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SUMMARY

Recent growth in industrial automation and high-throughput measurement technology has

created an unprecedented opportunity for a comprehensive study of many chemical and

biological processes. High complexity and modular behavior of such processes emphasize

the need for system engineering approach in understanding their structural and functional

behavior. As many biological processes exhibit higher similarities with chemical systems,

Process Systems Engineering with its expertise in applied research is considered as a po-

tential way of addressing many problems in computational and systems biology. Various

systems and data analysis issues common to complex chemical and biological processes have

initiated a new paradigm called ChemBioSys (Chemical and Bioprocess Systems) research.

Such motivation has lead to the initiation of the present research work.

Complex processes (specifically biological systems) pose challenges at different stages of

systems analysis. Limitations such as lack of knowledge of underlying design and oper-

ational principles, presence of non-linear dynamics, complexity (large number of features

and observations describing the system), different types of the data, data uncertainty aris-

ing due to variability in experimental sources or instruments used, all create hurdles for

systems analysis. Though many analysis techniques and tools are adopted for addressing

these challenges, the unique problems associated with systems of recent interest are far from

resolved. There are missing gaps in terms of utilization of available experimental design,

multivariate data analysis, systems modeling, simulation, network synthesis and network

analysis techniques.

Motivated from these unresolved aspects of ChemBioSys analysis, the main objectives

of this research include; reviewing and identifying potential unresolved issues pertaining

xi



to modern chemical and biological processes. Understanding the limitations of existing

methods and developing new techniques and tools, necessary to solve the related prob-

lems. Evaluating the new concepts and establishing the performance of the proposed new

techniques by benchmarking them against existing techniques using pertinent case studies.

The emphasis of the research is mainly on developing new data driven system design and

analysis techniques to characterize structural and functional properties of less understood

physical/chemical/biological processes.

Major research issues addressed:

• Data processing: Increasing the prediction and computational performance of existing

classification and regression techniques by optimal dimensional reduction of large scale

datasets.

• Data classification: Learning and prediction of non-linearly separated patterns charac-

terized by unknown multivariate interactions between system variables.

• Network synthesis: Establishing the existence of interactions between different compo-

nents using their individual properties. Designing the network model characterizing the

unknown system.

• Complex network analysis: Characterizing the structural complexity to understand the

design principles contributing to the functional behavior of complex networks.

New data analysis concepts proposed:

• Partial correlation analysis based Variable Interaction Network (VIN) concept for estab-

lishing the multivariate interactions between variables and defining the new graph theoretic

measure for ranking the features.

• Class-specific variable dependency structure based classification concept as new super-

vised machine learning technique. Alternate pattern recognition schemes based on corre-

xii



lation coefficient metric (DPCCM), fixed structure Variable Predictive Models (VPMCD)

and naturally evolved Genetic Programming Models (GPMCD).

• Multivariate interaction based network design concept for large scale biological interac-

tion prediction using individual component structures.

• Cycle coefficient - new complexity measure based on nature and distribution of closed

circuit interactions for analyzing the growth and stability of large scale complex networks.

Important ChemBioSys problems attempted:

• Process systems - Chemometrics analysis of spectral data for raw material quality cali-

bration. Batch process monitoring. Food product quality prediction. Fault detection and

diagnosis.

• Biological systems - Gene selection for cancer tumor classification. Protein secondary

structure prediction. Protein-protein interaction prediction, complexity analysis of gene

regulatory networks.

Research outcomes:

• New system design and analysis concepts are proposed and implemented to resolve im-

portant ChemBioSys problems. The techniques are benchmarked with other existing tech-

niques. The potential advantages in terms of better performance, generalizability and

computational efficiency are established contributing to the advancement of the computa-

tional and systems biology research.

• The data analysis tools developed in this research are utilized in different collabora-

tive projects involving biological (metabolomics studies of plants and animal systems) and

environmental (urban rain water runoff quality monitoring) sciences investigations.
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1. INTRODUCTION

“Fill the brain with high thoughts, place them day and night before you,
and out of that will come great work”

...Swami Vivekananda, the great Indian saint

1.1 Information revolution and it’s impact

‘Confluence’ is the suitable word to describe the reasons for the dramatic changes tran-

spiring in the twenty first century. Social interactions are increasingly dependent on infor-

mation and communication technology. eMarketing, eBanking and other eResources are

redefining the business models and management theories [1]. Global classrooms, webinars

and eLibraries are driving the new wave of collaborative university education and interac-

tive learning. Rapidly evolving new technologies encompassing biotechnology, nanotech-

nology, Micro Electronics and Mechanical Systems (MEMS) devices and material sciences

are metamorphosing common lifestyle and industrial practices. Fading boundaries between

pure sciences, computational sciences, mathematics, social sciences, engineering and eco-

nomics provide clear evidence of the highly interdisciplinary nature of society’s progress in

this information era. Upcoming inventions like ‘programmed molecular factories’ [2], ‘bio

switch’ [3], ‘artificial organs’, ‘nano sensors/pumps’, ‘learnable machines’ etc, are sufficient

indications that technological and living systems are merging, in turn fueling each other’s

growth.

Table 1.1 highlights the impact of this IT revolution and the extent of growth, specifi-

cally in science and technology. Traditionally reductionist fields like biology, chemistry are

accepting systems approach in a big way in the form of ‘synthetic biology’, ‘combinatorial
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Table 1.1
Information revolution and its impact - important changes in last three decades

Parameter 1980s 2000s

Automation pneumatic or hydraulic distributed control systems

Instrumentation electrodes, gages, thermocouples microchips, nanosensors, MEMS

Data size kB, MB tera bytes

Data type small to large complex, super massive

Time scales seconds, min µs, ns

Size scales mm, cm µm, nm

Data recording charts, graphs, spread sheets images, videos, microfilms

Data availability proprietary, patented on-line access, public databases

Computer speed 200 MHz, 486 machines super, parallel, grid computing

Research focus industrial, manufacturing health, environment and safety

Information access hardcopy periodicals more than 1000 e-journals

Research strategy deductive, reductionist predictive, systemic

Systems macro systems, Equipment molecular systems

chemistry’, employing new computational tools and techniques. On the other hand, infor-

mation processing systems are adopting to the characteristics of natural systems in the form

of ‘self organization’, ‘evolutionary computing’ and ‘artificial intelligence’. The emphasis

of modern day research is shifting from macro scale or external observations to micro or

molecular scale understanding of systems. The main issue that will be largely significant

for the next revolution into ‘molecular era’ [4] is the ability to use the computer to perform

extensive modeling of these systems to simulate their behavior as well as to do vast data
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search and analysis. The awesome growth of information processing technology (hardware

and software), has revitalized such high end systems research and analysis. Computers

have became powerful laboratory tools for the researchers giving rise to new paradigm of

‘in-silico’ analysis. Over the last two decades, this effort has provided stunning new in-

sights into the nature of the systems we are dealing with. Right from large-scale man-made

technological systems, natural ecosystems to micro scale genomic, molecular systems are

being revealed to be complex, nonlinear, adaptive and evolving systems. Extensive struc-

tural and functional similarities are being drawn across systems, that otherwise belonged

to specific domain of scientific study. Protein interaction networks, social networks, world

wide website networks and ecological networks, have been shown to share common struc-

tural design and operational principles [5]. Working of biological, chemical and bio-medical

phenomena are being described in terms of mathematical equations. Engineers, as never

before, are contemplating their skills to understand and predict new behavior of systems

beyond their domain of expertise, contributing significantly to areas like ‘systems biology’,

‘systems biomedical engineering’, ‘in-silico analysis’, ‘environmental systems’ etc. This con-

fluence of engineers, scientists and analysts has truly synergized and supplemented each

others needs with spectacular advances and results in this information age. Bower and

Bolouri [6], describe this inter disciplinary trend very well, cutting across all boundaries,

as fruitful merger of so long separated two schools of research thoughts ‘observing things

that cannot be explained (experimentalist)’ and ‘explaining things which cannot be ob-

served (theoretist)’. This research work explores one such interdisciplinary research area,

emphasizing mainly on new analysis techniques in systems engineering and their possible

contributions to process and biological systems.
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1.2 ChemBioSys - a new paradigm of systems research

Keeping pace with the above described IT revolution, chemical process industries have

increasingly computerized and automated their manufacturing operations. This trend per-

meates both established (chemical, petroleum) and developing (microelectronics, biotech-

nology) industries and has led to the significant growth of process systems engineering

(PSE). Traditionally, PSE research mainly focuses on designing, developing and implement-

ing new tools for chemical process systems. Building meaningful and solvable analytical

models from first principles, data based modeling (system identification), statistical analy-

sis for process monitoring and product characterization, process control and optimization

are the highly attentive areas of PSE. Expertise have been achieved on large domain of

system tools in these areas and have been successfully tested for large scale real systems.

Indeed, tools and techniques have become so accurate, fast and inexpensive that it has

reduced reliance on lab or pilot scale studies and has boosted plant operator’s confidence

in implementing/using PSE techniques. Today, it is possible to simulate and evaluate

a large number of equipment, process or product design alternatives from quality, eco-

nomic, safety and environmental point of views. Backed with this success and expertise

in relevant tools and techniques, PSE research community is also riding the wave of inter-

disciplinary research. It is exploring different domains of applications involving systems

structurally/functionally similar to ‘Chemical Processes’ and attempting to provide mean-

ingful solution to unresolved problems.

On the contrary, in the last few decades, biological sciences have been adopting classical

reductionist approach making abstract judgments on biological species based on experi-

mental investigations. But the recent advancement in technology has lead to the better
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understanding of such species, thanks to genomic / proteomic / metabolomic /interactomic

data. These multidimensional, multi time scale datasets with varying complexity and size

(from few hundreds to millions of observations in some cases) have upheld the need for an-

alytical approach integrating all of them for unearthing meaningful information about the

organism. It is being seen as classical systems engineering problem and hence is bridging

all the disciplines dealing with similar problems in their respective fields. Major character-

istics of biological species (which are referred now as ‘Biological Systems or Bio-systems’

- [7]) such as functional and structural modularity (similar to unit operations/processes),

emergence properties (integrated and automated process plants operation), network topol-

ogy (complex flow sheets with material/energy/information flow), stability and robustness

issues (control and fault diagnosis theory), lack of complete understanding of operational

principles (issues related to system design) and many other features make the biosystems en-

gineering extremely suitable for PSE research. This association and potential challenges for

chemical engineering expertise have initiated a new paradigm called ChemBioSys (Chemical

and Bioprocess Systems) research and almost all PSE groups across chemical engineering

departments worldwide are attempting to address issues related to life sciences. A similar

motivation has lead to the initiation of this research work.

1.3 Analysis techniques in the data rich IT era

In tune with the remarkable growth in IT, further advances in experimental techniques,

measurement technology and industrial automation have tremendously boosted the pos-

sibility of high precision, high speed and high throughput observations of many systems.

This has accelerated and placed increased thrust on all the experimental and operational
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research investigations with the aim of improving quality, productivity, safety, environment,

health or (in a broader sense) human comfort. Falling on to this surge, plant engineers,

research scholars in university laboratories all over the world, scientists in highly funded re-

search institutes, environmentalists, and social / business / national surveyors are churning

out huge sets of observations over multi-dimensional attributes for their system of interest.

It is now possible to do vast database searches or data mining, using database tomography

and bibliometric analysis. The multi-species genome projects are creating a complete ‘life

code’ of thousands of organisms in gene, protein and pathway data banks. Search capabil-

ities of a very large patent databases, in combinatorial chemistry can provide a vast array

of molecules to determine combinations that have desirable characteristics. Biotechnology,

pharmaceutical and biomedical industries have started to rely heavily on the knowledge

that can be discovered from such databases. One of the biggest challenges in recent times

is the further processing of such generated voluminous data so as to derive meaningful out-

comes in these investigations. The complexity of data available today, has posed different

challenges for developing tools and techniques to analyze them. Textual data (in the form

of sequence information for biological systems) needs special string analysis techniques.

Image/graphical data require special pattern recognition techniques, categorical and non-

homogeneous data types with multivariate interaction between the system variables pose

still further challenges. This has, in turn, propelled theoretical research in mathemati-

cal analysis and systems study resulting in new efficient approaches to solve modern day

complex data analysis problems. The interdisciplinary nature of these investigations has

attracted mathematical, computational and system analysts alike in order to address the

challenges and in reaping the benefits of information revolution. The work presented here,
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specifically attempts to contribute to this domain of new systems engineering techniques

by emphasizing on issues related to data analysis.

1.4 Motivation for current research

Detailed literature review of the significant ChemBioSys areas like system modeling

and analysis, data and network design/analysis is provided in chapter 2 with important

subtopics. Increasing emphasis on systems approach, the need for improved data processing

techniques, higher confidence on computational analysis are some of the important features

that stand out in recent scientific research literature. Observations are made during this

review on the important problems yet to be resolved. Limitations of existing techniques

that need further improvements, need for alternative concepts to understand system be-

havior and gaps in the knowledge of complex systems have motivated this research work.

Some of the specific issues are highlighted below.

Challenges for modeling complex process and biological systems: First princi-

ple based modeling techniques cannot be effectively used as underlying physical/chemical

/biological phenomena are not completely understood for many systems. Even if they are

known in some cases (metabolism and cell growth kinetics), they are still hypothesis and

yet far from becoming common laws. Another challenge in modeling complex systems is

that they pose functional dynamics with different time scales and structural complexity

of varying degree (genomics to organ level). Characteristics like non-linear interactions,

adaptability and evolutionary growth cannot be easily defined using mathematical equa-

tions. There is a special need for alternate ‘mathematics for biology’. Though models

in the form of set of differential equations are used, they lack in real time performance
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due to highly simplified assumptions made on the systems. These issues have put forward

new challenges for systems analysis of complex process and biological systems. There is

an increasing need for stable and robust modeling techniques which are scale free and can

capture the intricate behavior of complex system of interest.

Unanswered questions related to bio-systems that call for systems study: Issues

like how do the micro-level interactions (genome/proteome) affect macro-level behavior

(organism)?, how to incorporate physico/chemical features of bio-systems which can char-

acterize and distinguish it’s phenomena from others, is there relation between structure

and functions of biological systems?, how does a bio-system derive its unique features like

specialized activity, operational stability and adoptability? and many more such questions

need to be answered using systemic study. The only thing constant, known as of now, in bi-

ological system is the genome sequence for given species. Though the central dogma of gene

transcription and then translation into active proteins is well established, the higher level

formation and behavior of protein complexes and molecular interactions are far from under-

stood. This provides immense scope for investigation where the application of multivariate

data analysis techniques (with suitable modifications) can provide meaningful hypothesis.

Handling data complexity: Systems approaches rely heavily on information in pub-

lic databases. The datasets are often incomplete, not standardized or properly annotated.

Worse yet, the quality of the data is often uncertain and the level of noise is unknown. Since

bio-systems inherently exhibit stochasticity in themselves, separating measurement noise

from informative system stochastic signals is a major challenge. Biological and biomedical

experimental datasets are characterized by a larger number of features than observations

and different category of measurements. This data complexity imposes special data pre-

treatment requirement in terms of dimensional reduction, data filtering and standardiza-
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tion. Any statistical approach which attempts to solve this kind of huge data processing

problem should be capable of handling this data complexity, be reliable and at the same

time be computationally efficient.

Lack of generalized and widely accepted data analysis techniques: Less under-

stood structural and working principles of biological systems call for data driven analysis.

Many data analysis methods that employ black box models have been tried. Some of the

draw backs of these approaches include inability to provide meaningful representation for

further research, lack of generalized performance and specific type of data requirements.

The huge size of experimental datasets makes some of the existing computational tech-

niques almost impossible to use. These issues have motivated the development of alternate

data treatment approaches in order to facilitate statistically feasible, graphically visualiz-

able, computationally affordable analysis of complex process and biological phenomena.

Design and analysis of networks: Complex networks are inherent to many process and

natural systems. Due to modularity of bio-systems, their functions and structures are well

exhibited using networks of smaller modules. Complex network analysis is in itself a major

area of research demanding new measures and concepts. The network synthesis techniques

used to represent biological networks fail to capture nonlinear and multi dimensional as-

sociations between units. Moreover they only qualitatively characterize the system and

hence a need for new methods that can quantify the structure is clearly evident. Another

upcoming area is the study of network evolution and changes in network topology due to

internal and external disturbances. The issues of stability and robustness of networks are

yet to be addressed with reference to real time systems.

These and many other similar observations have encouraged the continued interest in

this area and have motivated this research work to resolve some of these challenging issues of
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ChemBioSystems engineering. The present study specifically emphasis on the issues related

to data analysis for knowledge discovery and systems analysis. Various tools available,

their possible significance and limitations when applied to large scale, complex process and

biological systems are studied. New concepts and alternate techniques are proposed and

evaluated for different aspects of data based systems design and analysis.

1.5 Scope of the present work

Basic scientific research is one which is directed towards the increase of knowledge in the

domain. Being part of an emerging and increasingly challenging area of ChemBioSystems

engineering and suitably contributing to its advancement is the basic objective of this

research work. Following are the specific issues addressed in the present study.

• Reviewing various possible areas of theoretical/computational investigation for pro-

cess and biological systems, especially with reference to complex systems.

• Identifying potential areas of biological systems analysis for employing and expanding

Process Systems Engineering concepts and tools.

• Understanding the limitations of existing methods and developing new tools/ tech-

niques necessary to solve the related problems.

• Evaluating the new concepts and establishing the performance of the proposed new

techniques by benchmarking them against existing techniques using pertinent case

studies.

• Identifying relevant collaborative areas of ChemBioSys research and implementing

the validated tools to solve problems related to new investigations.
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Figure 1.1 highlights the aspects covered in this research. It also summarizes the depth of

research in terms of various data processing steps covered, breadth in terms of comparison

with many of the existing techniques and more importantly in terms of the wide range of

problems addressed for process and biological applications.

1.6 Organization of the thesis

The characteristics of process and biological systems are introduced in chapter 2. Var-

ious systems design and analysis techniques are also reviewed. Different challenges and

scope for systems research are highlighted. Variable selection problem for data analysis is

introduced in chapter 3. A new feature selection algorithm is proposed and its application

to classification and multivariate calibration problems are studied. A new classification

approach based on variable dependencies is introduced in chapter 4. The new classifier is

updated using different concepts of variable interaction modeling and alternate implementa-

tions are attempted. Important classification applications of recent interest to process and

biological systems analysis are addressed as benchmark case studies. Multivariate modeling

based new network synthesis approach is proposed in chapter 5. The crucial problem of

predicting large scale biological networks is addressed. Chapter 6 introduces the emerging

field of complex network analysis and proposes a new graph theoretic complexity mea-

sure. Stability and robustness of complex networks are evaluated using simulated as well

as real biological networks. Utility of IPC-STAT, a compilation of data analysis tools de-

veloped/implemented during the present work, are highlighted in chapter 7. Four different

interdisciplinary collaboration projects that implemented these tools and techniques are

outlined. Finally, it summarizes the key findings, contributions of the thesis and provides
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recommendations for the future work. Important aspects of all these topics and flow of

ideas and information between them is also highlighted in Figure 1.1.

 

Data Processing 
(Chapter 3) 

 (New variable  
selection method) 

Data Analysis 
(Chapter 4)  

(New classification 
methods) 

Network Design 
(Chapter 5) 

(New network 
synthesis method)  

 PCA loadings, Fisher 
scores, Genetic 

Algorithm 
PLS-VIP, MLR. 

 
LDA, QDA,  

k-NN, ANN, DPLS 
SVM, CART, Treenet. 

 
Interlog, 

Phylogenetic Profiling, 
kNN, SVM. 

Network Analysis 
(Chapter 6) 

(New complexity 
measures)  

 
Cluster coefficient,  

average vertex degree, 
average distance. 

  

 
Chemometrics. 

Process Monitoring. 
Genomics. 

 
Quality prediction. 

Proteomics. 
Clinical diagnosis. 

 

 
Protein-Protein 

Interaction. 

Gene Regulation and 
Protein Interactions. 

Random and Scale Free 
Networks. 

APPLICATIONS 

RESEARCH FOCUS 

BENCHMARK 

Review of existing domain knowledge, challenges and scope for 
System Design and Characterization 

 (Chapter 2) 

IPC-STAT tools for ChemBioSys applications 
Contributions and Recommendations 

(Chapter 7) 

Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark.

Fig. 1.1. Scope of the present work - research depth, breadth and width
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2. SYSTEM DESIGN AND CHARACTERIZATION - AN

OVERVIEW

“Research is to see what everybody else has seen, and to think what nobody else has thought”
...Prof. Albert Szent-Gyorgyi, Nobel Laureate, 1937.

A system can be defined as a single or an orderly assemblage of elements with different

states governed by definite operational principles or procedures forming a unitary whole [8].

A system representation, in its basic form, is characterized by a definite system boundary

(closed or open, depending on the systems interaction with the external surrounding) repre-

senting limits of investigation, a set of system parameters representing structural/functional

features, system state variables changing due to underlying principle of operation and a

system model representing the relation between variables and parameters. Such a rep-

resentation mimicking the actual phenomenon, mostly in the form of workable models

(analytical, numerical, graphical, statistical or rule based), enables a deeper understanding

of the behavior of the system and simulates possible effects of different structural and func-

tional changes. This empowers the predictive investigations and simulation of scenarios to

answer questions of interest on a given system. In general, any systems approach attempts

to develop tools and techniques to design, characterize and analyze such systems. Systems

approaches are mainly useful and employed to improve the performance of known systems

in terms of efficiency/productivity/safety/environmental impact (retrofitting analysis, pro-

cess optimization, integration, monitoring and control, risk assessment etc.), to predict

the new outcomes of existing systems (weather/disaster forecasting, business predictions,

survival analysis etc), to understand the complex nature of important unknown systems

(knowledge discovery in complex economical, social, medical and biological systems) or to
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design new systems with desired characteristics (molecular synthesis, engineered systems,

robotics) [9]. Following are the general significant features of such widely accepted systems

approach.

• Representation of structural and functional properties of a complex system or situations

so as to facilitate analysis of full range of complex interactions within and across the system

boundary.

• Simplification (modularization) of complex problems into different, smaller, easy-to -

understand components which can be analyzed individually and suitably combined to study

their interactions.

• Provides a framework for the consideration of different objectives, analysis of different

scenarios of underlying principles and possible outcomes of desired or undesired changes in

the system parameters.

• Mathematical model based representation of the system which enables implementation of

powerful computational tools and techniques to formulate, validate and simulate complex

systems.

• Facilitates the trade-off analysis of conflicting factors, oppositely influencing the phe-

nomenon of interest and hence enabling the system optimization.

• State-of-the-art analysis using multi-scale, multi-space, multi-physics, multi-domain tech-

niques, which are essential to solve many real world problems, are feasible mainly through

systems approach.

The work presented in this thesis also benefits from such an organized analysis approach

at various stages of investigation. In this connection, this chapter introduces the systems

of interest and highlights the importance of different tools and techniques available in lit-

erature for design and characterization of the same. Various aspects of systems analysis
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including existing gaps in knowledge and opportunities for research are brought out espe-

cially as applied to process and biological systems.

2.1 Process Systems and Analysis

Process systems mainly encompass a wide range of unit operations and processes involv-

ing physical and chemical changes. Process Systems Engineering (PSE) aims to develop

tools and techniques required to design and analysis of complex process engineering sys-

tems. The tools enable systematic development of processes and products across a wide

span of systems from molecular and genetic phenomena to manufacturing and allied busi-

ness processes. PSE has a long history [10, 11] and over the last fifty years has developed

itself into a mature research field contributing successfully to the process industry’s profit,

productivity, product quality and process safety. Thanks to this progress, process system

boundaries have swelled drastically from basic individual process equipment analysis [12] to

plant-wide [13], enterprise wide analysis [14] and recently to global scale systems analysis of

chemical business logistics [15, 16]. With the availability of fast and customizable compu-

tational tools (both hardware and software), the techniques used for systems analysis have

also grown significantly. Along with simpler analytical [17], statistical [18], optimization [19]

or control [20] techniques for linear systems, there is a growing interest in implementation

of artificial neural networks [21], mixed integer constrained optimization [22], genetic al-

gorithm/programming [23], parametric programming [24] and multivariate statistical [25]

techniques for analyzing complex, highly non-linear and hybrid systems [26]. The scope of

PSE research covers important areas like process modeling [17, 27], optimization [28] [19],

data reconciliation and system identification [18], process monitoring, control [20], fault de-
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tection and diagnosis [29]. Some recent and active research interests focus on applications

like process integration [30] [31], process/product synthesis [32], new product design [33],

process plant risk management [34], supply chain management [15], process intensification,

robustness and stability analysis of process networks [35]. Some of these topics which are

relevant to the present investigation are discussed in detail later.

2.1.1 Challenges of modern process systems analysis

Globalization of business processes has brought unprecedented changes in the manu-

facturing processes that support such businesses. Distributed supply chains with highly

volatile sales demands, variability in raw material quality due to flexibility in sourcing,

process scheduling issues due to multiple product quality requirements, tight production

cost constraints due to market competition are some of the new characteristics of modern

plant operations. Increased thrust on quality, adaptability, timely delivery combined with

increasing awareness of productivity, safety and environmental impact have added to the

serious challenges of process plant management. Such needs, on one hand have attracted

extensive use of IT systems in production planning and resource management and on the

other, have placed greater emphasis on process automation. The following points highlight

this changing scenario in industrial setting and new challenges of process systems analysis,

arising thereby.

• With advent of sophisticated DCS instruments, sampling times are reaching the seconds

scale resulting in the generation of enormous amount of data. Process systems analysts

must focus on daunting issues such as developing procedures to systematically store, re-

trieve and more importantly, use years of such historical data for understanding what gov-
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erns good/bad plant operation, safe/fault process parameters, acceptable/rejected product

quality, efficient/poor equipment performance etc. New data mining and statistical tech-

niques directed especially to analyze large scale datasets are needed. Issues like integrating

data collected at different time scales, dimensionality reduction, noise filtering etc must be

investigated.

• Modeling and regulation of multi phase, non-linear, dynamic systems are demanding new

system identification approaches. Simultaneous heat, mass, momentum and information

transfer between subsystems leading to multivariate interactions further complicate this

task.

• Due to the clubbing of enterprise wide analysis with plant scheduling and market con-

straints, the overall systems optimization problems are getting more complex calling for

novel approaches to solve constrained mixed integer non-linear problems.

• Presence of increased recycle streams (contributing to energy/material conservation),

closed loops (due to increased automation) and cascade systems (due to process integra-

tion) in plant operation are contributing further challenges to process monitoring and iden-

tification techniques. Fault detection, isolation and diagnosis, controller design and quality

regulation have become difficult especially in the presence of propagating disturbances.

• Improved measurement technology has given rise to new ways of quality monitoring.

Analytical measurements supported by spectrometers and chromatograms have given rise

to modern chemometric problems with large dimensions calling for feature selection and

multivariate dimensional reduction/modeling techniques. Measurement redundancy and

data collinearity are pushing the limits of statistical analysis techniques.

• Complex data types (images, colorcoding, alarm signals, on-line scanning camera videos,

discrete quality variables like customer choice and availability of equipment) are encourag-
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ing the PSE community to design new integrative analysis techniques that are capable of

uncovering useful nuggets of information from such heterogeneous data types.

Some of these issues are addressed in this work. New data analysis techniques have been

proposed and tested on challenging chemometrics and process monitoring applications.

2.2 Biological Systems and Analysis

In a broad sense, all systems which function on principles of life sciences can be cate-

gorized under living systems or biological systems. They are mainly identified by different

levels of size and complexities such as atomic, molecular, cellular, colonial, tissues, organs,

organisms, ecological and social [36]. The biology in itself provides organized ways of un-

derstanding these levels and the related phenomenon of life. Biochemistry examines the

fundamental chemistry of life at different scales from nucleotide binding at genetic level

to protein synthesis to enzyme kinetics in cellular systems. Molecular biology studies the

complex interactions of systems of biological molecules like genes, proteins, metabolites etc.

Cellular biology examines the design principles and functional properties of basic building

block of life - the cell system. Physiology examines the distinct physical and chemical func-

tions of the tissues and organ systems of an organism. Taxanomy, characterizes organisms

as a whole and identifies them into specific groups of species. While phylogeny attempts

to relate the evolutionary history of organisms, ecology examines how various organisms

interrelate in an existing ecosystem [36].

All these sub-disciplines constitute different aspects of descriptive biology and describe

the know-how of construction and operation of respective biological components. This

‘descriptive approach’ gained more attention in early biological investigations and became
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biologist’s traditional approach while establishing unknown principles of the biological phe-

nomena. This reductionist approach provides answers to how, where and when of biological

processes based on experimental observations. A set of controlled experiments with several

replicates (for statistical validity) are necessary to answer every question of interest. With

possibility of several factors influencing the experimental outcome and complications in op-

timal design of experiments, it is practically impossible to explore all the important issues

that need to be addressed in biological systems. Also, the complexities of such systems aris-

ing due to the non-linear interactions between components constituting the system makes it

impossible to understand the complete phenomena by summing the individual observations

made during independent experiments. The “whys” of the biological operations formulate

the essential knowledge if one attempts to predict alternate behaviors and manipulate such

systems for desired benefit. Such a predictive analysis of biological systems is critical for

reasoning diseases, designing new drugs, improving biochemical reactions, developing bio-

materials, applying bio-remediation etc. For this, biologists need unconventional support

in characterizing the essential building blocks of life, establishing nature of interactions

between different components, understanding the hierarchical structure of organization of

living systems, integration of phenomena at different scales of space and time and in pre-

dicting the influences of variations within and across different levels. ‘Systems approach’

can provide the tools and techniques necessary to achieve the objectives of such detailed

investigations [37].

Adoption of a predictive approach to understand biological phenomena was probably pio-

neered by Prof. James Miller’s ‘living systems theory’ in 1970s. In his classical book [38],

he proposed the general concept of ‘life’ as a ‘living system’ that contains several subsys-

tems with distinct structural and functional properties at various scales such as simple
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cells to organisms, ecosystems and societies. But the systems idea of analyzing biologi-

cal phenomena remained hypothetical till 1990s mainly due to lack of established design

principles of complex biological systems to suitably use them for modeling and analysis.

Inadequate measurements, especially at molecular scale, to generate data that can validate

the model predictions further hindered systems oriented biology. The recent growth in

measurement technology and computational prowess has given birth to new fields like ge-

nomics, proteomics, metabolomics, systems biology, systems ecology etc [39]. The upsurge

in these areas has boosted the research into the molecular era [4] in general, making more

realistic biological system models possible. New ways of compartmentalizing, representing

and analyzing biological systems are being studied. New applied fields of biology such as

medical biology, developmental biology, conservation biology, environmental biology, syn-

thetic biology are getting increased attention with the support of systems analysis. The

challenges and scope of this new theme of understanding ‘life’, which basically relates ev-

erything on earth, have attracted highly inter-disciplinary interest from all walks of science

and technology. Bio-statistics, bio-informatics, bio-chemistry, bio-physics, bio-engineering,

bio-medical engineering, bio-materials, bio-technology are some important buzzwords in

21st century research [4].

2.2.1 Challenges for analyzing biological systems

With the availability of high end computational facilities and enough understanding of

organisms at genetic level, biologists and systems analysts all over the world are trying to

determine answers to many unanswered questions that emerge from the new frontiers of

bio-systems. Computational Systems Biology as Kitano [7] explains, ‘addresses questions
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fundamental to our understanding of life, yet progress here will lead to practical innova-

tions in medicine, drug discovery and engineering’. Currently, many issues which signify

the systemic approach to biology and greater use of mathematical, systems and computa-

tional techniques for better understanding and analysis of complex bio-molecules and their

interactions are being addressed. Examples include

• Can a cell be modeled as a system with all its structural and functional components

known? [40,41]

• How are specific metabolic, cell division, transition and translation activities controlled?

[42]

• How is structure of a bio-molecule related to its functions? [43]

• With the knowledge of many biological pathways can we understand how to control and

manipulate them in order to improve the yield and efficiency of desired product forma-

tion? [44,45]

• How can we use systems engineering concepts like feedback control, parameter estima-

tion, system identification and network stability analysis to a biological system? [35,46,47]

• How does a biological system evolve from one state to a new one? [48]

• Which components and what types of modifications in a bio-system lead to its malfunc-

tioning? Can we target them to cure life threatening diseases?

• Can we engineer biological systems to provide alternate solutions to problems associated

with artificial systems? [2, 3]

Many researchers across disciplines, such as sciences, mathematics and engineering are

attempting to address these and many other fundamental questions about living systems.

This growing interest and research thrust combined with huge sets of experimental data at

all scales being made publicly available (refer Appendix A for summary of data reposito-
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ries) is pushing the field of computational and systems biology to attempt larger and more

complex problems. The new domain of science is bringing up new challenges for systems

analysis [49]. Some of these challenging issues, which also motivated the present research

are highlighted below.

Multiple scales: The changes in components occur at different time scales [50] like

micro seconds for gene transcription, milli seconds for metabolic reactions, minute scales

for physiological changes, hours scale for interactions in ecosystems and days for changes

in environmental systems. The space dimensions of system boundaries exhibit order of

magnitude variations from nanometer scale of molecular systems to micrometer scale for

cellular interactions, centimeter scale for organ studies and meter scale for larger systems.

Integration of measurement data and component models across multiple time and space

scales is difficult [51]. Such an integrative analysis is essential for a holistic approach inves-

tigating interactions between different components of biological systems. Issues like scale

relations, model coupling and temporal complexity must be resolved. There is an increas-

ing need to develop new tools and techniques to integrate datasets at different scales, for

handling different degrees of noise, modeling and simulating unknown or partially known

systems, to overcome measurement uncertainty, for statistical analysis and visualization of

multivariate effects.

Large scale knowledge discovery: The benefits of applied biology and the success of

systems biology depends to a great extent on knowledge about structural and evolutionary

properties of bio-systems. Identifying important motifs, mutational sites in gene sequences,

establishing secondary/tertiary structure of proteins, cellular location of molecules, molec-

ular interactions determining metabolic pathways all are parts of this essential knowledge.

The time, effort and cost involved in experimentally establishing these properties for mil-
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lions of molecules present in any given bio-system is a daunting and practically impossible

task. This has encouraged development of predictive techniques which can compute or

infer this knowledge from the best available experimental data. Freely accessible biological

data repositories (Appendix A) are inevitable sources for any kind of knowledge discovery

in predictive biology. However, the large scale datasets (gene and protein sequence data)

are compiled using machine or manually curated literature data reported by independent

researchers based on experiments, carried out using inconsistent protocols under varying

conditions. Uncharacterized measurement noise, uncertainity in experimental data, vari-

ation associated with high-throughput measurements (micro-array), computational errors

involved in tools used for data curation are some of the factors that corrupt these data re-

sources subsequently affecting the performance of data analysis techniques and inferences

made therefrom. The available data mining tools are either less effective or incapable of

handling these issues. A significant improvement in these tools or design of new techniques

is one of the demanding challenges of bio-systems analysis.

Structure-function relationships: Though the experimental and computational meth-

ods to determine and represent basic structure of molecular systems (gene and protein

sequences [52], protein structures [53–55], molecular interactions [6, 48, 56]) are being es-

tablished, linking the structures to corresponding molecular/cellular functions is a major

systems challenge. It is important and equally tough to predict the dynamic phenotypic

variations of bio-systems based on relatively constant genotypic/structural properties. Such

structural-functional relations are the basis of the emerging field of ‘synthetic biology’ in-

corporating genetic/metabolic/tissue engineering, enzyme synthesis, disease prediction and

drug discovery [2, 45].

Data management: With exponentially growing interest in computational investi-



24

gation, large sets of data with different characteristics are being generated for analysis.

Modern ’omics’ data come in disproportionate scales (thousands of attributes but few sam-

ples like in metabolomics, micro-array data), different memory sizes (simple structural

data in bytes to full genomes in terabytes), varying types (textual sequence data, numeri-

cal physico/chemical data, multicolored image based microscopic data, spectral data from

chromatograms, film negatives, biomedical signal data etc). Issues like data preprocessing,

dimensional reduction, feature extraction for image interpretation, data fusion, higher-

dimensional visualization, computational memory etc are leading to new data management

challenges.

Basic mathematical issues: Lack of established design principles for bio-systems, com-

plex nature of systems with non-linear dynamics, presence of thousands of variables and

parameters characterizing the phenomenon of interest, inadequate theory for systems that

combine stochastic and nonlinear effects especially for distributed parameter systems, com-

plex geometries, modeling and analyzing relationships between network architecture and

corresponding dynamics, combinatorial complexity affecting scale up studies, lack of estab-

lished techniques to solve partial-integro-differential equation based bio-systems models,

are some of the limitations hindering the progress of mathematical analysis of biological

systems.

In order to address these challenges, the missing gaps of biological systems knowledge

are yet to be filled, new analysis tools/techniques need to be developed and unknown de-

sign/operational principles to be discovered. This research work efforts to contribute to

some of these needs by adopting the PSE expertise in approaching such knowledge based,

system identification, simulation and data analysis problems. The following subsections
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bring out a brief review of important research topics in this field and also identify specific

problems for which effective solutions are proposed in later chapters of the thesis.

2.2.2 Computational biology

Computational biology is an interdisciplinary field that applies the techniques of com-

puter science, applied mathematics and statistics to address problems inspired by biology.

Computational techniques are applied for various predictive investigations including anal-

ysis of sequence, structural and systems data in the following new fields of biology.

Bioinformatics: This applies algorithms and statistical techniques to biological datasets

that typically consist of large numbers of DNA, RNA, or protein sequences. Examples of

specific techniques include sequence alignment [52] for gene finding and homology search

for comparative biology [39, 57] and prediction of gene expression / transcription / trans-

lational activities [58].

Computational genomics: A field within genomics which studies the genomes of cells

and organisms by high-throughput genome sequencing and genome assembly. This field

relies heavily on DNA microarray technologies [39] for measurements and new statistical

techniques to analyze genes expressed in individual cell types [59,60].

Molecular structure prediction: This attempts to systematically produce accurate

structural models for three-dimensional protein structures that have not been solved exper-

imentally. It addresses issues like protein structure prediction [55,61], domain and function

identification of molecular systems and interaction between them, all starting from avail-

able basic gene sequences and their properties [39,52,53].

Computational biochemistry and biophysics: It is mainly built on the principles
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of quantum mechanics, laws of motion, elasticity and thermodynamics. Research in this

area makes extensive use of structural modeling and simulation methods such as molecular

dynamics and Monte Carlo methods in an attempt to elucidate the kinetics, interactions

and thermodynamics of important molecules like proteins, metabolites within and across

cellular systems [2, 58,62].

Computational evolutionary biology: Evolutionary biology is the study of the origin

and descent of species, as well as their variants over time. Computational tools have en-

abled the evolutionary biologists in several key ways. One can trace the evolution of a large

number of organisms by measuring changes in their DNA [36] as against physical taxonomy

or physiological observations. More complex evolutionary events such as gene duplication,

lateral gene transfer and the prediction of factors important in bacterial speciation are

better understood using systems approaches which are otherwise impossible to describe

using traditional reductionist approaches. New tools are available to build complex com-

putational models of populations to predict the outcome of the system over time [63, 64].

A recent focus is to reconstruct universal tree of life (http://www.tolweb.org/tree/) and in

creating new tools for the same [65].

In the present analysis, a new gene selection algorithm and an alternative classification

method for microarray data matrix analysis are developed for addressing cancer diagno-

sis problem. A novel pattern recognition technique for protein secondary structure and

molecular location prediction is also proposed. These contribute to the research goal of

developing new tools for analyzing bio-systems.
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2.2.3 Systems biology

The availability of complete genome sequences, as well as transcriptomic, proteomic,

metabolomic and structural genomics data, provide the necessary information to start ana-

lyzing the living cell as a whole. Systems biology contributes to the success of this important

step in applied biology [66,67]. It mainly uses and extends the research outcomes from com-

putational biology by bringing together the expertise from disciplines employing systems

engineering techniques [68]. The systems biology approach often involves the development

of mechanistic models, reconstruction of dynamics from the quantitative properties of el-

ementary building blocks, representation and analysis of interaction between subsystems

and uses systems engineering tools to quantify, optimize, control, modify and create dif-

ferent behaviors of biological systems [7, 69]. This section presents the literature available

on various aspects of the quest to bring quantitative measures to our understanding of

the cell, model the cellular processes and eventually adapt them to human needs through

engineering biology and biotechnology.

Systematic systems biology: Analysis of systems at a single level of biological organi-

zation are usually categorized under systematic systems biology. This approach conjures

many computational biology techniques and focuses on representation through predictable

models, analysis for identifying new properties of a given system. It includes analysis

approaches like functional genomics, transcriptomics [62], proteomics, metabolomics, gly-

comics, interactomics, fluxomics. These investigations are frequently combined with large

scale perturbation methods, including gene-based (gene knockout, mis-expression of wild

type and mutant genes) and chemical approaches (pathway analysis). These technologies

are still emerging and face problems that were mentioned in section 2.2.1.
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Integrative systems biology: This seeks to integrate different types of information to

advance the understanding of the biological ‘whole’. Interaction between different com-

ponents of a given system (cell, organ, organism or ecosystem) are studied based on the

material, energy and information flow between them. The interactions are modeled to de-

fine or understand the behavior of the entire system of interest [51]. Genotype reasoning

for phenotypic behaviors, relations between different omic studies, integrating pathways

at different time scales, pharmacodynamics and pharmacokinetic studies are some of the

examples of such investigations.

Dynamic systems biology: This study aims to uncover how the biological whole

changes over time (during evolution, the onset of disease or in response to a perturbation).

Single or integrated bio-systems are modeled using sets of ordinary or partial differential

equations in order to study the phenomena [40, 70]. Signal transduction, gene regulation,

perturbation of metabolic pathways, transmembrane transport are the areas which benefit

from such unsteady state analysis.

