be preserved locally
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for lateral motion. Distortion due to forward motion remains complicated.

2.4 Psychophysic studies

2.4.1 Perception of slant

Domini and Caudek ([16]) carried out the experiments about perception of surface

orientation under orthographic projection. The term deformation (def) is defined as

def =
√

u2
x + u2

y (2.55)

and the slant is shown to be related to def by

σ = tan−1 def

β
(2.56)

It was found that the perceived slant magnitude is an increasing function of def ,

though not that of the relation expressed in Equation 2.56. The perceived slant was

not significantly influenced by the simulated slant magnitudes. In another experiment,

Domini and Caudek [16] found that the perceived slant increased as surface tilt varied

from 0o to 90o . Since the axis of rotation in the experiment was vertical (frontal

translation is horizontal), the tilt equals the winding angle. Therefore, we can conclude

from their experiments that the perceived slant increases with the winding angle for a

constant def

Cornilleau-Pérès et al. ([13]) studied the effect of projection type on the perception of

slant, while avoiding the use of dot speed as a cue to slant. Results showed that the

correlation between the perceived slant and the stimulus slant was significant for 3 of
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the 7 subjects under perspective projection but was insignificant for all subjects under

orthographic projection. Perceived slant correlated with average dot speed for both

projections. However, only one configuration of surface orientation was examined, that

is with a vertical rotation axis, and a normal parallel to the rotation axis (W = 90o).

Under small field perspective projection, the optic flow can be approximated by the

linear optic flow under orthographic projection. Therefore an experiment examining

slant perception under small field perspective projection would produce similar results

to those obtained by Domini and Caudek [16]. Using two view stimuli of planes rotating

in depth, Yeow [50] and Zhong et al. [51] reported that slant information was not

available with an 80 FOV. In this case, the reported slant was mainly a function of

the average 2D speed. Thus, the reports of Domini and Caudek could be due to the

average 2D dot speed. In the same studies, it is reported that, in large field perspective

projection (FOV=60o), slant perception was improved. The reported slant showed a

significant positive correlation with the simulated slant. However, the slant errors were

still large. Yeow [50] reported that perceived slant depended strongly on 2D dot speed

but was not affected by the winding angle.

2.4.2 Perception of tilt

There have been a few psychophysics studies [16][49][51] addressing the perception of

tilt from optical flow.

It is well-known that tilt is recovered more accurately than slant. Braunstein [3]reported

that perceived relative depth order was consistent and accurate. Domini et al [16] and

Todd et al [49]found that observers estimated tilt more accurately than slant with
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multiple view stimulus under orthographic projection.

Domini et al[16] discovered that under orthographic projection with constant 3D mo-

tion, the perception of tilt was more precise if the slant magnitudes for the surfaces

in a stimulus remain unchanged than the case if the slant magnitudes were different.

They concluded that the perceived tilt depended on the def . A point with a greater

def would be reported farther, regardless of the actual tilt. However, the average 2D

image dot speed was not controlled.

This effect is stronger in small field than in large field. H. Zhong et al [51] found

a strong influence of the field size and motion/orientation configuration (through the

winding angle between the plane normal and the frontal translation) on tilt perception.

Tilt estimation is reported to have more accuracy with large field of view. Their results

support the relevance of the full flow approach in wide-field. They reported that in

small field the second-order image velocity seems to be used to some extent. It is

quantitatively inaccurate in that case, and the affine flow approach was given to explain

the observed tilt ambiguities.
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Experiment 1

In this experiment, we examined the slant perception under viewpoint distortion. Our

computational model showed that this distortion is equivalent to errors in the intrin-

sic parameters. Subjects reported the slant of a plane presented in a 2-frame image

sequences in monocular vision. The orientation of the plane was indicated via the ad-

justment of a graphical probe, superimposed on the moving stimulus. Motion parallax

was generated through a plane rotating in depth about a frontoparallel axis.

3.1 Method

3.1.1 Subjects

Three observers aged between 26 and 29 served as subjects for this experiment. Two

of them are näıve subjects. The other one is the author. All of them had normal or

corrected-to-normal vision.

23
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3.1.2 Design

Different stimuli were presented in random order, defined by the following parameters

• Plane slants of 20o, 25o, 30o, 35o, 40o

• Plane tilts of 45o and −45o.

• Projection distance 0.4m (P1) and 0.8 m (P2).

• Winding angles: 0o, 22.5o, 45o, 67.5o, 90o.

Project distance refers to the distance between the screen and the projection point.

There were three different viewing distances: 0.4m (V1), 0.8m (V2), and 1.2m (V3) from

the centre of the simulated plane to the observer. The different distances from the

centre of the screen to the observer were performed alternately in random order. In

total, there are 1500 trials for each subject. We examined the effects on the perception

of plane slant when there were viewpoint distortion.

3.1.3 Apparatus

The stimulus patterns were generated on a PC. The virtual scene was projected onto a

22-inch monitor, placed in front of the subject. The projector resolution was 1024×768

pixels and the display refresh frequency was 85Hz. We used anti-aliasing algorithm to

achieved sub-pixel accuracy, each dot covering a 4× 4 area.
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3.1.4 Stimulus

The image size is 0.33m in diameter. The viewing distance was 0.4m (45o viewing

angle), 0.8m (23o viewing angle), and 1.2m (15.5o viewing angle). The stimuli in the

experiment was the perspective projections of the dotted planes. There are two types

of models that have been proposed for computing 3D structure from motion: two-

frame models that are restricted to the first order spatiotemporal relations between

pairs of views and multiple frame model that can exploit the higher order relations of

three or more views. In our experiments, two-frame models were used. The stationary

subject viewed 2-view sequences of 2D images representing a rotating-in- depth plane.

