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Summary 
 

The primary objective of this dissertation is to develop two classes of Bayesian 

models for probability encoding in medical decision analysis.  The models are 

developed from the original Bayes’ Theorem and various fundamental concepts that 

underlie the development of contemporary statistics.   

The models are developed with the nature of medical evidence in mind.  This 

is because probability encoding hinges on the availability and features of evidence.  

Forming the basis of reasoning, evidence refers to any explicit warranted reference 

given in an appropriate and specific context for supporting or rejecting a hypothesis, 

claim or belief.   

 Specially designed for analysing subject-level evidences, the first class of 

models follows the framework of Generalised Linear Models (GLM).  Unlike the 

conventional GLM approach, these models require the union of the observed 

evidences (likelihood) with a carefully chosen prior of the canonical parameter(s) that 

underlie the distribution of the outcome variable.    

The second class of models may be referred to as meta-analytic methods as 

they are applied for synthesising aggregate-level evidences from reported sources.  To 

reflect the large amount of heterogeneity among the studies to be combined, the 

models incorporate some random effects in the set-up.  Inevitably, these models are 

hierarchical in nature and have to be estimated with the Gibbs sampler.   

Although these techniques are complicated so that all salient features 

underlying the decision problems are adequately captured, they are also simple 

enough for routine use in clinical practice. 

The recognition of the importance of Bayesian ideas in probability encoding 

will also bring considerable impact on how evidence-based medicine (EBM) is 



 vii 

practiced.   One must be ready to embrace more sources of prior evidences which 

have hitherto being ignored in the current EBM practice.  Through the Bayesian 

framework the synergism between subjective and objective evidences come into play, 

with the decision analyst and domain experts giving valid testimony and searching for 

relevant evidence useful for medical decision making. 

The application of the proposed Bayesian models is a small step towards the 

fuflillment of EBM’s objective of making use the most complete evidence available 

for treating patients.  It is hoped that the practical aspect of the Bayesian models and 

their related concepts will appeal to clinicians and decision analysts engaged in 

routine decision making. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation 

Due to the growing public awareness, medical practice is in the middle of a profound 

transition.  Contemporary scientific medicine has entered upon a period of 

“paradigmatic instability”—that is, a period in which clinicians need to scrutinise 

their practice afresh.  Advances in medical research and technology mean that 

clinicians know more about disease than ever.  New medicines are constantly being 

developed, life support and intensive care improve all the time and patients can 

recover quickly after modern microsurgery.  Yet, clinicians still do not have all the 

answers, and many disorders cannot be cured.  Clinicians are also confronted with a 

wide range of decisions with ethical considerations, which their predecessors might 

not have encountered.   

 What is going on is that one of the most basic assumptions underlying medical 

practice is being challenged.  The assumption is not about the validity of new medical 

discoveries, but concerns the intellectual foundation of medical care or simply put, 

whatever a clinician decides is sound and desirable for his patients.  The implicit 

message of this transition in medical practice is that while many decisions are 

undoubtedly correct, some are not, and elaborate mechanisms are needed to sort out 

which are the desirable ones.   

As such, this dissertation would like to point out that the burning issue is not 

whether there are variations in medical practice and the urgency to reconcile them, but 

rather how we ensure clinicians make good decisions.  Undoubtedly, guidelines are 
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important in preventing malpractice, but one must bear in mind that medical practice 

is subject to change as scientific knowledge advances.   Therefore, the more 

fundamental issue is to develop a reliable framework upon which clinicians could 

make sound decisions in view of the continual evolution of patterns of medical care. 

In fact, this is the desired attribute that forms the basis of all medical guidelines. We 

must reckon that the quality of medical care is determined mainly by the quality of 

clinical decisions that dictate what actions are taken.  

With this in mind, the application of decision analysis is advocated. Decision 

analysis is a methodology based on a probabilistic framework that provides a logical 

and systematic structure for generating clear and consistent action for the decision-

maker [1].  From the perspective of game theory [2], a decision problem is a triple (C, 

π, O), that consists of an option space (C) to be applied by the decision-maker, a set of 

outcomes (O) to be realised by the decision maker, and a mediation mechanism, or 

mapping function, π: C → O, that relates choices and outcomes [3].  The decision 

maker is an entity who is capable of making an autonomous choice from a set of 

options. He also has the authority and responsibility to implement the selected 

alternative. 

While many clinicians may not appreciate the mathematical details involved, 

its framework does provide the structure and guidance for systematic thinking in 

difficult situations.  The whole spectrum of activities concerning clinician-patient 

communication is also structured to help decision makers to identify choices under 

uncertainty.  This is helpful for carrying out decision making related to their practice. 

Consciously or subconsciously, explicitly or implicitly, every decision maker might 

have applied some basic rules advocated by the discipline and it often proves useful in 

developing medical guidelines and for identifying the most desirable therapeutic 
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strategy for patients. Due to the hailstorm of uncertainties that surround medical care 

and therapeutic interventions, proper decision analysis is a reliable anchor in the sea 

of fuzziness.  
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1.2 Medical Decision Analysis  

In its broad sense, medical decision analysis refers to a cluster of quantitative 

techniques useful for the modelling, measurement and evaluation of medical 

evidences, processes and outcomes.  This notion is familiar to most clinical 

researchers who apply statistical methods to evaluate results generated from their 

studies.  Several methodological issues of this nature are explored extensively in the 

dissertation and they serve to provide useful inputs for medical guideline development 

and decision making.   

In addition, the narrower sense of decision analysis is also highlighted and 

implemented in various problems.  More familiar to economists, industrial engineers, 

mathematicians and policy-makers, it refers to the modelling of a decision in the form 

of a tree or an influence diagram and the process of identifying the optimal course of 

actions that maximises the decision maker’s satisfaction. It offers a structured, 

systematic and quantitative approach for evaluating decisions with alternatives, 

uncertain outcomes and competing objectives.   

Decision tree [4] and influence diagram [5] are two different ways for 

presenting the decision problems.  While the tree diagram may be a more 

conventional form of representation, influence diagram provides a more elegant and 

succinct representation when the size of the tree becomes ungainly large.  However, a 

decision tree is preferred over an influence diagram should the problem on hand is 

less complicated, as it provides a more visual approach to decision problems.  The 

comparison of decision trees and influence diagrams is documented in literature [6].  

It is also worthwhile to note that both the decision trees and influence diagrams are 

isomorphic, that is, any property built on the latter can be converted into the former, 

and vice versa.  
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One of the many notable advantages for applying decision analysis is that it is 

able to generate a number of graphical tools for model evaluation.  At each step of 

modelling a great deal of insights may be produced so that the analysis could be 

modified promptly and efficiently.  The following sequence of steps is applied for 

developing a medical decision analysis [7]: 

 

� Define the decision problem and its time horizon 

� Identify a set of candidate decision alternatives 

� List the possible clinical outcomes of each of the candidate alternatives 

� Represent the sequence of events leading to the clinical outcomes  

� Determine the probability of each chance event 

� Assign a value to each clinical outcome 

 

 

The term “decision alternative” denotes the decision maker’s range of options.   

In a decision tree or an influence diagram, the decision and the chance outcomes are 

represented by nodes.  The value of each outcome is often expressed in terms of the 

decision maker’s utility.  In the patient’s context, the utility quantifies his differing 

attitudes to risk and his relative desirability of the outcome states.  As a rational entity, 

he must be able to rank his preferences according to the outcomes of the various 

options.  The probabilities on the chance nodes, on the other hand, quantify the 

pervading uncertainties, which always create clouds of discomfort to medical decision 

makers.  A chance node is thus the point in a decision tree at which probability 

determines which outcome will occur.  In medical decision analysis, possible 

outcomes of chance nodes include disease present/absent, survive/dead, 
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improvement/deterioration in health condition, remission/relapse following a surgical 

operation, and recovery/no recovery after treatment.  A patient’s utility and the 

probabilities on the chance nodes are determined independently.   

  The normative Expected Utility Theory (EUT) [2] states that the decision 

maker chooses between uncertain outcomes by comparing their expected utility value, 

which is the weighted sum obtained by adding the utilities of outcomes multiplied by 

their respective probabilities.  The most desired decision is one that maximises the 

expected utility.  The fundamental axioms of expected utility are documented in 

references [2, 6].  It is interesting to note that while these assumptions are reasonable 

under most circumstances; many decision theorists find some of the axioms 

controversial.  These range from introspection regarding particular decision situations 

to formal psychological experiments in which human subjects make choices that are 

inconsistent with one or more of the axioms [8-12].  The behavioural paradoxes, 

however, do not necessarily invalidate the idea that one should still make decisions 

according to the EUT.  The argument all along has been that people do not seem to 

make coherent decisions without some guidance.  In constructive terms, the decision 

assessment process helps to mould the decision maker’s preferences and his 

understanding about uncertainties.  Individuals who do not think long and hard 

enough in developing their preferences and beliefs might have a tendency to make 

inconsistent judgements [6].   

In terms of the above-mentioned set-up, there is no drastic difference between 

medical decision analysis and ordinary decision analysis frequently applied in 

business, economics, engineering, military operations and public policy evaluation.  

However, extra care must be taken in the formulation phase so that the chance and 

decision variables chosen should cohere with the medical domain and reflect the 
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current state of medical knowledge.  This also helps to determine the types and 

number of alternatives and objectives for a specific decision problem.  In addition, 

elicitation of patient utilities may also pose a serious challenge to the analyst as many 

patients may not know their preferences precisely.   

The use of decision analysis in solving medical problems engages the patients 

in every single step of the process, as the primary goal is to maximise the patient’s 

well-being.  Hence, medical decision analysis should be duly recognised as an integral 

part of contemporary medical practice.  It is also fast becoming an indispensable tool 

of evidence-based medicine (EBM), a particular branch of medical practice that is 

gaining world-wide attention in recent years.  Emerged in the 1990s, EBM formalises 

the scientific principle of basing clinical practice on evidence.  Advocating the 

conscientious, explicit and judicious use of current best evidence in health care [13], 

EBM allows research findings be critically appraised and interpreted, thus increasing 

the likelihood of making better informed decisions.   . 

To facilitate discussion, the terms used throughout the dissertation must be 

properly defined.  A “clinician” is a qualified doctor who renders medical care to 

patients, either in the form of surgical operation or drug treatment or both.  Next, 

“decision maker” is referred to both clinician and patient who are an integral part of 

the decision-making process.  An “analyst” , who may be a decision analyst or 

statistician by profession, is one who provides expertise in solving specific technical 

problems at various stages of the process, including probability encoding and 

generation of patients’ utility.  An investigator is one who initiates and conducts the 

decision analysis.  Last but not least, “domain experts” are those who provide 

specialised medical advice, upon invitation, for specific aspects of the decision.  
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1.3 Objective 

Utility elicitation and probability encoding are crucial to the proper formulation and 

analysis of a medical decision problem.  The objective of this dissertation is to focus 

on developing useful probability-encoding models for routine use in medical decision 

analysis. 

Central to probability encoding and the analysis of medical decision problems 

is the collection and interpretation of evidence.  However, evidence is always 

tentative and obscure in nature.  This is because medical research bears a large degree 

of uncertainties, which may not be completely eradicated even by employing the most 

sophisticated study design and analytical method.  In fact, all forms of inductive 

conclusions are provisional and are subject to change in light of new evidence.  The 

major causes of uncertainty in medical decision analysis include the following: 

 

 

� limited knowledge of the medical problem under study 

� missing information for the complete understanding of a problem  

� subjects enrolled for study are merely a sample of the larger population (sampling 

error) 

� censored medical information  

� errors due to both investigators’ limited sensory power and sensitivity of the 

medical equipment 

� varying conditions of related medical research findings 

� inadequate or inconsistent conclusions from past medical studies 

 

 

The public is often baffled with conflicting and uncertain medical evidence 

reported in news.   For example, there are mixed published evidence regarding the 



1. Introduction 

 9 

potential benefits for breast cancer screening on mortality [14].   Even in situations 

where there is consistent evidence, uncertainties pervade.  While it is generally 

acknowledged that higher levels of physical activity are associated with decreased 

risk of coronary heart disease, hypertension, cancer and possibly longevity [15-16], 

there is a shortage of convincing evidence on what is the threshold level of desired 

physical activity.  Contrary to the common belief that prolonged vigorous physical 

exercises might exert unnecessary burden on our body, there is evidence showing that 

professional athletes might enjoy better long-term life expectancy than the general 

public [17].   

The persisting variable degree of uncertainty calls for the application of 

probabilistic thinking in medical decision analysis.  Since uncertainty cannot be 

eliminated from decision problems, it has to be accommodated and modelled with 

relevant available evidences.   

Relevant evidence is one that makes the fact requiring proof more or less 

probable.  Therefore, the probabilities we assign to our conclusion(s) depend not only 

on how much evidence we have but also how we interpret the evidence and how 

confident we are with the interpretation.  We must also revise our assigned 

probabilities when new evidence surfaces.  These are then updated on the chance 

nodes of the decision model.  Hence, the methodological issues involved in using 

evidence for medical decision making involves not only evidential collection, but also 

how we analyse the evidence and with what degree of assurance. 

Probability provides decision analysts with the scientific theories, 

mathematical concepts and computational techniques for quantifying uncertainties.  

Under uncertainty, the decision maker knows the specific outcomes associated with 

each alternative, but he does not know the probabilities to be associated with the 
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states [18].  This is often the scenario of a typical medical decision problem and it 

leads one to recognise that medical decision making is “an art of probabilities” [19].  

It is beyond the scope of this dissertation to provide a formal treatment of probability 

and its related concepts such as causality [20].  One may refer to the relevant 

references for a more rigorous treatise [21-24].   

To sum up, this dissertation aims to develop a useful and versatile framework 

for probability encoding which may be routinely applied in solving medical decision 

problems.  This calls for not only a proper understanding of probability but also the 

nature of medical evidence gathered and interpreted for decision making.  A reliable 

probability-encoding framework is one that is able to reflect the very nature of 

medical evidence, which forms the main focus of the next section.  

Considering the unique characteristics of clinical research and decision 

making, the Bayesian framework is advocated.  With the help of several specific 

models developed under the framework, routine clinical decision making may be 

carried out with much ease.  They are applied to shed light on a number of clinical 

and healthcare decision problems. However, the implications of the Bayesian 

framework are far more profound.   Capable of transforming our current notion of 

evidence, probability and decision making, the Bayesian framework will enrich the 

practice of EBM which advocates the judicious use of best evidence in health care.  

The Bayesian probability-encoding models advocated in this dissertation are 

sophisticated in nature but not beyond the scope of the less mathematically-inclined, 

especially the clinicians.  To accede to their needs, this dissertation is prepared with 

medical professionals in mind.  The specific Bayesian models advocated are designed 

and recommended for routine use in medical practice.   
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1.4 Medical Evidence 

1.4.1 The Salient Nature  

Since the reliability and accuracy of probability encoding hinges on the use of 

evidence, the nature of medical evidence must be closely examined.  While the above 

discussion suggests that evidence is tentative and uncertain in nature, the following 

explains that it may be both objective and subjective.  It is a common mistake that 

evidence can only exist in an objective state.  This is partly caused by its confusion 

with other related terms such as facts, information and data. 

What is taken as a fact depends upon the extent to which observations are 

corroborative.  It is any thing capable of being received by the senses.   We may 

gather evidence about some phenomenon, but if this evidence is to any degree 

inconclusive we are not entitled to conclude that it entails factual contents of the 

problem.  Moreover, a fact is evidential only if it is applied in an appropriate context 

where inferences about the problem can be made.  It is said to be “proved” or 

“disproved” when after considering all the evidence before it, the medical community 

believes it to exist, or considers its existence so probable that any prudent clinician 

ought to act upon the supposition that it exists.  Similarly, while we might all agree 

that evidence generates information, we cannot equate the two terms.  For instance, a 

document written in an obscure language may be recognised as relevant but non-

informative for drawing inferences or decision-making.  It becomes informative only 

when some explicit meanings are attached.  Last but not least, data are quantified 

evidence intentionally gathered or established as references for verifying a hypothesis.  

These are typically clinical observations as seen, measured and recorded.  Clinicians 

sometimes speak of “hard data”.  This refers to clinical or para-clinical data that can 

be precisely defined and measured, such as blood cell count, heart rate and glucose 
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level.  By contrast, soft data are observations that are relatively difficult to define, 

measure and classify.  Typical examples include sorrow, anxiety, general well-being 

and pain experienced by patients.  The “hardening” of soft data refers to all means 

employed to improve the criteria, measurement and quantification of soft data in order 

to match that of hard data as closely as possible.   

More importantly, our observations of any kind produce only abstraction or 

representation of the phenomenon in question.  Observation is a subjective affair and 

subjects are known to differ widely in their sensory capacity and other observational 

characteristics.  This implies that the concept of evidence should not be limited to 

references that are directly observable to the subject.  Otherwise, a medical decision 

maker may have to discard a great deal of evidence that cannot be observed directly, 

such as patients’ personal assessment of fear or depression.   

Moreover, most clinicians are accustomed to believe that knowledge is only 

justified with empirical confirmation.  According to the conventional scientific 

framework, the process of knowledge accumulation can be broken down into the 

following steps: 

 

 

� propose a hypothesis concerning an observed phenomenon 

� design a study to test the hypothesis 

� acquire and analyse the data from the study 

� test the results against the hypothesis  

� draw conclusions given the results  

� advance understanding of the phenomenon 
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However, this leaves open a number of metaphysical and ontological questions, 

including the source of inspiration for hypothetical development, the dependence of 

observation and analysis on the researchers’ perceptions and the epistemological path 

to gaining insightful conclusions of the study.  Clearly, scientific investigation is not a 

100% objective affair.  

Similarly, the warrantability of evidence may also be established through 

semantic clarification and logical reasoning. For example, a clinician does not need to 

conduct an experiment to prove that plunging from a high-rise building without any 

safety aid can cause death.  Moreover, empirical warrantability stems from a 

confirmatory relation to specific conditions of first-person experience, which may be 

established outside the self in the real world (observation) or through personal 

experience, if honestly reported.  

In a nutshell, it is erroneous to think that evidence can always be observed or 

measured objectively.  To be useful for decision making, the relevance of evidence 

must be established.  This requires a proper presentation of the qualitative and 

quantitative characterisation of phenomenon under study.  Moreover, one must also 

ensure that the relevant evidence is collected and analysed within the appropriate 

context. 

 

1.4.2 Expert Opinion 

Taking into account its subjective nature, evidence may then be classified as 

tangible (real or documentary) or intangible, with testimony as the most common 

form of the latter.  Simply put, evidence is the means by which the claimant tries to 

defend/prove his case and the opposition tries to cast doubt upon or disprove the 
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hypothesis.  Therefore, medical evidence should also include testimonial assertions 

and authoritative opinions (direct evidence) that are admissible and relevant.   

In this context, the so-called authorities or experts must be competent (based 

on verifiable collateral facts) and are able to elucidate their opinions. The challenges 

facing decision analysts are to assess the admissibility and relevance of these opinions 

and to quantify them so that they are evidential or informative for decision-making.  It 

is a precondition for admissibility that evidence is relevant.   

This dissertation asserts that testimony is a valid form of evidence, whereby a 

witness relates what he believes.  In providing testimony for medical decision-making, 

the expert effectively acts as a “witness” and his evidence is often presented in the 

form of “opinion”.  To facilitate discussion it is important to distinguish the expert 

from the analyst, who elicits the evidence from the former in providing solutions to 

decision making.  

 Generally, opinion refers to ideas or beliefs provided by a subject while 

interpreting a particular phenomenon.  It has been well-settled in the legal discipline 

that a view offered that is based on one’s education, training and experience is an 

“expert opinion”.  Expertise, in its broadest sense, is the accurate application of 

knowledge, beliefs and experience to certain situations.  Experts typically identify and 

understand the nature of a presented problem within their domain of knowledge and 

are able to establish its representation beyond the scope of novice.  As such, expert 

opinions may only be offered by a suitably-qualified person widely acknowledged in 

his field of practise, and with a good credential and track record.  Such evidence may 

be more appropriately termed as “opinion evidence”, in accordance with the earlier 

discussion of evidence.   
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 As such, the admissibility of expert opinion depends on two factors.  First, the 

analyst who is responsible for eliciting the opinion evidence must be satisfied with the 

witness’s status as an expert and this will, naturally, involve a consideration of his 

qualification and experience.  The burden of proof in establishing expertise lies with 

the analyst seeking to call the witness.  Second, an expert opinion must relate to an 

issue that goes beyond the competence of the analyst and must be necessary to aid the 

analyst in understanding the issue of reaching a decision of the presented evidence.  

The identified expert bears such evidential burden and he must be able to defend and 

justify his given opinions, including cross examination from his fellow specialists. 

 

1.4.3 A Revised Definition and its Implications 

Taking all these matters into consideration, “medical evidence” may mean any 

or all of the following: subjective assessment provided by patients (pain, depression, 

etc), directly observable/measurable evidence (state of emaciation, symptoms of 

disease, etc.), indirectly observable evidence (cancerous cells revealed in X-rays, 

heart murmur, etc), factual records of the patients (personal and family medical 

history, smoking and drinking habits, etc) and clinicians’ expert knowledge acquired 

through individual training, practice and peer sharing. 

Thus, the current definition that “evidence is a fact or datum which is used, or 

could be used, in making a decision or judgement in solving a problem” [25] is 

somewhat inadequate.  As such, evidence should be more appropriately defined as “an 

explicit warranted reference given in an appropriate and specific context for 

supporting or rejecting a hypothesis, claim or belief” and it encompasses any facts, 

data or information, whether weak or solid, obtained through experience, published 

results and observational and experimental research.  A reference qualifies as 
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evidence so long as it is relevant either to the understanding of the problem or to the 

clinical decisions made about the case.   

What is the implication of this revised definition of evidence?  It suggests that 

all medical evidence must be organised, analysed and interpreted with the Bayesian 

framework.  With this in mind, the Bayesian probability-encoding models are 

advocated in this dissertation.  It is capable of coping with the unique nature of 

medical evidence, including a priori beliefs and expert opinions, and thus, should be 

recognised as the most appropriate and versatile framework for medical decision 

analysis and EBM practice as a whole.  Through fulfilling the objective depicted 

earlier, this dissertation sets off to prove that the incorporation of Bayesian thinking 

into medical decision analysis is never an expensive or painful endeavour.  Hopefully 

this is a welcome addition to the literature of contemporary medical practice, 

including that of EBM. 
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1.5 Contributions 

The specific Bayesian models proposed in the dissertation are developed from either 

the original Bayes’ Theorem [26] or from the various fundamental concepts that 

underlie the development of contemporary statistics.  Considering the nature of 

evidences often encountered in medical decision analysis, two classes of probability-

encoding models are developed.  The first deals with subject-level evidence, while the 

second accommodates aggregate-level evidences reported in medical literature.  Both 

are designed for routine use in medical practice.   

The models developed for synthesising aggregate-level evidences may have 

profound implications on medical decision analysis.  Clinicians spend a large 

proportion of their time reviewing the medical literature in search for evidential 

support of their actions.  The published evidence or existing data from secondary 

sources effectively form the basis for medical decision making.  These may be the 

quickest available “objective evidence” at hand as it is often beyond the scope of the 

clinicians to conduct a new observational or experimental study to justify his 

hypothesis or claim.  Thus, the proposed random-effect hierarchical models designed 

for handling aggregate-level evidences is deemed to be an indispensable tool for 

achieving this aim.  They are also capable of combining evidences from different 

published sources.  On the other hand, the relational models that utilises patient-level 

evidences are also extremely helpful in situations where prior information of all the 

model coefficients are not available or obtainable.  Instead of fitting non-informative 

priors to the coefficients, these models only require the most critical priors be 

specified in analysis.  This is certainly a very attractive feature for routine probability 

encoding. 
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Next, the beta distribution is duly credited for its versatility in evidential 

analysis.  Unlike the conventional Bayesian approach, beta is applied in this 

dissertation as both a prior distribution for quantifying previous/expert evidences and 

as a likelihood function for summarising collected data.  Beginning to gain popularity 

among mainstream statisticians in recent years, this dissertation hopes to popularise 

its use in applied medical research.  

On a broader perspective, the discussion of the nature of medical evidence has 

also helped to shape a more complete definition of evidence, the cornerstone of 

medical decision analysis.  Conceptually, evidence refers to observational, 

experimental and inferential information forming part of the grounds for upholding or 

rejecting claims or beliefs relevant to medical decision making.  Forming the basis of 

reasoning, evidence is thus referred to any explicit warranted reference given in an 

appropriate and specific context for supporting or rejecting a hypothesis, claim or 

belief.    

The new notion of evidence could bring enormous contributions to EBM.  The 

protagonists of EBM place case reports near the bottom of the medical evidence 

pyramid alongside editorials and opinions [27], even though they may be the primary 

source of information one can apply in some decision problems.  In view of the 

profound implications of the Bayesian framework, the current definition of EBM [25, 

28-29] must be revised and this will help EBM practitioners to recognise the practical 

importance of such evidence that has hitherto deemed to be falling short of the 

“scientific standards of proof” [27].  The proposed Bayesian probability-encoding 

models are able to accommodate these evidences and synthesise with those generated 

from randomised controlled trials, analytical observational studies and uncontrolled 

experiments.  Such practice is desirable in view of the broader scope of evidence.  
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This may in turn help to shed light on some of the unresolved issues of EBM [30] and 

consequently, lead to a paradigm change in its practice.   

Subjective medical evidence—so often intertwined with medical dogma, 

which is derived from untested hypotheses and uncritical assessment of research 

findings—bears a poor reputation and this in turn shapes the traditional scientific 

thinking, with empirical investigation universally recognised as the only undisputable 

source of evidential organisation and interpretation.  However, one ought to think 

twice before discounting all subjective evidence in scientific investigations.  In view 

of the earlier discussion, it must be reckoned that effective decision making draws 

upon a broad spectrum of clinicians’ capabilities that include their shrewd application 

of fellow scientists’ testimony.  In fact, clinical instincts and independent thinking—

developed through personal experience and communication with experts—are 

essential attributes of a competent clinician.  Nothing, not even the best form of 

education, can replace the role of experience.  It is an asset that all clinicians earnestly 

strive for.  With experience, clinicians are able to approach problems confidently and 

identify feasible solutions quickly.   

Summarising the views put forth above, this dissertation asserts that scientific 

medicine is a decision-oriented discipline about evidentiary interpretation.  Clinicians 

are ardent users, organisers and interpreters of medical evidence.  Thus, they must pay 

special attention to the way their decisions are formulated.  This may in turn 

transform the way medicine is practiced in future. 

Inevitably, the supreme authority of clinicians in decision making is 

challenged and eroded with the application of decision analysis.   Although scientific 

medicine has always maintained that patients are fresh and blood and should be 

treated as such, many clinicians are often more interested in the diseases than in the 
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patients who suffer from the diseases.  Clinicians have always had power and 

exclusive, if not elusive, knowledge about health issues.  They possess specialised 

knowledge about diseases, drugs, remedies and treatments not accessible to the public 

at large.  They have let it be thought that they know exactly what they are doing even 

they may not necessary be so and this may undermine patients’ autonomy.  

Unfortunately, this is detrimental to medical care as it fails to recognise patients’ 

preferences.  Clinicians must begin to realise that their interests are intertwined with 

that of the patients.  Moreover, patients have the basic need to explain their concerns, 

hopes, fears, desires and misfortunes. While clinicians are experts in healthcare 

matters, patients are owners of their health.  They also have the right to understand 

every single detail about the decisions made on them.  Through medical decision 

analysis this dissertation hopes to correct the dogmatic attitude of contemporary 

clinical practice, which has become more and more depersonalised in recent years.  

On the technical aspect of medical decision analysis, there is a wrong 

perception that clinicians will not comprehend the beauty of complicated quantitative 

analysis and mathematically-trained professionals will not understand the profound 

medical practice.  As such, this dissertation is prepared to enable clinicians to 

appreciate decision science, especially Bayesian probability encoding.  Hopefully, this 

dissertation provides some useful ideas to meet the growing demand for the highly 

technical and yet easy-to-follow procedures of Bayesian analysis.  Likewise, the 

choice of case studies featured in this dissertation should also benefit well-informed 

non-medical professionals who want to know more about contemporary medical 

science, i.e., aetiology of diseases, their signs and symptoms, and possible diagnoses 

and treatments. 
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1.6 Outline  

This chapter begins with a burning issue facing the current medical practice, that is, 

how to ensure clinicians make good decisions.  Following the recommended routine 

use of structured decision analysis in solving medical problems, the objective of the 

dissertation is explicitly defined.  Taking into account the persisting nature of 

uncertainties, this dissertation aims to develop a versatile framework for probability 

encoding useful for routine applications in the clinical context.  The Bayesian 

framework is judged to be the most appropriate framework for quantifying the 

uncertainties underlying all medical decision problems, in view of the multi-faceted 

and profuse nature of medical evidence.  A revised definition of medical evidence is 

also given in an attempt to accommodate a broader evidential scope, and this in turn 

lends support to the application of Bayesian models in decision analysis.   

A systematic review of the proposed Bayesian modelling framework and all 

related philosophical and technical issues are given in the next chapter.  The general 

aspects of Bayesian analysis is reviewed in the first two sections, followed by the 

specific modelling strategies related to the Bayesian probability-encoding models to 

be developed and applied in the dissertation.  These include the generalised linear 

model, survival model, hierarchical model and meta-analysis. An overview of the 

computational issues often encountered in Bayesian analysis is given.  It also provides 

some clarification to the controversy of the Bayesian framework in scientific research.   

Then, the specific Bayesian probability-encoding models are developed in 

Chapter 3.  They are designed for different types of evidence collected for decision 

analysis.  As described before, there are two such classes of models.  The first is 

designed for analysing subject-level evidences while the second helps to synthesise 

aggregate-level or published evidences.  The reason for not considering the empirical 
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Bayes technique for handling aggregate-level evidences is presented.  .In addition, 

issues concerning Bayesian model evaluation are discussed.   

In Chapter 4, the models are illustrated with 10 clinical applications involving 

patient-level as well as aggregate-level evidences.  The studies cover several common 

diseases and medical conditions in Singapore and these include depression, 

osteoporosis, colon cancer, dengue fever, intracerebral haemorrhage (stroke), obesity, 

ischaemic heart disease, asthma, end-stage renal failure and breast cancer.  Some of 

these illnesses are regarded as the major causes of death among Singaporeans.  In 

terms of medical disciplines, the case studies cover psychiatry, public health, 

oncology, infectious disease, ophthalmology, respiratory medicine, surgery, 

nephrology, emergency medicine and cardiology.  

The final chapter is devoted to the discussion of the nature of scientific 

medicine and the future practice of EBM.  Several related philosophical questions, 

such as the nature of medical truth and the correspondence between knowledge and 

truth, are surfaced and discussed based on the proposed probability-encoding 

framework.  A number of future methodological research topics are also presented. 

Readers may realise that all views are expressed and addressed in the context 

of EBM.  This stance is shaped by the following reasons.  First, EBM explicitly 

highlights the importance of medical evidence, which is viewed as the cornerstone for 

medical practice and decision making.  As such, all discussion concerning the use of 

medical evidence must make reference with EBM.  Second, EBM is fast becoming an 

encompassing field that integrates clinical practice with decision analysis and public 

health.  As a budding field in the medical discipline, EBM will serve as a good testing 

ground for new developments in decision analysis, especially in the area of 

probability encoding.   
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 The Bayesian Framework 

Contemporary medicine is perceived as a probabilistic activity [26].  Probability 

encoding in medical decision analysis clings on the availability, collection, 

organisation and interpretation of relevant medical evidence.  Uncertain, truncated 

and obscure in nature, medical evidence seldom exist in isolation.  Medical-evidence 

seekers must consciously embark on an intriguing investigative process to unlock the 

latent relatedness among bits and pieces of elusive clues that are often inadvertently 

tampered, under-utilised or suppressed.  One needs to emancipate evidence from all 

forms of confinement before its hidden meaning becomes interpretable, albeit a 

provisional or incomplete one.   

To discover or unearth its meaning, one must follow the rules of systematic 

inquiry which may be loosely described as scientific methodology.  Offering a 

systematic framework in which collected evidences are organised, the Bayesian 

methodology seeks to interpret the obscure evidential meanings based on the union of 

two distinct sources, which adequately reflect the data-capturing process and the 

salient nature of medical evidences.  The details are given below. 

In applying evidence to make medical decisions, one effectively conducts 

investigations on some unknown parameter, say θ.  Statistically speaking, a parameter 

is an unknown quantity that characterises the features of a population where evidences 

are drawn.  An example is the extent of transmission of foot-and-mouth disease 

among school children within a city over a period of one month.  In the context of 
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clinical trials, the parameter could be the difference in survival rate between two 

groups of patients who are randomised to receive different therapeutic treatments.   

Note that θ may be a vector with multiple component parameters investigated 

simultaneously.  Following the celebrated Bayes’ Theorem [26], the proposed 

framework may be formulated as: 

 

 

P[θ | evidence]  ∝ P[θ]  × L[evidence | θ]    

posterior       ∝ prior  × likelihood      

(2.1) 

 

 

The prior distribution, P[θ], summarises what is believed, aware or known of θ before 

observing the collected evidence.  The likelihood, L[evidence | θ], contains evidence 

provided by observations, given a probability model with θ as the parameter.  The 

posterior distribution, P[θ | evidence], gives the final analysis and interpretation of θ 

after observing the evidence.  The parameter θ is considered as a random variable 

since one is not certain about its “true” value. 

Intuitively, the Bayesian approach suggests that the prior evidence support 

fuses with the data support (likelihood) to produce the posterior evidence support.  

With more evidence built into the analysis, one expects the Bayesian framework to be 

more appropriate and useful than the conventional framework, which considers the  

likelihood of collected evidence as the only basis for analysis.  There is a rich volume 

of well-cited theoretical and methodological literature on the conventional framework 

[31-34].  Statisticians often refer to the conventional framework as the frequentist or 

classical approach.  

The following summarises how the Bayesian approach is implemented in 

evidential analysis: 
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� select the most relevant and appropriate probability model for the problem 

� specify the joint probability distribution for all quantities (observed and unknown) 

in the problem 

� use prior evidence explicitly as part of that specification 

� condition on the observed evidences, compute the conditional probability of the 

unknown quantities of interest 

� evaluate the model 

 

These are the premises upon which Bayesian evidentiary organisation, investigation, 

analysis and interpretation are based.   Collectively, the steps serve as the conceptual 

framework for building advanced statistical models for analysing the association 

between variables, which is the crux of probability encoding in most medical decision 

problems.   

Another way of dealing with an uncertain event is to form its odds.   The odds 

of an event (A) is defined as the probability of A happening divided by the probability 

of A not happening, i.e., odds(A) = 
)A(P1

)A(P

−
.   It is easy to prove that P(A) = 

)A(Odds1

)A(Odds

+
, thus illustrating the one-to-one correspondence between odds and 

probability (p).   However, while p∈[0,1], odds = 
p1

p

−
∈[0, ∞).   In the medial 

context, it is sometimes more helpful to inform the patients what are the odds of 

suffering from a complication should they decide to receive a particular medication.   

According to the logic of Bayes’ Theorem [26],  
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posterior odds = prior odds × likelihood ratio 
           (2.2) 

 

 

The likelihood ratio is often referred to as the Bayes factor (B).  It contains the 

evidence relevant to the question about the occurrence of event A.  As readily seen, 

B=posterior odds / prior odds, or the amount of evidence that changes the prior odds 

to the posterior odds.  If B>1, then the evidence has made us believe that event A is 

more probably to happen than we first thought.  On the other hand, if B<1, then the 

evidence has given us more reasons to believe that event A is less probable to occur 

than we originally perceive.   

In most clinical studies, the aim is to ascertain if there is an association 

between exposure to a factor E (say, following a medication plan) and the prognosis 

(R).  The subjects face 4 possible scenarios: 

 

� exposed (E) and recovered (R) 

� exposed (E) and not recovered (~R) 

� unexposed (~E) and recovered (R) 

� unexposed (~E) and not recovered (~R) 

 

One is then able to compute two odds, namely odds(R | E) and odds(R | ~E).  The 

ratio of these odds is known as odds ratio (OR).    If OR is unity, one reports that the 

exposure (E) is not associated with prognosis (R).     If OR>1, then one claims that the 

patients benefit from the exposure (E).  On the other hand, the exposure brings 

negative impact to the patients if OR<1.   As such, OR allows direct comparison of 

the odds of recovery (R) between the exposed and the non-exposed groups.  One may 

also compute the OR for ascertaining the relationship between exposure to a harmful 
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agent and the onset of disease or the association between a treatment and the status of 

mortality. 

If the evidences about an OR are available, then one is able to form the 

likelihood of OR with a suitably chosen distribution.  Suppose also that some prior of 

the OR is obtained.  The following can be formulated according to the Bayes’ 

Theorem [26]: 

 

posterior OR = prior OR × likelihood OR 
           (2.3) 

 

 

It is useful to clarify here that it is sometimes difficult to encode probabilities directly 

from statistical models supported by patient-level or aggregate-level evidences, so it 

may be more relevant in some clinical contexts to present the odds ratio (OR) instead.   

In the example presented, the odds ratio is the ratio of odds for two different events 

that differ only in one variable (E).  In advanced statistical modelling it is possible to 

include multiple variables for analysis. 
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2.2 Some Insights 

Although the Bayes’ Theorem [26] has been applied in statistical inference for more 

than two centuries, the Bayesian interpretation of probability is a fairly recent 

endeavour.  The following discussion provides a thorough inspection of the nature 

and features of the proposed Bayesian framework.  Supported by literature review and 

some generalisations from current philosophical thinking, the discussion focuses on 

the framework’s conceptual set-up, evidential-updating property, nature of inferences, 

probabilistic interpretations and the benefits in evidential analysis.  The literature 

review and its following discussion provide the impetus for advocating the application 

of Bayesian analysis in medical decision making.  However, the discussion is not 

entirely one-sided.  Some of the common problems and criticisms concerning the 

application of Bayesian models are also highlighted.  Inevitably, the discussion also 

draws some comparison with the conventional framework of evidential analysis. 

First and foremost, the Bayesian framework’s evidential-updating property 

reflects how knowledge is accumulated and is very much in agreement with the 

hermeneutic circle [35-36].  Hermeneutics is a philosophical concept of interpretation 

and understanding of phenomena.  One always forms an incomplete picture of the 

phenomenon, when observed, with his subjective horizon of understanding (prior).  

Through observed evidence, the subject develops a revised understanding of the 

phenomenon and the final interpretation is achieved with the fusing of the subjective 

and objective horizons. The procedure allows one to change his probability 

assessment after observing or obtaining new evidence. The final understanding 

(posterior) incorporates the subject’s pre-understanding and his revised understanding 

of the phenomenon.  This Bayesian property requires the new evidence be 
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incorporated by a process of “refute and rescale” [37].  By allowing prior evidence be 

integrated with observed evidence, it offers great merit in medical decision making.  

The incorporation of a prior in evidential investigation immediately suggests 

that Bayesian analysis is at odds with the more established conventional framework, 

where scientific objectivity is given a paramount status and should be preserved at all 

costs.  In fact, the objectivity of the conventional scientific approach is achieved by 

disregarding all forms of prior knowledge about the phenomenon under investigation.  

In practice, there are usually some reliable priors, say based on expert opinions, that 

can be quantified.  This is common in legal investigation where eyewitness testimony 

is often the primary source of information that the court must consider in order to 

reach a verdict [27].   

Inevitably, evidential interpretation based on the Bayesian framework is 

subjective in nature, as it depends on the subject who initiates the investigation.  

While this may seem at odds with our conventional understanding about mathematics 

and science, the subjective nature of probability is not new to theorists.  In fact, it is 

now widely accepted as the modern view [38].  This view was contributed by several 

forefront mathematicians and statisticians [39-41].  The treatise of de Finetti 

(1930/1974) [39] begins with the provocative statement that “probability does not 

exist”.  This means that probability never exists in an objective sense.  Rather, 

probability exists only subjectively within the minds of individuals.  The view is also 

shared by Ramsey (1950) [40], Savage (1954) [41] and Anscombe and Aumann (1963) 

[42].  

As such, the interpretation of probability as a long-run relative frequency is 

only one of the interpretations.  Based on degrees of belief, the Bayesian decision 

analysts interpret probability as a quantified judgement of an individual.  This notion 
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has some profound impact on our interpretations of evidential investigation and 

statistical modelling.   

Despite the works cited above [39-42], the conceptual framework of Bayesian 

is not universally accepted in statistical science and the debates between the 

Bayesians and their critics, notably the conventional statisticians, shape the history of 

development of the subject.  While conventional statisticians agree with the 

implication of the Bayes’ Theorem [26], they generally do not accept subjective 

evidence, other than the likelihood function, as a source of information for inference.  

As a result, the conventional approach makes no room for the use of subjective 

evidence and is severely limited in the context of decision analysis.  On the other hand, 

the Bayesian framework makes use of all available information and leaves no room 

for data omission in analysis.  The prior evidence, if available, reflect the available 

knowledge about the phenomenon under investigation before the collected evidence is 

obtained.  There is a large volume of literature on the elicitation of prior distributions.  

See references [43-46] for details.  However, it is worthwhile to note that the issue of 

probability elicitation is not free from controversy [47-48] and the assignment of 

priors is viewed as a “critical issue” in all inductive inference [49].  On a practical 

ground, it is true that the prior distribution is difficult to specify reliably, despite the 

fact that complete ignorance or absence of prior information may not exist [50].   

 Some Bayesians argue that evidential interpretation with prior assignment may 

not be as private as it seems.  The priors may be formulated in unambiguous 

mathematical terms and communicated to others.  Subjective priors may be obtained 

from a team of experts with guidance from trained analysts.  In addition, the details of 

prior elicitation may be documented and reported alongside the main analysis.  It is 

crucial to note that the Bayesian framework is also not as deterministic or dogmatic as 
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it is perceived because the prior is described in probabilistic terms.  It reflects the 

variable degree of uncertainty involved in using prior evidence.   

 Moreover, the prior distribution may also be generated from relevant evidence 

obtained from past studies.  In this sense, Bayesian analysis is “objectified” with the 

use of an objective prior [51].  One may also perform Bayesian analysis using a 

constant prior distribution for the unknown parameters, as suggested by Reverend 

Thomas Bayes (1702-1761) and Marquis Pierre-Simon Laplace (1749-1827) [26, 52], 

the earliest Bayesians. A recent article shows that objective Bayesianism does allow 

learning to be facilitated from experience [53], a long-lasting criticism from the 

devoted subjective Bayesians who interpret probability as “the degree of belief” or 

“quantified judgement of individuals”.  In actual fact, it is difficult to follow the 

subjective school strictly as most subjectivists do make at least some use of objective 

Bayesian methods in practice [54].  This prompts some researchers to believe that the 

objective Bayesian methods offer the most promising route to unify the Bayesian and 

the frequentist frameworks [55].  The chief exponents of the objective school are 

Jeffreys (1965) [56], Jaynes (2003) [57] and Berger (2006) [54].  A full discussion of 

the subjective and objective Bayesianism can be found in references [58-67].  

Despite its reliance on prior evidence and distributions, the Bayesian 

framework also offers a solution to evidential analysis in situations where there is no 

prior evidence.  As mentioned before, the analyst may choose a distribution that has 

little or no influence on the likelihood [68].  Such priors are known as non-

informative.  Not surprisingly, the result is identical to that produced by the likelihood 

alone.  This is because with no prior knowledge, the posterior is solely based on 

evidence summarised by the likelihood.  That means, Bayesian analysis is applicable 
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in situations where there is no available prior knowledge about the phenomenon.  

Thus, the Bayesian framework offers a very versatile approach for decision analysis. 

The Bayesian framework also generates more intuitive and meaningful 

concepts for inductive inference.  As mentioned before, population parameters (θ) are 

specific to the decision problem and are not generally subject to random variability.  

According to the conventional framework, population parameters are uncertain only 

because of lack of knowledge.  Therefore, they are not recognised as random and all 

probabilistic statements about them are deemed to be meaningless.  However, the 

Bayesian framework asserts that it is perfectly legitimate to make probabilistic 

statements about the parameters simply on the ground that they are unknown [69].  

Thus, a quantity is regarded as a random variable even when its uncertainty is not due 

to randomness but to imperfect knowledge.  In the context of hypothesis testing, the 

probability-value generated from the conventional approach does not say how likely 

the null hypothesis is based on the collected evidence.  On the other hand, the 

Bayesian framework is able to attach a valid probabilistic statement and hence a more 

direct interpretation about how plausible the hypothesis might have been in light of 

the evidence.  Obviously, the Bayesian approach offers a more intuitive interpretation 

of unknown quantities.  

