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Summary

Nowadays, network based computation has attracted more and more attention, as

it provides an efficient solution for processing computational intensive tasks/loads.

This thesis considers processing one type of the loads - divisible loads, in networked

computing environments. We focus on the resource unaware case, where the scheduler

does not know the speed information of the network in advance. Networks with

different topologies are considered and studied. We also address the problem of

scheduling multi-source divisible loads.

We first consider the resource unaware linear networks and multi-level tree net-

works. A probing technique is applied to detect the link and processor speeds, which

are then used by the scheduler to generate a feasible schedule. The characteristic

of the network topology is explicitly considered in designing efficient probing based

scheduling strategies.

We then argue the usefulness of the probing technique in networks without a

regular topology and/or when multiple sources exist. An alternative reporting based

technique is suggested. We also study and analyze the performance of the different

spanning trees in scheduling divisible load(s) in arbitrary networks.

Finally, the generalized problem of scheduling multi-source divisible loads on ar-

bitrary networks is addressed. Starting from the resource aware case, we proposed

v



efficient strategies to schedule the multi-source loads in two different cases - when no

new loads arrive at the system and when new loads may arrive as time progresses.

We also demonstrate that by using a reporting based scheme, our strategies can be

easily adapted to the resource unaware case. Queuing model is applied to analyze

the systems and rigorous simulation experiments are carried out to validate our algo-

rithms.
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Chapter 1

Introduction

Network based computation is an active area of current research. Many applica-

tions, such as image processing, large matrix production, protein/DNA sequencing,

result in large scale computationally intensive tasks. Handling such tasks on a sin-

gle workstation can be quite time-consuming, and hence people resort to network

based computation. Compared to the traditional supercomputer solution, network

based computation offers a lower cost/performance ratio for handling large-volume,

computational-intensive tasks.

These computational-intensive tasks, depending on the data dependencies among

themselves, can be grouped into three different categories: indivisible tasks, modular

divisible tasks, and divisible tasks. The divisible tasks, which are normally referred

to as divisible loads in the literature, are assumed to have no precedence relationship

among the data. Therefore, they can be arbitrarily partitioned into arbitrary size

of load fractions, and these load fractions can be processed independently. One can

use divisible loads to model many of the real-life tasks emerging from scientific and

engineering fields.

The research of scheduling divisible loads in networked computing environment

dates back to the 1988, with the initial works done by two independent groups Cheng
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and Robertazzi [1] and Agrawal and Jagadish [2]. A formal mathematical framework

was first provided by [3] and the theory was formally referred to as Divisible Load

Theory (DLT). DLT proposes elegant solutions, optimal in many cases, to handle

large scale divisible loads on different network models. The processors’ computation

capacities and the links’ communication delays are explicitly captured in the problem

formulation to seek optimal, or near optimal solutions. The book [4] summarizes

the literature until 1996 including the above mentioned formal theoretical framework

and formulations. Two recent survey articles [5, 6] highlight the advantages and the

reasons to use the DLT.

Since its inception, the DLT paradigm has been applied in many real life applica-

tions, where the computation of tasks is less coupled. To name a few, these include

edge-detection application of a large-scale satellite image [7], large-scale matrix-vector

product [8], large-scale database search problems [9, 10], use of DLT paradigm with

clusters of workstations [11, 12], scheduling divisible loads on grid platforms with

APST-DV [13], multimedia applications [14, 15, 16], biological sequences aligning

[17], and parallel video processing [18]. A recent work [19] exploits parallelizing the

discrete wavelet transform computation, which has a highly coupled recursive com-

putational nature, on a bus network. It shows that by carefully scheduling loads

among processors, DLT paradigm can also be applied to the applications with highly

coupled recursive computational nature to gain a significant speedup. The DLT liter-

ature also contains integer approximation algorithms [20] to cater to the granularity

requirement.
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For all applications, the underlying networked systems which are about to share

the loads, may have different infrastructures. In [21], a parallel system can be char-

acterized as the number of processors, interconnection networks (topologies), number

of ports per processor and overlap of communication on computation (communica-

tion models). Therefore, modeling the network is a very important issue in the DLT

domain. Different network models have been proposed to match real life situations

and scheduling divisible loads has been studied under different models carefully. On

the other hand, many real life constraints such as buffer size, communication start-up

costs, bus release time, and so on, have also been incorporated into the problem, and

scheduling divisible loads under these constraints have also been carefully addressed

in the DLT literature.

The following subsections will review scheduling divisible loads under the different

communication and network models, other real-life conditions, the resource unaware

context, and finally conclude with the objective and scope of the thesis.
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1.1 Scheduling Divisible Loads Under Different

Communication Models and Network Topolo-

gies.

1.1.1 Communication Models

In the DLT literature, an important principle that has been proven conclusively in

deriving an optimal scheduling, is referred to as optimality principle [4]. It states

that, to minimize the total processing time of the load, all processors which are

engaged in computation should finish processing simultaneously. To determine the

time instant when each processor finishes computing, the load distribution overhead

(communication delay) should be considered carefully, as the DLT paradigm explicitly

captures the link communication delay into the problem formulation. Therefore, the

communication model is an important issue in designing an efficient divisible load

scheduling strategy. One crucial assumption which affects how the communication is

carried out is whether a processor is equipped with a front-end or not. A front-end is a

co-processor that resides on the chip, responsible for the communication task. “With

front-end” is commonly assumed in the literature [24, 25, 26, 27, 28]. In this case,

each processor is equipped with a front-end, which off-loads the communication task

from that processor and hence, computation and communication can be carried out

simultaneously. On the other hand, many works [29, 30, 31, 32] have also addressed

the “without front-end” case, where the computation and communication cannot be
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overlapped. In this case, including all processors into computation may not render

the minimum total processing time.

Another important assumption with respect to the communication model is

whether a processor has multiple independent ports for transmission. If a processor

has only a single port for transmission, simultaneously transmitting or receiving is

not allowed. Most works in the literature adopt the single port assumption implicitly

or explicitly. On the other hand, many real-life workstations, especially in point-to-

point networks, are capable of performing more than one independent communication

with other workstations without interference and hence, many works [33, 34, 35, 36]

have also considered the multiple ports model. In this case, multiple transmissions

or receptions can be carried out concurrently. However, “with front-end” and single

port are still common communication models which can be mapped to many systems.

1.1.2 Different Network Topologies

Network topology is another important issue that needs to be carefully considered

when designing load scheduling strategies. This is because different network topolo-

gies have different characteristics that should be exploited by the scheduling strategies.

Many network topology models which are commonly used to model the real networks

are bus, linear daisy chain, tree, mesh, graph, etc.

Bus is one of the most common topologies found in today’s networked systems.

Many of the initial studies [37, 38, 39] in the DLT domain consider the problem of

scheduling divisible loads in bus networks. In bus networks, processors are inter-
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connected by a shared bus, and hence the communication delay between any two

processors is identical. Further, any two processors can communicate with each other

directly. The closed form solution of the minimum finish time and the optimal load

allocation for bus networks is obtained in [40]. Another work [26], for the first time,

proved the optimality principle analytically for the case of bus networks.

Unlike bus networks, in linear daisy chain networks, processors are connected

one by one sequentially. Any processor within the chain will receive the load from

its predecessor and will relay the load to the rest of the chain. In this manner,

the load is percolated down the chain. In [30], an “equivalent processor” concept

is proposed, and then is used to determine when to distribute the load down the

chain in the “without front-end” case. The same concept of processor equivalence

is also adopted in [41] to obtain the ultimate performance limits in linear networks

in the presence of communication delay. In contrast to this work, [32] presents an

asymptotic performance analysis on the effect of communication delay. Closed-form

solution of the optimal load allocation for linear networks is obtained in [24].

A more complex network topology mesh, which belongs to the class of point-to-

point networks, has also received lots of attention in the literature. A two-dimensional

mesh network with a circuit-switched routing scheme, in which the communication

delay is virtually independent of the covered distance, is considered first in [42]. This

work proposes a scattering method, and analyzes the performance limit in the pres-

ence of communication delays. However, a simplifying assumption that all nodes in

the same layer are equivalent is adopted in the performance analysis. This assump-
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tion may not be practical. A later work [34] relaxes this assumption and studies a

two-dimensional toroidal mesh. It proposes a Peters-Syska scattering algorithm which

exhibits a better performance than the one proposed in [42]. Three-dimensional mesh

networks with the same circuit-switched routing scheme are considered in [43], and a

recursive distribution strategy is proposed. However, this work does not obtain the

closed-form solution of the load distributions. The closed-form solution for the load

shares assigned to each processor in the three-dimensional mesh is first presented in

[44]. A more recent work [45] derives the upper bound of the asymptotic speedup

that can be achieved in the generalized k-dimensional mesh. Another work [35] by

the same author presents two algorithms using a novel pipelined communication tech-

nique to schedule divisible loads on linear arrays and derives the closed-form solution

of the parallel processing time and asymptotic speedup. It then generalizes the algo-

rithms to the k-dimensional mesh, and these algorithms exhibits good performance

by using pipelined communication and interior initial processors.

The tree network is another important topology which can be mapped to many

real-life networks. [29] first considers this type of networks, for both “with front-end”

and “without front-end” cases. However, this work only presents the recursive rela-

tions among the processors, while a rigorous mathematical solution is missing. The

closed-form solution is first presented in [46]. In [4], it has been shown that in single-

level tree networks, when the scheduling sequence is fixed, including all processors

into computation may not render the optimal results. An important rule, referred to

as Rule A, is proposed in this work to exclude the unnecessary processors from the

computation. On the other hand, when scheduling sequence is not fixed, [31] solves
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the problem of how to find the optimal distributing sequence which admits the mini-

mum total processing time. In contrast with the previous work, where homogeneous

trees or single level trees are considered, [47] examines arbitrary processor trees and

it also takes into account the overhead induced by the result collection process. [48]

considers multi-level tree networks, using a multi-port model of communication. A

few open problems on tree networks are discussed in [49], and the asymptotic speedup

of various network topologies is systematically studied in [50].

In a recent work, J. Yao et al. [51] moves one step further. It considers schedul-

ing divisible loads on networks with an arbitrary graph topology. They proposes a

RAOLD-OS strategy, which works in two phases - it first spans a minimum spanning

tree (MST) which is rooted at the source and then schedules the divisible loads on

this spanning tree. While this work presents the optimal solution for scheduling on a

MST for an arbitrary network, it does not address the problem of whether the MST

is the optimal spanning tree which admits a minimum total processing time among

all the spanning trees for a given network. The reason why a MST is chosen in this

work is probably because the MST has the minimum total link cost, and the authors

believe that this characteristic may render the minimum total processing time. How-

ever, this is not necessarily the case. P. Byrnes et al. [52] has proven that the problem

of finding the best/optimal spanning tree for divisible load distribution on a graph is

NP-hard by reducing the SUBSET-SUM problem to this problem. Therefore, many

heuristic approaches have been proposed to achieve different targets. A local mini-

mum algorithm is proposed in [52]. This algorithm has a greedy nature and works

in a step-wise manner, but in each step this algorithm needs to compute the equiv-
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alent computation power of a spanning tree. This leads to very large computational

complexity. Darin England et al. [53] has proposed a robust spanning tree to achieve

the robustness of the load distribution without sacrificing too much performance.

However, among the well known spanning trees, such as shortest path spanning tree,

shortest hop spanning tree, minimum spanning tree, robust spanning tree, etc, it is

not known which spanning tree offers a better trade off between performance and

complexity.

1.2 Scheduling Divisible Loads Under Other Real-

life Conditions

Besides the communication models and topologies, many other real-life conditions or

constraints have also been considered when designing the load scheduling strategies.

These efforts make the work more close to certain realistic situations.

Buffer size is one of the real-life constraints which may influence the design of a

scheduling strategy. In the DLT literature, it is common to assume that the processing

time of a certain load is linearly related to the size of this load. This is true only when

the load size is less than the size the processor’s main memory (RAM). Any larger

load chunk will be stored in the virtual memory, and the computation will be more

complex and time-consuming because of the scheduling between the main memory

and virtual memory. Scheduling divisible loads under the finite buffer size constraint

is first addressed in [54]. The underlying topology is a heterogenous single-level tree

9



(star network). This work proposes an incremental balancing strategy (IBS) to obtain

the load distribution. It has been shown in this work that Rule A is detrimental in

the case of finite buffer size. However, the optimality of the IBS strategy has not

been proven. Also, [54] does not solve the problem of how to obtain the optimum

sequence of activating processors with finite buffer size. This optimum sequence

problem is solved in a later work [55]. This work considers two different topologies,

star and binomial tree, and proposes a method which guarantees finding the optimal

load distribution. Scheduling on distributed multi-level tree networks with buffer

constraints is addressed in [56]. Unlike the above mentioned works, where the buffer

size constraint mainly refers to inadequate memory size, [57] studies the influence of

the communication buffer size on the total processing time of the load. In [58], the

finite buffer size is considered together with granularity constraints.

Start-up cost is another important factor to consider. In most realistic data

communication and computation, overhead delays exist. Depending on the real-life

situations, the overheads in communication may appear in different forms, such as

protocol processing delay, queuing delay, delays due to unavailability of communica-

tion resources, etc. In the computation process, overheads appear in the forms of

layered protocol delays, unpacked delays, processor initialization, etc. While these

overheads can be neglected in many cases and a linear cost model can be used to

model the communication time and processing time, some works [47, 59, 60, 61] have

included the overheads into their models (affine cost model) as a constant start-up

cost. In [47], the overheads in query processing and image processing are considered.

In [59], overheads are addressed for different network topologies - linear chain, bus,
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tree and hypercube, and recursive equations in different cases are presented. This

work, however, only considers overheads in communication process. A more gen-

eral work [60], studies both overheads in communication and computation process.

Closed form solutions are derived, for the first time, in this work, and the effect of the

start-up cost are discussed. [62] has proven NP-Completeness of scheduling divisible

loads on heterogenous star networks with affine cost model, and [57, 61] considers the

start-up cost together with the finite buffer constraint.

Fault tolerance is also addressed in the literature. In [63], the effect of fault

tolerance on the processing time of an N processor bus network is studied. Correction

methods are proposed to handle the unprocessed data by the faulty processors. A

more recent work [53] addresses the fault tolerance problem in networks with an

arbitrary topology. Unlike [63], where the main contribution is designing strategies

to handle the error, [53] proposes a robust spanning tree (RST) which shows a fault

tolerant characteristic in nature. The RST is constructed to be neither too “fat”

(shallow) nor too “skinny” (deep), and it is shown in [53] that in such a way, RST

can strike a balance between time performance and robustness to the data loss caused

by node or link failure.

Other works which address the practical concerns can be found in [64, 65, 66,

67, 68, 69]. The research in [64] relaxes a common assumption that all processors

are available at the time when the load scheduling starts. It proposes an efficient

algorithm to take into account the processor release time in bus networks, and [65]

extends the previous work to linear networks. In [66], the processor release time
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is considered together with the finite buffer constraint. Instead of minimizing the

total processing time of load(s), the research in [67] considers monetary cost as an

alternatively objective function. The work [68] considers minimizing both monetary

cost and total processing time. Energy use Optimization is addressed in [69], and [70]

discusses the combinatorics in the divisible load scheduling.

Further, multi-round algorithms have been proposed to reduce the total process-

ing time of a divisible load by improving the overlap of communication and compu-

tation. The initial studies are done in [71, 72], for linear networks and tree networks

respectively. In [72], a multi-installment strategy, which starts with small chunks

and increases chunk size throughout the load distribution, is proposed and the closed

form solution for homogenous systems is derived. This work also discusses the trade-

off between the number of processors and the number of installments in absence of

overheads. Other multi-round algorithms can be found in [73, 74]. These works, in

general, all adopt the linear cost model (i.e., do not consider the start-up cost) and

validate their finds through simulation and experiments. The first quantitative result

for a multi-round algorithm is presented in [75], which proves the asymptotic opti-

mality of the proposed algorithm. However, [75] also sticks to the linear cost model.

This model cannot be used to derive the optimal number of installments, since the

impractical infinite large number of installments will be the answer. In [76], commu-

nication overheads are considered under the multi-installment setting. A later work

[77] considers both overheads in communication and computation processes, and ob-

tains the closed-form solution for homogeneous systems with the start-up cost. A new

algorithm, Uniform Multi-Round (UMR), which caters for both homogeneous and het-
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erogeneous systems, is proposed. Under the affine cost model, [77] also demonstrates

how to compute a near optimal number of installments. Multi-round algorithms have

also been proposed to account for performance prediction errors in [78, 79].

Another important issue addressed in the literature is the multi-job scheduling

problem. In reality, a system may have multiple divisible loads to process, instead

of only one load, and this naturally results in a multi-job scheduling problem. The

multi-job and multi-round problems are similar, to some extent. In the latter case,

a single divisible load is artificially divided into several installments, which can be

regarded as “several loads” because of the load’s divisible nature.

Depending on whether the multiple loads originate in a single processor or multi-

ple processors, the multi-job scheduling problem can be categorized into single source

problem and multi-source problem. The single source problem is first addressed in

[80]. In this work, only one load is considered for distribution at a time and a single-

installment technique is used to distribute each load. The strategy is designed to

minimize the idle times of processors and to optimize the processing time of all loads.

Unlike in [80], [81] proposes a multi-installment multi-job strategy and derives the

conditions under which an optimal solution employing multiple installments would

exist. Both works consider networks with bus topology. Scheduling multiple loads

under linear networks is studied in [82].

In single source problem, the system receives load(s) from a single workstation.

However, in many real-life applications, such as in the Grid systems, users can submit

the processing loads at different locations. This leads to multiple load origins/sources
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in the computing networks. In this scenario, designing an efficient scheduling strat-

egy is much more difficult than in the single source case, since multiple sources must

cooperate with each other to share the resources. Because of the complexity, the

multi-source scheduling problem has received much less attention in the DLT liter-

ature. M. Moges et al. [83, 84] addresses the multi-source scheduling problem on a

tree network via linear programming and closed form solutions respectively. Another

work by T. Lammie et al. [85] studies the two sources scheduling problem on linear

networks. T.G. Robertazzi et al. consolidates the previous results in [86], and L.

Xiaolin et al. [87] considers the multi-source problem on single level tree networks.

However, the limitation of those works is that they focus on networks with regular

topologies, such as linear networks or trees, and in most cases only two load origins

(sources) is considered. The generalized case, scheduling multi-source divisible loads

on an arbitrary network has not been rigorously addressed.

One may notice that, a similar but different problem of scheduling multi-flows on

arbitrary networks has been attempted by using the multi-commodity flow model [88,

89, 90, 91]. However, multi-commodity flow modeling and divisible load scheduling

paradigm have different concerns. In multi-commodity flow problems, commodities

flow from a set of known sources to a set of known sinks via an underlying network

and a major concern is to seek a maximal flow. Therefore, determining routes that

provides maximal flow between sources and sinks is a key concern. However, in the

DLT domain, every node is a potential sink and the connotation of “sink” as a special

kind of node is not found in the DLT problem formulation. Thus, a load fraction is

allowed to be processed anywhere in the system. Also, DLT provides a discrete, fine
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grained control of the system, such as timing control (i.e., when a processor should

send a load fraction to another processor, based on delays), while this is not the main

concern with the multi-commodity flow problem.

1.3 Scheduling Divisible Loads in The Resource

Unaware Context

Almost all works reviewed so far bear the same fundamental assumption that the

processor computation speed and the link communication delay are constant and

known a priori to the scheduler which facilitates to generate an optimal, if not, a

feasible schedule. This may not be the case in real life network based computing. Only

one of the earlier works [22] digresses from this assumption. This work considers a

time-varying nature of processor computation speeds and link communication delays

in the form of a probabilistic model which is then used for optimal load scheduling

in an average sense. However, in [22], the time varying nature of the processor

computation speeds and link communication delays is still assumed to be known in

advance.

On the other hand, in a recent work, D.Ghose et al. [23] investigates scheduling

divisible loads in a “resource unaware environment”, where the speed parameters are

unknown in advance. In this case, before dispatching the load, the source processor

where the initial load resides, should first detect the respective speeds of the link and

the processor in the network. This is not a trivial task, since it would not be efficient to
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spend too much time in estimating the speeds, while a relatively precise estimation of

the link and the processor speeds is needed by the scheduler. D.Ghose et al. proposes

a probing technique in their work to estimate the link and the processor speeds. In

this technique, the source processor will send out a portion of the load, referred to

as probing load, to other processors. These processors will process the fraction of

probing load they receive, and they will send back the time stamps of when they

start and finish transmission and when they finish processing to the source processor

via short messages. Based on these feedbacks, the source processor is able to estimate

the link and the processor speeds. This technique works efficiently in the sense that

as the source processor “probes” the network (i.e., obtain the speed estimation of the

link and the processor), a portion the real work has been done at the same time.