Each plane rotated about a frontoparallel axis. In this case the component of frontal

translation Tf is orthogonal to the rotation axis.

A uniform dot density was achieved in the position of the surface corresponding to the

intermediate position between the two views. This position is decided by the tilt and

slant parameters as specified in the design. The 3D rotation angles between two views

are changed according different slant to make the 2D dot speed stable. The duration

of each view was 0.37s. The number of visible dots was 985 ± 15. Trial duration was

determined by the subject and usually range around 25 s. The luminance was adjusted

to 0.4 cd/m2.

A probe was presented at the centre of the screen. Subjects used the computer mouse

to adjust the probe to indicate the perceived plane orientation. The probe consisted

of a needle and an ellipse. The direction of the needle indicated the perceived tilt and

width of the ellipse indicated the slant. A grid pattern was superimposed to the base

of the probe. This square pattern enhanced the perspective through the convergence,
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Figure 3.1: Probe

compression and skew of the squares.

3.1.5 Procedure

A chinrest with forehead support was used to fix the subject’s head, and the exper-

imental room was dark. An eye patch covered the non-dominant eye of subject to

make monocular vision. The subject position was fixed with the dominant eye looking

straight to the centre of the stimulus. The two views of plane were displayed repeat-

edly and after 3 seconds of presentation, the subject can left-click the mouse to display

the probe. Subjects can display on/off the probe by left-clicking the mouse. Upon

completion of the adjustment, they right-clicked the mouse, and proceeded to the next

trial. The tilt and slant of the probe was recorded to a text file as the tilt and slant

responses respectively.
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(a) (b)

Figure 3.2: The subject in the experiment

3.1.6 2D dot speed

The 2D dot speed refers to the average 2D speed of the plane dots on the display

screen. It was reported that slant is dependent on the 2D dot speed. To cancel out the

effect of 2D dot speed, we choose different 3D rotation angles for different slant so that

all stimulus have equal 2D dot speed. The corresponding rotation angles were given in

Table 3.1.

Slant (degree) Rotation Angle in P1 (degree) Rotation Angle in P2 (degree)

20 2.92 3.32

25 2.39 2.63

30 2 2.16

35 1.71 1.81

40 1.46 1.53

Table 3.1: Rotation angles for different slants and projection distances
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3.2 Result

The data (the reported slant and tilt) was analyzed using non-parametric tests, in par-

ticular, the Spearman’s ranked correlation. Non-parametric testing was used because

our data were not necessarily Gaussian, in particular the slant variable, which was

bounded between 0o and 90o.

3.2.1 Verbal report

All subjects reported that the stimulus is not a flat plane but a curved surface. This

verbal report was also found out in Zhong et al[51]. They did not explain why this

distortion happened but they mentioned about their research in curved surface which

shown an offset of the reported curvature towards convexity when viewing motion

parallax. In this experiment, when examining slant perception, subjects reported that

it was very difficult to choose the right orientation of the plane. They also claimed

that they did not have very high confidence in their choices

3.2.2 Analysis of slant responses

Slant responses were analyzed by computing the Spearman’s ranked correlation be-

tween the simulated slant and the reported slant. When the projection distance was

0.8m, all the correlations were negative. Furthermore, subject LS reported a very poor

perceived slant. All correlations between the reported and stimulus slant of LS in

different viewpoint and projection distance are negative whereas negative correlations

also appeared in the other two subjects. Responses from two other subjects showed
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that the correlation was positive and significant when projection distance is 0.4 m.

In this case, the correlation was still significant when there were viewpoint distortion.

Table 3.3 shows the results of absolute slant error (the difference between simulated

slant and reported slant) from the two subjects. The results were similar in all the

three viewing distances.

Subject
P1 P2

V1 V2 V3 V1 V2 V3

LS -0.05 -0.04 -0.16 -0.055 -0.068 -0.124

NL 0.157** 0.198** 0.164** -0.191** 0.058 0.052

TD 0.103** 0.364** 0.313** -0.125** -0.047 -0.024

Table 3.2: Spearman’s ranked correlation between the simulated slant and the reported

slant. Those correlations with asterisks ** are significant at p < 0.01 (N=250).

Viewing distance(m) Mean of absolute slant error(deg)

0.4 8.16

0.8 6.58

1.2 7.52

Table 3.3: Absolute slant error when projection distance = 0.4m

3.2.3 Analysis of tilt responses

Tilt response were analyzed, and a depth reversal was recorded each time the absolute

error in tilt exceeded 90o. Table 3.4 showed that in P1, there were almost no depth

reversal due to the large FOV. The viewpoint distortion did not lead to a depth reversal.

However, in P2, even when the distant viewpoint was 0.4m, under which the apparent
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FOV is large, depth reversal still occurred in this case.

P1 P2

V1 V2 V3 V1 V2 V3

1 1 2 9 20 29

Table 3.4: Number of tilt reversal in a total of 500 trials under each condition

3.2.4 Discussion

Our results showed that human subjects could not recover the slant of a randomly

dotted plane when FOV is small at 23o (projection distance = 0.8m in our experi-

ment). The response from one of the three subjects showed weak negative correlation

between the reported slant and the simulated slant, the Spearman’s correlation ranging

between -0.124 (p=0.051) and -0.055 (p=0.337). The other two subjects even reported

a significant negative correlation between the perceived slant and the stimulus slant

when there was viewpoint distortion (viewpoint distance = 0.4m). These corresponding

Spearman’s correlations were -0.191 and -0.125 with p < 0.01.

