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ABSTRACT 

 Nanoscale Ductile Mode Cutting by using single point diamond turning is an 

alternative approach for finishing brittle materials without subsequent polishing. The 

process of machining brittle materials where the material is removed plastically leaving a 

crack free surface is called ductile cutting. The developments in applicability of this 

technology on materials such as silicon and germanium which are used in semiconductor 

field has led to use in different other fields. One such other field is nonlinear optics in 

which materials used usually are soft and brittle. The importance of surface integrity 

requirement on these materials led to applicability of nanoscale ductile cutting 

technology. Potassium Di-hydrogen Phosphate (KDP) is one such type of nonlinear 

optical brittle material. It is one unique and most widely used inorganic nonlinear crystal 

for frequency conversion processes. The surface integrity is an important criterion for this 

material in the applications and requires a surface finish less than 5nm Ra. Nanoscale 

Ductile Cutting of this soft and brittle material is being attempted in this research work. 

The main objective of this research work is to develop an alternative technology 

in finishing of this material without subsequent polishing operation and post processing 

achieving surface finish less than 5nm Ra. This work involved the overcoming of the 

challenges encountered with this material before and during machining such as handling 

of this material and removal of chip from work zone. The use of vacuum suction 

technique for extraction of chips is proposed in this work in dry cutting conditions. 

  

Key Words: Ductile mode; Potassium Di Hydrogen Phosphate (KDP); Nano-scale; Dry 

cutting 
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CHAPTER 1 

INTRODUCTION  

1.1 Motivation 

 
Precision machining is defined as a combination of the very hard and sharp edges 

obtained from certain crystalline (usually diamond) tools with the extremely precise 

machine tools. These precise machine tools are incorporated with liquid or gas bearings 

and operate under closely controlled environmental conditions to produce finished optical 

surfaces. The precision machining technology removes some of the difficulties in 

forming optical surfaces encountered in conventional grinding and polishing, specifically, 

for the family of materials, both physically and chemically compatible with diamond 

tools. Because the diamond tools are so hard and sharp, they present essentially no 

cutting edge contact area to the material being worked which results in very little tool 

wear and tool force. This leads to the basic tenant of diamond turning which states that 

the surface created in the work piece will be an exact replica of a combination of the 

cutting tool shape and its tool path. The process is developed to minimize mechanical 

material deformation and hence, results in both the specular finish and contour accuracy 

sufficient for optical surfaces (Marvin J Weber, 1995).  

The demand for high precision and high performance components in the fields of 

Optics, Electronics, Semiconductors, etc has led to the development of new materials and 

new processing technologies. The components in the applications require brittle materials 

like Ceramics, Glasses, Silicon, etc to be used due to their high performance efficiency, 

lightweight, temperature and dimensional stability though they have high brittleness. 
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(Ngoi B. K. A. and Sreejith P. S, 2000). The high brittleness, which makes these 

materials difficult to be processed, has led to development of Ultra Precision 

Technologies such as Diamond Turning and Grinding. Single Point Diamond Turning has 

been used for ultra precision machining in a variety of ductile materials, polymers and 

crystals. The machining technologies can also be used for the brittle materials at proper 

cutting conditions without subsurface damage achieving nanometric surfaces (Puttick et 

al, 1989). The technology can also be extended to other fields such as non linear optics in 

which materials used are liquid crystals.  

Potassium Dihydrogen Phosphate (KDP) is an inorganic non-linear optical crystal 

material most widely used in the field of non-linear optics for frequency conversion 

processes. The combination of softness and high brittleness characteristics of the material 

imposes a challenging task during processing and handling. Further it is deliquescent, 

fragile and hygroscopic which adds to the difficulty for machining (Baruch A. Fuchs et 

al, 1986, Qiao Xu et al, 1999). It is of most important to achieve a very fine surface finish 

and surface integrity on optical crystals such as KDP in this field and at the same time 

free from sub-surface damage to withstand higher laser powers for longer times. 

Currently polishing, grinding, lapping and magneto-rheological finishing methods 

are used for such type of non linear crystals but these processes cause sub-surface 

damage which leads to failure of the surface within shorter time (Baruch A. Fuchs et al, 

1986, Hou Jing et al, 2006). Polishing is also not well enough understood or controlled to 

result in a predetermined surface finish (Marvin J Weber). So, nanoscale ductile mode 

cutting by single point diamond tool is believed to give higher surface finishes with good 

surface properties for longer life of crystals. The stability of surface roughness obtained 
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by diamond turning is more than by other methods. The spatial versatility, geometric 

predictability and inherent repeatability of CNC Ultra precision machines offer a unique 

alternative for optical surface manufacturing.   

In this regard, this research study aims for significant contribution to the field of 

non linear optics for finishing KDP crystals by alternative technology, Single Point 

Diamond Turning.    

 

1.2 Objectives of this Research Work  

The main objectives of this research work are 

To establish a new technology of finishing, called ‘Nanomachining’ for soft and 

brittle material, Potassium Dihydrogen Phosphate (KDP) by achieving optical surface 

finish (Ra below 5nm) in the field of non-linear optical applications such as Optical 

Modulators, Pockel’s Cell etc.  

 In order to achieve this objective the following is proposed.  

 

 To perform Ductile Cutting of KDP with the undeformed chip thickness less than 

cutting edge radius and to establish an effective method to overcome the difficulty 

of eliminating machined chips which is identified as a main challenge in 

machining of KDP in dry cutting conditions   
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1.3 Organization of the Thesis  

 In the present work, an experimental investigation of nanoscale ductile mode 

cutting of Potassium Dihydrogen Phosphate is performed. Chapter 1 describes about the 

background of the research work along with its objective. Literature review about the 

ductile mode cutting of brittle materials, details of work material (KDP) such as 

properties, applications, etc is presented in chapter 2. 

 Chapter 3 describes experimental details and equipments carried out in this study.  

In this chapter details about the approach of cutting, vacuum setup used in the 

experiments are discussed. Experimental results pertaining to the nanoscale ductile 

cutting of KDP are discussed in Chapter 4. The conclusions are presented in Chapter 5.   
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction  

Brittle materials like Ceramics, Semiconductors, and Glasses etc which are 

usually hard and with low fracture toughness are difficult for machining. Such brittle 

materials can be deformed plastically when the depth of cut is below several tens of 

nanometers i.e., these exhibit plastic deformation like ductile materials below minimum 

cut chip thickness. This is known as ‘Ductile Regime Machining’. The present chapter 

provides an overview of literature, in the areas of ductile mode machining of brittle 

materials, characteristics of KDP material, applications and importance of surface 

integrity of KDP and ductile cutting of KDP. The following topics relevant to the present 

work are reviewed:  

• Ductile regime machining of brittle materials 

• Mechanisms of ductile regime machining in literature 

• Brittle-ductile transitions in the machining of brittle materials 

• Diamond turning of soft and brittle materials     

• Characteristics of work material (KDP material)  

• Importance of surface integrity for KDP applications  

• Diamond turning of KDP material 

• Importance of dry cutting of KDP   
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2.2 Ductile Regime machining of Brittle Materials 

 The application of brittle materials such as Ceramics, Glasses, Silicon etc in 

various fields such as Optics, Semiconductor etc has led to development of processing 

technologies of these materials. The brittle materials are used due to their high 

performance efficiency, light in weight, able to perform in extreme environments etc.  

The processing technologies include Ultra Precision Grinding and Ultra Precision Single 

Point Diamond Turning. The development of Ultra Precision machines with resolutions 

at nanometric accuracy has led to possibility of finishing brittle materials in a ductile chip 

removal way. A lot of research has been going on this ductile mode finishing technology 

lately, in machining of new brittle materials and finding the mechanism of ductile mode 

machining. A review of machining of brittle materials by ductile grinding and diamond 

turning processes is presented here. 