Modeling of biological systems:

The ability to predict the precise and complete behavior of biological systems under var-

ious situations is highly desirable for both scientific and commercial reasons. Alternatively,

although experimental investigation of bio-system mechanism is reliable and precise, it is

time consuming, expensive and can result in noisy data. Hence a mathematical form of

representation and system based study of such complex systems have been proposed for

in-silico (computer based) simulation of these experiments. Many theoretical and compu-

tational approaches have been attempted [37, 71] to model the biological systems, ranging
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from descriptions of a molecule of few atoms [72], to small chemical systems [73], to large

biological molecules and material assemblies [6, 74]. Early attempts in model building of

cellular systems focused primarily on metabolic pathways as they were well characterized

both qualitatively and quantitatively [37, 75]. Most of the work emphasized on modeling

in vitro cell cultures [76–78] and their behaviors under different conditions. A macro-

scopic approach to biochemical networks was adopted to simplify the problem by lumping

the cell regions and species concentrations [6]. This major assumption helps in formulat-

ing the cell as a reactor using kinetics and transport equations [44]. Sets of differential

equations representing the dynamics are generated and solved with suitable boundary con-

ditions using fast algorithms [40]. Attempts have been also made to introduce the effect of

randomness through intrinsic (gene expression, mutations, intra-cellular product accumu-

lation) and extrinsic (cell growth, degradation, environmental changes) stochasticity into

in-silico models [74, 79]. This analysis helps to explain stability, reliability and robustness

of bio-systems during such random noises as these changes can divert the highly nonlinear

networks to multiple stable states [46, 47, 80]. In its attempt to solve larger, complex and

more important problems relevant to human health, environment and nature, this emerging

field of systems biology is encountering new challenges [49, 68,70].

Interaction modeling: Establishing simple cause and effect relationships in living sys-

tems has always posed a challenge [81]. With the recently available power to delete, re-

place, modify and control genes individually, it is being realized that a single perturbation

anywhere in the bio-system can simultaneously produce subtle to catastrophic effects at

different scales. Tracing the chains of causality across the series of temporal scales that

separates a molecular event from its global consequences like cell growth, division, adap-

tation and so on is proving to be a new challenge for bio-systems analysis. The collective
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enterprise of molecular biology has shown that the system of life owes its robustness and

resilience to molecular interactions that operate hierarchically or in parallel as highly inte-

grated modules [46,70]. Hence it is essential to develop new tools and techniques to model

and simulate such vital interactions. This field of systems biology addresses issues at all do-

mains of interactions ranging from gene-gene interactions, protein-ligand, protein-protein to

inter cellular and inter compartmental interactions in biological systems [6]. It contributes

significantly to the fields of genetic engineering [82], protein synthesis [83], metabolic engi-

neering [45], signaling pathway analysis and other transport mechanisms defining biological

processes [84]. Further details on network representation and analysis of these interactions

are discussed separately in section 2.3.

Developing tools for systems biology:

Due to the presence of large sets of parameters, variables and constraints many nu-

merical and computational techniques are used in bio-systems modeling and analysis [85].

Various bio-modeling computational tools have been proposed in last two decades. A list

of such useful resources available for modeling and analyzing different components of bi-

ological systems are highlighted in Appendix B. Initial efforts were on developing tools

for modeling reaction kinetics for understanding metabolic pathways [86], to model and

simulate gene interactions as circuit [87–89] , simulate biological system dynamics using a

set of ordinary differential equations (ODE) [40], models for representing cell division and

growth cycle in bacteria [90], and quantitative model of the metabolism of a whole (hypo-

thetical) cell [41,91,92]. Some of the recently developed tools focus on different aspects of

systems/computational biology such as integration of information from the literature, data
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mining tools using techniques of information extraction [57], the development of online

databases and repositories for sharing data and models (Appendix A) and development of

syntactically and semantically sound ways of representing biological models, such as the

Systems Biology Markup Language (available at www.sbml.org).

This research work addresses the issue of modeling bio-systems with set of measured vari-

ables on them but without distinction such as input or output variable. It contributes a

new variable predictive modeling approach for establishing interactions that characterize

important biological phenomena.

2.3 Complex systems and network analysis

Almost all interesting processes in nature are highly cross linked. In many systems, we

can distinguish a set of fundamental building blocks, which interact nonlinearly to form

complex structures or functions. Such systems exhibit characteristics of higher order dy-

namics, self-organisation, structural/functional emergence, adaptability and hence require

more explanatory tools and techniques. Systems that exhibit these characteristics are de-

fined as complex systems [81, 93]. Examples of these systems are molecular interactions

and regulation that direct biological processes, multi-component/multiphase reaction sys-

tems, ecosystem, social colonies, technological systems like internet, utility/transportation,

telecommunication systems, as well as economies [81,94]. The complex systems analysis is

concerned with basic and applied research on simulations and analysis of complex systems,

as well as development of applications to understand and control such systems [81]. Since

complexity of these systems arise from the modular structure and inherent interactions

between them it is easy to interpret such systems using network representation [43].
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A network is a system of nodes (representing components of complex systems) and arcs

or edges (as interaction between them). Once one adopts this viewpoint, networks appear

everywhere. Complex networks of recent interest include networks from biological, social,

information sciences and various technologies. Complexity of such networks can be defined

in terms of micro and macro level structure (number of nodes and edges), functionality of

the system (interaction between nodes or sub-networks), behavior to internal and external

changes (dynamics), complexity in terms of modeling and computational effort to resolve

certain related issues. Amaral and Ottino [81] in their exhaustive paper illustrate the

nature of complex networks, explain the basic terminology, review the classes of complex

networks. The significance and limitations of tools used to model and analyze complex

networks have been also outlined with examples.

The complexity analysis techniques attempt to address both structural and functional forms

of system complexity [94, 95]. The structural complexity analysis is built on topological

characteristics of the network focusing on qualitative and quantitative representation of

network, their organization, modularity and their structural emergence [43]. Functional

complexity analyzes the systematic outcome of complex interactions between the compo-

nents, stability and robustness of complex systems and their relevance to systems func-

tion [96]. Many tools are used for the study of complex systems involving main areas of

systems theory like nonlinear dynamics, statistical physics, discrete modeling and network

theory. Network growth models like scale free network [5] and small world networks [97]

are commonly used for naturally evolving complex systems. Friedman [98] proposed a

probabilistic graphical model for inferring cellular networks using bayesian construction of

events and steps. Set of mathematical equations are also used to model and simulate the

networks [40]. Theories based on control engineering are employed to study the stability
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of signal transduction [47]. Emergence of different complex network topologies depending

on criteria of stability/robustness/adoptability were studied using evolutionary program-

ming tools [35,99]. Attempts were made to characterize the process systems networks (flow

sheets, reaction systems) and network simplification techniques were proposed [100–103].

2.3.1 Challenges in analyzing complex networks

Challenges at the unit level: Components building the complex systems themselves

can posses systems challenges. Such smaller units may have intricate internal structures

and functional properties, which are often difficult to model or interpret. Multiphase re-

actors and multi-component distillation units participating in a mass/energy flow process

networks, less understood metabolic pathways in cellular networks are some of the exam-

ples of such complex subunits. Structural and functional variation between different units

(differing ordering/marketing strategies of logistic subunits in supply chain networks) and

presence of units without strictly defined roles (thousands of junk genes in many genomes)

posses further challenges to understanding of the dynamics of complex networks by increas-

ing the mathematical complexity of the problem. [94]

Challenges at the interaction level: The nature of interaction between subunits is the

crux of the complex systems analysis. It is often observed that ‘the whole is not the sum

of all’ mainly due to presence of nonlinear interactions, dynamics at different scales, recy-

cles and self regulations etc. Stochasticity and presence of noise in the system are added

complications in formulating meaningful quantitative models for complex systems. [70]

Challenges at the forcing level: One of the main objectives of analyzing complex

systems is to investigate the effect of disturbing forces. These disturbances can be de-
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sired (knocking of regulatory genes) or undesired (random or organized attacks on social/

technological/ economical networks, virus on world wide web or poison in the ecosystem),

internal (plant shut down affecting supply chain) or external (climatic changes affecting

ecosystems, influence of IT on social networks), deterministic (process conditions in a plant

network) or stochastic (gene mutations) in nature. Poorly characterized internal and ex-

ternal perturbations, unknown temporal and spatial correlations of multiple perturbations,

non-stationarity of external perturbations are other challenges demanding special consid-

erations [74,79].

Attempts have been made in this research work to address some of these issues related to

complex network synthesis (chapter 5) and analysis (chapter 6).

2.3.2 Networks in biological systems

Biological systems derive their important characteristics like adaptability, stability and

resilience from their structural and functional complexities. Hence network representation

and analysis is inevitable for biological systems. Gene regulation networks (network of

genes connected by cross - regulation interactions), protein networks (proteins connected

by co-existence, physical binding or participation in the same complex), metabolic networks

(metabolites connected by chemical reactions), cellular networks (interactions between cells

or colonies of cells performing specific tasks), autonomous nervous systems (neurons con-

nected by synapses), food webs (species connected by trophic interactions) - etc are some

of the networks of significant interest in biology. The fact that there are thousands of

metabolic reactions, many different pathways, pathway interactions, movement of primary

and secondary metabolites within and across the cell, different special and temporal scales,



35

lead to challenges in synthesizing and analyzing complex networks in biological systems.

These issues have lead to a parallel research on identifying different techniques to represent

these multivariate, nonlinear, multilayer, multi modal biological networks.

Many specific attempts have been made to develop tools or employ techniques from other

fields in order to design and analyze biological networks. [6] reviews principles, design and

analysis techniques of biological networks, [5] provides overview of structural aspect of

biological networks, [56] reviews the related computational techniques, [104] gives interest-

ing network visualization tools. The focus has been mainly on gene regulatory networks

(GRN) with extensive literature mainly covering qualitative inferring of forms of associ-

ation between different genes starting from their expression profiles obtained using micro

array techniques [84, 105–107], quantitative analysis [108–110], frameworks for simulating

GRNs through mathematical models [40, 48, 72, 88] or statistical approaches [89, 111, 112],

Boolean networks [113] or by combining both [56, 88]. Other issues include gene cluster-

ing [59,114–117], genetic process analysis [118], and perturbation analysis of GRNs [79,84].

Initial attempts are being made to analyze and understand other forms of biological net-

works. Cell signaling pathway analysis [84], metabolic network analysis and optimiza-

tion [75,80], protein interaction networks [119–121] and food webs [6, 81].

A good review of these systems engineering methods of biological network analysis indi-

cates that their performance is promising, but they are often limited due to the assumptions

they make about the complex system in order to simplify the problem. Another observa-

tion is that these methods generally perform well only on small networks and when the

connectivity is low. However, for larger networks, and networks with higher connectivity,

the computational cost increases dramatically and the performance of these methods is

insufficient. They also lack in their inability to identify the direction of interaction between
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the network nodes.

The present research contributes to this domain of systems biology. Alternate model based

network inference technique is proposed in chapter 5 and protein-protein interaction net-

works are studied in detail as case study. Some new, cycle based, complexity measures are

defined to characterize the stability and robustness of three different biological networks in

chapter 6.

2.4 Chemical Engineering in Biology

From micro-scale molecular reactions to macro-scale cellular functions and organs, the

whole human body is just as fascinating and challenging as a complex chemical plant. There

are many structural and functional similarities between process and biological systems. On

a macro-scale, specific organs can be modeled as unit operations and processes. Digestive

system or gut as reactors (stomach as CSTR and intestine as PFR) [122,123], cells as micro

reactors [76], blood circulation as transport system [124], lungs/kidney and other glands as

unit equipment [125] etc are examples of such representations. Operations of many of the

biological systems can be described using chemical engineering principles. Mass transfer

principles are used to define the blood perfusion system, perspiration, respiration and

urination at macro scales and trans-membrane diffusion processes at molecular scale. Heat

transfer principles can be applied to analyze body heat regulation. Working of physiological

systems like lungs, kidney, heart, liver can be modeled based on principles of transport

phenomena [125]. Gene transcription/translation, metabolic reactions can largely benefit

from chemical kinetics analysis [44]. Thermodynamics principles are well applied to describe

the formation of molecular structure, bio-energetics during cellular functions [126, 127].
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Due to such vast similarities, bio-systems analysis can derive wider benefits from already

established chemical engineering theory and analysis tools.

2.4.1 Possible PSE contributions in systems biology

As discussed in section 2.1, for a number of years, process systems engineering was

focused on the process itself. But of late, chemical engineers associated with PSE have

steadily widened the scope of their interests, first to wider aspects of unit/process man-

agement, then to multi-site operations and eventually to consideration of the whole supply

chain. They have extended their expertise to a range of processes, such as polymer, metal-

lurgical, biochemical and environmental processes. Chemical engineers are delving deeper

into the physico-chemical and biochemical foundations of the science required for improv-

ing their models and to extend their expertise to a wider range of relevant techniques.

They have also attempted to embrace enabling technologies, such as computational fluid

dynamics [128], design and analysis of micro devices [129, 130], environmental systems

management [131] and molecular dynamics [132, 133]. With the advent of new systems

challenges in understanding complex phenomenon of biology [7,10,134] governed by many

chemical engineering principles, PSE expertise is making strides into new frontiers of bio-

systems and biomedical systems engineering [81, 135–137]. As highlighted in section 1.2,

a new research area of ‘ChemBioSys’ engineering is becoming an important focus area of

many PSE groups. The work in this thesis is also an attempt to participate in similar in-

terdisciplinary research. This section brings out the importance of chemical engineering for

studying biological systems and identifies areas in which PSE can contribute extensively.

Process modeling approaches in systems biology: PSE expertise in modeling sys-
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tems based on chemical engineering principles is extremely beneficial to systems biology.

Knowledge about elemental and energy balances and related constraints, model simplifi-

cation using suitable assumptions, parameter/variable lumping, defining scale free dimen-

sionless systems parameters, selecting suitable mathematical techniques for solving complex

models, all have started to prove extremely useful for bio-systems analysis. For instance,

single cell systems can be modeled and analyzed using first principles equations [78], cell

cultures can be modeled using population balance methods used in transport phenom-

ena [76, 77], molecular interactions can be modeled and analyzed mathematically using

methods originating from chemical kinetics and control theory [75,88].

Process optimization techniques for engineering biology: Due to the nonlinear

nature of biological systems, they provide ample scope for applying optimization tools. One

major beneficiary of the established optimization techniques so far has been the area of

metabolic pathway analysis [138,139]. The linear and constrained optimization techniques

extensively used in PSE research, have helped in identifying accurate reaction pathways, in

understanding the dominant functional components of cellular functions and most impor-

tantly have supported metabolic engineering applications. Some of the integer optimization

techniques used in flow sheet optimization have been tried for selection of important genes

during cancer tumor diagnosis [140]. Culture media optimization, disease treatment opti-

mization [141], drug target identification [142,143], design and optimization of drug delivery

systems [144] are also the active PSE dominated areas of modern biology.

System identification and data analysis techniques for biology: Areas in sys-

tems biology that benefit from PSE expertise in data analysis and process monitoring are

design of biological experiments [142], micro array time series data analysis [105], mul-

tivariate statistical techniques for clustering and classification of molecular structure or
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function [107,115,145], drug discovery [146], network inference [111,147] and analysis tech-

niques [35,47,81].

Control theory for analyzing biological robustness: Understanding time delays and

making suitable adjustments in system models can provide vital solution to integration of

processes at different time scales [134, 148], which are the characteristics of biological sys-

tems. System analysis and control theories can be extended to understand oscillations [149],

feedback mechanisms [150] and stability of systems during regulatory operations [151–153].

On a larger scale, successful attempts have been made to model and control the disturbed

states of important physiological systems like diabetes control [154–157], blood pressure

control [158,159], anesthesia control [154,159,160], dialysis and other chronic disease treat-

ment control [161,162] etc.

2.5 Systems Analysis Approaches

This section details the important approaches used for systems analysis. The advantages,

limitations and examples of these techniques are highlighted. Some of these techniques are

used either as a supporting tool or for benchmarking the new techniques developed in this

research.

2.5.1 System modeling approaches:

The earlier sections highlighted the importance of modeling for process and biological

systems analysis. Modeling is often the first step in any systems investigation. Figure 2.1

shows a good sketch of alternate approaches of representing a given system to obtain mod-

els which can be simulated for carrying out the desired investigations. In general, models
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Fig. 2.1. Modeling Approaches : different strategies for systems representation

can be classified as structured (built from mathematical modeling approach) and unstruc-

tured (data based modeling) [12, 71, 85]. These categories of models are elaborated below

with suitable examples. Structured Models : These models are generally built from

first principles using steady state/unsteady state material and/or energy balances. Other

related approaches are ab-initio microscopic molecular / atomic level modeling [17, 27].

They formulate analytical equations which can be solved using well-established, fast math-

ematical algorithms. Structured models (if built and solved) are then preferred because

they have good scientific foundation and can work well for all types of situations within

the framework of assumptions. This leads to generality of such models and validity for all

similar systems. On the negative side, these require complete knowledge of the system prior

to model building. This might be difficult to have in all cases (specially for bio-systems).

For complex systems, the analytical method can be very complicated and time consuming.

Direct analytical solutions are also restricted in most cases (Set of PDE/ coupled DAE
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and higher order nonlinear algebraic problems.) and hence, use of numerical techniques

bring additional error into the model. Analytical models make assumptions during model

building for mathematical/ operational/ analysis simplicity which can be violated in real

systems.

Examples of Structured Models

• Ideal gas equation PV = nRT is a classical example for mathematical model representing

gas behavior under ideal conditions.

• Set of material balance equations for a multi-component distillation column operation rep-

resented by set of simultaneous linear algebraic equations A X = B under the assumptions

of steady state and no energy effects [12]. Metabolic systems with flux balance analysis are

also linear algebraic systems [138].

• Response of any first order system Y (s) = [K/(τs+1)]∗X(s) is an unsteady state model

which can be solved for any given input disturbance in X(s) to predict output Y(s) and

in turn Y(t). Many unit operations with lumped parameters like concentration change in

isothermal CSTR, level dynamics in tanks, temperature changes in heat exchangers can

be modeled as first order systems with time delay. Gene regulations, signal transduction,

inter-compartmental molecular transport are good examples that are amenable to such

simple representation.

• Single cell model [76] by considering three compartments in a cell culture (Mitochondria,

Cytoplasm and cell culture medium) and pharmaco-dynamic modeling for drug distribu-

tion/clearance analysis using multi-organ compartments are some examples of systems with

sets of non-linear ODE to be solved simultaneously.

• Set of partial differential equations coupled with kinetics and material balance equations

representing unsteady state concentration and temperature profiles in a fixed bed reactor
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carrying out known reactions. Cardio vascular systems, body heat distribution can also be

categorized and studied as PDE systems.

Basic techniques used for supporting structured modeling are analytical solution tech-

niques, scaling analysis, model reduction, linearization/function approximation techniques,

numerical techniques, finite element methods etc.

Unstructured Models: These are derived using learning/searching/identification algo-

rithms starting from measured data on the selected variables of the system. Relevant input

and output variables are defined for modeling. They do not need any prior knowledge of

the system. Very appropriate (possibly useful but the only) method for a system where we

do not have anything other than input/output data as mentioned in the examples below.

But, the performance of these models depends largely on the quality, type and size of the

data available. The internal structure of the derived model is incoherent or missing. For

this reason, these models are sometimes referred to as black box models. Very specific to

system under study and cannot always be generalized to similar systems.

Examples of data driven models:

•Modeling a complex reaction system involving multiphase flow, multiple species and multi

order reactions.

• Model representing the dynamic behavior of a highly nonlinear system from noisy data.

• Modeling structures of complex biological molecules like protein, RNA and DNA etc, and

interactions between them.

The supporting techniques include - time series modeling (ARX, ARMAX, Box-Jenkins,

State Space modeling) for dynamic data [163], empirical modeling and parameter esti-



43

mation techniques, regression/correlation analysis, curve fitting, statistical models, multi-

variate statistics tools, black box modeling techniques (Artificial Neural Networks (ANN),

fuzzy logic, support vector machines (SVM)), rule based decision trees (CART, TreeNet,

Random Forest), non-parametric/ graphical modeling techniques (alternating conditional

expectations - ACE and Multivariate Adaptive Regression Splines - MARS) - etc.

Hybrid Models (Evolutionary Models): These are data based models with partially

or fully structured, supporting model components. The data is used during development

of structural components in a systematic step by step method. These models draw several

advantages of both the structured and unstructured models. With suitable modifications

these approaches can be powerfully used to resolve difficulties in data based modeling.

But, most of the evolutionary models are developed using mathematical operations that

are probabilistic in nature. The final model could therefore vary depending on the starting

set of model components and the data selected. The modeling approach is computation-

ally intensive with higher memory requirements as the procedure involves iterations and

multiple operations in each step. Serious drawback when applied to large scale complex

systems.

Any system from which measurements on the relevant input-output variables are avail-

able can benefit from evolutionary modeling approaches like Genetic Programming (GP).

The complete framework of GP and its application is very well discussed in [164,165]. Ex-

amples of Genetic Programming in the chemical and bio-process domain are well reviewed

in [23, 166–169]. GP and GA have been applied to a variety of bioprocess engineering

problems [99] and for biological systems [48].

Data based modeling approach is adopted as the main strategy in this research to answer

several systems engineering questions relevant to process and biological applications. The
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present work proposes an alternate concept of representing a system with unknown input-

output characteristics. Predefined linear, non-linear structures and genetic programming

based (“naturally” evolved) models are used for steady state modeling.

2.5.2 Data analysis tools and techniques

As the emphasis in this research is mainly on the data driven approaches, this section

reviews some of the important tools and techniques that are used for data analysis and

knowledge discovery. Specific methods used to benchmark the new data analysis algo-

rithms developed in this work, will be explained later in detail during the discussions in

respective chapters.

Data Preparation: It is well established that every experimentally sampled dataset is

prone to contain error either in the form of noise due to unobserved phenomena, instrument

error, inappropriate experimental procedure or deviations in the system itself [170, 171].

When certain readings during random sampling are induced significantly with such unde-

sired errors they form outliers and appear to be inconsistent with the remainder of the data.

High frequency fluctuations in process variables, integrating errors due to periodical dis-

turbances (like changes in ambient conditions/ raw material quality), noise in micro-array

data due to highly sensitive DNA/ RNA hybridization and florescence technology, small

intensity signals detected during Mass Spectroscopy or simply the missing/type mismatch

values that are inherent to public databases, all are classical examples that challenge the

field of data analysis [18, 172]. In order to achieve a meaningful model via data analysis,

crucial judgments regarding sample selection, data filtering or data preprocessing is nec-

essary. There are many statistical methods proposed for identifying and processing the
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unwanted part of the raw data in terms of outliers [173,174], noisy signals [175] or missing

values [176]. The simplest method would be to reject apriori, a certain small number, say

5%, of data points based on criteria such as percentile or [min-max] range, numerical cutoff

for important variables. Such techniques are often employed to process biological data (ge-

nomic/proteomic/metabolomic) where the variations in data is important and are the main

aspects being compared. Some methods reject data points which are farthest from the cen-

tre of the dataset decided based on suitable statistical distribution [177]. The observations

that fall beyond the region of desired variability are rejected. Decision on suitable cutoff

value needs expert judgment depending on risk involved in the outcome of the analysis

and is always a serious challenge in any decision problem in statistics. In making decisions

on the basis of uncertain data, two types of errors are taken into consideration. Type I

error occurs by wrongly rejecting a genuine member of the distribution and type II error

happens by retaining a real outlier [25, 178]. The preference for one or the other of these

errors reflects a basic strategy of decision. A ‘conservative’ decision-is to prevent the loss

of a important values by preferring a small rate of error I. The ‘liberal’, decision prefers a

small type II errors when contaminating outliers seriously affect the results [173]. Measure-

ment noises are handled either by applying appropriate filters [179] or by putting cutoffs

on transformed signals [180]. The decision to filter outliers is further severely elevated in

case of multivariate data. Many normality tests and scatter plot based outlier detection

procedures are suggested [25, 178]. Here, the data is transformed into a lower-dimensional

space using suitable data projection methods and the outliers are graphically detected after

plotting the observations using the residual subspace.

Data treatment (Normalization/Scaling/Standardization): Any form of regres-

sion or statistical analysis leads to models with parameters. The validity and generaliz-
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ability of such parametric models often depends on the sensitivity of parameters over the

range of input-output data. Different scales and units used for measuring variables often

lead to sensitive parameters and in turn poorer confidence intervals for the parameters.

In order to ensure strong variance dependence which in turn strongly establishes signifi-

cant linear dependence between x and y, often the data in x and y are scaled to mean 0

and standard deviation 1 (by subtracting all readings by their respective variable means

and dividing by variable standard deviation) [163]. When independent datasets (due to

independent experiments or representing the independent behavior of the system) have to

be statistically compared without having to model them, the data vectors are normalized

using suitable reference value so as to bring them within same numerical range. Normal-

ization by the data mean or maximum value or by global reference value are some common

practices in ‘omic’ data analysis. Passing the data through threshold functions like sig-

moidal functions to normalize the data between 0 and 1 is also employed as pre-treatment

step in ANN approaches [21]. In case of decision problems which mostly test the decision

making hypothesis using statistical methods, the data analyzed needs to follow a definite

distribution. Hence, the observations in the input data are standardized to a certain distri-

bution (t-distribution, f-statistics, normal/standard normal distributions) in order to aid

such significance test analysis [18, 174]. Box-Cox transformations are also very useful dur-

ing statistical modeling.

Data Exploration (Projection and Visualization) : One of the very important step

in any data analysis is to quickly explore the structure, nature of variable interactions,

central and distribution tendencies of the data in order to choose appropriate methods

for further analysis. More concretely, such n data exploration would be useful during

”pre-classification” phase of a classifier design, or in evaluating the quality of clusters a
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”post-clustering” phase. In order to achieve the above objectives for large datasets that

are becoming increasingly common, the user must have access to a real-time, interactive

visualization tools [181]. For numerical data, the class preserving projections [182] and scat-

ter plots provide some basic exploratory tools [183,184]. Color shade maps for micro-array

data, contour plots and 3D surface plots are some of the recent efficient ways of repre-

senting multidimensional data. New tools have been also proposed to efficiently visualize

complex network structures [104] and molecular structures [185,186]. Specialized plots like

Ramchandran plot have been exclusively designed to represent protein structures [187,188].

More complex multivariate data can be explored by projecting the data onto lower, easy to

visualize dimensions. Techniques such as principal components analysis (PCA) [25], self-

organizing maps (SOM) [189], correspondence analysis (CA) [190] and multidimensional

scaling (MDS) [25] are useful in projecting the high dimensional data onto a new space with

the help of latent variables or scores. Analysis of scores plots can help in exploring outliers,

clusters and overall characteristics of the data (sample proximity or distribution). Analysis

of loadings plot can help in identifying correlated variables and important variables that

contribute to major variations in the data. Many applications have benefited from these

data projection techniques [60,191–193].

Correlation/Regression Analysis: All of the models require that the variables form

inter-relationships in order to further analyze the system behavior. For unknown systems,

the data based modeling approaches establish such relations using the observations made

on the systems variables. Presence and significance of such relations between variables is

achieved by correlation analysis and a suitable structure is established using regression anal-

ysis. The basic correlation statistics that are extensively used include: Pearson Correlation

Coefficient, Partial Correlation Coefficient, Standardized Regression Coefficient, Spearman
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Rank Correlation Coefficient [175,177]. Once the correlation confirms the relation between

variables, a predefined structure is used to model the relationship between them during

regression analysis. The parameters of the model are estimated using the data avaliable

either by algebraic, numerical or optimization techniques [194]. A major assumption of

these methods is that all the data used is relevant, complete and hence their performance

is consequently sensitive to ”garbage in-garbage out” rule. Although techniques based on

regression analysis and correlation analysis are often successful in identifying the relation-

ships between system input and output, these techniques may fail to identify well defined

nonlinear relationships. If the underlying relationships are nonlinear but monotonic in na-

ture then linear transformations such as log transformation or rank transformations will

linearize the system and the linear regression methods work effectively. In many cases,

the association between the variables can be highly complex which cannot be linearized

without loss of information. It is necessary, in such cases, to bring out such analysis based

on different measures of dependencies (variance based, median based, conditional probabil-

ity and statistical independence) for different types of variable relations (linear, nonlinear

monotonic, central tendency dependence, independence etc) [174,195]. Correlation analysis

has found special applications in system identification [163] for time series data analysis,

cause and effect analysis of process and biological systems [111, 196–199] and control loop

performance analysis [200–202]. Various forms of analysis of variance (ANOVA) are finding

increasing importance in solving genomic, proteomic and metabolomic experimental design

and data analysis problems [116, 203–205]. It is clear that there exists a definite challenge

for data based modeling especially in systems biology area because the biological datasets

seriously lack prior knowledge of variable interactions and also exhibit multidimensional

and multimodal dependencies [49,172,206].
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Data Clustering: Cluster analysis, also called segmentation analysis, seeks to identify

homogeneous subgroups of cases in a population. It identifies a set of groups in a given data

which both minimize within-group variation and maximize between-group variation. There

are many approaches to cluster the given set of observations into different groups based on

similarity or dissimilarity amongst them. Hierarchical Clustering [25] groups data using a

certain definition of distance and then determines how many clusters best suit the data.

This method is appropriate for smaller number of samples (typically less than 250). For

larger datasets, this method tends to produce clusters with smaller insignificant group of ob-

servations. k-means clustering is much less computer-intensive and is therefore sometimes

preferred when datasets are very large (samples more than 1,000) [25]. This analysis uses

Euclidean distance as measure to distinguish between groups. Observations are grouped

based on the smallest Euclidean distance to the randomly chosen centers of the cluster.

The process maximizes the inter-cluster distance and continues until cluster means do not

shift by more than a given threshold value. Similar partitioning-based clustering of data is

adopted in Self Organising Maps (SOM) [117] with the difference being that at each itera-

tion the partitions are corrected based on the organization of variables. Another rule-based

method known as Fuzzy C-means (FCM) clustering has been also employed for grouping

mixed class of data with higher accuracy. This method assigns weights (membership) to

each observation and then groups the observations with similar membership. These meth-

ods have been utilized effectively in several biological data analysis [59, 107,114–116,204].

Data Classification: Classification of given set of multivariate data into different known

characteristic groups is a problem of interest in many fields of science and technology.

Fault detection and diagnosis techniques in process industries, chemometrics for catego-

rizing product qualities, Quantitative Structure Activity Relationship (QSAR) in drug
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discovery, structure based prediction of functions for biological components, clinical stud-

ies in medicine and pattern recognition for automation of systems are just a few of the

latest research areas that benefit from the application of various classification algorithms

[145,192,203,207,208]. The main objective of these algorithms used as discriminant meth-

ods is to identify and model how the measurable features (variables/predictors) of the given

system relate to different characteristics of that system. Many classification techniques

have been tried in literature with differing degrees of success for a variety of classification

problems [184, 209]. Linear Discriminant Analysis (LDA), Quadratic Discriminant Analy-

sis (QDA), Regularized Discriminant Analysis (RDA), Classification and Regression Trees

(CART), Nearest Neighborhood (NN), Support Vector Machines (SVM) and Artificial Neu-

ral Networks (ANN) have all been tried [170,184,210]. The performances of these methods

have been largely decided by two factors namely the type and size of the data. The associa-

tion of variables within each class and the distinction between different classes (separable or

embedded) governs the type of the dataset and in turn the choice of discriminant method.

For a good review of the significance and limitations of the classification algorithms, the

reader may refer to [184,192,209].

It must be highlighted here that, just as selection of subset of important variables results

in more accurate regression models, variable selection approaches can also benefit the per-

formance of the classifiers explained above. These issues are addressed in this research.

A data processing tool in terms of new variable selection technique is suggested in the

present study in order to improve the performance of existing classifiers for some of the

important classification applications. This research work also proposes a new variable in-

teraction model based classification approach and its variations to solve important process

and biological pattern recognition problems in chapter 4.
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Observations made during this literature review have provided basic background to this

research. The important problems pertaining to data analysis have motivated development

of new data analysis techniques and tools to resolve the missing gaps. The following chap-

ters of this thesis systematically address different issues related to each of the important

stages of system design and network analysis (especially with reference to chemical and

biological processes), as outlined in Figure 1.1. The individual sections on specific topics,

will further elaborate on the existing data analysis techniques and their limitations. New

concepts developed initially for data pre-processing are further refined to cover range of

data analysis applications. The idea is extended in successive chapters to design new clas-

sification tools. Various model based discriminant analysis schemes are implemented for

improved pattern recognition performance. The new concepts, in each stage, are explained

using detailed algorithm steps, illustrative case studies and suitable geometric interpreta-

tions. The domain expertise and the knowledge, gained during these analyses are utilized

further to resolve more complicated problems of ChemBioSys significance with large scale

datasets and networks.
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3. VARIABLE SELECTION TOOLS FOR DATA ANALYSIS †

“What was vital was overlaid and hidden by what was irrelevant. Of all the facts which were
presented to us, we had to pick just those which we deemed to be essential.”

... Sherlock Homes in ‘The Adventure of the Naval Treaty’

3.1 Variable selection problem - overview

It is very common in most industrial/biological data analysis problems to have a lim-

itation on the size of the observations available. The limitations can arise due to various

reasons like experimental cost (animal experiments), practical difficulties in getting more

samples (limitations for experiments on a smoothly running plant or patients during clinical

diagnosis), measurement cost (microarray/proteomic sampling, concentrations of process

streams), inconsistency in data leading to sample elimination (missing attributes, outliers)

etc. Often, the smaller size of the dataset (small number of samples) limits the perfor-

mance of data analysis techniques. For a meaningful modeling and analysis of multivariate

nonlinear effects in a typical system with just ten attributes, the optimum sample size

required is of the order of thousands [211]. This problem is severely elevated in case of

modern experimental datasets with increasing attribute sizes from hundreds (in process

plants) to several thousands (in ‘omic’ studies). Such large scale datasets are also prone to

higher proportion of noise, measurement inconsistencies and at the same time are difficult

to visualize graphically. Chemometrics for process monitoring, plantwide system analysis,

supply chain/metabolic network optimization, genomic profiling for clinical diagnosis, pro-

teomic/metabolmic investigations encompassing huge sets of mass spectral data, satellite

†Parts of this work are published in Chemom. & Intell. Lab. Syst., 86(1), 68-81, 2007 AND Anal. Chim.
Acta, 599(1), 24-35, 2007.
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data for geographical and environmental studies are some of the important applications

which suffer from the problems of ‘curse of dimensionality’. These applications can largely

benefit from feature selection tools and techniques in terms of easy system understanding,

clearer visualization, reduction in measurement and storage requirements, smaller compu-

tational times during further analysis, noise elimination and improvement in prediction per-

formance. The main objective of any feature selection technique is to reduce the number of

attributes to a desirable limit in order to facilitate the investigation (graphical exploration,

basic statistical analysis, modeling, clustering, classification) without affecting the perfor-

mance of the technique that will be used for further analysis. This is generally achieved

either by identifying important variables (using system knowledge or suitable statistical

analysis) or by collapsing all the attributes into a fewer meaningful dimensions capturing

the dominant information from the original set of attributes. The first approach has the

advantage of retaining the variables in their original form but largely depend on univariate

analysis that fails to capture important interactions. The latter approach benefits from

multivariate analysis and ability to reduce noise but it projects the entire dataset onto new

latent variable space for further analysis with less effective information on the importance

of original variables. A detailed discussion on the objectives and significance of variable

selection approaches can be found in [182,212,213].

Principal Component Analysis (PCA), Correspondence Analysis (CA), Multi-Dimensional

Scaling (MDS) are some examples of the projection based dimensionality reduction meth-

ods [25, 190]. The preprocessing adopted in these methods projects the data onto a new

basis set and hence the original attributes are not employed directly in further analysis.

Data analysis techniques like Principal Component Regression (PCR), Soft Independent

Model for Class Analogy (SIMCA) and Partial Least Squares (PLS) employ such vari-
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able projection methods. System analysis based on the projected attributes rather than

attributes themselves have certain limitations especially if the results are to be used for op-

timization studies, design of further experiments or to overcome the constraints on number

of measurements. Loadings for original variables obtained in these methods only signify

the contribution of each variable to the principal components and do not reflect on their

ability to perform further analysis like regression/classification. This further limits the use

of dimensional projection methods for ranking the variables based on their contribution to

specific task of data analysis. This part of the research addresses these significant issues of

selecting fewer important variables by considering multivariate interactions, capturing the

variance effect and without having to project them onto a new dimensional space. Vari-

able selection problem is addressed mainly with reference to classification and multivariate

calibration problems as applied to chemometric and biometric applications [175,182]. The

investigation also explores the possibility of increasing the performance of these techniques

by retaining only the important variables that contribute to further analysis.

Objectives of the study: To design a multivariate variable ranking measure and in-

vestigate its effect on data analysis techniques. Two observations are made. First, for

a given data analysis problem with a set of descriptors, a meaningful subset of variables

can be obtained without affecting the data analysis technique’s performance. Secondly,

and perhaps most importantly, whether the subset selected based on multivariate analysis

leads to equal or improved performance of the data analysis techniques as compared to

that employed with full set of descriptors.

General problem statement: Given the data matrix X [n× p] representing n observa-

tions of p different variables on a system, rank the p variables according to their importance

to the performance of the model Y = f (X) defined on the system so as to facilitate the
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dimensionality reduction in X for ease of model analysis. Identify a best subset (q < p)

of important variables that will retain or improve the performance of data based model

analysis technique employed later on the system.

Approach: Consider a general description of a model, Y = f (X), where, X is the in-

put variable block (set of p different predictors/variables/attributes) and Y is the system

response variable. For a given system, n independent measurements for variables X and

corresponding Y are taken as a set of standard samples for model calibration. This dataset,

Xcal [n× p] along with the response vector Ycal [n× 1] is used for employing the variable

ranking method and deciding the variable importance. The same data matrix, but with a

selected subset of q variables (q < p) is employed for designing the model f (X). A separate

test set with Xtest [m× p] observations, not used during model building is utilized for eval-

uating the model performance to predict Ytest [m× 1]. This description and the notations

are used in the remaining part of the investigation.

3.2 Variable Interaction Network based variable selection - new concept

The partial correlation based Variable Interaction Network (VIN) technique suggested

here is an attempt to take a fresh look at the variable selection issues discussed before.

The basic idea adopted in the new variable selection algorithm proposed here is to form a

representative network of attribute relationships using data matrix X, based on the suitable

partial correlations defined between every pair of variables selected from p variables. The

strength of the direct relationship between each pair of the variables (presence or absence

of an edge between corresponding nodes in the network) is decided based on the statistical

significance of the correlation defined. Suitable activity is then defined for each attribute
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(node in the network) based on its connectivity (edges on that node) as a measure of its

relative importance in the system. The attributes are sorted according to activity and the

desired number of important attributes are selected for further analysis. The performance

of the new approach is studied using different process and biological systems selected from

literature with varying type and size of datasets. The concept of partial correlation between

variables, VIN construction methodology and the complete variable selection approach are

elaborated further in the following subsections.

3.2.1 Concept of partial correlations

In a high dimensional data analysis chemometrics setup, some of the system variables

are likely to be associated with each other. Such inter-variable interactions can arise due to

many reasons like measurement redundancy, operationally related system variables, pres-

ence of recycle streams, information loops and simply due to the causal nature of the

system. Such dependencies can be observed in the variable set X using suitable correlation

measures like ‘Pearson’ correlation coefficient. Several variable selection methods employ

these correlation indices as the basis for eliminating the redundant variables [170,212–214].

Performance of such algorithms depends largely on the ability of the correlation structure

to capture the true nature of variable interactions in X. Correlation coefficients Rij are gen-

erally defined based on correlated variation between two selected vectors Xi and Xj. These

scale free, statistical indices establish relations between any two simultaneously varying

variables without considering the source of the variation or effect of other variables. In

this process, the correlation Rij can wrongly be deemed as significant direct relationship,

even if Xi and Xj are only indirectly related due the presence of a third variable, Xk com-
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monly influencing them (Xk → Xi and Xk → Xj). In the presence of such multivariate

influences, Rij measures can potentially lead to ’false’ elimination of important variables.

Hence, it is necessary to distinguish direct correlations from indirect influences to improve

the variable association structure and in turn, the variable selection algorithms that use

correlations as the basis. Partial correlation coefficients, as used for establishing causal re-

lations between variables [175,196,215], provide a good solution to this problem. The basic

idea of defining partial correlations is to remove the effect of co-variates, before checking an

association between the two designated variables. Variables Xi and Xj are conditioned on

another variable Xk (k = 1, 2, ..., p but k 6= i and k 6= j) before defining Rij. Any partial

correlation (denoted as Rij/k) highlights the existence of association between Xi and Xj if

the conditioned variable Xk is removed from the system. After eliminating the effect of Xk,

the strength of correlation, Rij/k is statistically tested using suitable cutoff measure [175]

based on the distribution of data in X. In general, the rth order partial correlation repre-

sents an association between selected two variables Xi and Xj , when it is calculated after

conditioning on r different variables other than Xi and Xj. Equations 3.1 to 3.3 provide

definitions for the first three orders of partial correlations.

0th order partial correlation (r = 0)

Rij =
cov(Xi ·Xj)√

var(Xi)× var(Xj)
(3.1)

1st order partial correlation (r = 1)

Rij|k =
[Rij − (Rik ×Rjk)]√
(1−R2

ik)×
(
1−R2

jk

) (3.2)

2nd order partial correlation (r = 2)

Rij|kl =

[
Rij|k −

(
Ril|k ×Rjl|k

)]√(
1−R2

il|k

)
×

(
1−R2

jl|k

) (3.3)
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Checking the strength of partial correlation (significance test)

Any order of partial correlation coefficient as defined in Equations 3.1 to 3.3 measures

the existence of linear dependency between given two variables. The coefficient Rij takes

the values between -1 to 1 indicating direct correlation at Rij = 1, negative correlation

(Xi linearly decreases with increase in Xj) at Rij = −1 and no linear relation if Rij = 0.

For given data vectors of respective variables, the correlation coefficient can return any

numerical value ranging −1 ≤ Rij ≤ 1. Hence the strength of the relation between the

variables of interest needs to be established statistically. A null hypothesis that Rij = 0

needs to be tested for establishing the significance of the non-zero correlation between the

two variables. Since the normal distribution of variables in X is not guaranteed in any

data analysis application, the t-test cannot be performed to test the significance of the

correlations defined in Equations 3.1 to 3.3. In order to test the significance of variable

association, the correlation coefficients are transformed to Z terms using Equation 3.4

[111,175].

Zij||r = 0.5× ln

[
1 + Rij||r

1−Rij||r

]
(3.4)

i = 1, 2, ..., p ; j = 1, 2, ..., i− 1, i + 1, ..., p ; r = 0, 1, 2

Here, Rij||r is the magnitude of a partial correlation coefficient R, of order r between two

variables Xi and Xj. These transformed values are then used to formulate the Z-score as

in Equation 3.5, which are then used for Z-statistics hypothesis testing.

Z =
Zij||r√

1/(n− 3− r)
(3.5)

Here, n is the number of observations used to evaluate the correlations. The null hypothesis

H0 : Rij||r = 0 is rejected if Z ≥ Zα/2. Otherwise, the null hypothesis is not rejected and
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the relation between variables Xi and Xj is considered to be not significant. For a selected

confidence level (CL) and the order of the partial correlation r, the corresponding Z-score

threshold (cut-off values used to test the significance of Rij||r) can thus be calculated.