In contrast, human subjects could partly recover the slant of a randomly dotted plane

when FOV is large at 45o (in our experiment, this corresponds to a projection distance

= 0.4m). The results from two of the three subjects showed a significant correlation

between the reported slant and the simulated slant. When there was no viewpoint

distortion (viewpoint distance = 0.4m), these correlations were 0.157 and 0.103 (p <

0.01).

Besides, the viewpoint distortion has no significant effect when the human subjects
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could recover the slant. The slant responses from the two subjects above were still

significantly correlated to stimulus slant when there was viewpoint distortion. The

corresponding Spearman correlations were between 0.164 and 0.364 (p < 0.01). Using

ANOVA to analyze absolute slant error result from these two subjects, there was no

significant difference under viewpoint distortion (Sig=0.494). The mean of absolute

slant errors(the difference between simulated slant and reported slant)were 8.16o when

there was no viewpoint distortion and were 6.58o and 7.52o when there was viewpoint

distortion.

In examining the perception of the slant of a moving plane, our results also agree with

those reported by Domini and Caudek[16]. In their experiments, they used ortho-

graphic projection with a FOV = 9.6o. This configuration eliminated all second order

optic flow information. They reported that the perceived slant was not correlated to

the simulated plane. In our experiments, even when we used the perspective projection

with a FOV=23o, we cannot find a significant correlation between the reported slant

and the simulated slant. Only when increasing the FOV to 45o, there are significant

correlation between the reported slant and the actual slant of the moving plane.

In conclusion, in this experiment, when the viewpoint distance = 0.8m, all the reported

slant was not correlated with the simulated slant. We could only use the slant response

when the viewpoint distance = 0.4m. Even then, we cannot find out any significant

effect of viewpoint distortion on the perception of slant. Thus, Experiment 1 might

not be conclusive as to whether viewpoint distortion affects slant perception or not.

The only large FOV condition that we could analyze was not under viewpoint distor-

tion (viewing distance=0.4m, projection distance=0.4m). The lack of sufficient FOV

(whether real or apparent) could affect the recovery of slant. Therefore, experiment 2
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was designed to examine the effect of viewpoint distortion on slant perception in large

FOV when the viewpoint distance was fixed at 0.4m and the projection distance was

changed between 0.3 & 0.4m.



Chapter 4

Experiment 2

In Experiment 1, we examined if viewpoint distortion affects the ability of human

subjects to perceive the slant of a dotted plane. The result showed that viewpoint

distortion did not prevent the slant recovery in large FOV under viewpoint distortion.

However, in many other cases, the FOV of human subjects was relatively small (15.5o

or 23o), under which the results were not conclusive. Thus, in Eperiment 2, we carried

out another set of experiment with a larger FOV to examined in more details how the

viewpoint distortion might affect slant perception.

4.1 Method

4.1.1 Subjects

Three observers aged between 25 and 30 served as subjects for this experiment. Two

of them are näıve subjects. The other one is the author. All of them had normal or

33
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corrected-to-normal vision.

4.1.2 Design

Different stimuli were presented in random order, defined by the following parameters

• Plane slants of 20o, 25o, 30o, 35o, 40o

• Plane tilts of 45o and −45o.

• Projection distance 0.3m (P1) and 0.4 m (P2).

• Winding angles: 0o, 22.5o, 45o, 67.5o, 90o.

The distance from the centre of the screen to the observer were 0.4m. In total, there

were 750 trials for each subject. We examined the effects on the perception of the slant

of a plane when there was viewpoint distortion, including how winding angle affected

the absolute slant error when there was viewpoint distortion.

Table 4.1 showed angle of the rotating-in-depth of the dotted plane in our experiments.

With these values, the 2D dot speed was kept at a constant.

4.1.3 Stimulus and Procedure

The stimuli and procedure were similar to that of experiment 1.
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Slant (degree) Rotation Angle in P1 (degree) Rotation Angle in P2 (degree)

20 2.4 2.92

25 2.1 2.39

30 1.87 2.0

35 1.62 1.71

40 1.4 1.46

Table 4.1: Rotation angle for different slant and projection distance

4.2 Result

4.2.1 Analysis of slant responses

Slant responses were analyzed by computing Spearman’s ranked correlation between

the simulated slant and the reported slant. Subject CH reported a poor perception of

slant. In both projection distances, correlations between the reported and the stimulus

slant of CH are positive but not significant. Responses from two other subjects showed

that the correlation was positive and significant in both projection distance. The

correlation was still significant when there were viewpoint distortion.

Figure 4.1 showed a positive relation between the reported slant and the simulated

slant, with large over-estimatation of slant. There was no significant difference in the

reported slant distribution when there was viewpoint distortion. Only when slant was

large, (in our experiment, it was 40o) there was a small difference. As shown in Figure

4.1, in viewpoint distortion case, when the simulated slant increased from 35o to 40o,

reported slant decreased.



36

Subject P1 P2

NL 0.417** 0.324**

LY 0.228** 0.229**

CH 0.082 0.0806

All subjects 0.105** 0.163**

Table 4.2: Spearman’s ranked correlation between the simulated slant and the reported

slant. Those correlations with asterisks ** are significant at p < 0.01 (N=360).