However, the scheduling algorithms proposed in [23] mainly cater to bus networks,

where the source processor can directly send the probing load to any other processor.

In networks where the probing load must be relayed from the source processor to other

processors, such as linear networks or tree networks, a multiple ports assumption

must hold for those algorithms to work properly. Further, while a probing technique

is useful for networks with regular topologies, it may not be suitable for networks with

arbitrary topology or the case where multiple sources exist. In such an environment,

it is quite difficult to determine how to conduct the probing, as it is not easy to

control the probing in an arbitrary topology and multiple sources may interfere with

each other. Large overhead could be induced by probing, and it may suppress the

gains.
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1.4 Objectives and Organization of The Thesis

From the above review, we can see that there are a few gaps in the literature:

• In the resource unaware scheduling context, the existing strategies [23], which

are based on a probing technique, are mainly designed for bus networks. It may

not perform well for networks with other topologies, such as linear networks

and tree networks. Further, the probing technique may not be useful for the

case where the network bears an arbitrary graph topology, or/and multiple

sources exist.

• For the problem of scheduling divisible loads in arbitrary networks, the per-

formance of different spanning trees has not been systematically studied. It is

not known which spanning tree offers the best trade-off between performance

and complexity.

• Scheduling multi-source divisible loads on arbitrary networks has not been

rigorously addressed.

1.4.1 General Focus, Contributions and Scope

The general focus of this thesis is to investigate the problem of scheduling divisible

loads in resource unaware environment for more general cases. While achieving this

objective, this thesis also addresses the problem of which spanning tree should be cho-

sen for scheduling divisible load on arbitrary networks, and the problem of scheduling

multi-source divisible loads on arbitrary networks. Specifically, we design and evalu-
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ate resource unaware strategies for linear and multi-level tree networks. We compare

the performance of different spanning tree routing strategies for scheduling divisible

loads on arbitrary networks. Our findings suggest that, instead of the MST used in

[51], the shortest path spanning tree (SPT) offers a better trade-off between com-

plexity and performance. Further, to address the problem of multi-source scheduling

on arbitrary networks, we propose a novel graph partition scheme (GP) to tackle the

resource sharing issue. We then design and evaluate two strategies using the GP to

schedule multi-source divisible loads on arbitrary networks.

The scope of the thesis is to design efficient strategies for scheduling divisible loads

in different cases. We study the strategies analytically and also carry out rigorous

simulation studies to validate these strategies under different network parameters.

Implementation, however, is out of the scope of the thesis. The present study could

enhance our understanding of scheduling divisible loads in resource unaware envi-

ronments and also scheduling multi-source divisible loads. Further, the strategies

proposed can be used to address real-life application when the network’s speed pa-

rameters are unknown in advance and/or there are multiple sources .

The organization of this thesis is as follows. In Chapter 2, we extend the previous

work [23] to the linear daisy chain networks. In this chapter and also the rest of

the thesis, we adopt the “single port” and “with front-end” assumption, which is

also most commonly assumed in the DLT literature. Under this assumption, two

strategies, based on probing technique, are proposed to cater for the specific topology
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of linear networks. Further, both strategies exhibit more control on the probing.

This solves the potential overloading problem which may be caused by the strategies

proposed in [23].

In Chapter 3, we address the problem of scheduling divisible loads in resource

unaware multi-level tree networks. We first consider a static case, where the link and

processor speeds are unknown in advance, but are constant. Therefore, a one time

probe is sufficient to estimate the speed parameters. Then, we consider the dynamic

case, where the link and processor speeds are unknown and may fluctuate. In this

case, dynamic probing should be conducted to keep track of the varying speed param-

eters. Two strategies, also based on probing technique, are proposed to dispatching

divisible loads under the above two cases, respectively. Further, communication con-

gestion problem, which exists in the “single port” communication model, is explicitly

considered in designing the scheduling strategies.

In Chapter 4, we discuss two important issues in scheduling a divisible load in

an arbitrary network. Firstly, we argue the effectiveness of the probing technique

in arbitrary networks and/or under multiple sources case. An alternative method

is suggested. Secondly, we systematically study the performance of the different

spanning trees by rigorous simulations. Which spanning tree should be chosen is

suggested under different objectives.

In Chapter 5, we consider the most general problem - scheduling multi-source

divisible loads in arbitrary networks. Starting from resource aware environments,

two different cases - when each source has only one load and when each source has
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an independent load inflow, are considered. A novel graph partitioning scheme is

proposed to partition the network, and this scheme is used by two strategies, one

catering for each case, to dispatch the multiple divisible loads. It also shows that the

strategies proposed can be adapted to the resource unaware case. Queuing theory

is applied to analyze the dynamic nature of the system and experiments are carried

out to validate the usefulness and effectiveness of the present strategies. Certain

interesting observations revealed by the experiments are carefully discussed.

Finally, in Chapter 6, we conclude this thesis and put forward some future rec-

ommendations in the context of this problem.
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Chapter 2

Scheduling in Linear Networks

2.1 Problem Setting and Assumptions

In this chapter, we consider scheduling divisible loads on linear works. A linear net-

work with processing nodes and communication links is shown in Figure 2.1. Each

node or processor is equipped with a front-end processor which off-loads the com-

munication responsibilities of that processor. This enables computation and com-

munication to be carried out simultaneously. However, each processor is assumed to

have only a single port for transmission, which means simultaneously transmitting

or receiving is not allowed. Without loss of generality, each node is assumed to have

adequate buffers to hold and process the data.

The total load to be scheduled and processed is initially stored on the root pro-

cessor P1. In this setting, we assume that the computing speeds of the nodes (except

the root processor, where our scheduler that computes the required load distribution

resides) and communication delays of the links are not known in advance. Further we

neglect any start-up overheads and time to compute a (an optimal) load distribution.

Thus the objective is to minimize the total processing time of the entire load (time

to complete processing from t = 0) under the above assumptions. We follow the work
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Figure 2.1: Linear Daisy Chain Network Architecture with n processors and (n− 1)

links

presented in [23]. However, the strategies presented in that work are predominantly

useful for bus-like architectures wherein only one link exists to interconnect processors.

Further in the linear network each probing-load (PL) has to percolate down the chain

via k links to reach processor Pk+1. Thus apart from seeking a load distribution that

minimizes the processing time, additional issues such as the number of processors

to be used in the chain1, whether or not the same PL can be used owing to delays,

etc, will play a vital role in influencing the overall performance. An illustrative

example in Section 2.3 demonstrates the fact that the strategy Probing and Selective

Distribution (PSD) [23]2 performs worse, if not, unsuitable for linear networks. This

naturally motivates to design strategies that consider all the above issues that are

critical and imperative to a linear network architecture.

Below we define some notations and terminology that will be used throughout

this chapter.

(a). L : the total load to be distributed and processed

1Otherwise waiting indefinitely for response from processors farther away owing to slow links, if

any, may defeat the purpose.

2PSD strategy is the best performer for bus networks as shown in [23].
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(b). Li : the load to be distributed and processed in the ith computation phase.

(c). αi
j : the fraction of the load Li dispatched to the jth processor during the ith

computation phase.

(d). zi : Ratio of the time taken to transmit a certain amount of data through the

ith link to the time taken by a standard link.

(e). wi : Ratio of the time taken to compute a certain amount of data by the ith

processor to the time taken by a standard processor3. w1 = K, where K is a

constant.

(f). Tcm : Communication intensity constant. It equals the time taken by a standard

link to transmit a unit of the load. Thus, if α is the load to be carried by a link

with communication speed parameter z, the communication delay incurred due

to that link is given by α · z · Tcm.

(g). Tcp : Computation intensity constant. It equals the time taken by a standard

node to compute a unit of the load. Thus, if α is the load assigned to a processor

Pi with computation speed parameter wi, then the computation time incurred

by Pi is given by α · wi · Tcp.

(h). η : Fraction of the total load used in the probing phase as a PL. Thus the size

of the PL can be denoted as η · L.

3A standard link (processor) can be any link (processor) that is referenced in the system.
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2.2 Design of Resource Unaware Scheduling

Strategies

Now we shall describe two efficient strategies that achieves our objective of mini-

mizing the overall processing time of the entire load under unknown computation

and communication speed parameters. Our strategies work in a two phase approach

- a probing phase (PP) followed by a computation phase (CP). We further parti-

tion CP into several sub-phases. It may be noted that a PP and CP can overlap in

time. Usually, probing phase will last several computation phases, as described in

our strategies below. Before describing the design of strategies, first we present steps

that are common to both the strategies now.

At the beginning of a probing phase, the root processor (P1) will send a PL to its

adjacent processor P2. Because computation and communication can be overlapped,

the root can start its computation when it transmits a PL to P2. After receiving this

PL, P2 will start immediately to compute PL, while at the same time it sends a copy

of PL to P3. This process continues with every processor, allowing the PL to percolate

down the chain. As a response to the processing of PL, each processor will record

the communication completion time when it finishes receiving PL. It will send back

this time to the root processor together with the processing completion time when it

finishes computing PL through a processing task completion message (PTC). Since

the messages are very small in size, their transmission time are negligible. Further,

notice that as the communication completion time and processing completion time
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Figure 2.2: Timing Diagram For Early Start Strategy

are sent back through a single message, the number of messages are reduced to only

a half compared to the work in [23]. We use T c
i and T p

i to denote the communication

completion time and processing completion time of Pi, respectively. This process is

shown in the timing diagram Figure 2.2.

From the timing diagram, we have,

zi =
T c

i+1 − T c
i

ηL · Tcm

, i = 1, 2, . . . n− 1, T c
1 = 0 (2.1)

wi =
T p

i − T c
i

ηL · Tcp

, i = 2, . . . n, w1 = K (2.2)

It may be noted that from the set {T c
i , i = 1, ..., n}, T c

j < T c
j+1,∀j = 1, ..., n − 1,

and the set {T p
i , i = 2, ..., n}, T p

j > T c
j , ∀j = 2, ..., n, but arrival of PTCs could be

arbitrary in time. The processor with large subscript may return PTC early, if its

processing speed is fast enough. Furthermore, it is impossible to predict when the last
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PTC will arrive. Thus, in order to circumvent large waiting delay times owing to late

responses from slow processors, it is wiser to engage processors that have returned

their PTCs early. Thus computation of the load can be initiated on those processors

that have rendered early responses. The implications of this idea are discussed in

Section 2.3 and its impact will be demonstrated through our simulation studies.

Therefore, in our strategies, the scheduler divides the total load into two portions,

the first portion is PL, and the remaining part is then further divided into several parts

(L1, L2, ..., Lm) and processing time of each part is referred to as one computation

phase. We will also propose on the choice of the number of parts (m) later. After the

first several PTCs has been received, we will apply divisible load scheduling paradigm

on the first part of load for those participating processors and the root. That is, we

make use of the k ≤ n − 1 processors that respond earlier and the root processor

to compute the first part of the load. These processors will receive an amount of

load according to DLT paradigm and following an optimality principle [4] they stop

computing at the same instant. This is denoted as the first computation phase (or

simply phase1). During phase1, it is possible that other processors may respond to the

root their processing of PL via PTCs one after another. Now, to accommodate these

processors, we employ divisible load paradigm again for all the detected processors at

the end of phase1. Then phase2 computation starts that includes the older processors

(from phase1) and some of the newly participating processors, if any. This recursive

way of working continues until all the processors have been detected or the entire load

has been taken up for processing by the currently active processors. Thus, it may be

possible that the entire load can be completed with fewer set of processors without
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waiting for all the processors to respond.

Since in a heterogeneous linear network, in general, a fastest processor need not

be closer to the root processor and hence one may not expect that the first arriving

PTC would come from this fastest processor. This is mainly due to the presence

of communication links. Thus, it is more meaningful to define an effective speed

of a processor to represent than its actual computation capability in this set-up.

Consequently, we define, the effective computation speed parameter of a processor Pj

as,

βj = wjTcp +

j−1∑

k=1

zkTcm (2.3)

Thus, hereafter, when we refer to a processor as a fastest processor, we refer to its

effective speed. Notice that the smaller the effective computation speed parameter

(β), the faster the effective speed.

Based on how many processors are engaged in phase1, our strategies can be clas-

sified into two types - Early Start Strategy (ESS) and Wait-and-Compute Strategy

(WCS). Thus ESS initially starts with two processors in phase1 and progresses re-

cursively as explained above whereas, more than two processors can participate in

phase1 under WCS. We shall now present our analysis of these two strategies below.

2.2.1 Design and Analysis of Early Start Strategy

ESS only waits for the fastest processor returning its PTC, and then applies divisible

load scheduling paradigm. However, the fastest processor may not be P2, hence, in

most cases, (2.1) may not be applicable. Actually, zi is unknown if i 6= 2, but load
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distribution only considers
∑j−1

i=1 zi, assuming that Pj is the fastest node. This can

be calculated as,
j−1∑
i=1

zi =
T c

j

ηL · Tcm

, j = 2, . . . n (2.4)

Using (2.2), wj can also be calculated. With known wj and
∑j−1

i=1 zi, the first part of

load can be dispatched according to:

α1
1w1L

′
1Tcp = α1

j ·
j−1∑
i=1

zi · L′1Tcm + α1
jwjL

′
1Tcp (2.5)

and together with the normalization condition

α1
1 + α1

j = 1 (2.6)

we can solve the above equations for the respective load fractions.

It should be noted that the exact load that has been dispatched during phase1

is not L1. This is due to the fact that before the fastest node sends back its PTC,

the root processor would have started processing a part of L1. If Pj is the fastest

processor, then the actual load that has been dispatched in phase1 is given by,

L′1 = L1 − T p
j /w1Tcp (2.7)

where,

T p
j = ηL(

j−1∑
i=1

ziTcm + wjTcp) (2.8)

From equations (2.5) - (2.7), we obtain,

α1
1 =

∑j−1
i=1 zi · Tcm + wjTcp∑j−1

i=1 zi · Tcm + wjTcp + w1Tcp

(2.9)

Then the time consumed for processing in phase1 is given by,

T1 = α1
1L

′
1 · w1Tcp
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= w1(L1 − T p
j /w1Tcp)(

∑j−1
i=1 zi·Tcm+wjTcp∑j−1

i=1 zi·Tcm+wjTcp+w1Tcp
)Tcp (2.10)

as w1 = K, if we define Tcm/Tcp = λ,
∑j−1

i=1 zi = z1j, (2.10) becomes

T1 = K(L1 − ηL(λz1j + wj)/K)(
λz1j + wj

λz1j + wj + K
)Tcp (2.11)

At the end of phase1, more nodes (say m ≤ n − 2) may have returned their PTCs.

These processors together with P1 will be engaged in the next phase. We denote

those set of processors participating in phase2 as Aphase2 .

Aphase2 = {P1, Pi | T p
i = ηL(z1iTcm + wiTcp) < T1 + T p

j i = 2, . . . n} (2.12)

We sort the processors belonging to Aphase2 in ascending order according to their

subscripts and we re-index these processors for mathematical ease as, {P ′
1, P

′
2, . . . P

′
m}

respectively. We define

∑i−1
k=j zk = Zi′ (2.13)

where i, j are the original subscripts of Pi′ , P(i−1)′

Zi′ can be calculated by,

Zi′ =
T c

i′ − T c
(i−1)′

ηL · Tcm

, i = 2, . . .m, (2.14)

Now, recursive equations for phase2, from the timing diagram (Figure 2.2), can be

written as

α2
i′wi′Tcp = α2

(i+1)′w(i+1)′Tcp + Z(i+1)′Tcm

m∑

k=(i+1)

α2
k′ (2.15)

i = 1, . . . (m− 1)
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and the normalization condition is

m∑
i=1

α2
i′ = 1 (2.16)

Note that we have a total of m equations with m variables (from(2.15) and (2.16))

that can be solved to obtain the individual load fractions. Then the processing time

consumed in phase2 is given by,

T2 = Kα2
1′L2Tcp (2.17)

By and large, in phasei, the processors involved in computation are,

Aphasei
= {P1, Pk | T p

k < T p
j +

i−1∑
n=1

Tn k = 2, . . . n} (2.18)

Similar to the above derivation, recursive equations can be generated for the set

Aphasei
to dispatch Li. This process continues until either all the processors have

been detected and used or the last load has been dispatched. Thus, supposing there

are totally m phases, the overall processing time of the entire load is

Toverall = T p
j + T1 + T2 + . . . + Tm (2.19)

2.2.2 Design and Analysis of Wait-and-Compute Strategy

WCS will attempt to wait for more processors returning their PTCs, before starting

phase1. This is in the hope of accumulating more processing power to accommodate

the load in the initial phase. This strategy particularly favors networks that have

more fast processors. We will discuss the performance in our simulation study and

elicit a number of observations. Thus, by virtue of this operation, the computation
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phase of WCS will start later compared to ESS, however this does not mean ESS

performs better than WCS at all times.

Assuming that WCS waits for k processors, and Pl is the last processor to issue

its PTC in this k processor set. Using set Aphase1 to denote these processors, we have

Aphase1 = {P1} ∪ {Pj | T p
j < T p

l , j = 2, . . . , n} and |Aphase1| = k + 1. Similar to ESS,

∀Pi ∈ Aphase1, we can obtain Zi, which denotes the link speeds between Pi and its

adjacent processor Pj (i < j) in Aphase1, by (2.14)

To clarify this point, let k = 2, and Pi and Pj (i < j) be the first two re-

sponded processors in the linear network except the root. After P1 receives the PTCs

from Pi and Pj, it will trigger phase1. The remaining load of L1, which is equal to

(L1 − max(T p
i ,T p

j )

KTcp
), will be distributed among P1, Pi and Pj following an optimal load

distribution (within the current phase) [4]. To obtain the optimal load distribution,

one can solve the recursive equations,

α1
1KTcp = (α1

i + α1
j )ZiTcm + α1

i ωiTcp (2.20)

α1
i ωiTcp = α1

jZjTcm + α1
jωjTcp (2.21)

together with

α1
1 + α1

i + α1
j = 1 (2.22)

Solve (2.20) - (2.22) to obtain α1
1 as,

α1
1 =

λ(1 + γ)Zi + γωi

λ(1 + γ)Zi + γωi + K(γ + 1)
(2.23)

where,

γ =
ωj + λZj

ωi

, λ =
Tcm

Tcp

(2.24)
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Then, P1 can estimate the time consumed for processing in phase1, which is given by,

T1 = K(L1 −
max(T p

i , T p
j )

KTcp

)
λ(1 + γ)Zi + γωi

λ(1 + γ)Zi + γωi + K(γ + 1)
Tcp (2.25)

Therefore, P1 knows when to trigger phase2. As in ESS, the above process continues

in all phases.

An interesting and noteworthy point at this juncture is as follows. ESS triggers

an early start of the computation using the fastest processor in the network. However,

despite receiving the PTC from this fastest processor, WCS adds some idle time before

starting the computation. This later start approach by WCS may be compensated

with the presence of additional fast processors whose PTC would have been just-in-

time when the Phase1 of ESS would have started. It would be interesting to see

which strategy finishes Phase1 earlier.

From the previous subsection, we can obtain the time when ESS finishes phase1,

denoted as TESS
phase1

, by (2.26)

TESS
phase1

= θESS(L1 − T p
j /KTcp) + T p

j (2.26)

where θESS is,

θESS = KTcp
λz1j + ωj

λz1j + ωj + K
(2.27)

On the other hand, when k = 2, from the discussion above, we can obtain the

time when WCS finishes phase1, denoted as TWCS
phase1

, by (2.28),

TWCS
phase1

= θWCS(L1 − T p
i /KTcp) + T p

i (2.28)

where θWCS is,

θWCS = KTcp
λ(1 + γ)Zi + γωi

λ(1 + γ)Zi + γωi + K(γ + 1)
(2.29)
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Then, by equating the expressions (2.26) and (2.28), we can obtain the critical size

for L1, denoted as Lc
1, by (2.30).

Lc
1 = (

θESST p
j − θWCST p

i

KTcp

+ T p
i − T p

j )/(θESS − θWCS) (2.30)

When L1 = Lc
1, WCS and ESS will have exactly the same overall performance. When

L1 > Lc
1, since WCS has more computation power in phase1, WCS will finish phase1

earlier. On the other hand, when L1 < Lc
1, WCS does not have enough time to catch

up with ESS, and hence ESS will finish phase1 earlier.

Notice that the strategy that finishes phase1 earlier does not guarantee it will

finish processing the entire load earlier. However, processors which are engaged or

respond in phase1 are fast processors in the network. Finishing phase1 earlier implies

starting phase2 earlier with most fast processors in the network, and hence will highly

probably have a shorter overall processing time. This is verified by the simulation

studies later. Further, in all the above analysis, we assume k = 2 for WCS. However,

this does not mean k = 2 is the best choice. In the next section, we conduct ex-

periments to identify the best possible value of k with respect to certain information

about the network.