 According to the conventional methodology, the only source of uncertainty 

admitted to analysis is sampling uncertainty.  A fundamental advantage for applying 

the Bayesian framework to decision analysis is that both prior and posterior estimates 

are described in probabilistic terms and therefore offers a more realistic procedure for 

dealing with the myriad sources of uncertainty faced by decision makers in real-life 

applications.  As a result, the Bayesian framework is well-suited for decision making.  

What makes decision hard is uncertainty.  The Bayesian framework can quantify 
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these uncertainties using subjective or personal probabilities.  This quantification of 

uncertainties may be seen as a crucial component of rational, evidence-based decision 

making [69]. 

The Bayesian theory provides a solution to the famous Hempel’s paradox [70], 

which discovers a serious challenge to inductive logic.  Implying the arbitrariness of 

all human knowledge, the paradox highlights that inductive logic violates intuition 

and is bound to result in various absurdities. According to the paradox, the evidence 

(E) that an object is a non-black non-raven confirms the hypothesis (H) that every 

raven is black.   The standard Bayesian resolution suggests it is to a minute degree 

that E confirms H [71].  However, the argument is based on an assumption that the 

probability of H should not be affected by evidence that an object is non-black. A 

recent resolution shows that this assumption is not plausible, but the Bayesian concept 

is still able to cope with the paradox [72].   

On the philosophical ground, Bayesian estimators are found to be “theoretical 

simple” according to the Minimum Message Length (MML) [73], thus confirming the 

Bayesian practitioners’ persistent claim that Bayesian analysis is elegant [69]. The 

Bayesians are now equipped with a wide range of established methods for handling 

diversified issues in data analyses, and these include sample size determination [74-

77], point estimation [78], probability computation [79], hypothesis testing [80-84], 

clinical trial design and monitoring [85], model evaluation [86-87] and statistical 

modelling [88-90].   

Applications of Bayesian methods in biomedical research can be found in 

well-cited journals like Bayesian Analysis, Biometrics, Journal of the American 

Statistical Association, Statistics in Medicine and the various Journals of the Royal 

Statistical Society.   
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2.3 An Overview of Bayesian Models 

The different Bayesian models to be reviewed may be classified in terms of their set-

up and the nature of data analysed.  This will in turn determine what research 

questions can be answered by the models.  Loosely speaking, a relational model 

(more commonly known as regression in the statistical literature) is applied to 

quantify the association between an outcome variable Y with a vector of covariates or 

predictors (X).  The following discussion adheres to the convention that a random 

variable be denoted by a capital Latin letter and its value by a corresponding lower 

case letter.  All Greek alphabets represent unknown parameters or coefficients to be 

estimated. 

If properly modelled, these relational models enable one to generate reliable 

predictions about the outcome in probabilistic terms. The outcome concerned may be 

continuous (symmetrical as well as non-symmetrical), categorical (e.g., counts and 

nominal) and censored (e.g., time to event).  In situations where evidences are 

clustered or collected repeatedly over time, one of the most critical modelling 

assumptions called i.i.d. is violated, and some kind of hierarchical or multi-level 

relational models must be applied.  The assumption of i.i.d. refers to the situation 

where the observations are independently and identically distributed.  Last but not 

least, if evidences from various sources are to be synthesised to address a research 

question or hypothesis, a meta-analysis is conducted.   

 

2.3.1 Generalised Linear Model 

In the context of Generalised Linear Model (GLM) [91], which underlies most 

of the statistical analyses in biomedical research, the observed outcome variable Y is 

assumed to be generated from a probability distribution belonging to the exponential 
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family that includes binomial, Poisson, normal, gamma and inverse-Gaussian, etc.  It 

is applicable to a wide class of qualitative and quantitative outcome variables (counts, 

rates and continuous outcomes). GLM aims to unify a large family of statistical 

models that are applied for relational analysis.   

Consider a sample of n independently and identically distributed (i.i.d.) 

observations or measurements.  The GLM model requires the expected value of the 

underlying distribution, µi. be dependent on covariates xi (i=1, 2.,…, n) through 

E[Yi]=µi=κ(x′iββββ), where κ is known as the link function and ββββ is the coefficient vector 

that quantifies the association between xi and yi.  The idea is to estimate ββββ so that the 

magnitude and direction of the association between xi and yi can be deciphered.  The 

variance of Yi is a function of the mean such that V[Yi]=V[µi]=V[κ (x′iββββ)].   

In summary, the GLM has three components: 

 

� a distribution from the exponential family 

� a linear component ηi=x′iββββ 

� a link function such that E[Yi]=µi=κ(ηi) 

 

The link function provides the relationship between the linear component (ηi) and the 

mean of the distribution function. There are many commonly-used link functions, and 

the choice should reflect the nature of the outcome variable and the desired 

interpretation of ββββ. 

 Under the conventional modelling framework, ββββ is estimated with the 

maximum likelihood (MLE) method.  As the name implies, the iterative procedure 

seeks to identify the solution that maximises the likelihood function.  Most statistical 
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software implements the Newton-Raphson algorithm for the root-finding problem.  

Theoretically, the MLE of ββββ is asymptocally normally distrbuted.   

On the other hand, an appropriate prior distribution for ββββ must be fitted should 

the model be analysed with the Bayesian framework.  Data are then collected to 

update the prior specifications and the resultant posterior serves as the basis for 

inference.  One advantage of the Bayesian framework over its conventional 

counterpart is that knowledge from previous sources or derived from theoretical 

considerations may be incorporated into the model.  For example, one might want to 

restrict the signs of certain covariates in the model. Such knowledge, if incorporated 

as “informative priors”, may help to improve the precision of the estimates of ββββ.  

Detailed discussions on model specification, estimation, hypothesis testing, model 

selection and diagnostics for various parameters of interest from a Bayesian point of 

view is now available in references [92-93].   

While theoretically appealing, finding reliable priors for fitting Bayesian GLM 

is a daunting task.  Very often in practical situations, non-informative priors are fixed 

and the resultant posterior distribution is essentially dominated by the likelihood.  As 

such, the Bayesian estimates are numerically identical to the conventional estimates.  

Nevertheless, more complex model specifications and state-of-the-art computational 

methods are explored in recent years to meet the needs of biomedical and industrial 

research.  For example, flexible semi-parametric approaches are now available to 

model the link functions [92].  Splines are used for handling nonlinear covariates [94].  

In addition, some robust procedures can also be incorporated to provide reliable 

estimates in the face of outlying or influential observations [94].   



2. Literature Review 

 37 

There are a number of other excellent Bayesian references that address the 

modelling issues (such as the popular linear regression model) in a more accessible 

manner [80, 95-96].  While their presentation is not necessary adhering to the GLM 

approach, the discussion does provide readers with some glimpses of the power of the 

related models.   

 

2.3.2 Survival Model 

The next relational model for analysing i.i.d. subject-level data deals with time 

to event data.  Commonly known as survival analysis in biostatistics [97-98], such 

models have one salient feature: the time to event is skewed and censored.  Generally, 

the term “censoring” refers to an individual’s time is partially observed and not 

followed through to its completion [94].  Such situations include patients’ premature 

withdrawal from the study, or simple because the outcome is not observed before the 

study ends. 

 Suppose an individual’s time to event, yi, follows f(yi, θ).  The cumulative 

distribution function (cdf) is F(Y<yi).  There are two scenarios at a particular time, 

say yi.  First, there are patients with an event reported (death, readmission, etc.) and 

they form the risk set.  In addition, there are patients who do not encounter an event 

by time yi and they are represented by the survivor function S(yi)=P[Y≥yi]=1−F(Y<yi), 

which reports the probability of surviving beyond time yi. These subjects are 

“censored” because no event is observed in them.  To examine the effects of the 

subjects’ multiple covariates on their survival the hazard function is derived.  

Analogous to the death rate in discrete time, the hazard rate for an event at time yi is 

defined as h(yi)=
)y(Sy
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heart of modern survival analysis [99].  One models this hazard rate as a function of 

the baseline hazard at time yi and the effects of the identified covariates, which may 

be fixed throughout the observation period or time varying [94].  The hazard rate may 

also be interpreted as the instantaneous event rate or conditional event rate [99].   

Thus, the likelihood is made up of two components, namely the non-censored 

f(yj) and the censored S(yj).  The censored component is in turn made of three 

possible portions: right-censored, left-censored and interval-censored.  Right 

censoring is most common in biomedical research.  Putting these components and 

requirements together, the general likelihood function may be written as L(y | x, ββββ) = 

∏∏ ∏∏
∈∈ ∈∈

<<<>=
ICm

m1,m0,m

RCj LCk

kkjj

UCi

ii ),x|yYy[P),x|yY[P),x|yY[P),x|yY[P ββββββββββββββββ = 

∏∏ ∏∏
∈∈ ∈∈

−−
ICm

m1,mm0,m

RCj LCk

kkjjjj

UCi

ii ),x|y(S),x|y(S),x|y(S1),x|y(S),x|y(S),x|y(h ββββββββββββββββββββββββ

 

where UC, RC, LC and IC refer to the subsets of uncensored, right-censored, left-

censored and interval-censored observations, respectively.  Interpreted as hazards 

ratios, the effects ββββ are estimated by maximising the above-mentioned likelihood 

function. In practice, the likelihood function is less complicated because the study 

designs may only allow at most one type of censoring.   

 A particular sub-class of the survival or time-to-event models is the 

proportional hazards model [100], under which the mean function of the covariates is 

independent of the time function.  This is a simplifying assumption applicable to most 

survival densities [94].  Under the proportional hazards assumption, the hazard ratio is 

constant over time, provided that the covariates do not change over time [101].  For 

example, if taking drug A halves a patient’s hazard at time 1, it will also halve his 

hazard at time 2.  Sir David Cox (1924—) shows that if the assumption of 
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proportional hazards holds, then the effects (ββββ) can be estimated without considering 

the hazard function [100].   

 The common time-to-event distributions for Bayesian analysis are exponential, 

Weibull, gamma, Gompertz, log-normal, log-logistic and extreme-value, which are 

compatible with the proportional hazards assumption.  Bayesian survival analysis 

begins with the specification of priors on the parameters of the chosen distribution.  

The model specification is usually very complicated, in view of the nature of the 

problems encountered in survival analysis and the choice of distributions. 

As in the case of GLM, Bayesian survival analysis is becoming popular in 

recent years and a large number of research activities is conducted.  For example, it is 

well-known that the selection of a particular model may be subjected to errors, so a 

Bayesian averaging process is proposed [102].  Model based on other lifetime 

distributions such as Pareto may also be considered [103].  Attempts to produce more 

flexible specification with piecewise hazard models are presented in reference [104].  

Following the proportional hazards assumption, these models utilise several types of 

nonparametric/semi-parametric prior processes [101, 104].  Thanks to the latest 

development in computational algorithms, these models can be implemented 

efficiently in practice.  

It is legitimate to assert that Bayesian survival models may be presented under 

the wider GLM framework.  However, survival analysis has now become common 

and well accepted in practice that it has cast in a language all its own [99].  Bayesian 

survival analysis has evolved into an independent area of theoretical research in its 

own right. 
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2.3.3 Multi-Level Model 

Some medical evidences are measured over time or clustered.  In the former 

case, the outcome values are no longer independently and identically distributed (i.i.d.) 

as they are contributed by the same subject at different time points (e.g., follow-ups) 

[105].  Such studies are usually known as longitudinal design with repeated 

measurements.  With two or more levels of observations in the clustered scenario 

(multi-centre trials, studies involving paired observations, etc.), the outcome values 

are likely only to be independent conditional on the clusters.   

The immediate implication is that the issue of dependence within clusters must 

be modelled appropriately with a suitable likelihood. That is, care must be taken for 

constructing the hierarchical data structure, with cluster-specific parameters and some 

covariance matrices incorporated into analysis.  These cluster-specific parameters are 

usually assumed to be random effects either drawn from independent distributional 

functions or from some multivariate distributional functions. 

Consider outcome yij related to predictors xij for observations i=1, 2, …, nj 

within clusters j=1, 2, …, k, such that ∑
=

k

1j

jn =n.  While the clusters are likely to be 

independent, the evidences within each cluster are not.  In clinical studies involving 

paired observations, say vision and kidney failure, the first and second level data refer 

to the paired observations and individual patients, respectively.  In the case of multi-

centre clinical trials, the first and second levels are individual patients and their 

belonging centres, respectively.  While there is no theoretical restriction to the number 

of levels that can be specified in the hierarchy, the practical restriction is that in 

specifications that have greater than three to four levels, the interpretation of the 

estimated coefficients can be challenging [96].  Frequently, there is no good reason to 

go beyond a two-level model [96]. 
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 A surge in biomedical research activities involving such hierarchical or multi-

level models with the frequentist perspective is observed in recent years [105-110].  

The Bayesians are quick to respond and a number of excellent references are now 

available [92, 94, 110-111].  These hierarchical models may be perceived as an 

extension of the more established GLM framework [92, 112].  Many survival models 

may also be carried out with the hierarchical modelling strategy [113].   

 In reality, many Bayesian models exhibit a hierarchical structure in 

specification.  This is because the underlying likelihood function may contain a 

number of parameters, thus requiring a series of priors to be fitted.  Collectively, the 

likelihood and the priors form a hierarchical structure in the model [80].   

 

2.3.4 Meta-Analysis 

 The conventional approach of systematic literature review in EBM involves 

discussion of results from a number of published studies that have investigated a 

common question.  Such review considers the evidences from individual studies one 

at a time.  There are some obvious drawbacks to this approach.  Evidence from 

individual isolated studies may be inconclusive because they lack power.  Moreover, 

the studies may differ in quality in terms of their sample sizes and rigor of analysis.  

This may be resolved by pooling the evidences with a suitably-chosen weighing 

scheme that quantifies the quality of each selected study.  

In statistics, a meta-analysis combines the results of several studies that 

address a set of related hypotheses [114-115].  The combined effect could be a risk 

ratio, odds ratio, continuous outcome or probability concerning some uncertain events 

(death, recovery, relapse or development of a complication).  Ideally, the studies 

considered in a meta-analysis should be similar in terms of the population of 
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subjects/patients, end-point outcomes, study designs (case-control, cross-sectional, 

cohort, randomised clinical trial), nature of treatments and statistical analyses.  

However, it is very rare for two published studies to be identical in all aspects.  

Consequently, certain inclusion criteria must be defined so that the selected studies 

are “sufficiently similar” and the pooled evidence are meaningful and generalisable.  

This may help to minimise the effects of clinical heterogeneity [116-117].   

 The biggest challenge for all meta-analysis concerns the availability of 

unbiased published evidences.  The most potential source of bias concerns the 

publication process.  Studies which report a relatively dramatic result are more likely 

to be published in journals and cited in other relevant publication [118]. The dire 

consequence is obvious.  One may be deprived of the less dramatic but accurate 

results and the combined evidence may then give a distorted picture concerning the 

significant effects of a therapeutic treatment.   

 Nevertheless, meta-analysis remains a realistic approach for quantifying 

systematic review of biomedical studies.  If properly conducted, it may provide EBM 

practitioners a very useful and least expensive solution to many medical decision 

problems.  Conventionally, there are two approaches to conducting meta-analysis.  

The first assumes no obvious heterogeneity in the selected studies.  In contrast, the 

random-effect methods consider the effects to vary randomly about a population.  

Usually, this approach is more realistic in view of the large degree of heterogeneity in 

reported studies.  Moreover, the common statistical method for detecting 

heterogeneity often lacks power and may report no significant heterogeneity even if 

the selected studies differ in many aspects.  The conventional approach to meta-

analysis is found in reference [119]. It is also possible to cast the meta-analysis in a 

regression approach [120]. 
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 While meta-analysis is an indispensable tool for systematic reviews, the 

Bayesian paradigm is not fully recognised in EBM practice.  At the point when the 

dissertation is prepared, there is no published textbook on Bayesian meta-analysis.  

While the Bayesian updating formula is often cited and applied in encoding 

probability for decision analysis [6], the approach is often too simplistic that it fails to 

take into consideration the nature of underlying heterogeneity in reported medical 

evidences.  Such desired models are multi-level in nature as the various sources of 

heterogeneity are captured and described as random effects, thus exhibiting a 

hierarchical structure in model specification [14, 121]. 
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2.4 Conjugacy and Monte Carlo Markov Chain 

Given a model with the prior and likelihood determined, the computational phase of 

the Bayesian inference requires a practical method for summarising the posterior 

distribution.  In simple cases, the estimators for unknown posterior parameters may be 

obtained analytically after some tedious mathematical manipulations based on 

integration.  However, this is generally not the case for most Bayesian analyses.  

Usually, such posterior is mathematically non-tractable.  Thus, analysts must rely on 

advanced simulation techniques for providing the solutions.   

It follows that the choice of distributional forms for priors and likelihood is a 

critical feature of Bayesian analysis. It is well known that the posterior distribution 

might not have an analytically tractable form if the priors are freely chosen.  A way to 

guarantee that the posterior has a calculable form is to specify a conjugate prior. 

When the posterior has the same distributional family as the prior, one says that the 

prior and the likelihood distributions are conjugate.  While adequately elegant and 

computationally simple for expressing an analyst’s opinion, it may be worthwhile to 

point out that the use of conjugate priors has no real theoretical advantage.  Before 

1990s, conjugacy was crucial to the ability to apply Bayesian methods because non-

conjugate priors usually lead to posteriors that are not analytically tractable.  With the 

advent of the Markov chain Monte Carlo (MCMC) techniques [122-128], this 

limitation becomes greatly reduced.   

It is worthwhile to provide a brief review of MCMC here, as EBM 

practitioners will find it extremely useful for conducting Bayesian analyses.  The 

MCMC technique provides an approach for simulating the posterior distribution in 

complex multi-parameter scenario without resorting to integration techniques or a 

search for close-form solutions.  In short, MCMC is used to estimate integrals in high 
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dimensions.  Instead of making direct simulation from the posterior distribution, 

MCMC simulates values from a stationary Markov chain, which describes an 

idealised pattern of movement or transitions through a set of states.
.
   As the name 

implies, the process moves from a state v at time t to state w at time t+1 depending 

only on state v.  The method is called “Markov chain” because each generated 

parameter value is used to generate the next.  It is “Monte Carlo” because it 

repeatedly simulates parameter values from the posterior distribution.  As such, it 

offers a less painful approach for finding solutions as the posterior may be extremely 

complex. Stochastic in nature, MCMC runs the chain until convergence is achieved.  

If the chain is run for a long time, simulated values of the chain can be used as a basis 

for summarising features of the joint posterior (or conditional posterior) of interest
.
  In 

contrast to classical simulation, MCMC generates samples where successive 

observations are non-independent of the previous observation.   

A specific MCMC technique known as Gibbs sampler [123] is advocated in 

this dissertation.  As the most widely used MCMC technique [96], the Gibbs sampler  

generates a Markov chain by cycling through the conditional posterior distributions 

instead of the full posterior.  In many situations, it is possible to define and derive the 

conditional posterior of the unknown parameters, thus making the implementation of 

the Gibbs sampler fairly straight-forward.  With the true posterior distribution of 

parameters as its limiting distribution [96], the Gibbs sampler converges under very 

mild conditions [127]. If the Gibbs sampler possesses the property of irreducibility 

(i.e., the existence of a path between any two points in the space), convergence is 

assured of the n-step-ahead distribution to the invariant distribution for almost all 

starting points [124].  This justifies the practical use of the Gibbs sampler to start from 

any arbitrary chosen initial condition and the sampler averages to approximate 
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integrals of the posterior.  In fact, the Gibbs sampler converges at a geometric rate: 

the total variation distance between an arbitrary time and the point of convergence 

decreases at a geometric rate in time [96]. The application of Gibbs sampler will be 

discussed in details with the introduction of the Bayesian hierarchical meta-analysis 

models useful for synthesising aggregate-level evidences for probability encoding 

(Chapter 3).   

An alternative MCMC algorithm, known as the Metropolis-Hastings, is based 

on the generalised rejection sampling scheme.  Values are drawn from arbitrary 

distributions and “corrected” so that they “behave” as random observations from the 

target distribution asymptotically [122].  A fairly easy-to-follow discussion of MCMC 

and some of its practical implementation issues, such as the number of iterations, 

starting point determination and graphical modelling is found in reference [128].   

However, conjugacy continues to be highly appreciated by analysts as it offers 

a systematic framework for finding priors with little pain and effort.  Consequently, 

conjugate priors are still extremely useful in practice and they are an excellent 

expository tool [51].  Convenience is a powerful argument for justification of the use 

of conjugate priors, which serve as user-friendly representations of prior evidence.  As 

discussed in the next chapter, it is more an art than a science in fitting conjugate priors 

for Bayesian statistical modelling.  In practice, both conjugacy and MCMC are 

applied as complimentary tools.  The selection is based on practicability. 

Statistical theory shows that likelihoods in the exponential family of 

distributions always possess conjugate priors [129].  Comprising a number of widely-

cited distributions like binomial, poisson, normal, beta, exponential and gamma, the 

exponential family’s unique mathematical form means that combining an exponential 

family likelihood and prior will always result in an exponential family posterior that is 
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promised to be more concentrated (less diffuse) than either the likelihood or the prior.  

This is a very appealing feature of the exponential family, and it further supports the 

use of conjugate priors in data analysis involving GLM.  One may refer to references 

[80, 84, 87, 94-95] for further information on how conjugate priors may be chosen 

with selected likelihoods belonging to the exponential family.   
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2.5 The Unfounded Controversy 

The idea of Bayesian thinking is reasonably straight-forward.  When properly 

presented, it is an uncontroversial probabilistic concept.  It is not difficult to 

understand that no other approaches can provide a more unified treatment of inference 

and decision, while accounting for parameter and model certainty.  Unfortunately, 

Bayesian methodology has not been universally accepted in the statistical discipline in 

spite of the compelling logic behind its approach.  In fact, specific uses of the 

Bayesian concept have been the subject of continued controversy for several centuries, 

giving rise to a steady stream of polemical arguments in methodological science.  So 

why do such controversies persist?  Why do conventional likelihood-based statistics 

dominate Bayesian usage in data analysis?   

There are several reasons to explain the above-mentioned controversies.  First, 

several prominent figures in the development of modern statistics, notably Professor 

Ronald Fisher (1890-1962), had strong prejudices against the Bayesian ideas.  See 

referenced for his criticism of inverse probability—the old name for Bayesian 

inference [130-131].  This was largely caused by the misunderstanding of the nature 

of Bayesian’s post-data interpretations.  Although the definition of probability is well 

accepted by almost every statistician, its interpretation or the sense attributed to it 

varies considerably. Despite its overwhelming popularity, the interpretation of 

probability as a long-run relative frequency is only one of the interpretations. 

Bayesian theory offers a more realistic approach in which personalised beliefs can be 

incorporated into the context of uncertainty, with the aim of developing rules and 

procedures for consistent and convenient decision making. The probabilistic 

statements of Bayesian analysis is interpreted as a degree of belief or a quantified 

judgement of the individual.  It emphasises the subjective basis for analysis and a 
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post-data basis of inference.  By allowing personalised beliefs be incorporated into the 

contexts of uncertainty, the Bayesian theory should be seen as the most appropriate 

framework for medical decision making. 

 A related reason for the under-appreciation of Bayesian methodology lies with 

the use of priors in analysis.  In fact, many present-day applied statisticians and EBM 

practitioners are reluctant to use Bayesian methodology because of the requirement of 

a prior distribution.  From a practical point of view, the prior is an extremely difficult 

requirement [69] that the investigator must meet and this imposes some costs on the 

use of Bayesian methods.  As described earlier, others are unwilling to utilise prior 

evidence based on concerns of violation of “objectivity”.  In the case where the prior 

evidence reflects the personal opinions of individual investigators conducting the 

research, or possibly those of an expert who has immense knowledge of the subject 

matter, Bayesian statistics is subjective in nature.  However, when the prior 

information is a direct result of previous studies, or when prior information reflects no 

knowledge about the problem at hand (non-informative), the Bayesian analysis 

becomes objective [54].  As such, it is not fair to allege that Bayesian methodology is 

purely subjective.  The prior is also not as deterministic as it is perceived, given that it 

is presented in probabilistic terms.  Moreover, EBM practitioners often find 

themselves devoid of usable evidence for decision making.  The use of priors, based 

on elicited expert opinion evidence, offers a practical approach for solving problems.  

Following a similar line of argument, the process of prior elicitation helps EBM 

practitioners to collect, organise and document the thoughts of the consulted experts.  

In view of this, the use of priors in decision analysis is not really a cost but is actually 

a benefit [80]. 
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  Another important reason for the dominance of conventional likelihood-based 

statistics lies with the complexity of Bayesian analysis.  The development of a 

Bayesian model requires complicated modelling specifications and tedious 

computations.  In the case of linear regression with conjugate priors, the estimators 

for regression coefficients can be derived analytically after some tedious 

mathematical manipulations (see Chapter 3).  However, this is generally not the case 

for most Bayesian analyses.  The resultant posterior, which is the heart of all Bayesian 

analyses, may be mathematically intractable and extremely complicated.   Thus, 

analysts may have to reply on advanced simulation and numerical techniques for 

finding the solutions.  This imposes another cost on the use of Bayesian models.   

Such impracticability stems from our computational deficiency.  As such, 

there is no accident that the recent rejuvenation of Bayesian statistics coincides with 

the development of computer-intensive techniques.  With the wide applicability of 

high-speed computers, the new ideas offered by Bayesian statistics have captured the 

imagination of researchers.  These methods have a wide range of potential 

applications, especially in EBM, as a result of the increasing complexity of problems 

and data structures. Their analysis and refinement will be a formidable prospect for 

the EBM community in the coming years.  It must be emphasised that while 

computers can never be as wise as people, they can explore a forest of possibilities 

faster than we can comprehend.  To this end, Bayesian analysts utilises the latest 

computational breakthroughs to the fullest and this immediately makes Bayesian 

models extremely attractive in real-life applications.  Thus, the cost of computational 

disadvantage is significantly reduced, thanks to the current technological 

advancement. 
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The new millennium has witnessed a burst of research activities in applying 

Bayesian methods to solving medical problems [14, 102-103, 113]. The appealing 

features offered by Bayesian analysis unleashes a revolution in data analysis and 

triggers powerful impulse to continue to apply such approach to problems hitherto 

considered forbidden and unthinkable.  
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CHAPTER 3 

BAYESIAN PROBABILITY-ENCODING MODELS 

 

 

3.1 Prelude 

Adhering to the earlier discussion about medical decision analysis (Chapter 1) and the 

Bayesian framework (Chapter 2), a useful model for probability encoding must not 

only enable the analyst to organise observed evidence, but also to quantify individual 

judgement and opinions about the uncertain quantities.  With such requirement in 

mind, this dissertation proposes to develop various Bayesian models for probability 

encoding in medical decision analysis.  With subjective probabilities attached, it is 

believed that one may obtain more useful results and insights than if a pure empirical 

approach is adopted.  In fact, the Bayesian approach may be recognised as the 

underlying or unifying philosophical theory of decision analysis. 

From the gathering of data to the cross-examination of expert opinions, the 

Bayesian framework offers a practical methodology upon which evidence is organised 

and presented with meanings elucidated from the traces of clues.  An acceptable 

statistical or methodological process should help to probe the details, discern relevant 

facts from baseless information, exclude the impossible from the possible and crack 

the useful meaning(s) of evidence.   

A good probability-encoding model should also reflect the evidence-capturing 

process and all salient features of evidence under question.  Furthermore, such model 

must also be simple enough for routine use in clinical decision analysis.  This is, 

unfortunately, a view which conventional methodologists, in particular mainstream 
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statisticians, fail to appreciate and understand.  It is also erroneous to think that a good 

model must be sophisticated.  With this in mind, the specific Bayesian models 

developed in this dissertation are catered for routine use in different aspects of 

medical practice.   

First, three relational models within the Bayesian GLM framework are 

developed for handling subject-level or patient-level evidence. These relational 

models seek to encode the probabilities for medical decision analysis based on the 

estimated relationship between an outcome variable of interest and a set of identified 

covariates or predictors.  Second, if the observed evidences are presented in aggregate 

form, say results based on a number of independent secondary sources, the full 

Bayesian random-effect hierarchical models are recommended for performing the 

necessary meta-analysis.  The observed evidences are mainly published results in 

journal articles.  With some ideas about these results, a prior is organised and 

presented to combine with the published results to generate a posterior for probability 

encoding.  The second category of Bayesian models is extremely useful in situations 

where EBM practitioners or medical decision makers do not have raw data at hand.  

The two classes of models—Bayesian GLM and meta-analysis—are developed based 

on the first principles and several related theorems [26, 129].  

Note that nothing is said about prior elicitation.  The main focus of this 

dissertation is to develop models for probability encoding relevant to medical decision 

analysis.  Thus, it is beyond the scope of this dissertation to give a more detailed 

treatment of prior elicitation.  For further information one may refer to the relevant 

literature [43-46].  

Probability encoding, according to the protocol developed by the Decision 

Analysis Group, Stanford Research Institute, Stanford University [1], is one of the 
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steps of the full spectrum of probability assessment.  Its accuracy depends largely on 

the communication among the analyst, domain expert and decision-maker(s) 

(motivating phase), unambiguous structuring of the uncertain quantity to be elicited 

(structuring phase) and unbiased judgement provided by the encoders (conditioning 

phase).  In encoding probabilities, the analyst must make sure the domain expert 

utilises his knowledge to the fullest, anchor his assessment on the right basis, able to 

provide an assessment representative of the event in question and state all 

assumptions made.  The experts should also try their best not to assign probabilities to 

an event based on the ease with which they can fabricate a plausible scenario that 

would lead to the occurrence of the event.   

While the main emphasis of this dissertation is to encode probabilities from 

the recommended Bayesian models, subjective assessment of probability may also be 

sought from identified experts if there are no available data for model building.  This 

include discrete approximation should the underlying probability distribution is 

continuous in nature.  Upon completion of probability encoding, the decision analyst 

must verify that the model(s) employed are accurate, reliable, and interpretable.   The 

results may be plotted as a cumulative distribution function and probability density 

function.  If necessary, the entire process outlined above—motivation, structuring, 

conditioning and encoding—may be repeated.   

To facilitate discussion, the following symbols and notations are used.  U(•), 

L(•), f(•), F(•), g(•), π(•) and πc(•) refer to the utility function, likelihood function, 

pdf, cumulative distribution function (cdf), prior distribution, full posterior 

distribution and conditional posterior, respectively. The other common functions may 

be written as κ(•), ν(•), ψ(•) or γ(•).  However, Γ(•) is exclusively used as a gamma 

function.  Likewise, S(•) represents survival function.  Greek alphabets are used for 
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representing parameters, with θ reserved specifically for the parameter of primary 

interest.  ββββ refers to the vector of parameters concerning a relational model; its 

estimator ββββ̂  is based on conventional statistical procedure (e.g., maximum likelihood 

or ordinary least squares); ββββ* its Bayesian counterparts and ββββ0 the specified parameter 

of the relevant prior.  The lowercase alphabets, say a, b, u and v are used for the 

specified parameters of a prior distribution. The symbol p means proportion or 

probability.  The full data design is [y X], with X the matrix of covariates or 

predictors and y the vector of outcome variable.  Letters in bold prints refer to 

quantities either in vector or matrix forms.  η is the systematic component or function 

of a relational model which connects x with ββββ.  The letters n and m are sample size 

and number of iterations for an algorithm, respectively.  To make a distinction, k 

refers to the number of studies selected for combining published evidences.  The 

subscripts i and j refer to the i-th observation and j-th category, respectively.  Last but 

not least, the postscript t refers to the t-th iteration of a computational algorithm.   

All analyses and computations are carried out with Microsoft Excel 2000 

(Microsoft Corporation, U.S.A.), R (R Project; http://cran.r-project.org/), Stata 9.0 

(Stata Corporation, Texas, U.S.A.; http://www.stata.com), WinBUGS (Medical 

Research Centre, University of Cambridge, U.K.; http://www.mrc-

bsu.cam.ac.uk/bugs/), LOTUS 2.3 (National University of Singapore and University 

of Wisconsin-Madison) and DPL
TM

 4.0 (Applied Decision Analysis LLC, U.S.A.). 
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3.2 Relational Modelling for Subject-Level Evidence 

3.2.1 The Modelling Approach 

The following discussion is devoted to illustrate how a useful conjugate prior can be 

found for relational models.  A pdf of observed data yi, is said to belong to an 

exponential family characterised by a set of multiple canonical parameters θi if it is 

presented as follows: 

 

 

f(yi; θi) = exp{[θiyi − ψ(θi)] + γ(yi)}  i=1, 2,…, n      

(3.1) 

 

 

where ψ(•) and γ(•) are known functions.  The form of conjugate priors can be easily 

determined.  The parameters θi are related to the model’s coefficients by the link 

function θi = κ(ηi), with ηi = x′iββββ (systematic linear component).  Here, x′i is a 1×p 

vector denoting the i-th row of predictors and ββββ is a vector of p coefficients.  These 

coefficients quantify the association (direction and magnitude) between yi and x′i.  It 

follows that the conjugate prior distribution for θi is  

 

g(θi) = C exp{uv θi − uψ(θi)}        

(3.2) 

 

 

where the normalising constant C=C(u, v) is selected such that g(θi) is a proper 

distributional function characterised by two natural parameters u and v.  This in turn 

formulates the posterior distribution of θi as follows: 

π(θi | yi) = C(v+1, 
u1

uvyi

+
+

)exp{(yi + uv)θi – (1+u)ψ(θi)}  

(3.3) 
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where the link function may now be considered as a monotonic transformation of θi.  

Thus, it follows that the Jacobian transformation from θi to ηi is J(
i

i

η
θ

) = κ′(ηi)≠0, 

where κ(•) is a twice differentiable monotonic function.   Consequently, the posterior 

for ηi is given as: 

 

 

π(ηi | yi) = C(v+1, 
u1

uvyi

+
+

)exp{(yi + uv)κ(ηi)  –  (1+u)ψ[κ(ηi)]}κ′(ηi)  

(3.4) 

 

 

Next, performing logarithmic transformation on both sides of (3.4) one obtains  

 

 

logπ(ηi | yi) = logC′ + {(yi + uv)κ(ηi)  – (1+u)ψ(κ(ηi))} + log[κ′(ηi)]   

(3.5) 

 

 

where C′ is a constant.  Setting 
i

ii )y|(log

η∂
ηπ∂

= 0, one shows that  

 

 

(yi + uv) κ′(ηi)  –  (1+u)ψ′[κ(ηi)]κ′(ηi)  + 
)('

)(''

i

i

ηκ
ηκ

 = 0  

⇒ ψ′[κ(ηi)] = 
u1

1

+
{(yi + uv  + 2

i

i

)]('[

)(''

ηκ
ηκ

}      

(3.6) 

 

 

Hence, the mode for the posterior of ηi is derived. That means, one can generate the 

solution for the desired posterior based on estimates of the relational model. 

 The above discussion suggests that the Bayesian models for relational problem 

may be derived with Jacobian transformation and some simple algebraic 

manipulations.  Unfortunately, this may not be the case for situations where the priors 

are specified differently or when the data structure becomes more complicated.  But 
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such limitations should not be amplified.  The specific details of Bayesian modelling 

are discussed in the remaining sections. 

  

Under the generalised linear model set-up (subsection 2.3.1) [91], a generic 

relational model involving the exponential family designed for analsysing subject-

level data is:  

 

 

f(yi; θi, τ) = exp{ν
-1
(τ)[θiyi − ψ(θi)] + γ(yi, τ)} i=1, 2,…, n   

(3.7) 

 

 

where yi, θi, ψ(•) and γ(•) have their usual meanings, τ is the scale parameter and ν-1 

(•) is a known function.  As in (3.1), the canonical parameters θi are related to the 

model’s coefficients ββββ by the link function θi = κ(η), with ηi=x′iββββ, where x′i is a 1×p 

vector denoting the i-th row of the covariate matrix X.  Essentially, the data are 

connected with the coefficients ββββ through ηi, the systematic linear component.  

Bear in mind the primary objective for modelling y is to estimate ββββ, which 

quantifies the relationship between X and y.  By inserting ηi into (3.4) and (3.7) the 

likelihood function and posterior for ββββ are as follows: 

 

 

Likelihood  L(yi | ββββ, τ) ∝ exp{ν
-1
(τ)[κ(x′iββββ)yi − ψ[κ(x′iββββ)] + γ(yi, τ)]}  

Posterior     π(ββββ  | yi, τ) ∝ L(yi | ββββ, τ) × g(ββββ) 

              ∝ exp{ν-1(τ)[κ(x′iββββ)yi − ψ[κ(x′iββββ)] – 
2

1
(ββββ−ββββ0)′ΣΣΣΣ0

-1
(ββββ−ββββ0)]}  

   

(3.8) 

 

 

with ββββ∼Normal[ββββ0, ΣΣΣΣ0] as the chosen prior.  The posterior is analytically non-tractable.  

As such, MCMC techniques must be employed for estimating ββββ.  With ββββ estimated 
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and x′i given, iη =x′i ββββ̂  is formulated for encoding the required probabilities for 

medical decision analysis.  Model (3.8) may be used for handling a number of 

different pdfs such as binomial, normal and poisson.  

In situations where y is categorical, say P(yi=j | xi, ββββ) =

∑
=

J

1j

'

ij

'

ij

)xexp(

)xexp(
, j=1, 2,.., J, 

the likelihood and posterior may be formulated as: 

 

 

L(ββββ | xi , y) = 

∑
=

J

1j

'

ij

'

ij

)xexp(

)xexp(
 

π(ββββ | xi , y) ∝ | ΣΣΣΣ |
-1/2 

exp{
2

1
(ββββ−ββββ̂ )'ΣΣΣΣ-1(ββββ−ββββ̂ )}     

(3.9) 

 

 

where ΣΣΣΣ is the covariance matrix and ββββ̂  may be the maximum likelihood estimator 

(MLE) for ββββ, the posterior mode.  ΣΣΣΣ could be the Hessian of the likelihood evaluated 

at ββββ̂ .  It is also possible to model outcomes which are ordinal or polychotomous in 

nature [132]. 

 

3.2.2 Binary Counts 

A special case based on the above set-up (3.9) is known as logistic regression 

or logit [133], where yi∼Binomial[ni, pi], pi∈[0,1].  Logit is arguably one of the most 

frequently used and widely-reported statistical techniques in medical research.  With 

yi∈{0, 1}, logit is suitable for predicting the probability of binary or dichotomous 

outcome (e.g., alive/dead, recover/relapse, improve/deteriorate, successful/fail).  The 

link function is always chosen as θi=
i

i

p1

p
log

−
 (logit) where it has a very meaningful 
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interpretation—log odds.  See section 2.1 for a discussion of odds.  The systematic 

linear component is κ(ηi)=ηi=x′iββββ, such that κ′(ηi)=1 and κ′′(ηi)=0.  

In the case where pi∈[0, 1] is the unknown parameter of interest and where its 

prior is available, the likelihood based on binomial pdf may be reformulated as: 

 

 

f(yi | pi) ∝ iii yn

i

y

i )p1(p
−−      

= ii n

i

y

i

i )p1()
p1

p
( −
−

 

= ii n

i

y

i

i )
p1

1
()

p1

p
(

−

−−
 

= ii n

i

iy

i

i )
p1

p
1()

p1

p
(
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−
+

−
 

= )]
p1

p
1log(n

p1

p
logyexp[

i

i
i

i

i
i −

+−
−

 

= )]e1log(n
p1

p
logyexp[ i

i

p1

p
log

i

i

i
i

−+−
−

 

= )]e1log(nyexp[ i

iii

ϑ+−θ    

(3.10) 

 

 

where θi = 
i

i

p1

p
log

−
 is the logit link.  As before, the systematic linear component is 

ηi = x′iββββ = θi .  In fact, κ(ηi) = ηi, so κ′(ηi) = 1 and κ′′(ηi) = 0. 

Since pi∈[0,1] is a bounded quantity, the most suitable conjugate prior for the 

set-up is a standard Beta[a, b], where a>0 and b>0 are the shape parameters: 

 

 

g(pi) ∝ 
b

i

a

i )p1(p −  

= b

i

a

i

a

i

i )p1()p1()
p1

p
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= 
i

i

n
n

ba

i

ia

i

i )
p1

p
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p
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+
−
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= exp[ )
p1
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loga
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p
loga i

i
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p
log
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ii

i −+
+

−
−
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= exp[ )e1log(n
n

ba
a i

i

i

i

θθ ++++
++++

−−−− ] 

(3.11) 

 

 

Thus, the conjugate prior for θi is g(θi) = exp[ )e1log(n
n

ba
a i

i

i

i

θθ ++++
++++

−−−− ] where C=1, 

a=uv, u=(a+b)/ni and ψ(θi) = )e1log(n i

i

θ+ , according to (3.2).   

According to (3.6), the posterior mode of ηi is given by 

  

 

ψ′(κ(ηi)) = 
u1

1

+
(yi + uv) 

= )ay)(
n

ba
1( i

i

+
+

+      

= 
ban

n)ay(

i

ii

++
+

     

(3.12) 

 

 

after some algebraic manipulations.  Also, ψ′(κ(ηi)) = 
i

i

e1

e
n i η

η

+
, so  

 

 

i

i

e1

e
n i η

η

+
 = 

ban

n)ay(

i

ii

++
+

  

or ie
η  = 

ban

)ay(

i
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+

+ ie
η
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⇒ ie
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ban
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      ie
η [ni + b − yi] = yi + a 

      ie
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)ay(

−+
+

 



3. Bayesian Probability-Encoding Models 

 62 

(3.13)  

 

 

Taking logarithmic transformation on both sides yields  

 

 

iη̂  = log
ii

i

ybn

)ay(

−+
+

      

(3.14) 

  

 

Hence,  

 

 

ββββ* = (X′X)-1X′ iη̂  

= (X′X)-1X′ log
ybn

)ay(

i −+
+

    

(3.15) 

 

 

where ββββ* is the posterior estimator.  It is not difficult to show that if yi∼Bernoulli[1, 

pi], a special case of the binomial distribution, then  

 

 

ββββ* = (X′X)-1X′ log
yb1

)ay(

−+
+

   

(3.16) 

 

 

where X=[x1 x2 …xp]′ and y=(y1, y2,…yn)′ , p<n, are the data matrices.  As readily 

seen, the posterior estimate ββββ* is dependent on the choice of Beta[a, b], where a and b 

are the shape parameters.  Unlike (3.9), such model produces closed-form solution for 

ββββ.   

 The celebrated Bernstein-von Mises Theorem [134] provides the clue to the 

construction of the credible or probability interval (P.I.) for ββββ*.  It guarantees that ββββ* 

are consistent and asymptotically normal.  Since the posterior distribution of √n(η-
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nη̂ )→Normal[0, I(η0)
-1
] when n→∞, where I(η0)

 
is the Fisher’s information [135] 

with η0 as the true value, then the posterior distribution of  

 

√n (ββββ− nβ̂βββ ) → Normal[0, (X′X)-1X′ΣΣΣΣ X(X′X)-1]   

(3.17) 

 

 

as n→∞, where ΣΣΣΣ is a diagonal matrix with elements 2

iσ =nI(η0)
-1
.  As such, one is 

able to construct the 100(1−α)% P.I. for ββββ when n is sufficiently large.  The issue of 

Bayesian estimators’ rate of convergence is documented in literature [136].  

Incidentally, Bayesian modelling with the above-mentioned strategy was also 

explored in reference [137] when this dissertation was prepared.  

 Such intervals are conceptually different from the conventional confidence 

intervals (C.I.).  In the conventional paradigm, the interpretation is that 100(1-α)% of 

the intervals contains the “true” parameter value.  Moreover, the computation is based 

on the sampling distribution of the underlying distribution of the estimator, or how it 

varies over all possible samples.  It does not depend on the particular sample where 

computation is made.  However, the Bayesian P.I. has a more intuitive interpretation.  

It makes a probabilistic statement about the parameter from the computed interval.  

Furthermore, it summarises one’s beliefs about the parameter value that could 

possibly or credibly believed given the observed evidence.  This gives a post-data 

interpretation as opposed to the conventional C.I.  

 

3.2.3 Rates 

Poisson regression [138], on the other hand, deals with rates, an important 

entity for quantifying risk in medical research.  The most appropriate distribution for 
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rates, say yij, is Poisson[µi], i=1, 2, …n, j=1, 2, …, k.  Here, µi>0 is the unknown 

mean parameter.  The appropriate link is log(ηi) = x′iββββ. 