Tilt(deg) P1 P2

45 0.201* 0.0.254**

-45 0.179* 0.224**

Table 4.3: Spearman’s ranked correlation between the simulated slant and the reported

slant of subject CH. Those correlations with asterisks ** are significant at p < 0.01.

Those correlations with asterisks * are significant at p < 0.05 (N=180).

4.2.2 Effect of winding angle on reported slant

The first and second order optic flow coefficients vary with the winding angle. It has

been shown that winding angle affected both reported slant and tilt percept. Therefore

we tested how winding angle affected absolute slant error when there was viewpoint

distortion. Using the data of subjects NL an KY, Figure 4.2 showed that absolute slant

error decreased when winding angle increased or decreased toward 45o whether under

or not under viewpoint distortion.
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Figure 4.1: Reported slant

4.2.3 Discussion

The verbal response of this experiment was similar with the one of Experiment 1.

Subjects reported that the simulated plane was curved. They were not confident in

their choices. However, in this experiment, when subject were at a viewpoint distance

of 0.4 m with FOV = 45o, the reported slant was highly correlated with the simulated

slant. The absolute slant error was still very large, the mean of absolute slant error

being 11.6o. Two of the subjects reported a significant correlation, with correlation

coefficients from 0.228 to 0.324 (p < 0.01). Subject CH reported a positive but not

significant correlation. However when examining CH’s reported slant under a particular

setting of tilt (Table 4.3), the reported slant was significantly correlated with the

simulated slant. When tilt = −45o, correlation coefficients were 0.179(p=0.02) and
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Figure 4.2: The absolute slant error against the winding angle
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0.254 (p=0.002); when tilt = 45o, correlation coefficients were 0.201(p=0.015) and

0.224 (p=0.007)

Keeping the viewpoint distance and reducing the projection distance (ie a larger sim-

ulated FOV but with viewpoint distortion) did not help significantly in increasing the

perception of slant. In fact, it introduced a weak distortion when the slant was large.

When the simulated slant increased from 35o to 40o, the mean of the reported slant

slightly decreased from 41.82o to 41.18o.

The effect of winding angle on absolute slant error did not change under viewpoint

distortion. When there was no viewpoint distortion, absolute slant error decreased

from 12.33o to 10.82o when winding angle increased from 0o to 45o, and increased to

11.64o when winding angle increased to 90o. When there was viewpoint distortion,

similarly, absolute slant error also decreased from 12.03o to 9.84o when winding angle

= 45o, and increased to 11.24o when winding angle =90o. It is obvious that, under

viewpoint distortion, absolute slant error distribution against winding angle still keeps

the same shape as that under no viewpoint distortion.

In conclusion, in the case of large FOV and there was viewpoint distortion , the effect

of viewpoint distortion to slant perception is not significant.
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Experiment 3

In Experiment 1, we examined if viewpoint distortion effects the ability of perceive the

slant of a dotted plane. The result showed that viewpoint distortion did not prevent

the slant recovery in large FOV under viewpoint distortion. However, in these cases,

the FOV of human subjects was relatively small (15.5o or 23o), except for the case when

the viewing coincides with the projection point, under which the FOV is moderately

large (45o). Thus in Eperiment 2, we carried out another set of experiment with a

larger FOV to examined in more detail hows the viewpoint distortion affected slant

perception.

40
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5.1 Method

5.1.1 Subjects

Three observers aged between 26 and 28 served as subjects for this experiment. Two

of them are näıve subjects. The other one is the author. All of them had normal or

corrected-to-normal vision.

5.1.2 Design

Different stimuli were presented in random order, defined by the following parameters

• Plane slants of 30o

• Plane tilts of −170o, 160o...− 10o, 0o, 10o, ...170o, 180o

• Projection distance of 0.4m (P1) and 0.8 m (P2).

• Winding angles: 15o, 30o, 45o, 60o, 75o.

There were three different viewing distances: 0.4m (V1), 0.8m (V2), and 1.2m (V3) from

the centre of the simulated plane to the observer. The different distances from the

centre of the screen to the observer were performed alternately in random order. In

total, there are 1080 trials for each subject. We examined the effects on the perception

of plane tilt when there were viewpoint distortion.
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5.1.3 2D dot speed

As reported by Zhong et al [51] , 2D dot speed helps decrease the absolute tilt error.

Again, to cancel out the effect of 2D dot speed, we chose different 3D rotation angle for

different projection distance. When the projection distance was 0.4m, the 3D rotation

angle was 2.0o. When the projection distance was 0.8m, the rotation angle was 2.16o.

5.1.4 Stimulus and Procedure

The stimulus and procedure was similar to that in experiment 1.

5.1.5 Data analysis

We removed the ambiguity on the tilt sign (tilt reversal) by calculating the percentage

of trials where the unsigned tilt error ranged between 90o and 180o. Having corrected

the responses for this ambiguity, we then used the corrected absolute tilt error as a

measure of the performance, ranging between 0o and 90o. Since most distributions were

not strictly normal (for instance the absolute tilt error is bounded by the value 0), we

used non-parametric tests, we compared independent samples with the Mann−Whitney

U test (MWU).
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5.2 Result

5.2.1 Verbal report

In experiment 3, about tilt perception with a fixed slant, subjects seemed to be able to

choose more easily the orientation of the plane, even under viewpoint distortion. They

reported that these were quite simple tasks.