The partial correlation measures (as in Equations 3.1 to 3.3) can be directly checked for

significance using a suitable cutoff (Rcutoff/r) calculated from Z statistics as in Equations

3.6 for required confidence limit (CL).

Rcutoff |r =

[
exp

(
2× Zα/2 ×

√
1/(n− 3− r)

)
− 1

]
[
exp

(
2× Zα/2 ×

√
1/(n− 3− r)

)
+ 1

] ; α =
(100− CL)

100
(3.6)

where, Zα/2 is the two sided cutoff (because the strength of the absolute value of Rij needs

to be tested irrespective of the sign of correlation) in the Z statistics for a given confidence

limit CL. Once calculated for a given pair of variables conditioned on other variables,

the partial correlation coefficient Rij||r is considered significant if Rij||r ≥ Rcutoff |r and the

relationship is retained for further analysis, else it is rejected. It can be observed from the

expression in Equation 3.6 that the Rcutoff |r value reduces with increase in r and n.

Partial correlations have been used earlier [196, 215] mainly for detection of multivariate

associations between the descriptors of a system and biometric data analysis [175,216]. The

concept has been successfully applied for various network inference problems [111, 112] in

biology. Partial correlation coefficient concept is adopted here for mapping the interactions

between the variables of a given system X. It forms the basis for VIN synthesis approach

for variable selection.
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3.2.2 Partial correlation based VIN synthesis

VIN is a network representation of association between input variables defined on the

system (X). It is an undirected graph with p nodes (vertices), each representing a distinct

variable Xi (i = 1, 2, ..., p) and edges eij (i, j = 1, 2, ..., p ; i 6= j) for a valid association be-

tween two variables Xi and Xj. When the nature of the variable dependencies in X is not

known (e.g.; the correlated wavelength measurements in spectral data, relation between

different variables in a complex process), the inter-variable associations can be primarily

investigated using one-to-one correlations between all the possible pairs of variables in X

(evaluation of p × (p− 1) /2 correlations). These relations can be stored in a symmetric

matrix of correlation coefficients, R [p× p] with unit diagonal elements representing self

correlations Rij = 1 , ∀ i = j . Off-diagonal elements, Rij (i 6= j with Rij = Rji) of the

correlation coefficient matrix R can then be used to construct the VIN. Given the desired

confidence limits to assess the strength of the associations (Rcutoff ), any statistically sig-

nificant correlation Rij ≥ Rcutoff establishes a link (eij) between variables Xi and Xj in

the VIN. The network synthesis starts with a 0th order graph, VIN(r = 0) with p nodes

and significant edges defined using the 0th order correlation Rij, as in Equation 3.1 and the

corresponding Rcutoff/0. This primary network encompasses all the associations between

variables without distinguishing direct or indirect relations. As discussed previously, due

to the presence of co-linearity or commonly influencing causal relations in X, VIN(r = 0)

might posses edges which are not true direct interactions (false positives). Such a scenario

is examined by defining the higher order partial correlations and the VIN representation is

further improved. The nature of already established edges in VIN(r = 0) is further tested

by checking its significance while conditioning on other variables simultaneously. Each pair
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of variables (Xi and Xj) possessing edge between them in VIN(r = 0) is conditioned on

remaining variables (p − 2), one at a time. The significance of this partial correlation,

Rij/k as in Equation 3.2, is tested using Rcutoff/1 obtained from Equation 3.6 for r = 1

and given CL. The edge eij is retained in the new network VIN(r = 1) only if the signif-

icance test is satisfied (Rij/k ≥ Rcutoff/1), else the edge is deleted owing to the presence

of conditional relationship and absence of direct relationship. The new network VIN(r =

1), thus contains lesser (or equal, in case there are no indirect interactions in the system)

number of edges as compared to VIN(r = 0). The network is improved further to obtain

VIN(r = 2) by checking validity of edges present in VIN(r = 1) while conditioning them

on two other variables simultaneously. (p− 2) C2 number of second order partial correla-

tions, Rij/kl (k and l = 1, 2, ..., i− 1, i + 1, ..., j − 1, j + 1, ..., p ; k 6= l) are computed using

Equation 3.3, for every valid association in VIN(r = 1). The edge in VIN(r = 1) is deleted

for any Rij/kl < Rcutoff/2. Higher order correlations might improve the VIN representation

but would involve increased computational effort, especially for large p. Only up to second

order Rij are used to map the VIN in the present study. The final network of variable

associations in X is decided based on its impact on the model relating Y and the selected

variables from X. Hence, depending on the nature of the model Y = f (X) and type of

data analysis performed on it (classification or regression) the two parameters (order r and

significance limit CL) can be used to optimize the VIN. This basic approach of correlation

based variable network formulation is the important basis for further investigation on vari-

able ranking. The relative importance of variables is captured based on its multivariate

association with other variables in the VIN.
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3.2.3 VIN based graph theoretic variable importance measure

The VIN, designed as explained in the previous section, is further analyzed to extract

suitable measures for ranking each variable (node in the graph). Any index used as a

basis to select particular variable during pre-processing must reflect the ability of that

variable to influence the Y prediction during model analysis, relative to the abilities of

other variables. It is proposed that since the partial correlations eliminate the indirect

inter-variable relations, the final VIN obtained using a given set of observations on the

system (X) represents a multivariate association between variables. The number of edges

on a particular node qualitatively represents the activity or degree of its direct interaction

with other attributes in the system. A node with multiple edges on it represents a variable

having strong associations with many other variables simultaneously. This variable can

potentially be the hub in the network where the variations of other connected variables will

either originate or terminate, depending on the nature of corresponding association. It must

Fig. 3.1. Hypothetical VIN representing different schemes of variable asso-
ciation a) Undirected VIN b) directed VIN with all nodes influencing Xi c)
Xi influencing all the nodes

be highlighted here that, an edge between two nodes in an undirected VIN (as in Figure

3.1 part a) represents only the presence of relation and not the direction of influence. This
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is mainly due to the qualitative measure of correlation used to build the VIN. The valid

correlation coefficient signifies only a presence of linear relationship between them without

any information on which of the two variables influences the other. This missing information

in the VIN is not a drawback for variable ranking, the problem under consideration, as the

variable importance is defined based only on the connectivity of that variable with others.

This can be visualized using hypothetical cases as in Figure 3.1 part (b) (edges coming

into node Xi) and part(c) (edges going out from node Xi). In part (b) the effect of

connected variables ends at Xi whereas for VIN in part (c) the variable Xi influences all

the other attributes in VIN. In both these extreme cases and all other intermediate type of

connections (few in and few out) if variable Xi is measured or selected for further analysis

there is a higher probability of capturing the information regarding changes in all the other

variables that are connected with Xi in VIN irrespective of direction of connection. Thus,

the variables represented by nodes with higher number of edges on them will contain richer

information about other variables in X. Hence, for a connected VIN (all the p nodes

have at least one edge on them), the hub nodes in turn capture larger extent of variable

influences on the system response (Y ). Such variables automatically should qualify as

better candidates for further analysis of the model Y = f (X) as compared to variables

with fewer edges on them in VIN. In order to quantify such a variable influence measure,

a suitable index is defined on each variable based on its multivariate connectivity in VIN.

In order to prioritize the variables in comparison to other variables, the indices are scaled

to obtain relative importance (RI) measure. For any variable Xi, its topology based RI

index is defined by Equation 3.7.
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Relative Importance of variable Xi,

RI(i) =
Ei

max(Ei)
i = 1, 2, ..., p (3.7)

where Ei is the number of edges on a node i (degree of node in the graph) and max(Ei) is

the maximum number of edges on a node in VIN (maximum node degree in the graph). The

VIN is constructed and optimized for a given system X as explained in previous section.

All the nodes of the network (each node representing each variable Xi) are scanned and

their corresponding RI values (ranging from 0 to 1) are established. The variables are

then arranged in the decreasing order of their RI and the best subset is selected based

on the significance of such a decision to a particular application. The optimum number of

variables can be selected either based on a predefined RI cutoff value or based on the best

subset, in the order of importance, which gives the least modeling error during Y prediction.

The point where decreasing RI value plot for variables shows a sharp change can be also

considered as a good indicator of the number of variables. Whenever there is need for

selecting the least number of variables from original X, then VIN can be optimized (by

tuning the parameters partial correlation order r or the significance limit CL) and suitable

RI cutoff can be used to obtain the best subset.

3.2.4 VIN based variable selection algorithm

Given the problem of dimensional reduction combined with selection of important vari-

ables for ease of further data analysis, VIN approach is proposed here as the solution

strategy. The step by step procedure to construct the VIN from the data given in X is

explained below. This algorithm formulates the first step of VIN based variable selection

for data analysis followed by tuning of VIN for improving the performance of data analysis
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applications in later sections.

Step 0: Read training data X (n× p).

Step 1: Calculate the 0th order correlations between all the attributes (pC2 pairs of vari-

ables) using Equation 3.1. Store the Rij values in the form of initial correlation coefficient

matrix R.

Step 2: Using the 0th order cutoff for correlation value (Rcutoff/0 based on the defined

CL using Equation 3.6), set the elements Rij < Rcutoff/0 to zero and obtain the 0th order

correlation matrix R(0).

Step 3: For each nonzero Rij in matrix R(0) calculate first order partial correlations

Rij/k conditioned on every other variable k = 1, 2, ..., p but k 6= i and k 6= j, as in Equa-

tion 3.2. Remove the insignificant relations depending on the first order cutoff values

(Rcutoff/1) eliminating indirect relation between attributes. Set the element Rij equal to

zero if Rij/k < Rcutoff/1. Update the correlation matrix R(0) to get the first order variable

correlation matrix, R(1).

Step 4: Calculate second order partial correlation Rij/kl for the variables conditioned on

every other set of two variables using Equation 3.3. Remove the insignificant correlations

depending on second order cutoff value (Rcutoff/2) for partial correlations, eliminating re-

lation between attributes which are related due to a pair of other variables. Determine

new matrix R(2) by setting Rij equal to zero in R(1) if Rij/kl < Rcutoff/2 ∀ k, l =

1, 2, ..., p but k, l 6= i , k, l 6= j and k 6= l.

Step 5: Set the diagonal elements in updated matrix R(2) to zero (to remove self corre-

lations) and convert all the remaining non-zero elements to 1 (representing presence of an

edge between the corresponding two variables) to obtain the final VIN incidence matrix

RV IN . This matrix will be symmetric with binary entries (0 or 1) representing the undi-
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rected graph of VIN.

Step 6: Initiate p nodes in VIN (null graphs with no edges). Construct the variable inter-

action network VIN, using the nonzero, lower or upper triangular elements of the incidence

matrix RV IN .

Step 7: Identify the number of edges (node degree) on each node Xi in VIN by computing

the number of non-zero entries in row i + column i = Ei). Calculate the relative impor-

tance measure RI(i) of each attribute Xi using Equation 3.7 in the network. Store and

sort the attributes according to the decreasing RI values.

The above algorithm is specific for constructing the second order network VIN(r = 2). If

required, then step 4 is skipped for generating the first order network, VIN(r = 1), by using

R(1) for obtaining RV IN whereas both steps 3 and 4 are skipped for constructing VIN(r =

0) using R(0). Selection of appropriate order for VIN synthesis algorithm largely depends

on the type of dataset used as well as the degree of interaction between the variables of

the datasets. The structure of the VIN (which can vary due to parameters r and CL) and

in turn the RI based ranking is optimized based on one of the two objectives as defined in

section 3.1. VIN implementation and tuning for two different data analysis applications,

are illustrated with case studies in the following sections.

3.3 VIN based variable selection for Classification ∗

Classification of large sets of multivariate X data into different known characteristic

groups is a problem of great interest in many applications related to ChemBioSys analy-

sis. Section 2.5.2 brings out many such applications and different classification techniques

∗Results from this section are published in Chemom. & Intell. Lab. Syst., 86(1), 68-81, 2007.
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reported in literature. Such problems are differently known as discriminant analysis in

mathematics [182], classification in bioinformatics [170, 209], pattern recognition in engi-

neering [184] and machine learning in automation [217] etc. The main objective of the

algorithms used to solve these problems is to identify how the measurable variables (vari-

ables/ predictors) of the given system relate to different characteristics of that system.

Given a set of observations on these variables X and a characteristic group label Y for each

observation (based on the class it belongs to), a classifier model is trained using a suitable

machine learning algorithm. Here, depending on the application, X variables can repre-

sent different behaviors captured in terms of different forms of observations. Hence, the

data in X can be categorical, discrete or continuous variable. Y representing the response

variable in classification is always a categorical variable (mostly represented using integer

class labels during analysis). Hence, any classifier model (Y = f (X)) needs to be designed

in order to capture the class-specific information in X and relate it to corresponding Y .

This is achieved in different ways in different classification methods. Depending on the

working principle of these techniques they have different advantages for different types of

X data. The performance of these classifiers also depends largely on the size of X data.

In applications like cancer tumor classification using microarray data of thousands of gene

expression variables, hundreds of spectral variables characterizing a few product quality

variables, redundant measurements in large process plants used for fault detection, the size

of X becomes critical with p >> n. Measurement redundancies, insignificantly changing

variables, noise components, dependency between variables, multivariate interactions in X,

if not preprocessed, all have potential to affect the performance of classifier model. At the

same time, computational efficiency of the machine learning algorithms for large sets of

variables in X make them impractical for quicker diagnostic or monitoring applications. It
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is also of importance for easy implementation of these techniques for large scale datasets

(large n) if the classifier model involves a few X variables and in turn few parameters

affecting the prediction. Apart from reduction in measurement cost, ease of operation,

the compact models with fewer variables also lead to less sensitive model structure and

stable performance during classification. Hence, it is essential, in many cases, to prepro-

cess X and select a best subset of variables which will retain or improve the classification

accuracy. Therefore, variable selection becomes an important tool for many classification

applications. VIN variable selection algorithm is proposed here to be one such tool for

supporting the classification of large scale systems.

Problem statement: Given the system data X [n× p] to be classified into different classes

in Y , obtain a new dataset X̄ [n× q] with q < p, such that the classifier model Y = f
(
X̄

)
has the same or better classification accuracy than classifier model Y = f (X).

A sample bivariate plot as in Figure 3.2, for Fisher data on Iris flower classification

[218,219] (with four variables in X and three classes in Y ) illustrates the basic idea of vari-

able selection for classification. The data points for three groups of flowers are not clearly

separated when plotted using sepal variables (part a). However, the same three classes are

distinguishable when observed using only the petal variables (part b). If only two variables

out of four are to be selected, it can be seen that petal length (PL) and width (PW) are a

better set of two variables compared to sepal length (SL) and width (SW). This effect of

selection of important variable subset can be further verified by classifying the Fisher data

X [150× 4] using Linear Discriminant Analysis (LDA classifier which was also basically

proposed by Fisher in 1936). The three groups of flowers can be classified with an accuracy

96% with all the four variables and also equally well with a set of two variables (PL and

PW). Whereas, the other two variables (SL and SW) together can provide a LDA model
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with performance of only 80% accuracy. Hence it is clearly evident and highly motivating

that, if selected optimally, even a subset of variables can give acceptable or better classi-

fication results. This simple, yet sufficiently clear, analysis on Fisher iris data illustrates

the necessity of variable selection methods which can optimally select a desired subset of

variables.

Given the objective of selecting a few variables from the original set of variables observed,

it is desired to retain those variables which provide maximum separation of classes in

subsequent analysis. Many methods have been adopted for ranking the attributes keep-

ing discriminating ability as criterion. An excellent review of such methods is provided

in [213, 216]. Most often, variables are ranked individually using suitable indices (correla-

tion between output class and variables, information content for each variable or ability of

that variable alone to classify data). Multiplicative scatter correction (MSC), single variable

classifier, Fisher’s variable weightage criteria, standard normal variate (SNV), variable con-

trast method [220,221], variable importance for projection (VIP) used in discriminant PLS

algorithm [214] and Impurity measure as defined for decision tree nodes in CART [222,223]

are a few of such techniques reported in literature to identify the relative importance and

rank the variables. Recently, another approach to select optimum number of variables

is developed based on sample size [224]. These variable selection techniques are based

on univariate analysis. Though these techniques have shown to improve the performance

of data projection procedures, they lack in generality of their applicability. Some of the

variable selection methods based on statistical tests like stepwise linear discriminant anal-

ysis (SWLDA) are designed for two group separation and hence cannot be generalized for

multi-group problems [182, 225]. Also, some of these statistical indices fail to capture the

variable associations which can help in increased prediction accuracies when these variables
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Fig. 3.2. Two variable scatter plots for Fisher Iris data. a) SW vs. SL b) PL vs. PW.

are used as subgroups rather than as independent variables. Variable subset selection by

evolutionary programming using genetic algorithm attempts to address the variable asso-

ciations and multivariate effects. GA has been successfully used as a variable selection and

new variable extraction method for solving classification problems [221, 226, 227]. Few of



71

the wrapper algorithms are also proposed to select meaningful subsets of variables. In the

context of such algorithms, it has been shown that the variables ranked as less important

by variance based selection methods cannot be neglected [213]. Such variables when suit-

ably combined with other variables ranked as highly important or within themselves lead

to acceptable performance of the classifiers. As concluded in [213], the variable selection

approaches available are very diverse and motivated by various theoretical arguments. VIN

approach is an alternate, multivariate interaction based variable selection technique that

can be suitably tuned for classification problems.

3.3.1 Implementation of VIN algorithm for classification problems

The VIN algorithm presented in section 3.2.4 is adopted here to identify the active

variables that interact with many other variables in the system. The given modeling data

(training data) in X is used to construct the VIN and variables are sorted in the order of

decreasing RI values. The variable subsets (with number of variables increasing gradually,

q = 1, 2, ., p in the order of RI as given by VIN) are then used to design the classifier using

selected discriminant analysis method. The performance of the classifier model Y = f
(
X̄

)
is assessed based on the percentage of samples in X (out of n) which are correctly classified

(overall accuracy). The order of partial correlation (r with values 0, 1 and 2) and the

confidence limit (CL between 75% to 100%) are adjusted separately to tune the VIN

structure based on this classification accuracy. The values which provide highest accuracy

with lowest q variables are selected for the given system. It must be noted that though the

response variable Y is not directly involved during VIN construction, its effect is indirectly

included during the tuning of VIN structure based on the classifier performance. Hence,
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the VIN algorithm for classification ranks the variables based on the extent of their activity

in the system leading to better separation of classes. The final structure of the VIN used

for variable ranking depends on the nature of variable association in X as well as the type

of classifier used to build the model. Figure 3.3 provides the flow chart of the steps involved

in this implementation.

Fig. 3.3. VIN variable selection approach as implemented for data classification
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3.3.2 Classifiers used for analysis

There are many discriminant analysis methods (outlined in section 2.5.2) used to classify

the data. They all differ in their concept of designing the classification model using the

given data in X−Y . Three classifiers (LDA, CART and ANN), distinct in their principles,

are used in this analysis to evaluate the performance of variable selection algorithms. A

detailed description of each of these methods and their advantages/limitations can be found

in [170,182,184]. These and other classifier methods will also be analyzed further in chapter

4. To summarize in brief; LDA builds linear decision boundaries in a multidimensional

descriptor space to optimally separate the classes on either side, CART uses a set of binary

decision rules on selected variables to build a classifier model and ANN trains a black box

model using a network of data processing neurons relating X variables as inputs to Y

as output. LDA performs efficiently for linearly separated class data [192] and is a good

first approximation classifier for datasets with overlapping classes. Hence, for all the case

studies, LDA has been selected as benchmark classifier for performance assessment of the

proposed variable selection based discrimination method. Advanced classifiers, CART and

ANN are also employed here to indicate the adoptability of VIN approach for different

classification methods.

Methods used for testing the classifier performance

The datasets are subjected to classification before and after applying the variable selec-

tion algorithms. Once the classifier model is developed using the LDA method explained

above, verification of validity of the model is performed using test data. The performances

are compared based on the percentage of correct classification both for individual classes
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and overall classification. Different important classification algorithm testing methods are

used to compare performances [145,184,228].

Re-substitution test: The entire dataset (X) used during the training of the model is re-

substituted back into the model as a test sample. Though this checks the self consistency

of the classifier, it is does not provide a measure of the possible success of the classifier

model when tested on untrained data. Nevertheless, the resubstitution test is necessary

but not sufficient for evaluating a classification method. This test has been adopted here

to demonstrate the influence of variable selection methods on the learning ability of super-

vised learning based classifiers.

Random cross validation test: The training dataset is well mixed and randomly di-

vided into two separate sets, training and validation datasets, with predefined proportion

of samples. The splitting is done such that the proportions are retained in class and hence

the new sets also posses the similar class distribution. The classifier is designed using

the training set and tested using the validation set. This splitting, training and testing

procedure is repeated over several iterations and the performance of the classifier is then

reported as the average classification accuracy. This approach is adopted generally when a

separate test set is not available. It is also used to tune the parameters of the classifier in

order to achieve a stable performance.

Leave out cross validation test: Multifold cross validation tests are also performed on

the datasets. The training dataset is randomly divided into predefined number of (3, 5 or

10) distinct subsets. The classifier is designed and tested in iterations. In every iteration,

one part of data subset not included in the training is used as sample set (test samples)

for prediction. The iterations are repeated till all the subsets are covered as test datasets.

The performance of the classifier is then reported as the average of test sample prediction
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accuracies for all the iterations.

Jackknife test: This is the leave one out cross validation (LOOCV) test, where for every

run, one data record is taken out of training set and later used as test sample. This is

repeated over all the records in the training set with replacement but without repetition.

This approach is generally prefered for small sample set data analysis (clinical diagosis)

and is considered as good indicator of sensitivity of the classifier to a random sample data

point.

New sample prediction test: The trained classifier is verified using a new test dataset

in order to gauge its predictive capability. The observations in the new sample set are

obtained independent of observations in the training set. Hence, this test indicates the

robustness of the model against any training data specific artifacts, experimental errors or

measurement noises. This is the true test among all the testing methods to compare the

algorithms because the samples to be predicted in real time chemometric applications are

new and unknown. This test has been carried out on examples where an independent test

set was available.

3.3.3 Variable selection methods used for comparison

Different widely used variable selection methods are studied. It is observed in [227] that

though the multivariate variable selection methods like GA provide marginal increment

in overall classification accuracies vis-a-vis univariate methods, they are more effective in

generating smaller subset or new variable sets without affecting the classifier performance.

In order to investigate this further, two univariate and one multivariate methods are con-

sidered to compare the results with those obtained from the new VIN based algorithm.
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Single Variable Classifier Ranking (SVCR)

This method forms the base case for selecting the variables based on their individ-

ual importance during classification. The idea is to rank the variables according to their

individual predictive power. The individual predictive ability is quantified using the per-

formance (prediction accuracy) of the classifier (LDA in present study) trained using that

single variable alone [213]. This procedure is repeated by selecting the full observational

set but with one variable at a time, X [n× 1] − Y . The Relative Importance (RI), used

finally to rank the variables, is calculated by comparing the individual accuracy with that

of highest accuracy obtained amongst all variables. Variants of this procedure like using

the other ranking criteria based on false positive/negative classification rates can also be

adopted [182], but are not included in the present study.

Fisher Criteria Ranking (FCR)

In this method, the variables are ranked according to Fisher’s criterion. Equation 3.8

quantifies the relation between ‘between-class’ and ‘within-class’ variance for a particular

variable of interest i = 1, 2, ..., p.

Fisher Index, βi =

∑k
j=1 nj

(
X̄ji − X̄i

)2∑k
j=1 (nj − 1) σ2

ji

(3.8)

where k is the number of classes, nj is the number of observations belonging to class j in

X, X̄ji denotes the mean of variable Xi for all samples belonging to class j. X̄i is the mean of

variable Xi values for all the n samples in X and σji is the standard deviation of the samples

belonging to class j for variable Xi. RI indicator for this method is defined as βi/βi|max

and is calculated for each variable. The variables are then ranked in the decreasing order

of the RI values. This method has enjoyed widespread use in various variable selection
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applications [25,184,220]. RI based on Fisher index has another importance in the present

study as the Fisher discriminant criterion is also the basis of the LDA classifier used for

comparison.

Genetic Algorithm based variable selection (GA)

The evolutionary programming concept first suggested by [164, 165] forms the basis

for GA based variable selection. The fundamental idea here is that certain subsets of

variables from a population of differently formulated variable sets, with random changes

(cross-over or mutations) over many generations, will evolve as “the best”, based on the

discrimination criteria. Yoshida et. al. [227] have used GA for generating new transformed

variables with multivariate interaction based on LDA performance. However, the present

study employs GA purely for reducing the number of variables without transforming them

to new variables. The GA starts with a population of multiple (50) genes representing

different subset of original variables. These variable subsets (genes) are ranked based on

their capacity to discriminate the data into classes. The top few candidates are selected for

reproducing new sets of genes using predetermined probability of mutation (0.1) and cross-

over (0.5) operations. The new sets of genes are re-ranked based on the performance of LDA

on the data, using only the variables represented by those genes. Thus the better sets of

genes are evolved over many generations (100). Finally, the variables are ranked according

to the decreasing order of frequency of their occurrence in different genes (because every

gene is a randomly ordered set of variables and hence, does not give relative ranking). This

means, the variable represented in most number of genes is ranked as the best variable for

discrimination and so on for the next best represented variable.
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3.3.4 Case studies

Case study I - Fisher Iris data: Fisher’s Iris data [218,219] is an extensively studied

dataset used for flower taxonomy. The study of species characteristics for three varieties

of Iris flowers (Setosa, Virginica and Versicolor) is considered. The dataset is used for

taxonomical classification with 50 samples for each class measuring four variables (widths

and lengths of petals and sepals measured in millimeters). X [n = 150× p = 4 ; g = 3].

The same data is plotted in Figure 3.2 to demonstrate the importance of variable choice

in discriminating different classes with fewer variables. Fisher Iris data is considered as

an ideal starting point for demonstrating the performance of the variable selection based

classification procedure considered here.

Case study II - Simulated fault classification problem: A system with nonlinear

interactions between variables is simulated as fault detection and diagnosis (FDD) problem.

X1 and X2 are selected as independent random variables. The dependent variables X3, X4

and X5 are calculated using Equations 3.9 to 3.11.

X3 = 2X2
1 + X1 ·X2 (3.9)

X4 = X2 ·X3 + exp (X2) (3.10)

X5 =
X1 ·X2

X3

(3.11)

200 samples are first generated. Subsequently, faults are introduced into the data. The

first 50 samples are uncorrupted and are considered as class 1 (no fault). Suitable biases

are added in variables X2, X3, and X4 for each set of successive 50 samples to simulate fault

classes 2, 3 and 4 respectively. X [n = 200× p = 5 ; g = 4]. The model equations selected

above are highly nonlinear in nature and puts the linear correlation based algorithm to
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a severe test. This case study is selected because it provides a clear means to assess the

performance of the variable association based VIN algorithm. The influence of variable

associations and their significance to classification will be clearly demonstrated with such

a simulated dataset.

Case study III: Cancer tumor classification data (as studied by [229]): A mul-

tidimensional gene expression data on 7400 genes (descriptors with relative quantity of

genes obtained using high throughput microarray experiments) observed for 34 different

leukemia patients is analyzed. The cancer patient samples are classified as A, B, C, D,

E and F type tumors (Y = 1, 2, ..., 6). Insignificant expression profiles are filtered out

(using t-distribution test) to obtain a smaller set of 262 genes for each training sample.

X [n = 34× p = 262 ; g = 6] is the full dataset used for gene selection analysis using VIN

algorithm. Selection of smaller gene subsets is of vital importance for quick and cost ef-

fective diagnosis. This data is also subjected to data projection using PCA and MDS

before applying LDA (case III-A). In case III-B, the genes are clustered into 20 groups

using hierarchical clustering technique and average profiles are used for further analysis.

Xprojected [n = 34× p = 20 ; g = 6] is the dataset obtained after data projection method.

Xcluster [n = 34× p = 20 ; g = 6] is the training set used after clustering the genes. This

illustration case with data preprocessing is selected in order to demonstrate the perfor-

mance of variable selection methods for large scale systems and for data which is already

projected on to a new descriptor space.

Case study IV: Wine product quality recognition data: This dataset is available

at http://www.ics.uci.edu/ mlearn/databases/wine/ [219]. The data points are the result

of a chemical analysis of wines produced in the same region of Italy but derived from

the raw material provided by three different cultivators. The quantities of 13 chemical
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constituents found in each of the three types of wine are analytically measured as descrip-

tors. De-noised and well processed observational data is used for training the classifier

model in order to classify the given unknown sample into one of the three classes of wines.

X [n = 178× p = 13 ; g = 3]. In a classification context, this is a well posed problem with

“well-behaved” class structures. This case study establishes the effective performance of

VIN approach and clearly demonstrates the possibility of obtaining a subset of variables

without affecting the classifier performance.

3.3.5 Results and Analysis

All the case studies discussed above are subjected to similar investigations. A pretreated

(mean centering, projection or dimensional reduction as required) data is subjected to VIN

algorithm and the network, in the form of a correlation matrix, is formulated (a sample

VIN is shown in the Figure 3.4 which is built using the final correlation coefficient matrix

RV IN shown in Table 3.1).

The activities (RI) defined based on the connectivity and attributes are re-sequenced.

For each dataset, the classifier is trained and tested using the full set of observations. The

performance, analyzed using the tests discussed earlier in section 3.3.2, is measured by

correct classification rate. The prediction accuracy of the trained classifier is calculated

in terms of percentage of observations in the test sample classified correctly. In each case

study, a demonstrative approach is adopted to highlight the effect of variable selection on

the performance of the classifier. The same set of observations in test data are repeatedly

subjected to class discrimination by retaining varying numbers of variables starting from

first and increasing by one in each repetition. The dataset is thus subjected to classification
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Table 3.1
Sample correlation coefficient matrix RV IN for variable ranking - Wine classification data

test p times with number of variables q = 1, 2, ..., p retained in the dataset. The variables

retained in each iteration are first selected in original order of appearance in dataset and

then in the order obtained using variable selection method in order to compare the results

in both cases. Results for this entire analysis using LDA as base classifier are summarized

in Table 3.2 for re-substitution test and Table 3.3 for cross validation test. Distributions

of Relative Importance (RI) for variables obtained from VIN method are displayed in part

(a) of the figures showing the progressive classification result for each case study (Figures

3.6 to 3.11). These values for RI are used to rank the variables and sort them into new

sequence (column 3 in Table 3.2) in the decreasing order of RI. Both, the original order
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Fig. 3.4. Variable Interaction Network for WINE data. Generated using
the matrix in Table 3.1

of appearance and new sequence provided by VIN (solid line) are plotted on the same

figure for each case study to facilitate easy comparison. The last column in Table 3.2

provides classification results after selecting an optimum subset (variable subset shown as

bold italics in column 3) of variables from new VIN based sequence. The performance

is compared with test result obtained using the full set of p variables for the same case

study. Similar results from cross validation and jackknife tests for all the case studies while

comparing accuracies for full set and a selected subset (q < p) are highlighted in Table

3.3. These results provide a good basis for investigating the possibilities of identifying a

smaller but effective subset (q < p) of original variables. This satisfies the main objective of

the variable selection algorithm, to optimally reduce the number of measurements without

severely affecting the classifier performance. The analysis is extended to classification



83

Fig. 3.5. Effect of partial correlation order r on the VIN-LDA analysis for Wine data

using variable subsets selected from sequences provided by SVCR, FCR and GA. Table

3.3 compares the performances of these established univariate and multivariate variable

selection methods with the proposed variable association based VIN algorithm.

The order of partial correlation and the statistical significance cutoff values (CL) used

to construct the VIN, depend largely on the type of dataset and number of samples in the

training set. This is attributed to the fact that, for applications where variables are not

strongly correlated, higher order partial correlations may not increase the prediction accu-

racies. On the other hand, for applications where the variables are highly interdependent,

increase in the order of partial correlation will improve the classification results. In the

present analysis, three different orders (0, 1 and 2) are used during tuning the VIN algo-

rithm to map the attributes before classification. For a given case study, the order which



84

Table 3.2
VIN based variable selection algorithm results for re-substitution test

 

Prediction accuracy 

(# of variables retained) 
Case Study 

 
Training set  

X [n x p ; g] 

Partial 

Correlation 

Order - r 

for VIN 

(CL) 

New variable 

sequence 

after PCCM method 

 
Full set 

( p ) 

Reduced set 

( q ) 

I – Iris Data 
X [50  x 4 ; 3] 

0  

(99.5%) 
[3     4     1     2] 98% (4) 

95% (1) 

96% (2)* 

II – FDD Data 
X [200  x 5 ; 4] 

2  

(99.5%) 
[3     1     2     4     5] 63% (5) 63% (4) 

III – Cancer Data  
X [34  x 262 ; 6] 

0 

(98%) 
-- 100% (262) 100% (47) 

IIIA – Cancer Data + 

PCA  projection 
X projected  [34  x 20 ; 6] 

1 

(99.5%) 

[1     2     3     4     5     6     

7     8     9    10    11    

12 13    14    15    16    

17    18    19    20] 

88% (20) 85% (12) 

IIIA – Cancer Data + 

MDS projection 
X projected  [34  x 20 ;  6] 

1 

(99%) 

[1     2     3     4     5     6     

7     8     9    10    11    

12 13    14    15    16    

17    18    19    20] 

94% (20) 91% (18) 

IIIB – Cancer Data + 

Hierarchical 

Clustering 
X clustered  [34  x 20 ; 6] 

1 

(99%) 

[2     8     9    12    16     

1     3    13    20     4     

6     7    10    11    17    

19     5    14    15    18] 

79% (20) 

71% (4) 

76% (8) 

82% (12) 

IV  - Wine Data 
X [178  x 13 ; 3] 

1 

(98%) 

[7    11    13     3     4    

10     1     5     8    12     

2     6     9] 

100% (13) 100% (7) 

  * The number of variables retained in the subset without affecting  

      the performance of the classification.  
 

 

gives the best discriminating result (highest overall prediction rate with q < p) is utilized

finally for sorting the variables. Similarly, cutoff values Rcutoff for testing the significance

of partial correlations are obtained by changing the CL values. For all the case studies, it

is observed that the VIN algorithm performs best for CL values near 99% corresponding to

the Zα/2 level of 2.58. The optimum order for parameter r and cutoff values of CL in each

case are shown in column 2 of Table 3.2. Figure 3.5 exhibits this VIN tuning for Wine data
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analysis in case study IV. It can be seen that increase in r improves the variable ranking

order and better performance can be achieved using lesser variables. VIN(r=1) provides

the best re-substitution result of 100% using only the seven variables and hence is retained

for further analysis.

Table 3.3
Comparison of VIN method with other variable selection algorithms - Cross
validation test results

Case Study Test 
Full Set % 

( p ) 

SVCR % 

( q ) 

FCR % 

( q ) 

GA % 

( q ) 

VIN % 

( q ) 

LOOCV 96 (4) 96 (2) * 95 (2) 79(2) 96 (2) 

Five Fold 96 (4) 95 (2) 95 (2) 79(2) 95 (2) 

I . 

Iris Data 

Ten Fold 96 (4) 95 (2) 96 (2) 79(2) 96 (2) 

LOOCV 59 (5) 55 (4) 55 (4) 23(2) ; 60(4) 41(2) ; 60 (4) 

Five Fold 56 (5) 53 (4) 55 (4) 25(2) ; 59(4) 39 (2) ; 59 (4) 

II . 

FDD Data 

Ten Fold 58 (5) 55 (4) 56 (4) 26(2) ; 60(4) 40(2) ; 60 (4) 

LOOCV 62 (262) 76 (47) 53 (47) 44 (47) 76 (47) 

Five Fold 73 (262) 82 (47) 56 (47)  50 (47) 85 (47) 

III . 

Cancer 

Data 
Ten Fold 78 (262) 84 (47) 62 (47) 54 (47) 82 (47) 

LOOCV 29 (20) 35 (5) 41 (5) 38 (5) 47 (5) 

Five Fold 43 (20) 36 (5) 50 (5) 42 (5) 54 (5) 

III B . 

Cancer 

Data 
Ten Fold 30 (20) 33 (5) 36 (5) 27 (5) 48 (5) 

LOOCV 99 (13) 97 (7) 97 (7) 73(2) ; 99(7) 89(2) ; 99 (7) 

Five Fold 99 (13) 96 (7) 97 (7) 74(2) ;98 (7) 90(2) ; 99 (7) 

 

IV . 

Wine Data 

Ten Fold 99 (13) 96 (7) 97 (7) 73(2) ;99 (7) 90(2) ; 99 (7) 

  * Entries in bold letters indicate best performing variable selection method. 
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Analysis of test results for case studies

Case study I: Results obtained for Fisher Iris data are in significant support of VIN

algorithm. Figure 3.6 (part b) provides insight to the variables selected to characterize the

class of flowers. In agreement with the discussion on distribution of sample points in Figure

3.2, variables 3 and 4 (PL and PW) stand out as important variables for classification (RI

= 1) with 96% accuracy when selected together. Variable 3 (PL) is a potential variable

in itself for discriminating all the three classes and when it is selected alone can provide

95% classification accuracy using LDA. Results are identical for jackknife test (both for

leave one out and multi-fold cross validation) as shown separately in Table 3.3. It can be

concluded from the analysis that PL alone or PL + PW are sufficient for characterizing

any Iris flower into one of the three classes with very high degree of accuracy. The re-

maining two variables (SW and SL) contribute very little to the performance of LDA. The

performances of SVCR and FCR are close to VIN method whereas GA does not change

the order of variables even after 50 generations of evolution. It was observed during GA

analysis that, though individual genes selected different subsets of variables, overall, all the

variables were uniformly selected with equal preferences.

Case study II: Results for fault detection and diagnosis data simulated using nonlinear

model equations reveal the adaptability of VIN algorithm for nonlinear data. As the faults

were simulated by introducing linear biases (percentage value of maximum reading) inde-

pendently into variables X2, X3 and X4, it was expected that these variables will be ranked

higher as they have class specific variance in data. Variable sequences based on single

variable classifier and Fisher criteria also establish these three variables as the top three

important variables. However, the results in Figure 3.7 reveal a different scenario. The
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Fig. 3.6. Variable selection analysis result for Iris data (case study I). a) RI
distribution for variables b) LDA re-substitution test results using different
algorithms

profiles show that, when these individually highly ranked variables are selected together

they reduce the accuracy of classification. This is due to the association between these
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three variables as formulated in equations 3.9 to 3.11. This association is not considered

during individual attribute based ranking methods (SVCR and FCR). Variable interaction

based VIN method significantly overcomes this problem and provides variables X3, X1 and

X2 as the three top variables and these together provide higher prediction accuracies. It

was also observed that the performance improves as the order of partial correlation used is

changed from zero to second order. This is in support of the model equations where some of

the variables are indirectly related to other variables. This establishes better performance

of VIN based variable selection approach especially for datasets with highly correlated vari-

ables. The performance of GA which considers multivariate effects of variable subsets does

not efficiently rank the nonlinearly interacting variables, simulated in this case study. The

GA retains the original order of variables whereas VIN algorithm ranks variable X3 as the

best single variable for discrimination. The performance superiority of VIN over GA is ev-

ident when the classification result is compared after retaining only the two variables. VIN

- LDA approach with variables X3 and X1 as variable subset (q = 2) gives 40% prediction

for the jack knife test whereas GA with two variables X1 and X2 gives only 25% accuracy.

Case study III: Figure 3.8 brings out the efficiency of VIN approach for the large scale

cancer dataset. Using full gene expression dataset of 262 variables, LDA achieves 100%

classification of the six tumor samples using 189 genes in the original order. VIN(r = 0)

algorithm ranks the genes based on the multivariate interaction between them and selects

only a subset of 47 variables to achieve the same performance. It is also encouraging to

observe 90% classification accuracy that could be achieved using only the 15 gene subset.

This efficiency is also seen during the cross validation analysis where VIN performs well

compared to FCR and GA methods. Identification of such smaller subset of differentially

expressed genes out of a large pool of genes is a significant contribution to primary inves-
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Fig. 3.7. Variable selection analysis result for FDD data (case study II)
a) RI distribution b) LDA re-substution performance using different algo-
rithms

tigation of cancer samples of six subtypes. Figure 3.9 shows LDA prediction results for

cancer dataset after projecting the gene expression data into variance based latent vari-
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ables using PCA and MDS. The progressive profiles are for percentage accuracies obtained

after retaining different numbers of latent variables. The LDA classification result profiles

obtained using variables in VIN ranking order and original order, both for PCA and MDS

projections (Case IIIA), are identical. This implies the VIN method ranks the latent vari-

ables in the same order of decreasing variance as provided by the projection methods and

maintains the original order of appearance (RI = 1 for all principal components). The

reason for this is that the latent variables obtained from PCA and MDS are linearly in-

dependent. The matrix RV IN obtained in this case is an identity matrix (null graph with

no variable association). Cross validation tests are not carried out for Case IIIA as the

performance is unchanged after VIN sorting. The clustered gene expressions in Case IIIB

provide 20 different variables for further analysis. The distribution of RI values for these

new cluster variables indicate association between the average expression profiles for these

clusters (shown in Figure 3.10a). During the resubstitution test, the first 12 clusters se-

lected from VIN sequence provide higher prediction accuracy (82%) than all the 20 clusters

together (79%). The prediction accuracy increases with number of attributes retained up

to 12 clusters in the data (profiles shown in Figure 3.10b). After this, the performance of

LDA drops with increasing number of variables. This indicates that VIN approach ranks

those variables as less important which reduce the discriminating ability of the classifier.

Hence, when these variables with least RI values are excluded from the variable list the

resulting subset can yield better classifier performance. More interestingly, when selected

using the VIN rankings, the first four clusters (group of genes) provide 71% discrimination

of cancer types and first six clusters give 76% classification between six classes of cancer

tumors during resubstitution test. This information can be very significant to plan further

clinical experiments or from a diagnosis point of view. This advantage is also evident from
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the cross validation test results for case IIIB as indicated in Table 3.3. The cross validation

accuracies, show lower values as compared to resubstitution tests results. This is mainly

due to the nature of the validation test. The samples which are left out during the classifier

training, may account for all the samples of one class specially in this case study where the

total dataset size is only 34, unevenly split over six classes. Nevertheless, the results for

cross validation tests also confirm the significance of variable selection to classifier perfor-

mance. The smaller subset of variables provide higher prediction accuracies as compared

to the cross validation tests using full set of clusters.