Given that Ri = ∑
=

k

1j

ijY is a sufficient statistic for µi, such that Ri ∼ Poisson[kµi], 

the likelihood of Ri is: 

 

 

f(ri; µi) ∝ )kklogrexp( iii µ−µ     

(3.18) 

 

 

which is clearly a member of the exponential family.  It follows that the appropriate 

conjugate prior for µi is Gamma[a, b], where a>0 and b>0: 

 

 

g(µi) ∝ ]
k

bk)
k

k
log(aexp[ ii µ

−
µ

    

(3.19) 

 

 

With the log link function, i.e., θi=log(kµi), the prior is g(θi)∝exp( ie
k

b
a i

θ−θ ) where 

a=uv, u=b/k and ψ(θi)= )exp( iθ .  Take ηi = θi, then 

 

 

 ψ′[κ(ηi)] = 

k

b
1

1

+
(ri + a)     

= 
kb

k)ar( i

+
+

       

(3.20) 

 

 

Also, ψ′[κ(ηi)]=ψ′(ηi)= )exp( iη , so 

 

 



3. Bayesian Probability-Encoding Models 

 65 

)exp( iη = 
kb

k)ar( i

+
+

      

(3.21) 

 

 

Taking logarithmic transformation, iη̂ =log
kb

k)ar( i

+
+

 is the posterior mode.  Finally,  

 

 

ββββ* = (X′′′′X)-1X′ iη̂  

= (X′′′′X)-1X′ log
kb

k)ar( i

+
+

     

(3.22) 

 

 

 The use of Poisson regression requires one crucial assumption, that is, the 

mean and variance are equal.  In most cases, this assumption may not be valid and it 

leads to a problem commonly known as over-dispersion.  When such problem arises, 

it is more appropriate to use negative binomial [139] as the underlying distribution. 

 Suppose yi∼Negative binomial[r, pi], then 

 

 

f(yi; pi) = ii

i

y

i

r

i

1yr

y )p1(pC −−+
     

(3.23) 

 

 

The canonical link function is taken as iη =log
i

i

p

)p1(r −
.  With prior pi∼Beta[a, b], the 

posterior is Beta[a+r, yi +b].  Therefore, the posterior mode is  

  

  

iη̂  = log
ra

)by(r i

+
+

       

(3.24)  

 

 

According to (3.6), the posterior estimator for ββββ becomes  

 

 

ββββ* = (X′X)-1X′ iη̂  
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= (X′X)-1X′ log
ra

)by(r

+
+

        

(3.25) 

 

 

The 100(1−α)% P.I. for ββββ of both the Poisson and Negative binomial regression 

models are based on (3.17). 

 The above-mentioned Bayesian estimators (3.16, 3.22 and 3.25) are applied 

for analysing binary counts and rates with subject-level evidences. 
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3.3 Models for Combining Evidences from Published Sources 

3.3.1 The Generic Approach 

The following Bayesian models are developed for combining the published results of 

k>1 studies while allowing for each study to have its own effect.  Known as meta-

analysis in biostatistics (subsection 2.3.4), these models are used for encoding the 

probabilities for medical decision analysis based on relevant reported evidences.  

They may also serve to produce the priors for the above-mentioned relational models. 

Such models are also “hierarchical” because, loosely speaking, more than one 

level of likelihood and/or prior is specified. In this case, a particular observed quantity 

depends on an unknown parameter, which in turn follows a second-stage prior.  This 

sequence of priors and parameters constitute a model with an extended or hierarchical 

structure.  

When combining evidences from relevant reported studies which are 

conducted at different locations and in different times, it is desirable to consider the 

following features: 

 

 

� different subject characteristics (age, racial mix, disease severity) 

� different study designs (retrospective vs. prospective; experimental vs. non-

experimental; randomised clinical trial vs. observational cohort; single-centre 

vs. multi-centres) 

� different sampling schemes 

� different inclusion and exclusion criteria (demographics, disease progression) 

� different safety and quality considerations 

� different study periods 

� different end-point outcomes (30-day mortality vs. 90-day mortality) 
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� different reported statistical analyses (crude vs. adjusted results; univariate vs. 

multivariate analyses)  

 

 

The idea is to combine the reported evidences (yi) to estimate the overall effect 

θ—a hyperparameter.  The combined evidence θ in turn facilitates probability 

encoding for medical decision making. It is the combined overall effect that is of 

primary interest in such exercises.   

Unlike the relational models discussed earlier, the hierarchical model designed 

for handling aggregate-level evidences is not concerned with the estimated association 

between X and y.  It is primarily concerned with the combination of all relevant yis, 

which are reported in academic literature.  In each reported study, a specific yi may be 

generated from a relational model or some simpler analysis.  But in the case where 

they are combined, the concern is to generate θ for probability encoding. 

The proposed method for combining reported study effects, commonly known 

as meta-analysis in the biostatistical literature, requires the observed study effects (yi) 

to vary around some unobserved/latent study-specific effect (ϕi), which in turn belong 

to a distribution characterised by the overall or combined effect (θ).  As such, this is 

also a random-effect model, where the study effects vary randomly around their 

respective study-specific effects.  Each of the study-specific effects, with its specific 

parameters, describes the populations where the reported study effect is generated.   In 

a similar fashion, they are also allowed to vary randomly around a parent distribution 

characterised by θ.  Consequently, the model consists some hierarchical structure 

where the observed study effects precede the unobserved study-specific effects, which 

in turn precede the unobserved overall effect. 



3. Bayesian Probability-Encoding Models 

 69 

Taking into account the various sources of heterogeneity underlying the 

reported evidences, the hierarchical structure is the most critical and desired feature of 

the proposed Bayesian meta-analysis model.  It is theoretically wrong to ignore the 

intermediate study-specific effects (ϕi).  The inclusion of the study-specific effects 

serves to capture the salient features of the underlying sources of heterogeneity 

described above.  The model is severely misspecified should the study-specific effects 

are suppressed.   The nature of the proposed model is depicted in Figure 3.1.  

To cast the above-mentioned features in the form of a Bayesian model, the 

following is proposed: 

 

 

π(θ, ϕϕϕϕ | y) ∝ ∏
=

ϕ
k

1i

ii )|y(f × ∏
=

θϕ
k

1i

i )|(f  × g(θ)   

(3.26) 

 

 

where y=(y1,y2,…yk)′, ϕϕϕϕ=(ϕ1,ϕ2,…,ϕk)′ and g(θ) are the vector of observed effects, 

study-specific effects and prior of the overall combined effect, respectively. 

characterised by θ, (3.26) is the joint posterior distribution of interest.  Once the joint 

posterior is derived the combined effect θ emerges simultaneously.  In most instances, 

there may be more than one prior involved, depending on what distribution is used for 

representing the study-specific effects.  If it is a multi-parameter distribution one may 

need to specify more than one prior. 

The idea of specifying a random-effect model is not new in statistics.  The 

conventional analysis of variance (ANOVA) model [34], multi-level model 

(subsection 2.3.3) and meta-analysis (subsection 2.3.4) may incorporate some random 

effects for dealing with latent variables in data analysis.   

 



3. Bayesian Probability-Encoding Models 

 70 

 

 

 

 
 

 

 

Figure 3.1: Proposed modelling framework for combining study effects 
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In practice, the joint posterior distribution is extremely complicated and it is 

sufficient to consider the conditional prior distribution of θ, given the observed study 

effects but does not depend on the unobserved study-specific effects ϕϕϕϕ.  A conditional 

posterior distribution is the posterior for one parameter given the values of the other 

parameters, and is obtained from the joint posterior by treating the other parameters 

fixed.   

Theoretically, this is πc(θ | y) = 

∫ ∫

∫
∞

∞−

∞

∞−

∞

∞−

θϕθθϕϕ

ϕθθϕϕ

dd)(g)|(f)|y(f

d)(g)|(f)|y(f

.  Following 

probability theory, the Bayesian estimator for T(θ) is defined as:  

E[T(θ)|y]=

∫ ∫

∫
∞

∞−

∞

∞−

∞

∞−

θϕθθϕϕ

ϕθθϕϕθ

dd)(g)|(f)|y(f

d)(g)|(f)|y(f)(T

.  This is unlikely to be mathematically 

tractable and to estimate T(θ), MCMC (section 2.4) must be executed.   

As mentioned before, the most popular MCMC technique is Gibbs sampler 

[123].  For t=1, 2, …, m, where m is specified before-hand, the t-th step of the 

algorithm is 

 

 

Generate θt given y and ϕt-1 from πc(θ | y, ϕ
t-1
) 

Generate ϕt given y and θt from πc(ϕ | y, θ
t
)    

(3.27) 

 

 

Essentially, the technique generates a sequence of (θ1, ϕ1), (θ2, ϕ2), …, (θm, ϕm).  The 

value of ϕt-1 is updated for generating θt which in turn generates ϕt.  Under general 

conditions, the distribution of the chain stabilises or reaches the equilibrium (limiting 
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distribution) as the length of the chain increases.  Furthermore, the arithmetic average 

m

)(T
m

1j

∑
=

θ

converges to E[T(θ)|y] as m→∞. 

The strength of the proposed hierarchical model is that it leverages on relevant 

studies conducted in the past.  It is often possible to pool estimates from relevant 

studies to increase precision, accuracy and generalisability. EBM practitioners and 

clinicians do not need to conduct new studies for encoding the required probabilities 

for decision making.  Moreover, the random-effect hierarchical model produces a 

more sensible estimate than one which ignores the underlying random effects.  It is 

also more superior than the MLE which treats each yi as an isolated entity.  Note that 

the idea is not exclusively restricted to models designed for combining published 

evidence.  It is also applicable for subject-level relational models as described earlier. 

The posterior result may be an end in itself, or serves as the prior for relational 

modelling involving patient-level evidences.  Three specific models are described 

below. 

 

3.3.2 Continuous Combined Effect 

The following model is useful for combining or summarising effects which are 

continuous in nature.  To facilitate discussion, let 

yi = observed effect in study i 

ϕi = study-specific effect in study i 

θ = overall combined effect 

2

is = within-study variance of yi 

φi = within-study precision of yi (=l/
2

is ) 
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2σ = between-studies variance 

τ = between-studies precision (=l/
2σ ) 

k= total number of studies under consideration 

 

 

Only two quantities, namely yi and 
2

is , are observed (φi is derived), while ϕi, θ and 

2σ are unobserved and unknown.  Since the studies are conducted at different 

locations and times, it is reasonable to assume yi∼iid[ϕi, 
2

is ] and  ϕi∼iid[θ, 
2σ ].   

These observed samples in turn form the likelihood function for generating the 

posterior distribution, which is the ultimate source of information required for any 

Bayesian analysis.   In a random-effect setting, priors must be established for the 

unobserved quantities, i.e., θ and τ=1/ 2σ .  Following (3.26) and collecting terms with 

reference to the sequential nature of Bayes’ Theorem [26], one yields the following 

joint posterior distribution: 

 

 

π(θ, ϕϕϕϕ, τ, φφφφ| y) ∝ ∏
=

ϕφ
k

1i

iii )|;y(f  × ∏
=

θϕ
k

1i

i )|(f  × g(θ) × g(τ)  

(3.28) 

 

 

where y=(y1,y2,…yk)′ is the vector of observed study effects, φφφφ=(φ1,φ2,…,φk)′ the 

within-study precision, ϕϕϕϕ=(ϕ1,ϕ2,…,ϕk)′, the vector of individual study-specific 

effects belonging to a distribution characterised by θ, g(θ) the prior for θ, g(τ) the 

prior for τ, f(yi; φi| ϕi) the individual sample distribution for yi and f(ϕi | θ) the 

distribution for study-specific effects.  The first two terms on the R.H.S. of (3.28) are 

likelihood functions.  The priors may be based on initial subjective assessment before 

observing the published evidences. 
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Usually, normal distribution is appropriate for yi and the priors are chosen 

within the related conjugate family such that θ∼Normal[a, 1/b] and τ∼Gamma[c, d].  

Assuming normal distribution for yi is valid for a wide class of applications.  As a 

result, the joint posterior distribution may be written as: 

 

 

π(θ, ϕϕϕϕ, τ, φφφφ | y)  ∝ ])y(
2

exp[
2

k

1i

2

ii
ii∏

=

ϕ−
φ−

π
φ

 × ])(
2

exp[
2

k

1i

2

i∏
=

θ−ϕ
τ−

π
τ

 

    × ])a(
2

b
exp[

2

b 2−θ
−

π
 × ]cexp[

)d(

c 1d
d

τ−τ
Γ

−  

(3.29) 

 

 

where Γ(•) is a gamma function. Theoretically, inferences about θ should be made 

from this joint posterior by integrating out the other unknown parameters.  

Unfortunately, its complicated form makes computation extremely difficult and it is 

more efficient to work on the conditional posteriors.  Such treatment will become 

clear when the Gibbs sampler is presented.   

In a complex hierarchical model such as (3.29) the conditional posteriors are 

simpler in structure.  For example, the posterior of major concern 

 

 

πc(θ | ϕϕϕϕ, τ, φφφφ, y) ∝ ])(
2

exp[
2

2

i

k

1i

θ−ϕ
τ−

π
τ

∏
=

 ×  ])a(
2

b
exp[

2

b 2−θ
−

π
 

(3.30) 

 

 

is a normal distribution.  Similarly, ϕi occurs in only two terms and its posterior 

conditional on other parameters is:  

 

 

πc(ϕi | ϕϕϕϕ-i, θ, τ, φφφφ, y) ∝ ∏
=

−
−k

1i

2

ii
ii ])y(

2
exp[

2
ϕϕϕϕ

φφφφ
ππππ
φφφφ

 × ])(
2

exp[
2

2

i θ−ϕ
τ−

π
τ

  

(3.31) 
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where ϕϕϕϕ-i represents the vector of all other study-specific effects in studies other than i.  

This is a product of two normal distributions.  Last but not least, the conditional 

posterior for the between-studies precision, τ, is: 

 

 

πc(τ | θ, ϕϕϕϕ, φφφφ, y) ∝ ])(
2

exp[
2

2

i

k

1i

θ−ϕ
τ−

π
τ

∏
=

 × ]cexp[
)d(

c 1d
d

τ−τ
Γ

−   

(3.32) 

 

 

which can be identified as a gamma distribution.   Consequently, the posterior of each 

individual parameter conditional on the values of other parameters is a good starting 

point and this helps to avoid working on the original joint posterior.  

As mentioned before, the Bayesian approach attempts to encode prior 

knowledge of the parameter through subjective probability based on a prior 

distribution.  In the above-mentioned case, the decision-maker and analyst must 

specify quantities a, b, c and d for the prior distributions.  

While there are different ways to construct a Markov chain that converges to 

the posterior distribution, the most popular scheme is Gibbs sampler [123].  The 

algorithm works by sampling from the conditional posteriors of the parameters.   

Several practical issues must be observed in order to achieve quick convergence from 

performing Gibbs sampling.  First, one may start the chain by setting the initial 

parameter values equal to the conventional maximum likelihood estimates (MLE),  

such as the sample means.   Next, it is advantageous to select conjugate priors as in 

some Bayesian analyses. This is because it is more efficient to run the Gibbs sampler 

with standard distributions. Third, calculation of sample features from a Markov chain 

should not commence immediately as each chain needs a burn-in period to reach 
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equilibrium.  This is because early results from the Gibbs sampler depend on the 

initial values and are not representative of the posterior distribution.  While one may 

examine the autoregressive structure of the iterative results, the simplest way to 

determine the number of burn-ins is to set a very large number.  In addition, a large 

number of updates after burn-in should also be specified.  As the number of samples 

becomes large, the later elements of the sequence will come close to having the 

stationary distribution.  To ascertain if stationary is achieved, one may plot the history 

of the chain.  Analysts are reminded that it is a good practice to fix the number of 

burn-ins and updates before kicking off the computation. 

The following discussion deals with the Gibbs sampler for working with the 

conditional posteriors outlined earlier. Once the joint posterior and the conditional 

posteriors are derived and with the initial values specified (usually based on MLE), 

the MCMC Gibbs sampler algorithm works in the following manner: 

 

 

i. with starting values 0

iϕ =yi , θ
0
= k/

k

1i

0

i∑
=

ϕ and 0τ = 20
k

1i

0
)(/k

i
θ−ϕ∑

=

 

ii. draw each ϕi randomly using its conditional posterior and the current values of 

θ and τ 

iii. draw θ randomly using its conditional posterior and the current values of ϕϕϕϕ 

and τ 

iv. draw τ randomly using its conditional posterior and the current values of ϕϕϕϕ 

and θ 

v. record the current values of ϕϕϕϕ, θ and τ 

vi. repeat steps ii. to v. for a sufficiently large number of times, say m=100-1000 
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vii. summarise θ from the generated sample of posteriors by computing its mean, 

median, mode and variance (with P.I.s) 

 

 

Properties of Gibbs sampling can be found in references [140-142].  As 

mentioned before, the advantage of this elegant yet computationally-demanding 

approach is that it enables medical decision analysts to encode probability without 

resorting to the complicated joint posterior (3.29).  Even if it is possible to generate 

directly from the joint posterior, the Gibbs sampler produces a more efficient manner 

in producing the required results.  

The above model is also suitable for summarising any reported evidences 

analysed with maximum likelihood.  This is because MLEs are asymptotically 

normally distributed if the underlying density satisfies certain regularity conditions 

[143].  This important result suggests that the above-mentioned model is versatile. 

The proposed model also differs from the highly popular empirical Bayes 

method [144] in several ways.  Although the latter is hierarchical in nature, the 

element of random-effect is not adequately captured.  As mentioned before, the 

random-effect is a critical issue while combining evidences from different published 

sources.  Instead of attempting to model the parameter with a pdf as in the proposed 

random-effect Bayesian model, the empirical Bayes technique works as follows: 

 

 

f(y, ϕ | θ) = 
)(h

),,y(f

θ
θϕ

 

= 
)(h

)(h)|(g)|y(f

θ
θθϕϕ

 

= f(y | ϕ)g(ϕ | θ)     

(3.33) 
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The likelihood function ∫
∞

∞−

ϕθϕϕ d)|(g)|y(f is then established, with ML technique 

applied for generating the required estimates.  Though attractive in many ways, the 

empirical Bayes technique is found to be inappropriate for combining evidences from 

published sources. 

 

3.3.3 Combined Effect as Proportions 

In situations where the observed study effect is a proportion (yi=counts/sample 

size; 0≤yi≤1), the most appropriate underlying pdf is Beta[q1i, q2i], where both q1i, q2i 

are the shape parameters.  With yi bounded, the beta distribution is a flexible 

distribution that takes various shapes (see Figure 3.2).  It may be tempting to use 

model (3.29) for combining reported proportions as they are continuous and 

distributed as normal asymptotically.  However, one must bear in mind that 

proportions are bounded and this property makes beta distribution a more appropriate 

underlying distribution.   

The development of the model begins with the re-parameterisation of the beta 

pdf: 

 

 

f(yi; q1i, q2i) = 
)q,q(B

)y1()y(

i2i1

1q

i

1q

i
i2i1 −− −

,       0≤yi≤1; q1i>0; q2i >0    

(3.34) 

 

 

where B(q1i, q2i)=Γ(q1i+q2i)/Γ(q1i)Γ(q2i) is the beta function.  State without proof, the 

mean and variance of the distribution are E[Yi] = q1i/(q1i + q2i) and V[Yi] = qi1q2i/[(q1i 

+ q2i)
2
(qi1+ q2i+1)] = (E[Yi])(1−E[Yi])/(q1i+q2i+1), respectively.   
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Figure 3.2: Beta distribution 
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Note that the variance is a function of the mean and a dispersion parameter (q1i+q2i+1).  

Denoting φi as (q1i+q2i) and ϕi as the mean, the beta pdf (3.34) may be re-written as: 

 

 

f(yi; q1i, q2i) ∝ 
1)1(

i

1

i
iiii )y1(y
−φϕ−−φϕ − ,   0≤yi≤1; 0≤ϕi≤1; φi>0    

(3.35) 

 

 

The required model for combining proportions is then constructed as: 

 

 

π(θ, ϕϕϕϕ, τ, φφφφ | y)  ∝ 
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(3.36) 

 

 

where θ, ϕϕϕϕ, τ, φφφφ and y have their usual meanings.  The prior for θ is Beta[a, b].  

Without loss of generality, the prior of τ is taken as Exponential[1].  The conditional 

posteriors are as follows: 

 

πc(θ | ϕϕϕϕ, τ, φφφφ,  y) ∝ 
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(3.37) 

 

The Gibbs sampler algorithm may be executed in the following manner: 
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i. with starting values 0

iϕ =yi , θ
0
= k/

k

1i

0

i∑
=

ϕ and 0τ = 20
k

1i

0
)(/k

i
θ−ϕ∑

=

 

ii. draw each ϕi randomly using its conditional posterior and the current values of 

θ and τ 

iii. draw θ randomly using its conditional posterior and the current values of ϕϕϕϕ 

and τ 

iv. draw τ randomly using its conditional posterior and the current values of ϕϕϕϕ 

and θ 

v. record the current values of ϕϕϕϕ, θ and τ 

vi. repeat steps ii. to v. for a sufficiently large number of times, say m=100-1000 

vii. summarise θ from the generated sample of posteriors by computing its mean, 

median, mode and variance (with P.I.s) 

 

3.3.4 Combined Effect as Rates 

The combination of effects of rates (yi) works in a similar fashion.  It is a well-

known fact that if a rate yi follows Poisson(µ), then the conjugate prior of µ is 

gamma(a, b), where a, b>0.  In the case of the full Bayesian random-effect 

hierarchical model, the observed effect, yi, follows Poisson(µi), and  µi follows 

Gamma(1, θ).  The prior distribution for θ—the parameter of interest—is chosen to be 

g(θ)=
2a

)a/1exp(

θ
θ−

, a>0, θ>0.   

The joint posterior for µ and θ given y is: 

 

 

π(θ, µµµµ | y)  ∝ ∏
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(3.38) 
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The conditional distribution for µµµµ is: 
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(3.39) 

 

 

which is a gamma function.  The conditional for θ is more complicated, but it can be 

simplified as follows: 

 

 

πc(θ | µµµµ, y)  ∝  ∏
= θ
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(3.40) 

 

 

which is also a gamma distribution, by making use of the transformation λ=1/θ.  The 

Jacobian is 
λ
θ

d

d
= -λ-2. 

 The Gibbs sampler is executed as follows: 

 

 

i. with starting values 0

iµ =yi  and θ
0
= k/

k

1i

0

i∑
=

µ   

ii. draw each µi randomly from its gamma conditional posterior and the current 

values of λ 
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iii. draw λ randomly from its gamma conditional posterior and the current values 

of µµµµ 

iv. record the current values of µµµµ and λ 

v. iterate the process ii. to iv. for a specified m times 

vi. summarise θ based on the back-transformation of λ by computing its mean, 

median, mode and variance (with P.I.s) 
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3.4 Other Relational Models 

Three additional classes of Bayesian relational models are presented in this section.  

They are useful for analysing continuous outcomes, time to event data and clustered 

and hierarchical observations.  These models are chosen based on a detailed literature 

review given in Chapter 2 and their usability in the case studies to be presented in 

Chapter 4. 

 

3.4.1 Continuous Outcome 

The linear regression model is most familiar to medical data analysts.  Based 

on a linear link function, it is suitable for modelling continuous yi like body weight, 

temperature, size of tumour and glucose level, etc.  It is legitimate to apply (3.8) for 

modelling yi in this case, but a more straight-forward approach makes use of the 

distributional property of the residuals (ui), e.g., distance between the actual 

observation and its predicted value.   

A very attractive feature of such formulation is that it generates closed-form 

solutions for ββββ [51, 88, 96].  Formulate the linear model as: 

 

 

yi = x′iββββ + ei      

(3.41)   

 

 

where residual ui~Normal[0, σ2].  With conjugate priors ββββ∼Multivariate Normal[ββββ0, 

ΣΣΣΣ0] and σ
2∼Inverse Gamma[a, b], the joint posterior distribution of ββββ and σ2 becomes 

 

  

π(ββββ, σ2 | X, y)  ∝ L(ββββ, σ2 | X, y) × g(ββββ, σ2) 

= (2πσ2)-n/2exp[−
22

1

σ
 (y − Xββββ)'(y − Xββββ)]  

       × (2πσ2)-(p+1)/2 |Σ0|
-1
 exp[−

22

1

σ
(ββββ−ββββ0)' Σ0

-1
 (ββββ−ββββ0) ] × σ

-(a-p-1)
exp[−b/σ2] 
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∝ σ-n e{−
22

1

σ
[ 2σ̂ (n−k−1) + (ββββ−ββββ̂ )'X'X(ββββ−ββββ̂ )]}  

× (2πσ2)-(p+1)/2 |Σ0|
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1

σ
(ββββ−ββββ0)' Σ0

-1
(ββββ−ββββ0)] × σ

-(a-p-1)
exp[−b/σ2] 

(3.42) 

 

 

by making use of the fact that ββββ̂ =(X'X)-1X'y and 2σ̂ = (y−Xββββ̂ )'(y−Xββββ̂ )/n−p−1, where 

X=[x1 x2 …xp]′ and y=(y1,y2,…yn)′ , p<n, are the data matrices.  ββββ̂  is in fact a MLE.  

As readily seen, the posterior (3.42) is extremely complicated despite its simple set-up 

(3.41).   Fortunately, it is mathematically tractable with suitable substitution and 

transformation. Re-express the joint posterior as: 

 

 

π(ββββ, σ2 | X, y) ∝ σ-a-n exp{−
22

1

σ
[σ* + (ββββ−ββββ0)'(Σ0

-1
 + X'X)(ββββ−ββββ0)]}  

(3.43) 

 

 

by making use of he following quantities: 

 

 

ββββ* = (Σ0
-1
 + X'X)

-1
 (Σ0

-1 ββββ0 + X'Xββββ̂ )  

σ* = 2b  + 2σ̂ (n−p−1) + (ββββ0
 −ββββ*)' Σ0

-1 ββββ0 + (ββββ̂ −ββββ*)'X'Xββββ̂    

(3.44) 

 

 

The joint posterior is now recognised as a normal-inverse gamma distribution. The 

quantity ββββ* may now be used as the estimator for ββββ.  This Bayesian estimator is also 

known as an “shrinkage estimator” because the MLE ββββ̂  is “shrunk” towards the prior 

ββββ0.  With suitable transformation the marginal posterior of ββββ is derived: 

 

 

π(ββββ | X, y)  ∝ [σ* + (ββββ−ββββ*)'(Σ0
-1
 + X'X)(ββββ−ββββ*)]-(n+a)/2   

(3.45) 
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which is easily recognised as a multivariate-t distribution.  Therefore, the mean and 

covariance of the posterior coefficient estimates are given by: 

 

 

E[ββββ | X, y] = ββββ* 
COV[ββββ | X, y] = σ*(Σ0

-1
 + X'X)

–1
 / [n+a−(p+1) −3]  

(3.46) 

 

 

Using the same line of argument, one can deduce that the joint posterior of ββββ and σ2 

with non-informative priors, say c and 1/σ, respectively:  

 

 

π(ββββ, σ2 | X, y) ∝ σ-n exp{−
22

1

σ
[ 2σ̂ (n−p−1) + (ββββ−ββββ̂ )'X'X(ββββ−ββββ̂ )]} × c × 1/σ 

∝ σ-n-1exp{−
22

1

σ
[ 2σ̂ (n−p−1) + (ββββ−ββββ̂ )'X'X(ββββ−ββββ̂ )]}  

(3.47) 

 

 

with the following marginal posterior of ββββ:  

 

π(ββββ | X, y) ∝ [(n−p−1) + (ββββ−ββββ̂ )'( 2ˆ −σ X'X)( ββββ−ββββ̂ )]-n/2    

(3.48) 

 

 

which can again be easily recognised as a multivariate t-distribution.  Thus, E[ββββ | X, Y] 

= ββββ̂ =(X'X)-1X'y and COV[ββββ | X, y] = 2σ̂ (X'X)
-1
 where 2σ̂  is usually taken to be 

(y−X ββββ̂ )'(y−X ββββ̂ )/n−p−1.  The 100(1−α)% P.I. for ββββ can thus be constructed 

accordingly.   The above result is not surprising and it illustrates an important feature 

of all Bayesian models, that is, ββββ* reduces to the conventional estimator (ββββ̂ ) if non-

informative priors are fitted.   

 



3. Bayesian Probability-Encoding Models 

 87 

3.4.2 Time to Event 

The next relational model is designed for analysing subject-level time to event 

data (yi).  Recall from subsection 2.3.2, if the underlying skewed distribution for yi is 

f(yi), then the cumulative distribution function (cdf) is F(Y<yi) and the survivor 

function is S(yi)=P(Y≥yi)=1−F(Y<yi).  These subjects are “censored” because no 

event is observed in them.  Thus, the likelihood for right-censored observations 

becomes ∏
=

δ−δ
n

1i

1

ii
ii )S(y)f(y where δi takes the value 0 if the subject is censored and 1 if 

otherwise. 

Bayesian analysis requires a suitable distribution, say Weibull[α, λ], to fit the 

data.  Like the beta distribution, Weibull is extremely flexible.  In this case, α and λ 

are the scale and shape parameters, respectively.  The required functions are as 

follows [101]: 

 

 

f(yi | α, λ) = α
1
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−α exp[−λ−exp(λ) α

iy ]  yi,  α, λ>0,  
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(3.49) 
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where the priors are α∼Gamma[α0, κ0] and λ∼Normal[µ0, 
2

0σ ].  Then introduce the 

predictors through λ, i.e., λi=x′iββββ.  Let the prior ββββ∼Normal[ββββ0, Σ0], the joint posterior 

is derived:  

 

 

π(ββββ, α | yi, δi, xi) ∝ 
∑

α =

−δ+α
n

i

i

1

0 1

 × 

exp{ )}()(
2

1
)]exp()log()1([ 0

1

0

'
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'' β−βΣβ−β−ακ−β−−αδ+βδ −
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α∑
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i

iiiiii xyyx  

(3.50) 

 

 

Estimation of ββββ is carried out with MCMC. Weibull is a versatile distribution, with 

exponential as its special case (λ=1).  With suitable parameterisation, it can be 

converted to an extreme-value distribution.  Gamma, exponential and log-normal 

distributions are other candidate distributions for modelling time to event data. 

 

3.4.3 Longitudinal and Clustered Data 

In situations where the data are clustered or collected repeatedly over time, 

then some hierarchical structures are present.  See subsection 2.3.3 for details.  To 

facilitate discussion, consider outcome yij related to predictors xij for observations i=1, 

2, …, nj within clusters j=1, 2, …, k.  In this case, while the clusters are likely to be 

independent, the evidences within each cluster are not.  Conditional on the cluster 

effect υj, yij belongs to the exponential family distribution.  The posterior is developed 

as below [110]: 

 

 

f(yij; θij | υj) = exp{[θijyij - ψ(θij)] + γ(yij)} i=1, 2,…, nj;  j=1, 2, …, k 

π(ββββ, υυυυ, ΣΣΣΣ | yij, xij) ∝ ])(g)x,,|y(L[
jn

1i

k

1j

ijjij∏∏
= =

βυβ )(h)|(g
k

1j

j ΣΣυ∏
=

  

(3.51) 
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where υυυυ=(υ1, υ2,… υn)′ and ΣΣΣΣ are the cluster-effect parameters and covariance matrix, 

respectively.   

It may be useful to consider the conditional posteriors in modelling: 

 

 

πc(ββββ | υυυυ, ΣΣΣΣ, yij, xij) ∝ ∏∏
= =

βυβ
jn

1i

k

1j

ijjij )(g)x,,|y(f  

πc(υj | ββββ, ΣΣΣΣ, yij, xij) ∝ ∏
=

βυυβ
jn

1i

jijjij )|(h)x,,|y(f   

πc(ΣΣΣΣ | υυυυ, ββββ, yij, xij) ∝ )(z)|(w
k

1j

j ΣΣυ∏
=

     

(3.52) 

 

 

The conditional posterior (πc) of a particular parameter is derived by holding other 

parameters fixed.  With specific distributions and functions chosen, the above set-up 

allows analyst to model clustered data with different nature, say counts, rates and 

continuous.  MCMC is required for summarising the posterior results. 

The above-mentioned two-level hierarchical data structure is a special case of 

the multi-level framework.  But it is realistic enough to handle many real-life 

scenarios [96].   
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3.5 Specific Modelling Issues 

3.5.1 Sensitivity Analysis 

The quality of a Bayesian model depends on several criteria.  Besides being 

parsimonious and interpretable, a reasonable Bayesian model should be resistant to 

departures in the specification of prior distribution.  A common criticism of Bayesian 

analysis is that the prior distributions can never be correctly quantified, elicited and 

fitted, especially when time is limited.  The allegation is not unfounded.   

 Therefore, it is important to assess the appropriateness of prior distribution in 

Bayesian analysis.  The most straight-forward approach is to employ sensitivity 

analysis, a standard term refers to the process of investigating changes in the 

conclusions (posterior) caused by changes in the initial assumptions (prior).  

 Global sensitivity analysis is a broad approach that evaluates a wide range of 

alternative prior specifications, forms of the link function, error sensitivity and 

perturbations of the prior specifications and the likelihood. Unfortunately, this idea is 

too broad to be useful in practice.  In a narrower sense, the analyst may specify an 

alternative non-informative prior over the support of the parameter of interest and 

compare it with the stipulated informative prior.  A substantive change to the form of 

the posterior is a signal for caution.   

 In local sensitivity analysis, one specifies a more diffuse form of the prior than 

that originally specified.  If no appreciable changes to the posterior are observed, one 

is confident that the initial prior is not specified incorrectly.  Compared to the global 

approach, this approach incurs a lower cost in terms of effort and reporting.  

It must be pointed out that if the initial prior is supported firmly on theoretical 

ground, then large changes to the posterior, as indicated by the sensitivity analysis, are 

not a sufficient reason to discard the chosen prior. 
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3.5.2 Robust Analysis 

A different approach to minimise the effect of misspecified prior on posterior is based 

on the concept of robustness.  It is not uncommon for clinicians to specify a wrong 

prior as they might base their prior evidence on faulty reasoning or beliefs.  They may 

also be presented with past evidences that were generated from different contexts.  

With strong confidence in the prior, one may specify a highly precise yet incorrect 

prior.   

 The suggestion offered by the robust approach is to introduce a mixture prior: 

 

 

gmixture(θ) = p0g0(θ) + p1g1(θ) p1=1 − p0   

(3.53)   

 

 

where g0(θ) is the initial prior, g1(θ) the more widely-spread alternative prior, p0 the 

probability that g0(θ) is correct and p1 the probability that g1(θ) is correct.  One 

usually fixes p0 with a high value, say above 0.9, thus reflecting the belief that the 

initial prior is correct.  This also means that one is giving a small chance that the 

initial prior is misspecified.  

According to the Bayes’ Theorem [26], the respective posteriors are π0(θ | y) 

and π1(θ | y), and the mixture posterior is: 

 

 

πmixture(θ | y) = p′0π0(θ | y) + p′1π1(θ | y)    

(3.54) 

 

 

The mixture posterior is thus a mixture of two posteriors.  Note that p′0 and p1′ are 

based on observed evidence and are proportional to the prior probabilities (p0 and p1) 

multiplied by the probability density evaluated at the evidence that has occurred.  
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Also note that the mixture indicator, 0 for initial prior and 1 for alternative prior, is 

marginalised out.   

If the initial prior is correct, the mixture posterior is very close to the initial 

posterior.  However, if the initial prior is very different from the likelihood, the 

posterior probability p′0 will turn out to be very small and the mixture posterior will 

then be dominated by the likelihood.   

The use of mixture prior provides some protection against a misspecified 

initial prior.  This is the essence of robust statistics [145], a branch of methodological 

thought that flourished in the 1980s. 

 

3.5.3 AdaBoost 

The next issue concerns a Bayesian model’s predictive ability.  It is useless to 

have a sophisticated model that provides an excellent fit to the data but fails to predict 

future or out-of-the-sample observations adequately.  

The logit model (3.16) described above may be called a classifier as it helps to 

determine how patients are classified (e.g., alive/dead, recover/relapse, 

improve/deteriorate). Classifier is a technique that develops well-defined rules for 

assigning observations.  The following section concerns a machine-learning algorithm, 

known as AdaBoost [146], that might help to improve its predictive performance. 

The Bayesian logit classifier described earlier is “global” in the sense that it is 

designed to apply to the entire data set over all the variable space.  Since a single 

classifier may not be ideal, a combination of classifiers from the same data set may 

help to identify more special features of the misclassified observations.  Therefore, 

one may view such combination of classifiers as a way of improving the performance 

of single “weak” classifiers (see Figure 3.3). 
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To facilitate discussion, define x as the vector of predictors, y the observed 

outcome and n the sample size.  Unlike the usual logit models, y∈{-1,1} in this case.  

Initially, each of the observations (xi, yi) is assigned an equal weight, such that wi=1/n.  

At each stage of the iterative process, a classifier is constructed using the weights wi, 

which reflects the probability of occurrence of the observations. In the process, 

misclassified observations are up-weighted, while correctly-classified observations 

are down-weighted.  An error index, corresponding to the sum of weights of the 

misclassified observations is then computed.  It is noted that the weights 

corresponding to misclassifed observations always increase and the classifier is 

updated with these weights.  The AdaBoost procedure is summarised as follows: 

 

 

i. initialise the weights wi=1/n, i=1, 2,…, n. 

ii. for m=1, 2,…, M, construct a classifier ϖ(x) from the training set with weights 

wi; compute em as the sum of weights wi corresponding to misclassified 

observations; if em>0.5 or em=0 then terminate the procedure, otherwise set 

wi=wi(1−em)/em for misclassified observations and renormalise the weights so 

that they sum to unity, and continue the process. 

iii. for a two-class classifier, in which η(x)>0 implies x∈c1, otherwise c0, form a 

weighted sum of the classifiers, ωm, m=1, 2,…, M, 

ω̂= )x()
e

e1
log( m

M

1m m

m ϖ
−

∑
=

and assign x to c1 if ω̂>0, where cj is the outcome 

class or level.   

 

 

The final classifier is a linear combination of the classifiers from each stage of 

the process.  The condition of em>0.5 ensures that smaller weights, i.e. lower 
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log(1−−−−em/em), are attached to classifiers with larger number of misclassified 

observations.   

The underlying notion driving combined classifiers is that if the results are 

averaged (based on the weighting scheme), more accurate and stable models may be 

produced.  Research on combining classifiers in a single analysis has demonstrated 

that there are potentially very substantial gains in predictive accuracy.  The reduction 

in error rates for well-known data sets typically ranges from 5 to 40%; albeit, it is 

important to realise that improvements are not always guaranteed.  Moreover, when 

classifiers are combined, the final product is no longer visually appealing and 

comprehensible.   

Nevertheless, the algorithm may also be applied routinely to check if a single 

Bayesian classifier has produced the “best possible” predictive performance.  

However, one should note that the AdaBoost algorithm can be applied to any model 

and is not exclusively a complementary tool for Bayesian modelling.   

 

3.5.4 Receiver Operating Characteristic Curve 

The predictive accuracy of a model can be expressed quantitatively in terms of 

sensitivity and specificity. Sensitivity is the proportion of truly diseased patients 

identified by the predicting model, while specificity is the proportion of non-diseased 

patients correctly identified as non-diseased by the model.   

Apparently, these two measures are inversely related.  A graphical display of 

this relationship is called a Receiver Operating Characteristic (ROC) curve [147-148].  

Potting sensitivity against specificity provides a visual interpretation to the predictive 

accuracy of a model.  The model’s predictive accuracy is quantified by the area under 

the curve (AUC).  The higher the AUC the more accurate is the model’s prediction.  
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To compare the predictive accuracy of two or more models one compares the 

differences in AUCs.  A common practice is to generate the respective confidence 

intervals (C.I.) for the AUCs and declare a significant difference in the models’ 

predictive accuracy if the C.I.s do not overlap.  This is, however, a crude approach.  

One should take into account not only the numerical difference in AUCs and their 

standard errors, but also the correlation between ROC curves [149].  This is because 

the models are applied to the same data set.   

ROC has other uses in data analysis.  It is also useful for identifying the 

optimum cut-off, characterised by the highest possible sensitivity and specificity, of a 

screening index or a diagnostic test. 

 

3.5.5 Elicitation of Utilities  

To complete the formulation of a decision problem, the analyst must elicit the 

preferences and utilities from the decision-maker.  Utilities are the numerical ratings 

of the desirability of health states that reflect a patient’s preferences.   

The following suggests how a decision maker’s (patient) utility is assessed and 

measured systematically: 

 

 

� list the possible outcomes that could occur 

� rank the outcomes in order of decision maker’s preference 

� assign utility values to the boundary conditions (1: most preferred outcome, 0: 

least preferred) 

� create a scenario such that the decision maker is indifferent between the  

            boundary conditions (x0.5) 

� choose an appropriate utility function characterised by the risk tolerance 
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            parameter (ρ) 

� estimate ρ based on x0.5 

� generate utilities for all identified intermediate outcomes 

 

The exponential utility function is strongly recommended here as it fulfils the delta 

property: 

 

 

u(x) =  

ρ

−
−

ρ
−

−

−
LH

x

e1

e1
          

(3.55) 

 

 

where x is the condition, H and L the boundary conditions, and ρ the risk tolerance.  

There are existing tables for generating the required values for ρ.   

The alternative with the highest expected utility (EU) is chosen as the 

preferred decision.  See section 1.2 regarding the rationale of applying EU as the basis 

of decision making, despite the serious challenges posed by competing theories [8-12].  

Since the objective of this dissertation is about probability encoding, less emphasis is 

given to utility elicitation, which may actually pose a bigger challenge to decision 

analysts in many real-life applications.   

Relying on known utility to generate unknown utilities for all intermediate 

outcome states, the easy-to-use technique outlined above may be seen as a modified 

version of the full standard reference gamble approach [7], where patients are 

presented with a series of hypothetical scenarios.  It is also different from the time 

trade-off technique [7] where patients are asked to express their attitudes towards 

various lengths of time in ill health.  Both the time trade-off and the full standard 

reference gamble are not recommended in this dissertation because of their difficulty 
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in applications.  A number of hypothetical scenarios must be generated in order to 

elicit the patients’ utilities and this often adds unnecessary confusion to the patients 

and clinicians.  
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CHAPTER 4 

CASE STUDIES 

 

 

The following analyses utilised evidences scoured from case reports, medical 

textbooks, disease registries, audited pamphlets distributed by drug manufacturers, 

abstracts of scientific conference proceedings, peer-reviewed journal articles 

(randomised clinical trials, case-control studies, cohort studies, systematic reviews, 

etc.), government and health agency bulletins and other relevant published documents.   

The first 5 studies involved clinicians as the principal decision makers.  No 

patients were involved in decision making as the primary objectives were to i) 

identify the risk factors associated with the medical conditions of interest, ii) evaluate 

the comparative effectiveness of drugs and treatment procedures, iii) develop 

screening tools for early detection of diseases, iv) identify complications of certain 

diseases, and v) compare performance of predictive models, etc.   

The above-mentioned analyses are decision problems in the broad sense, but 

the results may then be applied as either prior evidence for future analyses or encoded 

as probabilities for the chance nodes in problems involving patients as the primary 

decision makers.  Making decisions about medical care is believed to be most 

effective when a clinician and a patient work together.  The optimum decision is made 

when the clinician’s experience, knowledge and access to evidence are combined with 

patient’s values, wishes and understanding of his problems.   

With this in mind, the remaining 5 case studies focussed on helping patients to 

deal with their health conditions. With their preferences and utilities elicited, the 
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Bayesian models were applied to generate probabilities for quantifying all 

uncertainties identified in the relevant decision trees or influence diagrams.  The prior 

evidences were either gathered from reviews of published information or elicited from 

domain experts. 

 The choice of the case studies is based on the current challenges faced by local 

EBM practitioners.  It is a well-known fact that more and more Singaporeans are 

suffering from depression, osteoporosis, colon cancer, dengue fever, strokes, obesity, 

heart diseases, renal failure and breast cancer.  These case studies are original 

research in their own right.  They were conducted not merely to illustrate the 

properties and features of the proposed Bayesian models.  They help to shed light on 

specific medical problems faced by EBM practitioners and the evidences may serve as 

the cornerstone for future medical guideline development. 

 In the Bayesian literature the terms “weak” or “strong” likelihood are 

commonly used to describe widely-spread or concentrated likelihood, respectively 

[69].  In the case when the observed evidences are pointing to a similar direction or 

supporting a particular hypothesis, the resultant likelihood is said to be “concentrated”.  