5.2.2 Effect of viewpoint distortion on the reported tilt sign

Table 5.1 showed that FOV affected strongly the reported tilt sign. In large FOV (45o

in our case), tilt reversals were only less than 0.02%. When FOV=23o, titl reversals

were about 5%. In both projection distances, viewpoint distortion did not affected sig-

nificantly the amount of depth reversal. For example, at FOV=23o, the number of tilt

reversal was 35 when there was no viewpoint distortion (viewing distance=projection

distance=0.8m). When there was viewpoint distortion (viewing distance = 0.4m), the

number of tilt reversal was 33.

P1 P2

V1 V2 V3 V1 V2 V3

4 8 1 33 35 25

Table 5.1: Number of tilt reversal trials in a total of 540 trials for each condition
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5.2.3 Effect of viewpoint distortion on absolute tilt error

The average absolute tilt error, as presented in Figure 5.1, is almost unchanged under

viewpoint distortion in both projection distances. There are significant differences in

the absolute tilt error among subjects. Subject DC reported average absolute tilt error

from 22.3o to 26o when subject NL reported average absolute tilt error from 9.9o to

13.2o. But for each subject, the differences when there was distortion viewpoint were

not significant. We had no evidence showed that there was significant difference in

absolute tilt error when there was viewpoint distortion. (MWU test Z ranges from

-1.71 to -0.33 with p > 0.05).

(a) (b)

Figure 5.1: Absolute tilt error under viewpoint distortion
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5.2.4 Effect of winding angle and viewpoint distortion on the

absolute tilt error

Figure 5.2 showed that the average absolute tilt error increased dramatically as winding

angle increased under all projection distances and viewpoint distances. It means that

the viewpoint distortion did not change the influence of winding angle on the absolute

tilt error. Two of the three subject reported significant correlation between absolute

tilt error and winding angle under all projection distances and viewpoint distances:

the Spearman’s ranked correlation coefficient ranging from 0.17 to 0.40 (p < 0.01).

(a) (b)

Figure 5.2: The absolute tilt error against the winding angle

5.2.5 Discussion

In terms of tilt perception, our results agree with those obtained by Domini and

Caudek[16]. The perceived tilt reported by these authors showed a mean error that

can be estimated at around 10o−15o. It is smaller than the mean error that we find in
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Experiment 3. This could be due to the choice of the direction of the rotation, which is

changed in our experiments, and fixed in theirs. In their case, the reported tilt might

be perceived better by an a priori knowledge (built up during experimental sessions)

of the motion direction. When there was viewpoint distortion, the absolute tilt error

was not affected significantly. The average absolute tilt error only changed 1−2o when

there was viewpoint distortion

We also confirmed the result obtained by Zhong et al[51]. They reported that the

absolute tilt error increased when winding angle increased. Our results display strong

influence of winding angle on the perception of the tilt of a moving plane. However,

they found a very different effect of winding angle on tilt error in large FOV and small

FOV with the later showing a stronger sensitive to the influence of winding angle. In

our case, when changing the projection point, such that the FOV is changed, the results

are not significantly changed. In their experiment, the difference in FOV settings was

very large: 60o versus 8o. In our cases,the difference is 45o versus 23o. These FOVs in

our experiments might still give enough information for the processing of second-order

optic flow, therefore resulting in a lesser sensitivity with the winding angle. In our

experiment, the winding angle effect to absolute tilt error was kept when there was

viewpoint distortion. The correlation between winding angle and absolute tilt error

was significant positive.

In conclusion, our results showed that the viewpoint distortion might not significantly

affect the reported tilt. Under different viewing distances and project distances, the tilt

perception seemed not change. It means that viewpoint distortion in our experiment

did not change the depth order. Furthermore, the results from Experiment 1 and

Experiment 2 suggested that viewpoint distortion in these two experiments might not
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significantly affect slant perception. It is such an interesting question why viewpoint

distortion did not affect to tilt and slant perception in our experiments. In the next

chapter, we would provide the computational modeling of viewpoint distortion in our

experiment and explanation for our experimental results.



Chapter 6

Computational Interpretation

Here, we examine the optic flow equations for a plane moving in the 3D space, under

viewpoint distortion. In particular, we examine the impact on the solutions for the

tilt and slant of the plane. We then explain how human subjects might adapt well to

viewpoint distortion.

6.1 Viewpoint distortion is equivalent to errors in

intrinsic parameters

In this section, we provide the computational model for viewpoint distortion. This

distortion is shown to be equivalent to errors in the intrinsic parameters . We use

subscripts p, v to represent quantities associated with the projection point and the

viewpoint. The distances (along the Z axis) from the screen to the projection point

and to the viewpoint are Dp and Dv, respectively. Assume that the projection point

and the actual viewpoint all lie on the Z axis. A world point (X,Y ) on the screen

48
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would project to the image point (xp, yp) for a subject at the projection point and the

image point (xv, yv) for a subject at the actual viewpoint:

xp =
fX

Dp

(6.1)

yp =
fY

Dp

(6.2)

xv =
fX

Dv

=
xp

k
(6.3)

yv =
fY

Dv

=
yp

k
(6.4)

where

k =
Dv

Dp
(6.5)

The motion flow in the subject’s visual system at the actual viewpoint is related to the

“true” motion flow at the projection point by:

uv = ẋv =
ẋp

k
(6.6)

vv = ẏv =
ẏp

k
(6.7)