Case study IV: The observations for the wine quality classification problem are en-

Fig. 3.8. Variable selection analysis for Cancer tumor classification using
full set(Case study III)

couraging and establish the superiority of VIN based variable ranking over other existing
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Fig. 3.9. Variable selection analysis for Cancer tumor classification (Case
study IIIA) using PCA dimensions

methods. The matrix RV IN obtained after VIN(1) algorithm is shown in Table 3.1. It can

be seen from Figure 3.11 that only seven variables (based on VIN ranking) are sufficient

to obtain 100% classification of all the wine samples during re-substitution test. Whereas

for training sets, with other univariate ranking methods (SVCR and FCR) and the original

variable set, this complete performance is achieved only by retaining all the thirteen vari-

ables. Even the multivariate GA method selects 10 variables for 100% prediction during

re-substitution test. In Table 3.3, the superiority of VIN method is revealed during different

cross validation tests. As most of the variables used here are costly composition measure-

ments of different compounds, variable selection methods in general and VIN method in

particular may prove to be of utility for measurement cost optimization.
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Fig. 3.10. Variable selection analysis for Cancer tumor classification (Case
study IIIB) using cluster average gene expression a) RI distribution b) LDA
re-substution performance

The overall analysis as shown in Table 3.3 for different cross validation tests establishes

the higher capabilities of new proposed method. For almost all the three tests (LOOCV,
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Fig. 3.11. Variable selection analysis for Wine data (case study IV) a) RI
distribution b) LDA re-substution test performance using different algo-
rithms

five fold and ten fold cross validation), in majority of the cases, VIN ranked variable sub-

set gives best classification accuracy (results highlighted in bold face). The appreciation in

performance with the VIN method is significant for cases where higher order partial correla-
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tions were employed. SVCR and FCR methods as explained in section 3.3.3 distinguish the

variables only based on their individual contribution for discrimination. The present anal-

ysis brings out the inability of these existing variable selection methods to investigate the

variable selection problem based on variable dependencies. Further, the comparative study

with multivariate method employing genetic algorithm in Table 3.3 also establishes the

superior performance of the VIN method over the evolutionary method. The results show

clear evidence that VIN method effectively captures multivariate associations between vari-

ables based on statistically defined correlations unlike GA, which tries to randomly search

for best possible subset of variables. It must be emphasized here that the results obtained

from VIN approach are deterministic compared to the GA method. Hence, VIN based

variable selection algorithm can be very important for modern multivariate discrimination

applications with large number of interacting variables.

It should be noted from the RI distribution (shown in part (a) of figures indicating results

for case study I to IV) that there might be attributes having same relative importance.

These variables are not distinguished by VIN algorithm at present but can be further

resolved if needed. Such variables with identical importance in VIN can be further ranked

using their corresponding single classifier or Fisher criteria relative importance measure.

Alternatively, factors such as the physical/biological significance of variables, their cost of

measurement or measurement noise levels may be employed to preferably select amongst

the competing variables.

In order to test the generalizability of the new method, the VIN algorithm is analyzed

using two other advanced classifiers (CART and ANN) on Wine dataset. Figures 3.12 and

3.13 provide results for the same. CART and ANN are observed to provide similar training

accuracies compared to LDA. The effect of VIN variable ranking is also clearly evident
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from the improvement in the profiles seen in the two figures. The maximum accuracies

for each method are achieved using the first five VIN ranked variables which is better

than the performance using LDA. Hence, VIN algorithm shows its adaptability to different

classifiers and its potential to identify the important features satisfying the objectives of

variable selection analysis.

Fig. 3.12. VIN analysis using CART classifier on Wine dataset

Another important observation in support of VIN based variable selection proposed

in this study is the significant relation between the order of attributes obtained and the

spread of centroid data for each group. For explanation, the average profiles (centroid)

of three classes in the Fisher Iris dataset of four attributes are shown in Figure 3.14. It

can be observed by inspection that nodes ranked as significantly important by the VIN

algorithm represent those attributes (3 and 4) which have larger gaps among all the three
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Fig. 3.13. VIN analysis using ANN classifier on Wine dataset

group average readings. Also, for attributes (1 and 2) which are ranked least in the order,

the average class readings are almost similar. This indicates that VIN method is able to

select variables in the order of their capacity to maximally separate the four classes. Even

though this argument does not consider the within class dispersion of data points, it is

still important for the classifiers designed based on decision boundaries like LDA. Such

classifiers seek to optimize lines or hyper-planes separating different groups maximizing the

interclass dissimilarities. Therefore the superiority of VIN in selecting fewer variables which

contribute highly during the classifier training phase without affecting its performance is

established.

When the VIN was test run on dimensionally reduced data using either of the methods

(PCA/MDS), the result show no change in order of dimensions even for very lower values of
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cutoff for statistical significance indicator CL. This confirms that VIN retains all the new

projected dimensions intact because they are already arranged in the order of significance

of variance (as these methods project the data onto new scale in the decreasing order of

singular values and corresponding vectors).

Fig. 3.14. Centroid analysis for Iris data. Profile of variable averages for the three classes

Based on the analysis and discussion on results it can be concluded that VIN approach

provides a robust means to select important variables for classification. The range of case

studies (with process, chemometric and biological applications) with varying types and sizes

of datasets analyzed using three different classifiers (LDA, CART and ANN) establish the

generalizability of the proposed new method. The new VIN approach also performs better

than the existing variable selection methods for the selected examples using LDA classifier.

The analysis of results from the four case studies reveals the performance efficiency of VIN
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variable ranking method. The new method performs considerably well for systems with

highly interacting variables and nonlinear systems. Variables with similar importance need

to be analyzed for further resolution and improvement in VIN performance.

3.4 VIN based variable selection for Multi-Variate Calibration ∗

3.4.1 Multi-Variate Calibration - important chemometric tool

Prediction of difficult to measure chemical, physical or biological properties of a system

relies on modeling of such properties as a function of measurable quantities. Calibration

of computable models Y = f (X), for accurate estimation of desired characteristic (output

response Y ) of the system using a best set of system variables (input block X) is a well re-

searched problem. Multivariate calibration techniques are of great significance for the anal-

ysis of high dimensional systems and have established special interest in chemometric stud-

ies [230, 231]. Analysis of spectral data to predict chemical nature of molecules [232, 233],

prediction of physical properties of complex mixtures such as solution boiling points, sol-

ubility, rheological properties for gels and aerosols etc. [234], developing soft sensors to

characterize complex product quality variables in process industries [235, 236], estimation

of Absorption Distribution Metabolism Excretion and Toxicity (ADME-Tox) properties

based on molecular structure in drug discovery [237, 238], are just a few of the latest

research areas that benefit from multivariate calibration algorithms. In many of these ap-

plications, for a desired accuracy, the direct measurement of the property often involves

treatments/steps with large time and cost requirements. In many situations, multivari-

ate regression models can be designed and effectively used to predict the same property

∗Results from this section are published in Analytica Chimica Acta, 599(1), 24-35, 2007.
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with acceptable accuracy by employing a minimum set of alternate, quick measurements

at very low cost. In all these chemometrics applications, it is a common limitation to have

few standard samples for calibration. Often, the number of calibration samples is much

less than the number of features/predictors used to characterize the system. This results

in a dimensionality problem and limits the application of regression techniques such as

ordinary least squares (OLS) [230]. Black box modeling techniques like artificial neural

networks (ANN), rule based fuzzy logic prediction and classification and regression trees

(CART) [210] are other modeling approaches which can avoid this sample-predictor mis-

match problem. For time series data, wavelet regression [239] and growing ANN [240] have

also been attempted. Alternately, to overcome this curse of dimensionality [25] the full

set of attributes are collapsed into a fewer meaningful dimensions based on the variances,

covariances or correlations in the original set. Principal component regression (PCR) and

partial least squares (PLS) methods are frequently used to achieve this dimension reduc-

tion coupled regression [230, 231, 241]. These methods preprocess and project the data

into a different descriptor space using latent variables. Loadings for original variables ob-

tained in these methods only signify the contribution of each variable to the projected

axes and do not capture the multivariate ability to predict the response in the presence

of other variables. Another important reason for feature selection (even if enough samples

are available for directly calibrating the models) is that, frequently some of the predictors

act as ‘nuisance variables’ to the prediction performance as they might contribute to model

error. Hence, techniques to optimally select the subset of original features are of greater

importance in the context of multivariate calibration problems especially involving spec-

tral measurements. This part of the research addresses this significant issue of selection of

fewer variables for calibrating high dimensional systems, without projecting them on new
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dimensional scale and to improve the performance of calibration models by eliminating ‘the

nusance (performance inhibiting) variables’.

Many methods have been studied to select an effective subset of features based on

previous knowledge of the system or by using statistical variable selection approaches [230,

242, 243]. Majority of these methods either directly select a subset of features or rank the

variables based on suitable indices. Dimensional projection weights based variable ranking

(PCR weights [231]), variable importance for projection (VIP) used in PLS algorithm

[214], selection based on magnitude of scaled predictor coefficients in the prediction model

(multiple linear regression, MLR) [244] and impurity measures used for tree pruning in

CART [223] are some such techniques reported in the literature to rank the variables

based on importance to calibration. In most cases, these statistical indices are univariate

definitions and hence fail to capture the multivariate contributions of variable subsets. Such

group of features can help in increased prediction accuracies when they are used together

rather than as independent features. GA has been successfully used as a multivariate

variable selection and new feature extraction method for solving regression problems [226,

245–247]. VIN based multivariate variable selection concept has been extended here as

another alternative for quick and efficient feature selection for multivariate calibration

problems. Established variable selection methods are used to compare the performance of

the new VIN algorithm as applied to important chemometrics calibration problems.

3.4.2 Implementation of VIN algorithm for MVC problems

It can be observed that for a given set of standard measurements X and Y , VIN is

designed based on the partial correlation structure using only the X block data. However,
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any variable selection method must always aim at optimally selecting the subset of X by

improving or at least retaining the prediction performance of calibrated model for Y . In

order to account for this in the present study, the VIN algorithm as explained in section

3.2.4 is optimized for best possible response prediction using least number of variables from

X. Since the true nature of variable association is never known in realistic chemometrics

applications, it is essential to explore the effects of different possible tuning parameters

and select the best values for them. The order of partial correlation (r) and the confidence

limit (CL) cutoff values in Rcutoff/r are used to fine tune the topology of VIN so as to

achieve the desired objective. For applications where the input variables (that influence

the response Y ) are not strongly correlated, higher order partial correlations may not

increase the prediction accuracies. In such cases, higher r and CL values might lead to

unconnected nodes in VIN. Hence these variables (with RI = 0), will be ranked poor in

VIN analysis even though might be strongly influencing the output response Y . On the

other hand, for calibration using highly associated predictors, an increase in r and CL will

improve the variable rankings as the variables with many direct and stronger multivariate

interactions are captured as best in VIN (r > 0). Also, lower cutoff values for any order

r can lead to false interactions. In the present analysis, three different orders (0, 1 and 2)

are used to map the attributes during the training. For a selected problem, the order is

optimized based on the least calibration error. Then, for a selected order r in a case study,

effect of VIN on calibration error is observed for different values of Rcutoff/r (for confidence

levels between 85% - 99%). VIN obtained using best combination of r and Rcutoff/r is

selected for final ranking of the variables and prediction performance test. It should be

noted that, VIN tuning is done only using the calibration data during training step and it

is not biased by any data used to finally test the performance of the new variable selection
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method on a separate test dataset [Xtest, Ytest]. If a separate test dataset is not available

then the given dataset X [n× p] Y [n× 1] is split into two separate sets, [Xcal, Ycal] for VIN

tuning and [Xtest, Ytest] for variable ranking performance analysis. Figure 3.15 describes the

complete algorithm for VIN based variable ranking as used for multivariate calibration and

prediction. The VIN variable selection algorithm is implemented using MATLAB (version

7.0.4) [248]. The programs are coded and executed on Pentium 2.4 GHz machine with 3 GB

RAM. The code for PLS modeling of Ycal using Xcal variables is separately implemented.

3.4.3 Methods used for calibration and comparison

Variable set size reduction is a preliminary treatment method used during multivariate

calibration for reasons explained earlier. Irrespective of the approach used for variable selec-

tion, any calibration method must benefit from such pre-selection of important variables.

Many multivariate calibration methodologies have been used in literature with different

degree of success [230, 241]. Out of these, the most widely employed method of Partial

Least Squares (PLS) is selected as the calibration tool in the present analysis. A detailed

discussion on the theory, steps involved and major applications of this projection based

multivariate calibration method is available in [249–252]. For any given problem with X

and Y data, VIN is constructed as explained previously and the variables in X are ranked

according to RI. Selected subset of variables are grouped to form the new input block Xcal

and used to model Ycal [n× 1] using PLS (retaining all dimensions). It must be empha-

sized here that, when number of variables retained in Xcal (q) is equal or lesser than the

number of samples (n) then PLS with all dimensions retained performs similar to MLR

method. In case where q > n, the PLS prediction accuracy deviates from that with MLR.
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Fig. 3.15. Generalized flow chart describing steps involved in VIN based
variable ranking method for multivariate calibration

The prediction performance of PLS can be further improved by optimally selecting the

number of PLS dimensions during calibration step (PLSopt) [230, 231]. The accuracy of
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PLS calibration is assessed using the root mean squared error of calibration (RMSEC) as

defined in Equation 3.12.

RMSEC =

√∑n
i=1 [Yi,PLSpred − Yi,cal]

2

n
(3.12)

where Yi,PLSpred is the PLS model predicted value for sample i. VIN is fine tuned by

changing r and Rcutoff/r and RMSEC is minimized for the calibration data. The opti-

mally calibrated PLS model is then used as regression model to predict the test response

(Ytest [m× 1]) using the same optimal subset of variables (q) from new input set Xtest.

The effect of variable selection for model calibration is analyzed based on the prediction

accuracy (RMSEP ) of the model, defined by Equation 3.13.

RMSEP =

√∑m
i=1 [Yi,PLSpred − Yi,test]

2

m
(3.13)

Other variable Selection methods used for comparison

For comparison, variable selection approach based on VIP measure obtained during PLS

implementation and multivariate GA variable selection approach were also coded separately

and coupled with PLS regression.

Variable Influence on Projection - VIP score: PLS based regression projects the X

data onto a new latent variable space. The influence of each of the original variables in X

on the new PLS dimensions can be determined using PLS weights. The VIP score for the

ith variable can be calculated by Equation 3.14.

V IPi =

√√√√(∑k
j=1 ω2

ij · Syj

)
· p

Sy

(3.14)

where, k is the number of dimensions retained in PLS modeling, ωij is the element in PLS

weight matrix corresponding to variable Xi’s influence on jth PLS dimension, Syj is the
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sum of squares of Y variables explained by the jth PLS dimension and Sy is the sum of

squares of Y block variables explained by all the k PLS dimensions together. As the aver-

age of squared VIP scores equals 1, a VIP score of greater than one is generally used as a

criterion for selecting the variable as important [214,253]. However, in the present analysis,

to maintain similarity with VIN method, the VIP scores are normalized by the maximum

VIP score to establish relative importance measure between 0 and 1. Variables are then

sorted in the decreasing order of this normalized VIP score. The results for this method

are denoted as VIP-PLS.

Genetic Algorithm based multivariate variable importance score: The evolu-

tionary programming using Genetic Algorithm based variable selection [226, 253] is coded

using PLS performance as the selection criteria. The GA-PLS algorithm starts with a

population of multiple (50) chromosomes, each representing a unique subset of X variables

(genes). The chromosomes are ranked based on their accuracy achieved during PLS re-

gression (RMSEC) using only the corresponding variable subset. The best subsets are

selected for reproducing new generation chromosomes using predetermined probability of

mutation (0.1) and crossover (0.5) operations. The better sets of chromosomes evolve over

many generations (100) leading to the best RMSEC. Though each chromosome represents

a distinct subset of variables it does not reflect the relative importance of those variables

with others. Hence, the variables are ranked according to the decreasing order of their

participation in different chromosomes. The results are shown as GA-PLS.

During further analysis using VIN algorithm in combination with PLS as calibration

method, the new approach is referred as VIN-PLS. Two of the extensively used variable

selection methods, VIP based variable ranking (VIP-PLS) and multivariate Genetic Algo-

rithm based subset selection (GA-PLS) are also employed to benchmark the performance of
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VIN-PLS approach. Each of the case studies is separately subjected to these three variable

ranking methods. The performances are compared based on the minimum RMSEP for

that method and the number of variables (qbest) used to achieve it.

3.4.4 Illustration - VIN approach for multivariate calibration

The working principle of proposed new approach is demonstrated here, using a hypo-

thetical multivariate calibration problem, before applying the same for actual chemomet-

rics case studies. A hypothetical nonlinear multivariate system is represented using a set

of simulated input variables (X) and a response variable (Y ). Five different variables

X1, X2, X3, X4 and X5 are selected as independent random variables, ranging from 0 to

1. Different forms of interactions (linear/nonlinear) are designed to obtain remaining vari-

ables X6 to X11 as a function of these five independent variables. The expressions used are

; X6 = X1 + X2 ; X7 = X2 + X3 ∗ X4 ; X8 = 2 ∗ X3 + X2
3 ; X9 = 2 ∗ X4 + X3

5 + X1/X2

; X10 = X1 + X2
2 + X3

3 + X4
4 + X5 and X11 = cos (X1) + cos (X2) + cos (X3). The output

response is generated using the expression Y = X1 ∗ X2 ∗ X3. One hundred (n = 100)

samples are extracted as calibration set Xcal = [Xi; i = 1, 2, ..., 11] and Ycal [100× 1]. An

independent test set, [Xtest, Ytest], with equal number of samples (m = 100) is also generated

separately for validating the performance of calibrated model. As indicated by the above

expressions, the response Y is actually affected by only the three independent variables ;

X1, X2 and X3, out of available eleven (p = 11) variables in the system. So, any variable

selection method should highlight these three variables (or variables related to these three)

as important variables when Y is calibrated with X. This example problem formulates a

good case for illustrating the advantages of VIN based variable selection when a nonlinear
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system is defined using many dependent variables. Such nonlinear dependencies are gener-

ally part of any high dimensional complex system used for multivariate calibration. If the

actual structure of such dependencies is not known, it will be difficult to identify the nature

of multivariate associations just based on the sample profiles as seen in Figure 3.16. This

example (with illustrative variable structure) reveals the ability of partial correlation based

VIN to identify the exact multivariate interactions in X without using the prior knowledge

of the structure. The calibration set Xcal [100× 11] is subjected to VIN synthesis algo-

Fig. 3.16. Sample profiles for simulated multivariate calibration dataset X [100× 11]

rithm as explained in the Figure 3.15. The CL parameter is tuned for all the three orders

of partial correlations (r = 0, 1, and 2). Figure 3.17 depicts two of these VINs developed

for X with partial correlation orders r = 0 and 2 (part (a) and part (b) respectively). The
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networks shown are in the final form after calibrating them with Ycal for least RMSEC

by fine tuning Rcutoff/r for respective order r. The order of variables as reported by VIN

based method are tabulated below each VIN in the figures, along with their RI values. As

can be observed from these figures, random independent variables X1 to X5 have no inter-

connections between them. As expected, VIN for lower order (r = 0) has identified almost

all major one to one dependencies as indicated by the equations used to design X. All the

direct linear dependencies are perfectly captured (X6 ↔ X1, X6 ↔ X2, X7 ↔ X2) for r = 0

whereas some of these are not included in VIN(r = 2) due to multivariate nonlinear effects.

The variables which are not directly related have also been shown as interactions in VIN(r

= 0). Many of these indirect dependencies do not appear in higher order analysis (part

(b)) that retains only the strongly correlated variables in VIN. For example, X6 and X7

are shown as directly related for r = 0 whereas this association disappears in VIN for r =

2. This is because X6 and X7 are interacting only due to the common variable X2 in their

expressions. Based on the minimum RMSEC with least number of variables, VIN (r =

2) is used for further analysis. According to VIN, variable X11 appears as the single most

important variable in X for Ycal prediction. This is evident from the X design structure as

X11 is built using variables X1, X2 and X3 which are the main variables directly influencing

Y . Instead of ranking variables X1, X2 or X3 as influential, VIN has ranked X11 as the

most important variable, as it is the hub for multivariate interactions in X. For VIN (r =

0), variables X10 and X7 are ranked better than X11. But in the improved network for r

= 2, many indirect influences on these two variables are eliminated as compared to X11.

With VIN tuned for best RMSEC for Y prediction, the most informative variable X11 is

ranked the best. This clearly illustrates the utility of partial correlations and power of VIN

to capture highly interacting variables which influence the response. The significance of the
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VIN based variable selection is established further during new sample prediction. Figure

3.18 provides the PLS based prediction of Ytest using variable subsets from Xtest for different

VIN settings. The plot represents progressive change in RMSEP values, obtained using

increasing number of variables (q) from Xtest in the order provided by VIN ranking (for r =

0, 1 and 2). Similar results obtained by VIP measure based variable ranking are also plot-

ted for comparison. Higher RMSEP is attributed to the use of linear calibration method

(PLS) on a nonlinear system. Nevertheless, the importance of partial correlation based

variable selection for calibration is highlighted in this analysis. The minimum RMSEP

achieved using smaller subset of variables improves with increasing r. Influence of variable

X11, as marked best by VIN (r = 2) is clearly seen in comparison with other methods.

Using X11 alone as a predictor variable, PLS model predicts Ytest with RMSEP almost

same as that obtained using all the 11 variables in X. Also, this single variable prediction

alone can provide nearly 50% improvement over that given by VIP-PLS calibration (for

q = 1). The effect of remaining variables is not significant. Results with q > 2 variables

are not much affected, even if the order of equal RI variables is shuffled during analysis.

Hence, VIN analysis can unearth the unknown structure of variable interactions leading to

improved calibration and prediction performance using fewer variables. The proposed new

VIN algorithm is extended to real, multivariate calibration problems using four already

established chemometrics case studies, as explained in the next section.

3.4.5 Case studies

Four well addressed multivariate calibration problems are studied as benchmark prob-

lems. The datasets will be referred as ANALYTE, SPIRA, ADPN and MOISTURE. These
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Fig. 3.17. Variable interaction network details for simulated MVC problem
a) VIN using r = 0 b) VIN for r = 2

case studies encompass a range of chemometrics applications and pose challenges to the

present analysis. Also, having been already investigated using many existing variable selec-

tion methods, they form a good benchmark for assessing the performance of the proposed

new method.

ANALYTE : This is a simulated spectral data for analyzing a mixture of three com-
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Fig. 3.18. Variable selection analysis for simulated MVC data using PLS calibration

pounds [254]. Samples with full spectrum ranging from 1 to 150 are generated using

software provided by the authors [254] with equal proportion of three analytes. Calibra-

tion samples possess desired analyte (A1) with Gaussian shaped intensities at different

wavelengths (peaks centered at 15 and 85 units) and two interferents (A2 and A3) with

distribution between two peaks of A1. Regions 100-150 is mainly dominated by noise with

no signal detected. Response Y is designed as a linear function of analyte concentrations

making PLS an ideal choice for calibration. Since the analyte spectra are randomly ini-

tialized to desired composition, the calibration/prediction is carried out for 1000 iterations

and the average performance is reported. In the original analysis [254], this important

chemometrics problem in analytical chemistry was studied using GA based variable selec-

tion with different initialization strategies. Here, the performance of VIN based variable

ranking is compared with those results.
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SPIRA : This real time industrial process data is taken from [255]. The samples represent

dynamic data from a batch fermentation process, producing antibiotic Spiramycine. The

response variable for final content of product in the batch is to be predicted using process

variables such as stirring power, temperature level, oxygen consumption peaks and the times

at which these peaks occur etc. An early prediction of poor Spiramycine content at the

end of the batch run can help salvage the batch through midcourse correction. Hence, it is

highly desirable and useful to select fewer important variables and accurately calibrate the

product quality. The SPIRA dataset was analyzed using several different feature selection

algorithms and the best result was reported for backward Q2 method (BQ-PLS) [245,255].

These results are compared with the VIN method in present analysis.

ADPN : The dataset sourced from [255] represents a complex nonlinear system used to

manufacture Adiponitrile. The process involving many chemical engineering operations

provides a challenging chemometrics problem (with n < p) of predicting the extent of cat-

alyst loss, using p = 100 different explanatory variables. In order to facilitate a quick and

economical diagnosis of catalyst loss it is desired to calibrate a model using very few vari-

ables (q << p). Therefore, this dataset is seen as a challenging variable subset optimization

problem to achieve desired prediction performance with least number of sensors.

MOISTURE : This high dimensional, wavelength selection and product characterization

problem was reported and studied by [226, 256]. Range of NIR spectra of samples of soy

wheat are measured over 1104 - 2496 nm span with a gap of 8 nm (p = 175 wavelength

samples). The 54 samples available for response (moisture content in wheat) prediction are

randomly split 20 times into calibration set (n = 40) and test set (m = 14). The average

performance over these iterations is reported for comparison. Results obtained using VIN

method will be compared here with the GA-PLS results reported in [226].



114

Table 3.4
Details of MVC datasets used and corresponding VIN-PLS tuning results

Case Study 
Samples  

in Ycal (n) 

Features 

p 

Best 

order r 

Rcutoff/r  

(CL) 

calibration  

RMSEC (q) * 

ANALYTE 16 150 0 0.6664 (99%) 1E-8 (22) 

SPIRA 115 96 1 0.2419 (99%) 0.112 (5) 

ADPN 57 100 2 0.2315 (92%) 1E-12 (13) 

MOISTURE 40 175 1 0.3941 (98%) 1E-6 (7) 

* q values represent the number of variables retained to achieve the least RMSEC reported.  

3.4.6 Results and Analysis

Without any preprocessing, each dataset is separately subjected to VIN-PLS, VIP-PLS

and GA-PLS algorithms for calibration and test set prediction. The importance scores

(RI) are defined in each method and the attributes in X are re-sequenced. Performance

of each method is reported using RMSEC and RMSEP for calibration and prediction

respectively.

VIN design and calibration

Each dataset, Xcal is subjected to VIN algorithm for variable ranking and PLS for re-

gression. Table 3.4 provides the results for optimized VIN settings using VIN-PLS method

for each case. As seen in the table, all the datasets have been calibrated with RMSEC ≈ 0,

using only a small subset of q variables from X (q << p). This satisfies the first objective

of variable selection step i.e. to reduce predictor dimensions in the system. Though not
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significant (5.4 % of the mean value of Ycal), relatively higher RMSEC in case of SPIRA

can be reasoned to a possible nonlinear dependency of response variable (Spiramycine con-

tent) on selected system variables, which is difficult to model using linear PLS. Such higher

calibration errors (also seen in the illustrative non-linear example problem) can be reduced

using suitable variable transformations [257] or non-linear regression techniques [258].

VIN(r = 0) gives the best calibration result for ANALYTE data. This could be mainly

due to the presence of variables selected from Gaussian distribution of analyte intensities.

The variables near the peaks of this distribution will be correlated directly to all other

variables in the nearby spectral range because other variables are obtained as variates of

central mean value. A sample distribution of VIN based RI values for variables in ANA-

LYTE data is shown in Figure 3.19. It is encouraging to see the segregation of important

variables in the spectral range (10-20 and 80-90) which coincides perfectly around the peak

wavelengths (15 and 85) used to generate the desired analyte composition (A1 spectrum).

Sensors in between these two peaks are ranked as the next important variables. If the vari-

able selection criteria is kept as RI > 0.95, then only around twenty top spectral variables

from the most influencing region will be retained. This subset of variables based on higher

RIcutoff , provides the least RMSEC and RMSEP . VIN ranks all the spectral variables

with wavelength greater than 100 as unimportant, establishing the power of new method

to reject noise or variables contributing least to the response. Similar results are also re-

ported in [254] using a computationally intensive GA based range selection on ANALYTE

data. As seen from the RI profiles (Figure 3.19), only a few of the variables show equal

RI values. This similarity is observed between variables in the closer vicinity of spectral

range indicating the possibility of existence of redundant measurements or finer wavelength

window size selection.
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Investigation of the other datasets indicates the importance of higher order correlations

for optimizing variable subset in multivariate nonlinear systems (especially for ADPN and

SPIRA datasets). All the edges retained in respective VINs have higher CL values, empha-

sizing the presence of strong associations between variables in high dimensional complex

systems. These observations establish the potential of the new VIN method, to detect im-

portant features from high dimensional observations for effective multivariate calibration.

Analysis of prediction performance

Once the VIN parameters are optimized for best RMSEC, the variable rankings are

used for test set prediction. Such an independent sample prediction test brings out the

generalizability of the proposed method and is of greater importance in chemometrics ap-

plications. As the objective here is to compare the variable rankings for prediction, a series

of PLS modeling steps were employed, equally to all the variable selection methods (VIN,

VIP and GA ranking methods). In each step, a variable subset (with first q number of

variables, selected in the order ranked by variable selection methods) is used to build the

PLS model and predict the sample set. As q is varying in this progressive analysis, different

PLS model have to be constructed each time, using q variables from Xcal. This calibrated

model is then used to predict Ytest, by retaining only the same q variables in Xtest. Thus, the

datasets [Xcal, Ycal] and [Xtest, Ytest] are subjected to p different PLS regression-prediction

runs respectively, with q variables (q = 1, 2, ..., p) retained in each run. RMSEP is com-

puted for every run and progressive plots are used for performance analysis. The least

RMSEP obtained along with the corresponding number of variables used for this best

prediction (qbest) are used as indicators for performance comparison. Prediction test results
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Fig. 3.19. Relative Importance distribution for variables in ANALYTE data

for all the case studies using VIN-PLS, VIP-PLS and GA-PLS are summarized in Table

3.5. PLS results obtained for full range data (q = p), without applying any feature se-

lection algorithm, are also reported for comparison. The results reported in literature (as

explained for each case study in section 3.4.5) for the same investigation are also shown

(as ”Literature” in Table 3.5) for comparison. For signifying the prediction efficiency of

variable selection coupled PLS, the RMSEP are also shown as % relative error. The best

performance for each parameter is also highlighted in each row.

All the methods efficiently address the issue of smaller subset selection without undermin-

ing the prediction performance. Compared to the full range dataset, subsets of variables

(qbest < p) provide comparatively better prediction accuracies during PLS modeling. This
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Table 3.5
Prediction test results (RMSEP ) for VIN-PLS analysis for different case studies

Case Study 
Ytest  

size 

Full 

range 

(q = p) 

 

VIN-PLS VIP-PLS GA-PLS Literature 

 m RMSEP RMSEP qbest
*
 RMSEP qbest RMSEP qbest RMSEP qbest 

ANALYTE 10 0.043 
0.028 

(5.4%)
+
 

20 
0.0254 

(5.1%) 
35 

0.0285 

(5.4%) 
52 

0.028 

(5.4%) 
18 

SPIRA 30 0.443 
0.1131 

(5.2%) 
3 

#
 

0.1228 

(5.6%) 
13 

0.222 

(10.2%) 
19 

0.21 

(9.6%) 
15 

ADPN 14 2.531 
3.016 

(3.1%) 
10 

3.444 

(3.5%) 
19 

3.387 

(3.3%) 
14 

2.84 

(2.9%) 
13 

MOISTURE 14 1.31 
0.82 

(7.0%) 
5 

1.0 

(8.6%) 
8 

0.92 

(7.9%) 
14 

0.97 

(8.3%) 
16 

 
+
 % RMSEP is the relative prediction error computed by [RMSEP*100/mean(Ytest)] 

#
 Entries with underlined bold letters indicate best results for corresponding data set.  

*
  qbest values indicate the size of variables subset, which give the reported RMSEP,  

    after ranking the full variable set (p) using particular selection method. 

satisfies the second objective of eliminating the poor variables inhibiting the performance

of multivariate calibration. The lowest RMSEP achieved are within the acceptable limits

for all the cases and hence the further comparison will be based on other indicators (with

lower relative errors). VIN-PLS performs consistently with best results for three datasets,

especially while comparing qbest. The RMSEP values given by VIN are better or com-

parable to other results especially to those given by multivariate GA-PLS method. The

performance of the proposed method matches or improves the results suggested in literature

using advanced variable selection and calibration methods. Another important factor that
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deserves attention is the computational ease of VIN implementation. For r = 0, VIN-PLS

always takes the least time to complete a cycle of Rcutoff tuning, variable ranking, calibra-

tion and progressive (q = 1, 2, ..., p) test sample prediction. This CPU time for VIN-PLS

on an average is an order of magnitude less than GA-PLS (for any order r) and comparable

to VIP-PLS. For the MOISTURE example (with most features (p = 175)), on the same

computer VIN-PLS with r = 0, 1 and 2 took 72, 180 and 345 seconds respectively whereas

VIP-PLS took 140 seconds and GA-PLS gave complete result in 22 minutes. The overall

better performance and computational advantages (especially compared with other multi-

variate methods like GA), establishes the superiority of the proposed VIN based variable

selection method. Further discussion in the following paragraphs on results for individual

case studies bring out the significance of correlation based multivariate variable selection.

ANALYTE: Each one of the 1000 test sets generated for ANALYTE data, is subjected

to variable selection and PLS regression. The best RMSEP is recorded for each run and

averaged over 1000 iterations. The results show the efficiency of VIN method to pick the

spectral range of importance to the response variable. The qbest varied from as low as 8

to a maximum of 25. The top 10 wavelengths which are included in all the 1000 runs

are within the spectrum 10-20 and 80-90. The best RMSEP is obtained using VIP-PLS

but at the expense of a higher number of variables (q = 35). Although, GA-PLS provides

comparable accuracy, it still takes 52 variables to achieve the least RMSEP value (very

similar to GA-PLS reported in [254]). The VIN-PLS method provides accuracy matching

that of VIP-PLS and GA-PLS with only 20 variables retained. The best result reported

in [254] using Iteratively Reinitialized Genetic Algorithm (IRGA) with 18 variables is based

on the computationally intensive repetitive GA method. GA-PLS implementation in the

present study for ANALYTE data takes 12 minutes whereas VIN (r = 0) takes 32 sec-
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onds to optimize the network and predict Ytest. During a separate analysis by retaining

all the variables with RI > 0.90, an average RMSEP of 0.025 was observed with average

qbest = 22. This is better than the Randomly Initialized Genetic Algorithm (RIGA-PLS)

result reported in original study [254] for equal compositions of three analytes (RMSEP

= 0.028 with 45 variables). These observations confirm the ability of the new method to

generalize the performance when tested with a new sample. It should be noted that the

variable rankings were generated and the best variable subset was selected using only the

calibration data.

SPIRA: Prediction test results for SPIRA dataset are encouraging with VIN-PLS pro-

viding best RMSEP with just three variables. VIP-PLS implementation also provides

better accuracy with fewer variables as compared to the literature results. Interestingly,

out of the variable set ranked best by VIN {86, 77, 87 }, only variable {77} is part of the

list of fifteen variables selected as best in [255]. VIN provides 46% improvement over the

RMSEP reported using backward Q2 (BQ-PLS) [255] and an advantage of using 12 less

variables. It must be also highlighted here that, the regression model implemented in the

present study is without optimizing the PLS dimensions, whereas the BQ-PLS implemen-

tation in [255] uses optimization during model calibration. By retaining only the optimized

dimensions in PLS model, V IN−PLSopt provides additional improvement in the prediction

accuracy (RMSEP = 0.0821) with qbest = 4. Further observations on the progressive plot

for RMSEP as shown in Figure 3.20 reveal that, variable set {86, 77} provides RMSEP

= 0.1357 (still better than literature result) and variable {86} alone gives 0.2663 (12%

relative error). Such a powerful optimization of number of variables (3 from 96) with si-

multaneous improvement in PLS model (75% improvement over full range RMSEP ) is of

higher significance to instrumentation cost cutting and quicker diagnosis/quality control
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of important processes. This advanced performance is mainly due to the ability of VIN

method to capture highly active variables in the process system based on the multivariate

association of variables. If the physical nature of these highly ranked variables is known,

further insights of their significance to the Spiramycine batch process are possible.

ADPN: With a comparable prediction accuracy (relative error just over 3%), VIN-PLS

Fig. 3.20. PLS prediction result for SPIRA data using different selection algorithms

gives an advantage in terms of fewer variables for calibration. The result reported for

this problem in [255] is obtained using PLS calibration after optimizing the dimensions.

In a separate analysis for comparison, V IN − PLSopt provides further improvement with

RMSEP = 1.82 with qbest = 16 variables (results not tabulated). The best variables {58,

72, 89, 100, 98, 46, 4, 56, 99, 43 } as obtained for VIN-PLS have only three overlaps with

the list reported by [255] ; {11, 29, 31, 42, 44, 46, 68, 69, 72, 86, 90, 95, 100 }. These
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reported best set of variables have shown mean RI value of 0.314 in the present analysis

using VIN, with variable {11} ranked best at RI = 0.61. This observation indicates that,

there can be multiple solutions to variable subset optimization problems depending on the

selection method used. The results on ADPN dataset establish the ability of VIN method

to effectively reduce the variable dimension (q << p) of complex non-linear systems with-

out affecting the performance of calibration models.

MOISTURE: For this dataset also, VIN-PLS performs better than the VIP and GA based

variable selection methods. Compared to the GA-PLS approach adopted in [226], the pro-

posed method gives better prediction accuracy and significantly higher advantage in the

number of variables retained. Since an independent test set is not available, the results are

observed over 20 iterations. The qbest value of 5 is fixed in every iteration and the corre-

sponding RMSEP is averaged. A mean RMSEP of 0.82 and a standard deviation of 0.14

are observed. This is a powerful contribution to multivariate calibration of NIR data, as

37% improvement in accuracy is achieved (compared to the RMSEP of full range = 1.31)

using only the 5 wavelengths out of 150 spectral measurements. Hence the VIN-PLS is

consistent in its prediction performance and these results can be compared with literature

data (as the split is not mentioned in [226]). Further improvements can be achieved with

V IN − PLSopt up to accuracy of RMSEP = 0.561 with qbest = 14. The best variables

reported are in the wavelength range 2300-2500 nm which is slightly different from the GA

based ranking reported in [226]. However, while comparing with the NIR spectra shown in

Fig. 2 of [226], it is evident that most of peaks and active intensities are near the end of

the spectrum for Soy data (which is also the absorption range for water). This reveals the

capacity of VIN method to identify spectral regions that significantly influence the response

variable (moisture content).
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Further Observations

Certain specific observations and possible limitations of VIN algorithm are discussed in

this section. For systems with complicated variable association structure, it is possible that

VIN tuning can generate different forms of networks. The possibilities include, presence of

several nodes with same number of edges, node segregation to form unconnected network

components in VIN and existence of free nodes without any edges on them. The present

form of VIN variable ranking, as depicted in Figure 3.15, does not explicitly address these

topological issues. Nevertheless, such complexities can be easily resolved with simple ex-

tension of the existing method. Similar nodes with equal RI values (generally true for

systems with lower number of variables as can be seen for illustration problem in Figure

3.18) can be further ranked among themselves based on other measures of importance. To

demonstrate this, the equal RI variables for illustration problem (section 3.4.4), are further

ranked using VIP measure obtained by PLS model (refer details in Figure 3.17). Other

criteria like cost, reliability and response time of sensors used to measure such variables can

also be incorporated. For situations with compartments in VIN (sections of the network

not connected with each other), definition for RI in Equation 3.7 is still valid as number of

edges (Ei) indicates association with other variables in X, irrespective of which compart-

ment they come from. If such independent variable grouping in VIN is due to the particular

characteristics of the system (physical/chemical/operational similarity of few variables in

X), then such information can be further exploited to compare the variables with equal

RI in different compartments, preferring those with important characteristics. Though the

possibility is rare in large scale systems, the problem associated with free nodes (RI = 0)

needs further analysis. Such variables which are presently discarded as least important by
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VIN algorithm might have variables independently influencing only the output variable Y .

One possible solution to avoid this is, test the correlation between variables representing

free nodes with Y and suitably adjust the RI values.

The computational advantages of VIN method compared to GA-PLS are already estab-

lished before. It must be further emphasized here that the variable ranking obtained from

VIN approach is more deterministic as compared to the random search based GA method.

For a given variable system X, VIN with selected order r and CL will always provide the

same rankings for variables. GA implementation can potentially enter different local opti-

mum solutions, depending on the nature of randomly initialized chromosome population.

This is also evident from the variation in results reported for ANALYTE data in [254], using

two different initialization strategies (IRGA and RIGA). Hence, VIN approach provides a

more systematic, statistically tested and computationally efficient algorithm in addition to

the advantages of multivariate analysis, where it is similar to Genetic Algorithm.

The Partial Least Squares approach used here as calibration method has been implemented

in its basic form without optimizing the PLS dimensions during modeling. As shown in

results for SPIRA and ADPN data sets, different optimization strategies can further re-

duce the RMSEP for the same qbest variables provided by VIN. Further improvement in

prediction performance, especially for systems with highly nonlinear f (X), is possible by

combining VIN algorithm with advanced non-linear multivariate calibration methods like

SVM [217], ANN [240,259] etc.

The direct and partial correlations as defined in Equations 3.1 to 3.3 are based on linear

Pearson correlations. Though the VIN algorithm successfully identifies and retains only

the direct relations between variables and helps eliminating the indirect associations, it

might not fully explain certain types of nonlinear interactions. For example, if two ran-
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dom variables Y and X related to each other as Y = cos (X) (for − 2π < X < 2π), the

Pearson correlation Rxy will be computed as zero. This can be a limitation of the present

algorithm when applied to highly nonlinear systems with large number of variables. The

performance of the VIN algorithm in such cases can be improved by defining alternate

nonlinear correlations.

Based on the above analysis, the ability of the new variable selection tool (VIN algo-

rithm) for multivariate regression analysis is established. The results highlight its superior

performance against existing variable ranking methods like VIP and GA on several chemo-

metrics applications. Improvements are seen both in PLS prediction ability and also on

reduction in number of explanatory variables. VIN based variable sorting identifies the key

variables in the system which contribute the most to the output response variable. The

significance of such important variables is established in the analysis of NIR data. VIN

appears to be a potent tool to analyze large scale multivariate calibration problems.
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4. CLASSIFICATION TOOLS FOR DISCRIMINANT

ANALYSIS †

“To know others, know yourself first”... an ancient Chinese proverb

4.1 Data Classification - overview

With the rise in availability of incredibly large amounts of data during scientific, com-

mercial, social and administrative investigations, it is increasingly becoming impossible to

analyze and exploit all this data manually. An intelligent computer system that can ex-

tract useful information (such as general rules or interesting patterns) from large amounts

of observations is indispensable. Data classification is one such important data mining tool

to automatically perform discriminant analysis, searching large stores of data for patterns.

