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Summary

The process of identifying the correct meaning, or sense of a word in context, is known

as word sense disambiguation (WSD). This thesis explores three important research

issues for WSD.

Current WSD systems suffer from a lack of training examples. In our work, we

describe an approach of gathering training examples for WSD from parallel texts. We

show that incorporating parallel text examples improves performance over just using

manually annotated examples. Using parallel text examples as part of our training

data, we developed systems for the SemEval-2007 coarse-grained and fine-grained

English all-words tasks, obtaining excellent results for both tasks.

In training and applying WSD systems on different domains, an issue that affects

accuracy is that instances of a word drawn from different domains have different sense

priors (the proportions of the different senses of a word). To address this issue, we

estimate the sense priors of words drawn from a new domain using an algorithm based

on expectation maximization (EM). We show that the estimated sense priors help to

improve WSD accuracy. We also use this EM-based algorithm to detect a change in

predominant sense between domains. Together with the use of count-merging and

active learning, we are able to perform effective domain adaptation to port a WSD

system to new domains.

vii



Finally, recent research presents conflicting evidence on whether WSD systems

can help to improve the performance of statistical machine translation (MT) systems.

In our work, we show for the first time that integrating a WSD system achieves a

statistically significant improvement on the translation performance of Hiero, a state-

of-the-art statistical MT system.

viii
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Chapter 1

Introduction

1.1 Word Sense Disambiguation

Many words have multiple meanings. For example, in the sentence “The institu-

tions have already consulted the staff concerned through various channels, including

discussion with the staff representatives”, the word channel denotes a means of com-

munication or access. However, in the sentence “A channel is typically what you rent

from a telephone company”, the word channel refers to a path over which electrical

signals can pass. The process of identifying the correct meaning, or sense of a word

in context, is known as word sense disambiguation (WSD) (Ng and Zelle, 1997). This

is one of the fundamental problems in natural language processing (NLP).

In the typical setting, WSD is a classification problem where each ambiguous

word is assigned a sense label, usually from a pre-defined sense inventory, during

the disambiguation process. Being able to accurately disambiguate word sense is

important for applications such as information retrieval, machine translation, etc.

In current WSD research, WordNet (Miller, 1990) is usually used as the sense

1
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inventory. WordNet is a semantic lexicon for the English language, where words

are organized into synonym sets (called synsets), with various semantic relations

between these synonym sets. As an example, nouns are organized as a hierarchical

structure based on hypernymy and hyponymy1 relations. Thus, unlike a standard

dictionary which merely lists word definitions in an alphabetical order, the conceptual

organization of WordNet makes it a useful resource for NLP research.

1.2 SENSEVAL

Driven by a lack of standardized datasets and evaluation metics, a series of evalua-

tion exercises called SENSEVAL were held. These exercises evaluated the strengths

and weaknesses of WSD algorithms and participating systems created by research

communities worldwide, with respect to different words and different languages.

SENSEVAL-1 (Kilgarriff, 1998), the first international workshop on evaluating

WSD systems, was held in the summer of 1998, under the auspices of ACL SIGLEX

(the Special Interest Group on the Lexicon of the Association for Computational

Linguistics) and EURALEX (European Association for Lexicography). SENSEVAL-

1 uses the HECTOR (Atkins, 1992) sense inventory.

SENSEVAL-2 (Edmonds and Cotton, 2001) took place in the summer of 2001.

Two of the tasks in SENSEVAL-2 were the English all-words task (Palmer et al.,

2001), and the English lexical sample task (Kilgarriff, 2001). In SENSEVAL-2,

WordNet-1.7 was used as the sense inventory for these two tasks. A brief description

of these two tasks follows.

• English all-words task: Systems must tag almost all of the content words (words

1Y is a hypernym of X if X is a (kind of) Y. X is a hyponym of Y if X is a (kind of) Y
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having the part-of-speech noun, adjective, verb, or adverb) in a sample of run-

ning English text. No training data is provided for this task.

• English lexical sample task: Systems must tag instances of a selected sample of

English words, where the instances are presented as short extracts of English

text. A relatively large amount of annotated data, where the predetermined

words are tagged in context, are provided as training data for this task.

Following the success of SENSEVAL-2, SENSEVAL-3 was held in the summer of

2004. Similar to SENSEVAL-2, two of the tasks for the English language are the

English all-words task (Snyder and Palmer, 2004) and the English lexical sample task

(Mihalcea, Chklovski, and Kilgarriff, 2004). The WordNet-1.7.1 sense inventory was

used for these two tasks.

The SENSEVAL-2 and SENSEVAL-3 exercises show that among the various ap-

proaches to WSD, corpus-based supervised machine learning methods are the most

successful. With this approach, one needs to obtain a corpus where each occurrence

of an ambiguous word had been earlier manually annotated with the correct sense,

according to some existing sense inventory, to serve as training data.

In WordNet, the senses of each word are ordered in terms of their frequency of

occurrence in the English texts in the SemCor corpus (Miller et al., 1994), which

is part of the Brown Corpus (BC) (Kucera and Francis, 1967). Since these texts are

general in nature and do not belong to any specific domain, the first WordNet sense

of each word is generally regarded as its most common sense. Hence, to gauge the

performance of state-of-the-art supervised WSD systems, we investigate the perfor-

mance of a baseline strategy which simply tags each word with its first WordNet sense.

On the English all-words task of SENSEVAL-2, this strategy achieves an accuracy of

62.0%. As shown in Figure 1.1, only two participating systems achieve performance
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better than this baseline accuracy. When applied on the English all-words task of

SENSEVAL-3, the baseline strategy achieves an accuracy of 61.9%. As shown in Fig-

ure 1.2, only a few participating systems perform better than this baseline strategy

and their accuracy improvements are marginal.

1.3 Research Problems in Word Sense Disambigua-

tion

Results of SENSEVAL-2 and SENSEVAL-3 English all-words task show that super-

vised systems are more successful than unsupervised systems. The results also show,

however, that current state-of-the-art supervised WSD systems still find it hard to

outperform a simple WordNet first sense strategy on a consistent basis.

One problem the supervised systems currently face is a lack of a large amount

of sense-tagged data for training. The sense annotation process is usually done by

trained lexicographers and the obvious drawback here is the laborious manual sense-

tagging involved. This problem is particularly severe for WSD, since sense-tagged

data have to be collected for each ambiguous word of a language. Due to the laborious

and expensive annotation process, as of today, only a handful of sense-tagged corpora

are publicly available.

Another equally pressing problem that arises out of supervised learning is the

issue of domain dependence. A WSD system trained on data from one domain, e.g.,

sports, will show a decrease in performance when applied on a different domain, e.g.,

economics. Tackling this problem is necessary for building scalable and wide-coverage

WSD systems that are portable across different domains.

The third problem is the perceived lack of applications for WSD. Traditionally,
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WSD is evaluated as an isolated task, without regard to any specific application.

Hence, doubts have been expressed on the utility of WSD for actual NLP applications.

1.3.1 The Data Acquisition Bottleneck

Among the existing sense-tagged corpora, the SemCor corpus (Miller et al., 1994)

is one of the most widely used. In SemCor, content words have been manually

tagged with word senses from the WordNet sense inventory. Current supervised WSD

systems (such as participants in the SENSEVAL English all-words task) usually rely

on this relatively small manually annotated corpus for training examples. However,

this has affected the scalability and performance of these systems. As we have shown

in Figures 1.1 and 1.2, very few SENSEVAL participating systems perform better

than the baseline WordNet first sense strategy.

In order to build wide-coverage and scalable WSD systems, tackling the data ac-

quisition bottleneck for WSD is crucial. In an attempt to do this, the DSO corpus

(Ng and Lee, 1996; Ng, 1997a) was manually annotated. It consists of 192,800 word

occurrences of 121 nouns and 70 verbs. In another attempt to collect large amounts

of sense-tagged data, Chklovski and Mihalcea initiated the Open Mind Word Ex-

pert (OMWE) project (Chklovski and Mihalcea, 2002) to collect sense-tagged data

from Internet users. Data gathered through the OMWE project were used in the

SENSEVAL-3 English lexical sample task. In that task, WordNet-1.7.1 was used as

the sense inventory for nouns and adjectives, while Wordsmyth2 was used as the sense

inventory for verbs.

Although the DSO corpus and OMWE project are good initiatives, sense annota-

tion is still done manually and this inherently limits the amount of data that can be

2http://www.wordsmyth.net
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collected. As proposed by Resnik and Yarowsky, a source of potential training data is

parallel texts (Resnik and Yarowsky, 1997), where translation distinctions in a target

language can potentially serve as sense distinctions in the source language. In a later

work (Resnik and Yarowsky, 2000), the authors investigated the probability that 12

different languages will differently lexicalize the senses of English words. They found

that there appears to be a strong association with language distance from English, as

non-Indo-European languages in general have a higher probability to differently lexi-

calize English senses, as compared to Indo-European languages. From their study, the

Basque language has the highest probability of differently lexicalizing English senses,

followed by Japanese, Korean, Chinese, Turkish, and so on.

To explore the potential of this approach, our prior work (Ng, Wang, and Chan,

2003) exploited English-Chinese parallel texts for WSD. For each noun of SENSEVAL-

2 English lexical sample task, we provided some Chinese translations for each of the

senses. Senses were lumped together if they were translated in the same way in

Chinese. Given a word-aligned English-Chinese parallel corpus, these different Chi-

nese translations then serve as the “sense-tags” of the corresponding English noun.

Through this approach, we gathered training examples for WSD from parallel texts.

Note that the examples are collected without manually annotating each individual

ambiguous word occurrence, thus allowing us to gather the examples in a much shorter

time. In (Ng, Wang, and Chan, 2003), we obtained encouraging results in our evalu-

ation on the nouns of SENSEVAL-2 English lexical sample task.

1.3.2 Different Sense Priors Across Domains

The reliance of supervised WSD systems on annotated corpus raises the important

issue of domain dependence. To investigate this, Escudero, Marquez, and Rigau
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(2000) and Martinez and Agirre (2000) conducted experiments using the DSO corpus,

which contains sentences from two different corpora, namely Brown Corpus (BC)

and Wall Street Journal (WSJ). They found that training a WSD system on one

part (BC or WSJ) of the DSO corpus, and applying it to the other can result in an

accuracy drop of more than 10%. A reason given by the authors is that examples

from different domains will exhibit greater differences such as variation in collocations,

thus presenting different classification cues to the learning algorithm. Another reason

pointed out in (Escudero, Marquez, and Rigau, 2000) is the difference in sense priors

(i.e., the proportions of the different senses of a word) between BC and WSJ. For

instance, the noun interest has these 6 senses in the DSO corpus: sense 1, 2, 3, 4, 5,

and 8. In the BC part of the DSO corpus, these senses occur with the proportions:

34%, 9%, 16%, 14%, 12%, and 15%. However, in the WSJ part of the DSO corpus,

the proportions are different: 13%, 4%, 3%, 56%, 22%, and 2%. When the authors

assumed they knew the sense priors of each word in BC and WSJ, and adjusted these

two datasets such that the proportions of the different senses of each word were the

same between BC and WSJ, accuracy improved by 9%. In another work, Agirre and

Martinez (2004) trained a WSD system on data which was automatically gathered

from the Internet. The authors reported a 14% improvement in accuracy if they

have an accurate estimate of the sense priors in the evaluation data and sampled

their training data according to these sense priors. The work of these researchers

showed that when the domain of the training data differs from the domain of the

data on which the system is applied, there will be a decrease in WSD accuracy, with

one major reason being the different sense priors across different domains. Hence, to

build WSD systems that are portable across different domains, estimation of the sense

priors (i.e., determining the proportions of the different senses of a word) occurring
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in a text corpus drawn from a domain is important.

1.3.3 Perceived Lack of Applications for Word Sense Disam-

biguation

WSD is often regarded as an “intermediate task” that will ultimately contribute to

some application tasks such as machine translation (MT) and information retrieval

(IR). One is interested in the performance improvement of the particular application

when WSD is incorporated.

Some prior research has tried to determine whether WSD is useful for IR. In

(Krovets and Croft, 1992), the authors concluded that even with a simulated WSD

program which gives perfect sense predictions for terms in the IR corpus, they ob-

tained only a slight improvement in retrieval performance. Experiments in (Sander-

son, 1994) indicate that retrieval performance degrades if the sense predictions are

not at a sufficiently precise level. Also, WSD is probably only relevant to short queries

as the words in a long query tend to be mutually disambiguating. On the other hand,

experiments by Schütze and Pedersen (1995) where senses are automatically derived

from the IR corpus, as opposed to adhering to a pre-existing sense inventory, show

an improvement in retrieval performance. More recently, Agirre et al. (2007) orga-

nized a task as part of the SemEval-2007 (Agirre, Márquez, and Wicentowski, 2007)

evaluation exercise, where the aim is to evaluate the usefulness of WSD for improving

cross-lingual IR (CLIR) performance. The conclusion there is that WSD does not

help CLIR. Given all these prior research efforts, it seems that more work still needs

to be done to ascertain whether WSD helps IR.

In the area of machine translation, different senses of a word w in a source language

may have different translations in a target language, depending on the particular
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meaning of w in context. Hence, the assumption is that in resolving sense ambiguity,

a WSD system will be able to help an MT system to determine the correct translation

for an ambiguous word. Further, to determine the correct sense of a word, WSD

systems typically use a wide array of features that are not limited to the local context

of w, and some of these features may not be used by statistical MT systems. An early

work to incorporate WSD in MT is reported in (Brown et al., 1991). In that work,

the authors incorporated the predictions of their WSD system into a French-English

MT system. They obtained the promising result of having an increased number of

translations judged as acceptable after incorporating WSD. However, their evaluation

was on a limited set of 100 sentence translations and their WSD system was only

applied on a set of words with at most 2 senses.

To perform translation, state-of-the-art MT systems use a statistical phrase-based

approach (Marcu and Wong, 2002; Koehn, 2003; Och and Ney, 2004) by treating

phrases as the basic units of translation. In this approach, a phrase can be any

sequence of consecutive words and is not necessarily linguistically meaningful. Capi-

talizing on the strength of the phrase-based approach, Chiang (2005) introduced a hi-

erarchical phrase-based statistical MT system, Hiero, which achieves significantly bet-

ter translation performance than Pharaoh (Koehn, 2004a), a state-of-the-art phrase-

based statistical MT system.

Recently, some researchers investigated whether performing WSD will help to

improve the performance of an MT system. For instance, Carpuat and Wu (2005)

incorporated a Chinese WSD system into a Chinese-English MT system and reported

the negative result that WSD degraded MT performance. On the other hand, exper-

iments in (Vickrey et al., 2005) showed positive results when WSD was incorporated.
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We note, however, that their experiments were not done using a full-fledged MT sys-

tem and the evaluation was not on how well each source sentence was translated as

a whole. In the same year, Cabezas and Resnik (2005) reported a relatively small

improvement in Pharaoh’s translation through the use of WSD. Without a statistical

significance test, however, their work appears to be inconclusive. Considering the

conflicting results reported by prior work, it is not clear whether a WSD system can

help to improve the performance of a state-of-the-art statistical MT system.

1.4 Contributions of this Thesis

The contributions of this thesis lie in addressing the various issues described in Section

1.3. In the following sections, we describe our work and list the publications arising

from our research.

1.4.1 Tackling the Data Acquisition Bottleneck

Our initial work (Ng, Wang, and Chan, 2003) shows that the approach of gathering

training examples from parallel texts for WSD is promising. Motivated by this, in

(Chan and Ng, 2005a), we evaluated the approach on a set of most frequently occur-

ring nouns and investigated the performance in a fine-grained disambiguation setting,

instead of using lumped senses as in (Ng, Wang, and Chan, 2003). When evaluated

on a set of nouns in SENSEVAL-2 English all-words task using fine-grained scoring,

classifiers trained on examples gathered from parallel texts achieve high accuracy,

significantly outperforming the strategy of always tagging each word with its first

WordNet sense. The performance of the approach is also comparable to training on

manually sense annotated examples such as SemCor.
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Further, we recently expanded the coverage to include collecting parallel text

examples for a set of most frequently occurring adjectives and verbs. Using these

examples gathered from parallel texts, together with examples from the SemCor

and DSO corpus, we participated in the SemEval-2007 (Agirre, Márquez, and Wi-

centowski, 2007) (which is the most recent SENSEVAL evaluation) coarse-grained

English all-words task and fine-grained English all-words task. Our system submit-

ted to the coarse-grained English all-words task was ranked in first place out of 14

participants3, while the system submitted to the fine-grained English all-words task

was ranked in second place out of 13 participants (Chan, Ng, and Zhong, 2007). Also,

as part of SemEval-2007, we organized an English lexical sample task using examples

gathered from parallel texts (Ng and Chan, 2007).

1.4.2 Domain Adaptation for Word Sense Disambiguation

In the machine learning literature, algorithms to estimate class a priori probabilities

(proportion of each class) have been developed, such as a confusion matrix algorithm

(Vucetic and Obradovic, 2001) and an EM-based algorithm (Saerens, Latinne, and

Decaestecker, 2002). In (Chan and Ng, 2005b), we applied these machine learning

methods to automatically estimate the sense priors in the target domain. For instance,

given the noun interest and the WSJ part of the DSO corpus, we will attempt to

estimate the proportion of each sense of interest occurring in WSJ. We showed that

these sense prior estimates help to improve WSD accuracy. In that work, we used

naive Bayes as the training algorithm to provide posterior probabilities, or class mem-

bership estimates, for the instances in our target corpus, which is the test data of

3A system developed by one of the task organizers of the coarse-grained English all-words task
gave the highest overall score for the coarse-grained English all-words task, but this score is not
considered part of the official scores.
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SENSEVAL-2 English lexical sample task. These probabilities were then used by the

machine learning methods to estimate the sense priors of each word in the target

corpus.

However, it is known that the posterior probabilities assigned by naive Bayes are

not reliable, or not well calibrated (Domingos and Pazzani, 1996). These probabilities

are typically too extreme, often being very near 0 or 1. Since these probabilities are

used in estimating the sense priors, it is important that they are well calibrated. We

addressed this in (Chan and Ng, 2006), exploring the estimation of sense priors by first

calibrating the probabilities from naive Bayes. We also proposed using probabilities

from logistic regression (which already gives well calibrated probabilities) to estimate

the sense priors. We showed that by using well calibrated probabilities, we can

estimate the sense priors more effectively. Using these estimates improves WSD

accuracy and we achieved results that are better than using our earlier approach

described in (Chan and Ng, 2005b).

In (Chan and Ng, 2007), we explored the issue of domain adaptation of WSD

systems from another angle, by adding training examples from a new domain as

additional training data to a WSD system. To reduce the effort required to adapt

a WSD system to a new domain, we employed an active learning strategy (Lewis

and Gale, 1994) to select examples to annotate from the new domain of interest. In

that work, we performed domain adaptation for WSD of a set of nouns using fine-

grained evaluation. The contribution of our work is not only in showing that active

learning can be successfully employed to reduce the annotation effort required for

domain adaptation in a fine-grained WSD setting. More importantly, our main focus

and contribution is in showing how we can improve the effectiveness of a basic active

learning approach when it is used for domain adaptation. In particular, we explored
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the issue of different sense priors across different domains. Using the sense priors

estimated by the EM-based algorithm, the predominant sense (the sense with the

highest proportion) in the new domain is predicted. Using this predicted predominant

sense and adopting a count-merging technique, we improved the effectiveness of the

adaptation process.

1.4.3 Word Sense Disambiguation for Machine Translation

The Hiero MT system introduced in (Chiang, 2005) is currently one of the very best

statistical MT system. In (Chan, Ng, and Chiang, 2007), we successfully integrate

a state-of-the-art WSD system into this state-of-the-art hierarchical phrase-based

MT system, Hiero. The integration is accomplished by introducing two additional

features into the MT model which operate on the existing rules of the grammar,

without introducing competing rules. These features are treated, both in feature-

weight tuning and in decoding, on the same footing as the rest of the model, allowing

it to weigh the WSD model predictions against other pieces of evidence so as to

optimize translation accuracy (as measured by BLEU). The contribution of our work

lies in showing for the first time that integrating a WSD system achieves statistically

significant translation improvement for a state-of-the-art statistical MT system on an

actual translation task.

1.4.4 Research Publications

Research carried out in this thesis has resulted in several publications. In the previous

3 sections, we described the contributions of these publications. In this section, we

explicitly list the publications for each of the contribution areas.

Publications on tackling the data acquisition bottleneck are as follows. In addition,
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we highlight that our WSD system submitted to the coarse-grained English all-words

task was ranked in first place out of 14 participants, while the system submitted to the

fine-grained English all-words task was ranked in second place out of 13 participants.

• Yee Seng Chan, Hwee Tou Ng and Zhi Zhong. 2007. NUS-PT: Exploit-

ing Parallel Texts for Word Sense Disambiguation in the English All-Words

Tasks. In Proceedings of the 4th International Workshop on Semantic Evalua-

tions (SemEval-2007), pp. 253-256, Prague, Czech Republic.