Equations (6.6), (6.7) suggest that the flow perceived at the viewpoint is scaled by a

factor k compared with the corresponding flow at the projection point. The flow at

projection point is given by the well-known equation:

up = W
Z

(
xp − f U

W

)
+ αxpyp

f
− β

(
x2

p

f
+ f

)
+ γy

vp = W
Z

(
yp − f V

W

)
− β xpyp

f
+ α

(
y2

p

f
+ f

)
− γy

(6.8)

Expanding the horizontal component of the flow uv at the viewpoint in equation (6.6)

and bringing in equation (6.8), we obtain:

uv =
W

Z

(
xv − fU

kW

)
+ α

xvyv

f
k

−β

(
x2

v
f
k

+
f

k

)
+ γyv (6.9)
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Similar expression can be written for the vertical flow vv. From equation (6.9), we see

that the optical flow obtained by a subject at the actual viewpoint is one that stems

from the same 3−D motion at the projection point with a modified focal length:

fv =
f

k
(6.10)

It means that the viewpoint distortion in our experiments is equivalent to a distortion

in the focal length.

6.2 Optical flow equations for local surface patch

When using optical flow to reconstruct depth from motion, if the focal length is known

and fixed, focal length can be set as f = 1 without loss of generality. However, when

the focal length is changed,without corresponding update in the estimate for f , such

error will affect the depth reconstruction process. In the following, optical flow in a

local surface patch will be re-derived with explicit representation of the focal length.

We introduce a method to map a point on the image plane (x, y) to the point on the

surface in the scene. Actually, Z−1 will be expressed in term of (x, y), the focal length

f and the surface structure. This method was used by M.Subbarao []. However in his

work, the focal length f was assumed to be equal to 1 and therefore did not appear in

his equations.

Assuming that the surface is smooth and is given by Z = f(X,Y ), we can expand the

surface equation in a Taylor series:

Z = Z0 + ZXX + ZY Y + ZXXX2 + ZXY XY + ZY Y Y 2 + O3(X,Y ) (6.11)
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Replacing X,Y by:

X =
Zx

f

Y =
Zy

f

Z can be expressed in terms of the image coordinate x, y and the focal length f :

Z = Z0 +
Z

f
(ZXx + ZY y +

Z

f
(ZXXx2 + ZXY xy + ZY Y y2 +

Z

f
O3(x, y))) (6.12)

To eliminate the second and higher order terms of Z, we recursively replace the appro-

priate Z in the right hand side of the above equation by the entire right hand side of

equation:

Z = Z0 +
Z

f
(ZXx + ZY y +

1

f
(Z0 +

Z

f
(ZXx + ZY y +

Z

f
(ZXXx2 + ZXY xy + ZY Y y2 +

Z

f
O3(x, y))))×

×(ZXXx2 + ZXY xy + ZY Y y2 +
Z

f
O3(x, y)))

Rearranging the term of Z, using O3(x, y) to denote all third and higher order terms:

Z = Z0 +
Z

f
(ZXx + ZY y +

1

f
(Z0ZXXx2 + Z0ZXY xy + Z0ZY Y y2 + Z0

Z

f
O3(x, y)) +

+
Z

f
(ZXx + ZY y +

Z

f
(ZXXx2 + ZXY xy + ZY Y y2 +

Z

f
O3(x, y)))×

×(ZXXx2 + ZXY xy + ZY Y y2 +
Z

f
O3(x, y)))

= Z0 +
Z

f
(ZXx + ZY y +

1

f
(Z0ZXXx2 + Z0ZXY xy + Z0ZY Y y2 + O3(x, y))

= Z0 + Z(
ZX

f
x +

ZY

f
y +

Z0

f

ZXX

f
x2 +

Z0

f

ZXY

f
xy +

Z0

f

ZY Y

f
y2 + O3(x, y))

Bringing Z from the right hand side to the left hand side, we have:

Z = Z0(1− ZX

f
x− ZY

f
y − Z0

f

ZXX

f
x2 − Z0

f

ZXY

f
xy − Z0

f

ZY Y

f
y2 −O3(x, y))−1 (6.13)
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The optical flow (u, v) for a general scene structure is given by:

u =
f

Z
(−U − βZ + γY )− f

X

Z
(
−W − αY + βX

Z
)

=
−fU

Z
− fβ + yγ + x

W

Z
+ xy

α

f
− x2β

f

=
1

Z
(xW − fU) + (−x2β

f
+ xy

α

f
+ yγ − fβ)

Replacing Z−1 for the case of a second order surface using equation (6.13):

u = (
xW

Z0

− fU

Z0

)(1− ZXx

f
− ZY y

f
− 1

2

Z0ZXXx2

f 2
− 1

2

Z0ZY Y y2

f 2

−Z0ZXY xy

f 2
) + (−x2β

f
+ xy

α

f
+ yγ − fβ)

u = (−f
U

Z0

− fβ) + (
W

Z 0
+

U

Z0

ZX)x + (γ +
U

Z0

ZY )y +

+
1

2

1

f
(−2

W

Z0

ZX − 2β +
U

Z0

ZXX)x2 +
1

2

1

f

U

Z0

ZY Y y2 +

+
1

f
(−W

Z0

ZY +
U

Z0

ZXY + α)xy

The first and second order derivatives of the optical flow can be extracted as follow:

u0 = −f(
U

Z0

+ β) (6.14)

ux =
W

Z 0
+

U

Z0

ZX (6.15)

uy = γ +
U

Z0

ZY (6.16)

uxx =
1

f
(−2

W

Z0

ZX − 2β + UZXX) (6.17)

uxy =
1

f
(−W

Z0

ZY + UZXY + α) (6.18)

uyy =
1

f
(UZY Y ) (6.19)