2.3 Performance Evaluation and Discussions

In this section, we present simulation tests to validate and quantify the performance

of ESS and WCS. We now present an illustrative example which shows that a recently

proposed strategy, referred to as Probing and Selective Distribution (PSD) [23] for bus

networks may perform worse, if not, inapplicable for linear networks architecture.
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Figure 2.3: Network model for Example 1

Example 1. Consider a linear network shown in Figure 2.3.(a). Suppose L = 60,

Tcp = 2, and Tcm = 1. If the PSD strategy is applied in the above network, because it

is proposed for bus-like network, most probably it will treat the linear network as an

equivalent network shown in 2.3.(b). According to the PSD strategy, initially (from

t=0) P1 will dispatch equal size load fractions (served as PLs) to P2, P3, and P4,

respectively, in a round robin fashion, until the first PTC is received by P1. Suppose

PL = 1. Then, P2 will respond first at t = 6.1. At this time, P1 has already

dispatched 8 units of load to P2 and P3, 7 units of load to P4, respectively, and now

is sending another 1 unit of load to P4. At t=6.4, P1 finishes sending load to P4 and

then will continuously dispatch 1 unit of load to P2 until it receives the second PTC

responses from P4 at t = 10.8. However, notice that there is a big gap between the

first and the second PTC responses (10.8-6.4=4.4), and hence even before the time

t = 10.8 all the 36 units of remaining load has been dispatched to P2. As a result,

P2 totally received 44 units of load, and P3 and P4 only receive 8 units of load each.

Obviously, P2 get overloaded and there is no room for balancing.
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The reason which leads to an overload is because of the continuous dispatching

nature of the PSD strategy 4. This mode of working makes full use of the link, which

lets computation and communication highly overlapped and it is clearly a distinct

advantage in bus-like networks, wherein the PTC responses are likely to come back

consecutively. However, in a linear network set-up, this may have an adverse effect,

as the PTCs are more common to be highly separated because of the presence of

cumulative communication delays. Therefore, in linear network, it is wiser if load

distribution can be controlled to wait for subsequent processors, when dispatching

the load. This characteristic is captured in ESS and WCS, as only a portion of the

load will be dispatched and processed in each phase.

Now, before presenting our experimental results, we further discuss some key

assumptions on the choice of certain parameters and networks below.

The first issue is on our decision of parameter η. From the description of our

strategy, it is evident that a larger η indicates larger proportion of the load is used

in probing, which means that except for the root, other processors will do more

unimportant computation. In this sense, one may prefer a small η. On the other

hand, the computation speeds of the nodes and the communication speeds of the

links are not constants. Thus, a relatively large probing load is needed to precisely

detect computation and communication parameters. In this sense, large η is needed.

Thus, to strike a balance between these two situations, we let parameter η fall into

the range (0.03, 0.07), which is seen to be appropriate in our experiments.

The second issue is on partitioning the total load prior to the load distribution,

4PCD also has this style of working.
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i.e., in deciding the number of phases of load distribution. Dividing the load into N

equal portions is a natural choice, but not wise. Because as time progresses, more

and more processors will be engaged in the computation work. To make use of this

property, the total load should also be divided in an increasing fashion. It may be

noted that the number of processor engaged in each phase is expected to be a non-

decreasing function. Together with the root, we set the ratio of the loads in successive

phases as (21 + 1) : (22 + 1) : . . .. Another point worth considering is that we let

the root processor compute part of L1 before the first PTC returns5. Furthermore,

as we will see later, an initial choice of size of L1 plays a crucial role in influencing

the performance of ESS. For an n processor system, the total load is partitioned as

follows and a partition Lk is to be distributed in Phasek among processors in set Ak,

respectively.

Li = (2i + 1)(L− ηL− L1)/
∑m

2 (2k + 1) i = 2, . . .m

L1 = ε ∗ L

where, ε ≥ η and m = dlog2ne + 1. We refer to the above distribution of the load

portions as Π.

Let L = 100, communication parameter z and computation parameter w fall into

the ranges (0.2, 0.7) and (2, 7) respectively, and the root processor has an average

speed given by, w1 = K = 4.5 and we let Tcm = 1 and Tcp = 2. We refer to

the processing time for ESS, WCS, and conventional DLT strategy as T-ESS, T-

WCS, and T-pureDLT, respectively. Note that the “pureDLT” strategy refers to an
5When the root is very fast, it may even finish computing L1 before the first PTC. Then we let it

to compute L2 and re-index L2 to L′1,. . . Lk to L′k−1, and so on.
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approach wherein we wait for all the PTCs and then start to compute. This naturally

serves as an upper bound on the time performance of our strategy. We denote the

fraction of the fast processors and links in the network by rf
6. All the parameters

in our simulation experiments are generated in a random fashion following a uniform

distribution in their respective ranges. Each category of experiments is repeated

25 times and average values are reported for understanding the performance of the

strategies. Tables 2.1 and 2.2 show the results of our experiments.

We will now present the results that demonstrate the influence of parameters η,

ε and n.

Effect of η : Parameter η fundamentally determines the size of PL. From our

results, we observe that for a given network size, as η increases the processing time

increases, which is expected. However, the increase in the processing time of both ESS

and WCS is less when compared to pureDLT strategy. This is due to the fact that

the waiting time for the last PTC to arrive penalizes the performance significantly.

The behavior with respect to η remains the same regardless of the fraction of fast

processors in the network (rf ). Also, for a given η, as we increase the network size,

the processing time decreases. We will discuss this in detail when we present our

results for the effect of network size. Now, the effect of η on the network size can

be observed as follows. The difference in the processing time between two different

values of η for pureDLT increases dramatically as network size increases. However,

this difference almost remains the same for ESS and WCS. Thus each of the strategies

6We designate a processor and a link as fast when their speeds fall in (0.2, 0.3) and (2, 3),

respectively.
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seem to be robust in behavior with respect to the variation of η and n. This behavior

can also be observed for different rf values.

When comparing the performance of ESS with WCS with respect to η, we find

that when η is small, WCS shows a better performance than ESS, however, when η

is large, the performance of ESS and WCS are almost the same. This is because as η

grows, the range of PTC responses will increase correspondingly, which will naturally

benefit ESS, as WCS has to wait longer to start computing.

Effect of ε : Parameter ε fundamentally determines the size of L1 and here, ESS

and WCS are our only concern. As shown in Tables 2.1 and 2.2, both ESS and WCS

have a better performance for a smaller ε. This is because of the fact that a smaller L1

implies a shorter Phase1; and hence, those fast processors that returned their PTCs

during Phase1 will start their computation during Phase2 much earlier than for a

larger L1 choice. We also observe that the influence of ε to WCS is less significant

than to ESS. This is because of the fact that as ε grows, the increasing amount of

load in L1 will be calculated by only two processors, while in WCS more processors

are expected to share it. Therefore, WCS shows a significantly better performance

than ESS with a larger ε.

Actually, the sizes of L1, L2, ...Lk all influence the performance of ESS and WCS,

but the choice of L1 plays a crucial role. In general, if we partition the load into

several smaller portions, the performance of ESS and WCS will increase dramatically,

and will be close to the lower bound where computation and communication speeds

parameters are known in advance. However, in practice one cannot partition the load
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Table 2.1: Experimental Results when rf = 0.75

ε n η = 0.03 η = 0.07

T-ESS T-WCS T-pure T-ESS T-WCS T-pure

5 189.70 185.50 195.70 203.43 202.99 228.34

0.07 8 173.73 169.29 182.32 190.06 188.51 221.19

13 161.83 156.27 177.48 175.17 173.43 227.45

20 157.01 153.60 182.86 170.99 171.31 242.57

5 194.77 186.59 195.70 207.20 203.49 228.34

0.12 8 182.41 172.32 182.32 192.60 189.56 221.19

13 171.99 159.49 177.48 182.02 174.18 227.45

20 167.27 156.22 182.86 176.98 173.06 242.57

Table 2.2: Experimental Results when rf = 0.25

ε n η = 0.03 η = 0.07

T-ESS T-WCS T-pure T-ESS T-WCS T-pure

5 244.65 241.87 249.71 278.81 282.13 283.45

0.07 8 220.59 219.12 228.85 252.98 254.50 271.78

13 204.40 202.77 220.78 227.69 227.31 270.37

20 201.57 199.42 224.98 224.39 223.90 286.82

5 247.70 242.12 249.71 262.31 264.60 283.45

0.12 8 226.93 219.75 228.84 244.85 244.44 271.78

13 213.16 206.04 220.78 227.67 226.79 270.37

20 211.94 204.80 249.71 225.44 224.91 286.82
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into infinitesimally small size portions for processing.

From the following discussion we note that an equal division of load in all the

phases7 is not a wise choice for minimizing the processing time. From our analysis and

experimental results it is evident that first few phases are crucial to the performance

of ESS and WCS, in the sense of minimizing the processing time. ESS and WCS

takes advantage of the response of fast processors in the network in the initial few

phases by proportionally scaling the phase sizes, while an equal phase partitioning

will render more load in the first phase thus increasing the processing time. Thus,

ESS and WCS with distribution Π assures a minimum idle time for processors that

have responded in the previous phase while this idle time could be as large as a period

of a phase under equal phase partitioning distribution.

However, an inverse effect of ε can be observed when both rf and n are small, and

η is big. In this case, as opposed to a common expectation that the finish time would

increase as we tend to increase ε, our results show that the finish time decreases. An

explanation to this anomalous behavior may be explained as follows. When rf and n

are small, there are limited number of fast processors in the network. Furthermore, as

η is large, the range of PTC responses is also large. In this situation, a small ε implies

that even when the processors finishes computing L1, few processors will return their

PTCs during Phase1, while a large ε gives more chance for these processors to respond

during Phase1, and hence this computation power can be utilized earlier. From this

point, we can see that the fact that an unequal partitioning of load among the phases

7It may be noted that the distribution Π and the equal load partitioning uses identical number of

phases.
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may also under-utilize processors. For instance, a smaller choice of L1 and a larger

choice of L2 may have an adverse effect, as there may be fewer processors returning

their PTCs during Phase1, and hence, very few processors will be engaged in Phase2.

Effect of rf : The ratio of fast processors in network is important in determining

the performance of ESS and WCS. As we can see from Tables 2.1 and 2.2, when rf

increases, overall finish time decreases, which is expected. Further, comparing the

performances of ESS and WCS with respect to rf , we find that WCS prefers a network

with a large ratio of fast processors. This is because the fact that when a network has

a large number of fast processors, there is higher chance that more fast processors will

return their PTCs immediately after the fastest processor’s response. In ESS, these

fast processors will wait until the end of Phase1 to be engaged in computation, while

in WCS, this fast processor will be used much more earlier. Thus, when rf = 0.75,

we find WCS shows a significant improvement than ESS. However, when a network

has only a few fast processors, WCS may have to wait more time for the response

from another processor than ESS. Therefore, when rf = 0.25, WCS and ESS exhibit

approximately the same performance.

Effect of network size (n) : Network size is somewhat a crucial parameter to

handle large scale data processing, especially when speeds of resources are unknown.

This fact is captured in our simulation results. From Tables 2.1 and 2.2, we observe

that as the network size increases, the finish time for both ESS and WCS decreases.

However, as network size grows, the difference between ESS and pureDLT (and be-

tween WCS and pureDLT ) increases. This propensity can be explained by observing
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that the range of PTCs stretches as n increases. Therefore, the difference between

the first PTC and the last PTC increases correspondingly, which penalizes pureDLT

for its “greedy” waiting nature. Actually, after n grows to some extent, increasing n

further will have an adverse effect on pureDLT, as its finish time starts to increase

rather than decrease, as seen from the tables.

Having seen the influence of all the parameters, from the tables, we observe that

the parameter η is more sensitive in influencing the performance. This is due to the

fact that the difference in processing time between ESS and pureDLT increases as

η increases. The response of a node (PTC), which depends on the size of the PL,

decides when to start computing and this affects the processing time. This difference

is observed to be more than the difference when network size or ε is varied. Network

size is a parameter that allows minimization of the processing time provided more fast

processors are present in the network. While this depends on the underlying network,

influence of η remains independent, as its influence is critical to Phase1 (start of the

entire computation).

In all the above experiments, WCS only waits for two processors before starting

Phase1. Actually, WCS can be allowed to wait for more processors. We use WCS(i)

to denote the algorithm that will wait on i processors before starting Phase1. Thus,

ESS is WCS(1). For a given network, with fixed ε and η, the finish time obtained

in computing L is a function of i (we denote this finish time as TWCS(i)). The

performances for different i with respect to ε and η can be seen from Figures 2.4 and

2.5, for different rf distribution.
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Figure 2.4: Figure of TWCS(i) for Different ε and η when n = 15 rf = 0.75

In general, for a given η and ε value, as i increases, TWCS(i) is observed to decline

first, reaching a minimum point (shown as point A in the figures) and then increases

(See Figure 2.4 and 2.5). However, as we decrease η, the entire curve TWCS(i) shifts

down, which means less finish time is achieved. Further, the minimum point A starts

to shift to right, which means that minimum finish time will be obtained for larger i

values. This observation could be useful while implementing the strategies. Thus, if

we choose a small η, it would be appropriate to choose a relatively larger i, say 3 or

more, to minimize finish time. L1 is another factor that affects the shape of the curve

TWCS(i). When L1 decreases, the curve TWCS(i) shifts down, and its minimum point

shifts to left, which means minimum finish time is obtained for a small i. Furthermore,

as shown in Figures 2.1 and 2.2, rf also affects TWCS(i). Larger rf naturally benefits
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Figure 2.5: Figure of TWCS(i) for Different ε and η when n = 15 rf = 0.25

WCS as discussed above, which drives the minimum point of TWCS(i) to right.

As we have seen above, the value of i which achieves the minimum finish time

(point A in the figures) is affected by the combined effect of η, ε, rf and n, where

η and ε are determined by the strategy, while rf and n are characteristics of the

network. n is usually a known parameter. Hence, if we have some prior knowledge

about rf , we can choose a suitable i according to the value of η and ε. The following

simulations reveal the most probable best value of i with respect to certain η, ε, rf

and n.

For a network with 15 processors, we first set η = 0.03 and ε = 0.12, and vary

the value of rf to 0.2, 0.5, 0.8, respectively. Each category of experiments is repeated

25 times. We find that when rf = 0.2, most of the times (19/25) the minimum finish

44



time is obtained at i = 2. When rf increase to 0.5, to obtain the minimum finish time,

i should increase to 3 (17/25), and when rf = 0.8, most of the times the minimum

finish time is obtained at i = 4 (13/25) or i = 5 (9/25). Then we adjust η to 0.07, ε

to 0.07 and redo the experiment. We find when rf = 0.2, the best value of i equals

to 1 (15/25), and when rf = 0.5 or rf = 0.8, most of times (around 21/25) i = 2 is

the best choice.
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Chapter 3

Scheduling in Multi-Level tree networks

3.1 Problem Definition, Assumptions and Re-

marks

In this chapter, we consider the problem of scheduling divisible loads in resource un-

aware general multi-level tree networks. Compared to linear networks, tree networks

have several unique characteristics. In tree networks the root processor can directly

communicate with several processors, unlike in linear networks, where only one pro-

cessor directly connects to the root. Further, as the tree networks are normally larger

(or “fatter”) than linear networks, when probing the tree network, the processors’

response times tend to be much closer to each other. Also, in tree networks, there

exists more than one route, communication congestion problem should be addressed

explicitly, if processors are not equipped with multiple independent ports. These is-

sues will be considered in this chapter when designing scheduling strategies. Below,

we will introduce the problem setting.

A tree network with processing nodes/processors and communication links is

shown in Figure 3.1. We assume the initial load to be processed is stored in the

root processor (P0), where the scheduler resides. For simplicity, we allow P0 as a
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Figure 3.1: General tree network

dispatcher and we assume that it does not participate in the computation process.

Similarly, every processor is assumed to be equipped with a front-end processor and

has only a single independent communication port. We consider two distinct cases

of practical interest - Static Network Parameter (SNP) case and Dynamic Network

Parameter (DNP) case. In SNP case, the processor speeds and link speeds are as-

sumed to be constant which is also common to dedicated networks, while in the DNP

case the mild fluctuation of link and processor speeds is considered. In both cases

(SNP and DNP) we assume that no prior knowledge about computation and com-

munication speeds is available in advance. It should be noted that, in the DNP case,

even when one processor’s computation speed becomes extremely slow, the routing

function of that processor may not be affected, as communication responsibilities are

off-loaded to the front-end processor.

Without loss of generality we make the following assumptions which apply to both
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cases. First, except for computation and communication speeds, P0 is aware of other

information about the tree, such as the number of children, and routing information.

Secondly, each processor can store and process any amount of data. Thirdly, we

neglect the time needed by the scheduler to compute a suitable load distribution and

. Finally, as in the DLT literature, we continue to assume a linear cost model, but it

can be easily extended to an affine model.

Our objective is to minimize the total processing time of the entire load under

the above model. We design two strategies, referred to as Static Load Distribution

(SLD) Strategy and Dynamic Load Distribution (DLD) Strategy, to schedule divisible

loads under the SNP and DNP cases, respectively. However, before we present the

adaptive strategies, we present a general discussion on certain common principles that

are followed in the design of our strategies for both cases.

Since the speeds of the processors and links are unknown, we attempt to use

a fraction of the processing load to probe the speeds, as in the previous chapter.

However, since the underlying topology is a multi-level tree network of arbitrary

depth and width, we carry out this probing process in a different manner so as to

make this phase more time efficient. At the beginning of probing phase1 (i.e., t = 0),

P0 partitions a portion of the total load L, say ηL, equally into n parts, and each

part is referred to as one probing load (PL). Then P0 dispatches the n PLs to its

children, one by one. Because computation and communication can be overlapped,

each processor, after receiving its PL, will start to compute immediately while, at the

same time, it will send a copy of the PL to its children, if it has any. Hence, PLs start

1The probing phase is defined in Chapter 2
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percolating down through the tree. Each processor will report to P0 the information

about receiving and processing PLs, and these information will be collected by P0

to estimate the respective processor and link speeds. To avoid long waiting times

(delays) P0 will start considering the inclusion of processors into the computation

process progressively in phases as and when the processors respond. The rest of the

load will be dynamically dispatched to processors based on the current information on

processor and link speeds. This stage is referred to as the Computation Phase (CP)

and it can be further divided into several sub-phases, denoted as Phase1, Phase2, . . .,

respectively. Each computation phase will consume a portion of the load. It should

be noted that a PP and CP can overlap in time. Usually, the probing phase will last

over several computation phases.

Below we give some notations used in this chapter. We define L to be the total

load to be processed and Lp
q to be the load which P0 will dispatch at the beginning

of Phaseq. The size of Lp
1 is set by our algorithm initially, where as Lp

2, L
p
3, . . . are

determined dynamically. We use αi to denote the fraction of the load dispatched to

Pi at one batch of load distribution. wi, zi, Tcm and Tcp are defined as in the previous

chapter. We also define η as the fraction of L used to detect zi and wi, and µ as the

final threshold load, that at the beginning of each phase, if P0 finds the remaining

load to be less than µL, it will dispatch the entire remaining load to all available

processors. Finally, for ease of presentation, we define that πij as the path from Pi

to Pj (thus, π0i is the path from P0 to Pi.); |Pi| is the subtree rooted at Pi; T d
q is the

duration of Phaseq; and finally T f
q is the finish time of Phaseq.
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3.2 Static Network Parameter (SNP) Case

In SNP case, computation and communication speeds are assumed to be constant, and

hence a single-time estimation of speed parameters would suffice. The SLD strategy

starts the probing phase at time t = 0. As PLs reach the respective processors down

the tree, each processor records three important time instants of relevance to it: (i)

the time it starts to receive PL (ii) the time it finishes receiving PL and (iii) the time

it finishes computing PL. We use T cs
i , T cf

i , and T p
i to denote the three time instants

of Pi, respectively. Each processor will send back T cs
i and T cf

i through a message,

referred to as communication task completion message (CTC) to P0, when it finishes

receiving PL, and it will send back T p
i through a message, referred to as processing

task completion message (PTC), to P0, when it finishes computing PL. This process

is shown in the timing diagram of Figure 3.2 2. Furthermore, as CTC and PTC are

short messages, the transmission time becomes negligible.

From the timing diagram, we have,

zi =
n(T cf

i − T cs
i )

ηLTcm

, i = 1, 2, . . . m, (3.1)

wi =
n(T p

i − T cf
i )

ηLTcp

, i = 1, 2, . . .m, (3.2)

It may be noted that a processor always returns its CTC later than its parent, so

when an ith processor returns CTC, all the processors in π0i have returned their

CTCs. However, the arrival of PTCs could be arbitrary in time, which depends on

the combined effect of processing speed and cumulative communication delay. A

2Pi in Figure 3.2 indicates an arbitrary processor, other than the children of P0, in the multilevel

tree
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Figure 3.2: Time Diagram For SLD Strategy

relatively slow processor (having large w) may return its PTC early, if its cumulative

communication delay (
∑

k∈π0i
zk) is small. Therefore, as in Chapter 2, we define an

effective speed of a processor to represent its computation capability.