   Several researchers have reported that machining of the brittle materials in ductile 

mode conditions is possible. The literature showed various brittle materials like 

Ceramics, Semiconductors, Glasses, etc have been cut in ductile conditions and showed 

fracture free surfaces can be achieved. The possibility of grinding brittle materials in a 

ductile manner was proposed by King and Tabor (1954), when it was noted that during 

frictional wear of rock salts, although there was some cracking and surface 

fragmentations, the dominant material removal process was plastic deformation of the 

surface layers and not fracture. Huerta and Malkin (1976) showed first reproducible 

evidence of grinding brittle glass work pieces with the improvements in precision 

diamond grinding mechanisms at that time.      
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Blake N Peter (1990), who studied the precision machining of germanium and 

silicon using single-point diamond turning, pointed out that the critical chip thickness is 

an important parameter, which governs the transition from plastic flow to fracture along 

the tool nose. Puttick et al (1995) conducted the single point diamond turning using cut 

depths of the order 100 nm and achieved a surface quality corresponding to that achieved 

by optical polishing, Ra≈0.6 nm, but the subsurface damage also can be observed under 

the condition of ductile regime machining. Nakasuji et al (1990) carried out single-point 

diamond turning of silicon with a tool having a nose radius of 0.5-1 mm and a rake angle 

varying from 0 to -250 and found a surface roughness of 0.04 µm. Shibata et al (1996) 

experimented on silicon wafers with a single-point diamond tool of nose radius 0.8 mm 

and a negative rake angle of 400. Fang and Venkatesh (1998) reported that for turned 

silicon surfaces with roughness value of Ra=23.8 nm, mirror surfaces of 1 nm roughness 

were achieved repeatedly by micro-cutting, where a depth of cut of 1 µm. Leung et al 

(1998) carried out direct machining of silicon on a precision lathe to a finish of 2.86 nm 

roughness and found that in order to produce a high quality surface, it’s necessary that the 

machining process is in the ductile regime and the chip thickness must be less than the 

critical value, which depends on the machining conditions.  

Many other researchers (Beltrao et al., 1999; Bifano et al., 1991; Lawn et al., 

1994; Moriwaki et al., 1992; Morris et al., 1995; etc) reported ductile regime machining 

of Si, Ge, Ceramics and Glasses etc with high quality surfaces without subsurface 

damages. This indicates that the process of ductile chip formation may be independent of 

the nature of the materials (e.g., brittle or ductile, hard or soft, crystalline or amorphous, 

etc.).     
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2.3 Mechanisms of Ductile Regime Machining in literature 

As mentioned in last section, much work about ductile-regime machining of 

brittle materials has been reported, but the nature of the brittle-ductile transition is not 

clear. Systematical study on its machining mechanism and the technology is of 

theoretical significance and practical value. Many researchers have been involved into 

understanding the phenomena of brittle-ductile transition and revealing the mechanism. 

Some initial work is briefly described here.  

The basic mechanism of ductile machining of brittle materials can be studied by 

assuming the cutting process to be as indentation and scratching processes, since cutting 

takes place at sub-micron level where cutting edge radius of the tool plays an important 

role. The literature review showed indentation studies and low speed scratching 

experiments can be used to analyze the fundamental deformation and fracture process 

that may occur during ductile grinding and diamond turning processes.  

Shaw (1972) proposed a mechanism of material removal involving extrusion of 

heavily deformed material ahead of a large radius tool in grinding of ductile metals (Fig. 

2.1) and Komanduri (1971) proposed a mechanism likening the grinding process to 

machining with high negative rake tools (Fig. 2.2). Puttick et al (1989) used similar 

models to include the case of nanometric cutting of nominally brittle material, such as 

silicon. They proposed that brittle materials may be machined in a ductile manner 

provided that the depth of cut is restricted below a critical value for crack initiation 

predicted by energy scaling. The ductile machining is just like the extrusion of plastic 

materials ahead of the tool. Lawn and Evans, 1977; Lawn et al., 1980 showed the 

mechanism of material removal by brittle mode can be obtained by comparing this 
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process with indentation-sliding analysis (Fig. 2.3). The material removal takes place in 

six stages. As shown in fig 2.3 the material under the indenter is initially subjected to 

elastic deformation. 

 

 

 

 

 
 

 

 

Figure 2.1: Mechanism of material removal involving extrusion of heavily deformed 
material ahead of a large radius tool in grinding of ductile metals. 

 

 

 

 

 

 

 

 

Figure 2.2: Mechanism of material removal in grinding with machining with high 
negative rake tools. 

 

There creates a small inelastic deformation zone due to high hydrostatic pressure below 

the indenter; (b) a median vent is formed on a plane of symmetry containing the contact 

axis at the elastic-plastic boundary; (c) further increase of load makes the median vent 

stable; (d) the median vent begins to close as the load is removed; (e) the lateral vents are 
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formed as indenter removal goes on and spread out laterally on a plane closely parallel to 

the specimen surface. Residual stresses are the main cause to form lateral cracks (f) as the 

indenter is removed completely lateral vents continue to extend towards specimen surface 

and may eventually lead to removal of material by chipping. In nanometric cutting of 

brittle materials such as silicon using a single crystal diamond tool, this mode of material 

removal must be avoided as much as possible to eliminate brittle fracture and consequent 

micro-crack formation on or near the surface. 

 

Figure 2.3: Schematic showing various stages of indentation. 

 
It is well known that the extent of plastic deformation is determined by the 

magnitude of the hydrostatic stress. Under high hydrostatic pressures brittle materials are 

capable of ductile behavior (Bridgeman, 1953). Such a condition exists at light loads 

under the indenter in indentation testing. Immediately below the indenter, the material is 
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assumed to behave as a radially expanding core (‘hydrostatic core’) exerting uniform 

hydrostatic pressure on its surroundings, encasing the core in an ideally ‘plastic region’. 

Beyond the plastic region lies the ‘elastic matrix’ (Johnson, 1970). Fig 2.4 shows a model 

for elastic-plastic indentation of brittle materials.  

 

 

 

 

 

 

 
 

Figure 2.4: Model of elastic-plastic indentation of brittle materials.  

 
 A model for material removal without microfracture was developed by Lawn and 

Evans (1977). It is based on a model in which the elastic-plastic field beneath the indenter 

is resolved into elastic and residual components. Nakasuji et al. (1990) and Shimada et al. 

(1995) proposed a possible material removal mechanism, which can be classified into 

two modes when machining brittle materials. One is the process due to plastic 

deformation in the slip direction on the characteristic slip plane and the other is due to 

cleavage fracture on the characteristic cleavage plane. When the resolved shear stress τslip 

in the slip direction on the slip plane exceeds a certain critical value τc inherent to the 

work piece material, a plastic deformation occurs in a small stressed field in the cutting 

region of a specified scale, which may correspond to the depth of cut, for example. On 

the other hand, a cleavage occurs when the resolved tensile stress normal to the cleavage 

plane σslip exceeds a certain critical value σc. The mode of material removal depends on 

P = Applied Load 

  2a 
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which criteria dominates or proceeds cslip ττ >  or ccleave σσ >  for the stress state under a 

particular machining condition.  Figure 2.5 shows a model of chip removal with a size 

effect in terms of defects distribution (Nakasuji et al (1990)).   

 

Crack Tool 

Critical stress field 

Tool 

Defect 
 

                             (a) Small depth of cut                        (b) Large depth of cut 

Figure 2.5 A model of chip removal with a size effect in terms of defects distribution.  
 

Liu Kui (2002) proposed that for the ductile chip formation in cutting of brittle 

materials to take place, two conditions must be satisfied. The first one is to have a small 

value for undeformed chip thickness. The smaller undeformed chip thickness creates 

larger compressive stress in the chip formation zone which suppresses the stress intensity 

factor KI that leads to KI smaller than the fracture toughness KC. The second condition is 

to have the ratio of the radius of tool cutting edge to undeformed chip thickness be larger 

than 1.    

  The mechanism behind plastic deformation in ductile cutting of brittle material is 

still unclear whether it is due to dislocations or phase transformation. John Patten et al 

2005 performed ductile cutting of SiC and discussed plastic deformation of SiC at 
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nanoscale cutting is due to the high pressure phase transformation. They showed negative 

rake angles and smaller depths of cut enhance the ductile machining characteristics.    

 

2.4 Brittle-Ductile Transitions in the Machining of Brittle Materials  

It is known that there is a transition in the material removal mechanism of brittle 

materials from brittle to ductile mode when the depth of cut decreases. A lot of research 

has been going on finding the brittle ductile transition for different materials.   

Bifano et al (1991) investigated ductile-regime grinding and established a critical-

depth-cut model. Bifano postulated a basic hypothesis for ductile-regime grinding: all 

materials, regardless of their hardness or brittleness, will undergo a transition from brittle 

machining regime to a ductile machining regime if the grinding infeed rate is made small 

enough. Below this threshold infeed rate, the energy required to propagate crack is larger 

than the energy required for plastic yielding, so plastic yielding becomes the predominant 

grinding mechanism. The critical-depth-cut model originates from a formula describing 

the critical depth for fracture during indentation of hard materials and its formula to 

predict the critical-depth-cut is: 

2

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=

H
K

H
Ebd C

c  

where CK  is the fracture toughness and H  is the hardness. E  is the elastic modulus and 

b  is a constant which depends on the correlation between the calculated results and the 

measured results. These relevant material property parameters are determined according 

to the micro-indentation techniques. Consequently, as the scale of machining decreases, 

plastic flow becomes an energetically more favorable material-removal mechanism. The 
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critical depth at which a brittle-ductile transition occurs is a function of the intrinsic 

material properties governing plastic deformation and fracture. 