However, there is no objective measure of a likelihood’s “concentration”.  To 

preserve the vividness of such descriptions, the terms are retained in the following 

case studies.  But more commonly-used descriptions are also provided for readers 

who are not at ease with the vague terminology. 
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4.1 Evaluation of Antidepressants’ Tolerability  

4.1.1 Aim 

Depression is a common disorder that is becoming better understood as an illness that 

can be chronic, recurrent, and refractory to treatment [150].  Generally defined as a 

mood disorder that impairs normal functions, depression may be caused by many 

factors, including biochemical disorders.  The onset of depression may be affected by 

certain medications, hormones and the occurrence of medical illnesses.  Losing a 

loved one, financial concerns, work stress, or relationship problems may all contribute 

to depressive disorders.  One is also at risk if there is a family history of depression.   

 People with the condition typically have problems regulating certain brain 

chemicals called neurotransmitters.  By working within the brain to increase the levels 

of either noradrenaline, serotonin or both, antidepressants help to reduce the 

symptoms of anxiety and negative thoughts usually experienced by sufferers. 

However, they do not act immediately and the lifting of moods typically takes up to 2 

weeks or longer.  

There is a wide class of antidepressants available for treating all forms of 

depression regardless of cause.  The most common antidepressants are selective 

serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs).  Widely 

regarded as one of the most effective antidepressants, the latter had been the first-

choice medication for over 30 years.  TCAs work by preventing the uptake of 

norepinephrine and serotonin, thus building up the concentration of these transmitters 

and improving the communication between neurons.  However, there are a number of 

problems with TCAs as their effects in the brain are not restricted to alleviating 

depression.  They also interact with a number of other brain receptors, thus causing 

side-effects like dry mouth, drowsiness, dizziness, blurred vision, constipation, 
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urinary difficulties, tremor and tachycardia.  In addition, they tend to lower blood 

pressure and consequently cause a feeling of faintness.  Morbidity and mortality 

caused by TCA overdose are also widely reported [151-152].  As such, TCAs are 

usually prescribed in severe cases of depression.  

On the other hand, SSRIs work only on the serotonin system.  Introduced in 

the 1980s, SSRIs possess an improved side-effect profile over TCAs with their 

selective mode of action [153].  While retaining good clinical efficacy, they have few 

of the anticholinergic, antihistaminergic and cardiotoxic effects [154] and are 

probably safer in overdose than TCAs [155].  As a result, SSRIs are recognised to be 

better tolerated and more acceptable to patients [156-160]. However, there are other 

well-documented side-effects associated with the use of the drugs.  These include 

nausea, vomitting, diarrhoea, decreased appetite, fatigue, increased sweating, sleep 

disturbances and impotency [159].  Moreover, SSRIs may also interact with other 

drugs so extra care must be taken in prescription. 

Both TCAs and SSRIs achieve similar efficacy, with 60% to 80% of patients 

responding adequately [161-162].  However, their side-effect profiles vary 

substantially, so the choice of medication for treating depression depends primarily on 

patients’ tolerability. As such, the main objective of this case study was to conduct 

meta-analyses on the tolerability of SSRIs and TCAs.   The results of the proposed 

Bayesian hierarchical models (3.29-3.32) were compared with those of the 

conventional model.  

 

4.1.2 Selection of Published Studies 

There were two sets of analyses.  The first was concerned with primary-care 

patients’ premature discontinuation from treatments due to drug-related side-effects.  
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It is important to investigate patients’ tolerability in the primary care setting since the 

majority of depression cases are first seen and treated in general practice [163-166].  

Randomised controlled trials investigating the efficacy and tolerability of SSRIs 

(fluoxetine, fluvoxamine, paroxetine, sertraline and citalopram, etc.) against a TCA or 

an antidepressant with identical mechanism of action (amitriptyline, imipramine, 

dothiepin, clomipramine and lofepramine, etc.) in patients with depressive disorders 

were identified through MEDLINE and Cochrane Library search up to May 2004, 

previous meta-analyses [162, 167-172] and literature review.  The patients’ depressive 

disorders were assessed by means of the Research Diagnostic Criteria (RDC), 

Diagnostic Systems (DSM-III), Hamilton Rating Scale for Depression (HRSD), 

Clinical Global Impression Score (CGI), Clinical Anxiety Scale (CAS) and 

Montgomery-Asberg Depression Rating Score (MADRS), and so on.  No language 

restriction was imposed in the search.  Studies were excluded from analysis if there 

were insufficient information on study design, description of treatments and 

tolerability, source of patients, and so on.   

In the second analysis, the Bayesian model was compared with a reported 

result published in the Cochrane Database of Systematic Reviews [172].  This 

analysis serves to provide a more complete assessment of the comparative tolerability 

of the antidepressants in the general setting.  The published result was based on a 

search on the Cochrane Collaboration Depression, Anxiety and Neurosis Controlled 

Trials Registers (1977-1999), MEDLINE (1966-1999), EMBASE (1974-1999), 

specialist journals, previous systematic reviews, conference abstracts, government 

documents and reference lists of relevant papers [172].  

For the abovementioned analyses, the parameter of interest was the overall or 

combined odds ratio (OR) of premature withdrawal from treatments due to drug-
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related side effects.  The combined and study-specific ORs were computed such that a 

value above unity suggests that SSRIs were better tolerated than TCAs. To allow 

direct comparison with published results, the odds ratios were computed by Peto’s 

Observed-Expected (O-E) method [173].  In order to provide more insights into the 

issues, several priors reflecting different views of the comparative tolerability of the 

antidepressants were applied in the proposed Bayesian analyses. The data were 

entered into Stata 9.0 for analysis and all statistical tests were conducted at 5% level 

of significance. 

 

4.1.3 Discontinuation from Primary-Care Due to Side-Effects  

The data were extracted from 7 randomised double-blinded clinical trials [174-

180].  The trials, mostly conducted at multi-centres, involved a total of 2,524 patients 

(SSRIs: 1,386, TCAs: 1,138).  Information concerning drug treatments, inclusion 

criteria and basic demographics of the patients is depicted in Table 4.1.  Several 

studies, including those reported in a similar meta-analysis [170, 181], were omitted 

from analysis because of insufficient information.   In addition, 2 trials which 

recruited only elderly patients aged 65 years and above [165, 182] were also excluded.  

Three of the selected studies, notably those with large sample sizes, were in 

favour of SSRIs (Table 4.2 and Figure 4.1).  Combining all 7 studies, the conventional 

model [115-116, 183] produced an overall OR of 1.35 (95% C.I.: 1.06—1.73) (Table 

4.3), thus suggesting that SSRIs were better tolerated than the TCAs.  The 

conventional fixed-effect model was applied here because the assumption of 

homogeneity could not be discarded (p-value: 0.09). 
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Table 4.1: Selected clinical trials with primary-care patients 

 

Study 

Patient 

selection 

Antidepressants 

SSRI/TCA 

 

Duration 

Profile of 

patients 

Corne 1989 Met RDC; 

HAM-D≥17 
 

Fluoxetine/ 

dothiepin 

6 weeks 

 

Gender: 70% female 

Mean age: 41.7 

Stott 1993 MADRS≥16;  
CAS≥11 

 

Paroxetine/ 

amitriptyline 

8 weeks Gender: 66.5% female 

Mean age: 42.8 

Rosenberg 1994 HAMD≥14 
 

 

Citalopram/ 

imipramine 

6-22 weeks Gender: 70% female 

Age range: 19-65 

Doogan 1994 Met DSM-III-R; 

MADRS≥22; 
CGI≥4 

 

Sertraline/ 

dothiepin 

6 weeks Gender: 70.5% female 

Mean age: 47.1 

Moon 1996 Met DSM-III-R; 

MADRS≥18 
 

Paroxetine/ 

lofepramine 

6 weeks Gender: 71.3% female 

Mean age: 43.7 

Christiansen 

1996 
HAMD≥15 

 

 

Paroxetine/ 

amitriptyline 

8 weeks Age range: 18-65 

Ravindran 1997 MADRS≥20 
CAS≥11 

 

Paroxetine/ 

clomipramine 

12 weeks Gender: 73.5% female 

Mean age: 42.6 
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Table 4.2: Primary-care patients discontinued from treatments due to side-effects 

 SSRIs TCAs  

 

Study 

 

 

No/Total 

 

No/Total 

 

OR (95% C.I.) 

Corne 1989 

 

7/49 2/51 0.29 (0.07—1.12) 

Stott 1993 

 

35/243 49/262 1.36 (0.85—2.18) 

Rosenberg 1994 * 

 

43/380 16/92 1.74 (0.87—3.46) 

Doogan 1994 

 

5/83 2/96 0.35 (0.08—1.60) 

Moon 1996 

 

5/60 4/62 0.76 (0.20—2.94) 

Christiansen 1996 

 

9/71 9/73 0.97 (0.36—2.59) 

Ravindran 1997 

 

54/500 84/502 1.65 (1.15—2.36) 

Total 

 

158/1386 166/1138  

* Evaluated at 22 weeks 
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Figure 4.1: Graphical illustration of individual study results based on the conventional model 
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Table 4.3: Meta-analyses of the tolerability of SSRIs and TCAs in primary care 

 

 

Models 

Combined OR 

(95% Interval Estimate) 

Conventional Fixed–Effect Model 

 
1.35  (1.06—1.73) 

Bayesian Model in favour of SSRIs 

(Prior OR: 1.50) 

 

1.47  (1.21—1.77) 

Bayesian Model in favour of SSRIs 

(Prior OR: 1.25) 

 

1.23 (1.02—1.48) 

 

Bayesian Model with ‘Non-informative Indifferent’ Prior 

(Prior OR: 1.00) 

 

 

0.53 (0.11—2.52) 

Bayesian Model with ‘Non-informative’ Prior in favour of TCAs 

(Prior OR: 0.75) 

 

0.53 (0.11—2.52) 
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However, the result must be interpreted with care.  The combined OR was 

largely influenced by one trial that favoured SSRIs strongly [180].  Omitting this trial 

would reduce the combined OR to 1.15 (95% C.I.: 0.83—1.60), thus suggesting that 

SSRIs were not significantly better tolerated than TCAs. 

The Bayesian models were built next.  Recall that 4 parameters must be fixed 

for the prior distributions for θ (combined odds ratio) and τ (between-study precision).  

Different prior values for θ reflect the different beliefs of the comparative tolerability 

of SSRIs and TCAs.  To induce normality, the observed ORs were logarithmically 

transformed and the prior for θ refers to combined log OR.  The final results were 

reported as OR by performing the necessary back-transformation.   Next, the priors 

for τ were standardised as Gamma[c:0.01, d:0.01].  The choice of this distribution 

reflected the lack of prior information regarding between-study precision.  Also, the 

number of burn-ins was set a priori at 500 and the Markov chain would thereafter be 

run another 1,000 times before the final analyses were conducted.  

In the first attempt, the prior for θ was chosen as Normal[a:0.4055, b:100].  

This reflects a highly-concentrated normal distribution with the overall OR believed 

to be 1.50, i.e., the SSRIs were better tolerated that TCAs.  The selection of this prior 

was based on the general beliefs that SSRIs were associated with a significantly lower 

risk of toxicity [151].  The combined OR turned out to be 1.47 (Table 4.3).  Since the 

95% P.I. does not contain unity, SSRIs were interpreted to be better tolerated than 

TCAs. 

In the second attempt, suppose an expert reported that SSRIs were better 

tolerated that TCAs, so the prior combined OR was fixed at 1.25, i.e. 

Normal[a:0.2231, b:100].  The combined posterior OR turned out to be 1.23 (Table 

4.3).  This is somewhat lower than that reported in the previous analysis. 
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In the next exploratory Bayesian analysis, a prior suggesting that SSRIs and 

TCAs were identical in terms of their tolerability was fitted.  In this case, the 

“indifferent” prior for θ was chosen as Normal[a: 0, b: 0.000001].  Due to the low 

precision of 0.000001, this flat prior resembled that of a uniform distribution, thus 

suggesting that there was little prior information regarding θ.  As shown in Table 4.3, 

the combined OR turned out to be 0.53 and the associated 95% P.I. was 0.11—2.52.  

As a result, one may interpret that SSRIs were not significantly better tolerated than 

TCAs.  The fairly wide interval estimate was a result of the inclusion of 2 non-

informative priors. 

To further illustrate the properties of the proposed Bayesian model, a prior 

suggesting that TCAs were better tolerated than SSRIs was fixed next, i.e, Normal[a: -

0.2877, b: 0.000001].  This was a “non-informative” prior, with OR fixed at 0.75.  

The result was identical to the previous analyses based on “indifferent” prior (Table 

4.3). 

Although the above analyses are unable to encode the probabilities for 

decision analysis directly, they do provide useful evidence on the risk of suffering 

from side effects by taking SSRI, while in comparison with TCA.  For example, the 

Bayesian model favouring SSRI with a prior OR of 1.5, would deduce that a 

depressed patient is 1.47 times more likely to suffer from intolerable side-effects with 

SSRIs, when compared with his counterpart who is prescribed with TCAs. 

The above analyses based on Bayesian models shared a very important 

common feature.  The posteriors were dominated by their respective priors.  This was 

the result of a less-concentrated likelihood, in view of the small number of selected 

trials.  Moreover, Table 4.2 also shows that almost all individual ORs contain unity in 

their respective 95% C.I.s.  (based on conventional model). Consequently the 
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combined posterior ORs were largely similar to the prior ORs.  However, this point 

was not explicitly highlighted by the conventional model.  In this case, the Bayesian 

analysis revealed more details of the data.  It must also be emphasised that the above 

were conducted as sensitivity analysis.  One must decide which prior to be fixed for 

final reporting.   

In passing, note that the resultant posteriors based on the 4 different sets of 

priors were fairly normal and the Markov chains exhibited no obvious pattern of 

divergence after the burn-in values had been discarded (Figure 4.2).   

 

4.1.4 Discontinuation from Treatment in the General Setting 

It was not feasible to perform sub-group meta-analysis by drug class in the 

primary-care example as there were too few studies.  In the next example, SSRIs were 

compared with 3 tertiary TCAs (amitriptyline, imipramine and clomipramine) 

separately.   For all analyses, the priors for θ and τ were fixed as Normal[a:0.2231, 

b:100] and Gamma[c:0.01, d:0.01], respectively.  The choice of priors reflected the 

belief that SSRIs were better tolerated than TCAs [184-185].  In addition, both the 

number of burn-ins and updates were set a priori at 1,000.  

In the case where SSRIs were compared with amitriptyline, 31 studies were 

identified and selected.  The conventional fixed-effect model was chosen to compare 

with the Bayesian model because statistical test suggested no strong evidence of study 

heterogeneity (p-value: 0.79).   Both models showed favourable results for SSRIs but 

the Bayesian model’s combined OR was substantially lower (Table 4.4). 
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Figure 4.2: Iterative history of meta-analysis of the tolerability of  

SSRIs and TCAs in primary care 
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Table 4.4: Meta-analysis of the tolerability of SSRIs and TCAs in the general setting 

 

Models 

SSRIs vs. 

amitriptyline 

SSRIs vs. 

imipramine 

SSRIs vs. 

clomipramine 

Conventional Model OR: 1.57 

(1.27—1.95) 

 

OR: 1.48 * 

(1.09—2.01) 

OR: 1.68 

(1.24—2.26) 

Bayesian Model in favour of SSRIs 

(Prior OR: 1.25) 

OR: 1.34 

(1.11—1.61) 

 

OR: 1.26 

(1.05—1.53) 

OR: 1.29 

(1.09—1.53) 

    

* Based on random-effect model 
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A similar observation was made for comparison with imipramine where 29 

studies were included for analysis.  The Bayesian model’s posterior combined OR 

was almost identical to the prior OR. The random-effect model was chosen for 

conventional analysis because there was strong evidence of study heterogeneity (p-

value<0.01).  In passing, note that the lower ends of the 95% C.I.s and P.I.s for both 

conventional and Bayesian analyses were close to unity. 

Last but not least, there was again a large disparity in results when SSRIs were 

compared with clomipramine.  Dominated by the prior, the posterior combined OR of 

the Bayesian model reported a less favourable effect for SSRIs when compared with 

the fixed-effect conventional model.  With only 9 studies selected, there was no 

strong evidence of study heterogeneity according to the conventional analysis (p-

value: 0.18).  

The Markov chains exhibited no obvious pattern of divergence in the above-

mentioned Bayesian analyses (figures not shown). 

 

4.1.5 Discussion & Decision 

Replication of experimental results has long been a central feature of scientific 

inquiry, and it raises questions concerning how to combine the results obtained.  

Meta-analysis is often defined as the statistical analysis of a collection of results from 

individual studies for the purpose of integrating the findings [186].  It involves the 

combination of quantitative evidence from studies that have investigated a common 

question.   

The theoretical details of the conventional model for meta-analysis are well 

known [115-116, 118-119, 183, 187-188].  Following the rationale of conventional 

statistical theory, the parameter of interest is considered as an unknown but fixed 
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quantity that can be accurately estimated from data obtained from a proper literature 

search. Motivated by the current need for evidence-based medicine, the Bayesian 

model differs from the conventional approach in 2 aspects.  First, it allows prior 

information—in the form of expert opinion—to be incorporated into analysis.  

Though subjective in nature, such information, it is argued, may provide a more 

realistic approach in data analysis.  Many biomedical researchers may have 

accumulated a large amount of experience through practice and it is costly to ignore 

such information. Second, the analysis is conducted on the posterior distribution 

which summarises all the information, both prior- and data-based, that the analysts 

have about the unknown parameters.   

As described, the proposed Bayesian model allows observed ORs to vary 

around their individual study-specific ORs, which in turn belong to a distribution 

characterised by the combined OR.  It was preferred over a fixed-effect model for the 

above-mentioned analyses because there were differences in treatments (e.g., types of 

antidepressants, dose of drugs and treatment duration), types of patients (e.g., 

inclusion criteria, culture of drug compliance), experimental designs (e.g., with or 

without a placebo group) and type of statistical analyses applied.  Consequently, it is 

naïve to assume that study heterogeneity does not exist even with the support of 

formal statistical tests.  Moreover, such statistical tests may lack power in detecting 

the underlying differences among studies.    

This case study aimed to analyse the tolerability of SSRIs and TCAs in 

patients with depressive disorders.  As one of the most common illnesses that affect a 

large number of individuals in all countries, depression is a “whole-body” disorder 

affecting the nervous system, moods, thoughts and behaviour.  As both SSRIs and 
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TCAs are effective in treating depression, the choice of medication depends mainly 

on patients’ tolerability.   

 There was no convincing evidence from the primary care meta-analysis that 

SSRIs were better tolerated than TCAs.  Of the 7 clinical trials considered, only 1 

favoured SSRIs significantly.  The Bayesian models demonstrated that the resultant 

posteriors were strongly influenced by the priors fixed before analysis.  As such, the 

primary-care physicians must be vigilant when prescribing SSRIs (fluoxetine, 

praoxetine, citalopram and sertraline in particular). 

 In the general setting, however, the result was slightly more optimistic.  Based 

on current findings, amitriptyline, imipramine and clomipramine were not as safe as 

SSRIs.  This result conformed to the general beliefs.  However, as in the analysis with 

primary-care patients, the posteriors of the Bayesian analyses were strongly 

dominated by the priors. Consequently, the safety of antidepressant therapies should 

be monitored carefully as patients who suffer from depression may experience 

different tolerability profiles. 

The proposed Bayesian model (3.29-3.32) provides biomedical researchers an 

alternative approach for conducting meta-analysis.  For future research, one may 

consider newer antidepressants and different types of patients such as the elderly.   
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4.2 An Alterative Screening Tool for Osteoporosis 

4.2.1 Aim 

Osteoporosis, a systemic skeletal disease characterised by low bone mineral density 

(BMD), causes considerable morbidity and mortality.  Older persons with the 

condition are at much greater risk for developing hip fractures from accidents such as 

falls.  It is estimated that about 26% of the elderly suffering from osteoporotic hip 

fractures would not survive within a year after the injury [189]. 

This becomes a major concern for Asian countries where populations are 

greying rapidly.  It is projected that 50% of the world’s hip fractures will occur in the 

continent by end of year 2050 [190].  In view of the ageing demographic structure and 

rising osteoporotic hip fractures rate, Singapore is expected to experience substantial 

inflation in related health care costs [189, 191].  This poses a serious challenge to the 

nation. 

Due to a natural decline in bone density after menopause, the majority of 

osteoporotic fractures occur in older women.  To permit prevention and early 

intervention, it is therefore important to identify postmenopausal women at risk of 

developing osteoporosis.  However, mass screening using the dual x-ray 

absorptiometry (DXA)—widely regarded as the “gold standard” for diagnosing 

osteoporosis—is not feasible owing to its cost [192-193].  As such, it is useful to 

consider several well-cited indices [194-198] for identifying elderly subjects at risk of 

developing osteoporosis.  These indices aim to assess how the risk factors, such as old 

age, low body weight, low level of estrogen and history of rheumatoid arthritis, are 

associated with low BMD.   

Generally, these indices have moderate to high sensitivity but low specificity 

[199].  While widely applied in the Caucasian and Asian populations, most of the 
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indices were not validated in the Singapore context.  As such, this paper aims to 

compare the sensitivity and specificity of the indices [194-198] for identifying 

Chinese elderly women (aged 55 years and above) in Singapore at risk of osteoporosis. 

 

4.2.2 Data and Indices 

  One hundred and thirty-five free-living ambulant Chinese postmenopausal 

female subjects were recruited from a community in the eastern part of Singapore. 

Using housing type as a surrogate measure for socioeconomic status, the recruited 

subjects were representative of the socio-economic status of Singaporeans and had a 

wide range of body mass index (BMI). The sample size was determined based on 

estimation of the proportions of subjects in the different categories of BMI status 

(50% in the normal range of 18.5-22.9 kg/m
2
, 30% in the overweight category of ≥23 

kg/m
2 
and 20% in the underweight category of <18.5 kg/m

2
) [200-201]. Dropouts 

were replaced by matching the gender, housing type and BMI of subjects. Approved 

by the Medical Ethics Committee, Health Promotion Board (HPB), Republic of 

Singapore, the study took place in March 2003. 

  Upon given their informed consent to participate in the study, eligible subjects 

were invited to Changi General Hospital (CGH), Singapore, to complete a short 

screening questionnaire and BMD measurements. The subjects were interviewed by a 

trained interviewer on diet, physical activity, quality of life, smoking status and 

current medications. 

  BMD measurement of the femoral neck was performed by dual-energy x-ray 

absorptiometry (DXA) using a Hologic QDR 4500W densitometer (S/N 49088).  All 

DXA measurements were conducted by a qualified radiologist. Body weight was 

measured on a calibrated mechanical scale, and height was measured with a wall-



4. Case Studies 

 118 

mounted stadiometer, with subjects wearing light indoor clothing only (without shoes). 

Food intakes were also assessed using a validated interviewer-administered food 

frequency questionnaire (FFQ) [202]. 

The various indices considered in this study were Simple Calculated 

Osteoporosis Risk Estimation (SCORE), Osteoporosis Risk Assessment Instrument 

(ORAI), Age Bulk One or Never Estrogens (ABONE), Body Weight (WEIGHT) and 

Osteoporosis Self-Assessment Tool for Asians (OSTA) [194-198]. Table 4.5 shows 

the indices’ scoring systems and published results. 

SCORE, one of the first attempts to develop predictive rules for screening 

osteoporotic patients, was developed in an American cohort of 1,102 postmenopausal 

women of all ethnic background aged 45 years and above [194].  ORAI was 

developed and validated in the Canadian Multicentre Osteoporosis Study comprising 

926 non-institutionalised female subjects aged 45 years and above [195]. ABONE 

was developed with the data of 1,610 postmenopausal white women [196] and 

WEIGHT was based on 175 randomly-selected women (aged 28-74 years) in Sweden 

[197]. OSTA was developed with 860 postmenopausal Asian women in 8 countries 

(PR China, Taiwan, Hong Kong, Korea, Malaysia, Singapore, Thailand and the 

Philippines) [198].  It had been validated in various studies consisting of post-

menopausal Japanese, Korean and Hong Kong women [198, 203-204].   

The primary outcome considered in this case study was femoral neck BMD on 

the left region determined by DXA.  Based on the World Health Organisation (WHO) 

criteria [205], the subjects were classified as osteoporotic (BMD T-score≤-2.5) or 

non-osteoporotic (BMD T-score>-2.5).  

An OSTA-like index based on age and body weight was also constructed 

based on Bayesian logistic regression (3.16).  This helps to facilitate comparison 
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between Bayesian and conventional analysis.  A concentrated prior Beta[5, 10] was 

adopted after detailed discussion among the investigators, with expert opinion given 

by a consultant chemist specialising in the subject matter.  The choice of beta prior 

reflected the strong belief that about 30% of the aged subjects were osteoporotic. 

With the published cut-off points (Table 4.5), the sensitivity and specificity for 

the indices were computed in the study sample of 135 subjects. The Receiver 

Operating Characteristic (ROC) curves [147-148] were then generated to determine 

empirically the indices’ optimal cut-off points, sensitivity and specificity in the same 

study sample.  The optimal cut-off of an index was identified at the point nearest to 

the top left-hand corner of the ROC curve [206].  The indices were compared by 

means of area under the curves (AUC) at 1% level of significance, taking into account 

the numerical difference in AUCs and their respective standard errors, which in turn 

depend on the correlation between ROC curves [149].  Other things being equal, a 

low correlation will result in a large standard error, thus suggesting the AUC 

difference to be non-significant. 

 

4.2.3 Comparison of Indices 

Interrupted by the SARS outbreak, the study was concluded in August 2003.  

Table 4.6 summarises the characteristics of subjects included in the study.  The mean 

age of the postmenopausal women was about 68 years. Overall, the proportion of 

subjects found to be osteoporotic based on femoral neck BMD T-scores of ≤-2.5 was 

about 24%. The mean body weight and mean BMI were 58.8 kg and 25.4 kg/m
2
, 

respectively.  

The sensitivity and specificity based on the published cut-off points of the 

indices (with femoral neck BMD) are presented in Table 4.7. SCORE, ORAI and 
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ABONE attained the maximum sensitivity of 100%, but their ability to correctly 

identify non-osteoporotic subjects was far from satisfactory.  The body weight 

(WEIGHT) criterion also had a high sensitivity of 97.0% and a low specificity of 

18.6%.  OSTA had the same sensitivity as WEIGHT, but its specificity was highest 

among all 5 indices (43.1%).    

 The results based on generated ROC curves are presented in Table 4.8.  For 

OSTA and WEIGHT, lower cut-off values represent higher risk of osteoporosis (low 

BMD).  On the other hand, higher values for the other indices, namely ORAI, SCORE 

and ABONE, indicate higher risk of developing osteoporosis.  

OSTA had the highest discriminatory power, with an estimated AUC of 0.82 

(Figure 4.3).  At the cut-off point of -2, OSTA achieved a sensitivity and specificity of 

90.9% and 58.8%, respectively (Table 4.8).  In passing, note that the identified 

optimal cut-off was lower than the published cut-off point of -1 (Table 4.5).  

With Bayesian augmentation, OSTA achieved a marginally higher specificity 

at 62.8% (Table 4.8), while its AUC and sensitivity remained almost unchanged.  One 

possible explanation is that the collected data were fairly consistent.  Unlike the 

original OSTA, the Bayesian-augmented index may be used in the clinical context for 

advising patients with respect to their probability of contracting osteoporosis.  This is 

crucial for making decisions regarding patients’ need to attend special treatment.   

For example, an 80 year-old female weighing 40 kg is deemed to be at risk as 

she has a 36% chance of contacting osteoporosis (Table 4.9). Other probabilities may 

be encoded with different combinations of age and body weight.  The model is found 

to have provided a satisfactory fit to the collected data.  No influential outliers were 

detected that might affect the fit.  Sensitivity analysis with “non-informative” prior, 

say Beta[1, 1], suggested minor changes to the model. 
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The next index with the largest estimated AUC was SCORE, with ≥8 

identified as the optimum cut-off point (sensitivity: 93.9%; specificity: 60.8%). This 

optimal cut-off point, determined empirically from the analysis, was higher than the 

published result (Table 4.5). 

The body weight criterion, with an estimated AUC of 0.78, identified 54.0 kg 

as the optimum cut-off point. As such, the criterion suggests that subjects under 54.0 

kg were at risk. While its sensitivity was about 70%, the criterion managed to identify 

77.5% of the non-osteoporotic subjects correctly. 

With an estimated AUC of 0.76, ORAI correctly identified about 76% of the 

osteoporotic subjects at an optimum cut-off point of ≥20. Its specificity was about 

67%.   

The AUC of ABONE was 0.70. In terms of sensitivity, ABONE correctly 

identified about 82% of the osteoporotic subjects at cut-off point 3 (possible range: 

1—3).  However, its specificity of 55.9% was lowest among the indices considered in 

this study. 

 There was no significant difference in AUCs among OSTA, SCORE, ORAI, 

ABONE and WEIGHT in the abovementioned analysis.   Although the numerical 

difference in AUCs between OSTA and ABONE was more than 10% where femoral 

neck BMD was considered (Table 4.8), the result was not significant in view of the 

low correlation between the two ROC curves [149]. 
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Table 4.5: Indices for identifying osteoporotic subjects 
  

Index Published 

Cut-Off Point/ Results 

Scoring System 

Simple Calculated 

Osteoporosis Risk 

Estimation (SCORE) 

Score≥6 

 

Sensitivity: 89.0% 

 

Specificity: 50.0% 

Race: 5 if not black 

Rheumatoid arthritis: 4 if applicable 

History of minimal trauma fracture after age 45 

years: 4 for each fracture of the wrist *, 

hip or ribs (maximum points=12 points) 

Age: 3 times first digit of age in years 

Estrogen therapy: 1 if never used 

Body weight: - 1 times weight in pounds (lb) 

divided by 10 and truncated to an integer 

 

Osteoporosis Risk 

Assessment Instrument 

(ORAI) 

Score≥9 

 

Sensitivity: 97.0% 

 

Specificity: 41.3% 

Age: 15 if ≥ 75 years 

                  9 if 65 – 74 years 

                  5 if 55 – 64 years 

Body weight: 9 if < 60 kg 

                    3 if < 60.0 – 69.9 kg            

Estrogen use: 2 if not currently taking estrogen 

 

Age, Bulk, One or 

Never Estrogens 

(ABONE) 

Score≥2 

 

Sensitivity and 

Specificity not published 

Age: 1 if > 65 years 

Body weight: 1 if < 63.5 kg 

Estrogen use: 1 if never used oral 

contraceptives or estrogen therapy for at 

least 6 months 

 

Body Weight Criteron 

(WEIGHT) 

≤70 kg 

 

Sensitivity: 94.0% 

 

Specificity: 36.0% 

 

Body weight ≤ 70 kg 

Osteoporosis Self-

Assessment Tool for 

Asians (OSTA)  

Score≤ –1 

 

Sensitivity: 91.0% 

 

Specificity: 45.0% 

 

0.2 × [body weight (kg) – age (years)] 
 

* Forearm/wrist was included as a history of wrist fracture 
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Table 4.6: Characteristics of study sample 

 

Variables Mean (sd) * Range 

Age (years)   

             

68.4 (5.5) 

 

56.9 — 80.1 

Body weight (kg)   

     

58.8 (10.1) 

 

35.5 — 86.5 

Height (m) 

     

1.52 (0.05) 

 

1.40 — 1.64 

Body Mass Index (kg/m²) 

 

25.4 (3.9) 15.9 — 35.5 

Femoral Neck BMD (g/cm²) 

 

    Classified Status of Osteoporosis (%) † 
          Non-Osteoporotic 

          Osteoporotic 

 

-1.70 (1.01) 

 

 

102 (75.6%) 

33 (24.4%) 

-4.5 — 1.9 

 

 

— 

Current Smoking Status (%) 

     Non-Smokers 

     Smokers 

 

 

128 (94.8%) 

7 (5.2%) 

 

— 

Estrogen Use (%) 

     No 

     Yes 

 

133 (98.5%) 

2 (1.5%) 

 

— 

   

* Unless otherwise specified 

† Based on WHO guideline 
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Table 4.7: Sensitivity and specificity based on published cut-off Points for identifying 

osteoporotic subjects with femoral neck BMD T-score≤-2.5 

 
Index Published 

Cut-Off Point 

Sensitivity Specificity 

Simple Calculated Osteoporosis Risk 

Estimation (SCORE) 

 

Score≥6 

 

100.0% 

 

30.4% 

 

Osteoporosis Risk Assessment 

Instrument (ORAI) 

 

Score≥9 100.0% 

 

9.8% 

 

Age, Bulk, One or Never Estrogens 

(ABONE) 

 

Score≥2 100.0% 

 

16.7% 

 

Body Weight Criterion (WEIGHT) 

 

≤70kg 97.0% 

 

18.6% 

 

Osteoporosis Self-Assessment Tool 

for Asians (OSTA) 

 

Score≤ –1 97.0% 43.1% 
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Table 4.8: Empirically-determined cut-off points, sensitivity and specificity based on ROC 

curves for identifying osteoporotic subjects with femoral neck BMD≤-2.5 

 
Index Range Suggested 

Cut-Off Point 

AUROC 

(95% C.I.) 

Simple Calculated Osteoporosis 

Risk Estimation (SCORE) 

1—15 Score≥8 
Sensitivity: 93.9% 

Specificity: 60.8% 

 

0.80 

(0.72—0.87) 

Osteoporosis Risk Assessment 

Instrument (ORAI) 

7—26 Score≥20 
Sensitivity: 75.8% 

Specificity: 66.7% 

 

0.76 

(0.68—0.84) 

Age, Bulk, One or Never 

Estrogens (ABONE) 

1—3 Score=3 

Sensitivity: 81.8% 

Specificity: 55.9% 

 

0.70 

(0.63—0.78) 

Body Weight Criterion 

(WEIGHT) 

35.5—86.5 kg Body weight<54.0 kg 

Sensitivity: 69.7% 

Specificity: 77.5% 

 

0.78 

(0.69—0.87) 

Osteoporosis Self-Assessment 

Tool for Asians (OSTA) 

-7—3 Score≤-2 

Sensitivity: 90.9% 

Specificity: 58.8% 

 

0.82 

(0.75—0.90) 

Bayesian-Augmented 

Osteoporosis Self-Assessment 

Tool for Asians (OSTA) 

-0.9— -0.6 Score≤-0.7 

Sensitivity: 90.9% 

Specificity: 62.8% 

 

0.82 

(0.75—0.89) 
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Table 4.9: Bayesian logit analysis of osteoporosis (based on OSTA findings) 

 Coefficient  95% P.I. 

Age (years) 

 
5.21 × 10-3 1.99 × 10-3—8.44 × 10-3 

Body weight (kg) 

 
-4.36 × 10-3 -6.18 × 10-3— -2.55 × 10-3 

Intercept 

 

-0.82 -1.08— -0.56 
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a. Simple Calculated Osteoporosis Risk 

Estimation(SCORE)

Area under ROC curve = 0.7960
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e. Body Weight Criterion (WEIGHT) 

 

Area under ROC curve = 0.7840
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b. Osteoporosis Risk Assessment 

Instrument (ORAI) 

Area under ROC curve = 0.7589
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d. Osteoporosis Self-Assessment Tool for 

Asians (OSTA) 

 

Area under ROC curve = 0.8219
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c. Age, Bulk, One or Never Estrogens      

(ABONE)

Area under ROC curve = 0.7037
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d. Osteoporosis Self-Assessment Tool for 

Asians (OSTA) with Bayesian augmentation 
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Figure 4.3: ROC curves based on femoral neck BMD≤-2.5 
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4.2.4 Discussion 

Simple risk assessment tools provide a quick and inexpensive way for 

identifying persons at risk of osteoporosis and hip fractures.  Such indices are 

extremely useful in communities where access to BMD measurement is limited and 

costly. 

This empirical study showed that the various indices considered were useful in 

identifying postmenopausal elderly Chinese females with osteoporosis.  Based on 

ROC analysis with femoral neck BMD, the sensitivity of the indices was above 69% 

(Table 4.8).  A high sensitivity is essential as it provides reliable evidence for 

clinicians to start early treatment for patients at risk of osteoporosis.  All indices 

yielded a specificity of no less than 55% (Table 4.8).   

Numerically, OSTA yielded the highest AUC at 0.82, with a sensitivity and 

specificity of 91% and 59%, respectively (Table 4.8).  While its AUC was not 

significantly higher than SCORE, OSTA is a more convenient tool in the sense that 

only age and body weight are required in computation.  This is a desirable feature of 

OSTA as other indices require more detailed information such as the use of estrogen 

and history of rheumatoid arthritis.  While more complicated than WEIGHT, OSTA 

yielded a higher AUC and sensitivity.  

There was no significant difference in AUCs among OSTA, SCORE, ORAI, 

ABONE and WEIGHT.  This could be partly due to the limited sample size [200].  

Moreover, the correlations between ROC curves were generally low.  It is also not 

clinically significant in detecting a less than 10% difference in AUCs (Table 4.8). 

It is worthwhile to note that the original published cut-off of OSTA was ≤-1, 

based on femoral neck BMD of a cohort of 860 women in 8 Asian countries (Table 

4.5).  On the other hand, this study suggests a lower cut-off at -2 (Table 4.8).  The 
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difference in cut-off points may be explained by demographic differences in the 

samples.  The cohort in the original OSTA study included younger women (reported 

age range: 45–88 years) while this study only considered postmenopausal women 

aged 55 years and above.  This highlights that OSTA’s optimal cut-off point may vary 

with different age groups.  Moreover, the original OSTA study used sensitivity to 

select the optimum cut-off while this study adopted the conventional approach by 

giving equal attention to both sensitivity and specificity.   

As such, further studies may be carried out to determine how OSTA perform 

in different age groups (e.g., 55-69 years, 70-80 years and ≥80 years) among the 

postmenopausal women. In addition, subjects from other ethnic groups may also be 

included in future studies.  With diversified demographic characteristics in subjects 

and a larger sample, a more conclusive answer to the index’s generalisability and 

applicability may be derived. 

 

4.2.5 Decisions 

This empirical study showed that OSTA is an effective index for identifying 

postmenopausal Chinese women at risk with osteoporosis.  That is, OSTA has a high 

discriminatory power characterised by high sensitivity and specificity.  It is therefore 

applicable in the clinical context.  Further work may be carried out to evaluate its 

performance in different age range and other ethnic groups in Singapore.  The 

Bayesian logit model may also be applied in the development of new indices, which 

may involve more variables such as the use of estrogen therapy and past history of 

fracture. 
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4.3 Sulindac as an Effective Treatment for Colonic Polyps  

4.3.1 Aim 

The colon is the part of the digestive system where the waste material is stored.  

Tumors of the colon are growths arising from the inner wall of the large intestine. 

Benign tumors (polyps) do not invade nearby tissues or spread to other parts of the 

body and can be easily removed from colonoscopy.  However, polyps can become 

malignant if not removed from the intestine.  It is believed that most cancers of the 

large intestine are developed from polyps [207-209].   

Polyps vary considerably in size; the larger the polyp the greater the risk it 

becomes cancerous.  They usually do not cause symptoms, but when they do, the 

most common is bleeding from the rectum.  A large polyp may cause abdominal pain 

or obstruction.  Adenomatous polyps, which consist primarily of glandular cells inside 

the large intestine, are likely to become malignant.  A family history of polyps 

increases the risk of colon cancer and the term “familial polyposis” refers to the 

condition where 100 or more polyps develop through the large intestine during 

childhood or adolescent.  Caused by a germ-line mutation in the adenomatous 

polyposis coli (APC) gene, familial adenomatous polyposis (FAP) is therefore a 

predisposition syndrome characterised by the formation of a large number of pre-

cancerous colonic polyps.   In nearly all untreated people, the polyps eventually 

develop into colon cancer in their middle age. 

Colon cancer is common among Singaporeans aged 50 years and above, as 

over 1,000 incident cases are diagnosed every year.  As such, persons of this age 

group are constantly reminded to screen for the disease.  As mentioned before, 

persons with a family history of colon cancer have a higher risk of developing the 

cancer themselves.  Smoking, over-eating, physical inactivity and insufficient calcium 
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and fiber intake diet are other prominent risk factors.  Exposure to air and water 

pollution, particularly to industrial cancer-causing substances (carcinogens), also play 

a role.  Although it is a common cancer among developed countries, there is no 

proven cure for the disease.  Shrouded with uncertainties, the best advice is to identify 

the cancer early and have it removed before it begins to spread in the body.  As a 

result, early treatment of polyps is helpful. 

This case study aims at reviewing the results of a well-known randomised, 

double-blind, placebo-controlled trial testing whether or not sulindac, a non-steroid 

anti-inflammatory (NSAID) agent, could reduce the size of colonic polyps in patients 

with FAP [210].  The mechanism by which sulindac causes polyp regression is 

unknown [211]. 

Essentially, this case study attempts to re-analyse the published trial data by 

combining with other available evidences. This may shed light on the effectiveness of 

sulindac based on the Bayesian perspective.   

 

4.3.2 Data 

Altogether, 22 patients were randomised to receive sulindac (150 mg orally 

twice daily for 9 months) or placebo in this trial.  There were 13 (59.1%) male 

subjects in the sample.  With an average age of 24.1 (range: 13—50 years), the 

sample contained an equal number of subjects with and without sulindac. The average 

baseline poly size of the sample was 3.29 mm (range: 1.7—5.5 mm).  This was 

reduced to 2.51 mm (range: 0.4-4.4 mm) after 12 months.  The complete listing of 

data can be found in reference [210].  In the following analysis, only the 12-month 

data were considered and the primary end-point was polyp size (mm).  Baseline polyp 

size was included as one of the predictors in the analysis.  
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 To ascertain whether sulindac was effective in reducing the size of polyps, the 

result from a Bayesian linear relational model (3.42-3.44) was compared with that of 

the conventional regression model [91, 206].  Analysed with Stata 9.0, all statistical 

analyses were conducted at 5% level of significance. 

 

4.3.3 Effectiveness of Sulindac 

The conventional model shows that sulindac treatment was effective in 

reducing the polyp size at 12 months (see Table 4.10).   The average polyp size for 

patients receiving sulindac was about 1.3 mm lower than those receiving placebo, 

after adjusting for the baseline measurements.  The analysis was based on 19 

observations (sulindac: 9; placebo: 10) as there were no data recorded for 3 patients at 

12 months.    

However, there are mixed findings from other studies [207-209, 211-212].  To 

be conservative, consider a fairly precise “sceptical” prior ββββ0=[0, 0, 0]' with ΣΣΣΣ0:= 

diagonal3×3(10
-1
) for the following Bayesian analysis.  This prior suggests that 

sulindac is not effective in reducing polyp size.  Moreover, baseline polyp size was 

also not associated with the subsequent measurements at 12 months.  The inverse 

gamma distribution for σ2 was fixed as Inverse Gaussian[3, 3].  As shown in Table 

4.10, the posterior coefficients are closer to the priors, with slightly smaller standard 

errors, and consequently narrow 95% P.I.s.   The Bayesian model shows that there 

could be no sufficient evidence suggesting that sulindac is effective in reducing polyp 

size for patients with FAP.  The drug may not have the colon cancer prevention 

properties once hoped for. 
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Table 4.10: Linear regression analyses on 12-month polyp size 

 Conventional 

Model 

Coefficient 

 

 

95% C.I. 

Bayesian 

Model 

Coefficient 

 

 

95% P.I. 

     

Baseline polyp size (mm) 

 

0.21 -0.38—0.80 0.60 0.20—1.00 * 

Treatment 

     0: Placebo 

     1: Sulindac 

 

 

— 

-1.29 * 

 

— 

-2.55— -0.03 

 

— 

-0.28 

 

— 

-1.29—0.73 

Intercept 

 

2.42 * 0.24—4.60 0.43 -0.71—1.57 

* Statistically significant at 5%  
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The residuals of the Bayesian model were fairly symmetrical.  There was no 

evidence of violation of model assumptions such as heteroscedasticty.  No influential 

outliers were identified (Figure 4.4a).   

 

4.3.4 Probability Encoding 

The Bayesian model may be used for predicting the prognosis of patients with 

or without sulindac.  For example, a patient with a baseline polyp size of 2 mm is 

expected to reduce to 1.3 mm after 12 months on sulindac.  However, the expected 

size of polyp is expected to reduce to only 1.6 mm if he were on placebo. 

With these expected values and assuming the underlying normal distribution is 

valid, one is able to develop a prototype decision model (Figure 4.4b).  For the above-

mentioned patient with a baseline polyp size of 2 mm, the probability of reducing the 

polyp size with sulindac at 12 months is 0.71.  This also imply that his condition 

deteriorates with a probability of 0.29.  On the other hand, if the patient decides not to 

have sulindac, his probability of a better prognosis is 0.62.   

Based on expert testimony, the probability of eventual development of colon 

cancer is assessed to be 0.5 should the patient’s condition fail to improve after 12 

months (Figure 4.4b).  By inspection, it is obvious that a rational patient should 

choose sulindac for treatment even without eliciting his utilities. 