βj = wjTcp +
∑

k∈π0j

zkTcm (3.3)

where, a lower value of β means the processor is faster. Notice that a processor with

the fastest effective speed is not guaranteed to return its PTC first, because of the PL

distribution sequence. However, the first processor which returns its PTC is certain

to have a very fast effective computation speed. Suppose Pi returns its PTC first

(e.g., at time t = T p
i ). Then, in order to circumvent large waiting delay times owing

to late responses from slow processors, the SLD strategy will send Lp
1 amount of load
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to Pi immediately after receiving the PTC response. In the SLD strategy the time

Pi needs to compute Lp
1 determines the duration of Phase1, denoted as T d

1 , and T d
1

can be calculated as,

T d
1 = Lp

1βi = Lp
1(wiTcp +

∑

k∈π0i

zkTcm) (3.4)

We use T f
1 to denote the end time of Phase1, and we have T f

1 = T p
i + T d

1 . The

SLD strategy will use T f
1 to control all the processors which have responded through

their PTCs during Phase1. According to the optimality principle, the amount of

load being dispatched to relative processors should be proportional to the processors’

computation speed and communication delay so that all participating processors stop

computing at the same time instant. The load distribution satisfying this require-

ment is referred to as optimal load distribution. However, in a “blind environment”

wherein speeds of the processors and links are unknown, we cannot directly apply

traditional DLT equations to calculate an optimal load distribution, but we can meet

the optimality principle by assigning proportional amount of load to the processors

that have responded during Phase1 so that all participating processors stop comput-

ing at T f
1 . Further, T f

1 is also a natural starting point for the next phase, because

all the participating processors finish their jobs at that instant and are ready for the

new load. Below, we discuss this idea in detail.

Suppose Pj is a child of P0 in π0i that passed Lp
1 to Pi through Pj and suppose

P0 takes Tdelay units of time to perform this operation. Then we have,

Tdelay = Lp
1zjTcm (3.5)

At time t = T p
i + Tdelay1, P0 finishes passing Lp

1 to Pj and is ready to respond to
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Figure 3.3: Demonstration of Congestion

another PTC, if one exists. If at t̂, with T p
i + Tdelay1 ≤ t̂ ≤ T f

1 , P0 receives a PTC

from Pk and is also idle, then it will send an amount of load Lk to Pk. The size of Lk

is calculated as,

Lk =
T f

1 − t̂

βk

=
T f

1 − t̂

wkTcp +
∑

k∈π0k
zkTcm

(3.6)

Therefore, Pk will stop computing Lk at time T f
1 .

However, in a tree topology, communication congestion may happen if our sched-

uler is not well designed. Consider the following situation that demonstrates the

effect of congestion as shown in Figure 3.3. Two processors, Pm and Pn, belonging

to the same branch rooted at Px, return their PTCs one by one very closely, and

P0 responds to them consecutively. Communication congestion may happen at Px,

because when it is passing down the load to Pm, it cannot receive load intended for

Pn from P0 simultaneously. Actually, such congestions may happen at any processor

in π0x which is common to both π0m and π0n.

As we have seen above, we have to design our strategy prudently to avoid conges-

tions without sacrificing performance. The SLD strategy clearly strikes a balance in
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avoiding congestions to a large extent. The tree shown in Figure 3.1 can be considered

to be composed of P0, |P1|, |P2|, . . . , |Pn|, while |Pj| denotes a subtree rooted at proces-

sor Pj. The respective link speeds between P0 and n sub-trees are, zi, i = 1, 2, . . . , n.

Now, we can group all PTCs into n sets, depending on the |Pi| from which those

PTCs come.

Thus, to avoid congestion, after P0 responds to the first PTC from processor Pi

(suppose it is from the set |Pj|), it should not send another load to any processor in

the same sub-tree until Pi finishes its communication. Further, let us suppose it takes

ti units of time for Pi to receive Lp
1. Then we have,

ti = Lp
1

∑

k∈π0i

zkTcm (3.7)

Therefore, P0 will “shadow” the set |Pj| for ti unit of time from the instant when P0

starts sending Lp
1 to Pj. During this time, PTCs coming from the shadowed set will

only be buffered at P0 but cannot be responded to. When P0 becomes idle (e.g., at

time t = T p
i + Tdelay1), it will check whether it has received a PTC from any of the

unshadowed sets. Three different cases may happen: (i) There are no PTCs from

unshadowed sets (ii) P0 receives only one PTC from unshadowed sets (iii) P0 receives

more than one PTC from unshadowed sets.

Case (i): Before T f
1 , P0 will remain idle until it receives another PTC from the

unshadowed set. Suppose P0 receives Px’s PTC from the unshadowed set |Py| before

T f
1 , it will send Px a proportional amount of load Lx, which can be calculated by

Eqn.(3.6), and at the same time, it will shadow |Py| for a certain duration in time. If

P0 does not receive any unshadowed PTCs until T f
1 , it will trigger Phase2 at T f

1 . We
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will discuss how Phase2 will be performed later in this section. It should be noted

that any sets of processors that were shadowed earlier will become available as time

progresses.

Case (ii): P0 will immediately send a proportional amount of load to the processor

which returns the PTC, and as in Case (i), the corresponding set will be shadowed

for some time.

Case (iii): In this case, the SLD strategy uses optimal sequence3, given in [31],

to decide which processor(s) should be engaged in computation first. Among all

the unshadowed sets which generate at least one PTC, we choose the set, say |Pj|,

that has the fastest communication link zj to P0. If more than one processor in the

set have returned their PTCs, an equivalent computation power of these processors

is calculated (the concept of equivalent computation power is given in [4] and will

be described later in the section) and P0 will send loads to these processors in a

single batch. Furthermore, the longest communication delay, which can be derived

by max{T f
1 − t − Liwi | Pi ∈ |Pj| and has returned PTC}, where t denotes the

current time, is taken as the time for which this set is being shadowed.

Processor P0 executes the above procedure till time T f
1 . Notice that even if a

processor returns its PTC to P0 at a time very close to T f
1 , P0 will still send some

load to this processor, if it is idle, and the performance can certainly improve from

this dispatch.

At time t = T f
1 , all those processors that have participated in Phase1 would have

3A sequence in which the load distribution follows the same order in which link speeds decrease.
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accomplished their jobs and become available again. Now, P0 will trigger Phase2.

In our SLD strategy, we first construct a “virtual tree” using all those available

processors, based on the following rules:

1. All those currently available processors are kept as virtual tree nodes.

2. A processor in Level 2 is retained as a virtual tree node, if at least one PTC

returns from its sub-tree. However, if the processor itself has not returned a

PTC, its computation speed will be set to infinity (extremely slow processor).

3. From bottom to top, a processor where two or more virtual tree nodes converge

is marked as virtual tree node, and its computation speed is set to infinity, if

it has not returned the PTC.

4. In the virtual tree, the link speed between a parent and its child is the cumu-

lative link speed between these two nodes in the original tree.

Figure 3.4 clarifies these four rules. Now, P0 will dispatch Lp
2 to the “virtual tree”,

based on an optimal load distribution. As more processors are engaged at the begin-

ning of Phase2, more loads should be consumed by the “virtual tree”. Thus, Lp
2 can

be easily decided as,

Lp
2 = kLp

1 (3.8)

where k is the number of available processors. To compute an optimal load distri-

bution for each processor, P0 can use a similar RAOLD-OS [51] scheduling strategy

based on optimal sequencing. It will calculate an “equivalent processor” for each sub-

tree, and shrink the “virtual tree” into a single-level tree . The process is described

below.
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Figure 3.4: Virtual Tree Construction

A single-level tree, following an optimal sequence (zi ≤ zi+1, i = 2, 3, . . . , m) is

shown in Figure 3.5(a). For an optimal load distribution α1, α2, ..., αm, the corre-

sponding recursive load distribution equations are,

αkwkTcp = αk+1zk+1Tcm + αk+1wk+1Tcp, k = 1, 2, ..., m (3.9)

with the normalizing equation,
m∑

j=1

αj = 1 (3.10)

Thus, we can compute the value of α1 from Eqns.(3.9)–(3.10) as,

α1 =

∏m
j=1 fj

1 +
∑m

i=1

∏m
j=i fj

(3.11)

where,

fk =
wk + zk

Tcm

Tcp

wk−1

(3.12)

In the sense of computation power, this single-level tree is the same as a processor P
′
1
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Figure 3.5: Equivalent Processor for Single-level Tree

with w
′
1 = α1w1, as shown in Figure 3.5(b). For a given amount of load L, both of

them need α1Lw1Tcp units of time to complete processing of the load.

The above process is carried out recursively on the “virtual tree” from the bottom

layer to the second layer, until the “virtual tree” shrinks into an equivalent single-

level tree. Now, an optimal load distribution for the equivalent single-level tree can

be easily computed, by solving relative single-level tree DLT equations, as shown

in Eqns.(3.9)–(3.10) 4. Then, by inflating the equivalent processor to the original

sub-tree, the relative load fraction for each available processor can be computed.

Respective load fractions intended for Lp
2 will be percolated down through the tree to

available processors.

As in Phase1, P0 will record the finish time, denoted as T f
2 , for the “virtual tree”

to complete Lp
2, and set this time as the end of Phase2 (also the beginning of Phase3).

Meanwhile, P0 will also set relative shadow time for each sub-tree which is engaged

in computation. During Phase2, P0 responds to new arrival of PTCs using the same

4As we do not include P0 in computation, α0 should not appear in the DLT equations.
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strategy as in Phase1. At T f
2 , P0 will construct a new “virtual tree” for available

processors, and trigger Phase3. This process continues until all processors have been

discovered or at the start of Phasei, the remaining load is smaller than either µL or

the expected Lp
i . Then, P0 will dispatch the whole remaining load to the currently

available processors. The entire algorithm described above is shown in a flow-chart

in Figure 3.6.

Figure 3.6: Flow Chart for SLD Strategy
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3.3 Dynamic Network Parameter (DNP) Case

In DNP case, computation and communication speeds may vary with time, which

would make the SLD strategy unsuitable for the following reasons: (i) SLD strategy

adopts only a single time probing to detect computation and communication speeds,

which cannot accommodate dynamical changes of computation and communication

speeds. (ii) SLD strategy sets artificial time bound for each phase (e.g., T f
1 , T f

2 , ...),

and it makes each processor that has responded to catch up with this bound. However,

if w and z fluctuate, those processors may not finish their job at the estimated time.

(iii) P0 has to track every load fraction which is sent out to be processed by each

processor, and hence a processor’s computation speed may become extremely slow

and, in that case, P0 may need to resend this load to another processor for processing.

To address these issues, which arise in the DNP case, we develop a dynamical

version of SLD strategy, which is referred to as Dynamic Load Distribution (DLD)

strategy. In DLD strategy, a processor will return a PTC each time it finishes com-

puting a given amount of load. This is different from the SLD strategy, wherein a

PTC is sent only once by each processor. Also, in the DLD strategy, a CTC will be

generated every time a communication ends, whereas in the SLD strategy a CTC is

generated only in the probing phase. Furthermore, in DLD strategy, for the proces-

sor which accomplishes its job much earlier than the estimated finish time, P0 will

incorporate this actual finish time in computation again, and hence a processor may

receive more than one load fraction during each phase. However, for the processor

which accomplishes its job much later than the estimated finish time, P0 will incorpo-
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rate this finish time after receiving its PTC or it may resend its load fraction to other

processors if P0 does not receive its PTC until the beginning of the last phase. Now,

we shall describe the DLD strategy in a step by step fashion for ease of understanding.

Similar to the SLD strategy, at the beginning of the probing phase, P0 will dis-

patch n PLs, each ηL/n in size, to its n children respectively, and the n children will

pass down their PLs to their children. Each processor will send back a CTC to the

P0 processor, when it finishes receiving the PL and it will send back a PTC, when it

finishes computing the PL. After dispatching PLs to its children, P0 will wait for the

first PTC. Suppose the first PTC comes from Pi, which belongs to a sub-tree set |Pj|,

P0 will send Lp
1 to Pi and compute the duration of Phase1 using Eqn. (3.4), based

on the current value of z and w, and then derive the start time of the next phase

T f
1 = T p

i + T d
1 . During the transmission of Lp

1, each processor in π0i will send back a

CTC after it finishes receiving Lp
1 from its parents, and through these CTCs, P0 can

update the link speeds in π0i.

To avoid congestion, as discussed above, we will shadow |Pj| until Pi receives its

load. However, since we do not know the current value of z ∈ π0i, we cannot directly

apply Eqn. (3.7) to compute the shadow time and hence P0 will shadow |Pj| until it

receives CTC from Pi. During the shadow time, all PTCs from this set will only be

buffered at P0 but will not be responded to. Furthermore, as Pi’s computation speed

may become extremely slow when it starts to compute Lp
1, to avoid prohibitively long

waiting times for Pi, we store a label in P0 indicating that Lp
1 is being processed by

Pi. Later, when Pi finishes computing, it will again send back a PTC. According to
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this PTC, P0 will update wi, and it will remove the corresponding label, indicating

that the computation of Lp
1 has been completed. However, if P0 does not receive Pi’s

PTC from that time until the beginning of the last phase, P0 will dispatch Lp
1 again,

together with the remaining load to other processors.

Unlike in the SNP case, we would introduce a threshold ζ ∈ [0, 1) in the DNP

case. Before T f
1 − T d

1 ζ, when P0 becomes idle and it receives another PTC or PTCs

from unshadowed sets, the similar process as in SLD strategy will be adopted to

respond to the PTC(s). However, P0 will store respective labels indicating that this

load fraction is now being processed, whenever a proportional load fraction is sent to

a processor or an equivalent processor, and further it will shadow relative sub-tree

sets until all the communication within the sub-tree comes to a halt.

The following points may be noted here: (i) Whenever a processor finishes a

computation or a communication, it will send back a PTC or a CTC, which are used

by P0 to dynamically update relative values of w and z. When using Eqn. (3.6) to

calculate load size, we should use the most recently updated w and z value. (ii) P0 may

receive PTCs both from processors completing PL computation and those completing

the actual assigned load computation. For the PTCs, which are completing the

assigned load computation, corresponding labels stored in P0 should be removed.

(iii) The processors that return their PTCs within the range (T f
1 − T d

1 ζ, T f
1 ) will not

receive another load fraction from P0, but their PTCs will be used to estimate their

recent computation speed and to remove the corresponding labels in P0.

Time T f
1 is the estimated finish time for processors which are engaged in com-
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putation during Phase1. Thus, for a given processor Pk, if its effective speed βk

remains the same, it will stop computation at T f
1 , and become available. Further,

those processors which send back their PTCs a little earlier than expected but within

the interval (T f
1 − T d

1 ζ, T f
1 ), will not receive another job, and hence remain available

at T f
1 . Therefore, P0 will trigger Phase2 at T f

1 . The process is the same as in the

SLD strategy – P0 will construct a “virtual tree” for all available processors, deter-

mine an equivalent single-level tree, and then compute an optimal load distribution

for available processors.

However, in the DNP case, at time T f
1 two distinct exceptions might occur. First,

the available processor set may be empty. Such a situation will occur when the

effective speed of all processors engaged in computation in Phase1 become slower.

This means that all processors engaged in computation in Phase1 are still processing

their load fractions at T f
1 , meanwhile other processors are still calculating their PL.

In this case, P0 will wait until one processor finishes its job and sends back its PTC.

After receiving the “first responded” PTC, P0 will send Lp
2 = Lp

1 to this processor,

thus starting Phase2.

Second, at time T f
1 , one or more sub-tree sets may still be shadowed, because

some communication links within the sub-trees become extremely slow. If no avail-

able processors is from the shadowed set, Phase2 can be carried out normally as

we described above. Thus, an interesting and relevant question to address is how

to avoid potential congestion when one or more available processors belong to the

currently shadowed set. One possible method is to exclude these available processors
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from the “virtual tree”, and P0 will start Phase2 using the rest of the available pro-

cessors. This method is simple but only applicable to respective stable tree networks.

This is because, in stable tree networks, the chance that a sub-tree set will continue

to be shadowed at T f
1 is rare, as communication speed is usually much faster than

computation speed (z < 0.1w), and hence simply excluding available processors from

shadowed sub-tree set will not degrade total performance significantly.

However, if the tree network is highly unstable, the above method is no longer

suitable. Instead of blocking the whole shadowed sub-tree, we only want to block a

given portion of the sub-tree, so that computation power can be utilized efficiently.

Actually, P0 can detect which link is still communicating load at T f
1 . Suppose, during

Phase1, P0 dispatched a load fraction to Pk, and Pi and Pj are two adjacent processors

in π0k. If at T f
1 , P0 receives CTC from Pi and does not receive CTC from Pj, then

communication using lj must continue. Therefore, P0 only needs to block the branch

rooted at Pi. Available processors from the rest of the shadowed sub-tree can still be

included to construct the “virtual tree”.

As in the SLD strategy, the above process continues until the beginning of Phasei

when unprocessed load (remaining load plus the load being processed) is less than a

pre-defined threshold µL or the remaining load is less than Lp
i . It should be noted

that, during the above process, the “virtual tree” for each phase may shrink as time

progresses, unlike in SLD strategy, where “virtual tree” for each phase never shrinks.

During the final phase (after estimation), P0 will dispatch all the remaining load

to currently available processors, and this phase is expected to be the last phase.

64



However, this does not imply finishing of computation, because P0 has to check the

PTC responses so as to make sure every load fraction is processed. If at the end of

expected last phase, some processors that are engaged in computation, do not return

their PTCs, or all the processors from a sub-tree rooted at one of the P0’s children

do not return their PL completion PTCs, P0 will re-dispatch the corresponding load

(assigned load or PL) to other available processors. The above process continues

until all load is guaranteed to be processed, thus completing the entire computation

process. The entire algorithm described above is shown in a flow-chart in Figure 3.7.

It should be noted that DLD may not be suitable for an extremely unstable

network, where the link speeds and processor speeds change constantly. In fact,

divisible load paradigm cannot be applied in this case, as any decision made at one

time is outdated at the next time. DLD is designed to cope with mild changes in the

network, and it is much more robust and resilient than SLD.

3.4 Performance Evaluation

In this section we shall quantify the performance of the two algorithms. We present

two illustrative examples that demonstrate the operation of the algorithms. As the

design of algorithms involve complex decisions during the load distribution process,

a step-by-step illustration and discussions on the operation of the algorithm seems

to be a more appropriate procedure than running conventional simulation tests that

capture only the processing time performance. From this perspective, we design

two examples, one for each case (SNP and DNP) and discuss the finer aspects that
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Figure 3.7: Flow Chart for DLD Strategy
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Figure 3.8: Tree model for the experiment

went into the design of these algorithms. This approach, we believe, reveals several

important characteristics that the algorithms exhibit.

3.4.1 Experiment with Static Network Parameter Case using

SLD strategy

Consider a 5-level tree with 20 processors, as shown in Figure 3.8. We assume that

Tcm = 1, Tcp = 2, L = 80, Lp
1 = 4, η = 0.05, and µ = 0.15.

The first step starts by sending the probe loads as described in Section 2.2. As P0

has 4 children (P1, P2, P3, P4), we have totally 4 PLs, each of size 1. The corresponding

CTCs (T cs
i , T cf

i ) and PTCs (T p
i ) times used are listed in Table 3.1, from which we

can calculate their zi and wi using Eqns.(3.1)–(3.2), respectively.

From Table 3.1, we observe that two processors (P4 and P7) and one link (l15)
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Table 3.1: PTC and CTC responses from Processors

Pi T cs
i T cf

i (CTC) T p
i (PTC) wi zi

1 0 0.5 14.5 7.0 0.5
2 0.5 0.7 4.7 2.0 0.2
3 0.7 1.1 3.1 1.0 0.4
4 1.1 2.0 202 100.0 0.9
5 0.5 1.0 5 2.0 0.5
6 0.7 1.0 3 1.0 0.3
7 1.0 1.3 201.3 100.0 0.3
8 2.0 2.6 18.6 8.0 0.6
9 2.6 2.8 20.8 9.0 0.2
10 1.0 1.4 9.4 4.0 0.4
11 1.4 2.2 16.2 7.0 0.8
12 2.2 3.0 9.0 3.0 0.8
13 3.0 3.2 13.2 5.0 0.2
14 1.0 1.1 17.1 8.0 0.1
15 2.8 12.8 16.8 2.0 10.0
16 1.1 1.3 4.3 2.0 0.2
17 12.8 13.3 21.3 4.0 0.5
18 13.3 13.7 21.7 4.0 0.4
19 13.7 14.4 26.4 6.0 0.7
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have extremely slow speed. Later we will show how our algorithm copes with these

extremely slow processors and links. Below, we present the operation of the SLD

strategy in a step-by-step fashion.