 Blackley and Scattergood (1991) developed a new machining model for single 

point diamond turning of brittle materials. Fig. 2.6 shows a projection of machining cut 

perpendicular to the cutting direction.  

 

 

 

 

 

 

 

Figure 2.6 A projection of machining cut perpendicular to the cutting direction. 
  

According to the energy balance concept, fracture damage will initiate at the 

effective cutting depth and will propagate to an average depth. The chip thickness varies 

from zero at the tool center to a maximum at the top of the uncut shoulder as shown in 

the figure. As long as the damage does not replicate beyond the cut surface plane, ductile 

regime conditions are achieved. If the damage extends too deeply into the substrate, the 

subsequent machining will not remove all the damaged material and indeed some damage 

will remain in the finished work piece surface.  

Nakasuji T and et al., 1990, discussed the importance of tool shape and cutting 

conditions selection in ductile machining of Ge, Si and LiNbO3. The use of small nose 

radius, small feed rate and small depth of cut creates small interference region and small 

size of critical stress field. Ductile mode cutting can be achieved when tools of negative 
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rake angle are used even critical thicknesses of cut is large. They showed at identical feed 

rate, surface roughness with the negative tool is better than the other. Blackley W. S. and 

Scattergood R. O, 1991, showed theoretically that the larger nose radius is better in 

ductile regime machining of brittle materials. They also showed large negative rake angle 

gives beneficial effect on machinability in ductile regime as the critical depth of cut 

parameter dc increases and it is negated by increase of damage depth yc. Maximum feed 

fmax which indicates machinability increases significantly at large negative rakes. Lucca 

D. A. et al, 1998, studied the effect of rake angle in orthogonal cutting of Ge over a range 

of depths of cut below 500nm. They observed the cutting force and thrust force variation 

and concluded that at lower depths of cut and higher negative rake angles the depth of cut 

causing onset of significant surface fracture increases and increase in ratio of cutting 

force to thrust force. And also direction of resultant force changes with lower doc and 

higher negative rake angles which induces highest resolved shear stress along the 

particular slip system.    

However, Fang F. Z. and Zhang G. X, 2003, discussed the difference of cutting 

mechanism with a 0o rake tool and an extreme negative rake tool. They showed 

experimentally that effective rake angle plays an important role than nominal rake angle 

in cutting of brittle materials. With an increase in cutting edge radius and a decrease in 

undeformed chip thickness, the rake angle of the tool becomes more negative. The larger 

negative rake tool produces more effective negative rake which creates more plowing and 

sliding instead of chip formation. Ductile cutting can be achieved with a negative 

effective rake angle cutting tool if the undeformed chip thickness is smaller than a critical 

value even though 0o rake angle tool is used. Fang F. Z. and Venkatesh V. C, 1998 have 
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shown zero rake gave better results than -25o rake angle since when -25o rake is used the 

effective rake could be as high as -60o creating excessive pressure that could mar the 

surface. They used 0.5mm nose radius tool explaining the difficulty of waviness control 

of large nose radius when used.   

  

2.5 Diamond Turning of Soft and Brittle Materials    

As it is shown in the above section that all materials can be machined in ductile 

mode but most of the work is being done on hard and brittle materials like Si, Ge, Glass, 

Ceramics etc, a little work has been done on machining of soft and brittle materials.    

Some researchers showed organic and inorganic nonlinear crystals which are soft and 

brittle such as LiNbO3, L-arginine phosphate, KDP, CaF2 etc can also be diamond turned.  

The works are discussed below.   

Baruch A Fuchs et al (1989) showed L-arginine phosphate, an organic nonlinear 

crystal can be diamond turned and discussed related issues like lubrication and cooling 

during machining, effect of rake angle and crystal orientation on surface achieved. They 

(1992) also performed diamond turning on Lithium Niobate in ductile shear mode and 

discussed shoulder analysis technique and suggested more studies to ascertain the 

optimum conditions for finishing on modern high precision lathe. Namba and Saeki 

(2003) shown Thienylchalcone, an organic nonlinear crystal can be diamond turned and 

studied effects of cutting direction and rake angle on surface roughness.  Jiwang Yan et al 

(2004) performed diamond turning on Calcium Flourde (CaF2) using straight edge tool 

and studied effects of tool feed, rake angle, workpiece crystal orientation and cutting 

fluid. Marsh R Eric (2005) reported a predictive model for surface figure extrapolated 
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from force data in diamond turning of CaF2.  Nakasuji (1990) turned Lithium Niobate 

(LiNbO3) and showed it can be cut in ductile mode. The experimental results obtained in 

ductile mode machining of commercial PZT (Piezoelectric transition) ceramics indicated 

that the domain switching is associated with the ductile machinability with this group of 

PZT ceramics (Beltrao et al, 1999).   

 

2.6 Work Material – Potassium Dihydrogen Phosphate 

 Potassium Dihydrogen Phosphate (KDP) is an Inorganic dielectric nonlinear 

material which is brittle and soft and also very thermally sensitive and hygroscopic. It is 

widely used in nonlinear optical field for frequency conversion processes due to its high 

laser damage threshold, high optical homogeneity, high structural perfection, high non-

linear efficiency and high transparency range (240-1600nm). KDP has low fracture 

toughness and hardness which makes it difficult to machine, leading to application of 

ductile regime machining at certain conditions for finishing of this material.   

The combination of high brittleness with a relatively high coefficient of expansion 

and low thermal conductivity of KDP makes it very vulnerable to breaking by thermal 

shock (Richard C. Montesanti, 1995). So it is important to take utmost care while 

processing this material.  Some of the properties of KDP are shown in below in table 1.  

KDP is a liquid crystal and grown from aqueous solution at rates of few mm/day.  

Its melting point is only 2500 C and curie temperature is 122 K (-1510c). At room 

temperature it is non-polar paraelectric and has a tetragonal crystal structure and it 

changes to ferroelectric phase with ortho rhombic structure at 122 K (-1510c). The crystal 

structure of KDP material is shown below in figure 2.2 (Yoshido H and et al, 2000). 
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2.6.1 Importance of Surface Integrity for KDP applications 

The definition of quality depends on the function that a work piece must perform.  

The quality can refer to error in the Surface Contour, Surface Roughness of a work piece 

and Sub surface damage which together is known as Surface Integrity. Surface Integrity 

is defined broadly as the metallurgical and mechanical state of the machined surface.  

Subsurface damage can be defined as any degrading effect that manifests itself just below 

the surface of a work piece. Examples are residual stress, micro cracks that reside below 

or extend from the surface into the bulk of the work piece, changes in the constitution of 

the work piece near the surface such as hydration of glass, or change in the hardness due 

to plastic working of the work piece material near the surface (Said Jahanmir et al 1999).   

It is particularly the cracking that is so deleterious in machining of brittle materials such 

as glass, ceramic etc. The absence of residual cracks extending into the surface which 

degrade the breaking strength of a work piece is characteristic of ductile regime 

machining such as grinding and single point diamond turning. The efficiency of the 

nonlinear optical processes in which KDP is used depends on how good the optical 

properties are achieved. These optical properties are dependent on the surface integrity of 

the crystal. The applications of KDP material mainly are in Pockel’s Cell as Q-switches, 

Optical Modulators and for Angle Tuning. Through nonlinear optics, laser radiation can 

be converted from one frequency to another, significantly increasing the range of 

applications that can be addressed.      
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Properties of KDP 

Crystal System(Space group) 

Density (g/cm 
3) 

Hardness (kg/mm3) 

Slip System 

 

 

Solubility (oC) (g/100 g H2O) 

Transmission (µm) 

Refractive Index 

Elastic Moduli  (GPa) 

Poisson’s Ratio 

Melting Point 

Heat Capacity (J/g K) 

Thermal Expansion (10-6 K) 

Thermal Conductivity(W/m K) 

Elastic Constants @ RT 

Cij (1011N/m2) 

 

 

Tetragonal ( I -42m) 

2.338 

1.5(Mohs) 

a. (101), (110), (112), (123)  

<111>/2 

b. (010) [100] 

33 (25) 

0.18-1.5 

ne = 1.4669,  no= 1.5074 

E = 38, G = 15, B = 28 

0.26 

250oC 

0.88 

22.0║ a ,   39.2 ║ c 

2.0, 2.1 

C11=0.7140, C12= -0.049,       

C13=-0.020, C33=0.370,    

C44=0.120, C66=0.07 

 

       

     Table 2.1 Properties of KDP.    
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Figure 2.7 Structure of KDP crystal: (a) Projection along the a-axis and (b) Projection 
along the c-axis (Yoshido H et al, 2000).        