 

4.3.5 Recommendations 

However, one must be reminded that this is an incomplete representation of 

the relevant decision analysis as the tree diagram should also include other decision 

and chance nodes like colonscopy procedure, drug safety, future complications or 

side-effects, and possibly the outcomes of surgery, chemotherapy and radiotherapy 
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should colon cancer develops.  Besides taking NSAIDs, polyps may be removed with 

colonoscopy procedure using a cutting instrument or an electrified wire loop.  If the 

polyps cannot be removed during colonoscopy, abdominal surgery may be 

recommended.   

If new polyps appear rapidly the rectum must also be removed.  A patient may 

suffer from much inconvenience in daily life as an opening is created through the 

abdominal wall from the small intestine.  This procedure is called ileostomy.  Body 

wastes are eliminated through the ileostomy into a disposable bag.   

Surgery is the only recommended treatment of colon cancer.  Should the 

cancerous cells divide rapidly and spread beyond the colon, chemotherapy or 

radiotherapy may be applied after surgery.  The former involves the use of drugs to 

kill the cancerous cells, while the latter applies radiation on the original site of the 

cancer in an attempt to control the disease.  

Unfortunately, there is a lacuna of published evidences in the above-

mentioned treatment and surgical procedures.  The results obtained from this analysis 

may therefore serve as prior evidence for future studies. 
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a. Residual plot 
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b. Prototype decision tree 

 

 
 

 

Figure 4.4: Residual plot and decision tree based on Bayesian linear relational model 

 

 

 

Sulindac 
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Polyp size reduced 0.71 

Polyp size fail to reduce 0.29 

Polyp size fail to reduce 0.38 

Polyp size reduced 0.62 

Cancer 0.05 

No cancer 0.95 

Cancer 0.5 

No cancer 0.5 
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Cancer 0.5 

No cancer 0.95 
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4.4 Ocular Complications of Dengue Fever 

4.4.1 Aim 

Dengue fever (DF) is a viral infection caused by Flavivirus in humans and the mode 

of transmission is via the bite of an infected Aedes aegypti mosquito [213].  Accounts 

for worldwide cases of illness in excess of 100 million per year, the infection is 

common in the tropics, subtropics and warm temperate regions [214].  With a 

relatively high average temperature at around 28°C, Singapore is a potential breeding 

ground for DF and year-round transmission is often observed.  A surge in cases has 

been observed in 1992, 1998 and 2004, which recorded an alarming annual incidence 

of 9,459 cases [215].  

DF is characterised clinically by abrupt onset of fever after 2 to 7 days of 

incubation.  Patients often suffer from  severe malaise, headache, arthralgia, cough, 

sore throat, nausea, vomitting, anorexia and altered taste sensation. The disease is 

more severe in adults who usually suffer from high fever, headache and intolerable 

body aches.  It is so painful that DF is often described as “breakbone fever”.  A 

transient macular rash may be seen on day 1 or 2 of illness, followed by a second 

maculopapular rash on day 3 to 6 of illness which typically involves the trunks, limbs 

and face but sparing the palms and soles. Blood dyscrasias may include 

thrombocytopenia and neutropenia (leukopenia).  DF is usually self-limiting, but 

patients with the severe form (commonly known as dengue hemorrhagic fever or 

dengue shock syndrome) may present with bleeding and shock.    

Recently, there has been increasing reports of dengue-related ocular 

complications in the literature [216-228]. Many of the reported cases had visual 

symptoms either in the form of blurring of vision or scotomas, which could represent 

one spectrum of the disease in which the ophthalmic complications were significant 
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enough to cause visual symptoms. However, there were some cases who presented 

with no visual symptoms.  Aimed at detecting the incidence of dengue related ocular 

complication, the following analysis involved patients who were diagnosed and 

admitted to the Communicable Disease Centre, Republic of Singapore, with DF from 

late September 2005 to early January 2006.   

 

4.4.2 Methods 

This was a prospective cohort study. The diagnosis of DF was based on a 

combination of clinical findings correlated to positive results from dengue serology 

(dengue immunoglobulin IgM and IgG sero-conversion), polymerase chain reaction 

(PCR) or both. Patients were recruited to the study at day 6 to 8 of illness. This timing 

was chosen because in several of the previous case series it was found that the onset 

of visual symptoms and detection of ocular complications occurred around 7 days 

from the onset of DF [217-219, 224, 228].  

All patients were asked to describe, with the aid of an Amsler grid, any visual 

symptoms experienced, whether they were scotoma, metamorphopsia or any other 

conditions. This was followed by fundus photography using a Zeiss FF450 (Carl Zeiss 

Inc, Germany) fundus camera with a Kodak DCS620 (Kodak Inc, USA) digital back 

to obtain 50° field image per eye. The images taken were reviewed by an 

ophthalmologist on the same day. Patients with abnormal fundal photos were 

reviewed by an ophthalmologist the following day who took detailed history and 

performed dilated fundal examination using slit lamp biomicroscopy. In order to 

eliminate unnecessary confounding factors from the analysis, patients with pre-

existing ocular problems were excluded. Patients with both abnormal fundus 

photography and fundal biomicroscopy were considered as having ocular 
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complication. Further clinical investigation and management were made on a case by 

case basis.  

To determine if the identified factors (age, vasculitis, and visual symptoms, 

etc.) were associated with ocular complications, Bayesian logistic regression (3.16) 

was applied.  To assess the model’s out-sample predictive ability, the original data set 

was randomly split into two sub-samples.  Based on the training sub-sample with 80 

observations, an auxiliary Bayesian logit model was built.  It was applied to generate 

the probabilities of contracting ocular complications and the results were compared 

with the true status in the testing sub-sample.  To quantify its predictability, a ROC 

curve [147-148] was generated.  Analysed with Stata 9.0 and R 2.4.1, all statistical 

tests were conducted at 5% level of significance. 

 

4.4.3 Results 

A total of 131 patients admitted to hospitals during the study period for management 

of fever with clinical suspicion of DF were recruited into the cohort study. Of these, 7 

were later found to be negative for dengue serology and were subsequently excluded 

from analysis.  

Of the remaining 124 patients with DF confirmed by clinical symptoms and 

positive results from dengue serology, PCR or both, 22 (17.7%) reported an abnormal 

fundus photography. Of these, 12 (9.7%) were found to have retinal abnormalities on 

dilated fundal examination using fundus biomicroscopy. The discrepancy between the 

number of patients with abnormal fundus photography and abnormal fundal 

biomicroscopy examination was partly due to photographic artefacts.  

The mean age of the recruited patients was 32 years (s.d.: 9.37; range 16-62) 

and the majority were males (76.2%). Twenty-four patients dropped out of the study 
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either before having fundus photography or fundal examination, for reasons including 

not feeling well enough to undergo the examination or that they were discharged from 

the hospitals before the examination was conducted.  

Of the 100 patients who completed the study, 6 had bilateral retinal 

abnormalities at the time of examination, while 6 were presented with unilateral 

abnormalities. It was also observed that some patients presented with more than 1 

type of retinal abnormality.  As for the types of retinal abnormalities found, 9 had 

retinal haemorrhage, 5 had cotton wool spots, 2 had vascular sheathing, 1 had macular 

oedema and 1 had optic disc haemorrhage.  Four patients reported visual symptoms 

on direct questioning and testing with the Amsler grid. The symptoms included 

blurring of vision (2), scotoma (1) and metamorphopsia (1). Of these 4 patients, 2 

were confirmed to suffer from ocular complications.  

There was no directly relevant prior evidence for analysing the data with 

proposed the Bayesian analysis, although the decision-maker and analysts believed 

that the complication rate could be around 10%.  This was based on case series 

reported prior to the study.  As such, the model utilised Beta[1, 9] as the prior 

distribution.   

DF patients with visual symptoms were found to be likely to develop ocular 

complications when compared with those who were asymptomatic. However, the 

result was not statistically significant (95% P.I.: -0.02—0.41).  Age was also not 

significantly associated with the occurrence of complications (95% P.I.: -2.87×10-3 — 

8.22×10-3).  The results are depicted in Table 4.11.  As there were only 2 patients with 

vasculitis, a disorder developed from inflammation of the blood vessels, the predictor 

was omitted from analysis. 
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Therefore, a 40 year-old DF patient presented with visual symptom would 

have a 12% chance of developing ocular complications based on the Bayesian logit 

model (Table 4.11).  The model was found to be satisfactory, based on sensitivity 

analysis.   Unfortunately, its out-sample predictive ability was far from excellent as 

the area under the ROC curve (AUC) was 0.53.    

 

4.4.4 Discussion 

There is an increasing awareness of the ocular complications associated with 

DF in Singapore [216-218, 229]. Previous data reported in the indexed medical 

literature have been mainly limited to case reports and case series.  To the best of the 

analysts’ knowledge, there has not been any reported data on the incidence of ocular 

complication in DF.  

In this study, the incidence of ocular complications associated with DF was 

found to be around 10%. Bleeding tendency as a result of thrombocytopenia in DF 

may lead to retinal and disc hemorrhages, and the onset of ocular complications was 

closely correlated to the nadir of thrombocytopenia [217-218]. However, some of the 

other ocular complications observed like vascular sheathing and macular oedema 

could point to an inflammatory component of the complication. It has been suggested 

that the pathogenesis of DF could involve immune clearance by way of induction of 

cross-reactive T-cell memory, T-cell proliferation and recognition of dengue viral 

antigens on infected monocytes by sensitized CD4+CD8- and CD4-CD8+ cytotoxic T 

cells, which result in the release of cytokines with vasoactive and procoagulant 

properties [230-231]. However, the exact pathogenesis of ocular complications of DF 

is not clear and is beyond the scope of the present study.  
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The results of this study need to be interpreted with extra care because of 

several limitations. The selection of a cohort group of an inpatient population might 

have reflected one spectrum of the diseased population. Also, the use of fundal 

photography allowed only a limited view of the fundus and abnormalities in the 

peripheral retinal could be missed. Furthermore, the 2-dimensional images obtained 

by fundus photography might not be able to detect subtle changes like macular 

oedema. Finally, ocular complications like anterior uveitis, which has been previously 

described in dengue-related ocular complication would not have been easily detected. 

Nevertheless, the study could serve as a baseline for comparison with further studies.  

 

4.4.5 Decisions 

Healthcare workers dealing with DF patients need to be aware of the ocular 

manifestations of the disease, even in those who reported no visual complaints. There 

is an urgent need to further the understanding of the epidemiology and 

pathophysiology of such ocular complications.  
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Table 4.11: Bayesian logit analysis of ocular complications of dengue fever 

  

Coefficient  

 

95% P.I. 

Age (years) 

 
2.68 × 10-3 -2.87×10-3 — 8.22×10-3 

Visual Symptoms 

      0: Without 

      1: With 

 

 

Reference 

0.19 

 

— 

-0.02
 
— 0.41 

Intercept 

 

-2.30 -2.49 — -2.12 
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4.5 Predicting Mortality after Intracerebral Haemorrhage 

4.5.1 Aim 

Stroke is the third leading cause of deaths in Singapore [232].  Also known as brain 

attack, stroke is a sudden interruption in the blood supply of the brain. Most strokes 

are caused by an abrupt blockage of arteries leading to the brain.  However, 

intracerebral haemorrhage (ICH) occurs when a diseased blood vessel within the brain 

bursts, thus allowing blood to leak inside the brain.  The sudden build-up in blood 

pressure within the brain can cause damage to the brain cells, and subsequently 

unconsciousness and death.  The main risk factors are hypertension, smoking, 

hyperlipidemia and diabetes mellitus, and the disease may occur in all age groups.  

Less common than ischaemic stroke, ICH makes up about 12% of all stroke cases in 

Singapore. This is substantially lower than other countries with a predominant 

Chinese population, such as PR China (46.0%), Hong Kong (27.1%) and Taiwan 

(23.0%).  Different subtypes of strokes have different pathophysiological mechanisms, 

morbidity and mortality. 

This primary aim of this study was to identify the predictors of 30-day 

mortality after ICH.  This is a crucial task to neurologists and the public health service 

at large because stroke patients need to be evaluated closely at all stages. Otherwise, 

the hospitals concerned are unable to gear up to cope with the increase in stroke load.  

The analysis will help the relevant emergency departments to identify patients who 

might benefit from intensive care.  Moreover, a timely prediction of patients’ 

prognosis also enables care-givers to decide what intensive rehabilitation is required 

for post-stroke care. Based on the encoded probabilities, the patients are informed of 

their chance of survival.  For those with an unfavourable prognosis, advanced 

directives (including end-of-life issues) may be established because the recurrence 
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and progression of ICH are unpredictable.  This may help neurologists and other care-

givers to determine the most cost-effective treatment should the patients become 

unable to make decisions.  

 The secondary objective of this study was to evaluate the predictive 

performance of various candidate statistical and data-mining models.   This will not 

only help to determine which model is most reliable and useful in predicting primary 

ICH patients’ mortality, but also enable the analysts to develop more insight into the 

problem. 

 

4.5.2 Methods 

The data were obtained from a registry established at the National 

Neuroscience Institute (NNI), Republic of Singapore.  Founded in 1999, NNI is a 

national specialist centre for managing patients who suffer from all diseases of the 

nervous system.  The investigation team for this study comprised two neurologists 

and two medical statisticians.   

Multivariate logistic regression (logit) based on maximum likelihood [133] 

was employed to ascertain how the identified factors were associated with mortality at 

30 days (1: dead; 0: alive). Backward elimination was used to identify the optimum 

model.  

The Bayesian logit model based on prior evidences concerning the underlying 

binomial distribution (3.16) was built next.  Expressed as proportions, the prior 

evidences were elicited from published data [233-234] with model (3.36-3.37).  The 

decision makers specified the prior for between-study precision as Exponential[1] and 

that of the underlying proportion of 30-day mortality as Beta[1, 1].  The burn-ins and 

updates of the MCMC (Gibbs Sampler) were taken as 100 and 500, respectively. A 
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thorough search on the MEDLINE identified a relevant article [233].  This in turn 

helped to extract 8 most relevant and recent studies with detailed information on 

prognostic models concerning short-term mortality associated with ICH.  In addition, 

the extracted article also reported the results of 122 ICH patients (aged 18 years and 

above) admitted in the authors’ hospital between January 1988 and December 1997.   

Conventional generalised additive model (GAM) [235] and two data mining 

models, namely Classification Tree (CART) [236] and Logistic Trees with Unbiased 

Selection (LOTUS) [237] were also applied.  To validate the models externally, the 

original sample was randomly divided into two sub-samples (training set: 60%, test 

set: 40%). Receiver operating characteristic curves (ROC) [147-148] were generated 

to compare the models’ predictive accuracy with observations in the test set.  The 

models’ areas under the curves (AUC) were compared [149].  Univariate analyses 

were performed with chi-square tests or Mann-Whitney tests [238].  

Last but not least, the celebrated AdaBoost procedure [146] was proposed as a 

diagnostic check of the predictive performance of the candidate models.   Analysed 

with Stata 9.0, R 2.4.1 and LOTUS 2.3, all statistical tests were conducted at 5% level 

of significance. 

 

4.5.3 Comparison of Models 

The sample characteristics and results based on univariate analyses are 

presented in Table 4.12.  Old age, history of stroke, known atrial fibrillation, use of 

warfarin, glucose level, presenting Glasgow Coma Scale (GCS) [239] and pupil 

abnormality, post-resuscitation GCS and pupil abnormality, 1
st
 International 

Normalised Ratio (INR) and PT results, vomiting, seizure, total volume of clot, 

ventrical extension and hydrocephalus were significantly associated with mortality. 
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Based on the best eye, verbal and motor responses, GCS is a reliable neurological 

scale for measuring the conscious state of a person (GCS≤8: severe coma, 9-12: 

moderate, ≥13: minor).   

Conventional multivariate logit with backward elimination showed that only 

age, presenting GCS, 1
st
 INR result and total volume of clot were significantly 

associated with 30-day mortality (Table 4.13).  The model was found to be 

satisfactory by means of the Hosmer-Lemeshow test (p-value: 0.27) [240].   

Based on selected published references (Table 4.14), the Bayesian logit model 

utilised a prior beta distribution, namely Beta[6, 8], for handling the unknown 

parameter of the underlying binomial distribution.  The prior, generated from the 

published evidences based on model (3.36), was found to be reasonable according to 

the robust analysis.  Figure 4.5 suggests that the Markov chain did not diverge.  The 

close-form estimated ORs of the Bayesian logit model were slightly different from 

that of the conventional logit model and the 95% P.I.s were much tighter (Table 4.13).     

The other candidate models did not generate ORs for analysis.  Instead, they 

generated probabilities for predicting patients’ mortality directly.  For CART, the 

optimal tree was first obtained with a least CP criterion with 1 standard error, after 

pruning with 10 folds of cross validation.  The same result was obtained should the 

deviance was used as the criterion.  Presenting GCS (cut-off≤7.5) was identified as 

the only significant variable.  

In terms of out-sample prediction (Figure 4.6), the AUC for Bayesian model 

was 0.83 (95% P.I.: 0.76—0.90).  This was comparable to the conventional Logit 

(0.87; 95% C.I.: 0.81—0.94) and LOTUS (0.87; 95% C.I.: 0.81—0.92), but lower 

than GAM (0.92; 95% C.I.: 0.88—0.96).  However, it performed significantly better 
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than CART (0.79; 95% C.I.: 0.73—0.85).  In fact, the AUC of CART was 

significantly lower than that of the other 4 candidate models [149].   

There was no obvious improvement in their predictability when AdaBoost was 

applied. The predictive performances based on AdaBoost were identical to their 

respective single models. 

 

4.5.4 Decisions 

This study was conducted in an attempt to supplement the published literature 

on performance of prognostic models for predicting 30-day mortality after ICH, a 

fatal condition faced by millions of patients world-wide.  Unlike the relevant 

published references [233-234], this study employed several models based on 

conventional statistics, nonparametric statistics, data-mining and Bayesian statistics. 

Neurologists should pay attention to ageing ICH patients with hydrocephalus, 

who presented with GSC≤8 (severe coma), high 1
st
 INR result and high total volume 

of clot.  Demmed to have a poor prognosis, these patients were at risk of death 30 

days after suffering from ICH.  For example, a 60 year-old patient with 1
st
 INR=60, 

GSC≤8, and total volume of clot of 60 has a 33.3% chance of death within 30 days. 

However, there was no clear-cut evidence that which candidate model was 

most superior.  As a result, the analyst may choose any of the model (with the 

exception of CART) based on personal preference and ease of implementation.  It is 

also not necessary to perform complicated analyses with the AdaBoost procedure as 

the single classifiers had attained their “best possible” predictive performance.  

However, it is worthwhile to recruit more patients to the on-going study and conduct 

another comparison in future. 
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Table 4.12: Sample characteristics of ICH patients 

 30-Day Mortality 
Died (n=179) 

 
Alive (n=455) 

Age (years) * 

    Mean (Range)  

 

67.7 (17-95) 

 

63.5 (18-109) 

Gender  

    Male  

    Female 

 

100 (27.0%) 

79 (30.0%) 

 

271 (73.0%) 

184 (60.0%) 

History of stroke * 
    Yes 

    No  

 
59 (35.5%) 

119 (25.5%) 

 
107 (64.5%) 

348 (74.5%) 

Known hypertension 

    Yes 

    No 

 

125 (27.2%) 

54 (31.0%) 

 

334 (72.8%) 

120 (69.0%) 

Known atrial fibrillation * 
    Yes 

    No 

 
19 (42.2%) 

160 (27.2%) 

 
26 (57.8%) 

429 (72.8%) 

Use of warfarin * 

    Yes 

    No 

 

26 (57.8%) 

153 (26.0%) 

 

19 (42.2%) 

436 (74.0%) 

Artiplatelet  

    Yes 

    No 

 

31 (30.4%) 

136 (26.4%) 

 

71 (69.6%) 

379 (73.6%) 

Glucose level (mmoL) * 

    Mean 

    Range 

 

9.0 

4.9-19.7 

 

8.5 

3.7-23.4 
Presenting Glasgow Coma Scale (GCS) * 

    ≤8 
    >8 

 

103 (70.6%) 

73 (15.2%) 

 

43 (29.4%) 

407 (84.8%) 

Post resuscitation GCS * 

     ≤8 
     >8 

 
99 (68.3%) 

34 (9.5%) 

 
46 (31.7%) 

322 (90.5%) 

Presenting pupil abnormality * 

    Yes 
    No 

 

37 (88.1%) 
97 (20.1%) 

 

5 (11.9%) 
386 (79.9%) 

Post resuscitation pupil abnormality * 

    Yes 

    No 

 

42 (91.3%) 

82 (20.5%) 

 

4 (8.7%) 

319 (79.5%) 

1st PT result * 

    Mean 

    Range 

 

17.0 

11.7-59.4 

 

14.0 

10.2-67.6 

1st PT result 

    Mean 

    Range 

 

32.3 

20.9-115.0 

 

30.1 

3.0-101.5 

1st INR result * 
    Mean 

    Range 

 
1.4 

0.9-4.9 

 
1.1 

0.6-13.0 

Vomiting * 

    Yes 

    No 

 

47 (36.7%) 

132 (26.1%) 

 

81 (63.3%) 

373 (73.9%) 

Seizure * 
    Yes 

    No 

 
5 (27.8%) 

127 (28.1%) 

 
13 (72.2%) 

325 (71.9%) 

Total volume of clot * 

    Mean 

    Range 

 

56.7 

0.3-224.5 

 

16.7 

0.0-176.9 

Ventrical extension * 

    Yes 

    No  

 

111 (44.4%) 

61 (16.4%) 

 

139 (55.6%) 

312 (83.6%) 

Hydrocephalus * 

    Yes 

    No 

 

62 (45.3%) 

108 (22.3%) 

 

75 (54.7%) 

376 (77.7%) 

* Significant at 5% level of significance 
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Table 4.13: Comparison between Logit and Bayesian Logit 

 

Covariates 

Conventional Logit 

OR (95% C.I.) 

Bayesian Logit  

OR (95% P.I.) 

Age (years)  

 

1.03 (1.01-1.05) * 1.00 (1.00—1.01) * 

Presenting GCS  

    ≤8 
>8 

 

 

Reference 

0.11 (0.06-0.22) * 

 

Reference 

0.92 (0.90—0.93) * 

1
st
 INR result     

 

1.44 (1.09-1.90) * 1.01 (1.01—1.02) * 

Total volume of clot     

 

1.03 (1.02-1.04) * 1.00 (1.00—1.01) * 

Hydrocephalus  

    Yes 

No 

 

 

Reference 

0.92 (0.48-1.74) 

 

Reference 

0.99 (0.98—1.02) 

* Significant at 5% level of significance 
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Table 4.14: Selected studies for prior elicitation 

 

Study  

30-Day Mortality 

n/N 

Mase 1995 

 

38/138 

Razzaq 1998 

 

58/146 

Tuhrim 1999 

 

28/129 

Phan 2000 

 

29/100 

Hemphill 2001 

 

68/152 

Nilsson 2002 

 

124/341 

Szczudlik 2002 

 

59/152 

Ariesen 2006 

 

49/122 
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Figure 4.5: MCMC iterative history  
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Figure 4.6: ROC curves for comparing candidate ICH models’  

out-sample predictive performance 
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4.6 Body Weight Reduction  

4.6.1 Background  

Associated with many disorders, obesity is defined as the accumulation of excessive 

body fat.  The body mass index (BMI) is often used to define obesity.  According to 

the latest guideline developed for Asian populations, a person carries a moderate 

health risk with a BMI≥23 kg/m2
, while a BMI≥27.5 kg/m2 

signifies high risk.  This 

health risk refers to the risk of developing chronic health problems if weight is not 

controlled in the longer term.  In Singapore, the proportion of population aged 18-69 

years with BMI≥30 kg/m2 
was 6.4% in 2004. This was higher than the 6.0% reported 

in 1998.   

Becoming common among urban populations in affluent societies, obesity is 

now considered by public health practitioners as a major world-wide health issue.  

“Obesity pandemic” is now used to describe this worrying trend. There are strong 

evidences suggesting that obesity is associated with many life-style diseases and 

disorders (back pain, sleep apnea, depression, high blood pressure, diabetes, heart 

failure, hyperlipidemia, stroke, menstrual disorders, skin disorders, osteoarthritis, gout, 

gallbladder disease and cancers of the ovaries, breasts and uterus, etc.), accelerated 

ageing and excess deaths [241].  Obesity is often caused by consumption of high-fat 

foods, physical inactivity, emotional disturbances, genetic and environmental factors, 

and the use of certain drugs (antidepressants, antipsychotics, and antihypertensives, 

etc.). 

Accumulation of excessive body fats changes overall physical appearances.  

Obese people may also find their physical or social activities restrcited because of 

fatigue, depression, lack of mobility and other complications.  This is a major concern 

among persons who are conscious about their physical attractiveness. The common 
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advice for weight reduction usually concerns lifestyle changes, and these include 

regular exercise and reduced intake of calories.  For those who are severely obese 

(BMI>40 kg/m
2
), clinicians may recommend surgery as the choice of treatment.  For 

persons who are moderately obese, weight-loss drugs and medicinal herbs that aim at 

increasing metabolism and/or to reduce appetite may be prescribed.   

Although usually harmless, the common weight-reducing drugs available in 

the market are reported to be ineffective.  Clinicians usually recommend weight-

management programme as part of the treatment plan.  However, development of new 

drugs, especially those with natural contents, presents a lucrative business for the 

pharmaceutical industry.   

In an attempt to fulfill the objective of this study, the effectiveness of Xändo, a 

widely-publicised drug, was evaluated.  Its advertising strategy included the use of 

popular celebrity spokespersons.  Promised to be a weight-reducing agent of natural 

origin, Xändo comprises a number of ingredients (α-amylase inhibitor, inulin and 

Garcinia cambogia) that work together to capture excess sugars, reduce their storage 

as body fat and eliminate them from the body by excretion [242].  However, the 

statistical analysis presented in the original article was incorrect.  As a result, one is 

not sure if the developer’s claim such as “3× more weight loss” was valid.  This will 

be dealt with in the relevant section. 

 

4.6.2 Aim  

The primary aim of this study was to assist a male obese teenager to decide 

how to reduce his body weight within 3-4 months.  This is a valid concern among 

teenagers because they are likely to remain obese when they grow up.  Young men 

with morbid obesity have a 10-fold excess mortality compared with
 
their normal 
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weight counterparts.  As mentioned before, this study also helped to re-analyse the 

presented data of Xändo [242] with an appropriate Bayesian model.  Next, the study 

made use of data provided by the Singapore Armed Forces (SAF) in order to ascertain 

whether a prolonged basic military training (BMT) for the decision maker would lead 

to reduction in BMI and increase in injury rate.   

 

4.6.3 Decision Problem and Data  

The decision maker of this study was a Chinese, pre-university obese teenager 

(BMI: 35.5 kg/m
2
) who was about to be enlisted.  At the point when the decision 

problem was surfaced he had only about 15 weeks to reduce his excessive body 

weight.  Initially, he was presented with two choices—consume Xändo tablets 

regularly or embark on a weight-management programme.  The first choice was a 

relatively comfortable decision as he only needed to adhere to the developer’s 

guidelines. Table 4.15 depicts the published results of the original article on Xändo 

[242].  With 40 healthy obese volunteers (Xändo: 20, placebo: 20) enrolled, the study 

was concluded in 12 weeks (end-point).  With Xändo, the decision maker did not have 

to make substantive changes to his current lifestyle, but was uncertain of the 

effectiveness of the new drug.  Moreover, there might be complications and side-

effects, although the developer promised there were none [242].  The second choice 

could turn out to be less tolerable as he might have to give up many of his hobbies.  

The clinicians also estimated that there was only a slim chance (0.05) to reduce his 

BMI to the targeted 27 kg/m
2
 in 12-15 weeks, given his unique condition.    
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Table 4.15: Selected original published results of Xändo 

 Week 0 (Baseline) 

Mean BMI±s.d. 
 

Week 12 (End-Point) 

BMI±s.d. 
 

 

Change 

Xändo (n: 20) 

 
31.0 ± 3.2 29.7 ± 3.2 1.3 ± 1.2 

Placebo (n: 20) 

 
31.7 ± 2.9 31.2 ± 2.7 0.5 ± 0.9 
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If he failed to reduce his BMI to below 27 kg/m
2
 he would be required to 

undergo the compulsory strenuous military training designed for obese servicemen.  

He would then face a prolonged service that could delay his discharge, or more 

seriously an enhanced likelihood of suffering from physical injuries. Obesity is 

believed to pose additional risks during strenuous military training.  

In the past, pre-enlistees with BMI≥27.0 kg/m2
 underwent a 16-week basic 

military training (BMT). The severe and extreme obese enlistees underwent similar 

training with the mildly and moderately obese recruits. The BMT was then prolonged 

to 26 weeks for the severely obese enlistees in 2004.  The burning question was if an 

increase in duration of training would result in improved weight loss profiles, reduced 

injury rates and improved fitness levels. After BMT, the recruits were given a PES 

grading based on their BMI and/or body fat percentage according to the SAF 

definition of obesity. This PES grading would in turn determine their deployability 

into various military vocations. A reduction in BMI had to be significant enough, 

medically speaking, to result in a change in PES grading. The retrospective data of 

716 recruits with BMI≥35 were analysed (16-week BMT: 338; 26-week BMT: 378).   

Bayesian linear regression model (3.44) was used to analyse the two data sets 

described above in order to encode the required probabilities for the decision problem.  

With non-informative priors, the effectiveness of Xändo was evaluated.  While the 

chemical effects of inulin and hydroxycitric acid (HCA) are fairly well-known, there 

was insufficient evidence of their effectiveness in human bodies.  With this in mind, a 

diffuse prior for the covariance matrix was used, i.e., Σ:=diagonal3×3(1,000).  The 

prior for coefficients was taken to be ββββ0=[0.8, -2.0, 2.0]'.  This prior suggested that 

Xändo might be effective when compared with placebo.  The average active group 

was expected to be 2.0 kg/m
2
 lower than that of the placebo group after 12 weeks.  
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The baseline and end-point BMI were expected to be correlated at 0.8.  This is 

reasonable because the study’s time frame was relatively short.  

The obese recruits’ end-point BMI between training groups, after correcting 

for baseline BMI, were also analysed with informative priors.  In a well-cited study 

involving 27 severely obese subjects (average baseline BMI: 44 kg/m
2
) who engaged 

in an intensive lifestyle intervention composing of physical activity, dietary changes 

and personal development, the 15-week result was significant [243].  Based on the 

evidence, the average end-point BMI was expected to reduce by 1.0 kg/m
2
.  It was 

also expected that the baseline and end-point BMI (26 weeks) were correlated at 0.8.  

As such, the priors were taken as ΣΣΣΣ0:= diagonal3×3(10) and ββββ0=[0.8, -0.1, 2.0]'.   

Last but not least, Bayesian logit model (3.16) with informative prior, i.e., 

Beta[5, 5] was applied to analyse the occurrence of injuries (1: yes, 0: no).  The 

relevant priors are provided by a SAF medical officer specialised in weight-reduction 

programmes.  Analysed with Stata 9.0 and Microsoft Excel 2002, all statistical tests 

were conducted at 5% level of significance.  Post-hoc analysis suggested that the 

sample size provided by SAF was sufficient for all relevant statistical testing at 90% 

power and 5% level of significance, after taking into consideration the potential 

correlation between baseline and end-point BMI of the enlistees. 

 

4.6.4 Results 

The demographic characteristics of the recruits in the two training groups were 

comparable (See Table 4.16).  There was no significant difference in average baseline 

BMI between the two groups (p-value: 0.10).  Both groups demonstrated significant 

decline in average BMI at end-point (16-week BMT: 39.0 kg/m
2→34.3 kg/m

2
; p-
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value<0.001; 26-week BMT: 39.5 kg/m
2→34.4 kg/m

2
; p-value<0.001).  The baseline 

BMI was normally distributed but became slightly skewed at end-point.   

The decline in average BMI of the 26-week group was significantly larger 

than that of the 16-week group, after adjusting for ethnicity and educational 

attainment (Table 4.17).  The non-informative Bayesian model was found to be 

satisfactory.   

Although there were more injured cases (9.3%) reported for the 26-week 

training group when compared with the 16-week group (8.0%), the difference did not 

turn out to be significant, after adjusting for ethnicity, educational attainment and 

baseline BMI (Table 4.18).  The model made use of an informative prior Beta[5, 5] 

given by the analyst.  There were significantly fewer injured cases among the Malay 

recruits (5.3%), when compared with their Chinese (9.9%) and Indian (17.8%) 

counterparts.  On the other hand, there were more injured cases reported for recruits 

with primary and lower education (40.0%), when compared with those holding higher 

qualifications (secondary: 8.7%, pre-university: 8.9%, tertiary qualifications: 7.3%).   

 The analysis of the Xändo called for some re-construction based on the 

published aggregate evidence (Table 4.15) as no subject-level data was available.  The 

analysis provided by the article was wrong because it failed to compare the groups’ 

end-point BMI directly.  Instead it analysed the groups’ end-point BMI separately. 

Statistically speaking, this is unacceptable. A proper analysis should include the 

baseline (week 0) BMI as it is expected to be associated with the end-point (week 12) 

BMI.  The proposed Bayesian technique required the analyst to compute the 

conventional linear regression model’s coefficients first.  Usually the task is 

impossible without subject-level data but fortunately the original article [242] threw a 

lifeline by providing the standard deviations of change in end-point BMI for both 
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groups.  The most important element is the correlation between baseline (week 0) 

BMI and end-point (week 12) BMI as it is required to compute all the necessary 

quantities (intermediate and final) and coefficients for the regression analysis.  The 

technique works as follows: 

 

i. generate the pooled variance of baseline BMI and end-point BMI of the two 

groups (0: placebo, 1: Xändo) 

ii. compute the pooled coefficient of correlation between the baseline BMI and 

end-point BMI by making use the fact that V[BMI1 – BMI0] = V[BMI1] + 

V[BMI0] – 2(correlation)√V[BMI1]V[BMI0] 

iii. work out all the cross products required for regression analysis based on ii and 

the known features and quantities of the study 

iv. compute the regression coefficients based on ii and iii 

v. generate the coefficients’ standard errors, sums of squares (total, model and 

residual), p-values, 95% C.I.s, F-value and adjusted coefficient of 

determination (R
2
)  

 

The re-construction of the regression analysis was based on the known inter-

relationships of all the relevant quantities.  The quantities generated are based on 

exact methods [34]. 

The results are shown in Table 4.19.   It is interesting to note that the 

developer’s claim was fairly valid, i.e., there was significant change in subjects who 

took Xändo, when compared with those on placebo.  The end-point BMI of the Xändo 

group was about 0.86 kg/m
2
 significantly lower than the placebo group.  The 

conventional model provided a good fit to the data as the covariates were able to 

explain about 90% of variations in end-point BMI. 
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Table 4.16: Sample characteristics of SAF recruits 

   

 16-week BMT 

n: 338 

26-week BMT 

n: 378 

Ethnicity: 

    Chinese 

    Malay 

    Indian 

    Others 

  

Educational attainment: 

    Primary & below  

    Secondary 

    Pre-University 

    Tertiary 

 

 

187 (55.3%) 

122 (36.1%) 

20 (5.9%) 

9 (2.7%) 

 

 

4 (1.2%) 

161 (47.6%) 

45 (13.3%) 

128 (37.9%) 

 

206 (54.5%) 

144 (38.1%) 

25 (6.6%) 

3 (0.8%) 

 

 

6 (1.6%) 

207 (54.8%) 

45 (11.9%) 

120 (31.7%) 

Occurrence of injuries: 

    No 

    Yes 

 

 

311 (92.0%) 

27 (8.0%) 

 

343 (90.7%) 

35 (9.3%) 

Baseline BMI (kg/m2) 

 

39.0 (s.d.: 4.0) 

Range: 32.7—58.8 

 

39.5 (s.d.: 4.1) 

Range: 29.8—57.4 

End-Point BMI
 
(kg/m

2
) � 34.3 (s.d.: 3.6) 

Range: 27.5—52.5 

34.4 (s.d.: 4.0) 

Range: 24.8—49.6 

 

   

� Based on 654 injury-free cases: 311 (16-week) and 343 (26-week) 
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Table 4.17: Informative Bayesian linear regression analysis of recruits’ end-point BMI 

Covariates 

 

Coefficient 

 

 

95% P.I. 

Baseline BMI (kg/m
2
) * 

 

0.79 

 

0.83 — 0.90 

 

Group *: 

     1: 16-week BMT 

     2: 26-week BMT 

 

 

Reference 

-0.49 

 

 

— 

-0.78 — -0.26 

Constant  

 

4.21 -1.47 — 2.29 

* Statistically significant at 5% 
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Table 4.18: Informative Bayesian logit analysis of occurrence of injury (1: yes, 0: no) 

Covariates 

 

Coefficient 

 

 

95% P.I. 

Baseline BMI (kg/m
2
) 

 
1.74×10-3 

 

-1.03×10-4 — 3.59×10-3 

Ethnicity: 

    Chinese 

    Malay * 

    Indian 

    Others 

  

 

Reference 

-0.02 

0.03 

-2.22×10-3 
 

 

— 

-0.03 — -1.11×10-3 

-4.83×10-3 — 0.06 

-0.06 — 0.06 

Educational attainment *: 

    Primary & below 

    Secondary 

    Pre-University 

    Tertiary 

  

 

Reference 

-0.11 

-0.11 

-0.11 

 

 

— 

-0.17 — -0.04 

-0.18 — -0.04 

-0.18 — -0.05 

 

Group: 

     1: 16-week BMT 

     2: 26-week BMT 

 

 

Reference 

3.05×10-3 
 

 

— 

-0.01 — 0.02 

Intercept * 

 

-0.11 -0.21 — -0.01 

* Statistically significant at 5% 
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Table 4.19: Reconstruction of conventional linear regression analysis 

of end-point BMI with/without Xändo 

 

Source 

Sum of 

squares 

Degrees of 

freedom 

Mean sum of 

squares 

  

n 

 

40 

Model 

 

308.48 2 154.24  R
2
 0.90 

Residual 

 

33.35 37 0.90  Adjusted R2 0.90 

Total 341.84 39 8.77  F (p-value) 171.11 (<0.01) 

       

Covariates Coefficients Standard error t-value  p-value 95% C.I. 

Baseline BMI * 

 

0.89 0.05 17.81  <0.01 0.79—0.99 

Group * 

     0: Placebo 

     1: Xändo 

 

 

Reference 

-0.88 

 

— 

0.30 

 

— 

-2.89 

  

— 

<0.01 

 

— 

-1.49 — -0.26 

Intercept  

 

2.90 0.03 108.76  <0.01 2.84 — 2.95 

* Statistically significant at 5% 
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With the conventional model’s coefficients generated the analyst was able to 

compute the Bayesian coefficients (3.44) since the latter are “shrunk” estimates of the 

former and the priors (Table 4.20).  Again, Xändo was shown to be effective in 

reducing subjects’ body weight after 12 weeks.  In passing, note that the results were 

almost identical to that of the conventional model because the data were fairly 

consistent.   

 

4.6.5 Decision 

With the probabilities generated from the Bayesian models (Tables 4.17-4.18, 

4.20), the tree diagram was completed (Figure 4.7).  The encoded probabilities 

illustrated on the chance nodes are bracketed. The most preferred and least preferred 

scenarios were meeting target with Xändo (BMI<27 kg/m
2
) in 12 weeks and picking 

up an injury with target unmet (BMI≥27 kg/m2
), respectively.  Complication due to 

Xändo was not featured because the published article [242] reported no side-effects 

observed in the obese subjects in 12 weeks.   

Based on some close discussion with the decision maker the following 

exponential utility function was derived: 

 

 

u(x) = 1.78(1 – e 
–x/12.16

)     

(4.1) 

 

 

The procedure is documented in subsection 3.5.5.  With his utilities elicited, it is 

obvious that he might benefit from choosing Xändo to reduce his body weight.  The 

expected utility derived from using Xändo was 0.46.  This was higher than that 

derived from participating in the weight-management programme.  However, it was a 

rather formidable task to achieve his target (BMI<27 kg/m
2
) within 12-15 weeks, 
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given his initial BMI of 35.5 kg/m
2
.  The probability of achieving the target was only 

0.12 with Xändo.  Perhaps he should have started his weight-reduction programme 

earlier.  With his height at 1.80 m, reducing a BMI by 8.5 kg/m
2
 was equivalent to 

reducing his body weight by 27.5 kg. 

 

4.6.6 Discussion 

Xändo seemed to have fulfilled its promise of helping obese consumers to 

attain significant weight loss after 12 weeks, although the original analysis presented 

in the article [242] was conceptually and technically wrong.  However, nothing was 

said about its long-term effects. The problem of weight regain after termination of a 

therapy is a well documented issue.  On average, most patients regain about 30% to 

35% of their lost weight
 
one year after on treatment.  Published reports also suggested 

that 50% or more
 
of participants would return to their baseline weight approximately 

3 to 5 years after therapy [244-246].  One pair-matched study involving 24 subjects 

reported that they regained 11 kg 4 years after losing 10 kg [247]. 

Future studies may consider other weight-management programmes and more 

established weight-reducing drugs. The US Food and Drug Administration (FDA), as 

well as an expert
 
panel convened by the National Heart Lung and Blood Institute,

 

have recommended that weight-reducing medications be used only as
 
an adjunct to a 

comprehensive program of lifestyle modification
 
that includes diet, physical activity, 

and behavior therapy. Two medications,
 
sibutramine and orlistat, are currently 

approved by the FDA
 
for long-term use in obesity management.  Sibutramine is a 

CNS
 
agent that inhibits the reuptake of norepinephrine and serotonin.

  
By contrast, 

orlistat is a gastric and pancreatic lipase inhibitor
 
that works by blocking the 
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absorption of fats contained in a meal, and with the undigested fat excreted.  Both 

sibutramine and orlistat have been used successfully in the induction of weight loss.
  

One limitation of the analysis based on SAF data was that the study was 

retrospective in nature.  It did not allow for randomisation to ensure uniformity in the 

2 study groups. This was, however, partially compensated with the use of multivariate 

statistical models, which adjusted for ethnicity, education attainment and baseline 

BMI. The 26-week BMT did prove to produce a more significant decrease in BMI, 

when compared with the 16-week group.  This could be attributed to the additional 10 

weeks of physical training in a controlled environment.  However, as there was 

minimal change in training programme or diet between the 2 groups, the difference 

merely reflected weight loss as a result of overall increase in amount of exercise. It 

may be prudent to design a specific BMT training programme for the 26 weeks that 

addresses intensity, graduated increments as well as dietary alterations to fully exploit 

the benefits of the additional training.  

While the chosen decision may seem straight-forward and obvious in view of 

the simple structure of the problem, it does illustrate the usefulness of the 

incorporation of various Bayesian models for probability encoding.    
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Table 4.20: Informative Bayesian linear regression analysis of recruits’ 

end-point BMI with/without Xändo 

 

Covariates 

 

Coefficient 

 

 

95% P.I. 

Baseline BMI (kg/m
2
) * 

 

0.91 0.82—1.00 

Group *: 

     0: Placebo 

     1: Xändo 

 

 

Reference 

-0.86 

 

— 

-1.42 — -0.30 

Intercept 

 

2.36 -0.61 — 5.34 

* Statistically significant at 5% 
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Figure 4.7: Xändo versus weight-management programme for weight-reduction 

 

 

 

 

 

 

 

 

 

 

Xando 

Weight-

management 

proramme 

<27kg/m
2 
(0.12) 

≥27kg/m2 
(0.88) ≥27kg/m2 

(0.83) 

26-week BMT
 

No injury (0.54)
 

Injury (0.46)
 

No injury (0.54)
 

Injury (0.46)
 

26-week BMT
 

No injury (0.54)
 

Injury (0.46)
 

No injury (0.54)
 

Injury (0.46)
 

≥27kg/m2
 (0.95)

 

<27kg/m
2 
(0.05) 

<27kg/m
2 
(0.17) 

<27kg/m
2 
(0.17) 

≥27kg/m2 
(0.83) 

Utility 

1.00 

0.00 

0.86 

0.39 
0.50 

0.14 
0.95 
0.71 

0.33 
0.45 
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4.7 ACE Inhibitor for treating Ischaemic Heart Disease 

4.7.1 Background 

Angiotensin Converting Enzyme (ACE) inhibitors are a group of pharmaceuticals 

used primarily for controlling blood pressure and treating congestive heart failure.  

They help to slow down the enzyme activities, which in turn halt the production of 

angiotensin II, a potent chemical responsible for causing high blood pressure 

(hypertension). Also useful for preventing kidney damage in patients with 

hypertension or diabetes mellitus (DM), ACE inhibitors have become an important 

class of drugs for preventing death resulting from heart failure or heart attack.  In 

addition, it is able to reduce the progress of diabetic nephropathy independent from 

their blood-pressure lowering effect. 