• Hwee Tou Ng and Yee Seng Chan. 2007. SemEval-2007 Task 11: English

Lexical Sample Task via English-Chinese Parallel Text. In Proceedings of the 4th

International Workshop on Semantic Evaluations (SemEval-2007), pp. 54-58,

Prague, Czech Republic.

• Yee Seng Chan and Hwee Tou Ng. 2005. Scaling up Word Sense Disambigua-

tion via Parallel Texts. In Proceedings of the Twentieth National Conference on

Artificial Intelligence (AAAI-2005), pp. 1037-1042, Pittsburgh, USA.

Publications on domain adaptation for word sense disambiguation are as follows:

• Yee Seng Chan and Hwee Tou Ng. 2007. Domain Adaptation with Active

Learning for Word Sense Disambiguation. In Proceedings of the 45th Annual

Meeting of the Association for Computational Linguistics (ACL-2007), pp. 49-

56, Prague, Czech Republic.

• Yee Seng Chan and Hwee Tou Ng. 2006. Estimating Class Priors in Domain

Adaptation for Word Sense Disambiguation. In Proceedings of the 21st Inter-

national Conference on Computational Linguistics and 44th Annual Meeting of
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the Association for Computational Linguistics (COLING/ACL-2006), pp. 89-

96, Sydney, Australia.

• Yee Seng Chan and Hwee Tou Ng. 2005. Word Sense Disambiguation with

Distribution Estimation. In Proceedings of the Nineteenth International Joint

Conference on Artificial Intelligence (IJCAI-2005), pp. 1010-1015, Edinburgh,

Scotland.

The publication on exploring word sense disambiguation for machine translation

is as follows:

• Yee Seng Chan, Hwee Tou Ng and David Chiang. 2007. Word Sense Disam-

biguation Improves Statistical Machine Translation. In Proceedings of the 45th

Annual Meeting of the Association for Computational Linguistics (ACL-2007),

pp. 33-40, Prague, Czech Republic.

1.5 Outline of this Thesis

We have by now given an outline of the research issues in WSD that the work in

this thesis seeks to address. In Chapter 2, we first describe various prior research

related to the WSD problems highlighted in Section 1.3. In Chapter 3, we describe

the knowledge sources and learning algorithms used for our supervised WSD system.

In Chapter 4, we describe our approach of gathering training examples for WSD

from parallel texts and evaluate the approach on the test data of SENSEVAL-2 and

SENSEVAL-3 English all-words task. We also describe our participation in the recent

SemEval-2007 evaluation exercise. In Chapter 5, we describe our work on estimation

of the sense priors in a new text corpus. In Chapter 6, we look at another facet
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of domain adaptation for WSD systems by adding training examples from the new

domain, as additional training data to a WSD system. We use active learning as

a basis for reducing the annotation effort and several other techniques to further

improve the effectiveness of the adaptation process. In Chapter 7, we describe in

detail our work done in exploring the question of whether WSD is useful for machine

translation. Finally in Chapter 8, we conclude this thesis and describe some potential

future work.



Chapter 2

Related Work

As mentioned in Chapter 1, corpus-based supervised learning is the most successful

approach to WSD. An early work using supervised learning is that of (Black, 1988),

which developed decision tree models from manually sense annotated examples for

five test words. Some of the features used in that work, such as collocations and single

words occurring in the surrounding context of the ambiguous word, are still frequently

found in current WSD systems. This notion of using words in the surrounding context,

or words on either side of an ambiguous word w, as clues for disambiguation, is

first outlined in (Weaver, 1955). In that work, Weaver discussed the need for WSD

in machine translation and asked the question of what is the minimum size of the

context, or minimum number of words on either side of w, that one needs to consider

for a reliable prediction of the correct meaning of w.

In the next chapter, we describe the WSD system we use for our experiments,

which is based on supervised learning with machine learning algorithms such as naive

Bayes or support vector machines. We note, though, that there are many differ-

ent supervised methods developed, such as the k nearest neighbors (kNN), based on

18
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memory-based learning (Daelemans, van den Bosch, and Zavrel, 1999). Several WSD

systems that report good results in previous research use memory-based learning (Ng

and Lee, 1996; Hoste et al., 2002; Hoste, Kool, and Daelemans, 2001)

In the following sections, we first describe related work aimed at tackling the lack

of a large amount of training data for WSD. We then describe work related to domain

adaptation of WSD systems. Then, we discuss the utility of WSD for application tasks

such as machine translation (MT) and information retrieval (IR).

2.1 Acquiring Training Data for Word Sense Dis-

ambiguation

Early efforts made to overcome a lack of sense annotated data for WSD exploit a

bootstrapping approach. In bootstrapping, an initial set of examples for each sense

of an ambiguous word w is first manually annotated. Training statistics gathered

from these examples are then used to disambiguate additional occurrences of w and

those occurrences which are disambiguated with a high level of confidence are added

as additional training examples. This approach was used in (Hearst, 1991) for per-

forming WSD on a set of nouns. However, the results indicate that an initial set

of at least 10 manually annotated examples of each sense is necessary, and that 20

to 30 examples are necessary for high precision. In another work (Yarowsky, 1995),

Yarowsky noted that word collocations provide reliable clues to differentiate between

the senses of w and introduced an unsupervised algorithm to disambiguate senses

in an untagged corpus. Beginning with a small number of seed collocations repre-

sentative of each sense of w, all occurrences of w containing the seed collocates are
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annotated with the collocation’s corresponding sense label. Using these initial anno-

tations, the algorithm then incrementally identify more collocations for the different

senses. These additional collocations are then used to gather more sense annotated

examples. Although results indicate that this algorithm achieves a high accuracy of

above 90%, the evaluation was limited to a set of words having only 2 senses each.

In (Dagan and Itai, 1994), the authors cast the traditional problem of disam-

biguating between senses into one of target word selection for machine translation.

In their work, the different “senses” of a source word are defined to be all its possible

translations in the target language, as listed in a bilingual lexicon. To guide the

target lexical choice, they consider the frequency of word combinations in a monolin-

gual corpus of the target language. The use of different target translations as sense

distinctions of an ambiguous source word bears some similarity to our approach of

using parallel texts for acquiring training examples. However, unlike our approach

of using parallel texts where the focus is on gathering sense annotated examples for

WSD, the work of (Dagan and Itai, 1994) is on performing WSD using independent

monolingual corpora of the source and target languages.

Due to the lack of a large sense annotated training corpus for WSD, early research

efforts such as (Black, 1988; Leacock, Towell, and Voorhees, 1993; Bruce and Wiebe,

1994; Gale, Church, and Yarowsky, 1992) tend to be evaluated only on a small set

of words. A notable exception is the work of (Ng and Lee, 1996; Ng, 1997a) where

they introduced and evaluated on the DSO corpus, which consists of manually sense

annotated examples for 121 nouns and 70 verbs. In the previous chapter, we men-

tioned that there was a project called Open Mind Word Expert (OMWE), which was

initiated by Chklovski and Mihalcea (2002). The project enlists the help of web users

to manually sense annotate examples for WSD and uses active learning to select the
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particular examples to present to the web users for sense annotation. In another

work (Mihalcea, 2002a), Mihalcea generated a sense-tagged corpus known as Gen-

Cor. The corpus was generated from a set of initial seeds gathered from sense-tagged

examples of SemCor, examples extracted from WordNet, etc. Incorporating Gen-

Cor as part of the training data of their WSD system achieves good results on the

test data of SENSEVAL-2 English all-words task (Mihalcea, 2002b). More recently,

the OntoNotes project (Hovy et al., 2006) was initiated to manually sense annotate

the texts from the Wall Street Journal portion of the Penn Treebank (Marcus, San-

torini, and Marcinkiewicz, 1993). Till date, the project had gathered manual sense

annotations for a large set of nouns and verbs, according to a coarse-grained sense

inventory.

Recently, there has also been work on combining training examples from different

words (Kohomban and Lee, 2005). In that work, Kohomban and Lee merged examples

of words in the same semantic class, and perform an initial classification of target

word occurrences based on those semantic classes. Then, simple heuristics (such as

choosing the least ordered sense of WordNet) were used to obtain the fine-grained

classifications. Their resulting system shows good results when evaluated on the test

data of SENSEVAL-3 English all-words task.

In work related to our approach of gathering examples from parallel texts, Li and

Li (2002) investigated a bilingual bootstrapping technique to predict the correct trans-

lation of a source word which has many possible target translations. The research

of Chugur, Gonzalo, and Verdejo (2002) dealt with sense distinctions across multiple

languages. In their work, they are interested in measuring quantities such as sense re-

latedness between two meanings of an ambiguous word, based on the probability that

the two meanings, or senses, having the same translation across a set of instances
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in multiple languages. Ide, Erjavec, and Tufis (2002) investigated word sense dis-

tinctions using parallel corpora. Resnik and Yarowsky (2000) considered word sense

disambiguation using multiple languages. Our present work can be similarly extended

beyond bilingual corpora to multilingual corpora.

The research most similar to ours is the work of Diab and Resnik (2002), where

training examples are gathered from machine translated parallel corpora through an

unsupervised method of noun group disambiguation. They evaluated several variants

of their system on the nouns of SENSEVAL-2 English all-words task, achieving a best

performance of 56.8%. In contrast, as we will show in Table 4.4 of Chapter 4, we

achieved an accuracy of 76.2% using our approach of gathering examples from parallel

texts. This surpasses the performance of the baseline WordNet first sense strategy,

which gives 70.6% accuracy. We note, however, that the approach in (Diab and

Resnik, 2002) is unsupervised and uses machine translated parallel corpora, whereas

our approach relies on manually translated parallel corpora. In more recent work

(Diab, 2004), a supervised WSD system was bootstrapped using annotated data

produced by the unsupervised approach described in (Diab and Resnik, 2002), and

evaluated on SENSEVAL-2 English lexical sample task. Building on the work of Diab

and Resnik (Diab and Resnik, 2002), some researchers (Bhattacharya, Getoor, and

Bengio, 2004) built probabilistic models using parallel corpus with an unsupervised

approach. Performance on a selected subset of nouns in SENSEVAL-2 English all-

words task is promising, but still lags behind the top 3 systems of SENSEVAL-2

English all-words task.
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2.2 Domain Adaptation for Word Sense Disam-

biguation

We have highlighted that it is important to perform domain adaptation of WSD

systems, in order to build systems that are applicable across different domains. One

of the issues with domain adaptation for WSD is to estimate the sense priors in a new

corpus. McCarthy et al. (2004b) provided a partial solution by describing a method

to predict the predominant sense, or the most frequent sense, of a word in a corpus.

Using the noun interest as an example (which occurs in the Brown corpus (BC) part

of the DSO corpus with the proportions of 34%, 9%, 16%, 14%, 12%, and 15% for

its senses 1, 2, 3, 4, 5, and 8, while the proportions in the Wall Street Journal (WSJ)

part of the DSO corpus are 13%, 4%, 3%, 56%, 22%, and 2%), their method will try

to predict that sense 1 is the predominant sense in the BC part of the DSO corpus,

while sense 4 is the predominant sense in the WSJ part of the corpus. The same

method is used in a related work (McCarthy et al., 2004a) to identify infrequently

occurring word senses.

Besides the issue of different sense priors across different domains, researchers have

also noted that examples from different domains present different classification cues

to the learning algorithm. There are various related research efforts in applying ac-

tive learning for domain adaptation. Zhang, Damerau, and Johnson (2003) presented

work on sentence boundary detection using generalized Winnow, while Hakkani-Tür

et al. (2004) performed language model adaptation of automatic speech recognition

systems. In both papers, out-of-domain and in-domain data were simply mixed to-

gether without maximum a posteriori estimation such as count-merging. In the area
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of WSD, Ng (1997b) is the first to suggest using intelligent example selection tech-

niques such as active learning to reduce the annotation effort for WSD. Following

that, several work investigated using active learning for WSD. Fujii et al. (1998)

used selective sampling for a Japanese language WSD system, Chen et al. (2006)

used active learning for 5 verbs using coarse-grained evaluation, and Dang (2004)

employed active learning for another set of 5 verbs. In a recent work, Zhu and Hovy

(2007) explored several resampling techniques (e.g. over-sampling) to improve the

effectiveness of active learning for WSD, for a set of words having very skewed or

highly imbalanced sense priors. In their work, they experimented on the OntoNotes

examples for a set of 38 nouns. We note that all these research efforts only investi-

gated the use of active learning to reduce the annotation effort necessary for WSD,

but did not deal with the porting of a WSD system to a different domain. Escudero,

Marquez, and Rigau (2000) used the DSO corpus to highlight the importance of the

issue of domain dependence of WSD systems, but did not propose methods such as

active learning or count-merging to address the specific problem of how to perform

domain adaptation for WSD.

2.3 Word Sense Disambiguation for Machine Trans-

lation

In Chapter 1, we had briefly described several recent research efforts on investigating

the usefulness of WSD for MT. We now describe them in more details. Carpuat

and Wu (2005) integrated the translation predictions from a Chinese WSD system

(Carpuat, Su, and Wu, 2004) into a Chinese-English word-based statistical MT sys-

tem using the ISI ReWrite decoder (Germann, 2003). Though they acknowledged
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that directly using English translations as word senses would be ideal, they instead

predicted the HowNet (Dong, 2000) sense of a word and then used the English gloss

of the HowNet sense as the WSD model’s predicted translation. They did not in-

corporate their WSD model or its predictions into their translation model; rather,

they used the WSD predictions either to constrain the options available to their de-

coder, or to postedit the output of their decoder. They reported the negative result

that WSD decreased the performance of MT based on their experiments. Also, their

experiments were conducted with a word-based MT system, whereas state-of-the-art

MT systems use a phrase-based model.

In another work (Vickrey et al., 2005), the WSD problem was recast as a word

translation task. The translation choices for a word w were defined as the set of words

or phrases aligned to w, as gathered from a word-aligned parallel corpus. The authors

showed that they were able to improve their model’s accuracy on two simplified

translation tasks: word translation and blank-filling.

Recently, Cabezas and Resnik (2005) experimented with incorporating WSD trans-

lations into Pharaoh, a state-of-the-art phrase-based MT system (Koehn, Och, and

Marcu, 2003). Their WSD system provided additional translations to the phrase ta-

ble of Pharaoh, which fired a new model feature, so that the decoder could weigh the

additional alternative translations against its own. However, they could not automat-

ically tune the weight of this feature in the same way as the others. They obtained

a relatively small improvement, and no statistical significance test was reported to

determine if the improvement was statistically significant.

More recently, Carpuat and Wu (2007) incorporated WSD into Pharaoh, by dy-

namically changing Pharaoh’s phrase translation table given each source sentence

to be translated. Since in translating each source sentence, a different phrase table
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is loaded into the MT model of Pharaoh, this simulated context dependent phrase

translation probabilities. They report that WSD improves translation performance,

which is consistent with our observation in (Chan, Ng, and Chiang, 2007).



Chapter 3

Our Word Sense Disambiguation

System

For our experiments, we followed the supervised learning approach of (Lee and Ng,

2002; Lee, Ng, and Chia, 2004), by training an individual classifier for each word.

3.1 Knowledge Sources

Following (Lee and Ng, 2002; Lee, Ng, and Chia, 2004), we use the 3 knowledge

sources of local collocations, part-of-speech (POS) of neighboring words, and single

words in the surrounding context. We omit the syntactic relation features for effi-

ciency reasons, since according to results reported in (Lee and Ng, 2002), using the

3 knowledge sources without the syntactic relation features affects WSD accuracy by

less than 1%. Before extracting the knowledge sources, we use a sentence segmenta-

tion program (Reynar and Ratnaparkhi, 1997) to segment the words surrounding the

ambiguous word w into individual sentences.

27
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3.1.1 Local Collocations

For each occurrence of an ambiguous word w in a particular sentence, we note the to-

kens appearing on the left and right of w in the sentence to extract 11 features based on

them: C−1,−1, C+1,+1, C−2,−2, C+2,+2, C−2,−1, C−1,+1, C+1,+2, C−3,−1, C−2,+1, C−1,+2,

and C+1,+3. Here, Ci,j refers to a sequence of tokens around w, where subscripts i

and j denote the position (relative to w) of the first and last token of the sequence

respectively. For instance, C+1,+1 refers to just the single token on the immediate

right of w. Also, C−1,+2 refers to a sequence of 3 tokens which consists of the token

on the immediate left of w, followed by the two tokens on the immediately right of w.

Similar to (Lee and Ng, 2002), we employ the feature selection parameter M2, where

a feature t is selected if t occurs in some sense of w M2 or more times in the training

data.

3.1.2 Part-of-Speech (POS) of Neighboring Words

Based on the POS tags of tokens in the same sentence as w, we extracted these 7

features: P−3, P−2, P−1, P0, P+1, P+2, P+3. Here, the subscript refers to the position

of the token relative to w. For instance, P0 denotes the POS tag of w, P−1 denotes

the POS tag of the token on the immediate left of w, P+1 denotes the POS tag of the

token on the immediate right of w, etc. To assign POS tags to the tokens, we use the

POS tagger of (Ratnaparkhi, 1996).

3.1.3 Surrounding Words

A context of a few sentences around an occurrence of w is usually given as an example

of w (typically consisting of the sentence before w, the sentence containing w, and
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the sentence after w). For the knowledge source of surrounding words, we consider

all unigrams (single words) in these sentences as features. Note that unlike the other

two knowledge sources mentioned earlier (local collocations and POS of neighboring

words), the unigrams we consider here can be in a different sentence from w. Following

(Lee and Ng, 2002), feature selection using the parameter M2 can be optionally

applied for this knowledge source.

3.2 Learning Algorithms and Feature Selection

Here we describe the learning algorithms used to perform our WSD experiments.

3.2.1 Performing English Word Sense Disambiguation

Except for our work in Chapter 7 which performs Chinese WSD to investigate whether

WSD helps to improve the quality of Chinese-English machine translation, all remain-

ing experiments in this thesis perform WSD on English words.

For those experiments on English WSD, we use the 3 knowledge sources of local

collocations, POS of neighboring words, and surrounding words, as described above.

As learning algorithm, we use either naive Bayes (NB) (Duda and Hart, 1973) or

support vector machines (SVM) (Vapnik, 1995). For our experiments, we use the

implementations of NB and SVM in WEKA (Witten and Frank, 2000) with default

parameters. Using NB as a learning algorithm is appropriate for the experiments

on domain adaptation (Chapters 5, 6) where the focus is on comparing between the

various domain adaptation methods. Since NB is relatively fast operationally, this also

helps to speed up the experiments on active learning (Chapter 6) where classifications

are performed during each adaptation iteration. On experiments in Chapter 4 where
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we built WSD systems to participate in the SemEval-2007 evaluation exercise, we use

SVM as the learning algorithm as experiments in (Lee and Ng, 2002) show that SVM

gives better WSD accuracy than NB.

When using NB as our learning algorithm, we followed the approach in (Lee and

Ng, 2002) of performing feature selection for the local collocations and surrounding

words knowledge sources by setting M2 = 3. When using SVM as our learning

algorithm, we followed (Lee and Ng, 2002; Lee, Ng, and Chia, 2004) by not performing

feature selection (i.e., M2 = 0).

3.2.2 Performing Chinese Word Sense Disambiguation

In Chapter 7 when we perform Chinese WSD, we similarly use the knowledge sources

of local collocations, POS of neighboring words, and surrounding words. For local

collocations, however, we use 3 features only: C−1,+1, C−1,−1, and C+1,+1, without

feature selection (i.e., M2 = 0). For the POS knowledge source, we similarly use 3

features: P−1, P0, and P+1. For the surrounding words knowledge source, we use

feature selection which includes a unigram only if it occurs M2 = 3 or more times in

some sense of a Chinese ambiguous word in the training data. For our experiments

here, we are trying to improve machine translation performance via integrating our

WSD system. Hence, it is important to build a high accuracy WSD system. Thus,

as learning algorithm, we use the LIBSVM (Chang and Lin, 2001) implementation

of SVM with default parameters, except that we use a polynomial kernel with pa-

rameters -d (degree) set to 1, and -g (gamma) set to 1. In classifying, we output the

classification probability of each class. To measure the accuracy of our Chinese WSD

classifier according to this setup, we evaluate it on the test data of SENSEVAL-3

Chinese lexical sample task. We obtain accuracy that compares favorably to the best
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participating system (Carpuat, Su, and Wu, 2004) in the task.



Chapter 4

Tackling the Data Acquisition

Bottleneck

Currently, supervised learning is the best performing approach to WSD. These su-

pervised WSD systems, however, face the critical problem of a lack of a large amount

of training data. In this chapter, we first describe our approach of gathering training

examples for WSD from parallel texts. We then evaluate our approach on the test

data of SENSEVAL-2 and SENSEVAL-3 English all-words task. We also present the

evaluation results of our systems, which made use of examples gathered from parallel

texts, developed for the coarse-grained English all-words task and fine-grained En-

glish all-words task of the recent SemEval-2007 evaluation exercise. In both tasks, we

obtained good results. Our systems were ranked in first place for the coarse-grained

English all-words task, and second place for the fine-grained English all-words task.