 

In this nonlinear optical (NLO) interaction, one or two laser beams are directed into a 

suitable material in which an output beam of the desired frequency is generated. NLO 

interactions include harmonic generation, sum and difference frequency generation, and 

parametric oscillation. The physics of an NLO interaction impose severe demands on 

potential NLO materials. In general, a material must be optically transparent to the 

incident and generated radiation, posses a quadratic susceptibility of sufficient 

magnitude, allow for phase-matching of the interaction and withstand the laser intensity 

without damaging. In addition to these, the material must have resistance against 

photorefractive effects, should available in good quality, large size and with reasonable 

price. 

As a crystal, KDP is noted for its non-linear optical properties when compared to 

other nonlinear materials. KDP when oriented properly is capable of converting a high 

percentage of light at certain frequencies when passing through it to twice its incoming 
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frequency. When certain frequencies of light are passed through consecutive crystals of 

KDP and DKDP (Deuterium Potassium Dihydrogen Phosphate) that are properly aligned, 

a large percentage of the incoming light may be converted to light of 3 times the 

frequency as shown in fig. 2.8. KDP crystals are practically transparent in the visible and 

near IR parts of the spectrum. It has high laser damage threshold, optical homogeneity, 

high structural perfection, non-linear optical properties with high non-linear efficiency, 

strongly birefringent (for phase matching), crystal symmetry and transparency over wide 

range of spectrum with relatively low NLO coefficients. These are available in large, 

homogenous pieces at relatively low cost. The hygroscopic property of KDP is the 

drawback for the usage in some applications. The optical properties of KDP family of 

crystals, higher damage threshold and ease of growth into large crystals make significant 

in non-linear optics though they are hygroscopic.  

Although the surface is coated with Anti-Reflecting (AR) coatings for higher 

transference, a higher surface quality is important. The properties like high laser damage 

threshold, higher transparency, high structural perfection depends on the processing of 

the crystal material. The surface of the crystal material on which laser interacts should be  

 

 

Figure 2.8 Frequency Conversion Process. 

 
KDP 

 
KDP

1064 nm   532 nm   355 nm 
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free from sub-surface damage, scratches, residual stresses due to the finishing process, 

without any contamination and should avoid any catastrophic failure. It has been 

recognized that surface damage and surface plasma formation in optics under intense 

illumination depends on the cleanliness and finish of their surfaces (Glass A. J et al., 

1972, Wood R.M. et al., 1975). A higher optical surface is achieved by proper finishing 

technique. The higher surface finish requirement minimizes scatter losses and wave front 

distortions while increasing the efficiency of optical systems.   

A surface preparation process of a nonlinear crystal material starts with an as-cut 

surface and progresses through a sequence of increasingly finer scale material removal.  

In progressing through the sequence, it is of paramount important that each stage removes 

all the damage, including especially sub-surface damage, introduced by the previous 

stage. The cutting process for an NLO crystal should avoid catastrophic cracking due to 

excessive mechanical or thermal stress (Peter F. Bordui and Martin M. Fejer., 1993). The 

surface should be of high finish i.e., the surface roughness should be around λ/4 to λ/10 

(λ – wavelength of laser used), higher flatness and good surface topography with 

minimum waviness.  

 

2.6.2 Diamond Turning of KDP material  

KDP is a soft, brittle and fragile material which imposes a challenging task for 

processing. In this section, literature review is presented on diamond turning of KDP 

material.   

A procedure for polishing the KDP family of crystals to high optical quality 

surface finish and flatness is described by Sanjib Chatterjee (2005). The Ultra precision 
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grinding of KDP crystal surfaces are reported by Namba Y and Katagiri M (1998).  

Diamond turning in fly-cutting mode is performed on large KDP single crystals.  

Researchers Baruch A. Fuchs and et al (1986) from LLNL developed a manufacturing 

process using SPDT in fly cutting mode for large KDP crystals (100mmx100mm) and 

concluded that smaller feed and larger tip radius of tool leads to more surface finish.  Syn 

Chol K and et al (1991) performed diamond turning of optical crystals and studied the 

upper limit of the ductile cutting conditions by shoulder analysis technique and suggested 

a systematic study on cutting of KDP by that technique on large KDP crystals (25 to 50 

mm in diameter) and characterization of subsurface damage. Qiao Xu and et al (1999) 

from Chengdu Fine Optical Engineering Research Centre, China explained the defects in 

machining KDP surfaces and obtained surface roughness of 8 nm rms in their 

experiments. 

  The researchers Chen M.J. and et al (2006, 2007) from Harbin Institute of 

Technology, China have done work on brittle-ductile transition by indentation tests and 

machining in fly cutting mode and evaluated theoretical equation for critical depth of cut 

based on indentation principles and fracture mechanics. They stated tool’s geometry 

parameter, feed rate and nominal depth of cut are main factors for surface quality of 

KDP. The surface roughness achieved is more than 5nm Ra. Regression Analysis 

technique has been used for prediction of surface roughness and cutting force by them. 

The machining of KDP is performed by Japanese researcher Yoshiharu Namba (1998). 

 Indentation tests were conducted on KDP and DKDP by Tong Fang 2002 and 

Kucheyev 2004 to find the micro-hardness and fracture toughness. Tong Fang 2002 

described the properties elastic modulus (E) and fracture toughness (Kc) of KDP are 
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anisotropic. Kucheyev 2004 mentioned low values of E and Kc should be taken into 

consideration while processing this material.    

 The most of the work on SPDT of KDP has been done using Fly Cutting Mode 

since the application for their requirements needs larger KDP crystals and these have 

been machined using fly cutting mode. The size of crystals used depends upon the size of 

the laser beam and the application in which it is used. Systematic studies on 

machinability of KDP crystals can be performed for understanding various issues like 

ductile mode cutting etc., by using relatively small crystals of size around 50x50mm 

conveniently by SPDT in spiral cutting mode instead of  fly cutting mode by using Ultra 

precision machine.   

 

2.6.3 Importance of Dry Cutting of KDP 

From the literature studies it is found that several works have been done on 

ductile mode cutting of hard and brittle materials like ceramics, glasses, quartz and 

semiconductors, but a little work on soft and brittle materials like KDP. A very few 

researchers have attempted to machine KDP material and shows comprehensive work 

regarding the finishing of the KDP crystal material is necessary which plays an important 

role in  the field of non-linear optics. Moreover, it is reported surface roughness above 

5nm which is not satisfactory for the non linear applications and the some literature 

mostly discussed the procedure for machining and handling and cleaning of KDP.   

KDP is susceptible to environmental degradation by moisture, oil residues, dust 

etc due to its characteristic. The use of machining oil for flushing away chips causes 

residual strains on the surface. The residual strains are removed by cleaning the crystal by 
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solvents like toulene, xylene. The cleaning procedure causes ‘Fogging’ of the crystals 

which is not required in the applications. KDP should be machined in dry cutting 

conditions to avoid ‘Fogging’ of the crystal. In this regard, Dry cutting of KDP is 

proposed in this research work. The main difficulty identified in dry machining of KDP is 

chip removal from the machined surface. The machined chips produced are remained on 

the surface causing damage. This problem is being dealt by proper technique in this 

research work.   

2.7 Conclusion 

 As it is discussed in the above sections, the research on ductile machining of KDP 

is very less and also that little amount of work that has been done on ductile machining of 

KDP reported surface roughness Ra more than 5 nm which is not sufficient in the 

applications and machined in wet cutting conditions i.e., use of coolant. In this work, the 

importance of dry cutting of KDP is emphasised and proposed in view of the 

characteristics of this particular material.   

 The main challenge in dry cutting of KDP is chip elimination from work zone and 

work surface. In this regard the objective of this research work is to establish proper 

technique for elimination of chips from the surface. Vacuum extraction of chips from the 

work zone using venturi is proposed in this work and shown that it is possible to 

eliminate chips if the proper vacuum conditions are maintained. The following chapters 

describe in detail about the experimental setup, challenges encountered and results.

 In this regard, Nanoscale ductile mode cutting of KDP can be achieved by ductile 

mode cutting by SPDT which provides an alternative technology for nonlinear optical 

applications.     
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CHAPTER 3 

EXPERIMENTAL SETUP DETAILS  

 

3.1 Introduction  

The details of machining approach of KDP, equipments and cutting tool are 

discussed in this chapter. The experimental portion consists of face turning operation on 

the KDP crystal. The maximum undeformed chip thickness equations used in the cutting 

conditions and the method of measurement of cutting edge radius are briefly described.  

Details of the vacuum setup used, theoretical analysis of vacuum parameters and the 

machining parameters used in the experiments are also discussed.   