 The highly-regarded European Trial on reduction of cardiac event with 

Perindopril (EUROPA) demonstrated that ACE inhibitors significantly improved 

patients’ prognosis, with or without hypertension and diabetes, and irrespective of age 

[248].  Involving patients from 424 centres across Europe, the trial was randomised, 

double-blinded, and placebo-controlled.   

 There are variations among the ACE inhibitors, such as salfhydryl-containing 

(capoten), dicarboxylate-containing (perindopril) and phosphate-containing 

(fosinopril).  The difference lies in how they are eliminated from the body.  Some 

inhibitors need to be converted into an active form in the body before they function.  

Others may inhibit ACE directly in the tissues rather than that present in the blood.  

However, there is no reported evidence on the relative effectiveness of these different 

inhibitors. 

 ACE inhibitors have few interactions with other drugs, but it is advised that 

they should not be taken with potassium supplements, salt substitutes and other drugs 
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that may increase the body’s potassium levels.  Aspirin and other non-steroid anti-

inflammatory drugs (NSAIDs) may also weaken the effects of ACE inhibitors.  While 

relatively well-tolerated by most patients, therapy with ACE inhibitors requires 

careful monitoring as it may cause dizziness in patients who are overdosed or less 

tolerated with rapid reduction in blood pressure.  Other common adverse effects 

include hyperkalemia, headache, fatigue, hypotension and renal impairment in 

patients with renal artery stenosis.  Some patients may also develop angioedema due 

to increased bradykinin levels.   

 

4.7.2 Aim 

The following decision analysis concerned an anonymous 45-year old Chinese 

male professional suffering from ischaemic heart disease (IHD) and Type-II diabetes.  

Unlike Type-I diabetes, which is caused by autoimmune disorders, Type-II diabetes is 

usually developed in adults above 40 years of age.  Although there are exceptions, 

Type-II patients are usually overweight.  The existence of Type-II diabetes has been 

shown to have brought adverse impact on patients with congestive heart failure (CHF).  

CHF, also known as congestive cardiac failure (CCF) is a condition in which the heart 

fails to pump enough blood to the body’s other organs.  This can be caused by narrow 

arteries, past myocardial infarction, high blood pressure, heart valve disease, genetic 

family history, and heart defects present at birth.  IHD is a specific heart disease 

characterised by reduced blood supply to the heart.  Typically, there is blockage to the 

coronary arteries which reduces the blood supply to heart muscles.  IHD patients may 

experience sudden heart attack, which results in long-term damage to heart muscle 

and structural damage to the organ.  There are evidences showing that diabetes was 
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associated with ICH and eventual heart failure mortality [249-251]. Suffering from 

diabetes for 5 years, the patient was not on insulin. 

 The proposed analysis could help the decision maker to decide whether he 

should consider ACE inhibitors, while taking into consideration its relative 

effectiveness with other drugs such as beta-blockers and spironolactone.  The end-

points were hospital re-admission and survival. 

Over the past few decades, preventive and therapeutic measures have 

substantially improved the prognosis of IHD patients.  Nevertheless, the risk of 

cardiovascular complications remains high and progression can be halted in few 

patients despite regular treatment with established drugs like beta-blockers, aspirin 

and statins.  The analysis also helps to show whether ACE inhibitors could 

significantly reduce IHD patients’ risk of hospital re-admission and mortality, a topic 

of paramount interest to cardiologists.   

 

4.7.3 Data 

The data were obtained from 1,668 patients who were enrolled to the National 

Healthcare Group (NHG) Multidisciplinary Heart Failure Disease Management 

Programme, Republic of Singapore, from October 2003 to September 2006.  There 

were definite evidence of CHF in these subjects, on the basis of clinical findings 

and/or the Boston Criteria, with documented LV systolic dysfunction.  The patients 

had LV ejection fraction (EF) below 40%.  However, patients with advanced 

malignancy, severe renal failure, severe pulmonary disease, psychiatric or cognitive 

disorders, and who were on cardiovascular interventional procedures were excluded.   

All patients enrolled to the programme were educated on dietary and fluid 

management, and were followed-up by CHF specialists at regular intervals.  They 
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were advised to exercise regularly, quit smoking, and reduce excess body weight and 

cholesterol.  In addition, they were also placed on telephonic case management by 

CHF-trained nurses, and contacts were made on a monthly basis. 

This was essentially a prospective cohort study, where patients were followed-

up for 24 to 48 months (mean duration: 36 months).  On entry to the programme, the 

patients’ baseline demographic and clinical characteristics were recorded.  Other 

information included quality of life (Minnesota Living with Heart Failure score), 

medication use and physical functionality (New York Heart Association 

Classification).  Information on hospitalisation for any cause at the emergency 

departments was collected prospectively by checking the in-hospital admission list 

and the attendance charts on a daily basis.  Evidence of death was collected from the 

Singapore Registry of Births and Deaths.  The primary end-points of interest were 

hospital re-admission due to heart failure and all-cause mortality. 

Collated and managed by a full-time executive, the data were further validated 

by two consultant cardiologists and a principal medical statistician during analysis.  

To ensure that the analyses were reliable, the investigators met regularly to fill up the 

missing data. 

The proposed decision analysis involved 1 decision node (use of ACE 

inhibitors vs. other drugs), 4 deterministic nodes (gender, ethnicity, age and kidney 

damage), 2 chance nodes (hospital re-admission and survival) and 1 value node 

(patient’s utilities). The decision node concerned comparison between ACE inhibitors 

and other drugs such as beta-blockers and spironolactone.  Beta-blockers, which work 

on the heart and circulatory system, has been downgraded as 4
th
-line treatment by the 

United Kingdom in 2006 as there was reported evidence that frequent users at usual 

dose could carry an unacceptable risk of provoking Type-II diabetes [252].  However, 
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it is associated with clinically meaningful reductions in mortality [253].  Both ACE 

inhibitors and beta-blockers have shown to be helpful in reducing mortality in patients 

with or without renal insufficiency [254].  Suspected to be associated with stomach 

bleeding, spironolactone is a synthetic 17-lactone steroid used primarily for treating 

liver disease, low-renin hypertension and hypokalemia.   

Glomerular filtration rate (GFR), based on plasma creatinine, is a measure of 

patients’ kidney function.  Diabetes and high blood pressure are among the most 

notable risk factors for kidney disease.   Patients are deemed to be suffering from 

kidney disease if his GFR falls below 90.   

Three demographic variables, namely gender, age and ethnicity, were included 

as either risk factors or confounders in the proposed analysis.  Ageing is expected to 

affect the patient’s prognosis.  Gender is also suspected of associating with congestive 

heart failure mortality [251].  Generally, females have a longer life span than males.  

There is also evidence showing ethnic differences in acute myocardial infarction 

events in Singapore, with Malays having the highest case-fatality [255]. 

Last but not least, the patients’ functionality was quantified by the New York 

Heart Association (NYHA) Classification, a well-regarded functional and therapeutic 

classification for prescription of physical activity for cardiac patients.  A patient with 

no limitations of activities is graded as Class I.  At Class II, the patient has slight 

limitation of activities, but is comfortable with rest or mild exertion.  At Classes III 

and IV, however, the patient concerned is either limited with daily activities or require 

complete rest (confined to bed or wheel-chair).  Since the decision maker was not 

functionally restricted, the proposed analysis excluded all data from patients with 

NHYA>2. 
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Analysed with Bayesian logistic regression (3.16) and Weibull survival model 

(3.50), all statistical tests were conducted at 5% level of significance.    The priors for 

the effect of ACE inhibitors and beta-blockers in the Weibull model were taken as 0.7 

and 0.8, respectively.  These are interpreted as hazard ratios (HR), with values below 

unity as beneficial effects on survival.  The associated variance-covariance matrix was 

chosen to be ΣΣΣΣ0:=diagonal3×3(10), thus reflecting a conservative stand.  There were 

either dubious or short of direct evidence concerning the effects of the drugs in 

published references [251, 256-259].  In reference [256] the investigators failed to 

recognise the multicollinearity effect revealed in the analysis and reported an adverse 

impact of ACE inhibitors on mortality (HR=1.53, 95% C.I.: 0.86—2.75). In fact, the 

investigators wrongly expressed the HR as odds ratio (OR).  It is suspected that ACE 

inhibitors’ beneficial effect was “masked” by that of beta-blockers (HR=0.77, 95% 

C.I.: 0.54—1.09), whose effect was “expected” but non-significant. This is a common 

problem encountered in real-life data analysis and investigators ought to pay special 

attention to unexpected signs.  One prospective study reported that survival rates after 

1, 3 and 5 years, as determined by the Kaplan-Meier curves, were found to be around 

78.9%, 57.2% and 39.0% [257].  Another reference presented figures on 6-month 

mortality only [259].  There was also no direct and confirmative result concerning 

hospital readmission due to heart failure [249].  Estimated to be 40%, the logit 

analysis of hospital readmission used a prior Beta[2, 3]. Though restricted to patients 

enrolled at NHG, this was the largest hospital-based CHF cohort study in Asia.   

 

4.7.4 Results 

The patients’ profiles are depicted in Table 4.21.  Altogether, 411 NYHA≤2 

patients with IHD and diabetes were included for analysis.  No patient was prescribed 
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with insulin.  Since there were relatively few patients in the “other” ethnic group 

(2.2%), they were discarded from all analyses below. 

Table 4.22 shows that the use of beta-blockers was beneficial in reducing 

hospital readmission due to heart failure.  However, the effect of ACE inhibitors was 

dubious.  Careful analysis showed that there was indeed no significant result observed.  

The non-significant result was not caused by multicollinearity among the predictors.  

Demographics (ethnicity, gender and age) and occurrence of kidney disease) were not 

significantly associated with hospital re-admission. 

On the other hand, Table 4.23 suggests that there were some protective effects 

against death by the use of ACE inhibitors, beta-blockers and other drugs, according 

to the Weibull Bayesian survival analysis.  However, their effects were non-

significant in explaining the time to death.  Their individual effects on mortality might 

be more directly explained by hospital re-admission. Sensitivity analysis with several 

informative priors did not change the result drastically (details not shown). 

The patients’ probability of death was well below 25% throughout the 4 years 

(approximately 1,500 days) of follow-up (Figure 4.8).  The 6-month (180 days) 

mortality was similar to published results in reference [259].  The prognosis was 

substantially better than most of the reported results in references.  This is not 

surprising because the local sample excluded patients who were physically dependent 

(NHYA>2).   
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Table 4.21: Sample characteristics of diabetic IHD patients 

 n (%) 

Ethnicity: 

    Chinese 

    Malay 

    Indian 

    Others 

  

Gender: 

    Male  

    Female 

 

Age: 

    Mean (range) 

 

 

257 (62.5%) 

81 (19.7%) 

64 (15.6%) 

9 (2.2%) 

 

 

269 (65.5%) 

142 (34.5%) 

 

 

65.8 (30-94) 

Use of ACE inhibitors 

No 

Yes 

 

 

171 (41.6%) 

240 (58.4%) 

Use of beta-blockers and/or spironolactone 

No 

Yes  

 

 

327 (79.6%) 

84 (20.4%) 

GFR 

Normal (≥90) 
Kidney damage (15-89) 

Kidney failure (<15)   

 

 

171 (41.6%) 

235 (57.2%) 

5 (1.2%) 

Hospital re-admission due to heart failure 

No 

Yes 

  

 

376 (91.5%) 

35 (8.5%) 

All-cause death within 4 years 

No 

Yes 

       ≤6 months 

       6 months to 2 years 

       >2 years 

 

 

337 (82.0%) 

74 (18.0%) 

28 (6.8%) 

44 (10.7%) 

2 (0.5%) 

 

Total 

 

411 (100.0%) 
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Table 4.22: Informative Bayesian logit analysis of hospital re-admission 

in diabetic ICD patients (NYHA≤2) 
 

 

Covariates 

 

Coefficient 

 

95% P.I. 

Ethnicity: 

    Chinese 

    Malay 

    Indian 

     

Gender: 

    Male  

    Female 

 

Age 

 

 

Reference 

-4.54×10-3 

-0.02 

 

 

Reference 

-0.02 

 

2.33×10-3 

 

— 

-0.07 — 0.06 

-0.09 — 0.05 

 

 

— 

-0.07 — 0.04 

 

-3.69×10-4 — 5.04×10-3 
 

Use of ACE inhibitors 

No 

Yes 

 

 

Reference 

0.02 

 

— 

-0.05 — 0.09 

 

Use of beta-blockers and/or spironolactone * 

No 

Yes  

 

 

Reference 

-0.10 

 

— 

-0.17 — -0.03 

GFR 

Normal (≥90) 
Kidney damage (<90) 

 

 

Reference 

0.05 

 

— 

-0.02 — 0.12 

Intercept * 

 

-0.77 -0.95 — -0.58 

* Statistically significant at 5% 
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Table 4.23: Non-informative Weibull Bayesian survival analysis of 

ICD patients with diabetes (NYHA≤2) 
 

 

Covariates 

 

Coefficient 

(hazard ratio) 

 

95% P.I. 

Ethnicity: 

    Chinese 

    Malay 

    Indian 

     

Gender: 

    Male  

    Female 

 

Age 

 

 

Reference 

0.98 

0.81 

 

 

Reference 

0.89 

 

1.02 

 

— 

0.52—1.83 

0.41—1.60 

 

 

— 

0.54—1.45 

 

0.99—1.04 

Use of ACE inhibitors 

No 

Yes 

 

 

Reference 

0.76 

 

— 

0.39—1.48 

Use of beta-blockers and/or spironolactone 

No 

Yes  

 

 

Reference 

0.86 

 

— 

0.39—1.91 

 

GFR 

Normal (≥90) 
Kidney damage (<90) 

 

 

Reference 

1.51 

 

— 

0.78—2.95 

Hospital readmission * 

     No 

     Yes 

 

 

Reference 

2.95 

 

— 

1.60—5.42 

   

* Statistically significant at 5% 
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4.7.5 Decisions 

Based on a close discussion with the patient the following exponential utility 

function was derived (see subsection 3.5.5 for details): 

 

 

u(x) = 1.30(1 – e 
–x/67.70

)     

(4.2) 

 

 

His most preferred situation was no relapse and stayed alive.  The worst scenario was 

readmitted to hospital and died within 6 months.   

 The Bayesian logit model (Table 4.22) suggests that his probability of re-

admission (due to heart failure) after being treated with ACE inhibitors and beta-

blockers were 0.12 and 0.11, respectively.  There was little practical difference 

between the two drugs in terms of re-admission.   

Moreover, if he did not re-admit to hospital his probability of survival was 

0.86 with ACE inhibitors (Table 4.23).  His chance of death was 0.05 within 6 months 

and 0.09 beyond 6 months.  On the other hand, his chance of survival with beta-

blockers and without readmission was slightly higher at 0.9.  The probability of death 

was 0.05 for both within 6 months and beyond 6 months.     

Based on Figure 4.9, there was no significant difference in utilities in choosing 

ACE inhibitors or beta-blockers.  However, beta-blockers seemed to be a more 

effective drug for reducing hospital re-admission due to heart failure for diabetic ICH 

patients. 

 

4.7.6 Future Study 

 Future analysis may include glycemic control (indexed by HbA1c).  A recent 

study suggested that poor glycemic control might be associated with increased risk of 
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cardiovascular events (hospital readmission and death) and new onset heart failure in 

patients with diabetes [260].  The impact of HbA1c on prognosis in patients with 

established systolic heart failure has not been previously investigated.  This presents a 

new direction for clinical research on diabetic ICH. 
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Fig 4.8: Kaplan-Meier analysis of ICH patients with diabetes (NYHA≤2) 
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Figure 4.9: Re-admission and Mortality with IHD 
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4.8 Peritoneal Dialysis for treating End-Stage Renal Disease 

4.8.1 Background  

Kidney failure is the inability of the kidneys to filter metabolic wastes (creatinine and 

blood urea nitrogen) from the blood and regulate the salt/water content of the body 

adequately.  Common causes include diabetes mellitus, high blood pressure, 

autoimmune disorders and other abnormalities (such as polycystic kidney disease and 

glomerulonephritis).    

The incidence and prevalence of end-stage renal disease (ESRD) are expected 

to grow throughout the world [261].  There are two forms of treatment for ESRD: 

dialysis and transplantation.  In the latter, a kidney from a living or brain-dead donor 

(cadaveric) is removed and implanted to the patient.  Known as the best form of 

treatment, the average waiting time for receiving a kidney transplant from a cadaveric 

donor is 7 years or more in Singapore.  It is understood that the transplantation rate is 

influenced by socio-economic, religious, and cultural attitudes [261].  As such, the 

more common treatment is dialysis, a process by which the patient’s blood is cleansed 

artificially so that metabolic wastes and excess fluids are removed from the body.  

Nephrologists recommend dialysis when the patient’s kidney failure is causing 

abnormal brain function, inflammation of the sac around the heart, high level of acid 

and potassium in the blood, and total body fluid overloaded, etc.   

There are two types of dialysis, namely haemodialysis (HD) and peritoneal 

dialysis (PD).   In the former, blood is removed from the body and pumped by a 

machine outside the body into a dialyser, which helps to filter metabolic wastes and 

then returns the purified blood to the patient.  Complications of HD include fever, 

infection, low blood pressure, abnormal heart rhythms, bleeding in the intestine and 

life-threatening allergic reactions.  In PD, a membrane that lines the abdomen and 
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covers the abdominal organs acts as the filter.  It creates a space within the abdomen, 

where fluid and waste products are drained. Complications of PD include 

inflammation of the abdominal cavity (peritonitis), bleeding, leakage of fluid, low 

level of albumin, constipation and hernias of the abdomen and groin.   

Compared to HD, PD is a more convenient dialysis as it can be performed at 

home, thus eliminating the need to travel to a dialysis centre.  There is mixed 

evidence suggesting that HD has a higher survival advantage over PD [262-267], and 

it is believed that survival differences vary substantially according to the underlying 

causes of ESRD instead [268].  Various techniques are used for PD.  In automated 

peritoneal dialysis (APD), a machine is needed to fill and drain patient’s abdomen.  

With continuous ambulatory peritoneal dialysis (CAPD), a patient does not require a 

machine and may even walk around with the dialysis solution in his abdomen.   

 

4.8.2 Aim 

The primary aim of this analysis was to enable a newly-diagnosed 36-year old 

Chinese female patient with diabetic ESRD to decide the mode of PD treatment, i.e., 

CAPD vs. APD.  She was recommended by her nephrologist to receive PD in view of 

her lifestyle, co-morbid conditions and financial status.  The incidence and prevalence 

of ESRD are well-known to be linked to the funding of dialysis [269].  Moreover, PD 

is better tolerated than HD, and she did not have recent abdominal wounds or surgery.  

Like the majority of new PD patients in Singapore, she was scheduled to dialyse 

regularly at a restructured hospital.  To manage her condition and lifestyle better, she 

also participated in a detailed and systematic PD training.    

The decision node was the use of a specific mode of dialysis (1. APD; 2. 

CAPD).  The chance nodes were occurrence of peritonitis and mortality.  PD 
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frequently results in peritonitis, an inflammation or infection of the abdominal cavity.  

This is usually caused by an infection gaining access through the drains placed in the 

abdominal cavity. Unless contamination persists, peritonitis usually does not progress 

and can be healed with proper treatment.  However, it might cause a lot of discomfort 

to the patient on dialysis and if not attended to properly, death may be the potential 

outcome.   

 

4.8.3 Data 

There were relevant local data concerning the occurrence of peritonitis among 

patients on CAPD and APD.  An on-going prospective observational study based on 

100 ESRD patients with diabetes (mean age: 63.1; gender: 64.3%; mean dialysis 

duration: 20.7 months) dialysed with APD or CAPD from 1 March 2001 to 31 July 

2006, was conducted.  It collected detailed information on patients’ demographics, 

albumin levels, comorbid conditions and development of peritonitis.   

 

4.8.4 Results & Decision 

Based on the recorded prospective data, the Bayesian Poisson regression 

model with prior Beta[1, 1] (3.22) showed that there was no significant difference in 

developing peritonitis among ESRD patients with DM between APD and CAPD, after 

adjusting for age, gender and conditions like IHD and cerebrovascular disease (Table 

4.24).  The exposure variable was time on PD. 

The patient’s probability of developing peritonitis with APD was 0.04 in 6 

months, 0.09 in 12 months and 0.18 in 24 months.  On the other hand, her probability 

of developing peritonitis was slightly higher with CAPD, i.e., 0.05 in 6 months, 0.11 

in 12 months and 0.21 in 24 months.  Gender was found to be the only significant 
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predictor.  As expected, there was no significant difference in developing peritonitis at 

different time frames between APD and CAPD.  

The patient’s influence diagram is depicted in Figure 4.10.  Her utilities were 

determined from an exponential function (risk tolerance: 52,200).  The most 

favourable and unfavourable outcome were free from peritonitis and occurrence of the 

complication in 2 years, respectively.  Computations show that she might prefer to 

dialyse with APD (expected utility: 0.48).   

 

4.8.5 Discussion 

Future decision analysis may involve information on mortality due to PD 

dialysis, especially for patients who are severely diseased and need to change the 

mode of dialysis or seriously in need of transplantation.  Based on published evidence, 

the survival rate of patients on dialysis was 90.6% at 1 year, 78.8% at 2 years, 62.2% 

at 4 years, and 40% at 8 years [266, 270].  However, the most relevant reference [264] 

suggested that diabetic patients on PD faced a 13.5% chance of death after 1 year, 

48% at 2 years, 66% at 3 years and 67% after 5 years.  Another article also found that 

diabetic patients’ chance of survival was lowered to 29% after 4 years [271].  

Unfortunately, there was no such confirmative and readily available evidence in 

Singapore. 

Reference also suggested that there could be an increase in the chance of 

survival should the patient switched to haemodiaylsis if her condition worsens [272].  

Kidney transplant is a life-saving alternative to dialysis.  It is expected that 90% of 

kidneys obtained from living donors are functioning properly 1 year after operation, 

and 3 to 5% of these kidneys stop functioning during each year that follows.  About 

70 to 90% of the kidneys from donors who has just died are functioning after 1 year, 
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and 5% to 8% stop functioning during each year that follows.  Some references 

showed that the survival rate at 2 years was as high as 95% [270].  Like some other 

countries, the main causes of death of ESRD patients in Singapore were 

cardiovascular disease and infection. 

From published records, about 58% of the total transplantation carried out in 

Singapore were cadaveric [272].  Kidney transplantation is a major operation where 

the donated kidneys is placed in the pelvis through an incision and is attached to the 

recipient’s blood vessels and bladder.  Rejection usually happen within 3 to 4 months 

after operation and the recipient must continue to consume immunodepressants 

throughout her life.  Compared to the general population, kidney transplant recipients 

are about 10 to 15 times more likely to develop cancer.  

The above results and discussion may form the basis for future studies, which 

may in turn help to formulate the medical guideline(s) concerning the treatment of 

end-stage renal failure. 
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Table 4.24: Non-informative Bayesian Poisson regression analysis on the 

occurrence of peritonitis for ESRD patients with diabetes 

 

 

Covariates 

 

Coefficient 

 

95% P.I. 

Gender * 

    Male  

    Female 

 

Age 

 

 

Reference 

1.67 

 

-0.03 

 

— 

0.19—3.16 

 

-0.07—0.02 

Cerebrovascular disease 

No 

Yes 

 

 

Reference 

0.74 

 

— 

-0.25—1.72 

Ischemic heart disease 

No 

Yes  

 

 

Reference 

1.26 

 

— 

0.03—2.50 

 

System 

1. APD 

2. CAPD 

 

 

Reference 

0.18 

 

— 

-0.90—1.26 

Intercept -7.48 -12.09— -2.86 

 

   

* Statistically significant at 5% 
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Figure 4.10: APD versus CAPD 
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4.9 Treatment of Asthma Patients at Special Centre 

   4.9.1 Aim 

A 15-year old female acute asthma patient seen at a local hospital wanted to decide if 

she required special attention at the Emergency Department Treatment Centre 

(EDTC), a short-stay observation unit designed for serving patients who require more 

evaluation during an emergency visit.  The EDTC was opened in 2001 to ease the 

overcrowding problem at the hospital.   

The proposed analysis involved one decision node (admission to EDTC vs. 

admission to ordinary ward) and two chance nodes (unplanned admission in 24 hours 

vs. discharge, and unplanned readmission within 4 weeks vs. no relapse).  Although 

the EDTC promises to deliver more specialised and high-quality care, the patient was 

more familiar with the ordinary ward where she would receive treatment from her 

familiar clinician.  

 

4.9.2 Data  

The data for encoding the necessary probabilities for the decision problem 

included 248 patients seen at EDTC from January to December 2006 (Table 4.25).  

Only aggregate data were available as the study was not initially designed for medical 

research.  There were also other sketchy but relevant published evidences [273-277] 

useful for setting up the priors for the proposed Bayesian model (Table 4.25).   

 

4.9.3 Results & Decision 

Based on hospital record, a total of 779 asthmatic patients required admission 

during the study period.  Of these, 248 were admitted to EDTC.  The Bayesian model 

(3.36), with 100 burn-ins and 500 iterations thereafter, was employed to combine the 
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prior evidences for encoding the probability for 24-hour discharge from EDTC.  

Based on the following Bayesian equation, the combined prior evidence was then 

updated with the collected hospital data: 

 

 

π(p) ∝ py(1-p)n-y × pa(1-p)b    

(4.3) 

 

 

where n is the total number of patients admitted to the hospital’s EDTC during the 

study, y the number of patients discharged within 24 hours and a and b are the beta 

parameters derived from the combination of prior published evidences.  The same 

scheme works for generating the probability for readmission within 4 weeks.   In the 

case of discharge within 24 hours at the common ward there was only one set of 

evidence available.  As such, the figures were updated directly with the hospital’s 

record with (4.3). 

The results are shown in Table 4.26.  Given the patients’ preferences and 

utilities, she should choose to be transferred to the common ward as her expected 

utility was 1.14.  This was higher than that with EDTC at 0.86.  As described in 

Figure 4.11, the patient had more preferences for the common ward. 
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Table 4.25: Evidences concerning emergency treatment centre 

 

 

 

 

Study 

EDTC  

 

Discharge within 

24 hours 

n/N 

 

 

Readmission 

within 4 weeks 

n/N 

Common Ward 

 

Discharge within 

24 hours 

n/N 

 

 

Readmission 

within 4 weeks 

n/N 

Prior:     

      O’Brien 1980 

 

328/434 4/434   

      Willert 1985 

 

35/52 5/52 16/51 11/51 

      Miescier 2005 

 

40/161 — — — 

      Levett 2006 

 

3379/4446 — — — 

      Arendts 2006 

 

— 29/211 — — 

Collected hospital 

data 2005-2006 

 

181/248 12/248 425/531 30/531 
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Table 4.26: Results of Bayesian analyses 

 

 

Recurrence 

p 

 

95% P.I. 

EDTC   

         Discharge within 24 hours 

 

0.73 0.68—0.79 

         Readmission within 4 weeks 0.05 0.04—0.06 

   

Common ward   

         Discharge within 24 hours 

 

0.77 0.72—0.82 

         Readmission within 4 weeks 

 

0.07 0.06—0.08 
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Figure 4.11: EDTC versus common ward 

 

 

 

 

 

 

 

 

 

 

EDTC 

Common ward 

Admission in 24 hours (0.27) 

Discharged (0.73) 

Readmission within 4 weeks 

(0.05) 

No relapse (0.95) 

Admission in 24 hours (0.23) 

Discharged (0.77) 

Readmission within 4 weeks 

(0.05) 

No relapse (0.95) 

Readmission within 4 weeks 

(0.07) 

Readmission within 4 weeks 

(0.07) 

No relapse (0.93) 

No relapse (0.93) 

Utility 

1.00 

0.00 

0.95 

0.80 

0.75 

0.50 

0.10 

0.30 
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4.10 Polychemotherapy for Treating Early Breast Cancer 

4.10.1 Background 

Breast cancer is notoriously known as the most common form of cancer among 

women.  The risk of breast cancer arises from a combination of genetic susceptibility 

and environmental factors, including old age, young age at puberty, family history, 

prolonged use of oral contraceptives or estrogen therapy, obesity after menopause, 

exposure to radiation, and presence of fibrocystic breast disease and certain genes 

(BRCA1 and BRCA2). 

In Singapore, about 55 per 100,000 Singaporean women were diagnosed with 

breast cancer from 1998 to 2002, and the incidence rates have increased by 3 times 

since 1968. The pattern of increase over time is also consistent across all ethnic 

groups. Interestingly, the age pattern for 1998-2002 suggests that the highest age-

specific incidence rate is occurring progressively later in life (35-60 years old) and 

54% of all cases occurred in women 50 years and above.  

However, fewer women actually die from the disease now, thanks to early 

detection and major advancements in chemotherapeutic drugs. Early breast cancer or 

carcinoma in situ (non-invasive cancer) is usually removed by surgery and 

chemotherapy (anti-cancer drugs) is used to prevent recurrence.  Currently, 

polychemotherapy (multiple cancer drugs) are at the forefront of therapy, and several 

estrogen-regulating drugs have been developed as well.  New drugs are also under 

development, including those derived from natural products.  

 

4.10.2 Aim 

While the potential for a new drug is thrilling, it may be more practical to 

work with what is currently available.  It is, therefore, timely to compare the 
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effectiveness of prolonged polychemotherapy (6-24 months) and the shorter treatment 

(3-6 months) in terms of recurrence and mortality.  The encoded probabilities would 

help a 52 year-old obese woman, who was trained as a clinician, to decide if she 

needed prolonged polychemotherapy after surgery.  She was diagnosed to have early 

breast cancer and the tumour was less than 2 cm in diameter and had not invaded the 

surrounding tissue or spread to other parts of the body before surgery.  The decision 

problem was simple in nature, involving 1 decision node (prolonged 

polychemotherapy vs. short polychemotherapy) and 2 chance nodes, namely first 

recurrence and all-cause mortality. 

 

4.10.3 Data 

A thorough literature search through MEDLINE and the Cochrane Library up 

to February 2007 [278-280] identified 11 published studies comparing the 

effectiveness of prolonged polychemotherapy and the shorter treatment (Table 4.27).   

Bayesian model (3.36-3.37) was applied to encode the probabilities for first 

recurrence and mortality for the two treatments.   For the analysis of recurrence, the 

prior for overall or combined proportions of prolonged polychemotherapy and shorter 

polychemotherapy were Beta[5, 5] and Beta[5, 4], respectively.  This reflected the 

belief that prolonged polychemotherapy was slightly more effective.  The prior for 

between-study precision was fixed as Exponential[1] for both cases. The burn-ins and 

updates of the MCMC procedure were set at 500 and 1,000, respectively.  On the 

other hand, the probability of death was expected to be 0.7 if the patient suffered 

relapse.   This was substantially reduced to 0.1 if the patient did not relapse.  The data 

was entered into Stata 9.0 for analysis. 
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4.10.4 Decision 

The published data are shown in Table 4.28.  Prolonged chemotherapy is 

shown to be more effective in reducing recurrence than the shorter treatment.  Due to 

the small number of studies involved, the 95% P.I.s are fairly wide.   

Given her preferences and utilities the breast cancer patient should choose the 

shorter treatment (Figure 4.12).  The expected utility with prolonged chemotherapy 

was 0.47, which is lower than that of the shorter treatment at 0.52. 

While prolonged chemotherapy is more effective, it is less tolerant than the 

shorter treatment. This was reflected in the patients’ self-assigned utilities.  This 

example also illustrates the fact that a “better” treatment from the clinician’s point of 

view may not necessarily provides patients with the highest satisfaction. 

 

4.10.5 Discussion 

Breast cancer is not a disease of modern society as it was recognised by the 

ancient Egyptians as early as 1600 BC. Unfortunately, many centuries have passed 

and still no acceptable cure has been discovered. Worst of all, breast cancer is now 

affecting as many as one in eight women during their lifetime. Not only is the 

diagnosis of breast cancer frightening, the therapies used to treat the disease are just 

as daunting—such as surgery or chemotherapy. 

As such, clinicians are also looking for ways to make current drugs more 

effective and less toxic. Patients with early stage breast cancer exhibit promising 

prognoses to polychemotherapy and have also shown to significantly reduce clinical 

recurrence among women of all age groups.  The above analyses, however, suggest no 

significant differences between prolonged polychemotherapy and shorter 

polychemotherapy in terms of recurrence and mortality.  
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Even though the exact cause of breast cancer has not been fully identified, 

diagnosis and treatment have improved dramatically in recent years, and many 

clinicians believe a cure is within reach.  
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Table 4.27: Published evidences concerning first recurrence with polychemotherapy  

for treating early breast cancer 

 

 

 

 

 

Study 

Recurrence 

 

Prolonged Polychemotherapy 

n/N 

 

 

Shorter Polychemotherapy 

n/N 

IBCSG VI-VII 

 

129/394 139/393 

INT Milan 7502 

 

134/215 133/219 

SAKK 27/76 

 

141/211 148/208 

SEC SG 1 

 

98/208 101/221 

SWOG 7827C 

 

115/225 129/220 

Boston 

 

95/148 109/151 

FASG GFEA 01 

 

76/207 87/193 

GBAG 3 Germany 

 

153/396 134/370 

GBAG 2 Germany 

 

111/239 120/242 

IBC SG VI-VII 

 

225/700 240/696 

Metaxas Athens 

 

27/106 33/142 
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Table 4.28: Results of Bayesian analyses 

 

 

Recurrence 

p 

 

95% P.I. 

Prolong chemotherapy (6-24 months) 

 

0.48 0.30—0.80 

Short chemotherapy (3-6 months) 

 

0.54 0.32—0.85 
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Figure 4.12: Prolonged chemotherapy versus shorter chemotherapy 
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Dead (0.7) 

Alive (0.3) 

Dead (0.1) 

Alive (0.9) 

Dead (0.1) 

Alive (0.9) 

Utility 

1.00 

0.00 

0.45 

0.85 

0.50 

0.20 

0.15 

0.05 
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CHAPTER 5 

DISCUSSION & CONCLUSION 

 

 

In medicine and in all other health sciences, there is a constant search for the “best” 

evidence [281].  The Bayesian models developed and applied in this dissertation serve to 

fulfil this aim.  In fact, the application of the proposed Bayesian probability-encoding 

models will bring considerable impact on the way EBM and medical science is practiced.   

The contribution of Bayesian ideas is not limited to the solving of a specific medical 

decision problem.  The Bayesian framework changes our views about current medical 

paradigm, scientific methods, inductive logic, nature of medical evidence, systematic 

review of medical evidences and the roles of patients, clinicians and EBM practitioners.   

 The following discussion revolves around a common theme, that is, what would 

clinical practice and EBM become if the Bayesian framework is adopted.  The discussion 

will also touch on the future directions of methodological research, in view of the latest 

developments in Bayesian statistics and computer-intensive techniques.  As mentioned in 

Chapter 1, EBM—fast becoming an encompassing field that integrates clinical practice 

with decision analysis—will serve as a good testing ground for new developments in 

decision analysis.  

 

5.1 The Scope of Medical Practice  

Modern medicine, better known as scientific medicine, western medicine or biomedicine, 

is based upon whatever its practitioners regard as “scientific knowledge”, which is 
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usually loosely defined as that which is objective, demonstrable, measurable, observable, 

reproducible, or technologically advanced.  While the concept of “what is scientific” 

changes over time and varies across the globe, scientific medicine adopts a more or less 

single-minded, materialistic approach which values accurate observations and 

unambiguous measurements.  It reduces all bodily functions and dysfunctions to 

mechanical and biochemical reactions, knowable material causes and structural flaws that 

can be studied in isolation from the sufferers.  Clinicians’ judgements and decisions are 

the results of such unambiguous, if not entirely flawless, rational deductions and 

empirical investigations.  

Such attitude has brought numerous achievements to mankind.  As long as the 

patient’s disease can be examined and accommodated within the boundary of current 

“scientific knowledge”, it has a good chance of providing a successful cure or at least 

some alleviation.  If it does not, scientific medicine may have little to offer and may even 

cause more harm to the sufferers.  The merits and demerits of contemporary medicine can 

be clearly demonstrated in the different remedial demands of acute and chronic illnesses.  

Scientific medicine is, on the whole, more efficient in treating acute illnesses.  But it 

offers less successful solutions to the chronic diseases (e.g., renal failure, diabetes, 

osteoarthritis, geriatric-related illnesses, immunological disorders, pituitary insufficiency 

and allergy) which require not only therapeutic interventions, but also long-term medical 

care for addressing the whole of patient’s prognosis and quality of life.  What are 

characterised and believed as effective cures may save or transform the lives of 

individuals, but their effects on long-term mortality and quality of life are less impressive 

and there may be devastating side-effects in using them.  Responsible surgeons are also 
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aware that many operations, once considered vital and valuable, turn out to be unhelpful, 

redundant or even detrimental to lives, let alone improving the patients’ general well-

being. Uncertainties pervade all aspects of healthcare, despite the awesome rapid 

advancement of medical science. 

Contemporary medical practice, at first glance, is moving from triumphs to 

triumphs.  It is now possible to examine at every cell in the body and to operate 

instruments by remote control, often far inside the body, perhaps on a heart or blood 

vessel.  Yet, there are, paradoxically, also times of growing dissatisfaction and the 

common public complaints are largely related to the fact that it has become highly 

institutionalised, excessively technological, unaffordable, alien and impersonal.  

Unintelligible jargon, expensive modus operandi, unfriendly medical hardware and 

ineffective communication with the clinicians make it more forbidden to the paying 

patients. Most medical decisions concerning patient care are usually made on behalf by 

the clinicians as the details involved are highly technical and this leaves little room for 

participation by the sufferers themselves. Somehow the more scientific medicine 

achieves, the less it satisfies. We are not only living in times preoccupied by the fear of 

unknown fatal diseases but also in fear of medical treatments.  It is fair to say that 

scientific medicine has many proven means of saving and improving life and these are 

constantly increasing in number and efficacy, given the current technological 

advancement.  However, clinicians must also accept the fact that, while their diagnosis 

and therapeutic methods are successful in general, they do not always provide answers in 

individual cases.     
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Contemporary medicine prides itself on being “scientific”, but is necessarily 

based on the availability of evidence, and clinicians’ judgement, interventionist skills and 

healing expertise.  This immediately creates a number of paradoxes.  Can personal and 

clinical experience be “scientific”?  What is the relationship between medicine and 

science and how does it influence the way medicine should be developed?  More 

specifically, why do clinicians vary so much in their practice?  The differences in their 

judgements and decisions—both about the general guidelines to adopt and what specific 

therapeutic actions to be taken in the course of treatment—are critical to their patients.  

One may question whether standardised guidelines of medical care, which breeds 

consistency among clinicians, can be established in principle, and whether strict 

adherence to such guidelines, if enforced, would ensure successful outcomes.  These 

issues offer much food for thought for the medical community to chew over.   

The root of these questions may be traced to the way medical decisions are made 

and our current understanding of the scope of scientific knowledge and evidence.  

Clinicians make numerous decisions related to their practice on a daily basis and these 

directly or indirectly impact the health and welfare of their patients.  The validity of their 

actions is based on evidential merits.  Evidence is not a decision itself; however, good 

evidence is required for making sound decisions.   

Such notion may bring considerable impact on the way EBM is practiced.  

Founded upon the principle that evidence should guide clinical practice, EBM has 

brought about numerous illuminating contributions to medical practice.  Common 

arguments in support of EBM include improvement in clinicians’ knowledge, better 

communication between clinicians and patients, and more effective use of scarce 



5. Discussion & Conclusion 

 208 

resources. Abandoning the use of uncritically and unsystematically evaluated clinical 

research, EBM also provides a useful framework for gathering, evaluating and 

disseminating medical evidence. However, it is somewhat surprise to learn that  EBM has 

not developed a new concept of evidence [28] despite making tremendous contributions 

to medical practice.  We need to have a broad vision of evidence that embraces the 

inherent complexity of EBM.  It is, therefore, suggested in this dissertation that evidence 

may refer to any explicit warranted reference for supporting or rejecting a hypothesis, 

claim or belief.  Evidence may be tangible or intangible and could exist in both objective 

and subjective states. With this in mind, the established definition that “evidence is a fact 

or datum which is used, or could be used, in making a decision or judgement or in 

solving a problem” [25] is somewhat limited and should be duly modified.   

The conventional notion of empirical observations only skims the surface of 

evidence.  Through the better understanding of medical evidence and the illustration of 

the Bayesian methodology, in which subjective opinions could be combined with 

objective evidence, this dissertation aims to provide an alternative approach to the current 

practice of EBM.  The application of various specific Bayesian models in decision 

analysis, as illustrated in the case studies in Chapter 4, is a small step towards the goal.   

However, a series of epistemological questions remains and there are many gaps 

of knowledge need to be filled urgently.  This requires a proper dissection of the unique 

nature of Bayesian EBM.   
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5.2 Bayesian Evidence-Based Medicine  

The application of Bayesian thinking in medical decision analysis and EBM is a key to 

unlock many of the questions outlined above.  It emphasises the working with “best” 

evidence, although the ideal concept of “best” poses a formidable challenge to the minds 

of most EBM practitioners. The traditional EBM practice suggests that the best evidence 

should be sought from confirmed scientific knowledge, laboratory research, randomised 

controlled clinical trials and large-scale observational studies.  It places opinions of 

respected authorities, based mainly on experience, or reports of expert committees, way 

below evidence obtained from “objective” and “scientific” studies.   

In reality, however, the scope of EBM is wider than what is perceived.  Results 

from case reports, quasi-experiments, qualitative research and descriptive and analytical 

studies concerning screening, diagnosis or prognosis have also contributed immensely to 

our knowledge.  This effectively points out that we have not fully understood the scope of 

scientific knowledge.  As such, the most fundamental issue concerning EBM is none but 

the reconstruction of a complete and unambiguous knowledge of methodology and 

evidence.  This, however, hinges on our understanding of what “science” is and should be. 

Science at large has been immensely influenced, if not completely dominated, by 

the empiricist school of thought—an approach that is primarily concerned with 

observable facts and eschew moral or metaphysical speculations.  Such stance qualifies 

observable phenomena as the only source of knowledge and clinicians are consistently 

reminded to respect observed evidence and warrantable factual records unconditionally.  

Empiricists use the criterion of verifiability to distinguish between medical conjectures, 

theories and decisions.  In the strictest sense, however, such criterion is not verifiable in 
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itself and with this spirit, the proposed Bayesian framework justifies that observations 

may not constitute the only source of knowledge.  Consequently, the empiricists’ position 

may not be tenable.  The Bayesian framework maintains that clinicians’ empirical 

knowledge must be organised according to a prior principle and the subjective nature of 

observation must not be neglected.  In essence, observation depends upon the clinician’s 

preconceptions. This offers an alternative and supplementary approach in knowledge 

acquisition and our picture of the world reflects both a priori organisation of perceptions, 

rational deductions, beliefs, opinions, past knowledge and observed evidence.   

Undoubtedly, the empiricist approach has served the scientific community well 

and will continue to do so.  It provides us with an objective framework for which 

clinicians formulate their decisions and defend their chosen actions.  However, one must 

begin to recognise the underlying limitations of this approach.  Contingent on the 

availability of observable evidence, it is often difficult, if not impossible, to formulate 

sound decision(s) in real practice.  In short, our current understanding of science, very 

much limited by the empiricists’ definitions, is far from perfect.  We need to broaden its 

scope. 

This dissertation offers an alternative approach to EBM by revising the current 

concept of medical evidence. Defining evidence as “an explicit warranted reference given 

in an appropriate and specific context for supporting or rejecting a hypothesis, claim or 

belief”, it encompasses any facts, data or information, whether weak or solid, obtained 

through experience, published results and observational and experimental research.  A 

reference qualifies as evidence so long as it is relevant either to the understanding of the 

problem or to the clinical decisions (diagnostic or therapeutic) made about the case.  In 
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Bayesian EBM, the “best” evidence should be combined with all components of decision 

making, such as expert opinion, knowledge from clinical studies, and patients’ 

preferences and values.   A primary factor affecting the decision-making process is prior 

clinical experience, self-evident intuition, published evidence and testimony from fellow 

clinicians.  These in turn form the basis for formulating expert opinion and generating 

objective evidence from research studies.  As such, the next burning question facing 

EBM practitioners is how to allow subjective expert opinions be combined with objective 

evidence. 