All the experiments in this chapter are performed with SVM as the learning algo-

rithm. Finally, we also discuss and analyze the annotation accuracy of examples

gathered from parallel texts.

32



CHAPTER 4. TACKLING THE DATA ACQUISITION BOTTLENECK 33

4.1 Gathering Training Data from Parallel Texts

In this section, we describe the parallel texts used in our experiments and the process

of gathering training data from them. Before describing in detail the steps involved,

we briefly summarize them here:

• After ensuring that the parallel texts are sentence-aligned, we tokenize the En-

glish texts and perform word segmentation on the Chinese texts.

• Perform word alignment between the tokenized English texts and word-segmented

Chinese texts.

• Based on the word alignment output, manually assign suitable Chinese trans-

lations to the WordNet senses of an English word.

• From the English side of the parallel texts, select those occurrences of the En-

glish word which have been aligned to one of the Chinese translations chosen.

Record each English word occurrence as an example of the particular WordNet

sense which the Chinese translation is assigned to.

4.1.1 The Parallel Corpora

We list in Table 4.1 the six English-Chinese parallel corpora (available from Linguistic

Data Consortium (LDC)) from which we gather examples for experiments described

in this thesis. Briefly, the six parallel corpora are:

• Hong Kong Hansards: Excerpts from the official record of the proceedings of the

legislative council of the Hong Kong Special Administrative Region (HKSAR).

• Hong Kong News: Press releases from the information services department of

the HKSAR.
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Parallel corpora Size of texts in million words (MB)
English texts Chinese texts

Hong Kong Hansards 39.4 (216.6) 34.9 (143.2)
Hong Kong News 16.1 (90.3) 14.8 (63.6)
Hong Kong Laws 9.9 (49.8) 10.1 (37.4)
Sinorama 10.0 (53.5) 10.1 (40.5)
Xinhua News 2.1 (11.6) 2.0 (8.9)
English translation of Chinese Treebank 0.1 (0.7) 0.1 (0.4)
Total 77.6 (422.5) 72.0 (294.0)

Table 4.1: Size of English-Chinese parallel corpora

• Hong Kong Laws: Law codes acquired from the department of justice of the

HKSAR.

• Sinorama: Chinese news stories and their English translations collected via the

Sinorama magazine of Taiwan.

• Xinhua News: News articles from the Xinhua news agency.

• English translations of Chinese treebank: Chinese treebank corpus aligned with

the English translations provided by LDC.

To make use of the parallel corpora, they have to be sentence and word aligned.

The sentences of the six corpora were already pre-aligned, either manually or auto-

matically, when they were prepared. After ensuring the corpora were sentence aligned,

we tokenized the English texts1, and performed word segmentation on the Chinese

texts using the segmenter described in (Low, Ng, and Guo, 2005). We then made

use of the GIZA++ software (Och and Ney, 2000) to perform word alignment on the

parallel corpora. Due to the size of the parallel corpora, we were not able to align

all six parallel corpora in one alignment run of GIZA++. We split the Hong Kong

Hansards corpus into two separate alignment runs, the Sinorama and Hong Kong

1http://www.cis.upenn.edu/∼treebank/tokenizer.sed
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Laws corpora were lumped into one alignment run, and the remaining three corpora

(Hong Kong News, Xinhua News, and English translation of Chinese Treebank) were

lumped as the last of the four alignment runs.

4.1.2 Selection of Target Translations

We took the same approach as described in (Ng, Wang, and Chan, 2003) to select

some possible Chinese translations for each sense of an English word w. Following

(Ng, Wang, and Chan, 2003), we will illustrate the approach with the noun channel.

WordNet 1.7 lists 7 senses for the noun channel, as shown in Table 4.2. From the

word alignment output of GIZA++, we will select some appropriate Chinese words

aligned to the noun channel as Chinese translations for its various senses.

After assigning Chinese translations to the various senses, from the word align-

ment output of GIZA++, we select those occurrences of the noun channel which have

been aligned to one of the Chinese translations chosen. The English side of these oc-

currences will then serve as training data for the noun channel, as they are considered

to have been disambiguated and “sense-tagged” by the appropriate Chinese transla-

tions. As an illustration, Figure 4.1 shows that an occurrence of the noun channel

has been aligned to a selected Chinese translation “E»” (tu jing). Since “E»” was

selected as a translation for sense 5 of channel according to Table 4.2, the English

side of this occurrence is gathered as a training example for sense 5 of channel.

In (Ng, Wang, and Chan, 2003), two senses will be lumped together if they are

translated in the same way in Chinese. However, in our current work, we evaluate

the approach of gathering examples for WSD from parallel texts using fine-grained

disambiguation. To do this, we assign the Chinese translation to the most suitable

sense. For instance, as shown in Table 4.2, the same Chinese translation “ªw” (pin
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WordNet sense id WordNet English sense description Chinese translations
1 A path over which electrical signals can pass ªw

2 A passage for water yw, yQ, \yQ
3 A long narrow furrow ä

4 A relatively narrow body of water 0�

5 A means of communication or access E»

6 A bodily passage or tube s�

7 A television station and its programs ªw

Table 4.2: WordNet sense descriptions and assigned Chinese translations of the noun
channel

Figure 4.1: An occurrence of channel aligned to a selected Chinese translation.

dao) can be assigned to senses 1 and 7 of the noun channel. To decide whether it is

more suitable as a translation for sense 1 or sense 7, we inspect a few (typically 10)

occurrences of channel which are aligned to “ªw”. Assuming the majority of exam-

ples that are inspected are used as sense 1 of channel, then from the word alignment

output of GIZA++, all occurrences of the noun channel which have been aligned to

“ªw” will be gathered as training examples for sense 1 of channel. Consequently,

there will be no parallel text examples gathered for sense 7 of channel.

An additional complementary approach will be to use longer Chinese translations

to tease apart the senses represented by the original ambiguous Chinese translation.

For instance, one of the nouns in the SENSEVAL-3 English all-words task is record,

and the Chinese word “�9” (ji lu) is an appropriate translation for several of its
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senses. Sense 3 of record has the meaning “an extreme attainment, the best (or worst)

performance ever attested”, and the meaning of sense 6 is “a list of crimes for which

an accused person has been previously convicted”. Although “�9” is an appropriate

translation for both senses, we can expand it to obtain translations that are specific

to each sense. For the noun record, “!°�9”, “-��9” and “\)�9” will be

specific to sense 3, while “m/�9” and “+"�9” will be specific to sense 6. To

obtain these expanded translations, we simply observe in the Chinese portion of the

parallel texts the set of Chinese words on the immediate left, and immediate right of

the original translation “�9”. To make use of these expanded translations, we will

as before first select those occurrences of the noun record aligned to “�9”. Each

occurrence will then be matched against the various expanded translations, in order

to decide which sense of record to assign the occurrence to. In our current work, we

use this approach whenever appropriate longer translations are available.

In this work, we manually assign Chinese translations for a set of nouns, adjectives,

and verbs using the process described above. The average time needed to assign

target Chinese translations for one noun, adjective, and verb is 20, 25 and 40 minutes

respectively. This is a relatively short time, compared to the effort otherwise needed

to manually sense annotate training examples. Once the Chinese translations are

assigned, the number of examples gathered will depend only on the size of the parallel

texts. More examples can be automatically gathered as more parallel texts become

available.
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4.2 Evaluation on English All-words Task

The evaluation results of the earlier work of (Ng, Wang, and Chan, 2003) on the

nouns of SENSEVAL-2 English lexical sample task show that parallel text provides a

viable source of training examples for WSD. However, since our aim is to alleviate the

problem of a general lack of training data faced by current supervised WSD systems,

we need to expand the coverage to a larger set of words and also provide parallel text

examples for words belonging to other POS categories besides noun.

In the rest of this chapter, we describe our work of gathering parallel text exam-

ples for a set of frequently occurring nouns, adjectives, and verbs. After gathering

these examples, suitable evaluation datasets include the test data of SENSEVAL-2

and SENSEVAL-3 English all-words task. Unlike the experiments in (Ng, Wang, and

Chan, 2003) which focus on exploring the viability of gathering WSD training exam-

ples from parallel texts, our aim in expanding the approach to a larger set of words in

various POS categories is to build a high performance and wide coverage supervised

WSD system. For the experiments reported in the rest of this chapter, we use SVM

as our learning algorithm.

We first discuss the set of words for which we provide Chinese translations, before

presenting the evaluation results on the SENSEVAL-2 and SENSEVAL-3 English

all-words task.

4.2.1 Selection of Words Based on Brown Corpus

One of the widely used corpora in NLP research is the Brown corpus (BC). As the BC

is built as a balanced corpus containing texts in various genres, it is representative of

a general text article.
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To gauge the coverage of the BC corpus on the test examples of the SENSEVAL-

2 and SENSEVAL-3 English all-words task, we first tabulate the set of polysemous

nouns, adjectives, and verbs of the SENSEVAL-2 English all-words task which does

not occur in the BC. Then, we calculate the number of SENSEVAL-2 English all-

words task test examples belonging to these polysemous words. For the SENSEVAL-

2 English all-words task, we obtained a total of 81 such test examples. Of these,

using the strategy of tagging each example with its first sense in WordNet would

have provided the correct sense label for 52 of these test examples. The remaining

29 polysemous test examples which do not have the first sense in WordNet as their

correct sense represent a mere 1.4% of the total number of test examples for the nouns,

adjectives and verbs of SENSEVAL-2 English all-words task. The corresponding

figure for SENSEVAL-3 English all-words task is 1.2%.

We note that frequently occurring words are usually highly polysemous and hard

to disambiguate. To maximize the benefits of using parallel texts, we gathered train-

ing data from parallel texts for the set of most frequently occurring noun, adjective,

and verb types in the BC. These word types (730 nouns, 326 adjectives, and 190

verbs) represent 60% of the noun, adjective, and verb tokens in BC. To gather exam-

ples from parallel texts for these words, we assigned appropriate Chinese translations

to each sense of a word using the approach described in Section 4.1. Also, similar to

the test data of SENSEVAL-3 English all-words task, we used WordNet-1.7.1 as our

sense inventory.
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4.2.2 Manually Sense-Annotated Corpora

As mentioned, the SemCor corpus (Miller et al., 1994) is one of the few currently

available, manually sense-annotated corpora for WSD. It is widely used by vari-

ous systems which participated in the English all-words task of SENSEVAL-2 and

SENSEVAL-3, including one of the top performing teams (Hoste, Kool, and Daele-

mans, 2001; Decadt, Hoste, and Daelemans, 2004) which performed consistently well

in both SENSEVAL all-words tasks. Besides SemCor, the DSO corpus (Ng and

Lee, 1996) also contains manually annotated examples for WSD.

Hence, to build a high performance WSD system, we also gathered examples from

SemCor and DSO corpus as part of our training data. For SemCor, we obtained

a copy of the corpus based on WordNet-1.7.1 sense inventory from the website of Dr.

Mihalcea2. For the DSO corpus which is based on WordNet-1.5 sense inventory, we

manually mapped each of the 70 verb types present in the corpus to WordNet-1.7.1,

to be consistent with the rest of our training data.3

4.2.3 Evaluations on SENSEVAL-2 and SENSEVAL-3 En-

glish all-words Task

In this section, we describe our evaluation results on the test data of SENSEVAL-2

and SENSEVAL-3 English all-words task. Both tasks require systems to provide the

sense labels for almost all the nouns, adjectives, verbs, and adverbs in a sample of

running texts. Although the test data of SENSEVAL-3 English all-words task is based

on WordNet-1.7.1 senses which is consistent with our training data, the test data of

2http://lit.csci.unt.edu/∼rada/downloads/semcor/semcor1.7.1.tar.gz
3We did not use the examples for nouns in the DSO corpus because adding them provided

negligible differences to the classification accuracies.
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System Prediction accuracy
SE-2 SE-3

Our predictions 94.1 96.8
S1 93.9 97.0
S2 92.8 96.7
S3 94.1 97.4

Table 4.3: POS tag and lemma prediction accuracies for SENSEVAL-2 (SE-2) and
SENSEVAL-3 (SE-3) English all-words task.

Dataset No. of WNS1 SC Top systems PT SC+ SC+DSO
test examples S1 S2 S3 DSO +PT

Noun 1067 70.6 75.0 78.0 74.5 70.0 76.2 75.0 77.6
Adjective 465 61.9 64.1 70.1 62.4 63.9 64.3 64.1 66.7
Verb 550 44.2 48.7 53.3 48.4 45.3 48.6 50.6 50.4
All 2473 62.0 65.5 69.0 63.6 61.8 65.9 65.9 67.4

Table 4.4: SENSEVAL-2 English all-words task evaluation results.

Dataset No. of WNS1 SC Top systems PT SC+ SC+DSO
test examples S1 S2 S3 DSO +PT

Noun 895 70.6 74.0 71.2 70.6 71.6 72.8 74.0 74.5
Adjective 351 65.2 68.1 67.2 71.2 71.5 71.4 68.1 72.3
Verb 731 52.5 57.7 59.4 56.5 54.4 53.2 57.2 58.0
All 2041 61.9 65.9 65.2 64.6 64.1 64.4 65.7 67.0

Table 4.5: SENSEVAL-3 English all-words task evaluation results.

SENSEVAL-2 English all-words task is based on WordNet-1.7 senses. Hence, to

evaluate on the SENSEVAL-2 test data, we automatically mapped it from WordNet-

1.7 to WordNet-1.7.1 using the sense mappings publicly provided by Dr. Mihalcea4.

Hence, all our evaluations on the SENSEVAL-2 and SENSEVAL-3 English all-words

task are based on WordNet-1.7.1 sense inventory.

For the SENSEVAL-2 and SENSEVAL-3 English all-words tasks, the correct POS

tag and lemma of each test example are not given by the task organizers. Hence, we

used the POS tag from the mrg parse files released as part of the test data and

4http://lit.csci.unt.edu/∼rada/downloads/wordnet.mappings/synset.mapping.wn1.7.wn1.7.1.gz
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performed lemmatization using WordNet, to automatically predict the POS tag and

lemma of each test example. When compared against the answer key of SENSEVAL-2

English all-words task, we note that we correctly predicted 94.1% of the POS tag and

lemma pair, as shown in the row Our predictions of Table 4.3. The corresponding

prediction accuracy for SENSEVAL-3 English all-words task is 96.8%. These figures

meant that our WSD system will definitely give the wrong sense prediction for 5.9%

and 3.2% of the test examples of SENSEVAL-2 and SENSEVAL-3, respectively. The

POS tag and lemma prediction accuracies of the top 3 systems in both tasks are

also shown in the same table. Note that our prediction accuracies are comparable

to those of the top 3 systems of each task. This means that we do not derive any

additional advantage in subsequent WSD classification by performing better POS tag

and lemma predictions.

As shown in Table 4.4 and 4.5, there are a total of 2473 and 2041 test examples

in SENSEVAL-2 and SENSEVAL-3 English all-words task, respectively. The 2 tables

also show the breakdown of test examples into the POS categories of noun, adjective,

and verb. For instance, our SENSEVAL-2 English all-words task test data, based on

the WordNet-1.7.1 sense inventory, has a total of 1067, 465 and 550 test examples

for noun, adjective, and verb, respectively. The rest of the test examples are either

for adverbs or labelled with a ‘U’ tag by the organizers of the task, representing an

untaggable test example. Similarly for SENSEVAL-3 English all-words task, we have

a total of 895, 351, and 731 test examples for noun, adjective, and verb, respectively.

The rest of the test examples either belong to adverbs, are labelled as untaggable, or

have multiple answer senses belonging to multiple POS categories (there are 17 such

test examples belonging to multiple POS categories).

As a comparison, we also tabulate the accuracy figures for the top 3 participating
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systems in the SENSEVAL-2 and SENSEVAL-3 English all-words task, from the pub-

licly available set of answers for SENSEVAL-2 and SENSEVAL-3 participants. The

accuracies of the top 3 SENSEVAL-2 systems are listed in Table 4.4 as S1 (Mihal-

cea and Moldovan, 2001), S2 (Hoste, Kool, and Daelemans, 2001), and S3 (Crestan,

El-Beze, and Loupy, 2001), arranged in order of performance over all the evaluation

examples in the SENSEVAL-2 English all-words task. Similarly, the accuracies of

the top 3 SENSEVAL-3 systems are listed in Table 4.5 as S1 (Decadt, Hoste, and

Daelemans, 2004), S2 (Mihalcea and Faruque, 2004), and S3 (Yuret, 2004).

As mentioned in Chapter 1, a simple baseline strategy which previous partici-

pating systems in SENSEVAL-2 and SENSEVAL-3 English all-words task find hard

to surpass is to simply tag each test example with its first WordNet sense (we will

subsequently refer to this strategy as WNS1). As shown under the column WNS1

in Table 4.4, this strategy achieves a WSD accuracy of 62.0% on the SENSEVAL-2

English all-words test data. On the SENSEVAL-3 English all-words test data, this

strategy achieves a similar accuracy of 61.9%, as shown in Table 4.5.

As another basis for comparison, we would like to measure the accuracy of a

WSD system relying on training examples drawn from SemCor. As shown under the

column SC in Table 4.4, a WSD system trained on examples gathered from SemCor

and evaluated on the SENSEVAL-2 English all-words task test data achieved an

accuracy of 65.5%. The classification accuracies of the WSD system over the nouns,

adjectives, and verbs of the test data are shown in the rows Noun, Adjective, and

Verb of the table. Table 4.5 shows the corresponding accuracies when evaluated over

the test data of SENSEVAL-3 English all-words task.

Next, we want to measure the accuracy of a WSD system trained on examples

gathered from parallel texts. We note that the parallel texts from which we are
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drawing examples are a mixture of various genres, containing articles from legislative

proceedings, press releases, etc. In contrast, the test data of SENSEVAL-2 and

SENSEVAL-3 English all-words task is mainly drawn from the Wall Street Journal,

which covers business and financial news. Research in (Agirre and Martinez, 2004;

Escudero, Marquez, and Rigau, 2000) has shown that when the training and test

data are gathered from different domains, the different sense priors (proportion of

each sense) between the domains affect the classification accuracy. Since we are using

the SemCor corpus as part of our training data, a simple heuristic would be to

simply adhere to the sense priors (proportion of each sense) in the SemCor corpus

when gathering examples from parallel texts.

In gathering examples from parallel texts, a maximum of 1,000 examples were

gathered for each of the frequently occurring noun and adjective types, while a max-

imum of 500 examples were gathered for each of the frequently occurring verb types.

For each word, the examples from the parallel corpora were randomly chosen but

adhered to the sense priors of that word in the SemCor corpus. Results given under

the column PT in Table 4.4 and 4.5 show that a WSD system trained only on such

examples gathered from parallel texts achieved an accuracy of 65.9% and 64.4% on

the test data of SENSEVAL-2 and SENSEVAL-3 English all-words task, respectively.

We note that these overall accuracies, as well as the accuracies over the individual

categories of noun, adjective, and verb, are always significantly higher than the base-

line WNS1 accuracies. Also, the WSD accuracies obtained by training on examples

gathered from parallel texts are comparable to accuracies of a WSD system trained

on the manually annotated examples of SemCor.

Since our aim is to build a high performance WSD system, we are also using

examples available from the DSO corpus as part of our training data. For this, a
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System WNS1 S1 PT SC SC+DSO SC+DSO+PT
WNS1 * ¿ ¿ ¿ ¿ ¿
S1 * À À À >

PT * ∼ ∼ ¿
SC * < ¿
SC+DSO * ¿
SC+DSO+PT *

Table 4.6: Paired t-test between the various results over all the test examples of
SENSEVAL-2 English all-words task. “∼”, (“>” and “<”), and (“À” and “¿”)
correspond to the p-value > 0.05, (0.01, 0.05], and ≤ 0.01 respectively. For instance,
the ¿ between WNS1 and PT means that PT is significantly better than WNS1 at
a p-value of ≤ 0.01.

System WNS1 S1 PT SC SC+DSO SC+DSO+PT
WNS1 * ¿ ¿ ¿ ¿ ¿
S1 * ∼ ∼ ∼ <

PT * < < ¿
SC * ∼ <

SC+DSO * ¿
SC+DSO+PT *

Table 4.7: Paired t-test between the various results over all the test examples of
SENSEVAL-3 English all-words task.

maximum of 500 examples were randomly chosen for each of the verb types present

in the DSO corpus. In gathering the examples for each verb, we similarly adhere

to the sense priors of that verb in the SemCor corpus. These examples gathered

from DSO were combined with the examples from SemCor to form an aggregate

set of manually annotated examples. As shown under the column SC+DSO of Table

4.4, a WSD system trained on this aggregate set of examples and evaluated over

the test data of SENSEVAL-2 English all-words task achieved an accuracy of 65.9%.