 

3.2 Approach of Cutting KDP 

It has been shown that tungsten carbide and silicon can be cut in ductile mode 

under the set of conditions proposed by Liu Kui (2002). The proposed conditions are     

1) smaller value of undeformed chip thickness and 2) values larger than 1 for the ratio of 

cutting edge radius of the tool to maximum undeformed chip thickness should be used. It 

is believed that the above conditions are suitable in achieving ductile cutting of KDP 

material since this material is expected to have low value of critical chip thickness due to 

its low fracture toughness and hardness values. The use of sharp diamond tools (cutting 

edge radius 50 -100nm) and low undeformed chip thickness gives fracture free ductile 

surfaces with minimum residual stresses. In the present work, ductile cutting of KDP 

material is performed under the above conditions, which is different from the previous 
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works in the machining of KDP. The studies are carried out in the dry cutting conditions 

for achieving ductile crack free surfaces whereas the previous works used coolant.  

 

3.3 Machine tools and Equipments used  

The demand for use of Ultra Precision Machines in various applications such as 

Optical components (sophisticated lens and mirrors), Fuel injection systems, etc is 

increasing everyday since the finishing accuracy of the work piece greatly depends on 

which it is machined. Ultra precision machines can be used for several materials and 

produce surface accuracies at the order of nanometer for different components. For 

getting good optical surfaces on KDP, the use of Ultra precision machine is very much 

necessary. The spatial versatility, geometric predictability and inherent repeatability of 

CNC Ultra precision machines offer a unique alternative for optical surface 

manufacturing (Marvin J Weber, 1995). In this regard, face turning experiments were 

carried out on Toshiba (ULG-100C) Ultra precision machine (Fig 3.1) having positioning 

resolution of 1 nm. The maximum spindle speed and feed of this machine is 1500 

revolutions per minute (rpm) and 450 mm/min respectively. The shock reservoirs are 

attached with the machine to make it vibration free. The work piece is set on vacuum 

chuck of the machine spindle.    

Other equipments used in this research work are:  

• Scanning Electron Microscope (SEM)(JEOL JSM-5500) 

• Atomic Force Microscope (AFM) (SEIKO II SPA 500) 

• Taylor Habson Surface Profilometer  

• Nomarski Optical Microscope  
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Figure 3.1: Toshiba ULG-100C ultra precision machine. 

 

3.4 Tool Material  

 The tools used are single point diamond tools of 0.5mm, 1mm and 2 mm nose 

radius. The cutting edge radii of these tools are around 50~80nm. The rake angle of the 

tool used is 00. The clearance angle is 70. Figure 3.2 shows one of the diamond inserts 

used in this experimental study.  

 

   Figure 3.2: Picture showing single point diamond insert. 
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3.5 Work Material 

 Potassium Di hydrogen Phosphate (KDP) grown from liquid of size 60x60x15 

mm3 is used for  machining. The crystallographic orientation of the face machined which 

is measured by X-ray Diffractometer is (001). Figure 3.3 shows the cubic single crystal of 

KDP.  

  
Figure 3.3 Single crystal potassium di hydrogen (KDP). 

 

 

3.6 Vacuum Setup Description  

 In dry cutting of KDP, as it is identified during machining, the main challenge is 

removal of chips from the work zone i.e., eliminating the chips from the work surface.  

This is overcome by vacuum sucking device. For the purpose of chip extraction, it is 

thought venturi vacuum pump is suitable as it is simple in operation and effective. The 

other advantages of venturi system are compact and lightweight, can be positioned close 

to the work zone, easily regulated, less maintenance, fast cycling and less expensive etc. 

when compared to electro-mechanical pumps. The venturi works with the bernoulli’s 

principle in which, when compressed air is passed through throat section, the velocity of 

compressed air increases and pressure in the suction port decreases creating the pressure 
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differences in suction port and atmosphere. Higher-pressure ambient air outside the 

system flows in through channels in the generator, trying to create equilibrium. This 

outside air mixes with high-speed air used to generate low pressure, and the combination 

exits through the exhaust. With this method, the vacuum level depends on the nozzle.  

There is a consistent relationship between pressure and velocity, with a high-velocity 

fluid creating low pressure according to Bernoulli’s Principle. Fig. 3.4 shows the 

principle of operation of venturi.   

 

     

 

 

Figure 3.4 Principle of operation of venturi suction nozzle. 

 

3.6.1 Theoretical evaluation of chip velocity  

Ernst and Merchant orthogonal cutting theory is used in analyzing the chip 

velocity. As KDP is cut in ductile conditions, continuous chips are produced, to which 

this theory is used for chip velocity analysis.  

Exhaust 

Compressed 
Air Supply 

Suction 

Throat 
Section 
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 The basic mechanism in chip formation has been recognized as a shear process 

taking place along a shear plane in the work material. By shearing action the work 

material is plastically deformed and separated from the work piece. In Ernst and 

Merchant analysis chip is assumed to behave as a rigid body held in equilibrium by the 

action of the forces transmitted across the chip-tool interface and across the shear plane. 

This is shown in below fig. 3.5. Their analysis is based on the idea that shear angle φ 

would take a value such that work done is minimum. As for given cutting condition work 

done is proportional to the cutting force Fc, Fc is expressed in terms of shear angle φ and 

shear angle φ is obtained for which Fc is minimum (Geoffrey Boothroyd and Winston A 

Knight). 

  

From Merchant’s force diagram shown in figure 3.5,  

 

   
C

C

N
FTan == βµ     -----------------------Eq. (3.1)          

 

α
αφ

rSin
rCosTan
−

=
1

   ----------------------Eq. (3.2) 

 Where r is the chip thickness ratio 

 

   
2

2 παβϕ =−+    -------------------------Eq. (3.3)  
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   Figure 3.5 Merchant’s circle of cutting forces. 

 The cutting velocity, v, is the velocity of the tool relative to the work piece. The 

chip velocity vc is the velocity of the chip relative to the tool and is directed along the 

tool face.   

   
)(

.
αϕ

φ
−

=
Cos

vSinvC    -------------------------Eq. (3.4) 

Here in this work above equation is used for calculation of chip velocity and the values of 

α, φ and β are calculated accordingly from the above equations.   

 

3.6.2 Calculation of flow velocity, air flow and suction pressure   

Airflow is the amount or volume of air moving through the vacuum, usually 

measured in Standard Cubic Feet per Minute (SCFM). The airflow (SCFM) into the 

suction port should be more than the material removal rate (MRR). The velocity of the 
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airflow is the speed of air at any given point in the vacuum system. It is measured in 

metres per minute. Suction is the pull power that creates the velocity of airflow necessary 

to move debris through the vacuum system. The stronger the suction power, the greater 

the velocity of air flow. So suction power that creates higher velocity of air flow 

(including with chips), is needed in the present case application. The smaller size of the 

nozzle creates higher velocity of air particles at the entrance causing higher suction.   

The performance of any venturi vacuum generator is defined by the following factors:  

a. Supply Flow: Supply flow describes the flow consumption of the device. It is measured 

in terms of SCFM (Standard Cubic Feet per Minute) of air consumption at various supply 

pressures.  

b. Flow Capacity: Flow capacity is a measure of free air (in SCFM) induced into the 

vacuum port of the device when the vacuum port is open to atmosphere.  

c. Vacuum Level: Vacuum level is a measure of the vacuum generated with the vacuum 

port blocked off from atmosphere.   

As it is discussed the air flow velocity (vcf) carrying the chips should be greater 

than the chip velocity (vc) at which it comes out from work, Airflow (SCFM) is 

calculated from the basic continuity equation that quantity of flow equals product of 

velocity of flow multiplied by area of hose which is shown in below equation 

     Airflow (SCFM) = vcf X Area of hose or nozzle -----------Eq. (3.5) 

The diameter of the venturi meter used is ¾” and size of the suction tube at the 

work zone is ½”. The actual suction pressure required at the suction port of venturi is 

calculated indirectly by deriving the equation for time required for evacuation.    
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Consider a volume V of chips is to be evacuated per unit time with flow rate of air 

Q by the suction port. The time required for evacuation of volume of chips can be 

estimated by applying continuity equation. Below fig. 3.6 shows the V volume of chips, 

Q flow rate of air and venturi.   

The assumptions made in the above analysis are that flow of chips is steady and 

rate of change of volume remains constant.  

 

   Figure 3.6 Analogy showing venturi extraction of chips. 

 

Applying continuity equation the time required for evacuation can be derived in 

terms of V, Q and atmospheric pressure P0 (psia) and suction pressure to be maintained in 

the suction portion of the venturi P (in terms of psia).and it is shown below.    

P
P

In
Q
Vt o=    --------------------Eq. (3.6)  

From the above analysis, suction pressure required in the suction port of the 

venturi can be found by volume V of material to be extracted per one sec. Fig. 3.7 shows 

the venturi setup used and nozzle near work zone.   