The proposed Bayesian framework offers a wide range of models for probability 

encoding and data analysis useful for medical decision analysis.  It unambiguously 

asserts that one always forms an incomplete picture of a phenomenon with his subjective 

horizon of understanding (prior).  Through observed evidence, the EBM practitioner 

develops more insights to the phenomenon encountered and the final interpretation is 

achieved with the fusing of the subjective and objective knowledge horizons. The 

posterior understanding incorporates the subject’s pre-knowledge and his revised 

understanding of the phenomenon.  During the process, the EBM practitioner tries to 

better understand the phenomenon and correct his “prejudice” caused by his prior beliefs 

and opinions.     

Through the Bayesian framework the synergism between subjective and objective 

evidence come into play, with the EBM practitioners and subject experts actively giving 

valid testimony and searching for relevant evidence useful for decision making. Bayesian 

EBM fulfils the primary and noble objective of the early advocates of EBM by making 

use of the most complete evidence available on diagnosis and treatment.    
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Unlike the conventional scientific approach popularised by the empiricists, 

Bayesian EBM recognises the special contributions of expert opinions in all aspects of 

data analysis. In fact, expert opinions may be viewed as the first-line evidence in decision 

making.  EBM practitioners should give utmost care to such opinions, recognising that 

instincts and independent thinking are invaluable assets of an experienced clinician.  

When presented with a decision problem, the subject expert should illustrate his unique 

prior understanding, which may be based on experience or previous evidence collected 

for a similar purpose.   

This dissertation supports Bayesian EBM not only because of its philosophical 

and pedagogical validity but also its appealing features of data analysis.  The Bayes’ 

Theorem [26] shows how inverse probability could be used to encode probability of 

antecedent events from the occurrence of the consequent event.  Because of this, 

Bayesian models are “optimal” in terms of post-data evaluation, given the evidence that 

actually occurred.  As a consequence, Bayesian models usually outperform the 

conventional quantitative models in the post-data setting.  

In particular, several of the specific models introduced in this dissertation are 

useful for evidential review and literature critique, which is the core business of EBM.  

These models may be applied for analysing existing individual data obtained from 

experimental or observational studies (historical as well as prospective), or for shedding 

light on the obscure meanings of aggregate published data.   

Like all academic disciplines, Bayesian EBM seeks to understand the unknown 

horizon and attempts to make predictions about it, in the hope of controlling the 

uncertainties and providing useful hints for decision making.  Unknown quantity is a 
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generic term referring to any value not known to the investigator in this instance.  The 

ideas that form the basis of the Bayesian approach are as follows: 

 

 

� since one is uncertain about the “true” value of the unknown quantities 

(commonly known as parameters in the statistical literature) one should consider 

them as random variables 

� the opinion-based priors, mainly elicited from widely-regarded experts, are 

subjective in nature  

� on the other hand, priors based on published evidence or recorded information are 

essentially objective 

� both sets of priors effectively measure how plausible the EBM practitioner 

considers the unknown values should be before observing/analysing the objective 

evidence 

� the EBM practitioner revises his beliefs, opinions, pre-understanding, prior 

knowledge after getting the evidences through the Bayesian models and this gives 

rise to a posterior distribution 

� the posterior forms the basis for evidentiary analysis and probability encoding for 

decision making 

 

Allowing the unknown parameters to be random quantities, one makes probabilistic 

statements about them conditional on the sample and prior evidence.  This is a very 

unique and attractive feature of Bayesian analysis, where decision making utilises 

probability statements as the basis for inference.  In fact, all probability statements about 
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the unknown quantities should be more appropriately interpreted as “degree of belief”.  

This contrasts significantly with the conventional approach in data analysis where 

inference probabilities are solely generated from observed data that believed to have 

occurred for the fixed parameters.   

The Bayesian framework coheres with the current notion of medical care, with 

provision of sound clinical decisions useful for patient healing as the primary concern.  

Medicine may be a body of scientific knowledge, but healing is a personal skill.  The 

term “healer” has implied many different meanings to cultures across the world 

throughout history.  In modern day, clinicians of different disciplines are responsible for 

the physical care of the ill or diseased.  Although their precise roles vary in part due to 

their type of training, they are responsible for the physical and spiritual care of the 

patients.  As such, healing is more an art than a science.  A good healer should 

demonstrate knowledge and competency about the sufferers’ conditions.  All decisions 

concerning healing require personal skills and the quality of decisions depend largely on 

the immense experience possessed by the clinicians. 

One philosophical question that puzzles EBM practitioners remains.  It is whether 

one can attain knowledge through the proposed Bayesian framework and whether it 

corresponds to scientific truth.  This dissertation demonstrates that knowledge production 

becomes possible only when evidence is interpreted by the subject.  It remains non-

informative if it is not interpreted.  The Bayesian framework also suggests that it is 

“legitimate” for the EBM practitioner to possess a pre-understanding horizon and allows 

the prior evidence be fused with objective data.  The differences in opinion among 

clinicians may be attributed to the inadequacy in current biomedical knowledge and 
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patients’ peculiar conditions, or simply due to their personal preferences and opinions 

that govern their judgement.  However, the end product (posterior) should be a richer and 

deeper understanding of the problem investigated, with meanings of the evidence 

adequately elucidated. This in turn helps the subject to become a knower. 

Following the above argument, scientific medicine is a conjectural discipline. 

Such acknowledgement has a profound influence on how decisions should be made in 

clinical practice.  First, recorded data is never the sole basis of medical decision-making.  

Second, clinicians should not view diseases merely as biological dysfunction and 

patients’ personal preconceptions must be incorporated in the decision-making process.  

Third, to generalise the above assertions, there is no pure objective evidence in practice.  

While many clinicians proudly claim that their decisions are based on scientific merits, 

the much-publicised variations in medical practice may nullify their claim. Realistically, 

all individuals experience different knowledge acquisition processes and their 

preconceptions would, to a large extent, influence how they interpret observable evidence.  

Depending on personal background and training, a clinician may rely on experience, 

intuition and subjective judgement alone, or may enhance these peculiar attributes with 

objective measures for identifying the decision(s) that would lead to the most desired 

results for his patients.  

 While the Bayesian framework acknowledges that knowledge may be developed 

from subjective means (priors involving expert opinions), there are categorical 

differences between knowledge and opinions, which merely indicates an attitude or belief 

towards a phenomenon. Knowledge implies having evidential justification.  It is through 

the revision process, as succinctly described by the Bayesian framework, that knowledge 
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evolves from opinions.  Moreover, knowledge possesses a certain property which opinion 

lacks; that is, the property of generalisability.  However, the attainment of knowledge 

helps to reshape or strengthen one’s expert opinions, which in turn gives rise to warranted 

knowledge.  In the event where published evidence is used as a prior, the Bayesian 

framework reflects that the advance of knowledge (posterior) consists in the modification 

of earlier knowledge (prior).  In a nutshell, the proposed Bayesian framework coheres 

with the way we learn. 

So what are the implications if the Bayesian framework is correct? How does it 

challenge the traditional views of scientific theories?  Traditionally, there are two major 

schools of thought with differing views concerning the nature of truth.  First, the realists 

maintain that truth is an agreement between theory and evidence.  The role of science is 

to identify and discover the entities that surround us and establish their relationships to 

one another.   A theory is deemed “true” when the entities it refers to and the relationship 

it describes correspond to real entities that exist in the world and their real relationships.  

The instrumentalists, on the other hand, believe that a theory is just an abstraction and 

representation of truth and it is meaningless to ask whether it corresponds to reality.  

What really matters is how much its predictions agree with observations.   

Like instrumentalism and realism, the Bayesian framework maintains that truth is 

important to us when we interpret evidence.  However, it argues that the realists and 

instrumentalists are fundamentally wrong in holding the belief that one can somehow 

observe the real world independently of their beliefs and theories.  In reality, our beliefs 

and pre-understanding often shape the way we interpret and gather evidence.  This 

implies that observations are value-laden and there is no absolute truth.  Different people 
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may interpret evidence differently.  More importantly, truth is relative and ever-changing 

and is open to more than one interpretation.  That does not mean there is no truth.  Rather, 

it does not exist independently of the perception of the researchers who try to understand 

it through evidentiary analysis.   

This dissertation asserts that “true interpretation” is value-laden, relative, transient 

and ever-changing, as it does not exist independently of the perception of the EBM 

practitioner.  Under the Bayesian framework, the true interpretation is the one that best 

coheres with both the prior evidence and objective evidence.  Truth may come to light 

from the union of these horizons, albeit an uncertain or a transitional one.  

Lastly, this dissertation does not intend to suggest that all problems concerning 

medical decision analysis are solved with the acceptance of the Bayesian framework.  To 

provide sound solutions to medical decision problems, clinicians must have solid 

information about the consequences of different choices and must be able to process that 

information accurately [282].  Unfortunately, many clinicians are unable to make 

consistent decisions with the use of medical evidence.  Previous research has also found 

that clinicians asked to consider an individual patient generally make different decisions 

than those asked to consider a group of comparable patients [283].  In fact, a recent 

article even suggests that trained statisticians may make fallacious judgements about 

evidence [284].    

However, one should not be over-pessimistic about the future of EBM.  EBM 

practitioners should take up the challenge to look for better evidence in support of their 

practice and communicate their ideas with their fellow clinicians to upgrade the current 

medical practice.  
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5.3 The Future Development of EBM  

A competent EBM practitioner should be an informed knower, an effective 

communicator with his patients and fellow clinicians, a devoted and passionate healer, a 

diligent evidence-seeker, an avid and adroit user of evidence, an alert critique and analyst, 

an insightful and rational decision-maker, a brave explorer, an imaginative methodologist, 

and a keen learner ready to embrace state-of-the-art quantitative techniques in his practice.  

An immediate implication of adopting the Bayesian framework to EBM practice is that 

practitioners need to upgrade themselves constantly.  An EBM practitioner must not only 

be competent in his field of specialisation and applications, but also able to guide his 

chosen experts to reveal their opinions useful for decision making.  With such valuable 

attributes, EBM investigators will be able to apply the “best” evidence available and 

practice in a setting where the conventional framework does not permit.  Recognising the 

importance and usefulness of incorporating priors in decision analysis, Bayesian EBM 

encourages practitioners to be more proactive in seeking evidential support from fellow 

clinicians.  Through more collaboration, EBM practitioners with different skills and 

expertise will be available for co-operation and discussion. 

 

5.3.1 Broaden Sources of Evidence 

In future, EBM will rely on an increasingly complex surveillance of evidence.  It 

will integrate elements from a much broader perspective.  The pragmatic benefits of 

integrating results from other health-related fields and complimentary and alternative 

medicine (nutrition, medical herbalism, Chinese traditional medicine, chiropractic 

therapy, homeopathy, osteopathy with naturopathy, etc.) is readily seen.  Acupuncture 
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has now been recognised by scientific medicine as a safer alternative to treat acute back 

sprain and conventional anaesthesia for frail patients to undergo the trauma of minor 

surgery.  A large number of studies involving human subjects and animals have also 

demonstrated that green tea polyphenols possess cardioprotective, neuroprotective and 

antimicrobial properties [285-290], provide protection against untraviolet light-induced 

DNA damage, ageing, obesity and dental caries [291-293], and may even help to improve 

the effectiveness of chemotherapy in treating cancers as a synergistic agent.  In order to 

identify the “best” evidence, EBM practitioners need to consider more sources of 

evidence. 

Following a similar line of argument, clinical case reports will play a more 

important role in the future of Bayesian EBM.  Clinical experience—the first and 

foremost source of medical expert opinions—depends heavily on the observation of 

clinical case reports.  Long been recognised as the “special cases that advance the 

knowledge, research and practice of medicine” [294], case reports have been familiar 

elements of medical journals.  Unlike extensive research such as randomised controlled 

trial, cohort study and case-control study, case reports published in medical journals, in 

one form or another, usually comprise much fewer subjects.  Although the results are not 

generalisable, they are the only source of evidence about rare diseases.  Where else can a 

clinician turn to for guidance and inspiration while treating such unusual and unfamiliar 

diseases?  There are no existing guidelines which the clinicians may follow.  Case reports, 

however limited, may also help EBM practitioners to develop hypotheses for further 

studies.  This also means that case reports may serve to formulate the objective priors for 

Bayesian analyses.  Therefore, case reports should form an integral part of a 
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comprehensive database together with evidences generated from full-scale research 

studies. 

Being able to draw on more than one system of knowledge means that EBM 

practitioners are exposed to more useful and relevant evidence for identifying alternatives 

for medical decision making.  In addition, it also enriches the knowledge base of EBM 

practitioners.  Undoubtedly, this offers more alternative treating plans for patients in the 

future. 

In fact, patients will become a more integrated part of decision making.  

Disadvantaged patients, like the rest of the healthy citizens and as equals in their 

humanity, have their claim to engage in their care.  EBM will be viewed as “medicine 

with a human face”, making a place for itself somewhere between bedside clinical work 

with the patient and decision making [295].  Favoured by health policy-makers [296], 

EBM decisions will be increasingly accountable in courts of law [297-298].  

 

5.3.2 Power Priors 

Being evidence-based, EBM’s success will be evaluable and critically evaluated.   

This in turn propels continual methodological advancement.  To excel in his endeavours, 

a methodologist must continue to sharpen and upgrade his analytical tools.  One expects 

to witness more exciting and ground-breaking activities to take place in the applications 

and development of Bayesian methodology in the near future.   

Recognising that prior elicitation plays a crucial role in Bayesian analysis, the 

power prior model [299-300] enables analysts to construct informative prior based on 

historical data.  It takes the following general form: 
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g(α | evidence, a0) ∝ h(α) × 0a]evidence|[L α     

(5.1) 

 

 

where h(α) is the initial prior for α before observing historical evidences.  The parameter 

a0, usually ranges from 0 to 1, serves to weight the historical evidences and therefore 

controls the heaviness of the tail of the prior for α.  By setting a0=1, one suggests that the 

historical evidences are crucial in determining the current evidences and the model (5.1) 

corresponds to the posterior distribution of α from previous studies.  If a0=0, then (5.1) 

does not depend on historical evidences.   The model may be completed by specifying a 

prior for a0, which usually assumes a beta distribution or a truncated normal or gamma 

distribution.  Since its development, several attempts were made to facilitate relational 

analysis based on historical evidences.  These include the applications in generalised 

linear mixed model, logistic regression and survival analysis [101].   

 

5.3.3 Beta Regression 

A more recent methodological development which offers good opportunity for 

path-breaking discoveries lies with the application of beta distribution as the likelihood 

for observed evidences.  Beta distribution, well-known for its versatility as it can model 

data of all shapes, has a rather unjustifiable limited use in contemporary conventional and 

Bayesian analyses.  As described in Chapter 3, most of the Bayesian models make use of 

beta distribution as a default conjugate pdf.  As a bounded distribution, however, it has 

many potential applications in medical decision analysis. Many medical outcomes are 
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bounded in nature (proportions, percentages, etc.), so it may be inappropriate to consider 

unbounded distributions as a close approximation.  In fact, even time to event data are 

bounded as a life cannot go on indefinitely.     

Sadly, beta distribution is only beginning to gain popularity among conventional 

statisticians in recent years.  At its infant stage, most statisticians focus on the application 

of standard beta distributions (0≤y≤1; a, b>0) [301-302].  However, this dissertation 

advocates the use of the more general 4-parameter beta distribution for handling bounded 

outcome (y) via a relational model [303]: 
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where a and b are shape parameters, c and d the bounds of y (location parameters), and 

B(a, b) the beta function.  The mean and variance of the distribution are E[Y] = 

c+(d−c)a/(a+b) and V[Y] = (d−c)2ab/[(a+b)2(a+b+1)] = (E[Y]−c)(d−E[Y])/(a+b+1), 

respectively.  Note that the variance is a function of the mean and a dispersion parameter 

(a+b).  With the standard form (i.e., c=0, d=1) as its special case, the proposed 

distribution is extremely flexible as it allows y be bounded on any interval.  It is 

applicable for modelling all bounded outcomes, with proportion as its special case.   

To estimate the effects of predictors on y, one specifies the following link 

function:   

 

 

E[Y] = µ = c + (d−c) ββββ
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where ββββ is a vector of unknown parameters and x the observations of the predictors.  The 

dispersion is φ = αααα'ze  and x and z, may be distinct.  The formulation offers a direct 

interpretation of the predictors’ effects upon E[Y] and dispersion.  As readily seen, one 

advantage with the proposed model is that it handles dispersion explicitly. Following the 

above discussion, the variance function can be easily derived: 

 

 

V[Y] = 
1

)d)(c(
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           (5.4) 

 

For a fixed E[Y], a large dispersion results in a small V[Y]. After some algebraic 

manipulations, the shape parameters can be specified as follows: 
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where Γ(•) is gamma function. Following conventional wisdom, analysts would estimate 

ββββ by maximising the log likelihood, namely ∏
=

n

1i

i )b,a,d,c;y(fln . But the Bayesian 
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analysts must identify the appropriate priors for the parameters in analysis.  Though 

daunting, this promises to be an exciting field for exploration in methodological research.  

Other bounded distributions [304] may also be considered.    

 

5.3.4 Generalised Linear Latent and Mixed Model 

Another potential area of research in probability encoding with advanced 

statistical techniques lies with the enhancement of the hugely popular generalised linear 

latent and mixed model (GLLAMM) [305-309].  As a class of multilevel latent variable 

models for outcomes of mixed type, GLLAMM (www.gllamm.org) seeks to unify all 

multivariate statistical models, which include GLM [91], survival analysis [97], 

hierarchical models [107], latent class analysis [310] and structural equation models 

[311], etc.   

The GLLAMM is specified with: 

 

� the conditional expectation(s) of the outcome given the latent and observed 

covariates 

� structural equations for the latent variables on covariates 

� the distribution of the latent variables  

 

As in the Bayesian models for synthesising evidences from various sources, GLLAMM 

includes latent or unobserved variables that are interpreted as random effects.  Moreover, 

the latent variables can very at different levels.  The current version of GLLAMM is run 

with Stata’s maximum likelihood commands, augmented with the adaptive quadrature. 
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One may view the bounded regression model with beta distribution (5.6), 

discussed within the context of GLM, as a special case of GLLAMM.  It will also be a 

great achievement if a Bayesian version of GLLAMM is developed. 

 

5.3.5 Bayesian Belief Network 

The idea of applying networks to represent probabilistic information was 

conceived in the 1960s [312] and evolved rapidly in 1980s, thanks largely to the 

advances derived from the seminal works of Pearl (1986, 1988, 1995) [313-315].  The 

Bayesian belief networks (BBN) have developed at the interface between statistics, 

artificial intelligence and expert systems.   

A BNN consists of a network of nodes connected by direct links, with a 

probability function attached to each node [20, 316], which represents a variable.  Each 

node is in turn made up of states, or a set of probable values for each variable.  Beliefs 

are the probability that a variable will be in a certain state based on the addition of 

evidence in a current situation.  Supported by the Bayes’ rule, every node also has a 

conditional probability table associated with it.  The nodes are connected to show 

causality with an arrow indicating the direction of influence.  As such, BNNs are 

graphical models that encode probabilistic relationships among variables of interest 

[317].   

The BNNs are extremely useful when the information is vague, incomplete, 

conflicting and uncertain.  For example, the consulting experts for a particular medical 

decision problem may be uncertain about his knowledge.  By providing a structured 

combination of diverse lines of evidences, BNNs are able to address many real-life 
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medical decision problems and serve as decision-support tools helpful for combining 

expert knowledge with available empirical data [318].  It is now possible for both the 

structure and parameters of a BNN be learnt directly from a data set, and for this reason 

BNNs are being increasingly applied in a wide variety of medical domains where 

automated reasoning is required.  The most popular expert system using BNN in 

pathology is PATHFINDER [319].  A good introduction to BNN and a brief history of its 

development is found in reference [320].   

From the statistical point of view, BNNs are indispensable tools for dealing with 

high dimensional data problems as they allow a reduction in the complexity of the 

phenomenon under study by representing joint relationships between a set of variables 

through conditional relationships.  Besides applying for making decisions, statisticians 

have also found another area of application in BNN [321-322], thanks to its unique 

hierarchical ordering structure.  It is now possible to develop an automated data 

imputation method whose main goal is to preserve as much as possible the joint 

distribution specified in the BNN.  This may provide great help to the data missing 

problems which pervade most EBM analyses.   Most data imputation techniques are 

satisfactory only in the univariate scenario, but BNNs are able to preserve multivariate 

statistical relationships and logical constraints in the data (logical consistency) 

concurrently.  As such, BNN is viewed as a consistent data imputation technique.   
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5.3.6 Data Mining 

More recently, an alternative approach to statistics in constructing predictive 

models useful for probability encoding have been rapidly developed.  The emerging field 

of data mining is a blend of statistics, artificial intelligence and database research [323].  

To be specific, data mining is a technology that blends conventional data analysis 

methods with sophisticated algorithms for processing large volumes of data.  It has also 

opened up new and exciting opportunities for data exploration and analysing old data in 

new ways.  In fact, BNNs are recognized as a data mining tool by the relevant community. 

The two disciplines of statistics and data mining have common aims in that both 

are concerned with discovering structure in data [324].  Most statisticians, however, are 

concerned with primary data analysis, that is, the data are collected with a particular 

question or a set of questions in mind [325].  On the other hand, data mining is entirely 

concerned with secondary data analysis, which aimed at finding unsuspected 

relationships that are of interest or value to the database owners [325].  Data mining 

techniques are able to cope with large data bases, which may contain contaminated 

information.  Moreover, superabundance of data might render all statistical tests 

meaningless as they will lead to a significant result even with a minute effect.  Very large 

data sets are unlikely to conform to the i.i.d assumption which underlies most statistical 

models.  It is much more likely that some regions of the data space will be sampled more 

heavily than others at different times.  Last but not least, very large data sets are likely to 

have been subjected to selection bias of various kinds [325] and may not conform to the 

statisticians’ idealised modelling assumptions.  The goal of applying data mining 
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techniques in biomedical research is to promote the optimum use of diverse data sets by 

enabling EBM researchers to make sound decisions.  

As a growing area of research interest, the intersection and interaction between 

data mining and statistics is inevitable.  Many useful data mining techniques are now 

available for dealing with the prediction problems [326-329], which are of paramount 

interest to medical decision analysts.  Practical guides on solving data analytic problems 

with both disciplines can be found in references [329-332].  The applications of data 

mining will help to enrich the field of statistics.   
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5.4 A Final Word 

The field of medicine has been significantly refined and restructured in recent years.  

Most of the new challenges are related to its direction and methodology.  With emphasis 

on evidential utilisation, EBM opens the gate to further refined and more complete 

medical research.  Accumulated from one generation to the next, the wealth of medical 

evidence contained in published journals will continue to grow with time.  The immediate 

task is then to make good use of the existing evidences and apply them in decision 

making, while setting sight on validating these evidences under more stringent conditions 

and seeking new ones in unexplored fields.  This sets the overall future direction for 

EBM practitioners. 

The next challenge is to break new grounds in methodology relevant to EBM 

practice.  As discussed earlier, methodology is required to establish how new knowledge 

may be gained.  A methodology is a system of principles and general ways of organising 

and structuring theoretical and practical activities.  Scientific progress is not limited to the 

accumulation of knowledge.  It is also a process of evolving new means of seeking and 

acquiring knowledge.  The Bayesian methodology, which captures the essence of 

knowledge acquisition [333], should therefore be seen as an invaluable asset to EBM.   

The objectivity of the conventional scientific approach has been obtained by 

disregarding any prior knowledge about the phenomenon under investigation.  However, 

some form of expert opinion can be quantified and applied in research.  It may also 

provide an angle in which one may adopt for interpreting the collected evidence.  While a 

clinician may remain as objective as possible, he is entitled to have a personal stance.  In 

fact, clinical instincts and independent thinking—developed through experience and 
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coloured by personal values—should be valued as the prized attributes of a capable 

clinical decision-maker.  It is also a waste of information if such expert opinions are 

ignored in analysis.  Therefore, a competent methodologist should recognise the 

importance of such opinions and utilise them to the fullest in analysis.  The current 

framework of EBM—devoted to downsize the malpractice of authoritarianism and 

consequently gives an utmost respect for evidence—places an extremely low value on 

expert opinion.  Moreover, Bayesian analyses may be “objectified” with the use of non-

informative priors.  The Bayesian framework is thus strongly advocated for EBM 

practice as a unified framework for actions in the face of uncertainty. 

Since its inception EBM seeks to revolutionise the organisation and structure to 

medical decisions.  While EBM does not replace clinical skills and experience, it 

organises, expands and completes them. It also sets the path for future medical practice 

and calls for a systematic and integrated approach in searching for the relevant medical 

evidence for improving our current diagnosis and treatment.  EBM reflects a probabilistic 

shift in today’s paradigm of medicine dealing with a myriad of uncertainties.  While 

some clinicians may consider EBM as evolutionary rather than revolutionary, no one can 

dispute the fact that it has brought about a new thinking in medicine.   

The Bayesian framework promises to provide a new dimension to this revolution.  

The new millennium has already witnessed a burst of research activities in applying 

Bayesian methods to solve medical problems [14, 102-103, 113, 334-338]. Illuminating 

the present and pointing to the future, Bayesian models will continue to excite EBM 

researchers in all areas of research and decision making. 



 

 231 

BIBLIOGRAPHY 

1. Howard, R.A. (1988).  Decision analysis: practice and promise.  Management Science, 

34, 679-695. 

 

2. Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic 

behaviour.  Princeton: Princeton University Press. 

 

3. Stirling, W.C. (2003). Satisficing games and decision making: with applications to 

engineering and computer science.  Cambridge: Cambridge University Press. 

 

4. LaValle I.H. (1978). Fundamentals of decision analysis. New York: Holt, Rinehart 
and Winston.  

 

5. Shachter, R.  (1986). Evaluating influence diagrams.  Operations Research, 34, 871-

882.  

 

6. Clement, R.T., & Reilly, T. (2001). Making hard decisions with DecisionTools.  

Australia: Duxbury.   

 

7. Sox, H.C., Blatt, M.A., Higgins, M.C., & Marton, K.I. (1990). Medical decision 

making.  Singapore: PG Publishing Pte Ltd. 

 

8. Tversky, A., & Kahneman, D. (1974).  Judgement under uncertainties: heuristics and 

biases.  Science, 185(4157), 1124-1131. 

 

9. Kahneman, D., & Tversky, A. (1979).  Prospect theory: an analysis of decision under 

risk. Econometrica, 47, 263-291. 

 

10. Tversky, A., & Kahneman, D. (1981).  The framing of decisions and the psychology 

of choice.  Science, 211(4481), 453-458. 

 

11. Von Winterfeldt, D., & Edwards, W. (1986).  Decision analysis and behavioural 

research.  Cambridge: Cambridge University Press. 

 

12. Hogarth, R. (1987).  Judgement and choice. New York: Wiley. 

 

13. Sackett, D.L., Rosenberg, W.M.C., Gray, J.A.M., Haynes, R.B., & Richardson, W.S. 

(1996).  Evidence based medicine: what is and what it isn’t.  British Medical Journal, 

312(7023), 71-72. 

 

14. Prevost, T.C., Abrams, K.R., & Jones, D.R. (2000). Hierarchical models in 

generalised synthesis of evidence: an example based on studies on breast cancer 

screening.  Statistics in Medicine, 19, 3359-3376. 

 



 

 232 

15. Paffenbarger, R.S., Hyde, R.T., Wing, A-L., & Hsieh, C-C. (1986).  Physical activity, 

all cause mortality, and longevity of college alumni.  New England Journal of 

Medicine, 314(10), 605-613. 

 

16. Lissner, L., Bengtsson, C., Björkelund, C., & Wedel, H. (1996). Physical activity 

levels and change in relation to longevity: a prospective study of Swedish women. 

American Journal of Epidemiology, 143(1), 54-62. 

 

17. Van Saase, J.L.C.M., Noteboom, W.M.P., & Vandenbroucke, J.P. (1990). Longevity 

of men capable of prolonged vigorous physical exercise: a 32 year follow up of 2259 

participants in the Dutch eleven cities ice skating tour.  British Medical Journal, 

301(6790), 1409-1411. 

 

18. Lifson, M.W. (1972). Decision and risk analysis for practicing engineers. Boston: 

Cahners Books. 

 

19. Silverman, M.E., Murray, T.J., & Bryan, C.S. (2002). The quotable Osler. 

Philadelphia: American College of Physicians. 

 

20. Pearl, J. (2000). Causality: models, reasoning, and inference.  Cambridge: Cambridge 

University Press. 

 

21. Neyman, J. (1950). First course in probability and statistics. New York: Henry Holt. 

 

22. Breiman, L. (1992).  Probability. Philadelphia: Society for Industrial and Applied 

Mathematics. 

 

23. Billingsley, P. (1995). Probability and measure. New York: Wiley. 

 

24. Rosenthal, J.S. (2003).  A first look at rigorous probability theory.  Singapore: World 

Scientific. 

 

25. McQueen, D.  (2003). Strengthening the evidence base for health promotion.  Health 

Promotion International, 16(3), 261-268.  

 

26. Bayes, T.  (2002). An essay towards solving a problem in the doctrine of chance.  In: 

Swinburne, R., editor.  Bayes’s Theorem.  Oxford: Oxford University Press. 

 

27. Miller, D.W., & Miller, C.G. (2005). On evidence, medical and legal. Journal of the 

American Physicians and Surgeons, 10(3), 70-75. 

 

28. Straus, S.E., & McAlister, F.A.  (2000). Evidence-based medicine: a commentary on 

common criticisms. Canadian Medical Association Journal, 153(7), 837-841. 

 

29. Tiwari, L., & Puliyel, J.M.  (2004). Truth and evidence based medicine: spin is 

everything.  British Medical Journal, 329(7473), 1043. 



 

 233 

 

30. Silverman, W.A. (1999). Where’s the evidence—debates in modern medicine.  

Oxford: Oxford University Press. 

 

31. Cramér, H. (1963). Mathematical methods of statistics.  Princeton: Princeton 

University Press. 

 

32. Rao, C.R. (1973). Linear statistical inference and its applications. New York: Wiley. 

 

33. Lehmann, E. (1986). Testing statistical hypothesis. New York: Wiley. 

 

34. Neter, J., Kutner, M.H., Nachtsheim, C.J., & Wasserman, W. (1996).  Applied linear 

statistical models.  Boston: McGraw-Hill. 

 

35. Gadamer, H.G. (2006).  Truth and methods.  London: Continuum. 

 

36. Bontekoe, R. (1996). Dimensions of the hermeneutic circle.  New Jersey: Humanities 

Press International. 

 

37. Norton, J.D. (2007).  Probability disassembled.  The British Journal of the Philosophy 

of Science, 58(2), 141-171. 

 

38. Nau, R.F. (2001). De Finetti was right: probability does not exist.  Theory and 
Decision, 51(2-4), 89-124. 

 

39. De Finetti, B. (1974). Theory of probability.  New York: Wiley. 

 

40. Ramsey, F. (1950). Foundations: essays in philosophy, logic, mathematics and 

economics.  London: Routledge.  

 

41. Savage, L.J. (1954).  The foundation of statistics.  New York: Wiley. 

 

42. Anscombe, F.J., & Aumann, R.J. (1963). A definition of subjective probability.  

Annals of Mathematical Statistics, 34, 199-205. 

 

43. Kadane, J.B., & Winkler, R.L. (1988).  Separating probability elicitation from utilities.  

Journal of the American Statistical Association, 83, 357-363.  

 

44. Chaloner, K.  (1996). Elicitation of prior distributions.  In: Berry, D.A., & Stangl, 

D.K., editors.  Bayesian Biostatistics, 141-156. New York: Marcel Dekker. 

 

45. Kadane, J.B., & Wolfson, L.J.  (1996). Priors for the design and analysis of clinical 

trials.  In: Berry, D.A., & Stangl, D.K., editors.  Bayesian Biostatistics, 157-184.  

New York: Marcel Dekker. 

 

 



 

 234 

46. Kadane, J.B., & Wolfson, L.J. (1998). Experiences in elicitation.  The Statistician, 

47(1), 3-19. 

 

47. Karni, E., & Safra, Z. (1995). The impossibility of experimental elicitation of 

subjective probabilities.  Theory and Decision, 38(3), 313-320. 

 

48. O’Hagan, A. (1998). Eliciting expert beliefs in substantial practical applications.  The 
Statistician, 47(1), 21-35. 

 

49. Huber, F. (2005). Subjective probabilities as basis for scientific reasoning?   Theory 
and Decision, 56(1), 101-116. 

 

50. Dongen, S.V. (2006).  Prior specification in Bayesian statistics: three cautionary tales.  
Journal of Theoretical Biology, 242(1), 90-100. 

 

51. Chan, S-P., & Poh, K-L. (2005).  Application of Bayesian linear regression in 

biomedical research.  Singapore General Hospital Proceedings, 13(3), 154-161. 

 

52. Laplace, P. (1812). Théorie analytique des probabilitiés. Courcier, 387. 
 

53. Williamson, J. (2007).  Inductive influence.   Theory and Decision, 58(4), 689-708. 

 

54. Berger, J. (2006). The case for objective Bayesian analysis.  Bayesian Analysis, 1(3), 
385-402 

 

55. Bayarri, M.J., & Berger, J. (2004). The interplay between Bayesian and frequentist 

analysis.  Statistical Science, 19, 58-80. 

 

56. Jeffreys, H. (1961).  Theory of probability.  London: Oxford University Press. 
 

57. Jaynes, E.T. (2003). Probability theory: the logic of science.  Cambridge: Cambridge 

University Press.   

 

58. Fienberg, S.E. (2006). When did Bayesian inference becomes “Bayesian”? Bayesian 

Analysis, 1(1), 1-40. 

 

59. Goldstein, M. (2006). Subjective Bayesian analysis: principles and practice.  

Bayesian Analysis, 1(3), 403-420. 

 

60. Christen, J.A. (2006). Stop using “subjective” to refer to Bayesian analysis. Bayesian 
Analysis, 1(3), 421-422. 

 

61. Draper, D. (2006). Coherence and calibration: comments on subjectivity and 

“objectivity”. Bayesian Analysis, 1(3), 423-428. 

 



 

 235 

62. Feinberg, S.E. (2006). Does it make sense to be an “objective Bayesian”?  Bayesian 

Analysis, 1(3), 429-432. 

 

63. Kadane, J.B. (2006). Is “objective Bayesian analysis” objective, Bayesian, or wise? 
Bayesian Analysis, 1(3), 433-436. 

 

64. Kass, R.E. (2006). Kinds of  Bayesians. Bayesian Analysis, 1(3), 437-440. 
 

65. Lad, F. (2006). Objective Bayesian statistics…Do you buy it? Should we sell it?  

Bayesian Analysis, 1(3), 441-444. 

 

66. O’Hagan, A. (2006). Science, subjectivity and software. Bayesian Analysis, 1(3), 
445-450. 

 

67. Wasserman, L. (2006). Frequentist Bayes is objective. Bayesian Analysis, 1(3), 451-

456. 

 

68. Tibshirani, R. (1989).  Noninformative priors for one parameter of many. Biometrika, 

74, 604-608. 

 

69. O’Hagan, A. (1994). Kendall’s advanced theory of statistics, Vol. 2B. Bayesian 
inference. London: Arnold. 

 

70. Hampel, C.G. (1945). Studies in the logic of confirmation.  Mind, 54, 1-26. 

 

71. Good, I.J. (1960). The paradox of confirmation.  The British Journal of the 

Philosophy of Science, 11, 145-149. 

 

72. Vranas, P.B.M. (2004). Hempel’s raven paradox: a lacuna in the standard Bayesian 

solution.  The British Journal of the Philosophy of Science, 55, 545-560. 

 

73. Dowe, D.L., Gardner, S., & Oppy, G. (2007). Bayes not bust! Why simplicity is no 

problem for bayesians.  The British Journal of the Philosophy of Science, 58(4), 709-

754. 

 

74. Bernado, J.M. (1997). Statistical inference as a decision problem: the choice of 

sample size.  The Statistician, 46(2), 151-154. 

 

75. Weiss, R. (1997). Bayesian sample size calculations for hypothesis testing.  The 

Statistician, 46(2), 185-192. 

 

76. Joseph, L., & Bélisle, P. (1997). Bayesian sample size determination for normal 

means and difference between normal means.  The Statistician, 46(2), 209-226. 

 



 

 236 

77. Rahme, E., Jospeh, L., & Gyorkos, T.W. (2000). Bayesian sample size determination 

for estimating binomial parameters from data subject to misclassification.  Journal of 

the Royal Statistical Society Series C (Applied Statistics), 49(1), 119-128.  

 

78. Wiper, M.P., & Pettit, L.I. (1994). Bayesian estimation of the binomial parameter n.  

Applied Statistics, 43(1), 233-236. 

 

79. Jeevanand, E.S. (1997). Bayes estimation of P(X2<X1) for a bivariate Pareto 

distribution.  The Statistician, 46(1), 93-99. 

 

80. Bolstad, W.M. (2004). Introduction to Bayesian statistics. New Jersey: Wiley. 

 

81. Box, G., & Tiao, G. (1992). Bayesian Inference in statistical analysis. New York: 

Wiley. 

 

82. Basu, S., Banerjee, M., & Sen, A. (2000). Bayesian inference for Kappa from single 

and multiple studies.  Biometrics, 56(2), 577-582. 

 

83. Bernado, J.M., & Perez, S. (2007). Comparing normal means: new methods for an old 

problem.  Bayesian Analysis, 2(1), 45-58. 

 

84. Bernardo, J.M., & Smith, A.F.M.  (1994). Bayesian theory.  Chichester: Wiley. 

 

85. Kadane, J.B. (1996). Bayesian methods and ethics in a clinical trial design. New 
York: Wiley. 

 

86. Johnson, V.E. (2007). Bayesian model assessment using pivotal quantities. Bayesian 

Analysis, 2(4), 719-734. 

 

87. Bertolino, F., Racugno, W., & Moreno, E. (2000). Bayesian model selection approach 

analysis of variance under heteroscedasticity.  Journal of the Royal Statistical Society 

Series D (The Statistician), 49(4), 503-517. 

 

88. Maddala, G.S. (1977).  Econometrics. Singapore: McGraw-Hill. 

 

89. Koop, G. (2003). Bayesian econometrics. Chichester: Wiley… 

 

90. Press, S.J. (1989). Bayesian statistics: principles, models, and applications.  New 
York: Wiley. 

 

91. McCulloch, P., & Nelder, J.A.  (1989). Generalized linear models.  London: 

Chapman & Hall, 2
nd
 ed. 

 

92. Dipak, D.K., Ghosh, S.K., & Mallick, B.K. (2000).  Generalized linear models: a 

Bayesian perspective.  New York: Marcel Dekker, Inc. 

 



 

 237 

93. Dey, D.K., & Rao, C.R. (2005).  Bayesian thinking: modelling and computation.  The 

Netherlands: Elsevier. 

 

94. Congdon, P. (2001).  Bayesian statistical modelling.  Chichester: Wiley. 

 

95. Berry D.A., & Stangl, D.K. (1996).  Bayesian biostatistics.  New York: Marcel 

Dekker. 

 

96. Gill, J. (2002). Bayesian methods: a social and behavioural sciences approach.  Boca 
Raton: Chapman & Hall. 

 

97. Hosmer, D.W., & Lemeshow, S.  (1999). Applied survival analysis: regression 

modelling of time to event data.  New York: Wiley. 

 

98. Collette, D. (2003). Modelling survival data in medical research.  London: Chapman 

& Hall. 

 

99. Cleves, M.A., Gold, W.W., & Gutierrez, R.G. (2002). An introduction to survival 

analysis using Stata.  Texas: Stata Press. 

 

100.  Cox, D. (1972). Regression models and life tables. Journal of the Royal Statistical   

Society Series B, 34, 187-220. 

 

101. Ibrahim, J.G.  Chen, M-H., & Sinha, D. (2001). Bayesian survival analysis. New 

York: Springer Verlag. 

 

102. Volinsky, C.T., Madigan, D., Raftery, A.E., & Kronmal, R.A. (1997). Bayesian 

model averaging in proportional hazard models: assessing the risk of a stroke.  

Applied Statistics, 46(4), 433-448. 

 

103. Soliman, A.A. (2000). Bayes prediction in a Pareto lifetime model with random 

sample size.  Journal of the Royal Statistical Society Series D (The Statistician), 

49(1), 51-62 

 

104. Sinha, D., & Dey, D.K. (1997).  Semiparametric Bayesian analysis of survival data. 

Journal of the American Statistical Association, 92, 1195-1212. 

 

105. Lindsay, J.K. (1993). Models for repeated measurements.  Oxford: Oxford 
University Press.   

 

106. Hardin, J.W., & Hilbe, J.M. (2001). Generalized linear models and extensions. 

Texas: Stata Press.  

 

107. McCulloch, C.E., & Searle, R.S. (2001). Generalized, linear and mixed models. 

New York: Wiley. 

 



 

 238 

108. Hardin, J.W., & Hilbe, J.M. (2003).  Generalized estimating equations.  Boca 

Raton: Chapman & Hall/CRC Press. 

 

109. Gelman, A., & Hill, J. (2006). Data analysis using regression and 

multilevel/hierarchical models. Cambridge: Cambridge University Press.  

 

110. Rossi, P.E., Allenby, G.M., & McCulloch, R. (2005). Bayesian statistics and 

marketing.  Chichester: Wiley. 

 

111. Hobert, J., & Casella, G. (1996). The effect of improper priors on Gibb sampling in 

hierarchical models. Journal of the American Statistical Association, 91, 1461-

1473. 

 

112. Lenk, P., & DeSarbo, W. (2000). Bayesian inference for finite mixtures of 

generalised linear models with random effects. Psychometrika, 65, 93-119. 

 

113. Dukić, V., & Dignam, J. (2007). Bayesian hierarchical multiresolution hazard 

model for the study of time-dependent failure patterns in early stage breast cancer.  

Bayesian Analysis, 2(3), 591-610. 

 

114. Sutton, A.J., Jones, D.R., Abrams, K.R., Sheldon, T.A., & Song, F. (2000). 

Methods for Meta-analysis in medical research. London: Wiley. 

 

115. DerSimonian, R., & Laird, N. (1986). Meta analysis in clinical trials. Controlled 

Clinical Trials, 7, 177-188. 

 

116. Thompson, S. (1994). Why sources of heterogeneity in meta-analysis should be 

investigated. British Medical Journal, 309(6965), 1351-1355.  

 

117. Smith, G., Egger, M., & Phillips, A. (1997). Meta-analysis: beyond the grand mean?  

British Medical Journal, 315(7122), 1610-1614. 

 

118. Stern, J.M., & Simes, R.J. (1997). Publication bias: evidence of delayed publication 

in a cohort study of clinical research projects. British Medical Journal, 315(7109), 

640-645. 

 

119. Hedges, L.V., & Olkin, I. (1985).  Statistical methods for meta-analysis.  London: 

Academic Press. 

 

120. Thompson, S., & Higgins, R. (2002). How should meta-regression analyses be 

undertaken and interpreted?  Statistics in Medicine, 21, 1559-1574. 

 

121. Goldstein, H., Yang, M., Omar, R., Turner, R., & Thompson, S. (2000). Meta-

analysis using multi-level models with an application to the study of class size.  

Journal of the Royal Statistical Society Series C (Applied Statistics), 49(3), 399-412. 

 



 

 239 

122. Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and 

their applications.  Biometrika, 57, 97-109. 

 

123. Casella, G., & George, E.I. (1992).  Explaining the Gibbs sampler.  The American 

Statistician, 46(3), 167-174. 

 

124. Tierney, L. (1994).  Markov chains for exploring posterior distributions.  The 

Annals of Statistics, 22, 1701-1762. 

 

125. Bremaud, P. (1999).  Markov chain: Gibbs fields, monte carlo simulation, and 

queues. New York: Springer Verlag. 

 

126. Chen, M-H., Shao, Q-M., & Ibrahim, J.G. (2000).  Monte Carlo methods in 

Bayesian computation. New York: Springer Verlag. 

 

127. Liu, J. (2001).  Monte Carlo strategies in scientific computing.  New York: Verlag 
Springer. 

 

128. Brooks, S.P. (1998). Markov chain Monte Carlo method and its application.  The 

Statistician, 47(1), 69-100. 

 

129. Diaconis, P., & Ylvisaker, D. (1979).  Conjugate priors for exponential families.  

The Annals of Statistics, 17, 269-281. 

 

130. R.A. Fisher (1921). On the probably error of a coefficient of correlation deduced 
from a small sample.  Metron, 1, 3-32. 

 

131. R.A. Fisher (1922). On the mathematical foundation of theoretical statistics. 

Philosophical Transactions of the Royal Society, 222, 309-368. 

 

132. Albert, J., & Chib, S. (1993).  Bayesian regression analysis of binary and 

polychotomous response data. Journal of the American Statistical Association, 88, 

657-667. 