For example, one may be interested in predicting a normal/abnormal state of the process or

accept/reject quality of the product or regular/diseased functionality of a biological system

based on the physical, chemical and biological properties of the system. In multi-category

classification problems, one might be interested in predicting multiple (more than two) dis-

tinct characteristics of the system. Examples could be, prediction of alternative consumer

preferences, multiple faults during the process operation, establishing letters/digits in hand

writing recognition, predicting multiple outcomes of a clinical diagnosis etc. In short, dis-

criminant analysis using classification tools is the non-trivial process of identifying valid,

distinct, and ultimately usable patterns in data [182,184]. Many applications benefit from

such prediction analysis (as discussed earlier in sections 2.5.2 and 3.3). The modern classi-

†Parts of this work are published in journals and presented at conferences (refer to PUBLICATION list at
the end of the thesis)
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fication problems associated with ChemBio systems, like chemometrics analysis of product

quality, process monitoring, biological classification, clinical diagnosis, molecular structure-

functional prediction etc bring forth special challenges. Analyzing the multivariate feature

space, lack of enough sample observations, presence of different types of attributes (binary,

discrete and continuous), scalability over multiple class datasets, handling noise and im-

proper distribution of samples in different classes are some of the issues that remain far

from resolved. Hence, developing alternate concepts addressing these issues and designing

an efficient classifier model to solve large scale classification problems is still an active area

of ‘machine learning’ research.

In resolving the above mentioned pattern recognition problem, the classification methods

attempt to predict values of a categorical dependent variable, Y (class or group mem-

bership) from one or more continuous and/or categorical predictor variables, X using a

classifier model Y = f (X). The classification algorithms are designed to learn the function

f by analyzing a set of known input-output examples (“training samples”) of the patterns.

These relationships f , learnt in the form of mathematical models, set of rules or statistical

distributions are then used to predict the output pattern of the new set of input measure-

ments made on the same system. Since these techniques learn the classifier models from a

given set of input-output observations they are termed as ‘supervised learning’ techniques.

In general, the overall supervised learning approach for classification/discriminant analysis

can be summarized as follows.

Generalized Classification Analysis: Consider a system N [X ; Y ] defined using in-

put X [n× p] with n observations obtained by measuring p variables and output Y [n× 1]

belonging to g different classes, i.e. Y ∈ {1, 2, ..., g}. The objective of the discriminant

analysis is to develop a classifier function Y = f (X) using the observations in X, in order
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to model each of the g classes in Y . The adequacy of the classifier function f is then tested

based on its ability to predict the classes of samples in N (self consistency or re-substitution

test) and to predict the classes of new set of samples Ntest [Xtest ; Ytest], which were not

used during modeling (cross-validation or independent sample test).

4.1.1 Existing classification techniques

Many classification techniques have been suggested [182, 184], which mainly differ in

their concept while learning the model f . There are several approaches which are used

for solving data mining and, more specifically, classification problems [260,261]. They can

be broadly classified into categories like methods based on Bayesian discriminant models,

decision boundary based techniques, rule based decision tree learning and input-output

model based class prediction. The classification concept and tools built on them for each

of these categories are explained below with their respective advantages and limitations. A

schematic representation of different approaches is also outlined in Figure 4.1.

Bayesian Methods: These methods are based on the Bayes’ theorem of conditional class

probability [182,184]. Given the system N with feature set in X and class labels in Y , the

Bayesian classifier identifies the model parameters (the parameters in the class conditioned

variable probability distribution function P (X|Y )), the measurement likelihood for given

class and P (Y ), the class prior. It designs the classifier function as shown in Figure 4.1

part (a) to predict P (Y |X), the posterior of a class given the feature set. A naive Bayes

classifier is the simplest of such probabilistic classifiers with assumptions that the variables

Xi (i = 1, 2, ..., p) are completely independent of each other. Given a new sample set of in-

put features Xtest, it is projected using the classifier functions and class probability scores



129

Fig. 4.1. Schematic representation of different classification approaches

are assigned. The sample is assigned to the class which gives the highest probability score.

In spite of their naive design and apparently over-simplified assumptions, Bayesian classi-

fiers often work much better in many real-world situations [262, 263]. It requires a small

amount of training data to estimate the parameters (means and variances of the variables)

necessary for classification. On the other hand the feature independence assumptions are
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often violated in large scale classification applications. The probability functions selected

for the classifier are valid mainly for categorical or discrete data. However, if the num-

ber of features p or classes g is large or when a feature can take on a large number of

values (continuous variables), then basing such a model on probability tables is infeasible.

The classifier is sensitive to the training samples selected and their class-wise distribution.

Hence, application of the naive format of Bayesian classifier is limited to mainly the binary

classification problems using few categorical features [261]. Alternate modifications to im-

prove the performance of the basic Bayesian classifier are suggested especially when few

variables are dependent [264] and X has continuous variables [265]. Some of the other ad-

vanced classifiers are also derivates of the Bayesian classification concepts, extended using

different forms of P (X|Y ) functions and covariance matrices [184]. For example, k-Nearest

Neighborhood (kNN) classifier uses the distribution of distance measures for the test sam-

ple from the nearest known ‘k’ number of samples when projected on the variable space for

each class.

Decision Boundary based classification: In a multivariate setup, the patterns or the

data to be classified are usually groups of measurements or observations on the system,

depicting representative points in an appropriate multidimensional space. Figure 4.1 parts

(b) to (d) provides a schematic representation of such systems using a two variable - two

class example. For distinct class datasets [192], these patterns are linearly separable when

projected on the descriptor space (Figure 4.1 (b)). Such data can be effectively classified

using a classifier model (f (X) = 0) representing a decision boundary separating the two

classes. The equation for f (X), in general, is derived as the combination of variables

f (X) =
∑p

i=1 ωi · f (Xi) (p = 2 in Figure 4.1 (b)). The parameter set ωi is determined

such that the distance between the two classes (separation) is maximized and the within
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class variance (similarity of projections of samples on the boundary) is minimized [182,184].

Linear discriminant analysis (LDA) uses a linear combination of variables with f (Xi) = Xi

to separate the two classes with a straight line (Figure 4.1 (b)). Depending on the dis-

tribution and scale of numerical values in variables, LDA also has variants like Diagonal

LDA (DLDA) and Regularized Discriminant Analysis (RDA) [266]. In complex multivari-

ate datasets, as used in many bioinformatics and image analysis problems, the class data

points show overlapping clusters and are not easily separable by a simple linear decision

boundary in the multi-dimensional space (Figure 4.1 (c) and (d)). Quadratic Discrimi-

nant Analysis (QDA) [25, 182] and Support Vector Machines (SVM) [217] employ “kernel

trick” to overcome this difficulty for systems with nonlinear characteristics. These meth-

ods use non-linear decision boundaries by mapping the original observations into a higher

dimensional linear separable space, using suitable kernel transformation functions. QDA

employs quadratic function f (Xi) = X2
i whereas SVM suggests different forms (polyno-

mial, radial basis, gaussian) to project Xi. SVM uses the data points which lie within

the margin of ambiguity during linear classification (4.1 (d)) in original X space to design

optimal support vectors in projected Xp space. Due to their capability to perform well,

almost independent of the original number of variables, kernel approaches (especially SVM)

have enjoyed widespread acceptance for modern complex multivariate classification tasks.

Though SVM has been able to show consistent success rates, the method requires rigorous

tuning of kernel parameters (constants in the function f (Xi)) and is computationally tax-

ing for large data sizes as the number of possible support vectors is higher and algorithm

has to employ intensive optimization routines to establish them. Further, these decision

boundary searching algorithms are binary (separating only two classes at a time) in nature

and their extensions to multi-class problems are not trivial and often require iterative or
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combinatorial analysis using multiple classifiers [25,184].

Decision rule based classification: A set of rules involving logical comparison of vari-

ables with optimally determined constants or other variables can be used more intuitively

to classify the samples into categories. Rules can be established either by prior knowledge

of the system or can be generated using optimization techniques to achieve the maximum

separation between classes. A classifier

IF condition1 AND condition2 AND . . . AND conditionn THEN CLASS = classi

can be then setup to predict the unknown samples. The most recent information content

driven rule based decision tree methods like Classification And Regression Trees (CART),

C4.5, TreeNet and Random Forest (RF) are some of the effective methods in this category

[210,267,268]. Decision tree (representing logical order of rules to be applied on X as shown

in Figure 4.1 (e)) is built by splitting the data into two branches using the best attribute or

variable as separator variable (node). The best attribute used to define a decision rule on

a node is prioritized based on one of the impurity measures such as Gini index or entropy

measure. The advantages of such rule based algorithms include (i) easily interpretable and

implementable rules (ii) needs very little data pretreatment (iii) ability to handle both

numerical and categorical data and (iv) ability to handle missing data. On the contrary,

it can over fit a classifier model for training data, especially for high dimensional datasets.

As rules are generally independently optimized based on single variables, the multivariate

interactions between variables are not accounted.

Input-output model based classification: Figure 4.1 (f) shows the schematic of X−Y

model based classifier approach. Artificial Neural Networks (ANN) [184], Soft Independent

Models for Class Analogy (SIMCA) [269], Discriminant Partial Least Squares (DPLS) [252]
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are some of available alternate classification approaches which relate input set X to output

Y in their original form (ANN) or in the latent variable projection space (SIMCA uses PCA

projection on X for each class and DPLS applies PLS before regressing X to Y ). These

classifiers determine the model parameters (network weights for ANN, variable loadings

in SIMCA and DPLS) during the training step using given dataset N . Then, for given

test samples Ntest, the values of X are plugged in as the input to the model to predict

the corresponding Y . Such model based classifiers have important ability to address the

inherent non-linearity or multivariate interactions in X and facilitate controlled elimination

of noise in the data (by selecting only the important latent variables). But as they generally

involve a large set of parameters trained for the given dataset, they can potentially suffer

from data over fitting and lack of generalizability of their performance, especially during

new sample test. Also, using categorical variable Y as a system output and directly relating

it mathematically to X does not directly reflect the underlying mechanism and hence, can

further affect their performance especially for multiclass problems.

4.1.2 Motivation and Objectives for designing a new classifier

The limitations of existing classification approaches have been outlined above. In the

‘pattern recognition’ research literature, it can be observed that these methods and their

extensions have shown case specific performances. Their computational complexity is af-

fected largely by variable (p) and/or data size (n) rather than the number of classes (g)

jeopardizing their scalability to large scale classification problems. Further to all these ob-

servations, the main motivation for developing an alternate classification approach is that

the existing methods do not effectively capitalize on the nature of multivariate associations
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between the features which can bring out distinct dissimilarities between the classes. This

is especially important for datasets with overlapping patterns which cannot be efficiently

separated based on distance measures or decision boundaries. Also, in a multivariate mul-

ticlass setup with higher probability of diverse interactions and variable dependencies in

X, the samples can be effectively separated using a combination of linear and non-linear

boundaries. Such flexible modeling of classes embedding different structures within the

classifier is not possible in existing approaches. Structures of such class specific variable

interactions can be mathematically established and the distinct relations, specific to each

class, can be used as discriminating models. Present algorithms model the classifier using

the identified important variables for the entire classification. Many of these methods do

not facilitate modeling of variables or variable interactions independently characterizing

each class and their further use for discrimination. There is a need for an alternate clas-

sification approach which adopts a different strategy in order to fill these existing gaps in

discriminant analysis.

The new class specific variable dependency structure based classification technique proposed

in this study attempts this new paradigm of model based data classification approach. The

basis for this new idea originated from the VIN analysis, which is perceived here to resolve

the issues discussed above. The VIN concept (discussed in chapter 3) if conditioned on

each class has potential scope to select important class specific variable interactions. The

successful implementation of VIN algorithm for feature selection application has motivated

its extension in developing a new classification tool for discriminant analysis. The following

objectives are set for this research investigation.
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• Verifying the existence of unique and independent variable interaction structures for

each class.

• Implementing and analyzing alternate techniques for capturing these class specific

variable dependency structures.

• Designing a new classification method without having to depend on the decision

boundaries/rules/probability distributions or distance based measures, analysis of

the data in the original variable space and which can be easily scalable to multi-class

problems.

• Testing the classification capability of the new classification approach for a range of

classification case studies with varying degree of data complexity.

• Establishing the performance and significant advantages of the proposed machine

learning algorithm by comparing with some of the state of the art classifiers.

4.1.3 Variable Dependency Structure based classification approach

The main premise of this new concept is that all or some of the variables (features/

descriptors), defined on the system to characterize it into different classes, exhibit defi-

nite dependencies between each other. Especially in a larger and complex multivariate

system, the continuous predictor variables can exhibit dependencies either due to underly-

ing mechanism of the system, redundant measurements, regulatory effects, recirculation of

matter/energy, presence of information loops or due to causal nature of the modular sys-

tem. If such interactions exist, then for any classification problem, setup on such a system

using same set of variables, the distinct classes of the same system could only arise due to
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difference effects of variables on each other. If all the variables were to change simultane-

ously and identically all the time then there would not be any difference in system’s classes.

Hence, for systems with interacting variables, it is possible that each class is characterized

by changes in different sets of variables arising due to definite variable interactions. The

new classification approach explores the presence of such unique variable interaction pat-

terns and exploits their potential for class discrimination.

Existence of such class specific variable dependencies are demonstrated here with a simple

Fig. 4.2. Inter variable correlation structures for different types of Iris flowers

Iris flower classification problem (as explained in section 3.3.4). Figure 4.2 provides the

shade map of inter-variable correlation structure for three different types of flowers. Each

box in the square matrix represents a shade as a measure of absolute value of correlation

coefficient (Equation 3.1) between a pair of two variables. Whiter the color, the stronger is

the association. All the diagonals have unit correlation values as each variable is related to

itself. Other than this, it can also be seen that SW-SL are related strongly for Setosa type

and not in other two types. Similarly PW-PL association is unique for Versicolor and SL-PL
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for Virginica type flowers. That means, a unique pair of variables with linear relationship

appear as signatures specific to a particular type and the same variables indicate no such

relationship in other types. This evident difference, if captured as a model, can provide a

discriminating criterion for each type of flower. An alternate classifier can be setup which

is built using these class-specific variable dependency models learnt using the class-specific

training data in N . The specific combination of X variables of the unknown sample can

then be projected on to the trained models and a suitable fitness measure can be utilized

to identify the resemblance with known class. Figure 4.3 outlines this new concept and

proposed strategy to solve a generalized classification problem. The class-specific variable

dependencies are learnt using the training data and captured into the class specific VIN

models using suitable modeling approach. The VINs are scanned for uniqueness and only

the valid relations (models satisfying a fitness criteria) unique to each class are retained.

Test samples are projected on to each of the VINs to generate VIN for test sample. The

resemblance of the test sample VIN structure with the learnt class specific VINs is used as

the classification criteria.

Important features of the new classification approach:

• Multivariate interactions are captured and utilized for class discrimination. These

interactions are separately learnt for each class.

• Class-specific important variables are selected for classification as independent VINs

developed for each class.

• Since only a selected set of variables participate in the model building, the classes

can be learnt using a limited number of samples as well. The (n ≥ p) restriction in

each class, as in case of decision boundary methods (LDA/QDA), can be eliminated.
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Fig. 4.3. Variable dependency structure based classification strategy

• The categorical output variable Y , representing group labels, is only used to con-

ditionally select the data for continuous variables in X and hence is not used as a

system variable during modeling, unlike ANN and DPLS approaches.

• Facilitates simultaneous design of combination of linear and nonlinear models to ef-

ficiently classify separated and embedded class data.

• Since, specific VIN is generated for each class, it provides scalability and easy ex-

tension to multivariate problems. This is in contrast to decision boundary based
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methods which generate multiple (in some cases to the order of 2g) binary classifiers

to address multi-category problems.

This basic idea is refined and developed further into implementable classification tools

using different modeling strategies to build and test the class-specific VINs. The main

issues addressed are: how to define and validate significant variable associations for each

class? How to ensure unique VIN signatures? How to remember these associations? What

is the good projection strategy for new sample testing? The following sections of this

chapter provide the necessary explanation for different strategies adopted to build the new

classifiers, work flow of new tools and their performance analysis using ChemBioSys case

studies.

4.2 Discriminant Partial Correlation Coefficient Metric - DPCCM classifier ∗

The Partial Correlation Coefficient Metric (PCCM) based classification technique, pro-

posed in this section, attempts to provide the primary solution to the new classification

approach. It adopts its basic traits from the already established partial correlation based

VIN synthesis algorithm (section 3.2.4). The basic idea is to capture the variable depen-

dencies using a correlation measure, store them using VIN representation and then refine

the same by eliminating indirect associations using higher order partial correlations. Such

refined VINs are generated for each class and the overall PCCM metric by combining indi-

vidual PCCM for class specific VINs is used as the classifier model. These metrics, defined

for each class in the training set, model the intra-class attribute relations for individual

classes and capture the required class specific signatures. The sample to be tested is then

∗Results of this section are published in Jrnl. of Food Engg., 90(2), 146-152, 2009
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embedded into each class model and new inter-variable correlations structure is measured.

The proximity of the new variable interaction structure to the individual class models is

used as classification criteria. The PCCM methodology and the complete classification ap-

proach are explained in the subsequent sections. Previously considered case studies based

on food and beverage quality characterization are used to establish the performance of

DPCCM method in comparison with other data classification methods.

4.2.1 PCCM for classification - DPCCM approach

As the aim is to establish the presence and degree of association between variables con-

ditioned on each class in N , PCCM approach measures the direct correlation Rk
ij between

all possible pairs of variables (i, j = 1, 2, ..., p) in N for each class (k = 1, 2, ..., g). In

order to eliminate the indirect associations (dependencies influenced by the presence of

other variables in N) the higher order partial correlations (as in Equations 3.2 and 3.3) are

defined. Class specific VIN information is enriched with more correlation coefficients. The

new coefficient Rk
ij|z stores the degree of association between variables Xi and Xj for class

k in absence of variable Xz (or set of variables {Xz} for PCC order r > 1). For a given

system N [n× p ; g] if the required extent of information (in terms of correlation order r)

is fixed then each class can be represented as a VIN which is in turn stored as a collection

of Rij|z values. These class specific collective correlation coefficient measures form the basic

building blocks of the new classifier. The new classifier (Discriminating PCCM) starts with

building distinct variable interaction structure for each class using training data (N). These

individual class models are represented by a characteristic vector of calculated partial cor-

relation coefficients (between an identified sequence of all the variable pairs) and are termed
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here as Partial correlation coefficient metric (PCCM). The class specific PCCM (denoted

as Rk) in N stores the values of (
[
Rk

ij|z

]
calculated using samples of class k in N . Collection

of g number of PCCM (Rk ; k = 1, 2, ..., g) learnt separately from training set N are stored

in a single model structure in the form of DPCCM model, Mmodel [g × d], where d is the

number of partial correlations defined between pairs of variables by conditioning on other

variables. For example, d = p × (p− 1) /2 for 0th order and d = p × (p − 1) × (p− 2) /2

for 1st order partial correlations between variables. Mmodel [g × d] represents the learnt

classifier model for the entire system N , which can be then used to predict the class of

a new observation given the values of its p measurements. When a new observation from

the sample matrix Ntest is to be classified, it is appended as an additional row into the

model data (selected from N) for any class and the above procedure is repeated using the

expanded dataset to obtain a new correlation structure, R̄k for that class (using the same

order of partial correlations r as used during modeling). This is repeated by embedding

sample observation in each class (k = 1, 2, ..., g) to obtain sample DPCCM, Msample [g × d].

Each row in Msample is then compared for its similarity with corresponding row in Mmodel,

using the standard Pearson’s correlation between the two vectors. The sample observation

is classified into class c (c = 1, 2, 3, ..., g), if the correlation between row c of Msample and

row c of Mmodel is maximum.

Since the PCCM algorithm captures all the direct inter-variable relations, it is conjec-

tured that the final DPCCM Mmodel obtained on the training data represents a variable

interaction discriminatory model to be used for sample testing. The DPCCM classifica-

tion analysis for new samples is built on the hypothesis that if the sample is embedded

with the right class while rebuilding the DPCCM for sample analysis, the rows of Msample

will not differ significantly as compared to Mmodel. In other words, if the inter-variable
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correlations are distinct for each class, then a test sample belonging to a particular class

will be an outlier for other classes and hence will break the correlation structure (VIN)

for those classes, while retaining the original structure for the class it belongs to. Since

the class specific variable association structure (VIN stored as PCCM) is designed using

correlation between all possible pairs of variables, the effect of outlier during testing in-

creases with increase in the number of system variables, p. The deviation in correlation

structure before and after adding the test sample is tested by defining the correlation be-

tween corresponding rows of Mmodel and Msample matrices. The row which shows highest

correlation (least deviation) during this comparison identifies the test sample as homoge-

nous to the class it represents. During VIN approach for variable selection, higher order

partial correlations were used with threshold values to identify and eliminate the indirect

relations and improve the VIN structure. However, DPCCM uses the full PCCM without

eliminating the entries based on statistical significance of the correlations. The premise is,

even the less significant correlations are necessary components of inter-variable association

structure and can be useful distinguishing factors during the sample prediction step. The

new sample observation belonging to a particular class must have both, the strong and

the weak correlations between variables consistently appearing in the corresponding row of

Msample. If the insignificant variable correlations in Mmodel become significant in Msample,

it will contribute further to the discriminating ability of the model and hence will improve

the classifier performance. In the present analysis, the algorithm uses different order for

DPCCM to map the attributes. The order which gives the best discriminating results

(during re-substitution test) is utilized as Mmodel for that particular application. This is

attributed to the fact that, for applications where variables are not strongly correlated,

higher order DPCCM may not affect the results positively. On the other hand, for applica-
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tions where the variables are highly interdependent, increase in the order of DPCCM will

improve the classification results. The following section gives a step by step algorithm for

DPCCM classification analysis.

4.2.2 DPCCM Algorithm and Implementation

DPCCM training:

Step 0: Read training data matrix N [n× p ; g]. Select the order r (0, 1, or 2) for calculating

PCCM.

Step 1: Split the matrix N [n× p] into Gk (k = 1, 2, ..., g) separate group matrices. Each

Gk stores class specific sets with l1× p, l2× p, ..., lg× p samples respectively, where lk is the

number of observations for the kth class in N .

Step 2: For each group matrix Gk, calculate all possible sets of partial correlation coefficients

using Equations 3.1, 3.2 or 3.3 depending on the order selected in Step 0. Store the

coefficient arrays Rk
ij|z (i, j, z = 1, 2, ..., p ; i 6= j ; z 6= i ; z 6= j) as the rows of DPCC

Metric, Mmodel

Resubstitution test for optimizing the order: Initiate Ntest = N

Step 3: Select the test dataset, Ntest [m× p ; g] for sample prediction. Select a test sample

reading S [1× p] and augment the row in each of the group matrices Gk starting with first

group. With S embedded in each group matrix, repeat step 2 to obtain new rows in DPCC

Metric, Msample

Step 4: Calculate the correlation coefficient (measure for hypothesis) between corresponding

rows of Mmodel and Msample

Step 5: Determine the row c (c = 1, 2, ..., g) for which the correlation is highest and classify
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S as belonging to that class. Repeat steps 3 to 5 for all test samples in Ntest.

Step 6: Calculate the percentage of samples in Ntest that are correctly predicted. Repeat

steps 1 to 6 using PCCM order 0, 1 and 2. Optimize the DPCCM order based on the

highest accuracy of prediction.

DPCCM sample testing: Read test set to be predicted, Ntest

Step 7: Select Mmodel for the order optimized in step 6. Repeat steps 3 to 5 with given test

set as Ntest and predict the classes for each sample.

4.2.3 DPCCM illustration with Iris data

The concept of inter-variable correlations metric and DPCCM algorithm are illustrated

with a well studied dataset on Iris flower classification. This flower taxonomy dataset,

originally studied by Fisher [218] is available at, (www.ics.uci.edu/ mlearn/databases/). The

dataset, as explained in section 3.3.4 has 150 flower samples with four input measurements

in X (p = 4 ; Sepal Length - SL, Width - SW, Petal Length -PL and Width - PW).

For the present analysis, one sample belonging to Setosa group is separated for testing

(Ntest [1× 4 ; Setosa]) and the remaining 149 samples are used as training set N [149 ; 3].

Figure 4.4, brings out the concept of class-specific inter-variable correlation structures and

the working principle of DPCCM method. 0th order PCCM measure is selected for com-

paring different groups. The samples (in N) belonging to each class are separated and cor-

relations are defined between each pair of variables (as shown in x-axis of Figure 4.4) using

Equation 3.1. Rows of the PCCM metric, Mmodel (shown using solid lines in Figure 4.4),

represent the six inter-variable correlations for a particular group of flowers (shown with

different markers for each group). As observed, each group of flowers shows distinct PCCM
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profile. SL and SW are correlated better in Setosa group compared to others, whereas SL

- PL are highly correlated in Virginica and Versicolor flowers. Correlation between SW-PL

and SW-PW bring better separation between the three groups. Overall, it is evident that

0th order PCCM measure can capture the unique inter-variable patterns in each group and

hence can be utilized to distinguish samples belonging to different groups. The same set of

correlations is re-calculated for all the three groups, by inserting test sample Ntest into re-

spective group data in N . The correlation profiles for the new datasets (with embedded test

sample) represent the rows of Msample (shown as dashed lines in Figure 4.4). The PCCM

profile in Msample corresponding to ‘Setosa’ (dash line with ‘O’ markers) is very similar to

the PCCM profile in Mmodel for ‘Setosa’ (solid line with ‘O’ markers). On the contrary, the

PCCM profiles for other two groups in Mmodel, different significantly from the respective

profiles in Msample. The correlation between corresponding rows of Mmodel and Msample are

computed to be 0.9997, 0.7720 and 0.5570 for ‘Setosa’, ‘Virginica’ and ‘Versicolor’ groups

respectively. Based on this PCC metric similarity score, DPCCM classifies sample in Ntest

as ‘Setosa’ type flower. It must be also observed that a single sample when included during

PCCM calculation with other group, disturbs the inter-variable correlations significantly

even if there are 50 other homogenous samples in that group. For example, SW-PL and

SW-PW correlations are higher in Mmodel, but show lower correlation values (in Msample)

when non-homogenous sample is embedded. It is also interesting to observe that in Mmodel

, PL-PW have low correlation but have higher correlation in Msample, establishing the im-

portance of retaining all correlations in differentiating the groups. It is presumed that this

variation in PCCM between Mmodel and Msample profiles is mainly due to the sensitivity of

correlation measure to an outlier. This difference should be more prevalent for higher di-

mension (large p) data, as more inter-variable correlations are defined. The effect of partial
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correlation order on the distinct PCCM patterns was also tested. With the same set of N

and Ntest data, the 1st order PCCM profiles in Mmodel and Msample are correlated as 1.0000,

0.7804, and 0.5862 for each group respectively. Similar analysis with 2nd order PCCM gives

group wise correlations as 1.0000, 0.9477 and 0.7768. Comparing the inter group differences

in these Mmodel-Msample similarity scores for each PCCM order, it can be concluded that 0th

order inter-variable correlations provide highest distinction between groups for Iris data.

With these encouraging observations, the DPCCM classification method is extended to

different chemometrics problems and its classification performance is compared with other

established classifiers.

Fig. 4.4. Class-wise PCCM profiles for Iris flower data
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4.2.4 Analysis of product quality - DPCCM case study

Though, in general, the DPCCM algorithm can be applied to any classification problem,

food quality characterization chemometrics problems have been considered here as the pro-

cess systems case studies. The DPCCM performance is benchmarked with that of LDA,

CART, Treenet and SVM.

Case Study I: WINE quality classification Wine product quality recognition data

(available at http://www.ics.uci.edu/ mlearn/databases/wine/) [219] provides an interesting chemo-

metrics classification problem to benchmark the new method. The problem is also statisti-

cally challenging as, in this dataset, the samples are not uniformly distributed among the

different classes. The samples in the dataset are obtained from chemical analysis of 178 wine

samples, produced in the same region in Italy but using raw material derived from three

different cultivators (3 class problem). The quantities of 13 constituents (features) found

in each of the three types of wines are analytically measured as descriptors. De-noised and

well processed observational data is used for training the classifier model in order to classify

the given unknown sample into one of the three classes of wines. Thus, the system used for

analysis is N ≈ [n = 143× p = 13 ; g = 3]. 20% of the 178 samples selected randomly from

original data, are set aside for cross validation. Thus, Ntest ≈ [m = 35× p = 13 ; g = 3].

Case Study II: CHEESE quality prediction A food quality characterization dataset

studied by Granitto et al, [270] is used as the second experimental dataset. This dataset

with multiple classes, higher number of attributes and fewer samples in each group is a

challenging classification problem. It also tests the feasibility of using DPCCM approach

to difficult chemometrics applications. The dataset consists of 60 samples from 6 classes

of Nostrani cheese (10 samples each class). They are “Puzzone di Moena (Pu)”, “Spressa
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delle Giudicarie (Sp)”, “Vezzena (Ve)”, “Nostrano del Primiero (No)”, “Nostrano della

Val di Non (Pr)” and “Nostrano della Val di Sole (So)”. There are 35 sensory attributes

(based on physical, chemical and visual characteristics of cheese samples) measured for each

sample. Thus, the system considered for classification is N ≈ [n = 48× p = 35 ; g = 6].

For cross validation, 20% of the given data is separated and used as test data: Ntest ≈

[m = 12× p = 35 ; g = 6].

The DPCCM algorithm discussed in section 4.2.2 is coded and executed in MATLAB [248].

The order of PCCM to be used during DPCCM analysis is provided as the input param-

eter. Built-in MATLAB functions are used for LDA and CART algorithms. A separate

MATLAB code provided at http://asi.insarouen.fr/ arakotom/toolbox/index.html by [271]

is used for multi-class SVM analysis. Treenet classification result is obtained using TreeNet

software developed by Salford Systems (USA) [268].

Partial correlations of order 0, 1 and 2 are attempted to verify the efficiency of DPCCM.

The order which gives best classification result (during re-substitution test) is selected

for further analysis. No parameters were tuned for LDA except that ’diagonal’ LDA was

adopted whenever the datasets were non-positive definite. Cost criteria were adjusted dur-

ing model building using CART and Treenet. The cost function with best resubstitution

result is adopted for cross validation performance test. Simple RBF (Radial Basis Func-

tion) was used for SVM kernel with polynomial coefficient c and γ as tuning parameters

during training.
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Results and Analysis

Results for the above case study problems are presented in Tables 4.1 and 4.2 respec-

tively. Percentage correct predictions for individual classes are shown in the first few

columns of the Table. Overall classification results are indicated in the last column with

the percentage of test samples that are correctly classified. For cross validation test, the re-

sults shown are average prediction accuracy over 100 experiments for each class along with

standard deviation for the overall prediction accuracy. DPCCM performances for selected

order are indicated as DPCCM(r). Results shown for comparison methods are obtained

using the datasets, N and Ntest, identical to that used for DPCCM during the two tests.

As seen in Table 4.1 for re-substitution test, DPCCM has learnt the variable interac-

tions and modeled the classes distinctly with 2nd order PCCM, predicting the samples

completely. Improvement in performance with increase in order of partial correlations

indicates the presence of multivariate interactions and indirect relationships between the

variables. Hence, second order partial correlation based classification, DPCCM(2), is used

during cross-validation tests. Other classifiers also provide complete classification accuracy.

Decision rules using conditions on numerical values of the variables can lead to classifier

over-fitting as observed in the case of CART. CART has significantly poor cross validation

result as compared to re-substitution test. The re-substitution test and cross validation

test results are not significantly different for DPCCM indicating the stability of the new

method. For this dataset, with non-uniform class sample distribution, the DPCCM method

has provided performance matching that of well established methods like SVM and Treenet.
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Table 4.1
DPCCM performance analysis for WINE data vis.a.vis other classifiers

Test type Method class 1 class 2 class 3 overall

Re-substitution

LDA 100 100 100 100
CART 96.61 97.18 97.92 97.19
Treenet 100 100 100 100
SVM 100 100 100 100

DPCCM(0) 91.52 100 97.92 96.63
DPCCM(1) 96.61 100 97.92 98.32
DPCCM(2) 100 100 100 100

Cross validation

LDA 100 97.07 99.44 98.65 ± 2.02a

CART 92 87.29 93.67 90.91 ± 4.93

Treenet 99.15 94.3 100 97.44 ± 0.67

SVM 99.23 98.00 95.11 97.65 ± 2.4
DPCCM(2) 94.55 100 100 98.23 ± 1.52

a Overall accuracy is reported as average accuracy over 100 iterations ± standard deviation

Table 4.2
DPCCM performance analysis for CHEESE data vis.a.vis other classifiers

Test type Method No Pr Pu So Sp Ve overall

Re-substitution

LDA 100 100 100 100 100 100 100
CART 100 80 100 100 100 90 95
Treenet 100 100 100 100 100 100 100
SVM 100 100 100 100 100 100 100

DPCCM(0) 100 90 100 100 100 100 98.33
DPCCM(1) 100 100 100 100 100 100 100
DPCCM(2) 100 100 100 100 100 100 100

Cross Validation

LDA 78.5 81.5 86 53 100 64.5 77.33 ± 10.33a

CART 77 57.5 53.5 31 98.5 44.5 61.67 ± 9.91

Treenet 87 66 73.5 34.5 94.5 49.5 67.50 ± 4.21

SVM 96 76 66 74 100 86 83.00 ± 10.83
DPCCM(1) 100 70 90 70 100 70 83.33 ± 7.85

a Overall accuracy is reported as average accuracy over 100 iterations ± standard deviation

For CHEESE dataset, the classification results are outlined in Table 4.2. During re-

substitution test, DPCCM performance improved with 1stand 2nd order partial correlation.

This indicates multivariate dependencies between variables which characterize the het-

erogeneity between different classes of product. For the benefit in computational efforts,
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DPCCM(1) was used during cross-validation tests. DPCCM and SVM methods provide

the least error during cross-validation test. All the classes are accurately learnt and almost

perfectly predicted during the random sample testing. 12 samples randomly selected from

original set are used as Ntest set during crossvalidation runs and DPCCM, on an average,

predicts 10 of them correctly ( 83% accuracy). The standard deviation for the method is

also smaller compared to LDA, CART, Treenet and SVM. This establishes the robustness

of the method. The new approach provides improvement over the original study carried

out on cheese dataset [270] using Random Forest (77.1 ± 11.1) and DPLS (74.3 ± 13) clas-

sification approaches. Methods like LDA and CART provide relatively poor performance

for cross validation test indicating the inability of these methods to effectively discriminate

overlapping classes.

Another important advantage of the DPCCM approach is that the variables are observed

in their measured state and are not projected on the new space as in PCA, DPLS or

SVM. Hence, it will be easier to achieve a straightforward investigation based on mean-

ingful physico-chemical influence of variables on different quality of products. DPCCM

approach provides a good visualization of intra-class variable associations and interclass

dissimilarities in correlation patterns based on original variables themselves. Figure 4.5

shows variable correlation shade map for each group in CHEESE dataset. It can be ob-

served that each type of cheese sample is characterized by a pattern of variable correlations

further supporting the utility of VIN based classification approach. Such plots not only

provide class specific important features but also indicate how distinct the classes are and

the possibility of class overlapping. Cheese type 1 (No) and type 5 (Sp) look similar in their

association whereas type 2 (Pr) and type 3 (Pu) form similar variable interaction profiles.
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Such information can be effectively used in sensor selection to select important variables

for quality analysis of particular type of product.

Fig. 4.5. Class wise inter-variable correlation structures for CHEESE data

While deriving features of VIN based classification strategy (section 4.1.3), DPCCM ad-

dresses the multiclass multivariate classification problem with one PCCM model for each

class without seeking any decision boundary (unlike LDA), working only with the corre-

lations between variables (independent of scale of the measurements). Another important

factor in which DPCCM scores over other methods is its simplicity in implementation

without having to tune many parameters (except selecting the optimum order of partial

correlation based on three re-substitution runs). DPCCM does not employ rigorous opti-

mization algorithms. Hence, if the system considered has distinct inter-variable correlation
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structure for different classes (which are more likely to occur in high dimensional, multi-

variate chemometrics applications) the DPCCM approach offers an efficient classification

tool. It must be pointed out that for high dimensional data with higher order conditional

dependencies between variables, the computational time can increase significantly. Dur-

ing the simulation on a desktop computer (with 2.4GHz CPU and 2 GB RAM), 0th order

DPCCM is as fast as LDA for any application and higher order DPCCM can train and

test samples within 20 seconds for systems with 100 variables. For classification problems

with p > 100, one can implement DPCCM in conjunction with suitable variable selection

algorithms [272] including VIN method discussed in section 3.3. The performance of the

DPCCM classifier may also be affected if few classes in the system exhibit similar inter-

variable associations or no correlations at all. This singular situation may not arise in

chemometrics applications where different physical, chemical and visual measurements and

unique association patterns between them are often the basis of specific characteristics of

the system. With further improvements like incorporating nonlinear correlation measures,

selecting different order PCCM for different classes and incorporating significance of cor-

relations during classifier development, DPCCM promises to be a powerful tool for solving

complex classification problems.
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4.3 Variable Predictive Model based Class Discrimination- VPMCD classifier∗

4.3.1 Concept of Variable Predictive Models

Correlation based methods as applied in section 4.2 can qualitatively define the inter-

variable associations and also have the ability to identify the specific structures. However,

the correlation coefficient alone is insufficient to distinguish different forms of relationships

between continuous variables. Consider for example, a set of p different continuous vari-

ables X = [X1, X2, ..., Xp] used to define a hypothetical multivariate system. The changes

in X1 can occur due to different types of influences from other variables. Relations like di-

rect one-to-one interaction with other variable X2 defined using suitable function (linear or

nonlinear): X1 = f (X2) or effect of multiple variable: X1 = f (X2, X3, ...) can exist in the

system. Such possible multivariate and nonlinear associations cannot be well understood

by considering only the correlation coefficients as used for constructing VINs in DPCCM

classifier. Structures in the form of mathematical expressions are essential for these rela-

tions (edges in VIN) especially when they are to be utilized for any prediction applications.

These models with predictive capabilities are termed as Variable Predictive Models (VPM)

in this study. Any V PMi defined for variable Xi, is basically a regression model (linear or

nonlinear) developed statistically using sample measurements of attributes in the system.

The model V PMi can predict variable Xi using best set of other concurrently measured

predictor variables of the same system (Xj ; j 6= i). This follows from the basic variable

dependency assumption of the proposed new classification approach. Prediction of vari-

able Xi using corresponding V PMi, if statistically significant, highlights the existence of

∗VPMCD algorithm was also successfully applied to many other classification datasets (not included here)
and the results are published in: FEBS Letters, 581(5), 826-830,2007 (biological applications) and Pattern
Recognition, 42(1), 7-16, 2009 (automation applications).
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deterministic association between variable Xi and set of predictor variables ({Xj}) used to

build V PMi. A set of meaningful predictive models {V PMi} thus obtained quantitatively

represents the structure of variable interactions for a given system. They formulate the

edges connecting respective variables in the VIN.

The next question to be addressed is: what type of models should be used to construct

V PMi? In principle, any meaningful model structure can be employed using the apriori

knowledge of the system. In the absence of first principle models, data driven models can

be utilized. Only simple algebraic polynomial models, with predetermined structure are

adopted initially to elucidate the VPM concept and its further use for discriminant analysis

of steady state systems. The V PMi for given variable is obtained by selecting one of the

four model types. These are: Linear (L), Linear + Interaction (LI), Quadratic + Interac-

tion (QI) and pure Quadratic (Q) model types. The number of other variables used for

prediction (members of set {Xj}) in V PMi is referred as the predictor order (r - similar to

the partial correlation order r used in chapter 3). Both univariate (r = 1) and multivariate

(r > 1) models are used for the above four types of VPMs. The four model types explained

above can be generalized in the form of Equations 4.1 to 4.4 for any choice of predictor

order r.

Linear(L) V PMi

Xi = b0 +
r∑

j=1

(bj ·Xj) (4.1)

Linear Interaction (LI) V PMi

Xi = b0 +
r∑

j=1

(bj ·Xj) +
r∑

j=1

r∑
k=j+1

(bjk ·Xj ·Xk) (4.2)

Quadratic (Q) V PMi

Xi = b0 +
r∑

j=1

(bj ·Xj) +
r∑

j=1

(
bjj ·X2

j

)
(4.3)
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Quadratic Interaction (QI) V PMi

Xi = b0 +
r∑

j=1

(bj ·Xj) +
r∑

j=1

(
bjj ·X2

j

)
+

r∑
j=1

r∑
k=j+1

(bjk ·Xj ·Xk) (4.4)

It should be noted that, all the variables considered in model building, belong to the same

set X and they interchangeably take roles of predicted variable and predictor variables while

they participate in VIN construction. For convenience, any predicted variable is denoted as

Xi and predicting variables as Xj. For a given system N with input variable set (X [n× p])

, the design step to construct valid VPM for any Xi (i = 1, 2, ..., p) mainly involves selection

of predictor variables (set {Xj} (j = 1, 2, ..., r ; j 6= i) and solving the model equation to get

the model parameter set Bi. Various parameter estimation algorithms have been proposed

in literature [194]. One of the ways to determine the set of b values for specific VPM is

by formulating an ordinary least squares problem as Xi = Di · Bi, where Di is the design

matrix (n × nq) containing the polynomial values of r predictor variable set ({Xj}) as

used in the right hand side of Equations 4.1 to 4.4. The number of additive terms in the

model and hence the number of coefficients (nq) depends on the model type and predictor

order selected for VPM. In order to obtain statistically meaningful model parameters for

the VPM, it is required to have n > nq. This criterion can be a good starting point to

decide the type and order of the models depending on size of dataset X. Table 4.3 provides

details of different types and predictor orders for models that can be used for building VPM

and their corresponding design matrices. The V PMi for predicting Xi can be constructed

and evaluated for all the d possibilities, arising from different combinations of r predictor

variables ({Xj}) available in set X (i.e. d = (p− 1) Cr). The vector Xi is then predicted

separately using each of these d models to obtain Xi−pred. Out of all the d models, the best

V PMi is selected as final predictive model for Xi according to its prediction accuracy based
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on sum of squared prediction errors, SSEi =
∑n

s=1 (Xi,s −Xi−pred,s)
2 . Each feature vector

in set X (Xi ; i = 1, 2, ..., p) will have one best predictive model V PMi and corresponding

set of model parameters Bi. The elements of VPM (representing corresponding edge in the

VIN) thus obtained can be stored as a structure containing the model type, order r, values

of vector B and indices j for Xj that make up the D matrix (column for D in Table 4.3).

These models can be designed and used as the signatures of each characteristic (class) of

the system and VPM concept can be suitably extended for class discrimination as explained

in the next section.