From the above equations, changing f will lead to a change in u0, uxx, uxy, uxx but no

change in ux, uy. With similar method, we have the same conclusion with v:

v0 = −f(
V

Z0

+ α) (6.20)
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vy =
W

Z 0
+

W

Z0

ZY (6.21)

vx = −γ +
W

Z0

ZX (6.22)

vyy =
1

f
(−2

W

Z0

ZY + 2α + Y ZY Y ) (6.23)

vxy =
1

f
(−W

Z0

ZX + V ZXY − β) (6.24)

vxx =
1

f
(UZXX) (6.25)

6.3 Tilt and slant

In our experiments, lateral motion is studied because it produces good results in terms

of depth from motion parallax. It comprises a rotation R = (0, β, 0) and a translation

t = (U, 0,W ), where U >> W .

With this special motion, the optical flow derivatives are simplified:

u0 = 0

v0 = 0

vx = 0

With these optic flow derivatives, the tilt and slant can be readily derived:

τ = tan−1 uy

ux − vy

(6.26)

σ = tan−1

√√√√f 2u2
xy(u

2
y + (ux − uy)2)

u2
yv

2
y

(6.27)

As a result of equation (6.26), the tilt can be recovered from first order optical flow

only. Note that the focal length is not necessary in recovering tilt. Under viewpoint

distortion stimulated in our experiments, only the focal length is changed. This distor-

tion therefore should not affect significantly the tilt estimation. In contrast, to obtain
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the slant, second order components and focal length information are necessary. It is

the reason why observers estimate the tilt more accurately than the slant in reported

experiments; in our case, with the change in focal length, the performance of slant

estimation might be further worsened.

6.4 Iso-distortion framework

The iso-distortion framework was first introduced by Cheong et al. [6]. The iso-

distortion framework seeks to understand the distortion due to some errors in the

estimated camera parameters. In this framework, the estimated depth Ẑ is described

to be related to the actual depth Z as Ẑ = DZ with D being the distortion factor (the

bracket term in equation (2.53) in chapter 2).

In our experiments, slant estimation is significantly affected by both the motion esti-

mates and the focal length estimate. We now apply the iso-distortion framework to

examine the tilt and the slant recovery from motion under viewpoint distortion. In our

experiments, the focal length is fixed but unknown and the motion is a lateral motion.

In this case, the distortion factor D is given by Cheong and Xiang [9]:

D =
f̂vÛ

fvU +
(
βfv − β̂f̂v

)
Z

=
f̂vÛ

U fp

k
+

(
β fp

k
− β̂f̂v

)
Z

(6.28)
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6.5 Depth distortion arising from errors in estima-

tion of 3-D motion and intrinsic parameters

6.5.1 Explanation using optical flow equations

6.5.1.1 Tilt estimation

Our psychphysics result confirm the well-known better estimation of the tilt than the

slant of a moving plane. They also agree with those obtained by H.Zhong et al (2006)

in terms of the influence of winding angle W on the ability to report the tilt. With

regards to the concern of this work, namely, under viewpoint distortion, it is found

that the estimation of the tilt is still reliable in accordance with the predictions made

in section 5.3. When the viewpoint is different from the projection point, the mean

error of the reported tilt is approximately the same as the mean error of reported

tilt of the subject seated at the projection point. Since the viewpoint distortion in

our experiment is equivalent to a change in the focal length, the results support the

conjecture that subjects do not need focal length information to recover the tilt of a

plane. (Equation(6.26)).

Since viewpoint distortion does not affect tilt estimation, it means that when we design

an HMD devices for applications where users only need ordinal depth (i.e. tilt) to

carry out the tasks, it is acceptable to ignore the viewpoint distortion. The same

conclusion applies for viewers in cinema: their perceived ordinal depth does not depend

on the distance from their seats to the screen, and this might allow them an adequate

appreciation of the layout of the scene portrayed in the cinematic pictures.
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6.5.1.2 Slant estimation

In contrast to tilt estimation, equation (6.27) shows that slant recovery is a much more

difficult task. It requires the focal length information and the second order derivatives

of optical flow. In our experimental results, the effect of the change in focal length is

not significant. Our result show that in large field of view, under viewpoint distortion,

there is almost no difference in the performance on slant perception. There is only a

small difference when the actual plane slant is big (slant=40).

Equation (6.27) does not seem to help us to explain clearly our experiment results. It

predicts the viewpoint distortion will add more errors to the perceived slant. In the

next section, we will use the iso-distortion framework to examine how the viewpoint

distortion might effect the slant recovery.

6.5.2 Explanation using iso-distortion framework

6.5.2.1 Tilt estimation

The distortion factor expressed in equation (6.28) has the form 1
a+bZ

, where a = fvU

f̂vÛ

and b = βfv−β̂f̂v

f̂vÛ
are constants for all the scene points. Such distortion has the property

that it preserves the depth order of any two recovered depths Ẑ1 and Ẑ2 under certain

minimal conditions that are likely to hold (see Cheong and Xiang [9] for details).