 

133. Hosmer, D.W., & Lemeshow, S. (2000). Applied logistic regression.  New York: 

Wiley. 

 

134. Von Mises, R. (1947).  On the asymptotic distribution of differentiable statistical 

function. Annals of Mathematical Statistics, 18, 309-348.  

 

135. Papathanasiou, V. (1993). Some characteristic properties of the Fisher information 

matrix type inequalities.  Journal of Multivariate Analysis, 14, 256-265. 

 

136. Rao, B.L.S.P. (1978). Rate of convergence of Berstein-von Mises approximation 

process.  Serdica, 4, 36-42. 

 



 

 240 

137. Das, S., & Dey, D.K. (2006). On Bayesian analysis of generalised linear models 

using the Jacobian technique.  The American Statistician, 60(3), 36-42. 

 

138. Cameron, A.C., & Trivedi, P.K. (1998). Regression analysis of count data. New 

York:  Cambridge University Press. 

 

139. Hilbe, J.M. (2007). Negative binomial regression. Cambridge:  Cambridge 

University Press. 

 

140. Geyer, C.J. (1992).  Practical Markov chain Monte Carlo.  Statistical Science, 7(4), 

473-511. 

 

141. Kass, R.E., Carlin, B.P., Gelman, A., & Neal, R.M.  (1998). Markov chain Monte 

Carlo in practice: a roundtable discussion.  The American Statistician, 52(2), 93-

100. 

 

142. Zellner, A., & Min, C-K. (1995). Gibbs sampler: convergence criteria.  Journal of 

the American Statistical Association, 90, 921-927. 

 

143. Serfling, R.J. (1980).  Approximation theorems of mathematical statistics.  143-149. 
Singapore: Wiley. 

 

144. Carlin, B.P., & Louis, T.A. (2000). Bayes and empirical Bayes methods for data 

analysis. New York: Chapman & Hall. 

 

145. Huber, P.J. (1981). Robust statistics. New York: Wiley. 

 

146. Freund, Y.  (1995). Boosting a weak learning algorithm by majority.  Information & 

Computation, 121, 256-285. 

 

147. Metz, C.E. (1978).  Basic principles of ROC analysis.  Seminars in Nuclear 

Medicine, 8(4), 283-98. 

 

148. Hanley, J.A., & McNeil, B.J. (1982).  The meaning and use of the area under a 

receiver operating characteristic (ROC) curve.  Radiology, 143(1), 29-36. 

 

149. Hanley, J.A., & McNeil, B.J. (1983).  A method of comparing the areas under 

receiver operating characteristic curves derived from the same cases.  Radiology, 

148(3), 839-43. 

 

150. Sampson, S.M. (2001). Treating depression with selective serotonin reuptake 

inhibitors: a practical approach.  Mayo Clinic Proceedings, 76, 739-744. 

 

151. Barbey, J.T., & Roose, S.P. (1998). SSRI safety in overdose.  Journal of Clinical 

Psychiatry, 59(Supplement 15), 42-48. 

 



 

 241 

152. Cheeta, S., Schifano, F., Oyefeso, A., Webb, L., & Ghodse, A.H. (2004).  

Antidepressant-related deaths and antidepressant prescriptions in England and 

Wales, 1998-2000. British Journal of Psychiatry, 184, 41-47. 

 

153. Goldstein, B.J., & Goodnick, P.J. (1998). Selective serotonin reuptake inhibitors in 

the treatment of affective disorders-III. Tolerability, safety and pharmacoeconomics.  

Journal of Psychopharmacology, 12 (3 Supplement B), S55-87. 

 

154. Pacher, P., Ungvari, Z., Nanasi, P.P., Furst, S., & Kecskemeti, V. (1999).  

Speculations on difference between tricyclic and selective serotonin reuptake 

inhibitor antidepressants on their cardiac effects.  Is there any?  Current Medical 

Chemistry, 6(6), 469-480. 

 

155. Stokes, P.E. (1993). Fluoxetine: a five-year review.  Clinical Therapy, 15(2), 216-
243. 

 

156. Zohar, J., & Westenberg, H.G. (2000). Anxiety disorders: a review of tricyclic 

antidepressants and selective serotonin reuptake inhibitors.  Acta Psychiatrica 

Scandinavica Supplement, 403, 39-49. 

 

157. Katona, C. (2000).  Managing depression and anxiety in the elderly patient.  

European Neuropsychopharmacology, 10(Supplement 4), S427-432. 

 

158. Baldwin, D.S. (2001). Unmet needs in the pharmacological management of 

depression.  Human Psychopharmacology, 16(Supplement 2), S93-99.  

 

159. Wagstaff, A.J., Cheer, S.M., Matheson, A.J., Ormrod, D., & Goa, K.L.  (2002). 

Paroxetine: an update of its use in psychiatric disorders in adults.  Drugs, 62(4), 

655-703. 

 

160. Vaswani, M., Linda, F.K., & Ramesh, S. (2003).  Role of selective serotonin 

reuptake inhibitors in psychiatric disorders: a comprehensive review.  Progress in 

Neuropsychopharmacology & Biological Psychiatry, 27(1), 85-102. 

 

161. Lader, M.H. (1996). Tolerability and safety: essentials in antidepressant 

pharmacotheraphy.  Journal of Clinical Psychiatry, 57(Supplement 2), 39-44. 

 

162. Steffans, D.C., Krishnan, K.R., & Helms, M.J. (1997). Are SSRIs better than TCAs?  

Comparison of SSRIs and TCAs: a meta-analysis.  Depression & Anxiety, 6(1), 10-

18. 

 

163. Thompson, C., & Thompson, C.M.  (1989). The prescribing of antidepressants in 

general practice II: a placebo-controlled trial of low-dose dothiepin. Human 

Psychopharmacology, 4, 191-204.  

 



 

 242 

164. Kernick, D.P.  (1997). Which antidepressant?  A commentary from general practice 

on evidence-based medicine and health economics.  British Journal of General 

Practice, 47(415), 95-98. 

 

165. Kyle, C.J., Petersen, H.E., & Overo, K.F. (1998). Comparison of the tolerability 

and efficacy of citalopram and amitriptyline in elderly depressed patients treated in 

general practice.  Depression & Anxiety, 8(4), 147-153. 

 

166. Mahendru, R.K., & Mahendru, S. (2001).  Selection of antidepressant drugs in 

general practice.  Journal of Indian Medical Association, 99(1), 54-55. 

 

167. Montgomery, S.A., Henry, J., McDonald, G., Dinan, T., Lader, M., Hindmarch, I., 

Clare, A., & Nutt, D. (1994). Selective serontonin reuptake inhibitors: meta-

analysis of discontinuation rates. International Clinical Psychopharmacology, 9(1), 

47-53. 

 

168. Montgomery, S.A., & Kasper, S. (1995). Comparison of compliance between 

serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis.  

International Clinical Psychopharmacology, 9(Supplement 4), 33-40. 

 

169. Anderson, I.M. (2000). Selective serotonin reuptake inhibitors versus tricyclic 

antidepressants: a meta-analysis of efficacy and tolerability.  Journal of Affecive 

Disorders, 58(1), 19-36. 

 

170. MacGillivray, S., Arroll, B., Hatcher, S., Ogston, S., Reid, I., Sullivan, F., William, 

B., & Crombie, I. (2003).  Efficacy and tolerability of selective serotonin reuptake 

inhibitors compared with tricyclic antidepressants in depression treated in primary 

care: a systematic review and meta-analysis.  British Medical Journal, 326(7397), 

1014. 

 

171. Yildiz, A., Pauler, D.K., & Sachs, G.S. (2004). Rates of study completion with 

single versus split daily dosing of antidepressants: a meta-analysis. Journal of 

Affective Disorders, 78(2), 157-162. 

 

172. Barbui, C., Hotopf, M., Freemantle, N., Boynton, J., Churchill, R., & Eccles, M.P. 

(2004). Treatment discontinuation with selective serotonin reuptake inhibitors 

(SSRIs) versus tricyclic antidepressants (TCAs).  Cochrane Database of Systematic 

Reviews, 2. 

 

173. Yusuf, S., Peto, R., Lewis, J., Collins, R., & Slieght, P.  (1985). Beta blockage 

during and after myocardial infarction: an overview of the randomised trials.  

Progress in Cardiovascular Diseases, 27(5), 335-371. 

 

174. Corne, S.J., & Hall, J.R.  (1989). A double-blind comparative study of fluoxetine 

and dothiepin in the treatment of depression in general practice.  International 

Clinical Psychopharmacology, 4(3), 245-254. 



 

 243 

 

175. Stott, P.C., Blagden, M.D., & Aitken, C.A. (1993). Depression and associated 

anxiety in primary care: a double-blind comparison of paroxetine and amitriptyline.  

European Neuropsychopharmacology, 3, 324-325. 

 

176. Rosenberg, C., Damsbo, N., Fuglum, E., Jacobsen, L.V., & Horsgard, S. (1994).   

Citalopram and imipramine in the treatment of depressive patients in general 

practice. A Nordic multicentre clinical study.  International Clinical 

Psychopharmacology, 9(Supplement 1), 41-48. 

 

177. Doogan, D.P., & Langdon, C.J.  (1994). A double-blind, placebo-controlled 

comparison of sertraline and dothiepin in the treatment of major depression in 

general practice.  International Clinical Psychopharmacology; 9(2): 95-100. 

 

178. Moon, C.A.L., & Vince, M.  (1996). Treatment of major depression in general 

practice: a double-blind comparison of paroxetine and lofepramine.  British Journal 

of Clinical Practice, 50(5), 240-244. 

 

179. Christiansen, P.E., Behnke, K., Black, C.H., Ohrstrom, J.K., Bork-Rasmussen, H., 

& Nilsson, J. (1996). Paroxetine and amitriptyline in the treatment of depression in 

general practice.  Acta Psychiatrica Scandinavica, 93(3), 158-163. 

 

180. Ravindran, A.V., Judge, R., Hunter, B.N., Bray, J., & Morton, N.H. (1997). A 

double-blind, multicentre study in primary care comparing paroxetine and 

clomipramine in patients with depression and associated anxiety. Paroxetine study 

group.   Journal of Clinical Psychiatry, 58(3), 112-118. 

 

181. Thompson, C. (1991). Sertraline in a primary care setting.  In: Racagni NB, Fukuda 

T, editors.  Biological Psychiatry.  Amsterdam: Elservier, 863-865. 

 

182. Hutchinson, D.R., Tong, S., Moon, C.A.L., Vince, M., & Clarke, A.   (1992). 

Paroxetine in the treatment of elderly depressed patients in general practice: a 

double-blind comparison with amitriptyline. International Clinical 

Psychopharmacology, 6(4 Supplement), 43-51.  

 

183. Rosner, B. (2000).  Fundamentals of biostatistics.  Pacific Grove: Brooks/Cole. 
 

184. Swinkels, J.A., De Jonghe, F. (1995). Safety of antidepressants.  International 
Clinical Psychopharmacology, 9(Supplement 4), 19-25. 

 

185. Kasper, S., Hoflich, G., Scholl, H.P., & Moller, H.J.  (1994). Safety and 

antidepressant efficacy of selective serotonin re-uptake inhibitors.  Human 

Psychopharmacology, 9, 1-12. 

 

186. Glass, G.V. (1976). Primary, secondary and meta-analysis of research.  

Educational Research, 5, 3-8. 



 

 244 

 

187. Egger, M.G., (1997). Bias in meta-analysis detected by a simple, graphical test.  

British Medical Journal, 314(7109), 629-634. 

 

188. Fleiss, J.L. (1993). The statistical basis of meta-analysis.  Statistical Methods in 

Medical Research, 2, 121-145. 

 

189. Wong, M-K., Arjandas, Ching, L-K., Lim, S-L., & Lo, N-N. (2002). Osteoporotic 

hip fractures in Singapore: costs and patient’s outcome. Annals of Academy of 

Medicine Singapore, 31(1), 3-7.  

 

190. Cooper, C., Campian, G., & Melton, L.J. (1992). Hip fracture in the elderly: a 

worldwide projection. Osteoporosis International, 2, 285-289. 

 

191. Koh, L.K-H., Saw, S-M., Lee, J.J-M., Leong, K-H., & Lee, J. (2001). Hip fracture 

incidence rates in Singapore 1991-1998. Osteoporosis International, 12(4), 311-

318. 

 

192. Scientific Advisory Board, Osteoporosis Society of Canada. (1996). Clinical 
practice guidelines for the diagnosis and management of osteoporosis. Canadian 

Medical Association Journal, 155, 1113-1133. 

 

193. Council of the National Osteoporosis Foundation. (1996). Guidelines for the early 
detection of osteoporosis and prediction of fracture risk. South African Medical 

Journal, 86(9), 1113-1116. 

 

194. Lydick, E., Cook, K., Turpin, J., Melton, M., Stine, R., & Byrnes, C. (1998).  

Development and validation of a simple questionnaire to facilitate identification of 

women likely to have low bone density.  American Journal of Managed Care, 4(1), 

37-48. 

 

195. Cadarette, S.M., Jaglal, S.B., Kreiger, N., McIssac ,W.J., Darlington, G.A., & Tu, 

J.V. (2000).  Development and validation of the osteoporosis risk assessment 

instrument to facilitate selection of women for bone densitometry.  Canadian 

Medical Association Journal, 162(9), 1289-1294.   

 

196. Weinstein, L., & Ullery, B. (2000).  Identification of at-risk women for 

osteoporosis screening.  American Journal of Obstetrics Gynecology, 183(3), 547-

549. 

 

197. Michaelsson, K., Bergstrom, R., Mallmin, H., Holmberg, L., Wolk, A., & 

Ljunghall, S. (1996). Screening for osteoporosis: selection by body composition.  

Osteoporosis International, 6(2), 120-126.  

 

198. Koh, L.K-H., Sedrine, W.B., Torralba, T.P., Kung, A., Fujiwara, S., Chan, S-P., 

Huang, Q.R., Rajatanavin, R., Tsai, K-S., Park, H-M., & Reginster, J.Y. (2001).  A 



 

 245 

simple tool to identify Asian women at increased risk of osteoporosis.  

Osteoporosis International, 12(8), 699-705. 

 

199. Marshall, D., Johnell, O., & Wedel, H. (1996).  Meta-analysis of how well measure 

of bone mineral density predicts occurrence of osteoporortic fractures.  British 

Medical Journal, 312(7041), 1254-1259. 

 

200. Scheaffer, R.L., Mendenhall, W., & Ott, L. (1990).  Elementary Survey Sampling.  

118-119. Belmont: Duxbury. 

 

201. Ministry of Health (2000). National Health Survey 1998. Ministry of Health, 

Singapore.  

 

202. Food and Nutrition Department (1994). Food Consumption Study 1993. Ministry of 

Health, Singapore. 

 

203. Park, H-M., Sedrine, W.B., Reginster, J.Y., Ross, P.D., & OSTA (2003). Korean 

experience with the OSTA risk index for osteoporosis: a validation study. Journal 

of Clinical Densitometry, 6(3), 247-250. 

 

204. Kung, A-W., Ho, A-Y., Sedrine, W.B., Reginster, J.Y., & Ross, P.D. (2003). 

Comparison of a simple clinical risk index and quantitative bone ultrasound for 

identifying women at increased risk of osteoporosis. Osteoporosis International, 

14(9), 716-721. 

 

205. Ministry of Health, National Medical Research Council, Osteoporosis Society of 

Singapore (2002).  Clinical Practice Guideline: Osteoporosis.  Ministry of Health, 

Singapore. 

 

206. Altman, D.G. (1999).  Practical statistics for medical research. 417-418. Boca 

Raton: Chapman & Hall. 

 

207. Giardiello, F.M., Hamilton, S.R., Krush, A.J., Piantadosi, S., Hylind, L.M.,  Celano, 

P., Booker, S.V., Robinson, CR, & Offerhaus, G.J. (1993).  Treatment of colonic 

and rectal adenomas with sulindac in familial adenomatous polyposis.  New 

England Journal of Medicine, 328(18), 1313-1316. 

 

208. Giardiello, F.M., Yang, V.W., Hylind, L.M., Krush, A.J., Petersen, G.M., Trimbath, 

J.D., Piantadosi, S., Garrett, E., Geiman, D.E., Hubbard, W., Offerhaus, G.J., &. 

Hamilton, S.R. (2002).  Primary chemoprevention of familial adenomatous 

polyposis with sulindac.  New England Journal of Medicine, 346(14), 1054-1059. 

 

209. Pasricha, P.J., Bedi, A., O’Connor, K., Rashid, A., Akhtar, A.J., Zahurak, M.L., 

Piantadosi, S., Hamilton, S.R., & Giardiello, F.M.  (1995). The effects of sulindac 

on colorectal proliferation and apoptosis in familial adenomatous polyposis.  

Gastroenterology, 109(3), 994-998. 



 

 246 

 

210. Piantadosi, S.  (1997). Clinical trials: a methodological perspective.  479-481. New 
York: Wiley, 479-481. 

 

211. Ladenheim, J., Garcia, G., Titzer, D., Herzenburg, H., Lavori, P., Edson, P., & 

Omary, M.B. (1995).  Effect of sulindac on sporadic colonic polyps.  

Gastroenterology, 108(4), 1083-1087. 

 

212. Giardiello, F.M., Offerhaus, J.A., Tersmette, A.C., Hylind, L.M., Krush, A.J., 

Brensinger, J.D., Booker, S.V., & Hamilton, S.R. (1996).  Sulindac induced 

regression of colorectal adenomas in familial adenomatous polyposis: evaluation of 

predictive factors.  Gut, 38(4), 578-581. 

 

213. Halstead, S.B. (2002). Dengue. Current Opinion of Infectious Disease, 15(5), 471-
476. 

 

214. Gibbons, R.V., & Vaughn, D.W. (2000). Dengue: an escalating problem. British 

Medical Journal, 324(7353), 1563-1566. 

 

215. Chow, A., Ye, T., & Ang, L-W. (2005). Dengue epidemiological update. Ministry 

of Health Information Paper 2005.  

 

216. Chia, A., Luu, C-D., Mathur, R., Cheng, B., & Chee, S-P. (2006). 

Electrophysiological findings in patients with dengue-related maculopathy.  

Archives of Ophthalmology, 124(10), 1421-1426. 

 

217. Chan, D.P., Teoh, S.C., Tan, C.S., & The Eye Institute Dengue-Related Ophthalmic 

Complications Workgroup (2006). Ophthalmic complications of dengue. Emerging 

Infectious Diseases, 12(2), 285-289.  

 

218. Chlebicki, M.P., Ang, B., Barkham, T., & Laude, A. (2005). Retinal hemorrhages 

in 4 patients with dengue fever. Emerging Infectious Diseases, 11(5), 770-772. 

 

219. Madsen, P.L., & Thybo, S. (2005). Ocular complications of dengue fever. Ugeskr 

Laeger, 167(43), 4083-4084. 

 

220. Nainiwal, S., Garg, S.P., Prakash, G., & Nainiwal, N. (2005). Bilateral vitreous 

haemorrhage associated with dengue fever.  Eye, 19(9), 1012-1013. 

 

221. Siqueira, R.C., Vitral, N.P., Campos, W.R., Orefice, F., & De Moraes Figueiredo, 

L.T. (2004). Ocular manifestations in dengue fever. Ocul Immunoogy & 

Inflammation, 12(4), 323-327. 

 

222. Lim, W-K., Mathur, R., Koh, A., Yeo, R., & Chee, S-P. (2004). Ocular 

manifestations of dengue fever. Ophthalmology, 111(11), 2057-2064. 

 



 

 247 

223. Cruz-Villegas, V., Berrocal, A.M., Davis, J.L. (2003). Bilateral choroidal effusions 

associated with dengue fever. Retina, 23(4), 576-578. 

 

224. Haritoglou, C., Dotse, S.D., Rudolph, G., Stephan, C.M., Thurau, S.R., & Klauss, 

V. (2002). A tourist with dengue fever and visual loss.  The Lancet, 360(9339), 

1070. 

 

225. Haritoglou, C., Scholz, F., Bialasiewicz, A., & Lauss, V. (2000). Ocular 

manifestation in dengue fever. Ophthalmologe, 97(6), 433-436. 

 

226. Wen, K-H., Sheu, M-M., Chung, C-B., Wang, H-Z., & Chen, C-W. (1989). The 

ocular fundus findings in dengue fever. Gaoxiong Yi Xue Ke Xue Za Zhi (高雄医科
杂志), 5(1), 24-30. 

 

227. Spitznas, M. (1978). Macular hemorrhage in dengue fever. Klinische Monatsblatter 

fur Augenheilkunde, 172, 105-107. 

 

228. Deutman, A.F., & Bos, P.J. (1979). Macular bleeding in dengue fever. Klinische 

Monatsblatter fur Augenheilkunde, 175(3), 429. 

 

229. Singapore Ministry of Health (2004). A guide on infectious diseases of public 

health importance in Singapore. 6
th
 ed.  

 

230. Kurane, I, Innis, B.L., Nimmannitya, S., Nisalak, A., Meager, A., Janus, J., & Ennis, 

F.A. (1991). Activation of T lymphocytes in dengue virus infections. High levels of 

soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin2 and 

interferon-γ in sera of children with dengue. Journal of Clinical Investigation, 

88(5), 1473-1480. 

 

231. Kurane, I., & Ennis, F.A. (1992). Immunity and immunopathology in dengue virus 

infections. Seminars in Immunology, 4(2), 121-127. 

 

232. Venketasubramanian, N. (1999).  Stroke in Singapore—an overview.  Singapore 

Medical Journal, 40(1), 1-7. 

 

233. Ariesen, M.J., Algra, A., Van der Worp, H.B., & Rinkel, G.J.E.  (2005).  

Applicability and relevance of models that predict short term outcome after 

intracerebral haemorrhage. Journal of Neurology, Neurosurgery &  Psychiatry, 

76(6), 839-844. 

 

234. Nilsson, O.G., Lindgren, A., Brandt, L., & Saveland, H. (2002). Prediction of death 

in patients with primary intracerebral haemorrhage: a prospective study of a 

defined population.  Journal of Neurosurgery, 97(3), 531-536. 

 

235. Wood, S.N. (2006). Generalized additive model: an introduction with R. Boca 

Raton: CRC Press. 



 

 248 

 

236. Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1998). Classification and 

regression trees.  Boca Raton: Chapman & Hall. 

 

237. Chan, K-Y., & Low, W-Y. (2004). LOTUS: an algorithm for building accurate and 

comprehensive logistic regression trees.  Journal of Computer Graphical Statistics, 

13, 826-852. 

 

238. Siegel, S., & Castellan, N.J. (2000). Nonparametric statistics for the behavioural 

science.  Singapore: McGraw-Hill. 

 

239. Teasdale, G., & Jennett, B.  (1974). Assessment of coma and impaired 

consciousness: a practical scale.  The Lancet, 2(7872), 81-84. 

 

240. Lemeshow, S., & Hosmer, D.W. (1982). A review of goodness-of-fit statistics for 

use in the development of logistic regression model.  American Journal of 

Epidemiology, 115(1), 92-106. 

 

241. Flegal, K.M., Graubard, B.I., Williamson, D.F., & Gail, M.H. (2005).  Excess deaths 

associated with underweight, overweight and obesity.  Journal of American Medical 

Association, 293(15), 1861-1867.    

 

242. Thom, E. (2000). A randomised, double-blind, placebo-controlled trial of a new 

weight-reducing agent of natural origin.  The Journal of Medical Research, 28, 229-

233. 

 

243. Pedersen, J.O., Zimmermann, E., Stallknecht, B.M., Brunn, J.M., Kroustrup, J.P., 

Larsen, J.F., & Helge, J.W.  (2006). Lifestyle intervention in the treatment of severe 

obesity.  Ugeskr Laeger, 168(2), 167-172.  

 

244. Wadden, T.A., & Foster, G.D. (2000).  Behavioural treatment of obesity.  Medical 

Clinics of North America, 84, 441-462. 

 

245. Kramer, F.M., Jeffrey, R.W., Forster, J.L., & Snell, M. K. (1989). Long term follow-

up of behavioural treatment for obesity: patterns of weight regain in men and women.  

International Journal of Obesity, 13(2), 123-136. 

 

246. Phelan, S., & Wadden, T.A.  (2002). Combining behavioural and pharmacological 

treatments for obesity.  Obesity Research, 10(6), 560-574. 

 

247. Hensrud, D.D., Weinsier, B.E., Darnell, B.E., & Hunter, G.R. (1995). Relationship of 

co-morbidities of obesity to weight loss and four-year weight maintenance/rebound.  

Obesity research, 3(Supplements 2), s217-s222. 

 

248. Fox, K.M., & EURopean trial ON reduction of cardiovascular events with Perindopril 

in stable coronary Artery disease Investigators. (2003). Efficacy of perindopril in 



 

 249 

reduction of cardiovascular events among patients with stable coronary artery disease: 

randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study).  

The Lancet, 362(9386), 782-788. 

 

249. Domanski, M., Krause-Steinrauf, H., Deedwania, P., Follmann, D., Ghali, J.K., 

Gilbert, E., Haffner, S., Katz, R., Lindenfeld, J., Lowes, B.D., Martin, W., McGrew, 

F., Bristow, M.R., & BEST investigators. (2003). The effect of diabetes on outcomes 

of patients with advanced heart failure in the BEST trial.  Journal of American 

College of Cardiology, 42(5), 914-922. 

 

250. De Groote, P., Lamblin, N., Mouquet, F., Plichon, D., McFadden, E., Van Belle, E., & 

Bauters, C. (2004). Impact of diabetes mellitus on long-term survival in patients 

with congestive heart failure. European Heart Journal, 25(8), 656-662. 

 

251. Gustafsson, I., Brendorp, B., Seibaek, M., Burchardt, H., Hildebrandt, P., Kober, L., 

& Torp-Pedersen, C. (2004).  Influence of diabetes and diabetes-gender interaction 

on the risk of death in patients hospitalized with congestive heart failure.  Journal of 

American College of Cardiology, 43(5), 771-777. 

 

252. Hjalmarson, A, Goldstein, S., & Fagerberg, B. (2000). Effects of controlled-release 

metoprolol on total mortality, hospitalisation, and well-being in patients with heart 

failure: the Metoprolol CR/XL randomised intervention trial in congestive heart 

failure (MERIT-HF).  Journal of the American Medical Association, 283(10), 1295-

1302. 

 

253. Brophy, J.M., Joseph, L., & Rouleau, J.L. (2001).  β–blockers in congestive heart 
failure.  Annals of Internal Medicine, 134, 550-560. 

 

254. McAlister, F.A., Ezekowitz, J., Tonelli, M., & Armstrong, P.W. (2004). Renal 

insufficiency and heart failure: prognostic and therapeutic implications from a 

prospective cohort study.  Journal of the American Heart Association, 109, 1004-

1009. 

 

255. Mak, K-H., Chia, K-S., Kark, J-D., Chua, T., Tan, C., Foong, B-H., Lim, Y-L., & 

Chew, S-K.  (2003). Ethnic differences in acute myocardial infarction in Singapore.  

European Heart Journal, 24(2), 151-160. 

 

256. Kamalesh, M., Subramanian, U., Saweda, S., Eckert, G., Temkit, M’H., & Tierney, 

W. (2006). Decreased survival in diabetic patients with heart failure due to systolic 

dysfunction.  The European Journal of Heart Failure, 8(4), 404-408. 

 

257. Varela-Roman, A., Shamagian, L.G., Caballero, E.B., Ramos, P.M., Veloso, P.R., 

& Gonzalez-Juanatey, J.R. (2005). Influence of diabetes on the survival of patients 

hospitalised with heart failure: a 12-year study.  The European Journal of Heart 

Failure, 7(5), 859-864. 

 



 

 250 

258. Das, S.R., Drazner, M.H., Yancy, C.W., Stevenson, L.W., Gersh, B.J., & Dries, 

D.L. (2004). Effects of diabetes mellitus and ischemic heart disease on the 

progression from asymptomatic left ventricular dysfunction to symptomatic heart 

failure: a retrospective analysis from the Studies of Left Ventricular Dysfunction 

(SOLVD) Prevention trial. American Heart Journal, 148(5), 883-888. 

 

259. Burger, A., Tsao, L., & Aronson, D. (2005). Prognostic impact of diabetes mellitus 

in patients with acute decompensated heart failure. The American Journal of 

Cardiology, 95(9), 1117-1119.  

 

260. Eshaghian, S., Horwich, T.B., & Fonarow, G.C. (2006). An unexpected inverse 

relationship between HbA1c levels and mortality in patients with diabetes and 

advanced systolic heart failure.  American Heart Journal, 151(1), 91.e1-91.e6. 

 

261. McDonald, S.P., Russ, G.R., Kerr, P.G., Collins, J.F., & Australia and New 

Zealand Dialysis and Transplant Registry.  (2002). ESRD in Australia and new 

Zealand at the end of millennium: a report from the ANZDATA registry.  

American Journal of Kidney Diseases, 40(6), 1122-1131. 

 

262. Foley, R.N., Parfrey, P.S., Harnett, J.D., Kent, G.M., O’Dea, R., Murray, D.C., & 

Barre, P.E. (1998).  Mode of dialysis therapy and mortality in end-stage renal 

disease.  Journal of American Society of Nephrology, 9(2), 267-276. 

 

263. Disney, A.P. (1995). Demography and survival of patients receiving treatment for 

chronic renal failure in Australia and New Zealand: report on dialysis and renal 

transplantation treatment from the Australia and New Zealand Dialysis and 

Transplant Registry.  American Journal of Kidney Diseases, 25, 165-175. 

 

264. Marcelli, D., Spotti, D., Conte, F., Tagliaferro, A., Limido, A., Lonati, F., Malberti, F., 

& Locatelli, F. (1996).  Survival of diabetic patients on peritoneal dialysis or 

haemodialysis.  Peritoneal Dialysis International, 16(Supplement 1), S283-S287. 

 

265. Vonesh, E.F., & Moran, J. (1999).  Mortality in end-stage renal disease: a 

reassessment of differences between patients treated with haemodialysis and 

peritoneal dialysis.  Journal of the American Society of Nephrology, 10(2), 354-365. 

 

266. Mircescu, G., Garneata, L., Florea, L., Cepoi, V., Capsa, D., Covic, M., Gherman-

Caprioara, M., Gluhovschi, G., Golea, O.S., Barbulescu, C., Rus, E., Santimbrean, 

C., Mardare, M., & Covic A. (2006).  The success story of peritoneal dialysis in 

Romania: analysis of differences in mortality by dialysis modality and influence of 

risk factors in a national report.  Peritoneal Dialysis International, 26(2), 266-275. 

 

267. Held, P.J., Port, F.K., Turenne, M.N., Gaylin, D.S., Hamburger, R.J., & Wolfe, R.A. 

(1994).  Continuous ambulatory peritoneal dialysis and haemodialysis: comparison 

of patient mortality with adjustment for comorbid conditions.  Kidney International, 

45(4), 1163-1169. 



 

 251 

 

268. Vonesh, E.F., Snyder, J.J., Foley, R.N., & Collins, A.J. (2004).  The differential 

impact of risk factors on mortality in haemodialysis and peritoneal dialysis.  Kidney 

International, 66(6), 2389-2401. 

 

269. Lee, G. (2003).  End-stage renal disease in the Asian-Pacific region.  Seminars in 
Nephrology, 23(1), 107-114. 

 

270. Van Biesen, W., Vanholder, R.C., Veys, N., Dhondt, A., & Lameire, N.H. (2000).  An 

Evaluation of an Integrative Care Approach for End-Stage Renal Disease Patients. 

Journal of the American Society of Nephrology, 11, 116-125. 

 

271. Locatelli, F., Marcelli, D., Conte, F., Limido, A., Lonati, F., Malberti, F., & Spotti, D. 

(1995).  1983 to 1992: report on regular dialysis and transplantation in Lombardy.  

American Journal of Kidney Diseases, 25, 196-205. 

 

272. Choong, H-L. (2005).  Second report of the Singapore renal registry 1998.  Singapore 
Health Promotion Board. 

 

273. O’Brien, S.R., Hein, E.W., & Sly, R.M. (1980). Treatment of acute asthmatic attacks 

in a holding unit of a pediatric emergency room.  Annals of Allergy, 45(3), 159-162. 

 

274. Willert, C., Davis, A.T., Herman, J.J., Holson, B.B., & Zieserl, E. (1985). Short-term 

holding room treatment of asthmatic children.  The Journal of Pediatrics, 106(5), 707-

711. 

 

275. Miescier, M.J., Nelson, D.S.,  Firth, S.D., & Kadish, H.A. (2005).  Children with 

asthma admitted to a pediatric observation unit.  Pediatric Emergency Care, 21(10), 

645-649. 

 

276. Levett, I., Berry, K., & Wacogne, I. (2006). Review of a paediatric emergency 

department observation unit.  Emergency Medicine Journal, 23(8), 612-613. 

 

277. Arendts, G., MacKenzie, J., & Lee, J.K. (2006).  Discharge planning and patient 

satisfaction in an emergency short-stay unit. Emergency Medicine Australasia, 18(1), 

7-14. 

 

278. Abe, O., Abe, R., Enomoto, K., & Kikuchi, K. (1998). Polychemotherapy for early 

breast cancer: an overview of the randomised trials.  The Lancet, 352(9132), 930-942. 

 

279. Cole, B.F., Gelber, R.D., Gelber, S., Coates, A.S., & Goldhirsch, A. (2001).  

Polychemotherapy for early breast cancer: an overview of the randomised clinical 

trails with quality-adjusted survival analysis. The Lancet, 358(9278), 277-286. 

 

280. Clarke, M., Collins, R., Darby, S., Davies, C., Elphinstone, P., Evans, E., Godwin, J., 

Gray, R., Hicks, C., James, S., MacKinnon, E., McGale, P., McHugh, T., Peto, R., 



 

 252 

Taylor, C., Wang, Y., & Early Breast Cancer Trialists’ Collaborative Group. (2005). 

Effects of radiotherapy and of differences in the extent of surgery for early breast 

cancer on local recurrence and 15-year survival: an overview of the randomised 

trials..  The Lancet, 366(9503), 2087-2106. 

 

281. Jenicek, M. (2003). Foundations of evidence-based medicine. Boca Raton: The 

Parthenon Publishing Group.   

 

282.  Eddy, D.M. (1996).  Clinical decision making: from theory to practice.  Boston: 

Jones and Bartlett Publishers 

 

283. Redelmeier, D.A., & Tversky, A. (1990). A discrepancy between decisions for 

individual patients and for groups.  New England Journal of Medicine, 322, 1162-

1164. 

 

284. Sesardic, N. (2007). Sudden infant death or murder? A royal confusion about 

probabilities.  The British Journal for the Philosophy of Science, 58(2), 299-329. 

 

285. Imai, K., Suga, K., & Nakachi, K. (1997).  Cancer preventive effects of drinking 

green tea among a Japanese population.  Preventive Medicine, 26(6), 769-775. 

 

286. Doss, M.X., Potta, S.P., Hescheler, J., & Sachinidis, A.  (2005). Trapping of growth 

factors by catechins: a possible therapeutic target for prevention of proliferative 

diseases. Journal of Nutritional Biochemistry, 16(5), 259-266. 

 

287. Nagano, J., Kono, S., Preston, D.L., & Mabuchi, K.  (2001). A prospective study of 

green tea consumption and cancer incidence, Hiroshima and Nagasaki (Japan).  

Cancer Causes Control, 12(6), 501-508. 

 

288. Zhong, L., Goldberg, M.S., Gao, Y-T, Hanley, J.A., Parent, M.E., & Jin, F.  (2001). 

A population-based case-control study of lung cancer and green tea consumption 

among women living in Shanghai, China.  Epidemiology, 12(6), 695-700. 

 

289. Wu, A-H., Yu, M-C., Tseng, C-C., Hankin J., & Pike, M.C.  (2003). Green tea and 

risk of breast cancer in Asian Americans.  International Journal of Cancer, 106(4), 

574-579. 

 

290. Jian, L., Xie, L-P., Lee, A-H., & Binns, C.W.  (2004). Protective effect of green tea 

against prostate cancer: a case-control study in southeast China.  International 

Journal of Cancer, 108(1), 130-135. 

 

291. Ji, B-T, Chow, W-H, Yang, G., McLaughlin, J.K., Gao, R-N, Zheng, W,  Shu, X-O, 

Jin, F., Fraumenti, J.F., & Gao, Y-T. (1996). The influence of cigarette smoking, 

alcohol and green tea consumption on the risk of carcinoma of the cardia and distal 

stomach in Shanghai, China.  Cancer, 77(12), 2449-2457. 

 



 

 253 

292. Katiyar, S.K., Perez, A., & Mukhtar, H.  (2000). Green tea polyphenols treatment 

to human skin prevents formation of ultraviolet light B-induced pyrimidine 

dimmers in DNA.  Clinical Cancer Research, 6(10), 3864-3869. 

 

293. Kovacs, E.M., Lejeune, M.P., Nijs, I., Westerterp-Plantenga, M.S.  (2004). Effects 

of green tea on weight maintenance after body-weight loss.  British Journal of 

Nutrition, 91(3), 431-7. 

 

294. Jenicek, M. (2001). Clinical case reporting in evidence-based medicine.  London: 

Arnold. 

 

295. Lohr, K.N., Eleazer, K., & Mauskopf, J. (1998).  Health policy issues and 

applications for evidence-based medicine and clinical practice guidelines.  Health 

Policy, 46(1), 1-19. 

 

296. Straus, S.E., & McAlister, M.D. (1999).  Evidence-based medicine: past, present, 

and future.  Annals of the Royal College of Physicians and Surgeons of Canada, 32, 

260-263. 

 

297. Hurwitz, B. (1995).  Clinical guidelines and the law: advice, guidance or regulation? 
Journal of Evaluation in Clinical Practice, 1(1), 49-60. 

 

298. Pelly, J.E., Newby, L., Tito, F., Redman, S., & Adrian, A.M. (1998).  Clinical 

practice guidelines before the law: sword or shield? Medical Journal of Australia, 

169, 330-333. 

 

299. Ibrahim, J.G., & Chen, M-H. (1998). Power prior distributions and Bayesian 

computation for proportional hazards model.  Sankhya Series B, 60, 48-64. 

 

300. Ibrahim, J.G., & Chen, M-H. (2002). Power prior distributions for regression 

models.  Statistical Science, 15(1), 46-60. 

 

301. Paolino, P.  (2001). Maximum likelihood estimation of models with beta-

distributed dependent variables.  Political Analysis, 9(4), 325-346. 

 

302. Ferrari, S.L., & Cribari-Neto, F. (2004).  Beta regression for modelling rates and 

proportions.  Journal of Applied Statistics, 31(7), 799-815. 

 

303. Chan, S-P. (2006).  Beta regression analysis of Singapore general election results.   
In Proceedings: 2

nd
 IMT-GT 2006 Regional Conference on Mathematics, Statistics 

and Applications, June 2006, Penang, Malaysia, 201-204.   

 

304. Kumaraswamy, P. (1980). A generalized probability density function for double-

bounded ransom processes.  Journal of Hydrology, 46, 79-88. 

 



 

 254 

305. Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2002).  Reliable estimation of 

generalised linear mixed models using adaptive quadrature. The Stata Journal, 2, 1-

21. 

 

306. Rabe-Hesketh, S., Skrondal, A, & Pickles, A. (2004). Generalized multilevel 

structural equation modelling. Psychometrika, 69(2), 167-190. 

 

307. Rabe-Hesketh, S., & Skrondal, A. (2005). Multilevel and longitudinal modeling 

using Stata.  Texas: Stata Press. 

 

308. Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood 

estimation of limited and discrete dependent variable models with nested random 

effects. Journal of Econometrics, 128, 301-323. 

 

309. Skrondal, A, & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: 

multilevel, longitudinal, and structural equation models.  Boca Raton: Chapman & 

Hall/CRC Press. 

 

310. McCutcheon, A. L. (1987).  Latent class analysis.  California: Sage Publications.  

 

311. Kaplan, D. (2000) Structural equation modeling: foundations and extensions. 
California: Sage Publications. 

 

312. Good, I.J. (1961). A causal calculus.  British Journal of the Philosophy of Science, 
11, 305-318. 

 

313. Pearl, J. (1986). Fusion, propagation and structuring in belief networks.  Artificial 
Intelligence, 29, 241-288. 

 

314. Pearl, J. (1988). Probabilistic reasoning in intelligence systems: networks of 
plausible inference.  California: Morgan Kauffmann. 

 

315. Pearl, J. (1995). Causal diagrams for empirical research.  Biometrika, 82(4), 669-

688. 

 

316. Jensen, F.V. (2001). Bayesian networks and decision graphs.  New York: Springer 
Verlag. 

 

317. Bǿttcher, S.G., & Dethlefsen, C. (2003). DEAL: a package for learning Bayesian 

networks (http://www.math.auc.dk/novo/deal). 

 

318. Marcot, B.G., Holthausen, R.S., Raphael, M.G., Rowland, M., & Wisdom, M. 

(2001). Using Bayesian belief networks to evaluate fish and wildlife population 

variability under land management alternatives from an environmental impact 

statement.  Forest Ecology and Management, 153(1-3), 29-42. 

 



 

 255 

319. Heckerman, D. (1991). Probabilistic similarity networks.  Cambridge: MIT Press. 

 

320. Russell, S.J., & Norvig, P. (2003).  Artificial intelligence.  New Jersey: Pearson 

Education.   

 

321. Thibaudeau, Y., & Winkler, W.E. (2002). Bayesian networks representations, 

generalized imputation, and synthetic micro-data satisfying analytic constraints. 

Technical Report RRS200219, United States Bureau of the Census, Washington DC. 

 

322. Di Zio, M., Scanu, M., Coppola, L., Luzi, O., & Ponti, A. (2004). Bayesian 

networks for imputation.  Journal of the Royal Statistical Society (Statistics in 

Society), 167(2), 309-322. 

 

323. Pregibon, D. (1996). Data mining.  Statistical Computing and Graphics Newsletter, 

7, 8. 

 

324.  Hand, D.J. (1999). Statistics and data mining: intersecting disciplines.  

Proceedings of the 7
th
 Association of Computing Machinery’s (ACM 

SIGKDD) International Conference on Knowledge Discovery and Data 

Mining, 1(1), 16-19. 
 

325. Hand, D.J. (1998). Data mining: statistics and more? The American Statistician, 

52(2), 112-118.  

 

326. Han, J-W., & Kamber, M. (2006). Data mining: concepts and techniques.  

California: Morgan Kauffmann. 

 

327. Giudici, P. (2003). Applied data mining: statistical methods for business and 
industry.  Chichester: Wiley. 

 

328. Cherkassky, V., & Mulier, F. (2007). Learning from data: concepts, theory, and 

methods.  New Jersey: Wiley. 

 

329. Myatt, G.J. (2007). Making sense of data: a practical guide to exploratory data 

analysis and data mining.  New Jersey: Wiley. 

 

330. Fisher, D., & Lenz, H-J. (1996). Learning from data: artificial intelligence and 

statistics Vol. 5. New York: Springer. 

 

331. Nakhaeizadeh, G., & Taylor, C.C. (1997). Machine learning and statistics. New 

York: Wiley. 

 

332. Kay, J.W., & Titterington, D.M. (1999). Statistics and neural network: advances at 

the interface. New York: Oxford University Press. 

 

333. Lindley, D.V. (2006). Understanding Uncertainty. New Jersey: Wiley. 



 

 256 

 

334. Chen, M-H., Dey, D.K., & Sinha, D. (2002). Bayesian analysis of multivariate 

mortality data with large families.  Journal of the Royal Statistical Society Series C 

(Applied Statistics), 49(1), 135-150. 

 

335. Chen, M-H., Harrington, D.P., & Ibrahim, J.G. (2002). Bayesian cure rate models 

for malignant melanoma: a case-study of Eastern Cooperative Oncology Group 

trial E1690.  Journal of the Royal Statistical Society Series C (Applied Statistics), 

51(2), 135-150. 

 

336. Basu, S., Sen, A. & Benerjee, M. (2003). Bayesian analysis of competing risks with 

partially masked cause of failure.  Journal of the Royal Statistical Society Series C 

(Applied Statistics), 52(1), 77-93. 

 

337. Mezzetti, M., Ibrahim, J.G., Bois, E.Y., Ryan, L.M., Ngo, L., & Smith, T.J.. (2003). 

A Bayesian compartmental model for the evaluation of th1.3-butadiene metabolism.  

Journal of the Royal Statistical Society Series C (Applied Statistics), 52(3), 291-305. 

 

338. Rutter, C.M., & Simon, G. (2004). A Bayesian method for estimating the accuracy 

of recalled depression.  Journal of the Royal Statistical Society Series C (Applied 

Statistics), 53(2), 341-353. 