Table 4.3
List and model details for various possible VPMs used to construct VIN for
VPMCD classifier

order
(r)

Model
Type

Predictive Model for Xi

(VPMi)
Design Matrix

(Di)
Coefficients

(nq)
1 L b0 + b1.X1 [1 X1] 2

(univariate) Q b0 + b1.X1+ b11.X1
2 [1 X1 X2

1] 3

L b0 + b1.X1+ b2.X2 [1 X1 X2] 3
2 LI b0+b1.X1+b2.X2+b12.X1.X2 [1 X1 X2 X1.X2] 4

(bivariate) QI
b0 + b1.X1+ b2.X2+

b12.X1.X2 + b11.X
2
1+ b22.X

2
2

[1 X1 X2 X1.X2

X2
1 X2

2]
6

Q
b0 + b1.X1+ b2.X2 +

b11.X1
2+ b22.X2

2 [1 X1 X2 X2
1 X2

2] 5

3 L b0+b1.X1+b2.X2+b3.X3 [1 X1 X2 X3] 4

(multi-
variate)

LI

b0 + b1.X1+ b2.X2+
b3.X3+ b12.X1.X2+

b13.X1.X3+ b23.X2.X3

[1 X1 X2 X3

X1.X2 X1.X3

X2.X3]
7

4.3.2 VPMCD approach

The VPMCD classifier also relies on the underlying principle of variable dependency

structure based discrimination proposed in section 4.1.3. Unlike DPCCM which qualita-
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tively captures the relations, VPMCD attempts to quantify and define the definite predic-

tive structure for the variable associations. Hence, the approach mainly involves a training

step where these distinct class specific variable interactions are learnt using VPM concept

applied to each class, X = Xk. Secondly, a testing step where the samples are projected

on the trained models and classified based on how well their features are predicted. Both

these steps are elaborated below.

VPMCD training

Let us consider a generalized classification example having a training set N [X ; Y ] as

described in section 4.1. To model the structure of inter-variable associations for each

class, data belonging to specific class are pooled from the set N into g different class

matrices, Gk [lk × p] with lk being number of samples belonging to class k (k = 1, 2, ..., g).

For each attribute vector Xk
i (i = 1, 2, ..., p) in Gk, ‘best’ V PMi is built as described in

section 4.3.1 using set of other variables Xk
j from the same matrix Gk. Different model

types and predictor order r can be selected as given in Table 4.3 and the one with best

fitting accuracy is selected as optimum type and order. It must be emphasized here that

this selection basically decides the model complexity and in turn affects the results and

computational time during further analysis. Once the parameters are estimated, the set of

best predictive models belonging to given particular class k (collectively denoted as class

k model: V PMk
i ), uniquely characterize the variable associations for that class. Similar

class specific variable association models are designed and valid VPM are selected for every

class. All the optimally designed (based on the best fitting model type, order r and best

matching predicting variable set Xj) VPMs are then scanned for similarity across classes.
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To ensure distinct V PMk
i in each class, any V PMi with identical parameters (Bi) and

predicting variables (Xj) in two different classes is removed from the collection of VPMs

(if this situation exists). At the end of this training, for the entire system N , the VPMCD

classifier (represented as V PMN) is a collection of best set of associations between variables

unique to each class as in Equation 4.5.

V PMN ↔
{
V PMk

i

}
V PMk

i ← Xk
i = f

(
Xk

j

)
(4.5)

where subscript i represents each predicted variable (i = 1, 2, ..., p), j represents predicting

set of variables (j = 1, 2, ..., p ; j 6= i) and k represents class index (k = 1, 2, ..., g). As

only one best V PMk
i is designed for each variable in each class, there can be maximum of

g × p models in V PMN . Hence it is conjectured that the final V PMN obtained from the

training data N , stores all the class specific VIN structures as discriminatory model to be

used for new sample testing.

VPMCD testing step

The basis for sample testing in VPMCD is that, an observation belonging to any class

k, will also posses the same variable association as captured in the optimally designed

mathematical model V PMk
i . The fully trained sets of V PMk

i models selected from V PMN

have distinctly higher accuracies in predicting the features (Xi) of any sample belonging to

class k compared to VPM models of other class. This means that, given the values of all

r predicting variables (set Xj) in a particular model V PMk
i as in Equation 4.5, the model

predicted value X̄i has a higher likelihood of being similar as Xi if that sample belongs to

class k. For a given test set Ntest [Xtest ; Ytest] each sample in Ntest is projected on class
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specific models structure and full sample is predicted using the already established classifier

V PMk
i as in Equation 4.6.

X̄k
test,i = V PMk

i (Xtest,j) = f
(
Xk

test,j

)
(4.6)

The probability of the full sample belonging to class k is increased by checking the predictive

capability of V PMk
i for all the valid VPMs trained in that class. The sample is considered

to belong to class k if the corresponding V PMk
i provided the best overall variable prediction

accuracy (least SSE). The classification of test samples is setup as shown in Equation 4.7.

The sample prediction capabilities for each of V PMk
i (k = 1, 2, ..., g) are thus the primary

classification criteria used in VPMCD testing.

Min︸︷︷︸
k

; SSEk =

p∑
i=1

(
X̄2

test,i −X2
test,i

)
; k = 1, 2, ..., g (4.7)

classify Xtest to best k ; Ytest = k

4.3.3 Geometric Interpretation of VPMCD approach

Figure 4.6 provides a schematic diagram explaining the VPMCD approach for a hypo-

thetical two class problem solved using univariate (r = 1) linear VPM by selecting one

best VPM for each class. It can be seen that unlike decision boundary based classifica-

tion (LDA/SVM), VPMCD designs a model using a line fitting the samples within each

class and not in between the classes. Each class VPM has characteristic model parameters

(slope and intercept) and also relates different set of variables. This difference between

class specific VPMs influences the test sample prediction errors and hence can be utilized

as discriminating criteria. This visualization can be extended to other VPM possibilities.

For multiple valid VPMs within each class, there will be multiple linear regression lines

on as many different Xi − Xj scatter plots. The model takes parabolic shape for Q type
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VPM. For multivariate (r > 1) linear VPM the model will be a hyper-plane on r + 1

dimensional plot with Xi as a function of r different independent variables (set {Xj}).

Since independent variable sets and models are designed, VPMCD can facilitate separation

of classes (by selecting pairs which discriminate them maximally) which otherwise appear

embedded when projected on entire p dimensional space. The advantage of VPMCD for

datasets with linearly inseparable classes comes from its potential to handle variable in-

teractions separately. If the classes are overlapping in X1 X2 subspace, then it facilitates

classification using other best separating variable subspaces (Xi - {Xj}). Hence VPMCD

can potentially address the issues associated with classifiers that are designed using entire

p set of variables, decision boundary based classification, and classification of non-linear

multivariate systems.

4.3.4 VPMCD implementation

The proposed VPMCD classification method has been implemented as a usable classifier

tool in MATLAB [248]. Built-in codes available in MATLAB are used to determine the

design matrix D (for L, LI, QI and Q type models) and to evaluate the regression coef-

ficients to obtain parameter set B. Separate supporting codes are written to extract test

samples depending on test method, predict the test samples using VPMs and to evaluate

the classification performance. Selected classical supervisory learning algorithms are also

implemented in MATLAB to carry out a comparative analysis. LDA/DLDA, QDA and

CART (without pruning) are implemented using MATLAB multivariate statistics toolbox.

For ANN classifier, a three layer perceptron architecture with error back propagation train-

ing algorithm is developed using Neural Network toolbox. kNN with (k = 3 to 15) is coded
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Fig. 4.6. Schematic representation of VPMCD classification approach

as a separate classifier function. All the datasets are analyzed using the same set of codes

and on the same machine for benchmarking the new method.

To start with, datasets are preprocessed for outliers or missing values and scaled if required.

If a separate test set is unavailable, the datasets are split into training set and testing set

depending on the type of evaluation method adopted (section 3.3.2). The VPMs for each

class are optimally constructed using only the training set data. The training data itself

is further randomly split into two parts. 2/3 of the data is used to construct the models

and the remaining 1/3 (hold out sample) is used to validate the performance during opti-

mal selection of model type and order r for each dataset. In the present study, all the four

model types (Table 4.3) are initially used to train the VPMCD classifier and the model type
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which predicts the 1/3 of training data (hold out samples not used during model building)

most accurately is selected as the best VPM for that class. Different predictor orders from

univariate to multivariate models with r ≥ 1 are tested. The optimum r based on hold out

sample prediction ability is adopted for predicting the test samples. Full set V PMN [g × p]

with one best VPM for each Xi is designed in order to maintain consistency in SSE com-

parison. The testing scheme is directly implemented on entire Ntest simultaneously as a dot

product of matrices Dk and Bk for each class. This is an additional advantage of VPMCD

approach for systems with large test samples. Well trained and tested classifiers can be

implemented quickly to predict the classes of a large set of samples together without having

to iterate the prediction step for each sample separately (like in decision tree and neural

network based methods).

4.3.5 VPMCD illustration with Iris Data

The concept of VPM and VPMCD formulation as explained in earlier sections are illus-

trated here with the Iris dataset (section 3.3.4) with variable set X = [SL, SW, PL, PW ]

and classes Y ∈ [ST, V C, V R]. One sample belonging to group ST is separated for testing

(Ntest [1× 4 ; ST ]) and the remaining 149 samples are used as training set N [149× 4 ; 3].

Table 4.4 shows various VPM formulations for this example using linear model type (L)

and model order r = 1. For a selected flower class, each of the four variables are modeled

as a function of the remaining three variables, one at a time and all possible (d = 3C1 = 3)

models are generated. Then out of these three models the one which best predicts the mod-

eled variable Xi under consideration is selected as the VPM for that variable. Consider

the ST type flower for example. The variable SL (selected as predicted variable Xi) is best
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Table 4.4
Group wise VPM design and VPMCD analysis for Iris Data

Group Setosa (ST) Group Versicolor (VC) Group Virginica (VR)
X1 = 26.39 + 0.69 X2

X2 = -5.69 + 0.79 X1

X3 = 6.10 + 0.17 X1

X4 = 0.16 + 0.15 X3

X1 = 28.07 + 0.83 X3

X2 = 13.73 + 1.05 X4

X3 = 17.82 + 1.87 X4

X4 = -0.84 + 0.33 X3

X1 = 11.19 + 0.98 X3

X2 = 16.95 + 0.63 X4

X3 = 5.75 + 0.75 X1

X4 = 6.64 + 0.46 X2

Sample Prediction a

X̄ = [49.85, 32.23, 14.26, 3.01]
SSEST = 30.0431

Sample Prediction a

X̄= [43.84, 15.83, 21.56, 5.43]
SSEV C = 365.77

Sample Prediction a

X̄=[29.81, 18.21, 41.75, 22.28]
SSEV R = 1509

Prediction Result
Min SSE = SSEST= 30.0431
⇒ predicted sample class = ST

a Test sample selected is Xtest : [X1(SL) = 48 , X2(SW)= 34 , X3(PL) = 19,
X4(PW)= 2] : Actual Class - ST

predicted using SW (predictor variable Xj). Similarly the variables SW, PL and PW can

be best predicted by linear univariate VPMs constructed using SL, SL and PL respectively.

So the deterministic variable association structure for Setosa flower is [V PMST : SL ←

SW, SW ← SL, PL ← SL and PW ← PL] with model structures as given in Table 4.4.

Similarly, when designed based on training data from N , the VR flowers show the structure

as [V PMV R : SL ← PL, SW ← PW, PL ← SL and PW ← SW] which is different than

the variable model structure for ST and VC type flowers [V PMV C : SL ← PL, SW ←

PW, PL ← PW and PW ← PL]. During this analysis, it is observed that all the three

groups show distinct variable interactions as designed using best V PMk
i which are also

coherent with the correlation shade map displayed in Figure 4.2. This establishes the first

objective that each class of any given system exhibits distinct inter-variable associations

which, in this case for Iris flowers, can be quantified using simple univariate linear models.

This discriminating structure and corresponding models then predict the values in Xtest

to obtain X̄test. Based on the comparison of classwise SSE, VPMCD classifies the single

test sample as belonging to type Setosa (ST) which is the correct class for the test sample.
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The successful classification of the test sample using these predictive models also supports

the second objective in developing a classifier using distinct class specific VPMs. These

observations are encouraging to explore the extension of VPMCD classification method to

different types of pattern recognition problems and analyze its performance using different

model types and order r. A challenging classification problem of protein secondary structure

prediction is considered here as the significant systems biology case study.

Fig. 4.7. Effect of variable interactions in X on the performance of different classifiers

4.3.6 Illustration of effect of variable associations on classifier

A hypothetical dataset is simulated to analyze the effect of extent of class specific variable

interactions on the performance of different classifiers including VPMCD. This analysis
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is used as the controlled simulation experiment in order to determine the validity and

advantages of VIN based classification approach when variable dependencies do exist in N .

A four class dataset is initialized with five randomly generated variables (values between 0

and 1). The dataset has 320 training samples (N) and 80 test samples (Ntest). The same

dataset N is used for training different classifiers (LDA, QDA, CART, ANN and VPMCD)

and the dataset Ntest is used for testing their performance. Then, in every iterative step,

an additional variable is added such that the new variable is a combination of two of the

existing variables. In order to simulate a class-specific variable dependency, the new variable

is added with varying non-linear combinations of different remaining variables for different

classes. This is continued till the system has 8 additional variables which are related to

the other variables in the system. Performance of different classifiers are compared for

each set of training (N [320× 5 to 13; 4]) and testing (Ntest [80× 5 to 13; 4]) data. Figure

4.7 highlights the profiles obtained for this analysis. Since the variables are randomly

generated, the classes will have highly overlapping profiles and hence difficult to classify.

This is evident from very low performance of all the classifiers for the initial system with no

correlated variables (starting point in the Figure). For a fully random classification system,

any classifier performance will be near to the random classifier performance (which would

have a classification accuracy of 25% for this example). With the increase in number of

variables contributing to the variable dependencies distinct to each class, the performance

of different classifiers improves over that of the random classifier. Comparison of progressive

performances of classifiers indicates their ability to utilize the class-specific inter-variable

dependencies. Decision boundary based LDA and QDA methods do not capitalize much

on the advantages of increasing variable dependencies. Decision tree based CART and

non-linear classifier ANN, are able to learn the new distinction and gradually improve their
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performance. VPMCD (with model type ’Q’ and predictive order r=2) shows the best

improvement in performance. This highlights the ability of VPM to learn the class-specific

variable interactions and classify samples that are non-linearly separated.

4.3.7 Protein structure prediction - VPMCD case study ∗

Prediction of physical structures and subsequent separation into characteristic groups

is important for analyzing the functional influences of biologically vital proteins. The ba-

sic amino acid sequence determines the primary structure of proteins and can be fully

established through experiments. Thousands of such experimentally investigated proteins

belonging to various organisms are available in public databases [273–275]. Secondary struc-

tures for some of these proteins are also established experimentally and information about

the same are also documented in the data resources. These available protein sequences with

known structures, if learnt accurately, can be used to predict the structure of an unknown

protein. Such an attempt using machine learning and computational algorithms is cru-

cial for avoiding expensive and time consuming experimental evaluations, especially given

the possible existence of millions of proteins with unknown structures/functions in nature.

Uncovering the relationship between the measurable features of amino acid sequences and

different protein structures is a main challenge being addressed in this computational bi-

ology case study. This structure characterization problem has been addressed by many

researchers in recent literature [55,61,276,277].

Proteins are usually classified into one of the four secondary structure classes: groups with

significantly high percentage of α helices, β strands and remaining two groups with mixed

∗Results of this section are published in Computational Biolog & Cchemistry, 32(4), 302-306, 2008.
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composition of α helices and β strands defined using different composition criterion. In

general, these groups are identified as α, β, α/β and α + β respectively [278]. Twenty

important amino acid compositions derived from the peptide sequences are used as the

predictors/attributes in all the protein classification problems (p = 20). Even though the

source of proteins observed vary depending on organism or tissue under study, the over-

all protein structure classification problem can be always formulated as a multivariable,

multi-class (four classes in most cases) discriminant analysis problem. Many classifier

functions have been tried in literature with differing degree of success. Statistical ap-

proaches [279,280], distance based classifiers [198,278,281], neural network [282,283], rule

based methods [284–286], information theory based classifiers [287, 288], SVM [289] have

been implemented for different sizes and types of datasets. A good review of these meth-

ods and their performances are reported in [276]. A similar effort of predicting the protein

secondary structural classes is presented here as the benchmark classification problem to

evaluate the performance of VPMCD.

Data collection and feature extraction

Two widely studied protein datasets constructed by Zhou [278] are used to demon-

strate the performance of the proposed VPMCD algorithm. The proteins were extracted

by Zhou from the SCOP database [274]. The first dataset (SCOP277) contains 277 pro-

teins [α = 70 ; β = 61; α/β = 81 ; α + β = 65] and the second dataset (SCOP498) consists

of 498 proteins [α = 107 ; β = 126; α/β = 136 ; α + β = 129] including many of the pro-

teins from SCOP277. The complete PDB code list for these proteins with the grouping

criteria fixed for categorizing the proteins selected from SCOP are given in [278]. In the
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present study, seven of the missing or reclassified protein domains in the original datasets

are replaced by new PDB domain names as available in http://www.rcsb.org. The two

datasets have similar grouping criteria with homology (sequence similarity between pro-

teins selected) varying between 45% and 100%. This aids in checking the ability of the new

method to learn protein structures and also to evaluate the effect of dataset size and types

on the proposed model based approach. Also, the same datasets have been analyzed before

using various distance measures [277, 278, 283, 286, 289–291]. Hence these protein datasets

represent a good case study for benchmarking the performance of VPMCD with some of

the existing methods in the area of protein structure prediction.

The primary amino acid sequences for all the proteins in the two datasets are extracted from

Protein Data Bank [273] using the online text-based search and retrieval system ENTREZ

[http://www.ncbi.nlm.nih.gov/entrez/]. For each of the (277 + 498) protein sequences in

both datasets, twenty distinct features based on compositions for each of the amino acids are

extracted using MATLAB code developed in-house. This procedure results in the train-

ing set N [n = 277× p = 20 ; g = 4] for SCOP277 and N [n = 498× p = 20 ; g = 4] for

SCOP498 datasets. A sub dataset with 222 proteins [α = 37 ; β = 64; α/β = 57 ; α + β = 64]

present in SCOP498 with homology < 40% with SCOP277 proteins are extracted to formu-

late a new test sample set Ntest [m = 222× p = 20]. In order to test the effect of sequence

homology on the performance, another dataset (PDB25) with 1673 proteins having an

average homology not more than 25% is selected from [276].
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Results and discussion

Individual (group-wise) and overall prediction accuracies for the two SCOP datasets are

analyzed using different tests. The results for resubstitution (RS) test are presented in

Table 4.5 and more rigorous LOOCV test in Table 4.6. The total classification results are

indicated in the last column with the overall percentage of correct classifications for all the

proteins sampled. Results for resubstitution test clearly indicate the complete performance

of supervised learning algorithms. All the four individual structures can be fully recognized

and predicted. For both the datasets, the new VPMCD method is fully self-consistent with

the protein classes. The results are similar to the well-established SVM method and better

than ANN and component coupled discrimination (CCD) [278,281]. This is inline with the

strength of the new method to efficiently learn the amino acid interactions and distinctly

recognize each of the protein structure characteristics. The 100% performance for each

protein highlights the structural biology notion that the amino acid compositions strongly

characterize the secondary structures for proteins of different types and sizes [277, 278].

The LOOCV results provide better insights to the superiority of the proposed method.

Compared to best available SVM and ANN methods, VPMCD method efficiently predicts

the untrained test samples during the jackknife test.

This indicates the stability of the multiple selective VPM based approach for mixed ho-

mology protein datasets. The additional 5% of proteins correctly predicted for SCOP277

dataset compared to SVM method, reveal the better efficiency of variable association model

based training approach even with smaller training set. The jackknife test result underlines

the importance of analyzing the unique amino acid associations to characterize the protein

secondary structures instead of their separation in the full descriptor space. It is also ob-
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Table 4.5
Resubstitution test results using different classifiers for protein datasets

Data Set Method α β α/β α+β Overall

SCOP277

CCD 95.7 93.4 95.1 92.3 94.2 %
NN 98.6 93.4 96.3 84.6 93.5 %
SVM 100 100 100 100 100 %
Rough Sets 100 100 100 100 100 %
VPMCD a 100 100 100 100 100 %

SCOP498

CCD 95.8 95.2 94.9 95.4 95.8 %
NN 100 98.4 96.3 84.5 94.6 %
SVM 100 100 100 100 100 %
Rough Sets 100 100 100 100 100 %
VPMCD a 100 100 100 100 100 %

a VPM Model type used is QI and predictor variable number r = 4.

Table 4.6
Jackknife (LOOCV) test results using different classifiers for protein datasets

Dataset Method α β α/β α+β Overall

SCOP277

CCD 84.3 82.0 81.5 67.7 79.1 %
NN 68.6 85.2 86.4 56.9 74.7 %
SVM 74.3 82.0 87.7 72.3 79.4 %
Rough Sets 77.1 77.0 93.8 66.2 79.4 %
VPMCD a 85.7 85.0 92.9 84.4 84.2 %

SCOP498

CCD 93.5 88.9 90.4 84.5 89.2 %
NN 86.0 96.0 88.2 86.0 89.2 %
SVM 88.8 95.2 96.3 91.5 93.2 %
Rough Sets 87.9 91.3 97.1 86.0 90.8 %
VPMCD a 93.5 94.3 97.7 92.2 94.5 %

a VPM Model type used is QI and predictor variable order r = 4.

served that the α/β class has the highest accuracy during LOOCV test for both datasets,

with few exceptions. This is clear from the distribution of samples used during training.

Both the datasets (SCOP277 and SCOP498) provide highest number of α/β as compared

to other classes. More number of proteins used during supervised learning provides higher

resolution into the structure of that class and hence the structure prediction for the similar

protein (not used during training) is better. This phenomenon is further proved by better
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Table 4.7
Effect of model order r on VPMCD (with QI model type) performance for
SCOP277 dataset

Order RS JK
10%

Random
20%

Random
NS

r = 1 84.13 68.27 70.37 ± 11.2 a 64.26 ± 7.7 a 81.53
r = 2 94.83 79.71 73.70 ± 9.5 76.67 ± 5.4 84.23
r = 3 98.16 83.40 79.26 ± 7.4 79.82 ± 4.6 91.89
r = 4 100 84.2 84.07 ± 5.2 81.30 ± 4.0 92.34

a Results are average values obtained with 25 trials ± standard deviations.

Table 4.8
Effect of model types on VPMCD(r = 3) performance for SCOP277 dataset

Model
Type

RS JK
10%

Random
20%

Random
NS

L 89.34 71.22 70.74 75.00 73.87

LI 97.43 79.71 80.74 77.41 84.68
QI 98.16 83.40 79.26 79.82 91.89
Q 97.43 80.44 81.11 74.63 84.23

results obtained for SCOP498 dataset which includes more proteins compared to SCOP277.

This observation suggests untrained sample prediction performance for each class and in

turn the overall classification result can be improved by selecting more number of proteins

for the training.

Sensitivity Analysis: A detailed analysis on the effect of predictor variable num-

ber (r) on the performance of the classifier is presented in Table 4.7 for the representative

SCOP277 dataset. Most of the previous works on protein structures [278,286,289,290] have

studied only the RS and LOOCV tests while comparing the performance of the respective

classifiers applied. The same two tests are shown here to result in better accuracies with

increase in the number of predictor variables (order r) used during the construction of

V PMi for all the groups. The accuracy is better than that of CCD and ANN methods
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with just a bivariate QI type V PMi. Higher order models provide further increments

in the VPMCD performance finally matching the best performance of 100% for RS test

and superior 84.2 % for LOOCV test with r = 4. This improvement due to increase in

number of other amino acids used to predict a feature reveals the multivariate interactions

among the building blocks of peptide chains. These interactions uniquely characterize a

specific secondary structure and hence the four groups can be separated effectively using

the VPMCD method. In addition to these two definitive performance tests, multiple ran-

dom sampling tests are also carried out in the present study to analyze the robustness of

VPMCD to variations in samples. A fixed set of samples (10% ≈ 28 samples and 20%

≈ 56 samples) are randomly kept outside the training set and are used as test cases for

prediction. The results presented in Table 4.7 are averages of prediction accuracies over

25 such iterations of random sampling. The increase in performance with order r is intact

in both the random sampling cases. The variation in performance over multiple iterations

decreases with higher predictor variable numbers. The last column in Table 4.7 displays

the performance of VPMCD in predicting a completely new sample set with 222 proteins

(non-overlapping proteins in SCOP277 and SCOP498). 92.34% of the new proteins are

correctly classified. The results bring out the fundamental advantage of the new method

to capture the inherent protein structure in the form of variable association models defined

for all the 20 amino acids.

Analysis of effect of selecting different types of VPMs on the performance is illustrated in

Table 4.8 using model order r = 3. It is evident that capturing the interactions (model type

LI and QI) between amino acids are very important in predicting the protein structures.

This is also the basis of CCD method suggested by Chou [281] where the interaction terms

are considered in the form of covariance matrix and hence showed better performance than



174

Table 4.9
VPMCD performance for low homology data compared with best results
reported by [276]

Dataset Method RS 10FCV JK
PDB25 SVM 54.1 52.0 51.6

(25% homology) Logistic Regression 53.6 51.0 51.3
(AA composition) Bayesian 50.9 48.0 49.0

N [1673 x 20 ; 4]
VPMCD
[QI type, r = 3] 55.2 50.2 50.6

the regular distance based discrimination methods [278]. Other works on protein struc-

ture prediction [292, 293] also point to the increase in prediction accuracy by using amino

acid dimer and trimer compositions as feature vectors. The new method suggested in the

present study has inherent features to capture these important interactions and hence is

observed to perform better than the existing methods, especially for protein datasets with

varying homology.

The higher prediction accuracies for all the methods considered in this study is mainly

because the two datasets considered here (SCOP 277, SCOP498) have highly homologous

within class proteins (homology varying from 45 to 100%). The proteins selected for test-

ing show a certain level of close relationship with those used for training and hence can be

easily predicted. It is evident from the results discussed so far that VPMCD is a potential

tool for high homology structure prediction. In order to investigate the effect of homol-

ogy on the performance of the new method, VPMCD is applied to low homology dataset

PDB25 as studied by [276]. Fixed set of models as used for high homology datasets (QI

type and r = 3) are employed to build the classifier. In the present form, the VPMCD

provides an acceptable performance compared to the reported best methods. The higher

RS results (sufficiently more than the random classifier base case reported for each dataset
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in [276]) further establishes the self consistency and learnability of the new algorithm. The

validation results, which are slightly lower than SVM, can be improved further by selecting

model types and structures appropriate for low homology problems.

These preliminary results are encouraging and support the extension of the new amino acid

interaction model based protein structure prediction algorithm to low homology problems.

However, depending on the application of structure prediction, one can optimize the model

complexity and VPMCD performance either for RS or validation tests. It must be em-

phasized here that only the twenty amino acid compositions are used during analysis to

obtain the present performance. The results can be further improved by extracting addi-

tional physicochemical features (i.e. feature set size p > 20) as in [294] which are known to

influence the secondary structure and hence can be suitably modeled during the VPMCD

algorithm. A selected type of VPM are applied to all the association models while de-

signing the V PMN during training. Alternately, different model types can be fit for every

association (with additional computational effort) and the best VPM type can be chosen.

With these additional factors taken into consideration, the proposed new VPMCD method

comes out as a strong tool for data classification applications in computational biology.

4.4 Genetic Programming Model based Class Discrimination - GPMCD clas-

sifier ∗

4.4.1 Genetic Programming - overview

Genetic programming (GP) [164,165] is an evolutionary method for automatically gener-

ating nonlinear input-output models. Given [X, Y ] data, mathematical operators, a fitness

∗Results of this section are submitted for publication in Industrial & Engineering Cchemistry Research,
2008.
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function and user defined parameters that control the evolution, GP develops a population

of models with mathematically meaningful structures without needing any prior knowledge

of the system. These models are then validated using data that is not used to build the

model. The probability of a given model surviving into the next generation is proportional

to how well it predicts the output data. Components of successful models are continu-

ously recombined (using a variety of genetic operators such as crossover, mutation etc.)

with those of others to form new models. In each generation, GP optimizes the model

structure, with a lower level nonlinear least-squares algorithm harnessed to estimate the

associated model parameters. A detailed discussion on formulation and application of GP

modeling to various linear/nonlinear steady state/dynamic process systems can be found

in [23,33,168,295,296].

The main components of a any GP tool [297] are: the terminal set, which is a list of relevant

input/output variables and constants; the functional set, which is a list of mathematical

operators (example; + , - , / , * , ∧, sqrt, sin, exp, log); the search space, which is a

set of all possible models that can be constructed using the functional and terminal set;

the fitness function which is a measure for evaluating the suitability of a candidate model

in terms of its fitting/prediction capability. Measures such as Root Mean Squared Error

(RMSE) are augmented by a term that penalizes complex (long) structures to form the fit-

ness function. Relatively successful individuals are selected from the current population (in

proportion to their fitness) to serve as parents for the next generation. This selection policy

is called fitness proportional selection. The genetic operations employed for the creation

of new generation of models include (i) Crossover - the generation of two offsprings from

two parents (each parent is split arbitrarily into two sub-trees, and reassembled as two new

entities); (ii) Mutation - the generation of a single new individual from a selected parent,
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by randomly changing one of its terminal or functional elements; (iii) Permutation - simi-

lar to mutation, except that two terminal elements are picked at random and exchanged.

Typical tunable parameters in a GP include: population size, number of generations (iter-

ations), probabilities for crossover, mutation and permutation, functional weightings (the

probability of selecting specific operators), the fitness measure and the selection policy.

Typically, the genetic program is run for either a pre-specified number of generations or

until a desired performance is attained by the best solution. In the present context of

discriminant analysis, GP is used as a non-linear modeling tool which can automatically

establish mathematical structure between several input variables and one output variable

in a system with unknown input-output characteristics. The VPM concept as explained in

the previous section is extended here using Genetic Programming models.

4.4.2 Genetic Programming Models - alternate VPM concept

The basic idea in this chapter is the possible utilization of potential class-specific inter-

variable associations. Correlation based methods, conditional dependencies and fixed struc-

ture models have been attempted in the previous sections to represent these associations.

Though these representations can learn different system characteristics and separate them,

they still are far from accurately representing the true nature of the underlying non-linear,

multivariate changes in a complex system. Even though enough external measurements are

made to observe different behavior of such systems, the underlying principles and reasons

for variations in these variables are not yet established. Also, these variations are unique to

specific systems and cannot be easily generalized over different forms of the system. Hence,

defining a specific structure and mathematically modeling the design principles for com-
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plex systems still remains a major research challenge. This lack of prior system knowledge

and availability of system measurements provides opportunities to employ evolutionary

modeling techniques like genetic algorithms (GA) and genetic programming (GP) for such

problems. In the present study, the power of GP is exploited for designing the previously

explained VPM to characterize variable interactions in process/biological systems. VPMs

designed using GP are referred here as Genetic Programming Models (GPM).

GPM design: In the present setup, one cannot really distinguish between the input

and output variables of the system. Therefore, each variable is treated as output vari-

able and modeled using the remaining variables using GP for obtaining the corresponding

GPM. For example, consider the system N with measurements X [n× p]. Each variable

Xi (i = 1, 2, ..., p) is considered as output variable (predicted variable) and is modeled as

a function of best set of other variables Xj (j = 1, 2, i− 1, i + 1, ..., p) in the same system.

Each set of input variables {Xj} along with output variable Xi is subjected to a separate

GP run to obtain Genetic Programming Model, GPMi which can effectively predict Xi

given the values for {Xj}. For a selected Xi, all the (p− 1) possible variables are used as

members of the terminal set during the corresponding GP run. The best model for pre-

dicting Xi, GPMi, evolves over several generations, automatically retaining a best subset

of predictor variables (r) from Xj. Hence the GP modeling technique serves the multiple

purpose of designing a usable mathematical model, optimizing the structure and param-

eters of the GPMi and also automatic selection of optimal set of predictor variables Xj.

Most importantly, these features are achieved without any prior knowledge of the system

and using the actual observations from the system that bring the effect of underlying phys-

ical/chemical/biological variations in the system. Hence, it can be inferred that, GPMs

can potentially represent the true nature of the variable dependencies. At the end of all the
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GP runs, a pool of p best GPMi effectively represent the nonlinear inter-variable relation-

ships of the complex, unknown system. The concept of inter-variable GPM is extended to

classification application and a new classification tool, GPMCD is designed.

4.4.3 GPMCD approach

The underlying principle of GPMCD method is similar to VPMCD classifier as described

in Figure 4.6, section 4.3. Figure 4.8 outlines the three major steps involved in designing

the class-specific inter-variable dependency structures using GPMCD. The main difference

is instead of using a predefined model structure as in VPMCD, GPMCD employs naturally

evolved models built using separate GP runs. Since the number of variables used to pre-

dict each variable (model order r) and the model structures are automatically optimized

during GPM synthesis in the training step, there is no need to tune GPMCD classifier

unlike VPMCD. On the other hand, though GPMCD eliminates the iterative procedure

of designing one best V PMi for each Xi, it relies on the computationally intensive GP

algorithm to improve the model accuracy. The new sample testing scheme for GPMCD is

identical to VPMCD approach.

Application of GP for class discrimination is of recent interest and many forms of GP im-

plementations have been attempted [207, 208, 298]. These studies utilize the power of GP

to design decision rules or discriminating functions which are then directly used to predict

the class of the new sample. Also, these are binary (two class) implementations and do

not address the simultaneous multi-class problems. Unlike these approaches, GPMCD does

not use GP to predict the class directly. Instead, it uses GP to develop variable prediction

models separately for each class which are then employed for class discrimination. Also,
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Fig. 4.8. GPMCD flow chart with different classification steps

GPMCD is different in its evolutionary modeling basis as it uses the variable prediction

accuracy as the model selection criteria and not the class prediction accuracy. Due to

its ability to design independent class interaction models, GPMCD can train and predict

multiple class samples simultaneously. The performance of the new GPMCD algorithm is

illustrated in the following sections, using different classification applications of process and

biological significance. The results are compared with the performance of different existing

classifiers on the same datasets.

4.4.4 Important ChemBioSys classification problems - GPMCD case studies

Table 4.10 lists the case studies attempted here along with the dataset details and source

reference. Five representative case studies with different process and biological significance
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Table 4.10
GPMCD case studies: classification problems and dataset details

Dataset N [n× p ; g] Application Source
IRIS [150 x 4 ; 3] Taxonomy of flowers UCI [219]
DIABETES [768 x 8 ; 2] Diabetic disease diagnosis UCI [219]

CANCER
N - [38 x 4 ; 2]

Ntest - [34 x 4 ; 2] Leukamia cancer tissue detection [203]

WINE [178 x 13 ; 3] Wine product quality classification UCI [219]

FDD
N - [200 x 5 ; 4]

Ntest - [200 x 5 ; 4] Nonlinear System, fault detection Simulated

are selected to demonstrate the generalized performance of GPMCD. Dataset IRIS con-

tinues to be the illustration dataset. The data resolves the differences between flowers

belonging to different biological taxa. Simple measurements on petal and sepal lengths (in

mm) are used to characterize three distinct flower types. The data points (n = 150) have

uniform sample distribution in three groups (50 in each group) and is therefore very appro-

priate for statistical analysis. The second dataset (DIABETES) with eight variables with

two classes is selected because of its clinical significance. The eight continuous variables

used to characterize the presence or absence of the disease, represent various physiological

parameters for the patient like plasma glucose, blood pressure, skin fold thickness, body

mass index etc. As no definite relationship is known between these variables, the unique

interactions between them provide a classical case for evolutionary programming based

classification. The dataset (CANCER) on leukemia tissue prognosis is originally a high

dimensional dataset for binary classification (identification of Acute Myeloid Leukemia -

AML and Acute Lymphoblastic Leukemia - ALL). Most out of 6172 variables (gene expres-

sions) are shown to be irrelevant as they are equally expressed in AML and ALL tissues.
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Hence only a small set of differentially expressed genes are selected for further analysis.

Many statistical gene selection methods have been suggested in literature [203] and also

few important genes for this problem have been experimentally identified. The present

study selects only four such important genes as suggested by [299]. The next two datasets

have been chosen to demonstrate the GPMCD performance for process systems. FDD and

WINE have been studied earlier in sections 3.3.4 and 4.2.4 respectively. Though representa-

tive datasets are used for illustrating the performance of the proposed GPMCD classifier,

the concept can be extended to any system N with varying characteristics (n, p, g and

distribution of samples).

GPMCD implementation

All the datasets listed above are separately subjected to GPMCD training and test-

ing. The GPM models for predicting variables in each class are generated using genetic

programming software GeMS [297], developed in-house for various modeling applications.

The settings used for each GP run are: maximum generations = 30, population size =

120, fitness criteria = RMSE, mutation/crossover probability = 0.5, functional elements

= ∧2, ∧3, sqrt, sin, cos, log, exp, output variable = Xk
i (variable Xi conditioned on class

k), terminal set = variables other than Xk
i : set Xj, model type = multivariate algebraic.

Models generated for each class are compiled and made compatible for the next step. The

GPMCD algorithm as shown in Figure 4.8 has been implemented and executed in MAT-

LAB [248]. Selected classical supervisory learning algorithms (LDA, CART, k-NN, ANN

and SVM) are also implemented in MATLAB to carry out a comparative analysis as ex-

plained in section 4.3.4. The learning ability of the GPMCD classifier is tested in two



183

ways: (i) by re-substitution (RS) analysis where the training data are used as test samples

and (ii) a new sample test (NS) wherein half the initial data points (selected from N if no

separate Ntest is available) not included during training are later used as test samples. The

RS test indicates the self-consistency aspects of the classifier while the NS test gauges the

real performance of the classifier by testing its ability to generalize [184]. In each of these

tests, overall classification accuracy is selected as the primary indication of the classifier

performance. For all the results, this accuracy is shown as the percentage of test samples

that are classified correctly by the trained classifier.

As the datasets are clean, no preprocessing or data elimination is performed. The same

dataset is used for all the tests, for all the classifiers. Wherever a separate test set is

unavailable, the datasets are split equally into training and testing sets, proportionately

maintaining the class distribution in each split. The GPMs for each class are optimally

constructed using only the training set data. The training data itself is further randomly

split into two parts. 2/3 of the data are used to construct the models and the remaining

1/3 (hold out sample) is used to validate the fitness criteria in GP. The pool of class specific

models collected from GP run as GPMk
i are then utilized as discriminating functions in

GPMCD on test data which are not used during training (except during RS test). All the

test results are reported and discussed in the following section.

Results and Analysis

Sample class-specific variable association models (GPMk
i ) obtained from GP runs for

each class, are outlined in Table 4.11 for each dataset. The model structure as given by

GeMS is simplified and reported in terms of system variables Xk
i , Xj. For continuity of
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Fig. 4.9. GPMCD prediction profiles for sample flower in each class of Iris data

terminology used earlier, the variable notations are replaced with the original four variable

names for the Iris dataset alone. The model structures automatically optimized by the

evolutionary approach for Iris data are coherent with the class-wise variable correlation

structure depicted in Figure 4.2. Also, without any initial system knowledge and bias the

natural selection based modeling procedure (GP) has designed a linear variable association

structure to characterize each type of flower. Out of three predictive models possible for
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Table 4.11
Sample GPMk

i generated during GPMCD analysis for different case studies

Dataset Sample GPMi
k#

IRIS
SW1= 0.6853*X1 = 0.6853.SL
PL2 = (X4+0.42039*(X4+X1)) = 1.42039.PW + 0.4039.SL
PW3 = ((1+(1+(0.5457*X2+1)))+1) = 3 + 0.5457.SW

DIABETES
X5

1= 0.9291E-02*(((X8-X2)-X6)).ˆ2
X2

2 = ((-90.23*(X6/X5))+( 128.3*1+X6))

CANCER
X3

1= (exp( 9.643*1)+ 3.607*(X2-1))
X1

2= X3

X4
2= (-4715.*(((1)ˆ0.5-1)-X2))

WINE

X3
1 = (((0.5023E-02*X5+1)+X8)+0.3703E-01*X4)

X9
2 = (-.3486*(X8-(X12+X6)))

X10
2 = (X7+(1./X9))

X1
3 = (0.3658E-01*(X9.*X10)+ 12.82*1)

FDD

X3
1 = 0.8465*((( 3.362*X1+ 1.181*X2).*X1)-(X1).ˆ2)

X5
2 = 1.000*((X1.*X2)./X4)

X3
3 = 1.000*(((X1+X2)+ X1).* X1)

X3
4 = (2.000*(X1).ˆ2+(0.8333*(X4.*X5)+(-.1545E-04*X4)))

# GP model GPMk
i predicts the variable Xi in group K (denoted as Xk

i ) using other variables (Xj) in the same group.

each variable, the dominant relations for each class are perfectly captured as best GPMi

respectively. For Versicolor flowers (k = 2), GP designs variable PL as bivariate linear

model with higher weightage for PW (strongly correlated) along with SL variable in the

same class. These observations establish the power of the GP based modeling technique

in identifying the true nature of inter-variable dependencies and learning the characteristic

signatures of each class. Complex models with multivariate nonlinear associations are ob-

served for different physiological properties in the DIABETES dataset. The gene expression

values exhibit almost univariate dependence on some other gene for cancer characterization.

These model structures typical for each class of the given system provide better insights

to the underlying design principles of biological systems apart from discriminative power
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during GPMCD implementation. GPMs for Iris data highlight the direct linear relation

between Sepal and Petal properties. The nonlinear relations for DIABETES data are ev-

ident from the complex physiological relations between variables selected (blood pressure,

blood composition etc). Linear association between gene expression values are clear indica-

tion of existence of correlated genes which are co-expressed or suppressed during a definite

genetic activity like mutation or tumor growth. Similarly, for process datasets, the variable

interaction models evolve as complex nonlinear structures to characterize the WINE data

(relating nonlinear dependencies between compositions). The GP models for FDD data

bring out the inherent nature of equations used to generate the data (section 3.3.4). For

class 1, which is the no fault set (50 samples), GP generates almost exact representation

for variables X3 and X5 as in Equations 3.9 and 3.11. For the fault situations (classes 2, 3

and 4), GPMCD uniquely learns the deviations for each fault and generates class specific

variable dependency structures which essentially help in discriminating the test samples.

Hence this simulated FDD dataset with known system structure helps in revealing the

strength of GP in recognizing pattern specific variable interactions, thereby facilitating

subsequent class discrimination.