For instance, if Z1 > Z2, it can be readily shown that, given either of the following

conditions, depending on the sign of a:

• (a + bZ1) (a + bZ2) > 0 if a > 0, or
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• (a + bZ1) (a + bZ2) < 0 if a < 0

the transformation Ẑ = DZ preserves the depth order of the two points, that is,

Ẑ1 > Ẑ2. Since a = f ′vU

f̂ ′vÛ
, the condition a > 0 means that fvU and f̂vÛ have the same

sign. This condition can easily be met by human visual system; thus we can just focus

on the first condition. The requirement (a + bZ1) (a + bZ2) > 0 simply means that the

two estimated depths should have the same sign since Ẑ1 = Z1

a+bZ1
, Z2 = Z2

a+bZ2
. This

condition can be easily assured: just check the sign of Ẑ1 and Ẑ2. If they are of the

same sign, the depth order of Ẑ1 and Ẑ2 is correct; otherwise, just reverse the depth

order. It means that the tilt or the ordinal depth is perceived well under viewpoint

distortion.

6.5.2.2 Slant estimation

Equation (6.28) indicates that under viewpoint distortion, the distortion factor changes

according to the following factors:

• f̂v is the focal length estimated by human.

• fv is the actual focal length that is changing under viewpoint distortion.

• Û , β̂ are the translation and rotation estimated by the human visual systems.

• U, β are the actual translation and rotation respectively.

Under viewpoint distortion, fv is changed. Meanwhile, D is also strongly influenced

by human visual systems’s estimates of the motion and the focal length. All these

estimates can combine to generate a rather similar distortion contour distribution
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compared to that under no viewpoint distortion. Figure (6.1) showed a case where

f̂v = 2, Û = 12, U = 10, β = −0.002, β̂ = 0.0008. It can be observed that when fv

changed from 1.0 to 1.4, equivalent to a 40% change in viewpoint distance, the dis-

tortion contour distributions were not significantly different. Our experimental results

seemed to correspond to this case where there was almost no difference in the distortion

contour distribution.
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(a) (b)

Figure 6.1: Families of iso-distortion contours for lateral motion obtained by inter-

secting the iso-distortion surfaces with the xZ-plane. f̂v = 2, Û = 12, U = 10, β =

−0.002, β̂ = 0.0008,. (a) Actual fv = 1.0 (b) Actual fv = 1.4



Chapter 7

Conclusion and Future work

7.1 Conclusion

In this thesis, we presented the computational theories and psychophysical results on

the recovery of tilt and slant from monocular lateral motion under viewpoint distortion.

The computational modeling shows that the viewpoint distortion could be regarded as

an equivalent distortion in the intrinsic camera parameters. In our experimental design,

we focus on the case where the viewpoint distortion is equivalent to a distortion in the

focal length. The optical flow obtained by a subject at the actual viewpoint is one that

stems from the same 3 −D motion at the projection point but with a modified focal

length fv = f
k

(Equation 6.10)

Conventionally, the focal length is often set as f=1 if it is known and fixed. With view-

point distortion, the computational modeling showed that the focal length is changed.

Thus we re-derived, with explicit representation of the focal length, the optical flow

of a local surface patch. The relationship between the optic flow derivatives, and the

60
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tilt and slant are obtained. Based on these equations, we predict that the focal length

information is not necessary for the recovery of the tilt but might add more error to

the recovery of the slant.

Our experimental results on perceived tilt strongly agrees with above prediction. The

data analysis cannot find any effect of viewpoint distortion on tilt perception in terms

of tilt sign or absolute tilt error. Our experiment confirms that the large FOV (45o)

cancel the ambiguity in the tilt sign. The viewpoint distortion does not change this

effect even when, due to viewpoint distortion, the actual FOV of human subjects is

small (15.5o when viewing distance is 1.2m). Similarly, the absolute tilt error and the

effect of the winding angle are not changed under viewpoint distortion. The absolute

tilt error increases with the winding angle under all viewpoint distances and projection

point distances.

Our experiments on slant show that slant perception is also not significantly affected

by viewpoint distortion. We expected that slant perception, which is not reliable

even with no viewpoint distortion, will be distorted more because of the viewpoint

distortion. However, in our experimental results, we could only observe the further

distortion of perceived slant in the case of large slant magnitudes. In the chapter

on Computational Interpretation, using the iso-distortion framework, we are able to

explain why slant perception, due to a combine effect of errors in various estimates, is

not affected significantly by viewpoint distortion. Using the iso-distortion framework,

we could also prove that the depth order is preserved, that is, tilt estimation was not

significantly affected by the viewpoint distortion.

In conclusion, our experiments showed that human subjects are not significantly af-
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fected by the viewpoint distortion in structure from motion. In the literature, in the

case of static object, it is reported that the perception of observer is not significantly

affected by distortion arising from viewpoint change. Our experiments in structure

from motion also report similar results in the case of moving object. Our results can

apply for viewers in cinema: their perception of plane orientation in a sequence of

moving images will not be significantly affected by their distances to the screen if their

seats are near the axis of the projector. Furthermore, from our result, when we design

a HMD device for applications in which users need to recover plane orientation from

motion, it is acceptable to ignore the viewpoint distortion under the same conditions

as our experiment.

7.2 Future work

In our experiments, we have only examined the perception of planar orientation from

motion. Besides, the distortion viewpoint investigated is equivalent to a change in the

focal length only when the optical axis of subjects are coincident with the optical axis

of the projector system. Our experimental motion is also a special one: rotation in

depth. Therefore, there are various different conditions that can be further examined

on how human being perceives the pictures under viewpoint distortion:

• surface is curved,

• viewpoint is not on the projection axis, and

• different motion, such as motion in depth, pure translation ...
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These are the open questions to be investigated to further our understanding on how

human perceives the scene using motion cues under viewpoint distortion.
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