 

 

V 

Q 

venturi 
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3.6.3 Vacuum Calculation Steps 

a. Initially chip flow velocity (vcf) required is to be calculated from chip velocity (vc)  

b. Diameter of venturi nozzle is ¾”  

c. Calculate the material removal rate (v) from the cutting geometry and cutting speed 

data.   

d. Find Q suction flow of the air  

e. Estimate the suction pressure to be reached in the suction port of the venturi sample  

  

       

Figure 3.7 Venturi vacuum setup and nozzle near work zone. 

 

3.7 Experimental Procedure  

Face turning experiments are carried out on the work piece on Toshiba ULG 100 

Ultra precision machine. KDP crystal is hand polished first to make smooth enough to be 

able to glued on the aluminum block. This aluminum block with the square crystal is 

vacuum chucked to the machine and then face turning operations are carried out. Fig. 3.8 
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shows the crystal glued to the aluminum block. The gluing procedure and handling issues 

of KDP crystal are discussed in the following chapter. The machining conditions are 

followed such that the maximum undeformed chip thickness should be less than cutting 

edge radius of the tool.   

  

                           

       Figure 3.8 Picture showing work piece setup.  

   

3.8 The Maximum Undeformed Chip Thickness 

The maximum undeformed chip thickness, dmax, can be calculated from equations 

below according to the cutting tool geometry and cutting conditions used in the 

experiments. Fig 3.9 shows the schematic diagram of the maximum undeformed chip 

thickness in the ultra-precision face turning experiments (Liu Kui, 2002). Here, a0 is the 

depth of cut; R is the nose radius; O1 and O2 are the centers of two adjacent arc cutting 

edges, and the distance between O1 and O2 is the feed rate, f used in the experiments.  

The maximum undeformed chip thickness dmax for the condition faRa oo ≤− 22  as 

shown in fig. 3.9 (a):     

 oad =max    
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The maximum undeformed chip thickness dmax for the condition faRa oo >− 22  as 

shown in fig. 3.9 (b):            

   222
max 22 oo aRaffRRd −−+−=   

        

(a) Feed rate quite large ( faRa oo ≤− 22 ) (b) feed rate quite small ( faRa oo >− 22 ) 

Figure 3.9 Schematic diagrams of maximum undeformed chip thickness. 

 As the feed rate used in the experiments is very small, second condition from 

above satisfies the required conditions and it is used for calculation of maximum 

undeformed chip thickness.    

 

3.9 Measurement of Cutting Edge Radius 

 The cutting edge radius of sharp tool is below the optical diffraction limit and 

hence it is very difficult to develop an effective yet simple measurement technique. It has 

been reported that for freshly sharpened diamond tools, the cutting edge radius is 

normally in between 20-70 nm (Komanduri et al. 1998). Therefore nano-precision 

measurement of diamond cutting tools has become a key issue for ductile mode cutting of 
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brittle materials. Many methods were proposed for measuring cutting edge radius of the 

diamond tools. In this work, the method proposed by Li X. P. et al (2003) is used for 

measuring. This method is a non-destructive in which the tool profile is indented onto the 

copper block. This indented tool profile will be analysed using an AFM. The profile 

curvature of indentation is copied, fitted to a circle and radius of the circle can be found 

by simple mathematical analysis and Matlab. This is shown below.   

Consider a set of three points P1(x1, y1), P2 (x2, y2) and P3(x3, y3) that lie along the 

radius of the tool as shown figure 3.9. The line ‘a’ passes through the first two points P1 

and P2. The line ‘b’ passes through the next two points P2 and P3.  

 
   Figure 3.10 Fitting a Circle to three points.   
 

The equations of these two lines are 

11 )( yxxmy aa +−=          22 )( yxxmy bb +−=  

where ma and mb are the slopes of the two lines. The slopes are given by the following 

equation 

12
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The centre of the circle is the intersection of the two lines perpendicular to and passing 

through the midpoints of the lines P1P2 and P2 P3. The perpendicular of a line with slope 

m has slope -1/m, thus equations of the lines perpendicular to lines ‘a’ and ‘b’ and 

passing through the midpoints of P1P2 and P2P3 are given by (3.33). These two lines 

intersect at the centre of the circle and hence solving for x gives (3.34). The value of y 

can be calculated by substituting the x value into one of the equations of the 

perpendiculars. The radius is the distance between any one of the points, for example the 

point P1 and the center.  
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The computation described above was carried out in Matlab®. The radius of the circle 

was affected by the choice of the three points along the profile of the tool. Hence a 

number of different points were chosen from different profiles and an average value was 

computed. As this measurement is not accurate enough because of some amount of spring 

back in the copper material after the process of indentation, the measurements obtained 

from the AFM are enlarged by a factor of 1.5.    
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3.10 Measurement of Surface Roughness 

 The surface roughness analysis is performed by Atomic Force Microscope (AFM) 

and Taylor Habson Profilometer. Atomic Force Microscope is widely used for surface 

analysis which consists of scanning a sharp tip on the end of a flexible cantilever across a 

sample surface while maintaining a small, constant force. AFM provides three-

dimensional surface topography at nanometer lateral and sub angstrom vertical resolution 

on insulators and conductors. The tips typically have an end radius of 2nm to 20nm, 

depending on tip type. Because of the high resolution, AFM has proved to be an excellent 

method for process control and quality assurance in the applications where nanometer 

accuracy is essential (Brinksmeier E et al 1998). Tapping mode is used for surface 

roughness analysis as it avoids damage to the KDP machined surface. Average roughness 

value Ra and other parameters are observed for different cutting conditions. Fig. 3.10 

shows the Atomic Force Microscope (S.I.I. SPA-500) used.  

 

 

Figure 3.11 Picture showing atomic force microscope.  
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3.11 Experimental Cutting Conditions 

  The table below shows the final experimental conditions used, after preliminary 

experiments for obtaining optical surfaces. The possibility of vacuum extraction of chips 

is done with different cutting conditions in the preliminary experiments and the below 

conditions are used for showing the results of vacuum system. The cutting edge radius of 

1mm nose radius tool used is 57 nm and of 2mm tool is 81nm. The maximum 

undeformed chip thickness (Dmax) is calculated as discussed previously. The spindle 

speed is maintained at 1000rpm for all machining conditions. Smaller values of 

undeformed chip thickness are obtained only when given depth of cut and feed rate 

values are used and also to maintain the ratio of ratio of cutting edge of the tool to 

maximum undeformed chip thickness used larger than 1, these given cutting conditions 

are chosen.       

 
 
S. No 

 
Doc a0  
(nm) 

 
Feed rate (µm/rev)

 
Nose radius 

(mm) 

 
Dmax 
(nm) 

 
1. 
 

2. 
 

3. 
 

 
100 

 
150 

 
200 

 

 
1.5 

 
1.5 

 
1.5 

 

 
1 
 
1 
 
1 

 

 
20.00 

 
24.85 

 
32.41 

 
4. 
 

5. 
 

6. 
 

 
80 
 

100 
 

300 
 

 
2 
 
2 
 
2 

 

 
2 
 
2 
 
2 

 

 
17.00 

 
19.00 

 
33.64 

 
                Table 3.1 Machining parameters.   
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CHAPTER 4  

EXPERIMENTAL RESULTS 

 
4.1 Introduction 
 

The higher surface finish requirement in the applications of KDP material can be 

best achieved by Nanomachining by single point diamond tool in ductile mode. The 

fracture free surface by ductile cutting can be useful for the nonlinear applications of 

KDP. In this regard, machining experiments are conducted on KDP using the machining 

conditions as shown in previous chapter. The challenges encountered during machining 

of KDP are discussed in this chapter. The method to overcome chip removal by vacuum 

suction is explained in this chapter and results are discussed. In this chapter, it is shown 

that soft and brittle KDP material can be machined in ductile mode conditions at very 

small undeformed chip thicknesses: showing the results of fracture free ductile surfaces, 

chips and surface roughnesses obtained. The following sections show the above 

mentioned.  

 

4.2 Ductile Cutting of KDP  

As discussed in the previous chapter, ductile mode cutting is performed under the 

conditions that the undeformed chip thickness is less than the cutting edge radius and also 

smaller undeformed chip thicknesses should be used. As it is mentioned before, the 

difficulties processing this material are observed during the preliminary experiments 

performed on the crystal.   
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KDP is very soft, fragile, deliquescent brittle material and also susceptible to 

thermal variations which makes a different material from other brittle materials. The 

characteristics makes difficult to process (handling and machining). It has to be carefully 

handled and fixed onto the aluminum block which it is fixed to vacuum chuck for 

turning. The crystal should be hot glued with glue’s melting temperature around 500 C; as 

it introduces cracks in the crystal which leads to breakage of the crystal if it is around 

1000 C. Therefore, rate of change of temperature experienced by the crystal must be low.  

Here, soft gluing process is implemented to fix the work on aluminum block. KDP crystal 

is glued on the aluminum block using araldite (soft glue) and this in turn is fixed on the 

vacuum chuck of the machine. This issue of handling and fixturing makes a critical step 

in machining of KDP crystals as proper care should be taken.         