Figure 4.9 illustrates the working principle of GPMCD for Iris dataset. All the class models

are used to predict four variables (rows) in all the three classes (columns). For Setosa class

(class 1), the GPM1
i predictions (-.- line) are almost overlapping the actual sample variable

values (circles) for all the four variables. On the contrary, when GPM2
i (- - line) or GPM3

i

(solid line) are used to predict the variables of samples belonging to class 1, the predicted

values are far away from actual values. Similar distinction between predictive ability of

class specific GPM from other GPMs can also be seen in other groups. Dashed lines in

group 2 (Versicolor) and solid line in group 3 (Virginica) are closer to group variables re-
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spectively. This distinction enables GPMCD classifier to segregate samples into respective

groups using predictive ability of group wise GP models. Another important observation

that can be made from this figure is the possible existence of variables which do not dis-

tinguish groups very well. It can be seen that though variable SL has clear prediction

for Setosa group model, it shows significant overlap in model prediction for classes 2 and

3. This implies, SL is a bad feature for identifying Versicolor and Virginica flowers. This

establishes the advantage of variable dependency structure based classification approach

in selecting variables uniquely important for each group. Such observations made during

GPMCD analysis can provide further insights to “discrimination relevant” variable subset

selection.

The results for GPMCD analysis as outlined in Table 4.12 reveal the underlying concept

of model-based distinction of classes. The analysis is carried out using the new GPMCD

method and the results are analyzed along with the accuracies obtained by several other

standard classifiers. Results for RS tests clearly indicate the ability of the GPM based clas-

sification approach to learn the patterns from the observations made on the system. For

the binary classification problems (DIABETES and CANCER), the RS results are much

higher than a random classifier (based on the distribution of samples, minimum of 35%

for DIABETES and 52% accuracy for CANCER if all the samples are predicted as same

class). This clearly provides evidence that the variable association structures defined by

GPMs for each class are distinct and can be used to methodically distinguish the samples.

The higher RS accuracies for complex system with 13 variables (WINE) with non-uniform

class distribution is encouraging and provides evidence on the self-consistency of the new

method. These results highlight the supervised learning capabilities of GPMCD and further

support the new classifier design objective that does not seek a decision boundary, distance
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measures or distribution functions. The new sample prediction test results (second row

for each dataset in Table 4.12) provide better insights to the superiority of the proposed

method in generalizing the class prediction. The overall consistent and comparable results

of GPMCD for datasets of varying classification complexity indicate that the objectives of

the present study have been achieved. The GPMCD performance is comparable with all

the other methods that employ different classifier principles. RS accuracies for GPMCD

are lesser in most cases especially compared to CART and ANN. But, while comparing the

results in Table 4.12, the new sample test results for GPMCD are not very far from the

RS accuracies. This proves that GPMCD learning is “optimum” and does not suffer from

data over-fitting as compared to CART and ANN. Validation test results for WINE data

are comparable to the performances of more computationally intensive classifiers (97.9%

for ant-colony and 92.2% for C4.5) as reported by [300]. For the simulated dataset where

the errors are within known bounds (FDD), the performance of GPMCD is superior to the

nonlinear classifiers like ANN and SVM. These observations establish the intrinsic strength

of the new method that captures the variable interactions distinctly into GPMk
i for pre-

dicting the characteristic groups.

Some of the important advantages of GPMCD along with certain limitations and sugges-

tions to improve them are discussed next. The computational time for GPMCD depends

largely on number of variables rather than sample size (unlike ANN and SVM). High di-

mensional datasets pose a serious challenge to the GP based method as all the variables

need to be subjected to multivariate GP runs before optimizing a best set of GPMi. One

way to avoid the combinatorial explosion is to select a smaller set of important variables

using domain knowledge or statistical feature selection techniques. As demonstrated dur-

ing CANCER dataset analysis, only 4 out of 6172 genes can achieve 100% classification
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Table 4.12
GPMCD performance analysis in comparison with existing classifiers a

Dataset Test LDA kNN CART ANN SVM GPMCD

IRIS
RS
NS

96
96

100
94.67

98
94.67

98
97.33

100
93.33

97.33
98.67

DIABETES
RS
NS

76.82
75

100
66.4

92.84
72.92

78.52
76.30

100
83.33

92.84
82.29

CANCER
RS
NS

97.37
97.06

100
100

100
97.06

97.37
97.06

100
97.06

94.12
100

WINE
RS
NS

100
98.0

100
94.5

97.19
89.55

100
97.5

100
97.5

100
98.88

FDD
RS
NS

66.0
65.5

100
61

85
52

83.0
78.5

93
83

98
93

a
First row percentage accuracies give RS test results, second row are for New Sample (NS) test with half the data left out

during training.

of samples. During the GPMCD analysis for GPMi selection, the performance remains

unchanged even after eliminating two of the genes from the dataset during testing stage.

GPMCD also derives all the advantages of variable dependency structure based classifi-

cation approach as discussed in section 4.1.3. Methods like LDA/QDA need at least as

many training data points as the number of variables (preferable to have more data samples

than the number of variables) for good model fitting as they try to model all the selected

variables at the same time. Since GPMs involve very few coefficients to determine, the

GPMCD approach does not need many data points in each class. Though bigger data size

(with more samples in each class) increases the statistical significance of prediction accu-

racies, the GPMCD classifier can nevertheless be effectively trained using lesser number of

samples (as seen in CANCER dataset analysis). Further, since a pool of multiple GPMs

is designed, the performance of the final classifier model (GPM) is less prone to noise and

outliers as compared to distance and decision rule based methods. On the other hand, the
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performance of this model based approach may be affected by several factors. Some of

the factors are: availability of continuous and dependent features, model complexity and

parameters employed during GP runs. The sensitivity of the proposed classifier to these

factors needs to be investigated further. The limitation of evolutionary computing such as

the possibility of getting trapped in local optima, difficulty in elucidating random/lengthy

model structures, computational complexity for datasets involving a huge number of vari-

ables etc. need to be addressed. If these factors can be overcome with advances in hardware

and software, the proposed new GPMCD method appears to be a promising candidate for

modern pattern recognition applications.

4.5 Conclusions

This chapter extended the concept of VIN to design alternate classification tools. The

new class specific variable dependency structure based discrimination approach is proposed

and validated. The geometric interpretation, implementation schemes and the benefits

of the new concept are highlighted using suitably illustrations. New classifiers based on

correlation structures (DPCCM), fixed polynomial models (VPMCD) and naturally evolved

models (GPMCD) are designed. Different ChemBioSys classification problems with varying

data complexity are solved as case studies and the performances of the new supervised

learning techniques are benchmarked with many of the existing superior techniques. The

results and observations made during this analysis establish the new classifiers as potential

pattern recognition tools complementing the limitations of existing techniques. These tools,

with suitable modifications, are used to solve more complex systems biology problems in

the next chapter.
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5. DESIGN TOOLS FOR NETWORK SYNTHESIS †

“Nothing unconnected ever occurs, for anything unconnected would instantly perish”
...Emanuel Swedenborg, 18th century swedish scientist, philosopher and theologian.

5.1 Network Design - important system biology problem

The ascendancy of high-throughput measurements for DNA, RNA, and proteins in the

past decade has given rise to systems biology which aims at a system-level understanding

of biological systems [7]. Unlike molecular biology, which focuses on the study of molecules

such as nucleotide acids or protein sequences, systems biology focuses on relations between

them, which cannot be described merely by enumerating the molecular components of the

system. Systems biology research focuses on key topics like system structure, system dy-

namics, design and control methods [7]. Study on system structures includes synthesis and

analysis of networks at different levels of organization from molecular interactions (gene-

gene, protein-protein, protein-ligand) and cellular mechanisms (metabolic/signaling path-

ways) to species interactions in a foodweb/ecosystem. This step is key to all the other inves-

tigations of systems biology. The main topic of biological network synthesis is as challenging

as developing a meanigful movie given a set of still images. The biological network syn-

thesis problem involves establishing different forms of molecular interactions/associations

based on only the ‘omics’ information such as individual molecular structure, expression

profiles, their biological functions and activities. Related issues are the sheer large size

of the network and associated complexity, interactions at different time/spatial scales and

inherent non-linearity of biological interactions. The problem is further accumulated by

†Parts of this work was carried out as internship project at synthetic biology lab, genomic sciences center,
RIKEN Reasearch Institute, JAPAN, with DR. Pawan K. Dhar (principal scientist).



192

the fact that the information about participating components (genes, proteins, species)

comes from different sources based on independent experimental studies carried out using

highly sensitive measurements. This brings a lot of noise and variation into the network

design input data and provides additional challenges. Many attempts have been made to

address these issues and to resolve network inference problem [48, 56, 70, 105, 107, 112] but

the challenges are, by far still unresolved. One such important biological network inference

problem of Protein-Protein Interaction (PPI) prediction is considered in this chapter and

a new network synthesis tool is proposed as an alternate solution.

5.1.1 Protein-Protein Interaction Network: overview

The interaction between molecules like proteins is fundamental to a broad spectrum of

biological functions, including regulation of gene transcription/translation and metabolic

pathways, enzyme activity, cell growth and on macro-level cellular functions, immunity and

stability characteristics of biological systems [301]. Advanced technologies for low and high

throughput analysis are available to experimentally characterize proteins and the interac-

tions between them. Methods using 2D gel electrophoresis separation [302], two-hybrid

screens [303], protein chip [304] are often employed for experimental identification of pairs

of interacting proteins. Given the existence of a huge number of proteins and different

modes of protein interactions, it is almost practically impossible to experimentally char-

acterize all of them. These labor intensive methods are prone to inconsistency and incur

higher costs as well. These limitations have motivated researchers to utilize advantages

of computational methods to predict the nature of proteins and their interactions. The

basic idea is to exploit the long established hypothesis that “sequence decides conforma-
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tion”. Following such observations and fueled by rapidly growing availability of genomic

sequence data, systems biology research is seeking advanced computational techniques to

design protein-protein interactions (PPI).

Three, conceptually different computational approaches have been explored for the pre-

diction of protein-protein interactions [305, 306]. The first is based on genomics that uses

phylogenetic information like seeking interlogs (existing interaction between similar proteins

in other species) [307], checking of conserved gene orders [308], analyzing evolutionary pro-

files depicting the presence and absence of protein coding genes in related species [309] and

analysis based on gene fusion events [310]. These methods rely on genomes of completely

sequenced species exploring clues for protein interactions using sequence similarity across

species. They tend to become less effective for proteins that lack clear sequence or struc-

tural similarity in different species. The methods seeking homologous partners in other well

established species are also sensitive to homology cutoff values used to establish interlogs.

Such approaches are prone to higher error rates as it has been observed that all homologous

proteins (proteins with similar primary sequence) need not have analogous functions [311].

These issues have prompted for prediction methods that are independent of sequence sim-

ilarities. The second set of techniques is based on the analysis of variety of structural and

physicochemical features [312] and modeling the interaction sites. Prediction of interaction

sites from surface patches [313] and molecular docking [314] have shown higher precision

especially for physically interacting proteins. Limited availability of protein 3-D structures,

the relatively large time and effort involved make these methods less attractive. Also, the

success of these methods depends largely on the accuracy of computationally predicted

surface properties along the length of the peptide chain. The third approach attempts

to model the signatures of putative protein partners by exploiting the ability of several
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statistical techniques and use them to predict new interactions. Well established pattern

recognition algorithms have been applied in proteomics study [315]. The performance of

these machine learning methods critically depends on factors like distribution of samples

(interacting and non-interacting proteins), model types, parameters chosen and numerical

features used to train the algorithms. The important domain of protein interaction research

is catapulting on individual successes and co-operation between systems and reductionist

approaches. The present work is an attempt to contribute to this domain of systems biology

and extend the biological understanding of protein interactions and their design principles.

A new supervised learning methodology based on extended VIN scheme is proposed here

as an alternate network synthesis tool for PPI prediction.

5.2 Aminoacid Residue Association based PPI prediction: VIN-NS technique∗

The biological molecular interactions are influenced by many factors like physico chem-

ical properties, molecular structure and environmental factors. The nature of interactions

are also defined based on several different factors such as presence in same cellular location,

chemical bonding to form protein complexes, participation in same metabolic/signaling

pathways, co-expressed during common cellular process etc. Hence, in order to establish

the presence/absence of interaction between two proteins, it is necessary to explore the

unique patterns of influences of these different factors. As each protein can be featured as

a combination of these properties and environmental factors the protein-protein interaction

problem can be formulated as identifying interaction between properties of two proteins.

Nature of variable interactions (association between protein properties) for interacting and

∗Results of this section are submitted for publication in Bioinformatics, 2008.
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non-interacting protein pairs, if learnt, can be exploited to establish similar patterns in any

unknown pair of proteins. The VIN based classification approach developed in earlier chap-

ters provides an immediate extension to solve this problem. VIN based Network Synthesis

(VIN-NS) is adopted here as a new PPI prediction tool. In the first part, possible existence

of distinctive correlations between components of primary structures of known interacting

proteins are investigated to analyze how different they are from non-interacting protein

pairs. The significance of primary structure (defined in terms of amino acid residue compo-

sition) in predicting higher protein structures and functions have been widely established

before [294]. It was also shown by [312] that residue compositions of protein-protein con-

tact regions are unique for different types of interfaces. Nevertheless, the role of complete

sequences in defining interactions between two proteins has not been clearly discovered. A

new hypothesis that the nature of amino acid associations, across the interacting proteins

is the basis for unique protein-protein interactions, is proposed and statistically established

in this work. The structure of such correlations is studied over a range of species, span-

ning important hierarchies of evolution. In the second part, these structures are captured

into deterministic models using the already studied VPM concept. The consistent patterns

specific to each type of interactions (positive and negative) are subsequently utilized to ac-

curately predict interactions between large pool of proteins (belonging to different species,

data sources and positive/negative distributions).

5.2.1 Establishing residue-residue correlations for protein pairs

For this investigation, already available knowledge of interacting proteins are utilized

and extrapolated further. Independent studies have established many functionally linked
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protein pairs using precise low throughput experiments. A large collection of such positively

interacting proteins is compiled in different resources such as DIP [316], MIPS [317] and

bioGRID [318]. Specifically, the DIP dataset reports physically interacting proteins with

good coverage for different species. Complete sets of interacting protein pairs reported in

DIP for individual species are selected for elucidating the hypothesis that the interacting

proteins exhibit definite residue-residue associations. The set of interacting protein pairs is

represented as [P1 P2] which is a m row, two column matrix with each row representing IDs

for interacting pair of Protein 1 and Protein 2. Only the amino acid sequences of proteins

belonging to the selected set [P1 P2] form the basis for the correlation study. For each of

the protein sequence, twenty amino acid residue compositions are extracted as numerical

features representing the frequency of individual residues in that sequence compared to the

overall length. Hence, each protein is represented as a numerical vector of 20 values between

0 and 1. In general, for n number of unique proteins forming m different interacting pairs

in selected DIP dataset, a feature matrix P [n× 20] is established. In order to check the

possibility of any association between the residue compositions of proteins P1 and P2, two

different feature matrices are generated. The first matrix P1M [m× 20] has composition

features of all the P1 proteins and the second matrix P2M [m× 20] for all the P2 proteins.

For a given set of interacting proteins pairs, the protein order P1 and P2 is selected ran-

domly. The sensitivity of this random order is also tested during the analysis. Each residue

belonging to set of P1 proteins (columns of P1M : P1M−i where i = 1, 2, ..., 20) is correlated

with all the twenty residue compositions of second set of P2 proteins (columns of P2M :

P2M−j where j = 1, 2, ..., 20). Hence, in each comparison, a column P1M−i (vector with m

values) is correlated with one column of P2M−j (vector with m values). The strength of the

respective residue-residue association (pair i− j) between P1 and P2 is statistically estab-
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lished using Pearson’s correlation coefficient Rij as in Equation 3.1. The null hypothesis

for Rij being zero is tested using corresponding probability (p value). This results in 400

associations leading to a correlation matrix R [20× 20] which stores interaction scores for

each pair of residues across proteins P1 and P2. This correlation matrix is considered as

the unique signature (VIN) of positive protein interactions, at least in the selected sphere

of biological system from which the protein pairs were selected. Such correlation matrices

can be designed for specified domain of interest. If one is interested in understanding the

nature of protein interactions specific to each species, then matrix R is established individ-

ually for each species. The available information of positively interacting proteins in those

species can be utilized to construct respective R matrices. If the objective of study targets

a specific cellular function or location, then protein pairs [P1 P2] associated with only those

domains can be utilized for designing R. The reliability of such correlation structures and

analysis thereby will increase with additional knowledge of domain-specific valid positive

pairs.

In order to completely understand the design principles of protein interactions, it is equally

important to ascertain the principles governing non-interacting proteins. Such a comple-

mentary examination is essential to strengthen the distinction of positive and negative

interactions when analyzing an unknown set of protein pair in the same domain. In this

pursuit of establishing complete protein interaction networks, the possible patterns for

residue composition associations using sets of presumably non-interacting proteins is also

investigated. The negative PPI dataset is used to establish the correlations between each

pairs of residues for non-interacting proteins employing the same steps as explained earlier

for positive samples. Correlation coefficient matrices thus obtained independently for pos-

itive (RP ) and negative (RN) cases are then compared for distinct amino acid association
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patterns that characterize each type of interactions. This analysis is illustrated with im-

portant and well understood species like Escherichia coli (bacterium) and Drosophila (fruit

fly) in the results and discussion section.

5.2.2 Aminoacid Residue Association (ARA) models for PPI prediction

Once all the 400 relations are established for each combination of residues, important

correlations are selected for defining the structure of amino acid associations. Further quan-

titative representations are necessary to employ the qualitatively established dependencies

for any prediction applications. Since linear associations in the form of correlations are

already tested for their significance, one to one linear deterministic models are designed to

capture these inherent associations between inter-protein residues. Such models, built us-

ing amino acid composition data are capable of predicting another amino acid composition

in the system. These models are direct extension of linear type Variable Predictive Models

(VPM discussed in section 4.3.1). They are used in this context to design models between

features of P1 and P2.

In order to establish an effective set of VPMs in the protein-protein interaction system,

the best partners of amino acid residues across interacting proteins are identified. For each

amino acid residue i (i = 1, 2, ..., 20) in protein P1 one corresponding best partner out

of 20 residues in protein P2 is selected based on the highest significance and strength of

correlation (magnitude of Rij). Similarly for each residue j (j = 1, 2, ..., 20) in protein P2

one best defining composition out of 20 residues in P1 is determined. In all, 40 best pairs

are selected as representative candidates for the corresponding type of interaction structure

(as determined by matrix RP and RN). For each pair i− jbest (or j − ibest) a linear model
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of type Yk = αXk + β (k = 1, 2, ..., 40 best pairs of residues) is defined, where Y and

X are the amino acid compositions of corresponding best residue pairs in predetermined

order of k. The regression parameters α and β are determined using the data available in

P1M and P2M for corresponding residues (columns corresponding to chosen i and j for a

given best pair). In other words, the idea is to fit a best line defining the relations between

strongly associated amino acid residues between the pairs of proteins in RP and store them

as V INP . The same procedure is repeated independently for negative pairs in RN and

models identifying non-interactions are set up as V INN . The purpose is to use this pool

of reference models (40 linear VPMs each for positive and negative system of interactions)

for predicting the nature of interactions among any given unknown protein pair belonging

to the same domain. The hypothesis here is if the sample (two given proteins) belongs to

the same domain as those used for constructing V INP or V INN then it will have similar

residue-residue correlation structure (for all or at least for the best residue pairs selected).

The respective amino acid compositions (Yk and Xk corresponding to the proteins P1 and

P2 in the given unknown pair) are projected on to the individual V PMP
k and V PMN

k .

The overall goodness of fit relating known protein interaction structure (models for RP and

RN) and the projected structure for unknown pair is used as the basis for judging the type

of interaction in the given sample. The sample protein pair is predicted as interacting if

its amino acid residue association resembles closely the models built using V INP struc-

ture than the models for V INN , otherwise the pair is classified as non-interacting. Figure

5.1, gives a schematic representation of the steps involved in the proposed PPI prediction

algorithm.
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P
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N
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P
 or VPMi

N
 model based prediction accuracy.  

 

Fig. 5.1. ARA approach: VIN-NS algorithm for protein-protein interaction prediction

5.3 PPI prediction case studies

5.3.1 Collection and preparation of PPI datasets

Complete PPI datasets belonging to the five biologically important species Escherichia

coli (bacterium), Saccharomyces cerevisiae (bakers yeast), Caenorhabditis elegans (worm),

Drosophila melanogaster (fruit fly) and Homo Sapiens (human) are extracted from Database

of Interacting Proteins [316]. These species ranging widely in phylogeny are selected in order

to establish the generalizability of the proposed concept. The coverage of unique proteins

forming these positive interactions is different for each species. For yeast, the number of

unique proteins (n) participating in the reported interactions (available in DIP as on 28th

January, 2007) covers as high as 80% of known proteins in its genome. For humans, this

coverage is just about 4% and for others in between. This lower percentage of known protein
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interactions further strengthens the need for computational PPI prediction methods. In

order to investigate on a larger domain, a combined dataset named ‘FULL’ is obtained by

pooling all the positive pairs from other species. Sample PPI datasets from other databases

(BIND and BIOGRID) are also extracted to investigate the across database PPI prediction.

A well established gold standard positive PPI dataset ‘Estd’ is selected to benchmark the

method with existing computational techniques.

Generating negative datasets

Since the information on non-interacting proteins is seldom reported or compiled, studies

on protein-protein interactions rely on a hypothetical negative dataset for establishing the-

ories. Randomly generated protein sequences were used as non-control cases for studying

protein similarities [319]. Such an analogy for non-interacting proteins will be misleading

and unrealistic vis--vis real positive interactions. Bock and Gough [320] use the shuffling of

known protein sequences by preserving compositions for machine learning approach. Such

an approach for using randomized negative dataset is of lesser biological significance and

does not reflect true type I errors (false positive rate). Lo et al [321] have shown that such

random shuffling of sequences to be less effective compared to alternate negative datasets

comprising of proteins with different cellular localization. The present study adopts a more

realistic approach suggested by Zhang et al [322] and recently used by Qi et al [323] for a

comprehensive investigation on machine learning techniques for interaction predictions. All

possible protein pairs [n · (n− 1) /2] are generated using the unique proteins (n) constitut-

ing the positive dataset. Known positive pairs (m) are filtered. Out of the remaining pairs,

desired numbers of pairs are randomly selected as negative dataset. This approach formu-
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lates a statistically significant and domain relevant dataset for non interacting proteins as

the biological systems are known to exhibit a very small fraction of interactions (often less

than 1%) out of all the possible combinations of proteins available in genome [306].

For the amino acid correlation analysis, negative datasets with m protein pairs are gener-

ated in each species (same number as available positive protein pairs). In the second part,

negative datasets in large proportion (with Negative/Positive ratio 100 or 200) are gener-

ated to simulate the real PPI system. This data is split into half as training dataset and

the remaining pairs, not used during learning are used as unknown samples for validating

the prediction performance. Datasets with different sample distributions are utilized while

analyzing effects of sample size and positive/negative sample ratio during training. The

details of the datasets extracted and as used for different analysis in this work are outlined

in Table 5.2.

Table 5.1
Positively interacting protein datasets used for PPI prediction

Code
Species

(database source)
# positive

pairs
Homology∗

%

# unique proteins
[˜ % coverage]

E E. coli (DIP) 6954 18 - 92% 1832 [40%]

P H. pylori (DIP) 1420 32 - 100% 710 [20%]

Y Yeast (DIP) 17524 25 - 100% 4962 [80%]

C C. elegans (DIP) 4013 12 - 100% 2641 [15%]

F Fruit Fly (DIP) 22000 15 - 94% 7456 [55 %]

H Human (DIP) 1394 8 - 65% 1158 [4%]

FULL E,P,C,F,H,Y combined 53305 8 - 100% 18759

BGY Yeast (bioGRID) 45000 25 - 100% 5417 [85%]

Estd E. coli (BIND) 126 30 - 82% 146 [3%]

∗Similarity between P1 and P2 proteins calculated using local alignment score (Needleman-Wunsch tech-
nique [319])
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Feature encoding

For each protein ID in [P1 P2] as reported for PPI, complete sequences from DIP

fasta [316] file are extracted. The missing or non-standard residue alphabets are removed

from the sequences. From the clean sequences, 20 amino acid residue compositions are

computed by measuring the relative frequency of each residue in the entire sequence (ratio

of amino acid residue count in the sequence to the length of the sequence which is also the

mole fraction of the residue in the given protein). Thus, each row in the protein matrix

P (for n unique proteins) represents 20 distinct composition values which add up to one.

The feature matrix for protein interaction [P1M P2M ] is extracted from P . Each column in

this interaction matrix represents a variable vector for corresponding residue composition

in either P1 (first 20 columns) or P2 (last 20 columns). This [m x 40] matrix is used as

basis for further analysis.

5.3.2 PPI prediction performance measures

Though many measures are available for evaluating the performance of prediction al-

gorithms [145], only the most relevant indicators are used. True positive rate (TPR) or

sensitivity is the percentage of positive interactions correctly predicted as positive. TPR =

TP×100/ (TP + FN). This is also referred as recall in “machine learning” literature. The

second measure reflects the inability of the method in correctly recognizing the negative

samples as negatives (Type I error). False Positive Rate FPR = FP × 100/ (FP + TN).

Indirectly this is the measure of specificity of the method. Specificity = 100 − FPR.

Here, TP = True Positives (number of positive interactions correctly predicted as positive),

FN = False Negatives (positive samples wrongly predicted as negative), FP = False Posi-
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tives (negative samples wrongly predicted as positives) and TN = True Negatives (negative

sample correctly predicted as negatives). The higher the TPR and lower the FPR (higher

the specificity), the better is the prediction outcome. As the correctness of these measures

depends significantly on sample distribution in the selected validation dataset, other less

sensitive measures are also used. Average performance; Qα =
√

sensitivity × specificity

and Matthew’s Correlation Coefficient; MCC as in Equation 5.1 are adopted here as overall

performance indicators. A nonzero MCC value indicates the valid, non-random prediction

performance.

MCC =
[TP · TN − FP · FN ]√

(TN + FN) (TN + FP ) (FN + TP ) (FP + TP )
(5.1)

5.3.3 Results and Discussion

Positive and negative PPI show distinct residue associations

Figure 5.2 and Figure 5.3, show the representative colormaps of correlation matrices RP and

RN for species E.coli and fruit fly. Each colormap is built using data (positive or negative

feature set) for that particular species, hence they represent the structure of how residues

are associated across P1 and P2 in that species. Each square in the colormap indicates the

strength of correlation (Rij) between the respective residues (shown using single alphabet

representation of standard amino acids) across Protein 1 and Protein 2. The squares with

color shades near red are the prominent relations with significant inter-protein residue as-

sociation. This simple visualization clearly reflects the distinct correlation structure for

positive and negative pairs (part (A) and part (B) in respective figures). Overall, a distinct

pattern of inter-residue associations being stronger in positive pairs than in negative pairs

can be observed. Since this pattern is consistent over all the species considered, it can be
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Fig. 5.2. Amino-acid residue correlation structures for PPI in E.coli

inferred that the valid PPI have distinct and significant associations between their amino

acid residues. In Figure 5.2., for positive pairs the correlations are significantly away from

Fig. 5.3. Amino-acid residue correlation structures for PPI in D.melanogaster
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zero with mean p values ≈ 1.35E-6 and for negative pairs the significance is at p ≈ 0.0757.

In Figure 5.3, for fruit fly data, the correlation values for positive pairs are significant

with p ≈ 3.14E-8 and, for negative pairs ≈ 0.0504. After removing a small portion of the

self-loops from the set of positive pairs, the correlation matrix almost remains same due

to high number of other valid pairs. Another important aspect reflected from the above

analysis is that all the associations are not symmetrical (Rij 6= Rji). This means, the

residue association from P1 to P2 is different from the associations between residues of P2

to P1. For example, in positive interaction structure for fly (Figure 5.3A), the correlation

value between ‘V’ of P1 and ‘A’ of P2 is not same as relation between ‘A’ of P1 and ‘V‘

of P2. It might eventually appear that the analysis is sensitive to the order in which the

proteins P1 and P2 are arranged (due to undirected nature of PPI network). This, in it-

self, is an interesting finding which reveals that the performance of any machine learning

technique which uses pair wise features for modeling the PPI can be sensitive to the order

in which those proteins are arranged. Most of the advanced methods which investigate

interaction prediction using such ordered arrangement of protein features [315,320,321], do

not focus on such sensitivity. A possible solution to counter this “order sensitivity” could

be to append the entire reverse order [P2M P1M ] below the selected data [P1M P2M ] used

during training so as to learn all combinations. However, this might lead to data overfitting

and will also lose the essence of random order in which the real protein pairs are selected

during testing. Hence, to contemplate the natural order and associated randomness, the

order of proteins in half the datasets are randomly swapped several times and the analysis

is repeated. The correlation strengths and structure in RP and RN remains unchanged to

a large extent (about 80% of the strong correlations remain unchanged) even after several

runs of randomized shuffling. These observations lead to the hypothesis that, the correla-
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tions between different pairs of residues across interacting proteins are unique and robust

over a large number of protein pairs. It is also observed that such structures are unique

to the domain selected, i.e. colormaps for positive pairs in different species show differ-

ent structures. The clear distinction between interacting and non-interacting patterns of

residue-residue associations, in each species, can thus be a potential discriminating criteria

between different types of PPI.

VIN-VS benchmarking: performance comparison with existing methods

Aminoacid Residue Association (ARA) based VIN synthesis and class specific VPM based

PPI prediction scheme is implemented in MATLAB. Gold standard positive PPI E.coli

dataset (Estad) extracted from more reliable BIND dataset [324] is selected as the bench-

mark dataset for comparing the performance of VIN-NS method with other existing meth-

Fig. 5.4. ARA approach benchmarking: comparison with existing PPI
prediction methods
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ods. In order to simulate the real time scenario of PPI prediction, the standard dataset

(126 positive pairs and 12600 negative pairs; m = 12726) is used as validation set and

a randomly generated dataset (m = 10100 with 1% positive pairs) from DIP E.coli set

(not present in (Estad)) is used as training set. Comparative PPI prediction approaches

of SVM, ANN and kNN are implemented using Bioinformatics toolbox in MATLAB. The

same training and validation datasets are provided to all the methods. Phylogenetic pro-

filing was separately performed using 20 species phylogenetic tree using the BayesTrait

software as explained/provided by [309]. As the performance of each method is captured

both in sensitivity and specificity overall performance indicators, Qα and MCC are used

to highlight the comparison. Figure 5.4 brings out the result of this analysis. Over 100

random iterations using different training sets (randomly pooled from dataset E), ARA

approach (VIN-NS) exhibits consistently strong prediction compared to well established

machine learning techniques like SVM and ANN. ARA provides 10% better prediction

than the best method for the selected standard dataset. An improvement of 15% and 25%

is seen over SVM and ANN methods respectively. The improved prediction performance is

further evident from MCC comparison (axis on the right of Figure). Though specificity

was observed to be higher for phylogenetic method in this case, the overall performance is

smaller compared to ARA method due to smaller true positive prediction rate. VIN-NS

based ARA approach shows the highest non-zero correlation value indicating its strength

in predicting higher positive interactions in a skewed PPI dataset. The difference between

the mean performances compared was found to be statistically significant based on one-

way ANOVA (at p < 0.0001). It was also observed during this analysis that, for one full

set of training and prediction run on the same machine using same software (MATLAB),

ARA takes only 5% of the computational time compared to SVM and ANN methods. This
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advantage is significant for quick online PPI prediction of large sets of protein pairs. Due

to this computational complexity and their inability to learn and predict very large scale

genome wide PPI datasets within practically realistic time, SVM, ANN and phylogenetic

methods are not attempted in the remaining part of the analysis.

Amino Acid association models for predicting domain specific PPI

As explained earlier, residue-residue interaction models are used to capture the distinct

correlation structures. 40 distinct VPMs for twenty residues in P1 and P2 are chosen as

the basis mainly because of unsymmetrical correlations observed during previous analysis.

This approach possibly counterfeits the effect of random order of pairs [P1 P2], as two way

effects are captured and stabilizes the prediction performance independent of arrangement

of proteins. Table 5.2 provides details of datasets used for training and testing steps and the

corresponding results of prediction analysis. The performance clearly establishes the po-

tential of underlying residue-residue association structures for predicting the distinct PPI.

The superior prediction accuracies for individual species are encouraging. Most impor-

tantly, the performance is not affected severely by the order of proteins selected as P1 and

P2 as the standard deviations are very insignificant. Consistently acceptable sensitivity

and specificity reflect on ability of the method in separately capturing the models for pos-

itive and negative PPI. Further analysis using FULL and SMALL datasets highlights this

distinction. The results for FULL dataset covering interactions over a wider phylogenetic

domain of species ranging prokaryotic bacteria to advanced organisms like fly and human,

is highly relevant to new biological investigation. Equally encouraging results for a BGY

dataset from bioGRID data source further establishes the versatility of the new method.

Though, BGY is selected as a case study to demonstrate the generalized performance of

the new approach, the investigation can be easily extended to other species reported in
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bioGRID or different data sources. The success of establishing accurate PPI networks in

biologically complex systems like metagenomes (localized colony of multiple species) or pre-

dicting new interactions in less understood species, relies heavily on such integrated span

of knowledge.

The method performs irrespective of homology of sequences for P1 and P2 as a wide range

of low to fully homologous protein pairs are used during the investigation (Table 5.1). A

training sample size of as low as 100 positive and negative protein pairs is sufficient to

unravel signatures for interactions and non-interactions. It should be noted that for the

SMALL dataset analysis, eventhough the models are built using only 500 sample pairs for

positive and negative interactions (m = 1000 pairs in training set), the validation is carried

out on complete bigger set of 252000 positive and negative interactions. Such learning

and prediction strength signifies the importance of multivariate interaction based VIN-VS

approach for exploring PPI in many species with fewer experimentally established interac-

tions.

Sensitivity Analysis

Figure 5.5 shows the variation in prediction performance when different sample sizes and

distributions are selected during training. 350 positive interactions are selected for training

the DIP E.coli protein interaction dataset (E). The number of negative samples, generated

using the same set of unique proteins, is increased in order to maintain different nega-

tive/positive sample ratios. Figure 5.5A reveals the improvement in specificity as more

negative samples are used in the training dataset. Also the variation in the performance,

measured as ± standard deviation in accuracy over 25 iterations of random sampling of

desired number of pairs from positive/negative pool of data, is smaller for higher ratio.

The best performance is seen at ratio = 200. This is consistent with the observations in
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Table 5.2
Performance of ARA model based PPI prediction for different organisms

Dataset
Training Set
(Pos./Neg.)

Testing Set
(Pos./Neg.)

Sensitivity∗

(TPR) %
Specificity∗

(100 – FPR) %
E 1000/200000 1000/200000 73.23 ± 1.63 78.65 ± 0.61
P 700/70000 700/70000 54.25 ± 0.88 66.10 ± 0.92
Y 1000/100000 1000/100000 56.03 ± 1.71 68.16 ± 0.84
C 1500/150000 1500/150000 45.48 ± 1.58 72.65 ± 0.79
F 1000/200000 1000/200000 73.73 ± 2.27 58.21 ± 1.89
H 650/130000 650/130000 62.50 ± 1.68 60.78 ± 1.27

FULL 1250/125000 2000/250000 56.58 ± 1.62 62.51 ± 0.99
SMALL 500/500 2000/250000 54.73 ± 2.81 56.00 ± 2.33
BGY 1500/150000 1500/150000 58.63 ± 1.53 64.73 ± 0.75
Estd 100/10000 26/2600 45.32 ± 3.43 76.25 ± 0.45

∗ Values are mean of 100 iterations with half of the randomly picked pairs shuffled for protein orders each
time ± standard deviation

the biological systems where a genome-wide PPI network generally has <1% of positive

interaction links. For this sample distribution (200 negative pairs for every 1 positive pair),

the sample size is increased from 10 to 1000 positive pairs. As expected of any supervised

learning algorithm, Figure 5.5B reveals the improvement in accuracy and stability in per-

formance of the new method with increasing sample size used to train the model. It is

encouraging to observe that variation in the mean performance is just about ± 2% over

25 random sampling iterations out of a large number of data points available for E.coli

dataset (5% of the total interactions available are used for training and equal number for

prediction).

Positive Interaction models for across species PPI prediction

During the correlation structure comparison (Figures 5.2 and 5.3), it is observed that pos-

itive interaction pairs show higher significant nonzero correlations compared to negative

pairs. The possible evolutionary conservation of amino acid associations across different

species in the selected phylogenetic hierarchy is explored further. The positive interactions
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Fig. 5.5. Variation in prediction performance with respect to (A) sample
distribution (B) number of positive pairs in training set

in a reference specie (say E.coli.) are modeled using only the positive pairs (in dataset E) as

training data. This reference interaction model is then used to predict the positive/negative

interactions in target species (Y, C, F and H). This “across species” analysis, using only

the positive interactions, calls for a single class implementation of VIN-VS. Only the V INP

models are learnt using only the positive dataset. To achieve the single class prediction, a
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Fig. 5.6. Distribution of relative prediction errors using positive protein
pairs in FULL dataset

prediction error cutoff is defined to distinguish positive and negative interactions. In order

to establish the statistical significance of such error based prediction, a random sampling

distribution of relative prediction errors (RE) is generated using FULL dataset, encom-

passing the entire domain of study. Randomly selected 26,650 positive interactions were

used to build representative 40 linear VPMs and the rest 26,650 interactions were projected

on to these models. The prediction error distribution, as shown in Figure 5.6 agrees with

a gamma distribution. For a given statistical significance (p value), a RE cutoff value is

sampled from this distribution for establishing the positive interactions during prediction.

For the “across species” analysis, a RE cutoff value of 0.27 (p < 0.05) absolute fractional

prediction error is used to classify the protein pair as positive interaction. That is, pairs

predicted by reference species model with fractional prediction error > 0.27 are classified

as negative interactions. The results shown in Figure 5.7 are for a sample dataset of 1000

positive/200000 negative proteins each in target specie. The results reveal a certain de-
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gree of possible existence of conserved amino acid correlation structures across different

species with varying phylogenetic significance. Just by modeling the positive pairs in one

species, it is possible to predict up to 25% of the protein-protein interactions in other

species with satisfactory percentage of negative interaction rejection (up to 95%). In a

similar investigation, Barker and Pagel [309] analyzed pairs of interacting proteins con-

served during evolution using computationally intensive phylogenetic profiling approach.

They attempted to predict PPI in S. cerevisiae as reported in MIPS datasets [317] using

15 other completely sequenced species as reference organisms. They reported a prediction

accuracy of 11% at p < 0.05 confidence region and 3.3% with p < 0.01 and established the

superiority of the correlated evolution based method over direct across-species comparison

method. In the present analysis, using ARA method, PPI modeled using C.elegans (only

one species and using only partial genome information) can predict 24% of true positive

PPI in S.cerevisiae. Using H.pylori as reference model the proposed method can predict

upto 21% true positive with p < 0.05 confidence. This capability of the proposed method is

very remarkable due to its computational efficiency and the higher prediction performance.

Positive Interaction models for across dataset PPI prediction

While comparing two different sources for protein interactions (DIP and BIND), the DIP

interactions are selected as reference to predict interactions of corresponding species in

BIND database [324]. Samples of 1404, 725, 643 and 828 positive interactions for P, E, Y

and H species respectively are extracted from BIND database. An equal number of negative

pairs are generated for testing the specificity of the models built using positive samples.

The performance is compared with another inter database PPI prediction technique of

‘interlog’ [307]. For interlog approach, the best-matching homolog between target (BIND)
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Fig. 5.7. Across species PPI prediction using only the positive interaction modeling

and reference (DIP) protein database sequences were found using PSI-BLAST alignment

[57]. If the two proteins are known to be interacting in reference, then it is inferred that

the respective two proteins are interacting in target species as well, if they share a sequence

identity of more than 30% and a joint e-value (statistical significance index) of 1E-5 [307].

The comparative results are shown in Figure 5.8. ‘Interlog’ method based on sequence

similarity fails to detect the interacting pairs in BIND data while searching for interacting

proteins in DIP dataset. This is mainly due to dissimilar nature of interactions reported

in BIND and DIP. Given the same datasets, ARA method showed better TPR accuracies

while achieving similar specificity. These observations indicate that the proposed approach

is complementary to the existing methods and can extend the usefulness of PPI prediction

algorithms.
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Fig. 5.8. Comparison of PPI prediction algorithms for ‘across databases’ analysis

5.4 Observations and Conclusions

The proposed VIN-NS based PPI prediction tool provides some important additional

features to complement the existing tools. Since one-to-one amino acid association models

together capture the complexity of known interactions, the new method is independent

of sequence similarity and hence does not suffer from problems associated with homology

or annotation similarity based methods. As the new method is derived from the original

VIN based discriminant analysis concept, it also brings the advantages like scalability,

performance that is independent of sample size (necessary to address large scale genome

wide PPI prediction) and analysis in original variable space unlike many other machine

learning techniques. The new method is very quick in learning and implementing the

interaction models for huge datasets and it is computationally less intensive method. Given

the feature matrix P1M and P2M for over 100,000 positive/negative protein pairs, it takes

less than 10 seconds (on a standalone desktop PC with 2.8 GHz CPU) for the whole exercise

of establishing R matrices and designing V INs including the prediction step for an equally
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high number of unknown samples. Such computational swiftness is of utmost importance

during online implementation of PPI prediction algorithms.

Though the analysis here is restricted only to the basic understanding of interacting

protein partners as against those non-interacting, the approach can be trivially extended

to simultaneous analysis of different forms of interactions like physical, co-complex, co-

pathway, permanent, transient, internal, external etc [312,323] within the same domain of

interest. For the datasets or domains where the distinct correlation structures do not exist,

the analysis can be extended with new set of features and similarity scores [294,312]. In the

present analysis, any given sample is classified as belonging to one of the trained groups of

interactions. Eventually, for a completely unknown system like metagenome, strict cut off

values can be defined for each group and those not satisfying all the V PMk
i can be identi-

fied as new forms of interactions (unsupervised VIN-NS). Furthermore, the structural and

functional implications of such associations need to be investigated. It would be interest-

ing to biologically explore the reasons for distinct amino acid associations in interacting

proteins, especially those which have been conserved over different species. In the first step

of the study on ARA correlation structures, it is observed that approximately 70% of the

strong associations occurred among polar v/s polar and non-polar v/s non-polar amino

acids. Equally high proportions of associations showed positive and negative dependencies

(as revealed by the sign of respective Rij).