At time t = 0, P0 dispatches PLs to its children. This process takes 2 units

of time, and no PTCs are returned during this period. Thus, P0 remains idle until

t = 3.0 at which time it receives the first PTC response from P6. According to

our algorithm, P0 dispatches Lp
1 = 4 to P6, and hence starts Phase1. Based on the

estimated processing and link speeds, P0 can determine the time P6 needs to process

Lp
1, using the speed parameters in Table 3.1, which is ((0.2 + 0.3) + 1.0× 2)× 4 = 10

units of time. P0 sets the finish time of Phase1 as 10 + 3 = 13 units, which is equal

to its duration from its start time, and shadows the set |P2| for 2 units of time (as it

spends 2 units of time for P6 to finish its reception) from t = 3.

At time t = 3.8 (= Lp
1z2 + 3), P0 finishes sending Lp

1 to P2, and finds that P3

has already returned its PTC. Hence, P0 will send (13 − 3.8)/2.4 = 3.8333 units of

load5 to P3 to make it stop computing at t = 13, and shadows the set |P3| for 1.5333

units of time (time for P3 to finish its reception) from t = 3.8. Note that the factor

2.4 (effective speed of P3) in the denominator is computed using Eqn.(3.3) and the

values in Table 3.1.

Thus, at time t = 5.3333 (= 3.8333z4 + 3.8), P0 becomes idle again and it finds

that three processors from the unshadowed sets, P2, P5, P16, have returned their PTCs.

Based on the optimal sequence concept, P0 will respond to P2 and P16 first. The

equivalent computation power of P2 and P16 is 1.0698, and hence P0 will send a total

5(Finish time of phase1 - current time)/effective speed of P3, as expressed in Eqn. (3.6)
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load of (13−5.3333)/2.3396 = 3.2769 units6, among which 1.7528 units of load will be

assigned to P2 and 1.5241 units of load will be assigned to P16. The shadow time for

the set |P2| is 1.5701 (time to complete reception by P16). After P0 sends load to |P2|,

P0 will respond to P5 at time t = 5.9887 (after it finishes sending load to P2), as no

more PTCs return before this time. According to Eqn. (3.6), (13−5.9887)/5 = 1.4023

units of load is sent to P5, and set |P1| would be shadowed for 1.4023 units of time

(time to complete reception by P5) from t = 5.9887.

Note that P0 finishes sending load to P1 at t = 6.6899. However, as no new PTC

responses arrive before that time, it remains idle until it receives PTC from P12 at

t = 9 (See Table 3.1). Similarly, P0 sends (13 − 9)/7.8 = 0.5128 units of load to P12

and shadows the set |P1| 0.9392 units of time. Then, we note that at t = 9.4, P10

returns its PTC. Although P0 is idle now, it will not respond to P10 until t = 9.9392,

when the set |P1| is no longer shadowed, and then P0 will send 0.3256 units of load

(as per Eqn. (3.6)) to |P10|. This is the last dispatch in Phase1.

The results of the above description and for all other phases are tabulated in

Table 3.2. From the table, we can see that the load which has been processed during

Phase1 is 13.2291, and hence the remaining load is 62.7709 (4 units of load have been

consumed as PLs), larger than the end threshold. At time t = 13, P0 triggers Phase2.

Because there are seven participating processors, Lp
2 = 7Lp

1 = 28. P0 first constructs

a “Virtual Tree” as shown in Figure 3.9(a). Because all processors adopt optimal

sequence when dispatching loads to their children, the “Virtual Tree” can be shrunk

to an equivalent single level tree as shown in Figure 3.9(b). Applying the optimality

6The denominator is the effective speed of equivalent node of P2 and P16, which equals 2.3396
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Table 3.2: Load Distribution of SNP Case

Phase Pi T p
i P0 Responds Time Dispatched Load

2 4.7 5.3333 1.7528
3 3.1 3.8 3.8333
5 5.0 5.9887 1.4023

Phase1 6 3.0 3.0 4
10 9.4 9.9392 0.3256
12 9.0 9.0 0.5128
16 4.3 5.3333 1.4023
2 13.0 4.5211
3 13.0 7.5348
4 13.0 2.4971
6 13.0 7.4134
10 13.0 1.1893
12 13.0 1.3988
16 13.0 3.4487
14 17.1 21.6328 0.7547

Phase2 8 18.6 21.7837 0.6120
9 20.8 21.7837 0.5643
15 16.8 21.7837 0.4369
17 21.3 21.7837 0.1958
18 21.7 21.7837 0.2081
1 14.5 25.7672 0.5397
11 16.2 25.7672 0.4570
13 13.2 25.7672 0.6764
19 26.4 32.5972 0.0657
1 0.7880
2 4.2475
3 7.0779
5 2.0751
6 6.8656
8 0.5447
9 0.5023
10 0.9687

Phase3 11 34.16 0.5242
12 1.0785
13 0.8142
14 0.8333
15 0.3470
16 3.1747
17 0.1555
18 0.1652
19 0.0979
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Figure 3.9: Virtual Tree and Equivalent Single Level Tree of SNP Case

principle in DLT literature on the “Virtual Tree”, we can obtain an optimal load

distribution as shown in Table 3.2. The “Virtual Tree” will spend 21.16 units of time

to process Lp
2. Therefore, P0 sets the finish time of Phase2 as 34.16 and it will also

set the corresponding shadow times, 12.7672, 7.3652, 6.0904, for sets |P1|, |P2|, |P3|.

At time t = 21.6328 (time to finish sending Lp
2 to the virtual tree by P0), P0 be-

comes idle, and processors P1, P8, P9, P11, P13, P14, P15, P17 have returned their PTCs.

However, because set |P1| continues to be shadowed, those PTCs from |P1| will not

be responded to. Based on the optimal sequence criterion, P0 will respond to P14

first and send 0.7547 units of load to P14. |P2| will be shadowed for 0.4528 units of

time. At t = 21.7837 (after P0 finishes sending load to P2), P0 dispatches a total

of 2.0171 units of load to P8, P9, P15, P17, P18, whose equivalent computation power

is 2.6178, and shadows |P4| for 10.8099 units of time. Then, at time t = 25.7672,

set |P1| becomes available, and hence P0 dispatches totally 1.6731 units of load to
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P1, P11, and P13. At t = 32.5972, P0 sends 0.0657 units of load to P19, which sends

back its PTC at t = 26.4. As we can see above, totally 32.5106 units of load have

been processed during Phase2, and the whole load distribution in this phase is also

shown in Table 3.2.

Processor P0 starts Phase3 at t = 34.16. Since a total of 17 processors will

participate in the computation at the beginning of this phase, Lp
3 should be equal to

17 ∗ 4 = 68 units of load. However, there are only 30.2603 units of remaining load,

and hence we will dispatch the whole of the remaining load to the available processors

at the beginning of Phase3 (last phase), as shown in Table 3.2. The duration of the

last phase is 23.04 units of time, and the total processing time is 57.2.

From the above example, we have the following observations. First, the extremely

slow processors, such as P4 and P7, are automatically excluded from computing, and

an extremely slow link li will significantly affect the performance of processors that

belong to set |Pi|. In our example, although |P15| contains very fast processors, such

as P15, this whole branch only receives 1.6271 units of load, because of an extremely

slow link l15.

Secondly, from this example, we conclusively see that the concept of shadow time

can effectively avoid communication congestion. For instance, in our example, at time

t = 9.4, when P10 returns its PTC, P0 does not respond to it immediately, although

it is idle, because set |P1| is shadowed. Actually, this is due to the fact that P1 was

dispatching load to P5 at t = 9.4, and it would have caused congestion if P0 responded

to P10 immediately.

73



Thirdly, our algorithm adopts an optimal sequence criterion in every load dispatch

to optimize the performance. For example, at time t = 5.3333, P0 receives three PTCs,

from P2, P5, and P16, respectively. Based on the optimal sequence, P0 responds to

P2 and P16 first, and then responds to P5. Compared with P0 dispatching load to P5

first and then to P2 and P16, it enables P2, P5, P16 to process approximately a total

of 0.2 units more load during Phase1.

3.4.2 Experiment with Dynamic Network Parameter Case

using DLD Strategy

Now we will present an experiment with the DLD strategy, which is capable of han-

dling fluctuations in the network and node speeds, and demonstrate its similarities

and differences with SLD strategy.

As before, we assume that Tcm = 1, Tcp = 2, L = 80, Lp
1 = 4, η = 0.05, µ = 0.15,

and ζ = 0.1. We further assume the tree topology and the first round of PTC and

CTC responses are also the same as in the SNP case (shown in Figure 3.8 and Table

3.1, respectively). Further, we randomly choose a set of processors and links, and

vary their speeds as shown in Figure 3.10. The speeds of other links and processors

are assumed to remain the same during the processing of the total load.

It should be noted that P0 does not know the variance of w and z in advance.

However, as time progresses, P0 can detect such variance and will incorporate the

new value of w and z into load dispatching, as we will see in our example.

As in the SNP case, at t = 3.0, P0 receives the first PTC response from P6. It
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Figure 3.10: The variance of w and z with time

dispatches Lp
1 = 4 to P6, and using the estimated value of z2, z6 and w6, as shown

in Table 1, P0 can determine the expected time for P6 to process Lp
1, which is 10

units of time. However, unlike in the SNP case, during the transmission of Lp
1, in our

design of DLD algorithm, every processor in π06 will send back a CTC again when it

finishes receiving load from its parent. These CTCs are used to update the relative

link speeds. Further, P0 will shadow set |P2| until it receives a CTC from P6 again.
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As shown in Figure 3.10, z3 and z6 remain the same at this time, but P6 becomes

slower and using the new value of w6 we can deduce that P6 will return its PTC at

t = 21.0. From P0’s perspective, it will receive two CTCs from P2 and P6 at t = 3.8

(= 3 + z3L
p
1) and t = 5.0 (= 3 + (z3 + z6)L

p
1), respectively, however, it will not receive

any PTC response from P6 by t = 13.0. Hence, P6 will be automatically excluded

from computation right at the beginning of Phase2. However, later at t = 21.0

when P0 receives this PTC, it can re-estimate the value of w6 using Eqn. (3.2) and

can obtain the recent value for w6 which now increases by a factor of 2 during its

computation. Clearly, this case demonstrates the possibility of processor exclusion in

a phase by our algorithm.

At time t = 3.8 (= Lp
1z2 + 3), P0 finishes sending Lp

1 to P2, and starts to dispatch

load to P3, which has already returned its PTC at t = 3.1. As in SLD strategy, P0 use

Eqn.(3.6) to determine the amount of load that should be sent to P3. Consequently,

3.8333 units of load is sent to P3. However, as shown in Figure 3.10, both l3 and

P3 becomes twice faster (z3 = 0.2, w3 = 0.5) when it computes the load, and hence

P0 will receive CTC and PTC from P3 at t = 4.5667 (= 3.8 + 3.8333z3) and t = 8.4

(= 3.8 + 3.8333(z3 + 2w3)).

At time t = 4.5667, when P0 receives CTC from P3, it updates z3 to 0.2. Because,

by this time, P0 has not received the CTC from P6, it will not respond to P16, which

returned its PTC at t = 4.3. At t = 5.0, set |P2| is no longer shadowed, and by

this time P0 has received PTCs from P2, P5, and P16. Similar to the SNP case, P0

adopts the optimal sequence criterion, and hence sends a total of 3.41947 units of

7Computed as described in the SNP case. However, when computing the effective speed of equiv-
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load to P2 and P16 first, whose currently equivalent computation power is 1.0698. As

indicated in Figure 3.10, z6 and z14 change to 0.2 and 0.15, respectively, and all the

other link speeds and processing speeds remain the same. Therefore, P2 will finish its

job exactly at the expected time t = 13, while P16 will finish at a time slightly earlier

than expected (at t = 12.92).

At time t = 5.6839 (= 5 + 3.4191× 0.2), P0 finishes sending load to P2, and then

sends 1.4632 units of load (as per Eqn. (3.6)) to P5. Because z1, z5, w5 all remain

unchanged, P5 will return its PTC at t = 13. After dispatching load to P1, P0 remains

idle until it receives PTC from P3 again at t = 8.4. Then, P0 knows that the load

sent to P3 earlier has been processed, and it will send another 3.8333 units of load to

P3. Because, at this time, z3 and w3 do not change, P3 will finish its job at t = 13.

P3 receives a total of 7.6666 units of load during Phase1. Thus, we note that our

algorithm tracks and attempts to reuse fast processors (in this case P3) as shown in

the above case.

At time t = 9.1667 (= 8.4 + 3.8333 × 0.2), P0 sends 0.4914 units of load to P12.

However, as shown in Figure 3.10, at this time the values of z1, z5, z12, and w12 become

0.4, 0.4, 10.0, and 3.5, respectively. We observe that, because l12 becomes extremely

slow now, P0 cannot receive the CTC response from P12 before the beginning of

Phase2. Thus, PTC from P10 (at t = 9.4, shown in Table 3.1) will not be responded

to during Phase1. This event indicates that subsequently, while constructing a virtual

tree, the sub-tree rooted at P5 must be shadowed, which highlights the tracking

capability of the algorithm.

alent node of P2 and P16 we use the most recent estimates of z and w.
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Now, at t = 12.92, P0 receives PTC from P16. However, because 12.92 falls into

the range [13 − 10 × 0.1, 13], P0 just records the portion of the load that has been

processed by P16 and does not send any more load fractions to the processor. This is

because the current time is very close to the start of the next phase. It may be noted

that sending another amount of load to P16 improves the performance only by a very

little amount. However, it increases the risk that P0 may miss the start time of the

next phase, should l2’s speed become very slow. Thus it may be noted that, for the

next phase, DLD is able to retain all the processors that had responded before the

expected finish time in the current phase (in this case, this is P16).

In Phase1, totally 17.0403 units of load has been dispatched, while only 12.5492

units of load has been processed. Thus, the remaining load is 58.9597 (4 units of PL

have been dispatched), and the unprocessed load is 64.0403 (3 units of PL have been

processed). The load distribution is shown in Table 3.3.

At time t = 13, P0 will trigger Phase2. Based on the DLD strategy, P0 shadows

the branch |P5|, because now P5 is still sending data to P12. A “Virtual Tree” is

constructed as shown in Figure 3.11(a) and its equivalent single level tree is shown

in Figure 3.11(b). P0 will dispatch Lp
2 = 3 × 4 = 12 units of load to the “Virtual

Tree”, and an optimal load distribution is shown in Table 3.3. The “Virtual Tree”

is supposed to spend 10.0744 units of time to process Lp
2, and hence the expected

beginning time of Phase3 is 23.0744. However, as shown in Figure 3.10, the values of

z2, w2 and w16 become 0.5, 1.5 and 9.0, respectively, and the finish times of P2, P16, P3

are 22.0699, 39.7026, and 24.372, respectively. Note that because of the distribution
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Table 3.3: Load Distribution of DNP Case

Phase Pi PTC Return Time P0 Responds Time Dispatched Load Actual Finish Time
6 3.0 3.0 4 21.0
3 3.1 3.8 3.8333 8.4
2 4.7 5.0 1.8289 13.0

Phase1 16 4.3 5.0 1.5905 12.92
5 5.0 5.6839 1.4632 13.0
3 8.4 8.4 3.8333 13.0
12 9.0 9.1667 0.4914 17.9136
2 13.0 13.0 2.3023 22.0699
16 12.92 13.0 2.0237 52.7026
3 13.0 13.0 7.674 24.372
1 14.5 16.6978 0.3786 23.0744
5 13.0 16.6978 1.0943 23.0744
10 9.4 16.6978 0.5109 23.0744
11 16.2 16.6978 0.2761 23.0744
13 13.2 16.6978 0.4291 23.0744

Phase2 14 17.1 17.7735 0.3146 23.0744
15 16.8 17.9308 0.3406 23.0744
12 17.9136 19.209 0.2172 23.0744
6 21.0 21.0 0.4414 23.0744
8 18.6 21.712 0.0688 23.0744
9 20.8 21.712 0.0635 23.0744
17 21.3 21.712 0.0387 23.0744
18 21.7 21.712 0.0411 23.0744
1 2.6614
2 9.4955
5 7.5594
6 6.7031
8 1.4227
9 1.3118
10 3.529

Phase3 11 23.0744 1.9074 68.572
12 1.5708
13 2.9645
14 1.6601
15 1.0156
17 0.4552
18 0.4838
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Figure 3.11: Virtual Tree and Equivalent Single Level Tree of DNP Case

sequence, even if l3 and w3 remain the same, P3 still can not finish computing at the

expected time.

The load distribution in Phase2 is shown in Table 3.3. During Phase2, totally

16.2151 units of load have been dispatched, and hence only 42.7446 units of load is

left at time t = 23.0744. As 14 processors will now participate at the beginning of

Phase3, the remaining load is less than Lp
3 = 56, therefore all the remaining load will

be dispatched at t = 23.0744. The load distribution is shown in Table 3.3. Phase3

lasts for 45.4976 units of time. Notice that P3 and P16, which have not returned their

PTCs at the beginning of Phase3, finish their job during this phase. Therefore, all

the load has been processed at the end of Phase3 and the total processing time is

68.572.

From the above example, we can see that the time-varying nature of the tree

network is captured in the DLD strategy, and is dynamically incorporated into the

load distribution. This is a unique characteristic of the DLD strategy. If the SLD
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strategy is applied in the above example, it detects the link speed and node speed

only once, and hence will not take into account the speed variance. Because the initial

speed parameters are the same in the above two examples, the SLD strategy will try

to distribute the total load in the same way as in the first example. However, such

a distribution by SLD may cause communication congestion in the above example,

as it does not take into account the link speed variance. For instance, in the above

example, l12 becomes extremely slow at time around t = 9. The SLD strategy will

not detect such a change, and hence may send some load to |P5|, while P5 is still

sending load to P12. Further, we notice that a total of 18.279 units of load is sent

to P6 in the first example. However, as shown in the DNP example, P6 should only

receive a total of 11.1445 units of load because its speed becoming slower during the

processing. Obviously, P6 will be overloaded if we apply the SLD strategy in the

above example, as it does not take into account the P6’s computation speed variance.

This will highly degrade the total performance.
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Chapter 4

Issues in Handling Divisible loads on

Arbitrary Networks

4.1 Probing & Reporting Techniques

In the previous two chapters, we addressed the problem of scheduling divisible loads

in linear networks and multi-level tree networks in resource unaware environment.

One common technique they used is probing technique. To some extent, the probing

technique can be regarded as a centralized scheme in the sense that the root controls

the whole process. For different network topologies, the root will probe the network in

different manners. There are two advantages of the probing technique. First, through

probing, the root obtains the speed parameters of links and processors, which serves

as a basis for the future scheduling. Secondly, while probing the network, although

may be small amount (depending on the size of probing load), at least a portion of

the real job has been done.

However, probing technique also has some limitations. First, the underlying net-

work should have a regular topology. Then, depending on the topology of the network

(be it bus, linear, or tree), the root can conduct probing in a corresponding manner.

The probing technique may not be suitable for the network with an arbitrary topol-
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ogy. In an arbitrary graph, a processor may have more than one route connecting to

the root, and may receive different or duplicate probing loads from the root through

different routes. It is difficult for the root to control the probing, especially when each

processor has a single port for transmission. In this case, as we discussed in Chap-

ter 3, communication congestion problem may happen. Some probing loads may be

blocked somewhere in the network, and some part of network may not be probed in

time.

The probing becomes even more unpredictable if multiple sources exist in the

network. In this case, a processor may not only receive probing loads from different

routes but also from different sources. Further, the probing technique may not be

really suitable for large-scale networks. In probing technique, all probing loads are

initially sent out by the root. All processors will wait until receiving the probing load

and then start to compute. In large-scale networks, a probing load may travel a long

time before reaching the processor which is far from the source. This leads to quite

long idle time for those processors, which could be used more efficiently.

From what we discussed above, we can see that because of exercising a centralized

control, the probing technique may not be a suitable technique to handle multi-source

divisible loads in large-scale arbitrary networks. Actually, some processors may be

aware of its own speed and the speeds of the links that directly connect to them. Even

if this speed information is not known, it is much easier to detect this information by

a local processor other than the root which may be far away.

Therefore, an alternative way to detect the network speeds can be a reporting
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based scheme. In reporting technique, when the source needs the speed information

of the remaining network, it can simply signal other processors. A processor, after

receiving the signal can report back the speed information if it already had, or can

start to detect the local speed information and then report back. The source can set

up a time threshold, say T ∗, and will start to schedule and process the load at time

t = T ∗ based on the information it received before this time.