The corresponding accuracy on the SENSEVAL-3 English all-words task is 65.7%, as

shown in Table 4.5.

Finally, we added the parallel text examples gathered earlier, to this aggregate
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set of SemCor and DSO examples. As shown under the column SC+DSO+PT

of Table 4.4 and 4.5, adding these parallel text examples improved the WSD accu-

racies to 67.4% and 67.0% when evaluated on the test data of SENSEVAL-2 and

SENSEVAL-3, respectively. These results show that although using examples gath-

ered from parallel texts alone as training data does not achieve accuracies that are

significantly better than training on the manually annotated examples of SemCor

and DSO, they nevertheless are able to help to further improve WSD accuracy over

the strong baseline of using the examples of SemCor and DSO.

Paired t-tests were conducted to see if one system is significantly better than

another. The t statistic of the difference between each test instance pair is computed,

giving rise to a p-value. The results of significance tests for the various experiments

on the SENSEVAL-2 English all-words task are given in Table 4.6, while those for

SENSEVAL-3 are given in Table 4.7.

The significance test results show that for both SENSEVAL-2 and SENSEVAL-

3 English all-words tasks, the parallel text system PT, which was trained only on

examples gathered from parallel texts, always significantly outperforms the baseline

WNS1 of choosing the first sense of WordNet. Also, the SC + DSO + PT system

which has parallel text examples added always performs significantly better than the

SC + DSO system trained on the manually annotated examples of SemCor and

DSO.

4.3 Evaluation on SemEval-2007

SemEval-2007 is the most recent SENSEVAL evaluation exercise. Using training

examples gathered from parallel texts, SemCor, and DSO corpus, we participated
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in the coarse-grained English all-words task (Navigli, Litkowski, and Hargraves, 2007)

and fine-grained English all-words task (Pradhan et al., 2007) of SemEval-2007. In

this section, we describe the systems we developed for these two tasks and our official

evaluation results.

In the coarse-grained English all-words task, systems have to perform WSD of all

content words (noun, adjective, verb, and adverb) occurring in five documents, using

a coarse-grained version of the WordNet sense inventory. In the fine-grained English

all-words task, systems have to predict the correct sense of verbs and head nouns of

the verb arguments occurring in three documents, according to the fine-grained sense

inventory of WordNet.

We developed 2 separate systems; one for each task. Our system employed for

the coarse-grained English all-words task was trained with the coarse-grained sense

inventory released by the task organizers, while our system employed for the fine-

grained English all-words task was trained with the fine-grained sense inventory of

WordNet.

4.3.1 Sense Inventory

The test data of the two SemEval-2007 tasks we participated in are based on the

WordNet-2.1 sense inventory. The examples we gathered from the parallel texts

and the SemCor corpus are, however, based on the WordNet-1.7.1 sense inventory.

Hence, there is a need to map these examples from WordNet-1.7.1 to WordNet-2.1

sense inventory. For this, we rely primarily on the WordNet sense mappings auto-

matically generated by (Daude, Padro, and Rigau, 2000). To ensure good accuracy

of the mappings, we performed some manual corrections of our own, focusing on the

set of most frequently occurring nouns, adjectives, and verbs. For the verb examples
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System Accuracy (%)
SC+DSO+PT 58.7
SC+DSO+PTnoun 58.1
SC+DSO+PTverb 58.5
SC+DSO 57.8
PT 55.5
WNS1 53.5

Table 4.8: Scores for the SemEval-2007 fine-grained English all-words task, using
different sets of training data. SC+DSO refers to using examples gathered from
SemCor and DSO corpus. Similarly, SC+DSO+PT refers to using examples gath-
ered from SemCor, DSO corpus, and parallel texts. SC+DSO+PTnoun is similar
to SC+DSO+PT, except that parallel text examples are only gathered for nouns.
Similarly, PTverb means that parallel text examples are only gathered for verbs.

from the DSO corpus, we manually mapped them from their original WordNet-1.5

senses to WordNet-2.1 senses.

4.3.2 Fine-Grained English All-words Task

Our system employed for the fine-grained English all-words task was trained on ex-

amples tagged with fine-grained WordNet-2.1 senses (mapped from WordNet-1.7.1

senses and WordNet-1.5 senses as described earlier). Unlike the coarse-grained En-

glish all-words task, the correct POS tag and lemma of each test example are not

given in the fine-grained task. Hence, we used the POS tag from the mrg parse files

released as part of the test data and performed lemmatization using WordNet. We

obtained a score of 58.7% in this task, as shown in the row SC + DSO + PT of

Table 4.8. This puts our system in second position among the 13 participants of this

task. If we exclude parallel text examples and train only on examples gathered from

the SemCor and DSO corpus, we obtain a score of 57.8%, as shown in the row

SC +DSO. We note that although there is a modest improvement in accuracy when

parallel text examples are added, this increase is not statistically significant. We note
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System Accuracy (%)
SC+DSO+PT 82.5
SC+DSO+PTnoun 82.3
SC+DSO+PTadj 81.8
SC+DSO+PTverb 81.8
SC+DSO 81.7
PT 80.0
WNS1 78.9

Table 4.9: Scores for the SemEval-2007 coarse-grained English all-words task, using
different sets of training data.

Doc-ID No. of Accuracy (%)
test examples Our system Task organizers

d001 368 88.3 86.1
d002 379 88.1 85.5
d003 500 83.4 79.6
d004 677 76.1 86.9
d005 345 81.4 75.7

Overall 2269 82.5 83.2

Table 4.10: Score of each individual test document, for the SemEval-2007 coarse-
grained English all-words task.

that there are only 465 test examples for this fine-grained task (much fewer than the

coarse-grained task), so this test data set may be too small to serve as an effective

evaluation data set.

4.3.3 Coarse-Grained English All-words Task

Our system employed for the coarse-grained English all-words task was trained with

the coarse-grained WordNet-2.1 sense inventory released by the task organizers. For

this task, the POS tag and lemma of each test example are explicitly given by the

task organizers. Our system developed for this task obtained a score of 82.5% in

this task, as shown in the row SC + DSO + PT of Table 4.9. For comparison, the

WordNet first sense baseline score as calculated by the task organizers is 78.9%.
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It turns out that among the 14 participating systems in this task, the UOR-SSI

system developed by one of the task organizers returned the best score of 83.2%. This

system is based on the Structural Semantics Interconnections algorithm (Navigli and

Velardi, 2005). To disambiguate word senses, it uses semantic relations in WordNet,

semantic relations extracted from annotated corpora, and dictionaries of collocations.

Since the score of this system is not considered part of the official scores, our score

puts our system in the first position among the participants of this task. Further,

the task description paper (Navigli, Litkowski, and Hargraves, 2007) reveals that our

system out performed the UOR-SSI system on all test documents except the fourth

document d004. We will describe some investigations into our system’s relatively

poor performance on this document shortly.

To gauge the contribution of parallel text examples, we retrained our system using

only examples gathered from the SemCor and DSO corpus. As shown in the row

SC + DSO of Table 4.9, this gives a score of 81.7% when scored against the answer

keys released by the task organizers. Although adding examples from parallel texts

gives only a modest improvement in score, this improvement is statistically significant

at a p-value ≤ 0.01. Also, we are improving over the very strong baseline of training

on manually annotated examples of the SemCor and DSO corpus. Moreover, we

note that this improvement is achieved from a relatively small set of word types which

are found to be frequently occurring in BC. Future work can explore expanding the

set of word types by automating the process of assigning Chinese translations to each

sense of an English word, with the use of suitable bilingual lexicons. Finally, we

also calculated the contribution of parallel text examples for each individual POS

category of noun (SC +DSO +PTnoun), adjective (SC +DSO +PTadj), and verb

(SC + DSO + PTverb). As shown in Table 4.9, parallel text examples gathered for
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each POS category provided improvement in score.

As part of the evaluation results, the task organizers also released the scores of our

system on each of the 5 test documents. We show in Table 4.10 the total number of

test examples in each document, along with the score we obtained for each document

under the column Our system. We note that our system obtained a relatively low

score on the fourth document, which is a Wikipedia entry on computer programming.

To determine the reason for the low score, we looked through the list of test words

in that document. We noticed that the noun program has 20 test examples occurring

in that fourth document. From the answer keys released by the task organizers, all

20 test examples belong to the sense of “a sequence of instructions that a computer

can interpret and execute”, for which our WSD system does not have any training

examples. Similarly, we noticed that another noun programming has 27 test examples

occurring in the fourth document which belong to the sense of “creating a sequence

of instructions to enable the computer to do something”, for which our WSD system

does not have any training examples. Thus, these two words alone account for 47

of the errors made by our system in this task, representing 2.1% of the 2,269 test

examples of this task. In Table 4.10 under the column Task organizers, we show the

scores obtained by the system developed by the task organizers. This was the best

performing system we had mentioned earlier, but where its score was not considered

part of the official scores. Interestingly, we note that the performance of our WSD

system is better across all test documents, except the fourth one.
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Error type No. of error occurrences
Wrong sentence alignment 3
Wrong word alignment 11
Ambiguous Chinese translation 103
Wrong POS tag 11
Inappropriate translation in text 9
Ambiguous context 16
Total 153

Table 4.11: Sense-tag analysis over 1000 examples

4.4 Sense-tag Accuracy of Parallel Text Examples

As part of the SemEval-2007 evaluation exercise, we organized an English lexical

sample task for WSD (Ng and Chan, 2007), where the sense-annotated examples

were gathered from parallel texts. Two tracks were organized for the task, with each

track using a different corpus. For one of the tracks, we used the Sinorama parallel

corpus and measured the annotation accuracy of examples gathered from the corpus.

In this section, we will discuss the different types of annotation errors found in these

examples.

The word alignment output of GIZA++ contains much noise in general (especially

for the low frequency words). However, note that in our approach, we only select the

English word occurrences that align to the selected Chinese translations. Hence, while

the complete set of word alignment output contains much noise, the subset of word

occurrences chosen may still have high quality sense tags.

To investigate the sense-tag accuracy of the training examples gathered from par-

allel texts, we manually inspected a random selection of 100 examples each from 5

nouns and 5 adjectives. These 10 words have an average of 8.6 senses per word in

the WordNet-1.7.1 sense inventory. Our manual inspection reveals the following main

types of sense annotation errors.
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Wrong sentence alignment Due to erroneous sentence segmentation or sentence

alignment, the correct Chinese word that an English word w should align to is not

present in its Chinese sentence counterpart. In this case, word alignment will align

the wrong Chinese word to w.

Wrong word alignment Sometimes, GIZA++ will align an incorrect Chinese

word to an English occurrence. For instance, for the English-Chinese phrase pair

“. . . smile on his face . . . ” and “Á Q G�”, the English word “face” which has

the meaning of “the front of the human head from the forehead to the chin”, should

be aligned to the Chinese word “Á” but is instead wrongly aligned to the Chinese

word “G�”. Since the Chinese word “G�” was assigned as a translation for sense

2 of the noun “face” which has the meaning “the expression on a person’s face”,

this particular occurrence of “face” is wrongly gathered as an example for sense 2.

Another situation of wrong word alignment occurs when the English word occurrence

has no translation in the corresponding Chinese sentence. GIZA++ might then align

the English word w to some Chinese word. If that aligned Chinese word happens

to be one of the assigned translations for w (but belonging to a different sense),

then this will constitute an incorrect example. Wrong word alignment can also occur

when the sentence is too long. GIZA++ imposes a limit on the maximum sentence

length. Sentences longer than this limit will have the corresponding portion pruned

off. Sometimes, the correct Chinese word that an English word w should align to is

in the portion of the sentence that was pruned off. Thus, word alignment will align

the wrong Chinese word to w.

Ambiguous Chinese translation Some Chinese translations assigned are actu-

ally appropriate across multiple senses of a word. For instance, the translation “;

\” is assigned to sense 1 of the adjective simple, which has the meaning “having
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few parts; not complex or complicated or involved”. Examples for the sense as given

by WordNet includes “a simple problem”, “simple mechanisms”, “a simple design”,

etc. However, “;\” is also appropriate for sense 2 of simple, which has the mean-

ing “easy and not involved or complicated”. Hence, some examples gathered via the

Chinese translation “;\” for sense 1 of the adjective simple actually has the easy

meaning of sense 2. Note that this also highlights the fact that WordNet senses are

sometimes too fine-grained, with several senses sharing very similar meaning.

Wrong POS tag We might be wrongly gathering some examples due to POS

tagging errors made by the POS tagger. For instance, some words such as “face” and

“work” can either be a noun or a verb. When a POS tagger wrongly assigns a verb

occurrence of “face” as having a POS tag of noun, and that particular occurrence of

“face” happens to be aligned to a Chinese word which has been chosen as a translation

for one of the senses of the noun “face”, we would wrongly gather that occurrence of

“face” as a training example.

Inappropriate translation in text In the English-Chinese parallel texts that

we are using, we find that some English words are inappropriately translated. For

instance, in the English sentences “At present, he is an assistant professor of archi-

tecture at Chung Yuan Christian University. His experience in the field is rich.”, the

English noun “field” should have the sense 4 meaning of “a branch of knowledge”.

However, the noun “field” is inappropriately translated as “�” in the Chinese text.

Since the occurrence of “field” was aligned to “�” by GIZA++ and “�” was

chosen as a translation for another sense of the noun “field”, an incorrect example

was gathered.

Ambiguous context We are sometimes unable to clearly distinguish the correct

sense of an example. In these situations, we regard the example as wrongly tagged
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to avoid inflating the sense-tag accuracy.

The result of the analysis is shown in Table 4.11. We note that the main source

of errors is the inherent ambiguity of some Chinese translations. The row Wrong

word alignment summarizes the errors incurred due to GIZA++. From these 1,000

examples, we measure a sense annotation accuracy of 84.7%, which compares favor-

ably with the quality of manually sense tagged corpus prepared in SENSEVAL-2

(Kilgarriff, 2001).

4.5 Summary

In order to build a wide-coverage WSD system, tackling the data acquisition bottle-

neck for WSD is crucial. In this chapter, we showed that the approach of gathering

training examples from parallel texts is promising. With manually assigned Chinese

translations, we gathered examples from parallel texts for a set of frequently occurring

nouns, adjectives, and verbs. When evaluated on the SENSEVAL-2 and SENSEVAL-

3 English all-words task using fine-grained scoring, classifiers trained on parallel text

examples always significantly outperformed the strategy of choosing the first sense of

WordNet. For both SENSEVAL-2 and SENSEVAL-3, we showed that parallel text

examples can help to further improve the performance of classifiers trained on the

manually annotated examples of SemCor and DSO.

We also participated in the coarse-grained English all-words task and fine-grained

English all-words task of SemEval-2007. Using training examples gathered from par-

allel texts, SemCor, and the DSO corpus, we trained supervised WSD systems.

Evaluation results showed that this approach achieved good performance in both

tasks.



Chapter 5

Word Sense Disambiguation with

Sense Prior Estimation

Supervised WSD systems that are trained on one domain but applied to another

domain show a decrease in performance, with one major reason being that different

domains have different sense priors. Hence, estimation of sense priors is important

for building widely applicable WSD systems. In (Chan and Ng, 2005b) and (Chan

and Ng, 2006), we used various algorithms to estimate the sense priors in a new text

corpus and showed that they are effective in improving WSD accuracies.

In this chapter, we first describe the various algorithms to estimate the sense pri-

ors. Then, in Section 5.3, we describe the notion of being well calibrated and discuss

why using well calibrated probabilities helps in estimating the sense priors. We also

describe an algorithm to calibrate the probability estimates from naive Bayes. Then

in Section 5.4, we discuss the corpora and the set of words we use for our experiments.

In Section 5.5, we present our experimental results over all the words in our dataset.

In Section 5.6, we describe experiments with using the well calibrated probabilities

56
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of logistic regression to estimate the sense priors. We note that estimation of sense

priors is important when there is a change in domain, usually being reflected by a

change in predominant senses of words. In Section 5.7, we assume we know the true

predominant sense of each word in the training and target domains, and present our

evaluation results over those words having different predominant senses between the

two domains. In a practical setting, however, we do not know the true predominant

sense of each word in a particular domain. In Section 5.8, we predict the predomi-

nant sense of each word and evaluate on those words where the predicted predominant

senses differ between the training and test data. In Section 5.9, we conclude this chap-

ter. Finally, note that for the experiments performed in this chapter, we use the naive

Bayes and logistic regression implementation in WEKA with default parameters.

5.1 Estimation of Priors

To estimate the sense priors, or a priori probabilities of the different senses in a new

data set, we make use of a confusion matrix algorithm (Vucetic and Obradovic, 2001)

or an EM-based algorithm (Saerens, Latinne, and Decaestecker, 2002). In this section,

we describe these two algorithms and the predominant sense method introduced by

McCarthy et al. (2004b).

5.1.1 Confusion Matrix

Let us assume that from a set of labeled data DL, a classifier is used to compute the

conditional probability p̂L(ωj|ωi) , which is an estimate of the probability of classifying

an instance as class ωj , when in fact it belongs to class ωi . Then, one can apply this

classifier with known conditional probabilities p̂L(ωj|ωi) to a set of unlabeled data DU
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DL
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p  =  P-1 · q 
repeat for 
B iterations 

Figure 5.1: Sense priors estimation using the confusion matrix algorithm.

to obtain its predictions. From these predictions, one can estimate the probability of

predicting class ωj on DU , which we will denote as q̂(ωj) . The a priori probabilities

p̂(ωi) on DU (which in our context are the sense priors we want to estimate) are then

estimated by solving the following equation:

q̂(ωj) =
n∑

i=1

p̂L(ωj|ωi)p̂(ωi), j = 1, . . . , n (5.1)

where n represents the number of classes. Equation (5.1) can be represented in matrix

form as q = P · p, from which the a priori probabilities on DU , represented by p ,

can be estimated by solving:

p = P−1 · q (5.2)
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To obtain estimates of P and q, bootstrap sampling (Efron and Tibshirani, 1993)

is employed. In bootstrap sampling, given an original sample X with n examples,

bootstrap sample X∗ is obtained by randomly sampling n examples from X with

replacement. To estimate the conditional probabilities p̂L(ωj|ωi), we need to split

our labeled data DL into Dtrain and Dtest. We will first use Figure 5.1 to provide an

overview of the confusion matrix algorithm before giving the algorithmic details.

As shown in Figure 5.1, we first split DL into Dtrain and Dtest. Then, we generate

a bootstrap sample D∗
test from Dtest and apply the classifier trained on Dtrain on D∗

test.

This gives us the conditional probabilities p̂L(ωj|ωi), or the P matrix. We similarly

generate a bootstrap sample D∗
U from DU and apply the same classifier on D∗

U . Using

this classification result, we calculate q̂(ωj), which is the vector q. Using Equation 5.2,

we then solve for p. We repeat this process of obtaining bootstrap samples D∗
test and

D∗
U , then calculating the vector p of a priori probabilities, for a total of B iterations.

We then average the vectors p over the B iterations to obtain our final estimate of

the a priori probabilities, or the sense priors of the different senses in the unlabeled

data DU .

Now, we will give the confusion matrix algorithm. We first define n∗test(ωj, ωi) as

the number of examples in a bootstrap sample D∗
test predicted to be of class ωj when

the true class is ωi. Also, we define n∗U(ωj) as the number of examples in a bootstrap

sample D∗
U predicted to be of class ωj. Then, given Dtest, DU , and a classifier, repeat

the following for B iterations (in our experiments, we set B to 200):

• Generate a bootstrap sample from ntest examples of Dtest and calculate:

p̂∗L(ωj|ωi) =
n∗test(ωj ,ωi)P
j n∗test(ωj ,ωi)

for i, j = 1, . . . , n

• Generate a bootstrap sample from nU examples of DU and calculate:

q̂∗(ωj) =
n∗U (ωj)

nU
for j = 1, . . . , n
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• Use Equation (5.2) to calculate p̂∗(ωi)
(b)for i = 1, . . . , n

After B iterations, estimate the a priori probabilities p̂(ωi) = 1
B

∑B
b=1 p̂∗(ωi)

(b)

5.1.2 EM-Based Algorithm

Most of this section is based on (Saerens, Latinne, and Decaestecker, 2002), which

introduced the EM-based algorithm1 to estimate the a priori probabilities in a new

corpus. Assume we have a set of labeled data DL with n classes and a set of N

independent instances (x1, . . . ,xN) from a new data set. The likelihood of these N

instances can be defined as:

L(x1, . . . ,xN) =
N∏

k=1

p(xk)

=
N∏

k=1

[
n∑

i=1

p(xk, ωi)

]

=
N∏

k=1

[
n∑

i=1

p(xk|ωi)p(ωi)

]
(5.3)

Assuming the within-class densities p(xk|ωi), i.e., the probabilities of observing xk

given the class ωi, do not change from the training set DL to the new data set, we can

define: p(xk|ωi) = pL(xk|ωi). To determine the a priori probability estimates p̂(ωi) of

the new data set that will maximize the likelihood of (5.3) with respect to p(ωi), we

can apply the iterative procedure of the EM algorithm. In effect, through maximizing

the likelihood of (5.3), we obtain the a priori probability estimates as a by-product.