The main challenges encountered during machining of this material in dry cutting 

conditions are chips staying at the work zone, on the machined surface and their removal.  

These chips make damage to the machined surface. Below figs. 4.1 a and b shows 

nomarski surfaces with the chips on the machined surface.     

In macro machining one of the main issues is the entangling of the chips with the 

tool and causing damage to the machined surface. This problem becomes severe in 

micro/nanomachining. As micro/nanomachining is used mainly for higher optical 

surfaces, even the small particle will scratch the newly machined surface. Chip removal, 

therefore is to be carried out without causing the chips to remain on the work piece and 

damaging the machined surface.       
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                              (a)            

 
                              (b) 

Figure 4.1 Pictures of machined surfaces with the chips. 

 

This problem of chips is aggravated by the fact that the KDP material is very soft, and 

degradable due to dust, etc., it is easily suspectible to damage. As machining is carried in 

dry cutting conditions instead of use of machining oil to avoid fogging problem, a proper 

technique is to be established for elimination of chips from the surface. So machining of 

KDP in dry conditions makes a challenging task to remove chips. The probable reason 

for chips stay on the surface could be the increase of cutting temperature which makes 

the material soften since its melting temperature is 2500C. The generated cutting 

temperature could be reason for chips glue on the machined surface.        

Initially in this study various methods are tried to eliminate the chips from the 

surface such as post cleaning process (blowing of air and drag wiping) and use of 
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different geometries of tools (various negative rake angle tools and nose radius tools).   

This problem was attempted to solve by blowing air during the machining. The chips 

were not removed by blowing air method further this caused sub-surface damage. 

Another possible way to removal of chips is to clean the surface after machining with 

proper solution by drag wiping technique which can be used with KDP material. Such 

method also caused surface damage in the process and failure of the surface.  

As the cutting is performed in dry cutting conditions, it is thought the elimination 

of chips from the surface could be achieved by selecting appropriate tool geometry 

(Nakayama K et al 1981), and cutting conditions. In this regard, experiments are carried 

out with different tool geometries such as nose radius R (0.5 mm, 1 mm, 2 mm) and rake 

angle (-50, -7.50, -100) with R 2mm. Although it is observed that at some conditions and 

tool geometries, the chips can be eliminated from the surface, it is not repeatable and 

reliable method of elimination of the chips from the work zone.    

This problem of chips on the surface could be encountered by flushing of cutting 

fluid during machining instead of dry machining. A proper cutting fluid (vegetable oil) 

which is compatible with KDP material can be used. The use of cutting fluid reduces the 

surface temperature and at the same time flushes away the chips giving fine surface with 

no chips on the surface. 

 This problem of chips on the machined surface is not reported by any previous 

researchers in machining of KDP. Researchers Baruch A. Fuchs and et al (1986) had 

diamond turned KDP in fly-cutting mode using streaming cooling oil which maintained 

uniform temperature at the cutting zone preventing re-crystallisation simultaneously 
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flushing away the chips. Researchers Chen M J and et al (2006, 2007) have also used 

cooling oil.   

 However, if the coolant that is suitable with KDP material is used, it is to be 

cleaned from the workpiece using solvents Toluene or Xylene (Baruch A. Fuchs and etal, 

1986; Richard C. Montesanti, 1995). This may also cause surface fogging or 

environmental degradation of the crystal surfaces by improper cleaning process. The 

fogging problem of the crystal surfaces by usage of some turning oils is described by 

Kozlwski M R and et al, 1991, which leads to the increase of surface roughness causing 

increased beam modulation and scattering losses.    

 The solvents like Xylene and Toulene for cleaning machining oil from the crystal 

must be used in special laboratory conditions since they are toxic. This procedure may 

not be suitable for use in machining environment and also not suitable for practical 

application of diamond turning of these KDP crystals.    

  Therefore, the use of vacuum system to suck the chips during the dry machining 

is hence studied and applied to eliminate the chips forming on the machined surface.   

 

4.3 Implementation of Vacuum Suction Technique for extraction of 

Chips 

  The problem of chips in micro/nano machining as mentioned in above discussions 

can be eliminated by use of a vacuum system by sucking the chips while machining. Fine 

chips removed from the surface must be removed as formed by a suitable method such as 

vacuum, with out introducing vibration effects (Ikawa Naoya et al 1991). A systematic 
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analysis in designing of vacuum system is necessary for proper extraction of the chips 

from the cutting zone.    

 A high power vacuum system should be used for sucking of the chips from the 

machined zone by analyzing the velocity of the chip at which it comes out of the 

machined zone. The speed at which the chips come out can only be sucked or extracted 

from the cutting zone only if the speed of flow of air (including the chips) created by 

vacuum suction in the hose/nozzle is higher. So in order to provide the higher speed of 

flow of air (and chips), chip velocity should be calculated theoretically from the cutting 

models. The other factor to be considered is the suction air flow should be greater than 

material removal rate. This is the main idea in implementing the vacuum system for chip 

extraction. Moreover, the application of this technique can be supported by the fact that 

air flow created by the suction around the cutting zone cools down any possible increase 

in the cutting temperature which further eliminates the chips staying on the surface.    

 In this work, as the machining is done in ductile mode which produces continuous 

chips, Merchant’s shear model is used for evaluation of chip velocity as discussed in the 

previous chapter. A theoretical analysis of vacuum power required is done in selection of 

the system to be used considering the chip flow velocity and material removal rate.     

 The following shows the calculations of the requirements for one of the 

conditions (doc 300nm and feed rate 2µm/rev): the chip velocity, air flow and suction. 

The chip velocity vc is calculated for cutting speed 1.47m/s and shear angle (φ) is 

calculated considering rake angle (α) zero. The calculated chip velocity vc is found to be 

1.1m/s where calculated values of β is 16.7o and φ is 36.65o. The force parameters FC and 

FT required for calculation of angles are taken from experiments. Volume of material 
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removed is calculated from the cutting geometry and cutting speed which gives value of 

1.712e-09 m3/s. A factor of 2 is taken for chip flow velocity to be greater than calculated 

chip velocity. Suction air flow (SCFM) Q calculated is 1.328, which is more than 

material removal rate. Suction vacuum to be maintained is 27.6 “of Hg for the above 

condition of cutting speed and material removal according to the equation 3.5 shown in 

the previous chapter. The venturi used for generating vacuum is of ¾ “of size which can 

generate 21 “of Hg when supplied compressed air is 5.5bar. Even if the vacuum losses 

are considered in the connecting pipe from venturi to small nozzle near the work zone, 

the produced vacuum is enough for the requirement based upon the calculation. Like this, 

required vacuum is maintained for different cutting conditions.    

 The following shows the results of the implementation of the vacuum system for 

different conditions as mentioned in the previous chapter.   

 

 

Figure 4.2 Nomarski surface without implementation of the vacuum at Dmax 24.85 nm. 
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Figure 4.3 Nomarski surface with implementation of the vacuum at Dmax 24.85 nm.  

 

 

Figure 4.4 Nomarski surface without implementation of the vacuum at Dmax 20 nm.  

 

 

         Figure 4.5 Nomarski surface with implementation of the vacuum at Dmax 20 nm. 
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4.3.1 Discussions   

As proposed in above sections, the removal of machined chips in dry cutting of 

KDP is carried out by Vacuum suction technique. Here in the above sections, it is shown 

that for the effective implementation of vacuum suction technique two basic conditions 

must be satisfied, one is the flow velocity of chips i.e., suction flow velocity should be 

greater than chip velocity that is coming out from the cutting zone and the second one is 

the suction flow rate should be greater than the material removal rate.  Based upon this, 

suction pressure to be maintained in the suction port of the nozzle can be calculated. The 

exact value of the chip velocity should be different from the calculated one from 

Merchant’s theory. Even though the cutting produces continuous chips, the undeformed 

chip thickness used is much less than the cutting edge radius and due to this chips 

unlikely flow along the tool rake face. The two conditions do not satisfy the basic 

assumptions in Merchant’s theory of tool having perfect sharpness and chip flow along 

the shear plane. So for exact value of chip velocity, the effect of cutting edge radius 

should be taken into consideration.  In this work however, appropriate vacuum conditions 

mentioned are maintained.     