Compared to probing technique, in reporting technique, no real job is done in

the first T ∗ units of time. However, a reporting scheme can work more efficiently

than a probing scheme in the complex cases, since in reporting scheme, the root may

get the speed information much faster. Further, in a reporting scheme, a processor

is not limited to report back only the speed information. Actually, even with the

local information, a processor can still obtain other useful results such as, which is

the nearest (in terms of communication delay) source, or what is the best route for

it to receive its chunk of load. The processor can also report these useful results

back. This idea is discussed in more detail in the next chapter, where we address

the problem of scheduling multi-source divisible loads in arbitrary networks, under

both resource aware and resource unaware cases. However, below we will first discuss

another relevant issue in scheduling in arbitrary networks.
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4.2 Common Spanning Trees - Performance Eval-

uation

4.2.1 Problem Formulation and Notations

As we have mentioned in the introductory chapter, optimal solution to single-

instalment based divisible load scheduling problem on a network with an arbitrary

graph topology indeed occurs on a spanning tree of the graph [53]. However, Byrnes

et al. [52] proved that finding the optimal spanning tree (the spanning tree that gener-

ates minimum total processing time) on the arbitrary network is NP-hard. Therefore,

one immediate question to address is which spanning tree(s) can deliver efficient so-

lutions.

In this section, we evaluate the performance of different spanning trees over a

wide range of arbitrary networks with varying connectivity and processor densities

and study the effect of network scalability. The underlying network considered com-

prises heterogeneous processors interconnected by heterogeneous links in an arbitrary

manner. Each processor is assumed to be equipped with “front-end”, and only has

a single port for transmission. We study and compare the performances of different

spanning trees - minimum spanning tree (MST), shortest path spanning tree (SPT),

fewest hops spanning tree (FHT), and the robust spanning tree (RST) [53], with

respect to a variety of performance metrics, such as complexity, time performance

and robustness. In addition, to minimize the total processing time of the entire load

submitted for processing, we propose a novel spanning tree routing strategy, which
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is referred to as minimum equivalent network spanning tree (EST) and compare its

performance as well. Resource-aware optimal load distribution with optimal sequenc-

ing (RAOLD-OS) [51] scheduling algorithm is applied to all the above spanning tree

routing strategies for obtaining an optimal solution. We set up experiments system-

atically to evaluate the performance of these spanning tree routing strategies over a

wide range of arbitrary dense graphs with varying connectivity and processor densi-

ties. This work attempts to pool all known and applicable divisible load scheduling

algorithms for arbitrary networks and presents a collective and comparative view of

their performance.

The notations, definitions, and the terminology that are used in this chapter are

given in Table 4.1.

4.2.2 Common Spanning Tree Routing Strategies

For an arbitrary graph, there normally exist many spanning trees. Below, we intro-

duce several common spanning tree construction strategies and their characteristics

in brief.

Minimum spanning tree (MST): In MST, the total link weight (the link weights

depend on the speed of the links) is the minimum among all the spanning trees. Since

MST always tends to incorporate the link with small weight without considering its

hop count to the root, normally MSTs are very deep and “skinny”. Kruskal’s or

Prim’s algorithm are used to construct such a spanning tree.

Shortest path spanning tree (SPT): In SPT, each node has the shortest path
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Table 4.1: List of notations

L The total amount of load originating at a node for processing.

ps Node s in the given graph G.

lps,pt Communication link connecting nodes s and t in the graph G.

px,i This denotes node i in a spanning tree whose parent is node x.

Σ(x, i,m + 1) This is a single-level tree network (sub-tree) defined in a spanning tree, consisting

of (m + 1) nodes, with root node px,i and m child nodes pi,1, ..., pi,k, ..., pi,m.

Tcp/Tcm Time taken to compute/transmit a unit load by a standard node/link, as

defined in Chapter 2.

wx,i/zx,i Ratio of the time taken to compute/transmit a certain amount of data by px,i/lx,i

to the time taken by a standard node/link, as defined in Chapter 2.

Note that, wi,k/zi,k is actually the inverse of the speed of pi,k/li,k in Σ(x, i, m + 1).

T (α) The total processing time of the entire load under the distribution α.

ε The eccentricity is the depth of the deepest leaf node from the root node,

in terms of number of hops, in a spanning tree.
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(in terms of link weights) to the root. To construct such a spanning tree, either the

efficient Dijkstra’s or Bellman-Ford’s algorithm could be used. The shape of the tree

depends on the distribution of the link weights. The SPT trees are generally deeper

and have smaller node degrees than FHT trees.

Fewest hops spanning tree (FHT): In FHT, each node’s hop count to the root

is the minimum. The breadth-first search (BFS) algorithm [92] could be used to

construct the FHT. FHTs tend to be shallow and “fat”.

Robust spanning tree (RST): RST is designed to seek a trade-off between link

weight and hop count. Such a tree is immune to data loss when nodes or links fail

and yet provides good performance. RST minimizes each node’s combined cost of

link weight and hop count as follows.

λ ∗ hop count + (1− λ) ∗ link weight (4.1)

The weight λ is actually a function of a node’s depth in the tree, which falls into the

range [0, 1) When an edge (i, j) is being considered for inclusion in the tree, then

λi = 1− hi

ε1

(4.2)

where i is the new vertex not already in the tree, hi is the hop count of node i from

the root and ε1 is the depth of the deepest leaf in the shortest path spanning tree

(SPT) or in other words it is the deepest of the shortest paths from the root node to

all other nodes in the network, and this gives the relative importance of hop count

versus link weights. RST strives for a balance between SPT and FHT.

Minimum equivalent network spanning tree (EST): Our EST algorithm as-

sumes optimal sequencing load distribution and maximizes the equivalent computa-
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tion power of the spanning tree by considering both processor and the link weights

(or speeds) while constructing the spanning tree as follows. In [4], the equivalent

processor value wx,eq(i) for a single-level tree Σ(x, i, m + 1), is derived as

wx,eq(i) =

(
Πm

v=1fv

1 + Σm
u=1Π

m
v=ufv

)
wx,i (4.3)

where

fv =
wi,v + zi,v(Tcm/Tcp)

wi,(v−1)

(4.4)

Given a single-level tree network, the entire network could hence be replaced with

an equivalent processor with speed parameter as given by the equation 4.3. Our

EST spanning tree construction algorithm uses this procedure in a recursive fashion.

Given an arbitrary network (G) containing nodes (N) and links (E), we first add the

root node to the spanning tree and then, consider all the links originating from this

spanning tree, one by one, and add the (E, N) pair that provides minimum effective

equivalent processor value (weq(0)) (as in the equation 4.3) to it and continue until all

the nodes in G are added. The shape of EST trees depend on the distribution of the

links as well as processor speeds.

The Figure 4.1 (b), (c), (d), (e) and (f) presents the MST, SPT, FHT, RST, and

EST spanning trees rooted at p1 constructed for an arbitrary graph network G given

in Figure 4.1 (a). Though in this example the spanning tree results are different, in

general it may not be so, the trees constructed by different spanning tree algorithms

might be identical. In our simulation study, we apply the RAOLD-OS algorithm

on all the generated spanning trees, capture the critical parameters and analyze the

performance of various routing strategies.
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Figure 4.1: An arbitrary graph network and spanning trees (number on the links

denote the link weights and the number near the nodes denote the processor weights).

(a) An arbitrary graph network G with 8 processing nodes; (b) Minimum spanning

tree; (c) Shortest path spanning tree; (d) Fewest hops spanning tree; (e) Robust

spanning tree; (f) Minimum equivalent network spanning tree.
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4.2.3 Performance Evaluation

In this Section, we shall describe the simulation platform setup and present the per-

formance of various spanning tree routing strategies for various situations through

extensive simulations. We also highlight and discuss all the important simulation

results. We compare the performance of various routing strategies based on the total

processing time, and network eccentricity, which we define as the distance in number

of hops from the root node to the farthest leaf node in the spanning tree. In addition

to the total processing time, we also consider network eccentricity in our study, since

it provides an indication on how far the nodes are from the root node in a spanning

tree. This metric gives a measure of robustness of the network, since the farther

the nodes are from the root node, more pronounced will be the effect of network

disruptions on the performance because of data loss [53].

We now describe how the arbitrary graphs and other required parameters for our

performance evaluation are generated. The graph generation procedure is made to

be non-deterministic so as to reflect the real-life situations. We set the node p0 in the

network as the root node. The parameter Plink denote the degree of connectivity, or

link density. By varying the number of processing nodes and the Plink parameter in our

simulations, we generate various types of networks. This allows us to generate graphs

with very small number of processors with high connectivity and graphs with large

numbers of processors with low or sparse connectivity, to reflect real-life scenarios.

In our study, we vary the Plink parameter from 30% to 100% in steps of 10%,

and generate various types of networks and for each type of network. We also vary
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the number of processing nodes from 10 (small-size graph) to 200 (large-size graph)

to study the effects of network size scalability. It shall be noted that in order to

guarantee the generated graph is a connected graph, the value of Plink parameter

cannot be close to zero and when the value of Plink parameter is 100%, we have a

completely connected graph network where in all the nodes are connected to each

other by a direct link. The speed parameters for the processing nodes and the links

are chosen based on a uniform probability distribution in the range [0.01, 3.34] for low,

and [6.67, 10.0] for high values. In all our studies, we let L = 108, Tcm = Tcp = 1.0,

and vary the number of nodes in the network, speed and Plink parameter values and

analyze the performance.

The network eccentricity results are plotted in the Figure 4.2. The total processing

time results are plotted in the Figure 4.3 and 4.4 for low and high link speed values

respectively. In the Figures 4.2, 4.3, and 4.4, we denote the results for minimum

spanning tree, shortest path spanning tree, fewest hops spanning tree, robust spanning

tree, and minimum equivalent network spanning tree as MST, SPT, FHT, RST, and

EST respectively. Since the EST construction depends on both processor and link

speeds, its eccentricity value vary when the network has high or low processing speed

nodes. Hence, they are plotted separately as EST H and EST L in Figure 4.2.

4.2.3.1 Effect of network scalability

We study the effect of network scalability by comparing the performance of the routing

strategies for various processing node configurations for a given link density value.

We first notice that MST has the largest eccentricity values (tree depth in terms of
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Figure 4.2: Network eccentricity simulation results for 10, 100, and 200 nodes network

with low and high speed links
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Figure 4.3: Total processing time simulation results for 10, 100, and 200 nodes with

low and high processing speeds in a network with low speed links
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Figure 4.4: Total processing time simulation results for 10, 100, and 200 nodes with

low and high processing speeds in a network with high speed links
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number of hops), while FHT has the smallest eccentricity values and RST always has

a value close to FHT, as shown in Figure 4.2. When the network size (the number

of processing nodes) increases, the eccentricity value for MST also increases, whereas

the eccentricity value of FHT almost remains unchanged. Both in the low and high

link speed networks, the eccentricity values for SPT, FHT, RST, and EST remain

almost identical as the number of nodes in the network increases beyond 100.

Further, from the Figures 4.3 and 4.4, it is observed that the total processing

time decreases when the processing speed of node increases or network size increases.

However, the diminishing effect of the increase of network size is observed, that is

as the network size becomes larger and larger, the decrease in total processing time

gets smaller and smaller. For example, in both low link speed networks and high

link speed networks, when the network size increases from 10 to 100 nodes, the total

processing times for SPT, FHT, RST, and EST routing strategies decrease much

larger compared to the decrease in total processing times when network size increases

from 100 to 200. In low link speed networks, MST and EST are observed to produce

upper and lower bounds respectively for the total processing time, where as in the

high link speed networks (except for the very sparse network with just 10 nodes) FHT

and EST are observed to produce the upper and lower bounds.

4.2.3.2 Effect of network connectivity

In order to analyze the effect of network connectivity, we compare the performance

of the routing strategies by varying the link density values for a given number of

processing nodes. When the link density value (Plink) is increased for a given network,
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there are more links between processing nodes and hence there are more options

available for the spanning tree routing strategies.

From the Figure 4.2, it is observed that the eccentricity values for SPT, RST,

EST, and FHT tend to decrease slightly, and those for MST vary significantly as the

Plink increases in both low and high link speed networks.

Our simulations (Figure 4.3 and 4.4) show that the total processing time of an

MST varies significantly as Plink increases in a low link speed networks, whereas the

variations are minor in high link speed networks. Compared to MST, the variations in

the processing time for SPT, FHT, RST, and EST trees as Plink increases are smaller.

Also, the processing times in the low link speed networks for SPT, FHT, RST, and

EST trees are almost identical for networks larger than 100 nodes. It is also observed

that the total processing time for RST is closer to SPT values for low Plink values

and tends to move closer to FHT values as Plink increases.

4.2.3.3 Comparison of complexity and performance of algorithms

Given an arbitrary graph G = 〈N, E〉, using Fibonacci heap, an MST and SPT could

be constructed in O(E + NlogN) steps. The complexity of BFS to construct FHT is

O(|E| + |N |). The complexity of constructing RST is O(E2). Assuming that there

are m processors in every sub-tree and that there are R sub-trees in every level, with

a total number of Q levels in the entire tree network, the complexity to compute an

equivalent processor value and construct an Gos
opt is given by O(RQ + RQlog(m)).

Since, m ≤ N , R ≤ N , Q ≤ N , N ≤ NlogN , and RQ ≤ RQlog(m), the total
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complexity of RAOLD-OS shall be approximated as O(N2logN), for MST, SPT, and

FHT and O(E2+N2logN) for RST routing strategies. The construction of EST takes

about O(NERQ+NERQlog(m)) steps. Hence, under similar assumptions, the total

complexity of RAOLD-OS with EST shall be approximated as O(E ·N3logN).

The complexity and time performance comparisons are summarized in the Table

2. In general, it is seen that EST provides the lowest processing time among all the

routing strategies. However its complexity increases with number of nodes as well as

number of links in a network. On the other hand, SPT provides comparable time

performance to EST, while having far less complexity. The time performance of RST

lies between that of SPT and FHT, and it provides robustness when there are link

failures. MST seems to be the last option for divisible load scheduling in both low

and high link speed networks. It is also seen that the eccentricity of FHT is the lowest

and RST is comparable to that of FHT. The eccentricity of SPT and EST are slightly

higher than FHT but much lower than that of MST.

In the case of low link speed networks, the processing time performance of all

the spanning trees except MST are similar, but the complexity of FHT and SPT are

lower than that of RST and EST. Hence, FHT and SPT are better routing strategies

for divisible load scheduling in low link speed networks.

In the case of high link speed networks, EST and SPT seem to provide a better

performance in terms of total processing time; and their trees are neither as “skinny”

as MST nor as “fat” as FHT or RST. However, the performance degradation of RST is

minimal for large network sizes as long as the link densities are moderate. Hence, SPT
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Table 4.2: Comparison of complexities1 and performances of various spanning tree

algorithms for divisible load scheduling with RAOLD-OS scheduling strategy for ar-

bitrary graphs

Spanning tree algorithm Complexity

Performance

Processing time
Eccentricity

Low speed links High speed links

EST O(E ·N3logN) Low Lowest Medium

FHT O(N2logN) Low Highest Lowest

MST O(N2logN) Highest Medium Highest

RST O(E2 + N2logN) Low Medium Low

SPT O(N2logN) Low Lowest Medium

is a better routing strategy for divisible load scheduling in high link speed networks.

Overall, SPT is shown to provide the best trade-off between time performance

and complexity in both low and high link speed networks. This is a very useful

characteristic of SPT, as in the next chapter we will use SPT to schedule multi-

source divisible loads in arbitrary networks. Notice that if robustness against link

failure is desired, RST may be the better option .
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Chapter 5

Scheduling Multi-source Divisible Loads

in Arbitrary Networks

5.1 General Introduction of the Presented Prob-

lem: Scope, Network Model and Problem For-

mulation

As we mentioned in the previous chapter, scheduling multi-source divisible loads on a

arbitrary network is quite a challenging task as different sources should cooperate and

share their computing power with others to balance their loads and minimize total

computational time. Besides that, since the underlying network has an arbitrary

topology it is difficult to decide from which source and which route a processing node

should receive loads. Further processing nodes may be allocated to different sources

when they become available. Because of the complexity, this problem has not been

rigorously addressed in the literature, even for the resource aware case (i.e., link and

processor speeds are known a priori).

Therefore, in this chapter we attempt to design and analyze multi-source divisible

load scheduling strategies on arbitrary networks within the DLT domain, starting
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from the resource aware case. We consider two different cases of interest, the static

case and the dynamic case. In the static case, we assume no new loads will arrive at

the system, while in the dynamic case, new loads may arrive as time progresses. To

address the scheduling issue, we propose a novel Graph Partitioning Scheme (GP),

which partitions the network into several totally disjoint regions. We then propose

two novel strategies, which are referred to as Static Scheduling Strategy (SSS) and

Dynamic Scheduling Strategy (DSS), one for each case. Both strategies use GP to

partition the network, and balance the loads in an iterative fashion. We study the

performance of these strategies both analytically and through simulation.

In this study, we also show that by using a simple reporting scheme, the pre-

sented algorithms can be easily adapted to the resource unaware case. Further, as we

mentioned in the previous chapter, in the reporting scheme, a processing node can

report back to the source nodes not only the speed information, but also from which

source(s) and which route(s) the processing node should receive its loads. This solves

a fundamental issue in scheduling multi-source divisible loads on arbitrary networks.

Below, we will present the network model and how the problem is formulated.

5.1.1 Network Model and Problem Formulation

The network considered in this chapter is an arbitrarily connected network comprising

a total of m source processors, to which users submit loads for processing. These

source processors (or simply ”sources”) will share the loads either with the entire

network or a portion of the network. We denote them as S0, S1, ..., Sm−1. Besides
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the sources, we assume that there are another n processors (To distinguish them

from the sources, they are referred to as “processing nodes” below.) in the network.

These processing nodes can receive loads from any source, and we denote them as

Pm, Pm+1, ..., Pm+n−1.

We make the following assumptions in our formulation. First, both sources and

processing nodes are allowed to participate in the computation process, and processing

nodes can perform routing functions. As pertaining with the previous chapter, “with

front-end” and “single port” are assumed for all processors. We also assume that

sources can share information with each other through messages, and we neglect any

overheads incurred by transmitting such short messages. Further, a linear cost model

for communication and computation is adopted as in the literature.

Now, the problem can be stated as: Given an arbitrary graph G =< V,E >,

with V = m + n, where m equals the number of sources and n equals the number of

processing nodes, how do we schedule and process loads submitted by the source nodes

in the system such that the total processing time is minimized.

We consider two distinct cases of interest - the static case and the dynamic

case. For the static case we assume that in the network there are m divisible loads

L0, L1, ..., Lm−1 residing on m sources, respectively. We assume that no additional

loads will arrive. For the dynamic case, we assume each source has an independent

load in-flow. Therefore, new loads may be expected to arrive at any point in time

and the network should accommodate the new arrivals dynamically.

Two different approaches [86] are possible to tackle this problem. One is based
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on “superposition” wherein, all or part of the processing nodes will receive multiple

fractions of loads from different sources and the total load that each processing node

received will be balanced according to its computation capacity. The other approach

is referred to as “network partitioning” wherein, the entire network will be parti-

tioned into several non-overlapping regions centered at each source respectively, and

each source will only dispatch its load to its own region. Both techniques have advan-

tages and disadvantages. Under “network partitioning”, since the entire network is

partitioned into non-overlapping regions, each source can carry out load dispatching

separately without interfering with each other. However, the challenge lies in parti-

tioning the network into regions where each region’s equivalent computation power

is exactly proportional to this region’s load size. In most cases we cannot strike a

perfect balance across the network. On the other hand, under the “superposition”

technique, each processing node can receive loads from several sources, and hence it

is easier to balance the load across the network. However, because of communication

contention problems, exercising control of “superposition” is much more complicated

than “network partitioning”, and may induce large overheads.

In the divisible load context, all load fractions are homogenous, and a node that

receives multiple fractions of load from different sources can receive a single fraction of

load, which equals the summation of the multiple fractions, from the “nearest” source.

Therefore, we adopt “network partitioning” technique1 to schedule and process the

loads.
1Since in our problem context the network has an arbitrary graph topology, “network partitioning”

is actually “graph partitioning”.
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However, designing an efficient strategy to partition the graph into several regions

such that each region’s optimal equivalent computation power is proportional to the

region’s load size is very difficult. The reason is that one must first solve a (equivalent)

sub-problem : Given a region, how do we identify this region’s optimal equivalent

computation power? To identify a region’s optimal equivalent computation power, one

should find the best/optimal spanning tree first, because the a region’s computation

power is denoted by the equivalent computation power of its optimal spanning tree

for the single-instalment based divisible load scheduling problem. Unfortunately, as

we mentioned in the previous chapter, this problem is proven to be NP-hard [52].