1A derivation of this algorithm is available in the Appendix section of (Saerens, Latinne, and
Decaestecker, 2002).
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Let us now define some notations. When we apply a classifier trained on DL on

an instance xk drawn from the new data set DU , we get p̂L(ωi|xk), which we define

as the probability of instance xk being classified as class ωi by the classifier trained

on DL. Further, let us define p̂L(ωi) as the a priori probabilities of class ωi in DL.

This can be estimated by the class frequency of ωi in DL. We also define p̂(s)(ωi)

and p̂(s)(ωi|xk) as estimates of the new a priori and a posteriori probabilities at step

s of the iterative EM procedure. Assuming we initialize p̂(0)(ωi) = p̂L(ωi), then for

each instance xk in DU and each class ωi, the EM algorithm provides the following

iterative steps:

p̂(s)(ωi|xk) =
p̂L(ωi|xk)

bp(s)(ωi)
bpL(ωi)∑n

j=1 p̂L(ωj|xk)
bp(s)(ωj)

bpL(ωj)

(5.4)

p̂(s+1)(ωi) =
1

N

N∑

k=1

p̂(s)(ωi|xk) (5.5)

where Equation (5.4) represents the expectation E-step, Equation (5.5) represents the

maximization M-step, and N represents the number of instances in DU . Note that

the probabilities p̂L(ωi|xk) and p̂L(ωi) in Equation (5.4) will stay the same through-

out the iterations for each particular instance xk and class ωi. The new a posteriori

probabilities p̂(s)(ωi|xk) at step s in Equation (5.4) are simply the a posteriori prob-

abilities in the conditions of the labeled data, p̂L(ωi|xk), weighted by the ratio of the

new priors p̂(s)(ωi) to the old priors p̂L(ωi). The denominator in Equation (5.4) is

simply a normalizing factor.

The a posteriori p̂(s)(ωi|xk) and a priori probabilities p̂(s)(ωi) are re-estimated

sequentially during each iteration s for each new instance xk and each class ωi, until

the convergence of the estimated probabilities p̂(s)(ωi). In the context of our work,

these are the sense priors that we want to estimate. This iterative procedure will
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increase the likelihood of (5.3) at each step.

5.1.3 Predominant Sense

A method of automatically ranking WordNet senses to determine the predominant,

or most frequent sense, of a noun in the BNC corpus is presented in (McCarthy et

al., 2004b). Using the method of (Lin, 1998), a thesaurus is first acquired from the

parsed 90 million words of written English from the BNC corpus to provide the k

nearest neighbors to each target noun, along with the distributional similarity score

(dss) between the target noun and its neighbor. The WordNet similarity package

(Pedersen, Patwardhan, and Michelizzi, 2004) is then used to give a WordNet sim-

ilarity measure (wnss), which is used to weigh the contribution that each neighbor

makes to the various senses of the target noun. Through a combination of dss and

wnss, a prevalence score for each sense of the target noun is calculated, from which

the predominant sense of the noun in BNC is determined.

Though the focus of the method is to determine the predominant sense, we could

obtain sense priors estimates by normalizing the prevalence score of each sense. We

implemented this method in order to evaluate its effectiveness in improving WSD

accuracy. Our implementation achieved accuracies close to those reported by Mc-

Carthy et al. (2004b). In that work, the authors reported a jcn measure predominant

sense accuracy of 54.0% on the SemCor corpus, while we measured 53.3% using

our implementation. On the SENSEVAL-2 English all-words task, 64.0% precision

and 63.0% recall were reported. Our implementation gave 66.2% precision and 63.4%

recall. The differences could be due to some minor processing steps which were not

described in detail in (McCarthy et al., 2004b). Finally, note that this predominant

sense method is only effective on a very large text corpus, as the thesaurus can only
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Figure 5.2: Sense priors estimation using the EM algorithm.

be effectively generated from a very large corpus.

5.2 Using A Priori Estimates

If a classifier estimates posterior class probabilities p̂L(ωi|xk) when presented with

a new instance xk from DU , the p̂L(ωi|xk) probabilities can be directly adjusted

according to the estimated a priori probabilities p̂(ωi) on DU , thus giving a new set

of class membership predictions.

Denoting predictions of the classifier as p̂L(ωi|xk), a priori probability of class ωi

from DL as p̂L(ωi), and estimated a priori probability of class ωi from DU as p̂(ωi),

adjusted predictions p̂adjust(ωi|xk) can be calculated as:

p̂adjust(ωi|xk) =
p̂L(ωi|xk)

bp(ωi)
bpL(ωi)∑

j p̂L(ωj|xk)
bp(ωj)

bpL(ωj)

(5.6)

Figure 5.2 shows the process of estimating and using the sense priors with the EM-

based algorithm. As shown, we first train, for instance a naive Bayes classifier, on the

labeled training data DL. The classifier is then applied on the unlabeled evaluation
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data DU to obtain a set of posterior probability estimates p̂L(ωi|xk), which are our

initial class membership predictions. Using p̂L(ωi|xk) and the a priori probabilities

p̂L(ωi), or proportion of each class in DL, we estimate the sense priors p̂(ωi) in DU with

the EM-based algorithm using Equation 5.4 and 5.5. These estimated sense priors

p̂(ωi) can then be used to adjust the initial predictions p̂L(ωi|xk) using Equation 5.6,

to obtain a new set of class membership predictions p̂adjust(ωi|xk). We will show in

the experimental section later that p̂adjust(ωi|xk) are more accurate than the initial

p̂L(ωi|xk) predictions.

5.3 Calibration of Probabilities

In our eariler work (Chan and Ng, 2005b), the posterior probabilities assigned by

a naive Bayes classifier are used by the EM procedure described in Section 5.1.2

to estimate the sense priors p̂(ωi) in a new dataset. However, it is known that the

posterior probabilities assigned by naive Bayes are not well calibrated (Domingos and

Pazzani, 1996).

It is important to use an algorithm which gives well calibrated probabilities, if we

are to use the probabilities in estimating the sense priors. In this section, we will

first describe the notion of being well calibrated before discussing why having well

calibrated probabilities helps in estimating the sense priors. Finally, we will introduce

a method used to calibrate the probabilities.

5.3.1 Well Calibrated Probabilities

Assume for each instance x, a classifier outputs a probability Sωi
(x) between 0 and

1, of x belonging to class ωi. The classifier is well-calibrated if the empirical class
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membership probability p(ωi|Sωi
(x) = t) converges to the probability value Sωi

(x) = t

as the number of examples classified goes to infinity (Zadrozny and Elkan, 2002).

Intuitively, if we consider all the instances to which the classifier assigns a probability

Sωi
(x) of say 0.6, then 60% of these instances should be members of class ωi.

5.3.2 Being Well Calibrated Helps Estimation

To see why using an algorithm which gives well calibrated probabilities helps in esti-

mating the sense priors, let us rewrite Equation (5.5), the M-step of the EM procedure,

as the following:

p̂(s+1)(ωi) =
1

N

∑
t∈Swi

∑

k∈{q:Sωi (xq)=t}
p̂(s)(ωi|xk) (5.7)

where Sωi
= {t1, . . . , tm} denotes the set of posterior probability values for class ωi,

and Sωi
(xq) denotes the posterior probability of class ωi assigned by the classifier for

instance xq.

Based on t1, . . . , tm, we can imagine that we have m bins, where each bin is

associated with a specific t value. Now, distribute all the instances in the new dataset

DU into the m bins according to their posterior probabilities Sωi
(x). Let Bl, for

l = 1, . . . ,m, denote the set of instances in bin l.

Note that |B1| + · · · + |Bl| + · · · + |Bm| = N . Now, let pl denote the proportion

of instances with true class label ωi in Bl. Given a well calibrated algorithm, pl = tl



CHAPTER 5. WSD WITH SENSE PRIOR ESTIMATION 66

by definition and Equation (5.7) can be rewritten as:

p̂(s+1)(ωi) =
1

N
(t1|B1|+ · · ·+ tm|Bm|)

=
1

N
(p1|B1|+ · · ·+ pm|Bm|)

=
Nωi

N
(5.8)

where Nωi
denotes the number of instances in DU with true class label ωi. Therefore,

p̂(s+1)(ωi) reflects the proportion of instances in DU with true class label ωi. Hence,

using an algorithm which gives well calibrated probabilities helps in the estimation

of sense priors.

5.3.3 Isotonic Regression

Zadrozny and Elkan (2002) successfully used a method based on isotonic regression

(Robertson, Wright, and Dykstra, 1988) to calibrate the probability estimates from

naive Bayes. To compute the isotonic regression, they used the pair-adjacent violators

(PAV) (Ayer et al., 1955) algorithm, which we show in Figure 5.3. Briefly, what PAV

does is to initially view each data value as a level set. While there are two adjacent

sets that are out of order (i.e., the left level set is above the right one) then the sets

are combined and the mean of the data values becomes the value of the new level set.

PAV works on binary class problems. In a binary class problem, we have a posi-

tive class and a negative class. Now, let D = (pk,xk), 1 ≤ k ≤ N , where x1, . . . ,xN

represent N examples and pk is the probability of xk belonging to the positive class,

as predicted by a classifier. Further, let yk represent the true label of xk. For a binary

class problem, we let yk = 1 if xk is a positive example and yk = 0 if xk is a negative

example. The PAV algorithm takes in a set of (pk, yk), sorted in ascending order of pk
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Input: training set (pk, yk) sorted in ascending order of pk
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Figure 5.3: PAV algorithm.
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xk: (pk, yk) … 
xN: (pN, yN)

classifier 
train apply 

Sort the set of (pk,yk) in increasing order of pk :

Sorted p values:
0.1     0.2    0.3    0.4     0.5    0.6    0.7    0.8    0.9    1.0 

Corresponding y values: 
 0        0       1       0        1       0       0       1       1       1 

0        0      0.5    0.5      1       0       0       1       1       1

 0        0      0.5    0.5    0.33  0.33  0.33    1       1       1 

 0        0      0.4    0.4     0.4    0.4    0.4     1       1       1 

Calibration mapping: 
0.1     0.2    0.3    0.4     0.5    0.6    0.7    0.8    0.9    1.0 

 0        0      0.4    0.4     0.4    0.4    0.4     1       1       1 

Figure 5.4: PAV illustration.
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and returns a series of increasing step-values, where each step-value gj,l (denoted by

m in Figure 5.3) is associated with a lowest boundary value pj and a highest boundary

value pl. We performed 10-fold cross-validation on the training data to assign values

to pk. We then applied the PAV algorithm to obtain values for gk. To obtain the

calibrated probability estimate for a test instance x, we find the boundary values pj

and pl where pj ≤ Sωi
(x) ≤ pl and assign gj,l as the calibrated probability estimate.

As an illustration of the PAV algorithm, let us refer to Figure 5.4. After training

our classifier on the binary class training data, we apply it on our validation data to

obtain a set D = (pk,xk), 1 ≤ k ≤ N . Similarly, we let yk represent the true label of xk

and sort the set of (pk, yk) in ascending order of pk. Assume we have N=10 validation

instances, their sorted p values are 0.1, 0.2, . . . , 1.0; and their corresponding y values

are as shown in the figure: 0 0 1 0 1 0 0 1 1 1. Note that if the prediction probabilities

pk had ranked the instances perfectly, all the 0’s will come before all the 1’s and we

would have “0 0 0 0 0 1 1 1 1 1”. Starting from the first, or leftmost y value, the PAV

algorithm searches for any occurrence where a y value is greater than the value on its

right. In essence, the PAV algorithm will try to smooth out the series of y values. In

our example given in Figure 5.4, the PAV algorithm detects that y3 (with a value of

1) is greater than y4 (with a value of 0). The average of these 2 numbers is computed,

resulting in the second series of values: 0 0 0.5 0.5 1 0 0 1 1 1. The PAV algorithm

now detects that the 3 underlined numbers (1 0 0) are “out of order”. Their average

value is computed and we have the third series of numbers: 0 0 0.5 0.5 0.33 0.33 0.33

1 1 1. Finally, the algorithm detects that the 5 underlined numbers (0.5 0.5 0.33 0.33

0.33) are “out of order” and averages them, resulting in the last series of numbers: 0

0 0.4 0.4 0.4 0.4 0.4 1 1 1. Since all numbers are now in increasing order, the PAV

algorithm ends its execution and we have obtained the calibration mapping, which is
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just a mapping between numbers. For this example, our mapping indicates that if our

original probability estimate pk of belonging to the positive class is 0 ≤ pk ≤ 0.2, the

new estimate is 0; if 0.3 ≤ pk ≤ 0.7, the new estimate is 0.4, etc. If pk falls between

two boundary values, such as if 0.2 < pk < 0.3, we average the associated calibrated

probabilities to obtain (0 + 0.4)/2 = 0.2.

To apply PAV on a multiclass problem, we first reduce the problem into a number

of binary class problems. For reducing a multiclass problem into a set of binary

class problems, experiments in (Zadrozny and Elkan, 2002) suggest that the one-

against-all approach works well. In one-against-all, a separate classifier is trained for

each class ωi, where examples belonging to class ωi are treated as positive examples

and all other examples are treated as negative examples. A separate classifier is

then learnt for each binary class problem and the probability estimates from each

classifier are calibrated. Finally, the calibrated binary-class probability estimates are

combined to obtain multiclass probabilities, computed by a simple normalization of

the calibrated estimates from the binary classifiers, as suggested by Zadrozny and

Elkan (2002). For instance, assume a particular problem consists of 4 classes and

their calibrated binary-class probabilities are 0.2, 0.3, 0.3, and 0.5. To normalize

these probabilities, we first compute their total (0.2 + 0.3 + 0.3 + 0.5) = 1.3 and then

divide each probability by the total. This gives the normalized calibrated probabilities

0.2/1.3 = 0.15, 0.3/1.3 = 0.23, etc.

5.4 Selection of Dataset

In this section, we discuss the motivations in choosing the particular corpora and the

set of words used in our experiments.
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5.4.1 DSO Corpus

The DSO corpus is made up of texts drawn from Brown corpus (BC) and Wall Street

Journal (WSJ). BC is a balanced corpus and contains texts in various categories such

as religion, fiction, etc. In contrast, the focus of the WSJ corpus is on financial

and business news. Escudero, Marquez, and Rigau (2000) exploited the difference in

coverage between these two corpora to separate the DSO corpus into its BC and WSJ

parts for investigating the domain dependence of several WSD algorithms. Following

their setup, we also use the DSO corpus in our experiments. Since BC is a balanced

corpus, and training a classifier on a general corpus before applying it to a more

specific corpus is a natural scenario, we use examples from the BC portion of DSO

as training data, and examples from the WSJ portion of DSO as evaluation data, or

the target dataset.

5.4.2 Parallel Texts

To build a wide-coverage WSD system, we require a large amount of training exam-

ples. In Chapter 4, we have shown that parallel texts provide an effective source for

gathering these examples. However, note that the parallel texts we use (as given in

Table 4.1) are gathered from different sources such as legislative proceedings, mag-

azine articles, etc. Hence, examples gathered from parallel texts typically present a

natural domain difference from the target data on which we apply the WSD system.

In particular, we note that since the test data of the English lexical sample task in

SENSEVAL-2 and SENSEVAL-3 is largely drawn from the British National corpus

(BNC), this represents a domain difference from the parallel text examples. Hence,

we include a set of experiments where we train on parallel text examples and eval-

uate on the nouns of SENSEVAL-2 and SENSEVAL-3 English lexical sample task.
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Dataset Total no. of words No. different PS No. same PS
DSO nouns 119 37 82
DSO verbs 66 28 38
SE2 nouns 15 6 9
SE3 nouns 17 9 8

Table 5.1: Number of words with different or the same predominant sense (PS) be-
tween the training and test data.

Following (Ng, Wang, and Chan, 2003), in gathering examples from parallel texts,

senses will be lumped together if they are translated in the same way in Chinese.

5.5 Results Over All Words

We first present our experimental results over all the words of our test data, no matter

whether they have different or the same predominant sense between the training and

test data.

As mentioned earlier, the DSO corpus contains annotated examples for 121 nouns

and 70 verbs. After leaving out the few nouns and verbs which have only BC examples

and no WSJ examples in the DSO corpus, we are left with a set of 119 nouns and

66 verbs, as shown in Table 5.1. Among these words, 37 nouns and 28 verbs have

different predominant senses between the training data (BC portion of DSO) and

test data (WSJ portion of DSO). For the remaining 82 nouns and 38 verbs as shown

under the column No. same PS of Table 5.1, their respective predominant sense

remains unchanged between the BC and WSJ portion of the DSO corpus.

For the nouns of SENSEVAL-2 and SENSEVAL-3 English lexical sample tasks,

we do not perform WSD on 7 SENSEVAL-2 nouns that are lumped into one sense

(i.e., all the senses of each of these nouns were translated into the same Chinese
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Classifier NB
Method L True CMNB EMNB EMLogR

DSO nouns 64.0 67.9 64.5 64.7 64.6
DSO verbs 58.1 62.3 58.8 58.9 59.0
SE2 nouns 70.5 72.2 70.8 70.8 71.3
SE3 nouns 62.1 63.6 63.0 62.8 63.0

Table 5.2: Micro-averaged WSD accuracies over all the words, using the various
methods. The naive Bayes here are multiclass naive Bayes (NB).

Classifier NB
Method True − L CMNB − L EMNB − L EMLogR − L
DSO nouns 3.9 0.5 (12.8%) 0.7 (17.9%) 0.6 (15.4%)
DSO verbs 4.2 0.7 (16.7%) 0.8 (19.0%) 0.9 (21.4%)
SE2 nouns 1.7 0.3 (17.6%) 0.3 (17.6%) 0.8 (47.1%)
SE3 nouns 1.5 0.9 (60.0%) 0.7 (46.7%) 0.9 (60.0%)

Table 5.3: Relative accuracy improvement based on non-calibrated probabilities.

word). In (Saerens, Latinne, and Decaestecker, 2002) which introduced the EM-based

algorithm, experiments were conducted using a minimum of 50 training examples for

each class. In our current work, we use a similar but less restrictive criterion of

omitting those words with less than 50 examples. This omitted 7 SENSEVAL-2

nouns and 3 SENSEVAL-3 nouns as they have less than 50 parallel text examples

available. Thus, we are left with a set of 15 SENSEVAL-2 nouns and 17 SENSEVAL-3

nouns, as shown under the column Total no. of words in Table 5.1. For each noun,

we gathered a maximum of 500 parallel text examples as training data, similar to

what we had done in (Chan and Ng, 2005b).
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5.5.1 Experimental Results

We now present experimental results on the set of words listed under the column

Total no. of words in Table 5.1. We used the supervised WSD system described in

Chapter 3 with naive Bayes as our learning algorithm. All accuracies reported in our

experiments are micro-averages over the test examples.

We record the WSD accuracies achieved by a multiclass naive Bayes classifier

(without any adjustment), in the column L under NB in Table 5.2. For the EM-based

algorithm, the predictions p̂L(ωi|xk) of these naive Bayes classifiers are then used in

Equation (5.4) and (5.5) to estimate the sense priors p̂(ωi), before being adjusted by

these estimated sense priors based on Equation (5.6). The resulting WSD accuracies

after this adjustment are listed in the column EMNB in Table 5.2. For instance, in

Table 5.2 we see that for the set of DSO verbs, we obtained a WSD accuracy of

58.1% using the original predictions of the naive Bayes classifier. If we adjust these

predictions by the sense priors estimated via the EM-based algorithm, performance

improves to 58.9%.

Corresponding WSD accuracies achieved from adjusting the original predictions

p̂L(ωi|xk) by the sense priors estimated by the confusion matrix algorithm are listed

under the column CMNB. To provide a basis for comparison, we also adjusted the

predictions p̂L(ωi|xk) by the true sense priors p(ωi) of the test data. The accuracies

thus obtained are shown under the column True in Table 5.2.

The increases in WSD accuracies obtained through using the estimated sense

priors are given in Table 5.3 (the numbers in this table are derived from Table 5.2).

The column True − L in the table shows the increase in WSD accuracy obtained by

using the true sense priors of the test data. Note that this represents the maximum

possible increase in accuracy achievable provided we know these true sense priors
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p(ωi). In the column EMNB − L in Table 5.3, we list the increase in WSD accuracy

when the naive Bayes predictions are adjusted by the sense priors p̂(ωi) which are

automatically estimated using the EM procedure. The relative improvements obtained

with using the estimated sense priors p̂(ωi), as compared against using the true sense

priors p(ωi), are given as percentages in brackets. For instance, for the set of DSO

verbs, adjusting the original predictions by the sense priors estimated via the EM

algorithm gives an improvement of 0.8% in accuracy, against an improvement of 4.2%

if we were to use the true sense priors. Thus, the relative improvement is 0.8/4.2 =

19%. Corresponding figures of relative improvements based on using sense priors

estimated by the confusion matrix algorithm are given under the column CMNB −L.