Overall, the VIN-NS based ARA approach appears to be a promising tool for quick and

efficient prediction of large sets of PPI. ARA approach has shown good generalization

performance across species and different databases. There is further potential for improve-

ments and scope for identifying and reasoning the biologically significant components of

interacting proteins.
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6. COMPLEX NETWORK ANALYSIS TECHNIQUES †

“Complexity will be the science of the 21st century”....Prof. Stephen Hawking

6.1 Complex Networks - overview

A complex system consists of a large number of interacting units and the nature of

their interactions determines many of its functional properties. Design principle studies,

knowledge of static and dynamic structures and functional annotations of these systems

are of great research interest and relevance [81]. Structural representation in the form

of networks (digraphs/wire diagrams) has simplified the analysis of complex systems by

modularizing and depicting the interactions between the smaller components of the large

system. Network analysis has proved to be an effective approach to study the construction

and behavior of complex systems that commonly appear in many disciplines of science

as detailed in section 2.3. In general, the structure of complex systems is captured by

a network which consists of vertices representing the units, modules or building blocks

of the system. The edges connecting these vertices represent the interaction amongst unit

pairs. This representation forms a graph which can be further studied using different graph

theoretic approaches. Modeling and analysis of such networks has been well researched

over past several decades, particularly as a branch of combinatorial graph theory [325,326].

These approaches have been also extensively used for process network analysis [11, 35,

327]. However, the study of different classes of networks representing large scale real-world

complex systems such as biological, ecological, social and technological systems has begun

†Results of this chapter were presented as keynote lecture at APCCHE-2006, Malaysia.
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recently [43]. Network structure identification and characterization of its topology have

received increased multi-disciplinary interest including systems engineering. The inherent

functional behavior of complex systems and their responses to internal and external changes

are being hypothesized [7]. Various terminologies and measures addressing the topological

complexity of networks are reported [81]. There is an increasing need for developing new

tools and techniques to investigate the robust design principles of large scale systems which

cannot be completely explained using only the connectivity information. New complexity

measures that can reason the structural and functional stability of complex systems are

necessary, especially for dynamically evolving biological networks [35,93]. After developing

tools to synthesize large scale networks, this part of the research explores the significant

and challenging area of complex network analysis. In this chapter, the basic aspects of

network theory, various existing complexity indicators and theoretical models for network

classification are briefly reviewed. The importance and development of new complexity

measures are discussed. New complexity measures based on size and number of closed

motifs (cycles) are proposed and used to analyze the growth and stability of different

classes of networks. Many simulated and real world case studies of complex networks are

used in this investigation. Important observations and significance of new terms proposed

are highlighted in the results and discussion section.

6.1.1 Network terminology and properties

Network (in the form of a graph G): A system with definite overall structural and

functional characteristics comprising of multiple subunits interacting with each other. Word

Wide Web (WWW), gene regulatory networks (GRN), heat exchanger networks, plant pro-
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cess flow sheets, food webs in ecosystem etc are some of the examples of real world complex

networks.

Node, Vertex (Vi): A smallest subunit with certain functional or structural characteris-

tics. A computer or a web page in WWW, well defined genes in GRN, process equipment

in a flow sheet, each species in a food web. N represents the total number of nodes in the

network.

Edge (Eij): Edge Eij is the line that connects vertices i and j (i, j = 1, 2, ..., N) represent-

ing the interaction between them. Information exchange between computers in WWW,

expression regulation amongst genes, mass/energy flow between equipment, prey-predator

relation in food webs. E represents the total number of edges in the network.

Vertex degree (ki): Number of edges on any node i. For directed graphs IN and OUT

vertex degrees are separately defined for each node depending on the direction of the arcs

on node i.

Complete Graph/Network (Gc): Graph (Vi, Eij) having an edge between every pos-

sible pair of vertices in the graph. The total number of edges for Gc with N nodes is

Emax = N × (N − 1) /2. A local area network, where each machine can access every other

machine is an example of a complete network.

Path in the graph is a sequence of adjacent edges without traversing any vertex twice. The

number of such edges traversed is path length.

Distance (dij): Path length between given two nodes i and j. In a non-tree network, if

the multiple paths exist between these two nodes then distance dij is selected as the short-

est path. Network property of mean distance < d > is taken as the average of shortest

distances between all possible pairs of nodes in that network.

Subgraph (Gs): Graph obtained from the parent graph by deleting at least one edge or
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a vertex with its incident edges. Examples include subsection flowsheet in a large plant,

smaller protein complexes in large protein interaction networks.

Directed and Undirected Graph: If the edges Eij have fixed directions (node i in-

fluencing node j), then the edges are shown with an arrow and are called arcs (signal

transduction, mass flow direction). Graph with arcs is a directed graph (digraph). Graph

with no arcs and only edges is an undirected graph (the direction of interaction is insignifi-

cant or it is in both ways as in computer networks, friendship between two persons in social

networks, chemical bonding between proteins).

Connected Graph: A graph in which there exists a path between any pair of vertices

(when analyzed in its undirected form). The graph is otherwise disconnected.

Self Loop: An edge that begins and ends in the same vertex. An autocatalytic molecule in

a reaction network, self regulatory genes in GRN are examples. If all fishes are considered

as one node in the ecosystem, then fish eating smaller fish forms self loops in the networks.

Cycle: A path that starts from and ends in the same vertex. Graphs containing at least

one cycle are called cyclic graphs. Feedback control loops/recycle streams in a process

plant, regulation of gene expression by a protein synthesized by it.

Tree: Graphs containing no cycles. A spanning tree is a connected acyclic graph contain-

ing all the vertices of the graph.

Adjacency matrix, A: The network model of interactions between components is repre-

sented numerically using an adjacency matrix A = {aij} for i, j = 1, 2, . . ., N . For a

simple graph (without multiple edges between same pair of nodes), aij = 1 if there exists

an edge between vertices i and j, aij = 0 otherwise. A is a N ×N matrix and is symmetric

for undirected graphs (aij = aji). For digraphs, A is represented as an incidence matrix
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with aij = +1 for arc coming into node i, -1 for arc leaving node i and 0 otherwise. An

entry aii 6= 0 for any i, implies existence of self loop for node i.

6.1.2 Network complexity measures

Different structural and functional complexity measures have been defined in order to

characterize, compare and analyze complex networks [43, 328]. Some of them are outlined

here for undirected networks (most general characteristics of biological networks).

Average vertex degree < k >: Vertex degree ki is computed as the sum of all the

elements in row i of matrix A. The average vertex degree < k > for the entire network is

defined as the average of ki over all the vertices in G. < k >=
∑N

i=1 ki/N . This measure

indicates the edge density of the network. Higher < k > values indicate a higher degree of

interactions between nodes.

Connectedness CN : Measure of extent of interactions in the network with reference to

maximum possible degree of interactions (connectivity in comparison with complete graph).

CN = E/Emax = 2E/ [N (N − 1)].

Average distance < d >: Average distance (also referred as diameter) of the network

measures the degree of node separation. This is a good indicator to analyze time or effort

required to pass matter/information between two nodes in the network. The average dis-

tance of the network < d >= 2
∑N

i=1

∑N,i6=j
j=1 dij/ [N (N − 1)].

These measures of network connectivity are basic complexity terms used specifically to

characterize network structure. Additional network analysis measures are used to include

the information about distribution of edges and collaborative interaction amongst multi-

ple components. Such measures are relevant to understand the collective responses of the
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subcomponents contributing to stability and robustness of the network.

Vertex degree distribution P (ki): It is an ordered set of frequency of nodes in a given

network with increasing number of vertex degrees. P (ki) ≡ {nki,min, ..., nki,max}. The na-

ture of degree distribution, P (ki) v/s ki has been used effectively [43] to classify different

network topologies. Networks with Poisson’s random distribution and real-world networks

with power law distribution have been identified as important network classes with specific

characteristics.

Average cluster coefficient C: Cluster coefficient Ci provides a measure of collabora-

tive interactions in the network. It is the ratio of the number of edges Ei between the

first neighbors (nodes directly connected) of the vertex i, and the respective number of

edges, Ei,max = ki (ki − 1) /2, in the complete graph that can be formed by the nearest

neighbors of that vertex. Ci = 2 Ei/ [ki (ki − 1)]. In order to characterize the entire net-

work, the average cluster coefficient is defined as C =
∑N

i=1 Ci/N . Complexity index C is

mainly used as a measure of modular complexity. The cluster coefficient distribution C(ki)

which is distribution of C defined over all the vertices with connectivity ki, also provides

insight into the multi-component interaction nature of the entire network. For example,

hierarchical networks show power law mode distribution for C(ki).

6.1.3 Classes of complex networks

Random Networks : Large networks with no apparent design principles are described

as random graphs [325]. These are the simplest and most straightforward realization of a

complex network. The network starts with N nodes and each pair of nodes are connected

with edge probability PE, creating a graph with approximately PE × Emax randomly dis-
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tributed links. These graphs have a Poisson degree distribution (frequency of nodes v/s

vertex degree) indicating that most nodes have approximately the same number of links,

ki ≈< k >. These networks also exhibit ‘small-world’ property, seen as a proportionality be-

tween the mean path length and the logarithm of the number of nodes, < d >≈ log (N) [97].

Interactions in many naturally occurring or real world complex networks are, however, far

from being random. Hence alternate models of complex networks were explored by re-

searchers and significant success has been achieved [43].

Scale-Free Networks: A highly nontrivial development in understanding of complex net-

works was the discovery that the distribution of edges on nodes (degree distribution) follows

a power-law model P (ki) ≈ k−α
i . These networks are called scale-free, as power-law does

not depend on the scale N . Such networks grow in size by the addition of new nodes, which

attach to the already existing nodes. Also, in most real networks, there is a higher chance

for this new node to link to a node with a large number of connections. This phenomenon is

described as preferential attachment. The scale-free network model introduced by Barabasi

and Albert [326] incorporates these features. Starting from a small graph (complete graph

with n0 nodes), at each time step a node with n0 links is added to the network, connecting

to a previously present node i with a probability ki/
∑N

j=1 kj. In a scale-free network, the

probability that a node is highly connected (ki >> < k >) is statistically more significant

than in a random graph. Thus, the properties of the scale-free networks are governed by a

relatively small number of highly connected nodes called hubs. An important consequence

of the hubs is that scale-free networks exhibit high tolerance to random perturbations but

are sensitive to targeted attack on the highly connected nodes [5, 119]. Though there are

other types of network models [43], these two basic classes of networks are considered for

analyzing the new parameters presented in this study.
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6.1.4 Stability analysis of networks

The stability of large scale complex networks is the important basis for investigating

their functional versatility and robustness of respective systems. Network analysis for un-

derstanding mechanisms like precise regulation of biological pathways, spread of infectious

diseases, resilience and adoptability of networks to internal/ environmental stresses and

versatile/ need-based behavior are based on stability and robustness studies [46,47]. With

the well perceived notion that ‘structure influences the function’, the topological complex-

ity measures defined in earlier sections are used as tokens to analyze the structural changes

in a given network. Different methods have been suggested in literature for analyzing the

stability and robustness of complex networks for defined disturbances on the network [43].

Two main types of changes are effected on the network viz. random removal of nodes

(random instrument failure in a process plant, random mutations in GRN) and targeted

removal of selective nodes (virus attacks on crucial internet servers, disruptive attacks on

junction in a transport network). The effects of such disturbances on the network are stud-

ied by observing changes in the complexity indices. A similar analysis is adopted in this

study to establish the proposed alternative network analysis concept.

6.1.5 Motivation for new complexity measures

The complexity measures defined earlier represent specific properties of the network.

More often than not, these measures themselves do not directly contribute to the detailed

understanding of overall behavior of the network. For example, as the average vertex degree

< k > is averaged equally over all N nodes, this metric is not a good indicator for scale-free

networks which exhibits highly skewed distribution of ki. CN and < d > provide closeness
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and separation measures which remain almost constant and hence become insignificant for

large scale real world systems (due to small world nature of such networks). The cluster

coefficient C and distribution C(ki) focus only on the extent of grouping in the network

without revealing their exact role in deciding stability of the network. Further to these

observations, the existing complexity measures do not effectively account for the cyclical

interactions of network components. In a complex chemical plant with ample scope for

reusing mass/energy and increased necessity for automation, the recycling streams and

the control loops become important for any plant wide monitoring or regulation. It is

well established in systems biology literature [7, 81] that the feedback loops and cycles

in complex networks regulate many biological processes. Researchers have shown that

increase in number of such regulatory feedbacks or cycles in the network have led to stable

and robust system responses [46,329]. Hence, in order to understand the structural design

factors of the network that influence the functional properties, it is necessary to evaluate

complexity in terms of size and number of cycles present in the network. This part of

the research primarily conceptualizes a cycle based complexity measure and evaluates its

applicability as a network analysis tool.

6.2 Complexity measures based on cyclical network motifs

6.2.1 Definition of new complexity indices

The present method proposes different complexity measures based on the number and

length of the cycles (number of edges in a selected cycle) in the network. For any given

connected undirected network, the number of independent cycles (cycles which are not part

of any other cycle or combination of cycles) is Cy = E − N + 1. In order to character-
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ize the degree of cycle (motifs in network which can potentially contribute to functional

characteristics of the system), a new complexity measure Cycle Coefficient is defined as in

Equation 6.1

CyC = Cy/Cymax (6.1)

where, Cymax = Emax−N + 1 and Emax = N (N + 1) /2. It should be noted that for CyC

measure the maximum number of edges in the network is determined including self loops

on every node (N in number), hence (Emax) in this case has N more edges as compared to

(Emax) defined for cluster coefficient Ci or connectedness CN . This brings additional insight

for effect of self regulatory components during network analysis. The second topological

index used is Average Cycle Length defined as

ACL =

∑Cy
i=1 E (Cyi)

Cy
(6.2)

where, E (Cyi) is the number of edges in a selected cycle Cyi. The distribution of indepen-

dent cycles in the network is understood by plotting cycle distribution Cy (j) with cycle

length E (Cyj). Here, Cy (j) is the number of cycles in the network with E (Cyj) number

of edges.

These complexity terms signify the extent of interdependency of different nodes in the

network which influence one another. The importance of these new complexity measures

is demonstrated vis-a-vis existing measures, using analysis of simulated and real world

networks. The analysis is restricted to undirected graphs in this study for simplicity of

presentation. The idea can be easily extended to directed graphs by selecting appropriate

definitions for directed cycles and cycle coefficient.
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6.2.2 Cycle complexity based network analysis

The complexity measures discussed in the previous section along with newly proposed

indices are analyzed. Different types of networks (random and scale-free) are simulated with

varying sizes (N). Random networks with edge probability = 0.5 and scale-free network

with α = 3 are used for comparing complexity terms. Complexity indices < k >, C, < d >,

CyC and ACL are computed and compared for different scenarios of networks. Three

established real world complex biological networks (details shown in Table 6.1) are selected

from literature as case studies. Another simulated scale-free network with N = 2000 is used

for stability analysis. The consistency in complexity trends are compared for these case

networks. These networks are subjected to preprocessing in order to remove not connected

components from the network. The connected sub graph with cycles thus obtained is

referred as giant component with nodes NGC and EGC number of edges. Generalized

Table 6.1
Complex networks used for analysis

Dataset

Nodes

(N)

Edges

(E)
Source

Nematode 306 2653 [330]

Ecoli 423 519 [331]

Yeast 2118 6596 [119]

Scale Free Network 2000 5994 Simulated

network growth models as described in 6.1.3 are implemented using MATLAB 7, Release

14 with option to define the desired N and P (ki). Additional programs for checking the
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network structure, generating giant component, determining all the complexity terms and

stability analysis of the network are also developed.

6.3 Results and Discussion

6.3.1 Complexity analysis of simulated networks

The results for the smaller simulated networks are shown in Figure 6.1. For convenience

during comparison, each complexity measure is scaled with reference to the corresponding

maximum value. The profiles for different complexity measures for random graphs (Figure

6.1a) with increasing number of nodes indicate the stationary values for cycle coefficient

(CyC) and average cycle length (ACL). The network growth shows rapid decrease in

cluster coefficient (C) indicating lesser clustering tendency of nodes in random networks.

This is justifiable for unorganized evolution of networks as the interactions are random and

nodes are not connected due to any functional similarity. Figure 6.1b shows progressive

changes in network complexity for scale-free behavior. CyC and C values follow the power

law decay trend. This is due to the preferential attachment of new nodes to existing

nodes with higher degree during the growth of scale-free networks. The edges during this

progression grow as E = n0 +N ·n0 and hence CyC will fall with the order N − 2. For the

widely accepted growth model selected here to generate the scale-free networks, the CyC

and ACL profiles provide more systematic representation of the network evolution. Though

the additional edges in larger networks are connected with associated probability (higher

for hub node) CyC profile appears to be more deterministic with definite power law trend.

Such precise indicator of changing complexity during network growth can be used as basis

to engineer the technological networks to achieve desired properties. The increasing ACL
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(a)

(b)

Fig. 6.1. Complexity analysis of simulated networks with different node
sizes. a) random networks b) scale-free network
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trend indicates that the network incorporates higher number of components in its cycles

as it grows bigger. This signifies the importance of increased cycle complexity in higher

organisms with higher number of molecules contributing to a similar function. This is a

novel indication of possible functional redundancies in the molecular interactions (which

very often exhibit scale-free behavior) contributing to the stability of the biological system

as observed by [46]. These observations highlight the utility of complexity measures defined

based on definite motifs which form cycles in the large scale networks.

6.3.2 Complexity analysis of real world networks

Complexity analysis of the three case study networks (as detailed in Table 6.1) is pro-

vided in Table 6.2. The Nematode (C.elegans) dataset shows higher C and CyC values

indicating clustered behavior and higher cyclical interactions amongst the neurons in the

nervous system of C.elegans. The higher CyC index here justifies the importance of feed-

back cycles for the stable and robust responses of complex networks like nervous system.

The complexity measures for gene regulatory network for E.coli reveals lower connectivity

indicating no multiple gene interactions. The dataset represents the gene transcription

during the E.coli growth phase which is largely sequential in nature and hence has almost

minimal number of edges without higher number of cycles [331]. The protein-protein inter-

action network for Yeast possessed large set of unconnected components. The final giant

component retained nearly 70% of nodes and only 30% of the original edges indicating

very high compartmentalization in protein interaction. Due to this reason the complexity

indices for giant component showed lower values. One of the reasons for this segregation

of components and hence lower indices is the missing information about certain protein
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Table 6.2
Complexity analysis using different measures on selected networks

Data set <ki> <d> C CN CyC ACL

Celegans

(NGC=297 ; EGC=2148)
14.5 1.2 0.3 0.04 0.042 8.3

Ecoli

(NGC=328 ; EGC=456)
2.78 2.41 0.11 0.008 0.0024 5.49

Yeast

(NGC=1458 ; EGC=1993)
2.7 3.4 0.12 0.002 0.0005 8.9

interactions. The original study [119] used the dataset mainly for analysis of the effect of

drugs on protein synthesis using only the specific interactions.

The distribution of cycles Cy(j) for these three networks is shown in Figure 6.2. The

profile for Yeast data indicated a power law distribution with highest number of cycles with

Fig. 6.2. Cycle distribution Cy (j) in complex biological networks
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lower edges. E.coli distribution showed 20% of the cycles are with single edge (self loop)

highlighting the significance of self regulation in the transcription process. The nematode

network consists of more uniformly distributed cycles in conjunction with higher CyC

values. These observations indicate a definite pattern of distribution of cycles and their

importance to certain biological mechanism. Hence, network analysis based on the extent,

size and number of cycles (closed circuit motifs) provides vital insights to functionally

relevant structural complexity.

6.3.3 Robustness in biological networks - CyC analysis

The stability analysis is carried out on a simulated scale-free network with 2000 nodes

(row 4, Table 6.1). Selected removal of hub nodes is simulated as a targeted external distur-

Fig. 6.3. Structural stability analysis for targeted disturbances on simulated
2000 node scale-free network
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bance on the system. The node with highest vertex degree (ki) is deleted and the network

is rebuilt by removing all the edges connected to the deleted node. The new network is

analyzed for structural complexities using maximum value scaled measures. The process

is repeated for 20 such nodes every time targeting the node with highest degree in the

reduced network. Figure 6.3 shows the results of this analysis. A 20% increase in < d >

for 1% reduction in number of nodes establishes the importance of hubs in connectivity

between other nodes. The cluster coefficient index shows drastic reduction indicating the

vulnerability of scale-free network to such disturbances as demonstrated in [119]. Upto

80% reduction in C, after removal of top three key nodes indicates the larger dependency

of neighbor interactions on the hubs nodes. Compared to the C profile the cycle coefficient

values do not show significant decrease. It is concluded here that during the preferential

attachment growth of scale-free networks the cycles are formed between the nodes with

lesser degrees and many of the cycles do not include hub nodes. This is also evident from

the cycle distribution for scale-free networks (Yeast data - Figure 6.2) which shows highest

number of cycles with fewer participating nodes. Though the clusters are affected due to

targeted disturbances, the scale-free network still shows higher connectivity in terms of

number of cycles. This observation can possibly lead to an understanding of alternate form

of stability in complex networks. Biological systems with mechanisms based on scale-free

interactions could have evolved into robust systems by introducing closed loop interactions

or multi-component complexes between functionally less active molecules. Venkatsubra-

manian et al [35] also showed that the cyclical building blocks provide highest stability

and robustness in naturally evolving network structures. The buildup of functionally more

active hub molecules in larger networks could be to bring versatility and adoptability to
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additional molecular activity in higher organisms. Further careful investigation can explore

biological significance of such network emergence phenomena.

6.4 Conclusions

New complexity measure based on number of cycles in the undirected network is intro-

duced. The analysis carried out on different types and sizes of networks using the new com-

plexity indices establishes the comparative performance. The trends in the new complexity

metrics show distinct patterns which provide additional insights to network evolution. Dif-

ferent types of real world networks showed specific cycle distribution profiles indicating the

existence of correlation between evolution and cyclic complexity. The stability analysis

carried out on a fairly large network, established the importance of cycle coefficient to

understand the dynamical changes in the structure due to disturbances. The new concept

of network analysis proposed in this research forms a very good basis for detailed analysis

of physical/biological meaning of such trends. Investigation using directed networks and

respective modification in the new complexity terms can provide further insights to the

structure-function relationship of complex networks.
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7. CONTRIBUTIONS AND RECOMMENDATIONS

“ This is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.”

... Sir Winston Churchill, 1942.

Investigations on systems with less understood structural and functional mechanisms of

chemical and biological processes rely heavily on data driven system design and analysis

techniques. Complexity in terms of data size, type, sample distribution and data uncer-

tainty due to varying experimental sources and instrument sensitivities, all provide severe

challenges to existing data analysis tools. These data analysis issues unique to many pro-

cess and biological systems demand alternate approaches resolving limitations of existing

methods in terms of performance, generalizability, scalability and computational effective-

ness. This research work, motivated by different ChemBioSys analysis needs, contributes

to many such missing gaps with new data driven system design and analysis tools. The

following section summarizes specific contributions of this PhD work to the advancement

of domain knowledge.

7.1 Summary of research contributions

• VIN-VS tool for improving existing prediction algorithms: New multivariate

variable selection technique based on variable interaction network concept is developed and

tested. The graph theoretic variable ranking index used in VIN-VS tool can quantify the

importance of each variable in the system based on specific analysis objectives. Its util-

ity in selecting an optimum subset of variables that can retain or improve the prediction

performance of existing classification and multivariate regression techniques is established.
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Reduction in variable dimensions using VIN-VS tool can contribute to simpler implemen-

tations and quicker solution while resolving different diagnostic, process monitoring and

chemometrics problems.

• VIN-DA concept as new supervised machine learning technique: Class specific

inter-variable association structure based discriminant analysis (VIN-DA) concept is pro-

posed and validated. Different modeling schemes for designing unique classes are utilized

to develop new pattern recognition tools (DPCCM, VPMCD, GPMCD). Ability to address

wide range of chemical and biological classification problems, advantages in terms of predic-

tion accuracy, scalability and computational simplicity compared to existing methods are

demonstrated. These classifier tools are mainly recommended for multivariate, multiclass,

higher sample size classification problems with skewed sample distribution. The tools were

successfully utilized to solve important system design problems like food product quality

prediction, protein structure prediction and clinical diagnosis.

• VIN-NS tool for molecular interaction prediction in biological systems: In-

teractions between components are established using only the structural properties of in-

dividual components. Based on the nature of amino acid residue interactions, the new

data based network design technique could predict large scale protein-protein interactions.

Its effectiveness in performance (comparable to existing leading prediction techniques) and

advantages in terms of ability to handle large scale datasets, simplicity and computational

speed are established. This tool has tremendous scope for analyzing genome wide putative

molecular interactions (gene regulations, metabolic interactions and signaling pathways)

and also as an efficient web-based online diagnostic tool.

• New complexity measure for network analysis: The importance of cyclical motifs

in understanding design principles of scale free networks are established. Observation made
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during biological network analysis using the extent, size and distribution of cycles provided

significant insights to effect of network topology on the network behavior. The new indices

provide different perspective of biological robustness and ways to analyze the same. With

certain modifications (in terms of direction of interactions), the network analysis tools can

contribute to greater understanding of regulatory mechanisms governing complex systems.

• ‘IPC-STAT’: Different MATLAB modules developed/implemented in this work at var-

ious stages of investigations (as outlined in Figure 1.1) provide a compilation of “ready-

to-use” programs for any generalized data analysis application. Modules in this collection

named as ‘IPC-STAT’ (STATistical data analysis package from Informatics and Process

Control group, NUS) for data preprocessing (filtering, scaling, normalizing), data pro-

jection (PCA, MDS, VIN-VS), data clustering (k-means, hierarchical), variable selection

(SLVC, GA, VIN-VS), multivariate calibration (PLS, MLR), data classification (SVM,

ANN, CART, DPCCM, VPMCD, GPMCD), statistical analysis (descriptive statistics,

hypothesis testing), network design (phylogenetic profiling, ARA) and network analysis

tools (graph simulation, complexity analysis) can together form a comprehensive ‘software

pipeline’ for data intensive ChemBioSys investigation. Some such contributions as data

analysis support to other collaborative projects for other research groups at NUS are sum-

marized in next section.

7.2 Contributions to other collaborative projects

• Data driven optimization of metabolomics experiment protocols: The main

objective of this metabolomics investigation (at Small Molecular Biology Lab (SMBL),

NUS) was to study the biochemical changes (phenotype) of heat stressed cells and iden-
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tify biomarkers crucial for early stage heat stress tolerance and adaptation. The analysis

depended on a series of analytical steps involving sensitive Mass Spectrometry platform

for detecting metabolite profiles in rat tissues. Sample preparation and analysis protocol

involved tissue homogenization step (H) in three different buffers, acidification (A) with

two different strengths of acids and solid phase extraction using three cartridges (C) from

different manufacturers. Hence, a total of 18 different combinations of protocols are avail-

able out of which one or two best protocols needed to be established for large scale animal

experiments to be conducted in future. IPC-STAT tools were adapted for MS data pre-

processing (segregation, filtering, normalization), ranking of protocols based on metabolite

detectability, consistency in detection (in replicate samples), distinction between positive

and negative ions, ability to detect high and low intensity ions. Hierarchical clustering and

PCA were used to establish the similarity between protocols based on metabolite profiles.

Statistical analysis were performed to identify individual and combined effect of experimen-

tal parameters (H, A, and C) using one-way and multi-way ANOVA. A list of most and

least sensitive metabolites are prepared based on the significance test across 18 methods.

Colormap schemes, dendrograms and Venn diagrams were generated for better visualization

of the results. The optimized (1 out of 18) experimental protocol was adopted for future

metabolomics experiments involving over 300 rats exposed to three different temperatures

and tissue samples from seven organs.

• PPI prediction using metagenomics data: Metagenomics research at Genomic Sci-

ences Center, RIKEN Research Institute, Japan focuses on genome scale analysis of mech-

anisms responsible for digestive system related diseases. Metagenome (due to presence of

large pool of different organisms in human gut line) profiles of different patient samples

were available for systems analysis. Extracted protein sequence data was used to establish
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the unknown protein-protein interaction network in human gut. ‘IPC-STAT’ tools for pro-

tein sequence analysis, feature extraction and data normalization were utilized for dataset

preparation. ARA concept was implemented as prediction technique. Large pool of pu-

tative PPI datasets (shown as dataset FULL in Table 5.1) were used as training datasets

and metagenome protein pairs as prediction sets. ARA approach could efficiently analyze

protein pairs from different species to the tune of 8,000 unique proteins and protein pairs

arising thereby. The new method was quicker compared to other implementations (Interlog

and phylogenetic profiling). ARA approach predicted upto 2% of the possible protein pairs

as interacting. The PPI network generated from this analysis showed a giant component

with average vertex degree of 5.25 which is close to the expected edge density. The network

also showed the power law degree distribution of nodes confirming the scale free nature of

the predicted network.

• Perturbation analysis of plant metabolic pathways: This research at SMBL, Bio-

logical Sciences Department, NUS involved metabolomics studies to investigate phenotypic

changes in plant cell lines (transgenic and mutants) using model plant Arabidopsis. Control

and altered genotype lines were used to characterize the phenotypic changes. Metabolite

profiles were established for each line using chromatography + Mass Spectroscopy analysis.

‘IPC-STAT’ tools were used for MS data preprocessing and differential metabolite anal-

ysis. Several seeds, seedlings and adult plant samples differing in genomic content were

compared for their similarity in metabolic expression using clustering techniques. Hypoth-

esis testing (fold change analysis and t-test) were performed for each metabolite in order

to establish the significance of phenotype change between samples with different genotypic

perturbation. VIN-VS was applied for selecting smaller subset of important metabolites

that are differentiated by genotypic alterations. The results on differential metabolites ob-
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tained from this data analysis were used to establish the phenotypic variations in metabolic

pathways.

• Characterization of Urban water runoffs: Water quality monitoring project at En-

vironmental Sciences and Engineering department, NUS focuses on assessing the potability

of urban rain water runoffs. Rain water samples collected from different residential and

commercial were subjected to analytical testing for different heavy metal and dissolved

ion concentrations. The data was to be analyzed so as to compare the different sampling

stations. Data filtering tools in ‘IPC-STAT’ were used to detect outliers and filter them.

PCA was used to establish the similarity/difference between sources by projecting 15 metal

concentrations onto lower dimensions. Residential and commercial sites showed clear dif-

ference in metal composition. ANOVA was used to identify specific metals that showed

significant difference in composition across sample stations. DPCCM was used to learn

the metal composition correlation profiles for residential and commercial sites. CART was

implemented to design rules for composition limits specific to each station. These inputs

would contribute to further investigations on design of adaptive water treatment system.

7.3 Recommendations for future work

Following the experience and observations made during this research investigation, rec-

ommendations for future work are outlined here based on the potential scope for extending

the developed concepts.

•Weighted VIN based optimization for variable ranking

The VIN structure, as designed in chapter 3, for capturing multivariate variable interac-

tions in a given system is an unweighted graph. The importance of variable is decided just
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based on the connectivity with other nodes. This formulation can be easily extended by

modifying the RI definition in Equation 3.7 using suitable weights on the edges or the nodes

connected to it. The weights on the nodes could be based on the sensitivity of the feature

defined on that node, prior probability of detection (based on missing values in training

set), cost of the instrument used to measure that variable, instrument failure probability,

measurement reliability etc. Suitable indices can be defined also based on the importance of

that particular node for related biological or physical phenomena. Alternately, the partial

correlation coefficients themselves can be defined as the edge weights and incorporated into

RI definition. Instead of just using the number of edges on a node, weighted summation

of edge costs can be utilized. For dynamic systems, delays in inter-variable effects, time

constants etc, can be used as edge weights. The weighted VIN can be then optimized for

ranking the variables based on the refined RI values. If suitable weights for all the nodes

and/or edges are available for any system, this extension of VIN-VS algorithm can further

contribute to effective dimensional reduction applications.

• Domain specific VPMs - hybrid models in VIN

For classification problems associated with systems where the variable interactions are

partially understood, the VPMCD classifier can be modified to incorporate the available

domain knowledge. Such a priori knowledge about quantifiable relation between system

variables is possible in chemical processes with established thermodynamics, transfer oper-

ations or kinetics. With or without suitable ideality assumptions, mathematical relations

between two variables governing the true mechanism can be used as VPM during classifi-

cation. Such knowledge is also available in biological systems especially with established

metabolic pathways or gene regulations. Associations based on Michaelis-Menten’s kinetic

models for molecular interaction, flux balance equations etc can be exploited as known
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VPM during training and can be retained as valid prediction models with higher signif-

icance while constructing VPMCD classifier. If such knowledge is not available for all

the possible variable associations, then a hybrid modeling scheme (combination of first

principles and data driven models) can be implemented. Here, it is anticipated that such

information based on physical/chemical influences will further enrich the potential of VPMs

to distinguish the system characteristics.

• VPMCD - for dynamic systems

All the classifiers developed in chapter 4 focus mainly on steady state systems. The VIN-

DA concept of class specific interaction models can be also extended to dynamic systems

with suitable time series models as VPMs. Such an extension is necessary in order to

attempt most of the fault detection analysis like Tennessee Eastman problem in process

systems and micro array based time series data analysis in biological systems. VPMCD

classifier can be modified using different forms of time series models (ARX, ARMAX, Box

Jenkin’s, state space models etc) instead of using polynomial models (L, LI, Q and QI).

Auto- and cross-correlation functions can be used to establish the significance of these

dynamic variable predictive models (DVPM) and a pool of class specific DVPMs can be

selected to characterize each fault. Non-linear models (with fixed structure or generated

from modified Genetic Programming) can also be implemented for higher order systems.

Such an extension of the proposed algorithms has huge potential to solve classification

problems across many other disciplines like weather pattern analysis, financial analysis,

customer demand analysis etc.

• Unsupervised network synthesis

The network design approach (VIN-NS) proposed in chapter 5 is built in a supervisory

setup where validated potential interaction information is available for training. But, as
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seen in the context of PPI prediction, though experimentally established positive interac-

tions are available to some extent there are no validated set of negative interactions. In

such cases, the performance of any supervised prediction algorithm would be as good as

the assumed data quality. Such situations are common to biological investigations where

definite prior know-how of system characteristics remain largely unknown. In such cases,

successful acceptance of any prediction algorithm will depend on its ability to predict with-

out using prior knowledge (unsupervised prediction) or at least, using only the validated

prior knowledge (semi-supervised). The concept of VIN-NS needs further extension in this

direction. A preliminary attempt was made in this research by learning only the positive

interactions during across database and across species prediction using single class VIN-NS

scheme. But the method provides further scope for fully unsupervised implementation for

direct interaction prediction. This will require replacing the presently used linear regres-

sion ARA models with expressions capturing detailed protein folding mechanisms (based

on bond angle and bond strengths) and active sites on peptide chains. Influences of surface

patches or phylogenetic information can be further utilized to strengthen the first principles

ARA models.

Overall, the present research work contributes many new techniques and tools enabling

better and quicker scientific investigation of important problems in ChemBioSys engineer-

ing. The new concepts proposed here provide larger scope for implementing them to similar

data processing, classification, network synthesis and analysis problems in many other fields.

————- x ————-
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A. PUBLIC DOMAIN DATASETS AND CHEMBIOSYS
RELEVANT ONLINE LITERATURE

• Machine Learning datasets
(UCI) Major pattern recognition datasets - http://archive.ics.uci.edu/ml/
(PR Archive) Very good resource for datasets and pattern recognition tools
Link: http://www.qi.tnw.tudelft.nl/PRInfo/prarchives.html

• ‘omic’ datasets
(PDB)- RCSB Protein Data Bank : http://www.rcsb.org/pdb/home/home.do
(NCBI) - Comprehensive Genomics/Proteomics/Taxanomy data and software
Link: http://www.ncbi.nlm.nih.gov/
(BIND/BOND) - Biological molecular interaction database
Link: http://bond.unleashedinformatics.com/Action?
(BioGRID) - General repository for interaction datasets : http://www.thebiogrid.org/
(DIP) - Database of Interacting Proteins : http://dip.doe-mbi.ucla.edu/
(KEGG) - Kyoto Encyclopedia of Genes and Genomes : http://www.genome.ad.jp/kegg
(EcoCyc)- For everything on Escherichia coli K-12 : http://ecocyc.pangeasystems.com/ecocyc
(ENZYME) - Major proteins and Enzyme nomenclature : http://www.expasy.ch/enzyme/

• For Micro Array data analysis :
http://www.stat.wisc.edu/ yandell/statgen/reference/

• Comprehensive listing of Gene Regulatory Network related data and literature :
http://www.stat.wisc.edu/ yandell/statgen/reference/array.html#intro

• A Glossary for Systems Biology :
http://sysbio.ist.uni-stuttgart.de/projects/glossary/

• Glossory of MultiVariateStatistics (MVS) terminology :
http://www.okstate.edu/artsci/botany/ordinate/glossary.htm

• For statistical methods :
http://www2.chass.ncsu.edu/garson/pa765/statnote.htm

• Good resources for data mining :
http://www.kdnuggets.com/

WEBSITES valid as on 25th February, 2008
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B. COMPUTATIONAL RESOURCES AVAILABLE ONLINE

• Weka 3: Data Mining Software in Java: Weka is a collection of machine learning algo-
rithms for data mining tasks. An userfriend software freely downloadable for academic use.
Weka contains tools for data pre-processing, classification, regression, clustering, association
rules, and visualization. It is also well-suited for developing new machine learning schemes.
Line: http://www.cs.waikato.ac.nz/ml/weka/

• MVSP 3.1 (Kovach Computing Services - UK): MVSP is a MultiVariate Statistical
Package. Options for PCA/CA/CCA. It can also perform cluster analysis, using 20 different
distance or similarity measures and seven clustering strategies. Diversity indices may be
calculated on ecological data; these include Simpson’s, Shannon’s, and Brillouin’s indices.
Thirty days free Trial Version : http://www.kovcomp.com/

• Cellware 3.0.1 - BII - Singapore: Cellware - a grid based modeling and simulation
tool, is being developed by the systems biology group at the BioInformatics Institute (BII),
Singapore. Link: http://www.bii.a-star.edu.sg/sbg/cellware.

• CellDesigner 2.5 - (The Systems Biology Institute, Tokyo, Japan): CellDesigner
is a structured diagram editor for drawing gene-regulatory and biochemical networks. Net-
works are drawn based on the process diagram, with graphical notation system proposed
by Kitano and are stored using the Systems Biology Markup Language (SBML). Link:
http://systems-biology.org/002/001.html

• MetaFluxNet 1.8 - Dept. of Chemical & Biomolecular Engineering, KAIST,
South Korea.): MetaFluxNet is a program package for managing information on the
metabolic reaction network and for quantitatively analyzing metabolic fluxes in an inter-
active and customized way. Quantitative in silico simulations of metabolic pathways can
be carried out to understand the metabolic status and to design the metabolic engineering
strategies. Free ware to be used online. Link: http://mbel.kaist.ac.kr/index en.html

• eXPatGen : Online gene micro array data simulator - (Univ. of Delaware - DE):
Simulates gene expression patterns, modeled after the microarray experiments, in order to
evaluate different analysis methods, such as clustering, principle component analysis (PCA),
and self-organized maps (SOMs). Takes simple inputes to provide predefined structure for
GRN which can be used for performance verification of analytical methods. Free ware to be
used online : http://www.che.udel.edu/eXPatGen/

• KINSolver: A simulator for computing large ensembles of biochemical and gene regulatory
networks. Design and analysis. Supports SBML.
Free download : http://lsdis.cs.uga.edu/ aleman/kinsolver/

• Gepasi - 3.30 (Bio) Kinetics Simulation Software: Gepasi simulates the steady-state
and time-course behaviour of reactions in several compartments of different volumes. The
program then builds the differential equations that govern the behaviour of the system and
solves them. Gepasi can also use various nonlinear optimisation algorithms. Free download
link : http://www.gepasi.org

• Pajek 1.23 (Large Network Analysis and Visualization tool): Very useful tool for
quickly plotting and determining different network properties. Freely downloadable at :
http://pajek.imfm.si/doku.php
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• Rao Raghuraj and S. Lakshminarayanan, “Alternate complexity measures and stability analysis
of process and biological networks”, APCCHE 2006 proceedings, Malaysia, August 27-30, 2006.
(Key Note Lecture)
• S. Lakshminarayanan, Rao Raghuraj and S. Balaji, “CONSIM - MS EXCEL based student
friendly simulator for teaching process control theory”, APCCHE 2006 proceedings, Kuala Lumpur,
Malaysia, August 27-30, 2006.
• Raghuraj Rao and R. Raghunathan, “An Algorithm for Sensor Location based on fault diag-
nosibility criteria.” - Proceedings of I.I.Ch.E. Golden Jubilee congress - Vol. II, 1076 - 1086,
CHEMCON 1997, New Delhi, India, December 1997.

Conference presentations
• Modeling of hemodialysis system - WACBE 2007, Bangkok.
• System engineering approach for body heat regulation - WACBE 2007, Bangkok.
• Classification in Proteomics -Structural Biology Conference 2006, Singapore. (best poster)
• Model Predictive Discrimination Approach - A.I.Ch.E. Annual Meeting 2006, San Francisco.
• Protein Structure and Fold Recognition - A.I.Ch.E. Annual Meeting 2006, San Francisco.
• Partial Correlation analysis for Protein Classification - INFORMS 2006, Hong Kong.
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Awards & Achievements
• NUS President’s Graduate Fellowship (2007): given to top 1% graduate students
• Best Tutor Award (2006): 128 students voted performance with average feedback 4.6/5.
• Best poster award: top 5 posters out of 238 posters on seven interdisciplinary subjects.
• Invited Key note speaker: at APCChE 2006 for session “chemical engineering fundamentals”
• Invited as session chair: for APRU - Doctoral Students Conference 2006, Singapore.
• Govt. of India MHRD GATE scholarship (M.Tech.) + National Merit Scholarship (B.Engg.)

Computational Skills
• Bioinformatics: sequence analysis, BLAST search/formatting, phylogenetic (tree), genomics
(micro-array) and proteomics (LC-MS) data analysis. Metagenomics studies.
• Systems Biology: mathematical modeling of cellular mechanisms, systems physiology, PDPK
studies, drug delivery systems, survival analysis using clinical diagnostic data.
• Software Packages : MATLAB, R, SIMULINK
• Programming with C/C++ , applications using Visual Basic, VB-Access and VB-Excel

Additional Training
• DIA workshop on clinical data management, Tokyo, Japan, January 29-30, 2007.
• Communication skills workshop, NUS, October 18-25, 2006
• Microteaching and Tutoring skills, October, 2004.
• Numerical techniques in process engineering, I.I.Sc., Bangalore, India, July, 2003.
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