In this study, we will demonstrate that our proposed GP works efficiently, in the

sense that it partitions the network into several regions and generates a shortest path

spanning tree (SPT) for each region simultaneously. Remember that, in Chapter 4

SPT is shown to offer the best trade-off between time performance and complexity

among the commonly used spanning tree strategies. Our two algorithms, SSS for the

static case and DSS for the dynamic case, will use GP to partition the network and

then schedule the loads.

5.2 Static Scheduling Strategy (SSS)

Now suppose the speed information is known to all sources in the network, let us see

how the GP works. For the ease of presentation, we define an ordered communication

delay 2-tuple (Cki, i) which captures the cumulative communication delay from pro-

cessing node Pk to source Si. As there are m sources in the network, each processing
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node has m 2-tuples. We can define their relations as follows. When Cki > Ckj,

(Cki, i) > (Ckj, j). When Cki = Ckj, then (Cki, i) > (Ckj, j), iff i > j. Since each

source has a unique subscript, according to our definition, each processing node can

locate a unique source which has smallest 2-tuple (i.e. smallest cumulative communi-

cation delay). We denote this source as target source to the corresponding processing

node. Further, we also define πij as the shortest path (in term of communication

delays) from Si (or Pi) to Sj (or Pj)

Graph Partitioning Scheme: In our approach, the given graph is divided into

m regions Region0, Region1, ...Regionm−1, centered at S0, S1, ..., Sm−1, respectively.

An arbitrary processing node Pi is attached to its target source by the shortest path

(path with smallest communication delay). We observe that GP intuitively uses each

processing node effectively. This is because what determines the real computation

capacity of a node in a network is not only the computation speed of this processor,

but also its communication delay to the source. In GP, all the processing nodes are

attached to their target sources by the shortest path, and hence from the processing

nodes perspective they have been used efficiently. We define the following.

Totally disjoint regions: Totally disjoint regions mean that any two regions have (i)

no common node, (ii) no common link, and (iii) no intersection. Notice that (i)

and (ii) do not imply (iii). Even without common nodes and links, two regions may

still intersect with each other. For example, suppose Px belongs to Regioni, and Py

belongs to Regionj respectively. However, Py may be connected to Sj through Px

(i.e. Px is an intermediate node of πjy), so Regioni and Regionj still intersect with
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each other. Thus, for two regions to be totally separable/disjoint, they must satisfy

(i), (ii), and (iii) simultaneously. Now we state the following.

Theorem 1 Using GP the graph is divided into m totally disjoint regions. Proof:

In order to realize the proof we proceed as follows. We realize that (i) is immediately

apparent, since every processing node has a unique smallest ordered communication

delay 2-tuple. However, to complete the proof including (ii) and (iii), we need to

prove the following lemma first.

Lemma 1 Suppose Pi is attached to Sj, and πij is the shortest path (with respect

to communication delay) from Pi to Sj. Then, all the processing nodes belonging to

πij are also attached to Sj.

Proof: The proof is by contradiction. Suppose one processing node Pk belongs to

πij and is not attached to Sj, but is attached to another source Sx. Thus, according

GP, for Pk, we have (Ckj, j) > (Ckx, x). Notice that the path from Px to Pi has a

constant communication delay, denoted as Cπxi
. Then, for Pi, we have (Ckj+Cπxi

, i) >

(Ckx + Cπxi
, x), i.e., (Cij, j) > (Cix, x). This means that Pi should also be attached

to Sx, which contradict our assumption. Therefore, Lemma 1 is proved.

Next, we use Lemma 1 to complete the proof of separability of the regions includ-

ing (ii) and (iii) of Theorem 1. According to GP, each processing node is attached

to its target source by the shortest path. Suppose two paths π1 and π2, which belong

to two different regions Regioni and Regionj respectively, intersect with each other

at Pk. Then, from lemma 1 we know Pk belongs to Regioni and also Regionj, which

is impossible. Therefore, any two paths belonging to two different regions have no
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intersection, and hence any two regions have no intersection or common links. Hence

the proof.

From the above proof, we know that by using GP, the graph can be divided into m

disjoint regions. Further, since in GP all processing nodes in the same region are

attached to the corresponding source by the shortest path, we automatically generate

one SPT for each region. This is a very useful characteristic of GP, since the optimal

solution of scheduling divisible load for an arbitrarily connected graph occurs on a

spanning tree of the graph. In our context, after applying GP, each source can directly

dispatch load to its SPT, using a similar RAOLD-OS strategy [51]. Therefore, GP

actually performs two tasks together. It effectively divides the graph into m disjoint

regions and at the same time it generates one SPT for each region.

Now we will introduce how SSS works. SSS progresses in an iterative fashion.

At the beginning of the first iteration, SSS will apply GP to partition the graph.

After the network is partitioned into m totally disjoint regions, each source will com-

pute the equivalent computation power for its own region based on the SPT and

this process of obtaining an equivalent computation power is described in Chapter

3. Notice that since we do not take into account each source’s load size when we

partition the network, each region’s “equivalent computation power” is not propor-

tional to this region’s load size. We may expect that regions will complete processing

their respective loads at different time instants. Therefore, in the first iteration,

to balance the computation power across all the regions, the amount of load that

will be consumed for processing by a region will be altered proportionally. Suppose
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when each source dispatches and processes its load only on its own region, the finish

time of L0, L1, ..., Lm−1 are T0, T1, ..., Tm−1 respectively, and suppose i = argmin{Tj},

i.e., Regioni has the smallest finish time. To achieve balance, any region other than

Regioni, say Regionj, will only consume LjTi/Tj amount of load in the first iteration,

using a similar RAOLD-OS strategy.

In the first iteration, the whole Li is consumed by Regioni, and hence no load

remains in Si. However, other sources will have some amount of load remaining, and

the amount of load L′j remaining with source node Sj is,

L′j = Lj ∗ Tj − Ti

Tj

(5.1)

Therefore, the second iteration will start with m − 1 remaining loads

L′0, ...L
′
i−1, L

′
i+1, ..., L

′
m−1 residing on m − 1 sources S0, ...Si−1, Si+1, ..., Sm−1, respec-

tively. Then, SSS will apply GP again to partition the graph into (m − 1) regions.

Notice that this process actually is a reallocation of processing nodes which originally

belong to Regioni, to other regions. Those processing nodes which belong to a region

other than Regioni remain in that region. As in the first iteration, the region with

smallest finish time will consume the whole remaining load, while other regions will

only consume a proportional amount of load, and hence the third iteration will start

with (m−2) sources and remaining loads. Obviously, SSS will come to a halt after m

iterations. Further, as long as a region is busy, its equivalent computation power will

not decrease. Thus, in SSS the processing of load Li will complete within Ti. The

total processing time Tsss of the entire network, defined as time difference between

the start time and the time instant when the last remaining load has been processed,
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is,

Tsss ≤ max{Ti, i = 0, 1, ...,m− 1} (5.2)

We observe two issues here. First, in SSS, within each iteration, “network partition-

ing” technique is used to dispatch and process the loads. However, when we look at

the entire process, a processing node may receive loads from different sources, and

hence SSS also has an “superposition” characteristic. Therefore, SSS can be viewed

as having a “hybrid” property.

Secondly, when implementing GP, it can either be the sources that can initiate the

processing or the processing nodes2. In a source initiating scheme, each source will

construct a shortest path spanning tree simultaneously, using Dijkstra’s algorithm.

Then, all the sources share information with each other, and hence each source can

identify the processing nodes which have the smallest communication delay to itself.

On the other hand, if processing nodes initiate the algorithm, each processing node

will simultaneously compute its shortest path weight (communication delay) to each

source using Dijkstra’s algorithm or Bellman-Ford algorithm [93], and then choose the

target source and report the shortest route to the target source. To reduce redundant

computation, initially, each processing node can maintain a list of shortest paths

and their weights to each source. Then, as long as a source completes its load, its

processing nodes (nodes within its region) can quickly identify the next source it

should be attached to, and hence reduce overheads.

2In the literature, these are commonly referred to as sender initiated and receiver initiated

approaches.

109



5.2.1 Adapting to Resource Unaware Case

The SSS algorithm is easily adaptive to the resource unaware case using a reporting

scheme. Notice that Bellman-Ford algorithm can be implemented in a distributed

way, in which each node only needs to know the local link speed information (i.e., the

speed of the links that directly connect to this processing node) to construct a shortest

path spanning tree. This makes the Bellman-Ford algorithm naturally suitable for a

reporting based SSS (RB-SSS) algorithm under the resource unaware environment.

In the RB-SSS, all sources will signal the network at the beginning (i.e., t=0),

and then all processing nodes start to run the Bellman-Ford algorithm. Several im-

portant issues should be noted here. First, several Bellman-Ford algorithms (equals

the number of sources) run concurrently in the network, but they can be easily distin-

guished by adding corresponding identifiers during implementation. Secondly, some

processing nodes may already possess the local speed information, and they can im-

mediately run the Bellman-Ford algorithm with this information. Other processing

nodes which are not aware of the local speed information need to detect it. However,

the link speed can easily be detected by a local processing node rather than by a

possibly far away source. Further, notice that Bellman-Ford algorithm is actually a

step-wise updating algorithm and there is no negative circles in our case. Therefore,

the processing nodes can temporarily set the unknown speed to be infinite and run

the Bellman-Ford algorithms immediately after receiving the signal from the sources.

In this way, the distributed Bellman-Ford algorithms can start without delay. When

a processing node detects a link speed which is originally unknown, it can update the
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speed of the link from infinity to its actual value3. As we mentioned in the previous

chapter, the sources can set up a threshold time T ∗. The Bellman-Ford algorithm

will stop at T ∗, and all processing nodes will report back the routes and the speeds

to sources based on the current detected speed information. Those processors/links

whose speeds are still undetected at T ∗ are normally very slow. Excluding them

from computation will not influence the total performance too much. With the re-

ported information, sources are able to schedule the loads. Notice that GP is actually

integrated in this process.

Compared to the resource aware case, both SSS and RB-SSS start GP by running

the spanning tree algorithm at the beginning (distributed Bellman-Ford in resource

unaware case, and Dijkstra or Bellman-Ford in resource aware case.), and they are

identical afterwards. SSS may run the spanning tree algorithm faster than RB-SSS,

as in SSS all speeds are known in advance. In RB-SSS processing node may need to

detect the local link speeds and its own speed, which will induce overheads. However,

the overhead is simply a constant and bounded by T ∗ before the real scheduling.

Therefore, in our simulation test, we focus on assessing the performance of SSS.

5.3 Dynamic Scheduling Strategy (DSS)

Now we tackle a more realistic situation wherein each node is more independent in

its operation and each source has an independent and dynamic load in-flow. In this

case, a previous idle source may have new arrival loads and hence becoming busy,
3Since implementation is not a major concern of this thesis, we will not go into the implementing

details.

111



while a busy source may become idle. Therefore, in DSS, at the beginning of each

iteration, those sources which have changed their status will inform other sources by

sending short messages. Notice that each time only one busy source may become

idle, but more than one idle source may become busy. Then sources having loads to

process will apply GP to partition the network, and similar to SSS, the region with

the smallest finish time will consume the entire load, while other regions will only

consume a proportional amount of load. After the current iteration, the sources will

repeat the above process for every load that arrives to the system. Notice that DSS

can also be adapted to the resource unaware case, by adding a reporting phase at the

beginning. This will be a constant and one-time only overhead.

There are two major concerns here. First, a newly arrived load at Si will be stored

in the buffer until all previous loads in Si have been processed. Secondly, unlike in

SSS, where each active region’s “equivalent computation power” will only increase,

in DSS, it may also decrease. This is because a new load may arrive at a previously

idle source, and this source will re-claim the resource which initially belongs to its

region at the beginning of the next iteration. Therefore, the “equivalent computation

power” of a currently active region fluctuates as time progresses.

Although in DSS each region’s “equivalent computation power” fluctuates, we

can still attempt to derive the upper bound of processing time of a given load4. When

all sources in the network are busy, each region will occupy certain “domains” in the

network. We refer to such domains as the “critical domains” to the corresponding

4Time difference between the instant at which the load is scheduled by the source and the time

instant at which the load has been completed.
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regions. This is because for any source, its “critical domain” will always be attached

to it, as long as this source is busy. We denote the “equivalent computation power”

of Regioni’s “critical domain” as Ec
i . Further, since we adopt a linear cost model,

the processing time of a load is linearly related to the load size. Therefore, suppose

the load Li at Si is processed with k installments L0
i , L

1
i , ..., L

k−1
i , and the average

computation power is Ēi, we have

T (Ēi, Li) = T (Ēi, L
0
i + L1

i + ... + Lk−1
i ) = T (Ēi, L

0
i ) + T (Ēi, L

1
i ) + ... + T (Ēi, L

k−1
i )

≤ T (Ec
i , L

0
i ) + T (Ec

i , L
1
i ) + ... + T (Ec

i , L
k−1
i ) = T (Ec

i , Li) = Ec
i Li (5.3)

where, T (E,Li) denotes the processing time of load Li with computation power E.

Notice that Eqn (5.3) gives an upper bound of one load’s processing time. How-

ever, a load may not be able to be processed immediately when it arrives and hence,

the actual time the load spends in the network may be longer. Further, since a newly

arrived load will be stored in the buffer until its previous loads have been processed,

each source should have adequate buffer space to hold new arrival loads. Therefore,

it will be more appropriate if we perform queueing analysis for understanding the

performance of DSS in the next section.

5.4 Analysis of DSS

Suppose each source has independent poisson arrival loads, and the arrival rate at Si is

λi. Further, we assume that the load size is exponentially distributed with parameter

µc
iE

c
i . Notice that when a region has fixed computation power, the processing time
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Figure 5.1: Network models

of the loads is also exponentially distributed. Therefore, when all regions are busy

(and thus each region is processing its load within its critical domain only), we can

map each region to a M/M/1 queue, and the service rate for Regioni is µc
i , as shown

in Figure 5.1.(a).

However, in a dynamic situation, the service rate for each region is not constant.

At any time instant, several regions may become idle and their computation power

will be reallocated to other regions. For instance, when Region0 is idle while other

regions are busy, the network model is shown in Figure 5.1.(b). Notice that the arrival

rate λ is the same for the above two cases, but µi′ =
E′i
Ec

i
µc

i , where Ec
i denotes the

equivalent computation power of Regioni’s critical domain and E ′
i denotes Regioni’s

equivalent computation powers when Region0 is idle. Actually, there are 2m different

cases, where m is the number of sources. In all cases, for a given region, arrival rates

remain the same, but service rates are different. Notice that among all cases, when

Si occupies the entire network (i.e. when all other regions are idle), Regioni will have
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the maximum service rate. We denote the maximum service rate for Regioni as µmax
i .

Now, we consider the entire network as a system with m in-flows of loads and the

system will process these loads at a certain rate. However, if the aggregated load in-

flow rate exceeds the service rate of the entire system, then system becomes unstable,

and the number of loads left in the system will increase to infinity as time progresses.

Therefore, the key question to address is as follows: “Given a network, if we know

the load arrival rate as well as the load size distribution at each source (i.e. λi and

each region’s service rates in different cases are known), how can we decide whether

this network can manage these loads or not, and what is the average queue length at

each source and the average waiting time of a load?”. To address these questions, we

will analyze our network for three important cases.

Case 1: ∀ i, λi < µc
i . This is considered as a stable case wherein arrival rates are

less than the processing rates, which implies that each source can easily manage its

own loads using its critical domain only.

According to DSS, an idle source node Si will release its computation capacity.

Any load arriving during Si’s idle time will wait for a certain amount of time until Si

regains its computation capacity, and then Si will start to dispatch and process the

load. Therefore, we can map Regioni to a M/G/1 queue with vacations 5 [94]. Let

ζi denotes the distribution of service time at Regioni, and νi denotes the distribution

of Regioni’s vacation time. Then the average waiting time of loads at Si’s buffer

5When all other regions are idle, the vacation time can be viewed as arbitrarily small.
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(denoted as Tw
i ) is given by,

Tw
i =

λiE[ζ2
i ]

2(1− λiE[ζi])
+

E[ν2
i ]

2E[νi]
(5.4)

However, in our context, each region’s service rate and vacation time are coupled

with other regions in the network, and hence, it is more appropriate to view the

entire network as m coupled M/G/1 queues with vacations. In this case it may be

noted that determining the exact value of Tw
i is very difficult. To see this, consider

the simplest case where there are only two regions (Region0 and Region1) in the

network. To compute E[ζi], E[ζ2
i ], E[νi], and E[ν2

i ] (i = 0, 1) in Eqn (5.4), one needs

to know the probability when Region0 is busy while Region1 is idle, the probability

when Region0 is idle while Region1 is busy, the probability when both regions are

busy, and the probability when both regions are idle. This requires us to solve an

infinite 3-dimensional Markov Chain, as shown in Figure 5.2. In the figure, state (ij)

denotes i loads in S0 and j loads in S1, while both S0 and S1 are busy. State (i′j)(or

(ij′)) denotes there are i loads in S0 and j loads in S1, while S0 is idle(or busy) and

S1 is busy(or idle).

The Markov Chain shown in Figure 5.2 is very complicated to solve. Further, the

complexity of the problem increases dramatically as the number of sources increases

and makes it complex to derive an exact value of Tw
i . Thus, in this study, we will

attempt to derive the upper bound on Tw
i . In the derivation, we will use an important

property of the exponential distribution – the combination property [94], which is

stated as follows.

Theorem 2: Random variables x1, x2, ..., xk are exponentially distributed with
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Figure 5.2: Markov chain of two regions case
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parameters u1, u2, ..., uk, Let random variables Y = min{x1, x2, ..., xk}. Then, Y is

also exponentially distributed with parameter u = u1 + u2 + ... + uk.

Using Theorem 2, we can identify the distribution of νi and find the worst case

E[νiworst] and E[ν2
iworst]. Suppose when Si becomes idle, there are k busy regions in the

network. Because of the memoryless property of the exponential distribution [94], all

the k regions’ remaining processing time of their loads are exponentially distributed

with parameters µ0, µ1, ..., µk−1. It may be noted that Regioni’s vacation time is

the minimum remaining processing time among the k busy regions. According to

Theorem 2, we know the Regioni’s vacation time νi is also exponentially distributed,

with parameter µ = µ0 + µ1 + ... + µk−1. Notice that as k becomes smaller (i.e., less

regions are active), µ also becomes smaller. Therefore, when only the region with

smallest µmax
j is active, Regioni’s vacation time distribution has the smallest value

µ = µmax
j = min{µmax

0 , µmax
1 , ..., µmax

i−1 , µmax
i+1 ..., µmax

m−1}. In this case, Regioni has the

largest average vacation time, and hence, loads at Si have largest waiting time in the

buffer. We have,

E[νiworst] =
1

µmax
j

(5.5)

E[ν2
iworst] =

2

(µmax
j )2

(5.6)

Further, we notice that as long as Regioni is busy, its service rate is larger than or

equal to µc
i . Since the loads waiting time is inversely related to the Regioni’s service

rate, the upper bound of Tw
i is,

Tw
i =

λiE[ζ2
i ]

2(1− λiE[ζi])
+

E[ν2
i ]

2E[νi]
≤ λi/µ

c
i

µc
i − λi

+
1

µmax
j

(5.7)
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Then, applying Little’s Theorem [95], we can derive the average number of loads in

the Si’s buffer (denoted as Numave
i ), which is,

Numave
i = λiT

w
i ≤ λi(

λi/µ
c
i

µc
i − λi

+
1

µmax
j

) (5.8)

Since load size at Si is exponentially distributed with a parameter µc
iE

c
i , the average

load size is given by 1
µc

i Ec
i
. Thus, the average queue length at Si (denoted as Qave

i ) is

bounded by,

Qave
i = Numave

i /Ec
i µ

c
i ≤ λi(

λi/µ
c
i

µc
i − λi

+
1

µmax
j

)/Ec
i µ

c
i (5.9)

Eqn (5.9) gives us considerable hints on how much buffer should be assigned to each

source when designing the system. To reduce the probability of dropping loads when

the buffer is full, one should assign a larger buffer size than Qave
i derived from Eqn

(5.9) (say, two times larger than Qave
i ), to Si. However, since we have adopted some

approximations to derive Eqn (5.9), in some cases Qave
i may not give a tight estimation

on real actual queue length. This behavior is carefully studied and discussed in the

next section.

Case 2: ∀ i, λi ≥ µc
i or ∃ i, λi > µmax

i . In this case, the network cannot manage these

loads and is critically stable. The average queue length of the network and average

waiting time of loads are expected to grow to infinity, as time progresses. Therefore,

in this situation, one must reduce load arrival rates or discard low priority loads at

one or more of the sources.