In Section 5.1.3, we mentioned that we could normalize the prevalence score of

each sense to obtain estimated sense priors via the predominant sense method. We

note that the thesaurus used as part of the predominant sense method is acquired

from the BNC corpus, from which the majority of the SENSEVAL-2 and SENSEVAL-

3 English lexical sample task test data are drawn. Hence, we applied the sense priors

estimated via the predominant sense method on our test data of SENSEVAL-2 and

SENSEVAL-3 nouns, obtaining an accuracy of 70.6% and 62.6%, respectively. Note

that these are lower than the scores obtained via the confusion matrix algorithm and

EM-based algorithm, consistent with the findings in (Chan and Ng, 2005b). This

suggests that in a supervised setting where training data is available, the confusion

matrix and EM-based algorithms estimate the sense priors more effectively than the

unsupervised predominant sense method. The predominant sense method also has

the drawback that it is only able to estimate the sense priors, or predominant sense,

in a very large text corpus, which is needed to construct the thesaurus. In contrast,

the confusion matrix algorithm is applicable on texts of any size. For the EM-based
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Figure 5.5: Sense priors estimation using the EM algorithm with calibration.

algorithm, experiments in (Saerens, Latinne, and Decaestecker, 2002) show that the

size of the target corpus has little effect on its effectiveness.

Next, we used the one-against-all approach to reduce each multiclass problem into

a set of binary class problems. We trained a naive Bayes classifier for each binary

class problem and calibrated the probabilities from these binary classifiers. The WSD

accuracies of these calibrated naive Bayes classifiers (denoted by NBcal) are given in

the column L under NBcal of Table 5.4. The predictions of these classifiers are then

used to estimate the sense priors p̂(ωi), before being adjusted by these estimates

based on Equation (5.6). Figure 5.5 gives an overview of the process when using the

calibrated probabilities to estimate the sense priors via the EM-based algorithm. Note

the similarity with Figure 5.2. The difference is that we calibrate the probabilities

before providing them to the EM algorithm and that these are in turn adjusted by

the estimated sense priors. The resulting WSD accuracies after adjustment are listed



CHAPTER 5. WSD WITH SENSE PRIOR ESTIMATION 76

Classifier NBcal
Method L True CMNBcal EMNBcal EMLogR

DSO nouns 65.8 70.8 66.0 66.1 67.4
DSO verbs 58.9 64.7 59.1 59.8 60.7
SE2 nouns 70.7 72.4 70.8 71.0 71.3
SE3 nouns 62.1 64.6 63.2 63.7 63.5

Table 5.4: Micro-averaged WSD accuracies over all the words, using the various
methods. The naive Bayes classifiers here are with calibrated probabilities (NBcal).

Classifier NBcal
Method True − L CMNBcal − L EMNBcal − L EMLogR − L
DSO nouns 5.0 0.2 (4.0%) 0.3 (6.0%) 1.6 (32.0%)
DSO verbs 5.8 0.2 (3.4%) 0.9 (15.5%) 1.8 (31.0%)
SE2 nouns 1.7 0.1 (5.9%) 0.3 (17.6%) 0.6 (35.3%)
SE3 nouns 2.5 1.1 (44.0%) 1.6 (64.0%) 1.4 (56.0%)

Table 5.5: Relative accuracy improvement based on calibrated probabilities.

in column EMNBcal in Table 5.4. Corresponding accuracies when adjusted by the

sense priors predicted by the confusion matrix algorithm are given under the column

CMNBcal. Similarly, we also adjust the calibrated prediction probabilities by the

true sense priors p(ωi) of the test data and show the accuracies obtained under the

column True in Table 5.4. Similar to Table 5.3, Table 5.5 gives the increase in WSD

accuracies obtained through adjusting the calibrated predictions by the various sense

priors.

The results show that calibrating the probabilities improves WSD accuracy. In

particular, EMNBcal, where the sense priors are estimated via the EM-based algo-

rithm achieves the highest accuracy among the methods described so far (with the

natural exclusion of adjusting by the true sense priors, of course). Also, note that

the confusion matrix algorithm has the rather strong assumption that the conditional
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probabilities p̂L(ωj|ωi) stay the same from the training or labeled data DL, to the test

or unlabeled data DU on which we want to estimate the sense priors. Furthermore,

the method also involves the time consuming process of performing many additional

classification runs, such as multiple bootstrap samplings and cross-validations to cal-

culate matrices P and vectors q. In contrast, the EM-based method does not require

any additional experimental runs. To estimate the sense priors using the EM-based

method, we only need to iteratively perform the two EM steps of Equation (5.4) and

(5.5). In view of these considerations, we focus on using the EM-based algorithm to

estimate the sense priors for the rest of our experiments in this chapter.

5.6 Sense Priors Estimation with Logistic Regres-

sion

The experimental results show that the sense priors estimated using the calibrated

probabilities of naive Bayes are effective in increasing the WSD accuracy. However,

using a learning algorithm which already gives well calibrated posterior probabilities

may be more effective in estimating the sense priors. One possible algorithm is

logistic regression, which directly optimizes for getting approximations of the posterior

probabilities. Hence, its probability estimates are already well calibrated (Zhang and

Yang, 2004; Niculescu-Mizil and Caruana, 2005).

We trained logistic regression classifiers and evaluated them on the set of words

of the four datasets. However, the WSD accuracies of these unadjusted logistic re-

gression classifiers are on average lower than those of the unadjusted naive Bayes

classifiers. One possible reason is that being a discriminative learner, logistic regres-

sion requires more training examples for its performance to catch up to, and possibly
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Figure 5.6: Sense priors estimation with logistic regression.

even overtake, the generative naive Bayes learner (Ng and Jordan, 2001).

Although the accuracy of logistic regression as a basic classifier is lower than that

of naive Bayes, its predictions may still be suitable for estimating sense priors. These

sense priors could then be used to adjust the prediction probabilities of the naive

Bayes classifiers. Figure 5.6 gives an overview of the process. Notice that the top

half of the figure is very similar to Figure 5.2, except that the naive Bayes classifier

is replaced by the logistic regression classifier.

To elaborate on Figure 5.6, we first train a logistic regression classifier on the

labeled training data DL. The classifier is then applied on the unlabeled evaluation

data DU to obtain a set of posterior probability estimates p̂L(ωi|xk), which are our
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initial class membership predictions. Using p̂L(ωi|xk) and the a priori probabilities

p̂L(ωi), or proportion of each class in DL, we estimate the sense priors p̂(ωi) in DU

with the EM-based algorithm using Equation 5.4 and 5.5. The steps described up till

now are exactly the same as those in Figure 5.2, except that the naive Bayes classifier

is replaced by the logistic regression classifier. As a result, we have computed the

sense priors estimated by logistic regression.

As shown in the lower half of Figure 5.6, we now train naive Bayes classifers

on DL and apply them on DU , to obtain an initial set of naive Bayes predictions

p̂L(ωi|xk). We then either apply (using Equation (5.6)) the sense priors estimated

earlier by logistic regression on these naive Bayes prediction probabilities to obtain

a set of adjusted predictions “NB EMlogR”, or we can calibrate the original naive

Bayes predictions before applying the sense priors to obtain “NBcal EMlogR”.

The WSD accuracy of “NB EMlogR” (the predictions p̂L(ωi|xk) of the uncalibrated

naive Bayes adjusted by the sense priors estimated with logistic regression) is given

in the column EMLogR under NB of Table 5.2. Corresponding WSD accuracies of

“NBcal EMlogR” (the predictions p̂L(ωi|xk) of the calibrated naive Bayes adjusted by

the sense priors estimated with logistic regression) is given in the column EMLogR

under NBcal of Table 5.4. The relative improvements over using the true sense pri-

ors, based on the uncalibrated and calibrated probabilities, are given in the column

EMLogR − L of Table 5.3 and Table 5.5, respectively. The results show that the sense

priors estimated with logistic regression are in general effective in further improving

the WSD accuracies.
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5.7 Experiments Using True Predominant Sense

Information

Research by (McCarthy et al., 2004b) highlighted that the sense priors of a word

in a corpus depend on the domain from which the corpus is drawn. A change of

predominant sense is often indicative of a change in domain, as different corpora

drawn from different domains usually give different predominant senses. For example,

the predominant sense of the noun interest in the Brown corpus (BC) part of the

DSO corpus has the meaning “a sense of concern with and curiosity about someone

or something”. In the Wall Street Journal (WSJ) part of the DSO corpus, the

noun interest has a different predominant sense with the meaning “a fixed charge for

borrowing money”, reflecting the business and finance focus of the WSJ corpus.

Estimation of sense priors is important when there is a significant change in sense

priors between the training and target dataset, such as when there is a change in

domain between the datasets. In this section, we focus on experiments involving

words having different predominant senses between the training and test data. In our

experiments involving the DSO corpus, we focus on the set of nouns and verbs which

have different predominant senses between the BC and WSJ parts of the corpus. This

gives us a set of 37 nouns and 28 verbs, as tabulated in Table 5.1. For experiments

involving the nouns of SENSEVAL-2 and SENSEVAL-3 English lexical sample task,

we focus on the set of nouns having different predominant senses between the examples

gathered from parallel texts and the evaluation data for the two SENSEVAL tasks.

This gives a set of 6 nouns for SENSEVAL-2 and 9 nouns for SENSEVAL-3, as

tabulated in Table 5.1.
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Classifier NB NBcal
Method L True EMNB EMLogR L True EMNBcal EMLogR

DSO nouns 44.5 51.9 46.1 46.6 45.8 57.4 47.0 51.1
DSO verbs 46.7 53.9 48.3 48.7 46.9 57.2 49.5 50.8
SE2 nouns 61.7 64.4 62.4 63.0 62.3 65.3 63.2 63.5
SE3 nouns 53.9 56.6 54.9 55.7 55.4 59.1 58.8 58.4

Table 5.6: Micro-averaged WSD accuracies using the various methods, for the set of
words having different predominant senses between the training and test data. The
different naive Bayes classifiers are: multiclass naive Bayes (NB) and naive Bayes
with calibrated probabilities (NBcal).

Dataset True − L EMNB − L EMLogR − L
DSO nouns 7.4 1.6 (21.6%) 2.1 (28.4%)
DSO verbs 7.2 1.6 (22.2%) 2.0 (27.8%)
SE2 nouns 2.7 0.7 (25.9%) 1.3 (48.1%)
SE3 nouns 2.7 1.0 (37.0%) 1.8 (66.7%)

Table 5.7: Relative accuracy improvement based on uncalibrated probabilities.

Dataset True − L EMNBcal − L EMLogR − L
DSO nouns 11.6 1.2 (10.3%) 5.3 (45.7%)
DSO verbs 10.3 2.6 (25.2%) 3.9 (37.9%)
SE2 nouns 3.0 0.9 (30.0%) 1.2 (40.0%)
SE3 nouns 3.7 3.4 (91.9%) 3.0 (81.1%)

Table 5.8: Relative accuracy improvement based on calibrated probabilities.

Method comparison DSO DSO SE2 SE3
nouns verbs nouns nouns

NB EMLogR vs. NB EMNB (add logR) À À À À
NBcal EMNBcal vs. NB EMNB (add cal) ∼ À > À
NBcal EMNBcal vs. NB EMLogR (cal vs. logR) ∼ À ∼ À
NBcal EMLogR vs. NB EMNB (add logR and cal) À À À À
NBcal EMLogR vs. NB EMLogR (add cal) À À ∼ À
NBcal EMLogR vs. NBcal EMNBcal (add logR) À À ∼ ∼

Table 5.9: Paired t-tests between the various methods for the four datasets. Here,
logistic regression is abbreviated as logR and calibration as cal.
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From the results given in Table 5.6, we see that calibrating the probabilities im-

proves WSD accuracy and using the sense priors estimated by logistic regression is

effective in improving the results. In the case of DSO nouns, the improvement due

to the use of logistic regression is especially significant; from 45.8% to 51.1%. Similar

to the previous section, we show in Table 5.7 and 5.8 the increase in WSD accuracy

from using the automatically estimated sense priors p̂(wi), as compared to using the

true sense priors p(wi).

Paired t-tests were conducted to see if one method is significantly better than

another. The t statistic of the difference between each test instance pair is computed,

giving rise to a p value. The results of significance tests for the various methods

on the four datasets are given in Table 5.9, where the symbols “∼”, “>”, and “À”

correspond to p-value > 0.05, (0.01, 0.05], and ≤ 0.01 respectively.

The methods in Table 5.9 are represented in the form a1 a2, where a1 denotes

adjusting the predictions of which classifier, and a2 denotes how the sense priors are

estimated. As an example, NBcal EMLogR specifies that the sense priors estimated

by logistic regression are used to adjust the predictions of the calibrated naive Bayes

classifier, and corresponds to accuracies in column EMLogR under NBcal in Table 5.6.

NB EMNB represents our earlier approach in (Chan and Ng, 2005b). The signif-

icance tests show that the approach of using calibrated naive Bayes probabilities to

estimate sense priors, and then adjusting the calibrated probabilities by these sense

priors estimates (NBcal EMNBcal) is more effective than NB EMNB (refer to row 2 of

Table 5.9). For DSO nouns, though the results are similar, the p value is a relatively

low 0.06.

Using sense priors estimated by logistic regression further improves performance.

For example, row 1 of Table 5.9 shows that adjusting the predictions of multiclass
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naive Bayes classifiers by sense priors estimated by logistic regression (NB EMLogR)

performs significantly better than using sense priors estimated by multiclass naive

Bayes (NB EMNB). Finally, using sense priors estimated by logistic regression to

adjust the predictions of calibrated naive Bayes (NBcal EMLogR) in general performs

significantly better than most other methods, achieving the best overall performance.

5.8 Experiments Using Predicted Predominant Sense

Information

Results from the previous section show that it is critical and effective to adjust the

predictions of words having different predominant senses between the training and

test data. However, in a practical setting, we do not know the true predominant sense

of each word in a particular domain or dataset. In this section, we use the EM-based

algorithm to estimate the sense priors in the test data. The sense with the highest

estimated sense prior is taken as the predominant sense of the word.

Similar to Table 5.1, we show in Table 5.10 the number of words having different,

or the same predominant sense, for the four datasets. In addition, each number in

brackets gives the number of words where the EM-based algorithm predicts that there

is a change in predominant sense. For instance, for the 37 DSO nouns having different

predominant senses between the training and test data, the EM-based algorithm is

able to correctly predict that the predominant sense changes for 25 of the nouns.

Similarly for the 82 DSO nouns where their predominant sense remains unchanged

between the training and test data, the EM-based algorithm is able to correctly

predict that there is no change in predominant sense for 81 of the nouns (i.e., it

incorrectly predicts that one noun has its predominant sense changed). This means
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Dataset Total no. of words No. different PS No. same PS
DSO nouns 119 (26) 37 (25) 82 (1)
DSO verbs 66 (20) 28 (19) 38 (1)
SE2 nouns 15 (6) 6 (4) 9 (2)
SE3 nouns 17 (6) 9 (5) 8 (1)
Total 217 (58) 80 (53) 137 (5)

Table 5.10: Number of words with different or the same predominant sense (PS)
between the training and test data. Numbers in brackets give the number of words
where the EM-based algorithm predicts a change in predominant sense.

Classifier NB NBcal
Method L True EMNB EMLogR L True EMNBcal EMLogR

DSO nouns 47.5 55.4 49.6 50.0 48.5 60.1 48.9 54.0
DSO verbs 49.8 58.1 51.7 52.4 50.9 60.2 53.6 55.9
SE2 nouns 67.5 69.8 67.9 68.8 67.4 70.0 67.9 68.7
SE3 nouns 55.8 61.5 58.4 59.2 57.2 64.6 64.2 62.9

Table 5.11: Micro-averaged WSD accuracies over the words with predicted different
predominant senses between the training and test data.

Dataset True − L EMNB − L EMLogR − L
DSO nouns 7.9 2.1 (26.6%) 2.5 (31.6%)
DSO verbs 8.3 1.9 (22.9%) 2.6 (31.3%)
SE2 nouns 2.3 0.4 (17.4%) 1.3 (56.5%)
SE3 nouns 5.7 2.6 (45.6%) 3.4 (59.6%)

Table 5.12: Relative accuracy improvement based on uncalibrated probabilities.

Dataset True − L EMNBcal − L EMLogR − L
DSO nouns 11.6 0.4 (3.4%) 5.5 (47.4%)
DSO verbs 9.3 2.7 (29.0%) 5.0 (53.8%)
SE2 nouns 2.6 0.5 (19.2%) 1.3 (50.0%)
SE3 nouns 7.4 7.0 (94.6%) 5.7 (77.0%)

Table 5.13: Relative accuracy improvement based on calibrated probabilities.
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that the algorithm predicts that 26 (25+1) DSO nouns have different predominant

senses between the training and test data.

We then evaluate over the set of 58 words where the EM-based algorithm predicts

a change in predominant sense between the training and test data. The improvements

in WSD accuracy from adjusting the predictions using the estimated sense priors for

these words are shown in Table 5.11. The relative improvements based on uncali-

brated and calibrated probabilities are shown in Tables 5.12 and 5.13, respectively.

The results show that in a practical setting where one does not know whether pre-

dominant senses of words changes between the training and test data, one can still

estimate and use the sense priors to improve WSD accuracy. Finally, we note that

the best results are obtained using the sense priors estimated by logistic regression.

5.9 Summary

Differences in sense priors between training and target domain datasets will result

in a loss of WSD accuracy. In this chapter, we show that using well calibrated

probabilities to estimate sense priors is important. By calibrating the probabilities

of the naive Bayes algorithm, and using the probabilities given by logistic regression

(which are already well calibrated), we achieve improvements in WSD accuracy. We

also highlight the importance of estimating the sense priors when there is a change in

domain, which could be reflected by a change in predominant sense. We show that

the EM-based algorithm is effective in predicting a change in predominant sense.

Evaluation over the set of words where the predominant senses between the training

and test data are predicted to be different shows that the EM-based algorithm is able

to predict the sense priors effectively to improve WSD accuracy. Finally, using logistic
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regression to estimate the sense priors via the EM-based algorithm gives consistently

good improvements to WSD accuracy.



Chapter 6

Domain Adaptation with Active

Learning for Word Sense

Disambiguation

We have already highlighted the importance of performing domain adaptation for

WSD. In this chapter, we explore domain adaptation of WSD systems by adding

training examples from the new domain, as additional training data to a WSD system.

To reduce the effort required to adapt a WSD system to a new domain, we employ

an active learning strategy (Lewis and Gale, 1994) to select examples to annotate

from the new domain of interest. To our knowledge, our work is the first to use

active learning for domain adaptation for WSD. A similar work is the recent research

by Chen et al. (2006), where active learning was used successfully to reduce the

annotation effort for WSD of 5 English verbs using coarse-grained evaluation. In that

work, the authors only used active learning to reduce the annotation effort and did

not deal with the porting of a WSD system to a new domain.

87
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Domain adaptation is necessary when the training and target domains are differ-

ent. In our work, we perform domain adaptation for WSD of a set of nouns using

fine-grained evaluation. The contribution of our work is not only in showing that

active learning can be successfully employed to reduce the annotation effort required

for domain adaptation in a fine-grained WSD setting. More importantly, our main

focus and contribution is in showing how we can improve the effectiveness of a basic

active learning approach when it is used for domain adaptation. In particular, we

explore the issue of different sense priors across different domains. Using the sense

priors estimated by expectation-maximization (EM), the predominant sense in the

new domain is predicted. Using this predicted predominant sense and adopting a

count-merging technique, we improve the effectiveness of the adaptation process.

In the next section, we discuss the choice of corpus and nouns used in our ex-

periments. We then introduce active learning for domain adaptation, followed by

count-merging. Performance of domain adaptation using active learning and count-

merging is then presented. Next, we show that by using the predominant sense of the

target domain as predicted by the EM-based algorithm, we improve the effectiveness

of the adaptation process. Our empirical results show that for the set of nouns which

have different predominant senses between the training and target domains, we are

able to reduce the annotation effort by 71%.

6.1 Experimental Setting

For the experiments performed in this chapter, we use the naive Bayes implementation

in WEKA as our learning algorithm. In this section, we discuss the motivations for

choosing the particular corpus and the set of nouns to conduct our domain adaptation
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experiments.

6.1.1 Choice of Corpus

Similar to the last chapter, we made use of the DSO corpus to perform our experiments

on domain adaptation. The DSO corpus has two parts: Brown corpus (BC) and the

Wall Street Journal (WSJ). Since BC is a balanced corpus, and since performing

adaptation from a general corpus to a more specific corpus is a natural scenario, we

focus on adapting a WSD system trained on BC to WSJ. Henceforth, out-of-domain

data will refer to BC examples, and in-domain data will refer to WSJ examples.