The experiments also showed that vacuum system can be used for elimination of 

chips from the work zone and surface. The nozzle should be positioned properly as close 

as possible to the work zone for effective use of the suction. Figure 4.2 show nomarski 

surface without implementation of vacuum system at maximum undeformed chip 

thickness Dmax at 24.85nm (depth of cut 150nm and feed rate 1.5µm/rev). Figure 4.3 

show the surface with implementation at Dmax 24.85nm. Figure 4.4 show nomarski 
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surface without implementation of vacuum system at Dmax 20nm (depth of cut 100nm and 

feed rate 1.5µm/rev).Figure 4.4 show surface with implementation at Dmax 20nm.     

   

4.4 Machined Work piece Surfaces  

 Nomarski surfaces at different undeformed chip thicknesses achieved in cutting 

KDP are shown in figures from 4.6 to 4.9. SEM photographs of chips at 3 different 

cutting conditions are shown in figures from 4.10 to 4.12. AFM analysis surfaces are 

shown in figures from 4.13 to 4.17. 

Nomarski Photographs of Machined Surfaces 

 

Figure 4.6.a Fracture free surface at a0 80nm f 2µm/rev R 2mm Dmax 17 nm. 

 

 

Figure 4.6.b Fracture free surface at a0 80nm f 2µm/rev R 2mm Dmax 17 nm. 
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Nomarski Photographs of Machined Surfaces(continued) 

 

Figure 4.7.a Fracture free surface at a0 100nm f 2µm/rev Dmax 19 nm. 

 

 

Figure 4.7.b Fracture free surface at a0 100nm f 2µm/rev Dmax 19 nm. 

 

 

Figure 4.8.a Fracture free surface at a0 100nm f 1.5 µm/rev Dmax 20 nm.  
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Nomarski Photographs of Machined Surfaces(continued) 

 

Figure 4.8.b Fracture free surface at a0 100nm f 1.5 µm/rev Dmax 20 nm.  

 

 

Figure 4.9.a Fracture free surface at a0 150nm f 1.5 µm/rev Dmax 24.85 nm.  

 

 

Figure 4.9.b Fracture free surface at a0 150nm f 1.5 µm/rev Dmax 24.85 nm.  
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SEM Photographs of Chips 

                              

Figure 4.10 Continuous chips at Dmax 17 nm observed under SEM.   

 

                              

Figure 4.11 Continuous chips at Dmax 19 nm observed under SEM. 

 

                             

Figure 4.12 Continuous chips at Dmax 33.64 nm observed under SEM. 
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         AFM Analysis of Machined Surfaces 

          
        Figure 4.13 AFM surface for a0 80nm f 2µm/rev R 2mm Dmax 17 nm.  

 

           
       Figure 4.14 AFM surface for a0 100nm f 2µm/rev R 2mm Dmax 19 nm. 
 

 
      Figure 4.15 AFM surface for a0 100nm f 1.5µm/rev R 1mm Dmax 20 nm. 
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AFM Analysis of Machined Surfaces(continued) 
 

               
Figure 4.16 AFM surface for a0 150nm f 1.5µm/rev R 1mm Dmax 24.85 nm. 

 

            
Figure 4.17 AFM surface for a0 200nm f 1.5µm/rev R 1mm Dmax 32.41 nm.  

 
 

4.4.1 Discussions  

The experimental investigation of machining under the ductile conditions 

performed on KDP material resulted in optical surfaces with free of fracture. The 

nomarski photographs of surfaces shown in figures 4.6 to 4.9 show the result at different 

maximum undeformed chip thicknesses. The maximum undeformed chip thicknesses 

used 17nm, 19nm, 20nm, 24.85nm, 32.41nm, 33.64nm which are very small compared to 

the cutting edge radius of tools used for machining (57nm for R 1mm tool and 81nm for 
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R 2 mm tool). It is possible to obtain ductile surfaces when only proper cutting conditions 

mentioned are maintained (Liu K, 2002). The generation of cracks could be minimized 

when smaller undeformed chip thicknesses are used at the point of surface generation, 

which can be attained by the decrease of feed and the increase of the corner radius of 

cutting tool and increasing cutting edge sharpness (Nakayama, 1997). The use of lower 

undeformed chip thicknesses is justified by the fact that KDP has low values of young’s 

modulus (E) and fracture toughness (Kc)and these should be taken into consideration 

while processing this material (Kucheyev 2004).   

 The observations under optical microscope show no evidence for the formation 

of subsurface damage such as micro cracks that reside under the surface. The other factor 

that is observed during the machining is the marks on the surface which are wider than 

the feed marks. This indicates that the marks are left over by the previous trimming cuts.  

This is shown in below fig. 4.18 from AFM analysis. This kind of ripples cause phase 

noise when high power lasers are passed which causes the surface damage resulting in 

failure of the optical component. These marks can be eliminated by avoiding trimming 

and machining the surface by giving more number of passes with finish parameters to 

eliminate the error caused in fixing the work piece on the spindle. The fig. 4.19 shows the 

surface marks equivalent to feed rate marks.     

The chips are collected for few cutting conditions (17, 19, 33.64 Dmax)   without 

using vacuum system for observation under SEM. The one of the observations that 

distinguishes ductile mode cutting to fracture mode is morphology of chips. The 

continuous chips indicate ductile mode where as discontinuous indicate brittle mode 

cutting. The SEM analysis of chips collected shows continuous chips which explain the 
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cutting is performed in ductile mode. The SEM photographs of chips are shown in figures 

4.10 to 4.12.   

 

 
Figure 4.18 Marks on surface wider than feed rate marks. 

 

 

Figure 4.19 Surface showing marks equal to feed rate marks.  

 

AFM analysis of the surface shows the surface roughness Ra obtained is below 

5nm which is requirement and sufficient in the KDP applications. The analysis 

photographs are shown in figures 4.13 to 4.17 at various different undeformed chip 

thicknesses. The RMS values are also below 5nm for all conditions used. The obtained 

roughness values are different from the theoretical roughness values. Since the feed rates 
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(1.5µm/rev and 2µm/rev) used are very less, the theoretical value is much below the 

nanometer, but the obtained values are about 3 nm. This may be due to various reasons 

such as inaccurate motion of the cutting tool relative to the work piece, transfer error of 

the cutting edge profile to the work piece etc. A trend is observed between Dmax and Ra; 

as Dmax decreases surface roughness value Ra is decreases, which is shown in figure 4.20.  

It is also observed during AFM analysis, the surface roughness varied at different 

orientations on the machined surface due to anisotropic properties of E and Kc of KDP 

(Tong Fang 2002). The results obtained in this work are different, achieving Ra below 

5nm when compared to the previous research on machining of KDP (Chen M.J. and et al 

(2006, 2007)). The higher surface finish can be obtained if the sharpness of the cutting 

edge is increased and by the use of lower maximum undeformed chip thickness, 

maintaining the ratio of cutting edge radius to maximum undeformed chip thickness 

greater than one. The protection of machined surface should be done by keeping the 

machined crystal in the desiccators.  
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  Figure 4.20 Maximum undeformed chip thickness vs surface roughness Ra.  
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CHAPTER 5 

CONCLUSIONS 

 The following important conclusions drawn from the experimental investigation 

are shown below  

1. Experimental results show that ductile surfaces could be achieved on the soft 

and brittle material like KDP with the surface roughness below 5nm from AFM analysis 

which is required in the KDP applications.   

 2. Dry cutting of KDP is proposed in this work considering the disadvantages 

when suitable coolant is used such as occurrence of ‘Fogging’. 

 3. The main challenge identified in dry cutting of KDP is removal of machined 

chips.  These machined chips cause surface damage which leads to poor surface integrity.  

  4. To overcome this problem, a Venturi Vacuum Suction Technique is proposed 

to extract the chips from the machined zone.   

 5. The applicability of Venturi Vacuum Suction Technique is shown theoretically 

based upon the conditions that the chip flow velocity into the suction port should be 

greater than the chip velocity and suction flow rate (SCFM) should be more than material 

removal rate.   

• Chip Velocity is calculated from Merchant’s theory of cutting and a factor is 

considered for estimation of chip flow velocity.   

• Suction flow rate (SCFM) and suction pressure required are calculated from 

the size of the venturi nozzle.  
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6.  The implementation of vacuum suction for extraction of chips is performed 

maintaining the conditions mentioned previously and results showed that it is possible to 

eliminate chips from the work zone and machined surface, leaving a fracture free optical 

surface on the KDP material.   

 It is concluded that KDP, as proposed in this work, should be diamond turned in 

dry cutting conditions to avoid the sub-surface damage caused due to cleaning process 

that involved when machining oil is used (mentioned in literature);  which aggravates the 

damage due to the intrinsic behavior of the KDP material.  The difficulties encountered 

during dry machining of KDP are resolved by proposing the extraction of chips by 

vacuum and experiment results showed obtaining the chip free, fracture free optical 

surface with surface roughness that can be directly used in the applications.      
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