Case 3: ∀ i, λi < µmax
i & ∃ i, λi ≥ µc

i & ∃ j, λj < µc
j. This case is more difficult than

the above two cases. In this case, some regions cannot handle their loads by using

their critical domains only, but by “borrowing” computation power from other regions,
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these regions may be able to handle their loads. Thus, the problem is “whether the

regions with excess resources can render enough computation power to other regions”.

Obviously, addressing this problem is extremely complex. For this case, we attempt

to study the simplest two regions case, which reveals some basic issues of the posed

problem.

Consider that there are two regions in the network, with µc
0 ≤ λ0 < µmax

0 and

λ1 < µc
1 < µmax

1 . Now, the key question is that whether Region0 can borrow enough

computation capacities from Region1 to accommodate its excess loads. Consider the

boundary situation, i.e., Region0 can borrow “just enough” resources from Region1.

In this case λ0 = µ̄0, where µ̄0 denotes Region0’s average service rate. From Region1’s

perspective, it can be mapped to a M/M/1 queue with vacations, and vacation time

is exponentially distributed with parameter µmax
0 . Notice that vacation time will not

affect the idle-ratio 6 of Region1 (denoted as Ridle
1 ), and hence Ridle

1 is equal to the

idle-ratio of a M/M/1 queue with the same service rate and arrival rate, but without

vacations, which is,

Ridle
1 = (µc

1 − λ1)/µ
c
1 (5.10)

From Region0’s viewpoint, it has the maximum service rate µmax
0 in Ridle

1 ratio of

time, and has a service rate of µc
0 in the remaining 1−Ridle

1 ratio of time. Hence, the

expectation of its service rate is,

µ̄0 =
µmax

0 (µc
1 − λ1)

µc
1

+
µc

0λ1

µc
1

(5.11)

Therefore, if λ0 < µ̄0, this network is able to manage these loads. Otherwise, this

6Idle-ratio is defined as ratio of the time when the region is idle.

120



network cannot handle this amount of loads.

As in case 1, one can apply Eqn (5.9) to estimate the upper bound of Qave
1 (the

average queue length at S1), and as λ0 approaches µ̄0 (given by Eqn (5.11)), Qave
1

approaches the upper bound. When λ0 ≥ µ̄0, Qave
1 is exactly equal to λ1(

λ1/µc
1

µc
1−λ1

+

1
µmax

0
)/Ec

1µ
c
1 (as per Eqn (5.9)). For Region0, when λ0 ≥ µ̄0, Qave

0 goes to infinity.

When µc
0 < λ0 < µ̄0, though we cannot directly use Eqn (5.9) to calculate the upper

bound of Qave
0 , we can use µ̄0 instead of µc

0 in Eqn (5.9) to estimate the approximate

value of Qave
0 .

Similarly, when there are more than two regions in the network, we have to

compute how much computation power the regions with excess resource can borrow

from other regions which cannot handle their loads alone. Unfortunately, solving this

problem requires solving the similar Markov Chain7 as shown in Figure 5.2. This

remains an open problem.

5.5 Performance Evaluation and Discussion

5.5.1 Performance of SSS

As we mentioned above, in this section we focus on studying the performance of SSS

(resource aware case), as in resource unaware case, there will be simply a one-time,

constant and bounded overhead. We compare the performance of SSS with a strategy

7Similarly, the complexity of the Markov Chain increases dramatically as number of regions grows.
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referred to as Sequential Dispatching Strategy (SDS)8. SDS works as follows. Con-

sider a network with m loads L0, L1, ..., Lm−1 residing on m sources S0, S1, ..., Sm−1,

respectively. In SDS, S0 will first dispatch L0 to the entire network based on a SPT

of the network using a similar RAOLD-OS strategy, while other sources temporarily

hold their loads. Then, after L0 has been processed, S1 will dispatch L1 to the entire

network. The above process continues until all loads have been processed.

As we can see from the above description, SDS is simple in nature. Further, we

notice that if communication delay can be neglected (when all links in the network

are sufficiently fast), SDS and SSS will have exactly the same performance. Suppose

there are m loads in the network, the total processing time Ttotal for both SDS and

SSS would be,

Ttotal = (L0 + L1 + ... + Lm−1) · E(w)Tcp (5.12)

where E(w) is the equivalent computation capacity of the entire network. However, in

the presence of communication delay, SSS and SDS will show different performance.

We conduct experiments to study how SSS and SDS will react to communication

delay. Our experiments reveal certain interesting characteristics of SSS.

In our experiments, the network has an arbitrary graph topology generated ran-

domly with a specified number of nodes and link connectivity probabilities9. The

computation speed parameters of sources and processing nodes w 10 is uniformly dis-

tributed among [1, 10], and both Tcm and Tcp are set to be 1. We simulate different
8As of this date, there are no multi-job strategies for scheduling divisible loads on arbitrary graphs

in the literature.

9In our experiments, the link probability of a direct link between a pair of nodes is set to 0.4.

10The notations w, z, Tcp, and Tcm are defined in Chapter 2
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network scenarios (tightly-coupled and loosely-coupled) by assigning different distri-

butions of the communication speed parameters. Further, we assume each source in

the network has an amount of load L = 10, 000, 000. Later, we will also show the

effect of load size on our strategies.

We first study networks with 20 nodes. To simulate the characteristics of a tightly-

coupled network, z is set to be uniformly distributed among [0, 0.5], and to simulate

the characteristics of a loosely-coupled network, z is set to be uniformly distributed

among [1, 2]. We vary the number of source nodes11 in the network from 1 to 10, and

the corresponding total processing time of SSS and SDS is shown in Figure 5.3.(a) and

Figure 5.3.(b). From these figures, we observe that SSS outperforms SDS, and when

the communication delay is large, SSS gains a significant speedup against SDS. This is

expected since in the presence of communication delays, SSS utilizes the computation

power of sources and processing nodes much more efficiently than SDS.

Further, we notice that the total processing time of SDS is approximately linearly

related to the number of sources in both loosely-coupled networks and tightly-coupled

networks, as shown in Figure 5.3.(a) and Figure 5.3.(b). SSS also exhibits the similar

linear relationship in tightly-coupled networks. However, SSS shows a very interesting

characteristic in loosely-coupled networks. As shown in Figure 5.3.(b), provided the

number of sources is smaller than some threshold, increasing the number of sources

(i.e., increasing the number of loads in the network) does not affect the total processing

time significantly. Actually, as the number of sources increases from 1 to 7 (i.e. total

amount of loads increases by 600%), the total processing time of SDS increases by

11Each time new source nodes are randomly generated, while previous source nodes are retained.
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Figure 5.3: Experiment Results for the Static Case
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662%(2.1×106 to 1.6×107) and 418%(1.1×107 to 5.7×107) in tightly-coupled networks

and loosely-coupled networks, respectively. In the same case, the total processing time

of SSS also increases by 471%(2.1× 106 to 1.2× 107) in the tightly-coupled networks,

but it increases only by 45%(1.1× 107 to 1.6× 107) in the loosely-coupled networks.

We refer to the above SSS’ characteristic as the “load insensitive” property, because

the total processing time of SSS seems “insensitive” to the increase of number of

loads. Notice that this property can only be observed in a relatively loosely-coupled

network.

The above load insensitive property can be explained by the “Nearest Nodes

Dominance” effect, which is stated as follows. In the presence of communication

delays, for a given region, the source and its “nearest” nodes dominate this region’s

computation capacity. Here, “nearest” is in terms of small communication delay. This

effect reveals that the nodes which are “far from” (have a large communication delay)

the source contribute little to the total computation capacity.

Now, let us see why SSS exhibits the load insensitive property. The total pro-

cessing time of SSS is the maximum finish time of all loads, and its upper bound is

shown in the Inequality (5.2), where the Tis are determined by the respective critical

domains’ computation power. Notice that when the sources are sparse and commu-

nication delay is relatively large, each source’s critical domain contains almost all its

“nearest” nodes. Therefore, because of the nearest nodes dominance effect, Ti is very

close to the real processing time of Li. Further, when adding a new source into the

network, as long as sources remain sparse, it is highly probable that the new source
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will not deprive other sources’ “nearest” nodes. Therefore, previous existing critical

domains’ computation capacities will not decrease significantly, and hence the total

processing time is less affected.

From the above discussion, we know that there are two prerequisites for SSS to

exhibit the load insensitive property. First, the communication delay of the network

should be relatively large. This explains why in the tightly-coupled network, the

total processing time of SSS increases linearly with the number of sources, as shown

in Figure 5.3.(a). Second, the sources in the network should be sparse enough, i.e.,

geographically well distributed. Therefore, when the number of sources exceeds some

threshold, we should observe a sharp increase in the total processing time as number

of sources increases further. As shown in Figure 5.3.(b), when the number of sources

increase from 7 to 10, the total processing time increases from 1.6× 107 to 2.4× 107,

almost triple the increment as compared to when the number of sources increases

from 1 to 4 or from 4 to 7. However, notice that the threshold could be varied. For

a larger network, SSS should be able to sustain the load insensitive property for a

larger number of sources.

To verify this, we conduct another set of experiments on a network with 60

nodes. The network parameters are the same as previous experiments – w is uniformly

distributed among [1, 10], z is uniformly distributed among [0, 0.5] for tightly-coupled

network and among [1, 2] for relatively loosely-coupled network. The results are

shown in Figure 5.3.(c) and Figure 5.3.(d). We observe that for the loosely-coupled

case when the number of sources exceeds 7 the total processing time does not increase
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dramatically.

Further, we notice that as the network size grows, the total processing time

for tightly-coupled network decreases significantly, but the total processing time for

loosely-coupled network does not change significantly. Comparing Figure 5.3.(b) and

5.3.(d), we find that for the single source case, the total processing time only decreases

from 1.1 × 107 to 0.95 × 107, as the network size grows from 20 nodes to 60 nodes.

This indeed verifies the nearest nodes dominance effect.

Finally, it should be noted that since we adopt a linear cost model, the change

of the initial load size does not affect the above observations. Consider the 60 nodes

loosely-coupled network, we vary each region load size from 5, 000, 000 to 15, 000, 000,

and the total processing time of SSS with respect to different number of sources are

plotted in Figure 5.4. From the figure, we observe that the total processing time of

SSS increases linearly with the load size.

5.5.2 Performance of DSS

Now, we will study the performance of DSS. Since DSS is a natural extension of SSS,

its usefulness and effectiveness are shown in the above subsection. Therefore, in this

subsection we mainly focus on the dynamic nature of DSS - the average queue length

at each source. Notice that as long as we know the average queue length, applying

Little’s Theorem can easily yield other performance metrics.

We adopt the assumption made in Section 5.4, that is, the arrival of loads follow

a poisson distribution and load size is exponentially distributed. Further, in our
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Figure 5.4: Total Processing Time of SSS with Different Load Size and Number of

Sources

simulation, for any Regioni, we always let λi < µc
i , which corresponds to Case 1 in

Section 5.4. It is because the other two cases are either trivial (for Case 2) or too

complex (for Case 3). Under the above constraints, an upper bound of each region’s

average queue length is given in Eqn (5.9). Below, we conduct experiments to study

the actual average queue length of each region.

First, we consider networks with symmetric architecture and three sources. Simi-

lar to the static case, we generate two types of networks - loosely-coupled and tightly-

coupled networks. In the loosely-coupled network, because of the presence of large

communication delays, a region can only get a small amount of computation power

from other idle regions. On the other hand, in the tightly-coupled network, since

the communication delays are small, a region can get relatively larger amount of
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Table 5.1: Regions’ Equivalent Computation Capacities for Symmetric Networks

Network Type Ec
i , i = 0, 1, 2 E ′

i, i = 0, 1, 2 Emax
i

Loosely-coupled Network 2 1.8 1.65

Tightly-coupled Network 2 1.4 1

computation power from other idle regions. The respective equivalent computation

power for each region in different cases are shown in Table 5.1, where E ′
i denotes the

equivalent computation power of the other two regions, when only Regioni is idle.

In our simulation, we let each region’s average load size µ = 3, and vary the

load arrival rate λ. The average queue length with respect to different λ is plotted

in Figure 5.5. In the figure, the theoretical bounds are derived by Eqn (5.9). Notice

that λ denotes the average number of loads arriving in one unit of time. Since we

consider divisible loads which are large in size, it is reasonable to let λ < 1.

From Figure 5.5, we observe that the average queue length increases with λ,

which is natural. Further, we notice that the actual average queue length of the

tightly-coupled network is much smaller than theoretical bound. However, as the net-

work’s communication delay becomes larger, the actual average queue length moves

closer to the theoretical bound. This behavior is captured in the Figure 5.5.a. The

loosely-coupled network’s average queue length is quite close to the theoretical bound.

Therefore, Eqn (5.9) serves as a very good estimator on average queue length for

loosely-coupled networks, but may not give a “tight” estimation for tightly-coupled

networks.

Next, we consider a more general case – regions having different computation
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pled Network With Respect to Different λ
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Table 5.2: Regions’ Equivalent Computation Capacities for the General Case

Regioni Ec
i E0

i ′ E1
i ′ E2

i ′ Emax
i

Region0 3.3 ∞ 2.9 2.65 2.5

Region1 4.5 3.5 ∞ 3.3 2.8

Region2 2.7 2.5 2.4 ∞ 2.25

Table 5.3: Experimental Results for the General Case

Experiment 1 Experiment 2 Experiment 3

Regioni λi Qt
i Qa

i λi Qt
i Qa

i λi Qt
i Qa

i

Region0 1/15 5.3 3.7 1/14 6.7 4.2 1/17 3.8 2.7

Region1 1/15 26 6.4 1/14 79.9 10.3 1/18 8.2 3.6

Region2 1/15 3.3 2.9 1/18 2.2 2.0 1/13 4.6 4.0

powers. We generate a network with 3 regions, and the regions’ equivalent computa-

tion power in different cases is shown in Table 5.2, where E0
i ′ denotes the equivalent

computation power for Regioni when Region0 is idle, and similar for E1
i ′ and E2

i ′.

Similarly, we let the average load size to be 3, and run the simulation for different

sets of load arrival rates. Several results are reported in Table 5.3, where Qt
i denotes

the theoretical bound of Regioni’s average queue length derived from Eqn (5.9) and

Qa
i denotes its actual average queue length.

From Table 5.3, we find that Qa
2 is very close to Qt

2 independent of load arrival

rates. This is because Region2 is similar to a loosely-coupled network in that its

main computation power lies within its critical domain, i.e., it cannot borrow too

much extra computation power from other idle regions. However, as regions are able
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to gain more computation capacity from other idle regions, the difference between Qt
i

and Qa
i increases. This tendency is shown by Region0 and Region1’s performance.

The above phenomena is also intuitive, as these regions’ actual average computation

capacity is much larger than their critical domains’ computation capacity.

From the above discussions, we know that Eqn (5.9) can be directly used as a

reference to assign buffer space to regions which exhibit more “loosely-coupled” char-

acteristics. However, for the regions exhibiting more “tightly-coupled” characteristics,

one should reduce the value predicted by Eqn (5.9) correspondingly, and then use the

new value as the reference.
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Chapter 6

Conclusions and Future Recommendations

In this thesis, we investigate the problem of scheduling divisible loads in the resource

unaware environments, for different types of networks. Firstly, two novel strategies

for scheduling and processing a divisible load on linear networks were presented.

Both strategies used a portion of load to probe and estimate the speed parameters.

Since the underlying network is a linear chain of processors, the choice of including

the processors for computation becomes crucial in deciding the overall performance of

the strategy, as the computing speeds and the link speeds are not known a priori. Any

inadvertent choice of processors may slow down the computation. Taking this into

account, the strategies proposed progress in an incremental fashion by including the

processors in several phases in view of minimizing the processing time. The strategies

take distinct advantage in utilizing faster processors earlier in the computation and

progressively including other fast processors as time progresses. This special design

is quite akin to linear network infrastructure as each load fraction has to percolate

up and traverse several links in reaching its destination. Experiments were carried

out to reveal the performance of the proposed strategies under several influencing

factors. The performance of a strategy that serves as an upper bound (pureDLT)

was also analyzed. The simulation shows that our strategies have gained a significant

speed-up against the pureDLT.
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One of the immediate problems that may need attention is in the choice of initial

distribution of load among different phases. It would be interesting to derive an

effective partitioning scheme for these phases, taking into consideration the size of

the load, estimated parameters, dynamically as opposed to a fixed partitioning scheme

proposed here.

We then addressed scheduling divisible loads in resource unaware multi-level tree

networks. We considered two different cases of interests - SNP case and DNP case.

In DNP case, the mild fluctuation of the link and processor speeds was considered. In

such an environment, nodes can participate and leave the system at any time, which

poses considerable challenge in prudently selecting the resources for efficient schedul-

ing in the sense of minimizing the overall processing time. To this end, we proposed

load distribution strategies to cater to the unknown and time varying network pa-

rameter cases to derive the best possible load distribution. The main contribution is

in terms of designing strategies to efficiently exploit the probing technique and tune

it to multi-level networks. We designed and analyzed two different strategies - static

(for unknown but constant parameters) and dynamic (for unknown and time-varying

parameters) and studied their performances. We demonstrated the strengths and sev-

eral salient features of our algorithms in a systematic fashion using some illustrative

examples. The examples show that the proposed approach is robust and resilient and

easily adaptable to network fluctuations. The algorithm is shown to have a tracking

capability, a property that is important for such dynamic environments. This prop-

erty attempts to reuse fast processors efficiently, whenever available. On the other

hand, the algorithms also prudently avoid using nodes that may cause bottleneck for
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processing. However, one may notice the dynamic strategy may not be suitable for an

extremely unstable network. Both the strategies presented in this study contribute

significantly to the ultimate applicability of the divisible load distribution strategies,

available in the literature, to realistic networks.

Two important issues of scheduling divisible load(s) in arbitrary networks were

discussed. We argued that due to the difficulty in controlling, the probing technique

may not be suitable in this case because of its centralized nature. In addition it is very

costly for the root to prob the speed of a far away link or processor in a large-scale

network. To this end, a reporting technique was suggested, which seems to be more

suitable in large-scale arbitrary networks. Further, we investigated the performance

of various spanning tree routing strategies for scheduling divisible loads utilizing the

RAOLD-OS scheduling algorithm. The performance of these strategies have been

evaluated for wide range of arbitrary graphs with varying connectivity and proces-

sor densities and analyzed the results. Our simulations study shows that the SPT

routing strategy offers a better trade-off between time complexity and performance

while RST renders better trade-off between performance and robustness. We also

proposed an EST strategy which delivers best time performance, however with large

time complexity.

We finally addressed the problem of scheduling multi-source divisible loads in

arbitrary networks. This study considered a very generic graph/network with het-

erogeneous processing nodes and links, and considered each aspect of the problem

dimension by analyzing the effects of several key parameters - network size (number
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of nodes/scalability of the network), rate of arrival of loads, rate of processing of

the loads, number of sources, etc. We proposed a novel graph partitioning scheme

GP. GP solves the fundamental problem of scheduling loads in arbitrary networks -

that is, from which source and which route a node should receive loads. Further, GP

works very efficiently in the sense that it combines partitioning network and generat-

ing shortest path spanning tree. Then, based on GP, two novel scheduling strategies,

SSS and DSS, were proposed. SSS applies to the static case where no new loads

will arrive in the network, while DSS applies to the dynamic case where loads arrive

randomly. We have shown that by using a reporting scheme, the strategies can be

easily adapted to the resource unaware case, and compared to the resource aware case

only a constant, one-time pre-scheduling overhead is introduced. We also studied the

dynamic behavior of DSS using queuing theory, and our analysis revealed the upper

bound of each load’s average waiting time and each source’s average queue length.

Both SSS and DSS have shown a “hybrid” property of superposition and network

partitioning. Our simulation has verified the effectiveness and usefulness of SSS and

DSS. Further, the simulation has revealed a very interesting characteristic of SSS, that

is, in loosely-coupled networks, as long as the number of sources is less than some

threshold, increasing number of sources will not increase the total processing time.

This characteristic can be explained by a “Nearest Nodes Dominance” effect. Our

simulation also shows that, for DSS, the theoretical bound derived for each source’s

average queue length is very useful to predict the actual average queue length in

loosely-coupled networks, but it may not be tight for tightly-coupled networks. This

is because that a region’s average computation capacity in tightly-coupled networks
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can be much larger than the computation capacity of this region’s critical domain.

This is the first attempt to consider scheduling multi-source divisible loads on

arbitrary networks. We believe that this study is a very timely contribution to the

DLT domain, as it represents a generalization of the problem. One of the key contri-

butions of this study is in the graph partitioning approach and resource sharing across

domains. This introduces the possibility of dynamic power tapping of idle resources.

A possible extension to this work is to study the dynamic behavior of tightly-coupled

networks more precisely. Further, because of the complexity of the problem, a dedi-

cated network is considered here. One may attempt to incorporate the time-varying

nature of the speeds of links and processors into problem formulation, and study the

multi-source scheduling problem in a real dynamic environment.
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