6.1.2 Choice of Nouns

The WordNet Domains resource (Magnini and Cavaglià, 2000) assigns domain labels

to synsets in WordNet. Since the focus of the WSJ corpus is on business and financial

news, we can make use of WordNet Domains to select the set of nouns having at least

one synset labeled with a business or finance related domain label. This is similar

to the approach taken in (Koeling, McCarthy, and Carroll, 2005) where they focus

on determining the predominant sense of words in corpora drawn from finance versus

sports domains.1 Hence, we select the subset of DSO nouns that have at least one

synset labeled with any of these domain labels: commerce, enterprise, money, finance,

banking, and economy. This gives a set of 21 nouns: book, business, center, community,

condition, field, figure, house, interest, land, line, money, need, number, order, part,

power, society, term, use, value.2

1Note however that the coverage of the WordNet Domains resource is not comprehensive, as
about 31% of the synsets are simply labeled with “factotum”, indicating that the synset does not
belong to a specific domain.

225 nouns have at least one synset labeled with the listed domain labels. In our experiments, 4
out of these 25 nouns have an accuracy of more than 90% before adaptation (i.e., training on just



CHAPTER 6. DOMAIN ADAPTATION WITH ACTIVE LEARNING 90

Dataset No. of MFS No. of No. of
senses accuracy training adaptation

BC WSJ (%) examples examples
21 nouns 6.7 6.8 61.1 310 406
9 nouns 7.9 8.6 65.8 276 416

Table 6.1: The average number of senses in BC and WSJ, average MFS accuracy,
average number of BC training, and WSJ adaptation examples per noun.

For each noun, all the BC examples are used as out-of-domain training data. One-

third of the WSJ examples for each noun are set aside as evaluation data, and the

rest of the WSJ examples are designated as in-domain adaptation data. The row 21

nouns in Table 6.1 shows some information about these 21 nouns. For instance, these

nouns have an average of 6.7 senses in BC and 6.8 senses in WSJ. This is slightly

higher than the 5.8 senses per verb in (Chen et al., 2006), where the experiments were

conducted using coarse-grained evaluation. Assuming we had access to an “oracle”

which determines the predominant sense, or the most frequent sense (MFS), of each

noun in our WSJ test data perfectly, and we assign this most frequent sense to each

noun in the test data, we would have achieved an accuracy of 61.1% as shown in the

column MFS accuracy of Table 6.1. Finally, we note that we have an average of 310

BC training examples and 406 WSJ adaptation examples per noun.

6.2 Active Learning

For our experiments, we use the WSD system described in Chapter 3 with naive

Bayes as the learning algorithm. In our domain adaptation study, we start with

a WSD system built using training examples drawn from BC. We then investigate

the BC examples) and accuracy improvement is less than 1% after all the available WSJ adaptation
examples are added as additional training data. To obtain a clearer picture of the adaptation process,
we discard these 4 nouns, leaving a set of 21 nouns.
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DT ← the set of BC training examples
DA ← the set of untagged WSJ adaptation examples
Γ ← WSD system trained on DT

repeat
pmin ← ∞
for each d ∈ DA do

ŝ ← word sense prediction for d using Γ
p ← confidence of prediction ŝ
if p < pmin then

pmin ← p, dmin ← d
end

end
DA ← DA − dmin

provide correct sense s for dmin and add dmin to DT

Γ ← WSD system trained on new DT

end

Figure 6.1: Active learning

the utility of adding additional in-domain training data from WSJ. In the baseline

approach, the additional WSJ examples are randomly selected. With active learning

(Lewis and Gale, 1994), we use uncertainty sampling as shown in Figure 6.1. In each

iteration, we train a WSD system on the available training data and apply it on the

WSJ adaptation examples. Among these WSJ examples, the example predicted with

the lowest confidence is selected and removed from the adaptation data. The correct

label is then supplied for this example and it is added to the training data.

Note that in the experiments reported in this chapter, all the adaptation examples

are already pre-annotated before the experiments start, since all the WSJ adapta-

tion examples come from the DSO corpus which have already been sense-annotated.

Hence, the annotation of an example needed during each adaptation iteration is sim-

ulated by performing a lookup without any manual annotation.
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6.3 Count-merging

We also employ a technique known as count-merging in our domain adaptation

study. Count-merging assigns different weights to different examples to better re-

flect their relative importance. Roark and Bacchiani (2003) showed that weighted

count-merging is a special case of maximum a posteriori (MAP) estimation, and suc-

cessfully used it for probabilistic context-free grammar domain adaptation (Roark

and Bacchiani, 2003) and language model adaptation (Bacchiani and Roark, 2003).

Count-merging can be regarded as scaling of counts obtained from different data

sets. We let c̃ denote the counts from out-of-domain training data, c̄ denote the

counts from in-domain adaptation data, and p̂ denote the probability estimate by

count-merging. We can scale the out-of-domain and in-domain counts with different

factors, or just use a single weight parameter β:

p̂(fj|si) =
c̃(fj, si) + βc̄(fj, si)

c̃(si) + βc̄(si)
(6.1)

Similarly,

p̂(si) =
c̃(si) + βc̄(si)

c̃ + βc̄
(6.2)

Obtaining an optimum value for β is not the focus of this work. Instead, we are

interested to see if assigning a higher weight to the in-domain WSJ adaptation ex-

amples, as compared to the out-of-domain BC examples, will improve the adaptation

process. Hence, we just use a β value of 3 in our experiments involving count-merging.
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Figure 6.2: Adaptation process for all 21 nouns. In the graph, the curves are: r
(random selection), a (active learning), a-c (active learning with count-merging), a-
truePrior (active learning, with BC examples gathered to adhere to true sense priors
in WSJ).

6.4 Experimental Results

For each adaptation experiment, we start off with a classifier built from an initial

training set consisting of the BC training examples. At each adaptation iteration,

WSJ adaptation examples are selected one at a time and added to the training set.

The adaptation process continues until all the adaptation examples are added. Clas-

sification accuracies averaged over 3 random trials on the WSJ test examples at each

iteration are calculated. Since the number of WSJ adaptation examples differs for
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each of the 21 nouns, the learning curves we will show in the various figures are plot-

ted in terms of different percentage of adaptation examples added, varying from 0

to 100 percent in steps of 1 percent. To obtain these curves, we first calculate for

each noun, the WSD accuracy when different percentages of adaptation examples are

added. Then, for each percentage, we calculate the macro-average WSD accuracy

over all the nouns to obtain a single learning curve representing all the nouns.

6.4.1 Utility of Active Learning and Count-merging

In Figure 6.2, the curve r represents the adaptation process of the baseline approach,

where additional WSJ examples are randomly selected during each adaptation iter-

ation. The adaptation process using active learning is represented by the curve a,

while applying count-merging with active learning is represented by the curve a-c.

Note that random selection r achieves its highest WSD accuracy after all the adap-

tation examples are added. To reach the same accuracy, the a approach requires the

addition of only 57% of adaptation examples. The a-c approach is even more effective

and requires only 42% of adaptation examples. This demonstrates the effectiveness

of count-merging in further reducing the annotation effort, when compared to using

only active learning. To reach the MFS accuracy of 61.1% as shown earlier in Table

6.1, a-c requires just 4% of the adaptation examples.

6.4.2 Using Sense Priors Information

As mentioned previously, research in (Escudero, Marquez, and Rigau, 2000) noted an

improvement in accuracy when they adjusted the BC and WSJ datasets such that

the proportions of the different senses of each word were the same between BC and

WSJ. We can similarly choose BC examples such that the sense priors in the BC
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training data adhere to the sense priors in the WSJ evaluation data. To gauge the

effectiveness of this approach, we first assume that we know the true sense priors of

each noun in the WSJ evaluation data. We then gather BC training examples for a

noun to adhere as much as possible to the sense priors in WSJ. Assume sense si is

the predominant sense in the WSJ evaluation data, and si has a sense prior of pi in

the WSJ data and has ni BC training examples. Taking ni examples to represent a

sense prior of pi, we proportionally determine the number of BC examples to gather

for the other senses according to their respective sense priors in WSJ. If there are

insufficient training examples in BC for some sense s, whatever available examples of

s are used.

This approach gives an average of 195 BC training examples for the 21 nouns.

With this new set of training examples, we perform adaptation using active learning

and obtain the a-truePrior curve in Figure 6.2. The a-truePrior curve shows that by

ensuring that the sense priors in the BC training data adhere as much as possible to

the sense priors in the WSJ data, we start off with a higher WSD accuracy. However,

the performance is no different from the a curve after 35% of adaptation examples

are added. A possible reason might be that by strictly adhering to the sense priors

in the WSJ data, we have removed too many BC training examples, from an average

of 310 examples per noun as shown in Table 6.1 to an average of 195 examples.

6.4.3 Using Predominant Sense Information

Research by McCarthy et al. (2004b) and Koeling, McCarthy, and Carroll (2005)

pointed out that a change of predominant sense is often indicative of a change in

domain. For example, the predominant sense of the noun interest in the BC part

of the DSO corpus has the meaning “a sense of concern with and curiosity about
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someone or something”. In the WSJ part of the DSO corpus, the noun interest has a

different predominant sense with the meaning “a fixed charge for borrowing money”,

which is reflective of the business and finance focus of the WSJ corpus.

Instead of restricting the BC training data to adhere strictly to the sense priors

in WSJ, another alternative is just to ensure that the predominant sense in BC is the

same as that of WSJ. Out of the 21 nouns, 12 nouns have the same predominant sense

in both BC and WSJ. The remaining 9 nouns that have different predominant senses

in the BC and WSJ data are: center, field, figure, interest, line, need, order, term,

value. The row 9 nouns in Table 6.1 gives some information for this set of 9 nouns.

To gauge the utility of this approach, we conduct experiments on these nouns by first

assuming that we know the true predominant sense in the WSJ data. Assume that

the WSJ predominant sense of a noun is si and si has ni examples in the BC data.

We then gather BC examples for a noun to adhere to this WSJ predominant sense,

by gathering only up to ni BC examples for each sense of this noun. This approach

gives an average of 190 BC examples for the 9 nouns. This is higher than an average

of 83 BC examples for these 9 nouns if BC examples are selected to follow the sense

priors of WSJ evaluation data as described in the last subsection 6.4.2.

For these 9 nouns, the average KL-divergence between the sense priors of the

original BC data and WSJ evaluation data is 0.81. This drops to 0.51 after ensuring

that the predominant sense in BC is the same as that of WSJ, confirming that the

sense priors in the newly gathered BC data more closely follow the sense priors in WSJ.

Using this new set of training examples, we perform domain adaptation using active

learning to obtain the curve a-truePred in Figure 6.3. For comparison, we also plot

the curves a and a-truePrior for this set of 9 nouns in Figure 6.3. Results in Figure

6.3 show that a-truePred starts off at a higher accuracy and performs consistently
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Figure 6.3: Using true predominant sense for the 9 nouns. The curves are: a (active
learning), a-truePrior (active learning, with BC examples gathered to adhere to true
sense priors in WSJ), a-truePred (active learning, with BC examples gathered such
that its predominant sense is the same as the true predominant sense in WSJ).

better than the a curve. In contrast, though a-truePrior starts at a high accuracy,

its performance is lower than a-truePred and a after 50% of adaptation examples

have been added. The approach represented by a-truePred is a compromise between

ensuring that the sense priors in the training data follow as closely as possible the

sense priors in the evaluation data, while retaining enough training examples. These

results highlight the importance of striking a balance between these two goals.

In Section 5.1.3, we described the method presented in (McCarthy et al., 2004b),

where the aim is to determine the predominant sense of a word in a corpus. We have
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Figure 6.4: Using estimated predominant sense for the 9 nouns. The curves are: r
(random selection), a (active learning), a-truePred (active learning, with BC examples
gathered such that its predominant sense is the same as the true predominant sense
in WSJ), a-estPred (similar to a-truePred, except that the predominant sense in WSJ
is estimated by the EM-based algorithm), a-c-estPred (employing count-merging with
a-estPred).

shown, however that in a supervised setting where one has access to some annotated

training data, the EM-based algorithm described in the previous chapter estimates

the sense priors more effectively than the method described in (McCarthy et al.,

2004b). Hence, we use the EM-based algorithm to estimate the sense priors in the

WSJ evaluation data for each of the 21 nouns. The sense with the highest estimated

sense prior is taken as the predominant sense of the noun.

For the set of 12 nouns where the predominant sense remains unchanged between
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Accuracy % adaptation examples needed
r a a-estPred a-c-estPred

50%: 61.1 8 7 (0.88) 5 (0.63) 4 (0.50)
60%: 64.5 10 9 (0.90) 7 (0.70) 5 (0.50)
70%: 68.0 15 12 (0.80) 9 (0.60) 6 (0.40)
80%: 71.5 23 16 (0.70) 12 (0.52) 9 (0.39)
90%: 74.9 46 24 (0.52) 21 (0.46) 15 (0.33)
100%: 78.4 100 51 (0.51) 38 (0.38) 29 (0.29)

Table 6.2: Annotation savings and percentage of adaptation examples needed to reach
various accuracies.

BC and WSJ, the EM-based algorithm is able to predict that the predominant sense

remains unchanged for all 12 nouns. Hence, we will focus on the 9 nouns which have

different predominant senses between BC and WSJ for our remaining adaptation

experiments. For these 9 nouns, the EM-based algorithm correctly predicts the WSJ

predominant sense for 6 nouns. Hence, the algorithm is able to predict the correct

predominant sense for 18 out of 21 nouns overall, representing an accuracy of 86%.

Figure 6.4 plots the curve a-estPred, which is similar to a-truePred, except that

the predominant sense is now estimated by the EM-based algorithm. Employing

count-merging with a-estPred produces the curve a-c-estPred. For comparison, the

curves r, a, and a-truePred are also plotted. The results show that a-estPred performs

consistently better than a, and a-c-estPred in turn performs better than a-estPred.

Hence, employing the predicted predominant sense and count-merging, we further

improve the effectiveness of the active learning-based adaptation process.

With reference to Figure 6.4, the WSD accuracies of the r and a curves before

and after adaptation are 43.7% and 78.4% respectively. Starting from the mid-point

61.1% accuracy, which represents a 50% accuracy increase from 43.7%, we show in

Table 6.2 the percentage of adaptation examples required by the various approaches

to reach certain levels of WSD accuracies. For instance, to reach the final accuracy
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of 78.4%, r, a, a-estPred, and a-c-estPred require the addition of 100%, 51%, 38%,

and 29% adaptation examples respectively. The numbers in brackets give the ratio

of adaptation examples needed by a, a-estPred, and a-c-estPred versus random se-

lection r. For instance, to reach a WSD accuracy of 78.4%, a-c-estPred needs only

29% adaptation examples, representing a ratio of 0.29 and an annotation saving of

71%. Note that this represents a more effective adaptation process than the basic

active learning a approach, which requires 51% adaptation examples. Hence, besides

showing that active learning can be used to reduce the annotation effort required

for domain adaptation, we have further improved the effectiveness of the adaptation

process by using the predicted predominant sense of the new domain and adopting

the count-merging technique.

6.5 Summary

Domain adaptation is important to ensure the general applicability of WSD systems

across different domains. In this chapter, we have shown that active learning is

effective in reducing the annotation effort required in porting a WSD system to a new

domain. Also, we have successfully used an EM-based algorithm to detect a change

in predominant sense between the training and new domain. With this information

on the predominant sense of the new domain and incorporating count-merging, we

have shown that we are able to improve the effectiveness of the original adaptation

process achieved by the basic active learning approach.



Chapter 7

Word Sense Disambiguation for

Machine Translation

Recent research presents conflicting evidence on whether WSD systems can help to

improve the performance of statistical machine translation (MT) systems. In this

chapter, we show how we successfully integrate a state-of-the-art WSD system into

the state-of-the-art hierarchical phrase-based MT system, Hiero. We show for the first

time that integrating a WSD system improves the performance of a state-of-the-art

statistical MT system on an actual translation task. Furthermore, the improvement

is statistically significant.

We start the chapter by describing the Hiero MT system and introducing the two

new features used to integrate the WSD system into Hiero. We then describe the

training data used by the WSD system. Following that, we describe how the WSD

translations provided are used by the decoder of the Hiero MT system. Then, we

present and analyze our experimental results, before concluding the chapter.

101
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7.1 Hiero

Hiero (Chiang, 2005) is a hierarchical phrase-based model for statistical machine

translation, based on weighted synchronous context-free grammar (CFG) (Lewis and

Stearns, 1968). A synchronous CFG consists of rewrite rules such as the following:

X→ 〈γ, α〉 (7.1)

where X is a non-terminal symbol, and each of γ and α is a string of terminal and

non-terminal symbols in the source and target language, respectively. There is a

one-to-one correspondence between the non-terminals in γ and α indicated by co-

indexation. Hence, γ and α always have the same number of non-terminal symbols.

For instance, we could have the following grammar rule:

X→ 〈�Ût X
1

, go to X
1

every month to〉 (7.2)

where boxed indices represent the correspondences between non-terminal symbols.

Hiero extracts the synchronous CFG rules automatically from a word-aligned par-

allel corpus. One can treat a rule as a mapping, or as a translation. For instance, the

above rule indicates that we will translate the phrase “� Û t X
1

” as “go to

X
1

every month to”.

To translate a source sentence, the goal is to find its most probable derivation

using the extracted grammar rules. For instance, assume that c1 . . . c9 in Figure 7.1

represents a Chinese source sentence with 9 words. To translate this source sentence,

Hiero attempts to use the extracted grammar rules to find a suitable derivation that

spans the sentence.
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Figure 7.1: An example derivation which consists of 8 grammar rules. The source
string of each rule is represented by the box before the comma, while the shaded
boxes represent the target strings of the rules.

Hiero uses a general log-linear model (Och and Ney, 2002) where the weight of a

derivation D for a particular source sentence and its translation is

w(D) =
∏

i

φi(D)λi (7.3)

where φi is a feature function and λi is the weight for feature φi. To ensure efficient

decoding, the φi are subject to certain locality restrictions. Essentially, they should be

defined as products of functions defined on isolated synchronous CFG rules. However,

it is possible to extend the domain of locality of the features somewhat. For instance,

an n-gram language model adds a dependence on (n−1) neighboring target-side words

(Wu, 1996; Chiang, 2007), making decoding much more difficult but still polynomial.

In our work, we add features that depend on the neighboring source-side words,
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which does not affect decoding complexity at all because the source string is fixed.

In principle we could add features that depend on arbitrary source-side context.

7.1.1 New Features in Hiero for WSD

To incorporate WSD into Hiero, we use the translations proposed by the WSD system

to help Hiero obtain a better or more probable derivation during the translation of

each source sentence. To achieve this, when a grammar rule R is considered during

decoding, and we recognize that some of the terminal symbols (words) in α are also

chosen by the WSD system as translations for some terminal symbols (words) in γ,

we compute the following features:

• Pwsd(t | s) gives the contextual probability of the WSD classifier choosing t

as a translation for s, where t (s) is some substring of terminal symbols in α

(γ). Because this probability only applies to some rules, and we don’t want to

penalize those rules, we must add another feature,

• Ptywsd = exp(−|t|), where t is the translation chosen by the WSD system. This

feature, with a negative weight, rewards rules that use translations suggested

by the WSD module.

Note that we can take the negative logarithm of the rule/derivation weights and

think of them as costs rather than probabilities. If we do this, then to translate

a source sentence, our goal will be to find the derivation with the least cost. To

illustrate, consider Figure 7.1. The cost of a derivation depends on the rules that

make up the derivation. The cost of a rule, in turn, consists of the costs contributed

by features defined on the rule. Hence to translate a source sentence, Hiero tries

different rules to find the derivation with the least cost. Now, assume that Hiero
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Figure 7.2: We perform WSD on the source string “c5”, using the derived context
dependent probability to change the original cost of the grammar rule.

has determined that for the source sentence c1 . . . c9, the derivation in Figure 7.1

is the one with the least cost. Since each rule represents rewriting its source string

as its target string, the target strings of the rule (represented by the shaded boxes)

actually give the translation of the source sentence c1 . . . c9. This means that once

a particular grammar rule is used as part of the best derivation, its target string will

be part of the translated output. This ties in to the main idea of how we use WSD

to improve Hiero’s translation.

To illustrate further, Figure 7.2 highlights the grammar rule with the source string

“c5”. This rule is part of the derivation shown in Figure 7.1. When the grammar rule

is included as part of the derivation, the source string “c5” will be translated into

the rule’s target string, represented by the shaded box. We want to know whether

our WSD system supports this translation. Hence we perform WSD on the source

string “c5”, given its surrounding context, to determine what is the context dependent

probability of the source string “c5” translating into the target string represented by

the shaded box. This information is used to change the original cost of this grammar

rule, and this is done for every rule. Hence, we use the WSD system to change

the costs of the grammar rules, where the change in costs is dependent upon the

contextual probability of the rule’s source string translating into its target string. We
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hope this will help Hiero obtain a more informed derivation and thus produce a better

translation.

7.2 Gathering Training Examples for WSD

Our experiments were for Chinese to English translation. Hence, in the context of

our work, a synchronous CFG grammar rule X → 〈γ, α〉 gathered by Hiero consists

of a Chinese portion γ and a corresponding English portion α, where each portion is

a sequence of words and non-terminal symbols.

Our WSD classifier suggests a list of English phrases (where each phrase consists

of one or more English words) with associated contextual probabilities as possible

translations for each particular Chinese phrase. In general, the Chinese phrase may

consist of k Chinese words, where k = 1, 2, 3, . . .. However, we limit k to 1 or 2 for

experiments reported here. Future work can explore enlarging k.

Whenever Hiero is about to extract a grammar rule where its Chinese portion

is a phrase of one or two Chinese words with no non-terminal symbols, we note the

location (sentence and token offset) in the Chinese half of the parallel corpus from

which the Chinese portion of the rule is extracted. The actual sentence in the corpus

containing the Chinese phrase, and the one sentence before and the one sentence

after that actual sentence, will serve as the context for one training example for the

Chinese phrase, with the corresponding English phrase of the grammar rule as its

translation, or “sense class”. Hence, unlike traditional WSD where the sense classes

are tied to a specific sense inventory, our “senses” here consist of the target strings

of grammar rules, which in the context of our work are English phrases extracted as

translations for each Chinese phrase. This is similar to the multilingual lexical sample
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task of SENSEVAL-3 (Chklovski et al., 2004) and Task 11 (English lexical sample

task via English-Chinese parallel text) of SemEval-2007, where sense distinctions are

decided by the use of different translations in the target language. Since the extracted

training data may be noisy, for each Chinese phrase, we remove English translations

that occur only once. Furthermore, we only attempt WSD classification for those

Chinese phrases with at least 10 training examples.

Using the WSD classifier described in Section 3.2.2, which uses the LIBSVM

implementation of SVM as its learning algorithm, we classified the words in each

Chinese source sentence to be translated. We first performed POS-tagging on the

Chinese texts using the tagger of (Ng and Low, 2004). Then, we performed WSD on

all single Chinese words which are tagged as either noun, verb, or adjective. Next,

we classified the Chinese phrases consisting of 2 consecutive Chinese words by simply

treating the phrase as a single unit. When performing classification, we give as output

the set of English translations with associated context-dependent probabilities, which

are the probabilities of a Chinese word (phrase) translating into each English phrase,

depending on the context of the Chinese word (phrase). After WSD, the ith word ci

in every Chinese sentence may have up to 3 sets of associated translations provided

by the WSD system: a set of translations for ci as a single word, a second set of

translations for ci−1ci considered as a single unit, and a third set of translations for

cici+1 considered as a single unit.

7.3 Incorporating WSD during Decoding

The following tasks are performed for each rule that is considered during decoding:

• identify Chinese words to suggest translations for
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Input: rule R considered during decoding with its own associated costR
Lc = list of symbols in Chinese portion of R
WSDcost = 0
i = 1
while i ≤ len(Lc):

ci = ith symbol in Lc

if ci is a Chinese word (i.e., not a non-terminal symbol):
// seenChunk is a global variable and is passed by reference to matchWSD
seenChunk = ∅
if (ci is not the last symbol in Lc) and (ci+1 is a terminal symbol):

then ci+1=(i+1)th symbol in Lc, else ci+1 = NULL
if (ci+1!=NULL) and (ci, ci+1) as a single unit has WSD translations:

WSDc = set of WSD translations for (ci,ci+1) as a single unit
with context-dependent probabilities

WSDcost = WSDcost + matchWSD(ci, WSDc, seenChunk)
WSDcost = WSDcost + matchWSD(ci+1, WSDc, seenChunk)
i = i + 1

else:
WSDc = set of WSD translations for ci with context-dependent probabilities
WSDcost = WSDcost + matchWSD(ci, WSDc, seenChunk)

i = i + 1
costR = costR + WSDcost

matchWSD(c, WSDc, seenChunk):
// seenChunk is the set of chunks of R already examined for possible matching WSD translations
cost = 0
ChunkSet = set of chunks in R aligned to c
for chunkj in ChunkSet:

if chunkj not in seenChunk:
seenChunk = seenChunk ∪ { chunkj }
Echunkj = set of English words in chunkj aligned to c
Candidatewsd = ∅
for wsdk in WSDc:

if (wsdk is sub-sequence of chunkj) and (wsdk contains at least one word in Echunkj ):
Candidatewsd = Candidatewsd ∪ { wsdk }

wsdbest = best matching translation in Candidatewsd against chunkj

// costByWSDfeatures sums up the cost of the two WSD features
cost = cost + costByWSDfeatures(wsdbest)

return cost

Figure 7.3: WSD translations affecting the cost of a rule R considered during decod-
ing.
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• match suggested translations against the English side of the rule

• compute features for the rule

The WSD system is able to predict translations only for a subset of Chinese words

or phrases. Hence, we must first identify which parts of the Chinese side of the rule

have suggested translations available. Here, we consider substrings of length up to

two, and we give priority to longer substrings.

Next, we want to know, for each Chinese substring considered, whether the WSD

system supports the Chinese-English translation represented by the rule. If the rule

is finally chosen as part of the best derivation for translating the Chinese sentence,

then all the words in the English side of the rule will appear in the translated English

sentence. Hence, we need to match the translations suggested by the WSD system

against the English side of the rule. It is for these matching rules that the WSD

features will apply.

The translations proposed by the WSD system may be more than one word long.

In order for a proposed translation to match the rule, we require two conditions.

First, the proposed translation must be a substring of the English side of the rule.

For example, the proposed translation “every to” would not match the string “every

month to”. Second, the match must contain at least one aligned Chinese-English

word pair, but we do not make any other requirements about the alignment of the

other Chinese or English words.1 If there are multiple possible matches, we choose the

longest proposed translation; in the case of a tie, we choose the proposed translation

with the highest score according to the WSD model.

1In order to check this requirement, we extended Hiero to make word alignment information
available to the decoder.
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Define a chunk of a rule to be a maximal substring of terminal symbols on the

English side of the rule. For instance, in Rule (7.2), the chunks would be “go to”

and “every month to”. Whenever we find a matching WSD translation, we mark the

whole chunk on the English side as consumed.

Finally, we compute the feature values for the rule. The feature Pwsd(t | s) is the

sum of the costs (according to the WSD model) of all the matched translations, and

the feature Ptywsd is the sum of the lengths of all the matched translations.

Figure 7.3 shows the pseudocode for the rule scoring algorithm in more detail,

particularly with regards to resolving conflicts between overlapping matches. To

illustrate the algorithm given in Figure 7.3, consider Rule (7.2). Hereafter, we will

use symbols to represent the Chinese and English words in the rule: c1, c2, and c3 will

represent the Chinese words “�”, “Û”, and “t” respectively. Similarly, e1, e2, e3,

e4, and e5 will represent the English words go, to, every, month, and to respectively.

Hence, Rule (7.2) has two chunks: e1e2 and e3e4e5. When the rule is extracted from

the parallel corpus, it has these alignments between the words of its Chinese and

English portion: {c1–e3,c2–e4,c3–e1,c3–e2,c3–e5}, which means that c1 is aligned to e3,

c2 is aligned to e4, and c3 is aligned to e1, e2, and e5. Although all words are aligned

here, in general for a rule, some of its Chinese or English words may not be associated

with any alignments.

In our experiment, c1c2 as a phrase has a list of translations proposed by the

WSD system, including the English phrase “every month”. matchWSD will first be

invoked for c1, which is aligned to only one chunk e3e4e5 via its alignment with e3.

Since “every month” is a sub-sequence of the chunk and also contains the word e3

(“every”), it is noted as a candidate translation. Later, it is determined that the

most number of words any candidate translation has is two words. Since among
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all the 2-word candidate translations, the translation “every month” has the highest

translation probability as assigned by the WSD classifier, it is chosen as the best

matching translation for the chunk. matchWSD is then invoked for c2, which is aligned

to only one chunk e3e4e5. However, since this chunk has already been examined by

c1 with which it is considered as a phrase, no further matching is done for c2. Next,

matchWSD is invoked for c3, which is aligned to both chunks of R. The English

phrases “go to” and “to” are among the list of translations proposed by the WSD

system for c3, and they are eventually chosen as the best matching translations for

the chunks e1e2 and e3e4e5, respectively.

7.4 Experiments

As mentioned, our experiments were on Chinese to English translation. Similar to

(Chiang, 2005), we trained the Hiero system on the FBIS corpus, used the NIST MT

2002 evaluation test set as our development set to tune the feature weights, and the

NIST MT 2003 evaluation test set as our test data. Using the English portion of the

FBIS corpus and the Xinhua portion of the Gigaword corpus, we trained a trigram

language model using the SRI Language Modelling Toolkit (Stolcke, 2002). Following

(Chiang, 2005), we used the version 11a NIST BLEU script with its default settings

to calculate the BLEU scores (Papineni et al., 2002) based on case-insensitive n-gram

matching, where n is up to 4.

First, we performed word alignment on the FBIS parallel corpus using GIZA++

(Och and Ney, 2000) in both directions. The word alignments of both directions are

then combined into a single set of alignments using the “diag-and” method of (Koehn,

2003). Based on these alignments, synchronous CFG rules are then extracted from
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System BLEU-4 Individual n-gram precisions
1 2 3 4

Hiero 29.73 74.73 40.14 21.83 11.93
Hiero+WSD 30.30 74.82 40.40 22.45 12.42

Table 7.1: BLEU scores

Systems
Features Hiero Hiero+WSD
Plm(e) 0.2337 0.1937
P (γ|α) 0.0882 0.0770
P (α|γ) 0.1666 0.1124
Pw(γ|α) 0.0393 0.0487
Pw(α|γ) 0.1357 0.0380
Ptyphr 0.0665 0.0988
Glue −0.0582 −0.0305
Ptyword −0.4806 −0.1747
Pwsd(t|s) - 0.1051
Ptywsd - −0.1611

Table 7.2: Weights for each feature obtained by MERT training. The first eight
features are those used by Hiero in Chiang (2005).

the corpus. While Hiero is extracting grammar rules, we gathered WSD training data

by following the procedure described in section 7.2.

7.4.1 Hiero Results

Using the MT 2002 test set, we ran the minimum-error rate training (MERT) (Och,

2003) with the decoder to tune the weights for each feature. The weights obtained are

shown in the column Hiero of Table 7.2. Using these weights, we run Hiero’s decoder

to perform the actual translation of the MT 2003 test sentences and obtained a BLEU

score of 29.73, as shown in the row Hiero of Table 7.1. This is higher than the score

of 28.77 reported in (Chiang, 2005), perhaps due to differences in word segmentation,

etc. Note that comparing with the MT systems used in (Carpuat and Wu, 2005),
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(Carpuat and Wu, 2007), and (Cabezas and Resnik, 2005), the Hiero system we are

using represents a much stronger baseline MT system upon which the WSD system

must improve.

7.4.2 Hiero+WSD Results

We then added the WSD features of Section 7.1.1 into Hiero and reran the experiment.

The weights obtained by MERT are shown in the column Hiero+WSD of Table 7.2.

We note that a negative weight is learnt for Ptywsd. This means that in general, the

model prefers grammar rules having chunks that matches WSD translations. This

matches our intuition. Using the weights obtained, we translated the test sentences

and obtained a BLEU score of 30.30, as shown in the row Hiero+WSD of Table

7.1. The improvement of 0.57 is statistically significant at p < 0.05 using the sign-

test as described by Collins, Koehn, and Kucerova (2005), with 374 (+1), 318 (−1)

and 227 (0). Using the bootstrap-sampling test described in (Koehn, 2004b), the

improvement is statistically significant at p < 0.05. Although the improvement is

modest, it is statistically significant and this positive result is important in view

of the negative findings in (Carpuat and Wu, 2005) that WSD does not help MT.

Furthermore, note that Hiero+WSD has higher n-gram precisions than Hiero.

7.5 Analysis

Ideally, the WSD system should be suggesting high-quality translations which are

frequently part of the reference sentences. To determine this, we note the set of

grammar rules used in the best derivation for translating each test sentence. From

the rules of each test sentence, we tabulated the set of translations proposed by the
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No. of All test sentences +1 from Collins sign-test
words in No. of WSD % match No. of WSD % match

WSD translations translations used reference translations used reference
1 7087 77.31 3078 77.68
2 1930 66.11 861 64.92
3 371 43.13 171 48.54
4 124 26.61 52 28.85

Table 7.3: Number of WSD translations used and proportion that matches against
respective reference sentences. WSD translations longer than 4 words are very sparse
(less than 10 occurrences) and thus they are not shown.

WSD system and check whether they are found in the associated reference sentences.

On the entire set of NIST MT 2003 evaluation test sentences, an average of 10.36

translations proposed by the WSD system were used for each sentence. When limited

to the set of 374 sentences which were judged by the Collins sign-test to have better

translations from Hiero+WSD than from Hiero, a higher number (11.14) of proposed

translations were used on average. Further, for the entire set of test sentences, 73.01%

of the proposed translations are found in the reference sentences. This increased to

a proportion of 73.22% when limited to the set of 374 sentences. These figures show

that having more, and higher-quality proposed translations contributed to the set of

374 sentences being better translations than their respective original translations from

Hiero. Table 7.3 gives a detailed breakdown of these figures according to the number of

words in each proposed translation. For instance, over all the test sentences, the WSD

module gave 7087 translations of single-word length, and 77.31% of these translations

match their respective reference sentences. We note that although the proportion

of matching 2-word translations is slightly lower for the set of 374 sentences, the

proportion increases for translations having more words.

After the experiments in Section 7.4 were completed, we visually inspected the
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translation output of Hiero and Hiero+WSD to categorize the ways in which inte-

grating WSD contributes to better translations. The first way in which WSD helps

is when it enables the integrated Hiero+WSD system to output extra appropriate

English words. For example, the translations for the Chinese sentence “. . .Ý ÙÆ

� �ò q� � Ç R Ã� Rz Í õ ÇÏ Ý ÙÆ tZ �” are as follows.

• Hiero: . . . or other bad behavior ”, will be more aid and other concessions.

• Hiero+WSD: . . . or other bad behavior ”, will be unable to obtain more aid and

other concessions.

Here, the Chinese words “Ã�Rz” are not translated by Hiero at all. By providing

the correct translation of “unable to obtain” for “Ã� Rz”, the translation output

of Hiero+WSD is more complete.

A second way in which WSD helps is by correcting a previously incorrect trans-

lation. For example, for the Chinese sentence “. . .Ç ó \ ) È � |Ì Ç. . . ”,

the WSD system helps to correct Hiero’s original translation by providing the correct

translation of “all ethnic groups” for the Chinese phrase “È �”:

• Hiero: . . . , and people of all nationalities across the country, . . .

• Hiero+WSD: . . . , and people of all ethnic groups across the country, . . .

We also looked at the set of 318 sentences that were judged by the Collins sign-

test to be worse translations. We found that in some situations, Hiero+WSD has

provided extra appropriate English words, but those particular words are not used

in the reference sentences. An interesting example is the translation of the Chinese

sentence “¥³ i� � ð8 q� �ò R Ã� Rz Í õ ÇÏ”.
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• Hiero: Australian foreign minister said that North Korea bad behavior will be

more aid

• Hiero+WSD: Australian foreign minister said that North Korea bad behavior

will be unable to obtain more aid

This is similar to the example mentioned earlier. In this case however, those extra

English words provided by Hiero+WSD, though appropriate, do not result in more n-

gram matches as the reference sentences used phrases such as “will not gain”, “will not

get”, etc. Since the BLEU metric is precision based, the longer sentence translation

by Hiero+WSD gets a lower BLEU score instead.

Our work gives evidence that to successfully integrate WSD into NLP applications,

it is important to properly tailor the method of integration according to the particular

NLP application. In particular, due consideration has to be given to the definition of

the sense inventory. For instance, we feel that a contributing factor to the success of

our work in (Chan, Ng, and Chiang, 2007) when prior work such as (Carpuat and Wu,

2005) reported that WSD decreases MT performance, is that unlike traditional WSD

where the sense classes are tied to a specific sense inventory, we define our “senses”

as strings in the target language. More recently, Agirre et al. (2008) used sense

information to substitute words with their semantic classes. For instance, word sense

information could help to determine whether an occurrence of the word crane should

be substituted with the semantic class of ANIMAL or ARTIFACT. They showed that

this process helps in generalizing the information learnt and thus improves parsing

performance. Overall, while the sense inventory may change depending on the specific

NLP application, the same WSD algorithm still applies to select the correct sense or

semantic class in the application.



CHAPTER 7. WSD FOR MT 117

7.6 Summary

We have shown that WSD improves the translation performance of a state-of-the-art

hierarchical phrase-based statistical MT system and this improvement is statistically

significant. We have also demonstrated one way to integrate a WSD system into an

MT system. For future work, an immediate step would be for the WSD classifier to

provide translations for longer Chinese phrases. Also, different alternatives could be

tried to match the translations provided by the WSD classifier against the chunks of

rules. Finally, besides our proposed approach of integrating WSD into statistical MT

via the introduction of two new features, we could explore other alternative ways of

integration.



Chapter 8

Conclusion

As mentioned at the start of this thesis, we are interested in exploring three important

issues of WSD research: tackling the data acquisition bottleneck for WSD, domain

adaptation of WSD systems, and whether WSD can help to improve MT performance.

With regards to the first issue, we have shown that the approach of gathering

training examples from parallel texts is promising. When we evaluate WSD systems

trained on parallel text examples on the test data of SENSEVAL-2 and SENSEVAL-3

English all-words task, we always outperform the strategy of choosing the first sense

of WordNet. Note that, as mentioned in Chapter 1, this is a baseline strategy that few

participating systems could beat (moreover, these systems rely on manually annotated

examples for training). On both sets of test data, we show that adding parallel text

examples can help to further improve the performance of classifiers trained on the

manually annotated examples of SemCor and DSO. We also participated in the coarse-

grained English all-words task and fine-grained English all-words task of the recent

SemEval-2007 evaluation exercise. Using training examples gathered from parallel

texts, SemCor, and the DSO corpus, we trained supervised WSD systems. Evaluation

118
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results show that this approach achieves good performance in both tasks.

With regards to the issue of domain adaptation, we have highlighted that dif-

ferences in sense priors between training and target domain data result in a loss of

WSD accuracy. By using an EM-based algorithm, we estimate the sense priors in the

target domain. In estimating these sense priors, we show that it is important to use

well calibrated probabilities, such as those obtained from logistic regression. We have

also explored another complementary approach to domain adaptation of WSD sys-

tems, by adding examples from the new domain as additional training data to a WSD

system. Besides showing that active learning is effective in reducing the annotation

effort required, we use the predominant sense information predicted by the EM-based

algorithm, and incorporate a count-merging technique. With these enhancements,

we improve the effectiveness of the original adaptation process achieved by the basic

active learning approach.

Finally, we show how we integrate a WSD system into the state-of-the-art hierar-

chical phrase-based statistical MT system, Hiero. Through our experiments, we show

that WSD improves the translation performance of Hiero and that this improvement

is statistically significant.

8.1 Future Work

In the following sub-sections, we outline some potential future work.
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8.1.1 Acquiring Examples from Parallel Texts for All English

Words

We have shown that our approach of gathering examples from parallel texts is promis-

ing. So far, however, we have only gathered parallel text examples for a set of fre-

quently occurring words. A future direction would be to extend the approach to all

the content words of English. To achieve this, the process of assigning Chinese trans-

lations to the senses of words has to be automated as much as possible. A potential

solution for this will be to make use of some suitable English-Chinese lexicon that

includes Chinese translations of WordNet word senses.

8.1.2 Word Sense Disambiguation for Machine Translation

In existing statistical phrase-based MT systems such as Hiero and Pharaoh, trans-

lation probabilities are calculated from an aligned parallel corpus during training.

In particular, each source-target phrase pair s and t will be associated with a single

translation probability. These probabilities are context independent in that once a

probability is calculated for a pair of phrases s and t, the same probability will be

used in every occurrence of translating s to t. Instead of the approach taken in our

work where we introduce two features for WSD into the MT model of Hiero, we could

instead replace these phrase translation probabilities with context-sensitive probabil-

ities. This is similar to the approach in (Carpuat and Wu, 2007) where the authors

attempted to incorporate WSD into the Pharaoh MT system by dynamically chang-

ing the phrase translation lexicon of Pharaoh, according to each source sentence to

be translated.

Another potential direction is to investigate whether BLEU is an appropriate
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evaluation metric for our current research. In scoring translation output, BLEU

rewards systems that produce the correct words in the correct word order. However,

the aim of incorporating WSD into MT is on producing more semantically meaningful

translations. Thus, human judgment might be better suited for evaluation of our

current work. For instance, in a related work (Callison-Burch, Osborne, and Koehn,

2006), the authors conclude that while BLEU is appropriate for tracking incremental

changes to a single system, or for comparing performance across systems employing

similar translation strategies (such as phrase-based versus phrase-based statistical

MT), BLEU does not always correlate well with human judgments.
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